Merge branches/gcc-4_8-branch rev 222653
[official-gcc.git] / gcc-4_8-branch / gcc / dse.c
blobc24ee00bd4d10b6498330799d97c50f0b5763ac9
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #undef BASELINE
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hash-table.h"
29 #include "tm.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "regset.h"
36 #include "flags.h"
37 #include "df.h"
38 #include "cselib.h"
39 #include "tree-pass.h"
40 #include "alloc-pool.h"
41 #include "alias.h"
42 #include "insn-config.h"
43 #include "expr.h"
44 #include "recog.h"
45 #include "optabs.h"
46 #include "dbgcnt.h"
47 #include "target.h"
48 #include "params.h"
49 #include "tree-flow.h" /* for may_be_aliased */
51 /* This file contains three techniques for performing Dead Store
52 Elimination (dse).
54 * The first technique performs dse locally on any base address. It
55 is based on the cselib which is a local value numbering technique.
56 This technique is local to a basic block but deals with a fairly
57 general addresses.
59 * The second technique performs dse globally but is restricted to
60 base addresses that are either constant or are relative to the
61 frame_pointer.
63 * The third technique, (which is only done after register allocation)
64 processes the spill spill slots. This differs from the second
65 technique because it takes advantage of the fact that spilling is
66 completely free from the effects of aliasing.
68 Logically, dse is a backwards dataflow problem. A store can be
69 deleted if it if cannot be reached in the backward direction by any
70 use of the value being stored. However, the local technique uses a
71 forwards scan of the basic block because cselib requires that the
72 block be processed in that order.
74 The pass is logically broken into 7 steps:
76 0) Initialization.
78 1) The local algorithm, as well as scanning the insns for the two
79 global algorithms.
81 2) Analysis to see if the global algs are necessary. In the case
82 of stores base on a constant address, there must be at least two
83 stores to that address, to make it possible to delete some of the
84 stores. In the case of stores off of the frame or spill related
85 stores, only one store to an address is necessary because those
86 stores die at the end of the function.
88 3) Set up the global dataflow equations based on processing the
89 info parsed in the first step.
91 4) Solve the dataflow equations.
93 5) Delete the insns that the global analysis has indicated are
94 unnecessary.
96 6) Delete insns that store the same value as preceding store
97 where the earlier store couldn't be eliminated.
99 7) Cleanup.
101 This step uses cselib and canon_rtx to build the largest expression
102 possible for each address. This pass is a forwards pass through
103 each basic block. From the point of view of the global technique,
104 the first pass could examine a block in either direction. The
105 forwards ordering is to accommodate cselib.
107 We make a simplifying assumption: addresses fall into four broad
108 categories:
110 1) base has rtx_varies_p == false, offset is constant.
111 2) base has rtx_varies_p == false, offset variable.
112 3) base has rtx_varies_p == true, offset constant.
113 4) base has rtx_varies_p == true, offset variable.
115 The local passes are able to process all 4 kinds of addresses. The
116 global pass only handles 1).
118 The global problem is formulated as follows:
120 A store, S1, to address A, where A is not relative to the stack
121 frame, can be eliminated if all paths from S1 to the end of the
122 function contain another store to A before a read to A.
124 If the address A is relative to the stack frame, a store S2 to A
125 can be eliminated if there are no paths from S2 that reach the
126 end of the function that read A before another store to A. In
127 this case S2 can be deleted if there are paths from S2 to the
128 end of the function that have no reads or writes to A. This
129 second case allows stores to the stack frame to be deleted that
130 would otherwise die when the function returns. This cannot be
131 done if stores_off_frame_dead_at_return is not true. See the doc
132 for that variable for when this variable is false.
134 The global problem is formulated as a backwards set union
135 dataflow problem where the stores are the gens and reads are the
136 kills. Set union problems are rare and require some special
137 handling given our representation of bitmaps. A straightforward
138 implementation requires a lot of bitmaps filled with 1s.
139 These are expensive and cumbersome in our bitmap formulation so
140 care has been taken to avoid large vectors filled with 1s. See
141 the comments in bb_info and in the dataflow confluence functions
142 for details.
144 There are two places for further enhancements to this algorithm:
146 1) The original dse which was embedded in a pass called flow also
147 did local address forwarding. For example in
149 A <- r100
150 ... <- A
152 flow would replace the right hand side of the second insn with a
153 reference to r100. Most of the information is available to add this
154 to this pass. It has not done it because it is a lot of work in
155 the case that either r100 is assigned to between the first and
156 second insn and/or the second insn is a load of part of the value
157 stored by the first insn.
159 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
160 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
161 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
162 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
164 2) The cleaning up of spill code is quite profitable. It currently
165 depends on reading tea leaves and chicken entrails left by reload.
166 This pass depends on reload creating a singleton alias set for each
167 spill slot and telling the next dse pass which of these alias sets
168 are the singletons. Rather than analyze the addresses of the
169 spills, dse's spill processing just does analysis of the loads and
170 stores that use those alias sets. There are three cases where this
171 falls short:
173 a) Reload sometimes creates the slot for one mode of access, and
174 then inserts loads and/or stores for a smaller mode. In this
175 case, the current code just punts on the slot. The proper thing
176 to do is to back out and use one bit vector position for each
177 byte of the entity associated with the slot. This depends on
178 KNOWING that reload always generates the accesses for each of the
179 bytes in some canonical (read that easy to understand several
180 passes after reload happens) way.
182 b) Reload sometimes decides that spill slot it allocated was not
183 large enough for the mode and goes back and allocates more slots
184 with the same mode and alias set. The backout in this case is a
185 little more graceful than (a). In this case the slot is unmarked
186 as being a spill slot and if final address comes out to be based
187 off the frame pointer, the global algorithm handles this slot.
189 c) For any pass that may prespill, there is currently no
190 mechanism to tell the dse pass that the slot being used has the
191 special properties that reload uses. It may be that all that is
192 required is to have those passes make the same calls that reload
193 does, assuming that the alias sets can be manipulated in the same
194 way. */
196 /* There are limits to the size of constant offsets we model for the
197 global problem. There are certainly test cases, that exceed this
198 limit, however, it is unlikely that there are important programs
199 that really have constant offsets this size. */
200 #define MAX_OFFSET (64 * 1024)
202 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
203 on the default obstack because these bitmaps can grow quite large
204 (~2GB for the small (!) test case of PR54146) and we'll hold on to
205 all that memory until the end of the compiler run.
206 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
207 releasing the whole obstack. */
208 static bitmap_obstack dse_bitmap_obstack;
210 /* Obstack for other data. As for above: Kinda nice to be able to
211 throw it all away at the end in one big sweep. */
212 static struct obstack dse_obstack;
214 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
215 static bitmap scratch = NULL;
217 struct insn_info;
219 /* This structure holds information about a candidate store. */
220 struct store_info
223 /* False means this is a clobber. */
224 bool is_set;
226 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
227 bool is_large;
229 /* The id of the mem group of the base address. If rtx_varies_p is
230 true, this is -1. Otherwise, it is the index into the group
231 table. */
232 int group_id;
234 /* This is the cselib value. */
235 cselib_val *cse_base;
237 /* This canonized mem. */
238 rtx mem;
240 /* Canonized MEM address for use by canon_true_dependence. */
241 rtx mem_addr;
243 /* If this is non-zero, it is the alias set of a spill location. */
244 alias_set_type alias_set;
246 /* The offset of the first and byte before the last byte associated
247 with the operation. */
248 HOST_WIDE_INT begin, end;
250 union
252 /* A bitmask as wide as the number of bytes in the word that
253 contains a 1 if the byte may be needed. The store is unused if
254 all of the bits are 0. This is used if IS_LARGE is false. */
255 unsigned HOST_WIDE_INT small_bitmask;
257 struct
259 /* A bitmap with one bit per byte. Cleared bit means the position
260 is needed. Used if IS_LARGE is false. */
261 bitmap bmap;
263 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
264 equal to END - BEGIN, the whole store is unused. */
265 int count;
266 } large;
267 } positions_needed;
269 /* The next store info for this insn. */
270 struct store_info *next;
272 /* The right hand side of the store. This is used if there is a
273 subsequent reload of the mems address somewhere later in the
274 basic block. */
275 rtx rhs;
277 /* If rhs is or holds a constant, this contains that constant,
278 otherwise NULL. */
279 rtx const_rhs;
281 /* Set if this store stores the same constant value as REDUNDANT_REASON
282 insn stored. These aren't eliminated early, because doing that
283 might prevent the earlier larger store to be eliminated. */
284 struct insn_info *redundant_reason;
287 /* Return a bitmask with the first N low bits set. */
289 static unsigned HOST_WIDE_INT
290 lowpart_bitmask (int n)
292 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
293 return mask >> (HOST_BITS_PER_WIDE_INT - n);
296 typedef struct store_info *store_info_t;
297 static alloc_pool cse_store_info_pool;
298 static alloc_pool rtx_store_info_pool;
300 /* This structure holds information about a load. These are only
301 built for rtx bases. */
302 struct read_info
304 /* The id of the mem group of the base address. */
305 int group_id;
307 /* If this is non-zero, it is the alias set of a spill location. */
308 alias_set_type alias_set;
310 /* The offset of the first and byte after the last byte associated
311 with the operation. If begin == end == 0, the read did not have
312 a constant offset. */
313 int begin, end;
315 /* The mem being read. */
316 rtx mem;
318 /* The next read_info for this insn. */
319 struct read_info *next;
321 typedef struct read_info *read_info_t;
322 static alloc_pool read_info_pool;
325 /* One of these records is created for each insn. */
327 struct insn_info
329 /* Set true if the insn contains a store but the insn itself cannot
330 be deleted. This is set if the insn is a parallel and there is
331 more than one non dead output or if the insn is in some way
332 volatile. */
333 bool cannot_delete;
335 /* This field is only used by the global algorithm. It is set true
336 if the insn contains any read of mem except for a (1). This is
337 also set if the insn is a call or has a clobber mem. If the insn
338 contains a wild read, the use_rec will be null. */
339 bool wild_read;
341 /* This is true only for CALL instructions which could potentially read
342 any non-frame memory location. This field is used by the global
343 algorithm. */
344 bool non_frame_wild_read;
346 /* This field is only used for the processing of const functions.
347 These functions cannot read memory, but they can read the stack
348 because that is where they may get their parms. We need to be
349 this conservative because, like the store motion pass, we don't
350 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
351 Moreover, we need to distinguish two cases:
352 1. Before reload (register elimination), the stores related to
353 outgoing arguments are stack pointer based and thus deemed
354 of non-constant base in this pass. This requires special
355 handling but also means that the frame pointer based stores
356 need not be killed upon encountering a const function call.
357 2. After reload, the stores related to outgoing arguments can be
358 either stack pointer or hard frame pointer based. This means
359 that we have no other choice than also killing all the frame
360 pointer based stores upon encountering a const function call.
361 This field is set after reload for const function calls. Having
362 this set is less severe than a wild read, it just means that all
363 the frame related stores are killed rather than all the stores. */
364 bool frame_read;
366 /* This field is only used for the processing of const functions.
367 It is set if the insn may contain a stack pointer based store. */
368 bool stack_pointer_based;
370 /* This is true if any of the sets within the store contains a
371 cselib base. Such stores can only be deleted by the local
372 algorithm. */
373 bool contains_cselib_groups;
375 /* The insn. */
376 rtx insn;
378 /* The list of mem sets or mem clobbers that are contained in this
379 insn. If the insn is deletable, it contains only one mem set.
380 But it could also contain clobbers. Insns that contain more than
381 one mem set are not deletable, but each of those mems are here in
382 order to provide info to delete other insns. */
383 store_info_t store_rec;
385 /* The linked list of mem uses in this insn. Only the reads from
386 rtx bases are listed here. The reads to cselib bases are
387 completely processed during the first scan and so are never
388 created. */
389 read_info_t read_rec;
391 /* The live fixed registers. We assume only fixed registers can
392 cause trouble by being clobbered from an expanded pattern;
393 storing only the live fixed registers (rather than all registers)
394 means less memory needs to be allocated / copied for the individual
395 stores. */
396 regset fixed_regs_live;
398 /* The prev insn in the basic block. */
399 struct insn_info * prev_insn;
401 /* The linked list of insns that are in consideration for removal in
402 the forwards pass through the basic block. This pointer may be
403 trash as it is not cleared when a wild read occurs. The only
404 time it is guaranteed to be correct is when the traversal starts
405 at active_local_stores. */
406 struct insn_info * next_local_store;
409 typedef struct insn_info *insn_info_t;
410 static alloc_pool insn_info_pool;
412 /* The linked list of stores that are under consideration in this
413 basic block. */
414 static insn_info_t active_local_stores;
415 static int active_local_stores_len;
417 struct bb_info
420 /* Pointer to the insn info for the last insn in the block. These
421 are linked so this is how all of the insns are reached. During
422 scanning this is the current insn being scanned. */
423 insn_info_t last_insn;
425 /* The info for the global dataflow problem. */
428 /* This is set if the transfer function should and in the wild_read
429 bitmap before applying the kill and gen sets. That vector knocks
430 out most of the bits in the bitmap and thus speeds up the
431 operations. */
432 bool apply_wild_read;
434 /* The following 4 bitvectors hold information about which positions
435 of which stores are live or dead. They are indexed by
436 get_bitmap_index. */
438 /* The set of store positions that exist in this block before a wild read. */
439 bitmap gen;
441 /* The set of load positions that exist in this block above the
442 same position of a store. */
443 bitmap kill;
445 /* The set of stores that reach the top of the block without being
446 killed by a read.
448 Do not represent the in if it is all ones. Note that this is
449 what the bitvector should logically be initialized to for a set
450 intersection problem. However, like the kill set, this is too
451 expensive. So initially, the in set will only be created for the
452 exit block and any block that contains a wild read. */
453 bitmap in;
455 /* The set of stores that reach the bottom of the block from it's
456 successors.
458 Do not represent the in if it is all ones. Note that this is
459 what the bitvector should logically be initialized to for a set
460 intersection problem. However, like the kill and in set, this is
461 too expensive. So what is done is that the confluence operator
462 just initializes the vector from one of the out sets of the
463 successors of the block. */
464 bitmap out;
466 /* The following bitvector is indexed by the reg number. It
467 contains the set of regs that are live at the current instruction
468 being processed. While it contains info for all of the
469 registers, only the hard registers are actually examined. It is used
470 to assure that shift and/or add sequences that are inserted do not
471 accidentally clobber live hard regs. */
472 bitmap regs_live;
475 typedef struct bb_info *bb_info_t;
476 static alloc_pool bb_info_pool;
478 /* Table to hold all bb_infos. */
479 static bb_info_t *bb_table;
481 /* There is a group_info for each rtx base that is used to reference
482 memory. There are also not many of the rtx bases because they are
483 very limited in scope. */
485 struct group_info
487 /* The actual base of the address. */
488 rtx rtx_base;
490 /* The sequential id of the base. This allows us to have a
491 canonical ordering of these that is not based on addresses. */
492 int id;
494 /* True if there are any positions that are to be processed
495 globally. */
496 bool process_globally;
498 /* True if the base of this group is either the frame_pointer or
499 hard_frame_pointer. */
500 bool frame_related;
502 /* A mem wrapped around the base pointer for the group in order to do
503 read dependency. It must be given BLKmode in order to encompass all
504 the possible offsets from the base. */
505 rtx base_mem;
507 /* Canonized version of base_mem's address. */
508 rtx canon_base_addr;
510 /* These two sets of two bitmaps are used to keep track of how many
511 stores are actually referencing that position from this base. We
512 only do this for rtx bases as this will be used to assign
513 positions in the bitmaps for the global problem. Bit N is set in
514 store1 on the first store for offset N. Bit N is set in store2
515 for the second store to offset N. This is all we need since we
516 only care about offsets that have two or more stores for them.
518 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
519 for 0 and greater offsets.
521 There is one special case here, for stores into the stack frame,
522 we will or store1 into store2 before deciding which stores look
523 at globally. This is because stores to the stack frame that have
524 no other reads before the end of the function can also be
525 deleted. */
526 bitmap store1_n, store1_p, store2_n, store2_p;
528 /* These bitmaps keep track of offsets in this group escape this function.
529 An offset escapes if it corresponds to a named variable whose
530 addressable flag is set. */
531 bitmap escaped_n, escaped_p;
533 /* The positions in this bitmap have the same assignments as the in,
534 out, gen and kill bitmaps. This bitmap is all zeros except for
535 the positions that are occupied by stores for this group. */
536 bitmap group_kill;
538 /* The offset_map is used to map the offsets from this base into
539 positions in the global bitmaps. It is only created after all of
540 the all of stores have been scanned and we know which ones we
541 care about. */
542 int *offset_map_n, *offset_map_p;
543 int offset_map_size_n, offset_map_size_p;
545 typedef struct group_info *group_info_t;
546 typedef const struct group_info *const_group_info_t;
547 static alloc_pool rtx_group_info_pool;
549 /* Index into the rtx_group_vec. */
550 static int rtx_group_next_id;
553 static vec<group_info_t> rtx_group_vec;
556 /* This structure holds the set of changes that are being deferred
557 when removing read operation. See replace_read. */
558 struct deferred_change
561 /* The mem that is being replaced. */
562 rtx *loc;
564 /* The reg it is being replaced with. */
565 rtx reg;
567 struct deferred_change *next;
570 typedef struct deferred_change *deferred_change_t;
571 static alloc_pool deferred_change_pool;
573 static deferred_change_t deferred_change_list = NULL;
575 /* This are used to hold the alias sets of spill variables. Since
576 these are never aliased and there may be a lot of them, it makes
577 sense to treat them specially. This bitvector is only allocated in
578 calls from dse_record_singleton_alias_set which currently is only
579 made during reload1. So when dse is called before reload this
580 mechanism does nothing. */
582 static bitmap clear_alias_sets = NULL;
584 /* The set of clear_alias_sets that have been disqualified because
585 there are loads or stores using a different mode than the alias set
586 was registered with. */
587 static bitmap disqualified_clear_alias_sets = NULL;
589 /* The group that holds all of the clear_alias_sets. */
590 static group_info_t clear_alias_group;
592 /* The modes of the clear_alias_sets. */
593 static htab_t clear_alias_mode_table;
595 /* Hash table element to look up the mode for an alias set. */
596 struct clear_alias_mode_holder
598 alias_set_type alias_set;
599 enum machine_mode mode;
602 static alloc_pool clear_alias_mode_pool;
604 /* This is true except if cfun->stdarg -- i.e. we cannot do
605 this for vararg functions because they play games with the frame. */
606 static bool stores_off_frame_dead_at_return;
608 /* Counter for stats. */
609 static int globally_deleted;
610 static int locally_deleted;
611 static int spill_deleted;
613 static bitmap all_blocks;
615 /* Locations that are killed by calls in the global phase. */
616 static bitmap kill_on_calls;
618 /* The number of bits used in the global bitmaps. */
619 static unsigned int current_position;
622 static bool gate_dse1 (void);
623 static bool gate_dse2 (void);
626 /*----------------------------------------------------------------------------
627 Zeroth step.
629 Initialization.
630 ----------------------------------------------------------------------------*/
633 /* Find the entry associated with ALIAS_SET. */
635 static struct clear_alias_mode_holder *
636 clear_alias_set_lookup (alias_set_type alias_set)
638 struct clear_alias_mode_holder tmp_holder;
639 void **slot;
641 tmp_holder.alias_set = alias_set;
642 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
643 gcc_assert (*slot);
645 return (struct clear_alias_mode_holder *) *slot;
649 /* Hashtable callbacks for maintaining the "bases" field of
650 store_group_info, given that the addresses are function invariants. */
652 struct invariant_group_base_hasher : typed_noop_remove <group_info>
654 typedef group_info value_type;
655 typedef group_info compare_type;
656 static inline hashval_t hash (const value_type *);
657 static inline bool equal (const value_type *, const compare_type *);
660 inline bool
661 invariant_group_base_hasher::equal (const value_type *gi1,
662 const compare_type *gi2)
664 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
667 inline hashval_t
668 invariant_group_base_hasher::hash (const value_type *gi)
670 int do_not_record;
671 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
674 /* Tables of group_info structures, hashed by base value. */
675 static hash_table <invariant_group_base_hasher> rtx_group_table;
678 /* Get the GROUP for BASE. Add a new group if it is not there. */
680 static group_info_t
681 get_group_info (rtx base)
683 struct group_info tmp_gi;
684 group_info_t gi;
685 group_info **slot;
687 if (base)
689 /* Find the store_base_info structure for BASE, creating a new one
690 if necessary. */
691 tmp_gi.rtx_base = base;
692 slot = rtx_group_table.find_slot (&tmp_gi, INSERT);
693 gi = (group_info_t) *slot;
695 else
697 if (!clear_alias_group)
699 clear_alias_group = gi =
700 (group_info_t) pool_alloc (rtx_group_info_pool);
701 memset (gi, 0, sizeof (struct group_info));
702 gi->id = rtx_group_next_id++;
703 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
704 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
705 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
706 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
707 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
708 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
709 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
710 gi->process_globally = false;
711 gi->offset_map_size_n = 0;
712 gi->offset_map_size_p = 0;
713 gi->offset_map_n = NULL;
714 gi->offset_map_p = NULL;
715 rtx_group_vec.safe_push (gi);
717 return clear_alias_group;
720 if (gi == NULL)
722 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
723 gi->rtx_base = base;
724 gi->id = rtx_group_next_id++;
725 gi->base_mem = gen_rtx_MEM (BLKmode, base);
726 gi->canon_base_addr = canon_rtx (base);
727 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
728 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
729 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
730 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
731 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
732 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
733 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
734 gi->process_globally = false;
735 gi->frame_related =
736 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
737 gi->offset_map_size_n = 0;
738 gi->offset_map_size_p = 0;
739 gi->offset_map_n = NULL;
740 gi->offset_map_p = NULL;
741 rtx_group_vec.safe_push (gi);
744 return gi;
748 /* Initialization of data structures. */
750 static void
751 dse_step0 (void)
753 locally_deleted = 0;
754 globally_deleted = 0;
755 spill_deleted = 0;
757 bitmap_obstack_initialize (&dse_bitmap_obstack);
758 gcc_obstack_init (&dse_obstack);
760 scratch = BITMAP_ALLOC (&reg_obstack);
761 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
763 rtx_store_info_pool
764 = create_alloc_pool ("rtx_store_info_pool",
765 sizeof (struct store_info), 100);
766 read_info_pool
767 = create_alloc_pool ("read_info_pool",
768 sizeof (struct read_info), 100);
769 insn_info_pool
770 = create_alloc_pool ("insn_info_pool",
771 sizeof (struct insn_info), 100);
772 bb_info_pool
773 = create_alloc_pool ("bb_info_pool",
774 sizeof (struct bb_info), 100);
775 rtx_group_info_pool
776 = create_alloc_pool ("rtx_group_info_pool",
777 sizeof (struct group_info), 100);
778 deferred_change_pool
779 = create_alloc_pool ("deferred_change_pool",
780 sizeof (struct deferred_change), 10);
782 rtx_group_table.create (11);
784 bb_table = XNEWVEC (bb_info_t, last_basic_block);
785 rtx_group_next_id = 0;
787 stores_off_frame_dead_at_return = !cfun->stdarg;
789 init_alias_analysis ();
791 if (clear_alias_sets)
792 clear_alias_group = get_group_info (NULL);
793 else
794 clear_alias_group = NULL;
799 /*----------------------------------------------------------------------------
800 First step.
802 Scan all of the insns. Any random ordering of the blocks is fine.
803 Each block is scanned in forward order to accommodate cselib which
804 is used to remove stores with non-constant bases.
805 ----------------------------------------------------------------------------*/
807 /* Delete all of the store_info recs from INSN_INFO. */
809 static void
810 free_store_info (insn_info_t insn_info)
812 store_info_t store_info = insn_info->store_rec;
813 while (store_info)
815 store_info_t next = store_info->next;
816 if (store_info->is_large)
817 BITMAP_FREE (store_info->positions_needed.large.bmap);
818 if (store_info->cse_base)
819 pool_free (cse_store_info_pool, store_info);
820 else
821 pool_free (rtx_store_info_pool, store_info);
822 store_info = next;
825 insn_info->cannot_delete = true;
826 insn_info->contains_cselib_groups = false;
827 insn_info->store_rec = NULL;
830 typedef struct
832 rtx first, current;
833 regset fixed_regs_live;
834 bool failure;
835 } note_add_store_info;
837 /* Callback for emit_inc_dec_insn_before via note_stores.
838 Check if a register is clobbered which is live afterwards. */
840 static void
841 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
843 rtx insn;
844 note_add_store_info *info = (note_add_store_info *) data;
845 int r, n;
847 if (!REG_P (loc))
848 return;
850 /* If this register is referenced by the current or an earlier insn,
851 that's OK. E.g. this applies to the register that is being incremented
852 with this addition. */
853 for (insn = info->first;
854 insn != NEXT_INSN (info->current);
855 insn = NEXT_INSN (insn))
856 if (reg_referenced_p (loc, PATTERN (insn)))
857 return;
859 /* If we come here, we have a clobber of a register that's only OK
860 if that register is not live. If we don't have liveness information
861 available, fail now. */
862 if (!info->fixed_regs_live)
864 info->failure = true;
865 return;
867 /* Now check if this is a live fixed register. */
868 r = REGNO (loc);
869 n = hard_regno_nregs[r][GET_MODE (loc)];
870 while (--n >= 0)
871 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
872 info->failure = true;
875 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
876 SRC + SRCOFF before insn ARG. */
878 static int
879 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
880 rtx op ATTRIBUTE_UNUSED,
881 rtx dest, rtx src, rtx srcoff, void *arg)
883 insn_info_t insn_info = (insn_info_t) arg;
884 rtx insn = insn_info->insn, new_insn, cur;
885 note_add_store_info info;
887 /* We can reuse all operands without copying, because we are about
888 to delete the insn that contained it. */
889 if (srcoff)
891 start_sequence ();
892 emit_insn (gen_add3_insn (dest, src, srcoff));
893 new_insn = get_insns ();
894 end_sequence ();
896 else
897 new_insn = gen_move_insn (dest, src);
898 info.first = new_insn;
899 info.fixed_regs_live = insn_info->fixed_regs_live;
900 info.failure = false;
901 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
903 info.current = cur;
904 note_stores (PATTERN (cur), note_add_store, &info);
907 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
908 return it immediately, communicating the failure to its caller. */
909 if (info.failure)
910 return 1;
912 emit_insn_before (new_insn, insn);
914 return -1;
917 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
918 is there, is split into a separate insn.
919 Return true on success (or if there was nothing to do), false on failure. */
921 static bool
922 check_for_inc_dec_1 (insn_info_t insn_info)
924 rtx insn = insn_info->insn;
925 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
926 if (note)
927 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
928 return true;
932 /* Entry point for postreload. If you work on reload_cse, or you need this
933 anywhere else, consider if you can provide register liveness information
934 and add a parameter to this function so that it can be passed down in
935 insn_info.fixed_regs_live. */
936 bool
937 check_for_inc_dec (rtx insn)
939 struct insn_info insn_info;
940 rtx note;
942 insn_info.insn = insn;
943 insn_info.fixed_regs_live = NULL;
944 note = find_reg_note (insn, REG_INC, NULL_RTX);
945 if (note)
946 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
947 return true;
950 /* Delete the insn and free all of the fields inside INSN_INFO. */
952 static void
953 delete_dead_store_insn (insn_info_t insn_info)
955 read_info_t read_info;
957 if (!dbg_cnt (dse))
958 return;
960 if (!check_for_inc_dec_1 (insn_info))
961 return;
962 if (dump_file && (dump_flags & TDF_DETAILS))
964 fprintf (dump_file, "Locally deleting insn %d ",
965 INSN_UID (insn_info->insn));
966 if (insn_info->store_rec->alias_set)
967 fprintf (dump_file, "alias set %d\n",
968 (int) insn_info->store_rec->alias_set);
969 else
970 fprintf (dump_file, "\n");
973 free_store_info (insn_info);
974 read_info = insn_info->read_rec;
976 while (read_info)
978 read_info_t next = read_info->next;
979 pool_free (read_info_pool, read_info);
980 read_info = next;
982 insn_info->read_rec = NULL;
984 delete_insn (insn_info->insn);
985 locally_deleted++;
986 insn_info->insn = NULL;
988 insn_info->wild_read = false;
991 /* Return whether DECL, a local variable, can possibly escape the current
992 function scope. */
994 static bool
995 local_variable_can_escape (tree decl)
997 if (TREE_ADDRESSABLE (decl))
998 return true;
1000 /* If this is a partitioned variable, we need to consider all the variables
1001 in the partition. This is necessary because a store into one of them can
1002 be replaced with a store into another and this may not change the outcome
1003 of the escape analysis. */
1004 if (cfun->gimple_df->decls_to_pointers != NULL)
1006 void *namep
1007 = pointer_map_contains (cfun->gimple_df->decls_to_pointers, decl);
1008 if (namep)
1009 return TREE_ADDRESSABLE (*(tree *)namep);
1012 return false;
1015 /* Return whether EXPR can possibly escape the current function scope. */
1017 static bool
1018 can_escape (tree expr)
1020 tree base;
1021 if (!expr)
1022 return true;
1023 base = get_base_address (expr);
1024 if (DECL_P (base)
1025 && !may_be_aliased (base)
1026 && !(TREE_CODE (base) == VAR_DECL
1027 && !DECL_EXTERNAL (base)
1028 && !TREE_STATIC (base)
1029 && local_variable_can_escape (base)))
1030 return false;
1031 return true;
1034 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1035 OFFSET and WIDTH. */
1037 static void
1038 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
1039 tree expr)
1041 HOST_WIDE_INT i;
1042 bool expr_escapes = can_escape (expr);
1043 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1044 for (i=offset; i<offset+width; i++)
1046 bitmap store1;
1047 bitmap store2;
1048 bitmap escaped;
1049 int ai;
1050 if (i < 0)
1052 store1 = group->store1_n;
1053 store2 = group->store2_n;
1054 escaped = group->escaped_n;
1055 ai = -i;
1057 else
1059 store1 = group->store1_p;
1060 store2 = group->store2_p;
1061 escaped = group->escaped_p;
1062 ai = i;
1065 if (!bitmap_set_bit (store1, ai))
1066 bitmap_set_bit (store2, ai);
1067 else
1069 if (i < 0)
1071 if (group->offset_map_size_n < ai)
1072 group->offset_map_size_n = ai;
1074 else
1076 if (group->offset_map_size_p < ai)
1077 group->offset_map_size_p = ai;
1080 if (expr_escapes)
1081 bitmap_set_bit (escaped, ai);
1085 static void
1086 reset_active_stores (void)
1088 active_local_stores = NULL;
1089 active_local_stores_len = 0;
1092 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1094 static void
1095 free_read_records (bb_info_t bb_info)
1097 insn_info_t insn_info = bb_info->last_insn;
1098 read_info_t *ptr = &insn_info->read_rec;
1099 while (*ptr)
1101 read_info_t next = (*ptr)->next;
1102 if ((*ptr)->alias_set == 0)
1104 pool_free (read_info_pool, *ptr);
1105 *ptr = next;
1107 else
1108 ptr = &(*ptr)->next;
1112 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1114 static void
1115 add_wild_read (bb_info_t bb_info)
1117 insn_info_t insn_info = bb_info->last_insn;
1118 insn_info->wild_read = true;
1119 free_read_records (bb_info);
1120 reset_active_stores ();
1123 /* Set the BB_INFO so that the last insn is marked as a wild read of
1124 non-frame locations. */
1126 static void
1127 add_non_frame_wild_read (bb_info_t bb_info)
1129 insn_info_t insn_info = bb_info->last_insn;
1130 insn_info->non_frame_wild_read = true;
1131 free_read_records (bb_info);
1132 reset_active_stores ();
1135 /* Return true if X is a constant or one of the registers that behave
1136 as a constant over the life of a function. This is equivalent to
1137 !rtx_varies_p for memory addresses. */
1139 static bool
1140 const_or_frame_p (rtx x)
1142 if (CONSTANT_P (x))
1143 return true;
1145 if (GET_CODE (x) == REG)
1147 /* Note that we have to test for the actual rtx used for the frame
1148 and arg pointers and not just the register number in case we have
1149 eliminated the frame and/or arg pointer and are using it
1150 for pseudos. */
1151 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1152 /* The arg pointer varies if it is not a fixed register. */
1153 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1154 || x == pic_offset_table_rtx)
1155 return true;
1156 return false;
1159 return false;
1162 /* Take all reasonable action to put the address of MEM into the form
1163 that we can do analysis on.
1165 The gold standard is to get the address into the form: address +
1166 OFFSET where address is something that rtx_varies_p considers a
1167 constant. When we can get the address in this form, we can do
1168 global analysis on it. Note that for constant bases, address is
1169 not actually returned, only the group_id. The address can be
1170 obtained from that.
1172 If that fails, we try cselib to get a value we can at least use
1173 locally. If that fails we return false.
1175 The GROUP_ID is set to -1 for cselib bases and the index of the
1176 group for non_varying bases.
1178 FOR_READ is true if this is a mem read and false if not. */
1180 static bool
1181 canon_address (rtx mem,
1182 alias_set_type *alias_set_out,
1183 int *group_id,
1184 HOST_WIDE_INT *offset,
1185 cselib_val **base)
1187 enum machine_mode address_mode = get_address_mode (mem);
1188 rtx mem_address = XEXP (mem, 0);
1189 rtx expanded_address, address;
1190 int expanded;
1192 /* Make sure that cselib is has initialized all of the operands of
1193 the address before asking it to do the subst. */
1195 if (clear_alias_sets)
1197 /* If this is a spill, do not do any further processing. */
1198 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1199 if (dump_file && (dump_flags & TDF_DETAILS))
1200 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1201 if (bitmap_bit_p (clear_alias_sets, alias_set))
1203 struct clear_alias_mode_holder *entry
1204 = clear_alias_set_lookup (alias_set);
1206 /* If the modes do not match, we cannot process this set. */
1207 if (entry->mode != GET_MODE (mem))
1209 if (dump_file && (dump_flags & TDF_DETAILS))
1210 fprintf (dump_file,
1211 "disqualifying alias set %d, (%s) != (%s)\n",
1212 (int) alias_set, GET_MODE_NAME (entry->mode),
1213 GET_MODE_NAME (GET_MODE (mem)));
1215 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1216 return false;
1219 *alias_set_out = alias_set;
1220 *group_id = clear_alias_group->id;
1221 return true;
1225 *alias_set_out = 0;
1227 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1229 if (dump_file && (dump_flags & TDF_DETAILS))
1231 fprintf (dump_file, " mem: ");
1232 print_inline_rtx (dump_file, mem_address, 0);
1233 fprintf (dump_file, "\n");
1236 /* First see if just canon_rtx (mem_address) is const or frame,
1237 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1238 address = NULL_RTX;
1239 for (expanded = 0; expanded < 2; expanded++)
1241 if (expanded)
1243 /* Use cselib to replace all of the reg references with the full
1244 expression. This will take care of the case where we have
1246 r_x = base + offset;
1247 val = *r_x;
1249 by making it into
1251 val = *(base + offset); */
1253 expanded_address = cselib_expand_value_rtx (mem_address,
1254 scratch, 5);
1256 /* If this fails, just go with the address from first
1257 iteration. */
1258 if (!expanded_address)
1259 break;
1261 else
1262 expanded_address = mem_address;
1264 /* Split the address into canonical BASE + OFFSET terms. */
1265 address = canon_rtx (expanded_address);
1267 *offset = 0;
1269 if (dump_file && (dump_flags & TDF_DETAILS))
1271 if (expanded)
1273 fprintf (dump_file, "\n after cselib_expand address: ");
1274 print_inline_rtx (dump_file, expanded_address, 0);
1275 fprintf (dump_file, "\n");
1278 fprintf (dump_file, "\n after canon_rtx address: ");
1279 print_inline_rtx (dump_file, address, 0);
1280 fprintf (dump_file, "\n");
1283 if (GET_CODE (address) == CONST)
1284 address = XEXP (address, 0);
1286 if (GET_CODE (address) == PLUS
1287 && CONST_INT_P (XEXP (address, 1)))
1289 *offset = INTVAL (XEXP (address, 1));
1290 address = XEXP (address, 0);
1293 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1294 && const_or_frame_p (address))
1296 group_info_t group = get_group_info (address);
1298 if (dump_file && (dump_flags & TDF_DETAILS))
1299 fprintf (dump_file, " gid=%d offset=%d \n",
1300 group->id, (int)*offset);
1301 *base = NULL;
1302 *group_id = group->id;
1303 return true;
1307 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1308 *group_id = -1;
1310 if (*base == NULL)
1312 if (dump_file && (dump_flags & TDF_DETAILS))
1313 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1314 return false;
1316 if (dump_file && (dump_flags & TDF_DETAILS))
1317 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1318 (*base)->uid, (*base)->hash, (int)*offset);
1319 return true;
1323 /* Clear the rhs field from the active_local_stores array. */
1325 static void
1326 clear_rhs_from_active_local_stores (void)
1328 insn_info_t ptr = active_local_stores;
1330 while (ptr)
1332 store_info_t store_info = ptr->store_rec;
1333 /* Skip the clobbers. */
1334 while (!store_info->is_set)
1335 store_info = store_info->next;
1337 store_info->rhs = NULL;
1338 store_info->const_rhs = NULL;
1340 ptr = ptr->next_local_store;
1345 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1347 static inline void
1348 set_position_unneeded (store_info_t s_info, int pos)
1350 if (__builtin_expect (s_info->is_large, false))
1352 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1353 s_info->positions_needed.large.count++;
1355 else
1356 s_info->positions_needed.small_bitmask
1357 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1360 /* Mark the whole store S_INFO as unneeded. */
1362 static inline void
1363 set_all_positions_unneeded (store_info_t s_info)
1365 if (__builtin_expect (s_info->is_large, false))
1367 int pos, end = s_info->end - s_info->begin;
1368 for (pos = 0; pos < end; pos++)
1369 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1370 s_info->positions_needed.large.count = end;
1372 else
1373 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1376 /* Return TRUE if any bytes from S_INFO store are needed. */
1378 static inline bool
1379 any_positions_needed_p (store_info_t s_info)
1381 if (__builtin_expect (s_info->is_large, false))
1382 return (s_info->positions_needed.large.count
1383 < s_info->end - s_info->begin);
1384 else
1385 return (s_info->positions_needed.small_bitmask
1386 != (unsigned HOST_WIDE_INT) 0);
1389 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1390 store are needed. */
1392 static inline bool
1393 all_positions_needed_p (store_info_t s_info, int start, int width)
1395 if (__builtin_expect (s_info->is_large, false))
1397 int end = start + width;
1398 while (start < end)
1399 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1400 return false;
1401 return true;
1403 else
1405 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1406 return (s_info->positions_needed.small_bitmask & mask) == mask;
1411 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1412 HOST_WIDE_INT, basic_block, bool);
1415 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1416 there is a candidate store, after adding it to the appropriate
1417 local store group if so. */
1419 static int
1420 record_store (rtx body, bb_info_t bb_info)
1422 rtx mem, rhs, const_rhs, mem_addr;
1423 HOST_WIDE_INT offset = 0;
1424 HOST_WIDE_INT width = 0;
1425 alias_set_type spill_alias_set;
1426 insn_info_t insn_info = bb_info->last_insn;
1427 store_info_t store_info = NULL;
1428 int group_id;
1429 cselib_val *base = NULL;
1430 insn_info_t ptr, last, redundant_reason;
1431 bool store_is_unused;
1433 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1434 return 0;
1436 mem = SET_DEST (body);
1438 /* If this is not used, then this cannot be used to keep the insn
1439 from being deleted. On the other hand, it does provide something
1440 that can be used to prove that another store is dead. */
1441 store_is_unused
1442 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1444 /* Check whether that value is a suitable memory location. */
1445 if (!MEM_P (mem))
1447 /* If the set or clobber is unused, then it does not effect our
1448 ability to get rid of the entire insn. */
1449 if (!store_is_unused)
1450 insn_info->cannot_delete = true;
1451 return 0;
1454 /* At this point we know mem is a mem. */
1455 if (GET_MODE (mem) == BLKmode)
1457 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1459 if (dump_file && (dump_flags & TDF_DETAILS))
1460 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1461 add_wild_read (bb_info);
1462 insn_info->cannot_delete = true;
1463 return 0;
1465 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1466 as memset (addr, 0, 36); */
1467 else if (!MEM_SIZE_KNOWN_P (mem)
1468 || MEM_SIZE (mem) <= 0
1469 || MEM_SIZE (mem) > MAX_OFFSET
1470 || GET_CODE (body) != SET
1471 || !CONST_INT_P (SET_SRC (body)))
1473 if (!store_is_unused)
1475 /* If the set or clobber is unused, then it does not effect our
1476 ability to get rid of the entire insn. */
1477 insn_info->cannot_delete = true;
1478 clear_rhs_from_active_local_stores ();
1480 return 0;
1484 /* We can still process a volatile mem, we just cannot delete it. */
1485 if (MEM_VOLATILE_P (mem))
1486 insn_info->cannot_delete = true;
1488 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1490 clear_rhs_from_active_local_stores ();
1491 return 0;
1494 if (GET_MODE (mem) == BLKmode)
1495 width = MEM_SIZE (mem);
1496 else
1497 width = GET_MODE_SIZE (GET_MODE (mem));
1499 if (spill_alias_set)
1501 bitmap store1 = clear_alias_group->store1_p;
1502 bitmap store2 = clear_alias_group->store2_p;
1504 gcc_assert (GET_MODE (mem) != BLKmode);
1506 if (!bitmap_set_bit (store1, spill_alias_set))
1507 bitmap_set_bit (store2, spill_alias_set);
1509 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1510 clear_alias_group->offset_map_size_p = spill_alias_set;
1512 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1514 if (dump_file && (dump_flags & TDF_DETAILS))
1515 fprintf (dump_file, " processing spill store %d(%s)\n",
1516 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1518 else if (group_id >= 0)
1520 /* In the restrictive case where the base is a constant or the
1521 frame pointer we can do global analysis. */
1523 group_info_t group
1524 = rtx_group_vec[group_id];
1525 tree expr = MEM_EXPR (mem);
1527 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1528 set_usage_bits (group, offset, width, expr);
1530 if (dump_file && (dump_flags & TDF_DETAILS))
1531 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1532 group_id, (int)offset, (int)(offset+width));
1534 else
1536 if (may_be_sp_based_p (XEXP (mem, 0)))
1537 insn_info->stack_pointer_based = true;
1538 insn_info->contains_cselib_groups = true;
1540 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1541 group_id = -1;
1543 if (dump_file && (dump_flags & TDF_DETAILS))
1544 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1545 (int)offset, (int)(offset+width));
1548 const_rhs = rhs = NULL_RTX;
1549 if (GET_CODE (body) == SET
1550 /* No place to keep the value after ra. */
1551 && !reload_completed
1552 && (REG_P (SET_SRC (body))
1553 || GET_CODE (SET_SRC (body)) == SUBREG
1554 || CONSTANT_P (SET_SRC (body)))
1555 && !MEM_VOLATILE_P (mem)
1556 /* Sometimes the store and reload is used for truncation and
1557 rounding. */
1558 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1560 rhs = SET_SRC (body);
1561 if (CONSTANT_P (rhs))
1562 const_rhs = rhs;
1563 else if (body == PATTERN (insn_info->insn))
1565 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1566 if (tem && CONSTANT_P (XEXP (tem, 0)))
1567 const_rhs = XEXP (tem, 0);
1569 if (const_rhs == NULL_RTX && REG_P (rhs))
1571 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1573 if (tem && CONSTANT_P (tem))
1574 const_rhs = tem;
1578 /* Check to see if this stores causes some other stores to be
1579 dead. */
1580 ptr = active_local_stores;
1581 last = NULL;
1582 redundant_reason = NULL;
1583 mem = canon_rtx (mem);
1584 /* For alias_set != 0 canon_true_dependence should be never called. */
1585 if (spill_alias_set)
1586 mem_addr = NULL_RTX;
1587 else
1589 if (group_id < 0)
1590 mem_addr = base->val_rtx;
1591 else
1593 group_info_t group
1594 = rtx_group_vec[group_id];
1595 mem_addr = group->canon_base_addr;
1597 /* get_addr can only handle VALUE but cannot handle expr like:
1598 VALUE + OFFSET, so call get_addr to get original addr for
1599 mem_addr before plus_constant. */
1600 mem_addr = get_addr (mem_addr);
1601 if (offset)
1602 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1605 while (ptr)
1607 insn_info_t next = ptr->next_local_store;
1608 store_info_t s_info = ptr->store_rec;
1609 bool del = true;
1611 /* Skip the clobbers. We delete the active insn if this insn
1612 shadows the set. To have been put on the active list, it
1613 has exactly on set. */
1614 while (!s_info->is_set)
1615 s_info = s_info->next;
1617 if (s_info->alias_set != spill_alias_set)
1618 del = false;
1619 else if (s_info->alias_set)
1621 struct clear_alias_mode_holder *entry
1622 = clear_alias_set_lookup (s_info->alias_set);
1623 /* Generally, spills cannot be processed if and of the
1624 references to the slot have a different mode. But if
1625 we are in the same block and mode is exactly the same
1626 between this store and one before in the same block,
1627 we can still delete it. */
1628 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1629 && (GET_MODE (mem) == entry->mode))
1631 del = true;
1632 set_all_positions_unneeded (s_info);
1634 if (dump_file && (dump_flags & TDF_DETAILS))
1635 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1636 INSN_UID (ptr->insn), (int) s_info->alias_set);
1638 else if ((s_info->group_id == group_id)
1639 && (s_info->cse_base == base))
1641 HOST_WIDE_INT i;
1642 if (dump_file && (dump_flags & TDF_DETAILS))
1643 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1644 INSN_UID (ptr->insn), s_info->group_id,
1645 (int)s_info->begin, (int)s_info->end);
1647 /* Even if PTR won't be eliminated as unneeded, if both
1648 PTR and this insn store the same constant value, we might
1649 eliminate this insn instead. */
1650 if (s_info->const_rhs
1651 && const_rhs
1652 && offset >= s_info->begin
1653 && offset + width <= s_info->end
1654 && all_positions_needed_p (s_info, offset - s_info->begin,
1655 width))
1657 if (GET_MODE (mem) == BLKmode)
1659 if (GET_MODE (s_info->mem) == BLKmode
1660 && s_info->const_rhs == const_rhs)
1661 redundant_reason = ptr;
1663 else if (s_info->const_rhs == const0_rtx
1664 && const_rhs == const0_rtx)
1665 redundant_reason = ptr;
1666 else
1668 rtx val;
1669 start_sequence ();
1670 val = get_stored_val (s_info, GET_MODE (mem),
1671 offset, offset + width,
1672 BLOCK_FOR_INSN (insn_info->insn),
1673 true);
1674 if (get_insns () != NULL)
1675 val = NULL_RTX;
1676 end_sequence ();
1677 if (val && rtx_equal_p (val, const_rhs))
1678 redundant_reason = ptr;
1682 for (i = MAX (offset, s_info->begin);
1683 i < offset + width && i < s_info->end;
1684 i++)
1685 set_position_unneeded (s_info, i - s_info->begin);
1687 else if (s_info->rhs)
1688 /* Need to see if it is possible for this store to overwrite
1689 the value of store_info. If it is, set the rhs to NULL to
1690 keep it from being used to remove a load. */
1692 if (canon_true_dependence (s_info->mem,
1693 GET_MODE (s_info->mem),
1694 s_info->mem_addr,
1695 mem, mem_addr))
1697 s_info->rhs = NULL;
1698 s_info->const_rhs = NULL;
1702 /* An insn can be deleted if every position of every one of
1703 its s_infos is zero. */
1704 if (any_positions_needed_p (s_info))
1705 del = false;
1707 if (del)
1709 insn_info_t insn_to_delete = ptr;
1711 active_local_stores_len--;
1712 if (last)
1713 last->next_local_store = ptr->next_local_store;
1714 else
1715 active_local_stores = ptr->next_local_store;
1717 if (!insn_to_delete->cannot_delete)
1718 delete_dead_store_insn (insn_to_delete);
1720 else
1721 last = ptr;
1723 ptr = next;
1726 /* Finish filling in the store_info. */
1727 store_info->next = insn_info->store_rec;
1728 insn_info->store_rec = store_info;
1729 store_info->mem = mem;
1730 store_info->alias_set = spill_alias_set;
1731 store_info->mem_addr = mem_addr;
1732 store_info->cse_base = base;
1733 if (width > HOST_BITS_PER_WIDE_INT)
1735 store_info->is_large = true;
1736 store_info->positions_needed.large.count = 0;
1737 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1739 else
1741 store_info->is_large = false;
1742 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1744 store_info->group_id = group_id;
1745 store_info->begin = offset;
1746 store_info->end = offset + width;
1747 store_info->is_set = GET_CODE (body) == SET;
1748 store_info->rhs = rhs;
1749 store_info->const_rhs = const_rhs;
1750 store_info->redundant_reason = redundant_reason;
1752 /* If this is a clobber, we return 0. We will only be able to
1753 delete this insn if there is only one store USED store, but we
1754 can use the clobber to delete other stores earlier. */
1755 return store_info->is_set ? 1 : 0;
1759 static void
1760 dump_insn_info (const char * start, insn_info_t insn_info)
1762 fprintf (dump_file, "%s insn=%d %s\n", start,
1763 INSN_UID (insn_info->insn),
1764 insn_info->store_rec ? "has store" : "naked");
1768 /* If the modes are different and the value's source and target do not
1769 line up, we need to extract the value from lower part of the rhs of
1770 the store, shift it, and then put it into a form that can be shoved
1771 into the read_insn. This function generates a right SHIFT of a
1772 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1773 shift sequence is returned or NULL if we failed to find a
1774 shift. */
1776 static rtx
1777 find_shift_sequence (int access_size,
1778 store_info_t store_info,
1779 enum machine_mode read_mode,
1780 int shift, bool speed, bool require_cst)
1782 enum machine_mode store_mode = GET_MODE (store_info->mem);
1783 enum machine_mode new_mode;
1784 rtx read_reg = NULL;
1786 /* Some machines like the x86 have shift insns for each size of
1787 operand. Other machines like the ppc or the ia-64 may only have
1788 shift insns that shift values within 32 or 64 bit registers.
1789 This loop tries to find the smallest shift insn that will right
1790 justify the value we want to read but is available in one insn on
1791 the machine. */
1793 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1794 MODE_INT);
1795 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1796 new_mode = GET_MODE_WIDER_MODE (new_mode))
1798 rtx target, new_reg, shift_seq, insn, new_lhs;
1799 int cost;
1801 /* If a constant was stored into memory, try to simplify it here,
1802 otherwise the cost of the shift might preclude this optimization
1803 e.g. at -Os, even when no actual shift will be needed. */
1804 if (store_info->const_rhs)
1806 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1807 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1808 store_mode, byte);
1809 if (ret && CONSTANT_P (ret))
1811 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1812 ret, GEN_INT (shift));
1813 if (ret && CONSTANT_P (ret))
1815 byte = subreg_lowpart_offset (read_mode, new_mode);
1816 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1817 if (ret && CONSTANT_P (ret)
1818 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1819 return ret;
1824 if (require_cst)
1825 return NULL_RTX;
1827 /* Try a wider mode if truncating the store mode to NEW_MODE
1828 requires a real instruction. */
1829 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1830 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1831 continue;
1833 /* Also try a wider mode if the necessary punning is either not
1834 desirable or not possible. */
1835 if (!CONSTANT_P (store_info->rhs)
1836 && !MODES_TIEABLE_P (new_mode, store_mode))
1837 continue;
1839 new_reg = gen_reg_rtx (new_mode);
1841 start_sequence ();
1843 /* In theory we could also check for an ashr. Ian Taylor knows
1844 of one dsp where the cost of these two was not the same. But
1845 this really is a rare case anyway. */
1846 target = expand_binop (new_mode, lshr_optab, new_reg,
1847 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1849 shift_seq = get_insns ();
1850 end_sequence ();
1852 if (target != new_reg || shift_seq == NULL)
1853 continue;
1855 cost = 0;
1856 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1857 if (INSN_P (insn))
1858 cost += insn_rtx_cost (PATTERN (insn), speed);
1860 /* The computation up to here is essentially independent
1861 of the arguments and could be precomputed. It may
1862 not be worth doing so. We could precompute if
1863 worthwhile or at least cache the results. The result
1864 technically depends on both SHIFT and ACCESS_SIZE,
1865 but in practice the answer will depend only on ACCESS_SIZE. */
1867 if (cost > COSTS_N_INSNS (1))
1868 continue;
1870 new_lhs = extract_low_bits (new_mode, store_mode,
1871 copy_rtx (store_info->rhs));
1872 if (new_lhs == NULL_RTX)
1873 continue;
1875 /* We found an acceptable shift. Generate a move to
1876 take the value from the store and put it into the
1877 shift pseudo, then shift it, then generate another
1878 move to put in into the target of the read. */
1879 emit_move_insn (new_reg, new_lhs);
1880 emit_insn (shift_seq);
1881 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1882 break;
1885 return read_reg;
1889 /* Call back for note_stores to find the hard regs set or clobbered by
1890 insn. Data is a bitmap of the hardregs set so far. */
1892 static void
1893 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1895 bitmap regs_set = (bitmap) data;
1897 if (REG_P (x)
1898 && HARD_REGISTER_P (x))
1900 unsigned int regno = REGNO (x);
1901 bitmap_set_range (regs_set, regno,
1902 hard_regno_nregs[regno][GET_MODE (x)]);
1906 /* Helper function for replace_read and record_store.
1907 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1908 to one before READ_END bytes read in READ_MODE. Return NULL
1909 if not successful. If REQUIRE_CST is true, return always constant. */
1911 static rtx
1912 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1913 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1914 basic_block bb, bool require_cst)
1916 enum machine_mode store_mode = GET_MODE (store_info->mem);
1917 int shift;
1918 int access_size; /* In bytes. */
1919 rtx read_reg;
1921 /* To get here the read is within the boundaries of the write so
1922 shift will never be negative. Start out with the shift being in
1923 bytes. */
1924 if (store_mode == BLKmode)
1925 shift = 0;
1926 else if (BYTES_BIG_ENDIAN)
1927 shift = store_info->end - read_end;
1928 else
1929 shift = read_begin - store_info->begin;
1931 access_size = shift + GET_MODE_SIZE (read_mode);
1933 /* From now on it is bits. */
1934 shift *= BITS_PER_UNIT;
1936 if (shift)
1937 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1938 optimize_bb_for_speed_p (bb),
1939 require_cst);
1940 else if (store_mode == BLKmode)
1942 /* The store is a memset (addr, const_val, const_size). */
1943 gcc_assert (CONST_INT_P (store_info->rhs));
1944 store_mode = int_mode_for_mode (read_mode);
1945 if (store_mode == BLKmode)
1946 read_reg = NULL_RTX;
1947 else if (store_info->rhs == const0_rtx)
1948 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1949 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1950 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1951 read_reg = NULL_RTX;
1952 else
1954 unsigned HOST_WIDE_INT c
1955 = INTVAL (store_info->rhs)
1956 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1957 int shift = BITS_PER_UNIT;
1958 while (shift < HOST_BITS_PER_WIDE_INT)
1960 c |= (c << shift);
1961 shift <<= 1;
1963 read_reg = gen_int_mode (c, store_mode);
1964 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1967 else if (store_info->const_rhs
1968 && (require_cst
1969 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1970 read_reg = extract_low_bits (read_mode, store_mode,
1971 copy_rtx (store_info->const_rhs));
1972 else
1973 read_reg = extract_low_bits (read_mode, store_mode,
1974 copy_rtx (store_info->rhs));
1975 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1976 read_reg = NULL_RTX;
1977 return read_reg;
1980 /* Take a sequence of:
1981 A <- r1
1983 ... <- A
1985 and change it into
1986 r2 <- r1
1987 A <- r1
1989 ... <- r2
1993 r3 <- extract (r1)
1994 r3 <- r3 >> shift
1995 r2 <- extract (r3)
1996 ... <- r2
2000 r2 <- extract (r1)
2001 ... <- r2
2003 Depending on the alignment and the mode of the store and
2004 subsequent load.
2007 The STORE_INFO and STORE_INSN are for the store and READ_INFO
2008 and READ_INSN are for the read. Return true if the replacement
2009 went ok. */
2011 static bool
2012 replace_read (store_info_t store_info, insn_info_t store_insn,
2013 read_info_t read_info, insn_info_t read_insn, rtx *loc,
2014 bitmap regs_live)
2016 enum machine_mode store_mode = GET_MODE (store_info->mem);
2017 enum machine_mode read_mode = GET_MODE (read_info->mem);
2018 rtx insns, this_insn, read_reg;
2019 basic_block bb;
2021 if (!dbg_cnt (dse))
2022 return false;
2024 /* Create a sequence of instructions to set up the read register.
2025 This sequence goes immediately before the store and its result
2026 is read by the load.
2028 We need to keep this in perspective. We are replacing a read
2029 with a sequence of insns, but the read will almost certainly be
2030 in cache, so it is not going to be an expensive one. Thus, we
2031 are not willing to do a multi insn shift or worse a subroutine
2032 call to get rid of the read. */
2033 if (dump_file && (dump_flags & TDF_DETAILS))
2034 fprintf (dump_file, "trying to replace %smode load in insn %d"
2035 " from %smode store in insn %d\n",
2036 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2037 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2038 start_sequence ();
2039 bb = BLOCK_FOR_INSN (read_insn->insn);
2040 read_reg = get_stored_val (store_info,
2041 read_mode, read_info->begin, read_info->end,
2042 bb, false);
2043 if (read_reg == NULL_RTX)
2045 end_sequence ();
2046 if (dump_file && (dump_flags & TDF_DETAILS))
2047 fprintf (dump_file, " -- could not extract bits of stored value\n");
2048 return false;
2050 /* Force the value into a new register so that it won't be clobbered
2051 between the store and the load. */
2052 read_reg = copy_to_mode_reg (read_mode, read_reg);
2053 insns = get_insns ();
2054 end_sequence ();
2056 if (insns != NULL_RTX)
2058 /* Now we have to scan the set of new instructions to see if the
2059 sequence contains and sets of hardregs that happened to be
2060 live at this point. For instance, this can happen if one of
2061 the insns sets the CC and the CC happened to be live at that
2062 point. This does occasionally happen, see PR 37922. */
2063 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2065 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2066 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2068 bitmap_and_into (regs_set, regs_live);
2069 if (!bitmap_empty_p (regs_set))
2071 if (dump_file && (dump_flags & TDF_DETAILS))
2073 fprintf (dump_file,
2074 "abandoning replacement because sequence clobbers live hardregs:");
2075 df_print_regset (dump_file, regs_set);
2078 BITMAP_FREE (regs_set);
2079 return false;
2081 BITMAP_FREE (regs_set);
2084 if (validate_change (read_insn->insn, loc, read_reg, 0))
2086 deferred_change_t deferred_change =
2087 (deferred_change_t) pool_alloc (deferred_change_pool);
2089 /* Insert this right before the store insn where it will be safe
2090 from later insns that might change it before the read. */
2091 emit_insn_before (insns, store_insn->insn);
2093 /* And now for the kludge part: cselib croaks if you just
2094 return at this point. There are two reasons for this:
2096 1) Cselib has an idea of how many pseudos there are and
2097 that does not include the new ones we just added.
2099 2) Cselib does not know about the move insn we added
2100 above the store_info, and there is no way to tell it
2101 about it, because it has "moved on".
2103 Problem (1) is fixable with a certain amount of engineering.
2104 Problem (2) is requires starting the bb from scratch. This
2105 could be expensive.
2107 So we are just going to have to lie. The move/extraction
2108 insns are not really an issue, cselib did not see them. But
2109 the use of the new pseudo read_insn is a real problem because
2110 cselib has not scanned this insn. The way that we solve this
2111 problem is that we are just going to put the mem back for now
2112 and when we are finished with the block, we undo this. We
2113 keep a table of mems to get rid of. At the end of the basic
2114 block we can put them back. */
2116 *loc = read_info->mem;
2117 deferred_change->next = deferred_change_list;
2118 deferred_change_list = deferred_change;
2119 deferred_change->loc = loc;
2120 deferred_change->reg = read_reg;
2122 /* Get rid of the read_info, from the point of view of the
2123 rest of dse, play like this read never happened. */
2124 read_insn->read_rec = read_info->next;
2125 pool_free (read_info_pool, read_info);
2126 if (dump_file && (dump_flags & TDF_DETAILS))
2128 fprintf (dump_file, " -- replaced the loaded MEM with ");
2129 print_simple_rtl (dump_file, read_reg);
2130 fprintf (dump_file, "\n");
2132 return true;
2134 else
2136 if (dump_file && (dump_flags & TDF_DETAILS))
2138 fprintf (dump_file, " -- replacing the loaded MEM with ");
2139 print_simple_rtl (dump_file, read_reg);
2140 fprintf (dump_file, " led to an invalid instruction\n");
2142 return false;
2146 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2147 if LOC is a mem and if it is look at the address and kill any
2148 appropriate stores that may be active. */
2150 static int
2151 check_mem_read_rtx (rtx *loc, void *data)
2153 rtx mem = *loc, mem_addr;
2154 bb_info_t bb_info;
2155 insn_info_t insn_info;
2156 HOST_WIDE_INT offset = 0;
2157 HOST_WIDE_INT width = 0;
2158 alias_set_type spill_alias_set = 0;
2159 cselib_val *base = NULL;
2160 int group_id;
2161 read_info_t read_info;
2163 if (!mem || !MEM_P (mem))
2164 return 0;
2166 bb_info = (bb_info_t) data;
2167 insn_info = bb_info->last_insn;
2169 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2170 || (MEM_VOLATILE_P (mem)))
2172 if (dump_file && (dump_flags & TDF_DETAILS))
2173 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2174 add_wild_read (bb_info);
2175 insn_info->cannot_delete = true;
2176 return 0;
2179 /* If it is reading readonly mem, then there can be no conflict with
2180 another write. */
2181 if (MEM_READONLY_P (mem))
2182 return 0;
2184 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2186 if (dump_file && (dump_flags & TDF_DETAILS))
2187 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2188 add_wild_read (bb_info);
2189 return 0;
2192 if (GET_MODE (mem) == BLKmode)
2193 width = -1;
2194 else
2195 width = GET_MODE_SIZE (GET_MODE (mem));
2197 read_info = (read_info_t) pool_alloc (read_info_pool);
2198 read_info->group_id = group_id;
2199 read_info->mem = mem;
2200 read_info->alias_set = spill_alias_set;
2201 read_info->begin = offset;
2202 read_info->end = offset + width;
2203 read_info->next = insn_info->read_rec;
2204 insn_info->read_rec = read_info;
2205 /* For alias_set != 0 canon_true_dependence should be never called. */
2206 if (spill_alias_set)
2207 mem_addr = NULL_RTX;
2208 else
2210 if (group_id < 0)
2211 mem_addr = base->val_rtx;
2212 else
2214 group_info_t group
2215 = rtx_group_vec[group_id];
2216 mem_addr = group->canon_base_addr;
2218 /* get_addr can only handle VALUE but cannot handle expr like:
2219 VALUE + OFFSET, so call get_addr to get original addr for
2220 mem_addr before plus_constant. */
2221 mem_addr = get_addr (mem_addr);
2222 if (offset)
2223 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2226 /* We ignore the clobbers in store_info. The is mildly aggressive,
2227 but there really should not be a clobber followed by a read. */
2229 if (spill_alias_set)
2231 insn_info_t i_ptr = active_local_stores;
2232 insn_info_t last = NULL;
2234 if (dump_file && (dump_flags & TDF_DETAILS))
2235 fprintf (dump_file, " processing spill load %d\n",
2236 (int) spill_alias_set);
2238 while (i_ptr)
2240 store_info_t store_info = i_ptr->store_rec;
2242 /* Skip the clobbers. */
2243 while (!store_info->is_set)
2244 store_info = store_info->next;
2246 if (store_info->alias_set == spill_alias_set)
2248 if (dump_file && (dump_flags & TDF_DETAILS))
2249 dump_insn_info ("removing from active", i_ptr);
2251 active_local_stores_len--;
2252 if (last)
2253 last->next_local_store = i_ptr->next_local_store;
2254 else
2255 active_local_stores = i_ptr->next_local_store;
2257 else
2258 last = i_ptr;
2259 i_ptr = i_ptr->next_local_store;
2262 else if (group_id >= 0)
2264 /* This is the restricted case where the base is a constant or
2265 the frame pointer and offset is a constant. */
2266 insn_info_t i_ptr = active_local_stores;
2267 insn_info_t last = NULL;
2269 if (dump_file && (dump_flags & TDF_DETAILS))
2271 if (width == -1)
2272 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2273 group_id);
2274 else
2275 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2276 group_id, (int)offset, (int)(offset+width));
2279 while (i_ptr)
2281 bool remove = false;
2282 store_info_t store_info = i_ptr->store_rec;
2284 /* Skip the clobbers. */
2285 while (!store_info->is_set)
2286 store_info = store_info->next;
2288 /* There are three cases here. */
2289 if (store_info->group_id < 0)
2290 /* We have a cselib store followed by a read from a
2291 const base. */
2292 remove
2293 = canon_true_dependence (store_info->mem,
2294 GET_MODE (store_info->mem),
2295 store_info->mem_addr,
2296 mem, mem_addr);
2298 else if (group_id == store_info->group_id)
2300 /* This is a block mode load. We may get lucky and
2301 canon_true_dependence may save the day. */
2302 if (width == -1)
2303 remove
2304 = canon_true_dependence (store_info->mem,
2305 GET_MODE (store_info->mem),
2306 store_info->mem_addr,
2307 mem, mem_addr);
2309 /* If this read is just reading back something that we just
2310 stored, rewrite the read. */
2311 else
2313 if (store_info->rhs
2314 && offset >= store_info->begin
2315 && offset + width <= store_info->end
2316 && all_positions_needed_p (store_info,
2317 offset - store_info->begin,
2318 width)
2319 && replace_read (store_info, i_ptr, read_info,
2320 insn_info, loc, bb_info->regs_live))
2321 return 0;
2323 /* The bases are the same, just see if the offsets
2324 overlap. */
2325 if ((offset < store_info->end)
2326 && (offset + width > store_info->begin))
2327 remove = true;
2331 /* else
2332 The else case that is missing here is that the
2333 bases are constant but different. There is nothing
2334 to do here because there is no overlap. */
2336 if (remove)
2338 if (dump_file && (dump_flags & TDF_DETAILS))
2339 dump_insn_info ("removing from active", i_ptr);
2341 active_local_stores_len--;
2342 if (last)
2343 last->next_local_store = i_ptr->next_local_store;
2344 else
2345 active_local_stores = i_ptr->next_local_store;
2347 else
2348 last = i_ptr;
2349 i_ptr = i_ptr->next_local_store;
2352 else
2354 insn_info_t i_ptr = active_local_stores;
2355 insn_info_t last = NULL;
2356 if (dump_file && (dump_flags & TDF_DETAILS))
2358 fprintf (dump_file, " processing cselib load mem:");
2359 print_inline_rtx (dump_file, mem, 0);
2360 fprintf (dump_file, "\n");
2363 while (i_ptr)
2365 bool remove = false;
2366 store_info_t store_info = i_ptr->store_rec;
2368 if (dump_file && (dump_flags & TDF_DETAILS))
2369 fprintf (dump_file, " processing cselib load against insn %d\n",
2370 INSN_UID (i_ptr->insn));
2372 /* Skip the clobbers. */
2373 while (!store_info->is_set)
2374 store_info = store_info->next;
2376 /* If this read is just reading back something that we just
2377 stored, rewrite the read. */
2378 if (store_info->rhs
2379 && store_info->group_id == -1
2380 && store_info->cse_base == base
2381 && width != -1
2382 && offset >= store_info->begin
2383 && offset + width <= store_info->end
2384 && all_positions_needed_p (store_info,
2385 offset - store_info->begin, width)
2386 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2387 bb_info->regs_live))
2388 return 0;
2390 if (!store_info->alias_set)
2391 remove = canon_true_dependence (store_info->mem,
2392 GET_MODE (store_info->mem),
2393 store_info->mem_addr,
2394 mem, mem_addr);
2396 if (remove)
2398 if (dump_file && (dump_flags & TDF_DETAILS))
2399 dump_insn_info ("removing from active", i_ptr);
2401 active_local_stores_len--;
2402 if (last)
2403 last->next_local_store = i_ptr->next_local_store;
2404 else
2405 active_local_stores = i_ptr->next_local_store;
2407 else
2408 last = i_ptr;
2409 i_ptr = i_ptr->next_local_store;
2412 return 0;
2415 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2416 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2417 true for any part of *LOC. */
2419 static void
2420 check_mem_read_use (rtx *loc, void *data)
2422 for_each_rtx (loc, check_mem_read_rtx, data);
2426 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2427 So far it only handles arguments passed in registers. */
2429 static bool
2430 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2432 CUMULATIVE_ARGS args_so_far_v;
2433 cumulative_args_t args_so_far;
2434 tree arg;
2435 int idx;
2437 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2438 args_so_far = pack_cumulative_args (&args_so_far_v);
2440 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2441 for (idx = 0;
2442 arg != void_list_node && idx < nargs;
2443 arg = TREE_CHAIN (arg), idx++)
2445 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2446 rtx reg, link, tmp;
2447 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2448 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2449 || GET_MODE_CLASS (mode) != MODE_INT)
2450 return false;
2452 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2453 link;
2454 link = XEXP (link, 1))
2455 if (GET_CODE (XEXP (link, 0)) == USE)
2457 args[idx] = XEXP (XEXP (link, 0), 0);
2458 if (REG_P (args[idx])
2459 && REGNO (args[idx]) == REGNO (reg)
2460 && (GET_MODE (args[idx]) == mode
2461 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2462 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2463 <= UNITS_PER_WORD)
2464 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2465 > GET_MODE_SIZE (mode)))))
2466 break;
2468 if (!link)
2469 return false;
2471 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2472 if (GET_MODE (args[idx]) != mode)
2474 if (!tmp || !CONST_INT_P (tmp))
2475 return false;
2476 tmp = gen_int_mode (INTVAL (tmp), mode);
2478 if (tmp)
2479 args[idx] = tmp;
2481 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2483 if (arg != void_list_node || idx != nargs)
2484 return false;
2485 return true;
2488 /* Return a bitmap of the fixed registers contained in IN. */
2490 static bitmap
2491 copy_fixed_regs (const_bitmap in)
2493 bitmap ret;
2495 ret = ALLOC_REG_SET (NULL);
2496 bitmap_and (ret, in, fixed_reg_set_regset);
2497 return ret;
2500 /* Apply record_store to all candidate stores in INSN. Mark INSN
2501 if some part of it is not a candidate store and assigns to a
2502 non-register target. */
2504 static void
2505 scan_insn (bb_info_t bb_info, rtx insn)
2507 rtx body;
2508 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2509 int mems_found = 0;
2510 memset (insn_info, 0, sizeof (struct insn_info));
2512 if (dump_file && (dump_flags & TDF_DETAILS))
2513 fprintf (dump_file, "\n**scanning insn=%d\n",
2514 INSN_UID (insn));
2516 insn_info->prev_insn = bb_info->last_insn;
2517 insn_info->insn = insn;
2518 bb_info->last_insn = insn_info;
2520 if (DEBUG_INSN_P (insn))
2522 insn_info->cannot_delete = true;
2523 return;
2526 /* Cselib clears the table for this case, so we have to essentially
2527 do the same. */
2528 if (NONJUMP_INSN_P (insn)
2529 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2530 && MEM_VOLATILE_P (PATTERN (insn)))
2532 add_wild_read (bb_info);
2533 insn_info->cannot_delete = true;
2534 return;
2537 /* Look at all of the uses in the insn. */
2538 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2540 if (CALL_P (insn))
2542 bool const_call;
2543 tree memset_call = NULL_TREE;
2545 insn_info->cannot_delete = true;
2547 /* Const functions cannot do anything bad i.e. read memory,
2548 however, they can read their parameters which may have
2549 been pushed onto the stack.
2550 memset and bzero don't read memory either. */
2551 const_call = RTL_CONST_CALL_P (insn);
2552 if (!const_call)
2554 rtx call = get_call_rtx_from (insn);
2555 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2557 rtx symbol = XEXP (XEXP (call, 0), 0);
2558 if (SYMBOL_REF_DECL (symbol)
2559 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2561 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2562 == BUILT_IN_NORMAL
2563 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2564 == BUILT_IN_MEMSET))
2565 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2566 memset_call = SYMBOL_REF_DECL (symbol);
2570 if (const_call || memset_call)
2572 insn_info_t i_ptr = active_local_stores;
2573 insn_info_t last = NULL;
2575 if (dump_file && (dump_flags & TDF_DETAILS))
2576 fprintf (dump_file, "%s call %d\n",
2577 const_call ? "const" : "memset", INSN_UID (insn));
2579 /* See the head comment of the frame_read field. */
2580 if (reload_completed)
2581 insn_info->frame_read = true;
2583 /* Loop over the active stores and remove those which are
2584 killed by the const function call. */
2585 while (i_ptr)
2587 bool remove_store = false;
2589 /* The stack pointer based stores are always killed. */
2590 if (i_ptr->stack_pointer_based)
2591 remove_store = true;
2593 /* If the frame is read, the frame related stores are killed. */
2594 else if (insn_info->frame_read)
2596 store_info_t store_info = i_ptr->store_rec;
2598 /* Skip the clobbers. */
2599 while (!store_info->is_set)
2600 store_info = store_info->next;
2602 if (store_info->group_id >= 0
2603 && rtx_group_vec[store_info->group_id]->frame_related)
2604 remove_store = true;
2607 if (remove_store)
2609 if (dump_file && (dump_flags & TDF_DETAILS))
2610 dump_insn_info ("removing from active", i_ptr);
2612 active_local_stores_len--;
2613 if (last)
2614 last->next_local_store = i_ptr->next_local_store;
2615 else
2616 active_local_stores = i_ptr->next_local_store;
2618 else
2619 last = i_ptr;
2621 i_ptr = i_ptr->next_local_store;
2624 if (memset_call)
2626 rtx args[3];
2627 if (get_call_args (insn, memset_call, args, 3)
2628 && CONST_INT_P (args[1])
2629 && CONST_INT_P (args[2])
2630 && INTVAL (args[2]) > 0)
2632 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2633 set_mem_size (mem, INTVAL (args[2]));
2634 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2635 mems_found += record_store (body, bb_info);
2636 if (dump_file && (dump_flags & TDF_DETAILS))
2637 fprintf (dump_file, "handling memset as BLKmode store\n");
2638 if (mems_found == 1)
2640 if (active_local_stores_len++
2641 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2643 active_local_stores_len = 1;
2644 active_local_stores = NULL;
2646 insn_info->fixed_regs_live
2647 = copy_fixed_regs (bb_info->regs_live);
2648 insn_info->next_local_store = active_local_stores;
2649 active_local_stores = insn_info;
2655 else
2656 /* Every other call, including pure functions, may read any memory
2657 that is not relative to the frame. */
2658 add_non_frame_wild_read (bb_info);
2660 return;
2663 /* Assuming that there are sets in these insns, we cannot delete
2664 them. */
2665 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2666 || volatile_refs_p (PATTERN (insn))
2667 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2668 || (RTX_FRAME_RELATED_P (insn))
2669 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2670 insn_info->cannot_delete = true;
2672 body = PATTERN (insn);
2673 if (GET_CODE (body) == PARALLEL)
2675 int i;
2676 for (i = 0; i < XVECLEN (body, 0); i++)
2677 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2679 else
2680 mems_found += record_store (body, bb_info);
2682 if (dump_file && (dump_flags & TDF_DETAILS))
2683 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2684 mems_found, insn_info->cannot_delete ? "true" : "false");
2686 /* If we found some sets of mems, add it into the active_local_stores so
2687 that it can be locally deleted if found dead or used for
2688 replace_read and redundant constant store elimination. Otherwise mark
2689 it as cannot delete. This simplifies the processing later. */
2690 if (mems_found == 1)
2692 if (active_local_stores_len++
2693 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2695 active_local_stores_len = 1;
2696 active_local_stores = NULL;
2698 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2699 insn_info->next_local_store = active_local_stores;
2700 active_local_stores = insn_info;
2702 else
2703 insn_info->cannot_delete = true;
2707 /* Remove BASE from the set of active_local_stores. This is a
2708 callback from cselib that is used to get rid of the stores in
2709 active_local_stores. */
2711 static void
2712 remove_useless_values (cselib_val *base)
2714 insn_info_t insn_info = active_local_stores;
2715 insn_info_t last = NULL;
2717 while (insn_info)
2719 store_info_t store_info = insn_info->store_rec;
2720 bool del = false;
2722 /* If ANY of the store_infos match the cselib group that is
2723 being deleted, then the insn can not be deleted. */
2724 while (store_info)
2726 if ((store_info->group_id == -1)
2727 && (store_info->cse_base == base))
2729 del = true;
2730 break;
2732 store_info = store_info->next;
2735 if (del)
2737 active_local_stores_len--;
2738 if (last)
2739 last->next_local_store = insn_info->next_local_store;
2740 else
2741 active_local_stores = insn_info->next_local_store;
2742 free_store_info (insn_info);
2744 else
2745 last = insn_info;
2747 insn_info = insn_info->next_local_store;
2752 /* Do all of step 1. */
2754 static void
2755 dse_step1 (void)
2757 basic_block bb;
2758 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2760 cselib_init (0);
2761 all_blocks = BITMAP_ALLOC (NULL);
2762 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2763 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2765 FOR_ALL_BB (bb)
2767 insn_info_t ptr;
2768 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2770 memset (bb_info, 0, sizeof (struct bb_info));
2771 bitmap_set_bit (all_blocks, bb->index);
2772 bb_info->regs_live = regs_live;
2774 bitmap_copy (regs_live, DF_LR_IN (bb));
2775 df_simulate_initialize_forwards (bb, regs_live);
2777 bb_table[bb->index] = bb_info;
2778 cselib_discard_hook = remove_useless_values;
2780 if (bb->index >= NUM_FIXED_BLOCKS)
2782 rtx insn;
2784 cse_store_info_pool
2785 = create_alloc_pool ("cse_store_info_pool",
2786 sizeof (struct store_info), 100);
2787 active_local_stores = NULL;
2788 active_local_stores_len = 0;
2789 cselib_clear_table ();
2791 /* Scan the insns. */
2792 FOR_BB_INSNS (bb, insn)
2794 if (INSN_P (insn))
2795 scan_insn (bb_info, insn);
2796 cselib_process_insn (insn);
2797 if (INSN_P (insn))
2798 df_simulate_one_insn_forwards (bb, insn, regs_live);
2801 /* This is something of a hack, because the global algorithm
2802 is supposed to take care of the case where stores go dead
2803 at the end of the function. However, the global
2804 algorithm must take a more conservative view of block
2805 mode reads than the local alg does. So to get the case
2806 where you have a store to the frame followed by a non
2807 overlapping block more read, we look at the active local
2808 stores at the end of the function and delete all of the
2809 frame and spill based ones. */
2810 if (stores_off_frame_dead_at_return
2811 && (EDGE_COUNT (bb->succs) == 0
2812 || (single_succ_p (bb)
2813 && single_succ (bb) == EXIT_BLOCK_PTR
2814 && ! crtl->calls_eh_return)))
2816 insn_info_t i_ptr = active_local_stores;
2817 while (i_ptr)
2819 store_info_t store_info = i_ptr->store_rec;
2821 /* Skip the clobbers. */
2822 while (!store_info->is_set)
2823 store_info = store_info->next;
2824 if (store_info->alias_set && !i_ptr->cannot_delete)
2825 delete_dead_store_insn (i_ptr);
2826 else
2827 if (store_info->group_id >= 0)
2829 group_info_t group
2830 = rtx_group_vec[store_info->group_id];
2831 if (group->frame_related && !i_ptr->cannot_delete)
2832 delete_dead_store_insn (i_ptr);
2835 i_ptr = i_ptr->next_local_store;
2839 /* Get rid of the loads that were discovered in
2840 replace_read. Cselib is finished with this block. */
2841 while (deferred_change_list)
2843 deferred_change_t next = deferred_change_list->next;
2845 /* There is no reason to validate this change. That was
2846 done earlier. */
2847 *deferred_change_list->loc = deferred_change_list->reg;
2848 pool_free (deferred_change_pool, deferred_change_list);
2849 deferred_change_list = next;
2852 /* Get rid of all of the cselib based store_infos in this
2853 block and mark the containing insns as not being
2854 deletable. */
2855 ptr = bb_info->last_insn;
2856 while (ptr)
2858 if (ptr->contains_cselib_groups)
2860 store_info_t s_info = ptr->store_rec;
2861 while (s_info && !s_info->is_set)
2862 s_info = s_info->next;
2863 if (s_info
2864 && s_info->redundant_reason
2865 && s_info->redundant_reason->insn
2866 && !ptr->cannot_delete)
2868 if (dump_file && (dump_flags & TDF_DETAILS))
2869 fprintf (dump_file, "Locally deleting insn %d "
2870 "because insn %d stores the "
2871 "same value and couldn't be "
2872 "eliminated\n",
2873 INSN_UID (ptr->insn),
2874 INSN_UID (s_info->redundant_reason->insn));
2875 delete_dead_store_insn (ptr);
2877 free_store_info (ptr);
2879 else
2881 store_info_t s_info;
2883 /* Free at least positions_needed bitmaps. */
2884 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2885 if (s_info->is_large)
2887 BITMAP_FREE (s_info->positions_needed.large.bmap);
2888 s_info->is_large = false;
2891 ptr = ptr->prev_insn;
2894 free_alloc_pool (cse_store_info_pool);
2896 bb_info->regs_live = NULL;
2899 BITMAP_FREE (regs_live);
2900 cselib_finish ();
2901 rtx_group_table.empty ();
2905 /*----------------------------------------------------------------------------
2906 Second step.
2908 Assign each byte position in the stores that we are going to
2909 analyze globally to a position in the bitmaps. Returns true if
2910 there are any bit positions assigned.
2911 ----------------------------------------------------------------------------*/
2913 static void
2914 dse_step2_init (void)
2916 unsigned int i;
2917 group_info_t group;
2919 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2921 /* For all non stack related bases, we only consider a store to
2922 be deletable if there are two or more stores for that
2923 position. This is because it takes one store to make the
2924 other store redundant. However, for the stores that are
2925 stack related, we consider them if there is only one store
2926 for the position. We do this because the stack related
2927 stores can be deleted if their is no read between them and
2928 the end of the function.
2930 To make this work in the current framework, we take the stack
2931 related bases add all of the bits from store1 into store2.
2932 This has the effect of making the eligible even if there is
2933 only one store. */
2935 if (stores_off_frame_dead_at_return && group->frame_related)
2937 bitmap_ior_into (group->store2_n, group->store1_n);
2938 bitmap_ior_into (group->store2_p, group->store1_p);
2939 if (dump_file && (dump_flags & TDF_DETAILS))
2940 fprintf (dump_file, "group %d is frame related ", i);
2943 group->offset_map_size_n++;
2944 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2945 group->offset_map_size_n);
2946 group->offset_map_size_p++;
2947 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2948 group->offset_map_size_p);
2949 group->process_globally = false;
2950 if (dump_file && (dump_flags & TDF_DETAILS))
2952 fprintf (dump_file, "group %d(%d+%d): ", i,
2953 (int)bitmap_count_bits (group->store2_n),
2954 (int)bitmap_count_bits (group->store2_p));
2955 bitmap_print (dump_file, group->store2_n, "n ", " ");
2956 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2962 /* Init the offset tables for the normal case. */
2964 static bool
2965 dse_step2_nospill (void)
2967 unsigned int i;
2968 group_info_t group;
2969 /* Position 0 is unused because 0 is used in the maps to mean
2970 unused. */
2971 current_position = 1;
2972 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2974 bitmap_iterator bi;
2975 unsigned int j;
2977 if (group == clear_alias_group)
2978 continue;
2980 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2981 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2982 bitmap_clear (group->group_kill);
2984 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2986 bitmap_set_bit (group->group_kill, current_position);
2987 if (bitmap_bit_p (group->escaped_n, j))
2988 bitmap_set_bit (kill_on_calls, current_position);
2989 group->offset_map_n[j] = current_position++;
2990 group->process_globally = true;
2992 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2994 bitmap_set_bit (group->group_kill, current_position);
2995 if (bitmap_bit_p (group->escaped_p, j))
2996 bitmap_set_bit (kill_on_calls, current_position);
2997 group->offset_map_p[j] = current_position++;
2998 group->process_globally = true;
3001 return current_position != 1;
3005 /* Init the offset tables for the spill case. */
3007 static bool
3008 dse_step2_spill (void)
3010 unsigned int j;
3011 group_info_t group = clear_alias_group;
3012 bitmap_iterator bi;
3014 /* Position 0 is unused because 0 is used in the maps to mean
3015 unused. */
3016 current_position = 1;
3018 if (dump_file && (dump_flags & TDF_DETAILS))
3020 bitmap_print (dump_file, clear_alias_sets,
3021 "clear alias sets ", "\n");
3022 bitmap_print (dump_file, disqualified_clear_alias_sets,
3023 "disqualified clear alias sets ", "\n");
3026 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
3027 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
3028 bitmap_clear (group->group_kill);
3030 /* Remove the disqualified positions from the store2_p set. */
3031 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
3033 /* We do not need to process the store2_n set because
3034 alias_sets are always positive. */
3035 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
3037 bitmap_set_bit (group->group_kill, current_position);
3038 group->offset_map_p[j] = current_position++;
3039 group->process_globally = true;
3042 return current_position != 1;
3047 /*----------------------------------------------------------------------------
3048 Third step.
3050 Build the bit vectors for the transfer functions.
3051 ----------------------------------------------------------------------------*/
3054 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
3055 there, return 0. */
3057 static int
3058 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
3060 if (offset < 0)
3062 HOST_WIDE_INT offset_p = -offset;
3063 if (offset_p >= group_info->offset_map_size_n)
3064 return 0;
3065 return group_info->offset_map_n[offset_p];
3067 else
3069 if (offset >= group_info->offset_map_size_p)
3070 return 0;
3071 return group_info->offset_map_p[offset];
3076 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3077 may be NULL. */
3079 static void
3080 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
3082 while (store_info)
3084 HOST_WIDE_INT i;
3085 group_info_t group_info
3086 = rtx_group_vec[store_info->group_id];
3087 if (group_info->process_globally)
3088 for (i = store_info->begin; i < store_info->end; i++)
3090 int index = get_bitmap_index (group_info, i);
3091 if (index != 0)
3093 bitmap_set_bit (gen, index);
3094 if (kill)
3095 bitmap_clear_bit (kill, index);
3098 store_info = store_info->next;
3103 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3104 may be NULL. */
3106 static void
3107 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3109 while (store_info)
3111 if (store_info->alias_set)
3113 int index = get_bitmap_index (clear_alias_group,
3114 store_info->alias_set);
3115 if (index != 0)
3117 bitmap_set_bit (gen, index);
3118 if (kill)
3119 bitmap_clear_bit (kill, index);
3122 store_info = store_info->next;
3127 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3128 may be NULL. */
3130 static void
3131 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3133 read_info_t read_info = insn_info->read_rec;
3134 int i;
3135 group_info_t group;
3137 /* If this insn reads the frame, kill all the frame related stores. */
3138 if (insn_info->frame_read)
3140 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3141 if (group->process_globally && group->frame_related)
3143 if (kill)
3144 bitmap_ior_into (kill, group->group_kill);
3145 bitmap_and_compl_into (gen, group->group_kill);
3148 if (insn_info->non_frame_wild_read)
3150 /* Kill all non-frame related stores. Kill all stores of variables that
3151 escape. */
3152 if (kill)
3153 bitmap_ior_into (kill, kill_on_calls);
3154 bitmap_and_compl_into (gen, kill_on_calls);
3155 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3156 if (group->process_globally && !group->frame_related)
3158 if (kill)
3159 bitmap_ior_into (kill, group->group_kill);
3160 bitmap_and_compl_into (gen, group->group_kill);
3163 while (read_info)
3165 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3167 if (group->process_globally)
3169 if (i == read_info->group_id)
3171 if (read_info->begin > read_info->end)
3173 /* Begin > end for block mode reads. */
3174 if (kill)
3175 bitmap_ior_into (kill, group->group_kill);
3176 bitmap_and_compl_into (gen, group->group_kill);
3178 else
3180 /* The groups are the same, just process the
3181 offsets. */
3182 HOST_WIDE_INT j;
3183 for (j = read_info->begin; j < read_info->end; j++)
3185 int index = get_bitmap_index (group, j);
3186 if (index != 0)
3188 if (kill)
3189 bitmap_set_bit (kill, index);
3190 bitmap_clear_bit (gen, index);
3195 else
3197 /* The groups are different, if the alias sets
3198 conflict, clear the entire group. We only need
3199 to apply this test if the read_info is a cselib
3200 read. Anything with a constant base cannot alias
3201 something else with a different constant
3202 base. */
3203 if ((read_info->group_id < 0)
3204 && canon_true_dependence (group->base_mem,
3205 GET_MODE (group->base_mem),
3206 group->canon_base_addr,
3207 read_info->mem, NULL_RTX))
3209 if (kill)
3210 bitmap_ior_into (kill, group->group_kill);
3211 bitmap_and_compl_into (gen, group->group_kill);
3217 read_info = read_info->next;
3221 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3222 may be NULL. */
3224 static void
3225 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3227 while (read_info)
3229 if (read_info->alias_set)
3231 int index = get_bitmap_index (clear_alias_group,
3232 read_info->alias_set);
3233 if (index != 0)
3235 if (kill)
3236 bitmap_set_bit (kill, index);
3237 bitmap_clear_bit (gen, index);
3241 read_info = read_info->next;
3246 /* Return the insn in BB_INFO before the first wild read or if there
3247 are no wild reads in the block, return the last insn. */
3249 static insn_info_t
3250 find_insn_before_first_wild_read (bb_info_t bb_info)
3252 insn_info_t insn_info = bb_info->last_insn;
3253 insn_info_t last_wild_read = NULL;
3255 while (insn_info)
3257 if (insn_info->wild_read)
3259 last_wild_read = insn_info->prev_insn;
3260 /* Block starts with wild read. */
3261 if (!last_wild_read)
3262 return NULL;
3265 insn_info = insn_info->prev_insn;
3268 if (last_wild_read)
3269 return last_wild_read;
3270 else
3271 return bb_info->last_insn;
3275 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3276 the block in order to build the gen and kill sets for the block.
3277 We start at ptr which may be the last insn in the block or may be
3278 the first insn with a wild read. In the latter case we are able to
3279 skip the rest of the block because it just does not matter:
3280 anything that happens is hidden by the wild read. */
3282 static void
3283 dse_step3_scan (bool for_spills, basic_block bb)
3285 bb_info_t bb_info = bb_table[bb->index];
3286 insn_info_t insn_info;
3288 if (for_spills)
3289 /* There are no wild reads in the spill case. */
3290 insn_info = bb_info->last_insn;
3291 else
3292 insn_info = find_insn_before_first_wild_read (bb_info);
3294 /* In the spill case or in the no_spill case if there is no wild
3295 read in the block, we will need a kill set. */
3296 if (insn_info == bb_info->last_insn)
3298 if (bb_info->kill)
3299 bitmap_clear (bb_info->kill);
3300 else
3301 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3303 else
3304 if (bb_info->kill)
3305 BITMAP_FREE (bb_info->kill);
3307 while (insn_info)
3309 /* There may have been code deleted by the dce pass run before
3310 this phase. */
3311 if (insn_info->insn && INSN_P (insn_info->insn))
3313 /* Process the read(s) last. */
3314 if (for_spills)
3316 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3317 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3319 else
3321 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3322 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3326 insn_info = insn_info->prev_insn;
3331 /* Set the gen set of the exit block, and also any block with no
3332 successors that does not have a wild read. */
3334 static void
3335 dse_step3_exit_block_scan (bb_info_t bb_info)
3337 /* The gen set is all 0's for the exit block except for the
3338 frame_pointer_group. */
3340 if (stores_off_frame_dead_at_return)
3342 unsigned int i;
3343 group_info_t group;
3345 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3347 if (group->process_globally && group->frame_related)
3348 bitmap_ior_into (bb_info->gen, group->group_kill);
3354 /* Find all of the blocks that are not backwards reachable from the
3355 exit block or any block with no successors (BB). These are the
3356 infinite loops or infinite self loops. These blocks will still
3357 have their bits set in UNREACHABLE_BLOCKS. */
3359 static void
3360 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3362 edge e;
3363 edge_iterator ei;
3365 if (bitmap_bit_p (unreachable_blocks, bb->index))
3367 bitmap_clear_bit (unreachable_blocks, bb->index);
3368 FOR_EACH_EDGE (e, ei, bb->preds)
3370 mark_reachable_blocks (unreachable_blocks, e->src);
3375 /* Build the transfer functions for the function. */
3377 static void
3378 dse_step3 (bool for_spills)
3380 basic_block bb;
3381 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3382 sbitmap_iterator sbi;
3383 bitmap all_ones = NULL;
3384 unsigned int i;
3386 bitmap_ones (unreachable_blocks);
3388 FOR_ALL_BB (bb)
3390 bb_info_t bb_info = bb_table[bb->index];
3391 if (bb_info->gen)
3392 bitmap_clear (bb_info->gen);
3393 else
3394 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3396 if (bb->index == ENTRY_BLOCK)
3398 else if (bb->index == EXIT_BLOCK)
3399 dse_step3_exit_block_scan (bb_info);
3400 else
3401 dse_step3_scan (for_spills, bb);
3402 if (EDGE_COUNT (bb->succs) == 0)
3403 mark_reachable_blocks (unreachable_blocks, bb);
3405 /* If this is the second time dataflow is run, delete the old
3406 sets. */
3407 if (bb_info->in)
3408 BITMAP_FREE (bb_info->in);
3409 if (bb_info->out)
3410 BITMAP_FREE (bb_info->out);
3413 /* For any block in an infinite loop, we must initialize the out set
3414 to all ones. This could be expensive, but almost never occurs in
3415 practice. However, it is common in regression tests. */
3416 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3418 if (bitmap_bit_p (all_blocks, i))
3420 bb_info_t bb_info = bb_table[i];
3421 if (!all_ones)
3423 unsigned int j;
3424 group_info_t group;
3426 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3427 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3428 bitmap_ior_into (all_ones, group->group_kill);
3430 if (!bb_info->out)
3432 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3433 bitmap_copy (bb_info->out, all_ones);
3438 if (all_ones)
3439 BITMAP_FREE (all_ones);
3440 sbitmap_free (unreachable_blocks);
3445 /*----------------------------------------------------------------------------
3446 Fourth step.
3448 Solve the bitvector equations.
3449 ----------------------------------------------------------------------------*/
3452 /* Confluence function for blocks with no successors. Create an out
3453 set from the gen set of the exit block. This block logically has
3454 the exit block as a successor. */
3458 static void
3459 dse_confluence_0 (basic_block bb)
3461 bb_info_t bb_info = bb_table[bb->index];
3463 if (bb->index == EXIT_BLOCK)
3464 return;
3466 if (!bb_info->out)
3468 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3469 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3473 /* Propagate the information from the in set of the dest of E to the
3474 out set of the src of E. If the various in or out sets are not
3475 there, that means they are all ones. */
3477 static bool
3478 dse_confluence_n (edge e)
3480 bb_info_t src_info = bb_table[e->src->index];
3481 bb_info_t dest_info = bb_table[e->dest->index];
3483 if (dest_info->in)
3485 if (src_info->out)
3486 bitmap_and_into (src_info->out, dest_info->in);
3487 else
3489 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3490 bitmap_copy (src_info->out, dest_info->in);
3493 return true;
3497 /* Propagate the info from the out to the in set of BB_INDEX's basic
3498 block. There are three cases:
3500 1) The block has no kill set. In this case the kill set is all
3501 ones. It does not matter what the out set of the block is, none of
3502 the info can reach the top. The only thing that reaches the top is
3503 the gen set and we just copy the set.
3505 2) There is a kill set but no out set and bb has successors. In
3506 this case we just return. Eventually an out set will be created and
3507 it is better to wait than to create a set of ones.
3509 3) There is both a kill and out set. We apply the obvious transfer
3510 function.
3513 static bool
3514 dse_transfer_function (int bb_index)
3516 bb_info_t bb_info = bb_table[bb_index];
3518 if (bb_info->kill)
3520 if (bb_info->out)
3522 /* Case 3 above. */
3523 if (bb_info->in)
3524 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3525 bb_info->out, bb_info->kill);
3526 else
3528 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3529 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3530 bb_info->out, bb_info->kill);
3531 return true;
3534 else
3535 /* Case 2 above. */
3536 return false;
3538 else
3540 /* Case 1 above. If there is already an in set, nothing
3541 happens. */
3542 if (bb_info->in)
3543 return false;
3544 else
3546 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3547 bitmap_copy (bb_info->in, bb_info->gen);
3548 return true;
3553 /* Solve the dataflow equations. */
3555 static void
3556 dse_step4 (void)
3558 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3559 dse_confluence_n, dse_transfer_function,
3560 all_blocks, df_get_postorder (DF_BACKWARD),
3561 df_get_n_blocks (DF_BACKWARD));
3562 if (dump_file && (dump_flags & TDF_DETAILS))
3564 basic_block bb;
3566 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3567 FOR_ALL_BB (bb)
3569 bb_info_t bb_info = bb_table[bb->index];
3571 df_print_bb_index (bb, dump_file);
3572 if (bb_info->in)
3573 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3574 else
3575 fprintf (dump_file, " in: *MISSING*\n");
3576 if (bb_info->gen)
3577 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3578 else
3579 fprintf (dump_file, " gen: *MISSING*\n");
3580 if (bb_info->kill)
3581 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3582 else
3583 fprintf (dump_file, " kill: *MISSING*\n");
3584 if (bb_info->out)
3585 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3586 else
3587 fprintf (dump_file, " out: *MISSING*\n\n");
3594 /*----------------------------------------------------------------------------
3595 Fifth step.
3597 Delete the stores that can only be deleted using the global information.
3598 ----------------------------------------------------------------------------*/
3601 static void
3602 dse_step5_nospill (void)
3604 basic_block bb;
3605 FOR_EACH_BB (bb)
3607 bb_info_t bb_info = bb_table[bb->index];
3608 insn_info_t insn_info = bb_info->last_insn;
3609 bitmap v = bb_info->out;
3611 while (insn_info)
3613 bool deleted = false;
3614 if (dump_file && insn_info->insn)
3616 fprintf (dump_file, "starting to process insn %d\n",
3617 INSN_UID (insn_info->insn));
3618 bitmap_print (dump_file, v, " v: ", "\n");
3621 /* There may have been code deleted by the dce pass run before
3622 this phase. */
3623 if (insn_info->insn
3624 && INSN_P (insn_info->insn)
3625 && (!insn_info->cannot_delete)
3626 && (!bitmap_empty_p (v)))
3628 store_info_t store_info = insn_info->store_rec;
3630 /* Try to delete the current insn. */
3631 deleted = true;
3633 /* Skip the clobbers. */
3634 while (!store_info->is_set)
3635 store_info = store_info->next;
3637 if (store_info->alias_set)
3638 deleted = false;
3639 else
3641 HOST_WIDE_INT i;
3642 group_info_t group_info
3643 = rtx_group_vec[store_info->group_id];
3645 for (i = store_info->begin; i < store_info->end; i++)
3647 int index = get_bitmap_index (group_info, i);
3649 if (dump_file && (dump_flags & TDF_DETAILS))
3650 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3651 if (index == 0 || !bitmap_bit_p (v, index))
3653 if (dump_file && (dump_flags & TDF_DETAILS))
3654 fprintf (dump_file, "failing at i = %d\n", (int)i);
3655 deleted = false;
3656 break;
3660 if (deleted)
3662 if (dbg_cnt (dse)
3663 && check_for_inc_dec_1 (insn_info))
3665 delete_insn (insn_info->insn);
3666 insn_info->insn = NULL;
3667 globally_deleted++;
3671 /* We do want to process the local info if the insn was
3672 deleted. For instance, if the insn did a wild read, we
3673 no longer need to trash the info. */
3674 if (insn_info->insn
3675 && INSN_P (insn_info->insn)
3676 && (!deleted))
3678 scan_stores_nospill (insn_info->store_rec, v, NULL);
3679 if (insn_info->wild_read)
3681 if (dump_file && (dump_flags & TDF_DETAILS))
3682 fprintf (dump_file, "wild read\n");
3683 bitmap_clear (v);
3685 else if (insn_info->read_rec
3686 || insn_info->non_frame_wild_read)
3688 if (dump_file && !insn_info->non_frame_wild_read)
3689 fprintf (dump_file, "regular read\n");
3690 else if (dump_file && (dump_flags & TDF_DETAILS))
3691 fprintf (dump_file, "non-frame wild read\n");
3692 scan_reads_nospill (insn_info, v, NULL);
3696 insn_info = insn_info->prev_insn;
3702 static void
3703 dse_step5_spill (void)
3705 basic_block bb;
3706 FOR_EACH_BB (bb)
3708 bb_info_t bb_info = bb_table[bb->index];
3709 insn_info_t insn_info = bb_info->last_insn;
3710 bitmap v = bb_info->out;
3712 while (insn_info)
3714 bool deleted = false;
3715 /* There may have been code deleted by the dce pass run before
3716 this phase. */
3717 if (insn_info->insn
3718 && INSN_P (insn_info->insn)
3719 && (!insn_info->cannot_delete)
3720 && (!bitmap_empty_p (v)))
3722 /* Try to delete the current insn. */
3723 store_info_t store_info = insn_info->store_rec;
3724 deleted = true;
3726 while (store_info)
3728 if (store_info->alias_set)
3730 int index = get_bitmap_index (clear_alias_group,
3731 store_info->alias_set);
3732 if (index == 0 || !bitmap_bit_p (v, index))
3734 deleted = false;
3735 break;
3738 else
3739 deleted = false;
3740 store_info = store_info->next;
3742 if (deleted && dbg_cnt (dse)
3743 && check_for_inc_dec_1 (insn_info))
3745 if (dump_file && (dump_flags & TDF_DETAILS))
3746 fprintf (dump_file, "Spill deleting insn %d\n",
3747 INSN_UID (insn_info->insn));
3748 delete_insn (insn_info->insn);
3749 spill_deleted++;
3750 insn_info->insn = NULL;
3754 if (insn_info->insn
3755 && INSN_P (insn_info->insn)
3756 && (!deleted))
3758 scan_stores_spill (insn_info->store_rec, v, NULL);
3759 scan_reads_spill (insn_info->read_rec, v, NULL);
3762 insn_info = insn_info->prev_insn;
3769 /*----------------------------------------------------------------------------
3770 Sixth step.
3772 Delete stores made redundant by earlier stores (which store the same
3773 value) that couldn't be eliminated.
3774 ----------------------------------------------------------------------------*/
3776 static void
3777 dse_step6 (void)
3779 basic_block bb;
3781 FOR_ALL_BB (bb)
3783 bb_info_t bb_info = bb_table[bb->index];
3784 insn_info_t insn_info = bb_info->last_insn;
3786 while (insn_info)
3788 /* There may have been code deleted by the dce pass run before
3789 this phase. */
3790 if (insn_info->insn
3791 && INSN_P (insn_info->insn)
3792 && !insn_info->cannot_delete)
3794 store_info_t s_info = insn_info->store_rec;
3796 while (s_info && !s_info->is_set)
3797 s_info = s_info->next;
3798 if (s_info
3799 && s_info->redundant_reason
3800 && s_info->redundant_reason->insn
3801 && INSN_P (s_info->redundant_reason->insn))
3803 rtx rinsn = s_info->redundant_reason->insn;
3804 if (dump_file && (dump_flags & TDF_DETAILS))
3805 fprintf (dump_file, "Locally deleting insn %d "
3806 "because insn %d stores the "
3807 "same value and couldn't be "
3808 "eliminated\n",
3809 INSN_UID (insn_info->insn),
3810 INSN_UID (rinsn));
3811 delete_dead_store_insn (insn_info);
3814 insn_info = insn_info->prev_insn;
3819 /*----------------------------------------------------------------------------
3820 Seventh step.
3822 Destroy everything left standing.
3823 ----------------------------------------------------------------------------*/
3825 static void
3826 dse_step7 (void)
3828 bitmap_obstack_release (&dse_bitmap_obstack);
3829 obstack_free (&dse_obstack, NULL);
3831 if (clear_alias_sets)
3833 BITMAP_FREE (clear_alias_sets);
3834 BITMAP_FREE (disqualified_clear_alias_sets);
3835 free_alloc_pool (clear_alias_mode_pool);
3836 htab_delete (clear_alias_mode_table);
3839 end_alias_analysis ();
3840 free (bb_table);
3841 rtx_group_table.dispose ();
3842 rtx_group_vec.release ();
3843 BITMAP_FREE (all_blocks);
3844 BITMAP_FREE (scratch);
3846 free_alloc_pool (rtx_store_info_pool);
3847 free_alloc_pool (read_info_pool);
3848 free_alloc_pool (insn_info_pool);
3849 free_alloc_pool (bb_info_pool);
3850 free_alloc_pool (rtx_group_info_pool);
3851 free_alloc_pool (deferred_change_pool);
3855 /* -------------------------------------------------------------------------
3857 ------------------------------------------------------------------------- */
3859 /* Callback for running pass_rtl_dse. */
3861 static unsigned int
3862 rest_of_handle_dse (void)
3864 bool did_global = false;
3866 df_set_flags (DF_DEFER_INSN_RESCAN);
3868 /* Need the notes since we must track live hardregs in the forwards
3869 direction. */
3870 df_note_add_problem ();
3871 df_analyze ();
3873 dse_step0 ();
3874 dse_step1 ();
3875 dse_step2_init ();
3876 if (dse_step2_nospill ())
3878 df_set_flags (DF_LR_RUN_DCE);
3879 df_analyze ();
3880 did_global = true;
3881 if (dump_file && (dump_flags & TDF_DETAILS))
3882 fprintf (dump_file, "doing global processing\n");
3883 dse_step3 (false);
3884 dse_step4 ();
3885 dse_step5_nospill ();
3888 /* For the instance of dse that runs after reload, we make a special
3889 pass to process the spills. These are special in that they are
3890 totally transparent, i.e, there is no aliasing issues that need
3891 to be considered. This means that the wild reads that kill
3892 everything else do not apply here. */
3893 if (clear_alias_sets && dse_step2_spill ())
3895 if (!did_global)
3897 df_set_flags (DF_LR_RUN_DCE);
3898 df_analyze ();
3900 did_global = true;
3901 if (dump_file && (dump_flags & TDF_DETAILS))
3902 fprintf (dump_file, "doing global spill processing\n");
3903 dse_step3 (true);
3904 dse_step4 ();
3905 dse_step5_spill ();
3908 dse_step6 ();
3909 dse_step7 ();
3911 if (dump_file)
3912 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3913 locally_deleted, globally_deleted, spill_deleted);
3914 return 0;
3917 static bool
3918 gate_dse1 (void)
3920 return optimize > 0 && flag_dse
3921 && dbg_cnt (dse1);
3924 static bool
3925 gate_dse2 (void)
3927 return optimize > 0 && flag_dse
3928 && dbg_cnt (dse2);
3931 struct rtl_opt_pass pass_rtl_dse1 =
3934 RTL_PASS,
3935 "dse1", /* name */
3936 OPTGROUP_NONE, /* optinfo_flags */
3937 gate_dse1, /* gate */
3938 rest_of_handle_dse, /* execute */
3939 NULL, /* sub */
3940 NULL, /* next */
3941 0, /* static_pass_number */
3942 TV_DSE1, /* tv_id */
3943 0, /* properties_required */
3944 0, /* properties_provided */
3945 0, /* properties_destroyed */
3946 0, /* todo_flags_start */
3947 TODO_df_finish | TODO_verify_rtl_sharing |
3948 TODO_ggc_collect /* todo_flags_finish */
3952 struct rtl_opt_pass pass_rtl_dse2 =
3955 RTL_PASS,
3956 "dse2", /* name */
3957 OPTGROUP_NONE, /* optinfo_flags */
3958 gate_dse2, /* gate */
3959 rest_of_handle_dse, /* execute */
3960 NULL, /* sub */
3961 NULL, /* next */
3962 0, /* static_pass_number */
3963 TV_DSE2, /* tv_id */
3964 0, /* properties_required */
3965 0, /* properties_provided */
3966 0, /* properties_destroyed */
3967 0, /* todo_flags_start */
3968 TODO_df_finish | TODO_verify_rtl_sharing |
3969 TODO_ggc_collect /* todo_flags_finish */