* g++.dg/parse/ctor6.C, g++.dg/parse/defarg11.C,
[official-gcc.git] / gcc / expmed.c
blob2e8906eb7a9994f36e00e13728ec58b5a7882402
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "toplev.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "real.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT, rtx);
44 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
45 unsigned HOST_WIDE_INT, rtx);
46 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT, rtx, int);
50 static rtx mask_rtx (enum machine_mode, int, int, int);
51 static rtx lshift_value (enum machine_mode, rtx, int, int);
52 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
53 unsigned HOST_WIDE_INT, int);
54 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
55 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
56 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
58 /* Test whether a value is zero of a power of two. */
59 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
61 /* Nonzero means divides or modulus operations are relatively cheap for
62 powers of two, so don't use branches; emit the operation instead.
63 Usually, this will mean that the MD file will emit non-branch
64 sequences. */
66 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
67 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
69 #ifndef SLOW_UNALIGNED_ACCESS
70 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
71 #endif
73 /* For compilers that support multiple targets with different word sizes,
74 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
75 is the H8/300(H) compiler. */
77 #ifndef MAX_BITS_PER_WORD
78 #define MAX_BITS_PER_WORD BITS_PER_WORD
79 #endif
81 /* Reduce conditional compilation elsewhere. */
82 #ifndef HAVE_insv
83 #define HAVE_insv 0
84 #define CODE_FOR_insv CODE_FOR_nothing
85 #define gen_insv(a,b,c,d) NULL_RTX
86 #endif
87 #ifndef HAVE_extv
88 #define HAVE_extv 0
89 #define CODE_FOR_extv CODE_FOR_nothing
90 #define gen_extv(a,b,c,d) NULL_RTX
91 #endif
92 #ifndef HAVE_extzv
93 #define HAVE_extzv 0
94 #define CODE_FOR_extzv CODE_FOR_nothing
95 #define gen_extzv(a,b,c,d) NULL_RTX
96 #endif
98 /* Cost of various pieces of RTL. Note that some of these are indexed by
99 shift count and some by mode. */
100 static int zero_cost;
101 static int add_cost[NUM_MACHINE_MODES];
102 static int neg_cost[NUM_MACHINE_MODES];
103 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
104 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int mul_cost[NUM_MACHINE_MODES];
107 static int sdiv_cost[NUM_MACHINE_MODES];
108 static int udiv_cost[NUM_MACHINE_MODES];
109 static int mul_widen_cost[NUM_MACHINE_MODES];
110 static int mul_highpart_cost[NUM_MACHINE_MODES];
112 void
113 init_expmed (void)
115 struct
117 struct rtx_def reg; rtunion reg_fld[2];
118 struct rtx_def plus; rtunion plus_fld1;
119 struct rtx_def neg;
120 struct rtx_def mult; rtunion mult_fld1;
121 struct rtx_def sdiv; rtunion sdiv_fld1;
122 struct rtx_def udiv; rtunion udiv_fld1;
123 struct rtx_def zext;
124 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
125 struct rtx_def smod_32; rtunion smod_32_fld1;
126 struct rtx_def wide_mult; rtunion wide_mult_fld1;
127 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
128 struct rtx_def wide_trunc;
129 struct rtx_def shift; rtunion shift_fld1;
130 struct rtx_def shift_mult; rtunion shift_mult_fld1;
131 struct rtx_def shift_add; rtunion shift_add_fld1;
132 struct rtx_def shift_sub; rtunion shift_sub_fld1;
133 } all;
135 rtx pow2[MAX_BITS_PER_WORD];
136 rtx cint[MAX_BITS_PER_WORD];
137 int m, n;
138 enum machine_mode mode, wider_mode;
140 zero_cost = rtx_cost (const0_rtx, 0);
142 for (m = 1; m < MAX_BITS_PER_WORD; m++)
144 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
145 cint[m] = GEN_INT (m);
148 memset (&all, 0, sizeof all);
150 PUT_CODE (&all.reg, REG);
151 /* Avoid using hard regs in ways which may be unsupported. */
152 REGNO (&all.reg) = LAST_VIRTUAL_REGISTER + 1;
154 PUT_CODE (&all.plus, PLUS);
155 XEXP (&all.plus, 0) = &all.reg;
156 XEXP (&all.plus, 1) = &all.reg;
158 PUT_CODE (&all.neg, NEG);
159 XEXP (&all.neg, 0) = &all.reg;
161 PUT_CODE (&all.mult, MULT);
162 XEXP (&all.mult, 0) = &all.reg;
163 XEXP (&all.mult, 1) = &all.reg;
165 PUT_CODE (&all.sdiv, DIV);
166 XEXP (&all.sdiv, 0) = &all.reg;
167 XEXP (&all.sdiv, 1) = &all.reg;
169 PUT_CODE (&all.udiv, UDIV);
170 XEXP (&all.udiv, 0) = &all.reg;
171 XEXP (&all.udiv, 1) = &all.reg;
173 PUT_CODE (&all.sdiv_32, DIV);
174 XEXP (&all.sdiv_32, 0) = &all.reg;
175 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
177 PUT_CODE (&all.smod_32, MOD);
178 XEXP (&all.smod_32, 0) = &all.reg;
179 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
181 PUT_CODE (&all.zext, ZERO_EXTEND);
182 XEXP (&all.zext, 0) = &all.reg;
184 PUT_CODE (&all.wide_mult, MULT);
185 XEXP (&all.wide_mult, 0) = &all.zext;
186 XEXP (&all.wide_mult, 1) = &all.zext;
188 PUT_CODE (&all.wide_lshr, LSHIFTRT);
189 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
191 PUT_CODE (&all.wide_trunc, TRUNCATE);
192 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
194 PUT_CODE (&all.shift, ASHIFT);
195 XEXP (&all.shift, 0) = &all.reg;
197 PUT_CODE (&all.shift_mult, MULT);
198 XEXP (&all.shift_mult, 0) = &all.reg;
200 PUT_CODE (&all.shift_add, PLUS);
201 XEXP (&all.shift_add, 0) = &all.shift_mult;
202 XEXP (&all.shift_add, 1) = &all.reg;
204 PUT_CODE (&all.shift_sub, MINUS);
205 XEXP (&all.shift_sub, 0) = &all.shift_mult;
206 XEXP (&all.shift_sub, 1) = &all.reg;
208 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
209 mode != VOIDmode;
210 mode = GET_MODE_WIDER_MODE (mode))
212 PUT_MODE (&all.reg, mode);
213 PUT_MODE (&all.plus, mode);
214 PUT_MODE (&all.neg, mode);
215 PUT_MODE (&all.mult, mode);
216 PUT_MODE (&all.sdiv, mode);
217 PUT_MODE (&all.udiv, mode);
218 PUT_MODE (&all.sdiv_32, mode);
219 PUT_MODE (&all.smod_32, mode);
220 PUT_MODE (&all.wide_trunc, mode);
221 PUT_MODE (&all.shift, mode);
222 PUT_MODE (&all.shift_mult, mode);
223 PUT_MODE (&all.shift_add, mode);
224 PUT_MODE (&all.shift_sub, mode);
226 add_cost[mode] = rtx_cost (&all.plus, SET);
227 neg_cost[mode] = rtx_cost (&all.neg, SET);
228 mul_cost[mode] = rtx_cost (&all.mult, SET);
229 sdiv_cost[mode] = rtx_cost (&all.sdiv, SET);
230 udiv_cost[mode] = rtx_cost (&all.udiv, SET);
232 sdiv_pow2_cheap[mode] = (rtx_cost (&all.sdiv_32, SET)
233 <= 2 * add_cost[mode]);
234 smod_pow2_cheap[mode] = (rtx_cost (&all.smod_32, SET)
235 <= 4 * add_cost[mode]);
237 wider_mode = GET_MODE_WIDER_MODE (mode);
238 if (wider_mode != VOIDmode)
240 PUT_MODE (&all.zext, wider_mode);
241 PUT_MODE (&all.wide_mult, wider_mode);
242 PUT_MODE (&all.wide_lshr, wider_mode);
243 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
245 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
246 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
249 shift_cost[mode][0] = 0;
250 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
252 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
253 for (m = 1; m < n; m++)
255 XEXP (&all.shift, 1) = cint[m];
256 XEXP (&all.shift_mult, 1) = pow2[m];
258 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
259 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
260 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
265 /* Return an rtx representing minus the value of X.
266 MODE is the intended mode of the result,
267 useful if X is a CONST_INT. */
270 negate_rtx (enum machine_mode mode, rtx x)
272 rtx result = simplify_unary_operation (NEG, mode, x, mode);
274 if (result == 0)
275 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
277 return result;
280 /* Report on the availability of insv/extv/extzv and the desired mode
281 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
282 is false; else the mode of the specified operand. If OPNO is -1,
283 all the caller cares about is whether the insn is available. */
284 enum machine_mode
285 mode_for_extraction (enum extraction_pattern pattern, int opno)
287 const struct insn_data *data;
289 switch (pattern)
291 case EP_insv:
292 if (HAVE_insv)
294 data = &insn_data[CODE_FOR_insv];
295 break;
297 return MAX_MACHINE_MODE;
299 case EP_extv:
300 if (HAVE_extv)
302 data = &insn_data[CODE_FOR_extv];
303 break;
305 return MAX_MACHINE_MODE;
307 case EP_extzv:
308 if (HAVE_extzv)
310 data = &insn_data[CODE_FOR_extzv];
311 break;
313 return MAX_MACHINE_MODE;
315 default:
316 gcc_unreachable ();
319 if (opno == -1)
320 return VOIDmode;
322 /* Everyone who uses this function used to follow it with
323 if (result == VOIDmode) result = word_mode; */
324 if (data->operand[opno].mode == VOIDmode)
325 return word_mode;
326 return data->operand[opno].mode;
330 /* Generate code to store value from rtx VALUE
331 into a bit-field within structure STR_RTX
332 containing BITSIZE bits starting at bit BITNUM.
333 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
334 ALIGN is the alignment that STR_RTX is known to have.
335 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
337 /* ??? Note that there are two different ideas here for how
338 to determine the size to count bits within, for a register.
339 One is BITS_PER_WORD, and the other is the size of operand 3
340 of the insv pattern.
342 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
343 else, we use the mode of operand 3. */
346 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
347 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
348 rtx value)
350 unsigned int unit
351 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
352 unsigned HOST_WIDE_INT offset, bitpos;
353 rtx op0 = str_rtx;
354 int byte_offset;
355 rtx orig_value;
357 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
359 while (GET_CODE (op0) == SUBREG)
361 /* The following line once was done only if WORDS_BIG_ENDIAN,
362 but I think that is a mistake. WORDS_BIG_ENDIAN is
363 meaningful at a much higher level; when structures are copied
364 between memory and regs, the higher-numbered regs
365 always get higher addresses. */
366 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
367 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
369 byte_offset = 0;
371 /* Paradoxical subregs need special handling on big endian machines. */
372 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
374 int difference = inner_mode_size - outer_mode_size;
376 if (WORDS_BIG_ENDIAN)
377 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
378 if (BYTES_BIG_ENDIAN)
379 byte_offset += difference % UNITS_PER_WORD;
381 else
382 byte_offset = SUBREG_BYTE (op0);
384 bitnum += byte_offset * BITS_PER_UNIT;
385 op0 = SUBREG_REG (op0);
388 /* No action is needed if the target is a register and if the field
389 lies completely outside that register. This can occur if the source
390 code contains an out-of-bounds access to a small array. */
391 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
392 return value;
394 /* Use vec_set patterns for inserting parts of vectors whenever
395 available. */
396 if (VECTOR_MODE_P (GET_MODE (op0))
397 && !MEM_P (op0)
398 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
399 != CODE_FOR_nothing)
400 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
401 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
402 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
404 enum machine_mode outermode = GET_MODE (op0);
405 enum machine_mode innermode = GET_MODE_INNER (outermode);
406 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
407 int pos = bitnum / GET_MODE_BITSIZE (innermode);
408 rtx rtxpos = GEN_INT (pos);
409 rtx src = value;
410 rtx dest = op0;
411 rtx pat, seq;
412 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
413 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
414 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
416 start_sequence ();
418 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
419 src = copy_to_mode_reg (mode1, src);
421 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
422 rtxpos = copy_to_mode_reg (mode1, rtxpos);
424 /* We could handle this, but we should always be called with a pseudo
425 for our targets and all insns should take them as outputs. */
426 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
427 && (*insn_data[icode].operand[1].predicate) (src, mode1)
428 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
429 pat = GEN_FCN (icode) (dest, src, rtxpos);
430 seq = get_insns ();
431 end_sequence ();
432 if (pat)
434 emit_insn (seq);
435 emit_insn (pat);
436 return dest;
440 /* If the target is a register, overwriting the entire object, or storing
441 a full-word or multi-word field can be done with just a SUBREG.
443 If the target is memory, storing any naturally aligned field can be
444 done with a simple store. For targets that support fast unaligned
445 memory, any naturally sized, unit aligned field can be done directly. */
447 offset = bitnum / unit;
448 bitpos = bitnum % unit;
449 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
450 + (offset * UNITS_PER_WORD);
452 if (bitpos == 0
453 && bitsize == GET_MODE_BITSIZE (fieldmode)
454 && (!MEM_P (op0)
455 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
456 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
457 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
458 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
459 || (offset * BITS_PER_UNIT % bitsize == 0
460 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
462 if (MEM_P (op0))
463 op0 = adjust_address (op0, fieldmode, offset);
464 else if (GET_MODE (op0) != fieldmode)
465 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
466 byte_offset);
467 emit_move_insn (op0, value);
468 return value;
471 /* Make sure we are playing with integral modes. Pun with subregs
472 if we aren't. This must come after the entire register case above,
473 since that case is valid for any mode. The following cases are only
474 valid for integral modes. */
476 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
477 if (imode != GET_MODE (op0))
479 if (MEM_P (op0))
480 op0 = adjust_address (op0, imode, 0);
481 else
483 gcc_assert (imode != BLKmode);
484 op0 = gen_lowpart (imode, op0);
489 /* We may be accessing data outside the field, which means
490 we can alias adjacent data. */
491 if (MEM_P (op0))
493 op0 = shallow_copy_rtx (op0);
494 set_mem_alias_set (op0, 0);
495 set_mem_expr (op0, 0);
498 /* If OP0 is a register, BITPOS must count within a word.
499 But as we have it, it counts within whatever size OP0 now has.
500 On a bigendian machine, these are not the same, so convert. */
501 if (BYTES_BIG_ENDIAN
502 && !MEM_P (op0)
503 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
504 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
506 /* Storing an lsb-aligned field in a register
507 can be done with a movestrict instruction. */
509 if (!MEM_P (op0)
510 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
511 && bitsize == GET_MODE_BITSIZE (fieldmode)
512 && (movstrict_optab->handlers[fieldmode].insn_code
513 != CODE_FOR_nothing))
515 int icode = movstrict_optab->handlers[fieldmode].insn_code;
517 /* Get appropriate low part of the value being stored. */
518 if (GET_CODE (value) == CONST_INT || REG_P (value))
519 value = gen_lowpart (fieldmode, value);
520 else if (!(GET_CODE (value) == SYMBOL_REF
521 || GET_CODE (value) == LABEL_REF
522 || GET_CODE (value) == CONST))
523 value = convert_to_mode (fieldmode, value, 0);
525 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
526 value = copy_to_mode_reg (fieldmode, value);
528 if (GET_CODE (op0) == SUBREG)
530 /* Else we've got some float mode source being extracted into
531 a different float mode destination -- this combination of
532 subregs results in Severe Tire Damage. */
533 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
534 || GET_MODE_CLASS (fieldmode) == MODE_INT
535 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
536 op0 = SUBREG_REG (op0);
539 emit_insn (GEN_FCN (icode)
540 (gen_rtx_SUBREG (fieldmode, op0,
541 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
542 + (offset * UNITS_PER_WORD)),
543 value));
545 return value;
548 /* Handle fields bigger than a word. */
550 if (bitsize > BITS_PER_WORD)
552 /* Here we transfer the words of the field
553 in the order least significant first.
554 This is because the most significant word is the one which may
555 be less than full.
556 However, only do that if the value is not BLKmode. */
558 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
559 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
560 unsigned int i;
562 /* This is the mode we must force value to, so that there will be enough
563 subwords to extract. Note that fieldmode will often (always?) be
564 VOIDmode, because that is what store_field uses to indicate that this
565 is a bit field, but passing VOIDmode to operand_subword_force
566 is not allowed. */
567 fieldmode = GET_MODE (value);
568 if (fieldmode == VOIDmode)
569 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
571 for (i = 0; i < nwords; i++)
573 /* If I is 0, use the low-order word in both field and target;
574 if I is 1, use the next to lowest word; and so on. */
575 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
576 unsigned int bit_offset = (backwards
577 ? MAX ((int) bitsize - ((int) i + 1)
578 * BITS_PER_WORD,
580 : (int) i * BITS_PER_WORD);
582 store_bit_field (op0, MIN (BITS_PER_WORD,
583 bitsize - i * BITS_PER_WORD),
584 bitnum + bit_offset, word_mode,
585 operand_subword_force (value, wordnum, fieldmode));
587 return value;
590 /* From here on we can assume that the field to be stored in is
591 a full-word (whatever type that is), since it is shorter than a word. */
593 /* OFFSET is the number of words or bytes (UNIT says which)
594 from STR_RTX to the first word or byte containing part of the field. */
596 if (!MEM_P (op0))
598 if (offset != 0
599 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
601 if (!REG_P (op0))
603 /* Since this is a destination (lvalue), we can't copy
604 it to a pseudo. We can remove a SUBREG that does not
605 change the size of the operand. Such a SUBREG may
606 have been added above. */
607 gcc_assert (GET_CODE (op0) == SUBREG
608 && (GET_MODE_SIZE (GET_MODE (op0))
609 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
610 op0 = SUBREG_REG (op0);
612 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
613 op0, (offset * UNITS_PER_WORD));
615 offset = 0;
618 /* If VALUE has a floating-point or complex mode, access it as an
619 integer of the corresponding size. This can occur on a machine
620 with 64 bit registers that uses SFmode for float. It can also
621 occur for unaligned float or complex fields. */
622 orig_value = value;
623 if (GET_MODE (value) != VOIDmode
624 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
625 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
627 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
628 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
631 /* Now OFFSET is nonzero only if OP0 is memory
632 and is therefore always measured in bytes. */
634 if (HAVE_insv
635 && GET_MODE (value) != BLKmode
636 && bitsize > 0
637 && GET_MODE_BITSIZE (op_mode) >= bitsize
638 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
639 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
640 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
641 VOIDmode))
643 int xbitpos = bitpos;
644 rtx value1;
645 rtx xop0 = op0;
646 rtx last = get_last_insn ();
647 rtx pat;
648 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
649 int save_volatile_ok = volatile_ok;
651 volatile_ok = 1;
653 /* If this machine's insv can only insert into a register, copy OP0
654 into a register and save it back later. */
655 if (MEM_P (op0)
656 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
657 (op0, VOIDmode)))
659 rtx tempreg;
660 enum machine_mode bestmode;
662 /* Get the mode to use for inserting into this field. If OP0 is
663 BLKmode, get the smallest mode consistent with the alignment. If
664 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
665 mode. Otherwise, use the smallest mode containing the field. */
667 if (GET_MODE (op0) == BLKmode
668 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
669 bestmode
670 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
671 MEM_VOLATILE_P (op0));
672 else
673 bestmode = GET_MODE (op0);
675 if (bestmode == VOIDmode
676 || GET_MODE_SIZE (bestmode) < GET_MODE_SIZE (fieldmode)
677 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
678 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
679 goto insv_loses;
681 /* Adjust address to point to the containing unit of that mode.
682 Compute offset as multiple of this unit, counting in bytes. */
683 unit = GET_MODE_BITSIZE (bestmode);
684 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
685 bitpos = bitnum % unit;
686 op0 = adjust_address (op0, bestmode, offset);
688 /* Fetch that unit, store the bitfield in it, then store
689 the unit. */
690 tempreg = copy_to_reg (op0);
691 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
692 emit_move_insn (op0, tempreg);
693 return value;
695 volatile_ok = save_volatile_ok;
697 /* Add OFFSET into OP0's address. */
698 if (MEM_P (xop0))
699 xop0 = adjust_address (xop0, byte_mode, offset);
701 /* If xop0 is a register, we need it in MAXMODE
702 to make it acceptable to the format of insv. */
703 if (GET_CODE (xop0) == SUBREG)
704 /* We can't just change the mode, because this might clobber op0,
705 and we will need the original value of op0 if insv fails. */
706 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
707 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
708 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
710 /* On big-endian machines, we count bits from the most significant.
711 If the bit field insn does not, we must invert. */
713 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
714 xbitpos = unit - bitsize - xbitpos;
716 /* We have been counting XBITPOS within UNIT.
717 Count instead within the size of the register. */
718 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
719 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
721 unit = GET_MODE_BITSIZE (maxmode);
723 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
724 value1 = value;
725 if (GET_MODE (value) != maxmode)
727 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
729 /* Optimization: Don't bother really extending VALUE
730 if it has all the bits we will actually use. However,
731 if we must narrow it, be sure we do it correctly. */
733 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
735 rtx tmp;
737 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
738 if (! tmp)
739 tmp = simplify_gen_subreg (maxmode,
740 force_reg (GET_MODE (value),
741 value1),
742 GET_MODE (value), 0);
743 value1 = tmp;
745 else
746 value1 = gen_lowpart (maxmode, value1);
748 else if (GET_CODE (value) == CONST_INT)
749 value1 = gen_int_mode (INTVAL (value), maxmode);
750 else
751 /* Parse phase is supposed to make VALUE's data type
752 match that of the component reference, which is a type
753 at least as wide as the field; so VALUE should have
754 a mode that corresponds to that type. */
755 gcc_assert (CONSTANT_P (value));
758 /* If this machine's insv insists on a register,
759 get VALUE1 into a register. */
760 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
761 (value1, maxmode)))
762 value1 = force_reg (maxmode, value1);
764 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
765 if (pat)
766 emit_insn (pat);
767 else
769 delete_insns_since (last);
770 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
773 else
774 insv_loses:
775 /* Insv is not available; store using shifts and boolean ops. */
776 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
777 return value;
780 /* Use shifts and boolean operations to store VALUE
781 into a bit field of width BITSIZE
782 in a memory location specified by OP0 except offset by OFFSET bytes.
783 (OFFSET must be 0 if OP0 is a register.)
784 The field starts at position BITPOS within the byte.
785 (If OP0 is a register, it may be a full word or a narrower mode,
786 but BITPOS still counts within a full word,
787 which is significant on bigendian machines.) */
789 static void
790 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
791 unsigned HOST_WIDE_INT bitsize,
792 unsigned HOST_WIDE_INT bitpos, rtx value)
794 enum machine_mode mode;
795 unsigned int total_bits = BITS_PER_WORD;
796 rtx temp;
797 int all_zero = 0;
798 int all_one = 0;
800 /* There is a case not handled here:
801 a structure with a known alignment of just a halfword
802 and a field split across two aligned halfwords within the structure.
803 Or likewise a structure with a known alignment of just a byte
804 and a field split across two bytes.
805 Such cases are not supposed to be able to occur. */
807 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
809 gcc_assert (!offset);
810 /* Special treatment for a bit field split across two registers. */
811 if (bitsize + bitpos > BITS_PER_WORD)
813 store_split_bit_field (op0, bitsize, bitpos, value);
814 return;
817 else
819 /* Get the proper mode to use for this field. We want a mode that
820 includes the entire field. If such a mode would be larger than
821 a word, we won't be doing the extraction the normal way.
822 We don't want a mode bigger than the destination. */
824 mode = GET_MODE (op0);
825 if (GET_MODE_BITSIZE (mode) == 0
826 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
827 mode = word_mode;
828 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
829 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
831 if (mode == VOIDmode)
833 /* The only way this should occur is if the field spans word
834 boundaries. */
835 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
836 value);
837 return;
840 total_bits = GET_MODE_BITSIZE (mode);
842 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
843 be in the range 0 to total_bits-1, and put any excess bytes in
844 OFFSET. */
845 if (bitpos >= total_bits)
847 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
848 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
849 * BITS_PER_UNIT);
852 /* Get ref to an aligned byte, halfword, or word containing the field.
853 Adjust BITPOS to be position within a word,
854 and OFFSET to be the offset of that word.
855 Then alter OP0 to refer to that word. */
856 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
857 offset -= (offset % (total_bits / BITS_PER_UNIT));
858 op0 = adjust_address (op0, mode, offset);
861 mode = GET_MODE (op0);
863 /* Now MODE is either some integral mode for a MEM as OP0,
864 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
865 The bit field is contained entirely within OP0.
866 BITPOS is the starting bit number within OP0.
867 (OP0's mode may actually be narrower than MODE.) */
869 if (BYTES_BIG_ENDIAN)
870 /* BITPOS is the distance between our msb
871 and that of the containing datum.
872 Convert it to the distance from the lsb. */
873 bitpos = total_bits - bitsize - bitpos;
875 /* Now BITPOS is always the distance between our lsb
876 and that of OP0. */
878 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
879 we must first convert its mode to MODE. */
881 if (GET_CODE (value) == CONST_INT)
883 HOST_WIDE_INT v = INTVAL (value);
885 if (bitsize < HOST_BITS_PER_WIDE_INT)
886 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
888 if (v == 0)
889 all_zero = 1;
890 else if ((bitsize < HOST_BITS_PER_WIDE_INT
891 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
892 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
893 all_one = 1;
895 value = lshift_value (mode, value, bitpos, bitsize);
897 else
899 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
900 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
902 if (GET_MODE (value) != mode)
904 if ((REG_P (value) || GET_CODE (value) == SUBREG)
905 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
906 value = gen_lowpart (mode, value);
907 else
908 value = convert_to_mode (mode, value, 1);
911 if (must_and)
912 value = expand_binop (mode, and_optab, value,
913 mask_rtx (mode, 0, bitsize, 0),
914 NULL_RTX, 1, OPTAB_LIB_WIDEN);
915 if (bitpos > 0)
916 value = expand_shift (LSHIFT_EXPR, mode, value,
917 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
920 /* Now clear the chosen bits in OP0,
921 except that if VALUE is -1 we need not bother. */
922 /* We keep the intermediates in registers to allow CSE to combine
923 consecutive bitfield assignments. */
925 temp = force_reg (mode, op0);
927 if (! all_one)
929 temp = expand_binop (mode, and_optab, temp,
930 mask_rtx (mode, bitpos, bitsize, 1),
931 NULL_RTX, 1, OPTAB_LIB_WIDEN);
932 temp = force_reg (mode, temp);
935 /* Now logical-or VALUE into OP0, unless it is zero. */
937 if (! all_zero)
939 temp = expand_binop (mode, ior_optab, temp, value,
940 NULL_RTX, 1, OPTAB_LIB_WIDEN);
941 temp = force_reg (mode, temp);
944 if (op0 != temp)
945 emit_move_insn (op0, temp);
948 /* Store a bit field that is split across multiple accessible memory objects.
950 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
951 BITSIZE is the field width; BITPOS the position of its first bit
952 (within the word).
953 VALUE is the value to store.
955 This does not yet handle fields wider than BITS_PER_WORD. */
957 static void
958 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
959 unsigned HOST_WIDE_INT bitpos, rtx value)
961 unsigned int unit;
962 unsigned int bitsdone = 0;
964 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
965 much at a time. */
966 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
967 unit = BITS_PER_WORD;
968 else
969 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
971 /* If VALUE is a constant other than a CONST_INT, get it into a register in
972 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
973 that VALUE might be a floating-point constant. */
974 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
976 rtx word = gen_lowpart_common (word_mode, value);
978 if (word && (value != word))
979 value = word;
980 else
981 value = gen_lowpart_common (word_mode,
982 force_reg (GET_MODE (value) != VOIDmode
983 ? GET_MODE (value)
984 : word_mode, value));
987 while (bitsdone < bitsize)
989 unsigned HOST_WIDE_INT thissize;
990 rtx part, word;
991 unsigned HOST_WIDE_INT thispos;
992 unsigned HOST_WIDE_INT offset;
994 offset = (bitpos + bitsdone) / unit;
995 thispos = (bitpos + bitsdone) % unit;
997 /* THISSIZE must not overrun a word boundary. Otherwise,
998 store_fixed_bit_field will call us again, and we will mutually
999 recurse forever. */
1000 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1001 thissize = MIN (thissize, unit - thispos);
1003 if (BYTES_BIG_ENDIAN)
1005 int total_bits;
1007 /* We must do an endian conversion exactly the same way as it is
1008 done in extract_bit_field, so that the two calls to
1009 extract_fixed_bit_field will have comparable arguments. */
1010 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1011 total_bits = BITS_PER_WORD;
1012 else
1013 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1015 /* Fetch successively less significant portions. */
1016 if (GET_CODE (value) == CONST_INT)
1017 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1018 >> (bitsize - bitsdone - thissize))
1019 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1020 else
1021 /* The args are chosen so that the last part includes the
1022 lsb. Give extract_bit_field the value it needs (with
1023 endianness compensation) to fetch the piece we want. */
1024 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1025 total_bits - bitsize + bitsdone,
1026 NULL_RTX, 1);
1028 else
1030 /* Fetch successively more significant portions. */
1031 if (GET_CODE (value) == CONST_INT)
1032 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1033 >> bitsdone)
1034 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1035 else
1036 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1037 bitsdone, NULL_RTX, 1);
1040 /* If OP0 is a register, then handle OFFSET here.
1042 When handling multiword bitfields, extract_bit_field may pass
1043 down a word_mode SUBREG of a larger REG for a bitfield that actually
1044 crosses a word boundary. Thus, for a SUBREG, we must find
1045 the current word starting from the base register. */
1046 if (GET_CODE (op0) == SUBREG)
1048 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1049 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1050 GET_MODE (SUBREG_REG (op0)));
1051 offset = 0;
1053 else if (REG_P (op0))
1055 word = operand_subword_force (op0, offset, GET_MODE (op0));
1056 offset = 0;
1058 else
1059 word = op0;
1061 /* OFFSET is in UNITs, and UNIT is in bits.
1062 store_fixed_bit_field wants offset in bytes. */
1063 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1064 thispos, part);
1065 bitsdone += thissize;
1069 /* Generate code to extract a byte-field from STR_RTX
1070 containing BITSIZE bits, starting at BITNUM,
1071 and put it in TARGET if possible (if TARGET is nonzero).
1072 Regardless of TARGET, we return the rtx for where the value is placed.
1074 STR_RTX is the structure containing the byte (a REG or MEM).
1075 UNSIGNEDP is nonzero if this is an unsigned bit field.
1076 MODE is the natural mode of the field value once extracted.
1077 TMODE is the mode the caller would like the value to have;
1078 but the value may be returned with type MODE instead.
1080 TOTAL_SIZE is the size in bytes of the containing structure,
1081 or -1 if varying.
1083 If a TARGET is specified and we can store in it at no extra cost,
1084 we do so, and return TARGET.
1085 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1086 if they are equally easy. */
1089 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1090 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1091 enum machine_mode mode, enum machine_mode tmode)
1093 unsigned int unit
1094 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1095 unsigned HOST_WIDE_INT offset, bitpos;
1096 rtx op0 = str_rtx;
1097 rtx spec_target = target;
1098 rtx spec_target_subreg = 0;
1099 enum machine_mode int_mode;
1100 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1101 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1102 enum machine_mode mode1;
1103 int byte_offset;
1105 if (tmode == VOIDmode)
1106 tmode = mode;
1108 while (GET_CODE (op0) == SUBREG)
1110 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1111 op0 = SUBREG_REG (op0);
1114 /* If we have an out-of-bounds access to a register, just return an
1115 uninitialized register of the required mode. This can occur if the
1116 source code contains an out-of-bounds access to a small array. */
1117 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1118 return gen_reg_rtx (tmode);
1120 if (REG_P (op0)
1121 && mode == GET_MODE (op0)
1122 && bitnum == 0
1123 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1125 /* We're trying to extract a full register from itself. */
1126 return op0;
1129 /* Use vec_extract patterns for extracting parts of vectors whenever
1130 available. */
1131 if (VECTOR_MODE_P (GET_MODE (op0))
1132 && !MEM_P (op0)
1133 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1134 != CODE_FOR_nothing)
1135 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1136 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1138 enum machine_mode outermode = GET_MODE (op0);
1139 enum machine_mode innermode = GET_MODE_INNER (outermode);
1140 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1141 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1142 rtx rtxpos = GEN_INT (pos);
1143 rtx src = op0;
1144 rtx dest = NULL, pat, seq;
1145 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1146 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1147 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1149 if (innermode == tmode || innermode == mode)
1150 dest = target;
1152 if (!dest)
1153 dest = gen_reg_rtx (innermode);
1155 start_sequence ();
1157 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1158 dest = copy_to_mode_reg (mode0, dest);
1160 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1161 src = copy_to_mode_reg (mode1, src);
1163 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1164 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1166 /* We could handle this, but we should always be called with a pseudo
1167 for our targets and all insns should take them as outputs. */
1168 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1169 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1170 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1172 pat = GEN_FCN (icode) (dest, src, rtxpos);
1173 seq = get_insns ();
1174 end_sequence ();
1175 if (pat)
1177 emit_insn (seq);
1178 emit_insn (pat);
1179 return dest;
1183 /* Make sure we are playing with integral modes. Pun with subregs
1184 if we aren't. */
1186 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1187 if (imode != GET_MODE (op0))
1189 if (MEM_P (op0))
1190 op0 = adjust_address (op0, imode, 0);
1191 else
1193 gcc_assert (imode != BLKmode);
1194 op0 = gen_lowpart (imode, op0);
1196 /* If we got a SUBREG, force it into a register since we
1197 aren't going to be able to do another SUBREG on it. */
1198 if (GET_CODE (op0) == SUBREG)
1199 op0 = force_reg (imode, op0);
1204 /* We may be accessing data outside the field, which means
1205 we can alias adjacent data. */
1206 if (MEM_P (op0))
1208 op0 = shallow_copy_rtx (op0);
1209 set_mem_alias_set (op0, 0);
1210 set_mem_expr (op0, 0);
1213 /* Extraction of a full-word or multi-word value from a structure
1214 in a register or aligned memory can be done with just a SUBREG.
1215 A subword value in the least significant part of a register
1216 can also be extracted with a SUBREG. For this, we need the
1217 byte offset of the value in op0. */
1219 bitpos = bitnum % unit;
1220 offset = bitnum / unit;
1221 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1223 /* If OP0 is a register, BITPOS must count within a word.
1224 But as we have it, it counts within whatever size OP0 now has.
1225 On a bigendian machine, these are not the same, so convert. */
1226 if (BYTES_BIG_ENDIAN
1227 && !MEM_P (op0)
1228 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1229 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1231 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1232 If that's wrong, the solution is to test for it and set TARGET to 0
1233 if needed. */
1235 /* Only scalar integer modes can be converted via subregs. There is an
1236 additional problem for FP modes here in that they can have a precision
1237 which is different from the size. mode_for_size uses precision, but
1238 we want a mode based on the size, so we must avoid calling it for FP
1239 modes. */
1240 mode1 = (SCALAR_INT_MODE_P (tmode)
1241 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1242 : mode);
1244 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1245 && bitpos % BITS_PER_WORD == 0)
1246 || (mode1 != BLKmode
1247 /* ??? The big endian test here is wrong. This is correct
1248 if the value is in a register, and if mode_for_size is not
1249 the same mode as op0. This causes us to get unnecessarily
1250 inefficient code from the Thumb port when -mbig-endian. */
1251 && (BYTES_BIG_ENDIAN
1252 ? bitpos + bitsize == BITS_PER_WORD
1253 : bitpos == 0)))
1254 && ((!MEM_P (op0)
1255 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1256 GET_MODE_BITSIZE (GET_MODE (op0)))
1257 && GET_MODE_SIZE (mode1) != 0
1258 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1259 || (MEM_P (op0)
1260 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1261 || (offset * BITS_PER_UNIT % bitsize == 0
1262 && MEM_ALIGN (op0) % bitsize == 0)))))
1264 if (mode1 != GET_MODE (op0))
1266 if (MEM_P (op0))
1267 op0 = adjust_address (op0, mode1, offset);
1268 else
1270 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1271 byte_offset);
1272 if (sub == NULL)
1273 goto no_subreg_mode_swap;
1274 op0 = sub;
1277 if (mode1 != mode)
1278 return convert_to_mode (tmode, op0, unsignedp);
1279 return op0;
1281 no_subreg_mode_swap:
1283 /* Handle fields bigger than a word. */
1285 if (bitsize > BITS_PER_WORD)
1287 /* Here we transfer the words of the field
1288 in the order least significant first.
1289 This is because the most significant word is the one which may
1290 be less than full. */
1292 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1293 unsigned int i;
1295 if (target == 0 || !REG_P (target))
1296 target = gen_reg_rtx (mode);
1298 /* Indicate for flow that the entire target reg is being set. */
1299 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1301 for (i = 0; i < nwords; i++)
1303 /* If I is 0, use the low-order word in both field and target;
1304 if I is 1, use the next to lowest word; and so on. */
1305 /* Word number in TARGET to use. */
1306 unsigned int wordnum
1307 = (WORDS_BIG_ENDIAN
1308 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1309 : i);
1310 /* Offset from start of field in OP0. */
1311 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1312 ? MAX (0, ((int) bitsize - ((int) i + 1)
1313 * (int) BITS_PER_WORD))
1314 : (int) i * BITS_PER_WORD);
1315 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1316 rtx result_part
1317 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1318 bitsize - i * BITS_PER_WORD),
1319 bitnum + bit_offset, 1, target_part, mode,
1320 word_mode);
1322 gcc_assert (target_part);
1324 if (result_part != target_part)
1325 emit_move_insn (target_part, result_part);
1328 if (unsignedp)
1330 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1331 need to be zero'd out. */
1332 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1334 unsigned int i, total_words;
1336 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1337 for (i = nwords; i < total_words; i++)
1338 emit_move_insn
1339 (operand_subword (target,
1340 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1341 1, VOIDmode),
1342 const0_rtx);
1344 return target;
1347 /* Signed bit field: sign-extend with two arithmetic shifts. */
1348 target = expand_shift (LSHIFT_EXPR, mode, target,
1349 build_int_cst (NULL_TREE,
1350 GET_MODE_BITSIZE (mode) - bitsize),
1351 NULL_RTX, 0);
1352 return expand_shift (RSHIFT_EXPR, mode, target,
1353 build_int_cst (NULL_TREE,
1354 GET_MODE_BITSIZE (mode) - bitsize),
1355 NULL_RTX, 0);
1358 /* From here on we know the desired field is smaller than a word. */
1360 /* Check if there is a correspondingly-sized integer field, so we can
1361 safely extract it as one size of integer, if necessary; then
1362 truncate or extend to the size that is wanted; then use SUBREGs or
1363 convert_to_mode to get one of the modes we really wanted. */
1365 int_mode = int_mode_for_mode (tmode);
1366 if (int_mode == BLKmode)
1367 int_mode = int_mode_for_mode (mode);
1368 /* Should probably push op0 out to memory and then do a load. */
1369 gcc_assert (int_mode != BLKmode);
1371 /* OFFSET is the number of words or bytes (UNIT says which)
1372 from STR_RTX to the first word or byte containing part of the field. */
1373 if (!MEM_P (op0))
1375 if (offset != 0
1376 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1378 if (!REG_P (op0))
1379 op0 = copy_to_reg (op0);
1380 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1381 op0, (offset * UNITS_PER_WORD));
1383 offset = 0;
1386 /* Now OFFSET is nonzero only for memory operands. */
1388 if (unsignedp)
1390 if (HAVE_extzv
1391 && bitsize > 0
1392 && GET_MODE_BITSIZE (extzv_mode) >= bitsize
1393 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1394 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1396 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1397 rtx bitsize_rtx, bitpos_rtx;
1398 rtx last = get_last_insn ();
1399 rtx xop0 = op0;
1400 rtx xtarget = target;
1401 rtx xspec_target = spec_target;
1402 rtx xspec_target_subreg = spec_target_subreg;
1403 rtx pat;
1404 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1406 if (MEM_P (xop0))
1408 int save_volatile_ok = volatile_ok;
1409 volatile_ok = 1;
1411 /* Is the memory operand acceptable? */
1412 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1413 (xop0, GET_MODE (xop0))))
1415 /* No, load into a reg and extract from there. */
1416 enum machine_mode bestmode;
1418 /* Get the mode to use for inserting into this field. If
1419 OP0 is BLKmode, get the smallest mode consistent with the
1420 alignment. If OP0 is a non-BLKmode object that is no
1421 wider than MAXMODE, use its mode. Otherwise, use the
1422 smallest mode containing the field. */
1424 if (GET_MODE (xop0) == BLKmode
1425 || (GET_MODE_SIZE (GET_MODE (op0))
1426 > GET_MODE_SIZE (maxmode)))
1427 bestmode = get_best_mode (bitsize, bitnum,
1428 MEM_ALIGN (xop0), maxmode,
1429 MEM_VOLATILE_P (xop0));
1430 else
1431 bestmode = GET_MODE (xop0);
1433 if (bestmode == VOIDmode
1434 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1435 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1436 goto extzv_loses;
1438 /* Compute offset as multiple of this unit,
1439 counting in bytes. */
1440 unit = GET_MODE_BITSIZE (bestmode);
1441 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1442 xbitpos = bitnum % unit;
1443 xop0 = adjust_address (xop0, bestmode, xoffset);
1445 /* Make sure register is big enough for the whole field. */
1446 if (xoffset * BITS_PER_UNIT + unit
1447 < offset * BITS_PER_UNIT + bitsize)
1448 goto extzv_loses;
1450 /* Fetch it to a register in that size. */
1451 xop0 = force_reg (bestmode, xop0);
1453 /* XBITPOS counts within UNIT, which is what is expected. */
1455 else
1456 /* Get ref to first byte containing part of the field. */
1457 xop0 = adjust_address (xop0, byte_mode, xoffset);
1459 volatile_ok = save_volatile_ok;
1462 /* If op0 is a register, we need it in MAXMODE (which is usually
1463 SImode). to make it acceptable to the format of extzv. */
1464 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1465 goto extzv_loses;
1466 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1467 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1469 /* On big-endian machines, we count bits from the most significant.
1470 If the bit field insn does not, we must invert. */
1471 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1472 xbitpos = unit - bitsize - xbitpos;
1474 /* Now convert from counting within UNIT to counting in MAXMODE. */
1475 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1476 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1478 unit = GET_MODE_BITSIZE (maxmode);
1480 if (xtarget == 0)
1481 xtarget = xspec_target = gen_reg_rtx (tmode);
1483 if (GET_MODE (xtarget) != maxmode)
1485 if (REG_P (xtarget))
1487 int wider = (GET_MODE_SIZE (maxmode)
1488 > GET_MODE_SIZE (GET_MODE (xtarget)));
1489 xtarget = gen_lowpart (maxmode, xtarget);
1490 if (wider)
1491 xspec_target_subreg = xtarget;
1493 else
1494 xtarget = gen_reg_rtx (maxmode);
1497 /* If this machine's extzv insists on a register target,
1498 make sure we have one. */
1499 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1500 (xtarget, maxmode)))
1501 xtarget = gen_reg_rtx (maxmode);
1503 bitsize_rtx = GEN_INT (bitsize);
1504 bitpos_rtx = GEN_INT (xbitpos);
1506 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1507 if (pat)
1509 emit_insn (pat);
1510 target = xtarget;
1511 spec_target = xspec_target;
1512 spec_target_subreg = xspec_target_subreg;
1514 else
1516 delete_insns_since (last);
1517 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1518 bitpos, target, 1);
1521 else
1522 extzv_loses:
1523 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1524 bitpos, target, 1);
1526 else
1528 if (HAVE_extv
1529 && bitsize > 0
1530 && GET_MODE_BITSIZE (extv_mode) >= bitsize
1531 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1532 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1534 int xbitpos = bitpos, xoffset = offset;
1535 rtx bitsize_rtx, bitpos_rtx;
1536 rtx last = get_last_insn ();
1537 rtx xop0 = op0, xtarget = target;
1538 rtx xspec_target = spec_target;
1539 rtx xspec_target_subreg = spec_target_subreg;
1540 rtx pat;
1541 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1543 if (MEM_P (xop0))
1545 /* Is the memory operand acceptable? */
1546 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1547 (xop0, GET_MODE (xop0))))
1549 /* No, load into a reg and extract from there. */
1550 enum machine_mode bestmode;
1552 /* Get the mode to use for inserting into this field. If
1553 OP0 is BLKmode, get the smallest mode consistent with the
1554 alignment. If OP0 is a non-BLKmode object that is no
1555 wider than MAXMODE, use its mode. Otherwise, use the
1556 smallest mode containing the field. */
1558 if (GET_MODE (xop0) == BLKmode
1559 || (GET_MODE_SIZE (GET_MODE (op0))
1560 > GET_MODE_SIZE (maxmode)))
1561 bestmode = get_best_mode (bitsize, bitnum,
1562 MEM_ALIGN (xop0), maxmode,
1563 MEM_VOLATILE_P (xop0));
1564 else
1565 bestmode = GET_MODE (xop0);
1567 if (bestmode == VOIDmode
1568 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1569 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1570 goto extv_loses;
1572 /* Compute offset as multiple of this unit,
1573 counting in bytes. */
1574 unit = GET_MODE_BITSIZE (bestmode);
1575 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1576 xbitpos = bitnum % unit;
1577 xop0 = adjust_address (xop0, bestmode, xoffset);
1579 /* Make sure register is big enough for the whole field. */
1580 if (xoffset * BITS_PER_UNIT + unit
1581 < offset * BITS_PER_UNIT + bitsize)
1582 goto extv_loses;
1584 /* Fetch it to a register in that size. */
1585 xop0 = force_reg (bestmode, xop0);
1587 /* XBITPOS counts within UNIT, which is what is expected. */
1589 else
1590 /* Get ref to first byte containing part of the field. */
1591 xop0 = adjust_address (xop0, byte_mode, xoffset);
1594 /* If op0 is a register, we need it in MAXMODE (which is usually
1595 SImode) to make it acceptable to the format of extv. */
1596 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1597 goto extv_loses;
1598 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1599 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1601 /* On big-endian machines, we count bits from the most significant.
1602 If the bit field insn does not, we must invert. */
1603 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1604 xbitpos = unit - bitsize - xbitpos;
1606 /* XBITPOS counts within a size of UNIT.
1607 Adjust to count within a size of MAXMODE. */
1608 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1609 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1611 unit = GET_MODE_BITSIZE (maxmode);
1613 if (xtarget == 0)
1614 xtarget = xspec_target = gen_reg_rtx (tmode);
1616 if (GET_MODE (xtarget) != maxmode)
1618 if (REG_P (xtarget))
1620 int wider = (GET_MODE_SIZE (maxmode)
1621 > GET_MODE_SIZE (GET_MODE (xtarget)));
1622 xtarget = gen_lowpart (maxmode, xtarget);
1623 if (wider)
1624 xspec_target_subreg = xtarget;
1626 else
1627 xtarget = gen_reg_rtx (maxmode);
1630 /* If this machine's extv insists on a register target,
1631 make sure we have one. */
1632 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1633 (xtarget, maxmode)))
1634 xtarget = gen_reg_rtx (maxmode);
1636 bitsize_rtx = GEN_INT (bitsize);
1637 bitpos_rtx = GEN_INT (xbitpos);
1639 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1640 if (pat)
1642 emit_insn (pat);
1643 target = xtarget;
1644 spec_target = xspec_target;
1645 spec_target_subreg = xspec_target_subreg;
1647 else
1649 delete_insns_since (last);
1650 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1651 bitpos, target, 0);
1654 else
1655 extv_loses:
1656 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1657 bitpos, target, 0);
1659 if (target == spec_target)
1660 return target;
1661 if (target == spec_target_subreg)
1662 return spec_target;
1663 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1665 /* If the target mode is not a scalar integral, first convert to the
1666 integer mode of that size and then access it as a floating-point
1667 value via a SUBREG. */
1668 if (!SCALAR_INT_MODE_P (tmode))
1670 enum machine_mode smode
1671 = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1672 target = convert_to_mode (smode, target, unsignedp);
1673 target = force_reg (smode, target);
1674 return gen_lowpart (tmode, target);
1677 return convert_to_mode (tmode, target, unsignedp);
1679 return target;
1682 /* Extract a bit field using shifts and boolean operations
1683 Returns an rtx to represent the value.
1684 OP0 addresses a register (word) or memory (byte).
1685 BITPOS says which bit within the word or byte the bit field starts in.
1686 OFFSET says how many bytes farther the bit field starts;
1687 it is 0 if OP0 is a register.
1688 BITSIZE says how many bits long the bit field is.
1689 (If OP0 is a register, it may be narrower than a full word,
1690 but BITPOS still counts within a full word,
1691 which is significant on bigendian machines.)
1693 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1694 If TARGET is nonzero, attempts to store the value there
1695 and return TARGET, but this is not guaranteed.
1696 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1698 static rtx
1699 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1700 unsigned HOST_WIDE_INT offset,
1701 unsigned HOST_WIDE_INT bitsize,
1702 unsigned HOST_WIDE_INT bitpos, rtx target,
1703 int unsignedp)
1705 unsigned int total_bits = BITS_PER_WORD;
1706 enum machine_mode mode;
1708 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1710 /* Special treatment for a bit field split across two registers. */
1711 if (bitsize + bitpos > BITS_PER_WORD)
1712 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1714 else
1716 /* Get the proper mode to use for this field. We want a mode that
1717 includes the entire field. If such a mode would be larger than
1718 a word, we won't be doing the extraction the normal way. */
1720 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1721 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1723 if (mode == VOIDmode)
1724 /* The only way this should occur is if the field spans word
1725 boundaries. */
1726 return extract_split_bit_field (op0, bitsize,
1727 bitpos + offset * BITS_PER_UNIT,
1728 unsignedp);
1730 total_bits = GET_MODE_BITSIZE (mode);
1732 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1733 be in the range 0 to total_bits-1, and put any excess bytes in
1734 OFFSET. */
1735 if (bitpos >= total_bits)
1737 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1738 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1739 * BITS_PER_UNIT);
1742 /* Get ref to an aligned byte, halfword, or word containing the field.
1743 Adjust BITPOS to be position within a word,
1744 and OFFSET to be the offset of that word.
1745 Then alter OP0 to refer to that word. */
1746 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1747 offset -= (offset % (total_bits / BITS_PER_UNIT));
1748 op0 = adjust_address (op0, mode, offset);
1751 mode = GET_MODE (op0);
1753 if (BYTES_BIG_ENDIAN)
1754 /* BITPOS is the distance between our msb and that of OP0.
1755 Convert it to the distance from the lsb. */
1756 bitpos = total_bits - bitsize - bitpos;
1758 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1759 We have reduced the big-endian case to the little-endian case. */
1761 if (unsignedp)
1763 if (bitpos)
1765 /* If the field does not already start at the lsb,
1766 shift it so it does. */
1767 tree amount = build_int_cst (NULL_TREE, bitpos);
1768 /* Maybe propagate the target for the shift. */
1769 /* But not if we will return it--could confuse integrate.c. */
1770 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1771 if (tmode != mode) subtarget = 0;
1772 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1774 /* Convert the value to the desired mode. */
1775 if (mode != tmode)
1776 op0 = convert_to_mode (tmode, op0, 1);
1778 /* Unless the msb of the field used to be the msb when we shifted,
1779 mask out the upper bits. */
1781 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1782 return expand_binop (GET_MODE (op0), and_optab, op0,
1783 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1784 target, 1, OPTAB_LIB_WIDEN);
1785 return op0;
1788 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1789 then arithmetic-shift its lsb to the lsb of the word. */
1790 op0 = force_reg (mode, op0);
1791 if (mode != tmode)
1792 target = 0;
1794 /* Find the narrowest integer mode that contains the field. */
1796 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1797 mode = GET_MODE_WIDER_MODE (mode))
1798 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1800 op0 = convert_to_mode (mode, op0, 0);
1801 break;
1804 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1806 tree amount
1807 = build_int_cst (NULL_TREE,
1808 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1809 /* Maybe propagate the target for the shift. */
1810 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1811 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1814 return expand_shift (RSHIFT_EXPR, mode, op0,
1815 build_int_cst (NULL_TREE,
1816 GET_MODE_BITSIZE (mode) - bitsize),
1817 target, 0);
1820 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1821 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1822 complement of that if COMPLEMENT. The mask is truncated if
1823 necessary to the width of mode MODE. The mask is zero-extended if
1824 BITSIZE+BITPOS is too small for MODE. */
1826 static rtx
1827 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1829 HOST_WIDE_INT masklow, maskhigh;
1831 if (bitsize == 0)
1832 masklow = 0;
1833 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1834 masklow = (HOST_WIDE_INT) -1 << bitpos;
1835 else
1836 masklow = 0;
1838 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1839 masklow &= ((unsigned HOST_WIDE_INT) -1
1840 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1842 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1843 maskhigh = -1;
1844 else
1845 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1847 if (bitsize == 0)
1848 maskhigh = 0;
1849 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1850 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1851 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1852 else
1853 maskhigh = 0;
1855 if (complement)
1857 maskhigh = ~maskhigh;
1858 masklow = ~masklow;
1861 return immed_double_const (masklow, maskhigh, mode);
1864 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1865 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1867 static rtx
1868 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1870 unsigned HOST_WIDE_INT v = INTVAL (value);
1871 HOST_WIDE_INT low, high;
1873 if (bitsize < HOST_BITS_PER_WIDE_INT)
1874 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1876 if (bitpos < HOST_BITS_PER_WIDE_INT)
1878 low = v << bitpos;
1879 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1881 else
1883 low = 0;
1884 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1887 return immed_double_const (low, high, mode);
1890 /* Extract a bit field from a memory by forcing the alignment of the
1891 memory. This efficient only if the field spans at least 4 boundaries.
1893 OP0 is the MEM.
1894 BITSIZE is the field width; BITPOS is the position of the first bit.
1895 UNSIGNEDP is true if the result should be zero-extended. */
1897 static rtx
1898 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1899 unsigned HOST_WIDE_INT bitpos,
1900 int unsignedp)
1902 enum machine_mode mode, dmode;
1903 unsigned int m_bitsize, m_size;
1904 unsigned int sign_shift_up, sign_shift_dn;
1905 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1907 /* Choose a mode that will fit BITSIZE. */
1908 mode = smallest_mode_for_size (bitsize, MODE_INT);
1909 m_size = GET_MODE_SIZE (mode);
1910 m_bitsize = GET_MODE_BITSIZE (mode);
1912 /* Choose a mode twice as wide. Fail if no such mode exists. */
1913 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1914 if (dmode == BLKmode)
1915 return NULL;
1917 do_pending_stack_adjust ();
1918 start = get_last_insn ();
1920 /* At the end, we'll need an additional shift to deal with sign/zero
1921 extension. By default this will be a left+right shift of the
1922 appropriate size. But we may be able to eliminate one of them. */
1923 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1925 if (STRICT_ALIGNMENT)
1927 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1928 bitpos %= BITS_PER_UNIT;
1930 /* We load two values to be concatenate. There's an edge condition
1931 that bears notice -- an aligned value at the end of a page can
1932 only load one value lest we segfault. So the two values we load
1933 are at "base & -size" and "(base + size - 1) & -size". If base
1934 is unaligned, the addresses will be aligned and sequential; if
1935 base is aligned, the addresses will both be equal to base. */
1937 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1938 GEN_INT (-(HOST_WIDE_INT)m_size),
1939 NULL, true, OPTAB_LIB_WIDEN);
1940 mark_reg_pointer (a1, m_bitsize);
1941 v1 = gen_rtx_MEM (mode, a1);
1942 set_mem_align (v1, m_bitsize);
1943 v1 = force_reg (mode, validize_mem (v1));
1945 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1946 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1947 GEN_INT (-(HOST_WIDE_INT)m_size),
1948 NULL, true, OPTAB_LIB_WIDEN);
1949 v2 = gen_rtx_MEM (mode, a2);
1950 set_mem_align (v2, m_bitsize);
1951 v2 = force_reg (mode, validize_mem (v2));
1953 /* Combine these two values into a double-word value. */
1954 if (m_bitsize == BITS_PER_WORD)
1956 comb = gen_reg_rtx (dmode);
1957 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1958 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1959 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1961 else
1963 if (BYTES_BIG_ENDIAN)
1964 comb = v1, v1 = v2, v2 = comb;
1965 v1 = convert_modes (dmode, mode, v1, true);
1966 if (v1 == NULL)
1967 goto fail;
1968 v2 = convert_modes (dmode, mode, v2, true);
1969 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1970 NULL, true, OPTAB_LIB_WIDEN);
1971 if (v2 == NULL)
1972 goto fail;
1973 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1974 true, OPTAB_LIB_WIDEN);
1975 if (comb == NULL)
1976 goto fail;
1979 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1980 NULL, true, OPTAB_LIB_WIDEN);
1981 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1983 if (bitpos != 0)
1985 if (sign_shift_up <= bitpos)
1986 bitpos -= sign_shift_up, sign_shift_up = 0;
1987 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1988 NULL, true, OPTAB_LIB_WIDEN);
1991 else
1993 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1994 bitpos %= BITS_PER_UNIT;
1996 /* When strict alignment is not required, we can just load directly
1997 from memory without masking. If the remaining BITPOS offset is
1998 small enough, we may be able to do all operations in MODE as
1999 opposed to DMODE. */
2000 if (bitpos + bitsize <= m_bitsize)
2001 dmode = mode;
2002 comb = adjust_address (op0, dmode, offset);
2004 if (sign_shift_up <= bitpos)
2005 bitpos -= sign_shift_up, sign_shift_up = 0;
2006 shift = GEN_INT (bitpos);
2009 /* Shift down the double-word such that the requested value is at bit 0. */
2010 if (shift != const0_rtx)
2011 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
2012 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
2013 if (comb == NULL)
2014 goto fail;
2016 /* If the field exactly matches MODE, then all we need to do is return the
2017 lowpart. Otherwise, shift to get the sign bits set properly. */
2018 result = force_reg (mode, gen_lowpart (mode, comb));
2020 if (sign_shift_up)
2021 result = expand_simple_binop (mode, ASHIFT, result,
2022 GEN_INT (sign_shift_up),
2023 NULL_RTX, 0, OPTAB_LIB_WIDEN);
2024 if (sign_shift_dn)
2025 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
2026 result, GEN_INT (sign_shift_dn),
2027 NULL_RTX, 0, OPTAB_LIB_WIDEN);
2029 return result;
2031 fail:
2032 delete_insns_since (start);
2033 return NULL;
2036 /* Extract a bit field that is split across two words
2037 and return an RTX for the result.
2039 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2040 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2041 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2043 static rtx
2044 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2045 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2047 unsigned int unit;
2048 unsigned int bitsdone = 0;
2049 rtx result = NULL_RTX;
2050 int first = 1;
2052 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2053 much at a time. */
2054 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2055 unit = BITS_PER_WORD;
2056 else
2058 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2059 if (0 && bitsize / unit > 2)
2061 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2062 unsignedp);
2063 if (tmp)
2064 return tmp;
2068 while (bitsdone < bitsize)
2070 unsigned HOST_WIDE_INT thissize;
2071 rtx part, word;
2072 unsigned HOST_WIDE_INT thispos;
2073 unsigned HOST_WIDE_INT offset;
2075 offset = (bitpos + bitsdone) / unit;
2076 thispos = (bitpos + bitsdone) % unit;
2078 /* THISSIZE must not overrun a word boundary. Otherwise,
2079 extract_fixed_bit_field will call us again, and we will mutually
2080 recurse forever. */
2081 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2082 thissize = MIN (thissize, unit - thispos);
2084 /* If OP0 is a register, then handle OFFSET here.
2086 When handling multiword bitfields, extract_bit_field may pass
2087 down a word_mode SUBREG of a larger REG for a bitfield that actually
2088 crosses a word boundary. Thus, for a SUBREG, we must find
2089 the current word starting from the base register. */
2090 if (GET_CODE (op0) == SUBREG)
2092 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2093 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2094 GET_MODE (SUBREG_REG (op0)));
2095 offset = 0;
2097 else if (REG_P (op0))
2099 word = operand_subword_force (op0, offset, GET_MODE (op0));
2100 offset = 0;
2102 else
2103 word = op0;
2105 /* Extract the parts in bit-counting order,
2106 whose meaning is determined by BYTES_PER_UNIT.
2107 OFFSET is in UNITs, and UNIT is in bits.
2108 extract_fixed_bit_field wants offset in bytes. */
2109 part = extract_fixed_bit_field (word_mode, word,
2110 offset * unit / BITS_PER_UNIT,
2111 thissize, thispos, 0, 1);
2112 bitsdone += thissize;
2114 /* Shift this part into place for the result. */
2115 if (BYTES_BIG_ENDIAN)
2117 if (bitsize != bitsdone)
2118 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2119 build_int_cst (NULL_TREE, bitsize - bitsdone),
2120 0, 1);
2122 else
2124 if (bitsdone != thissize)
2125 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2126 build_int_cst (NULL_TREE,
2127 bitsdone - thissize), 0, 1);
2130 if (first)
2131 result = part;
2132 else
2133 /* Combine the parts with bitwise or. This works
2134 because we extracted each part as an unsigned bit field. */
2135 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2136 OPTAB_LIB_WIDEN);
2138 first = 0;
2141 /* Unsigned bit field: we are done. */
2142 if (unsignedp)
2143 return result;
2144 /* Signed bit field: sign-extend with two arithmetic shifts. */
2145 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2146 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2147 NULL_RTX, 0);
2148 return expand_shift (RSHIFT_EXPR, word_mode, result,
2149 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2150 NULL_RTX, 0);
2153 /* Add INC into TARGET. */
2155 void
2156 expand_inc (rtx target, rtx inc)
2158 rtx value = expand_binop (GET_MODE (target), add_optab,
2159 target, inc,
2160 target, 0, OPTAB_LIB_WIDEN);
2161 if (value != target)
2162 emit_move_insn (target, value);
2165 /* Subtract DEC from TARGET. */
2167 void
2168 expand_dec (rtx target, rtx dec)
2170 rtx value = expand_binop (GET_MODE (target), sub_optab,
2171 target, dec,
2172 target, 0, OPTAB_LIB_WIDEN);
2173 if (value != target)
2174 emit_move_insn (target, value);
2177 /* Output a shift instruction for expression code CODE,
2178 with SHIFTED being the rtx for the value to shift,
2179 and AMOUNT the tree for the amount to shift by.
2180 Store the result in the rtx TARGET, if that is convenient.
2181 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2182 Return the rtx for where the value is. */
2185 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2186 tree amount, rtx target, int unsignedp)
2188 rtx op1, temp = 0;
2189 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2190 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2191 int try;
2193 /* Previously detected shift-counts computed by NEGATE_EXPR
2194 and shifted in the other direction; but that does not work
2195 on all machines. */
2197 op1 = expand_normal (amount);
2199 if (SHIFT_COUNT_TRUNCATED)
2201 if (GET_CODE (op1) == CONST_INT
2202 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2203 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2204 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2205 % GET_MODE_BITSIZE (mode));
2206 else if (GET_CODE (op1) == SUBREG
2207 && subreg_lowpart_p (op1))
2208 op1 = SUBREG_REG (op1);
2211 if (op1 == const0_rtx)
2212 return shifted;
2214 /* Check whether its cheaper to implement a left shift by a constant
2215 bit count by a sequence of additions. */
2216 if (code == LSHIFT_EXPR
2217 && GET_CODE (op1) == CONST_INT
2218 && INTVAL (op1) > 0
2219 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2220 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2222 int i;
2223 for (i = 0; i < INTVAL (op1); i++)
2225 temp = force_reg (mode, shifted);
2226 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2227 unsignedp, OPTAB_LIB_WIDEN);
2229 return shifted;
2232 for (try = 0; temp == 0 && try < 3; try++)
2234 enum optab_methods methods;
2236 if (try == 0)
2237 methods = OPTAB_DIRECT;
2238 else if (try == 1)
2239 methods = OPTAB_WIDEN;
2240 else
2241 methods = OPTAB_LIB_WIDEN;
2243 if (rotate)
2245 /* Widening does not work for rotation. */
2246 if (methods == OPTAB_WIDEN)
2247 continue;
2248 else if (methods == OPTAB_LIB_WIDEN)
2250 /* If we have been unable to open-code this by a rotation,
2251 do it as the IOR of two shifts. I.e., to rotate A
2252 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2253 where C is the bitsize of A.
2255 It is theoretically possible that the target machine might
2256 not be able to perform either shift and hence we would
2257 be making two libcalls rather than just the one for the
2258 shift (similarly if IOR could not be done). We will allow
2259 this extremely unlikely lossage to avoid complicating the
2260 code below. */
2262 rtx subtarget = target == shifted ? 0 : target;
2263 rtx temp1;
2264 tree type = TREE_TYPE (amount);
2265 tree new_amount = make_tree (type, op1);
2266 tree other_amount
2267 = fold_build2 (MINUS_EXPR, type,
2268 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2269 amount);
2271 shifted = force_reg (mode, shifted);
2273 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2274 mode, shifted, new_amount, 0, 1);
2275 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2276 mode, shifted, other_amount, subtarget, 1);
2277 return expand_binop (mode, ior_optab, temp, temp1, target,
2278 unsignedp, methods);
2281 temp = expand_binop (mode,
2282 left ? rotl_optab : rotr_optab,
2283 shifted, op1, target, unsignedp, methods);
2285 else if (unsignedp)
2286 temp = expand_binop (mode,
2287 left ? ashl_optab : lshr_optab,
2288 shifted, op1, target, unsignedp, methods);
2290 /* Do arithmetic shifts.
2291 Also, if we are going to widen the operand, we can just as well
2292 use an arithmetic right-shift instead of a logical one. */
2293 if (temp == 0 && ! rotate
2294 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2296 enum optab_methods methods1 = methods;
2298 /* If trying to widen a log shift to an arithmetic shift,
2299 don't accept an arithmetic shift of the same size. */
2300 if (unsignedp)
2301 methods1 = OPTAB_MUST_WIDEN;
2303 /* Arithmetic shift */
2305 temp = expand_binop (mode,
2306 left ? ashl_optab : ashr_optab,
2307 shifted, op1, target, unsignedp, methods1);
2310 /* We used to try extzv here for logical right shifts, but that was
2311 only useful for one machine, the VAX, and caused poor code
2312 generation there for lshrdi3, so the code was deleted and a
2313 define_expand for lshrsi3 was added to vax.md. */
2316 gcc_assert (temp);
2317 return temp;
2320 enum alg_code {
2321 alg_unknown,
2322 alg_zero,
2323 alg_m, alg_shift,
2324 alg_add_t_m2,
2325 alg_sub_t_m2,
2326 alg_add_factor,
2327 alg_sub_factor,
2328 alg_add_t2_m,
2329 alg_sub_t2_m,
2330 alg_impossible
2333 /* This structure holds the "cost" of a multiply sequence. The
2334 "cost" field holds the total rtx_cost of every operator in the
2335 synthetic multiplication sequence, hence cost(a op b) is defined
2336 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2337 The "latency" field holds the minimum possible latency of the
2338 synthetic multiply, on a hypothetical infinitely parallel CPU.
2339 This is the critical path, or the maximum height, of the expression
2340 tree which is the sum of rtx_costs on the most expensive path from
2341 any leaf to the root. Hence latency(a op b) is defined as zero for
2342 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2344 struct mult_cost {
2345 short cost; /* Total rtx_cost of the multiplication sequence. */
2346 short latency; /* The latency of the multiplication sequence. */
2349 /* This macro is used to compare a pointer to a mult_cost against an
2350 single integer "rtx_cost" value. This is equivalent to the macro
2351 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2352 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2353 || ((X)->cost == (Y) && (X)->latency < (Y)))
2355 /* This macro is used to compare two pointers to mult_costs against
2356 each other. The macro returns true if X is cheaper than Y.
2357 Currently, the cheaper of two mult_costs is the one with the
2358 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2359 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2360 || ((X)->cost == (Y)->cost \
2361 && (X)->latency < (Y)->latency))
2363 /* This structure records a sequence of operations.
2364 `ops' is the number of operations recorded.
2365 `cost' is their total cost.
2366 The operations are stored in `op' and the corresponding
2367 logarithms of the integer coefficients in `log'.
2369 These are the operations:
2370 alg_zero total := 0;
2371 alg_m total := multiplicand;
2372 alg_shift total := total * coeff
2373 alg_add_t_m2 total := total + multiplicand * coeff;
2374 alg_sub_t_m2 total := total - multiplicand * coeff;
2375 alg_add_factor total := total * coeff + total;
2376 alg_sub_factor total := total * coeff - total;
2377 alg_add_t2_m total := total * coeff + multiplicand;
2378 alg_sub_t2_m total := total * coeff - multiplicand;
2380 The first operand must be either alg_zero or alg_m. */
2382 struct algorithm
2384 struct mult_cost cost;
2385 short ops;
2386 /* The size of the OP and LOG fields are not directly related to the
2387 word size, but the worst-case algorithms will be if we have few
2388 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2389 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2390 in total wordsize operations. */
2391 enum alg_code op[MAX_BITS_PER_WORD];
2392 char log[MAX_BITS_PER_WORD];
2395 /* The entry for our multiplication cache/hash table. */
2396 struct alg_hash_entry {
2397 /* The number we are multiplying by. */
2398 unsigned HOST_WIDE_INT t;
2400 /* The mode in which we are multiplying something by T. */
2401 enum machine_mode mode;
2403 /* The best multiplication algorithm for t. */
2404 enum alg_code alg;
2406 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2407 Otherwise, the cost within which multiplication by T is
2408 impossible. */
2409 struct mult_cost cost;
2412 /* The number of cache/hash entries. */
2413 #if HOST_BITS_PER_WIDE_INT == 64
2414 #define NUM_ALG_HASH_ENTRIES 1031
2415 #else
2416 #define NUM_ALG_HASH_ENTRIES 307
2417 #endif
2419 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2420 actually a hash table. If we have a collision, that the older
2421 entry is kicked out. */
2422 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2424 /* Indicates the type of fixup needed after a constant multiplication.
2425 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2426 the result should be negated, and ADD_VARIANT means that the
2427 multiplicand should be added to the result. */
2428 enum mult_variant {basic_variant, negate_variant, add_variant};
2430 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2431 const struct mult_cost *, enum machine_mode mode);
2432 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2433 struct algorithm *, enum mult_variant *, int);
2434 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2435 const struct algorithm *, enum mult_variant);
2436 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2437 int, rtx *, int *, int *);
2438 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2439 static rtx extract_high_half (enum machine_mode, rtx);
2440 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2441 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2442 int, int);
2443 /* Compute and return the best algorithm for multiplying by T.
2444 The algorithm must cost less than cost_limit
2445 If retval.cost >= COST_LIMIT, no algorithm was found and all
2446 other field of the returned struct are undefined.
2447 MODE is the machine mode of the multiplication. */
2449 static void
2450 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2451 const struct mult_cost *cost_limit, enum machine_mode mode)
2453 int m;
2454 struct algorithm *alg_in, *best_alg;
2455 struct mult_cost best_cost;
2456 struct mult_cost new_limit;
2457 int op_cost, op_latency;
2458 unsigned HOST_WIDE_INT q;
2459 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2460 int hash_index;
2461 bool cache_hit = false;
2462 enum alg_code cache_alg = alg_zero;
2464 /* Indicate that no algorithm is yet found. If no algorithm
2465 is found, this value will be returned and indicate failure. */
2466 alg_out->cost.cost = cost_limit->cost + 1;
2467 alg_out->cost.latency = cost_limit->latency + 1;
2469 if (cost_limit->cost < 0
2470 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2471 return;
2473 /* Restrict the bits of "t" to the multiplication's mode. */
2474 t &= GET_MODE_MASK (mode);
2476 /* t == 1 can be done in zero cost. */
2477 if (t == 1)
2479 alg_out->ops = 1;
2480 alg_out->cost.cost = 0;
2481 alg_out->cost.latency = 0;
2482 alg_out->op[0] = alg_m;
2483 return;
2486 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2487 fail now. */
2488 if (t == 0)
2490 if (MULT_COST_LESS (cost_limit, zero_cost))
2491 return;
2492 else
2494 alg_out->ops = 1;
2495 alg_out->cost.cost = zero_cost;
2496 alg_out->cost.latency = zero_cost;
2497 alg_out->op[0] = alg_zero;
2498 return;
2502 /* We'll be needing a couple extra algorithm structures now. */
2504 alg_in = alloca (sizeof (struct algorithm));
2505 best_alg = alloca (sizeof (struct algorithm));
2506 best_cost = *cost_limit;
2508 /* Compute the hash index. */
2509 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2511 /* See if we already know what to do for T. */
2512 if (alg_hash[hash_index].t == t
2513 && alg_hash[hash_index].mode == mode
2514 && alg_hash[hash_index].alg != alg_unknown)
2516 cache_alg = alg_hash[hash_index].alg;
2518 if (cache_alg == alg_impossible)
2520 /* The cache tells us that it's impossible to synthesize
2521 multiplication by T within alg_hash[hash_index].cost. */
2522 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2523 /* COST_LIMIT is at least as restrictive as the one
2524 recorded in the hash table, in which case we have no
2525 hope of synthesizing a multiplication. Just
2526 return. */
2527 return;
2529 /* If we get here, COST_LIMIT is less restrictive than the
2530 one recorded in the hash table, so we may be able to
2531 synthesize a multiplication. Proceed as if we didn't
2532 have the cache entry. */
2534 else
2536 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2537 /* The cached algorithm shows that this multiplication
2538 requires more cost than COST_LIMIT. Just return. This
2539 way, we don't clobber this cache entry with
2540 alg_impossible but retain useful information. */
2541 return;
2543 cache_hit = true;
2545 switch (cache_alg)
2547 case alg_shift:
2548 goto do_alg_shift;
2550 case alg_add_t_m2:
2551 case alg_sub_t_m2:
2552 goto do_alg_addsub_t_m2;
2554 case alg_add_factor:
2555 case alg_sub_factor:
2556 goto do_alg_addsub_factor;
2558 case alg_add_t2_m:
2559 goto do_alg_add_t2_m;
2561 case alg_sub_t2_m:
2562 goto do_alg_sub_t2_m;
2564 default:
2565 gcc_unreachable ();
2570 /* If we have a group of zero bits at the low-order part of T, try
2571 multiplying by the remaining bits and then doing a shift. */
2573 if ((t & 1) == 0)
2575 do_alg_shift:
2576 m = floor_log2 (t & -t); /* m = number of low zero bits */
2577 if (m < maxm)
2579 q = t >> m;
2580 /* The function expand_shift will choose between a shift and
2581 a sequence of additions, so the observed cost is given as
2582 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2583 op_cost = m * add_cost[mode];
2584 if (shift_cost[mode][m] < op_cost)
2585 op_cost = shift_cost[mode][m];
2586 new_limit.cost = best_cost.cost - op_cost;
2587 new_limit.latency = best_cost.latency - op_cost;
2588 synth_mult (alg_in, q, &new_limit, mode);
2590 alg_in->cost.cost += op_cost;
2591 alg_in->cost.latency += op_cost;
2592 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2594 struct algorithm *x;
2595 best_cost = alg_in->cost;
2596 x = alg_in, alg_in = best_alg, best_alg = x;
2597 best_alg->log[best_alg->ops] = m;
2598 best_alg->op[best_alg->ops] = alg_shift;
2601 if (cache_hit)
2602 goto done;
2605 /* If we have an odd number, add or subtract one. */
2606 if ((t & 1) != 0)
2608 unsigned HOST_WIDE_INT w;
2610 do_alg_addsub_t_m2:
2611 for (w = 1; (w & t) != 0; w <<= 1)
2613 /* If T was -1, then W will be zero after the loop. This is another
2614 case where T ends with ...111. Handling this with (T + 1) and
2615 subtract 1 produces slightly better code and results in algorithm
2616 selection much faster than treating it like the ...0111 case
2617 below. */
2618 if (w == 0
2619 || (w > 2
2620 /* Reject the case where t is 3.
2621 Thus we prefer addition in that case. */
2622 && t != 3))
2624 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2626 op_cost = add_cost[mode];
2627 new_limit.cost = best_cost.cost - op_cost;
2628 new_limit.latency = best_cost.latency - op_cost;
2629 synth_mult (alg_in, t + 1, &new_limit, mode);
2631 alg_in->cost.cost += op_cost;
2632 alg_in->cost.latency += op_cost;
2633 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2635 struct algorithm *x;
2636 best_cost = alg_in->cost;
2637 x = alg_in, alg_in = best_alg, best_alg = x;
2638 best_alg->log[best_alg->ops] = 0;
2639 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2642 else
2644 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2646 op_cost = add_cost[mode];
2647 new_limit.cost = best_cost.cost - op_cost;
2648 new_limit.latency = best_cost.latency - op_cost;
2649 synth_mult (alg_in, t - 1, &new_limit, mode);
2651 alg_in->cost.cost += op_cost;
2652 alg_in->cost.latency += op_cost;
2653 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2655 struct algorithm *x;
2656 best_cost = alg_in->cost;
2657 x = alg_in, alg_in = best_alg, best_alg = x;
2658 best_alg->log[best_alg->ops] = 0;
2659 best_alg->op[best_alg->ops] = alg_add_t_m2;
2662 if (cache_hit)
2663 goto done;
2666 /* Look for factors of t of the form
2667 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2668 If we find such a factor, we can multiply by t using an algorithm that
2669 multiplies by q, shift the result by m and add/subtract it to itself.
2671 We search for large factors first and loop down, even if large factors
2672 are less probable than small; if we find a large factor we will find a
2673 good sequence quickly, and therefore be able to prune (by decreasing
2674 COST_LIMIT) the search. */
2676 do_alg_addsub_factor:
2677 for (m = floor_log2 (t - 1); m >= 2; m--)
2679 unsigned HOST_WIDE_INT d;
2681 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2682 if (t % d == 0 && t > d && m < maxm
2683 && (!cache_hit || cache_alg == alg_add_factor))
2685 /* If the target has a cheap shift-and-add instruction use
2686 that in preference to a shift insn followed by an add insn.
2687 Assume that the shift-and-add is "atomic" with a latency
2688 equal to its cost, otherwise assume that on superscalar
2689 hardware the shift may be executed concurrently with the
2690 earlier steps in the algorithm. */
2691 op_cost = add_cost[mode] + shift_cost[mode][m];
2692 if (shiftadd_cost[mode][m] < op_cost)
2694 op_cost = shiftadd_cost[mode][m];
2695 op_latency = op_cost;
2697 else
2698 op_latency = add_cost[mode];
2700 new_limit.cost = best_cost.cost - op_cost;
2701 new_limit.latency = best_cost.latency - op_latency;
2702 synth_mult (alg_in, t / d, &new_limit, mode);
2704 alg_in->cost.cost += op_cost;
2705 alg_in->cost.latency += op_latency;
2706 if (alg_in->cost.latency < op_cost)
2707 alg_in->cost.latency = op_cost;
2708 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2710 struct algorithm *x;
2711 best_cost = alg_in->cost;
2712 x = alg_in, alg_in = best_alg, best_alg = x;
2713 best_alg->log[best_alg->ops] = m;
2714 best_alg->op[best_alg->ops] = alg_add_factor;
2716 /* Other factors will have been taken care of in the recursion. */
2717 break;
2720 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2721 if (t % d == 0 && t > d && m < maxm
2722 && (!cache_hit || cache_alg == alg_sub_factor))
2724 /* If the target has a cheap shift-and-subtract insn use
2725 that in preference to a shift insn followed by a sub insn.
2726 Assume that the shift-and-sub is "atomic" with a latency
2727 equal to it's cost, otherwise assume that on superscalar
2728 hardware the shift may be executed concurrently with the
2729 earlier steps in the algorithm. */
2730 op_cost = add_cost[mode] + shift_cost[mode][m];
2731 if (shiftsub_cost[mode][m] < op_cost)
2733 op_cost = shiftsub_cost[mode][m];
2734 op_latency = op_cost;
2736 else
2737 op_latency = add_cost[mode];
2739 new_limit.cost = best_cost.cost - op_cost;
2740 new_limit.latency = best_cost.latency - op_latency;
2741 synth_mult (alg_in, t / d, &new_limit, mode);
2743 alg_in->cost.cost += op_cost;
2744 alg_in->cost.latency += op_latency;
2745 if (alg_in->cost.latency < op_cost)
2746 alg_in->cost.latency = op_cost;
2747 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2749 struct algorithm *x;
2750 best_cost = alg_in->cost;
2751 x = alg_in, alg_in = best_alg, best_alg = x;
2752 best_alg->log[best_alg->ops] = m;
2753 best_alg->op[best_alg->ops] = alg_sub_factor;
2755 break;
2758 if (cache_hit)
2759 goto done;
2761 /* Try shift-and-add (load effective address) instructions,
2762 i.e. do a*3, a*5, a*9. */
2763 if ((t & 1) != 0)
2765 do_alg_add_t2_m:
2766 q = t - 1;
2767 q = q & -q;
2768 m = exact_log2 (q);
2769 if (m >= 0 && m < maxm)
2771 op_cost = shiftadd_cost[mode][m];
2772 new_limit.cost = best_cost.cost - op_cost;
2773 new_limit.latency = best_cost.latency - op_cost;
2774 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2776 alg_in->cost.cost += op_cost;
2777 alg_in->cost.latency += op_cost;
2778 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2780 struct algorithm *x;
2781 best_cost = alg_in->cost;
2782 x = alg_in, alg_in = best_alg, best_alg = x;
2783 best_alg->log[best_alg->ops] = m;
2784 best_alg->op[best_alg->ops] = alg_add_t2_m;
2787 if (cache_hit)
2788 goto done;
2790 do_alg_sub_t2_m:
2791 q = t + 1;
2792 q = q & -q;
2793 m = exact_log2 (q);
2794 if (m >= 0 && m < maxm)
2796 op_cost = shiftsub_cost[mode][m];
2797 new_limit.cost = best_cost.cost - op_cost;
2798 new_limit.latency = best_cost.latency - op_cost;
2799 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2801 alg_in->cost.cost += op_cost;
2802 alg_in->cost.latency += op_cost;
2803 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2805 struct algorithm *x;
2806 best_cost = alg_in->cost;
2807 x = alg_in, alg_in = best_alg, best_alg = x;
2808 best_alg->log[best_alg->ops] = m;
2809 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2812 if (cache_hit)
2813 goto done;
2816 done:
2817 /* If best_cost has not decreased, we have not found any algorithm. */
2818 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2820 /* We failed to find an algorithm. Record alg_impossible for
2821 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2822 we are asked to find an algorithm for T within the same or
2823 lower COST_LIMIT, we can immediately return to the
2824 caller. */
2825 alg_hash[hash_index].t = t;
2826 alg_hash[hash_index].mode = mode;
2827 alg_hash[hash_index].alg = alg_impossible;
2828 alg_hash[hash_index].cost = *cost_limit;
2829 return;
2832 /* Cache the result. */
2833 if (!cache_hit)
2835 alg_hash[hash_index].t = t;
2836 alg_hash[hash_index].mode = mode;
2837 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2838 alg_hash[hash_index].cost.cost = best_cost.cost;
2839 alg_hash[hash_index].cost.latency = best_cost.latency;
2842 /* If we are getting a too long sequence for `struct algorithm'
2843 to record, make this search fail. */
2844 if (best_alg->ops == MAX_BITS_PER_WORD)
2845 return;
2847 /* Copy the algorithm from temporary space to the space at alg_out.
2848 We avoid using structure assignment because the majority of
2849 best_alg is normally undefined, and this is a critical function. */
2850 alg_out->ops = best_alg->ops + 1;
2851 alg_out->cost = best_cost;
2852 memcpy (alg_out->op, best_alg->op,
2853 alg_out->ops * sizeof *alg_out->op);
2854 memcpy (alg_out->log, best_alg->log,
2855 alg_out->ops * sizeof *alg_out->log);
2858 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2859 Try three variations:
2861 - a shift/add sequence based on VAL itself
2862 - a shift/add sequence based on -VAL, followed by a negation
2863 - a shift/add sequence based on VAL - 1, followed by an addition.
2865 Return true if the cheapest of these cost less than MULT_COST,
2866 describing the algorithm in *ALG and final fixup in *VARIANT. */
2868 static bool
2869 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2870 struct algorithm *alg, enum mult_variant *variant,
2871 int mult_cost)
2873 struct algorithm alg2;
2874 struct mult_cost limit;
2875 int op_cost;
2877 /* Fail quickly for impossible bounds. */
2878 if (mult_cost < 0)
2879 return false;
2881 /* Ensure that mult_cost provides a reasonable upper bound.
2882 Any constant multiplication can be performed with less
2883 than 2 * bits additions. */
2884 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[mode];
2885 if (mult_cost > op_cost)
2886 mult_cost = op_cost;
2888 *variant = basic_variant;
2889 limit.cost = mult_cost;
2890 limit.latency = mult_cost;
2891 synth_mult (alg, val, &limit, mode);
2893 /* This works only if the inverted value actually fits in an
2894 `unsigned int' */
2895 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2897 op_cost = neg_cost[mode];
2898 if (MULT_COST_LESS (&alg->cost, mult_cost))
2900 limit.cost = alg->cost.cost - op_cost;
2901 limit.latency = alg->cost.latency - op_cost;
2903 else
2905 limit.cost = mult_cost - op_cost;
2906 limit.latency = mult_cost - op_cost;
2909 synth_mult (&alg2, -val, &limit, mode);
2910 alg2.cost.cost += op_cost;
2911 alg2.cost.latency += op_cost;
2912 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2913 *alg = alg2, *variant = negate_variant;
2916 /* This proves very useful for division-by-constant. */
2917 op_cost = add_cost[mode];
2918 if (MULT_COST_LESS (&alg->cost, mult_cost))
2920 limit.cost = alg->cost.cost - op_cost;
2921 limit.latency = alg->cost.latency - op_cost;
2923 else
2925 limit.cost = mult_cost - op_cost;
2926 limit.latency = mult_cost - op_cost;
2929 synth_mult (&alg2, val - 1, &limit, mode);
2930 alg2.cost.cost += op_cost;
2931 alg2.cost.latency += op_cost;
2932 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2933 *alg = alg2, *variant = add_variant;
2935 return MULT_COST_LESS (&alg->cost, mult_cost);
2938 /* A subroutine of expand_mult, used for constant multiplications.
2939 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2940 convenient. Use the shift/add sequence described by ALG and apply
2941 the final fixup specified by VARIANT. */
2943 static rtx
2944 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2945 rtx target, const struct algorithm *alg,
2946 enum mult_variant variant)
2948 HOST_WIDE_INT val_so_far;
2949 rtx insn, accum, tem;
2950 int opno;
2951 enum machine_mode nmode;
2953 /* Avoid referencing memory over and over.
2954 For speed, but also for correctness when mem is volatile. */
2955 if (MEM_P (op0))
2956 op0 = force_reg (mode, op0);
2958 /* ACCUM starts out either as OP0 or as a zero, depending on
2959 the first operation. */
2961 if (alg->op[0] == alg_zero)
2963 accum = copy_to_mode_reg (mode, const0_rtx);
2964 val_so_far = 0;
2966 else if (alg->op[0] == alg_m)
2968 accum = copy_to_mode_reg (mode, op0);
2969 val_so_far = 1;
2971 else
2972 gcc_unreachable ();
2974 for (opno = 1; opno < alg->ops; opno++)
2976 int log = alg->log[opno];
2977 rtx shift_subtarget = optimize ? 0 : accum;
2978 rtx add_target
2979 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2980 && !optimize)
2981 ? target : 0;
2982 rtx accum_target = optimize ? 0 : accum;
2984 switch (alg->op[opno])
2986 case alg_shift:
2987 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2988 build_int_cst (NULL_TREE, log),
2989 NULL_RTX, 0);
2990 val_so_far <<= log;
2991 break;
2993 case alg_add_t_m2:
2994 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2995 build_int_cst (NULL_TREE, log),
2996 NULL_RTX, 0);
2997 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2998 add_target ? add_target : accum_target);
2999 val_so_far += (HOST_WIDE_INT) 1 << log;
3000 break;
3002 case alg_sub_t_m2:
3003 tem = expand_shift (LSHIFT_EXPR, mode, op0,
3004 build_int_cst (NULL_TREE, log),
3005 NULL_RTX, 0);
3006 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3007 add_target ? add_target : accum_target);
3008 val_so_far -= (HOST_WIDE_INT) 1 << log;
3009 break;
3011 case alg_add_t2_m:
3012 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3013 build_int_cst (NULL_TREE, log),
3014 shift_subtarget,
3016 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3017 add_target ? add_target : accum_target);
3018 val_so_far = (val_so_far << log) + 1;
3019 break;
3021 case alg_sub_t2_m:
3022 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3023 build_int_cst (NULL_TREE, log),
3024 shift_subtarget, 0);
3025 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3026 add_target ? add_target : accum_target);
3027 val_so_far = (val_so_far << log) - 1;
3028 break;
3030 case alg_add_factor:
3031 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3032 build_int_cst (NULL_TREE, log),
3033 NULL_RTX, 0);
3034 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3035 add_target ? add_target : accum_target);
3036 val_so_far += val_so_far << log;
3037 break;
3039 case alg_sub_factor:
3040 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3041 build_int_cst (NULL_TREE, log),
3042 NULL_RTX, 0);
3043 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3044 (add_target
3045 ? add_target : (optimize ? 0 : tem)));
3046 val_so_far = (val_so_far << log) - val_so_far;
3047 break;
3049 default:
3050 gcc_unreachable ();
3053 /* Write a REG_EQUAL note on the last insn so that we can cse
3054 multiplication sequences. Note that if ACCUM is a SUBREG,
3055 we've set the inner register and must properly indicate
3056 that. */
3058 tem = op0, nmode = mode;
3059 if (GET_CODE (accum) == SUBREG)
3061 nmode = GET_MODE (SUBREG_REG (accum));
3062 tem = gen_lowpart (nmode, op0);
3065 insn = get_last_insn ();
3066 set_unique_reg_note (insn, REG_EQUAL,
3067 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
3070 if (variant == negate_variant)
3072 val_so_far = -val_so_far;
3073 accum = expand_unop (mode, neg_optab, accum, target, 0);
3075 else if (variant == add_variant)
3077 val_so_far = val_so_far + 1;
3078 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3081 /* Compare only the bits of val and val_so_far that are significant
3082 in the result mode, to avoid sign-/zero-extension confusion. */
3083 val &= GET_MODE_MASK (mode);
3084 val_so_far &= GET_MODE_MASK (mode);
3085 gcc_assert (val == val_so_far);
3087 return accum;
3090 /* Perform a multiplication and return an rtx for the result.
3091 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3092 TARGET is a suggestion for where to store the result (an rtx).
3094 We check specially for a constant integer as OP1.
3095 If you want this check for OP0 as well, then before calling
3096 you should swap the two operands if OP0 would be constant. */
3099 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3100 int unsignedp)
3102 enum mult_variant variant;
3103 struct algorithm algorithm;
3104 int max_cost;
3106 /* Handling const0_rtx here allows us to use zero as a rogue value for
3107 coeff below. */
3108 if (op1 == const0_rtx)
3109 return const0_rtx;
3110 if (op1 == const1_rtx)
3111 return op0;
3112 if (op1 == constm1_rtx)
3113 return expand_unop (mode,
3114 GET_MODE_CLASS (mode) == MODE_INT
3115 && !unsignedp && flag_trapv
3116 ? negv_optab : neg_optab,
3117 op0, target, 0);
3119 /* These are the operations that are potentially turned into a sequence
3120 of shifts and additions. */
3121 if (SCALAR_INT_MODE_P (mode)
3122 && (unsignedp || !flag_trapv))
3124 HOST_WIDE_INT coeff = 0;
3125 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3127 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3128 less than or equal in size to `unsigned int' this doesn't matter.
3129 If the mode is larger than `unsigned int', then synth_mult works
3130 only if the constant value exactly fits in an `unsigned int' without
3131 any truncation. This means that multiplying by negative values does
3132 not work; results are off by 2^32 on a 32 bit machine. */
3134 if (GET_CODE (op1) == CONST_INT)
3136 /* Attempt to handle multiplication of DImode values by negative
3137 coefficients, by performing the multiplication by a positive
3138 multiplier and then inverting the result. */
3139 if (INTVAL (op1) < 0
3140 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3142 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3143 result is interpreted as an unsigned coefficient.
3144 Exclude cost of op0 from max_cost to match the cost
3145 calculation of the synth_mult. */
3146 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
3147 - neg_cost[mode];
3148 if (max_cost > 0
3149 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3150 &variant, max_cost))
3152 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3153 NULL_RTX, &algorithm,
3154 variant);
3155 return expand_unop (mode, neg_optab, temp, target, 0);
3158 else coeff = INTVAL (op1);
3160 else if (GET_CODE (op1) == CONST_DOUBLE)
3162 /* If we are multiplying in DImode, it may still be a win
3163 to try to work with shifts and adds. */
3164 if (CONST_DOUBLE_HIGH (op1) == 0)
3165 coeff = CONST_DOUBLE_LOW (op1);
3166 else if (CONST_DOUBLE_LOW (op1) == 0
3167 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3169 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3170 + HOST_BITS_PER_WIDE_INT;
3171 return expand_shift (LSHIFT_EXPR, mode, op0,
3172 build_int_cst (NULL_TREE, shift),
3173 target, unsignedp);
3177 /* We used to test optimize here, on the grounds that it's better to
3178 produce a smaller program when -O is not used. But this causes
3179 such a terrible slowdown sometimes that it seems better to always
3180 use synth_mult. */
3181 if (coeff != 0)
3183 /* Special case powers of two. */
3184 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3185 return expand_shift (LSHIFT_EXPR, mode, op0,
3186 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3187 target, unsignedp);
3189 /* Exclude cost of op0 from max_cost to match the cost
3190 calculation of the synth_mult. */
3191 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
3192 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3193 max_cost))
3194 return expand_mult_const (mode, op0, coeff, target,
3195 &algorithm, variant);
3199 if (GET_CODE (op0) == CONST_DOUBLE)
3201 rtx temp = op0;
3202 op0 = op1;
3203 op1 = temp;
3206 /* Expand x*2.0 as x+x. */
3207 if (GET_CODE (op1) == CONST_DOUBLE
3208 && SCALAR_FLOAT_MODE_P (mode))
3210 REAL_VALUE_TYPE d;
3211 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3213 if (REAL_VALUES_EQUAL (d, dconst2))
3215 op0 = force_reg (GET_MODE (op0), op0);
3216 return expand_binop (mode, add_optab, op0, op0,
3217 target, unsignedp, OPTAB_LIB_WIDEN);
3221 /* This used to use umul_optab if unsigned, but for non-widening multiply
3222 there is no difference between signed and unsigned. */
3223 op0 = expand_binop (mode,
3224 ! unsignedp
3225 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3226 ? smulv_optab : smul_optab,
3227 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3228 gcc_assert (op0);
3229 return op0;
3232 /* Return the smallest n such that 2**n >= X. */
3235 ceil_log2 (unsigned HOST_WIDE_INT x)
3237 return floor_log2 (x - 1) + 1;
3240 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3241 replace division by D, and put the least significant N bits of the result
3242 in *MULTIPLIER_PTR and return the most significant bit.
3244 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3245 needed precision is in PRECISION (should be <= N).
3247 PRECISION should be as small as possible so this function can choose
3248 multiplier more freely.
3250 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3251 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3253 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3254 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3256 static
3257 unsigned HOST_WIDE_INT
3258 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3259 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3261 HOST_WIDE_INT mhigh_hi, mlow_hi;
3262 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3263 int lgup, post_shift;
3264 int pow, pow2;
3265 unsigned HOST_WIDE_INT nl, dummy1;
3266 HOST_WIDE_INT nh, dummy2;
3268 /* lgup = ceil(log2(divisor)); */
3269 lgup = ceil_log2 (d);
3271 gcc_assert (lgup <= n);
3273 pow = n + lgup;
3274 pow2 = n + lgup - precision;
3276 /* We could handle this with some effort, but this case is much
3277 better handled directly with a scc insn, so rely on caller using
3278 that. */
3279 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3281 /* mlow = 2^(N + lgup)/d */
3282 if (pow >= HOST_BITS_PER_WIDE_INT)
3284 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3285 nl = 0;
3287 else
3289 nh = 0;
3290 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3292 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3293 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3295 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3296 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3297 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3298 else
3299 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3300 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3301 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3303 gcc_assert (!mhigh_hi || nh - d < d);
3304 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3305 /* Assert that mlow < mhigh. */
3306 gcc_assert (mlow_hi < mhigh_hi
3307 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3309 /* If precision == N, then mlow, mhigh exceed 2^N
3310 (but they do not exceed 2^(N+1)). */
3312 /* Reduce to lowest terms. */
3313 for (post_shift = lgup; post_shift > 0; post_shift--)
3315 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3316 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3317 if (ml_lo >= mh_lo)
3318 break;
3320 mlow_hi = 0;
3321 mlow_lo = ml_lo;
3322 mhigh_hi = 0;
3323 mhigh_lo = mh_lo;
3326 *post_shift_ptr = post_shift;
3327 *lgup_ptr = lgup;
3328 if (n < HOST_BITS_PER_WIDE_INT)
3330 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3331 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3332 return mhigh_lo >= mask;
3334 else
3336 *multiplier_ptr = GEN_INT (mhigh_lo);
3337 return mhigh_hi;
3341 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3342 congruent to 1 (mod 2**N). */
3344 static unsigned HOST_WIDE_INT
3345 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3347 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3349 /* The algorithm notes that the choice y = x satisfies
3350 x*y == 1 mod 2^3, since x is assumed odd.
3351 Each iteration doubles the number of bits of significance in y. */
3353 unsigned HOST_WIDE_INT mask;
3354 unsigned HOST_WIDE_INT y = x;
3355 int nbit = 3;
3357 mask = (n == HOST_BITS_PER_WIDE_INT
3358 ? ~(unsigned HOST_WIDE_INT) 0
3359 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3361 while (nbit < n)
3363 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3364 nbit *= 2;
3366 return y;
3369 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3370 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3371 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3372 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3373 become signed.
3375 The result is put in TARGET if that is convenient.
3377 MODE is the mode of operation. */
3380 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3381 rtx op1, rtx target, int unsignedp)
3383 rtx tem;
3384 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3386 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3387 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3388 NULL_RTX, 0);
3389 tem = expand_and (mode, tem, op1, NULL_RTX);
3390 adj_operand
3391 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3392 adj_operand);
3394 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3395 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3396 NULL_RTX, 0);
3397 tem = expand_and (mode, tem, op0, NULL_RTX);
3398 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3399 target);
3401 return target;
3404 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3406 static rtx
3407 extract_high_half (enum machine_mode mode, rtx op)
3409 enum machine_mode wider_mode;
3411 if (mode == word_mode)
3412 return gen_highpart (mode, op);
3414 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3416 wider_mode = GET_MODE_WIDER_MODE (mode);
3417 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3418 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3419 return convert_modes (mode, wider_mode, op, 0);
3422 /* Like expand_mult_highpart, but only consider using a multiplication
3423 optab. OP1 is an rtx for the constant operand. */
3425 static rtx
3426 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3427 rtx target, int unsignedp, int max_cost)
3429 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3430 enum machine_mode wider_mode;
3431 optab moptab;
3432 rtx tem;
3433 int size;
3435 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3437 wider_mode = GET_MODE_WIDER_MODE (mode);
3438 size = GET_MODE_BITSIZE (mode);
3440 /* Firstly, try using a multiplication insn that only generates the needed
3441 high part of the product, and in the sign flavor of unsignedp. */
3442 if (mul_highpart_cost[mode] < max_cost)
3444 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3445 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3446 unsignedp, OPTAB_DIRECT);
3447 if (tem)
3448 return tem;
3451 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3452 Need to adjust the result after the multiplication. */
3453 if (size - 1 < BITS_PER_WORD
3454 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3455 + 4 * add_cost[mode] < max_cost))
3457 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3458 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3459 unsignedp, OPTAB_DIRECT);
3460 if (tem)
3461 /* We used the wrong signedness. Adjust the result. */
3462 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3463 tem, unsignedp);
3466 /* Try widening multiplication. */
3467 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3468 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3469 && mul_widen_cost[wider_mode] < max_cost)
3471 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3472 unsignedp, OPTAB_WIDEN);
3473 if (tem)
3474 return extract_high_half (mode, tem);
3477 /* Try widening the mode and perform a non-widening multiplication. */
3478 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3479 && size - 1 < BITS_PER_WORD
3480 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3482 rtx insns, wop0, wop1;
3484 /* We need to widen the operands, for example to ensure the
3485 constant multiplier is correctly sign or zero extended.
3486 Use a sequence to clean-up any instructions emitted by
3487 the conversions if things don't work out. */
3488 start_sequence ();
3489 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3490 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3491 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3492 unsignedp, OPTAB_WIDEN);
3493 insns = get_insns ();
3494 end_sequence ();
3496 if (tem)
3498 emit_insn (insns);
3499 return extract_high_half (mode, tem);
3503 /* Try widening multiplication of opposite signedness, and adjust. */
3504 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3505 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3506 && size - 1 < BITS_PER_WORD
3507 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3508 + 4 * add_cost[mode] < max_cost))
3510 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3511 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3512 if (tem != 0)
3514 tem = extract_high_half (mode, tem);
3515 /* We used the wrong signedness. Adjust the result. */
3516 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3517 target, unsignedp);
3521 return 0;
3524 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3525 putting the high half of the result in TARGET if that is convenient,
3526 and return where the result is. If the operation can not be performed,
3527 0 is returned.
3529 MODE is the mode of operation and result.
3531 UNSIGNEDP nonzero means unsigned multiply.
3533 MAX_COST is the total allowed cost for the expanded RTL. */
3535 static rtx
3536 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3537 rtx target, int unsignedp, int max_cost)
3539 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3540 unsigned HOST_WIDE_INT cnst1;
3541 int extra_cost;
3542 bool sign_adjust = false;
3543 enum mult_variant variant;
3544 struct algorithm alg;
3545 rtx tem;
3547 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3548 /* We can't support modes wider than HOST_BITS_PER_INT. */
3549 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3551 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3553 /* We can't optimize modes wider than BITS_PER_WORD.
3554 ??? We might be able to perform double-word arithmetic if
3555 mode == word_mode, however all the cost calculations in
3556 synth_mult etc. assume single-word operations. */
3557 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3558 return expand_mult_highpart_optab (mode, op0, op1, target,
3559 unsignedp, max_cost);
3561 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3563 /* Check whether we try to multiply by a negative constant. */
3564 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3566 sign_adjust = true;
3567 extra_cost += add_cost[mode];
3570 /* See whether shift/add multiplication is cheap enough. */
3571 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3572 max_cost - extra_cost))
3574 /* See whether the specialized multiplication optabs are
3575 cheaper than the shift/add version. */
3576 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3577 alg.cost.cost + extra_cost);
3578 if (tem)
3579 return tem;
3581 tem = convert_to_mode (wider_mode, op0, unsignedp);
3582 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3583 tem = extract_high_half (mode, tem);
3585 /* Adjust result for signedness. */
3586 if (sign_adjust)
3587 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3589 return tem;
3591 return expand_mult_highpart_optab (mode, op0, op1, target,
3592 unsignedp, max_cost);
3596 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3598 static rtx
3599 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3601 unsigned HOST_WIDE_INT masklow, maskhigh;
3602 rtx result, temp, shift, label;
3603 int logd;
3605 logd = floor_log2 (d);
3606 result = gen_reg_rtx (mode);
3608 /* Avoid conditional branches when they're expensive. */
3609 if (BRANCH_COST >= 2
3610 && !optimize_size)
3612 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3613 mode, 0, -1);
3614 if (signmask)
3616 signmask = force_reg (mode, signmask);
3617 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3618 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3620 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3621 which instruction sequence to use. If logical right shifts
3622 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3623 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3625 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3626 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3627 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3629 temp = expand_binop (mode, xor_optab, op0, signmask,
3630 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3631 temp = expand_binop (mode, sub_optab, temp, signmask,
3632 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3633 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3634 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3635 temp = expand_binop (mode, xor_optab, temp, signmask,
3636 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3637 temp = expand_binop (mode, sub_optab, temp, signmask,
3638 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3640 else
3642 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3643 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3644 signmask = force_reg (mode, signmask);
3646 temp = expand_binop (mode, add_optab, op0, signmask,
3647 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3648 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3649 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3650 temp = expand_binop (mode, sub_optab, temp, signmask,
3651 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3653 return temp;
3657 /* Mask contains the mode's signbit and the significant bits of the
3658 modulus. By including the signbit in the operation, many targets
3659 can avoid an explicit compare operation in the following comparison
3660 against zero. */
3662 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3663 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3665 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3666 maskhigh = -1;
3668 else
3669 maskhigh = (HOST_WIDE_INT) -1
3670 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3672 temp = expand_binop (mode, and_optab, op0,
3673 immed_double_const (masklow, maskhigh, mode),
3674 result, 1, OPTAB_LIB_WIDEN);
3675 if (temp != result)
3676 emit_move_insn (result, temp);
3678 label = gen_label_rtx ();
3679 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3681 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3682 0, OPTAB_LIB_WIDEN);
3683 masklow = (HOST_WIDE_INT) -1 << logd;
3684 maskhigh = -1;
3685 temp = expand_binop (mode, ior_optab, temp,
3686 immed_double_const (masklow, maskhigh, mode),
3687 result, 1, OPTAB_LIB_WIDEN);
3688 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3689 0, OPTAB_LIB_WIDEN);
3690 if (temp != result)
3691 emit_move_insn (result, temp);
3692 emit_label (label);
3693 return result;
3696 /* Expand signed division of OP0 by a power of two D in mode MODE.
3697 This routine is only called for positive values of D. */
3699 static rtx
3700 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3702 rtx temp, label;
3703 tree shift;
3704 int logd;
3706 logd = floor_log2 (d);
3707 shift = build_int_cst (NULL_TREE, logd);
3709 if (d == 2 && BRANCH_COST >= 1)
3711 temp = gen_reg_rtx (mode);
3712 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3713 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3714 0, OPTAB_LIB_WIDEN);
3715 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3718 #ifdef HAVE_conditional_move
3719 if (BRANCH_COST >= 2)
3721 rtx temp2;
3723 /* ??? emit_conditional_move forces a stack adjustment via
3724 compare_from_rtx so, if the sequence is discarded, it will
3725 be lost. Do it now instead. */
3726 do_pending_stack_adjust ();
3728 start_sequence ();
3729 temp2 = copy_to_mode_reg (mode, op0);
3730 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3731 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3732 temp = force_reg (mode, temp);
3734 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3735 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3736 mode, temp, temp2, mode, 0);
3737 if (temp2)
3739 rtx seq = get_insns ();
3740 end_sequence ();
3741 emit_insn (seq);
3742 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3744 end_sequence ();
3746 #endif
3748 if (BRANCH_COST >= 2)
3750 int ushift = GET_MODE_BITSIZE (mode) - logd;
3752 temp = gen_reg_rtx (mode);
3753 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3754 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3755 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3756 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3757 else
3758 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3759 build_int_cst (NULL_TREE, ushift),
3760 NULL_RTX, 1);
3761 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3762 0, OPTAB_LIB_WIDEN);
3763 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3766 label = gen_label_rtx ();
3767 temp = copy_to_mode_reg (mode, op0);
3768 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3769 expand_inc (temp, GEN_INT (d - 1));
3770 emit_label (label);
3771 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3774 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3775 if that is convenient, and returning where the result is.
3776 You may request either the quotient or the remainder as the result;
3777 specify REM_FLAG nonzero to get the remainder.
3779 CODE is the expression code for which kind of division this is;
3780 it controls how rounding is done. MODE is the machine mode to use.
3781 UNSIGNEDP nonzero means do unsigned division. */
3783 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3784 and then correct it by or'ing in missing high bits
3785 if result of ANDI is nonzero.
3786 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3787 This could optimize to a bfexts instruction.
3788 But C doesn't use these operations, so their optimizations are
3789 left for later. */
3790 /* ??? For modulo, we don't actually need the highpart of the first product,
3791 the low part will do nicely. And for small divisors, the second multiply
3792 can also be a low-part only multiply or even be completely left out.
3793 E.g. to calculate the remainder of a division by 3 with a 32 bit
3794 multiply, multiply with 0x55555556 and extract the upper two bits;
3795 the result is exact for inputs up to 0x1fffffff.
3796 The input range can be reduced by using cross-sum rules.
3797 For odd divisors >= 3, the following table gives right shift counts
3798 so that if a number is shifted by an integer multiple of the given
3799 amount, the remainder stays the same:
3800 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3801 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3802 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3803 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3804 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3806 Cross-sum rules for even numbers can be derived by leaving as many bits
3807 to the right alone as the divisor has zeros to the right.
3808 E.g. if x is an unsigned 32 bit number:
3809 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3813 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3814 rtx op0, rtx op1, rtx target, int unsignedp)
3816 enum machine_mode compute_mode;
3817 rtx tquotient;
3818 rtx quotient = 0, remainder = 0;
3819 rtx last;
3820 int size;
3821 rtx insn, set;
3822 optab optab1, optab2;
3823 int op1_is_constant, op1_is_pow2 = 0;
3824 int max_cost, extra_cost;
3825 static HOST_WIDE_INT last_div_const = 0;
3826 static HOST_WIDE_INT ext_op1;
3828 op1_is_constant = GET_CODE (op1) == CONST_INT;
3829 if (op1_is_constant)
3831 ext_op1 = INTVAL (op1);
3832 if (unsignedp)
3833 ext_op1 &= GET_MODE_MASK (mode);
3834 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3835 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3839 This is the structure of expand_divmod:
3841 First comes code to fix up the operands so we can perform the operations
3842 correctly and efficiently.
3844 Second comes a switch statement with code specific for each rounding mode.
3845 For some special operands this code emits all RTL for the desired
3846 operation, for other cases, it generates only a quotient and stores it in
3847 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3848 to indicate that it has not done anything.
3850 Last comes code that finishes the operation. If QUOTIENT is set and
3851 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3852 QUOTIENT is not set, it is computed using trunc rounding.
3854 We try to generate special code for division and remainder when OP1 is a
3855 constant. If |OP1| = 2**n we can use shifts and some other fast
3856 operations. For other values of OP1, we compute a carefully selected
3857 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3858 by m.
3860 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3861 half of the product. Different strategies for generating the product are
3862 implemented in expand_mult_highpart.
3864 If what we actually want is the remainder, we generate that by another
3865 by-constant multiplication and a subtraction. */
3867 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3868 code below will malfunction if we are, so check here and handle
3869 the special case if so. */
3870 if (op1 == const1_rtx)
3871 return rem_flag ? const0_rtx : op0;
3873 /* When dividing by -1, we could get an overflow.
3874 negv_optab can handle overflows. */
3875 if (! unsignedp && op1 == constm1_rtx)
3877 if (rem_flag)
3878 return const0_rtx;
3879 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3880 ? negv_optab : neg_optab, op0, target, 0);
3883 if (target
3884 /* Don't use the function value register as a target
3885 since we have to read it as well as write it,
3886 and function-inlining gets confused by this. */
3887 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3888 /* Don't clobber an operand while doing a multi-step calculation. */
3889 || ((rem_flag || op1_is_constant)
3890 && (reg_mentioned_p (target, op0)
3891 || (MEM_P (op0) && MEM_P (target))))
3892 || reg_mentioned_p (target, op1)
3893 || (MEM_P (op1) && MEM_P (target))))
3894 target = 0;
3896 /* Get the mode in which to perform this computation. Normally it will
3897 be MODE, but sometimes we can't do the desired operation in MODE.
3898 If so, pick a wider mode in which we can do the operation. Convert
3899 to that mode at the start to avoid repeated conversions.
3901 First see what operations we need. These depend on the expression
3902 we are evaluating. (We assume that divxx3 insns exist under the
3903 same conditions that modxx3 insns and that these insns don't normally
3904 fail. If these assumptions are not correct, we may generate less
3905 efficient code in some cases.)
3907 Then see if we find a mode in which we can open-code that operation
3908 (either a division, modulus, or shift). Finally, check for the smallest
3909 mode for which we can do the operation with a library call. */
3911 /* We might want to refine this now that we have division-by-constant
3912 optimization. Since expand_mult_highpart tries so many variants, it is
3913 not straightforward to generalize this. Maybe we should make an array
3914 of possible modes in init_expmed? Save this for GCC 2.7. */
3916 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3917 ? (unsignedp ? lshr_optab : ashr_optab)
3918 : (unsignedp ? udiv_optab : sdiv_optab));
3919 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3920 ? optab1
3921 : (unsignedp ? udivmod_optab : sdivmod_optab));
3923 for (compute_mode = mode; compute_mode != VOIDmode;
3924 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3925 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3926 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3927 break;
3929 if (compute_mode == VOIDmode)
3930 for (compute_mode = mode; compute_mode != VOIDmode;
3931 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3932 if (optab1->handlers[compute_mode].libfunc
3933 || optab2->handlers[compute_mode].libfunc)
3934 break;
3936 /* If we still couldn't find a mode, use MODE, but expand_binop will
3937 probably die. */
3938 if (compute_mode == VOIDmode)
3939 compute_mode = mode;
3941 if (target && GET_MODE (target) == compute_mode)
3942 tquotient = target;
3943 else
3944 tquotient = gen_reg_rtx (compute_mode);
3946 size = GET_MODE_BITSIZE (compute_mode);
3947 #if 0
3948 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3949 (mode), and thereby get better code when OP1 is a constant. Do that
3950 later. It will require going over all usages of SIZE below. */
3951 size = GET_MODE_BITSIZE (mode);
3952 #endif
3954 /* Only deduct something for a REM if the last divide done was
3955 for a different constant. Then set the constant of the last
3956 divide. */
3957 max_cost = unsignedp ? udiv_cost[compute_mode] : sdiv_cost[compute_mode];
3958 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3959 && INTVAL (op1) == last_div_const))
3960 max_cost -= mul_cost[compute_mode] + add_cost[compute_mode];
3962 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3964 /* Now convert to the best mode to use. */
3965 if (compute_mode != mode)
3967 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3968 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3970 /* convert_modes may have placed op1 into a register, so we
3971 must recompute the following. */
3972 op1_is_constant = GET_CODE (op1) == CONST_INT;
3973 op1_is_pow2 = (op1_is_constant
3974 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3975 || (! unsignedp
3976 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3979 /* If one of the operands is a volatile MEM, copy it into a register. */
3981 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3982 op0 = force_reg (compute_mode, op0);
3983 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3984 op1 = force_reg (compute_mode, op1);
3986 /* If we need the remainder or if OP1 is constant, we need to
3987 put OP0 in a register in case it has any queued subexpressions. */
3988 if (rem_flag || op1_is_constant)
3989 op0 = force_reg (compute_mode, op0);
3991 last = get_last_insn ();
3993 /* Promote floor rounding to trunc rounding for unsigned operations. */
3994 if (unsignedp)
3996 if (code == FLOOR_DIV_EXPR)
3997 code = TRUNC_DIV_EXPR;
3998 if (code == FLOOR_MOD_EXPR)
3999 code = TRUNC_MOD_EXPR;
4000 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4001 code = TRUNC_DIV_EXPR;
4004 if (op1 != const0_rtx)
4005 switch (code)
4007 case TRUNC_MOD_EXPR:
4008 case TRUNC_DIV_EXPR:
4009 if (op1_is_constant)
4011 if (unsignedp)
4013 unsigned HOST_WIDE_INT mh;
4014 int pre_shift, post_shift;
4015 int dummy;
4016 rtx ml;
4017 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4018 & GET_MODE_MASK (compute_mode));
4020 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4022 pre_shift = floor_log2 (d);
4023 if (rem_flag)
4025 remainder
4026 = expand_binop (compute_mode, and_optab, op0,
4027 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4028 remainder, 1,
4029 OPTAB_LIB_WIDEN);
4030 if (remainder)
4031 return gen_lowpart (mode, remainder);
4033 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4034 build_int_cst (NULL_TREE,
4035 pre_shift),
4036 tquotient, 1);
4038 else if (size <= HOST_BITS_PER_WIDE_INT)
4040 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4042 /* Most significant bit of divisor is set; emit an scc
4043 insn. */
4044 quotient = emit_store_flag (tquotient, GEU, op0, op1,
4045 compute_mode, 1, 1);
4046 if (quotient == 0)
4047 goto fail1;
4049 else
4051 /* Find a suitable multiplier and right shift count
4052 instead of multiplying with D. */
4054 mh = choose_multiplier (d, size, size,
4055 &ml, &post_shift, &dummy);
4057 /* If the suggested multiplier is more than SIZE bits,
4058 we can do better for even divisors, using an
4059 initial right shift. */
4060 if (mh != 0 && (d & 1) == 0)
4062 pre_shift = floor_log2 (d & -d);
4063 mh = choose_multiplier (d >> pre_shift, size,
4064 size - pre_shift,
4065 &ml, &post_shift, &dummy);
4066 gcc_assert (!mh);
4068 else
4069 pre_shift = 0;
4071 if (mh != 0)
4073 rtx t1, t2, t3, t4;
4075 if (post_shift - 1 >= BITS_PER_WORD)
4076 goto fail1;
4078 extra_cost
4079 = (shift_cost[compute_mode][post_shift - 1]
4080 + shift_cost[compute_mode][1]
4081 + 2 * add_cost[compute_mode]);
4082 t1 = expand_mult_highpart (compute_mode, op0, ml,
4083 NULL_RTX, 1,
4084 max_cost - extra_cost);
4085 if (t1 == 0)
4086 goto fail1;
4087 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4088 op0, t1),
4089 NULL_RTX);
4090 t3 = expand_shift
4091 (RSHIFT_EXPR, compute_mode, t2,
4092 build_int_cst (NULL_TREE, 1),
4093 NULL_RTX,1);
4094 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4095 t1, t3),
4096 NULL_RTX);
4097 quotient = expand_shift
4098 (RSHIFT_EXPR, compute_mode, t4,
4099 build_int_cst (NULL_TREE, post_shift - 1),
4100 tquotient, 1);
4102 else
4104 rtx t1, t2;
4106 if (pre_shift >= BITS_PER_WORD
4107 || post_shift >= BITS_PER_WORD)
4108 goto fail1;
4110 t1 = expand_shift
4111 (RSHIFT_EXPR, compute_mode, op0,
4112 build_int_cst (NULL_TREE, pre_shift),
4113 NULL_RTX, 1);
4114 extra_cost
4115 = (shift_cost[compute_mode][pre_shift]
4116 + shift_cost[compute_mode][post_shift]);
4117 t2 = expand_mult_highpart (compute_mode, t1, ml,
4118 NULL_RTX, 1,
4119 max_cost - extra_cost);
4120 if (t2 == 0)
4121 goto fail1;
4122 quotient = expand_shift
4123 (RSHIFT_EXPR, compute_mode, t2,
4124 build_int_cst (NULL_TREE, post_shift),
4125 tquotient, 1);
4129 else /* Too wide mode to use tricky code */
4130 break;
4132 insn = get_last_insn ();
4133 if (insn != last
4134 && (set = single_set (insn)) != 0
4135 && SET_DEST (set) == quotient)
4136 set_unique_reg_note (insn,
4137 REG_EQUAL,
4138 gen_rtx_UDIV (compute_mode, op0, op1));
4140 else /* TRUNC_DIV, signed */
4142 unsigned HOST_WIDE_INT ml;
4143 int lgup, post_shift;
4144 rtx mlr;
4145 HOST_WIDE_INT d = INTVAL (op1);
4146 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
4148 /* n rem d = n rem -d */
4149 if (rem_flag && d < 0)
4151 d = abs_d;
4152 op1 = gen_int_mode (abs_d, compute_mode);
4155 if (d == 1)
4156 quotient = op0;
4157 else if (d == -1)
4158 quotient = expand_unop (compute_mode, neg_optab, op0,
4159 tquotient, 0);
4160 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4162 /* This case is not handled correctly below. */
4163 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4164 compute_mode, 1, 1);
4165 if (quotient == 0)
4166 goto fail1;
4168 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4169 && (rem_flag ? smod_pow2_cheap[compute_mode]
4170 : sdiv_pow2_cheap[compute_mode])
4171 /* We assume that cheap metric is true if the
4172 optab has an expander for this mode. */
4173 && (((rem_flag ? smod_optab : sdiv_optab)
4174 ->handlers[compute_mode].insn_code
4175 != CODE_FOR_nothing)
4176 || (sdivmod_optab->handlers[compute_mode]
4177 .insn_code != CODE_FOR_nothing)))
4179 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4181 if (rem_flag)
4183 remainder = expand_smod_pow2 (compute_mode, op0, d);
4184 if (remainder)
4185 return gen_lowpart (mode, remainder);
4188 if (sdiv_pow2_cheap[compute_mode]
4189 && ((sdiv_optab->handlers[compute_mode].insn_code
4190 != CODE_FOR_nothing)
4191 || (sdivmod_optab->handlers[compute_mode].insn_code
4192 != CODE_FOR_nothing)))
4193 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4194 compute_mode, op0,
4195 gen_int_mode (abs_d,
4196 compute_mode),
4197 NULL_RTX, 0);
4198 else
4199 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4201 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4202 negate the quotient. */
4203 if (d < 0)
4205 insn = get_last_insn ();
4206 if (insn != last
4207 && (set = single_set (insn)) != 0
4208 && SET_DEST (set) == quotient
4209 && abs_d < ((unsigned HOST_WIDE_INT) 1
4210 << (HOST_BITS_PER_WIDE_INT - 1)))
4211 set_unique_reg_note (insn,
4212 REG_EQUAL,
4213 gen_rtx_DIV (compute_mode,
4214 op0,
4215 GEN_INT
4216 (trunc_int_for_mode
4217 (abs_d,
4218 compute_mode))));
4220 quotient = expand_unop (compute_mode, neg_optab,
4221 quotient, quotient, 0);
4224 else if (size <= HOST_BITS_PER_WIDE_INT)
4226 choose_multiplier (abs_d, size, size - 1,
4227 &mlr, &post_shift, &lgup);
4228 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4229 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4231 rtx t1, t2, t3;
4233 if (post_shift >= BITS_PER_WORD
4234 || size - 1 >= BITS_PER_WORD)
4235 goto fail1;
4237 extra_cost = (shift_cost[compute_mode][post_shift]
4238 + shift_cost[compute_mode][size - 1]
4239 + add_cost[compute_mode]);
4240 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4241 NULL_RTX, 0,
4242 max_cost - extra_cost);
4243 if (t1 == 0)
4244 goto fail1;
4245 t2 = expand_shift
4246 (RSHIFT_EXPR, compute_mode, t1,
4247 build_int_cst (NULL_TREE, post_shift),
4248 NULL_RTX, 0);
4249 t3 = expand_shift
4250 (RSHIFT_EXPR, compute_mode, op0,
4251 build_int_cst (NULL_TREE, size - 1),
4252 NULL_RTX, 0);
4253 if (d < 0)
4254 quotient
4255 = force_operand (gen_rtx_MINUS (compute_mode,
4256 t3, t2),
4257 tquotient);
4258 else
4259 quotient
4260 = force_operand (gen_rtx_MINUS (compute_mode,
4261 t2, t3),
4262 tquotient);
4264 else
4266 rtx t1, t2, t3, t4;
4268 if (post_shift >= BITS_PER_WORD
4269 || size - 1 >= BITS_PER_WORD)
4270 goto fail1;
4272 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4273 mlr = gen_int_mode (ml, compute_mode);
4274 extra_cost = (shift_cost[compute_mode][post_shift]
4275 + shift_cost[compute_mode][size - 1]
4276 + 2 * add_cost[compute_mode]);
4277 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4278 NULL_RTX, 0,
4279 max_cost - extra_cost);
4280 if (t1 == 0)
4281 goto fail1;
4282 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4283 t1, op0),
4284 NULL_RTX);
4285 t3 = expand_shift
4286 (RSHIFT_EXPR, compute_mode, t2,
4287 build_int_cst (NULL_TREE, post_shift),
4288 NULL_RTX, 0);
4289 t4 = expand_shift
4290 (RSHIFT_EXPR, compute_mode, op0,
4291 build_int_cst (NULL_TREE, size - 1),
4292 NULL_RTX, 0);
4293 if (d < 0)
4294 quotient
4295 = force_operand (gen_rtx_MINUS (compute_mode,
4296 t4, t3),
4297 tquotient);
4298 else
4299 quotient
4300 = force_operand (gen_rtx_MINUS (compute_mode,
4301 t3, t4),
4302 tquotient);
4305 else /* Too wide mode to use tricky code */
4306 break;
4308 insn = get_last_insn ();
4309 if (insn != last
4310 && (set = single_set (insn)) != 0
4311 && SET_DEST (set) == quotient)
4312 set_unique_reg_note (insn,
4313 REG_EQUAL,
4314 gen_rtx_DIV (compute_mode, op0, op1));
4316 break;
4318 fail1:
4319 delete_insns_since (last);
4320 break;
4322 case FLOOR_DIV_EXPR:
4323 case FLOOR_MOD_EXPR:
4324 /* We will come here only for signed operations. */
4325 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4327 unsigned HOST_WIDE_INT mh;
4328 int pre_shift, lgup, post_shift;
4329 HOST_WIDE_INT d = INTVAL (op1);
4330 rtx ml;
4332 if (d > 0)
4334 /* We could just as easily deal with negative constants here,
4335 but it does not seem worth the trouble for GCC 2.6. */
4336 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4338 pre_shift = floor_log2 (d);
4339 if (rem_flag)
4341 remainder = expand_binop (compute_mode, and_optab, op0,
4342 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4343 remainder, 0, OPTAB_LIB_WIDEN);
4344 if (remainder)
4345 return gen_lowpart (mode, remainder);
4347 quotient = expand_shift
4348 (RSHIFT_EXPR, compute_mode, op0,
4349 build_int_cst (NULL_TREE, pre_shift),
4350 tquotient, 0);
4352 else
4354 rtx t1, t2, t3, t4;
4356 mh = choose_multiplier (d, size, size - 1,
4357 &ml, &post_shift, &lgup);
4358 gcc_assert (!mh);
4360 if (post_shift < BITS_PER_WORD
4361 && size - 1 < BITS_PER_WORD)
4363 t1 = expand_shift
4364 (RSHIFT_EXPR, compute_mode, op0,
4365 build_int_cst (NULL_TREE, size - 1),
4366 NULL_RTX, 0);
4367 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4368 NULL_RTX, 0, OPTAB_WIDEN);
4369 extra_cost = (shift_cost[compute_mode][post_shift]
4370 + shift_cost[compute_mode][size - 1]
4371 + 2 * add_cost[compute_mode]);
4372 t3 = expand_mult_highpart (compute_mode, t2, ml,
4373 NULL_RTX, 1,
4374 max_cost - extra_cost);
4375 if (t3 != 0)
4377 t4 = expand_shift
4378 (RSHIFT_EXPR, compute_mode, t3,
4379 build_int_cst (NULL_TREE, post_shift),
4380 NULL_RTX, 1);
4381 quotient = expand_binop (compute_mode, xor_optab,
4382 t4, t1, tquotient, 0,
4383 OPTAB_WIDEN);
4388 else
4390 rtx nsign, t1, t2, t3, t4;
4391 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4392 op0, constm1_rtx), NULL_RTX);
4393 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4394 0, OPTAB_WIDEN);
4395 nsign = expand_shift
4396 (RSHIFT_EXPR, compute_mode, t2,
4397 build_int_cst (NULL_TREE, size - 1),
4398 NULL_RTX, 0);
4399 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4400 NULL_RTX);
4401 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4402 NULL_RTX, 0);
4403 if (t4)
4405 rtx t5;
4406 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4407 NULL_RTX, 0);
4408 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4409 t4, t5),
4410 tquotient);
4415 if (quotient != 0)
4416 break;
4417 delete_insns_since (last);
4419 /* Try using an instruction that produces both the quotient and
4420 remainder, using truncation. We can easily compensate the quotient
4421 or remainder to get floor rounding, once we have the remainder.
4422 Notice that we compute also the final remainder value here,
4423 and return the result right away. */
4424 if (target == 0 || GET_MODE (target) != compute_mode)
4425 target = gen_reg_rtx (compute_mode);
4427 if (rem_flag)
4429 remainder
4430 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4431 quotient = gen_reg_rtx (compute_mode);
4433 else
4435 quotient
4436 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4437 remainder = gen_reg_rtx (compute_mode);
4440 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4441 quotient, remainder, 0))
4443 /* This could be computed with a branch-less sequence.
4444 Save that for later. */
4445 rtx tem;
4446 rtx label = gen_label_rtx ();
4447 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4448 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4449 NULL_RTX, 0, OPTAB_WIDEN);
4450 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4451 expand_dec (quotient, const1_rtx);
4452 expand_inc (remainder, op1);
4453 emit_label (label);
4454 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4457 /* No luck with division elimination or divmod. Have to do it
4458 by conditionally adjusting op0 *and* the result. */
4460 rtx label1, label2, label3, label4, label5;
4461 rtx adjusted_op0;
4462 rtx tem;
4464 quotient = gen_reg_rtx (compute_mode);
4465 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4466 label1 = gen_label_rtx ();
4467 label2 = gen_label_rtx ();
4468 label3 = gen_label_rtx ();
4469 label4 = gen_label_rtx ();
4470 label5 = gen_label_rtx ();
4471 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4472 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4473 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4474 quotient, 0, OPTAB_LIB_WIDEN);
4475 if (tem != quotient)
4476 emit_move_insn (quotient, tem);
4477 emit_jump_insn (gen_jump (label5));
4478 emit_barrier ();
4479 emit_label (label1);
4480 expand_inc (adjusted_op0, const1_rtx);
4481 emit_jump_insn (gen_jump (label4));
4482 emit_barrier ();
4483 emit_label (label2);
4484 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4485 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4486 quotient, 0, OPTAB_LIB_WIDEN);
4487 if (tem != quotient)
4488 emit_move_insn (quotient, tem);
4489 emit_jump_insn (gen_jump (label5));
4490 emit_barrier ();
4491 emit_label (label3);
4492 expand_dec (adjusted_op0, const1_rtx);
4493 emit_label (label4);
4494 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4495 quotient, 0, OPTAB_LIB_WIDEN);
4496 if (tem != quotient)
4497 emit_move_insn (quotient, tem);
4498 expand_dec (quotient, const1_rtx);
4499 emit_label (label5);
4501 break;
4503 case CEIL_DIV_EXPR:
4504 case CEIL_MOD_EXPR:
4505 if (unsignedp)
4507 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4509 rtx t1, t2, t3;
4510 unsigned HOST_WIDE_INT d = INTVAL (op1);
4511 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4512 build_int_cst (NULL_TREE, floor_log2 (d)),
4513 tquotient, 1);
4514 t2 = expand_binop (compute_mode, and_optab, op0,
4515 GEN_INT (d - 1),
4516 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4517 t3 = gen_reg_rtx (compute_mode);
4518 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4519 compute_mode, 1, 1);
4520 if (t3 == 0)
4522 rtx lab;
4523 lab = gen_label_rtx ();
4524 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4525 expand_inc (t1, const1_rtx);
4526 emit_label (lab);
4527 quotient = t1;
4529 else
4530 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4531 t1, t3),
4532 tquotient);
4533 break;
4536 /* Try using an instruction that produces both the quotient and
4537 remainder, using truncation. We can easily compensate the
4538 quotient or remainder to get ceiling rounding, once we have the
4539 remainder. Notice that we compute also the final remainder
4540 value here, and return the result right away. */
4541 if (target == 0 || GET_MODE (target) != compute_mode)
4542 target = gen_reg_rtx (compute_mode);
4544 if (rem_flag)
4546 remainder = (REG_P (target)
4547 ? target : gen_reg_rtx (compute_mode));
4548 quotient = gen_reg_rtx (compute_mode);
4550 else
4552 quotient = (REG_P (target)
4553 ? target : gen_reg_rtx (compute_mode));
4554 remainder = gen_reg_rtx (compute_mode);
4557 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4558 remainder, 1))
4560 /* This could be computed with a branch-less sequence.
4561 Save that for later. */
4562 rtx label = gen_label_rtx ();
4563 do_cmp_and_jump (remainder, const0_rtx, EQ,
4564 compute_mode, label);
4565 expand_inc (quotient, const1_rtx);
4566 expand_dec (remainder, op1);
4567 emit_label (label);
4568 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4571 /* No luck with division elimination or divmod. Have to do it
4572 by conditionally adjusting op0 *and* the result. */
4574 rtx label1, label2;
4575 rtx adjusted_op0, tem;
4577 quotient = gen_reg_rtx (compute_mode);
4578 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4579 label1 = gen_label_rtx ();
4580 label2 = gen_label_rtx ();
4581 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4582 compute_mode, label1);
4583 emit_move_insn (quotient, const0_rtx);
4584 emit_jump_insn (gen_jump (label2));
4585 emit_barrier ();
4586 emit_label (label1);
4587 expand_dec (adjusted_op0, const1_rtx);
4588 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4589 quotient, 1, OPTAB_LIB_WIDEN);
4590 if (tem != quotient)
4591 emit_move_insn (quotient, tem);
4592 expand_inc (quotient, const1_rtx);
4593 emit_label (label2);
4596 else /* signed */
4598 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4599 && INTVAL (op1) >= 0)
4601 /* This is extremely similar to the code for the unsigned case
4602 above. For 2.7 we should merge these variants, but for
4603 2.6.1 I don't want to touch the code for unsigned since that
4604 get used in C. The signed case will only be used by other
4605 languages (Ada). */
4607 rtx t1, t2, t3;
4608 unsigned HOST_WIDE_INT d = INTVAL (op1);
4609 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4610 build_int_cst (NULL_TREE, floor_log2 (d)),
4611 tquotient, 0);
4612 t2 = expand_binop (compute_mode, and_optab, op0,
4613 GEN_INT (d - 1),
4614 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4615 t3 = gen_reg_rtx (compute_mode);
4616 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4617 compute_mode, 1, 1);
4618 if (t3 == 0)
4620 rtx lab;
4621 lab = gen_label_rtx ();
4622 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4623 expand_inc (t1, const1_rtx);
4624 emit_label (lab);
4625 quotient = t1;
4627 else
4628 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4629 t1, t3),
4630 tquotient);
4631 break;
4634 /* Try using an instruction that produces both the quotient and
4635 remainder, using truncation. We can easily compensate the
4636 quotient or remainder to get ceiling rounding, once we have the
4637 remainder. Notice that we compute also the final remainder
4638 value here, and return the result right away. */
4639 if (target == 0 || GET_MODE (target) != compute_mode)
4640 target = gen_reg_rtx (compute_mode);
4641 if (rem_flag)
4643 remainder= (REG_P (target)
4644 ? target : gen_reg_rtx (compute_mode));
4645 quotient = gen_reg_rtx (compute_mode);
4647 else
4649 quotient = (REG_P (target)
4650 ? target : gen_reg_rtx (compute_mode));
4651 remainder = gen_reg_rtx (compute_mode);
4654 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4655 remainder, 0))
4657 /* This could be computed with a branch-less sequence.
4658 Save that for later. */
4659 rtx tem;
4660 rtx label = gen_label_rtx ();
4661 do_cmp_and_jump (remainder, const0_rtx, EQ,
4662 compute_mode, label);
4663 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4664 NULL_RTX, 0, OPTAB_WIDEN);
4665 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4666 expand_inc (quotient, const1_rtx);
4667 expand_dec (remainder, op1);
4668 emit_label (label);
4669 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4672 /* No luck with division elimination or divmod. Have to do it
4673 by conditionally adjusting op0 *and* the result. */
4675 rtx label1, label2, label3, label4, label5;
4676 rtx adjusted_op0;
4677 rtx tem;
4679 quotient = gen_reg_rtx (compute_mode);
4680 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4681 label1 = gen_label_rtx ();
4682 label2 = gen_label_rtx ();
4683 label3 = gen_label_rtx ();
4684 label4 = gen_label_rtx ();
4685 label5 = gen_label_rtx ();
4686 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4687 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4688 compute_mode, label1);
4689 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4690 quotient, 0, OPTAB_LIB_WIDEN);
4691 if (tem != quotient)
4692 emit_move_insn (quotient, tem);
4693 emit_jump_insn (gen_jump (label5));
4694 emit_barrier ();
4695 emit_label (label1);
4696 expand_dec (adjusted_op0, const1_rtx);
4697 emit_jump_insn (gen_jump (label4));
4698 emit_barrier ();
4699 emit_label (label2);
4700 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4701 compute_mode, label3);
4702 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4703 quotient, 0, OPTAB_LIB_WIDEN);
4704 if (tem != quotient)
4705 emit_move_insn (quotient, tem);
4706 emit_jump_insn (gen_jump (label5));
4707 emit_barrier ();
4708 emit_label (label3);
4709 expand_inc (adjusted_op0, const1_rtx);
4710 emit_label (label4);
4711 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4712 quotient, 0, OPTAB_LIB_WIDEN);
4713 if (tem != quotient)
4714 emit_move_insn (quotient, tem);
4715 expand_inc (quotient, const1_rtx);
4716 emit_label (label5);
4719 break;
4721 case EXACT_DIV_EXPR:
4722 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4724 HOST_WIDE_INT d = INTVAL (op1);
4725 unsigned HOST_WIDE_INT ml;
4726 int pre_shift;
4727 rtx t1;
4729 pre_shift = floor_log2 (d & -d);
4730 ml = invert_mod2n (d >> pre_shift, size);
4731 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4732 build_int_cst (NULL_TREE, pre_shift),
4733 NULL_RTX, unsignedp);
4734 quotient = expand_mult (compute_mode, t1,
4735 gen_int_mode (ml, compute_mode),
4736 NULL_RTX, 1);
4738 insn = get_last_insn ();
4739 set_unique_reg_note (insn,
4740 REG_EQUAL,
4741 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4742 compute_mode,
4743 op0, op1));
4745 break;
4747 case ROUND_DIV_EXPR:
4748 case ROUND_MOD_EXPR:
4749 if (unsignedp)
4751 rtx tem;
4752 rtx label;
4753 label = gen_label_rtx ();
4754 quotient = gen_reg_rtx (compute_mode);
4755 remainder = gen_reg_rtx (compute_mode);
4756 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4758 rtx tem;
4759 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4760 quotient, 1, OPTAB_LIB_WIDEN);
4761 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4762 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4763 remainder, 1, OPTAB_LIB_WIDEN);
4765 tem = plus_constant (op1, -1);
4766 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4767 build_int_cst (NULL_TREE, 1),
4768 NULL_RTX, 1);
4769 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4770 expand_inc (quotient, const1_rtx);
4771 expand_dec (remainder, op1);
4772 emit_label (label);
4774 else
4776 rtx abs_rem, abs_op1, tem, mask;
4777 rtx label;
4778 label = gen_label_rtx ();
4779 quotient = gen_reg_rtx (compute_mode);
4780 remainder = gen_reg_rtx (compute_mode);
4781 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4783 rtx tem;
4784 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4785 quotient, 0, OPTAB_LIB_WIDEN);
4786 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4787 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4788 remainder, 0, OPTAB_LIB_WIDEN);
4790 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4791 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4792 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4793 build_int_cst (NULL_TREE, 1),
4794 NULL_RTX, 1);
4795 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4796 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4797 NULL_RTX, 0, OPTAB_WIDEN);
4798 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4799 build_int_cst (NULL_TREE, size - 1),
4800 NULL_RTX, 0);
4801 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4802 NULL_RTX, 0, OPTAB_WIDEN);
4803 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4804 NULL_RTX, 0, OPTAB_WIDEN);
4805 expand_inc (quotient, tem);
4806 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4807 NULL_RTX, 0, OPTAB_WIDEN);
4808 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4809 NULL_RTX, 0, OPTAB_WIDEN);
4810 expand_dec (remainder, tem);
4811 emit_label (label);
4813 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4815 default:
4816 gcc_unreachable ();
4819 if (quotient == 0)
4821 if (target && GET_MODE (target) != compute_mode)
4822 target = 0;
4824 if (rem_flag)
4826 /* Try to produce the remainder without producing the quotient.
4827 If we seem to have a divmod pattern that does not require widening,
4828 don't try widening here. We should really have a WIDEN argument
4829 to expand_twoval_binop, since what we'd really like to do here is
4830 1) try a mod insn in compute_mode
4831 2) try a divmod insn in compute_mode
4832 3) try a div insn in compute_mode and multiply-subtract to get
4833 remainder
4834 4) try the same things with widening allowed. */
4835 remainder
4836 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4837 op0, op1, target,
4838 unsignedp,
4839 ((optab2->handlers[compute_mode].insn_code
4840 != CODE_FOR_nothing)
4841 ? OPTAB_DIRECT : OPTAB_WIDEN));
4842 if (remainder == 0)
4844 /* No luck there. Can we do remainder and divide at once
4845 without a library call? */
4846 remainder = gen_reg_rtx (compute_mode);
4847 if (! expand_twoval_binop ((unsignedp
4848 ? udivmod_optab
4849 : sdivmod_optab),
4850 op0, op1,
4851 NULL_RTX, remainder, unsignedp))
4852 remainder = 0;
4855 if (remainder)
4856 return gen_lowpart (mode, remainder);
4859 /* Produce the quotient. Try a quotient insn, but not a library call.
4860 If we have a divmod in this mode, use it in preference to widening
4861 the div (for this test we assume it will not fail). Note that optab2
4862 is set to the one of the two optabs that the call below will use. */
4863 quotient
4864 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4865 op0, op1, rem_flag ? NULL_RTX : target,
4866 unsignedp,
4867 ((optab2->handlers[compute_mode].insn_code
4868 != CODE_FOR_nothing)
4869 ? OPTAB_DIRECT : OPTAB_WIDEN));
4871 if (quotient == 0)
4873 /* No luck there. Try a quotient-and-remainder insn,
4874 keeping the quotient alone. */
4875 quotient = gen_reg_rtx (compute_mode);
4876 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4877 op0, op1,
4878 quotient, NULL_RTX, unsignedp))
4880 quotient = 0;
4881 if (! rem_flag)
4882 /* Still no luck. If we are not computing the remainder,
4883 use a library call for the quotient. */
4884 quotient = sign_expand_binop (compute_mode,
4885 udiv_optab, sdiv_optab,
4886 op0, op1, target,
4887 unsignedp, OPTAB_LIB_WIDEN);
4892 if (rem_flag)
4894 if (target && GET_MODE (target) != compute_mode)
4895 target = 0;
4897 if (quotient == 0)
4899 /* No divide instruction either. Use library for remainder. */
4900 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4901 op0, op1, target,
4902 unsignedp, OPTAB_LIB_WIDEN);
4903 /* No remainder function. Try a quotient-and-remainder
4904 function, keeping the remainder. */
4905 if (!remainder)
4907 remainder = gen_reg_rtx (compute_mode);
4908 if (!expand_twoval_binop_libfunc
4909 (unsignedp ? udivmod_optab : sdivmod_optab,
4910 op0, op1,
4911 NULL_RTX, remainder,
4912 unsignedp ? UMOD : MOD))
4913 remainder = NULL_RTX;
4916 else
4918 /* We divided. Now finish doing X - Y * (X / Y). */
4919 remainder = expand_mult (compute_mode, quotient, op1,
4920 NULL_RTX, unsignedp);
4921 remainder = expand_binop (compute_mode, sub_optab, op0,
4922 remainder, target, unsignedp,
4923 OPTAB_LIB_WIDEN);
4927 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4930 /* Return a tree node with data type TYPE, describing the value of X.
4931 Usually this is an VAR_DECL, if there is no obvious better choice.
4932 X may be an expression, however we only support those expressions
4933 generated by loop.c. */
4935 tree
4936 make_tree (tree type, rtx x)
4938 tree t;
4940 switch (GET_CODE (x))
4942 case CONST_INT:
4944 HOST_WIDE_INT hi = 0;
4946 if (INTVAL (x) < 0
4947 && !(TYPE_UNSIGNED (type)
4948 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4949 < HOST_BITS_PER_WIDE_INT)))
4950 hi = -1;
4952 t = build_int_cst_wide (type, INTVAL (x), hi);
4954 return t;
4957 case CONST_DOUBLE:
4958 if (GET_MODE (x) == VOIDmode)
4959 t = build_int_cst_wide (type,
4960 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4961 else
4963 REAL_VALUE_TYPE d;
4965 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4966 t = build_real (type, d);
4969 return t;
4971 case CONST_VECTOR:
4973 int i, units;
4974 rtx elt;
4975 tree t = NULL_TREE;
4977 units = CONST_VECTOR_NUNITS (x);
4979 /* Build a tree with vector elements. */
4980 for (i = units - 1; i >= 0; --i)
4982 elt = CONST_VECTOR_ELT (x, i);
4983 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4986 return build_vector (type, t);
4989 case PLUS:
4990 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4991 make_tree (type, XEXP (x, 1)));
4993 case MINUS:
4994 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4995 make_tree (type, XEXP (x, 1)));
4997 case NEG:
4998 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5000 case MULT:
5001 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5002 make_tree (type, XEXP (x, 1)));
5004 case ASHIFT:
5005 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5006 make_tree (type, XEXP (x, 1)));
5008 case LSHIFTRT:
5009 t = lang_hooks.types.unsigned_type (type);
5010 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5011 make_tree (t, XEXP (x, 0)),
5012 make_tree (type, XEXP (x, 1))));
5014 case ASHIFTRT:
5015 t = lang_hooks.types.signed_type (type);
5016 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5017 make_tree (t, XEXP (x, 0)),
5018 make_tree (type, XEXP (x, 1))));
5020 case DIV:
5021 if (TREE_CODE (type) != REAL_TYPE)
5022 t = lang_hooks.types.signed_type (type);
5023 else
5024 t = type;
5026 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5027 make_tree (t, XEXP (x, 0)),
5028 make_tree (t, XEXP (x, 1))));
5029 case UDIV:
5030 t = lang_hooks.types.unsigned_type (type);
5031 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5032 make_tree (t, XEXP (x, 0)),
5033 make_tree (t, XEXP (x, 1))));
5035 case SIGN_EXTEND:
5036 case ZERO_EXTEND:
5037 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5038 GET_CODE (x) == ZERO_EXTEND);
5039 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5041 default:
5042 t = build_decl (VAR_DECL, NULL_TREE, type);
5044 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
5045 ptr_mode. So convert. */
5046 if (POINTER_TYPE_P (type))
5047 x = convert_memory_address (TYPE_MODE (type), x);
5049 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5050 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5051 t->decl_with_rtl.rtl = x;
5053 return t;
5057 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5058 and returning TARGET.
5060 If TARGET is 0, a pseudo-register or constant is returned. */
5063 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5065 rtx tem = 0;
5067 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5068 tem = simplify_binary_operation (AND, mode, op0, op1);
5069 if (tem == 0)
5070 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5072 if (target == 0)
5073 target = tem;
5074 else if (tem != target)
5075 emit_move_insn (target, tem);
5076 return target;
5079 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5080 and storing in TARGET. Normally return TARGET.
5081 Return 0 if that cannot be done.
5083 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5084 it is VOIDmode, they cannot both be CONST_INT.
5086 UNSIGNEDP is for the case where we have to widen the operands
5087 to perform the operation. It says to use zero-extension.
5089 NORMALIZEP is 1 if we should convert the result to be either zero
5090 or one. Normalize is -1 if we should convert the result to be
5091 either zero or -1. If NORMALIZEP is zero, the result will be left
5092 "raw" out of the scc insn. */
5095 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5096 enum machine_mode mode, int unsignedp, int normalizep)
5098 rtx subtarget;
5099 enum insn_code icode;
5100 enum machine_mode compare_mode;
5101 enum machine_mode target_mode = GET_MODE (target);
5102 rtx tem;
5103 rtx last = get_last_insn ();
5104 rtx pattern, comparison;
5106 if (unsignedp)
5107 code = unsigned_condition (code);
5109 /* If one operand is constant, make it the second one. Only do this
5110 if the other operand is not constant as well. */
5112 if (swap_commutative_operands_p (op0, op1))
5114 tem = op0;
5115 op0 = op1;
5116 op1 = tem;
5117 code = swap_condition (code);
5120 if (mode == VOIDmode)
5121 mode = GET_MODE (op0);
5123 /* For some comparisons with 1 and -1, we can convert this to
5124 comparisons with zero. This will often produce more opportunities for
5125 store-flag insns. */
5127 switch (code)
5129 case LT:
5130 if (op1 == const1_rtx)
5131 op1 = const0_rtx, code = LE;
5132 break;
5133 case LE:
5134 if (op1 == constm1_rtx)
5135 op1 = const0_rtx, code = LT;
5136 break;
5137 case GE:
5138 if (op1 == const1_rtx)
5139 op1 = const0_rtx, code = GT;
5140 break;
5141 case GT:
5142 if (op1 == constm1_rtx)
5143 op1 = const0_rtx, code = GE;
5144 break;
5145 case GEU:
5146 if (op1 == const1_rtx)
5147 op1 = const0_rtx, code = NE;
5148 break;
5149 case LTU:
5150 if (op1 == const1_rtx)
5151 op1 = const0_rtx, code = EQ;
5152 break;
5153 default:
5154 break;
5157 /* If we are comparing a double-word integer with zero or -1, we can
5158 convert the comparison into one involving a single word. */
5159 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5160 && GET_MODE_CLASS (mode) == MODE_INT
5161 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5163 if ((code == EQ || code == NE)
5164 && (op1 == const0_rtx || op1 == constm1_rtx))
5166 rtx op00, op01, op0both;
5168 /* Do a logical OR or AND of the two words and compare the result. */
5169 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5170 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5171 op0both = expand_binop (word_mode,
5172 op1 == const0_rtx ? ior_optab : and_optab,
5173 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
5175 if (op0both != 0)
5176 return emit_store_flag (target, code, op0both, op1, word_mode,
5177 unsignedp, normalizep);
5179 else if ((code == LT || code == GE) && op1 == const0_rtx)
5181 rtx op0h;
5183 /* If testing the sign bit, can just test on high word. */
5184 op0h = simplify_gen_subreg (word_mode, op0, mode,
5185 subreg_highpart_offset (word_mode, mode));
5186 return emit_store_flag (target, code, op0h, op1, word_mode,
5187 unsignedp, normalizep);
5191 /* From now on, we won't change CODE, so set ICODE now. */
5192 icode = setcc_gen_code[(int) code];
5194 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5195 complement of A (for GE) and shifting the sign bit to the low bit. */
5196 if (op1 == const0_rtx && (code == LT || code == GE)
5197 && GET_MODE_CLASS (mode) == MODE_INT
5198 && (normalizep || STORE_FLAG_VALUE == 1
5199 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5200 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5201 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5203 subtarget = target;
5205 /* If the result is to be wider than OP0, it is best to convert it
5206 first. If it is to be narrower, it is *incorrect* to convert it
5207 first. */
5208 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5210 op0 = convert_modes (target_mode, mode, op0, 0);
5211 mode = target_mode;
5214 if (target_mode != mode)
5215 subtarget = 0;
5217 if (code == GE)
5218 op0 = expand_unop (mode, one_cmpl_optab, op0,
5219 ((STORE_FLAG_VALUE == 1 || normalizep)
5220 ? 0 : subtarget), 0);
5222 if (STORE_FLAG_VALUE == 1 || normalizep)
5223 /* If we are supposed to produce a 0/1 value, we want to do
5224 a logical shift from the sign bit to the low-order bit; for
5225 a -1/0 value, we do an arithmetic shift. */
5226 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5227 size_int (GET_MODE_BITSIZE (mode) - 1),
5228 subtarget, normalizep != -1);
5230 if (mode != target_mode)
5231 op0 = convert_modes (target_mode, mode, op0, 0);
5233 return op0;
5236 if (icode != CODE_FOR_nothing)
5238 insn_operand_predicate_fn pred;
5240 /* We think we may be able to do this with a scc insn. Emit the
5241 comparison and then the scc insn. */
5243 do_pending_stack_adjust ();
5244 last = get_last_insn ();
5246 comparison
5247 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5248 if (CONSTANT_P (comparison))
5250 switch (GET_CODE (comparison))
5252 case CONST_INT:
5253 if (comparison == const0_rtx)
5254 return const0_rtx;
5255 break;
5257 #ifdef FLOAT_STORE_FLAG_VALUE
5258 case CONST_DOUBLE:
5259 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5260 return const0_rtx;
5261 break;
5262 #endif
5263 default:
5264 gcc_unreachable ();
5267 if (normalizep == 1)
5268 return const1_rtx;
5269 if (normalizep == -1)
5270 return constm1_rtx;
5271 return const_true_rtx;
5274 /* The code of COMPARISON may not match CODE if compare_from_rtx
5275 decided to swap its operands and reverse the original code.
5277 We know that compare_from_rtx returns either a CONST_INT or
5278 a new comparison code, so it is safe to just extract the
5279 code from COMPARISON. */
5280 code = GET_CODE (comparison);
5282 /* Get a reference to the target in the proper mode for this insn. */
5283 compare_mode = insn_data[(int) icode].operand[0].mode;
5284 subtarget = target;
5285 pred = insn_data[(int) icode].operand[0].predicate;
5286 if (optimize || ! (*pred) (subtarget, compare_mode))
5287 subtarget = gen_reg_rtx (compare_mode);
5289 pattern = GEN_FCN (icode) (subtarget);
5290 if (pattern)
5292 emit_insn (pattern);
5294 /* If we are converting to a wider mode, first convert to
5295 TARGET_MODE, then normalize. This produces better combining
5296 opportunities on machines that have a SIGN_EXTRACT when we are
5297 testing a single bit. This mostly benefits the 68k.
5299 If STORE_FLAG_VALUE does not have the sign bit set when
5300 interpreted in COMPARE_MODE, we can do this conversion as
5301 unsigned, which is usually more efficient. */
5302 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5304 convert_move (target, subtarget,
5305 (GET_MODE_BITSIZE (compare_mode)
5306 <= HOST_BITS_PER_WIDE_INT)
5307 && 0 == (STORE_FLAG_VALUE
5308 & ((HOST_WIDE_INT) 1
5309 << (GET_MODE_BITSIZE (compare_mode) -1))));
5310 op0 = target;
5311 compare_mode = target_mode;
5313 else
5314 op0 = subtarget;
5316 /* If we want to keep subexpressions around, don't reuse our
5317 last target. */
5319 if (optimize)
5320 subtarget = 0;
5322 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5323 we don't have to do anything. */
5324 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5326 /* STORE_FLAG_VALUE might be the most negative number, so write
5327 the comparison this way to avoid a compiler-time warning. */
5328 else if (- normalizep == STORE_FLAG_VALUE)
5329 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5331 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5332 makes it hard to use a value of just the sign bit due to
5333 ANSI integer constant typing rules. */
5334 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5335 && (STORE_FLAG_VALUE
5336 & ((HOST_WIDE_INT) 1
5337 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5338 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5339 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5340 subtarget, normalizep == 1);
5341 else
5343 gcc_assert (STORE_FLAG_VALUE & 1);
5345 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5346 if (normalizep == -1)
5347 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5350 /* If we were converting to a smaller mode, do the
5351 conversion now. */
5352 if (target_mode != compare_mode)
5354 convert_move (target, op0, 0);
5355 return target;
5357 else
5358 return op0;
5362 delete_insns_since (last);
5364 /* If optimizing, use different pseudo registers for each insn, instead
5365 of reusing the same pseudo. This leads to better CSE, but slows
5366 down the compiler, since there are more pseudos */
5367 subtarget = (!optimize
5368 && (target_mode == mode)) ? target : NULL_RTX;
5370 /* If we reached here, we can't do this with a scc insn. However, there
5371 are some comparisons that can be done directly. For example, if
5372 this is an equality comparison of integers, we can try to exclusive-or
5373 (or subtract) the two operands and use a recursive call to try the
5374 comparison with zero. Don't do any of these cases if branches are
5375 very cheap. */
5377 if (BRANCH_COST > 0
5378 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5379 && op1 != const0_rtx)
5381 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5382 OPTAB_WIDEN);
5384 if (tem == 0)
5385 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5386 OPTAB_WIDEN);
5387 if (tem != 0)
5388 tem = emit_store_flag (target, code, tem, const0_rtx,
5389 mode, unsignedp, normalizep);
5390 if (tem == 0)
5391 delete_insns_since (last);
5392 return tem;
5395 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5396 the constant zero. Reject all other comparisons at this point. Only
5397 do LE and GT if branches are expensive since they are expensive on
5398 2-operand machines. */
5400 if (BRANCH_COST == 0
5401 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5402 || (code != EQ && code != NE
5403 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5404 return 0;
5406 /* See what we need to return. We can only return a 1, -1, or the
5407 sign bit. */
5409 if (normalizep == 0)
5411 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5412 normalizep = STORE_FLAG_VALUE;
5414 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5415 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5416 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5418 else
5419 return 0;
5422 /* Try to put the result of the comparison in the sign bit. Assume we can't
5423 do the necessary operation below. */
5425 tem = 0;
5427 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5428 the sign bit set. */
5430 if (code == LE)
5432 /* This is destructive, so SUBTARGET can't be OP0. */
5433 if (rtx_equal_p (subtarget, op0))
5434 subtarget = 0;
5436 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5437 OPTAB_WIDEN);
5438 if (tem)
5439 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5440 OPTAB_WIDEN);
5443 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5444 number of bits in the mode of OP0, minus one. */
5446 if (code == GT)
5448 if (rtx_equal_p (subtarget, op0))
5449 subtarget = 0;
5451 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5452 size_int (GET_MODE_BITSIZE (mode) - 1),
5453 subtarget, 0);
5454 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5455 OPTAB_WIDEN);
5458 if (code == EQ || code == NE)
5460 /* For EQ or NE, one way to do the comparison is to apply an operation
5461 that converts the operand into a positive number if it is nonzero
5462 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5463 for NE we negate. This puts the result in the sign bit. Then we
5464 normalize with a shift, if needed.
5466 Two operations that can do the above actions are ABS and FFS, so try
5467 them. If that doesn't work, and MODE is smaller than a full word,
5468 we can use zero-extension to the wider mode (an unsigned conversion)
5469 as the operation. */
5471 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5472 that is compensated by the subsequent overflow when subtracting
5473 one / negating. */
5475 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5476 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5477 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5478 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5479 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5481 tem = convert_modes (word_mode, mode, op0, 1);
5482 mode = word_mode;
5485 if (tem != 0)
5487 if (code == EQ)
5488 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5489 0, OPTAB_WIDEN);
5490 else
5491 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5494 /* If we couldn't do it that way, for NE we can "or" the two's complement
5495 of the value with itself. For EQ, we take the one's complement of
5496 that "or", which is an extra insn, so we only handle EQ if branches
5497 are expensive. */
5499 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5501 if (rtx_equal_p (subtarget, op0))
5502 subtarget = 0;
5504 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5505 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5506 OPTAB_WIDEN);
5508 if (tem && code == EQ)
5509 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5513 if (tem && normalizep)
5514 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5515 size_int (GET_MODE_BITSIZE (mode) - 1),
5516 subtarget, normalizep == 1);
5518 if (tem)
5520 if (GET_MODE (tem) != target_mode)
5522 convert_move (target, tem, 0);
5523 tem = target;
5525 else if (!subtarget)
5527 emit_move_insn (target, tem);
5528 tem = target;
5531 else
5532 delete_insns_since (last);
5534 return tem;
5537 /* Like emit_store_flag, but always succeeds. */
5540 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5541 enum machine_mode mode, int unsignedp, int normalizep)
5543 rtx tem, label;
5545 /* First see if emit_store_flag can do the job. */
5546 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5547 if (tem != 0)
5548 return tem;
5550 if (normalizep == 0)
5551 normalizep = 1;
5553 /* If this failed, we have to do this with set/compare/jump/set code. */
5555 if (!REG_P (target)
5556 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5557 target = gen_reg_rtx (GET_MODE (target));
5559 emit_move_insn (target, const1_rtx);
5560 label = gen_label_rtx ();
5561 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5562 NULL_RTX, label);
5564 emit_move_insn (target, const0_rtx);
5565 emit_label (label);
5567 return target;
5570 /* Perform possibly multi-word comparison and conditional jump to LABEL
5571 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5572 now a thin wrapper around do_compare_rtx_and_jump. */
5574 static void
5575 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5576 rtx label)
5578 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5579 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5580 NULL_RTX, NULL_RTX, label);