libgo: update to go1.9
[official-gcc.git] / libgo / go / compress / flate / huffman_code.go
blob891537ed5e6343eb0c6e67078e5ac9cff1b25bc2
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package flate
7 import (
8 "math"
9 "math/bits"
10 "sort"
13 // hcode is a huffman code with a bit code and bit length.
14 type hcode struct {
15 code, len uint16
18 type huffmanEncoder struct {
19 codes []hcode
20 freqcache []literalNode
21 bitCount [17]int32
22 lns byLiteral // stored to avoid repeated allocation in generate
23 lfs byFreq // stored to avoid repeated allocation in generate
26 type literalNode struct {
27 literal uint16
28 freq int32
31 // A levelInfo describes the state of the constructed tree for a given depth.
32 type levelInfo struct {
33 // Our level. for better printing
34 level int32
36 // The frequency of the last node at this level
37 lastFreq int32
39 // The frequency of the next character to add to this level
40 nextCharFreq int32
42 // The frequency of the next pair (from level below) to add to this level.
43 // Only valid if the "needed" value of the next lower level is 0.
44 nextPairFreq int32
46 // The number of chains remaining to generate for this level before moving
47 // up to the next level
48 needed int32
51 // set sets the code and length of an hcode.
52 func (h *hcode) set(code uint16, length uint16) {
53 h.len = length
54 h.code = code
57 func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
59 func newHuffmanEncoder(size int) *huffmanEncoder {
60 return &huffmanEncoder{codes: make([]hcode, size)}
63 // Generates a HuffmanCode corresponding to the fixed literal table
64 func generateFixedLiteralEncoding() *huffmanEncoder {
65 h := newHuffmanEncoder(maxNumLit)
66 codes := h.codes
67 var ch uint16
68 for ch = 0; ch < maxNumLit; ch++ {
69 var bits uint16
70 var size uint16
71 switch {
72 case ch < 144:
73 // size 8, 000110000 .. 10111111
74 bits = ch + 48
75 size = 8
76 break
77 case ch < 256:
78 // size 9, 110010000 .. 111111111
79 bits = ch + 400 - 144
80 size = 9
81 break
82 case ch < 280:
83 // size 7, 0000000 .. 0010111
84 bits = ch - 256
85 size = 7
86 break
87 default:
88 // size 8, 11000000 .. 11000111
89 bits = ch + 192 - 280
90 size = 8
92 codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
94 return h
97 func generateFixedOffsetEncoding() *huffmanEncoder {
98 h := newHuffmanEncoder(30)
99 codes := h.codes
100 for ch := range codes {
101 codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
103 return h
106 var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
107 var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
109 func (h *huffmanEncoder) bitLength(freq []int32) int {
110 var total int
111 for i, f := range freq {
112 if f != 0 {
113 total += int(f) * int(h.codes[i].len)
116 return total
119 const maxBitsLimit = 16
121 // Return the number of literals assigned to each bit size in the Huffman encoding
123 // This method is only called when list.length >= 3
124 // The cases of 0, 1, and 2 literals are handled by special case code.
126 // list An array of the literals with non-zero frequencies
127 // and their associated frequencies. The array is in order of increasing
128 // frequency, and has as its last element a special element with frequency
129 // MaxInt32
130 // maxBits The maximum number of bits that should be used to encode any literal.
131 // Must be less than 16.
132 // return An integer array in which array[i] indicates the number of literals
133 // that should be encoded in i bits.
134 func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
135 if maxBits >= maxBitsLimit {
136 panic("flate: maxBits too large")
138 n := int32(len(list))
139 list = list[0 : n+1]
140 list[n] = maxNode()
142 // The tree can't have greater depth than n - 1, no matter what. This
143 // saves a little bit of work in some small cases
144 if maxBits > n-1 {
145 maxBits = n - 1
148 // Create information about each of the levels.
149 // A bogus "Level 0" whose sole purpose is so that
150 // level1.prev.needed==0. This makes level1.nextPairFreq
151 // be a legitimate value that never gets chosen.
152 var levels [maxBitsLimit]levelInfo
153 // leafCounts[i] counts the number of literals at the left
154 // of ancestors of the rightmost node at level i.
155 // leafCounts[i][j] is the number of literals at the left
156 // of the level j ancestor.
157 var leafCounts [maxBitsLimit][maxBitsLimit]int32
159 for level := int32(1); level <= maxBits; level++ {
160 // For every level, the first two items are the first two characters.
161 // We initialize the levels as if we had already figured this out.
162 levels[level] = levelInfo{
163 level: level,
164 lastFreq: list[1].freq,
165 nextCharFreq: list[2].freq,
166 nextPairFreq: list[0].freq + list[1].freq,
168 leafCounts[level][level] = 2
169 if level == 1 {
170 levels[level].nextPairFreq = math.MaxInt32
174 // We need a total of 2*n - 2 items at top level and have already generated 2.
175 levels[maxBits].needed = 2*n - 4
177 level := maxBits
178 for {
179 l := &levels[level]
180 if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
181 // We've run out of both leafs and pairs.
182 // End all calculations for this level.
183 // To make sure we never come back to this level or any lower level,
184 // set nextPairFreq impossibly large.
185 l.needed = 0
186 levels[level+1].nextPairFreq = math.MaxInt32
187 level++
188 continue
191 prevFreq := l.lastFreq
192 if l.nextCharFreq < l.nextPairFreq {
193 // The next item on this row is a leaf node.
194 n := leafCounts[level][level] + 1
195 l.lastFreq = l.nextCharFreq
196 // Lower leafCounts are the same of the previous node.
197 leafCounts[level][level] = n
198 l.nextCharFreq = list[n].freq
199 } else {
200 // The next item on this row is a pair from the previous row.
201 // nextPairFreq isn't valid until we generate two
202 // more values in the level below
203 l.lastFreq = l.nextPairFreq
204 // Take leaf counts from the lower level, except counts[level] remains the same.
205 copy(leafCounts[level][:level], leafCounts[level-1][:level])
206 levels[l.level-1].needed = 2
209 if l.needed--; l.needed == 0 {
210 // We've done everything we need to do for this level.
211 // Continue calculating one level up. Fill in nextPairFreq
212 // of that level with the sum of the two nodes we've just calculated on
213 // this level.
214 if l.level == maxBits {
215 // All done!
216 break
218 levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
219 level++
220 } else {
221 // If we stole from below, move down temporarily to replenish it.
222 for levels[level-1].needed > 0 {
223 level--
228 // Somethings is wrong if at the end, the top level is null or hasn't used
229 // all of the leaves.
230 if leafCounts[maxBits][maxBits] != n {
231 panic("leafCounts[maxBits][maxBits] != n")
234 bitCount := h.bitCount[:maxBits+1]
235 bits := 1
236 counts := &leafCounts[maxBits]
237 for level := maxBits; level > 0; level-- {
238 // chain.leafCount gives the number of literals requiring at least "bits"
239 // bits to encode.
240 bitCount[bits] = counts[level] - counts[level-1]
241 bits++
243 return bitCount
246 // Look at the leaves and assign them a bit count and an encoding as specified
247 // in RFC 1951 3.2.2
248 func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
249 code := uint16(0)
250 for n, bits := range bitCount {
251 code <<= 1
252 if n == 0 || bits == 0 {
253 continue
255 // The literals list[len(list)-bits] .. list[len(list)-bits]
256 // are encoded using "bits" bits, and get the values
257 // code, code + 1, .... The code values are
258 // assigned in literal order (not frequency order).
259 chunk := list[len(list)-int(bits):]
261 h.lns.sort(chunk)
262 for _, node := range chunk {
263 h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
264 code++
266 list = list[0 : len(list)-int(bits)]
270 // Update this Huffman Code object to be the minimum code for the specified frequency count.
272 // freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
273 // maxBits The maximum number of bits to use for any literal.
274 func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
275 if h.freqcache == nil {
276 // Allocate a reusable buffer with the longest possible frequency table.
277 // Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
278 // The largest of these is maxNumLit, so we allocate for that case.
279 h.freqcache = make([]literalNode, maxNumLit+1)
281 list := h.freqcache[:len(freq)+1]
282 // Number of non-zero literals
283 count := 0
284 // Set list to be the set of all non-zero literals and their frequencies
285 for i, f := range freq {
286 if f != 0 {
287 list[count] = literalNode{uint16(i), f}
288 count++
289 } else {
290 list[count] = literalNode{}
291 h.codes[i].len = 0
294 list[len(freq)] = literalNode{}
296 list = list[:count]
297 if count <= 2 {
298 // Handle the small cases here, because they are awkward for the general case code. With
299 // two or fewer literals, everything has bit length 1.
300 for i, node := range list {
301 // "list" is in order of increasing literal value.
302 h.codes[node.literal].set(uint16(i), 1)
304 return
306 h.lfs.sort(list)
308 // Get the number of literals for each bit count
309 bitCount := h.bitCounts(list, maxBits)
310 // And do the assignment
311 h.assignEncodingAndSize(bitCount, list)
314 type byLiteral []literalNode
316 func (s *byLiteral) sort(a []literalNode) {
317 *s = byLiteral(a)
318 sort.Sort(s)
321 func (s byLiteral) Len() int { return len(s) }
323 func (s byLiteral) Less(i, j int) bool {
324 return s[i].literal < s[j].literal
327 func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
329 type byFreq []literalNode
331 func (s *byFreq) sort(a []literalNode) {
332 *s = byFreq(a)
333 sort.Sort(s)
336 func (s byFreq) Len() int { return len(s) }
338 func (s byFreq) Less(i, j int) bool {
339 if s[i].freq == s[j].freq {
340 return s[i].literal < s[j].literal
342 return s[i].freq < s[j].freq
345 func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
347 func reverseBits(number uint16, bitLength byte) uint16 {
348 return bits.Reverse16(number << (16 - bitLength))