1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "tree-pass.h"
31 #include "diagnostic-core.h"
32 #include "fold-const.h"
36 #include "cfgcleanup.h"
38 #include "gimple-iterator.h"
40 #include "tree-into-ssa.h"
42 #include "tree-inline.h"
43 #include "langhooks.h"
45 #include "gimple-low.h"
46 #include "stringpool.h"
51 /* In some instances a tree and a gimple need to be stored in a same table,
52 i.e. in hash tables. This is a structure to do this. */
53 typedef union {tree
*tp
; tree t
; gimple
*g
;} treemple
;
55 /* Misc functions used in this file. */
57 /* Remember and lookup EH landing pad data for arbitrary statements.
58 Really this means any statement that could_throw_p. We could
59 stuff this information into the stmt_ann data structure, but:
61 (1) We absolutely rely on this information being kept until
62 we get to rtl. Once we're done with lowering here, if we lose
63 the information there's no way to recover it!
65 (2) There are many more statements that *cannot* throw as
66 compared to those that can. We should be saving some amount
67 of space by only allocating memory for those that can throw. */
69 /* Add statement T in function IFUN to landing pad NUM. */
72 add_stmt_to_eh_lp_fn (struct function
*ifun
, gimple
*t
, int num
)
74 gcc_assert (num
!= 0);
76 if (!get_eh_throw_stmt_table (ifun
))
77 set_eh_throw_stmt_table (ifun
, hash_map
<gimple
*, int>::create_ggc (31));
79 gcc_assert (!get_eh_throw_stmt_table (ifun
)->put (t
, num
));
82 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
85 add_stmt_to_eh_lp (gimple
*t
, int num
)
87 add_stmt_to_eh_lp_fn (cfun
, t
, num
);
90 /* Add statement T to the single EH landing pad in REGION. */
93 record_stmt_eh_region (eh_region region
, gimple
*t
)
97 if (region
->type
== ERT_MUST_NOT_THROW
)
98 add_stmt_to_eh_lp_fn (cfun
, t
, -region
->index
);
101 eh_landing_pad lp
= region
->landing_pads
;
103 lp
= gen_eh_landing_pad (region
);
105 gcc_assert (lp
->next_lp
== NULL
);
106 add_stmt_to_eh_lp_fn (cfun
, t
, lp
->index
);
111 /* Remove statement T in function IFUN from its EH landing pad. */
114 remove_stmt_from_eh_lp_fn (struct function
*ifun
, gimple
*t
)
116 if (!get_eh_throw_stmt_table (ifun
))
119 if (!get_eh_throw_stmt_table (ifun
)->get (t
))
122 get_eh_throw_stmt_table (ifun
)->remove (t
);
127 /* Remove statement T in the current function (cfun) from its
131 remove_stmt_from_eh_lp (gimple
*t
)
133 return remove_stmt_from_eh_lp_fn (cfun
, t
);
136 /* Determine if statement T is inside an EH region in function IFUN.
137 Positive numbers indicate a landing pad index; negative numbers
138 indicate a MUST_NOT_THROW region index; zero indicates that the
139 statement is not recorded in the region table. */
142 lookup_stmt_eh_lp_fn (struct function
*ifun
, const gimple
*t
)
144 if (ifun
->eh
->throw_stmt_table
== NULL
)
147 int *lp_nr
= ifun
->eh
->throw_stmt_table
->get (const_cast <gimple
*> (t
));
148 return lp_nr
? *lp_nr
: 0;
151 /* Likewise, but always use the current function. */
154 lookup_stmt_eh_lp (const gimple
*t
)
156 /* We can get called from initialized data when -fnon-call-exceptions
157 is on; prevent crash. */
160 return lookup_stmt_eh_lp_fn (cfun
, t
);
163 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
164 nodes and LABEL_DECL nodes. We will use this during the second phase to
165 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
167 struct finally_tree_node
169 /* When storing a GIMPLE_TRY, we have to record a gimple. However
170 when deciding whether a GOTO to a certain LABEL_DECL (which is a
171 tree) leaves the TRY block, its necessary to record a tree in
172 this field. Thus a treemple is used. */
177 /* Hashtable helpers. */
179 struct finally_tree_hasher
: free_ptr_hash
<finally_tree_node
>
181 static inline hashval_t
hash (const finally_tree_node
*);
182 static inline bool equal (const finally_tree_node
*,
183 const finally_tree_node
*);
187 finally_tree_hasher::hash (const finally_tree_node
*v
)
189 return (intptr_t)v
->child
.t
>> 4;
193 finally_tree_hasher::equal (const finally_tree_node
*v
,
194 const finally_tree_node
*c
)
196 return v
->child
.t
== c
->child
.t
;
199 /* Note that this table is *not* marked GTY. It is short-lived. */
200 static hash_table
<finally_tree_hasher
> *finally_tree
;
203 record_in_finally_tree (treemple child
, gtry
*parent
)
205 struct finally_tree_node
*n
;
206 finally_tree_node
**slot
;
208 n
= XNEW (struct finally_tree_node
);
212 slot
= finally_tree
->find_slot (n
, INSERT
);
218 collect_finally_tree (gimple
*stmt
, gtry
*region
);
220 /* Go through the gimple sequence. Works with collect_finally_tree to
221 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
224 collect_finally_tree_1 (gimple_seq seq
, gtry
*region
)
226 gimple_stmt_iterator gsi
;
228 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
); gsi_next (&gsi
))
229 collect_finally_tree (gsi_stmt (gsi
), region
);
233 collect_finally_tree (gimple
*stmt
, gtry
*region
)
237 switch (gimple_code (stmt
))
240 temp
.t
= gimple_label_label (as_a
<glabel
*> (stmt
));
241 record_in_finally_tree (temp
, region
);
245 if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
248 record_in_finally_tree (temp
, region
);
249 collect_finally_tree_1 (gimple_try_eval (stmt
),
250 as_a
<gtry
*> (stmt
));
251 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
253 else if (gimple_try_kind (stmt
) == GIMPLE_TRY_CATCH
)
255 collect_finally_tree_1 (gimple_try_eval (stmt
), region
);
256 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
261 collect_finally_tree_1 (gimple_catch_handler (
262 as_a
<gcatch
*> (stmt
)),
266 case GIMPLE_EH_FILTER
:
267 collect_finally_tree_1 (gimple_eh_filter_failure (stmt
), region
);
272 geh_else
*eh_else_stmt
= as_a
<geh_else
*> (stmt
);
273 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt
), region
);
274 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt
), region
);
279 /* A type, a decl, or some kind of statement that we're not
280 interested in. Don't walk them. */
286 /* Use the finally tree to determine if a jump from START to TARGET
287 would leave the try_finally node that START lives in. */
290 outside_finally_tree (treemple start
, gimple
*target
)
292 struct finally_tree_node n
, *p
;
297 p
= finally_tree
->find (&n
);
302 while (start
.g
!= target
);
307 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
308 nodes into a set of gotos, magic labels, and eh regions.
309 The eh region creation is straight-forward, but frobbing all the gotos
310 and such into shape isn't. */
312 /* The sequence into which we record all EH stuff. This will be
313 placed at the end of the function when we're all done. */
314 static gimple_seq eh_seq
;
316 /* Record whether an EH region contains something that can throw,
317 indexed by EH region number. */
318 static bitmap eh_region_may_contain_throw_map
;
320 /* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
321 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
322 The idea is to record a gimple statement for everything except for
323 the conditionals, which get their labels recorded. Since labels are
324 of type 'tree', we need this node to store both gimple and tree
325 objects. REPL_STMT is the sequence used to replace the goto/return
326 statement. CONT_STMT is used to store the statement that allows
327 the return/goto to jump to the original destination. */
329 struct goto_queue_node
333 gimple_seq repl_stmt
;
336 /* This is used when index >= 0 to indicate that stmt is a label (as
337 opposed to a goto stmt). */
341 /* State of the world while lowering. */
345 /* What's "current" while constructing the eh region tree. These
346 correspond to variables of the same name in cfun->eh, which we
347 don't have easy access to. */
348 eh_region cur_region
;
350 /* What's "current" for the purposes of __builtin_eh_pointer. For
351 a CATCH, this is the associated TRY. For an EH_FILTER, this is
352 the associated ALLOWED_EXCEPTIONS, etc. */
353 eh_region ehp_region
;
355 /* Processing of TRY_FINALLY requires a bit more state. This is
356 split out into a separate structure so that we don't have to
357 copy so much when processing other nodes. */
358 struct leh_tf_state
*tf
;
360 /* Outer non-clean up region. */
361 eh_region outer_non_cleanup
;
366 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
367 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
368 this so that outside_finally_tree can reliably reference the tree used
369 in the collect_finally_tree data structures. */
370 gtry
*try_finally_expr
;
373 /* While lowering a top_p usually it is expanded into multiple statements,
374 thus we need the following field to store them. */
375 gimple_seq top_p_seq
;
377 /* The state outside this try_finally node. */
378 struct leh_state
*outer
;
380 /* The exception region created for it. */
383 /* The goto queue. */
384 struct goto_queue_node
*goto_queue
;
385 size_t goto_queue_size
;
386 size_t goto_queue_active
;
388 /* Pointer map to help in searching goto_queue when it is large. */
389 hash_map
<gimple
*, goto_queue_node
*> *goto_queue_map
;
391 /* The set of unique labels seen as entries in the goto queue. */
392 vec
<tree
> dest_array
;
394 /* A label to be added at the end of the completed transformed
395 sequence. It will be set if may_fallthru was true *at one time*,
396 though subsequent transformations may have cleared that flag. */
399 /* True if it is possible to fall out the bottom of the try block.
400 Cleared if the fallthru is converted to a goto. */
403 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
406 /* True if the finally block can receive an exception edge.
407 Cleared if the exception case is handled by code duplication. */
411 static gimple_seq
lower_eh_must_not_throw (struct leh_state
*, gtry
*);
413 /* Search for STMT in the goto queue. Return the replacement,
414 or null if the statement isn't in the queue. */
416 #define LARGE_GOTO_QUEUE 20
418 static void lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq
*seq
);
421 find_goto_replacement (struct leh_tf_state
*tf
, treemple stmt
)
425 if (tf
->goto_queue_active
< LARGE_GOTO_QUEUE
)
427 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
428 if ( tf
->goto_queue
[i
].stmt
.g
== stmt
.g
)
429 return tf
->goto_queue
[i
].repl_stmt
;
433 /* If we have a large number of entries in the goto_queue, create a
434 pointer map and use that for searching. */
436 if (!tf
->goto_queue_map
)
438 tf
->goto_queue_map
= new hash_map
<gimple
*, goto_queue_node
*>;
439 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
441 bool existed
= tf
->goto_queue_map
->put (tf
->goto_queue
[i
].stmt
.g
,
443 gcc_assert (!existed
);
447 goto_queue_node
**slot
= tf
->goto_queue_map
->get (stmt
.g
);
449 return ((*slot
)->repl_stmt
);
454 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
455 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
456 then we can just splat it in, otherwise we add the new stmts immediately
457 after the GIMPLE_COND and redirect. */
460 replace_goto_queue_cond_clause (tree
*tp
, struct leh_tf_state
*tf
,
461 gimple_stmt_iterator
*gsi
)
466 location_t loc
= gimple_location (gsi_stmt (*gsi
));
469 new_seq
= find_goto_replacement (tf
, temp
);
473 if (gimple_seq_singleton_p (new_seq
)
474 && gimple_code (gimple_seq_first_stmt (new_seq
)) == GIMPLE_GOTO
)
476 *tp
= gimple_goto_dest (gimple_seq_first_stmt (new_seq
));
480 label
= create_artificial_label (loc
);
481 /* Set the new label for the GIMPLE_COND */
484 gsi_insert_after (gsi
, gimple_build_label (label
), GSI_CONTINUE_LINKING
);
485 gsi_insert_seq_after (gsi
, gimple_seq_copy (new_seq
), GSI_CONTINUE_LINKING
);
488 /* The real work of replace_goto_queue. Returns with TSI updated to
489 point to the next statement. */
491 static void replace_goto_queue_stmt_list (gimple_seq
*, struct leh_tf_state
*);
494 replace_goto_queue_1 (gimple
*stmt
, struct leh_tf_state
*tf
,
495 gimple_stmt_iterator
*gsi
)
501 switch (gimple_code (stmt
))
506 seq
= find_goto_replacement (tf
, temp
);
509 gimple_stmt_iterator i
;
510 seq
= gimple_seq_copy (seq
);
511 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
512 gimple_set_location (gsi_stmt (i
), gimple_location (stmt
));
513 gsi_insert_seq_before (gsi
, seq
, GSI_SAME_STMT
);
514 gsi_remove (gsi
, false);
520 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 2), tf
, gsi
);
521 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 3), tf
, gsi
);
525 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt
), tf
);
526 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt
), tf
);
529 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
530 as_a
<gcatch
*> (stmt
)),
533 case GIMPLE_EH_FILTER
:
534 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt
), tf
);
538 geh_else
*eh_else_stmt
= as_a
<geh_else
*> (stmt
);
539 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt
),
541 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt
),
547 /* These won't have gotos in them. */
554 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
557 replace_goto_queue_stmt_list (gimple_seq
*seq
, struct leh_tf_state
*tf
)
559 gimple_stmt_iterator gsi
= gsi_start (*seq
);
561 while (!gsi_end_p (gsi
))
562 replace_goto_queue_1 (gsi_stmt (gsi
), tf
, &gsi
);
565 /* Replace all goto queue members. */
568 replace_goto_queue (struct leh_tf_state
*tf
)
570 if (tf
->goto_queue_active
== 0)
572 replace_goto_queue_stmt_list (&tf
->top_p_seq
, tf
);
573 replace_goto_queue_stmt_list (&eh_seq
, tf
);
576 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
577 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
581 record_in_goto_queue (struct leh_tf_state
*tf
,
588 struct goto_queue_node
*q
;
590 gcc_assert (!tf
->goto_queue_map
);
592 active
= tf
->goto_queue_active
;
593 size
= tf
->goto_queue_size
;
596 size
= (size
? size
* 2 : 32);
597 tf
->goto_queue_size
= size
;
599 = XRESIZEVEC (struct goto_queue_node
, tf
->goto_queue
, size
);
602 q
= &tf
->goto_queue
[active
];
603 tf
->goto_queue_active
= active
+ 1;
605 memset (q
, 0, sizeof (*q
));
608 q
->location
= location
;
609 q
->is_label
= is_label
;
612 /* Record the LABEL label in the goto queue contained in TF.
616 record_in_goto_queue_label (struct leh_tf_state
*tf
, treemple stmt
, tree label
,
620 treemple temp
, new_stmt
;
625 /* Computed and non-local gotos do not get processed. Given
626 their nature we can neither tell whether we've escaped the
627 finally block nor redirect them if we knew. */
628 if (TREE_CODE (label
) != LABEL_DECL
)
631 /* No need to record gotos that don't leave the try block. */
633 if (!outside_finally_tree (temp
, tf
->try_finally_expr
))
636 if (! tf
->dest_array
.exists ())
638 tf
->dest_array
.create (10);
639 tf
->dest_array
.quick_push (label
);
644 int n
= tf
->dest_array
.length ();
645 for (index
= 0; index
< n
; ++index
)
646 if (tf
->dest_array
[index
] == label
)
649 tf
->dest_array
.safe_push (label
);
652 /* In the case of a GOTO we want to record the destination label,
653 since with a GIMPLE_COND we have an easy access to the then/else
656 record_in_goto_queue (tf
, new_stmt
, index
, true, location
);
659 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
660 node, and if so record that fact in the goto queue associated with that
664 maybe_record_in_goto_queue (struct leh_state
*state
, gimple
*stmt
)
666 struct leh_tf_state
*tf
= state
->tf
;
672 switch (gimple_code (stmt
))
676 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
677 new_stmt
.tp
= gimple_op_ptr (cond_stmt
, 2);
678 record_in_goto_queue_label (tf
, new_stmt
,
679 gimple_cond_true_label (cond_stmt
),
680 EXPR_LOCATION (*new_stmt
.tp
));
681 new_stmt
.tp
= gimple_op_ptr (cond_stmt
, 3);
682 record_in_goto_queue_label (tf
, new_stmt
,
683 gimple_cond_false_label (cond_stmt
),
684 EXPR_LOCATION (*new_stmt
.tp
));
689 record_in_goto_queue_label (tf
, new_stmt
, gimple_goto_dest (stmt
),
690 gimple_location (stmt
));
694 tf
->may_return
= true;
696 record_in_goto_queue (tf
, new_stmt
, -1, false, gimple_location (stmt
));
706 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
707 was in fact structured, and we've not yet done jump threading, then none
708 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
711 verify_norecord_switch_expr (struct leh_state
*state
,
712 gswitch
*switch_expr
)
714 struct leh_tf_state
*tf
= state
->tf
;
720 n
= gimple_switch_num_labels (switch_expr
);
722 for (i
= 0; i
< n
; ++i
)
725 tree lab
= CASE_LABEL (gimple_switch_label (switch_expr
, i
));
727 gcc_assert (!outside_finally_tree (temp
, tf
->try_finally_expr
));
731 #define verify_norecord_switch_expr(state, switch_expr)
734 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
735 non-null, insert it before the new branch. */
738 do_return_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
)
742 /* In the case of a return, the queue node must be a gimple statement. */
743 gcc_assert (!q
->is_label
);
745 /* Note that the return value may have already been computed, e.g.,
758 should return 0, not 1. We don't have to do anything to make
759 this happens because the return value has been placed in the
760 RESULT_DECL already. */
762 q
->cont_stmt
= q
->stmt
.g
;
765 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
767 x
= gimple_build_goto (finlab
);
768 gimple_set_location (x
, q
->location
);
769 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
772 /* Similar, but easier, for GIMPLE_GOTO. */
775 do_goto_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
,
776 struct leh_tf_state
*tf
)
780 gcc_assert (q
->is_label
);
782 q
->cont_stmt
= gimple_build_goto (tf
->dest_array
[q
->index
]);
785 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
787 x
= gimple_build_goto (finlab
);
788 gimple_set_location (x
, q
->location
);
789 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
792 /* Emit a standard landing pad sequence into SEQ for REGION. */
795 emit_post_landing_pad (gimple_seq
*seq
, eh_region region
)
797 eh_landing_pad lp
= region
->landing_pads
;
801 lp
= gen_eh_landing_pad (region
);
803 lp
->post_landing_pad
= create_artificial_label (UNKNOWN_LOCATION
);
804 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = lp
->index
;
806 x
= gimple_build_label (lp
->post_landing_pad
);
807 gimple_seq_add_stmt (seq
, x
);
810 /* Emit a RESX statement into SEQ for REGION. */
813 emit_resx (gimple_seq
*seq
, eh_region region
)
815 gresx
*x
= gimple_build_resx (region
->index
);
816 gimple_seq_add_stmt (seq
, x
);
818 record_stmt_eh_region (region
->outer
, x
);
821 /* Note that the current EH region may contain a throw, or a
822 call to a function which itself may contain a throw. */
825 note_eh_region_may_contain_throw (eh_region region
)
827 while (bitmap_set_bit (eh_region_may_contain_throw_map
, region
->index
))
829 if (region
->type
== ERT_MUST_NOT_THROW
)
831 region
= region
->outer
;
837 /* Check if REGION has been marked as containing a throw. If REGION is
838 NULL, this predicate is false. */
841 eh_region_may_contain_throw (eh_region r
)
843 return r
&& bitmap_bit_p (eh_region_may_contain_throw_map
, r
->index
);
846 /* We want to transform
847 try { body; } catch { stuff; }
857 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
858 should be placed before the second operand, or NULL. OVER is
859 an existing label that should be put at the exit, or NULL. */
862 frob_into_branch_around (gtry
*tp
, eh_region region
, tree over
)
865 gimple_seq cleanup
, result
;
866 location_t loc
= gimple_location (tp
);
868 cleanup
= gimple_try_cleanup (tp
);
869 result
= gimple_try_eval (tp
);
872 emit_post_landing_pad (&eh_seq
, region
);
874 if (gimple_seq_may_fallthru (cleanup
))
877 over
= create_artificial_label (loc
);
878 x
= gimple_build_goto (over
);
879 gimple_set_location (x
, loc
);
880 gimple_seq_add_stmt (&cleanup
, x
);
882 gimple_seq_add_seq (&eh_seq
, cleanup
);
886 x
= gimple_build_label (over
);
887 gimple_seq_add_stmt (&result
, x
);
892 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
893 Make sure to record all new labels found. */
896 lower_try_finally_dup_block (gimple_seq seq
, struct leh_state
*outer_state
,
901 gimple_stmt_iterator gsi
;
903 new_seq
= copy_gimple_seq_and_replace_locals (seq
);
905 for (gsi
= gsi_start (new_seq
); !gsi_end_p (gsi
); gsi_next (&gsi
))
907 gimple
*stmt
= gsi_stmt (gsi
);
908 if (LOCATION_LOCUS (gimple_location (stmt
)) == UNKNOWN_LOCATION
)
910 tree block
= gimple_block (stmt
);
911 gimple_set_location (stmt
, loc
);
912 gimple_set_block (stmt
, block
);
917 region
= outer_state
->tf
->try_finally_expr
;
918 collect_finally_tree_1 (new_seq
, region
);
923 /* A subroutine of lower_try_finally. Create a fallthru label for
924 the given try_finally state. The only tricky bit here is that
925 we have to make sure to record the label in our outer context. */
928 lower_try_finally_fallthru_label (struct leh_tf_state
*tf
)
930 tree label
= tf
->fallthru_label
;
935 label
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
936 tf
->fallthru_label
= label
;
940 record_in_finally_tree (temp
, tf
->outer
->tf
->try_finally_expr
);
946 /* A subroutine of lower_try_finally. If FINALLY consits of a
947 GIMPLE_EH_ELSE node, return it. */
949 static inline geh_else
*
950 get_eh_else (gimple_seq finally
)
952 gimple
*x
= gimple_seq_first_stmt (finally
);
953 if (gimple_code (x
) == GIMPLE_EH_ELSE
)
955 gcc_assert (gimple_seq_singleton_p (finally
));
956 return as_a
<geh_else
*> (x
);
961 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
962 langhook returns non-null, then the language requires that the exception
963 path out of a try_finally be treated specially. To wit: the code within
964 the finally block may not itself throw an exception. We have two choices
965 here. First we can duplicate the finally block and wrap it in a
966 must_not_throw region. Second, we can generate code like
971 if (fintmp == eh_edge)
972 protect_cleanup_actions;
975 where "fintmp" is the temporary used in the switch statement generation
976 alternative considered below. For the nonce, we always choose the first
979 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
982 honor_protect_cleanup_actions (struct leh_state
*outer_state
,
983 struct leh_state
*this_state
,
984 struct leh_tf_state
*tf
)
986 gimple_seq finally
= gimple_try_cleanup (tf
->top_p
);
988 /* EH_ELSE doesn't come from user code; only compiler generated stuff.
989 It does need to be handled here, so as to separate the (different)
990 EH path from the normal path. But we should not attempt to wrap
991 it with a must-not-throw node (which indeed gets in the way). */
992 if (geh_else
*eh_else
= get_eh_else (finally
))
994 gimple_try_set_cleanup (tf
->top_p
, gimple_eh_else_n_body (eh_else
));
995 finally
= gimple_eh_else_e_body (eh_else
);
997 /* Let the ELSE see the exception that's being processed, but
998 since the cleanup is outside the try block, process it with
999 outer_state, otherwise it may be used as a cleanup for
1000 itself, and Bad Things (TM) ensue. */
1001 eh_region save_ehp
= outer_state
->ehp_region
;
1002 outer_state
->ehp_region
= this_state
->cur_region
;
1003 lower_eh_constructs_1 (outer_state
, &finally
);
1004 outer_state
->ehp_region
= save_ehp
;
1008 /* First check for nothing to do. */
1009 if (lang_hooks
.eh_protect_cleanup_actions
== NULL
)
1011 tree actions
= lang_hooks
.eh_protect_cleanup_actions ();
1012 if (actions
== NULL
)
1016 finally
= lower_try_finally_dup_block (finally
, outer_state
,
1017 gimple_location (tf
->try_finally_expr
));
1019 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1020 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1021 to be in an enclosing scope, but needs to be implemented at this level
1022 to avoid a nesting violation (see wrap_temporary_cleanups in
1023 cp/decl.c). Since it's logically at an outer level, we should call
1024 terminate before we get to it, so strip it away before adding the
1025 MUST_NOT_THROW filter. */
1026 gimple_stmt_iterator gsi
= gsi_start (finally
);
1027 gimple
*x
= gsi_stmt (gsi
);
1028 if (gimple_code (x
) == GIMPLE_TRY
1029 && gimple_try_kind (x
) == GIMPLE_TRY_CATCH
1030 && gimple_try_catch_is_cleanup (x
))
1032 gsi_insert_seq_before (&gsi
, gimple_try_eval (x
), GSI_SAME_STMT
);
1033 gsi_remove (&gsi
, false);
1036 /* Wrap the block with protect_cleanup_actions as the action. */
1037 geh_mnt
*eh_mnt
= gimple_build_eh_must_not_throw (actions
);
1038 gtry
*try_stmt
= gimple_build_try (finally
,
1039 gimple_seq_alloc_with_stmt (eh_mnt
),
1041 finally
= lower_eh_must_not_throw (outer_state
, try_stmt
);
1044 /* Drop all of this into the exception sequence. */
1045 emit_post_landing_pad (&eh_seq
, tf
->region
);
1046 gimple_seq_add_seq (&eh_seq
, finally
);
1047 if (gimple_seq_may_fallthru (finally
))
1048 emit_resx (&eh_seq
, tf
->region
);
1050 /* Having now been handled, EH isn't to be considered with
1051 the rest of the outgoing edges. */
1052 tf
->may_throw
= false;
1055 /* A subroutine of lower_try_finally. We have determined that there is
1056 no fallthru edge out of the finally block. This means that there is
1057 no outgoing edge corresponding to any incoming edge. Restructure the
1058 try_finally node for this special case. */
1061 lower_try_finally_nofallthru (struct leh_state
*state
,
1062 struct leh_tf_state
*tf
)
1068 struct goto_queue_node
*q
, *qe
;
1070 lab
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
1072 /* We expect that tf->top_p is a GIMPLE_TRY. */
1073 finally
= gimple_try_cleanup (tf
->top_p
);
1074 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1076 x
= gimple_build_label (lab
);
1077 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1080 qe
= q
+ tf
->goto_queue_active
;
1083 do_return_redirection (q
, lab
, NULL
);
1085 do_goto_redirection (q
, lab
, NULL
, tf
);
1087 replace_goto_queue (tf
);
1089 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1090 eh_else
= get_eh_else (finally
);
1093 finally
= gimple_eh_else_n_body (eh_else
);
1094 lower_eh_constructs_1 (state
, &finally
);
1095 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1099 finally
= gimple_eh_else_e_body (eh_else
);
1100 lower_eh_constructs_1 (state
, &finally
);
1102 emit_post_landing_pad (&eh_seq
, tf
->region
);
1103 gimple_seq_add_seq (&eh_seq
, finally
);
1108 lower_eh_constructs_1 (state
, &finally
);
1109 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1113 emit_post_landing_pad (&eh_seq
, tf
->region
);
1115 x
= gimple_build_goto (lab
);
1116 gimple_set_location (x
, gimple_location (tf
->try_finally_expr
));
1117 gimple_seq_add_stmt (&eh_seq
, x
);
1122 /* A subroutine of lower_try_finally. We have determined that there is
1123 exactly one destination of the finally block. Restructure the
1124 try_finally node for this special case. */
1127 lower_try_finally_onedest (struct leh_state
*state
, struct leh_tf_state
*tf
)
1129 struct goto_queue_node
*q
, *qe
;
1134 gimple_stmt_iterator gsi
;
1136 location_t loc
= gimple_location (tf
->try_finally_expr
);
1138 finally
= gimple_try_cleanup (tf
->top_p
);
1139 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1141 /* Since there's only one destination, and the destination edge can only
1142 either be EH or non-EH, that implies that all of our incoming edges
1143 are of the same type. Therefore we can lower EH_ELSE immediately. */
1144 eh_else
= get_eh_else (finally
);
1148 finally
= gimple_eh_else_e_body (eh_else
);
1150 finally
= gimple_eh_else_n_body (eh_else
);
1153 lower_eh_constructs_1 (state
, &finally
);
1155 for (gsi
= gsi_start (finally
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1157 gimple
*stmt
= gsi_stmt (gsi
);
1158 if (LOCATION_LOCUS (gimple_location (stmt
)) == UNKNOWN_LOCATION
)
1160 tree block
= gimple_block (stmt
);
1161 gimple_set_location (stmt
, gimple_location (tf
->try_finally_expr
));
1162 gimple_set_block (stmt
, block
);
1168 /* Only reachable via the exception edge. Add the given label to
1169 the head of the FINALLY block. Append a RESX at the end. */
1170 emit_post_landing_pad (&eh_seq
, tf
->region
);
1171 gimple_seq_add_seq (&eh_seq
, finally
);
1172 emit_resx (&eh_seq
, tf
->region
);
1176 if (tf
->may_fallthru
)
1178 /* Only reachable via the fallthru edge. Do nothing but let
1179 the two blocks run together; we'll fall out the bottom. */
1180 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1184 finally_label
= create_artificial_label (loc
);
1185 label_stmt
= gimple_build_label (finally_label
);
1186 gimple_seq_add_stmt (&tf
->top_p_seq
, label_stmt
);
1188 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1191 qe
= q
+ tf
->goto_queue_active
;
1195 /* Reachable by return expressions only. Redirect them. */
1197 do_return_redirection (q
, finally_label
, NULL
);
1198 replace_goto_queue (tf
);
1202 /* Reachable by goto expressions only. Redirect them. */
1204 do_goto_redirection (q
, finally_label
, NULL
, tf
);
1205 replace_goto_queue (tf
);
1207 if (tf
->dest_array
[0] == tf
->fallthru_label
)
1209 /* Reachable by goto to fallthru label only. Redirect it
1210 to the new label (already created, sadly), and do not
1211 emit the final branch out, or the fallthru label. */
1212 tf
->fallthru_label
= NULL
;
1217 /* Place the original return/goto to the original destination
1218 immediately after the finally block. */
1219 x
= tf
->goto_queue
[0].cont_stmt
;
1220 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1221 maybe_record_in_goto_queue (state
, x
);
1224 /* A subroutine of lower_try_finally. There are multiple edges incoming
1225 and outgoing from the finally block. Implement this by duplicating the
1226 finally block for every destination. */
1229 lower_try_finally_copy (struct leh_state
*state
, struct leh_tf_state
*tf
)
1232 gimple_seq new_stmt
;
1237 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1239 finally
= gimple_try_cleanup (tf
->top_p
);
1241 /* Notice EH_ELSE, and simplify some of the remaining code
1242 by considering FINALLY to be the normal return path only. */
1243 eh_else
= get_eh_else (finally
);
1245 finally
= gimple_eh_else_n_body (eh_else
);
1247 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1250 if (tf
->may_fallthru
)
1252 seq
= lower_try_finally_dup_block (finally
, state
, tf_loc
);
1253 lower_eh_constructs_1 (state
, &seq
);
1254 gimple_seq_add_seq (&new_stmt
, seq
);
1256 tmp
= lower_try_finally_fallthru_label (tf
);
1257 x
= gimple_build_goto (tmp
);
1258 gimple_set_location (x
, tf_loc
);
1259 gimple_seq_add_stmt (&new_stmt
, x
);
1264 /* We don't need to copy the EH path of EH_ELSE,
1265 since it is only emitted once. */
1267 seq
= gimple_eh_else_e_body (eh_else
);
1269 seq
= lower_try_finally_dup_block (finally
, state
, tf_loc
);
1270 lower_eh_constructs_1 (state
, &seq
);
1272 emit_post_landing_pad (&eh_seq
, tf
->region
);
1273 gimple_seq_add_seq (&eh_seq
, seq
);
1274 emit_resx (&eh_seq
, tf
->region
);
1279 struct goto_queue_node
*q
, *qe
;
1280 int return_index
, index
;
1283 struct goto_queue_node
*q
;
1287 return_index
= tf
->dest_array
.length ();
1288 labels
= XCNEWVEC (struct labels_s
, return_index
+ 1);
1291 qe
= q
+ tf
->goto_queue_active
;
1294 index
= q
->index
< 0 ? return_index
: q
->index
;
1296 if (!labels
[index
].q
)
1297 labels
[index
].q
= q
;
1300 for (index
= 0; index
< return_index
+ 1; index
++)
1304 q
= labels
[index
].q
;
1308 lab
= labels
[index
].label
1309 = create_artificial_label (tf_loc
);
1311 if (index
== return_index
)
1312 do_return_redirection (q
, lab
, NULL
);
1314 do_goto_redirection (q
, lab
, NULL
, tf
);
1316 x
= gimple_build_label (lab
);
1317 gimple_seq_add_stmt (&new_stmt
, x
);
1319 seq
= lower_try_finally_dup_block (finally
, state
, q
->location
);
1320 lower_eh_constructs_1 (state
, &seq
);
1321 gimple_seq_add_seq (&new_stmt
, seq
);
1323 gimple_seq_add_stmt (&new_stmt
, q
->cont_stmt
);
1324 maybe_record_in_goto_queue (state
, q
->cont_stmt
);
1327 for (q
= tf
->goto_queue
; q
< qe
; q
++)
1331 index
= q
->index
< 0 ? return_index
: q
->index
;
1333 if (labels
[index
].q
== q
)
1336 lab
= labels
[index
].label
;
1338 if (index
== return_index
)
1339 do_return_redirection (q
, lab
, NULL
);
1341 do_goto_redirection (q
, lab
, NULL
, tf
);
1344 replace_goto_queue (tf
);
1348 /* Need to link new stmts after running replace_goto_queue due
1349 to not wanting to process the same goto stmts twice. */
1350 gimple_seq_add_seq (&tf
->top_p_seq
, new_stmt
);
1353 /* A subroutine of lower_try_finally. There are multiple edges incoming
1354 and outgoing from the finally block. Implement this by instrumenting
1355 each incoming edge and creating a switch statement at the end of the
1356 finally block that branches to the appropriate destination. */
1359 lower_try_finally_switch (struct leh_state
*state
, struct leh_tf_state
*tf
)
1361 struct goto_queue_node
*q
, *qe
;
1362 tree finally_tmp
, finally_label
;
1363 int return_index
, eh_index
, fallthru_index
;
1364 int nlabels
, ndests
, j
, last_case_index
;
1366 auto_vec
<tree
> case_label_vec
;
1367 gimple_seq switch_body
= NULL
;
1371 gimple
*switch_stmt
;
1373 hash_map
<tree
, gimple
*> *cont_map
= NULL
;
1374 /* The location of the TRY_FINALLY stmt. */
1375 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1376 /* The location of the finally block. */
1377 location_t finally_loc
;
1379 finally
= gimple_try_cleanup (tf
->top_p
);
1380 eh_else
= get_eh_else (finally
);
1382 /* Mash the TRY block to the head of the chain. */
1383 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1385 /* The location of the finally is either the last stmt in the finally
1386 block or the location of the TRY_FINALLY itself. */
1387 x
= gimple_seq_last_stmt (finally
);
1388 finally_loc
= x
? gimple_location (x
) : tf_loc
;
1390 /* Prepare for switch statement generation. */
1391 nlabels
= tf
->dest_array
.length ();
1392 return_index
= nlabels
;
1393 eh_index
= return_index
+ tf
->may_return
;
1394 fallthru_index
= eh_index
+ (tf
->may_throw
&& !eh_else
);
1395 ndests
= fallthru_index
+ tf
->may_fallthru
;
1397 finally_tmp
= create_tmp_var (integer_type_node
, "finally_tmp");
1398 finally_label
= create_artificial_label (finally_loc
);
1400 /* We use vec::quick_push on case_label_vec throughout this function,
1401 since we know the size in advance and allocate precisely as muce
1403 case_label_vec
.create (ndests
);
1405 last_case_index
= 0;
1407 /* Begin inserting code for getting to the finally block. Things
1408 are done in this order to correspond to the sequence the code is
1411 if (tf
->may_fallthru
)
1413 x
= gimple_build_assign (finally_tmp
,
1414 build_int_cst (integer_type_node
,
1416 gimple_set_location (x
, finally_loc
);
1417 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1419 tmp
= build_int_cst (integer_type_node
, fallthru_index
);
1420 last_case
= build_case_label (tmp
, NULL
,
1421 create_artificial_label (finally_loc
));
1422 case_label_vec
.quick_push (last_case
);
1425 x
= gimple_build_label (CASE_LABEL (last_case
));
1426 gimple_seq_add_stmt (&switch_body
, x
);
1428 tmp
= lower_try_finally_fallthru_label (tf
);
1429 x
= gimple_build_goto (tmp
);
1430 gimple_set_location (x
, finally_loc
);
1431 gimple_seq_add_stmt (&switch_body
, x
);
1434 /* For EH_ELSE, emit the exception path (plus resx) now, then
1435 subsequently we only need consider the normal path. */
1440 finally
= gimple_eh_else_e_body (eh_else
);
1441 lower_eh_constructs_1 (state
, &finally
);
1443 emit_post_landing_pad (&eh_seq
, tf
->region
);
1444 gimple_seq_add_seq (&eh_seq
, finally
);
1445 emit_resx (&eh_seq
, tf
->region
);
1448 finally
= gimple_eh_else_n_body (eh_else
);
1450 else if (tf
->may_throw
)
1452 emit_post_landing_pad (&eh_seq
, tf
->region
);
1454 x
= gimple_build_assign (finally_tmp
,
1455 build_int_cst (integer_type_node
, eh_index
));
1456 gimple_seq_add_stmt (&eh_seq
, x
);
1458 x
= gimple_build_goto (finally_label
);
1459 gimple_set_location (x
, tf_loc
);
1460 gimple_seq_add_stmt (&eh_seq
, x
);
1462 tmp
= build_int_cst (integer_type_node
, eh_index
);
1463 last_case
= build_case_label (tmp
, NULL
,
1464 create_artificial_label (tf_loc
));
1465 case_label_vec
.quick_push (last_case
);
1468 x
= gimple_build_label (CASE_LABEL (last_case
));
1469 gimple_seq_add_stmt (&eh_seq
, x
);
1470 emit_resx (&eh_seq
, tf
->region
);
1473 x
= gimple_build_label (finally_label
);
1474 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1476 lower_eh_constructs_1 (state
, &finally
);
1477 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1479 /* Redirect each incoming goto edge. */
1481 qe
= q
+ tf
->goto_queue_active
;
1482 j
= last_case_index
+ tf
->may_return
;
1483 /* Prepare the assignments to finally_tmp that are executed upon the
1484 entrance through a particular edge. */
1487 gimple_seq mod
= NULL
;
1489 unsigned int case_index
;
1493 x
= gimple_build_assign (finally_tmp
,
1494 build_int_cst (integer_type_node
,
1496 gimple_seq_add_stmt (&mod
, x
);
1497 do_return_redirection (q
, finally_label
, mod
);
1498 switch_id
= return_index
;
1502 x
= gimple_build_assign (finally_tmp
,
1503 build_int_cst (integer_type_node
, q
->index
));
1504 gimple_seq_add_stmt (&mod
, x
);
1505 do_goto_redirection (q
, finally_label
, mod
, tf
);
1506 switch_id
= q
->index
;
1509 case_index
= j
+ q
->index
;
1510 if (case_label_vec
.length () <= case_index
|| !case_label_vec
[case_index
])
1513 tmp
= build_int_cst (integer_type_node
, switch_id
);
1514 case_lab
= build_case_label (tmp
, NULL
,
1515 create_artificial_label (tf_loc
));
1516 /* We store the cont_stmt in the pointer map, so that we can recover
1517 it in the loop below. */
1519 cont_map
= new hash_map
<tree
, gimple
*>;
1520 cont_map
->put (case_lab
, q
->cont_stmt
);
1521 case_label_vec
.quick_push (case_lab
);
1524 for (j
= last_case_index
; j
< last_case_index
+ nlabels
; j
++)
1528 last_case
= case_label_vec
[j
];
1530 gcc_assert (last_case
);
1531 gcc_assert (cont_map
);
1533 cont_stmt
= *cont_map
->get (last_case
);
1535 x
= gimple_build_label (CASE_LABEL (last_case
));
1536 gimple_seq_add_stmt (&switch_body
, x
);
1537 gimple_seq_add_stmt (&switch_body
, cont_stmt
);
1538 maybe_record_in_goto_queue (state
, cont_stmt
);
1543 replace_goto_queue (tf
);
1545 /* Make sure that the last case is the default label, as one is required.
1546 Then sort the labels, which is also required in GIMPLE. */
1547 CASE_LOW (last_case
) = NULL
;
1548 tree tem
= case_label_vec
.pop ();
1549 gcc_assert (tem
== last_case
);
1550 sort_case_labels (case_label_vec
);
1552 /* Build the switch statement, setting last_case to be the default
1554 switch_stmt
= gimple_build_switch (finally_tmp
, last_case
,
1556 gimple_set_location (switch_stmt
, finally_loc
);
1558 /* Need to link SWITCH_STMT after running replace_goto_queue
1559 due to not wanting to process the same goto stmts twice. */
1560 gimple_seq_add_stmt (&tf
->top_p_seq
, switch_stmt
);
1561 gimple_seq_add_seq (&tf
->top_p_seq
, switch_body
);
1564 /* Decide whether or not we are going to duplicate the finally block.
1565 There are several considerations.
1567 Second, we'd like to prevent egregious code growth. One way to
1568 do this is to estimate the size of the finally block, multiply
1569 that by the number of copies we'd need to make, and compare against
1570 the estimate of the size of the switch machinery we'd have to add. */
1573 decide_copy_try_finally (int ndests
, bool may_throw
, gimple_seq finally
)
1575 int f_estimate
, sw_estimate
;
1578 /* If there's an EH_ELSE involved, the exception path is separate
1579 and really doesn't come into play for this computation. */
1580 eh_else
= get_eh_else (finally
);
1583 ndests
-= may_throw
;
1584 finally
= gimple_eh_else_n_body (eh_else
);
1589 gimple_stmt_iterator gsi
;
1594 for (gsi
= gsi_start (finally
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1596 /* Duplicate __builtin_stack_restore in the hope of eliminating it
1597 on the EH paths and, consequently, useless cleanups. */
1598 gimple
*stmt
= gsi_stmt (gsi
);
1599 if (!is_gimple_debug (stmt
)
1600 && !gimple_clobber_p (stmt
)
1601 && !gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1607 /* Finally estimate N times, plus N gotos. */
1608 f_estimate
= estimate_num_insns_seq (finally
, &eni_size_weights
);
1609 f_estimate
= (f_estimate
+ 1) * ndests
;
1611 /* Switch statement (cost 10), N variable assignments, N gotos. */
1612 sw_estimate
= 10 + 2 * ndests
;
1614 /* Optimize for size clearly wants our best guess. */
1615 if (optimize_function_for_size_p (cfun
))
1616 return f_estimate
< sw_estimate
;
1618 /* ??? These numbers are completely made up so far. */
1620 return f_estimate
< 100 || f_estimate
< sw_estimate
* 2;
1622 return f_estimate
< 40 || f_estimate
* 2 < sw_estimate
* 3;
1625 /* REG is current region of a LEH state.
1626 is the enclosing region for a possible cleanup region, or the region
1627 itself. Returns TRUE if such a region would be unreachable.
1629 Cleanup regions within a must-not-throw region aren't actually reachable
1630 even if there are throwing stmts within them, because the personality
1631 routine will call terminate before unwinding. */
1634 cleanup_is_dead_in (leh_state
*state
)
1638 eh_region reg
= state
->cur_region
;
1639 while (reg
&& reg
->type
== ERT_CLEANUP
)
1642 gcc_assert (reg
== state
->outer_non_cleanup
);
1645 eh_region reg
= state
->outer_non_cleanup
;
1646 return (reg
&& reg
->type
== ERT_MUST_NOT_THROW
);
1649 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1650 to a sequence of labels and blocks, plus the exception region trees
1651 that record all the magic. This is complicated by the need to
1652 arrange for the FINALLY block to be executed on all exits. */
1655 lower_try_finally (struct leh_state
*state
, gtry
*tp
)
1657 struct leh_tf_state this_tf
;
1658 struct leh_state this_state
;
1660 gimple_seq old_eh_seq
;
1662 /* Process the try block. */
1664 memset (&this_tf
, 0, sizeof (this_tf
));
1665 this_tf
.try_finally_expr
= tp
;
1667 this_tf
.outer
= state
;
1668 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state
))
1670 this_tf
.region
= gen_eh_region_cleanup (state
->cur_region
);
1671 this_state
.cur_region
= this_tf
.region
;
1675 this_tf
.region
= NULL
;
1676 this_state
.cur_region
= state
->cur_region
;
1679 this_state
.outer_non_cleanup
= state
->outer_non_cleanup
;
1680 this_state
.ehp_region
= state
->ehp_region
;
1681 this_state
.tf
= &this_tf
;
1683 old_eh_seq
= eh_seq
;
1686 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1688 /* Determine if the try block is escaped through the bottom. */
1689 this_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1691 /* Determine if any exceptions are possible within the try block. */
1693 this_tf
.may_throw
= eh_region_may_contain_throw (this_tf
.region
);
1694 if (this_tf
.may_throw
)
1695 honor_protect_cleanup_actions (state
, &this_state
, &this_tf
);
1697 /* Determine how many edges (still) reach the finally block. Or rather,
1698 how many destinations are reached by the finally block. Use this to
1699 determine how we process the finally block itself. */
1701 ndests
= this_tf
.dest_array
.length ();
1702 ndests
+= this_tf
.may_fallthru
;
1703 ndests
+= this_tf
.may_return
;
1704 ndests
+= this_tf
.may_throw
;
1706 /* If the FINALLY block is not reachable, dike it out. */
1709 gimple_seq_add_seq (&this_tf
.top_p_seq
, gimple_try_eval (tp
));
1710 gimple_try_set_cleanup (tp
, NULL
);
1712 /* If the finally block doesn't fall through, then any destination
1713 we might try to impose there isn't reached either. There may be
1714 some minor amount of cleanup and redirection still needed. */
1715 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp
)))
1716 lower_try_finally_nofallthru (state
, &this_tf
);
1718 /* We can easily special-case redirection to a single destination. */
1719 else if (ndests
== 1)
1720 lower_try_finally_onedest (state
, &this_tf
);
1721 else if (decide_copy_try_finally (ndests
, this_tf
.may_throw
,
1722 gimple_try_cleanup (tp
)))
1723 lower_try_finally_copy (state
, &this_tf
);
1725 lower_try_finally_switch (state
, &this_tf
);
1727 /* If someone requested we add a label at the end of the transformed
1729 if (this_tf
.fallthru_label
)
1731 /* This must be reached only if ndests == 0. */
1732 gimple
*x
= gimple_build_label (this_tf
.fallthru_label
);
1733 gimple_seq_add_stmt (&this_tf
.top_p_seq
, x
);
1736 this_tf
.dest_array
.release ();
1737 free (this_tf
.goto_queue
);
1738 if (this_tf
.goto_queue_map
)
1739 delete this_tf
.goto_queue_map
;
1741 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1742 If there was no old eh_seq, then the append is trivially already done. */
1746 eh_seq
= old_eh_seq
;
1749 gimple_seq new_eh_seq
= eh_seq
;
1750 eh_seq
= old_eh_seq
;
1751 gimple_seq_add_seq (&eh_seq
, new_eh_seq
);
1755 return this_tf
.top_p_seq
;
1758 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1759 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1760 exception region trees that records all the magic. */
1763 lower_catch (struct leh_state
*state
, gtry
*tp
)
1765 eh_region try_region
= NULL
;
1766 struct leh_state this_state
= *state
;
1767 gimple_stmt_iterator gsi
;
1769 gimple_seq new_seq
, cleanup
;
1771 geh_dispatch
*eh_dispatch
;
1772 location_t try_catch_loc
= gimple_location (tp
);
1773 location_t catch_loc
= UNKNOWN_LOCATION
;
1775 if (flag_exceptions
)
1777 try_region
= gen_eh_region_try (state
->cur_region
);
1778 this_state
.cur_region
= try_region
;
1779 this_state
.outer_non_cleanup
= this_state
.cur_region
;
1782 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1784 if (!eh_region_may_contain_throw (try_region
))
1785 return gimple_try_eval (tp
);
1788 eh_dispatch
= gimple_build_eh_dispatch (try_region
->index
);
1789 gimple_seq_add_stmt (&new_seq
, eh_dispatch
);
1790 emit_resx (&new_seq
, try_region
);
1792 this_state
.cur_region
= state
->cur_region
;
1793 this_state
.outer_non_cleanup
= state
->outer_non_cleanup
;
1794 this_state
.ehp_region
= try_region
;
1796 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1797 itself, so that e.g. for coverage purposes the nested cleanups don't
1798 appear before the cleanup body. See PR64634 for details. */
1799 gimple_seq old_eh_seq
= eh_seq
;
1803 cleanup
= gimple_try_cleanup (tp
);
1804 for (gsi
= gsi_start (cleanup
);
1812 catch_stmt
= as_a
<gcatch
*> (gsi_stmt (gsi
));
1813 if (catch_loc
== UNKNOWN_LOCATION
)
1814 catch_loc
= gimple_location (catch_stmt
);
1815 c
= gen_eh_region_catch (try_region
, gimple_catch_types (catch_stmt
));
1817 handler
= gimple_catch_handler (catch_stmt
);
1818 lower_eh_constructs_1 (&this_state
, &handler
);
1820 c
->label
= create_artificial_label (UNKNOWN_LOCATION
);
1821 x
= gimple_build_label (c
->label
);
1822 gimple_seq_add_stmt (&new_seq
, x
);
1824 gimple_seq_add_seq (&new_seq
, handler
);
1826 if (gimple_seq_may_fallthru (new_seq
))
1829 out_label
= create_artificial_label (try_catch_loc
);
1831 x
= gimple_build_goto (out_label
);
1832 gimple_seq_add_stmt (&new_seq
, x
);
1838 /* Try to set a location on the dispatching construct to avoid inheriting
1839 the location of the previous statement. */
1840 gimple_set_location (eh_dispatch
, catch_loc
);
1842 gimple_try_set_cleanup (tp
, new_seq
);
1844 gimple_seq new_eh_seq
= eh_seq
;
1845 eh_seq
= old_eh_seq
;
1846 gimple_seq ret_seq
= frob_into_branch_around (tp
, try_region
, out_label
);
1847 gimple_seq_add_seq (&eh_seq
, new_eh_seq
);
1851 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1852 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1853 region trees that record all the magic. */
1856 lower_eh_filter (struct leh_state
*state
, gtry
*tp
)
1858 struct leh_state this_state
= *state
;
1859 eh_region this_region
= NULL
;
1863 inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1865 if (flag_exceptions
)
1867 this_region
= gen_eh_region_allowed (state
->cur_region
,
1868 gimple_eh_filter_types (inner
));
1869 this_state
.cur_region
= this_region
;
1870 this_state
.outer_non_cleanup
= this_state
.cur_region
;
1873 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1875 if (!eh_region_may_contain_throw (this_region
))
1876 return gimple_try_eval (tp
);
1878 this_state
.cur_region
= state
->cur_region
;
1879 this_state
.ehp_region
= this_region
;
1882 x
= gimple_build_eh_dispatch (this_region
->index
);
1883 gimple_set_location (x
, gimple_location (tp
));
1884 gimple_seq_add_stmt (&new_seq
, x
);
1885 emit_resx (&new_seq
, this_region
);
1887 this_region
->u
.allowed
.label
= create_artificial_label (UNKNOWN_LOCATION
);
1888 x
= gimple_build_label (this_region
->u
.allowed
.label
);
1889 gimple_seq_add_stmt (&new_seq
, x
);
1891 lower_eh_constructs_1 (&this_state
, gimple_eh_filter_failure_ptr (inner
));
1892 gimple_seq_add_seq (&new_seq
, gimple_eh_filter_failure (inner
));
1894 gimple_try_set_cleanup (tp
, new_seq
);
1896 return frob_into_branch_around (tp
, this_region
, NULL
);
1899 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1900 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1901 plus the exception region trees that record all the magic. */
1904 lower_eh_must_not_throw (struct leh_state
*state
, gtry
*tp
)
1906 struct leh_state this_state
= *state
;
1908 if (flag_exceptions
)
1910 gimple
*inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1911 eh_region this_region
;
1913 this_region
= gen_eh_region_must_not_throw (state
->cur_region
);
1914 this_region
->u
.must_not_throw
.failure_decl
1915 = gimple_eh_must_not_throw_fndecl (
1916 as_a
<geh_mnt
*> (inner
));
1917 this_region
->u
.must_not_throw
.failure_loc
1918 = LOCATION_LOCUS (gimple_location (tp
));
1920 /* In order to get mangling applied to this decl, we must mark it
1921 used now. Otherwise, pass_ipa_free_lang_data won't think it
1923 TREE_USED (this_region
->u
.must_not_throw
.failure_decl
) = 1;
1925 this_state
.cur_region
= this_region
;
1926 this_state
.outer_non_cleanup
= this_state
.cur_region
;
1929 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1931 return gimple_try_eval (tp
);
1934 /* Implement a cleanup expression. This is similar to try-finally,
1935 except that we only execute the cleanup block for exception edges. */
1938 lower_cleanup (struct leh_state
*state
, gtry
*tp
)
1940 struct leh_state this_state
= *state
;
1941 eh_region this_region
= NULL
;
1942 struct leh_tf_state fake_tf
;
1944 bool cleanup_dead
= cleanup_is_dead_in (state
);
1946 if (flag_exceptions
&& !cleanup_dead
)
1948 this_region
= gen_eh_region_cleanup (state
->cur_region
);
1949 this_state
.cur_region
= this_region
;
1950 this_state
.outer_non_cleanup
= state
->outer_non_cleanup
;
1953 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1955 if (cleanup_dead
|| !eh_region_may_contain_throw (this_region
))
1956 return gimple_try_eval (tp
);
1958 /* Build enough of a try-finally state so that we can reuse
1959 honor_protect_cleanup_actions. */
1960 memset (&fake_tf
, 0, sizeof (fake_tf
));
1961 fake_tf
.top_p
= fake_tf
.try_finally_expr
= tp
;
1962 fake_tf
.outer
= state
;
1963 fake_tf
.region
= this_region
;
1964 fake_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1965 fake_tf
.may_throw
= true;
1967 honor_protect_cleanup_actions (state
, NULL
, &fake_tf
);
1969 if (fake_tf
.may_throw
)
1971 /* In this case honor_protect_cleanup_actions had nothing to do,
1972 and we should process this normally. */
1973 lower_eh_constructs_1 (state
, gimple_try_cleanup_ptr (tp
));
1974 result
= frob_into_branch_around (tp
, this_region
,
1975 fake_tf
.fallthru_label
);
1979 /* In this case honor_protect_cleanup_actions did nearly all of
1980 the work. All we have left is to append the fallthru_label. */
1982 result
= gimple_try_eval (tp
);
1983 if (fake_tf
.fallthru_label
)
1985 gimple
*x
= gimple_build_label (fake_tf
.fallthru_label
);
1986 gimple_seq_add_stmt (&result
, x
);
1992 /* Main loop for lowering eh constructs. Also moves gsi to the next
1996 lower_eh_constructs_2 (struct leh_state
*state
, gimple_stmt_iterator
*gsi
)
2000 gimple
*stmt
= gsi_stmt (*gsi
);
2002 switch (gimple_code (stmt
))
2006 tree fndecl
= gimple_call_fndecl (stmt
);
2009 if (fndecl
&& fndecl_built_in_p (fndecl
, BUILT_IN_NORMAL
))
2010 switch (DECL_FUNCTION_CODE (fndecl
))
2012 case BUILT_IN_EH_POINTER
:
2013 /* The front end may have generated a call to
2014 __builtin_eh_pointer (0) within a catch region. Replace
2015 this zero argument with the current catch region number. */
2016 if (state
->ehp_region
)
2018 tree nr
= build_int_cst (integer_type_node
,
2019 state
->ehp_region
->index
);
2020 gimple_call_set_arg (stmt
, 0, nr
);
2024 /* The user has dome something silly. Remove it. */
2025 rhs
= null_pointer_node
;
2030 case BUILT_IN_EH_FILTER
:
2031 /* ??? This should never appear, but since it's a builtin it
2032 is accessible to abuse by users. Just remove it and
2033 replace the use with the arbitrary value zero. */
2034 rhs
= build_int_cst (TREE_TYPE (TREE_TYPE (fndecl
)), 0);
2036 lhs
= gimple_call_lhs (stmt
);
2037 x
= gimple_build_assign (lhs
, rhs
);
2038 gsi_insert_before (gsi
, x
, GSI_SAME_STMT
);
2041 case BUILT_IN_EH_COPY_VALUES
:
2042 /* Likewise this should not appear. Remove it. */
2043 gsi_remove (gsi
, true);
2053 /* If the stmt can throw, use a new temporary for the assignment
2054 to a LHS. This makes sure the old value of the LHS is
2055 available on the EH edge. Only do so for statements that
2056 potentially fall through (no noreturn calls e.g.), otherwise
2057 this new assignment might create fake fallthru regions. */
2058 if (stmt_could_throw_p (cfun
, stmt
)
2059 && gimple_has_lhs (stmt
)
2060 && gimple_stmt_may_fallthru (stmt
)
2061 && !tree_could_throw_p (gimple_get_lhs (stmt
))
2062 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
2064 tree lhs
= gimple_get_lhs (stmt
);
2065 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
2066 gimple
*s
= gimple_build_assign (lhs
, tmp
);
2067 gimple_set_location (s
, gimple_location (stmt
));
2068 gimple_set_block (s
, gimple_block (stmt
));
2069 gimple_set_lhs (stmt
, tmp
);
2070 gsi_insert_after (gsi
, s
, GSI_SAME_STMT
);
2072 /* Look for things that can throw exceptions, and record them. */
2073 if (state
->cur_region
&& stmt_could_throw_p (cfun
, stmt
))
2075 record_stmt_eh_region (state
->cur_region
, stmt
);
2076 note_eh_region_may_contain_throw (state
->cur_region
);
2083 maybe_record_in_goto_queue (state
, stmt
);
2087 verify_norecord_switch_expr (state
, as_a
<gswitch
*> (stmt
));
2092 gtry
*try_stmt
= as_a
<gtry
*> (stmt
);
2093 if (gimple_try_kind (try_stmt
) == GIMPLE_TRY_FINALLY
)
2094 replace
= lower_try_finally (state
, try_stmt
);
2097 x
= gimple_seq_first_stmt (gimple_try_cleanup (try_stmt
));
2100 replace
= gimple_try_eval (try_stmt
);
2101 lower_eh_constructs_1 (state
, &replace
);
2104 switch (gimple_code (x
))
2107 replace
= lower_catch (state
, try_stmt
);
2109 case GIMPLE_EH_FILTER
:
2110 replace
= lower_eh_filter (state
, try_stmt
);
2112 case GIMPLE_EH_MUST_NOT_THROW
:
2113 replace
= lower_eh_must_not_throw (state
, try_stmt
);
2115 case GIMPLE_EH_ELSE
:
2116 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2119 replace
= lower_cleanup (state
, try_stmt
);
2125 /* Remove the old stmt and insert the transformed sequence
2127 gsi_insert_seq_before (gsi
, replace
, GSI_SAME_STMT
);
2128 gsi_remove (gsi
, true);
2130 /* Return since we don't want gsi_next () */
2133 case GIMPLE_EH_ELSE
:
2134 /* We should be eliminating this in lower_try_finally et al. */
2138 /* A type, a decl, or some kind of statement that we're not
2139 interested in. Don't walk them. */
2146 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2149 lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq
*pseq
)
2151 gimple_stmt_iterator gsi
;
2152 for (gsi
= gsi_start (*pseq
); !gsi_end_p (gsi
);)
2153 lower_eh_constructs_2 (state
, &gsi
);
2158 const pass_data pass_data_lower_eh
=
2160 GIMPLE_PASS
, /* type */
2162 OPTGROUP_NONE
, /* optinfo_flags */
2163 TV_TREE_EH
, /* tv_id */
2164 PROP_gimple_lcf
, /* properties_required */
2165 PROP_gimple_leh
, /* properties_provided */
2166 0, /* properties_destroyed */
2167 0, /* todo_flags_start */
2168 0, /* todo_flags_finish */
2171 class pass_lower_eh
: public gimple_opt_pass
2174 pass_lower_eh (gcc::context
*ctxt
)
2175 : gimple_opt_pass (pass_data_lower_eh
, ctxt
)
2178 /* opt_pass methods: */
2179 virtual unsigned int execute (function
*);
2181 }; // class pass_lower_eh
2184 pass_lower_eh::execute (function
*fun
)
2186 struct leh_state null_state
;
2189 bodyp
= gimple_body (current_function_decl
);
2193 finally_tree
= new hash_table
<finally_tree_hasher
> (31);
2194 eh_region_may_contain_throw_map
= BITMAP_ALLOC (NULL
);
2195 memset (&null_state
, 0, sizeof (null_state
));
2197 collect_finally_tree_1 (bodyp
, NULL
);
2198 lower_eh_constructs_1 (&null_state
, &bodyp
);
2199 gimple_set_body (current_function_decl
, bodyp
);
2201 /* We assume there's a return statement, or something, at the end of
2202 the function, and thus ploping the EH sequence afterward won't
2204 gcc_assert (!gimple_seq_may_fallthru (bodyp
));
2205 gimple_seq_add_seq (&bodyp
, eh_seq
);
2207 /* We assume that since BODYP already existed, adding EH_SEQ to it
2208 didn't change its value, and we don't have to re-set the function. */
2209 gcc_assert (bodyp
== gimple_body (current_function_decl
));
2211 delete finally_tree
;
2212 finally_tree
= NULL
;
2213 BITMAP_FREE (eh_region_may_contain_throw_map
);
2216 /* If this function needs a language specific EH personality routine
2217 and the frontend didn't already set one do so now. */
2218 if (function_needs_eh_personality (fun
) == eh_personality_lang
2219 && !DECL_FUNCTION_PERSONALITY (current_function_decl
))
2220 DECL_FUNCTION_PERSONALITY (current_function_decl
)
2221 = lang_hooks
.eh_personality ();
2229 make_pass_lower_eh (gcc::context
*ctxt
)
2231 return new pass_lower_eh (ctxt
);
2234 /* Create the multiple edges from an EH_DISPATCH statement to all of
2235 the possible handlers for its EH region. Return true if there's
2236 no fallthru edge; false if there is. */
2239 make_eh_dispatch_edges (geh_dispatch
*stmt
)
2243 basic_block src
, dst
;
2245 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2246 src
= gimple_bb (stmt
);
2251 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2253 dst
= label_to_block (cfun
, c
->label
);
2254 make_edge (src
, dst
, 0);
2256 /* A catch-all handler doesn't have a fallthru. */
2257 if (c
->type_list
== NULL
)
2262 case ERT_ALLOWED_EXCEPTIONS
:
2263 dst
= label_to_block (cfun
, r
->u
.allowed
.label
);
2264 make_edge (src
, dst
, 0);
2274 /* Create the single EH edge from STMT to its nearest landing pad,
2275 if there is such a landing pad within the current function. */
2278 make_eh_edges (gimple
*stmt
)
2280 basic_block src
, dst
;
2284 lp_nr
= lookup_stmt_eh_lp (stmt
);
2288 lp
= get_eh_landing_pad_from_number (lp_nr
);
2289 gcc_assert (lp
!= NULL
);
2291 src
= gimple_bb (stmt
);
2292 dst
= label_to_block (cfun
, lp
->post_landing_pad
);
2293 make_edge (src
, dst
, EDGE_EH
);
2296 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2297 do not actually perform the final edge redirection.
2299 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2300 we intend to change the destination EH region as well; this means
2301 EH_LANDING_PAD_NR must already be set on the destination block label.
2302 If false, we're being called from generic cfg manipulation code and we
2303 should preserve our place within the region tree. */
2306 redirect_eh_edge_1 (edge edge_in
, basic_block new_bb
, bool change_region
)
2308 eh_landing_pad old_lp
, new_lp
;
2311 int old_lp_nr
, new_lp_nr
;
2312 tree old_label
, new_label
;
2316 old_bb
= edge_in
->dest
;
2317 old_label
= gimple_block_label (old_bb
);
2318 old_lp_nr
= EH_LANDING_PAD_NR (old_label
);
2319 gcc_assert (old_lp_nr
> 0);
2320 old_lp
= get_eh_landing_pad_from_number (old_lp_nr
);
2322 throw_stmt
= last_stmt (edge_in
->src
);
2323 gcc_checking_assert (lookup_stmt_eh_lp (throw_stmt
) == old_lp_nr
);
2325 new_label
= gimple_block_label (new_bb
);
2327 /* Look for an existing region that might be using NEW_BB already. */
2328 new_lp_nr
= EH_LANDING_PAD_NR (new_label
);
2331 new_lp
= get_eh_landing_pad_from_number (new_lp_nr
);
2332 gcc_assert (new_lp
);
2334 /* Unless CHANGE_REGION is true, the new and old landing pad
2335 had better be associated with the same EH region. */
2336 gcc_assert (change_region
|| new_lp
->region
== old_lp
->region
);
2341 gcc_assert (!change_region
);
2344 /* Notice when we redirect the last EH edge away from OLD_BB. */
2345 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
2346 if (e
!= edge_in
&& (e
->flags
& EDGE_EH
))
2351 /* NEW_LP already exists. If there are still edges into OLD_LP,
2352 there's nothing to do with the EH tree. If there are no more
2353 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2354 If CHANGE_REGION is true, then our caller is expecting to remove
2356 if (e
== NULL
&& !change_region
)
2357 remove_eh_landing_pad (old_lp
);
2361 /* No correct landing pad exists. If there are no more edges
2362 into OLD_LP, then we can simply re-use the existing landing pad.
2363 Otherwise, we have to create a new landing pad. */
2366 EH_LANDING_PAD_NR (old_lp
->post_landing_pad
) = 0;
2370 new_lp
= gen_eh_landing_pad (old_lp
->region
);
2371 new_lp
->post_landing_pad
= new_label
;
2372 EH_LANDING_PAD_NR (new_label
) = new_lp
->index
;
2375 /* Maybe move the throwing statement to the new region. */
2376 if (old_lp
!= new_lp
)
2378 remove_stmt_from_eh_lp (throw_stmt
);
2379 add_stmt_to_eh_lp (throw_stmt
, new_lp
->index
);
2383 /* Redirect EH edge E to NEW_BB. */
2386 redirect_eh_edge (edge edge_in
, basic_block new_bb
)
2388 redirect_eh_edge_1 (edge_in
, new_bb
, false);
2389 return ssa_redirect_edge (edge_in
, new_bb
);
2392 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2393 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2394 The actual edge update will happen in the caller. */
2397 redirect_eh_dispatch_edge (geh_dispatch
*stmt
, edge e
, basic_block new_bb
)
2399 tree new_lab
= gimple_block_label (new_bb
);
2400 bool any_changed
= false;
2405 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2409 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2411 old_bb
= label_to_block (cfun
, c
->label
);
2412 if (old_bb
== e
->dest
)
2420 case ERT_ALLOWED_EXCEPTIONS
:
2421 old_bb
= label_to_block (cfun
, r
->u
.allowed
.label
);
2422 gcc_assert (old_bb
== e
->dest
);
2423 r
->u
.allowed
.label
= new_lab
;
2431 gcc_assert (any_changed
);
2434 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2437 operation_could_trap_helper_p (enum tree_code op
,
2448 case TRUNC_DIV_EXPR
:
2450 case FLOOR_DIV_EXPR
:
2451 case ROUND_DIV_EXPR
:
2452 case EXACT_DIV_EXPR
:
2454 case FLOOR_MOD_EXPR
:
2455 case ROUND_MOD_EXPR
:
2456 case TRUNC_MOD_EXPR
:
2457 if (!TREE_CONSTANT (divisor
) || integer_zerop (divisor
))
2459 if (TREE_CODE (divisor
) == VECTOR_CST
)
2461 /* Inspired by initializer_each_zero_or_onep. */
2462 unsigned HOST_WIDE_INT nelts
= vector_cst_encoded_nelts (divisor
);
2463 if (VECTOR_CST_STEPPED_P (divisor
)
2464 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (divisor
))
2465 .is_constant (&nelts
))
2467 for (unsigned int i
= 0; i
< nelts
; ++i
)
2469 tree elt
= vector_cst_elt (divisor
, i
);
2470 if (integer_zerop (elt
))
2481 return flag_trapping_math
;
2483 /* Fixed point operations also use RDIV_EXPR. */
2484 if (!TREE_CONSTANT (divisor
) || fixed_zerop (divisor
))
2493 /* Some floating point comparisons may trap. */
2498 case UNORDERED_EXPR
:
2510 /* These operations don't trap with floating point. */
2516 /* ABSU_EXPR never traps. */
2522 /* Any floating arithmetic may trap. */
2523 if (fp_operation
&& flag_trapping_math
)
2531 /* Constructing an object cannot trap. */
2536 /* Whether *COND_EXPR can trap depends on whether the
2537 first argument can trap, so signal it as not handled.
2538 Whether lhs is floating or not doesn't matter. */
2543 /* Any floating arithmetic may trap. */
2544 if (fp_operation
&& flag_trapping_math
)
2552 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2553 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2554 type operands that may trap. If OP is a division operator, DIVISOR contains
2555 the value of the divisor. */
2558 operation_could_trap_p (enum tree_code op
, bool fp_operation
, bool honor_trapv
,
2561 bool honor_nans
= (fp_operation
&& flag_trapping_math
2562 && !flag_finite_math_only
);
2563 bool honor_snans
= fp_operation
&& flag_signaling_nans
!= 0;
2566 /* This function cannot tell whether or not COND_EXPR could trap,
2567 because that depends on its condition op. */
2568 gcc_assert (op
!= COND_EXPR
);
2570 if (TREE_CODE_CLASS (op
) != tcc_comparison
2571 && TREE_CODE_CLASS (op
) != tcc_unary
2572 && TREE_CODE_CLASS (op
) != tcc_binary
)
2575 return operation_could_trap_helper_p (op
, fp_operation
, honor_trapv
,
2576 honor_nans
, honor_snans
, divisor
,
2581 /* Returns true if it is possible to prove that the index of
2582 an array access REF (an ARRAY_REF expression) falls into the
2586 in_array_bounds_p (tree ref
)
2588 tree idx
= TREE_OPERAND (ref
, 1);
2591 if (TREE_CODE (idx
) != INTEGER_CST
)
2594 min
= array_ref_low_bound (ref
);
2595 max
= array_ref_up_bound (ref
);
2598 || TREE_CODE (min
) != INTEGER_CST
2599 || TREE_CODE (max
) != INTEGER_CST
)
2602 if (tree_int_cst_lt (idx
, min
)
2603 || tree_int_cst_lt (max
, idx
))
2609 /* Returns true if it is possible to prove that the range of
2610 an array access REF (an ARRAY_RANGE_REF expression) falls
2611 into the array bounds. */
2614 range_in_array_bounds_p (tree ref
)
2616 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ref
));
2617 tree range_min
, range_max
, min
, max
;
2619 range_min
= TYPE_MIN_VALUE (domain_type
);
2620 range_max
= TYPE_MAX_VALUE (domain_type
);
2623 || TREE_CODE (range_min
) != INTEGER_CST
2624 || TREE_CODE (range_max
) != INTEGER_CST
)
2627 min
= array_ref_low_bound (ref
);
2628 max
= array_ref_up_bound (ref
);
2631 || TREE_CODE (min
) != INTEGER_CST
2632 || TREE_CODE (max
) != INTEGER_CST
)
2635 if (tree_int_cst_lt (range_min
, min
)
2636 || tree_int_cst_lt (max
, range_max
))
2642 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2643 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2644 This routine expects only GIMPLE lhs or rhs input. */
2647 tree_could_trap_p (tree expr
)
2649 enum tree_code code
;
2650 bool fp_operation
= false;
2651 bool honor_trapv
= false;
2652 tree t
, base
, div
= NULL_TREE
;
2657 /* In COND_EXPR and VEC_COND_EXPR only the condition may trap, but
2658 they won't appear as operands in GIMPLE form, so this is just for the
2659 GENERIC uses where it needs to recurse on the operands and so
2660 *COND_EXPR itself doesn't trap. */
2661 if (TREE_CODE (expr
) == COND_EXPR
|| TREE_CODE (expr
) == VEC_COND_EXPR
)
2664 code
= TREE_CODE (expr
);
2665 t
= TREE_TYPE (expr
);
2669 if (COMPARISON_CLASS_P (expr
))
2670 fp_operation
= FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0)));
2672 fp_operation
= FLOAT_TYPE_P (t
);
2673 honor_trapv
= INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
);
2676 if (TREE_CODE_CLASS (code
) == tcc_binary
)
2677 div
= TREE_OPERAND (expr
, 1);
2678 if (operation_could_trap_p (code
, fp_operation
, honor_trapv
, div
))
2688 case VIEW_CONVERT_EXPR
:
2689 case WITH_SIZE_EXPR
:
2690 expr
= TREE_OPERAND (expr
, 0);
2691 code
= TREE_CODE (expr
);
2694 case ARRAY_RANGE_REF
:
2695 base
= TREE_OPERAND (expr
, 0);
2696 if (tree_could_trap_p (base
))
2698 if (TREE_THIS_NOTRAP (expr
))
2700 return !range_in_array_bounds_p (expr
);
2703 base
= TREE_OPERAND (expr
, 0);
2704 if (tree_could_trap_p (base
))
2706 if (TREE_THIS_NOTRAP (expr
))
2708 return !in_array_bounds_p (expr
);
2710 case TARGET_MEM_REF
:
2712 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
2713 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr
, 0), 0)))
2715 if (TREE_THIS_NOTRAP (expr
))
2717 /* We cannot prove that the access is in-bounds when we have
2718 variable-index TARGET_MEM_REFs. */
2719 if (code
== TARGET_MEM_REF
2720 && (TMR_INDEX (expr
) || TMR_INDEX2 (expr
)))
2722 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
)
2724 tree base
= TREE_OPERAND (TREE_OPERAND (expr
, 0), 0);
2725 poly_offset_int off
= mem_ref_offset (expr
);
2726 if (maybe_lt (off
, 0))
2728 if (TREE_CODE (base
) == STRING_CST
)
2729 return maybe_le (TREE_STRING_LENGTH (base
), off
);
2730 tree size
= DECL_SIZE_UNIT (base
);
2731 if (size
== NULL_TREE
2732 || !poly_int_tree_p (size
)
2733 || maybe_le (wi::to_poly_offset (size
), off
))
2735 /* Now we are sure the first byte of the access is inside
2742 return !TREE_THIS_NOTRAP (expr
);
2745 return TREE_THIS_VOLATILE (expr
);
2748 /* Internal function calls do not trap. */
2749 if (CALL_EXPR_FN (expr
) == NULL_TREE
)
2751 t
= get_callee_fndecl (expr
);
2752 /* Assume that indirect and calls to weak functions may trap. */
2753 if (!t
|| !DECL_P (t
))
2756 return tree_could_trap_p (t
);
2760 /* Assume that accesses to weak functions may trap, unless we know
2761 they are certainly defined in current TU or in some other
2763 if (DECL_WEAK (expr
) && !DECL_COMDAT (expr
) && DECL_EXTERNAL (expr
))
2765 cgraph_node
*node
= cgraph_node::get (expr
);
2767 node
= node
->function_symbol ();
2768 return !(node
&& node
->in_other_partition
);
2773 /* Assume that accesses to weak vars may trap, unless we know
2774 they are certainly defined in current TU or in some other
2776 if (DECL_WEAK (expr
) && !DECL_COMDAT (expr
) && DECL_EXTERNAL (expr
))
2778 varpool_node
*node
= varpool_node::get (expr
);
2780 node
= node
->ultimate_alias_target ();
2781 return !(node
&& node
->in_other_partition
);
2790 /* Return non-NULL if there is an integer operation with trapping overflow
2791 we can rewrite into non-trapping. Called via walk_tree from
2792 rewrite_to_non_trapping_overflow. */
2795 find_trapping_overflow (tree
*tp
, int *walk_subtrees
, void *data
)
2798 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (*tp
))
2799 && !operation_no_trapping_overflow (TREE_TYPE (*tp
), TREE_CODE (*tp
)))
2801 if (IS_TYPE_OR_DECL_P (*tp
)
2802 || (TREE_CODE (*tp
) == SAVE_EXPR
&& data
== NULL
))
2807 /* Rewrite selected operations into unsigned arithmetics, so that they
2808 don't trap on overflow. */
2811 replace_trapping_overflow (tree
*tp
, int *walk_subtrees
, void *data
)
2813 if (find_trapping_overflow (tp
, walk_subtrees
, data
))
2815 tree type
= TREE_TYPE (*tp
);
2816 tree utype
= unsigned_type_for (type
);
2818 int len
= TREE_OPERAND_LENGTH (*tp
);
2819 for (int i
= 0; i
< len
; ++i
)
2820 walk_tree (&TREE_OPERAND (*tp
, i
), replace_trapping_overflow
,
2821 data
, (hash_set
<tree
> *) data
);
2823 if (TREE_CODE (*tp
) == ABS_EXPR
)
2825 TREE_SET_CODE (*tp
, ABSU_EXPR
);
2826 TREE_TYPE (*tp
) = utype
;
2827 *tp
= fold_convert (type
, *tp
);
2831 TREE_TYPE (*tp
) = utype
;
2832 len
= TREE_OPERAND_LENGTH (*tp
);
2833 for (int i
= 0; i
< len
; ++i
)
2834 TREE_OPERAND (*tp
, i
)
2835 = fold_convert (utype
, TREE_OPERAND (*tp
, i
));
2836 *tp
= fold_convert (type
, *tp
);
2842 /* If any subexpression of EXPR can trap due to -ftrapv, rewrite it
2843 using unsigned arithmetics to avoid traps in it. */
2846 rewrite_to_non_trapping_overflow (tree expr
)
2850 hash_set
<tree
> pset
;
2851 if (!walk_tree (&expr
, find_trapping_overflow
, &pset
, &pset
))
2853 expr
= unshare_expr (expr
);
2855 walk_tree (&expr
, replace_trapping_overflow
, &pset
, &pset
);
2859 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2860 an assignment or a conditional) may throw. */
2863 stmt_could_throw_1_p (gassign
*stmt
)
2865 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2866 bool honor_nans
= false;
2867 bool honor_snans
= false;
2868 bool fp_operation
= false;
2869 bool honor_trapv
= false;
2874 if (TREE_CODE_CLASS (code
) == tcc_comparison
2875 || TREE_CODE_CLASS (code
) == tcc_unary
2876 || TREE_CODE_CLASS (code
) == tcc_binary
)
2878 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
2879 t
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2881 t
= TREE_TYPE (gimple_assign_lhs (stmt
));
2882 fp_operation
= FLOAT_TYPE_P (t
);
2885 honor_nans
= flag_trapping_math
&& !flag_finite_math_only
;
2886 honor_snans
= flag_signaling_nans
!= 0;
2888 else if (INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
))
2892 /* First check the LHS. */
2893 if (tree_could_trap_p (gimple_assign_lhs (stmt
)))
2896 /* Check if the main expression may trap. */
2897 ret
= operation_could_trap_helper_p (code
, fp_operation
, honor_trapv
,
2898 honor_nans
, honor_snans
,
2899 gimple_assign_rhs2 (stmt
),
2904 /* If the expression does not trap, see if any of the individual operands may
2906 for (i
= 1; i
< gimple_num_ops (stmt
); i
++)
2907 if (tree_could_trap_p (gimple_op (stmt
, i
)))
2914 /* Return true if statement STMT within FUN could throw an exception. */
2917 stmt_could_throw_p (function
*fun
, gimple
*stmt
)
2919 if (!flag_exceptions
)
2922 /* The only statements that can throw an exception are assignments,
2923 conditionals, calls, resx, and asms. */
2924 switch (gimple_code (stmt
))
2930 return !gimple_call_nothrow_p (as_a
<gcall
*> (stmt
));
2934 if (fun
&& !fun
->can_throw_non_call_exceptions
)
2936 gcond
*cond
= as_a
<gcond
*> (stmt
);
2937 tree lhs
= gimple_cond_lhs (cond
);
2938 return operation_could_trap_p (gimple_cond_code (cond
),
2939 FLOAT_TYPE_P (TREE_TYPE (lhs
)),
2944 if ((fun
&& !fun
->can_throw_non_call_exceptions
)
2945 || gimple_clobber_p (stmt
))
2947 return stmt_could_throw_1_p (as_a
<gassign
*> (stmt
));
2950 if (fun
&& !fun
->can_throw_non_call_exceptions
)
2952 return gimple_asm_volatile_p (as_a
<gasm
*> (stmt
));
2959 /* Return true if STMT in function FUN must be assumed necessary because of
2960 non-call exceptions. */
2963 stmt_unremovable_because_of_non_call_eh_p (function
*fun
, gimple
*stmt
)
2965 return (fun
->can_throw_non_call_exceptions
2966 && !fun
->can_delete_dead_exceptions
2967 && stmt_could_throw_p (fun
, stmt
));
2970 /* Return true if expression T could throw an exception. */
2973 tree_could_throw_p (tree t
)
2975 if (!flag_exceptions
)
2977 if (TREE_CODE (t
) == MODIFY_EXPR
)
2979 if (cfun
->can_throw_non_call_exceptions
2980 && tree_could_trap_p (TREE_OPERAND (t
, 0)))
2982 t
= TREE_OPERAND (t
, 1);
2985 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
2986 t
= TREE_OPERAND (t
, 0);
2987 if (TREE_CODE (t
) == CALL_EXPR
)
2988 return (call_expr_flags (t
) & ECF_NOTHROW
) == 0;
2989 if (cfun
->can_throw_non_call_exceptions
)
2990 return tree_could_trap_p (t
);
2994 /* Return true if STMT can throw an exception that is not caught within its
2995 function FUN. FUN can be NULL but the function is extra conservative
2999 stmt_can_throw_external (function
*fun
, gimple
*stmt
)
3003 if (!stmt_could_throw_p (fun
, stmt
))
3008 lp_nr
= lookup_stmt_eh_lp_fn (fun
, stmt
);
3012 /* Return true if STMT can throw an exception that is caught within its
3016 stmt_can_throw_internal (function
*fun
, gimple
*stmt
)
3020 gcc_checking_assert (fun
);
3021 if (!stmt_could_throw_p (fun
, stmt
))
3024 lp_nr
= lookup_stmt_eh_lp_fn (fun
, stmt
);
3028 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
3029 remove any entry it might have from the EH table. Return true if
3030 any change was made. */
3033 maybe_clean_eh_stmt_fn (struct function
*ifun
, gimple
*stmt
)
3035 if (stmt_could_throw_p (ifun
, stmt
))
3037 return remove_stmt_from_eh_lp_fn (ifun
, stmt
);
3040 /* Likewise, but always use the current function. */
3043 maybe_clean_eh_stmt (gimple
*stmt
)
3045 return maybe_clean_eh_stmt_fn (cfun
, stmt
);
3048 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
3049 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
3050 in the table if it should be in there. Return TRUE if a replacement was
3051 done that my require an EH edge purge. */
3054 maybe_clean_or_replace_eh_stmt (gimple
*old_stmt
, gimple
*new_stmt
)
3056 int lp_nr
= lookup_stmt_eh_lp (old_stmt
);
3060 bool new_stmt_could_throw
= stmt_could_throw_p (cfun
, new_stmt
);
3062 if (new_stmt
== old_stmt
&& new_stmt_could_throw
)
3065 remove_stmt_from_eh_lp (old_stmt
);
3066 if (new_stmt_could_throw
)
3068 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
3078 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
3079 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
3080 operand is the return value of duplicate_eh_regions. */
3083 maybe_duplicate_eh_stmt_fn (struct function
*new_fun
, gimple
*new_stmt
,
3084 struct function
*old_fun
, gimple
*old_stmt
,
3085 hash_map
<void *, void *> *map
,
3088 int old_lp_nr
, new_lp_nr
;
3090 if (!stmt_could_throw_p (new_fun
, new_stmt
))
3093 old_lp_nr
= lookup_stmt_eh_lp_fn (old_fun
, old_stmt
);
3096 if (default_lp_nr
== 0)
3098 new_lp_nr
= default_lp_nr
;
3100 else if (old_lp_nr
> 0)
3102 eh_landing_pad old_lp
, new_lp
;
3104 old_lp
= (*old_fun
->eh
->lp_array
)[old_lp_nr
];
3105 new_lp
= static_cast<eh_landing_pad
> (*map
->get (old_lp
));
3106 new_lp_nr
= new_lp
->index
;
3110 eh_region old_r
, new_r
;
3112 old_r
= (*old_fun
->eh
->region_array
)[-old_lp_nr
];
3113 new_r
= static_cast<eh_region
> (*map
->get (old_r
));
3114 new_lp_nr
= -new_r
->index
;
3117 add_stmt_to_eh_lp_fn (new_fun
, new_stmt
, new_lp_nr
);
3121 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
3122 and thus no remapping is required. */
3125 maybe_duplicate_eh_stmt (gimple
*new_stmt
, gimple
*old_stmt
)
3129 if (!stmt_could_throw_p (cfun
, new_stmt
))
3132 lp_nr
= lookup_stmt_eh_lp (old_stmt
);
3136 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
3140 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
3141 GIMPLE_TRY) that are similar enough to be considered the same. Currently
3142 this only handles handlers consisting of a single call, as that's the
3143 important case for C++: a destructor call for a particular object showing
3144 up in multiple handlers. */
3147 same_handler_p (gimple_seq oneh
, gimple_seq twoh
)
3149 gimple_stmt_iterator gsi
;
3150 gimple
*ones
, *twos
;
3153 gsi
= gsi_start (oneh
);
3154 if (!gsi_one_before_end_p (gsi
))
3156 ones
= gsi_stmt (gsi
);
3158 gsi
= gsi_start (twoh
);
3159 if (!gsi_one_before_end_p (gsi
))
3161 twos
= gsi_stmt (gsi
);
3163 if (!is_gimple_call (ones
)
3164 || !is_gimple_call (twos
)
3165 || gimple_call_lhs (ones
)
3166 || gimple_call_lhs (twos
)
3167 || gimple_call_chain (ones
)
3168 || gimple_call_chain (twos
)
3169 || !gimple_call_same_target_p (ones
, twos
)
3170 || gimple_call_num_args (ones
) != gimple_call_num_args (twos
))
3173 for (ai
= 0; ai
< gimple_call_num_args (ones
); ++ai
)
3174 if (!operand_equal_p (gimple_call_arg (ones
, ai
),
3175 gimple_call_arg (twos
, ai
), 0))
3182 try { A() } finally { try { ~B() } catch { ~A() } }
3183 try { ... } finally { ~A() }
3185 try { A() } catch { ~B() }
3186 try { ~B() ... } finally { ~A() }
3188 This occurs frequently in C++, where A is a local variable and B is a
3189 temporary used in the initializer for A. */
3192 optimize_double_finally (gtry
*one
, gtry
*two
)
3195 gimple_stmt_iterator gsi
;
3198 cleanup
= gimple_try_cleanup (one
);
3199 gsi
= gsi_start (cleanup
);
3200 if (!gsi_one_before_end_p (gsi
))
3203 oneh
= gsi_stmt (gsi
);
3204 if (gimple_code (oneh
) != GIMPLE_TRY
3205 || gimple_try_kind (oneh
) != GIMPLE_TRY_CATCH
)
3208 if (same_handler_p (gimple_try_cleanup (oneh
), gimple_try_cleanup (two
)))
3210 gimple_seq seq
= gimple_try_eval (oneh
);
3212 gimple_try_set_cleanup (one
, seq
);
3213 gimple_try_set_kind (one
, GIMPLE_TRY_CATCH
);
3214 seq
= copy_gimple_seq_and_replace_locals (seq
);
3215 gimple_seq_add_seq (&seq
, gimple_try_eval (two
));
3216 gimple_try_set_eval (two
, seq
);
3220 /* Perform EH refactoring optimizations that are simpler to do when code
3221 flow has been lowered but EH structures haven't. */
3224 refactor_eh_r (gimple_seq seq
)
3226 gimple_stmt_iterator gsi
;
3231 gsi
= gsi_start (seq
);
3235 if (gsi_end_p (gsi
))
3238 two
= gsi_stmt (gsi
);
3240 if (gtry
*try_one
= dyn_cast
<gtry
*> (one
))
3241 if (gtry
*try_two
= dyn_cast
<gtry
*> (two
))
3242 if (gimple_try_kind (try_one
) == GIMPLE_TRY_FINALLY
3243 && gimple_try_kind (try_two
) == GIMPLE_TRY_FINALLY
)
3244 optimize_double_finally (try_one
, try_two
);
3246 switch (gimple_code (one
))
3249 refactor_eh_r (gimple_try_eval (one
));
3250 refactor_eh_r (gimple_try_cleanup (one
));
3253 refactor_eh_r (gimple_catch_handler (as_a
<gcatch
*> (one
)));
3255 case GIMPLE_EH_FILTER
:
3256 refactor_eh_r (gimple_eh_filter_failure (one
));
3258 case GIMPLE_EH_ELSE
:
3260 geh_else
*eh_else_stmt
= as_a
<geh_else
*> (one
);
3261 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt
));
3262 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt
));
3277 const pass_data pass_data_refactor_eh
=
3279 GIMPLE_PASS
, /* type */
3281 OPTGROUP_NONE
, /* optinfo_flags */
3282 TV_TREE_EH
, /* tv_id */
3283 PROP_gimple_lcf
, /* properties_required */
3284 0, /* properties_provided */
3285 0, /* properties_destroyed */
3286 0, /* todo_flags_start */
3287 0, /* todo_flags_finish */
3290 class pass_refactor_eh
: public gimple_opt_pass
3293 pass_refactor_eh (gcc::context
*ctxt
)
3294 : gimple_opt_pass (pass_data_refactor_eh
, ctxt
)
3297 /* opt_pass methods: */
3298 virtual bool gate (function
*) { return flag_exceptions
!= 0; }
3299 virtual unsigned int execute (function
*)
3301 refactor_eh_r (gimple_body (current_function_decl
));
3305 }; // class pass_refactor_eh
3310 make_pass_refactor_eh (gcc::context
*ctxt
)
3312 return new pass_refactor_eh (ctxt
);
3315 /* At the end of gimple optimization, we can lower RESX. */
3318 lower_resx (basic_block bb
, gresx
*stmt
,
3319 hash_map
<eh_region
, tree
> *mnt_map
)
3322 eh_region src_r
, dst_r
;
3323 gimple_stmt_iterator gsi
;
3328 lp_nr
= lookup_stmt_eh_lp (stmt
);
3330 dst_r
= get_eh_region_from_lp_number (lp_nr
);
3334 src_r
= get_eh_region_from_number (gimple_resx_region (stmt
));
3335 gsi
= gsi_last_bb (bb
);
3339 /* We can wind up with no source region when pass_cleanup_eh shows
3340 that there are no entries into an eh region and deletes it, but
3341 then the block that contains the resx isn't removed. This can
3342 happen without optimization when the switch statement created by
3343 lower_try_finally_switch isn't simplified to remove the eh case.
3345 Resolve this by expanding the resx node to an abort. */
3347 fn
= builtin_decl_implicit (BUILT_IN_TRAP
);
3348 x
= gimple_build_call (fn
, 0);
3349 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3351 while (EDGE_COUNT (bb
->succs
) > 0)
3352 remove_edge (EDGE_SUCC (bb
, 0));
3356 /* When we have a destination region, we resolve this by copying
3357 the excptr and filter values into place, and changing the edge
3358 to immediately after the landing pad. */
3366 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3367 the failure decl into a new block, if needed. */
3368 gcc_assert (dst_r
->type
== ERT_MUST_NOT_THROW
);
3370 tree
*slot
= mnt_map
->get (dst_r
);
3373 gimple_stmt_iterator gsi2
;
3375 new_bb
= create_empty_bb (bb
);
3376 new_bb
->count
= bb
->count
;
3377 add_bb_to_loop (new_bb
, bb
->loop_father
);
3378 lab
= gimple_block_label (new_bb
);
3379 gsi2
= gsi_start_bb (new_bb
);
3381 fn
= dst_r
->u
.must_not_throw
.failure_decl
;
3382 x
= gimple_build_call (fn
, 0);
3383 gimple_set_location (x
, dst_r
->u
.must_not_throw
.failure_loc
);
3384 gsi_insert_after (&gsi2
, x
, GSI_CONTINUE_LINKING
);
3386 mnt_map
->put (dst_r
, lab
);
3391 new_bb
= label_to_block (cfun
, lab
);
3394 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
3395 e
= make_single_succ_edge (bb
, new_bb
, EDGE_FALLTHRU
);
3400 tree dst_nr
= build_int_cst (integer_type_node
, dst_r
->index
);
3402 fn
= builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES
);
3403 src_nr
= build_int_cst (integer_type_node
, src_r
->index
);
3404 x
= gimple_build_call (fn
, 2, dst_nr
, src_nr
);
3405 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3407 /* Update the flags for the outgoing edge. */
3408 e
= single_succ_edge (bb
);
3409 gcc_assert (e
->flags
& EDGE_EH
);
3410 e
->flags
= (e
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
3411 e
->probability
= profile_probability::always ();
3413 /* If there are no more EH users of the landing pad, delete it. */
3414 FOR_EACH_EDGE (e
, ei
, e
->dest
->preds
)
3415 if (e
->flags
& EDGE_EH
)
3419 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
3420 remove_eh_landing_pad (lp
);
3430 /* When we don't have a destination region, this exception escapes
3431 up the call chain. We resolve this by generating a call to the
3432 _Unwind_Resume library function. */
3434 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3435 with no arguments for C++. Check for that. */
3436 if (src_r
->use_cxa_end_cleanup
)
3438 fn
= builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP
);
3439 x
= gimple_build_call (fn
, 0);
3440 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3444 fn
= builtin_decl_implicit (BUILT_IN_EH_POINTER
);
3445 src_nr
= build_int_cst (integer_type_node
, src_r
->index
);
3446 x
= gimple_build_call (fn
, 1, src_nr
);
3447 var
= create_tmp_var (ptr_type_node
);
3448 var
= make_ssa_name (var
, x
);
3449 gimple_call_set_lhs (x
, var
);
3450 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3452 /* When exception handling is delegated to a caller function, we
3453 have to guarantee that shadow memory variables living on stack
3454 will be cleaner before control is given to a parent function. */
3455 if (sanitize_flags_p (SANITIZE_ADDRESS
))
3458 = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN
);
3459 gimple
*g
= gimple_build_call (decl
, 0);
3460 gimple_set_location (g
, gimple_location (stmt
));
3461 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3464 fn
= builtin_decl_implicit (BUILT_IN_UNWIND_RESUME
);
3465 x
= gimple_build_call (fn
, 1, var
);
3466 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3469 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
3472 gsi_remove (&gsi
, true);
3479 const pass_data pass_data_lower_resx
=
3481 GIMPLE_PASS
, /* type */
3483 OPTGROUP_NONE
, /* optinfo_flags */
3484 TV_TREE_EH
, /* tv_id */
3485 PROP_gimple_lcf
, /* properties_required */
3486 0, /* properties_provided */
3487 0, /* properties_destroyed */
3488 0, /* todo_flags_start */
3489 0, /* todo_flags_finish */
3492 class pass_lower_resx
: public gimple_opt_pass
3495 pass_lower_resx (gcc::context
*ctxt
)
3496 : gimple_opt_pass (pass_data_lower_resx
, ctxt
)
3499 /* opt_pass methods: */
3500 virtual bool gate (function
*) { return flag_exceptions
!= 0; }
3501 virtual unsigned int execute (function
*);
3503 }; // class pass_lower_resx
3506 pass_lower_resx::execute (function
*fun
)
3509 bool dominance_invalidated
= false;
3510 bool any_rewritten
= false;
3512 hash_map
<eh_region
, tree
> mnt_map
;
3514 FOR_EACH_BB_FN (bb
, fun
)
3516 gimple
*last
= last_stmt (bb
);
3517 if (last
&& is_gimple_resx (last
))
3519 dominance_invalidated
|=
3520 lower_resx (bb
, as_a
<gresx
*> (last
), &mnt_map
);
3521 any_rewritten
= true;
3525 if (dominance_invalidated
)
3527 free_dominance_info (CDI_DOMINATORS
);
3528 free_dominance_info (CDI_POST_DOMINATORS
);
3531 return any_rewritten
? TODO_update_ssa_only_virtuals
: 0;
3537 make_pass_lower_resx (gcc::context
*ctxt
)
3539 return new pass_lower_resx (ctxt
);
3542 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3546 optimize_clobbers (basic_block bb
)
3548 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
3549 bool any_clobbers
= false;
3550 bool seen_stack_restore
= false;
3554 /* Only optimize anything if the bb contains at least one clobber,
3555 ends with resx (checked by caller), optionally contains some
3556 debug stmts or labels, or at most one __builtin_stack_restore
3557 call, and has an incoming EH edge. */
3558 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3560 gimple
*stmt
= gsi_stmt (gsi
);
3561 if (is_gimple_debug (stmt
))
3563 if (gimple_clobber_p (stmt
))
3565 any_clobbers
= true;
3568 if (!seen_stack_restore
3569 && gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
3571 seen_stack_restore
= true;
3574 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3580 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3581 if (e
->flags
& EDGE_EH
)
3585 gsi
= gsi_last_bb (bb
);
3586 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3588 gimple
*stmt
= gsi_stmt (gsi
);
3589 if (!gimple_clobber_p (stmt
))
3591 unlink_stmt_vdef (stmt
);
3592 gsi_remove (&gsi
, true);
3593 release_defs (stmt
);
3597 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3598 internal throw to successor BB.
3599 SUNK, if not NULL, is an array of sequences indexed by basic-block
3600 index to sink to and to pick up sinking opportunities from.
3601 If FOUND_OPPORTUNITY is not NULL then do not perform the optimization
3602 but set *FOUND_OPPORTUNITY to true. */
3605 sink_clobbers (basic_block bb
,
3606 gimple_seq
*sunk
= NULL
, bool *found_opportunity
= NULL
)
3610 gimple_stmt_iterator gsi
, dgsi
;
3612 bool any_clobbers
= false;
3615 /* Only optimize if BB has a single EH successor and
3616 all predecessor edges are EH too. */
3617 if (!single_succ_p (bb
)
3618 || (single_succ_edge (bb
)->flags
& EDGE_EH
) == 0)
3621 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3623 if ((e
->flags
& EDGE_EH
) == 0)
3627 /* And BB contains only CLOBBER stmts before the final
3629 gsi
= gsi_last_bb (bb
);
3630 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3632 gimple
*stmt
= gsi_stmt (gsi
);
3633 if (is_gimple_debug (stmt
))
3635 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3637 if (!gimple_clobber_p (stmt
))
3639 any_clobbers
= true;
3641 if (!any_clobbers
&& (!sunk
|| gimple_seq_empty_p (sunk
[bb
->index
])))
3644 /* If this was a dry run, tell it we found clobbers to sink. */
3645 if (found_opportunity
)
3647 *found_opportunity
= true;
3651 edge succe
= single_succ_edge (bb
);
3652 succbb
= succe
->dest
;
3654 /* See if there is a virtual PHI node to take an updated virtual
3657 for (gphi_iterator gpi
= gsi_start_phis (succbb
);
3658 !gsi_end_p (gpi
); gsi_next (&gpi
))
3660 tree res
= gimple_phi_result (gpi
.phi ());
3661 if (virtual_operand_p (res
))
3668 gimple
*first_sunk
= NULL
;
3669 gimple
*last_sunk
= NULL
;
3670 if (sunk
&& !(succbb
->flags
& BB_VISITED
))
3671 dgsi
= gsi_start (sunk
[succbb
->index
]);
3673 dgsi
= gsi_after_labels (succbb
);
3674 gsi
= gsi_last_bb (bb
);
3675 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3677 gimple
*stmt
= gsi_stmt (gsi
);
3679 if (is_gimple_debug (stmt
))
3681 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3683 lhs
= gimple_assign_lhs (stmt
);
3684 /* Unfortunately we don't have dominance info updated at this
3685 point, so checking if
3686 dominated_by_p (CDI_DOMINATORS, succbb,
3687 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3688 would be too costly. Thus, avoid sinking any clobbers that
3689 refer to non-(D) SSA_NAMEs. */
3690 if (TREE_CODE (lhs
) == MEM_REF
3691 && TREE_CODE (TREE_OPERAND (lhs
, 0)) == SSA_NAME
3692 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs
, 0)))
3694 unlink_stmt_vdef (stmt
);
3695 gsi_remove (&gsi
, true);
3696 release_defs (stmt
);
3700 /* As we do not change stmt order when sinking across a
3701 forwarder edge we can keep virtual operands in place. */
3702 gsi_remove (&gsi
, false);
3703 gsi_insert_before (&dgsi
, stmt
, GSI_NEW_STMT
);
3708 if (sunk
&& !gimple_seq_empty_p (sunk
[bb
->index
]))
3711 first_sunk
= gsi_stmt (gsi_last (sunk
[bb
->index
]));
3712 last_sunk
= gsi_stmt (gsi_start (sunk
[bb
->index
]));
3713 gsi_insert_seq_before_without_update (&dgsi
,
3714 sunk
[bb
->index
], GSI_NEW_STMT
);
3715 sunk
[bb
->index
] = NULL
;
3719 /* Adjust virtual operands if we sunk across a virtual PHI. */
3722 imm_use_iterator iter
;
3723 use_operand_p use_p
;
3725 tree phi_def
= gimple_phi_result (vphi
);
3726 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, phi_def
)
3727 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3728 SET_USE (use_p
, gimple_vdef (first_sunk
));
3729 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (phi_def
))
3731 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (first_sunk
)) = 1;
3732 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (phi_def
) = 0;
3734 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi
, succe
),
3735 gimple_vuse (last_sunk
));
3736 SET_USE (gimple_vuse_op (last_sunk
), phi_def
);
3738 /* If there isn't a single predecessor but no virtual PHI node
3739 arrange for virtual operands to be renamed. */
3740 else if (!single_pred_p (succbb
)
3741 && TREE_CODE (gimple_vuse (last_sunk
)) == SSA_NAME
)
3743 mark_virtual_operand_for_renaming (gimple_vuse (last_sunk
));
3744 todo
|= TODO_update_ssa_only_virtuals
;
3751 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3752 we have found some duplicate labels and removed some edges. */
3755 lower_eh_dispatch (basic_block src
, geh_dispatch
*stmt
)
3757 gimple_stmt_iterator gsi
;
3762 bool redirected
= false;
3764 region_nr
= gimple_eh_dispatch_region (stmt
);
3765 r
= get_eh_region_from_number (region_nr
);
3767 gsi
= gsi_last_bb (src
);
3773 auto_vec
<tree
> labels
;
3774 tree default_label
= NULL
;
3778 hash_set
<tree
> seen_values
;
3780 /* Collect the labels for a switch. Zero the post_landing_pad
3781 field becase we'll no longer have anything keeping these labels
3782 in existence and the optimizer will be free to merge these
3784 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
3786 tree tp_node
, flt_node
, lab
= c
->label
;
3787 bool have_label
= false;
3790 tp_node
= c
->type_list
;
3791 flt_node
= c
->filter_list
;
3793 if (tp_node
== NULL
)
3795 default_label
= lab
;
3800 /* Filter out duplicate labels that arise when this handler
3801 is shadowed by an earlier one. When no labels are
3802 attached to the handler anymore, we remove
3803 the corresponding edge and then we delete unreachable
3804 blocks at the end of this pass. */
3805 if (! seen_values
.contains (TREE_VALUE (flt_node
)))
3807 tree t
= build_case_label (TREE_VALUE (flt_node
),
3809 labels
.safe_push (t
);
3810 seen_values
.add (TREE_VALUE (flt_node
));
3814 tp_node
= TREE_CHAIN (tp_node
);
3815 flt_node
= TREE_CHAIN (flt_node
);
3820 remove_edge (find_edge (src
, label_to_block (cfun
, lab
)));
3825 /* Clean up the edge flags. */
3826 FOR_EACH_EDGE (e
, ei
, src
->succs
)
3828 if (e
->flags
& EDGE_FALLTHRU
)
3830 /* If there was no catch-all, use the fallthru edge. */
3831 if (default_label
== NULL
)
3832 default_label
= gimple_block_label (e
->dest
);
3833 e
->flags
&= ~EDGE_FALLTHRU
;
3836 gcc_assert (default_label
!= NULL
);
3838 /* Don't generate a switch if there's only a default case.
3839 This is common in the form of try { A; } catch (...) { B; }. */
3840 if (!labels
.exists ())
3842 e
= single_succ_edge (src
);
3843 e
->flags
|= EDGE_FALLTHRU
;
3847 fn
= builtin_decl_implicit (BUILT_IN_EH_FILTER
);
3848 x
= gimple_build_call (fn
, 1, build_int_cst (integer_type_node
,
3850 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)));
3851 filter
= make_ssa_name (filter
, x
);
3852 gimple_call_set_lhs (x
, filter
);
3853 gimple_set_location (x
, gimple_location (stmt
));
3854 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3856 /* Turn the default label into a default case. */
3857 default_label
= build_case_label (NULL
, NULL
, default_label
);
3858 sort_case_labels (labels
);
3860 x
= gimple_build_switch (filter
, default_label
, labels
);
3861 gimple_set_location (x
, gimple_location (stmt
));
3862 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3867 case ERT_ALLOWED_EXCEPTIONS
:
3869 edge b_e
= BRANCH_EDGE (src
);
3870 edge f_e
= FALLTHRU_EDGE (src
);
3872 fn
= builtin_decl_implicit (BUILT_IN_EH_FILTER
);
3873 x
= gimple_build_call (fn
, 1, build_int_cst (integer_type_node
,
3875 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)));
3876 filter
= make_ssa_name (filter
, x
);
3877 gimple_call_set_lhs (x
, filter
);
3878 gimple_set_location (x
, gimple_location (stmt
));
3879 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3881 r
->u
.allowed
.label
= NULL
;
3882 x
= gimple_build_cond (EQ_EXPR
, filter
,
3883 build_int_cst (TREE_TYPE (filter
),
3884 r
->u
.allowed
.filter
),
3885 NULL_TREE
, NULL_TREE
);
3886 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3888 b_e
->flags
= b_e
->flags
| EDGE_TRUE_VALUE
;
3889 f_e
->flags
= (f_e
->flags
& ~EDGE_FALLTHRU
) | EDGE_FALSE_VALUE
;
3897 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3898 gsi_remove (&gsi
, true);
3904 const pass_data pass_data_lower_eh_dispatch
=
3906 GIMPLE_PASS
, /* type */
3907 "ehdisp", /* name */
3908 OPTGROUP_NONE
, /* optinfo_flags */
3909 TV_TREE_EH
, /* tv_id */
3910 PROP_gimple_lcf
, /* properties_required */
3911 0, /* properties_provided */
3912 0, /* properties_destroyed */
3913 0, /* todo_flags_start */
3914 0, /* todo_flags_finish */
3917 class pass_lower_eh_dispatch
: public gimple_opt_pass
3920 pass_lower_eh_dispatch (gcc::context
*ctxt
)
3921 : gimple_opt_pass (pass_data_lower_eh_dispatch
, ctxt
)
3924 /* opt_pass methods: */
3925 virtual bool gate (function
*fun
) { return fun
->eh
->region_tree
!= NULL
; }
3926 virtual unsigned int execute (function
*);
3928 }; // class pass_lower_eh_dispatch
3931 pass_lower_eh_dispatch::execute (function
*fun
)
3935 bool redirected
= false;
3936 bool any_resx_to_process
= false;
3938 assign_filter_values ();
3940 FOR_EACH_BB_FN (bb
, fun
)
3942 gimple
*last
= last_stmt (bb
);
3945 if (gimple_code (last
) == GIMPLE_EH_DISPATCH
)
3947 redirected
|= lower_eh_dispatch (bb
,
3948 as_a
<geh_dispatch
*> (last
));
3949 flags
|= TODO_update_ssa_only_virtuals
;
3951 else if (gimple_code (last
) == GIMPLE_RESX
)
3953 if (stmt_can_throw_external (fun
, last
))
3954 optimize_clobbers (bb
);
3955 else if (!any_resx_to_process
)
3956 sink_clobbers (bb
, NULL
, &any_resx_to_process
);
3958 bb
->flags
&= ~BB_VISITED
;
3962 free_dominance_info (CDI_DOMINATORS
);
3963 delete_unreachable_blocks ();
3966 if (any_resx_to_process
)
3968 /* Make sure to catch all secondary sinking opportunities by processing
3969 blocks in RPO order and after all CFG modifications from lowering
3970 and unreachable block removal. */
3971 int *rpo
= XNEWVEC (int, n_basic_blocks_for_fn (fun
));
3972 int rpo_n
= pre_and_rev_post_order_compute_fn (fun
, NULL
, rpo
, false);
3973 gimple_seq
*sunk
= XCNEWVEC (gimple_seq
, last_basic_block_for_fn (fun
));
3974 for (int i
= 0; i
< rpo_n
; ++i
)
3976 bb
= BASIC_BLOCK_FOR_FN (fun
, rpo
[i
]);
3977 gimple
*last
= last_stmt (bb
);
3979 && gimple_code (last
) == GIMPLE_RESX
3980 && !stmt_can_throw_external (fun
, last
))
3981 flags
|= sink_clobbers (bb
, sunk
);
3982 /* If there were any clobbers sunk into this BB, insert them now. */
3983 if (!gimple_seq_empty_p (sunk
[bb
->index
]))
3985 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
3986 gsi_insert_seq_before (&gsi
, sunk
[bb
->index
], GSI_NEW_STMT
);
3987 sunk
[bb
->index
] = NULL
;
3989 bb
->flags
|= BB_VISITED
;
4001 make_pass_lower_eh_dispatch (gcc::context
*ctxt
)
4003 return new pass_lower_eh_dispatch (ctxt
);
4006 /* Walk statements, see what regions and, optionally, landing pads
4007 are really referenced.
4009 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
4010 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
4012 Passing NULL for LP_REACHABLE is valid, in this case only reachable
4015 The caller is responsible for freeing the returned sbitmaps. */
4018 mark_reachable_handlers (sbitmap
*r_reachablep
, sbitmap
*lp_reachablep
)
4020 sbitmap r_reachable
, lp_reachable
;
4022 bool mark_landing_pads
= (lp_reachablep
!= NULL
);
4023 gcc_checking_assert (r_reachablep
!= NULL
);
4025 r_reachable
= sbitmap_alloc (cfun
->eh
->region_array
->length ());
4026 bitmap_clear (r_reachable
);
4027 *r_reachablep
= r_reachable
;
4029 if (mark_landing_pads
)
4031 lp_reachable
= sbitmap_alloc (cfun
->eh
->lp_array
->length ());
4032 bitmap_clear (lp_reachable
);
4033 *lp_reachablep
= lp_reachable
;
4036 lp_reachable
= NULL
;
4038 FOR_EACH_BB_FN (bb
, cfun
)
4040 gimple_stmt_iterator gsi
;
4042 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4044 gimple
*stmt
= gsi_stmt (gsi
);
4046 if (mark_landing_pads
)
4048 int lp_nr
= lookup_stmt_eh_lp (stmt
);
4050 /* Negative LP numbers are MUST_NOT_THROW regions which
4051 are not considered BB enders. */
4053 bitmap_set_bit (r_reachable
, -lp_nr
);
4055 /* Positive LP numbers are real landing pads, and BB enders. */
4058 gcc_assert (gsi_one_before_end_p (gsi
));
4059 eh_region region
= get_eh_region_from_lp_number (lp_nr
);
4060 bitmap_set_bit (r_reachable
, region
->index
);
4061 bitmap_set_bit (lp_reachable
, lp_nr
);
4065 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
4066 switch (gimple_code (stmt
))
4069 bitmap_set_bit (r_reachable
,
4070 gimple_resx_region (as_a
<gresx
*> (stmt
)));
4072 case GIMPLE_EH_DISPATCH
:
4073 bitmap_set_bit (r_reachable
,
4074 gimple_eh_dispatch_region (
4075 as_a
<geh_dispatch
*> (stmt
)));
4078 if (gimple_call_builtin_p (stmt
, BUILT_IN_EH_COPY_VALUES
))
4079 for (int i
= 0; i
< 2; ++i
)
4081 tree rt
= gimple_call_arg (stmt
, i
);
4082 HOST_WIDE_INT ri
= tree_to_shwi (rt
);
4084 gcc_assert (ri
== (int)ri
);
4085 bitmap_set_bit (r_reachable
, ri
);
4095 /* Remove unreachable handlers and unreachable landing pads. */
4098 remove_unreachable_handlers (void)
4100 sbitmap r_reachable
, lp_reachable
;
4105 mark_reachable_handlers (&r_reachable
, &lp_reachable
);
4109 fprintf (dump_file
, "Before removal of unreachable regions:\n");
4110 dump_eh_tree (dump_file
, cfun
);
4111 fprintf (dump_file
, "Reachable regions: ");
4112 dump_bitmap_file (dump_file
, r_reachable
);
4113 fprintf (dump_file
, "Reachable landing pads: ");
4114 dump_bitmap_file (dump_file
, lp_reachable
);
4119 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->region_array
, i
, region
)
4120 if (region
&& !bitmap_bit_p (r_reachable
, region
->index
))
4122 "Removing unreachable region %d\n",
4126 remove_unreachable_eh_regions (r_reachable
);
4128 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->lp_array
, i
, lp
)
4129 if (lp
&& !bitmap_bit_p (lp_reachable
, lp
->index
))
4133 "Removing unreachable landing pad %d\n",
4135 remove_eh_landing_pad (lp
);
4140 fprintf (dump_file
, "\n\nAfter removal of unreachable regions:\n");
4141 dump_eh_tree (dump_file
, cfun
);
4142 fprintf (dump_file
, "\n\n");
4145 sbitmap_free (r_reachable
);
4146 sbitmap_free (lp_reachable
);
4149 verify_eh_tree (cfun
);
4152 /* Remove unreachable handlers if any landing pads have been removed after
4153 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
4156 maybe_remove_unreachable_handlers (void)
4161 if (cfun
->eh
== NULL
)
4164 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->lp_array
, i
, lp
)
4166 && (lp
->post_landing_pad
== NULL_TREE
4167 || label_to_block (cfun
, lp
->post_landing_pad
) == NULL
))
4169 remove_unreachable_handlers ();
4174 /* Remove regions that do not have landing pads. This assumes
4175 that remove_unreachable_handlers has already been run, and
4176 that we've just manipulated the landing pads since then.
4178 Preserve regions with landing pads and regions that prevent
4179 exceptions from propagating further, even if these regions
4180 are not reachable. */
4183 remove_unreachable_handlers_no_lp (void)
4186 sbitmap r_reachable
;
4189 mark_reachable_handlers (&r_reachable
, /*lp_reachablep=*/NULL
);
4191 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->region_array
, i
, region
)
4196 if (region
->landing_pads
!= NULL
4197 || region
->type
== ERT_MUST_NOT_THROW
)
4198 bitmap_set_bit (r_reachable
, region
->index
);
4201 && !bitmap_bit_p (r_reachable
, region
->index
))
4203 "Removing unreachable region %d\n",
4207 remove_unreachable_eh_regions (r_reachable
);
4209 sbitmap_free (r_reachable
);
4212 /* Undo critical edge splitting on an EH landing pad. Earlier, we
4213 optimisticaly split all sorts of edges, including EH edges. The
4214 optimization passes in between may not have needed them; if not,
4215 we should undo the split.
4217 Recognize this case by having one EH edge incoming to the BB and
4218 one normal edge outgoing; BB should be empty apart from the
4219 post_landing_pad label.
4221 Note that this is slightly different from the empty handler case
4222 handled by cleanup_empty_eh, in that the actual handler may yet
4223 have actual code but the landing pad has been separated from the
4224 handler. As such, cleanup_empty_eh relies on this transformation
4225 having been done first. */
4228 unsplit_eh (eh_landing_pad lp
)
4230 basic_block bb
= label_to_block (cfun
, lp
->post_landing_pad
);
4231 gimple_stmt_iterator gsi
;
4234 /* Quickly check the edge counts on BB for singularity. */
4235 if (!single_pred_p (bb
) || !single_succ_p (bb
))
4237 e_in
= single_pred_edge (bb
);
4238 e_out
= single_succ_edge (bb
);
4240 /* Input edge must be EH and output edge must be normal. */
4241 if ((e_in
->flags
& EDGE_EH
) == 0 || (e_out
->flags
& EDGE_EH
) != 0)
4244 /* The block must be empty except for the labels and debug insns. */
4245 gsi
= gsi_after_labels (bb
);
4246 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4247 gsi_next_nondebug (&gsi
);
4248 if (!gsi_end_p (gsi
))
4251 /* The destination block must not already have a landing pad
4252 for a different region. */
4253 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4255 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
4261 lab
= gimple_label_label (label_stmt
);
4262 lp_nr
= EH_LANDING_PAD_NR (lab
);
4263 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
4267 /* The new destination block must not already be a destination of
4268 the source block, lest we merge fallthru and eh edges and get
4269 all sorts of confused. */
4270 if (find_edge (e_in
->src
, e_out
->dest
))
4273 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4274 thought this should have been cleaned up by a phicprop pass, but
4275 that doesn't appear to handle virtuals. Propagate by hand. */
4276 if (!gimple_seq_empty_p (phi_nodes (bb
)))
4278 for (gphi_iterator gpi
= gsi_start_phis (bb
); !gsi_end_p (gpi
); )
4281 gphi
*phi
= gpi
.phi ();
4282 tree lhs
= gimple_phi_result (phi
);
4283 tree rhs
= gimple_phi_arg_def (phi
, 0);
4284 use_operand_p use_p
;
4285 imm_use_iterator iter
;
4287 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
4289 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
4290 SET_USE (use_p
, rhs
);
4293 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
4294 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs
) = 1;
4296 remove_phi_node (&gpi
, true);
4300 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4301 fprintf (dump_file
, "Unsplit EH landing pad %d to block %i.\n",
4302 lp
->index
, e_out
->dest
->index
);
4304 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4305 a successor edge, humor it. But do the real CFG change with the
4306 predecessor of E_OUT in order to preserve the ordering of arguments
4307 to the PHI nodes in E_OUT->DEST. */
4308 redirect_eh_edge_1 (e_in
, e_out
->dest
, false);
4309 redirect_edge_pred (e_out
, e_in
->src
);
4310 e_out
->flags
= e_in
->flags
;
4311 e_out
->probability
= e_in
->probability
;
4317 /* Examine each landing pad block and see if it matches unsplit_eh. */
4320 unsplit_all_eh (void)
4322 bool changed
= false;
4326 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
4328 changed
|= unsplit_eh (lp
);
4333 /* Wrapper around unsplit_all_eh that makes it usable everywhere. */
4336 unsplit_eh_edges (void)
4340 /* unsplit_all_eh can die looking up unreachable landing pads. */
4341 maybe_remove_unreachable_handlers ();
4343 changed
= unsplit_all_eh ();
4345 /* If EH edges have been unsplit, delete unreachable forwarder blocks. */
4348 free_dominance_info (CDI_DOMINATORS
);
4349 free_dominance_info (CDI_POST_DOMINATORS
);
4350 delete_unreachable_blocks ();
4354 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4355 to OLD_BB to NEW_BB; return true on success, false on failure.
4357 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4358 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4359 Virtual PHIs may be deleted and marked for renaming. */
4362 cleanup_empty_eh_merge_phis (basic_block new_bb
, basic_block old_bb
,
4363 edge old_bb_out
, bool change_region
)
4365 gphi_iterator ngsi
, ogsi
;
4368 bitmap ophi_handled
;
4370 /* The destination block must not be a regular successor for any
4371 of the preds of the landing pad. Thus, avoid turning
4381 which CFG verification would choke on. See PR45172 and PR51089. */
4382 if (!single_pred_p (new_bb
))
4383 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4384 if (find_edge (e
->src
, new_bb
))
4387 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4388 redirect_edge_var_map_clear (e
);
4390 ophi_handled
= BITMAP_ALLOC (NULL
);
4392 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4393 for the edges we're going to move. */
4394 for (ngsi
= gsi_start_phis (new_bb
); !gsi_end_p (ngsi
); gsi_next (&ngsi
))
4396 gphi
*ophi
, *nphi
= ngsi
.phi ();
4399 nresult
= gimple_phi_result (nphi
);
4400 nop
= gimple_phi_arg_def (nphi
, old_bb_out
->dest_idx
);
4402 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4403 the source ssa_name. */
4405 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
4408 if (gimple_phi_result (ophi
) == nop
)
4413 /* If we did find the corresponding PHI, copy those inputs. */
4416 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4417 if (!has_single_use (nop
))
4419 imm_use_iterator imm_iter
;
4420 use_operand_p use_p
;
4422 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, nop
)
4424 if (!gimple_debug_bind_p (USE_STMT (use_p
))
4425 && (gimple_code (USE_STMT (use_p
)) != GIMPLE_PHI
4426 || gimple_bb (USE_STMT (use_p
)) != new_bb
))
4430 bitmap_set_bit (ophi_handled
, SSA_NAME_VERSION (nop
));
4431 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4436 if ((e
->flags
& EDGE_EH
) == 0)
4438 oop
= gimple_phi_arg_def (ophi
, e
->dest_idx
);
4439 oloc
= gimple_phi_arg_location (ophi
, e
->dest_idx
);
4440 redirect_edge_var_map_add (e
, nresult
, oop
, oloc
);
4443 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4444 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4445 variable is unchanged from input to the block and we can simply
4446 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4450 = gimple_phi_arg_location (nphi
, old_bb_out
->dest_idx
);
4451 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4452 redirect_edge_var_map_add (e
, nresult
, nop
, nloc
);
4456 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4457 we don't know what values from the other edges into NEW_BB to use. */
4458 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
4460 gphi
*ophi
= ogsi
.phi ();
4461 tree oresult
= gimple_phi_result (ophi
);
4462 if (!bitmap_bit_p (ophi_handled
, SSA_NAME_VERSION (oresult
)))
4466 /* Finally, move the edges and update the PHIs. */
4467 for (ei
= ei_start (old_bb
->preds
); (e
= ei_safe_edge (ei
)); )
4468 if (e
->flags
& EDGE_EH
)
4470 /* ??? CFG manipluation routines do not try to update loop
4471 form on edge redirection. Do so manually here for now. */
4472 /* If we redirect a loop entry or latch edge that will either create
4473 a multiple entry loop or rotate the loop. If the loops merge
4474 we may have created a loop with multiple latches.
4475 All of this isn't easily fixed thus cancel the affected loop
4476 and mark the other loop as possibly having multiple latches. */
4477 if (e
->dest
== e
->dest
->loop_father
->header
)
4479 mark_loop_for_removal (e
->dest
->loop_father
);
4480 new_bb
->loop_father
->latch
= NULL
;
4481 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES
);
4483 redirect_eh_edge_1 (e
, new_bb
, change_region
);
4484 redirect_edge_succ (e
, new_bb
);
4485 flush_pending_stmts (e
);
4490 BITMAP_FREE (ophi_handled
);
4494 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4495 redirect_edge_var_map_clear (e
);
4496 BITMAP_FREE (ophi_handled
);
4500 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4501 old region to NEW_REGION at BB. */
4504 cleanup_empty_eh_move_lp (basic_block bb
, edge e_out
,
4505 eh_landing_pad lp
, eh_region new_region
)
4507 gimple_stmt_iterator gsi
;
4510 for (pp
= &lp
->region
->landing_pads
; *pp
!= lp
; pp
= &(*pp
)->next_lp
)
4514 lp
->region
= new_region
;
4515 lp
->next_lp
= new_region
->landing_pads
;
4516 new_region
->landing_pads
= lp
;
4518 /* Delete the RESX that was matched within the empty handler block. */
4519 gsi
= gsi_last_bb (bb
);
4520 unlink_stmt_vdef (gsi_stmt (gsi
));
4521 gsi_remove (&gsi
, true);
4523 /* Clean up E_OUT for the fallthru. */
4524 e_out
->flags
= (e_out
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
4525 e_out
->probability
= profile_probability::always ();
4528 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4529 unsplitting than unsplit_eh was prepared to handle, e.g. when
4530 multiple incoming edges and phis are involved. */
4533 cleanup_empty_eh_unsplit (basic_block bb
, edge e_out
, eh_landing_pad lp
)
4535 gimple_stmt_iterator gsi
;
4538 /* We really ought not have totally lost everything following
4539 a landing pad label. Given that BB is empty, there had better
4541 gcc_assert (e_out
!= NULL
);
4543 /* The destination block must not already have a landing pad
4544 for a different region. */
4546 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4548 glabel
*stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
4553 lab
= gimple_label_label (stmt
);
4554 lp_nr
= EH_LANDING_PAD_NR (lab
);
4555 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
4559 /* Attempt to move the PHIs into the successor block. */
4560 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, false))
4562 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4564 "Unsplit EH landing pad %d to block %i "
4565 "(via cleanup_empty_eh).\n",
4566 lp
->index
, e_out
->dest
->index
);
4573 /* Return true if edge E_FIRST is part of an empty infinite loop
4574 or leads to such a loop through a series of single successor
4578 infinite_empty_loop_p (edge e_first
)
4580 bool inf_loop
= false;
4583 if (e_first
->dest
== e_first
->src
)
4586 e_first
->src
->aux
= (void *) 1;
4587 for (e
= e_first
; single_succ_p (e
->dest
); e
= single_succ_edge (e
->dest
))
4589 gimple_stmt_iterator gsi
;
4595 e
->dest
->aux
= (void *) 1;
4596 gsi
= gsi_after_labels (e
->dest
);
4597 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4598 gsi_next_nondebug (&gsi
);
4599 if (!gsi_end_p (gsi
))
4602 e_first
->src
->aux
= NULL
;
4603 for (e
= e_first
; e
->dest
->aux
; e
= single_succ_edge (e
->dest
))
4604 e
->dest
->aux
= NULL
;
4609 /* Examine the block associated with LP to determine if it's an empty
4610 handler for its EH region. If so, attempt to redirect EH edges to
4611 an outer region. Return true the CFG was updated in any way. This
4612 is similar to jump forwarding, just across EH edges. */
4615 cleanup_empty_eh (eh_landing_pad lp
)
4617 basic_block bb
= label_to_block (cfun
, lp
->post_landing_pad
);
4618 gimple_stmt_iterator gsi
;
4620 eh_region new_region
;
4623 bool has_non_eh_pred
;
4627 /* There can be zero or one edges out of BB. This is the quickest test. */
4628 switch (EDGE_COUNT (bb
->succs
))
4634 e_out
= single_succ_edge (bb
);
4640 gsi
= gsi_last_nondebug_bb (bb
);
4641 resx
= gsi_stmt (gsi
);
4642 if (resx
&& is_gimple_resx (resx
))
4644 if (stmt_can_throw_external (cfun
, resx
))
4645 optimize_clobbers (bb
);
4646 else if (sink_clobbers (bb
))
4650 gsi
= gsi_after_labels (bb
);
4652 /* Make sure to skip debug statements. */
4653 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4654 gsi_next_nondebug (&gsi
);
4656 /* If the block is totally empty, look for more unsplitting cases. */
4657 if (gsi_end_p (gsi
))
4659 /* For the degenerate case of an infinite loop bail out.
4660 If bb has no successors and is totally empty, which can happen e.g.
4661 because of incorrect noreturn attribute, bail out too. */
4663 || infinite_empty_loop_p (e_out
))
4666 return ret
| cleanup_empty_eh_unsplit (bb
, e_out
, lp
);
4669 /* The block should consist only of a single RESX statement, modulo a
4670 preceding call to __builtin_stack_restore if there is no outgoing
4671 edge, since the call can be eliminated in this case. */
4672 resx
= gsi_stmt (gsi
);
4673 if (!e_out
&& gimple_call_builtin_p (resx
, BUILT_IN_STACK_RESTORE
))
4675 gsi_next_nondebug (&gsi
);
4676 resx
= gsi_stmt (gsi
);
4678 if (!is_gimple_resx (resx
))
4680 gcc_assert (gsi_one_nondebug_before_end_p (gsi
));
4682 /* Determine if there are non-EH edges, or resx edges into the handler. */
4683 has_non_eh_pred
= false;
4684 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4685 if (!(e
->flags
& EDGE_EH
))
4686 has_non_eh_pred
= true;
4688 /* Find the handler that's outer of the empty handler by looking at
4689 where the RESX instruction was vectored. */
4690 new_lp_nr
= lookup_stmt_eh_lp (resx
);
4691 new_region
= get_eh_region_from_lp_number (new_lp_nr
);
4693 /* If there's no destination region within the current function,
4694 redirection is trivial via removing the throwing statements from
4695 the EH region, removing the EH edges, and allowing the block
4696 to go unreachable. */
4697 if (new_region
== NULL
)
4699 gcc_assert (e_out
== NULL
);
4700 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
4701 if (e
->flags
& EDGE_EH
)
4703 gimple
*stmt
= last_stmt (e
->src
);
4704 remove_stmt_from_eh_lp (stmt
);
4712 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4713 to handle the abort and allow the blocks to go unreachable. */
4714 if (new_region
->type
== ERT_MUST_NOT_THROW
)
4716 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
4717 if (e
->flags
& EDGE_EH
)
4719 gimple
*stmt
= last_stmt (e
->src
);
4720 remove_stmt_from_eh_lp (stmt
);
4721 add_stmt_to_eh_lp (stmt
, new_lp_nr
);
4729 /* Try to redirect the EH edges and merge the PHIs into the destination
4730 landing pad block. If the merge succeeds, we'll already have redirected
4731 all the EH edges. The handler itself will go unreachable if there were
4733 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, true))
4736 /* Finally, if all input edges are EH edges, then we can (potentially)
4737 reduce the number of transfers from the runtime by moving the landing
4738 pad from the original region to the new region. This is a win when
4739 we remove the last CLEANUP region along a particular exception
4740 propagation path. Since nothing changes except for the region with
4741 which the landing pad is associated, the PHI nodes do not need to be
4743 if (!has_non_eh_pred
)
4745 cleanup_empty_eh_move_lp (bb
, e_out
, lp
, new_region
);
4746 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4747 fprintf (dump_file
, "Empty EH handler %i moved to EH region %i.\n",
4748 lp
->index
, new_region
->index
);
4750 /* ??? The CFG didn't change, but we may have rendered the
4751 old EH region unreachable. Trigger a cleanup there. */
4758 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4759 fprintf (dump_file
, "Empty EH handler %i removed.\n", lp
->index
);
4760 remove_eh_landing_pad (lp
);
4764 /* Do a post-order traversal of the EH region tree. Examine each
4765 post_landing_pad block and see if we can eliminate it as empty. */
4768 cleanup_all_empty_eh (void)
4770 bool changed
= false;
4774 /* The post-order traversal may lead to quadraticness in the redirection
4775 of incoming EH edges from inner LPs, so first try to walk the region
4776 tree from inner to outer LPs in order to eliminate these edges. */
4777 for (i
= vec_safe_length (cfun
->eh
->lp_array
) - 1; i
>= 1; --i
)
4779 lp
= (*cfun
->eh
->lp_array
)[i
];
4781 changed
|= cleanup_empty_eh (lp
);
4784 /* Now do the post-order traversal to eliminate outer empty LPs. */
4785 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
4787 changed
|= cleanup_empty_eh (lp
);
4792 /* Perform cleanups and lowering of exception handling
4793 1) cleanups regions with handlers doing nothing are optimized out
4794 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4795 3) Info about regions that are containing instructions, and regions
4796 reachable via local EH edges is collected
4797 4) Eh tree is pruned for regions no longer necessary.
4799 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4800 Unify those that have the same failure decl and locus.
4804 execute_cleanup_eh_1 (void)
4806 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4807 looking up unreachable landing pads. */
4808 remove_unreachable_handlers ();
4810 /* Watch out for the region tree vanishing due to all unreachable. */
4811 if (cfun
->eh
->region_tree
)
4813 bool changed
= false;
4816 changed
|= unsplit_all_eh ();
4817 changed
|= cleanup_all_empty_eh ();
4821 free_dominance_info (CDI_DOMINATORS
);
4822 free_dominance_info (CDI_POST_DOMINATORS
);
4824 /* We delayed all basic block deletion, as we may have performed
4825 cleanups on EH edges while non-EH edges were still present. */
4826 delete_unreachable_blocks ();
4828 /* We manipulated the landing pads. Remove any region that no
4829 longer has a landing pad. */
4830 remove_unreachable_handlers_no_lp ();
4832 return TODO_cleanup_cfg
| TODO_update_ssa_only_virtuals
;
4841 const pass_data pass_data_cleanup_eh
=
4843 GIMPLE_PASS
, /* type */
4844 "ehcleanup", /* name */
4845 OPTGROUP_NONE
, /* optinfo_flags */
4846 TV_TREE_EH
, /* tv_id */
4847 PROP_gimple_lcf
, /* properties_required */
4848 0, /* properties_provided */
4849 0, /* properties_destroyed */
4850 0, /* todo_flags_start */
4851 0, /* todo_flags_finish */
4854 class pass_cleanup_eh
: public gimple_opt_pass
4857 pass_cleanup_eh (gcc::context
*ctxt
)
4858 : gimple_opt_pass (pass_data_cleanup_eh
, ctxt
)
4861 /* opt_pass methods: */
4862 opt_pass
* clone () { return new pass_cleanup_eh (m_ctxt
); }
4863 virtual bool gate (function
*fun
)
4865 return fun
->eh
!= NULL
&& fun
->eh
->region_tree
!= NULL
;
4868 virtual unsigned int execute (function
*);
4870 }; // class pass_cleanup_eh
4873 pass_cleanup_eh::execute (function
*fun
)
4875 int ret
= execute_cleanup_eh_1 ();
4877 /* If the function no longer needs an EH personality routine
4878 clear it. This exposes cross-language inlining opportunities
4879 and avoids references to a never defined personality routine. */
4880 if (DECL_FUNCTION_PERSONALITY (current_function_decl
)
4881 && function_needs_eh_personality (fun
) != eh_personality_lang
)
4882 DECL_FUNCTION_PERSONALITY (current_function_decl
) = NULL_TREE
;
4890 make_pass_cleanup_eh (gcc::context
*ctxt
)
4892 return new pass_cleanup_eh (ctxt
);
4895 /* Disable warnings about missing quoting in GCC diagnostics for
4896 the verification errors. Their format strings don't follow GCC
4897 diagnostic conventions but are only used for debugging. */
4899 # pragma GCC diagnostic push
4900 # pragma GCC diagnostic ignored "-Wformat-diag"
4903 /* Verify that BB containing STMT as the last statement, has precisely the
4904 edge that make_eh_edges would create. */
4907 verify_eh_edges (gimple
*stmt
)
4909 basic_block bb
= gimple_bb (stmt
);
4910 eh_landing_pad lp
= NULL
;
4915 lp_nr
= lookup_stmt_eh_lp (stmt
);
4917 lp
= get_eh_landing_pad_from_number (lp_nr
);
4920 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4922 if (e
->flags
& EDGE_EH
)
4926 error ("BB %i has multiple EH edges", bb
->index
);
4938 error ("BB %i cannot throw but has an EH edge", bb
->index
);
4944 if (!stmt_could_throw_p (cfun
, stmt
))
4946 error ("BB %i last statement has incorrectly set lp", bb
->index
);
4950 if (eh_edge
== NULL
)
4952 error ("BB %i is missing an EH edge", bb
->index
);
4956 if (eh_edge
->dest
!= label_to_block (cfun
, lp
->post_landing_pad
))
4958 error ("Incorrect EH edge %i->%i", bb
->index
, eh_edge
->dest
->index
);
4965 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4968 verify_eh_dispatch_edge (geh_dispatch
*stmt
)
4972 basic_block src
, dst
;
4973 bool want_fallthru
= true;
4977 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
4978 src
= gimple_bb (stmt
);
4980 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4981 gcc_assert (e
->aux
== NULL
);
4986 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
4988 dst
= label_to_block (cfun
, c
->label
);
4989 e
= find_edge (src
, dst
);
4992 error ("BB %i is missing an edge", src
->index
);
4997 /* A catch-all handler doesn't have a fallthru. */
4998 if (c
->type_list
== NULL
)
5000 want_fallthru
= false;
5006 case ERT_ALLOWED_EXCEPTIONS
:
5007 dst
= label_to_block (cfun
, r
->u
.allowed
.label
);
5008 e
= find_edge (src
, dst
);
5011 error ("BB %i is missing an edge", src
->index
);
5022 FOR_EACH_EDGE (e
, ei
, src
->succs
)
5024 if (e
->flags
& EDGE_FALLTHRU
)
5026 if (fall_edge
!= NULL
)
5028 error ("BB %i too many fallthru edges", src
->index
);
5037 error ("BB %i has incorrect edge", src
->index
);
5041 if ((fall_edge
!= NULL
) ^ want_fallthru
)
5043 error ("BB %i has incorrect fallthru edge", src
->index
);
5051 # pragma GCC diagnostic pop