* recog.c (peephole2_optimize): Make it static.
[official-gcc.git] / gcc / tree-vect-patterns.c
blob006965cb99e881fbad8191cf3ebb7c7e77f22264
1 /* Analysis Utilities for Loop Vectorization.
2 Copyright (C) 2006 Free Software Foundation, Inc.
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
29 #include "target.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "params.h"
39 #include "tree-data-ref.h"
40 #include "tree-vectorizer.h"
41 #include "recog.h"
42 #include "toplev.h"
44 /* Funcion prototypes */
45 static void vect_pattern_recog_1
46 (tree (* ) (tree, tree *, tree *), block_stmt_iterator);
47 static bool widened_name_p (tree, tree, tree *, tree *);
49 /* Pattern recognition functions */
50 static tree vect_recog_widen_sum_pattern (tree, tree *, tree *);
51 static tree vect_recog_widen_mult_pattern (tree, tree *, tree *);
52 static tree vect_recog_dot_prod_pattern (tree, tree *, tree *);
53 static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
54 vect_recog_widen_mult_pattern,
55 vect_recog_widen_sum_pattern,
56 vect_recog_dot_prod_pattern};
59 /* Function widened_name_p
61 Check whether NAME, an ssa-name used in USE_STMT,
62 is a result of a type-promotion, such that:
63 DEF_STMT: NAME = NOP (name0)
64 where the type of name0 (HALF_TYPE) is smaller than the type of NAME.
67 static bool
68 widened_name_p (tree name, tree use_stmt, tree *half_type, tree *def_stmt)
70 tree dummy;
71 loop_vec_info loop_vinfo;
72 stmt_vec_info stmt_vinfo;
73 tree expr;
74 tree type = TREE_TYPE (name);
75 tree oprnd0;
76 enum vect_def_type dt;
77 tree def;
79 stmt_vinfo = vinfo_for_stmt (use_stmt);
80 loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
82 if (!vect_is_simple_use (name, loop_vinfo, def_stmt, &def, &dt))
83 return false;
85 if (dt != vect_loop_def
86 && dt != vect_invariant_def && dt != vect_constant_def)
87 return false;
89 if (! *def_stmt)
90 return false;
92 if (TREE_CODE (*def_stmt) != MODIFY_EXPR)
93 return false;
95 expr = TREE_OPERAND (*def_stmt, 1);
96 if (TREE_CODE (expr) != NOP_EXPR)
97 return false;
99 oprnd0 = TREE_OPERAND (expr, 0);
101 *half_type = TREE_TYPE (oprnd0);
102 if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*half_type)
103 || (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*half_type))
104 || (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 2)))
105 return false;
107 if (!vect_is_simple_use (oprnd0, loop_vinfo, &dummy, &dummy, &dt))
108 return false;
110 if (dt != vect_invariant_def && dt != vect_constant_def
111 && dt != vect_loop_def)
112 return false;
114 return true;
118 /* Function vect_recog_dot_prod_pattern
120 Try to find the following pattern:
122 type x_t, y_t;
123 TYPE1 prod;
124 TYPE2 sum = init;
125 loop:
126 sum_0 = phi <init, sum_1>
127 S1 x_t = ...
128 S2 y_t = ...
129 S3 x_T = (TYPE1) x_t;
130 S4 y_T = (TYPE1) y_t;
131 S5 prod = x_T * y_T;
132 [S6 prod = (TYPE2) prod; #optional]
133 S7 sum_1 = prod + sum_0;
135 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
136 same size of 'TYPE1' or bigger. This is a sepcial case of a reduction
137 computation.
139 Input:
141 * LAST_STMT: A stmt from which the pattern search begins. In the example,
142 when this function is called with S7, the pattern {S3,S4,S5,S6,S7} will be
143 detected.
145 Output:
147 * TYPE_IN: The type of the input arguments to the pattern.
149 * TYPE_OUT: The type of the output of this pattern.
151 * Return value: A new stmt that will be used to replace the sequence of
152 stmts that constitute the pattern. In this case it will be:
153 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
156 static tree
157 vect_recog_dot_prod_pattern (tree last_stmt, tree *type_in, tree *type_out)
159 tree stmt, expr;
160 tree oprnd0, oprnd1;
161 tree oprnd00, oprnd01;
162 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
163 tree type, half_type;
164 tree pattern_expr;
165 tree prod_type;
167 if (TREE_CODE (last_stmt) != MODIFY_EXPR)
168 return NULL;
170 expr = TREE_OPERAND (last_stmt, 1);
171 type = TREE_TYPE (expr);
173 /* Look for the following pattern
174 DX = (TYPE1) X;
175 DY = (TYPE1) Y;
176 DPROD = DX * DY;
177 DDPROD = (TYPE2) DPROD;
178 sum_1 = DDPROD + sum_0;
179 In which
180 - DX is double the size of X
181 - DY is double the size of Y
182 - DX, DY, DPROD all have the same type
183 - sum is the same size of DPROD or bigger
184 - sum has been recognized as a reduction variable.
186 This is equivalent to:
187 DPROD = X w* Y; #widen mult
188 sum_1 = DPROD w+ sum_0; #widen summation
190 DPROD = X w* Y; #widen mult
191 sum_1 = DPROD + sum_0; #summation
194 /* Starting from LAST_STMT, follow the defs of its uses in search
195 of the above pattern. */
197 if (TREE_CODE (expr) != PLUS_EXPR)
198 return NULL;
200 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
202 /* Has been detected as widening-summation? */
204 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
205 expr = TREE_OPERAND (stmt, 1);
206 type = TREE_TYPE (expr);
207 if (TREE_CODE (expr) != WIDEN_SUM_EXPR)
208 return NULL;
209 oprnd0 = TREE_OPERAND (expr, 0);
210 oprnd1 = TREE_OPERAND (expr, 1);
211 half_type = TREE_TYPE (oprnd0);
213 else
215 tree def_stmt;
217 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
218 return NULL;
219 oprnd0 = TREE_OPERAND (expr, 0);
220 oprnd1 = TREE_OPERAND (expr, 1);
221 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
222 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
223 return NULL;
224 stmt = last_stmt;
226 if (widened_name_p (oprnd0, stmt, &half_type, &def_stmt))
228 stmt = def_stmt;
229 expr = TREE_OPERAND (stmt, 1);
230 oprnd0 = TREE_OPERAND (expr, 0);
232 else
233 half_type = type;
236 /* So far so good. Since last_stmt was detected as a (summation) reduction,
237 we know that oprnd1 is the reduction variable (defined by a loop-header
238 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
239 Left to check that oprnd0 is defined by a (widen_)mult_expr */
241 prod_type = half_type;
242 stmt = SSA_NAME_DEF_STMT (oprnd0);
243 gcc_assert (stmt);
244 stmt_vinfo = vinfo_for_stmt (stmt);
245 gcc_assert (stmt_vinfo);
246 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_loop_def);
247 expr = TREE_OPERAND (stmt, 1);
248 if (TREE_CODE (expr) != MULT_EXPR)
249 return NULL;
250 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
252 /* Has been detected as a widening multiplication? */
254 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
255 expr = TREE_OPERAND (stmt, 1);
256 if (TREE_CODE (expr) != WIDEN_MULT_EXPR)
257 return NULL;
258 stmt_vinfo = vinfo_for_stmt (stmt);
259 gcc_assert (stmt_vinfo);
260 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_loop_def);
261 oprnd00 = TREE_OPERAND (expr, 0);
262 oprnd01 = TREE_OPERAND (expr, 1);
264 else
266 tree half_type0, half_type1;
267 tree def_stmt;
268 tree oprnd0, oprnd1;
270 oprnd0 = TREE_OPERAND (expr, 0);
271 oprnd1 = TREE_OPERAND (expr, 1);
272 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0))
273 != TYPE_MAIN_VARIANT (prod_type)
274 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1))
275 != TYPE_MAIN_VARIANT (prod_type))
276 return NULL;
277 if (!widened_name_p (oprnd0, stmt, &half_type0, &def_stmt))
278 return NULL;
279 oprnd00 = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
280 if (!widened_name_p (oprnd1, stmt, &half_type1, &def_stmt))
281 return NULL;
282 oprnd01 = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
283 if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
284 return NULL;
285 if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
286 return NULL;
289 half_type = TREE_TYPE (oprnd00);
290 *type_in = half_type;
291 *type_out = type;
293 /* Pattern detected. Create a stmt to be used to replace the pattern: */
294 pattern_expr = build3 (DOT_PROD_EXPR, type, oprnd00, oprnd01, oprnd1);
295 if (vect_print_dump_info (REPORT_DETAILS))
297 fprintf (vect_dump, "vect_recog_dot_prod_pattern: detected: ");
298 print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
300 return pattern_expr;
304 /* Function vect_recog_widen_mult_pattern
306 Try to find the following pattern:
308 type a_t, b_t;
309 TYPE a_T, b_T, prod_T;
311 S1 a_t = ;
312 S2 b_t = ;
313 S3 a_T = (TYPE) a_t;
314 S4 b_T = (TYPE) b_t;
315 S5 prod_T = a_T * b_T;
317 where type 'TYPE' is at least double the size of type 'type'.
319 Input:
321 * LAST_STMT: A stmt from which the pattern search begins. In the example,
322 when this function is called with S5, the pattern {S3,S4,S5} is be detected.
324 Output:
326 * TYPE_IN: The type of the input arguments to the pattern.
328 * TYPE_OUT: The type of the output of this pattern.
330 * Return value: A new stmt that will be used to replace the sequence of
331 stmts that constitute the pattern. In this case it will be:
332 WIDEN_MULT <a_t, b_t>
335 static tree
336 vect_recog_widen_mult_pattern (tree last_stmt ATTRIBUTE_UNUSED,
337 tree *type_in ATTRIBUTE_UNUSED,
338 tree *type_out ATTRIBUTE_UNUSED)
340 /* Yet to be implemented. */
341 return NULL;
345 /* Function vect_recog_widen_sum_pattern
347 Try to find the following pattern:
349 type x_t;
350 TYPE x_T, sum = init;
351 loop:
352 sum_0 = phi <init, sum_1>
353 S1 x_t = *p;
354 S2 x_T = (TYPE) x_t;
355 S3 sum_1 = x_T + sum_0;
357 where type 'TYPE' is at least double the size of type 'type', i.e - we're
358 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
359 a sepcial case of a reduction computation.
361 Input:
363 * LAST_STMT: A stmt from which the pattern search begins. In the example,
364 when this function is called with S3, the pattern {S2,S3} will be detected.
366 Output:
368 * TYPE_IN: The type of the input arguments to the pattern.
370 * TYPE_OUT: The type of the output of this pattern.
372 * Return value: A new stmt that will be used to replace the sequence of
373 stmts that constitute the pattern. In this case it will be:
374 WIDEN_SUM <x_t, sum_0>
377 static tree
378 vect_recog_widen_sum_pattern (tree last_stmt, tree *type_in, tree *type_out)
380 tree stmt, expr;
381 tree oprnd0, oprnd1;
382 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
383 tree type, half_type;
384 tree pattern_expr;
386 if (TREE_CODE (last_stmt) != MODIFY_EXPR)
387 return NULL;
389 expr = TREE_OPERAND (last_stmt, 1);
390 type = TREE_TYPE (expr);
392 /* Look for the following pattern
393 DX = (TYPE) X;
394 sum_1 = DX + sum_0;
395 In which DX is at least double the size of X, and sum_1 has been
396 recognized as a reduction variable.
399 /* Starting from LAST_STMT, follow the defs of its uses in search
400 of the above pattern. */
402 if (TREE_CODE (expr) != PLUS_EXPR)
403 return NULL;
405 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
406 return NULL;
408 oprnd0 = TREE_OPERAND (expr, 0);
409 oprnd1 = TREE_OPERAND (expr, 1);
410 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
411 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
412 return NULL;
414 /* So far so good. Since last_stmt was detected as a (summation) reduction,
415 we know that oprnd1 is the reduction variable (defined by a loop-header
416 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
417 Left to check that oprnd0 is defined by a cast from type 'type' to type
418 'TYPE'. */
420 if (!widened_name_p (oprnd0, last_stmt, &half_type, &stmt))
421 return NULL;
423 oprnd0 = TREE_OPERAND (TREE_OPERAND (stmt, 1), 0);
424 *type_in = half_type;
425 *type_out = type;
427 /* Pattern detected. Create a stmt to be used to replace the pattern: */
428 pattern_expr = build2 (WIDEN_SUM_EXPR, type, oprnd0, oprnd1);
429 if (vect_print_dump_info (REPORT_DETAILS))
431 fprintf (vect_dump, "vect_recog_widen_sum_pattern: detected: ");
432 print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
434 return pattern_expr;
438 /* Function vect_pattern_recog_1
440 Input:
441 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
442 computation pattern.
443 STMT: A stmt from which the pattern search should start.
445 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
446 expression that computes the same functionality and can be used to
447 replace the sequence of stmts that are involved in the pattern.
449 Output:
450 This function checks if the expression returned by PATTERN_RECOG_FUNC is
451 supported in vector form by the target. We use 'TYPE_IN' to obtain the
452 relevant vector type. If 'TYPE_IN' is already a vector type, then this
453 indicates that target support had already been checked by PATTERN_RECOG_FUNC.
454 If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
455 to the available target pattern.
457 This function also does some bookeeping, as explained in the documentation
458 for vect_recog_pattern. */
460 static void
461 vect_pattern_recog_1 (
462 tree (* vect_recog_func) (tree, tree *, tree *),
463 block_stmt_iterator si)
465 tree stmt = bsi_stmt (si);
466 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
467 stmt_vec_info pattern_stmt_info;
468 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
469 tree pattern_expr;
470 tree pattern_vectype;
471 tree type_in, type_out;
472 tree pattern_type;
473 enum tree_code code;
474 tree var, var_name;
475 stmt_ann_t ann;
477 pattern_expr = (* vect_recog_func) (stmt, &type_in, &type_out);
478 if (!pattern_expr)
479 return;
481 if (VECTOR_MODE_P (TYPE_MODE (type_in)))
483 /* No need to check target support (already checked by the pattern
484 recognition function). */
485 pattern_vectype = type_in;
487 else
489 enum tree_code vec_mode;
490 enum insn_code icode;
491 optab optab;
493 /* Check target support */
494 pattern_vectype = get_vectype_for_scalar_type (type_in);
495 optab = optab_for_tree_code (TREE_CODE (pattern_expr), pattern_vectype);
496 vec_mode = TYPE_MODE (pattern_vectype);
497 if (!optab
498 || (icode = optab->handlers[(int) vec_mode].insn_code) ==
499 CODE_FOR_nothing
500 || (type_out
501 && (insn_data[icode].operand[0].mode !=
502 TYPE_MODE (get_vectype_for_scalar_type (type_out)))))
503 return;
506 /* Found a vectorizable pattern. */
507 if (vect_print_dump_info (REPORT_DETAILS))
509 fprintf (vect_dump, "pattern recognized: ");
510 print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
513 /* Mark the stmts that are involved in the pattern,
514 create a new stmt to express the pattern and insert it. */
515 code = TREE_CODE (pattern_expr);
516 pattern_type = TREE_TYPE (pattern_expr);
517 var = create_tmp_var (pattern_type, "patt");
518 add_referenced_tmp_var (var);
519 var_name = make_ssa_name (var, NULL_TREE);
520 pattern_expr = build2 (MODIFY_EXPR, void_type_node, var_name, pattern_expr);
521 SSA_NAME_DEF_STMT (var_name) = pattern_expr;
522 bsi_insert_before (&si, pattern_expr, BSI_SAME_STMT);
523 ann = stmt_ann (pattern_expr);
524 set_stmt_info ((tree_ann_t)ann, new_stmt_vec_info (pattern_expr, loop_vinfo));
525 pattern_stmt_info = vinfo_for_stmt (pattern_expr);
527 STMT_VINFO_RELATED_STMT (pattern_stmt_info) = stmt;
528 STMT_VINFO_DEF_TYPE (pattern_stmt_info) = STMT_VINFO_DEF_TYPE (stmt_info);
529 STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
530 STMT_VINFO_IN_PATTERN_P (stmt_info) = true;
531 STMT_VINFO_RELATED_STMT (stmt_info) = pattern_expr;
533 return;
537 /* Function vect_pattern_recog
539 Input:
540 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
541 computation idioms.
543 Output - for each computation idiom that is detected we insert a new stmt
544 that provides the same functionality and that can be vectorized. We
545 also record some information in the struct_stmt_info of the relevant
546 stmts, as explained below:
548 At the entry to this function we have the following stmts, with the
549 following initial value in the STMT_VINFO fields:
551 stmt in_pattern_p related_stmt vec_stmt
552 S1: a_i = .... - - -
553 S2: a_2 = ..use(a_i).. - - -
554 S3: a_1 = ..use(a_2).. - - -
555 S4: a_0 = ..use(a_1).. - - -
556 S5: ... = ..use(a_0).. - - -
558 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
559 represented by a single stmt. We then:
560 - create a new stmt S6 that will replace the pattern.
561 - insert the new stmt S6 before the last stmt in the pattern
562 - fill in the STMT_VINFO fields as follows:
564 in_pattern_p related_stmt vec_stmt
565 S1: a_i = .... - - -
566 S2: a_2 = ..use(a_i).. - - -
567 S3: a_1 = ..use(a_2).. - - -
568 > S6: a_new = .... - S4 -
569 S4: a_0 = ..use(a_1).. true S6 -
570 S5: ... = ..use(a_0).. - - -
572 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
573 to each other through the RELATED_STMT field).
575 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
576 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
577 remain irrelevant unless used by stmts other than S4.
579 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
580 (because they are marked as irrelevent). It will vectorize S6, and record
581 a pointer to the new vector stmt VS6 both from S6 (as usual), and also
582 from S4. We do that so that when we get to vectorizing stmts that use the
583 def of S4 (like S5 that uses a_0), we'll know where to take the relevant
584 vector-def from. S4 will be skipped, and S5 will be vectorized as usual:
586 in_pattern_p related_stmt vec_stmt
587 S1: a_i = .... - - -
588 S2: a_2 = ..use(a_i).. - - -
589 S3: a_1 = ..use(a_2).. - - -
590 > VS6: va_new = .... - - -
591 S6: a_new = .... - S4 VS6
592 S4: a_0 = ..use(a_1).. true S6 VS6
593 > VS5: ... = ..vuse(va_new).. - - -
594 S5: ... = ..use(a_0).. - - -
596 DCE could then get rid of {S1,S2,S3,S4,S5,S6} (if their defs are not used
597 elsewhere), and we'll end up with:
599 VS6: va_new = ....
600 VS5: ... = ..vuse(va_new)..
602 If vectorization does not succeed, DCE will clean S6 away (its def is
603 not used), and we'll end up with the original sequence.
606 void
607 vect_pattern_recog (loop_vec_info loop_vinfo)
609 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
610 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
611 unsigned int nbbs = loop->num_nodes;
612 block_stmt_iterator si;
613 tree stmt;
614 unsigned int i, j;
615 tree (* vect_recog_func_ptr) (tree, tree *, tree *);
617 if (vect_print_dump_info (REPORT_DETAILS))
618 fprintf (vect_dump, "=== vect_pattern_recog ===");
620 /* Scan through the loop stmts, applying the pattern recognition
621 functions starting at each stmt visited: */
622 for (i = 0; i < nbbs; i++)
624 basic_block bb = bbs[i];
625 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
627 stmt = bsi_stmt (si);
629 /* Scan over all generic vect_recog_xxx_pattern functions. */
630 for (j = 0; j < NUM_PATTERNS; j++)
632 vect_recog_func_ptr = vect_vect_recog_func_ptrs[j];
633 vect_pattern_recog_1 (vect_recog_func_ptr, si);