mips-signal.h: Update copyright.
[official-gcc.git] / gcc / convert.c
blobab780d8ebd37cc61ea49849b5980c3aa5618d19c
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
37 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
41 tree
42 convert_to_pointer (tree type, tree expr)
44 if (TREE_TYPE (expr) == type)
45 return expr;
47 if (integer_zerop (expr))
49 tree t = build_int_cst (type, 0);
50 if (TREE_OVERFLOW (expr) || TREE_CONSTANT_OVERFLOW (expr))
51 t = force_fit_type (t, 0, TREE_OVERFLOW (expr),
52 TREE_CONSTANT_OVERFLOW (expr));
53 return t;
56 switch (TREE_CODE (TREE_TYPE (expr)))
58 case POINTER_TYPE:
59 case REFERENCE_TYPE:
60 return fold_build1 (NOP_EXPR, type, expr);
62 case INTEGER_TYPE:
63 case ENUMERAL_TYPE:
64 case BOOLEAN_TYPE:
65 if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
66 expr = fold_build1 (NOP_EXPR,
67 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
68 expr);
69 return fold_build1 (CONVERT_EXPR, type, expr);
72 default:
73 error ("cannot convert to a pointer type");
74 return convert_to_pointer (type, integer_zero_node);
78 /* Avoid any floating point extensions from EXP. */
79 tree
80 strip_float_extensions (tree exp)
82 tree sub, expt, subt;
84 /* For floating point constant look up the narrowest type that can hold
85 it properly and handle it like (type)(narrowest_type)constant.
86 This way we can optimize for instance a=a*2.0 where "a" is float
87 but 2.0 is double constant. */
88 if (TREE_CODE (exp) == REAL_CST)
90 REAL_VALUE_TYPE orig;
91 tree type = NULL;
93 orig = TREE_REAL_CST (exp);
94 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
95 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
96 type = float_type_node;
97 else if (TYPE_PRECISION (TREE_TYPE (exp))
98 > TYPE_PRECISION (double_type_node)
99 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
100 type = double_type_node;
101 if (type)
102 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
105 if (TREE_CODE (exp) != NOP_EXPR
106 && TREE_CODE (exp) != CONVERT_EXPR)
107 return exp;
109 sub = TREE_OPERAND (exp, 0);
110 subt = TREE_TYPE (sub);
111 expt = TREE_TYPE (exp);
113 if (!FLOAT_TYPE_P (subt))
114 return exp;
116 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
117 return exp;
119 return strip_float_extensions (sub);
123 /* Convert EXPR to some floating-point type TYPE.
125 EXPR must be float, integer, or enumeral;
126 in other cases error is called. */
128 tree
129 convert_to_real (tree type, tree expr)
131 enum built_in_function fcode = builtin_mathfn_code (expr);
132 tree itype = TREE_TYPE (expr);
134 /* Disable until we figure out how to decide whether the functions are
135 present in runtime. */
136 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
137 if (optimize
138 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
139 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
141 switch (fcode)
143 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
144 CASE_MATHFN (ACOS)
145 CASE_MATHFN (ACOSH)
146 CASE_MATHFN (ASIN)
147 CASE_MATHFN (ASINH)
148 CASE_MATHFN (ATAN)
149 CASE_MATHFN (ATANH)
150 CASE_MATHFN (CBRT)
151 CASE_MATHFN (COS)
152 CASE_MATHFN (COSH)
153 CASE_MATHFN (ERF)
154 CASE_MATHFN (ERFC)
155 CASE_MATHFN (EXP)
156 CASE_MATHFN (EXP10)
157 CASE_MATHFN (EXP2)
158 CASE_MATHFN (EXPM1)
159 CASE_MATHFN (FABS)
160 CASE_MATHFN (GAMMA)
161 CASE_MATHFN (J0)
162 CASE_MATHFN (J1)
163 CASE_MATHFN (LGAMMA)
164 CASE_MATHFN (LOG)
165 CASE_MATHFN (LOG10)
166 CASE_MATHFN (LOG1P)
167 CASE_MATHFN (LOG2)
168 CASE_MATHFN (LOGB)
169 CASE_MATHFN (POW10)
170 CASE_MATHFN (SIN)
171 CASE_MATHFN (SINH)
172 CASE_MATHFN (SQRT)
173 CASE_MATHFN (TAN)
174 CASE_MATHFN (TANH)
175 CASE_MATHFN (TGAMMA)
176 CASE_MATHFN (Y0)
177 CASE_MATHFN (Y1)
178 #undef CASE_MATHFN
180 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
181 tree newtype = type;
183 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
184 the both as the safe type for operation. */
185 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
186 newtype = TREE_TYPE (arg0);
188 /* Be careful about integer to fp conversions.
189 These may overflow still. */
190 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
191 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
192 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
193 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
195 tree arglist;
196 tree fn = mathfn_built_in (newtype, fcode);
198 if (fn)
200 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
201 expr = build_function_call_expr (fn, arglist);
202 if (newtype == type)
203 return expr;
207 default:
208 break;
211 if (optimize
212 && (((fcode == BUILT_IN_FLOORL
213 || fcode == BUILT_IN_CEILL
214 || fcode == BUILT_IN_ROUNDL
215 || fcode == BUILT_IN_RINTL
216 || fcode == BUILT_IN_TRUNCL
217 || fcode == BUILT_IN_NEARBYINTL)
218 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
219 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
220 || ((fcode == BUILT_IN_FLOOR
221 || fcode == BUILT_IN_CEIL
222 || fcode == BUILT_IN_ROUND
223 || fcode == BUILT_IN_RINT
224 || fcode == BUILT_IN_TRUNC
225 || fcode == BUILT_IN_NEARBYINT)
226 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
228 tree fn = mathfn_built_in (type, fcode);
230 if (fn)
232 tree arg
233 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
235 /* Make sure (type)arg0 is an extension, otherwise we could end up
236 changing (float)floor(double d) into floorf((float)d), which is
237 incorrect because (float)d uses round-to-nearest and can round
238 up to the next integer. */
239 if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
240 return
241 build_function_call_expr (fn,
242 build_tree_list (NULL_TREE,
243 fold (convert_to_real (type, arg))));
247 /* Propagate the cast into the operation. */
248 if (itype != type && FLOAT_TYPE_P (type))
249 switch (TREE_CODE (expr))
251 /* Convert (float)-x into -(float)x. This is always safe. */
252 case ABS_EXPR:
253 case NEGATE_EXPR:
254 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
255 return build1 (TREE_CODE (expr), type,
256 fold (convert_to_real (type,
257 TREE_OPERAND (expr, 0))));
258 break;
259 /* Convert (outertype)((innertype0)a+(innertype1)b)
260 into ((newtype)a+(newtype)b) where newtype
261 is the widest mode from all of these. */
262 case PLUS_EXPR:
263 case MINUS_EXPR:
264 case MULT_EXPR:
265 case RDIV_EXPR:
267 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
268 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
270 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
271 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
273 tree newtype = type;
275 if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
276 || TYPE_MODE (TREE_TYPE (arg1)) == SDmode)
277 newtype = dfloat32_type_node;
278 if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
279 || TYPE_MODE (TREE_TYPE (arg1)) == DDmode)
280 newtype = dfloat64_type_node;
281 if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
282 || TYPE_MODE (TREE_TYPE (arg1)) == TDmode)
283 newtype = dfloat128_type_node;
284 if (newtype == dfloat32_type_node
285 || newtype == dfloat64_type_node
286 || newtype == dfloat128_type_node)
288 expr = build2 (TREE_CODE (expr), newtype,
289 fold (convert_to_real (newtype, arg0)),
290 fold (convert_to_real (newtype, arg1)));
291 if (newtype == type)
292 return expr;
293 break;
296 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
297 newtype = TREE_TYPE (arg0);
298 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
299 newtype = TREE_TYPE (arg1);
300 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
302 expr = build2 (TREE_CODE (expr), newtype,
303 fold (convert_to_real (newtype, arg0)),
304 fold (convert_to_real (newtype, arg1)));
305 if (newtype == type)
306 return expr;
310 break;
311 default:
312 break;
315 switch (TREE_CODE (TREE_TYPE (expr)))
317 case REAL_TYPE:
318 /* Ignore the conversion if we don't need to store intermediate
319 results and neither type is a decimal float. */
320 return build1 ((flag_float_store
321 || DECIMAL_FLOAT_TYPE_P (type)
322 || DECIMAL_FLOAT_TYPE_P (itype))
323 ? CONVERT_EXPR : NOP_EXPR, type, expr);
325 case INTEGER_TYPE:
326 case ENUMERAL_TYPE:
327 case BOOLEAN_TYPE:
328 return build1 (FLOAT_EXPR, type, expr);
330 case COMPLEX_TYPE:
331 return convert (type,
332 fold_build1 (REALPART_EXPR,
333 TREE_TYPE (TREE_TYPE (expr)), expr));
335 case POINTER_TYPE:
336 case REFERENCE_TYPE:
337 error ("pointer value used where a floating point value was expected");
338 return convert_to_real (type, integer_zero_node);
340 default:
341 error ("aggregate value used where a float was expected");
342 return convert_to_real (type, integer_zero_node);
346 /* Convert EXPR to some integer (or enum) type TYPE.
348 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
349 vector; in other cases error is called.
351 The result of this is always supposed to be a newly created tree node
352 not in use in any existing structure. */
354 tree
355 convert_to_integer (tree type, tree expr)
357 enum tree_code ex_form = TREE_CODE (expr);
358 tree intype = TREE_TYPE (expr);
359 unsigned int inprec = TYPE_PRECISION (intype);
360 unsigned int outprec = TYPE_PRECISION (type);
362 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
363 be. Consider `enum E = { a, b = (enum E) 3 };'. */
364 if (!COMPLETE_TYPE_P (type))
366 error ("conversion to incomplete type");
367 return error_mark_node;
370 /* Convert e.g. (long)round(d) -> lround(d). */
371 /* If we're converting to char, we may encounter differing behavior
372 between converting from double->char vs double->long->char.
373 We're in "undefined" territory but we prefer to be conservative,
374 so only proceed in "unsafe" math mode. */
375 if (optimize
376 && (flag_unsafe_math_optimizations
377 || (long_integer_type_node
378 && outprec >= TYPE_PRECISION (long_integer_type_node))))
380 tree s_expr = strip_float_extensions (expr);
381 tree s_intype = TREE_TYPE (s_expr);
382 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
383 tree fn = 0;
385 switch (fcode)
387 CASE_FLT_FN (BUILT_IN_CEIL):
388 /* Only convert in ISO C99 mode. */
389 if (!TARGET_C99_FUNCTIONS)
390 break;
391 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
392 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
393 else
394 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
395 break;
397 CASE_FLT_FN (BUILT_IN_FLOOR):
398 /* Only convert in ISO C99 mode. */
399 if (!TARGET_C99_FUNCTIONS)
400 break;
401 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
402 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
403 else
404 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
405 break;
407 CASE_FLT_FN (BUILT_IN_ROUND):
408 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
409 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
410 else
411 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
412 break;
414 CASE_FLT_FN (BUILT_IN_RINT):
415 /* Only convert rint* if we can ignore math exceptions. */
416 if (flag_trapping_math)
417 break;
418 /* ... Fall through ... */
419 CASE_FLT_FN (BUILT_IN_NEARBYINT):
420 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
421 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
422 else
423 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
424 break;
426 CASE_FLT_FN (BUILT_IN_TRUNC):
428 tree arglist = TREE_OPERAND (s_expr, 1);
429 return convert_to_integer (type, TREE_VALUE (arglist));
432 default:
433 break;
436 if (fn)
438 tree arglist = TREE_OPERAND (s_expr, 1);
439 tree newexpr = build_function_call_expr (fn, arglist);
440 return convert_to_integer (type, newexpr);
444 switch (TREE_CODE (intype))
446 case POINTER_TYPE:
447 case REFERENCE_TYPE:
448 if (integer_zerop (expr))
449 return build_int_cst (type, 0);
451 /* Convert to an unsigned integer of the correct width first,
452 and from there widen/truncate to the required type. */
453 expr = fold_build1 (CONVERT_EXPR,
454 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
455 expr);
456 return fold_convert (type, expr);
458 case INTEGER_TYPE:
459 case ENUMERAL_TYPE:
460 case BOOLEAN_TYPE:
461 /* If this is a logical operation, which just returns 0 or 1, we can
462 change the type of the expression. */
464 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
466 expr = copy_node (expr);
467 TREE_TYPE (expr) = type;
468 return expr;
471 /* If we are widening the type, put in an explicit conversion.
472 Similarly if we are not changing the width. After this, we know
473 we are truncating EXPR. */
475 else if (outprec >= inprec)
477 enum tree_code code;
479 /* If the precision of the EXPR's type is K bits and the
480 destination mode has more bits, and the sign is changing,
481 it is not safe to use a NOP_EXPR. For example, suppose
482 that EXPR's type is a 3-bit unsigned integer type, the
483 TYPE is a 3-bit signed integer type, and the machine mode
484 for the types is 8-bit QImode. In that case, the
485 conversion necessitates an explicit sign-extension. In
486 the signed-to-unsigned case the high-order bits have to
487 be cleared. */
488 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
489 && (TYPE_PRECISION (TREE_TYPE (expr))
490 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
491 code = CONVERT_EXPR;
492 else
493 code = NOP_EXPR;
495 return fold_build1 (code, type, expr);
498 /* If TYPE is an enumeral type or a type with a precision less
499 than the number of bits in its mode, do the conversion to the
500 type corresponding to its mode, then do a nop conversion
501 to TYPE. */
502 else if (TREE_CODE (type) == ENUMERAL_TYPE
503 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
504 return build1 (NOP_EXPR, type,
505 convert (lang_hooks.types.type_for_mode
506 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
507 expr));
509 /* Here detect when we can distribute the truncation down past some
510 arithmetic. For example, if adding two longs and converting to an
511 int, we can equally well convert both to ints and then add.
512 For the operations handled here, such truncation distribution
513 is always safe.
514 It is desirable in these cases:
515 1) when truncating down to full-word from a larger size
516 2) when truncating takes no work.
517 3) when at least one operand of the arithmetic has been extended
518 (as by C's default conversions). In this case we need two conversions
519 if we do the arithmetic as already requested, so we might as well
520 truncate both and then combine. Perhaps that way we need only one.
522 Note that in general we cannot do the arithmetic in a type
523 shorter than the desired result of conversion, even if the operands
524 are both extended from a shorter type, because they might overflow
525 if combined in that type. The exceptions to this--the times when
526 two narrow values can be combined in their narrow type even to
527 make a wider result--are handled by "shorten" in build_binary_op. */
529 switch (ex_form)
531 case RSHIFT_EXPR:
532 /* We can pass truncation down through right shifting
533 when the shift count is a nonpositive constant. */
534 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
535 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
536 goto trunc1;
537 break;
539 case LSHIFT_EXPR:
540 /* We can pass truncation down through left shifting
541 when the shift count is a nonnegative constant and
542 the target type is unsigned. */
543 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
544 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
545 && TYPE_UNSIGNED (type)
546 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
548 /* If shift count is less than the width of the truncated type,
549 really shift. */
550 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
551 /* In this case, shifting is like multiplication. */
552 goto trunc1;
553 else
555 /* If it is >= that width, result is zero.
556 Handling this with trunc1 would give the wrong result:
557 (int) ((long long) a << 32) is well defined (as 0)
558 but (int) a << 32 is undefined and would get a
559 warning. */
561 tree t = build_int_cst (type, 0);
563 /* If the original expression had side-effects, we must
564 preserve it. */
565 if (TREE_SIDE_EFFECTS (expr))
566 return build2 (COMPOUND_EXPR, type, expr, t);
567 else
568 return t;
571 break;
573 case MAX_EXPR:
574 case MIN_EXPR:
575 case MULT_EXPR:
577 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
578 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
580 /* Don't distribute unless the output precision is at least as big
581 as the actual inputs. Otherwise, the comparison of the
582 truncated values will be wrong. */
583 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
584 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
585 /* If signedness of arg0 and arg1 don't match,
586 we can't necessarily find a type to compare them in. */
587 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
588 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
589 goto trunc1;
590 break;
593 case PLUS_EXPR:
594 case MINUS_EXPR:
595 case BIT_AND_EXPR:
596 case BIT_IOR_EXPR:
597 case BIT_XOR_EXPR:
598 trunc1:
600 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
601 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
603 if (outprec >= BITS_PER_WORD
604 || TRULY_NOOP_TRUNCATION (outprec, inprec)
605 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
606 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
608 /* Do the arithmetic in type TYPEX,
609 then convert result to TYPE. */
610 tree typex = type;
612 /* Can't do arithmetic in enumeral types
613 so use an integer type that will hold the values. */
614 if (TREE_CODE (typex) == ENUMERAL_TYPE)
615 typex = lang_hooks.types.type_for_size
616 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
618 /* But now perhaps TYPEX is as wide as INPREC.
619 In that case, do nothing special here.
620 (Otherwise would recurse infinitely in convert. */
621 if (TYPE_PRECISION (typex) != inprec)
623 /* Don't do unsigned arithmetic where signed was wanted,
624 or vice versa.
625 Exception: if both of the original operands were
626 unsigned then we can safely do the work as unsigned.
627 Exception: shift operations take their type solely
628 from the first argument.
629 Exception: the LSHIFT_EXPR case above requires that
630 we perform this operation unsigned lest we produce
631 signed-overflow undefinedness.
632 And we may need to do it as unsigned
633 if we truncate to the original size. */
634 if (TYPE_UNSIGNED (TREE_TYPE (expr))
635 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
636 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
637 || ex_form == LSHIFT_EXPR
638 || ex_form == RSHIFT_EXPR
639 || ex_form == LROTATE_EXPR
640 || ex_form == RROTATE_EXPR))
641 || ex_form == LSHIFT_EXPR
642 /* If we have !flag_wrapv, and either ARG0 or
643 ARG1 is of a signed type, we have to do
644 PLUS_EXPR or MINUS_EXPR in an unsigned
645 type. Otherwise, we would introduce
646 signed-overflow undefinedness. */
647 || (!flag_wrapv
648 && (ex_form == PLUS_EXPR
649 || ex_form == MINUS_EXPR)
650 && (!TYPE_UNSIGNED (TREE_TYPE (arg0))
651 || !TYPE_UNSIGNED (TREE_TYPE (arg1)))))
652 typex = lang_hooks.types.unsigned_type (typex);
653 else
654 typex = lang_hooks.types.signed_type (typex);
655 return convert (type,
656 fold_build2 (ex_form, typex,
657 convert (typex, arg0),
658 convert (typex, arg1)));
662 break;
664 case NEGATE_EXPR:
665 case BIT_NOT_EXPR:
666 /* This is not correct for ABS_EXPR,
667 since we must test the sign before truncation. */
669 tree typex;
671 /* Don't do unsigned arithmetic where signed was wanted,
672 or vice versa. */
673 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
674 typex = lang_hooks.types.unsigned_type (type);
675 else
676 typex = lang_hooks.types.signed_type (type);
677 return convert (type,
678 fold_build1 (ex_form, typex,
679 convert (typex,
680 TREE_OPERAND (expr, 0))));
683 case NOP_EXPR:
684 /* Don't introduce a
685 "can't convert between vector values of different size" error. */
686 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
687 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
688 != GET_MODE_SIZE (TYPE_MODE (type))))
689 break;
690 /* If truncating after truncating, might as well do all at once.
691 If truncating after extending, we may get rid of wasted work. */
692 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
694 case COND_EXPR:
695 /* It is sometimes worthwhile to push the narrowing down through
696 the conditional and never loses. */
697 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
698 convert (type, TREE_OPERAND (expr, 1)),
699 convert (type, TREE_OPERAND (expr, 2)));
701 default:
702 break;
705 return build1 (CONVERT_EXPR, type, expr);
707 case REAL_TYPE:
708 return build1 (FIX_TRUNC_EXPR, type, expr);
710 case COMPLEX_TYPE:
711 return convert (type,
712 fold_build1 (REALPART_EXPR,
713 TREE_TYPE (TREE_TYPE (expr)), expr));
715 case VECTOR_TYPE:
716 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
718 error ("can't convert between vector values of different size");
719 return error_mark_node;
721 return build1 (VIEW_CONVERT_EXPR, type, expr);
723 default:
724 error ("aggregate value used where an integer was expected");
725 return convert (type, integer_zero_node);
729 /* Convert EXPR to the complex type TYPE in the usual ways. */
731 tree
732 convert_to_complex (tree type, tree expr)
734 tree subtype = TREE_TYPE (type);
736 switch (TREE_CODE (TREE_TYPE (expr)))
738 case REAL_TYPE:
739 case INTEGER_TYPE:
740 case ENUMERAL_TYPE:
741 case BOOLEAN_TYPE:
742 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
743 convert (subtype, integer_zero_node));
745 case COMPLEX_TYPE:
747 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
749 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
750 return expr;
751 else if (TREE_CODE (expr) == COMPLEX_EXPR)
752 return fold_build2 (COMPLEX_EXPR, type,
753 convert (subtype, TREE_OPERAND (expr, 0)),
754 convert (subtype, TREE_OPERAND (expr, 1)));
755 else
757 expr = save_expr (expr);
758 return
759 fold_build2 (COMPLEX_EXPR, type,
760 convert (subtype,
761 fold_build1 (REALPART_EXPR,
762 TREE_TYPE (TREE_TYPE (expr)),
763 expr)),
764 convert (subtype,
765 fold_build1 (IMAGPART_EXPR,
766 TREE_TYPE (TREE_TYPE (expr)),
767 expr)));
771 case POINTER_TYPE:
772 case REFERENCE_TYPE:
773 error ("pointer value used where a complex was expected");
774 return convert_to_complex (type, integer_zero_node);
776 default:
777 error ("aggregate value used where a complex was expected");
778 return convert_to_complex (type, integer_zero_node);
782 /* Convert EXPR to the vector type TYPE in the usual ways. */
784 tree
785 convert_to_vector (tree type, tree expr)
787 switch (TREE_CODE (TREE_TYPE (expr)))
789 case INTEGER_TYPE:
790 case VECTOR_TYPE:
791 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
793 error ("can't convert between vector values of different size");
794 return error_mark_node;
796 return build1 (VIEW_CONVERT_EXPR, type, expr);
798 default:
799 error ("can't convert value to a vector");
800 return error_mark_node;