1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2021 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
32 initializer_each_zero_or_onep
34 tree_expr_nonnegative_p
42 bitmask_inv_cst_vector_p)
45 (define_operator_list tcc_comparison
46 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
47 (define_operator_list inverted_tcc_comparison
48 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list inverted_tcc_comparison_with_nans
50 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
51 (define_operator_list swapped_tcc_comparison
52 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
53 (define_operator_list simple_comparison lt le eq ne ge gt)
54 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
56 #include "cfn-operators.pd"
58 /* Define operand lists for math rounding functions {,i,l,ll}FN,
59 where the versions prefixed with "i" return an int, those prefixed with
60 "l" return a long and those prefixed with "ll" return a long long.
62 Also define operand lists:
64 X<FN>F for all float functions, in the order i, l, ll
65 X<FN> for all double functions, in the same order
66 X<FN>L for all long double functions, in the same order. */
67 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
68 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
71 (define_operator_list X##FN BUILT_IN_I##FN \
74 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
78 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
80 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
81 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
83 /* Unary operations and their associated IFN_COND_* function. */
84 (define_operator_list UNCOND_UNARY
86 (define_operator_list COND_UNARY
89 /* Binary operations and their associated IFN_COND_* function. */
90 (define_operator_list UNCOND_BINARY
92 mult trunc_div trunc_mod rdiv
95 bit_and bit_ior bit_xor
97 (define_operator_list COND_BINARY
98 IFN_COND_ADD IFN_COND_SUB
99 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
100 IFN_COND_MIN IFN_COND_MAX
101 IFN_COND_FMIN IFN_COND_FMAX
102 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
103 IFN_COND_SHL IFN_COND_SHR)
105 /* Same for ternary operations. */
106 (define_operator_list UNCOND_TERNARY
107 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
108 (define_operator_list COND_TERNARY
109 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
111 /* __atomic_fetch_or_*, __atomic_fetch_xor_*, __atomic_xor_fetch_* */
112 (define_operator_list ATOMIC_FETCH_OR_XOR_N
113 BUILT_IN_ATOMIC_FETCH_OR_1 BUILT_IN_ATOMIC_FETCH_OR_2
114 BUILT_IN_ATOMIC_FETCH_OR_4 BUILT_IN_ATOMIC_FETCH_OR_8
115 BUILT_IN_ATOMIC_FETCH_OR_16
116 BUILT_IN_ATOMIC_FETCH_XOR_1 BUILT_IN_ATOMIC_FETCH_XOR_2
117 BUILT_IN_ATOMIC_FETCH_XOR_4 BUILT_IN_ATOMIC_FETCH_XOR_8
118 BUILT_IN_ATOMIC_FETCH_XOR_16
119 BUILT_IN_ATOMIC_XOR_FETCH_1 BUILT_IN_ATOMIC_XOR_FETCH_2
120 BUILT_IN_ATOMIC_XOR_FETCH_4 BUILT_IN_ATOMIC_XOR_FETCH_8
121 BUILT_IN_ATOMIC_XOR_FETCH_16)
122 /* __sync_fetch_and_or_*, __sync_fetch_and_xor_*, __sync_xor_and_fetch_* */
123 (define_operator_list SYNC_FETCH_OR_XOR_N
124 BUILT_IN_SYNC_FETCH_AND_OR_1 BUILT_IN_SYNC_FETCH_AND_OR_2
125 BUILT_IN_SYNC_FETCH_AND_OR_4 BUILT_IN_SYNC_FETCH_AND_OR_8
126 BUILT_IN_SYNC_FETCH_AND_OR_16
127 BUILT_IN_SYNC_FETCH_AND_XOR_1 BUILT_IN_SYNC_FETCH_AND_XOR_2
128 BUILT_IN_SYNC_FETCH_AND_XOR_4 BUILT_IN_SYNC_FETCH_AND_XOR_8
129 BUILT_IN_SYNC_FETCH_AND_XOR_16
130 BUILT_IN_SYNC_XOR_AND_FETCH_1 BUILT_IN_SYNC_XOR_AND_FETCH_2
131 BUILT_IN_SYNC_XOR_AND_FETCH_4 BUILT_IN_SYNC_XOR_AND_FETCH_8
132 BUILT_IN_SYNC_XOR_AND_FETCH_16)
133 /* __atomic_fetch_and_*. */
134 (define_operator_list ATOMIC_FETCH_AND_N
135 BUILT_IN_ATOMIC_FETCH_AND_1 BUILT_IN_ATOMIC_FETCH_AND_2
136 BUILT_IN_ATOMIC_FETCH_AND_4 BUILT_IN_ATOMIC_FETCH_AND_8
137 BUILT_IN_ATOMIC_FETCH_AND_16)
138 /* __sync_fetch_and_and_*. */
139 (define_operator_list SYNC_FETCH_AND_AND_N
140 BUILT_IN_SYNC_FETCH_AND_AND_1 BUILT_IN_SYNC_FETCH_AND_AND_2
141 BUILT_IN_SYNC_FETCH_AND_AND_4 BUILT_IN_SYNC_FETCH_AND_AND_8
142 BUILT_IN_SYNC_FETCH_AND_AND_16)
144 /* With nop_convert? combine convert? and view_convert? in one pattern
145 plus conditionalize on tree_nop_conversion_p conversions. */
146 (match (nop_convert @0)
148 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
149 (match (nop_convert @0)
151 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
152 && known_eq (TYPE_VECTOR_SUBPARTS (type),
153 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
154 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
156 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
157 ABSU_EXPR returns unsigned absolute value of the operand and the operand
158 of the ABSU_EXPR will have the corresponding signed type. */
159 (simplify (abs (convert @0))
160 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
161 && !TYPE_UNSIGNED (TREE_TYPE (@0))
162 && element_precision (type) > element_precision (TREE_TYPE (@0)))
163 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
164 (convert (absu:utype @0)))))
167 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
169 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
170 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
171 && !TYPE_UNSIGNED (TREE_TYPE (@0))
172 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
176 /* Simplifications of operations with one constant operand and
177 simplifications to constants or single values. */
179 (for op (plus pointer_plus minus bit_ior bit_xor)
181 (op @0 integer_zerop)
184 /* 0 +p index -> (type)index */
186 (pointer_plus integer_zerop @1)
187 (non_lvalue (convert @1)))
189 /* ptr - 0 -> (type)ptr */
191 (pointer_diff @0 integer_zerop)
194 /* See if ARG1 is zero and X + ARG1 reduces to X.
195 Likewise if the operands are reversed. */
197 (plus:c @0 real_zerop@1)
198 (if (fold_real_zero_addition_p (type, @0, @1, 0))
201 /* See if ARG1 is zero and X - ARG1 reduces to X. */
203 (minus @0 real_zerop@1)
204 (if (fold_real_zero_addition_p (type, @0, @1, 1))
207 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
208 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
209 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
210 if not -frounding-math. For sNaNs the first operation would raise
211 exceptions but turn the result into qNan, so the second operation
212 would not raise it. */
213 (for inner_op (plus minus)
214 (for outer_op (plus minus)
216 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
219 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
220 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
221 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
223 = ((outer_op == PLUS_EXPR)
224 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
225 (if (outer_plus && !inner_plus)
230 This is unsafe for certain floats even in non-IEEE formats.
231 In IEEE, it is unsafe because it does wrong for NaNs.
232 Also note that operand_equal_p is always false if an operand
236 (if (!FLOAT_TYPE_P (type)
237 || (!tree_expr_maybe_nan_p (@0)
238 && !tree_expr_maybe_infinite_p (@0)))
239 { build_zero_cst (type); }))
241 (pointer_diff @@0 @0)
242 { build_zero_cst (type); })
245 (mult @0 integer_zerop@1)
248 /* -x == x -> x == 0 */
251 (cmp:c @0 (negate @0))
252 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
253 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE(@0)))
254 (cmp @0 { build_zero_cst (TREE_TYPE(@0)); }))))
256 /* Maybe fold x * 0 to 0. The expressions aren't the same
257 when x is NaN, since x * 0 is also NaN. Nor are they the
258 same in modes with signed zeros, since multiplying a
259 negative value by 0 gives -0, not +0. */
261 (mult @0 real_zerop@1)
262 (if (!tree_expr_maybe_nan_p (@0)
263 && !tree_expr_maybe_real_minus_zero_p (@0)
264 && !tree_expr_maybe_real_minus_zero_p (@1))
267 /* In IEEE floating point, x*1 is not equivalent to x for snans.
268 Likewise for complex arithmetic with signed zeros. */
271 (if (!tree_expr_maybe_signaling_nan_p (@0)
272 && (!HONOR_SIGNED_ZEROS (type)
273 || !COMPLEX_FLOAT_TYPE_P (type)))
276 /* Transform x * -1.0 into -x. */
278 (mult @0 real_minus_onep)
279 (if (!tree_expr_maybe_signaling_nan_p (@0)
280 && (!HONOR_SIGNED_ZEROS (type)
281 || !COMPLEX_FLOAT_TYPE_P (type)))
284 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
286 (mult SSA_NAME@1 SSA_NAME@2)
287 (if (INTEGRAL_TYPE_P (type)
288 && get_nonzero_bits (@1) == 1
289 && get_nonzero_bits (@2) == 1)
292 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
293 unless the target has native support for the former but not the latter. */
295 (mult @0 VECTOR_CST@1)
296 (if (initializer_each_zero_or_onep (@1)
297 && !HONOR_SNANS (type)
298 && !HONOR_SIGNED_ZEROS (type))
299 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
301 && (!VECTOR_MODE_P (TYPE_MODE (type))
302 || (VECTOR_MODE_P (TYPE_MODE (itype))
303 && optab_handler (and_optab,
304 TYPE_MODE (itype)) != CODE_FOR_nothing)))
305 (view_convert (bit_and:itype (view_convert @0)
306 (ne @1 { build_zero_cst (type); })))))))
308 (for cmp (gt ge lt le)
309 outp (convert convert negate negate)
310 outn (negate negate convert convert)
311 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
312 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
313 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
314 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
316 (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
317 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
319 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
320 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
321 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
322 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
324 (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
325 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
328 /* Transform X * copysign (1.0, X) into abs(X). */
330 (mult:c @0 (COPYSIGN_ALL real_onep @0))
331 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
334 /* Transform X * copysign (1.0, -X) into -abs(X). */
336 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
337 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
340 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
342 (COPYSIGN_ALL REAL_CST@0 @1)
343 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
344 (COPYSIGN_ALL (negate @0) @1)))
346 /* X * 1, X / 1 -> X. */
347 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
352 /* (A / (1 << B)) -> (A >> B).
353 Only for unsigned A. For signed A, this would not preserve rounding
355 For example: (-1 / ( 1 << B)) != -1 >> B.
356 Also also widening conversions, like:
357 (A / (unsigned long long) (1U << B)) -> (A >> B)
359 (A / (unsigned long long) (1 << B)) -> (A >> B).
360 If the left shift is signed, it can be done only if the upper bits
361 of A starting from shift's type sign bit are zero, as
362 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
363 so it is valid only if A >> 31 is zero. */
365 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
366 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
367 && (!VECTOR_TYPE_P (type)
368 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
369 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
370 && (useless_type_conversion_p (type, TREE_TYPE (@1))
371 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
372 && (TYPE_UNSIGNED (TREE_TYPE (@1))
373 || (element_precision (type)
374 == element_precision (TREE_TYPE (@1)))
375 || (INTEGRAL_TYPE_P (type)
376 && (tree_nonzero_bits (@0)
377 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
379 element_precision (type))) == 0)))))
380 (if (!VECTOR_TYPE_P (type)
381 && useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
382 && element_precision (TREE_TYPE (@3)) < element_precision (type))
383 (convert (rshift @3 @2))
386 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
387 undefined behavior in constexpr evaluation, and assuming that the division
388 traps enables better optimizations than these anyway. */
389 (for div (trunc_div ceil_div floor_div round_div exact_div)
390 /* 0 / X is always zero. */
392 (div integer_zerop@0 @1)
393 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
394 (if (!integer_zerop (@1))
398 (div @0 integer_minus_onep@1)
399 (if (!TYPE_UNSIGNED (type))
401 /* X / bool_range_Y is X. */
404 (if (INTEGRAL_TYPE_P (type) && ssa_name_has_boolean_range (@1))
409 /* But not for 0 / 0 so that we can get the proper warnings and errors.
410 And not for _Fract types where we can't build 1. */
411 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
412 { build_one_cst (type); }))
413 /* X / abs (X) is X < 0 ? -1 : 1. */
416 (if (INTEGRAL_TYPE_P (type)
417 && TYPE_OVERFLOW_UNDEFINED (type))
418 (cond (lt @0 { build_zero_cst (type); })
419 { build_minus_one_cst (type); } { build_one_cst (type); })))
422 (div:C @0 (negate @0))
423 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
424 && TYPE_OVERFLOW_UNDEFINED (type))
425 { build_minus_one_cst (type); })))
427 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
428 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
431 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
432 && TYPE_UNSIGNED (type))
435 /* Combine two successive divisions. Note that combining ceil_div
436 and floor_div is trickier and combining round_div even more so. */
437 (for div (trunc_div exact_div)
439 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
441 wi::overflow_type overflow;
442 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
443 TYPE_SIGN (type), &overflow);
445 (if (div == EXACT_DIV_EXPR
446 || optimize_successive_divisions_p (@2, @3))
448 (div @0 { wide_int_to_tree (type, mul); })
449 (if (TYPE_UNSIGNED (type)
450 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
451 { build_zero_cst (type); }))))))
453 /* Combine successive multiplications. Similar to above, but handling
454 overflow is different. */
456 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
458 wi::overflow_type overflow;
459 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
460 TYPE_SIGN (type), &overflow);
462 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
463 otherwise undefined overflow implies that @0 must be zero. */
464 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
465 (mult @0 { wide_int_to_tree (type, mul); }))))
467 /* Optimize A / A to 1.0 if we don't care about
468 NaNs or Infinities. */
471 (if (FLOAT_TYPE_P (type)
472 && ! HONOR_NANS (type)
473 && ! HONOR_INFINITIES (type))
474 { build_one_cst (type); }))
476 /* Optimize -A / A to -1.0 if we don't care about
477 NaNs or Infinities. */
479 (rdiv:C @0 (negate @0))
480 (if (FLOAT_TYPE_P (type)
481 && ! HONOR_NANS (type)
482 && ! HONOR_INFINITIES (type))
483 { build_minus_one_cst (type); }))
485 /* PR71078: x / abs(x) -> copysign (1.0, x) */
487 (rdiv:C (convert? @0) (convert? (abs @0)))
488 (if (SCALAR_FLOAT_TYPE_P (type)
489 && ! HONOR_NANS (type)
490 && ! HONOR_INFINITIES (type))
492 (if (types_match (type, float_type_node))
493 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
494 (if (types_match (type, double_type_node))
495 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
496 (if (types_match (type, long_double_type_node))
497 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
499 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
502 (if (!tree_expr_maybe_signaling_nan_p (@0))
505 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
507 (rdiv @0 real_minus_onep)
508 (if (!tree_expr_maybe_signaling_nan_p (@0))
511 (if (flag_reciprocal_math)
512 /* Convert (A/B)/C to A/(B*C). */
514 (rdiv (rdiv:s @0 @1) @2)
515 (rdiv @0 (mult @1 @2)))
517 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
519 (rdiv @0 (mult:s @1 REAL_CST@2))
521 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
523 (rdiv (mult @0 { tem; } ) @1))))
525 /* Convert A/(B/C) to (A/B)*C */
527 (rdiv @0 (rdiv:s @1 @2))
528 (mult (rdiv @0 @1) @2)))
530 /* Simplify x / (- y) to -x / y. */
532 (rdiv @0 (negate @1))
533 (rdiv (negate @0) @1))
535 (if (flag_unsafe_math_optimizations)
536 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
537 Since C / x may underflow to zero, do this only for unsafe math. */
538 (for op (lt le gt ge)
541 (op (rdiv REAL_CST@0 @1) real_zerop@2)
542 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
544 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
546 /* For C < 0, use the inverted operator. */
547 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
550 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
551 (for div (trunc_div ceil_div floor_div round_div exact_div)
553 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
554 (if (integer_pow2p (@2)
555 && tree_int_cst_sgn (@2) > 0
556 && tree_nop_conversion_p (type, TREE_TYPE (@0))
557 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
559 { build_int_cst (integer_type_node,
560 wi::exact_log2 (wi::to_wide (@2))); }))))
562 /* If ARG1 is a constant, we can convert this to a multiply by the
563 reciprocal. This does not have the same rounding properties,
564 so only do this if -freciprocal-math. We can actually
565 always safely do it if ARG1 is a power of two, but it's hard to
566 tell if it is or not in a portable manner. */
567 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
571 (if (flag_reciprocal_math
574 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
576 (mult @0 { tem; } )))
577 (if (cst != COMPLEX_CST)
578 (with { tree inverse = exact_inverse (type, @1); }
580 (mult @0 { inverse; } ))))))))
582 (for mod (ceil_mod floor_mod round_mod trunc_mod)
583 /* 0 % X is always zero. */
585 (mod integer_zerop@0 @1)
586 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
587 (if (!integer_zerop (@1))
589 /* X % 1 is always zero. */
591 (mod @0 integer_onep)
592 { build_zero_cst (type); })
593 /* X % -1 is zero. */
595 (mod @0 integer_minus_onep@1)
596 (if (!TYPE_UNSIGNED (type))
597 { build_zero_cst (type); }))
601 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
602 (if (!integer_zerop (@0))
603 { build_zero_cst (type); }))
604 /* (X % Y) % Y is just X % Y. */
606 (mod (mod@2 @0 @1) @1)
608 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
610 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
611 (if (ANY_INTEGRAL_TYPE_P (type)
612 && TYPE_OVERFLOW_UNDEFINED (type)
613 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
615 { build_zero_cst (type); }))
616 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
617 modulo and comparison, since it is simpler and equivalent. */
620 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
621 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
622 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
623 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
625 /* X % -C is the same as X % C. */
627 (trunc_mod @0 INTEGER_CST@1)
628 (if (TYPE_SIGN (type) == SIGNED
629 && !TREE_OVERFLOW (@1)
630 && wi::neg_p (wi::to_wide (@1))
631 && !TYPE_OVERFLOW_TRAPS (type)
632 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
633 && !sign_bit_p (@1, @1))
634 (trunc_mod @0 (negate @1))))
636 /* X % -Y is the same as X % Y. */
638 (trunc_mod @0 (convert? (negate @1)))
639 (if (INTEGRAL_TYPE_P (type)
640 && !TYPE_UNSIGNED (type)
641 && !TYPE_OVERFLOW_TRAPS (type)
642 && tree_nop_conversion_p (type, TREE_TYPE (@1))
643 /* Avoid this transformation if X might be INT_MIN or
644 Y might be -1, because we would then change valid
645 INT_MIN % -(-1) into invalid INT_MIN % -1. */
646 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
647 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
649 (trunc_mod @0 (convert @1))))
651 /* X - (X / Y) * Y is the same as X % Y. */
653 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
654 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
655 (convert (trunc_mod @0 @1))))
657 /* x * (1 + y / x) - y -> x - y % x */
659 (minus (mult:cs @0 (plus:s (trunc_div:s @1 @0) integer_onep)) @1)
660 (if (INTEGRAL_TYPE_P (type))
661 (minus @0 (trunc_mod @1 @0))))
663 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
664 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
665 Also optimize A % (C << N) where C is a power of 2,
666 to A & ((C << N) - 1).
667 Also optimize "A shift (B % C)", if C is a power of 2, to
668 "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>"
669 and assume (B % C) is nonnegative as shifts negative values would
671 (match (power_of_two_cand @1)
673 (match (power_of_two_cand @1)
674 (lshift INTEGER_CST@1 @2))
675 (for mod (trunc_mod floor_mod)
676 (for shift (lshift rshift)
678 (shift @0 (mod @1 (power_of_two_cand@2 @3)))
679 (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
680 (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
683 (mod @0 (convert? (power_of_two_cand@1 @2)))
684 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
685 /* Allow any integral conversions of the divisor, except
686 conversion from narrower signed to wider unsigned type
687 where if @1 would be negative power of two, the divisor
688 would not be a power of two. */
689 && INTEGRAL_TYPE_P (type)
690 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
691 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
692 || TYPE_UNSIGNED (TREE_TYPE (@1))
693 || !TYPE_UNSIGNED (type))
694 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
695 (with { tree utype = TREE_TYPE (@1);
696 if (!TYPE_OVERFLOW_WRAPS (utype))
697 utype = unsigned_type_for (utype); }
698 (bit_and @0 (convert (minus (convert:utype @1)
699 { build_one_cst (utype); })))))))
701 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
703 (trunc_div (mult @0 integer_pow2p@1) @1)
704 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
705 (bit_and @0 { wide_int_to_tree
706 (type, wi::mask (TYPE_PRECISION (type)
707 - wi::exact_log2 (wi::to_wide (@1)),
708 false, TYPE_PRECISION (type))); })))
710 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
712 (mult (trunc_div @0 integer_pow2p@1) @1)
713 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
714 (bit_and @0 (negate @1))))
716 /* Simplify (t * 2) / 2) -> t. */
717 (for div (trunc_div ceil_div floor_div round_div exact_div)
719 (div (mult:c @0 @1) @1)
720 (if (ANY_INTEGRAL_TYPE_P (type))
721 (if (TYPE_OVERFLOW_UNDEFINED (type))
726 bool overflowed = true;
727 value_range vr0, vr1;
728 if (INTEGRAL_TYPE_P (type)
729 && get_global_range_query ()->range_of_expr (vr0, @0)
730 && get_global_range_query ()->range_of_expr (vr1, @1)
731 && vr0.kind () == VR_RANGE
732 && vr1.kind () == VR_RANGE)
734 wide_int wmin0 = vr0.lower_bound ();
735 wide_int wmax0 = vr0.upper_bound ();
736 wide_int wmin1 = vr1.lower_bound ();
737 wide_int wmax1 = vr1.upper_bound ();
738 /* If the multiplication can't overflow/wrap around, then
739 it can be optimized too. */
740 wi::overflow_type min_ovf, max_ovf;
741 wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf);
742 wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf);
743 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
745 wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf);
746 wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf);
747 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
758 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
763 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
766 (pows (op @0) REAL_CST@1)
767 (with { HOST_WIDE_INT n; }
768 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
770 /* Likewise for powi. */
773 (pows (op @0) INTEGER_CST@1)
774 (if ((wi::to_wide (@1) & 1) == 0)
776 /* Strip negate and abs from both operands of hypot. */
784 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
785 (for copysigns (COPYSIGN_ALL)
787 (copysigns (op @0) @1)
790 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
795 /* Convert absu(x)*absu(x) -> x*x. */
797 (mult (absu@1 @0) @1)
798 (mult (convert@2 @0) @2))
800 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
804 (coss (copysigns @0 @1))
807 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
811 (pows (copysigns @0 @2) REAL_CST@1)
812 (with { HOST_WIDE_INT n; }
813 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
815 /* Likewise for powi. */
819 (pows (copysigns @0 @2) INTEGER_CST@1)
820 (if ((wi::to_wide (@1) & 1) == 0)
825 /* hypot(copysign(x, y), z) -> hypot(x, z). */
827 (hypots (copysigns @0 @1) @2)
829 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
831 (hypots @0 (copysigns @1 @2))
834 /* copysign(x, CST) -> [-]abs (x). */
835 (for copysigns (COPYSIGN_ALL)
837 (copysigns @0 REAL_CST@1)
838 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
842 /* copysign(copysign(x, y), z) -> copysign(x, z). */
843 (for copysigns (COPYSIGN_ALL)
845 (copysigns (copysigns @0 @1) @2)
848 /* copysign(x,y)*copysign(x,y) -> x*x. */
849 (for copysigns (COPYSIGN_ALL)
851 (mult (copysigns@2 @0 @1) @2)
854 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
855 (for ccoss (CCOS CCOSH)
860 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
861 (for ops (conj negate)
867 /* Fold (a * (1 << b)) into (a << b) */
869 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
870 (if (! FLOAT_TYPE_P (type)
871 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
874 /* Fold (1 << (C - x)) where C = precision(type) - 1
875 into ((1 << C) >> x). */
877 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
878 (if (INTEGRAL_TYPE_P (type)
879 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
881 (if (TYPE_UNSIGNED (type))
882 (rshift (lshift @0 @2) @3)
884 { tree utype = unsigned_type_for (type); }
885 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
887 /* Fold ((type)(a<0)) << SIGNBITOFA into ((type)a) & signbit. */
889 (lshift (convert (lt @0 integer_zerop@1)) INTEGER_CST@2)
890 (if (TYPE_SIGN (TREE_TYPE (@0)) == SIGNED
891 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)) - 1))
892 (with { wide_int wone = wi::one (TYPE_PRECISION (type)); }
893 (bit_and (convert @0)
894 { wide_int_to_tree (type,
895 wi::lshift (wone, wi::to_wide (@2))); }))))
897 /* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1. */
898 (for cst (INTEGER_CST VECTOR_CST)
900 (rshift (negate:s @0) cst@1)
901 (if (!TYPE_UNSIGNED (type)
902 && TYPE_OVERFLOW_UNDEFINED (type))
903 (with { tree stype = TREE_TYPE (@1);
904 tree bt = truth_type_for (type);
905 tree zeros = build_zero_cst (type);
906 tree cst = NULL_TREE; }
908 /* Handle scalar case. */
909 (if (INTEGRAL_TYPE_P (type)
910 /* If we apply the rule to the scalar type before vectorization
911 we will enforce the result of the comparison being a bool
912 which will require an extra AND on the result that will be
913 indistinguishable from when the user did actually want 0
914 or 1 as the result so it can't be removed. */
915 && canonicalize_math_after_vectorization_p ()
916 && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1))
917 (negate (convert (gt @0 { zeros; }))))
918 /* Handle vector case. */
919 (if (VECTOR_INTEGER_TYPE_P (type)
920 /* First check whether the target has the same mode for vector
921 comparison results as it's operands do. */
922 && TYPE_MODE (bt) == TYPE_MODE (type)
923 /* Then check to see if the target is able to expand the comparison
924 with the given type later on, otherwise we may ICE. */
925 && expand_vec_cmp_expr_p (type, bt, GT_EXPR)
926 && (cst = uniform_integer_cst_p (@1)) != NULL
927 && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1))
928 (view_convert (gt:bt @0 { zeros; }))))))))
930 /* Fold (C1/X)*C2 into (C1*C2)/X. */
932 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
933 (if (flag_associative_math
936 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
938 (rdiv { tem; } @1)))))
940 /* Simplify ~X & X as zero. */
942 (bit_and:c (convert? @0) (convert? (bit_not @0)))
943 { build_zero_cst (type); })
945 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
947 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
948 (if (TYPE_UNSIGNED (type))
949 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
951 (for bitop (bit_and bit_ior)
953 /* PR35691: Transform
954 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
955 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
957 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
958 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
959 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
960 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
961 (cmp (bit_ior @0 (convert @1)) @2)))
963 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
964 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
966 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
967 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
968 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
969 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
970 (cmp (bit_and @0 (convert @1)) @2))))
972 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
974 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
975 (minus (bit_xor @0 @1) @1))
977 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
978 (if (~wi::to_wide (@2) == wi::to_wide (@1))
979 (minus (bit_xor @0 @1) @1)))
981 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
983 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
984 (minus @1 (bit_xor @0 @1)))
986 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
987 (for op (bit_ior bit_xor plus)
989 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
992 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
993 (if (~wi::to_wide (@2) == wi::to_wide (@1))
996 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
998 (bit_ior:c (bit_xor:c @0 @1) @0)
1001 /* (a & ~b) | (a ^ b) --> a ^ b */
1003 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
1006 /* (a & ~b) ^ ~a --> ~(a & b) */
1008 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
1009 (bit_not (bit_and @0 @1)))
1011 /* (~a & b) ^ a --> (a | b) */
1013 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
1016 /* (a | b) & ~(a ^ b) --> a & b */
1018 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
1021 /* a | ~(a ^ b) --> a | ~b */
1023 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
1024 (bit_ior @0 (bit_not @1)))
1026 /* (a | b) | (a &^ b) --> a | b */
1027 (for op (bit_and bit_xor)
1029 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
1032 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
1034 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
1037 /* ~(~a & b) --> a | ~b */
1039 (bit_not (bit_and:cs (bit_not @0) @1))
1040 (bit_ior @0 (bit_not @1)))
1042 /* ~(~a | b) --> a & ~b */
1044 (bit_not (bit_ior:cs (bit_not @0) @1))
1045 (bit_and @0 (bit_not @1)))
1047 /* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
1049 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
1050 (bit_and @3 (bit_not @2)))
1052 /* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
1054 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
1058 /* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified. */
1060 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
1061 (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
1063 /* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified. */
1065 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
1066 (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
1068 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
1070 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
1071 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1072 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1076 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1077 ((A & N) + B) & M -> (A + B) & M
1078 Similarly if (N & M) == 0,
1079 ((A | N) + B) & M -> (A + B) & M
1080 and for - instead of + (or unary - instead of +)
1081 and/or ^ instead of |.
1082 If B is constant and (B & M) == 0, fold into A & M. */
1083 (for op (plus minus)
1084 (for bitop (bit_and bit_ior bit_xor)
1086 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
1089 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
1090 @3, @4, @1, ERROR_MARK, NULL_TREE,
1093 (convert (bit_and (op (convert:utype { pmop[0]; })
1094 (convert:utype { pmop[1]; }))
1095 (convert:utype @2))))))
1097 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
1100 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1101 NULL_TREE, NULL_TREE, @1, bitop, @3,
1104 (convert (bit_and (op (convert:utype { pmop[0]; })
1105 (convert:utype { pmop[1]; }))
1106 (convert:utype @2)))))))
1108 (bit_and (op:s @0 @1) INTEGER_CST@2)
1111 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1112 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1113 NULL_TREE, NULL_TREE, pmop); }
1115 (convert (bit_and (op (convert:utype { pmop[0]; })
1116 (convert:utype { pmop[1]; }))
1117 (convert:utype @2)))))))
1118 (for bitop (bit_and bit_ior bit_xor)
1120 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1123 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1124 bitop, @2, @3, NULL_TREE, ERROR_MARK,
1125 NULL_TREE, NULL_TREE, pmop); }
1127 (convert (bit_and (negate (convert:utype { pmop[0]; }))
1128 (convert:utype @1)))))))
1130 /* X % Y is smaller than Y. */
1133 (cmp (trunc_mod @0 @1) @1)
1134 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1135 { constant_boolean_node (cmp == LT_EXPR, type); })))
1138 (cmp @1 (trunc_mod @0 @1))
1139 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1140 { constant_boolean_node (cmp == GT_EXPR, type); })))
1144 (bit_ior @0 integer_all_onesp@1)
1149 (bit_ior @0 integer_zerop)
1154 (bit_and @0 integer_zerop@1)
1160 (for op (bit_ior bit_xor plus)
1162 (op:c (convert? @0) (convert? (bit_not @0)))
1163 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
1168 { build_zero_cst (type); })
1170 /* Canonicalize X ^ ~0 to ~X. */
1172 (bit_xor @0 integer_all_onesp@1)
1177 (bit_and @0 integer_all_onesp)
1180 /* x & x -> x, x | x -> x */
1181 (for bitop (bit_and bit_ior)
1186 /* x & C -> x if we know that x & ~C == 0. */
1189 (bit_and SSA_NAME@0 INTEGER_CST@1)
1190 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1191 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1195 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1197 (bit_not (minus (bit_not @0) @1))
1200 (bit_not (plus:c (bit_not @0) @1))
1203 /* ~(X - Y) -> ~X + Y. */
1205 (bit_not (minus:s @0 @1))
1206 (plus (bit_not @0) @1))
1208 (bit_not (plus:s @0 INTEGER_CST@1))
1209 (if ((INTEGRAL_TYPE_P (type)
1210 && TYPE_UNSIGNED (type))
1211 || (!TYPE_OVERFLOW_SANITIZED (type)
1212 && may_negate_without_overflow_p (@1)))
1213 (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1216 /* ~X + Y -> (Y - X) - 1. */
1218 (plus:c (bit_not @0) @1)
1219 (if (ANY_INTEGRAL_TYPE_P (type)
1220 && TYPE_OVERFLOW_WRAPS (type)
1221 /* -1 - X is folded to ~X, so we'd recurse endlessly. */
1222 && !integer_all_onesp (@1))
1223 (plus (minus @1 @0) { build_minus_one_cst (type); })
1224 (if (INTEGRAL_TYPE_P (type)
1225 && TREE_CODE (@1) == INTEGER_CST
1226 && wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1228 (minus (plus @1 { build_minus_one_cst (type); }) @0))))
1230 /* ~(X >> Y) -> ~X >> Y if ~X can be simplified. */
1232 (bit_not (rshift:s @0 @1))
1233 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1234 (rshift (bit_not! @0) @1)
1235 /* For logical right shifts, this is possible only if @0 doesn't
1236 have MSB set and the logical right shift is changed into
1237 arithmetic shift. */
1238 (if (!wi::neg_p (tree_nonzero_bits (@0)))
1239 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1240 (convert (rshift (bit_not! (convert:stype @0)) @1))))))
1243 /* x + (x & 1) -> (x + 1) & ~1 */
1245 (plus:c @0 (bit_and:s @0 integer_onep@1))
1246 (bit_and (plus @0 @1) (bit_not @1)))
1248 /* x & ~(x & y) -> x & ~y */
1249 /* x | ~(x | y) -> x | ~y */
1250 (for bitop (bit_and bit_ior)
1252 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1253 (bitop @0 (bit_not @1))))
1255 /* (~x & y) | ~(x | y) -> ~x */
1257 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1260 /* (x | y) ^ (x | ~y) -> ~x */
1262 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1265 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1267 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1268 (bit_not (bit_xor @0 @1)))
1270 /* (~x | y) ^ (x ^ y) -> x | ~y */
1272 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1273 (bit_ior @0 (bit_not @1)))
1275 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1277 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1278 (bit_not (bit_and @0 @1)))
1280 /* (x | y) & ~x -> y & ~x */
1281 /* (x & y) | ~x -> y | ~x */
1282 (for bitop (bit_and bit_ior)
1283 rbitop (bit_ior bit_and)
1285 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1288 /* (x & y) ^ (x | y) -> x ^ y */
1290 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1293 /* (x ^ y) ^ (x | y) -> x & y */
1295 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1298 /* (x & y) + (x ^ y) -> x | y */
1299 /* (x & y) | (x ^ y) -> x | y */
1300 /* (x & y) ^ (x ^ y) -> x | y */
1301 (for op (plus bit_ior bit_xor)
1303 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1306 /* (x & y) + (x | y) -> x + y */
1308 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1311 /* (x + y) - (x | y) -> x & y */
1313 (minus (plus @0 @1) (bit_ior @0 @1))
1314 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1315 && !TYPE_SATURATING (type))
1318 /* (x + y) - (x & y) -> x | y */
1320 (minus (plus @0 @1) (bit_and @0 @1))
1321 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1322 && !TYPE_SATURATING (type))
1325 /* (x | y) - y -> (x & ~y) */
1327 (minus (bit_ior:cs @0 @1) @1)
1328 (bit_and @0 (bit_not @1)))
1330 /* (x | y) - (x ^ y) -> x & y */
1332 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1335 /* (x | y) - (x & y) -> x ^ y */
1337 (minus (bit_ior @0 @1) (bit_and @0 @1))
1340 /* (x | y) & ~(x & y) -> x ^ y */
1342 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1345 /* (x | y) & (~x ^ y) -> x & y */
1347 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1350 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1352 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1353 (bit_not (bit_xor @0 @1)))
1355 /* (~x | y) ^ (x | ~y) -> x ^ y */
1357 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1360 /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1362 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1363 (nop_convert2? (bit_ior @0 @1))))
1365 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1366 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1367 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1368 && !TYPE_SATURATING (TREE_TYPE (@2)))
1369 (bit_not (convert (bit_xor @0 @1)))))
1371 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1373 (nop_convert3? (bit_ior @0 @1)))
1374 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1375 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1376 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1377 && !TYPE_SATURATING (TREE_TYPE (@2)))
1378 (bit_not (convert (bit_xor @0 @1)))))
1380 (minus (nop_convert1? (bit_and @0 @1))
1381 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1383 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1384 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1385 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1386 && !TYPE_SATURATING (TREE_TYPE (@2)))
1387 (bit_not (convert (bit_xor @0 @1)))))
1389 /* ~x & ~y -> ~(x | y)
1390 ~x | ~y -> ~(x & y) */
1391 (for op (bit_and bit_ior)
1392 rop (bit_ior bit_and)
1394 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1395 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1396 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1397 (bit_not (rop (convert @0) (convert @1))))))
1399 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1400 with a constant, and the two constants have no bits in common,
1401 we should treat this as a BIT_IOR_EXPR since this may produce more
1403 (for op (bit_xor plus)
1405 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1406 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1407 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1408 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1409 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1410 (bit_ior (convert @4) (convert @5)))))
1412 /* (X | Y) ^ X -> Y & ~ X*/
1414 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1415 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1416 (convert (bit_and @1 (bit_not @0)))))
1418 /* Convert ~X ^ ~Y to X ^ Y. */
1420 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1421 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1422 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1423 (bit_xor (convert @0) (convert @1))))
1425 /* Convert ~X ^ C to X ^ ~C. */
1427 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1428 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1429 (bit_xor (convert @0) (bit_not @1))))
1431 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1432 (for opo (bit_and bit_xor)
1433 opi (bit_xor bit_and)
1435 (opo:c (opi:cs @0 @1) @1)
1436 (bit_and (bit_not @0) @1)))
1438 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1439 operands are another bit-wise operation with a common input. If so,
1440 distribute the bit operations to save an operation and possibly two if
1441 constants are involved. For example, convert
1442 (A | B) & (A | C) into A | (B & C)
1443 Further simplification will occur if B and C are constants. */
1444 (for op (bit_and bit_ior bit_xor)
1445 rop (bit_ior bit_and bit_and)
1447 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1448 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1449 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1450 (rop (convert @0) (op (convert @1) (convert @2))))))
1452 /* Some simple reassociation for bit operations, also handled in reassoc. */
1453 /* (X & Y) & Y -> X & Y
1454 (X | Y) | Y -> X | Y */
1455 (for op (bit_and bit_ior)
1457 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1459 /* (X ^ Y) ^ Y -> X */
1461 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1463 /* (X & Y) & (X & Z) -> (X & Y) & Z
1464 (X | Y) | (X | Z) -> (X | Y) | Z */
1465 (for op (bit_and bit_ior)
1467 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1468 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1469 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1470 (if (single_use (@5) && single_use (@6))
1471 (op @3 (convert @2))
1472 (if (single_use (@3) && single_use (@4))
1473 (op (convert @1) @5))))))
1474 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1476 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1477 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1478 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1479 (bit_xor (convert @1) (convert @2))))
1481 /* Convert abs (abs (X)) into abs (X).
1482 also absu (absu (X)) into absu (X). */
1488 (absu (convert@2 (absu@1 @0)))
1489 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1492 /* Convert abs[u] (-X) -> abs[u] (X). */
1501 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1503 (abs tree_expr_nonnegative_p@0)
1507 (absu tree_expr_nonnegative_p@0)
1510 /* Simplify (-(X < 0) | 1) * X into abs (X) or absu(X). */
1512 (mult:c (nop_convert1?
1513 (bit_ior (nop_convert2? (negate (convert? (lt @0 integer_zerop))))
1516 (if (INTEGRAL_TYPE_P (type)
1517 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1518 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1519 (if (TYPE_UNSIGNED (type))
1526 /* A few cases of fold-const.c negate_expr_p predicate. */
1527 (match negate_expr_p
1529 (if ((INTEGRAL_TYPE_P (type)
1530 && TYPE_UNSIGNED (type))
1531 || (!TYPE_OVERFLOW_SANITIZED (type)
1532 && may_negate_without_overflow_p (t)))))
1533 (match negate_expr_p
1535 (match negate_expr_p
1537 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1538 (match negate_expr_p
1540 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1541 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1543 (match negate_expr_p
1545 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1546 (match negate_expr_p
1548 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1549 || (FLOAT_TYPE_P (type)
1550 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1551 && !HONOR_SIGNED_ZEROS (type)))))
1553 /* (-A) * (-B) -> A * B */
1555 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1556 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1557 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1558 (mult (convert @0) (convert (negate @1)))))
1560 /* -(A + B) -> (-B) - A. */
1562 (negate (plus:c @0 negate_expr_p@1))
1563 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
1564 && !HONOR_SIGNED_ZEROS (type))
1565 (minus (negate @1) @0)))
1567 /* -(A - B) -> B - A. */
1569 (negate (minus @0 @1))
1570 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1571 || (FLOAT_TYPE_P (type)
1572 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1573 && !HONOR_SIGNED_ZEROS (type)))
1576 (negate (pointer_diff @0 @1))
1577 (if (TYPE_OVERFLOW_UNDEFINED (type))
1578 (pointer_diff @1 @0)))
1580 /* A - B -> A + (-B) if B is easily negatable. */
1582 (minus @0 negate_expr_p@1)
1583 (if (!FIXED_POINT_TYPE_P (type))
1584 (plus @0 (negate @1))))
1586 /* Other simplifications of negation (c.f. fold_negate_expr_1). */
1588 (negate (mult:c@0 @1 negate_expr_p@2))
1589 (if (! TYPE_UNSIGNED (type)
1590 && ! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1592 (mult @1 (negate @2))))
1595 (negate (rdiv@0 @1 negate_expr_p@2))
1596 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1598 (rdiv @1 (negate @2))))
1601 (negate (rdiv@0 negate_expr_p@1 @2))
1602 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1604 (rdiv (negate @1) @2)))
1606 /* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1). */
1608 (negate (convert? (rshift @0 INTEGER_CST@1)))
1609 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1610 && wi::to_wide (@1) == element_precision (type) - 1)
1611 (with { tree stype = TREE_TYPE (@0);
1612 tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype)
1613 : unsigned_type_for (stype); }
1614 (if (VECTOR_TYPE_P (type))
1615 (view_convert (rshift (view_convert:ntype @0) @1))
1616 (convert (rshift (convert:ntype @0) @1))))))
1618 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1620 For bitwise binary operations apply operand conversions to the
1621 binary operation result instead of to the operands. This allows
1622 to combine successive conversions and bitwise binary operations.
1623 We combine the above two cases by using a conditional convert. */
1624 (for bitop (bit_and bit_ior bit_xor)
1626 (bitop (convert@2 @0) (convert?@3 @1))
1627 (if (((TREE_CODE (@1) == INTEGER_CST
1628 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1629 && (int_fits_type_p (@1, TREE_TYPE (@0))
1630 || tree_nop_conversion_p (TREE_TYPE (@0), type)))
1631 || types_match (@0, @1))
1632 /* ??? This transform conflicts with fold-const.c doing
1633 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1634 constants (if x has signed type, the sign bit cannot be set
1635 in c). This folds extension into the BIT_AND_EXPR.
1636 Restrict it to GIMPLE to avoid endless recursions. */
1637 && (bitop != BIT_AND_EXPR || GIMPLE)
1638 && (/* That's a good idea if the conversion widens the operand, thus
1639 after hoisting the conversion the operation will be narrower.
1640 It is also a good if the conversion is a nop as moves the
1641 conversion to one side; allowing for combining of the conversions. */
1642 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1643 /* The conversion check for being a nop can only be done at the gimple
1644 level as fold_binary has some re-association code which can conflict
1645 with this if there is a "constant" which is not a full INTEGER_CST. */
1646 || (GIMPLE && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
1647 /* It's also a good idea if the conversion is to a non-integer
1649 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1650 /* Or if the precision of TO is not the same as the precision
1652 || !type_has_mode_precision_p (type)
1653 /* In GIMPLE, getting rid of 2 conversions for one new results
1656 && TREE_CODE (@1) != INTEGER_CST
1657 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1659 && single_use (@3))))
1660 (convert (bitop @0 (convert @1)))))
1661 /* In GIMPLE, getting rid of 2 conversions for one new results
1664 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1666 && TREE_CODE (@1) != INTEGER_CST
1667 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1668 && types_match (type, @0))
1669 (bitop @0 (convert @1)))))
1671 (for bitop (bit_and bit_ior)
1672 rbitop (bit_ior bit_and)
1673 /* (x | y) & x -> x */
1674 /* (x & y) | x -> x */
1676 (bitop:c (rbitop:c @0 @1) @0)
1678 /* (~x | y) & x -> x & y */
1679 /* (~x & y) | x -> x | y */
1681 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1684 /* ((x | y) & z) | x -> (z & y) | x */
1686 (bit_ior:c (bit_and:cs (bit_ior:cs @0 @1) @2) @0)
1687 (bit_ior (bit_and @2 @1) @0))
1689 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1691 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1692 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1694 /* Combine successive equal operations with constants. */
1695 (for bitop (bit_and bit_ior bit_xor)
1697 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1698 (if (!CONSTANT_CLASS_P (@0))
1699 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1700 folded to a constant. */
1701 (bitop @0 (bitop @1 @2))
1702 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1703 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1704 the values involved are such that the operation can't be decided at
1705 compile time. Try folding one of @0 or @1 with @2 to see whether
1706 that combination can be decided at compile time.
1708 Keep the existing form if both folds fail, to avoid endless
1710 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1712 (bitop @1 { cst1; })
1713 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1715 (bitop @0 { cst2; }))))))))
1717 /* Try simple folding for X op !X, and X op X with the help
1718 of the truth_valued_p and logical_inverted_value predicates. */
1719 (match truth_valued_p
1721 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1722 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1723 (match truth_valued_p
1725 (match truth_valued_p
1728 (match (logical_inverted_value @0)
1730 (match (logical_inverted_value @0)
1731 (bit_not truth_valued_p@0))
1732 (match (logical_inverted_value @0)
1733 (eq @0 integer_zerop))
1734 (match (logical_inverted_value @0)
1735 (ne truth_valued_p@0 integer_truep))
1736 (match (logical_inverted_value @0)
1737 (bit_xor truth_valued_p@0 integer_truep))
1741 (bit_and:c @0 (logical_inverted_value @0))
1742 { build_zero_cst (type); })
1743 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1744 (for op (bit_ior bit_xor)
1746 (op:c truth_valued_p@0 (logical_inverted_value @0))
1747 { constant_boolean_node (true, type); }))
1748 /* X ==/!= !X is false/true. */
1751 (op:c truth_valued_p@0 (logical_inverted_value @0))
1752 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1756 (bit_not (bit_not @0))
1759 /* Convert ~ (-A) to A - 1. */
1761 (bit_not (convert? (negate @0)))
1762 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1763 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1764 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1766 /* Convert - (~A) to A + 1. */
1768 (negate (nop_convert? (bit_not @0)))
1769 (plus (view_convert @0) { build_each_one_cst (type); }))
1771 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1773 (bit_not (convert? (minus @0 integer_each_onep)))
1774 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1775 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1776 (convert (negate @0))))
1778 (bit_not (convert? (plus @0 integer_all_onesp)))
1779 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1780 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1781 (convert (negate @0))))
1783 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1785 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1786 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1787 (convert (bit_xor @0 (bit_not @1)))))
1789 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1790 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1791 (convert (bit_xor @0 @1))))
1793 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1795 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1796 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1797 (bit_not (bit_xor (view_convert @0) @1))))
1799 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1801 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1802 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1804 /* Fold A - (A & B) into ~B & A. */
1806 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1807 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1808 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1809 (convert (bit_and (bit_not @1) @0))))
1811 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1812 (if (!canonicalize_math_p ())
1813 (for cmp (gt lt ge le)
1815 (mult (convert (cmp @0 @1)) @2)
1816 (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1818 /* For integral types with undefined overflow and C != 0 fold
1819 x * C EQ/NE y * C into x EQ/NE y. */
1822 (cmp (mult:c @0 @1) (mult:c @2 @1))
1823 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1824 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1825 && tree_expr_nonzero_p (@1))
1828 /* For integral types with wrapping overflow and C odd fold
1829 x * C EQ/NE y * C into x EQ/NE y. */
1832 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1833 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1834 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1835 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1838 /* For integral types with undefined overflow and C != 0 fold
1839 x * C RELOP y * C into:
1841 x RELOP y for nonnegative C
1842 y RELOP x for negative C */
1843 (for cmp (lt gt le ge)
1845 (cmp (mult:c @0 @1) (mult:c @2 @1))
1846 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1847 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1848 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1850 (if (TREE_CODE (@1) == INTEGER_CST
1851 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1854 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1858 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1859 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1860 && TYPE_UNSIGNED (TREE_TYPE (@0))
1861 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1862 && (wi::to_wide (@2)
1863 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1864 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1865 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1867 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1868 (for cmp (simple_comparison)
1870 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1871 (if (element_precision (@3) >= element_precision (@0)
1872 && types_match (@0, @1))
1873 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1874 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1876 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1879 tree utype = unsigned_type_for (TREE_TYPE (@0));
1881 (cmp (convert:utype @1) (convert:utype @0)))))
1882 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1883 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1887 tree utype = unsigned_type_for (TREE_TYPE (@0));
1889 (cmp (convert:utype @0) (convert:utype @1)))))))))
1891 /* X / C1 op C2 into a simple range test. */
1892 (for cmp (simple_comparison)
1894 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1895 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1896 && integer_nonzerop (@1)
1897 && !TREE_OVERFLOW (@1)
1898 && !TREE_OVERFLOW (@2))
1899 (with { tree lo, hi; bool neg_overflow;
1900 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1903 (if (code == LT_EXPR || code == GE_EXPR)
1904 (if (TREE_OVERFLOW (lo))
1905 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1906 (if (code == LT_EXPR)
1909 (if (code == LE_EXPR || code == GT_EXPR)
1910 (if (TREE_OVERFLOW (hi))
1911 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1912 (if (code == LE_EXPR)
1916 { build_int_cst (type, code == NE_EXPR); })
1917 (if (code == EQ_EXPR && !hi)
1919 (if (code == EQ_EXPR && !lo)
1921 (if (code == NE_EXPR && !hi)
1923 (if (code == NE_EXPR && !lo)
1926 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1930 tree etype = range_check_type (TREE_TYPE (@0));
1933 hi = fold_convert (etype, hi);
1934 lo = fold_convert (etype, lo);
1935 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1938 (if (etype && hi && !TREE_OVERFLOW (hi))
1939 (if (code == EQ_EXPR)
1940 (le (minus (convert:etype @0) { lo; }) { hi; })
1941 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1943 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1944 (for op (lt le ge gt)
1946 (op (plus:c @0 @2) (plus:c @1 @2))
1947 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1948 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1950 /* For equality and subtraction, this is also true with wrapping overflow. */
1951 (for op (eq ne minus)
1953 (op (plus:c @0 @2) (plus:c @1 @2))
1954 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1955 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1956 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1959 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1960 (for op (lt le ge gt)
1962 (op (minus @0 @2) (minus @1 @2))
1963 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1964 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1966 /* For equality and subtraction, this is also true with wrapping overflow. */
1967 (for op (eq ne minus)
1969 (op (minus @0 @2) (minus @1 @2))
1970 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1971 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1972 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1974 /* And for pointers... */
1975 (for op (simple_comparison)
1977 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1978 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1981 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1982 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1983 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1984 (pointer_diff @0 @1)))
1986 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1987 (for op (lt le ge gt)
1989 (op (minus @2 @0) (minus @2 @1))
1990 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1991 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1993 /* For equality and subtraction, this is also true with wrapping overflow. */
1994 (for op (eq ne minus)
1996 (op (minus @2 @0) (minus @2 @1))
1997 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1998 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1999 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2001 /* And for pointers... */
2002 (for op (simple_comparison)
2004 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2005 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2008 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2009 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2010 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2011 (pointer_diff @1 @0)))
2013 /* X + Y < Y is the same as X < 0 when there is no overflow. */
2014 (for op (lt le gt ge)
2016 (op:c (plus:c@2 @0 @1) @1)
2017 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2018 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2019 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2020 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
2021 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
2022 /* For equality, this is also true with wrapping overflow. */
2025 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
2026 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2027 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2028 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2029 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
2030 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
2031 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
2032 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
2034 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
2035 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
2036 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2037 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
2038 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2040 /* X - Y < X is the same as Y > 0 when there is no overflow.
2041 For equality, this is also true with wrapping overflow. */
2042 (for op (simple_comparison)
2044 (op:c @0 (minus@2 @0 @1))
2045 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2046 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2047 || ((op == EQ_EXPR || op == NE_EXPR)
2048 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2049 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
2050 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2053 (X / Y) == 0 -> X < Y if X, Y are unsigned.
2054 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
2058 (cmp (trunc_div @0 @1) integer_zerop)
2059 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2060 /* Complex ==/!= is allowed, but not </>=. */
2061 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
2062 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
2065 /* X == C - X can never be true if C is odd. */
2068 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
2069 (if (TREE_INT_CST_LOW (@1) & 1)
2070 { constant_boolean_node (cmp == NE_EXPR, type); })))
2072 /* Arguments on which one can call get_nonzero_bits to get the bits
2074 (match with_possible_nonzero_bits
2076 (match with_possible_nonzero_bits
2078 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
2079 /* Slightly extended version, do not make it recursive to keep it cheap. */
2080 (match (with_possible_nonzero_bits2 @0)
2081 with_possible_nonzero_bits@0)
2082 (match (with_possible_nonzero_bits2 @0)
2083 (bit_and:c with_possible_nonzero_bits@0 @2))
2085 /* Same for bits that are known to be set, but we do not have
2086 an equivalent to get_nonzero_bits yet. */
2087 (match (with_certain_nonzero_bits2 @0)
2089 (match (with_certain_nonzero_bits2 @0)
2090 (bit_ior @1 INTEGER_CST@0))
2092 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
2095 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
2096 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
2097 { constant_boolean_node (cmp == NE_EXPR, type); })))
2099 /* ((X inner_op C0) outer_op C1)
2100 With X being a tree where value_range has reasoned certain bits to always be
2101 zero throughout its computed value range,
2102 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
2103 where zero_mask has 1's for all bits that are sure to be 0 in
2105 if (inner_op == '^') C0 &= ~C1;
2106 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
2107 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
2109 (for inner_op (bit_ior bit_xor)
2110 outer_op (bit_xor bit_ior)
2113 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
2117 wide_int zero_mask_not;
2121 if (TREE_CODE (@2) == SSA_NAME)
2122 zero_mask_not = get_nonzero_bits (@2);
2126 if (inner_op == BIT_XOR_EXPR)
2128 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
2129 cst_emit = C0 | wi::to_wide (@1);
2133 C0 = wi::to_wide (@0);
2134 cst_emit = C0 ^ wi::to_wide (@1);
2137 (if (!fail && (C0 & zero_mask_not) == 0)
2138 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
2139 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
2140 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
2142 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
2144 (pointer_plus (pointer_plus:s @0 @1) @3)
2145 (pointer_plus @0 (plus @1 @3)))
2151 tem4 = (unsigned long) tem3;
2156 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2157 /* Conditionally look through a sign-changing conversion. */
2158 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2159 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2160 || (GENERIC && type == TREE_TYPE (@1))))
2163 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2164 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2168 tem = (sizetype) ptr;
2172 and produce the simpler and easier to analyze with respect to alignment
2173 ... = ptr & ~algn; */
2175 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
2176 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
2177 (bit_and @0 { algn; })))
2179 /* Try folding difference of addresses. */
2181 (minus (convert ADDR_EXPR@0) (convert @1))
2182 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2183 (with { poly_int64 diff; }
2184 (if (ptr_difference_const (@0, @1, &diff))
2185 { build_int_cst_type (type, diff); }))))
2187 (minus (convert @0) (convert ADDR_EXPR@1))
2188 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2189 (with { poly_int64 diff; }
2190 (if (ptr_difference_const (@0, @1, &diff))
2191 { build_int_cst_type (type, diff); }))))
2193 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
2194 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2195 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2196 (with { poly_int64 diff; }
2197 (if (ptr_difference_const (@0, @1, &diff))
2198 { build_int_cst_type (type, diff); }))))
2200 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
2201 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2202 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2203 (with { poly_int64 diff; }
2204 (if (ptr_difference_const (@0, @1, &diff))
2205 { build_int_cst_type (type, diff); }))))
2207 /* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */
2209 (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2210 (with { poly_int64 diff; }
2211 (if (ptr_difference_const (@0, @2, &diff))
2212 (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3))))))
2214 /* (&a+b) !=/== (&a[1] + c) -> sizeof(a[0]) + b !=/== c */
2217 (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2218 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);}
2219 (if (ptr_difference_const (@0, @2, &diff))
2220 (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3)))))
2222 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
2224 (convert (pointer_diff @0 INTEGER_CST@1))
2225 (if (POINTER_TYPE_P (type))
2226 { build_fold_addr_expr_with_type
2227 (build2 (MEM_REF, char_type_node, @0,
2228 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2231 /* If arg0 is derived from the address of an object or function, we may
2232 be able to fold this expression using the object or function's
2235 (bit_and (convert? @0) INTEGER_CST@1)
2236 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2237 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2241 unsigned HOST_WIDE_INT bitpos;
2242 get_pointer_alignment_1 (@0, &align, &bitpos);
2244 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2245 { wide_int_to_tree (type, (wi::to_wide (@1)
2246 & (bitpos / BITS_PER_UNIT))); }))))
2250 (if (INTEGRAL_TYPE_P (type)
2251 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
2255 (if (INTEGRAL_TYPE_P (type)
2256 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
2258 /* x > y && x != XXX_MIN --> x > y
2259 x > y && x == XXX_MIN --> false . */
2262 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2264 (if (eqne == EQ_EXPR)
2265 { constant_boolean_node (false, type); })
2266 (if (eqne == NE_EXPR)
2270 /* x < y && x != XXX_MAX --> x < y
2271 x < y && x == XXX_MAX --> false. */
2274 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2276 (if (eqne == EQ_EXPR)
2277 { constant_boolean_node (false, type); })
2278 (if (eqne == NE_EXPR)
2282 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
2284 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2287 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
2289 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2292 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
2294 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2297 /* x <= y || x != XXX_MIN --> true. */
2299 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2300 { constant_boolean_node (true, type); })
2302 /* x <= y || x == XXX_MIN --> x <= y. */
2304 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2307 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
2309 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2312 /* x >= y || x != XXX_MAX --> true
2313 x >= y || x == XXX_MAX --> x >= y. */
2316 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2318 (if (eqne == EQ_EXPR)
2320 (if (eqne == NE_EXPR)
2321 { constant_boolean_node (true, type); }))))
2323 /* y == XXX_MIN || x < y --> x <= y - 1 */
2325 (bit_ior:c (eq:s @1 min_value) (lt:s @0 @1))
2326 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2327 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2328 (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2330 /* y != XXX_MIN && x >= y --> x > y - 1 */
2332 (bit_and:c (ne:s @1 min_value) (ge:s @0 @1))
2333 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2334 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2335 (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2337 /* Convert (X == CST1) && (X OP2 CST2) to a known value
2338 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2341 (for code2 (eq ne lt gt le ge)
2343 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2346 int cmp = tree_int_cst_compare (@1, @2);
2350 case EQ_EXPR: val = (cmp == 0); break;
2351 case NE_EXPR: val = (cmp != 0); break;
2352 case LT_EXPR: val = (cmp < 0); break;
2353 case GT_EXPR: val = (cmp > 0); break;
2354 case LE_EXPR: val = (cmp <= 0); break;
2355 case GE_EXPR: val = (cmp >= 0); break;
2356 default: gcc_unreachable ();
2360 (if (code1 == EQ_EXPR && val) @3)
2361 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2362 (if (code1 == NE_EXPR && !val) @4))))))
2364 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2366 (for code1 (lt le gt ge)
2367 (for code2 (lt le gt ge)
2369 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2372 int cmp = tree_int_cst_compare (@1, @2);
2375 /* Choose the more restrictive of two < or <= comparisons. */
2376 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2377 && (code2 == LT_EXPR || code2 == LE_EXPR))
2378 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2381 /* Likewise chose the more restrictive of two > or >= comparisons. */
2382 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2383 && (code2 == GT_EXPR || code2 == GE_EXPR))
2384 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2387 /* Check for singleton ranges. */
2389 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2390 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2392 /* Check for disjoint ranges. */
2394 && (code1 == LT_EXPR || code1 == LE_EXPR)
2395 && (code2 == GT_EXPR || code2 == GE_EXPR))
2396 { constant_boolean_node (false, type); })
2398 && (code1 == GT_EXPR || code1 == GE_EXPR)
2399 && (code2 == LT_EXPR || code2 == LE_EXPR))
2400 { constant_boolean_node (false, type); })
2403 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2404 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2407 (for code2 (eq ne lt gt le ge)
2409 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2412 int cmp = tree_int_cst_compare (@1, @2);
2416 case EQ_EXPR: val = (cmp == 0); break;
2417 case NE_EXPR: val = (cmp != 0); break;
2418 case LT_EXPR: val = (cmp < 0); break;
2419 case GT_EXPR: val = (cmp > 0); break;
2420 case LE_EXPR: val = (cmp <= 0); break;
2421 case GE_EXPR: val = (cmp >= 0); break;
2422 default: gcc_unreachable ();
2426 (if (code1 == EQ_EXPR && val) @4)
2427 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2428 (if (code1 == NE_EXPR && !val) @3))))))
2430 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2432 (for code1 (lt le gt ge)
2433 (for code2 (lt le gt ge)
2435 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2438 int cmp = tree_int_cst_compare (@1, @2);
2441 /* Choose the more restrictive of two < or <= comparisons. */
2442 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2443 && (code2 == LT_EXPR || code2 == LE_EXPR))
2444 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2447 /* Likewise chose the more restrictive of two > or >= comparisons. */
2448 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2449 && (code2 == GT_EXPR || code2 == GE_EXPR))
2450 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2453 /* Check for singleton ranges. */
2455 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2456 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2458 /* Check for disjoint ranges. */
2460 && (code1 == LT_EXPR || code1 == LE_EXPR)
2461 && (code2 == GT_EXPR || code2 == GE_EXPR))
2462 { constant_boolean_node (true, type); })
2464 && (code1 == GT_EXPR || code1 == GE_EXPR)
2465 && (code2 == LT_EXPR || code2 == LE_EXPR))
2466 { constant_boolean_node (true, type); })
2469 /* We can't reassociate at all for saturating types. */
2470 (if (!TYPE_SATURATING (type))
2472 /* Contract negates. */
2473 /* A + (-B) -> A - B */
2475 (plus:c @0 (convert? (negate @1)))
2476 /* Apply STRIP_NOPS on the negate. */
2477 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2478 && !TYPE_OVERFLOW_SANITIZED (type))
2482 if (INTEGRAL_TYPE_P (type)
2483 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2484 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2486 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2487 /* A - (-B) -> A + B */
2489 (minus @0 (convert? (negate @1)))
2490 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2491 && !TYPE_OVERFLOW_SANITIZED (type))
2495 if (INTEGRAL_TYPE_P (type)
2496 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2497 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2499 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2501 Sign-extension is ok except for INT_MIN, which thankfully cannot
2502 happen without overflow. */
2504 (negate (convert (negate @1)))
2505 (if (INTEGRAL_TYPE_P (type)
2506 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2507 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2508 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2509 && !TYPE_OVERFLOW_SANITIZED (type)
2510 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2513 (negate (convert negate_expr_p@1))
2514 (if (SCALAR_FLOAT_TYPE_P (type)
2515 && ((DECIMAL_FLOAT_TYPE_P (type)
2516 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2517 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2518 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2519 (convert (negate @1))))
2521 (negate (nop_convert? (negate @1)))
2522 (if (!TYPE_OVERFLOW_SANITIZED (type)
2523 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2526 /* We can't reassociate floating-point unless -fassociative-math
2527 or fixed-point plus or minus because of saturation to +-Inf. */
2528 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2529 && !FIXED_POINT_TYPE_P (type))
2531 /* Match patterns that allow contracting a plus-minus pair
2532 irrespective of overflow issues. */
2533 /* (A +- B) - A -> +- B */
2534 /* (A +- B) -+ B -> A */
2535 /* A - (A +- B) -> -+ B */
2536 /* A +- (B -+ A) -> +- B */
2538 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2541 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2542 (if (!ANY_INTEGRAL_TYPE_P (type)
2543 || TYPE_OVERFLOW_WRAPS (type))
2544 (negate (view_convert @1))
2545 (view_convert (negate @1))))
2547 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2550 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2551 (if (!ANY_INTEGRAL_TYPE_P (type)
2552 || TYPE_OVERFLOW_WRAPS (type))
2553 (negate (view_convert @1))
2554 (view_convert (negate @1))))
2556 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2558 /* (A +- B) + (C - A) -> C +- B */
2559 /* (A + B) - (A - C) -> B + C */
2560 /* More cases are handled with comparisons. */
2562 (plus:c (plus:c @0 @1) (minus @2 @0))
2565 (plus:c (minus @0 @1) (minus @2 @0))
2568 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2569 (if (TYPE_OVERFLOW_UNDEFINED (type)
2570 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2571 (pointer_diff @2 @1)))
2573 (minus (plus:c @0 @1) (minus @0 @2))
2576 /* (A +- CST1) +- CST2 -> A + CST3
2577 Use view_convert because it is safe for vectors and equivalent for
2579 (for outer_op (plus minus)
2580 (for inner_op (plus minus)
2581 neg_inner_op (minus plus)
2583 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2585 /* If one of the types wraps, use that one. */
2586 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2587 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2588 forever if something doesn't simplify into a constant. */
2589 (if (!CONSTANT_CLASS_P (@0))
2590 (if (outer_op == PLUS_EXPR)
2591 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2592 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2593 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2594 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2595 (if (outer_op == PLUS_EXPR)
2596 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2597 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2598 /* If the constant operation overflows we cannot do the transform
2599 directly as we would introduce undefined overflow, for example
2600 with (a - 1) + INT_MIN. */
2601 (if (types_match (type, @0))
2602 (with { tree cst = const_binop (outer_op == inner_op
2603 ? PLUS_EXPR : MINUS_EXPR,
2605 (if (cst && !TREE_OVERFLOW (cst))
2606 (inner_op @0 { cst; } )
2607 /* X+INT_MAX+1 is X-INT_MIN. */
2608 (if (INTEGRAL_TYPE_P (type) && cst
2609 && wi::to_wide (cst) == wi::min_value (type))
2610 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2611 /* Last resort, use some unsigned type. */
2612 (with { tree utype = unsigned_type_for (type); }
2614 (view_convert (inner_op
2615 (view_convert:utype @0)
2617 { drop_tree_overflow (cst); }))))))))))))))
2619 /* (CST1 - A) +- CST2 -> CST3 - A */
2620 (for outer_op (plus minus)
2622 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2623 /* If one of the types wraps, use that one. */
2624 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2625 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2626 forever if something doesn't simplify into a constant. */
2627 (if (!CONSTANT_CLASS_P (@0))
2628 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2629 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2630 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2631 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2632 (if (types_match (type, @0))
2633 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2634 (if (cst && !TREE_OVERFLOW (cst))
2635 (minus { cst; } @0))))))))
2637 /* CST1 - (CST2 - A) -> CST3 + A
2638 Use view_convert because it is safe for vectors and equivalent for
2641 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2642 /* If one of the types wraps, use that one. */
2643 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2644 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2645 forever if something doesn't simplify into a constant. */
2646 (if (!CONSTANT_CLASS_P (@0))
2647 (plus (view_convert @0) (minus @1 (view_convert @2))))
2648 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2649 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2650 (view_convert (plus @0 (minus (view_convert @1) @2)))
2651 (if (types_match (type, @0))
2652 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2653 (if (cst && !TREE_OVERFLOW (cst))
2654 (plus { cst; } @0)))))))
2656 /* ((T)(A)) + CST -> (T)(A + CST) */
2659 (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
2660 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2661 && TREE_CODE (type) == INTEGER_TYPE
2662 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2663 && int_fits_type_p (@1, TREE_TYPE (@0)))
2664 /* Perform binary operation inside the cast if the constant fits
2665 and (A + CST)'s range does not overflow. */
2668 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2669 max_ovf = wi::OVF_OVERFLOW;
2670 tree inner_type = TREE_TYPE (@0);
2673 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2674 TYPE_SIGN (inner_type));
2677 if (get_global_range_query ()->range_of_expr (vr, @0)
2678 && vr.kind () == VR_RANGE)
2680 wide_int wmin0 = vr.lower_bound ();
2681 wide_int wmax0 = vr.upper_bound ();
2682 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2683 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2686 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2687 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2691 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2693 (for op (plus minus)
2695 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2696 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2697 && TREE_CODE (type) == INTEGER_TYPE
2698 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2699 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2700 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2701 && TYPE_OVERFLOW_WRAPS (type))
2702 (plus (convert @0) (op @2 (convert @1))))))
2705 /* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
2706 to a simple value. */
2708 (for op (plus minus)
2710 (op (convert @0) (convert @1))
2711 (if (INTEGRAL_TYPE_P (type)
2712 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2713 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2714 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
2715 && !TYPE_OVERFLOW_TRAPS (type)
2716 && !TYPE_OVERFLOW_SANITIZED (type))
2717 (convert (op! @0 @1)))))
2722 (plus:c (bit_not @0) @0)
2723 (if (!TYPE_OVERFLOW_TRAPS (type))
2724 { build_all_ones_cst (type); }))
2728 (plus (convert? (bit_not @0)) integer_each_onep)
2729 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2730 (negate (convert @0))))
2734 (minus (convert? (negate @0)) integer_each_onep)
2735 (if (!TYPE_OVERFLOW_TRAPS (type)
2736 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2737 (bit_not (convert @0))))
2741 (minus integer_all_onesp @0)
2744 /* (T)(P + A) - (T)P -> (T) A */
2746 (minus (convert (plus:c @@0 @1))
2748 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2749 /* For integer types, if A has a smaller type
2750 than T the result depends on the possible
2752 E.g. T=size_t, A=(unsigned)429497295, P>0.
2753 However, if an overflow in P + A would cause
2754 undefined behavior, we can assume that there
2756 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2757 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2760 (minus (convert (pointer_plus @@0 @1))
2762 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2763 /* For pointer types, if the conversion of A to the
2764 final type requires a sign- or zero-extension,
2765 then we have to punt - it is not defined which
2767 || (POINTER_TYPE_P (TREE_TYPE (@0))
2768 && TREE_CODE (@1) == INTEGER_CST
2769 && tree_int_cst_sign_bit (@1) == 0))
2772 (pointer_diff (pointer_plus @@0 @1) @0)
2773 /* The second argument of pointer_plus must be interpreted as signed, and
2774 thus sign-extended if necessary. */
2775 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2776 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2777 second arg is unsigned even when we need to consider it as signed,
2778 we don't want to diagnose overflow here. */
2779 (convert (view_convert:stype @1))))
2781 /* (T)P - (T)(P + A) -> -(T) A */
2783 (minus (convert? @0)
2784 (convert (plus:c @@0 @1)))
2785 (if (INTEGRAL_TYPE_P (type)
2786 && TYPE_OVERFLOW_UNDEFINED (type)
2787 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2788 (with { tree utype = unsigned_type_for (type); }
2789 (convert (negate (convert:utype @1))))
2790 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2791 /* For integer types, if A has a smaller type
2792 than T the result depends on the possible
2794 E.g. T=size_t, A=(unsigned)429497295, P>0.
2795 However, if an overflow in P + A would cause
2796 undefined behavior, we can assume that there
2798 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2799 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2800 (negate (convert @1)))))
2803 (convert (pointer_plus @@0 @1)))
2804 (if (INTEGRAL_TYPE_P (type)
2805 && TYPE_OVERFLOW_UNDEFINED (type)
2806 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2807 (with { tree utype = unsigned_type_for (type); }
2808 (convert (negate (convert:utype @1))))
2809 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2810 /* For pointer types, if the conversion of A to the
2811 final type requires a sign- or zero-extension,
2812 then we have to punt - it is not defined which
2814 || (POINTER_TYPE_P (TREE_TYPE (@0))
2815 && TREE_CODE (@1) == INTEGER_CST
2816 && tree_int_cst_sign_bit (@1) == 0))
2817 (negate (convert @1)))))
2819 (pointer_diff @0 (pointer_plus @@0 @1))
2820 /* The second argument of pointer_plus must be interpreted as signed, and
2821 thus sign-extended if necessary. */
2822 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2823 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2824 second arg is unsigned even when we need to consider it as signed,
2825 we don't want to diagnose overflow here. */
2826 (negate (convert (view_convert:stype @1)))))
2828 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2830 (minus (convert (plus:c @@0 @1))
2831 (convert (plus:c @0 @2)))
2832 (if (INTEGRAL_TYPE_P (type)
2833 && TYPE_OVERFLOW_UNDEFINED (type)
2834 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2835 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2836 (with { tree utype = unsigned_type_for (type); }
2837 (convert (minus (convert:utype @1) (convert:utype @2))))
2838 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2839 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2840 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2841 /* For integer types, if A has a smaller type
2842 than T the result depends on the possible
2844 E.g. T=size_t, A=(unsigned)429497295, P>0.
2845 However, if an overflow in P + A would cause
2846 undefined behavior, we can assume that there
2848 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2849 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2850 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2851 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2852 (minus (convert @1) (convert @2)))))
2854 (minus (convert (pointer_plus @@0 @1))
2855 (convert (pointer_plus @0 @2)))
2856 (if (INTEGRAL_TYPE_P (type)
2857 && TYPE_OVERFLOW_UNDEFINED (type)
2858 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2859 (with { tree utype = unsigned_type_for (type); }
2860 (convert (minus (convert:utype @1) (convert:utype @2))))
2861 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2862 /* For pointer types, if the conversion of A to the
2863 final type requires a sign- or zero-extension,
2864 then we have to punt - it is not defined which
2866 || (POINTER_TYPE_P (TREE_TYPE (@0))
2867 && TREE_CODE (@1) == INTEGER_CST
2868 && tree_int_cst_sign_bit (@1) == 0
2869 && TREE_CODE (@2) == INTEGER_CST
2870 && tree_int_cst_sign_bit (@2) == 0))
2871 (minus (convert @1) (convert @2)))))
2873 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
2874 (pointer_diff @0 @1))
2876 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2877 /* The second argument of pointer_plus must be interpreted as signed, and
2878 thus sign-extended if necessary. */
2879 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2880 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2881 second arg is unsigned even when we need to consider it as signed,
2882 we don't want to diagnose overflow here. */
2883 (minus (convert (view_convert:stype @1))
2884 (convert (view_convert:stype @2)))))))
2886 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2887 Modeled after fold_plusminus_mult_expr. */
2888 (if (!TYPE_SATURATING (type)
2889 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2890 (for plusminus (plus minus)
2892 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2893 (if (!ANY_INTEGRAL_TYPE_P (type)
2894 || TYPE_OVERFLOW_WRAPS (type)
2895 || (INTEGRAL_TYPE_P (type)
2896 && tree_expr_nonzero_p (@0)
2897 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2898 (if (single_use (@3) || single_use (@4))
2899 /* If @1 +- @2 is constant require a hard single-use on either
2900 original operand (but not on both). */
2901 (mult (plusminus @1 @2) @0)
2903 (mult! (plusminus @1 @2) @0)
2906 /* We cannot generate constant 1 for fract. */
2907 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2909 (plusminus @0 (mult:c@3 @0 @2))
2910 (if ((!ANY_INTEGRAL_TYPE_P (type)
2911 || TYPE_OVERFLOW_WRAPS (type)
2912 /* For @0 + @0*@2 this transformation would introduce UB
2913 (where there was none before) for @0 in [-1,0] and @2 max.
2914 For @0 - @0*@2 this transformation would introduce UB
2915 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
2916 || (INTEGRAL_TYPE_P (type)
2917 && ((tree_expr_nonzero_p (@0)
2918 && expr_not_equal_to (@0,
2919 wi::minus_one (TYPE_PRECISION (type))))
2920 || (plusminus == PLUS_EXPR
2921 ? expr_not_equal_to (@2,
2922 wi::max_value (TYPE_PRECISION (type), SIGNED))
2923 /* Let's ignore the @0 -1 and @2 min case. */
2924 : (expr_not_equal_to (@2,
2925 wi::min_value (TYPE_PRECISION (type), SIGNED))
2926 && expr_not_equal_to (@2,
2927 wi::min_value (TYPE_PRECISION (type), SIGNED)
2930 (mult (plusminus { build_one_cst (type); } @2) @0)))
2932 (plusminus (mult:c@3 @0 @2) @0)
2933 (if ((!ANY_INTEGRAL_TYPE_P (type)
2934 || TYPE_OVERFLOW_WRAPS (type)
2935 /* For @0*@2 + @0 this transformation would introduce UB
2936 (where there was none before) for @0 in [-1,0] and @2 max.
2937 For @0*@2 - @0 this transformation would introduce UB
2938 for @0 0 and @2 min. */
2939 || (INTEGRAL_TYPE_P (type)
2940 && ((tree_expr_nonzero_p (@0)
2941 && (plusminus == MINUS_EXPR
2942 || expr_not_equal_to (@0,
2943 wi::minus_one (TYPE_PRECISION (type)))))
2944 || expr_not_equal_to (@2,
2945 (plusminus == PLUS_EXPR
2946 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2947 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2949 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2952 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
2953 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
2955 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
2956 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2957 && tree_fits_uhwi_p (@1)
2958 && tree_to_uhwi (@1) < element_precision (type)
2959 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2960 || optab_handler (smul_optab,
2961 TYPE_MODE (type)) != CODE_FOR_nothing))
2962 (with { tree t = type;
2963 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2964 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
2965 element_precision (type));
2967 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2969 cst = build_uniform_cst (t, cst); }
2970 (convert (mult (convert:t @0) { cst; })))))
2972 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
2973 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2974 && tree_fits_uhwi_p (@1)
2975 && tree_to_uhwi (@1) < element_precision (type)
2976 && tree_fits_uhwi_p (@2)
2977 && tree_to_uhwi (@2) < element_precision (type)
2978 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2979 || optab_handler (smul_optab,
2980 TYPE_MODE (type)) != CODE_FOR_nothing))
2981 (with { tree t = type;
2982 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2983 unsigned int prec = element_precision (type);
2984 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
2985 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
2986 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2988 cst = build_uniform_cst (t, cst); }
2989 (convert (mult (convert:t @0) { cst; })))))
2992 /* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when
2993 tree_nonzero_bits allows IOR and XOR to be treated like PLUS.
2994 Likewise, handle (X<<C3) and X as legitimate variants of X*C. */
2995 (for op (bit_ior bit_xor)
2997 (op (mult:s@0 @1 INTEGER_CST@2)
2998 (mult:s@3 @1 INTEGER_CST@4))
2999 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3000 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3002 { wide_int_to_tree (type, wi::to_wide (@2) + wi::to_wide (@4)); })))
3004 (op:c (mult:s@0 @1 INTEGER_CST@2)
3005 (lshift:s@3 @1 INTEGER_CST@4))
3006 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3007 && tree_int_cst_sgn (@4) > 0
3008 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3009 (with { wide_int wone = wi::one (TYPE_PRECISION (type));
3010 wide_int c = wi::add (wi::to_wide (@2),
3011 wi::lshift (wone, wi::to_wide (@4))); }
3012 (mult @1 { wide_int_to_tree (type, c); }))))
3014 (op:c (mult:s@0 @1 INTEGER_CST@2)
3016 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3017 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3019 { wide_int_to_tree (type,
3020 wi::add (wi::to_wide (@2), 1)); })))
3022 (op (lshift:s@0 @1 INTEGER_CST@2)
3023 (lshift:s@3 @1 INTEGER_CST@4))
3024 (if (INTEGRAL_TYPE_P (type)
3025 && tree_int_cst_sgn (@2) > 0
3026 && tree_int_cst_sgn (@4) > 0
3027 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3028 (with { tree t = type;
3029 if (!TYPE_OVERFLOW_WRAPS (t))
3030 t = unsigned_type_for (t);
3031 wide_int wone = wi::one (TYPE_PRECISION (t));
3032 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)),
3033 wi::lshift (wone, wi::to_wide (@4))); }
3034 (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); })))))
3036 (op:c (lshift:s@0 @1 INTEGER_CST@2)
3038 (if (INTEGRAL_TYPE_P (type)
3039 && tree_int_cst_sgn (@2) > 0
3040 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3041 (with { tree t = type;
3042 if (!TYPE_OVERFLOW_WRAPS (t))
3043 t = unsigned_type_for (t);
3044 wide_int wone = wi::one (TYPE_PRECISION (t));
3045 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); }
3046 (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); }))))))
3048 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
3050 (for minmax (min max FMIN_ALL FMAX_ALL)
3054 /* min(max(x,y),y) -> y. */
3056 (min:c (max:c @0 @1) @1)
3058 /* max(min(x,y),y) -> y. */
3060 (max:c (min:c @0 @1) @1)
3062 /* max(a,-a) -> abs(a). */
3064 (max:c @0 (negate @0))
3065 (if (TREE_CODE (type) != COMPLEX_TYPE
3066 && (! ANY_INTEGRAL_TYPE_P (type)
3067 || TYPE_OVERFLOW_UNDEFINED (type)))
3069 /* min(a,-a) -> -abs(a). */
3071 (min:c @0 (negate @0))
3072 (if (TREE_CODE (type) != COMPLEX_TYPE
3073 && (! ANY_INTEGRAL_TYPE_P (type)
3074 || TYPE_OVERFLOW_UNDEFINED (type)))
3079 (if (INTEGRAL_TYPE_P (type)
3080 && TYPE_MIN_VALUE (type)
3081 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3083 (if (INTEGRAL_TYPE_P (type)
3084 && TYPE_MAX_VALUE (type)
3085 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3090 (if (INTEGRAL_TYPE_P (type)
3091 && TYPE_MAX_VALUE (type)
3092 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3094 (if (INTEGRAL_TYPE_P (type)
3095 && TYPE_MIN_VALUE (type)
3096 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3099 /* max (a, a + CST) -> a + CST where CST is positive. */
3100 /* max (a, a + CST) -> a where CST is negative. */
3102 (max:c @0 (plus@2 @0 INTEGER_CST@1))
3103 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3104 (if (tree_int_cst_sgn (@1) > 0)
3108 /* min (a, a + CST) -> a where CST is positive. */
3109 /* min (a, a + CST) -> a + CST where CST is negative. */
3111 (min:c @0 (plus@2 @0 INTEGER_CST@1))
3112 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3113 (if (tree_int_cst_sgn (@1) > 0)
3117 /* Simplify min (&var[off0], &var[off1]) etc. depending on whether
3118 the addresses are known to be less, equal or greater. */
3119 (for minmax (min max)
3122 (minmax (convert1?@2 addr@0) (convert2?@3 addr@1))
3125 poly_int64 off0, off1;
3127 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
3128 off0, off1, GENERIC);
3131 (if (minmax == MIN_EXPR)
3132 (if (known_le (off0, off1))
3134 (if (known_gt (off0, off1))
3136 (if (known_ge (off0, off1))
3138 (if (known_lt (off0, off1))
3141 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
3142 and the outer convert demotes the expression back to x's type. */
3143 (for minmax (min max)
3145 (convert (minmax@0 (convert @1) INTEGER_CST@2))
3146 (if (INTEGRAL_TYPE_P (type)
3147 && types_match (@1, type) && int_fits_type_p (@2, type)
3148 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
3149 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
3150 (minmax @1 (convert @2)))))
3152 (for minmax (FMIN_ALL FMAX_ALL)
3153 /* If either argument is NaN, return the other one. Avoid the
3154 transformation if we get (and honor) a signalling NaN. */
3156 (minmax:c @0 REAL_CST@1)
3157 (if (real_isnan (TREE_REAL_CST_PTR (@1))
3158 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
3160 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
3161 functions to return the numeric arg if the other one is NaN.
3162 MIN and MAX don't honor that, so only transform if -ffinite-math-only
3163 is set. C99 doesn't require -0.0 to be handled, so we don't have to
3164 worry about it either. */
3165 (if (flag_finite_math_only)
3172 /* min (-A, -B) -> -max (A, B) */
3173 (for minmax (min max FMIN_ALL FMAX_ALL)
3174 maxmin (max min FMAX_ALL FMIN_ALL)
3176 (minmax (negate:s@2 @0) (negate:s@3 @1))
3177 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3178 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3179 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3180 (negate (maxmin @0 @1)))))
3181 /* MIN (~X, ~Y) -> ~MAX (X, Y)
3182 MAX (~X, ~Y) -> ~MIN (X, Y) */
3183 (for minmax (min max)
3186 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
3187 (bit_not (maxmin @0 @1))))
3189 /* MIN (X, Y) == X -> X <= Y */
3190 (for minmax (min min max max)
3194 (cmp:c (minmax:c @0 @1) @0)
3195 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3197 /* MIN (X, 5) == 0 -> X == 0
3198 MIN (X, 5) == 7 -> false */
3201 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
3202 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3203 TYPE_SIGN (TREE_TYPE (@0))))
3204 { constant_boolean_node (cmp == NE_EXPR, type); }
3205 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3206 TYPE_SIGN (TREE_TYPE (@0))))
3210 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
3211 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3212 TYPE_SIGN (TREE_TYPE (@0))))
3213 { constant_boolean_node (cmp == NE_EXPR, type); }
3214 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3215 TYPE_SIGN (TREE_TYPE (@0))))
3217 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
3218 (for minmax (min min max max min min max max )
3219 cmp (lt le gt ge gt ge lt le )
3220 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
3222 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
3223 (comb (cmp @0 @2) (cmp @1 @2))))
3225 /* X <= MAX(X, Y) -> true
3226 X > MAX(X, Y) -> false
3227 X >= MIN(X, Y) -> true
3228 X < MIN(X, Y) -> false */
3229 (for minmax (min min max max )
3232 (cmp @0 (minmax:c @0 @1))
3233 { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
3235 /* Undo fancy way of writing max/min or other ?: expressions,
3236 like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
3237 People normally use ?: and that is what we actually try to optimize. */
3238 (for cmp (simple_comparison)
3240 (minus @0 (bit_and:c (minus @0 @1)
3241 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3242 (if (INTEGRAL_TYPE_P (type)
3243 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3244 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3245 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3246 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3247 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3248 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3249 (cond (cmp @2 @3) @1 @0)))
3251 (plus:c @0 (bit_and:c (minus @1 @0)
3252 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3253 (if (INTEGRAL_TYPE_P (type)
3254 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3255 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3256 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3257 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3258 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3259 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3260 (cond (cmp @2 @3) @1 @0)))
3261 /* Similarly with ^ instead of - though in that case with :c. */
3263 (bit_xor:c @0 (bit_and:c (bit_xor:c @0 @1)
3264 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3265 (if (INTEGRAL_TYPE_P (type)
3266 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3267 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3268 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3269 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3270 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3271 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3272 (cond (cmp @2 @3) @1 @0))))
3274 /* Simplifications of shift and rotates. */
3276 (for rotate (lrotate rrotate)
3278 (rotate integer_all_onesp@0 @1)
3281 /* Optimize -1 >> x for arithmetic right shifts. */
3283 (rshift integer_all_onesp@0 @1)
3284 (if (!TYPE_UNSIGNED (type))
3287 /* Optimize (x >> c) << c into x & (-1<<c). */
3289 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
3290 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
3291 /* It doesn't matter if the right shift is arithmetic or logical. */
3292 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
3295 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
3296 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
3297 /* Allow intermediate conversion to integral type with whatever sign, as
3298 long as the low TYPE_PRECISION (type)
3299 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
3300 && INTEGRAL_TYPE_P (type)
3301 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3302 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3303 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3304 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
3305 || wi::geu_p (wi::to_wide (@1),
3306 TYPE_PRECISION (type)
3307 - TYPE_PRECISION (TREE_TYPE (@2)))))
3308 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
3310 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
3313 (rshift (lshift @0 INTEGER_CST@1) @1)
3314 (if (TYPE_UNSIGNED (type)
3315 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
3316 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
3318 /* Optimize x >> x into 0 */
3321 { build_zero_cst (type); })
3323 (for shiftrotate (lrotate rrotate lshift rshift)
3325 (shiftrotate @0 integer_zerop)
3328 (shiftrotate integer_zerop@0 @1)
3330 /* Prefer vector1 << scalar to vector1 << vector2
3331 if vector2 is uniform. */
3332 (for vec (VECTOR_CST CONSTRUCTOR)
3334 (shiftrotate @0 vec@1)
3335 (with { tree tem = uniform_vector_p (@1); }
3337 (shiftrotate @0 { tem; }))))))
3339 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
3340 Y is 0. Similarly for X >> Y. */
3342 (for shift (lshift rshift)
3344 (shift @0 SSA_NAME@1)
3345 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3347 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
3348 int prec = TYPE_PRECISION (TREE_TYPE (@1));
3350 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
3354 /* Rewrite an LROTATE_EXPR by a constant into an
3355 RROTATE_EXPR by a new constant. */
3357 (lrotate @0 INTEGER_CST@1)
3358 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
3359 build_int_cst (TREE_TYPE (@1),
3360 element_precision (type)), @1); }))
3362 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
3363 (for op (lrotate rrotate rshift lshift)
3365 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
3366 (with { unsigned int prec = element_precision (type); }
3367 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
3368 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
3369 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
3370 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
3371 (with { unsigned int low = (tree_to_uhwi (@1)
3372 + tree_to_uhwi (@2)); }
3373 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
3374 being well defined. */
3376 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
3377 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
3378 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
3379 { build_zero_cst (type); }
3380 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
3381 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
3384 /* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd. */
3386 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
3387 (if ((wi::to_wide (@1) & 1) != 0)
3388 (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
3389 { build_zero_cst (type); }))
3391 /* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
3392 either to false if D is smaller (unsigned comparison) than C, or to
3393 x == log2 (D) - log2 (C). Similarly for right shifts. */
3397 (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3398 (with { int c1 = wi::clz (wi::to_wide (@1));
3399 int c2 = wi::clz (wi::to_wide (@2)); }
3401 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3402 (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
3404 (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3405 (if (tree_int_cst_sgn (@1) > 0)
3406 (with { int c1 = wi::clz (wi::to_wide (@1));
3407 int c2 = wi::clz (wi::to_wide (@2)); }
3409 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3410 (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))))
3412 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3413 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3417 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
3418 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
3420 || (!integer_zerop (@2)
3421 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
3422 { constant_boolean_node (cmp == NE_EXPR, type); }
3423 (if (!integer_zerop (@2)
3424 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
3425 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
3427 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3428 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3429 if the new mask might be further optimized. */
3430 (for shift (lshift rshift)
3432 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3434 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3435 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3436 && tree_fits_uhwi_p (@1)
3437 && tree_to_uhwi (@1) > 0
3438 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
3441 unsigned int shiftc = tree_to_uhwi (@1);
3442 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3443 unsigned HOST_WIDE_INT newmask, zerobits = 0;
3444 tree shift_type = TREE_TYPE (@3);
3447 if (shift == LSHIFT_EXPR)
3448 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3449 else if (shift == RSHIFT_EXPR
3450 && type_has_mode_precision_p (shift_type))
3452 prec = TYPE_PRECISION (TREE_TYPE (@3));
3454 /* See if more bits can be proven as zero because of
3457 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3459 tree inner_type = TREE_TYPE (@0);
3460 if (type_has_mode_precision_p (inner_type)
3461 && TYPE_PRECISION (inner_type) < prec)
3463 prec = TYPE_PRECISION (inner_type);
3464 /* See if we can shorten the right shift. */
3466 shift_type = inner_type;
3467 /* Otherwise X >> C1 is all zeros, so we'll optimize
3468 it into (X, 0) later on by making sure zerobits
3472 zerobits = HOST_WIDE_INT_M1U;
3475 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3476 zerobits <<= prec - shiftc;
3478 /* For arithmetic shift if sign bit could be set, zerobits
3479 can contain actually sign bits, so no transformation is
3480 possible, unless MASK masks them all away. In that
3481 case the shift needs to be converted into logical shift. */
3482 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3483 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3485 if ((mask & zerobits) == 0)
3486 shift_type = unsigned_type_for (TREE_TYPE (@3));
3492 /* ((X << 16) & 0xff00) is (X, 0). */
3493 (if ((mask & zerobits) == mask)
3494 { build_int_cst (type, 0); }
3495 (with { newmask = mask | zerobits; }
3496 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3499 /* Only do the transformation if NEWMASK is some integer
3501 for (prec = BITS_PER_UNIT;
3502 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3503 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3506 (if (prec < HOST_BITS_PER_WIDE_INT
3507 || newmask == HOST_WIDE_INT_M1U)
3509 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3510 (if (!tree_int_cst_equal (newmaskt, @2))
3511 (if (shift_type != TREE_TYPE (@3))
3512 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3513 (bit_and @4 { newmaskt; })))))))))))))
3515 /* ((1 << n) & M) != 0 -> n == log2 (M) */
3521 (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop)
3522 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3523 (icmp @0 { wide_int_to_tree (TREE_TYPE (@0),
3524 wi::exact_log2 (wi::to_wide (@1))); }))))
3526 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3527 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
3528 (for shift (lshift rshift)
3529 (for bit_op (bit_and bit_xor bit_ior)
3531 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3532 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3533 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3535 (bit_op (shift (convert @0) @1) { mask; })))))))
3537 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3539 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3540 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3541 && (element_precision (TREE_TYPE (@0))
3542 <= element_precision (TREE_TYPE (@1))
3543 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3545 { tree shift_type = TREE_TYPE (@0); }
3546 (convert (rshift (convert:shift_type @1) @2)))))
3548 /* ~(~X >>r Y) -> X >>r Y
3549 ~(~X <<r Y) -> X <<r Y */
3550 (for rotate (lrotate rrotate)
3552 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3553 (if ((element_precision (TREE_TYPE (@0))
3554 <= element_precision (TREE_TYPE (@1))
3555 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3556 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3557 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3559 { tree rotate_type = TREE_TYPE (@0); }
3560 (convert (rotate (convert:rotate_type @1) @2))))))
3563 (for rotate (lrotate rrotate)
3564 invrot (rrotate lrotate)
3565 /* (X >>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */
3567 (cmp (rotate @1 @0) (rotate @2 @0))
3569 /* (X >>r C1) cmp C2 may simplify to X cmp C3. */
3571 (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2)
3572 (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); }))
3573 /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C. */
3575 (cmp (rotate @0 @1) INTEGER_CST@2)
3576 (if (integer_zerop (@2) || integer_all_onesp (@2))
3579 /* Both signed and unsigned lshift produce the same result, so use
3580 the form that minimizes the number of conversions. Postpone this
3581 transformation until after shifts by zero have been folded. */
3583 (convert (lshift:s@0 (convert:s@1 @2) INTEGER_CST@3))
3584 (if (INTEGRAL_TYPE_P (type)
3585 && tree_nop_conversion_p (type, TREE_TYPE (@0))
3586 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3587 && TYPE_PRECISION (TREE_TYPE (@2)) <= TYPE_PRECISION (type)
3588 && !integer_zerop (@3))
3589 (lshift (convert @2) @3)))
3591 /* Simplifications of conversions. */
3593 /* Basic strip-useless-type-conversions / strip_nops. */
3594 (for cvt (convert view_convert float fix_trunc)
3597 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3598 || (GENERIC && type == TREE_TYPE (@0)))
3601 /* Contract view-conversions. */
3603 (view_convert (view_convert @0))
3606 /* For integral conversions with the same precision or pointer
3607 conversions use a NOP_EXPR instead. */
3610 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3611 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3612 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3615 /* Strip inner integral conversions that do not change precision or size, or
3616 zero-extend while keeping the same size (for bool-to-char). */
3618 (view_convert (convert@0 @1))
3619 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3620 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3621 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3622 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3623 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3624 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3627 /* Simplify a view-converted empty constructor. */
3629 (view_convert CONSTRUCTOR@0)
3630 (if (TREE_CODE (@0) != SSA_NAME
3631 && CONSTRUCTOR_NELTS (@0) == 0)
3632 { build_zero_cst (type); }))
3634 /* Re-association barriers around constants and other re-association
3635 barriers can be removed. */
3637 (paren CONSTANT_CLASS_P@0)
3640 (paren (paren@1 @0))
3643 /* Handle cases of two conversions in a row. */
3644 (for ocvt (convert float fix_trunc)
3645 (for icvt (convert float)
3650 tree inside_type = TREE_TYPE (@0);
3651 tree inter_type = TREE_TYPE (@1);
3652 int inside_int = INTEGRAL_TYPE_P (inside_type);
3653 int inside_ptr = POINTER_TYPE_P (inside_type);
3654 int inside_float = FLOAT_TYPE_P (inside_type);
3655 int inside_vec = VECTOR_TYPE_P (inside_type);
3656 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3657 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3658 int inter_int = INTEGRAL_TYPE_P (inter_type);
3659 int inter_ptr = POINTER_TYPE_P (inter_type);
3660 int inter_float = FLOAT_TYPE_P (inter_type);
3661 int inter_vec = VECTOR_TYPE_P (inter_type);
3662 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3663 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3664 int final_int = INTEGRAL_TYPE_P (type);
3665 int final_ptr = POINTER_TYPE_P (type);
3666 int final_float = FLOAT_TYPE_P (type);
3667 int final_vec = VECTOR_TYPE_P (type);
3668 unsigned int final_prec = TYPE_PRECISION (type);
3669 int final_unsignedp = TYPE_UNSIGNED (type);
3672 /* In addition to the cases of two conversions in a row
3673 handled below, if we are converting something to its own
3674 type via an object of identical or wider precision, neither
3675 conversion is needed. */
3676 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3678 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3679 && (((inter_int || inter_ptr) && final_int)
3680 || (inter_float && final_float))
3681 && inter_prec >= final_prec)
3684 /* Likewise, if the intermediate and initial types are either both
3685 float or both integer, we don't need the middle conversion if the
3686 former is wider than the latter and doesn't change the signedness
3687 (for integers). Avoid this if the final type is a pointer since
3688 then we sometimes need the middle conversion. */
3689 (if (((inter_int && inside_int) || (inter_float && inside_float))
3690 && (final_int || final_float)
3691 && inter_prec >= inside_prec
3692 && (inter_float || inter_unsignedp == inside_unsignedp))
3695 /* If we have a sign-extension of a zero-extended value, we can
3696 replace that by a single zero-extension. Likewise if the
3697 final conversion does not change precision we can drop the
3698 intermediate conversion. */
3699 (if (inside_int && inter_int && final_int
3700 && ((inside_prec < inter_prec && inter_prec < final_prec
3701 && inside_unsignedp && !inter_unsignedp)
3702 || final_prec == inter_prec))
3705 /* Two conversions in a row are not needed unless:
3706 - some conversion is floating-point (overstrict for now), or
3707 - some conversion is a vector (overstrict for now), or
3708 - the intermediate type is narrower than both initial and
3710 - the intermediate type and innermost type differ in signedness,
3711 and the outermost type is wider than the intermediate, or
3712 - the initial type is a pointer type and the precisions of the
3713 intermediate and final types differ, or
3714 - the final type is a pointer type and the precisions of the
3715 initial and intermediate types differ. */
3716 (if (! inside_float && ! inter_float && ! final_float
3717 && ! inside_vec && ! inter_vec && ! final_vec
3718 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3719 && ! (inside_int && inter_int
3720 && inter_unsignedp != inside_unsignedp
3721 && inter_prec < final_prec)
3722 && ((inter_unsignedp && inter_prec > inside_prec)
3723 == (final_unsignedp && final_prec > inter_prec))
3724 && ! (inside_ptr && inter_prec != final_prec)
3725 && ! (final_ptr && inside_prec != inter_prec))
3728 /* A truncation to an unsigned type (a zero-extension) should be
3729 canonicalized as bitwise and of a mask. */
3730 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3731 && final_int && inter_int && inside_int
3732 && final_prec == inside_prec
3733 && final_prec > inter_prec
3735 (convert (bit_and @0 { wide_int_to_tree
3737 wi::mask (inter_prec, false,
3738 TYPE_PRECISION (inside_type))); })))
3740 /* If we are converting an integer to a floating-point that can
3741 represent it exactly and back to an integer, we can skip the
3742 floating-point conversion. */
3743 (if (GIMPLE /* PR66211 */
3744 && inside_int && inter_float && final_int &&
3745 (unsigned) significand_size (TYPE_MODE (inter_type))
3746 >= inside_prec - !inside_unsignedp)
3749 /* (float_type)(integer_type) x -> trunc (x) if the type of x matches
3750 float_type. Only do the transformation if we do not need to preserve
3751 trapping behaviour, so require !flag_trapping_math. */
3754 (float (fix_trunc @0))
3755 (if (!flag_trapping_math
3756 && types_match (type, TREE_TYPE (@0))
3757 && direct_internal_fn_supported_p (IFN_TRUNC, type,
3762 /* If we have a narrowing conversion to an integral type that is fed by a
3763 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3764 masks off bits outside the final type (and nothing else). */
3766 (convert (bit_and @0 INTEGER_CST@1))
3767 (if (INTEGRAL_TYPE_P (type)
3768 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3769 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3770 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3771 TYPE_PRECISION (type)), 0))
3775 /* (X /[ex] A) * A -> X. */
3777 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3780 /* Simplify (A / B) * B + (A % B) -> A. */
3781 (for div (trunc_div ceil_div floor_div round_div)
3782 mod (trunc_mod ceil_mod floor_mod round_mod)
3784 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3787 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3788 (for op (plus minus)
3790 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3791 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3792 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3795 wi::overflow_type overflow;
3796 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3797 TYPE_SIGN (type), &overflow);
3799 (if (types_match (type, TREE_TYPE (@2))
3800 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3801 (op @0 { wide_int_to_tree (type, mul); })
3802 (with { tree utype = unsigned_type_for (type); }
3803 (convert (op (convert:utype @0)
3804 (mult (convert:utype @1) (convert:utype @2))))))))))
3806 /* Canonicalization of binary operations. */
3808 /* Convert X + -C into X - C. */
3810 (plus @0 REAL_CST@1)
3811 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3812 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3813 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3814 (minus @0 { tem; })))))
3816 /* Convert x+x into x*2. */
3819 (if (SCALAR_FLOAT_TYPE_P (type))
3820 (mult @0 { build_real (type, dconst2); })
3821 (if (INTEGRAL_TYPE_P (type))
3822 (mult @0 { build_int_cst (type, 2); }))))
3826 (minus integer_zerop @1)
3829 (pointer_diff integer_zerop @1)
3830 (negate (convert @1)))
3832 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3833 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3834 (-ARG1 + ARG0) reduces to -ARG1. */
3836 (minus real_zerop@0 @1)
3837 (if (fold_real_zero_addition_p (type, @1, @0, 0))
3840 /* Transform x * -1 into -x. */
3842 (mult @0 integer_minus_onep)
3845 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3846 signed overflow for CST != 0 && CST != -1. */
3848 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3849 (if (TREE_CODE (@2) != INTEGER_CST
3851 && !integer_zerop (@1) && !integer_minus_onep (@1))
3852 (mult (mult @0 @2) @1)))
3854 /* True if we can easily extract the real and imaginary parts of a complex
3856 (match compositional_complex
3857 (convert? (complex @0 @1)))
3859 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3861 (complex (realpart @0) (imagpart @0))
3864 (realpart (complex @0 @1))
3867 (imagpart (complex @0 @1))
3870 /* Sometimes we only care about half of a complex expression. */
3872 (realpart (convert?:s (conj:s @0)))
3873 (convert (realpart @0)))
3875 (imagpart (convert?:s (conj:s @0)))
3876 (convert (negate (imagpart @0))))
3877 (for part (realpart imagpart)
3878 (for op (plus minus)
3880 (part (convert?:s@2 (op:s @0 @1)))
3881 (convert (op (part @0) (part @1))))))
3883 (realpart (convert?:s (CEXPI:s @0)))
3886 (imagpart (convert?:s (CEXPI:s @0)))
3889 /* conj(conj(x)) -> x */
3891 (conj (convert? (conj @0)))
3892 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3895 /* conj({x,y}) -> {x,-y} */
3897 (conj (convert?:s (complex:s @0 @1)))
3898 (with { tree itype = TREE_TYPE (type); }
3899 (complex (convert:itype @0) (negate (convert:itype @1)))))
3901 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3902 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
3903 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
3908 (bswap (bit_not (bswap @0)))
3910 (for bitop (bit_xor bit_ior bit_and)
3912 (bswap (bitop:c (bswap @0) @1))
3913 (bitop @0 (bswap @1))))
3916 (cmp (bswap@2 @0) (bswap @1))
3917 (with { tree ctype = TREE_TYPE (@2); }
3918 (cmp (convert:ctype @0) (convert:ctype @1))))
3920 (cmp (bswap @0) INTEGER_CST@1)
3921 (with { tree ctype = TREE_TYPE (@1); }
3922 (cmp (convert:ctype @0) (bswap @1)))))
3923 /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2. */
3925 (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2))
3927 (if (BITS_PER_UNIT == 8
3928 && tree_fits_uhwi_p (@2)
3929 && tree_fits_uhwi_p (@3))
3932 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4));
3933 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2);
3934 unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3);
3935 unsigned HOST_WIDE_INT lo = bits & 7;
3936 unsigned HOST_WIDE_INT hi = bits - lo;
3939 && mask < (256u>>lo)
3940 && bits < TYPE_PRECISION (TREE_TYPE(@0)))
3941 (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; }
3943 (bit_and (convert @1) @3)
3946 tree utype = unsigned_type_for (TREE_TYPE (@1));
3947 tree nst = build_int_cst (integer_type_node, ns);
3949 (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3))))))))
3950 /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2. */
3952 (rshift (convert? (bswap@2 @0)) INTEGER_CST@1)
3953 (if (BITS_PER_UNIT == 8
3954 && CHAR_TYPE_SIZE == 8
3955 && tree_fits_uhwi_p (@1))
3958 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
3959 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1);
3960 /* If the bswap was extended before the original shift, this
3961 byte (shift) has the sign of the extension, not the sign of
3962 the original shift. */
3963 tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type;
3965 /* Special case: logical right shift of sign-extended bswap.
3966 (unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */
3967 (if (TYPE_PRECISION (type) > prec
3968 && !TYPE_UNSIGNED (TREE_TYPE (@2))
3969 && TYPE_UNSIGNED (type)
3970 && bits < prec && bits + 8 >= prec)
3971 (with { tree nst = build_int_cst (integer_type_node, prec - 8); }
3972 (rshift (convert (lshift:st (convert:st @0) {nst;})) @1))
3973 (if (bits + 8 == prec)
3974 (if (TYPE_UNSIGNED (st))
3975 (convert (convert:unsigned_char_type_node @0))
3976 (convert (convert:signed_char_type_node @0)))
3977 (if (bits < prec && bits + 8 > prec)
3980 tree nst = build_int_cst (integer_type_node, bits & 7);
3981 tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node
3982 : signed_char_type_node;
3984 (convert (rshift:bt (convert:bt @0) {nst;})))))))))
3985 /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1. */
3987 (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1)
3988 (if (BITS_PER_UNIT == 8
3989 && tree_fits_uhwi_p (@1)
3990 && tree_to_uhwi (@1) < 256)
3993 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
3994 tree utype = unsigned_type_for (TREE_TYPE (@0));
3995 tree nst = build_int_cst (integer_type_node, prec - 8);
3997 (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1)))))
4000 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
4002 /* Simplify constant conditions.
4003 Only optimize constant conditions when the selected branch
4004 has the same type as the COND_EXPR. This avoids optimizing
4005 away "c ? x : throw", where the throw has a void type.
4006 Note that we cannot throw away the fold-const.c variant nor
4007 this one as we depend on doing this transform before possibly
4008 A ? B : B -> B triggers and the fold-const.c one can optimize
4009 0 ? A : B to B even if A has side-effects. Something
4010 genmatch cannot handle. */
4012 (cond INTEGER_CST@0 @1 @2)
4013 (if (integer_zerop (@0))
4014 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
4016 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
4019 (vec_cond VECTOR_CST@0 @1 @2)
4020 (if (integer_all_onesp (@0))
4022 (if (integer_zerop (@0))
4026 /* Sink unary operations to branches, but only if we do fold both. */
4027 (for op (negate bit_not abs absu)
4029 (op (vec_cond:s @0 @1 @2))
4030 (vec_cond @0 (op! @1) (op! @2))))
4032 /* Sink binary operation to branches, but only if we can fold it. */
4033 (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
4034 lshift rshift rdiv trunc_div ceil_div floor_div round_div
4035 trunc_mod ceil_mod floor_mod round_mod min max)
4036 /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
4038 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
4039 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
4041 /* (c ? a : b) op d --> c ? (a op d) : (b op d) */
4043 (op (vec_cond:s @0 @1 @2) @3)
4044 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
4046 (op @3 (vec_cond:s @0 @1 @2))
4047 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
4051 (match (nop_atomic_bit_test_and_p @0 @1 @4)
4052 (bit_and (convert?@4 (ATOMIC_FETCH_OR_XOR_N @2 INTEGER_CST@0 @3))
4055 int ibit = tree_log2 (@0);
4056 int ibit2 = tree_log2 (@1);
4060 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4062 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4063 (bit_and (convert?@3 (SYNC_FETCH_OR_XOR_N @2 INTEGER_CST@0))
4066 int ibit = tree_log2 (@0);
4067 int ibit2 = tree_log2 (@1);
4071 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4073 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4076 (ATOMIC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@5 @6)) @3))
4078 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4080 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4083 (SYNC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@3 @5))))
4085 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4087 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4088 (bit_and@4 (convert?@3 (ATOMIC_FETCH_AND_N @2 INTEGER_CST@0 @5))
4091 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4092 TYPE_PRECISION(type)));
4093 int ibit2 = tree_log2 (@1);
4097 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4099 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4101 (convert?@3 (SYNC_FETCH_AND_AND_N @2 INTEGER_CST@0))
4104 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4105 TYPE_PRECISION(type)));
4106 int ibit2 = tree_log2 (@1);
4110 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4112 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4115 (ATOMIC_FETCH_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))) @5))
4117 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4119 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4122 (SYNC_FETCH_AND_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7)))))
4124 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4128 /* (v ? w : 0) ? a : b is just (v & w) ? a : b
4129 Currently disabled after pass lvec because ARM understands
4130 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
4132 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
4133 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4134 (vec_cond (bit_and @0 @3) @1 @2)))
4136 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
4137 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4138 (vec_cond (bit_ior @0 @3) @1 @2)))
4140 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
4141 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4142 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
4144 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
4145 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4146 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
4148 /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
4150 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
4151 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4152 (vec_cond (bit_and @0 @1) @2 @3)))
4154 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
4155 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4156 (vec_cond (bit_ior @0 @1) @2 @3)))
4158 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
4159 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4160 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
4162 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
4163 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4164 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
4166 /* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
4167 types are compatible. */
4169 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
4170 (if (VECTOR_BOOLEAN_TYPE_P (type)
4171 && types_match (type, TREE_TYPE (@0)))
4172 (if (integer_zerop (@1) && integer_all_onesp (@2))
4174 (if (integer_all_onesp (@1) && integer_zerop (@2))
4177 /* A few simplifications of "a ? CST1 : CST2". */
4178 /* NOTE: Only do this on gimple as the if-chain-to-switch
4179 optimization depends on the gimple to have if statements in it. */
4182 (cond @0 INTEGER_CST@1 INTEGER_CST@2)
4184 (if (integer_zerop (@2))
4186 /* a ? 1 : 0 -> a if 0 and 1 are integral types. */
4187 (if (integer_onep (@1))
4188 (convert (convert:boolean_type_node @0)))
4189 /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */
4190 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1))
4192 tree shift = build_int_cst (integer_type_node, tree_log2 (@1));
4194 (lshift (convert (convert:boolean_type_node @0)) { shift; })))
4195 /* a ? -1 : 0 -> -a. No need to check the TYPE_PRECISION not being 1
4196 here as the powerof2cst case above will handle that case correctly. */
4197 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1))
4198 (negate (convert (convert:boolean_type_node @0))))))
4199 (if (integer_zerop (@1))
4201 tree booltrue = constant_boolean_node (true, boolean_type_node);
4204 /* a ? 0 : 1 -> !a. */
4205 (if (integer_onep (@2))
4206 (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } )))
4207 /* a ? powerof2cst : 0 -> (!a) << (log2(powerof2cst)) */
4208 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@2))
4210 tree shift = build_int_cst (integer_type_node, tree_log2 (@2));
4212 (lshift (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))
4214 /* a ? -1 : 0 -> -(!a). No need to check the TYPE_PRECISION not being 1
4215 here as the powerof2cst case above will handle that case correctly. */
4216 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2))
4217 (negate (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))))
4225 /* Simplification moved from fold_cond_expr_with_comparison. It may also
4227 /* This pattern implements two kinds simplification:
4230 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
4231 1) Conversions are type widening from smaller type.
4232 2) Const c1 equals to c2 after canonicalizing comparison.
4233 3) Comparison has tree code LT, LE, GT or GE.
4234 This specific pattern is needed when (cmp (convert x) c) may not
4235 be simplified by comparison patterns because of multiple uses of
4236 x. It also makes sense here because simplifying across multiple
4237 referred var is always benefitial for complicated cases.
4240 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
4241 (for cmp (lt le gt ge eq)
4243 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
4246 tree from_type = TREE_TYPE (@1);
4247 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
4248 enum tree_code code = ERROR_MARK;
4250 if (INTEGRAL_TYPE_P (from_type)
4251 && int_fits_type_p (@2, from_type)
4252 && (types_match (c1_type, from_type)
4253 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
4254 && (TYPE_UNSIGNED (from_type)
4255 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
4256 && (types_match (c2_type, from_type)
4257 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
4258 && (TYPE_UNSIGNED (from_type)
4259 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
4263 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
4265 /* X <= Y - 1 equals to X < Y. */
4268 /* X > Y - 1 equals to X >= Y. */
4272 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
4274 /* X < Y + 1 equals to X <= Y. */
4277 /* X >= Y + 1 equals to X > Y. */
4281 if (code != ERROR_MARK
4282 || wi::to_widest (@2) == wi::to_widest (@3))
4284 if (cmp == LT_EXPR || cmp == LE_EXPR)
4286 if (cmp == GT_EXPR || cmp == GE_EXPR)
4290 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
4291 else if (int_fits_type_p (@3, from_type))
4295 (if (code == MAX_EXPR)
4296 (convert (max @1 (convert @2)))
4297 (if (code == MIN_EXPR)
4298 (convert (min @1 (convert @2)))
4299 (if (code == EQ_EXPR)
4300 (convert (cond (eq @1 (convert @3))
4301 (convert:from_type @3) (convert:from_type @2)))))))))
4303 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
4305 1) OP is PLUS or MINUS.
4306 2) CMP is LT, LE, GT or GE.
4307 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
4309 This pattern also handles special cases like:
4311 A) Operand x is a unsigned to signed type conversion and c1 is
4312 integer zero. In this case,
4313 (signed type)x < 0 <=> x > MAX_VAL(signed type)
4314 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
4315 B) Const c1 may not equal to (C3 op' C2). In this case we also
4316 check equality for (c1+1) and (c1-1) by adjusting comparison
4319 TODO: Though signed type is handled by this pattern, it cannot be
4320 simplified at the moment because C standard requires additional
4321 type promotion. In order to match&simplify it here, the IR needs
4322 to be cleaned up by other optimizers, i.e, VRP. */
4323 (for op (plus minus)
4324 (for cmp (lt le gt ge)
4326 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
4327 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
4328 (if (types_match (from_type, to_type)
4329 /* Check if it is special case A). */
4330 || (TYPE_UNSIGNED (from_type)
4331 && !TYPE_UNSIGNED (to_type)
4332 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
4333 && integer_zerop (@1)
4334 && (cmp == LT_EXPR || cmp == GE_EXPR)))
4337 wi::overflow_type overflow = wi::OVF_NONE;
4338 enum tree_code code, cmp_code = cmp;
4340 wide_int c1 = wi::to_wide (@1);
4341 wide_int c2 = wi::to_wide (@2);
4342 wide_int c3 = wi::to_wide (@3);
4343 signop sgn = TYPE_SIGN (from_type);
4345 /* Handle special case A), given x of unsigned type:
4346 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
4347 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
4348 if (!types_match (from_type, to_type))
4350 if (cmp_code == LT_EXPR)
4352 if (cmp_code == GE_EXPR)
4354 c1 = wi::max_value (to_type);
4356 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
4357 compute (c3 op' c2) and check if it equals to c1 with op' being
4358 the inverted operator of op. Make sure overflow doesn't happen
4359 if it is undefined. */
4360 if (op == PLUS_EXPR)
4361 real_c1 = wi::sub (c3, c2, sgn, &overflow);
4363 real_c1 = wi::add (c3, c2, sgn, &overflow);
4366 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
4368 /* Check if c1 equals to real_c1. Boundary condition is handled
4369 by adjusting comparison operation if necessary. */
4370 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
4373 /* X <= Y - 1 equals to X < Y. */
4374 if (cmp_code == LE_EXPR)
4376 /* X > Y - 1 equals to X >= Y. */
4377 if (cmp_code == GT_EXPR)
4380 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
4383 /* X < Y + 1 equals to X <= Y. */
4384 if (cmp_code == LT_EXPR)
4386 /* X >= Y + 1 equals to X > Y. */
4387 if (cmp_code == GE_EXPR)
4390 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
4392 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
4394 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
4399 (if (code == MAX_EXPR)
4400 (op (max @X { wide_int_to_tree (from_type, real_c1); })
4401 { wide_int_to_tree (from_type, c2); })
4402 (if (code == MIN_EXPR)
4403 (op (min @X { wide_int_to_tree (from_type, real_c1); })
4404 { wide_int_to_tree (from_type, c2); })))))))))
4406 /* X != C1 ? -X : C2 simplifies to -X when -C1 == C2. */
4408 (cond (ne @0 INTEGER_CST@1) (negate@3 @0) INTEGER_CST@2)
4409 (if (!TYPE_SATURATING (type)
4410 && (TYPE_OVERFLOW_WRAPS (type)
4411 || !wi::only_sign_bit_p (wi::to_wide (@1)))
4412 && wi::eq_p (wi::neg (wi::to_wide (@1)), wi::to_wide (@2)))
4415 /* X != C1 ? ~X : C2 simplifies to ~X when ~C1 == C2. */
4417 (cond (ne @0 INTEGER_CST@1) (bit_not@3 @0) INTEGER_CST@2)
4418 (if (wi::eq_p (wi::bit_not (wi::to_wide (@1)), wi::to_wide (@2)))
4421 /* (X + 1) > Y ? -X : 1 simplifies to X >= Y ? -X : 1 when
4422 X is unsigned, as when X + 1 overflows, X is -1, so -X == 1. */
4424 (cond (gt (plus @0 integer_onep) @1) (negate @0) integer_onep@2)
4425 (if (TYPE_UNSIGNED (type))
4426 (cond (ge @0 @1) (negate @0) @2)))
4428 (for cnd (cond vec_cond)
4429 /* A ? B : (A ? X : C) -> A ? B : C. */
4431 (cnd @0 (cnd @0 @1 @2) @3)
4434 (cnd @0 @1 (cnd @0 @2 @3))
4436 /* A ? B : (!A ? C : X) -> A ? B : C. */
4437 /* ??? This matches embedded conditions open-coded because genmatch
4438 would generate matching code for conditions in separate stmts only.
4439 The following is still important to merge then and else arm cases
4440 from if-conversion. */
4442 (cnd @0 @1 (cnd @2 @3 @4))
4443 (if (inverse_conditions_p (@0, @2))
4446 (cnd @0 (cnd @1 @2 @3) @4)
4447 (if (inverse_conditions_p (@0, @1))
4450 /* A ? B : B -> B. */
4455 /* !A ? B : C -> A ? C : B. */
4457 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
4460 /* abs/negative simplifications moved from fold_cond_expr_with_comparison,
4461 Need to handle (A - B) case as fold_cond_expr_with_comparison does.
4462 Need to handle UN* comparisons.
4464 None of these transformations work for modes with signed
4465 zeros. If A is +/-0, the first two transformations will
4466 change the sign of the result (from +0 to -0, or vice
4467 versa). The last four will fix the sign of the result,
4468 even though the original expressions could be positive or
4469 negative, depending on the sign of A.
4471 Note that all these transformations are correct if A is
4472 NaN, since the two alternatives (A and -A) are also NaNs. */
4474 (for cnd (cond vec_cond)
4475 /* A == 0 ? A : -A same as -A */
4478 (cnd (cmp @0 zerop) @0 (negate@1 @0))
4479 (if (!HONOR_SIGNED_ZEROS (type))
4482 (cnd (cmp @0 zerop) integer_zerop (negate@1 @0))
4483 (if (!HONOR_SIGNED_ZEROS (type))
4486 /* A != 0 ? A : -A same as A */
4489 (cnd (cmp @0 zerop) @0 (negate @0))
4490 (if (!HONOR_SIGNED_ZEROS (type))
4493 (cnd (cmp @0 zerop) @0 integer_zerop)
4494 (if (!HONOR_SIGNED_ZEROS (type))
4497 /* A >=/> 0 ? A : -A same as abs (A) */
4500 (cnd (cmp @0 zerop) @0 (negate @0))
4501 (if (!HONOR_SIGNED_ZEROS (type)
4502 && !TYPE_UNSIGNED (type))
4504 /* A <=/< 0 ? A : -A same as -abs (A) */
4507 (cnd (cmp @0 zerop) @0 (negate @0))
4508 (if (!HONOR_SIGNED_ZEROS (type)
4509 && !TYPE_UNSIGNED (type))
4510 (if (ANY_INTEGRAL_TYPE_P (type)
4511 && !TYPE_OVERFLOW_WRAPS (type))
4513 tree utype = unsigned_type_for (type);
4515 (convert (negate (absu:utype @0))))
4516 (negate (abs @0)))))
4520 /* -(type)!A -> (type)A - 1. */
4522 (negate (convert?:s (logical_inverted_value:s @0)))
4523 (if (INTEGRAL_TYPE_P (type)
4524 && TREE_CODE (type) != BOOLEAN_TYPE
4525 && TYPE_PRECISION (type) > 1
4526 && TREE_CODE (@0) == SSA_NAME
4527 && ssa_name_has_boolean_range (@0))
4528 (plus (convert:type @0) { build_all_ones_cst (type); })))
4530 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
4531 return all -1 or all 0 results. */
4532 /* ??? We could instead convert all instances of the vec_cond to negate,
4533 but that isn't necessarily a win on its own. */
4535 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4536 (if (VECTOR_TYPE_P (type)
4537 && known_eq (TYPE_VECTOR_SUBPARTS (type),
4538 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4539 && (TYPE_MODE (TREE_TYPE (type))
4540 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4541 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4543 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
4545 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4546 (if (VECTOR_TYPE_P (type)
4547 && known_eq (TYPE_VECTOR_SUBPARTS (type),
4548 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4549 && (TYPE_MODE (TREE_TYPE (type))
4550 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4551 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4554 /* Simplifications of comparisons. */
4556 /* See if we can reduce the magnitude of a constant involved in a
4557 comparison by changing the comparison code. This is a canonicalization
4558 formerly done by maybe_canonicalize_comparison_1. */
4562 (cmp @0 uniform_integer_cst_p@1)
4563 (with { tree cst = uniform_integer_cst_p (@1); }
4564 (if (tree_int_cst_sgn (cst) == -1)
4565 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4566 wide_int_to_tree (TREE_TYPE (cst),
4572 (cmp @0 uniform_integer_cst_p@1)
4573 (with { tree cst = uniform_integer_cst_p (@1); }
4574 (if (tree_int_cst_sgn (cst) == 1)
4575 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4576 wide_int_to_tree (TREE_TYPE (cst),
4577 wi::to_wide (cst) - 1)); })))))
4579 /* We can simplify a logical negation of a comparison to the
4580 inverted comparison. As we cannot compute an expression
4581 operator using invert_tree_comparison we have to simulate
4582 that with expression code iteration. */
4583 (for cmp (tcc_comparison)
4584 icmp (inverted_tcc_comparison)
4585 ncmp (inverted_tcc_comparison_with_nans)
4586 /* Ideally we'd like to combine the following two patterns
4587 and handle some more cases by using
4588 (logical_inverted_value (cmp @0 @1))
4589 here but for that genmatch would need to "inline" that.
4590 For now implement what forward_propagate_comparison did. */
4592 (bit_not (cmp @0 @1))
4593 (if (VECTOR_TYPE_P (type)
4594 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
4595 /* Comparison inversion may be impossible for trapping math,
4596 invert_tree_comparison will tell us. But we can't use
4597 a computed operator in the replacement tree thus we have
4598 to play the trick below. */
4599 (with { enum tree_code ic = invert_tree_comparison
4600 (cmp, HONOR_NANS (@0)); }
4606 (bit_xor (cmp @0 @1) integer_truep)
4607 (with { enum tree_code ic = invert_tree_comparison
4608 (cmp, HONOR_NANS (@0)); }
4614 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
4615 ??? The transformation is valid for the other operators if overflow
4616 is undefined for the type, but performing it here badly interacts
4617 with the transformation in fold_cond_expr_with_comparison which
4618 attempts to synthetize ABS_EXPR. */
4620 (for sub (minus pointer_diff)
4622 (cmp (sub@2 @0 @1) integer_zerop)
4623 (if (single_use (@2))
4626 /* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
4627 (x >= 0) ^ (y >= 0) to (x ^ y) < 0. */
4630 (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
4631 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4632 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4633 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4634 (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
4635 /* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
4636 (x >= 0) ^ (y < 0) to (x ^ y) >= 0. */
4638 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
4639 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4640 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4641 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4642 (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4644 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
4645 signed arithmetic case. That form is created by the compiler
4646 often enough for folding it to be of value. One example is in
4647 computing loop trip counts after Operator Strength Reduction. */
4648 (for cmp (simple_comparison)
4649 scmp (swapped_simple_comparison)
4651 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
4652 /* Handle unfolded multiplication by zero. */
4653 (if (integer_zerop (@1))
4655 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4656 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4658 /* If @1 is negative we swap the sense of the comparison. */
4659 (if (tree_int_cst_sgn (@1) < 0)
4663 /* For integral types with undefined overflow fold
4664 x * C1 == C2 into x == C2 / C1 or false.
4665 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
4669 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
4670 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4671 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4672 && wi::to_wide (@1) != 0)
4673 (with { widest_int quot; }
4674 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
4675 TYPE_SIGN (TREE_TYPE (@0)), "))
4676 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
4677 { constant_boolean_node (cmp == NE_EXPR, type); }))
4678 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4679 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4680 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
4683 tree itype = TREE_TYPE (@0);
4684 int p = TYPE_PRECISION (itype);
4685 wide_int m = wi::one (p + 1) << p;
4686 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
4687 wide_int i = wide_int::from (wi::mod_inv (a, m),
4688 p, TYPE_SIGN (itype));
4689 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
4692 /* Simplify comparison of something with itself. For IEEE
4693 floating-point, we can only do some of these simplifications. */
4697 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
4698 || ! HONOR_NANS (@0))
4699 { constant_boolean_node (true, type); }
4701 /* With -ftrapping-math conversion to EQ loses an exception. */
4702 && (! FLOAT_TYPE_P (TREE_TYPE (@0))
4703 || ! flag_trapping_math))
4709 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
4710 || ! HONOR_NANS (@0))
4711 { constant_boolean_node (false, type); })))
4712 (for cmp (unle unge uneq)
4715 { constant_boolean_node (true, type); }))
4716 (for cmp (unlt ungt)
4722 (if (!flag_trapping_math)
4723 { constant_boolean_node (false, type); }))
4725 /* x == ~x -> false */
4726 /* x != ~x -> true */
4729 (cmp:c @0 (bit_not @0))
4730 { constant_boolean_node (cmp == NE_EXPR, type); }))
4732 /* Fold ~X op ~Y as Y op X. */
4733 (for cmp (simple_comparison)
4735 (cmp (bit_not@2 @0) (bit_not@3 @1))
4736 (if (single_use (@2) && single_use (@3))
4739 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
4740 (for cmp (simple_comparison)
4741 scmp (swapped_simple_comparison)
4743 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
4744 (if (single_use (@2)
4745 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
4746 (scmp @0 (bit_not @1)))))
4748 (for cmp (simple_comparison)
4749 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
4751 (cmp (convert@2 @0) (convert? @1))
4752 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4753 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4754 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4755 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4756 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
4759 tree type1 = TREE_TYPE (@1);
4760 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
4762 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
4763 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
4764 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
4765 type1 = float_type_node;
4766 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
4767 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
4768 type1 = double_type_node;
4771 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
4772 ? TREE_TYPE (@0) : type1);
4774 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
4775 (cmp (convert:newtype @0) (convert:newtype @1))))))
4779 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
4781 /* a CMP (-0) -> a CMP 0 */
4782 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
4783 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
4784 /* (-0) CMP b -> 0 CMP b. */
4785 (if (TREE_CODE (@0) == REAL_CST
4786 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0)))
4787 (cmp { build_real (TREE_TYPE (@0), dconst0); } @1))
4788 /* x != NaN is always true, other ops are always false. */
4789 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4790 && !tree_expr_signaling_nan_p (@1)
4791 && !tree_expr_maybe_signaling_nan_p (@0))
4792 { constant_boolean_node (cmp == NE_EXPR, type); })
4793 /* NaN != y is always true, other ops are always false. */
4794 (if (TREE_CODE (@0) == REAL_CST
4795 && REAL_VALUE_ISNAN (TREE_REAL_CST (@0))
4796 && !tree_expr_signaling_nan_p (@0)
4797 && !tree_expr_signaling_nan_p (@1))
4798 { constant_boolean_node (cmp == NE_EXPR, type); })
4799 /* Fold comparisons against infinity. */
4800 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
4801 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
4804 REAL_VALUE_TYPE max;
4805 enum tree_code code = cmp;
4806 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
4808 code = swap_tree_comparison (code);
4811 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
4812 (if (code == GT_EXPR
4813 && !(HONOR_NANS (@0) && flag_trapping_math))
4814 { constant_boolean_node (false, type); })
4815 (if (code == LE_EXPR)
4816 /* x <= +Inf is always true, if we don't care about NaNs. */
4817 (if (! HONOR_NANS (@0))
4818 { constant_boolean_node (true, type); }
4819 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
4820 an "invalid" exception. */
4821 (if (!flag_trapping_math)
4823 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
4824 for == this introduces an exception for x a NaN. */
4825 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
4827 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4829 (lt @0 { build_real (TREE_TYPE (@0), max); })
4830 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
4831 /* x < +Inf is always equal to x <= DBL_MAX. */
4832 (if (code == LT_EXPR)
4833 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4835 (ge @0 { build_real (TREE_TYPE (@0), max); })
4836 (le @0 { build_real (TREE_TYPE (@0), max); }))))
4837 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
4838 an exception for x a NaN so use an unordered comparison. */
4839 (if (code == NE_EXPR)
4840 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4841 (if (! HONOR_NANS (@0))
4843 (ge @0 { build_real (TREE_TYPE (@0), max); })
4844 (le @0 { build_real (TREE_TYPE (@0), max); }))
4846 (unge @0 { build_real (TREE_TYPE (@0), max); })
4847 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
4849 /* If this is a comparison of a real constant with a PLUS_EXPR
4850 or a MINUS_EXPR of a real constant, we can convert it into a
4851 comparison with a revised real constant as long as no overflow
4852 occurs when unsafe_math_optimizations are enabled. */
4853 (if (flag_unsafe_math_optimizations)
4854 (for op (plus minus)
4856 (cmp (op @0 REAL_CST@1) REAL_CST@2)
4859 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
4860 TREE_TYPE (@1), @2, @1);
4862 (if (tem && !TREE_OVERFLOW (tem))
4863 (cmp @0 { tem; }))))))
4865 /* Likewise, we can simplify a comparison of a real constant with
4866 a MINUS_EXPR whose first operand is also a real constant, i.e.
4867 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
4868 floating-point types only if -fassociative-math is set. */
4869 (if (flag_associative_math)
4871 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
4872 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
4873 (if (tem && !TREE_OVERFLOW (tem))
4874 (cmp { tem; } @1)))))
4876 /* Fold comparisons against built-in math functions. */
4877 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
4880 (cmp (sq @0) REAL_CST@1)
4882 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4884 /* sqrt(x) < y is always false, if y is negative. */
4885 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
4886 { constant_boolean_node (false, type); })
4887 /* sqrt(x) > y is always true, if y is negative and we
4888 don't care about NaNs, i.e. negative values of x. */
4889 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
4890 { constant_boolean_node (true, type); })
4891 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
4892 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
4893 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
4895 /* sqrt(x) < 0 is always false. */
4896 (if (cmp == LT_EXPR)
4897 { constant_boolean_node (false, type); })
4898 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
4899 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
4900 { constant_boolean_node (true, type); })
4901 /* sqrt(x) <= 0 -> x == 0. */
4902 (if (cmp == LE_EXPR)
4904 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
4905 == or !=. In the last case:
4907 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
4909 if x is negative or NaN. Due to -funsafe-math-optimizations,
4910 the results for other x follow from natural arithmetic. */
4912 (if ((cmp == LT_EXPR
4916 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4917 /* Give up for -frounding-math. */
4918 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
4922 enum tree_code ncmp = cmp;
4923 const real_format *fmt
4924 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
4925 real_arithmetic (&c2, MULT_EXPR,
4926 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
4927 real_convert (&c2, fmt, &c2);
4928 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
4929 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
4930 if (!REAL_VALUE_ISINF (c2))
4932 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4933 build_real (TREE_TYPE (@0), c2));
4934 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4936 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
4937 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
4938 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
4939 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
4940 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
4941 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
4944 /* With rounding to even, sqrt of up to 3 different values
4945 gives the same normal result, so in some cases c2 needs
4947 REAL_VALUE_TYPE c2alt, tow;
4948 if (cmp == LT_EXPR || cmp == GE_EXPR)
4952 real_nextafter (&c2alt, fmt, &c2, &tow);
4953 real_convert (&c2alt, fmt, &c2alt);
4954 if (REAL_VALUE_ISINF (c2alt))
4958 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4959 build_real (TREE_TYPE (@0), c2alt));
4960 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4962 else if (real_equal (&TREE_REAL_CST (c3),
4963 &TREE_REAL_CST (@1)))
4969 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4970 (if (REAL_VALUE_ISINF (c2))
4971 /* sqrt(x) > y is x == +Inf, when y is very large. */
4972 (if (HONOR_INFINITIES (@0))
4973 (eq @0 { build_real (TREE_TYPE (@0), c2); })
4974 { constant_boolean_node (false, type); })
4975 /* sqrt(x) > c is the same as x > c*c. */
4976 (if (ncmp != ERROR_MARK)
4977 (if (ncmp == GE_EXPR)
4978 (ge @0 { build_real (TREE_TYPE (@0), c2); })
4979 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
4980 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
4981 (if (REAL_VALUE_ISINF (c2))
4983 /* sqrt(x) < y is always true, when y is a very large
4984 value and we don't care about NaNs or Infinities. */
4985 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
4986 { constant_boolean_node (true, type); })
4987 /* sqrt(x) < y is x != +Inf when y is very large and we
4988 don't care about NaNs. */
4989 (if (! HONOR_NANS (@0))
4990 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
4991 /* sqrt(x) < y is x >= 0 when y is very large and we
4992 don't care about Infinities. */
4993 (if (! HONOR_INFINITIES (@0))
4994 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
4995 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
4998 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4999 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
5000 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5001 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
5002 (if (ncmp == LT_EXPR)
5003 (lt @0 { build_real (TREE_TYPE (@0), c2); })
5004 (le @0 { build_real (TREE_TYPE (@0), c2); }))
5005 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5006 (if (ncmp != ERROR_MARK && GENERIC)
5007 (if (ncmp == LT_EXPR)
5009 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5010 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
5012 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5013 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
5014 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
5016 (cmp (sq @0) (sq @1))
5017 (if (! HONOR_NANS (@0))
5020 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
5021 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
5022 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
5024 (cmp (float@0 @1) (float @2))
5025 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
5026 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
5029 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
5030 tree type1 = TREE_TYPE (@1);
5031 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
5032 tree type2 = TREE_TYPE (@2);
5033 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
5035 (if (fmt.can_represent_integral_type_p (type1)
5036 && fmt.can_represent_integral_type_p (type2))
5037 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
5038 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
5039 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
5040 && type1_signed_p >= type2_signed_p)
5041 (icmp @1 (convert @2))
5042 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
5043 && type1_signed_p <= type2_signed_p)
5044 (icmp (convert:type2 @1) @2)
5045 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
5046 && type1_signed_p == type2_signed_p)
5047 (icmp @1 @2))))))))))
5049 /* Optimize various special cases of (FTYPE) N CMP CST. */
5050 (for cmp (lt le eq ne ge gt)
5051 icmp (le le eq ne ge ge)
5053 (cmp (float @0) REAL_CST@1)
5054 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
5055 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
5058 tree itype = TREE_TYPE (@0);
5059 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
5060 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
5061 /* Be careful to preserve any potential exceptions due to
5062 NaNs. qNaNs are ok in == or != context.
5063 TODO: relax under -fno-trapping-math or
5064 -fno-signaling-nans. */
5066 = real_isnan (cst) && (cst->signalling
5067 || (cmp != EQ_EXPR && cmp != NE_EXPR));
5069 /* TODO: allow non-fitting itype and SNaNs when
5070 -fno-trapping-math. */
5071 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
5074 signop isign = TYPE_SIGN (itype);
5075 REAL_VALUE_TYPE imin, imax;
5076 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
5077 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
5079 REAL_VALUE_TYPE icst;
5080 if (cmp == GT_EXPR || cmp == GE_EXPR)
5081 real_ceil (&icst, fmt, cst);
5082 else if (cmp == LT_EXPR || cmp == LE_EXPR)
5083 real_floor (&icst, fmt, cst);
5085 real_trunc (&icst, fmt, cst);
5087 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
5089 bool overflow_p = false;
5091 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
5094 /* Optimize cases when CST is outside of ITYPE's range. */
5095 (if (real_compare (LT_EXPR, cst, &imin))
5096 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
5098 (if (real_compare (GT_EXPR, cst, &imax))
5099 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
5101 /* Remove cast if CST is an integer representable by ITYPE. */
5103 (cmp @0 { gcc_assert (!overflow_p);
5104 wide_int_to_tree (itype, icst_val); })
5106 /* When CST is fractional, optimize
5107 (FTYPE) N == CST -> 0
5108 (FTYPE) N != CST -> 1. */
5109 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5110 { constant_boolean_node (cmp == NE_EXPR, type); })
5111 /* Otherwise replace with sensible integer constant. */
5114 gcc_checking_assert (!overflow_p);
5116 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
5118 /* Fold A /[ex] B CMP C to A CMP B * C. */
5121 (cmp (exact_div @0 @1) INTEGER_CST@2)
5122 (if (!integer_zerop (@1))
5123 (if (wi::to_wide (@2) == 0)
5125 (if (TREE_CODE (@1) == INTEGER_CST)
5128 wi::overflow_type ovf;
5129 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5130 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5133 { constant_boolean_node (cmp == NE_EXPR, type); }
5134 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
5135 (for cmp (lt le gt ge)
5137 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
5138 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5141 wi::overflow_type ovf;
5142 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5143 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5146 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
5147 TYPE_SIGN (TREE_TYPE (@2)))
5148 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
5149 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
5151 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
5153 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
5154 For large C (more than min/B+2^size), this is also true, with the
5155 multiplication computed modulo 2^size.
5156 For intermediate C, this just tests the sign of A. */
5157 (for cmp (lt le gt ge)
5160 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
5161 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
5162 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
5163 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5166 tree utype = TREE_TYPE (@2);
5167 wide_int denom = wi::to_wide (@1);
5168 wide_int right = wi::to_wide (@2);
5169 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
5170 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
5171 bool small = wi::leu_p (right, smax);
5172 bool large = wi::geu_p (right, smin);
5174 (if (small || large)
5175 (cmp (convert:utype @0) (mult @2 (convert @1)))
5176 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
5178 /* Unordered tests if either argument is a NaN. */
5180 (bit_ior (unordered @0 @0) (unordered @1 @1))
5181 (if (types_match (@0, @1))
5184 (bit_and (ordered @0 @0) (ordered @1 @1))
5185 (if (types_match (@0, @1))
5188 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
5191 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
5194 /* Simple range test simplifications. */
5195 /* A < B || A >= B -> true. */
5196 (for test1 (lt le le le ne ge)
5197 test2 (ge gt ge ne eq ne)
5199 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
5200 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5201 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5202 { constant_boolean_node (true, type); })))
5203 /* A < B && A >= B -> false. */
5204 (for test1 (lt lt lt le ne eq)
5205 test2 (ge gt eq gt eq gt)
5207 (bit_and:c (test1 @0 @1) (test2 @0 @1))
5208 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5209 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5210 { constant_boolean_node (false, type); })))
5212 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
5213 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
5215 Note that comparisons
5216 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
5217 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
5218 will be canonicalized to above so there's no need to
5225 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
5226 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
5229 tree ty = TREE_TYPE (@0);
5230 unsigned prec = TYPE_PRECISION (ty);
5231 wide_int mask = wi::to_wide (@2, prec);
5232 wide_int rhs = wi::to_wide (@3, prec);
5233 signop sgn = TYPE_SIGN (ty);
5235 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
5236 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
5237 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
5238 { build_zero_cst (ty); }))))))
5240 /* -A CMP -B -> B CMP A. */
5241 (for cmp (tcc_comparison)
5242 scmp (swapped_tcc_comparison)
5244 (cmp (negate @0) (negate @1))
5245 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5246 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5247 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5250 (cmp (negate @0) CONSTANT_CLASS_P@1)
5251 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5252 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5253 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5254 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
5255 (if (tem && !TREE_OVERFLOW (tem))
5256 (scmp @0 { tem; }))))))
5258 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
5261 (op (abs @0) zerop@1)
5264 /* From fold_sign_changed_comparison and fold_widened_comparison.
5265 FIXME: the lack of symmetry is disturbing. */
5266 (for cmp (simple_comparison)
5268 (cmp (convert@0 @00) (convert?@1 @10))
5269 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5270 /* Disable this optimization if we're casting a function pointer
5271 type on targets that require function pointer canonicalization. */
5272 && !(targetm.have_canonicalize_funcptr_for_compare ()
5273 && ((POINTER_TYPE_P (TREE_TYPE (@00))
5274 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
5275 || (POINTER_TYPE_P (TREE_TYPE (@10))
5276 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
5278 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
5279 && (TREE_CODE (@10) == INTEGER_CST
5281 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
5284 && !POINTER_TYPE_P (TREE_TYPE (@00)))
5285 /* ??? The special-casing of INTEGER_CST conversion was in the original
5286 code and here to avoid a spurious overflow flag on the resulting
5287 constant which fold_convert produces. */
5288 (if (TREE_CODE (@1) == INTEGER_CST)
5289 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
5290 TREE_OVERFLOW (@1)); })
5291 (cmp @00 (convert @1)))
5293 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
5294 /* If possible, express the comparison in the shorter mode. */
5295 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
5296 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
5297 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
5298 && TYPE_UNSIGNED (TREE_TYPE (@00))))
5299 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
5300 || ((TYPE_PRECISION (TREE_TYPE (@00))
5301 >= TYPE_PRECISION (TREE_TYPE (@10)))
5302 && (TYPE_UNSIGNED (TREE_TYPE (@00))
5303 == TYPE_UNSIGNED (TREE_TYPE (@10))))
5304 || (TREE_CODE (@10) == INTEGER_CST
5305 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5306 && int_fits_type_p (@10, TREE_TYPE (@00)))))
5307 (cmp @00 (convert @10))
5308 (if (TREE_CODE (@10) == INTEGER_CST
5309 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5310 && !int_fits_type_p (@10, TREE_TYPE (@00)))
5313 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5314 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5315 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
5316 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
5318 (if (above || below)
5319 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5320 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
5321 (if (cmp == LT_EXPR || cmp == LE_EXPR)
5322 { constant_boolean_node (above ? true : false, type); }
5323 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5324 { constant_boolean_node (above ? false : true, type); }))))))))))))
5328 /* SSA names are canonicalized to 2nd place. */
5329 (cmp addr@0 SSA_NAME@1)
5331 { poly_int64 off; tree base; }
5332 /* A local variable can never be pointed to by
5333 the default SSA name of an incoming parameter. */
5334 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
5335 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
5336 && (base = get_base_address (TREE_OPERAND (@0, 0)))
5337 && TREE_CODE (base) == VAR_DECL
5338 && auto_var_in_fn_p (base, current_function_decl))
5339 (if (cmp == NE_EXPR)
5340 { constant_boolean_node (true, type); }
5341 { constant_boolean_node (false, type); })
5342 /* If the address is based on @1 decide using the offset. */
5343 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
5344 && TREE_CODE (base) == MEM_REF
5345 && TREE_OPERAND (base, 0) == @1)
5346 (with { off += mem_ref_offset (base).force_shwi (); }
5347 (if (known_ne (off, 0))
5348 { constant_boolean_node (cmp == NE_EXPR, type); }
5349 (if (known_eq (off, 0))
5350 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
5352 /* Equality compare simplifications from fold_binary */
5355 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
5356 Similarly for NE_EXPR. */
5358 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
5359 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
5360 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
5361 { constant_boolean_node (cmp == NE_EXPR, type); }))
5363 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
5365 (cmp (bit_xor @0 @1) integer_zerop)
5368 /* (X ^ Y) == Y becomes X == 0.
5369 Likewise (X ^ Y) == X becomes Y == 0. */
5371 (cmp:c (bit_xor:c @0 @1) @0)
5372 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
5375 /* (X & Y) == X becomes (X & ~Y) == 0. */
5377 (cmp:c (bit_and:c @0 @1) @0)
5378 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5380 (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0))
5381 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5382 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5383 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5384 && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0))
5385 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2))
5386 && !wi::neg_p (wi::to_wide (@1)))
5387 (cmp (bit_and @0 (convert (bit_not @1)))
5388 { build_zero_cst (TREE_TYPE (@0)); })))
5390 /* (X | Y) == Y becomes (X & ~Y) == 0. */
5392 (cmp:c (bit_ior:c @0 @1) @1)
5393 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5396 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
5398 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
5399 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
5400 (cmp @0 (bit_xor @1 (convert @2)))))
5403 (cmp (convert? addr@0) integer_zerop)
5404 (if (tree_single_nonzero_warnv_p (@0, NULL))
5405 { constant_boolean_node (cmp == NE_EXPR, type); }))
5407 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
5409 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
5410 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
5412 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
5413 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
5414 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
5415 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
5420 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
5421 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5422 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5423 && types_match (@0, @1))
5424 (ncmp (bit_xor @0 @1) @2)))))
5425 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
5426 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
5430 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
5431 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5432 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5433 && types_match (@0, @1))
5434 (ncmp (bit_xor @0 @1) @2))))
5436 /* If we have (A & C) == C where C is a power of 2, convert this into
5437 (A & C) != 0. Similarly for NE_EXPR. */
5441 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
5442 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
5445 /* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */
5446 /* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */
5448 (cond (cmp @0 integer_zerop) (bit_not @1) @1)
5449 (if (INTEGRAL_TYPE_P (type)
5450 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5451 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5452 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5455 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5457 (if (cmp == LT_EXPR)
5458 (bit_xor (convert (rshift @0 {shifter;})) @1)
5459 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))
5460 /* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */
5461 /* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */
5463 (cond (cmp @0 integer_zerop) @1 (bit_not @1))
5464 (if (INTEGRAL_TYPE_P (type)
5465 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5466 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5467 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5470 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5472 (if (cmp == GE_EXPR)
5473 (bit_xor (convert (rshift @0 {shifter;})) @1)
5474 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))))
5476 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
5477 convert this into a shift followed by ANDing with D. */
5480 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
5481 INTEGER_CST@2 integer_zerop)
5482 (if (!POINTER_TYPE_P (type) && integer_pow2p (@2))
5484 int shift = (wi::exact_log2 (wi::to_wide (@2))
5485 - wi::exact_log2 (wi::to_wide (@1)));
5489 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
5491 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
5494 /* If we have (A & C) != 0 where C is the sign bit of A, convert
5495 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
5499 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
5500 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5501 && type_has_mode_precision_p (TREE_TYPE (@0))
5502 && element_precision (@2) >= element_precision (@0)
5503 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
5504 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
5505 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
5507 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
5508 this into a right shift or sign extension followed by ANDing with C. */
5511 (lt @0 integer_zerop)
5512 INTEGER_CST@1 integer_zerop)
5513 (if (integer_pow2p (@1)
5514 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
5516 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
5520 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
5522 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
5523 sign extension followed by AND with C will achieve the effect. */
5524 (bit_and (convert @0) @1)))))
5526 /* When the addresses are not directly of decls compare base and offset.
5527 This implements some remaining parts of fold_comparison address
5528 comparisons but still no complete part of it. Still it is good
5529 enough to make fold_stmt not regress when not dispatching to fold_binary. */
5530 (for cmp (simple_comparison)
5532 (cmp (convert1?@2 addr@0) (convert2? addr@1))
5535 poly_int64 off0, off1;
5537 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
5538 off0, off1, GENERIC);
5542 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5543 { constant_boolean_node (known_eq (off0, off1), type); })
5544 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5545 { constant_boolean_node (known_ne (off0, off1), type); })
5546 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
5547 { constant_boolean_node (known_lt (off0, off1), type); })
5548 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
5549 { constant_boolean_node (known_le (off0, off1), type); })
5550 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
5551 { constant_boolean_node (known_ge (off0, off1), type); })
5552 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
5553 { constant_boolean_node (known_gt (off0, off1), type); }))
5556 (if (cmp == EQ_EXPR)
5557 { constant_boolean_node (false, type); })
5558 (if (cmp == NE_EXPR)
5559 { constant_boolean_node (true, type); })))))))
5561 /* Simplify pointer equality compares using PTA. */
5565 (if (POINTER_TYPE_P (TREE_TYPE (@0))
5566 && ptrs_compare_unequal (@0, @1))
5567 { constant_boolean_node (neeq != EQ_EXPR, type); })))
5569 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
5570 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
5571 Disable the transform if either operand is pointer to function.
5572 This broke pr22051-2.c for arm where function pointer
5573 canonicalizaion is not wanted. */
5577 (cmp (convert @0) INTEGER_CST@1)
5578 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
5579 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
5580 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5581 /* Don't perform this optimization in GENERIC if @0 has reference
5582 type when sanitizing. See PR101210. */
5584 && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
5585 && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
5586 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5587 && POINTER_TYPE_P (TREE_TYPE (@1))
5588 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
5589 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
5590 (cmp @0 (convert @1)))))
5592 /* Non-equality compare simplifications from fold_binary */
5593 (for cmp (lt gt le ge)
5594 /* Comparisons with the highest or lowest possible integer of
5595 the specified precision will have known values. */
5597 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
5598 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
5599 || POINTER_TYPE_P (TREE_TYPE (@1))
5600 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
5601 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
5604 tree cst = uniform_integer_cst_p (@1);
5605 tree arg1_type = TREE_TYPE (cst);
5606 unsigned int prec = TYPE_PRECISION (arg1_type);
5607 wide_int max = wi::max_value (arg1_type);
5608 wide_int signed_max = wi::max_value (prec, SIGNED);
5609 wide_int min = wi::min_value (arg1_type);
5612 (if (wi::to_wide (cst) == max)
5614 (if (cmp == GT_EXPR)
5615 { constant_boolean_node (false, type); })
5616 (if (cmp == GE_EXPR)
5618 (if (cmp == LE_EXPR)
5619 { constant_boolean_node (true, type); })
5620 (if (cmp == LT_EXPR)
5622 (if (wi::to_wide (cst) == min)
5624 (if (cmp == LT_EXPR)
5625 { constant_boolean_node (false, type); })
5626 (if (cmp == LE_EXPR)
5628 (if (cmp == GE_EXPR)
5629 { constant_boolean_node (true, type); })
5630 (if (cmp == GT_EXPR)
5632 (if (wi::to_wide (cst) == max - 1)
5634 (if (cmp == GT_EXPR)
5635 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
5636 wide_int_to_tree (TREE_TYPE (cst),
5639 (if (cmp == LE_EXPR)
5640 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
5641 wide_int_to_tree (TREE_TYPE (cst),
5644 (if (wi::to_wide (cst) == min + 1)
5646 (if (cmp == GE_EXPR)
5647 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
5648 wide_int_to_tree (TREE_TYPE (cst),
5651 (if (cmp == LT_EXPR)
5652 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
5653 wide_int_to_tree (TREE_TYPE (cst),
5656 (if (wi::to_wide (cst) == signed_max
5657 && TYPE_UNSIGNED (arg1_type)
5658 /* We will flip the signedness of the comparison operator
5659 associated with the mode of @1, so the sign bit is
5660 specified by this mode. Check that @1 is the signed
5661 max associated with this sign bit. */
5662 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
5663 /* signed_type does not work on pointer types. */
5664 && INTEGRAL_TYPE_P (arg1_type))
5665 /* The following case also applies to X < signed_max+1
5666 and X >= signed_max+1 because previous transformations. */
5667 (if (cmp == LE_EXPR || cmp == GT_EXPR)
5668 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
5670 (if (cst == @1 && cmp == LE_EXPR)
5671 (ge (convert:st @0) { build_zero_cst (st); }))
5672 (if (cst == @1 && cmp == GT_EXPR)
5673 (lt (convert:st @0) { build_zero_cst (st); }))
5674 (if (cmp == LE_EXPR)
5675 (ge (view_convert:st @0) { build_zero_cst (st); }))
5676 (if (cmp == GT_EXPR)
5677 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
5679 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
5680 /* If the second operand is NaN, the result is constant. */
5683 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5684 && (cmp != LTGT_EXPR || ! flag_trapping_math))
5685 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
5686 ? false : true, type); })))
5688 /* Fold UNORDERED if either operand must be NaN, or neither can be. */
5692 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5693 { constant_boolean_node (true, type); })
5694 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5695 { constant_boolean_node (false, type); })))
5697 /* Fold ORDERED if either operand must be NaN, or neither can be. */
5701 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5702 { constant_boolean_node (false, type); })
5703 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5704 { constant_boolean_node (true, type); })))
5706 /* bool_var != 0 becomes bool_var. */
5708 (ne @0 integer_zerop)
5709 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5710 && types_match (type, TREE_TYPE (@0)))
5712 /* bool_var == 1 becomes bool_var. */
5714 (eq @0 integer_onep)
5715 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5716 && types_match (type, TREE_TYPE (@0)))
5719 bool_var == 0 becomes !bool_var or
5720 bool_var != 1 becomes !bool_var
5721 here because that only is good in assignment context as long
5722 as we require a tcc_comparison in GIMPLE_CONDs where we'd
5723 replace if (x == 0) with tem = ~x; if (tem != 0) which is
5724 clearly less optimal and which we'll transform again in forwprop. */
5726 /* Transform comparisons of the form (X & Y) CMP 0 to X CMP2 Z
5727 where ~Y + 1 == pow2 and Z = ~Y. */
5728 (for cst (VECTOR_CST INTEGER_CST)
5732 (cmp (bit_and:c@2 @0 cst@1) integer_zerop)
5733 (with { tree csts = bitmask_inv_cst_vector_p (@1); }
5734 (if (csts && (VECTOR_TYPE_P (TREE_TYPE (@1)) || single_use (@2)))
5735 (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
5737 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5738 (icmp (convert:utype @0) { csts; }))))))))
5740 /* When one argument is a constant, overflow detection can be simplified.
5741 Currently restricted to single use so as not to interfere too much with
5742 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
5743 CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */
5744 (for cmp (lt le ge gt)
5747 (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
5748 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
5749 && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
5750 && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
5751 && wi::to_wide (@1) != 0
5754 unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
5755 signop sign = TYPE_SIGN (TREE_TYPE (@0));
5757 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
5758 wi::max_value (prec, sign)
5759 - wi::to_wide (@1)); })))))
5761 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
5762 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
5763 expects the long form, so we restrict the transformation for now. */
5766 (cmp:c (minus@2 @0 @1) @0)
5767 (if (single_use (@2)
5768 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5769 && TYPE_UNSIGNED (TREE_TYPE (@0)))
5772 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
5775 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
5776 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5777 && TYPE_UNSIGNED (TREE_TYPE (@0)))
5780 /* Testing for overflow is unnecessary if we already know the result. */
5785 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
5786 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5787 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5788 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5793 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
5794 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5795 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5796 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5798 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
5799 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
5803 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
5804 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
5805 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5806 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5808 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
5809 is at least twice as wide as type of A and B, simplify to
5810 __builtin_mul_overflow (A, B, <unused>). */
5813 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
5815 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5816 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5817 && TYPE_UNSIGNED (TREE_TYPE (@0))
5818 && (TYPE_PRECISION (TREE_TYPE (@3))
5819 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
5820 && tree_fits_uhwi_p (@2)
5821 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
5822 && types_match (@0, @1)
5823 && type_has_mode_precision_p (TREE_TYPE (@0))
5824 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
5825 != CODE_FOR_nothing))
5826 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5827 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5829 /* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW. */
5830 (for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW)
5832 (ovf (convert@2 @0) @1)
5833 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5834 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5835 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5836 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
5839 (ovf @1 (convert@2 @0))
5840 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5841 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5842 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5843 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
5846 /* Simplification of math builtins. These rules must all be optimizations
5847 as well as IL simplifications. If there is a possibility that the new
5848 form could be a pessimization, the rule should go in the canonicalization
5849 section that follows this one.
5851 Rules can generally go in this section if they satisfy one of
5854 - the rule describes an identity
5856 - the rule replaces calls with something as simple as addition or
5859 - the rule contains unary calls only and simplifies the surrounding
5860 arithmetic. (The idea here is to exclude non-unary calls in which
5861 one operand is constant and in which the call is known to be cheap
5862 when the operand has that value.) */
5864 (if (flag_unsafe_math_optimizations)
5865 /* Simplify sqrt(x) * sqrt(x) -> x. */
5867 (mult (SQRT_ALL@1 @0) @1)
5868 (if (!tree_expr_maybe_signaling_nan_p (@0))
5871 (for op (plus minus)
5872 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
5876 (rdiv (op @0 @2) @1)))
5878 (for cmp (lt le gt ge)
5879 neg_cmp (gt ge lt le)
5880 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
5882 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
5884 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
5886 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
5887 || (real_zerop (tem) && !real_zerop (@1))))
5889 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
5891 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
5892 (neg_cmp @0 { tem; })))))))
5894 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
5895 (for root (SQRT CBRT)
5897 (mult (root:s @0) (root:s @1))
5898 (root (mult @0 @1))))
5900 /* Simplify expN(x) * expN(y) -> expN(x+y). */
5901 (for exps (EXP EXP2 EXP10 POW10)
5903 (mult (exps:s @0) (exps:s @1))
5904 (exps (plus @0 @1))))
5906 /* Simplify a/root(b/c) into a*root(c/b). */
5907 (for root (SQRT CBRT)
5909 (rdiv @0 (root:s (rdiv:s @1 @2)))
5910 (mult @0 (root (rdiv @2 @1)))))
5912 /* Simplify x/expN(y) into x*expN(-y). */
5913 (for exps (EXP EXP2 EXP10 POW10)
5915 (rdiv @0 (exps:s @1))
5916 (mult @0 (exps (negate @1)))))
5918 (for logs (LOG LOG2 LOG10 LOG10)
5919 exps (EXP EXP2 EXP10 POW10)
5920 /* logN(expN(x)) -> x. */
5924 /* expN(logN(x)) -> x. */
5929 /* Optimize logN(func()) for various exponential functions. We
5930 want to determine the value "x" and the power "exponent" in
5931 order to transform logN(x**exponent) into exponent*logN(x). */
5932 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
5933 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
5936 (if (SCALAR_FLOAT_TYPE_P (type))
5942 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
5943 x = build_real_truncate (type, dconst_e ());
5946 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
5947 x = build_real (type, dconst2);
5951 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
5953 REAL_VALUE_TYPE dconst10;
5954 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
5955 x = build_real (type, dconst10);
5962 (mult (logs { x; }) @0)))))
5970 (if (SCALAR_FLOAT_TYPE_P (type))
5976 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
5977 x = build_real (type, dconsthalf);
5980 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
5981 x = build_real_truncate (type, dconst_third ());
5987 (mult { x; } (logs @0))))))
5989 /* logN(pow(x,exponent)) -> exponent*logN(x). */
5990 (for logs (LOG LOG2 LOG10)
5994 (mult @1 (logs @0))))
5996 /* pow(C,x) -> exp(log(C)*x) if C > 0,
5997 or if C is a positive power of 2,
5998 pow(C,x) -> exp2(log2(C)*x). */
6006 (pows REAL_CST@0 @1)
6007 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6008 && real_isfinite (TREE_REAL_CST_PTR (@0))
6009 /* As libmvec doesn't have a vectorized exp2, defer optimizing
6010 the use_exp2 case until after vectorization. It seems actually
6011 beneficial for all constants to postpone this until later,
6012 because exp(log(C)*x), while faster, will have worse precision
6013 and if x folds into a constant too, that is unnecessary
6015 && canonicalize_math_after_vectorization_p ())
6017 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
6018 bool use_exp2 = false;
6019 if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
6020 && value->cl == rvc_normal)
6022 REAL_VALUE_TYPE frac_rvt = *value;
6023 SET_REAL_EXP (&frac_rvt, 1);
6024 if (real_equal (&frac_rvt, &dconst1))
6029 (if (optimize_pow_to_exp (@0, @1))
6030 (exps (mult (logs @0) @1)))
6031 (exp2s (mult (log2s @0) @1)))))))
6034 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
6036 exps (EXP EXP2 EXP10 POW10)
6037 logs (LOG LOG2 LOG10 LOG10)
6039 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
6040 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6041 && real_isfinite (TREE_REAL_CST_PTR (@0)))
6042 (exps (plus (mult (logs @0) @1) @2)))))
6047 exps (EXP EXP2 EXP10 POW10)
6048 /* sqrt(expN(x)) -> expN(x*0.5). */
6051 (exps (mult @0 { build_real (type, dconsthalf); })))
6052 /* cbrt(expN(x)) -> expN(x/3). */
6055 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
6056 /* pow(expN(x), y) -> expN(x*y). */
6059 (exps (mult @0 @1))))
6061 /* tan(atan(x)) -> x. */
6068 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
6072 copysigns (COPYSIGN)
6077 REAL_VALUE_TYPE r_cst;
6078 build_sinatan_real (&r_cst, type);
6079 tree t_cst = build_real (type, r_cst);
6080 tree t_one = build_one_cst (type);
6082 (if (SCALAR_FLOAT_TYPE_P (type))
6083 (cond (lt (abs @0) { t_cst; })
6084 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
6085 (copysigns { t_one; } @0))))))
6087 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
6091 copysigns (COPYSIGN)
6096 REAL_VALUE_TYPE r_cst;
6097 build_sinatan_real (&r_cst, type);
6098 tree t_cst = build_real (type, r_cst);
6099 tree t_one = build_one_cst (type);
6100 tree t_zero = build_zero_cst (type);
6102 (if (SCALAR_FLOAT_TYPE_P (type))
6103 (cond (lt (abs @0) { t_cst; })
6104 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
6105 (copysigns { t_zero; } @0))))))
6107 (if (!flag_errno_math)
6108 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
6113 (sinhs (atanhs:s @0))
6114 (with { tree t_one = build_one_cst (type); }
6115 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
6117 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
6122 (coshs (atanhs:s @0))
6123 (with { tree t_one = build_one_cst (type); }
6124 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
6126 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
6128 (CABS (complex:C @0 real_zerop@1))
6131 /* trunc(trunc(x)) -> trunc(x), etc. */
6132 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6136 /* f(x) -> x if x is integer valued and f does nothing for such values. */
6137 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6139 (fns integer_valued_real_p@0)
6142 /* hypot(x,0) and hypot(0,x) -> abs(x). */
6144 (HYPOT:c @0 real_zerop@1)
6147 /* pow(1,x) -> 1. */
6149 (POW real_onep@0 @1)
6153 /* copysign(x,x) -> x. */
6154 (COPYSIGN_ALL @0 @0)
6158 /* copysign(x,-x) -> -x. */
6159 (COPYSIGN_ALL @0 (negate@1 @0))
6163 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
6164 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
6167 (for scale (LDEXP SCALBN SCALBLN)
6168 /* ldexp(0, x) -> 0. */
6170 (scale real_zerop@0 @1)
6172 /* ldexp(x, 0) -> x. */
6174 (scale @0 integer_zerop@1)
6176 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
6178 (scale REAL_CST@0 @1)
6179 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
6182 /* Canonicalization of sequences of math builtins. These rules represent
6183 IL simplifications but are not necessarily optimizations.
6185 The sincos pass is responsible for picking "optimal" implementations
6186 of math builtins, which may be more complicated and can sometimes go
6187 the other way, e.g. converting pow into a sequence of sqrts.
6188 We only want to do these canonicalizations before the pass has run. */
6190 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
6191 /* Simplify tan(x) * cos(x) -> sin(x). */
6193 (mult:c (TAN:s @0) (COS:s @0))
6196 /* Simplify x * pow(x,c) -> pow(x,c+1). */
6198 (mult:c @0 (POW:s @0 REAL_CST@1))
6199 (if (!TREE_OVERFLOW (@1))
6200 (POW @0 (plus @1 { build_one_cst (type); }))))
6202 /* Simplify sin(x) / cos(x) -> tan(x). */
6204 (rdiv (SIN:s @0) (COS:s @0))
6207 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
6209 (rdiv (SINH:s @0) (COSH:s @0))
6212 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
6214 (rdiv (TANH:s @0) (SINH:s @0))
6215 (rdiv {build_one_cst (type);} (COSH @0)))
6217 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
6219 (rdiv (COS:s @0) (SIN:s @0))
6220 (rdiv { build_one_cst (type); } (TAN @0)))
6222 /* Simplify sin(x) / tan(x) -> cos(x). */
6224 (rdiv (SIN:s @0) (TAN:s @0))
6225 (if (! HONOR_NANS (@0)
6226 && ! HONOR_INFINITIES (@0))
6229 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
6231 (rdiv (TAN:s @0) (SIN:s @0))
6232 (if (! HONOR_NANS (@0)
6233 && ! HONOR_INFINITIES (@0))
6234 (rdiv { build_one_cst (type); } (COS @0))))
6236 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
6238 (mult (POW:s @0 @1) (POW:s @0 @2))
6239 (POW @0 (plus @1 @2)))
6241 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
6243 (mult (POW:s @0 @1) (POW:s @2 @1))
6244 (POW (mult @0 @2) @1))
6246 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
6248 (mult (POWI:s @0 @1) (POWI:s @2 @1))
6249 (POWI (mult @0 @2) @1))
6251 /* Simplify pow(x,c) / x -> pow(x,c-1). */
6253 (rdiv (POW:s @0 REAL_CST@1) @0)
6254 (if (!TREE_OVERFLOW (@1))
6255 (POW @0 (minus @1 { build_one_cst (type); }))))
6257 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
6259 (rdiv @0 (POW:s @1 @2))
6260 (mult @0 (POW @1 (negate @2))))
6265 /* sqrt(sqrt(x)) -> pow(x,1/4). */
6268 (pows @0 { build_real (type, dconst_quarter ()); }))
6269 /* sqrt(cbrt(x)) -> pow(x,1/6). */
6272 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6273 /* cbrt(sqrt(x)) -> pow(x,1/6). */
6276 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6277 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
6279 (cbrts (cbrts tree_expr_nonnegative_p@0))
6280 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
6281 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
6283 (sqrts (pows @0 @1))
6284 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
6285 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
6287 (cbrts (pows tree_expr_nonnegative_p@0 @1))
6288 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6289 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
6291 (pows (sqrts @0) @1)
6292 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
6293 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
6295 (pows (cbrts tree_expr_nonnegative_p@0) @1)
6296 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6297 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
6299 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
6300 (pows @0 (mult @1 @2))))
6302 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
6304 (CABS (complex @0 @0))
6305 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6307 /* hypot(x,x) -> fabs(x)*sqrt(2). */
6310 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6312 /* cexp(x+yi) -> exp(x)*cexpi(y). */
6317 (cexps compositional_complex@0)
6318 (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
6320 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
6321 (mult @1 (imagpart @2)))))))
6323 (if (canonicalize_math_p ())
6324 /* floor(x) -> trunc(x) if x is nonnegative. */
6325 (for floors (FLOOR_ALL)
6328 (floors tree_expr_nonnegative_p@0)
6331 (match double_value_p
6333 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
6334 (for froms (BUILT_IN_TRUNCL
6346 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
6347 (if (optimize && canonicalize_math_p ())
6349 (froms (convert double_value_p@0))
6350 (convert (tos @0)))))
6352 (match float_value_p
6354 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
6355 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
6356 BUILT_IN_FLOORL BUILT_IN_FLOOR
6357 BUILT_IN_CEILL BUILT_IN_CEIL
6358 BUILT_IN_ROUNDL BUILT_IN_ROUND
6359 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
6360 BUILT_IN_RINTL BUILT_IN_RINT)
6361 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
6362 BUILT_IN_FLOORF BUILT_IN_FLOORF
6363 BUILT_IN_CEILF BUILT_IN_CEILF
6364 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
6365 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
6366 BUILT_IN_RINTF BUILT_IN_RINTF)
6367 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
6369 (if (optimize && canonicalize_math_p ()
6370 && targetm.libc_has_function (function_c99_misc, NULL_TREE))
6372 (froms (convert float_value_p@0))
6373 (convert (tos @0)))))
6376 (match float16_value_p
6378 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node)))
6379 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF
6380 BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF
6381 BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF
6382 BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF
6383 BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF
6384 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF
6385 BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF
6386 BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF)
6387 tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC
6388 IFN_FLOOR IFN_FLOOR IFN_FLOOR
6389 IFN_CEIL IFN_CEIL IFN_CEIL
6390 IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN
6391 IFN_ROUND IFN_ROUND IFN_ROUND
6392 IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT
6393 IFN_RINT IFN_RINT IFN_RINT
6394 IFN_SQRT IFN_SQRT IFN_SQRT)
6395 /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc.,
6396 if x is a _Float16. */
6398 (convert (froms (convert float16_value_p@0)))
6400 && types_match (type, TREE_TYPE (@0))
6401 && direct_internal_fn_supported_p (as_internal_fn (tos),
6402 type, OPTIMIZE_FOR_BOTH))
6405 /* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y),
6406 x,y is float value, similar for _Float16/double. */
6407 (for copysigns (COPYSIGN_ALL)
6409 (convert (copysigns (convert@2 @0) (convert @1)))
6411 && !HONOR_SNANS (@2)
6412 && types_match (type, TREE_TYPE (@0))
6413 && types_match (type, TREE_TYPE (@1))
6414 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2))
6415 && direct_internal_fn_supported_p (IFN_COPYSIGN,
6416 type, OPTIMIZE_FOR_BOTH))
6417 (IFN_COPYSIGN @0 @1))))
6419 (for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL)
6420 tos (IFN_FMA IFN_FMA IFN_FMA)
6422 (convert (froms (convert@3 @0) (convert @1) (convert @2)))
6423 (if (flag_unsafe_math_optimizations
6425 && FLOAT_TYPE_P (type)
6426 && FLOAT_TYPE_P (TREE_TYPE (@3))
6427 && types_match (type, TREE_TYPE (@0))
6428 && types_match (type, TREE_TYPE (@1))
6429 && types_match (type, TREE_TYPE (@2))
6430 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3))
6431 && direct_internal_fn_supported_p (as_internal_fn (tos),
6432 type, OPTIMIZE_FOR_BOTH))
6435 (for maxmin (max min)
6437 (convert (maxmin (convert@2 @0) (convert @1)))
6439 && FLOAT_TYPE_P (type)
6440 && FLOAT_TYPE_P (TREE_TYPE (@2))
6441 && types_match (type, TREE_TYPE (@0))
6442 && types_match (type, TREE_TYPE (@1))
6443 && element_precision (type) < element_precision (TREE_TYPE (@2)))
6447 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
6448 tos (XFLOOR XCEIL XROUND XRINT)
6449 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
6450 (if (optimize && canonicalize_math_p ())
6452 (froms (convert double_value_p@0))
6455 (for froms (XFLOORL XCEILL XROUNDL XRINTL
6456 XFLOOR XCEIL XROUND XRINT)
6457 tos (XFLOORF XCEILF XROUNDF XRINTF)
6458 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
6460 (if (optimize && canonicalize_math_p ())
6462 (froms (convert float_value_p@0))
6465 (if (canonicalize_math_p ())
6466 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
6467 (for floors (IFLOOR LFLOOR LLFLOOR)
6469 (floors tree_expr_nonnegative_p@0)
6472 (if (canonicalize_math_p ())
6473 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
6474 (for fns (IFLOOR LFLOOR LLFLOOR
6476 IROUND LROUND LLROUND)
6478 (fns integer_valued_real_p@0)
6480 (if (!flag_errno_math)
6481 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
6482 (for rints (IRINT LRINT LLRINT)
6484 (rints integer_valued_real_p@0)
6487 (if (canonicalize_math_p ())
6488 (for ifn (IFLOOR ICEIL IROUND IRINT)
6489 lfn (LFLOOR LCEIL LROUND LRINT)
6490 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
6491 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
6492 sizeof (int) == sizeof (long). */
6493 (if (TYPE_PRECISION (integer_type_node)
6494 == TYPE_PRECISION (long_integer_type_node))
6497 (lfn:long_integer_type_node @0)))
6498 /* Canonicalize llround (x) to lround (x) on LP64 targets where
6499 sizeof (long long) == sizeof (long). */
6500 (if (TYPE_PRECISION (long_long_integer_type_node)
6501 == TYPE_PRECISION (long_integer_type_node))
6504 (lfn:long_integer_type_node @0)))))
6506 /* cproj(x) -> x if we're ignoring infinities. */
6509 (if (!HONOR_INFINITIES (type))
6512 /* If the real part is inf and the imag part is known to be
6513 nonnegative, return (inf + 0i). */
6515 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
6516 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
6517 { build_complex_inf (type, false); }))
6519 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
6521 (CPROJ (complex @0 REAL_CST@1))
6522 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
6523 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
6529 (pows @0 REAL_CST@1)
6531 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
6532 REAL_VALUE_TYPE tmp;
6535 /* pow(x,0) -> 1. */
6536 (if (real_equal (value, &dconst0))
6537 { build_real (type, dconst1); })
6538 /* pow(x,1) -> x. */
6539 (if (real_equal (value, &dconst1))
6541 /* pow(x,-1) -> 1/x. */
6542 (if (real_equal (value, &dconstm1))
6543 (rdiv { build_real (type, dconst1); } @0))
6544 /* pow(x,0.5) -> sqrt(x). */
6545 (if (flag_unsafe_math_optimizations
6546 && canonicalize_math_p ()
6547 && real_equal (value, &dconsthalf))
6549 /* pow(x,1/3) -> cbrt(x). */
6550 (if (flag_unsafe_math_optimizations
6551 && canonicalize_math_p ()
6552 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
6553 real_equal (value, &tmp)))
6556 /* powi(1,x) -> 1. */
6558 (POWI real_onep@0 @1)
6562 (POWI @0 INTEGER_CST@1)
6564 /* powi(x,0) -> 1. */
6565 (if (wi::to_wide (@1) == 0)
6566 { build_real (type, dconst1); })
6567 /* powi(x,1) -> x. */
6568 (if (wi::to_wide (@1) == 1)
6570 /* powi(x,-1) -> 1/x. */
6571 (if (wi::to_wide (@1) == -1)
6572 (rdiv { build_real (type, dconst1); } @0))))
6574 /* Narrowing of arithmetic and logical operations.
6576 These are conceptually similar to the transformations performed for
6577 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
6578 term we want to move all that code out of the front-ends into here. */
6580 /* Convert (outertype)((innertype0)a+(innertype1)b)
6581 into ((newtype)a+(newtype)b) where newtype
6582 is the widest mode from all of these. */
6583 (for op (plus minus mult rdiv)
6585 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
6586 /* If we have a narrowing conversion of an arithmetic operation where
6587 both operands are widening conversions from the same type as the outer
6588 narrowing conversion. Then convert the innermost operands to a
6589 suitable unsigned type (to avoid introducing undefined behavior),
6590 perform the operation and convert the result to the desired type. */
6591 (if (INTEGRAL_TYPE_P (type)
6594 /* We check for type compatibility between @0 and @1 below,
6595 so there's no need to check that @2/@4 are integral types. */
6596 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
6597 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
6598 /* The precision of the type of each operand must match the
6599 precision of the mode of each operand, similarly for the
6601 && type_has_mode_precision_p (TREE_TYPE (@1))
6602 && type_has_mode_precision_p (TREE_TYPE (@2))
6603 && type_has_mode_precision_p (type)
6604 /* The inner conversion must be a widening conversion. */
6605 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
6606 && types_match (@1, type)
6607 && (types_match (@1, @2)
6608 /* Or the second operand is const integer or converted const
6609 integer from valueize. */
6610 || poly_int_tree_p (@4)))
6611 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
6612 (op @1 (convert @2))
6613 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
6614 (convert (op (convert:utype @1)
6615 (convert:utype @2)))))
6616 (if (FLOAT_TYPE_P (type)
6617 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
6618 == DECIMAL_FLOAT_TYPE_P (type))
6619 (with { tree arg0 = strip_float_extensions (@1);
6620 tree arg1 = strip_float_extensions (@2);
6621 tree itype = TREE_TYPE (@0);
6622 tree ty1 = TREE_TYPE (arg0);
6623 tree ty2 = TREE_TYPE (arg1);
6624 enum tree_code code = TREE_CODE (itype); }
6625 (if (FLOAT_TYPE_P (ty1)
6626 && FLOAT_TYPE_P (ty2))
6627 (with { tree newtype = type;
6628 if (TYPE_MODE (ty1) == SDmode
6629 || TYPE_MODE (ty2) == SDmode
6630 || TYPE_MODE (type) == SDmode)
6631 newtype = dfloat32_type_node;
6632 if (TYPE_MODE (ty1) == DDmode
6633 || TYPE_MODE (ty2) == DDmode
6634 || TYPE_MODE (type) == DDmode)
6635 newtype = dfloat64_type_node;
6636 if (TYPE_MODE (ty1) == TDmode
6637 || TYPE_MODE (ty2) == TDmode
6638 || TYPE_MODE (type) == TDmode)
6639 newtype = dfloat128_type_node; }
6640 (if ((newtype == dfloat32_type_node
6641 || newtype == dfloat64_type_node
6642 || newtype == dfloat128_type_node)
6644 && types_match (newtype, type))
6645 (op (convert:newtype @1) (convert:newtype @2))
6646 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
6648 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
6650 /* Sometimes this transformation is safe (cannot
6651 change results through affecting double rounding
6652 cases) and sometimes it is not. If NEWTYPE is
6653 wider than TYPE, e.g. (float)((long double)double
6654 + (long double)double) converted to
6655 (float)(double + double), the transformation is
6656 unsafe regardless of the details of the types
6657 involved; double rounding can arise if the result
6658 of NEWTYPE arithmetic is a NEWTYPE value half way
6659 between two representable TYPE values but the
6660 exact value is sufficiently different (in the
6661 right direction) for this difference to be
6662 visible in ITYPE arithmetic. If NEWTYPE is the
6663 same as TYPE, however, the transformation may be
6664 safe depending on the types involved: it is safe
6665 if the ITYPE has strictly more than twice as many
6666 mantissa bits as TYPE, can represent infinities
6667 and NaNs if the TYPE can, and has sufficient
6668 exponent range for the product or ratio of two
6669 values representable in the TYPE to be within the
6670 range of normal values of ITYPE. */
6671 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
6672 && (flag_unsafe_math_optimizations
6673 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
6674 && real_can_shorten_arithmetic (TYPE_MODE (itype),
6676 && !excess_precision_type (newtype)))
6677 && !types_match (itype, newtype))
6678 (convert:type (op (convert:newtype @1)
6679 (convert:newtype @2)))
6684 /* This is another case of narrowing, specifically when there's an outer
6685 BIT_AND_EXPR which masks off bits outside the type of the innermost
6686 operands. Like the previous case we have to convert the operands
6687 to unsigned types to avoid introducing undefined behavior for the
6688 arithmetic operation. */
6689 (for op (minus plus)
6691 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
6692 (if (INTEGRAL_TYPE_P (type)
6693 /* We check for type compatibility between @0 and @1 below,
6694 so there's no need to check that @1/@3 are integral types. */
6695 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
6696 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6697 /* The precision of the type of each operand must match the
6698 precision of the mode of each operand, similarly for the
6700 && type_has_mode_precision_p (TREE_TYPE (@0))
6701 && type_has_mode_precision_p (TREE_TYPE (@1))
6702 && type_has_mode_precision_p (type)
6703 /* The inner conversion must be a widening conversion. */
6704 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6705 && types_match (@0, @1)
6706 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
6707 <= TYPE_PRECISION (TREE_TYPE (@0)))
6708 && (wi::to_wide (@4)
6709 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
6710 true, TYPE_PRECISION (type))) == 0)
6711 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
6712 (with { tree ntype = TREE_TYPE (@0); }
6713 (convert (bit_and (op @0 @1) (convert:ntype @4))))
6714 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6715 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
6716 (convert:utype @4))))))))
6718 /* Transform (@0 < @1 and @0 < @2) to use min,
6719 (@0 > @1 and @0 > @2) to use max */
6720 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
6721 op (lt le gt ge lt le gt ge )
6722 ext (min min max max max max min min )
6724 (logic (op:cs @0 @1) (op:cs @0 @2))
6725 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6726 && TREE_CODE (@0) != INTEGER_CST)
6727 (op @0 (ext @1 @2)))))
6730 /* signbit(x) -> 0 if x is nonnegative. */
6731 (SIGNBIT tree_expr_nonnegative_p@0)
6732 { integer_zero_node; })
6735 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
6737 (if (!HONOR_SIGNED_ZEROS (@0))
6738 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
6740 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
6742 (for op (plus minus)
6745 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
6746 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
6747 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
6748 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
6749 && !TYPE_SATURATING (TREE_TYPE (@0)))
6750 (with { tree res = int_const_binop (rop, @2, @1); }
6751 (if (TREE_OVERFLOW (res)
6752 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
6753 { constant_boolean_node (cmp == NE_EXPR, type); }
6754 (if (single_use (@3))
6755 (cmp @0 { TREE_OVERFLOW (res)
6756 ? drop_tree_overflow (res) : res; }))))))))
6757 (for cmp (lt le gt ge)
6758 (for op (plus minus)
6761 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
6762 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
6763 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
6764 (with { tree res = int_const_binop (rop, @2, @1); }
6765 (if (TREE_OVERFLOW (res))
6767 fold_overflow_warning (("assuming signed overflow does not occur "
6768 "when simplifying conditional to constant"),
6769 WARN_STRICT_OVERFLOW_CONDITIONAL);
6770 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
6771 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
6772 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
6773 TYPE_SIGN (TREE_TYPE (@1)))
6774 != (op == MINUS_EXPR);
6775 constant_boolean_node (less == ovf_high, type);
6777 (if (single_use (@3))
6780 fold_overflow_warning (("assuming signed overflow does not occur "
6781 "when changing X +- C1 cmp C2 to "
6783 WARN_STRICT_OVERFLOW_COMPARISON);
6785 (cmp @0 { res; })))))))))
6787 /* Canonicalizations of BIT_FIELD_REFs. */
6790 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
6791 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
6794 (BIT_FIELD_REF (view_convert @0) @1 @2)
6795 (BIT_FIELD_REF @0 @1 @2))
6798 (BIT_FIELD_REF @0 @1 integer_zerop)
6799 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
6803 (BIT_FIELD_REF @0 @1 @2)
6805 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
6806 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6808 (if (integer_zerop (@2))
6809 (view_convert (realpart @0)))
6810 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6811 (view_convert (imagpart @0)))))
6812 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6813 && INTEGRAL_TYPE_P (type)
6814 /* On GIMPLE this should only apply to register arguments. */
6815 && (! GIMPLE || is_gimple_reg (@0))
6816 /* A bit-field-ref that referenced the full argument can be stripped. */
6817 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
6818 && integer_zerop (@2))
6819 /* Low-parts can be reduced to integral conversions.
6820 ??? The following doesn't work for PDP endian. */
6821 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
6822 /* But only do this after vectorization. */
6823 && canonicalize_math_after_vectorization_p ()
6824 /* Don't even think about BITS_BIG_ENDIAN. */
6825 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
6826 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
6827 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
6828 ? (TYPE_PRECISION (TREE_TYPE (@0))
6829 - TYPE_PRECISION (type))
6833 /* Simplify vector extracts. */
6836 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
6837 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
6838 && tree_fits_uhwi_p (TYPE_SIZE (type))
6839 && ((tree_to_uhwi (TYPE_SIZE (type))
6840 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6841 || (VECTOR_TYPE_P (type)
6842 && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))
6843 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))))))
6846 tree ctor = (TREE_CODE (@0) == SSA_NAME
6847 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
6848 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
6849 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
6850 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
6851 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
6854 && (idx % width) == 0
6856 && known_le ((idx + n) / width,
6857 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
6862 /* Constructor elements can be subvectors. */
6864 if (CONSTRUCTOR_NELTS (ctor) != 0)
6866 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
6867 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
6868 k = TYPE_VECTOR_SUBPARTS (cons_elem);
6870 unsigned HOST_WIDE_INT elt, count, const_k;
6873 /* We keep an exact subset of the constructor elements. */
6874 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
6875 (if (CONSTRUCTOR_NELTS (ctor) == 0)
6876 { build_zero_cst (type); }
6878 (if (elt < CONSTRUCTOR_NELTS (ctor))
6879 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
6880 { build_zero_cst (type); })
6881 /* We don't want to emit new CTORs unless the old one goes away.
6882 ??? Eventually allow this if the CTOR ends up constant or
6884 (if (single_use (@0))
6887 vec<constructor_elt, va_gc> *vals;
6888 vec_alloc (vals, count);
6889 bool constant_p = true;
6891 for (unsigned i = 0;
6892 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
6894 tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value;
6895 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e);
6896 if (!CONSTANT_CLASS_P (e))
6899 tree evtype = (types_match (TREE_TYPE (type),
6900 TREE_TYPE (TREE_TYPE (ctor)))
6902 : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)),
6904 res = (constant_p ? build_vector_from_ctor (evtype, vals)
6905 : build_constructor (evtype, vals));
6907 (view_convert { res; }))))))
6908 /* The bitfield references a single constructor element. */
6909 (if (k.is_constant (&const_k)
6910 && idx + n <= (idx / const_k + 1) * const_k)
6912 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
6913 { build_zero_cst (type); })
6915 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
6916 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
6917 @1 { bitsize_int ((idx % const_k) * width); })))))))))
6919 /* Simplify a bit extraction from a bit insertion for the cases with
6920 the inserted element fully covering the extraction or the insertion
6921 not touching the extraction. */
6923 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
6926 unsigned HOST_WIDE_INT isize;
6927 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
6928 isize = TYPE_PRECISION (TREE_TYPE (@1));
6930 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
6933 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
6934 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
6935 wi::to_wide (@ipos) + isize))
6936 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
6938 - wi::to_wide (@ipos)); }))
6939 (if (wi::geu_p (wi::to_wide (@ipos),
6940 wi::to_wide (@rpos) + wi::to_wide (@rsize))
6941 || wi::geu_p (wi::to_wide (@rpos),
6942 wi::to_wide (@ipos) + isize))
6943 (BIT_FIELD_REF @0 @rsize @rpos)))))
6945 (if (canonicalize_math_after_vectorization_p ())
6948 (fmas:c (negate @0) @1 @2)
6949 (IFN_FNMA @0 @1 @2))
6951 (fmas @0 @1 (negate @2))
6954 (fmas:c (negate @0) @1 (negate @2))
6955 (IFN_FNMS @0 @1 @2))
6957 (negate (fmas@3 @0 @1 @2))
6958 (if (single_use (@3))
6959 (IFN_FNMS @0 @1 @2))))
6962 (IFN_FMS:c (negate @0) @1 @2)
6963 (IFN_FNMS @0 @1 @2))
6965 (IFN_FMS @0 @1 (negate @2))
6968 (IFN_FMS:c (negate @0) @1 (negate @2))
6969 (IFN_FNMA @0 @1 @2))
6971 (negate (IFN_FMS@3 @0 @1 @2))
6972 (if (single_use (@3))
6973 (IFN_FNMA @0 @1 @2)))
6976 (IFN_FNMA:c (negate @0) @1 @2)
6979 (IFN_FNMA @0 @1 (negate @2))
6980 (IFN_FNMS @0 @1 @2))
6982 (IFN_FNMA:c (negate @0) @1 (negate @2))
6985 (negate (IFN_FNMA@3 @0 @1 @2))
6986 (if (single_use (@3))
6987 (IFN_FMS @0 @1 @2)))
6990 (IFN_FNMS:c (negate @0) @1 @2)
6993 (IFN_FNMS @0 @1 (negate @2))
6994 (IFN_FNMA @0 @1 @2))
6996 (IFN_FNMS:c (negate @0) @1 (negate @2))
6999 (negate (IFN_FNMS@3 @0 @1 @2))
7000 (if (single_use (@3))
7001 (IFN_FMA @0 @1 @2))))
7003 /* CLZ simplifications. */
7008 (op (clz:s@2 @0) INTEGER_CST@1)
7009 (if (integer_zerop (@1) && single_use (@2))
7010 /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */
7011 (with { tree type0 = TREE_TYPE (@0);
7012 tree stype = signed_type_for (type0);
7013 HOST_WIDE_INT val = 0;
7014 /* Punt on hypothetical weird targets. */
7016 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7022 (cmp (convert:stype @0) { build_zero_cst (stype); })))
7023 /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */
7024 (with { bool ok = true;
7025 HOST_WIDE_INT val = 0;
7026 tree type0 = TREE_TYPE (@0);
7027 /* Punt on hypothetical weird targets. */
7029 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7031 && val == TYPE_PRECISION (type0) - 1)
7034 (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1))
7035 (op @0 { build_one_cst (type0); })))))))
7037 /* CTZ simplifications. */
7039 (for op (ge gt le lt)
7042 /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */
7043 (op (ctz:s @0) INTEGER_CST@1)
7044 (with { bool ok = true;
7045 HOST_WIDE_INT val = 0;
7046 if (!tree_fits_shwi_p (@1))
7050 val = tree_to_shwi (@1);
7051 /* Canonicalize to >= or <. */
7052 if (op == GT_EXPR || op == LE_EXPR)
7054 if (val == HOST_WIDE_INT_MAX)
7060 bool zero_res = false;
7061 HOST_WIDE_INT zero_val = 0;
7062 tree type0 = TREE_TYPE (@0);
7063 int prec = TYPE_PRECISION (type0);
7065 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7070 (if (ok && (!zero_res || zero_val >= val))
7071 { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); })
7073 (if (ok && (!zero_res || zero_val < val))
7074 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); })
7075 (if (ok && (!zero_res || zero_val < 0 || zero_val >= prec))
7076 (cmp (bit_and @0 { wide_int_to_tree (type0,
7077 wi::mask (val, false, prec)); })
7078 { build_zero_cst (type0); })))))))
7081 /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */
7082 (op (ctz:s @0) INTEGER_CST@1)
7083 (with { bool zero_res = false;
7084 HOST_WIDE_INT zero_val = 0;
7085 tree type0 = TREE_TYPE (@0);
7086 int prec = TYPE_PRECISION (type0);
7088 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7092 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
7093 (if (!zero_res || zero_val != wi::to_widest (@1))
7094 { constant_boolean_node (op == EQ_EXPR ? false : true, type); })
7095 (if (!zero_res || zero_val < 0 || zero_val >= prec)
7096 (op (bit_and @0 { wide_int_to_tree (type0,
7097 wi::mask (tree_to_uhwi (@1) + 1,
7099 { wide_int_to_tree (type0,
7100 wi::shifted_mask (tree_to_uhwi (@1), 1,
7101 false, prec)); })))))))
7103 /* POPCOUNT simplifications. */
7104 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
7106 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
7107 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
7108 (POPCOUNT (bit_ior @0 @1))))
7110 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
7111 (for popcount (POPCOUNT)
7112 (for cmp (le eq ne gt)
7115 (cmp (popcount @0) integer_zerop)
7116 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
7118 /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
7120 (bit_and (POPCOUNT @0) integer_onep)
7123 /* PARITY simplifications. */
7124 /* parity(~X) is parity(X). */
7126 (PARITY (bit_not @0))
7129 /* parity(X)^parity(Y) is parity(X^Y). */
7131 (bit_xor (PARITY:s @0) (PARITY:s @1))
7132 (PARITY (bit_xor @0 @1)))
7134 /* Common POPCOUNT/PARITY simplifications. */
7135 /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
7136 (for pfun (POPCOUNT PARITY)
7139 (with { wide_int nz = tree_nonzero_bits (@0); }
7143 (if (wi::popcount (nz) == 1)
7144 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7145 (convert (rshift:utype (convert:utype @0)
7146 { build_int_cst (integer_type_node,
7147 wi::ctz (nz)); }))))))))
7150 /* 64- and 32-bits branchless implementations of popcount are detected:
7152 int popcount64c (uint64_t x)
7154 x -= (x >> 1) & 0x5555555555555555ULL;
7155 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
7156 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
7157 return (x * 0x0101010101010101ULL) >> 56;
7160 int popcount32c (uint32_t x)
7162 x -= (x >> 1) & 0x55555555;
7163 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
7164 x = (x + (x >> 4)) & 0x0f0f0f0f;
7165 return (x * 0x01010101) >> 24;
7172 (rshift @8 INTEGER_CST@5)
7174 (bit_and @6 INTEGER_CST@7)
7178 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
7184 /* Check constants and optab. */
7185 (with { unsigned prec = TYPE_PRECISION (type);
7186 int shift = (64 - prec) & 63;
7187 unsigned HOST_WIDE_INT c1
7188 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
7189 unsigned HOST_WIDE_INT c2
7190 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
7191 unsigned HOST_WIDE_INT c3
7192 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
7193 unsigned HOST_WIDE_INT c4
7194 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
7199 && TYPE_UNSIGNED (type)
7200 && integer_onep (@4)
7201 && wi::to_widest (@10) == 2
7202 && wi::to_widest (@5) == 4
7203 && wi::to_widest (@1) == prec - 8
7204 && tree_to_uhwi (@2) == c1
7205 && tree_to_uhwi (@3) == c2
7206 && tree_to_uhwi (@9) == c3
7207 && tree_to_uhwi (@7) == c3
7208 && tree_to_uhwi (@11) == c4)
7209 (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type,
7211 (convert (IFN_POPCOUNT:type @0))
7212 /* Try to do popcount in two halves. PREC must be at least
7213 five bits for this to work without extension before adding. */
7215 tree half_type = NULL_TREE;
7216 opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1);
7219 && m.require () != TYPE_MODE (type))
7221 half_prec = GET_MODE_PRECISION (as_a <scalar_int_mode> (m));
7222 half_type = build_nonstandard_integer_type (half_prec, 1);
7224 gcc_assert (half_prec > 2);
7226 (if (half_type != NULL_TREE
7227 && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type,
7230 (IFN_POPCOUNT:half_type (convert @0))
7231 (IFN_POPCOUNT:half_type (convert (rshift @0
7232 { build_int_cst (integer_type_node, half_prec); } )))))))))))
7234 /* __builtin_ffs needs to deal on many targets with the possible zero
7235 argument. If we know the argument is always non-zero, __builtin_ctz + 1
7236 should lead to better code. */
7238 (FFS tree_expr_nonzero_p@0)
7239 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7240 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
7241 OPTIMIZE_FOR_SPEED))
7242 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7243 (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
7246 (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
7248 /* __builtin_ffs (X) == 0 -> X == 0.
7249 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
7252 (cmp (ffs@2 @0) INTEGER_CST@1)
7253 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7255 (if (integer_zerop (@1))
7256 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
7257 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
7258 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
7259 (if (single_use (@2))
7260 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
7261 wi::mask (tree_to_uhwi (@1),
7263 { wide_int_to_tree (TREE_TYPE (@0),
7264 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
7265 false, prec)); }))))))
7267 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
7271 bit_op (bit_and bit_ior)
7273 (cmp (ffs@2 @0) INTEGER_CST@1)
7274 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7276 (if (integer_zerop (@1))
7277 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
7278 (if (tree_int_cst_sgn (@1) < 0)
7279 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
7280 (if (wi::to_widest (@1) >= prec)
7281 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
7282 (if (wi::to_widest (@1) == prec - 1)
7283 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
7284 wi::shifted_mask (prec - 1, 1,
7286 (if (single_use (@2))
7287 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
7289 { wide_int_to_tree (TREE_TYPE (@0),
7290 wi::mask (tree_to_uhwi (@1),
7292 { build_zero_cst (TREE_TYPE (@0)); }))))))))
7299 --> r = .COND_FN (cond, a, b)
7303 --> r = .COND_FN (~cond, b, a). */
7305 (for uncond_op (UNCOND_UNARY)
7306 cond_op (COND_UNARY)
7308 (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2)
7309 (with { tree op_type = TREE_TYPE (@3); }
7310 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7311 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7312 (cond_op @0 @1 @2))))
7314 (vec_cond @0 @1 (view_convert? (uncond_op@3 @2)))
7315 (with { tree op_type = TREE_TYPE (@3); }
7316 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7317 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7318 (cond_op (bit_not @0) @2 @1)))))
7327 r = c ? a1 op a2 : b;
7329 if the target can do it in one go. This makes the operation conditional
7330 on c, so could drop potentially-trapping arithmetic, but that's a valid
7331 simplification if the result of the operation isn't needed.
7333 Avoid speculatively generating a stand-alone vector comparison
7334 on targets that might not support them. Any target implementing
7335 conditional internal functions must support the same comparisons
7336 inside and outside a VEC_COND_EXPR. */
7338 (for uncond_op (UNCOND_BINARY)
7339 cond_op (COND_BINARY)
7341 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
7342 (with { tree op_type = TREE_TYPE (@4); }
7343 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7344 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7345 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
7347 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
7348 (with { tree op_type = TREE_TYPE (@4); }
7349 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7350 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7351 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
7353 /* Same for ternary operations. */
7354 (for uncond_op (UNCOND_TERNARY)
7355 cond_op (COND_TERNARY)
7357 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
7358 (with { tree op_type = TREE_TYPE (@5); }
7359 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7360 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7361 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
7363 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
7364 (with { tree op_type = TREE_TYPE (@5); }
7365 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7366 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7367 (view_convert (cond_op (bit_not @0) @2 @3 @4
7368 (view_convert:op_type @1)))))))
7371 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
7372 "else" value of an IFN_COND_*. */
7373 (for cond_op (COND_BINARY)
7375 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
7376 (with { tree op_type = TREE_TYPE (@3); }
7377 (if (element_precision (type) == element_precision (op_type))
7378 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
7380 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
7381 (with { tree op_type = TREE_TYPE (@5); }
7382 (if (inverse_conditions_p (@0, @2)
7383 && element_precision (type) == element_precision (op_type))
7384 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
7386 /* Same for ternary operations. */
7387 (for cond_op (COND_TERNARY)
7389 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
7390 (with { tree op_type = TREE_TYPE (@4); }
7391 (if (element_precision (type) == element_precision (op_type))
7392 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
7394 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
7395 (with { tree op_type = TREE_TYPE (@6); }
7396 (if (inverse_conditions_p (@0, @2)
7397 && element_precision (type) == element_precision (op_type))
7398 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
7400 /* Detect simplication for a conditional reduction where
7403 c = mask2 ? d + a : d
7407 c = mask1 && mask2 ? d + b : d. */
7409 (IFN_COND_ADD @0 @1 (vec_cond @2 @3 integer_zerop) @1)
7410 (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1))
7412 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
7415 A: (@0 + @1 < @2) | (@2 + @1 < @0)
7416 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
7418 If pointers are known not to wrap, B checks whether @1 bytes starting
7419 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
7420 bytes. A is more efficiently tested as:
7422 A: (sizetype) (@0 + @1 - @2) > @1 * 2
7424 The equivalent expression for B is given by replacing @1 with @1 - 1:
7426 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
7428 @0 and @2 can be swapped in both expressions without changing the result.
7430 The folds rely on sizetype's being unsigned (which is always true)
7431 and on its being the same width as the pointer (which we have to check).
7433 The fold replaces two pointer_plus expressions, two comparisons and
7434 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
7435 the best case it's a saving of two operations. The A fold retains one
7436 of the original pointer_pluses, so is a win even if both pointer_pluses
7437 are used elsewhere. The B fold is a wash if both pointer_pluses are
7438 used elsewhere, since all we end up doing is replacing a comparison with
7439 a pointer_plus. We do still apply the fold under those circumstances
7440 though, in case applying it to other conditions eventually makes one of the
7441 pointer_pluses dead. */
7442 (for ior (truth_orif truth_or bit_ior)
7445 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
7446 (cmp:cs (pointer_plus@4 @2 @1) @0))
7447 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
7448 && TYPE_OVERFLOW_WRAPS (sizetype)
7449 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
7450 /* Calculate the rhs constant. */
7451 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
7452 offset_int rhs = off * 2; }
7453 /* Always fails for negative values. */
7454 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
7455 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
7456 pick a canonical order. This increases the chances of using the
7457 same pointer_plus in multiple checks. */
7458 (with { bool swap_p = tree_swap_operands_p (@0, @2);
7459 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
7460 (if (cmp == LT_EXPR)
7461 (gt (convert:sizetype
7462 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
7463 { swap_p ? @0 : @2; }))
7465 (gt (convert:sizetype
7466 (pointer_diff:ssizetype
7467 (pointer_plus { swap_p ? @2 : @0; }
7468 { wide_int_to_tree (sizetype, off); })
7469 { swap_p ? @0 : @2; }))
7470 { rhs_tree; })))))))))
7472 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
7474 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
7475 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
7476 (with { int i = single_nonzero_element (@1); }
7478 (with { tree elt = vector_cst_elt (@1, i);
7479 tree elt_type = TREE_TYPE (elt);
7480 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
7481 tree size = bitsize_int (elt_bits);
7482 tree pos = bitsize_int (elt_bits * i); }
7485 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
7489 (vec_perm @0 @1 VECTOR_CST@2)
7492 tree op0 = @0, op1 = @1, op2 = @2;
7494 /* Build a vector of integers from the tree mask. */
7495 vec_perm_builder builder;
7496 if (!tree_to_vec_perm_builder (&builder, op2))
7499 /* Create a vec_perm_indices for the integer vector. */
7500 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
7501 bool single_arg = (op0 == op1);
7502 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
7504 (if (sel.series_p (0, 1, 0, 1))
7506 (if (sel.series_p (0, 1, nelts, 1))
7512 if (sel.all_from_input_p (0))
7514 else if (sel.all_from_input_p (1))
7517 sel.rotate_inputs (1);
7519 else if (known_ge (poly_uint64 (sel[0]), nelts))
7521 std::swap (op0, op1);
7522 sel.rotate_inputs (1);
7526 tree cop0 = op0, cop1 = op1;
7527 if (TREE_CODE (op0) == SSA_NAME
7528 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
7529 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7530 cop0 = gimple_assign_rhs1 (def);
7531 if (TREE_CODE (op1) == SSA_NAME
7532 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
7533 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7534 cop1 = gimple_assign_rhs1 (def);
7538 (if ((TREE_CODE (cop0) == VECTOR_CST
7539 || TREE_CODE (cop0) == CONSTRUCTOR)
7540 && (TREE_CODE (cop1) == VECTOR_CST
7541 || TREE_CODE (cop1) == CONSTRUCTOR)
7542 && (t = fold_vec_perm (type, cop0, cop1, sel)))
7546 bool changed = (op0 == op1 && !single_arg);
7547 tree ins = NULL_TREE;
7550 /* See if the permutation is performing a single element
7551 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
7552 in that case. But only if the vector mode is supported,
7553 otherwise this is invalid GIMPLE. */
7554 if (TYPE_MODE (type) != BLKmode
7555 && (TREE_CODE (cop0) == VECTOR_CST
7556 || TREE_CODE (cop0) == CONSTRUCTOR
7557 || TREE_CODE (cop1) == VECTOR_CST
7558 || TREE_CODE (cop1) == CONSTRUCTOR))
7560 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
7563 /* After canonicalizing the first elt to come from the
7564 first vector we only can insert the first elt from
7565 the first vector. */
7567 if ((ins = fold_read_from_vector (cop0, sel[0])))
7570 /* The above can fail for two-element vectors which always
7571 appear to insert the first element, so try inserting
7572 into the second lane as well. For more than two
7573 elements that's wasted time. */
7574 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
7576 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
7577 for (at = 0; at < encoded_nelts; ++at)
7578 if (maybe_ne (sel[at], at))
7580 if (at < encoded_nelts
7581 && (known_eq (at + 1, nelts)
7582 || sel.series_p (at + 1, 1, at + 1, 1)))
7584 if (known_lt (poly_uint64 (sel[at]), nelts))
7585 ins = fold_read_from_vector (cop0, sel[at]);
7587 ins = fold_read_from_vector (cop1, sel[at] - nelts);
7592 /* Generate a canonical form of the selector. */
7593 if (!ins && sel.encoding () != builder)
7595 /* Some targets are deficient and fail to expand a single
7596 argument permutation while still allowing an equivalent
7597 2-argument version. */
7599 if (sel.ninputs () == 2
7600 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
7601 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
7604 vec_perm_indices sel2 (builder, 2, nelts);
7605 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
7606 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
7608 /* Not directly supported with either encoding,
7609 so use the preferred form. */
7610 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
7612 if (!operand_equal_p (op2, oldop2, 0))
7617 (bit_insert { op0; } { ins; }
7618 { bitsize_int (at * vector_element_bits (type)); })
7620 (vec_perm { op0; } { op1; } { op2; }))))))))))
7622 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
7624 (match vec_same_elem_p
7626 (if (uniform_vector_p (@0))))
7628 (match vec_same_elem_p
7632 (vec_perm vec_same_elem_p@0 @0 @1)
7635 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
7636 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
7637 constant which when multiplied by a power of 2 contains a unique value
7638 in the top 5 or 6 bits. This is then indexed into a table which maps it
7639 to the number of trailing zeroes. */
7640 (match (ctz_table_index @1 @2 @3)
7641 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))