* recog.c (peephole2_optimize): Make it static.
[official-gcc.git] / gcc / loop-unroll.c
blob3b4c8e5931c62df925120609c0362e96c9058dfd
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
45 What we do:
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
72 /* Information about induction variables to split. */
74 struct iv_to_split
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 unsigned n_loc;
81 unsigned loc[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 DEF_VEC_P(rtx);
88 DEF_VEC_ALLOC_P(rtx,heap);
90 /* Information about accumulators to expand. */
92 struct var_to_expand
94 rtx insn; /* The insn in that the variable expansion occurs. */
95 rtx reg; /* The accumulator which is expanded. */
96 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
97 enum rtx_code op; /* The type of the accumulation - addition, subtraction
98 or multiplication. */
99 int expansion_count; /* Count the number of expansions generated so far. */
100 int reuse_expansion; /* The expansion we intend to reuse to expand
101 the accumulator. If REUSE_EXPANSION is 0 reuse
102 the original accumulator. Else use
103 var_expansions[REUSE_EXPANSION - 1]. */
106 /* Information about optimization applied in
107 the unrolled loop. */
109 struct opt_info
111 htab_t insns_to_split; /* A hashtable of insns to split. */
112 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
113 to expand. */
114 unsigned first_new_block; /* The first basic block that was
115 duplicated. */
116 basic_block loop_exit; /* The loop exit basic block. */
117 basic_block loop_preheader; /* The loop preheader basic block. */
120 static void decide_unrolling_and_peeling (struct loops *, int);
121 static void peel_loops_completely (struct loops *, int);
122 static void decide_peel_simple (struct loop *, int);
123 static void decide_peel_once_rolling (struct loop *, int);
124 static void decide_peel_completely (struct loop *, int);
125 static void decide_unroll_stupid (struct loop *, int);
126 static void decide_unroll_constant_iterations (struct loop *, int);
127 static void decide_unroll_runtime_iterations (struct loop *, int);
128 static void peel_loop_simple (struct loops *, struct loop *);
129 static void peel_loop_completely (struct loops *, struct loop *);
130 static void unroll_loop_stupid (struct loops *, struct loop *);
131 static void unroll_loop_constant_iterations (struct loops *, struct loop *);
132 static void unroll_loop_runtime_iterations (struct loops *, struct loop *);
133 static struct opt_info *analyze_insns_in_loop (struct loop *);
134 static void opt_info_start_duplication (struct opt_info *);
135 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
136 static void free_opt_info (struct opt_info *);
137 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
138 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
139 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
140 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
141 static int insert_var_expansion_initialization (void **, void *);
142 static int combine_var_copies_in_loop_exit (void **, void *);
143 static int release_var_copies (void **, void *);
144 static rtx get_expansion (struct var_to_expand *);
146 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
147 void
148 unroll_and_peel_loops (struct loops *loops, int flags)
150 struct loop *loop, *next;
151 bool check;
153 /* First perform complete loop peeling (it is almost surely a win,
154 and affects parameters for further decision a lot). */
155 peel_loops_completely (loops, flags);
157 /* Now decide rest of unrolling and peeling. */
158 decide_unrolling_and_peeling (loops, flags);
160 loop = loops->tree_root;
161 while (loop->inner)
162 loop = loop->inner;
164 /* Scan the loops, inner ones first. */
165 while (loop != loops->tree_root)
167 if (loop->next)
169 next = loop->next;
170 while (next->inner)
171 next = next->inner;
173 else
174 next = loop->outer;
176 check = true;
177 /* And perform the appropriate transformations. */
178 switch (loop->lpt_decision.decision)
180 case LPT_PEEL_COMPLETELY:
181 /* Already done. */
182 gcc_unreachable ();
183 case LPT_PEEL_SIMPLE:
184 peel_loop_simple (loops, loop);
185 break;
186 case LPT_UNROLL_CONSTANT:
187 unroll_loop_constant_iterations (loops, loop);
188 break;
189 case LPT_UNROLL_RUNTIME:
190 unroll_loop_runtime_iterations (loops, loop);
191 break;
192 case LPT_UNROLL_STUPID:
193 unroll_loop_stupid (loops, loop);
194 break;
195 case LPT_NONE:
196 check = false;
197 break;
198 default:
199 gcc_unreachable ();
201 if (check)
203 #ifdef ENABLE_CHECKING
204 verify_dominators (CDI_DOMINATORS);
205 verify_loop_structure (loops);
206 #endif
208 loop = next;
211 iv_analysis_done ();
214 /* Check whether exit of the LOOP is at the end of loop body. */
216 static bool
217 loop_exit_at_end_p (struct loop *loop)
219 struct niter_desc *desc = get_simple_loop_desc (loop);
220 rtx insn;
222 if (desc->in_edge->dest != loop->latch)
223 return false;
225 /* Check that the latch is empty. */
226 FOR_BB_INSNS (loop->latch, insn)
228 if (INSN_P (insn))
229 return false;
232 return true;
235 /* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
236 static void
237 peel_loops_completely (struct loops *loops, int flags)
239 struct loop *loop, *next;
241 loop = loops->tree_root;
242 while (loop->inner)
243 loop = loop->inner;
245 while (loop != loops->tree_root)
247 if (loop->next)
249 next = loop->next;
250 while (next->inner)
251 next = next->inner;
253 else
254 next = loop->outer;
256 loop->lpt_decision.decision = LPT_NONE;
258 if (dump_file)
259 fprintf (dump_file,
260 "\n;; *** Considering loop %d for complete peeling ***\n",
261 loop->num);
263 loop->ninsns = num_loop_insns (loop);
265 decide_peel_once_rolling (loop, flags);
266 if (loop->lpt_decision.decision == LPT_NONE)
267 decide_peel_completely (loop, flags);
269 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
271 peel_loop_completely (loops, loop);
272 #ifdef ENABLE_CHECKING
273 verify_dominators (CDI_DOMINATORS);
274 verify_loop_structure (loops);
275 #endif
277 loop = next;
281 /* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
282 static void
283 decide_unrolling_and_peeling (struct loops *loops, int flags)
285 struct loop *loop = loops->tree_root, *next;
287 while (loop->inner)
288 loop = loop->inner;
290 /* Scan the loops, inner ones first. */
291 while (loop != loops->tree_root)
293 if (loop->next)
295 next = loop->next;
296 while (next->inner)
297 next = next->inner;
299 else
300 next = loop->outer;
302 loop->lpt_decision.decision = LPT_NONE;
304 if (dump_file)
305 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
307 /* Do not peel cold areas. */
308 if (!maybe_hot_bb_p (loop->header))
310 if (dump_file)
311 fprintf (dump_file, ";; Not considering loop, cold area\n");
312 loop = next;
313 continue;
316 /* Can the loop be manipulated? */
317 if (!can_duplicate_loop_p (loop))
319 if (dump_file)
320 fprintf (dump_file,
321 ";; Not considering loop, cannot duplicate\n");
322 loop = next;
323 continue;
326 /* Skip non-innermost loops. */
327 if (loop->inner)
329 if (dump_file)
330 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
331 loop = next;
332 continue;
335 loop->ninsns = num_loop_insns (loop);
336 loop->av_ninsns = average_num_loop_insns (loop);
338 /* Try transformations one by one in decreasing order of
339 priority. */
341 decide_unroll_constant_iterations (loop, flags);
342 if (loop->lpt_decision.decision == LPT_NONE)
343 decide_unroll_runtime_iterations (loop, flags);
344 if (loop->lpt_decision.decision == LPT_NONE)
345 decide_unroll_stupid (loop, flags);
346 if (loop->lpt_decision.decision == LPT_NONE)
347 decide_peel_simple (loop, flags);
349 loop = next;
353 /* Decide whether the LOOP is once rolling and suitable for complete
354 peeling. */
355 static void
356 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
358 struct niter_desc *desc;
360 if (dump_file)
361 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
363 /* Is the loop small enough? */
364 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
366 if (dump_file)
367 fprintf (dump_file, ";; Not considering loop, is too big\n");
368 return;
371 /* Check for simple loops. */
372 desc = get_simple_loop_desc (loop);
374 /* Check number of iterations. */
375 if (!desc->simple_p
376 || desc->assumptions
377 || desc->infinite
378 || !desc->const_iter
379 || desc->niter != 0)
381 if (dump_file)
382 fprintf (dump_file,
383 ";; Unable to prove that the loop rolls exactly once\n");
384 return;
387 /* Success. */
388 if (dump_file)
389 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
390 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
393 /* Decide whether the LOOP is suitable for complete peeling. */
394 static void
395 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
397 unsigned npeel;
398 struct niter_desc *desc;
400 if (dump_file)
401 fprintf (dump_file, "\n;; Considering peeling completely\n");
403 /* Skip non-innermost loops. */
404 if (loop->inner)
406 if (dump_file)
407 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
408 return;
411 /* Do not peel cold areas. */
412 if (!maybe_hot_bb_p (loop->header))
414 if (dump_file)
415 fprintf (dump_file, ";; Not considering loop, cold area\n");
416 return;
419 /* Can the loop be manipulated? */
420 if (!can_duplicate_loop_p (loop))
422 if (dump_file)
423 fprintf (dump_file,
424 ";; Not considering loop, cannot duplicate\n");
425 return;
428 /* npeel = number of iterations to peel. */
429 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
430 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
431 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
433 /* Is the loop small enough? */
434 if (!npeel)
436 if (dump_file)
437 fprintf (dump_file, ";; Not considering loop, is too big\n");
438 return;
441 /* Check for simple loops. */
442 desc = get_simple_loop_desc (loop);
444 /* Check number of iterations. */
445 if (!desc->simple_p
446 || desc->assumptions
447 || !desc->const_iter
448 || desc->infinite)
450 if (dump_file)
451 fprintf (dump_file,
452 ";; Unable to prove that the loop iterates constant times\n");
453 return;
456 if (desc->niter > npeel - 1)
458 if (dump_file)
460 fprintf (dump_file,
461 ";; Not peeling loop completely, rolls too much (");
462 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
463 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
465 return;
468 /* Success. */
469 if (dump_file)
470 fprintf (dump_file, ";; Decided to peel loop completely\n");
471 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
474 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
475 completely. The transformation done:
477 for (i = 0; i < 4; i++)
478 body;
482 i = 0;
483 body; i++;
484 body; i++;
485 body; i++;
486 body; i++;
488 static void
489 peel_loop_completely (struct loops *loops, struct loop *loop)
491 sbitmap wont_exit;
492 unsigned HOST_WIDE_INT npeel;
493 unsigned n_remove_edges, i;
494 edge *remove_edges, ein;
495 struct niter_desc *desc = get_simple_loop_desc (loop);
496 struct opt_info *opt_info = NULL;
498 npeel = desc->niter;
500 if (npeel)
502 bool ok;
504 wont_exit = sbitmap_alloc (npeel + 1);
505 sbitmap_ones (wont_exit);
506 RESET_BIT (wont_exit, 0);
507 if (desc->noloop_assumptions)
508 RESET_BIT (wont_exit, 1);
510 remove_edges = xcalloc (npeel, sizeof (edge));
511 n_remove_edges = 0;
513 if (flag_split_ivs_in_unroller)
514 opt_info = analyze_insns_in_loop (loop);
516 opt_info_start_duplication (opt_info);
517 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
518 loops, npeel,
519 wont_exit, desc->out_edge,
520 remove_edges, &n_remove_edges,
521 DLTHE_FLAG_UPDATE_FREQ
522 | DLTHE_FLAG_COMPLETTE_PEEL
523 | (opt_info
524 ? DLTHE_RECORD_COPY_NUMBER : 0));
525 gcc_assert (ok);
527 free (wont_exit);
529 if (opt_info)
531 apply_opt_in_copies (opt_info, npeel, false, true);
532 free_opt_info (opt_info);
535 /* Remove the exit edges. */
536 for (i = 0; i < n_remove_edges; i++)
537 remove_path (loops, remove_edges[i]);
538 free (remove_edges);
541 ein = desc->in_edge;
542 free_simple_loop_desc (loop);
544 /* Now remove the unreachable part of the last iteration and cancel
545 the loop. */
546 remove_path (loops, ein);
548 if (dump_file)
549 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
552 /* Decide whether to unroll LOOP iterating constant number of times
553 and how much. */
555 static void
556 decide_unroll_constant_iterations (struct loop *loop, int flags)
558 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
559 struct niter_desc *desc;
561 if (!(flags & UAP_UNROLL))
563 /* We were not asked to, just return back silently. */
564 return;
567 if (dump_file)
568 fprintf (dump_file,
569 "\n;; Considering unrolling loop with constant "
570 "number of iterations\n");
572 /* nunroll = total number of copies of the original loop body in
573 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
574 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
575 nunroll_by_av
576 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
577 if (nunroll > nunroll_by_av)
578 nunroll = nunroll_by_av;
579 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
580 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
582 /* Skip big loops. */
583 if (nunroll <= 1)
585 if (dump_file)
586 fprintf (dump_file, ";; Not considering loop, is too big\n");
587 return;
590 /* Check for simple loops. */
591 desc = get_simple_loop_desc (loop);
593 /* Check number of iterations. */
594 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
596 if (dump_file)
597 fprintf (dump_file,
598 ";; Unable to prove that the loop iterates constant times\n");
599 return;
602 /* Check whether the loop rolls enough to consider. */
603 if (desc->niter < 2 * nunroll)
605 if (dump_file)
606 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
607 return;
610 /* Success; now compute number of iterations to unroll. We alter
611 nunroll so that as few as possible copies of loop body are
612 necessary, while still not decreasing the number of unrollings
613 too much (at most by 1). */
614 best_copies = 2 * nunroll + 10;
616 i = 2 * nunroll + 2;
617 if (i - 1 >= desc->niter)
618 i = desc->niter - 2;
620 for (; i >= nunroll - 1; i--)
622 unsigned exit_mod = desc->niter % (i + 1);
624 if (!loop_exit_at_end_p (loop))
625 n_copies = exit_mod + i + 1;
626 else if (exit_mod != (unsigned) i
627 || desc->noloop_assumptions != NULL_RTX)
628 n_copies = exit_mod + i + 2;
629 else
630 n_copies = i + 1;
632 if (n_copies < best_copies)
634 best_copies = n_copies;
635 best_unroll = i;
639 if (dump_file)
640 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
641 best_unroll + 1, best_copies, nunroll);
643 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
644 loop->lpt_decision.times = best_unroll;
646 if (dump_file)
647 fprintf (dump_file,
648 ";; Decided to unroll the constant times rolling loop, %d times.\n",
649 loop->lpt_decision.times);
652 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
653 times. The transformation does this:
655 for (i = 0; i < 102; i++)
656 body;
660 i = 0;
661 body; i++;
662 body; i++;
663 while (i < 102)
665 body; i++;
666 body; i++;
667 body; i++;
668 body; i++;
671 static void
672 unroll_loop_constant_iterations (struct loops *loops, struct loop *loop)
674 unsigned HOST_WIDE_INT niter;
675 unsigned exit_mod;
676 sbitmap wont_exit;
677 unsigned n_remove_edges, i;
678 edge *remove_edges;
679 unsigned max_unroll = loop->lpt_decision.times;
680 struct niter_desc *desc = get_simple_loop_desc (loop);
681 bool exit_at_end = loop_exit_at_end_p (loop);
682 struct opt_info *opt_info = NULL;
683 bool ok;
685 niter = desc->niter;
687 /* Should not get here (such loop should be peeled instead). */
688 gcc_assert (niter > max_unroll + 1);
690 exit_mod = niter % (max_unroll + 1);
692 wont_exit = sbitmap_alloc (max_unroll + 1);
693 sbitmap_ones (wont_exit);
695 remove_edges = xcalloc (max_unroll + exit_mod + 1, sizeof (edge));
696 n_remove_edges = 0;
697 if (flag_split_ivs_in_unroller
698 || flag_variable_expansion_in_unroller)
699 opt_info = analyze_insns_in_loop (loop);
701 if (!exit_at_end)
703 /* The exit is not at the end of the loop; leave exit test
704 in the first copy, so that the loops that start with test
705 of exit condition have continuous body after unrolling. */
707 if (dump_file)
708 fprintf (dump_file, ";; Condition on beginning of loop.\n");
710 /* Peel exit_mod iterations. */
711 RESET_BIT (wont_exit, 0);
712 if (desc->noloop_assumptions)
713 RESET_BIT (wont_exit, 1);
715 if (exit_mod)
717 opt_info_start_duplication (opt_info);
718 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
719 loops, exit_mod,
720 wont_exit, desc->out_edge,
721 remove_edges, &n_remove_edges,
722 DLTHE_FLAG_UPDATE_FREQ
723 | (opt_info && exit_mod > 1
724 ? DLTHE_RECORD_COPY_NUMBER
725 : 0));
726 gcc_assert (ok);
728 if (opt_info && exit_mod > 1)
729 apply_opt_in_copies (opt_info, exit_mod, false, false);
731 desc->noloop_assumptions = NULL_RTX;
732 desc->niter -= exit_mod;
733 desc->niter_max -= exit_mod;
736 SET_BIT (wont_exit, 1);
738 else
740 /* Leave exit test in last copy, for the same reason as above if
741 the loop tests the condition at the end of loop body. */
743 if (dump_file)
744 fprintf (dump_file, ";; Condition on end of loop.\n");
746 /* We know that niter >= max_unroll + 2; so we do not need to care of
747 case when we would exit before reaching the loop. So just peel
748 exit_mod + 1 iterations. */
749 if (exit_mod != max_unroll
750 || desc->noloop_assumptions)
752 RESET_BIT (wont_exit, 0);
753 if (desc->noloop_assumptions)
754 RESET_BIT (wont_exit, 1);
756 opt_info_start_duplication (opt_info);
757 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
758 loops, exit_mod + 1,
759 wont_exit, desc->out_edge,
760 remove_edges, &n_remove_edges,
761 DLTHE_FLAG_UPDATE_FREQ
762 | (opt_info && exit_mod > 0
763 ? DLTHE_RECORD_COPY_NUMBER
764 : 0));
765 gcc_assert (ok);
767 if (opt_info && exit_mod > 0)
768 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
770 desc->niter -= exit_mod + 1;
771 desc->niter_max -= exit_mod + 1;
772 desc->noloop_assumptions = NULL_RTX;
774 SET_BIT (wont_exit, 0);
775 SET_BIT (wont_exit, 1);
778 RESET_BIT (wont_exit, max_unroll);
781 /* Now unroll the loop. */
783 opt_info_start_duplication (opt_info);
784 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
785 loops, max_unroll,
786 wont_exit, desc->out_edge,
787 remove_edges, &n_remove_edges,
788 DLTHE_FLAG_UPDATE_FREQ
789 | (opt_info
790 ? DLTHE_RECORD_COPY_NUMBER
791 : 0));
792 gcc_assert (ok);
794 if (opt_info)
796 apply_opt_in_copies (opt_info, max_unroll, true, true);
797 free_opt_info (opt_info);
800 free (wont_exit);
802 if (exit_at_end)
804 basic_block exit_block = get_bb_copy (desc->in_edge->src);
805 /* Find a new in and out edge; they are in the last copy we have made. */
807 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
809 desc->out_edge = EDGE_SUCC (exit_block, 0);
810 desc->in_edge = EDGE_SUCC (exit_block, 1);
812 else
814 desc->out_edge = EDGE_SUCC (exit_block, 1);
815 desc->in_edge = EDGE_SUCC (exit_block, 0);
819 desc->niter /= max_unroll + 1;
820 desc->niter_max /= max_unroll + 1;
821 desc->niter_expr = GEN_INT (desc->niter);
823 /* Remove the edges. */
824 for (i = 0; i < n_remove_edges; i++)
825 remove_path (loops, remove_edges[i]);
826 free (remove_edges);
828 if (dump_file)
829 fprintf (dump_file,
830 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
831 max_unroll, num_loop_insns (loop));
834 /* Decide whether to unroll LOOP iterating runtime computable number of times
835 and how much. */
836 static void
837 decide_unroll_runtime_iterations (struct loop *loop, int flags)
839 unsigned nunroll, nunroll_by_av, i;
840 struct niter_desc *desc;
842 if (!(flags & UAP_UNROLL))
844 /* We were not asked to, just return back silently. */
845 return;
848 if (dump_file)
849 fprintf (dump_file,
850 "\n;; Considering unrolling loop with runtime "
851 "computable number of iterations\n");
853 /* nunroll = total number of copies of the original loop body in
854 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
855 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
856 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
857 if (nunroll > nunroll_by_av)
858 nunroll = nunroll_by_av;
859 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
860 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
862 /* Skip big loops. */
863 if (nunroll <= 1)
865 if (dump_file)
866 fprintf (dump_file, ";; Not considering loop, is too big\n");
867 return;
870 /* Check for simple loops. */
871 desc = get_simple_loop_desc (loop);
873 /* Check simpleness. */
874 if (!desc->simple_p || desc->assumptions)
876 if (dump_file)
877 fprintf (dump_file,
878 ";; Unable to prove that the number of iterations "
879 "can be counted in runtime\n");
880 return;
883 if (desc->const_iter)
885 if (dump_file)
886 fprintf (dump_file, ";; Loop iterates constant times\n");
887 return;
890 /* If we have profile feedback, check whether the loop rolls. */
891 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
893 if (dump_file)
894 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
895 return;
898 /* Success; now force nunroll to be power of 2, as we are unable to
899 cope with overflows in computation of number of iterations. */
900 for (i = 1; 2 * i <= nunroll; i *= 2)
901 continue;
903 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
904 loop->lpt_decision.times = i - 1;
906 if (dump_file)
907 fprintf (dump_file,
908 ";; Decided to unroll the runtime computable "
909 "times rolling loop, %d times.\n",
910 loop->lpt_decision.times);
913 /* Unroll LOOP for that we are able to count number of iterations in runtime
914 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
915 extra care for case n < 0):
917 for (i = 0; i < n; i++)
918 body;
922 i = 0;
923 mod = n % 4;
925 switch (mod)
927 case 3:
928 body; i++;
929 case 2:
930 body; i++;
931 case 1:
932 body; i++;
933 case 0: ;
936 while (i < n)
938 body; i++;
939 body; i++;
940 body; i++;
941 body; i++;
944 static void
945 unroll_loop_runtime_iterations (struct loops *loops, struct loop *loop)
947 rtx old_niter, niter, init_code, branch_code, tmp;
948 unsigned i, j, p;
949 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
950 unsigned n_dom_bbs;
951 sbitmap wont_exit;
952 int may_exit_copy;
953 unsigned n_peel, n_remove_edges;
954 edge *remove_edges, e;
955 bool extra_zero_check, last_may_exit;
956 unsigned max_unroll = loop->lpt_decision.times;
957 struct niter_desc *desc = get_simple_loop_desc (loop);
958 bool exit_at_end = loop_exit_at_end_p (loop);
959 struct opt_info *opt_info = NULL;
960 bool ok;
962 if (flag_split_ivs_in_unroller
963 || flag_variable_expansion_in_unroller)
964 opt_info = analyze_insns_in_loop (loop);
966 /* Remember blocks whose dominators will have to be updated. */
967 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
968 n_dom_bbs = 0;
970 body = get_loop_body (loop);
971 for (i = 0; i < loop->num_nodes; i++)
973 unsigned nldom;
974 basic_block *ldom;
976 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
977 for (j = 0; j < nldom; j++)
978 if (!flow_bb_inside_loop_p (loop, ldom[j]))
979 dom_bbs[n_dom_bbs++] = ldom[j];
981 free (ldom);
983 free (body);
985 if (!exit_at_end)
987 /* Leave exit in first copy (for explanation why see comment in
988 unroll_loop_constant_iterations). */
989 may_exit_copy = 0;
990 n_peel = max_unroll - 1;
991 extra_zero_check = true;
992 last_may_exit = false;
994 else
996 /* Leave exit in last copy (for explanation why see comment in
997 unroll_loop_constant_iterations). */
998 may_exit_copy = max_unroll;
999 n_peel = max_unroll;
1000 extra_zero_check = false;
1001 last_may_exit = true;
1004 /* Get expression for number of iterations. */
1005 start_sequence ();
1006 old_niter = niter = gen_reg_rtx (desc->mode);
1007 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1008 if (tmp != niter)
1009 emit_move_insn (niter, tmp);
1011 /* Count modulo by ANDing it with max_unroll; we use the fact that
1012 the number of unrollings is a power of two, and thus this is correct
1013 even if there is overflow in the computation. */
1014 niter = expand_simple_binop (desc->mode, AND,
1015 niter,
1016 GEN_INT (max_unroll),
1017 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1019 init_code = get_insns ();
1020 end_sequence ();
1022 /* Precondition the loop. */
1023 loop_split_edge_with (loop_preheader_edge (loop), init_code);
1025 remove_edges = xcalloc (max_unroll + n_peel + 1, sizeof (edge));
1026 n_remove_edges = 0;
1028 wont_exit = sbitmap_alloc (max_unroll + 2);
1030 /* Peel the first copy of loop body (almost always we must leave exit test
1031 here; the only exception is when we have extra zero check and the number
1032 of iterations is reliable. Also record the place of (possible) extra
1033 zero check. */
1034 sbitmap_zero (wont_exit);
1035 if (extra_zero_check
1036 && !desc->noloop_assumptions)
1037 SET_BIT (wont_exit, 1);
1038 ezc_swtch = loop_preheader_edge (loop)->src;
1039 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1040 loops, 1,
1041 wont_exit, desc->out_edge,
1042 remove_edges, &n_remove_edges,
1043 DLTHE_FLAG_UPDATE_FREQ);
1044 gcc_assert (ok);
1046 /* Record the place where switch will be built for preconditioning. */
1047 swtch = loop_split_edge_with (loop_preheader_edge (loop),
1048 NULL_RTX);
1050 for (i = 0; i < n_peel; i++)
1052 /* Peel the copy. */
1053 sbitmap_zero (wont_exit);
1054 if (i != n_peel - 1 || !last_may_exit)
1055 SET_BIT (wont_exit, 1);
1056 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1057 loops, 1,
1058 wont_exit, desc->out_edge,
1059 remove_edges, &n_remove_edges,
1060 DLTHE_FLAG_UPDATE_FREQ);
1061 gcc_assert (ok);
1063 /* Create item for switch. */
1064 j = n_peel - i - (extra_zero_check ? 0 : 1);
1065 p = REG_BR_PROB_BASE / (i + 2);
1067 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1068 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1069 block_label (preheader), p,
1070 NULL_RTX);
1072 swtch = loop_split_edge_with (single_pred_edge (swtch), branch_code);
1073 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1074 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1075 e = make_edge (swtch, preheader,
1076 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1077 e->probability = p;
1080 if (extra_zero_check)
1082 /* Add branch for zero iterations. */
1083 p = REG_BR_PROB_BASE / (max_unroll + 1);
1084 swtch = ezc_swtch;
1085 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1086 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1087 block_label (preheader), p,
1088 NULL_RTX);
1090 swtch = loop_split_edge_with (single_succ_edge (swtch), branch_code);
1091 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1092 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1093 e = make_edge (swtch, preheader,
1094 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1095 e->probability = p;
1098 /* Recount dominators for outer blocks. */
1099 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1101 /* And unroll loop. */
1103 sbitmap_ones (wont_exit);
1104 RESET_BIT (wont_exit, may_exit_copy);
1105 opt_info_start_duplication (opt_info);
1107 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1108 loops, max_unroll,
1109 wont_exit, desc->out_edge,
1110 remove_edges, &n_remove_edges,
1111 DLTHE_FLAG_UPDATE_FREQ
1112 | (opt_info
1113 ? DLTHE_RECORD_COPY_NUMBER
1114 : 0));
1115 gcc_assert (ok);
1117 if (opt_info)
1119 apply_opt_in_copies (opt_info, max_unroll, true, true);
1120 free_opt_info (opt_info);
1123 free (wont_exit);
1125 if (exit_at_end)
1127 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1128 /* Find a new in and out edge; they are in the last copy we have
1129 made. */
1131 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1133 desc->out_edge = EDGE_SUCC (exit_block, 0);
1134 desc->in_edge = EDGE_SUCC (exit_block, 1);
1136 else
1138 desc->out_edge = EDGE_SUCC (exit_block, 1);
1139 desc->in_edge = EDGE_SUCC (exit_block, 0);
1143 /* Remove the edges. */
1144 for (i = 0; i < n_remove_edges; i++)
1145 remove_path (loops, remove_edges[i]);
1146 free (remove_edges);
1148 /* We must be careful when updating the number of iterations due to
1149 preconditioning and the fact that the value must be valid at entry
1150 of the loop. After passing through the above code, we see that
1151 the correct new number of iterations is this: */
1152 gcc_assert (!desc->const_iter);
1153 desc->niter_expr =
1154 simplify_gen_binary (UDIV, desc->mode, old_niter,
1155 GEN_INT (max_unroll + 1));
1156 desc->niter_max /= max_unroll + 1;
1157 if (exit_at_end)
1159 desc->niter_expr =
1160 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1161 desc->noloop_assumptions = NULL_RTX;
1162 desc->niter_max--;
1165 if (dump_file)
1166 fprintf (dump_file,
1167 ";; Unrolled loop %d times, counting # of iterations "
1168 "in runtime, %i insns\n",
1169 max_unroll, num_loop_insns (loop));
1172 /* Decide whether to simply peel LOOP and how much. */
1173 static void
1174 decide_peel_simple (struct loop *loop, int flags)
1176 unsigned npeel;
1177 struct niter_desc *desc;
1179 if (!(flags & UAP_PEEL))
1181 /* We were not asked to, just return back silently. */
1182 return;
1185 if (dump_file)
1186 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1188 /* npeel = number of iterations to peel. */
1189 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1190 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1191 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1193 /* Skip big loops. */
1194 if (!npeel)
1196 if (dump_file)
1197 fprintf (dump_file, ";; Not considering loop, is too big\n");
1198 return;
1201 /* Check for simple loops. */
1202 desc = get_simple_loop_desc (loop);
1204 /* Check number of iterations. */
1205 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1207 if (dump_file)
1208 fprintf (dump_file, ";; Loop iterates constant times\n");
1209 return;
1212 /* Do not simply peel loops with branches inside -- it increases number
1213 of mispredicts. */
1214 if (num_loop_branches (loop) > 1)
1216 if (dump_file)
1217 fprintf (dump_file, ";; Not peeling, contains branches\n");
1218 return;
1221 if (loop->header->count)
1223 unsigned niter = expected_loop_iterations (loop);
1224 if (niter + 1 > npeel)
1226 if (dump_file)
1228 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1229 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1230 (HOST_WIDEST_INT) (niter + 1));
1231 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1232 npeel);
1234 return;
1236 npeel = niter + 1;
1238 else
1240 /* For now we have no good heuristics to decide whether loop peeling
1241 will be effective, so disable it. */
1242 if (dump_file)
1243 fprintf (dump_file,
1244 ";; Not peeling loop, no evidence it will be profitable\n");
1245 return;
1248 /* Success. */
1249 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1250 loop->lpt_decision.times = npeel;
1252 if (dump_file)
1253 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1254 loop->lpt_decision.times);
1257 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1258 while (cond)
1259 body;
1263 if (!cond) goto end;
1264 body;
1265 if (!cond) goto end;
1266 body;
1267 while (cond)
1268 body;
1269 end: ;
1271 static void
1272 peel_loop_simple (struct loops *loops, struct loop *loop)
1274 sbitmap wont_exit;
1275 unsigned npeel = loop->lpt_decision.times;
1276 struct niter_desc *desc = get_simple_loop_desc (loop);
1277 struct opt_info *opt_info = NULL;
1278 bool ok;
1280 if (flag_split_ivs_in_unroller && npeel > 1)
1281 opt_info = analyze_insns_in_loop (loop);
1283 wont_exit = sbitmap_alloc (npeel + 1);
1284 sbitmap_zero (wont_exit);
1286 opt_info_start_duplication (opt_info);
1288 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1289 loops, npeel, wont_exit,
1290 NULL, NULL,
1291 NULL, DLTHE_FLAG_UPDATE_FREQ
1292 | (opt_info
1293 ? DLTHE_RECORD_COPY_NUMBER
1294 : 0));
1295 gcc_assert (ok);
1297 free (wont_exit);
1299 if (opt_info)
1301 apply_opt_in_copies (opt_info, npeel, false, false);
1302 free_opt_info (opt_info);
1305 if (desc->simple_p)
1307 if (desc->const_iter)
1309 desc->niter -= npeel;
1310 desc->niter_expr = GEN_INT (desc->niter);
1311 desc->noloop_assumptions = NULL_RTX;
1313 else
1315 /* We cannot just update niter_expr, as its value might be clobbered
1316 inside loop. We could handle this by counting the number into
1317 temporary just like we do in runtime unrolling, but it does not
1318 seem worthwhile. */
1319 free_simple_loop_desc (loop);
1322 if (dump_file)
1323 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1326 /* Decide whether to unroll LOOP stupidly and how much. */
1327 static void
1328 decide_unroll_stupid (struct loop *loop, int flags)
1330 unsigned nunroll, nunroll_by_av, i;
1331 struct niter_desc *desc;
1333 if (!(flags & UAP_UNROLL_ALL))
1335 /* We were not asked to, just return back silently. */
1336 return;
1339 if (dump_file)
1340 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1342 /* nunroll = total number of copies of the original loop body in
1343 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1344 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1345 nunroll_by_av
1346 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1347 if (nunroll > nunroll_by_av)
1348 nunroll = nunroll_by_av;
1349 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1350 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1352 /* Skip big loops. */
1353 if (nunroll <= 1)
1355 if (dump_file)
1356 fprintf (dump_file, ";; Not considering loop, is too big\n");
1357 return;
1360 /* Check for simple loops. */
1361 desc = get_simple_loop_desc (loop);
1363 /* Check simpleness. */
1364 if (desc->simple_p && !desc->assumptions)
1366 if (dump_file)
1367 fprintf (dump_file, ";; The loop is simple\n");
1368 return;
1371 /* Do not unroll loops with branches inside -- it increases number
1372 of mispredicts. */
1373 if (num_loop_branches (loop) > 1)
1375 if (dump_file)
1376 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1377 return;
1380 /* If we have profile feedback, check whether the loop rolls. */
1381 if (loop->header->count
1382 && expected_loop_iterations (loop) < 2 * nunroll)
1384 if (dump_file)
1385 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1386 return;
1389 /* Success. Now force nunroll to be power of 2, as it seems that this
1390 improves results (partially because of better alignments, partially
1391 because of some dark magic). */
1392 for (i = 1; 2 * i <= nunroll; i *= 2)
1393 continue;
1395 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1396 loop->lpt_decision.times = i - 1;
1398 if (dump_file)
1399 fprintf (dump_file,
1400 ";; Decided to unroll the loop stupidly, %d times.\n",
1401 loop->lpt_decision.times);
1404 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1405 while (cond)
1406 body;
1410 while (cond)
1412 body;
1413 if (!cond) break;
1414 body;
1415 if (!cond) break;
1416 body;
1417 if (!cond) break;
1418 body;
1421 static void
1422 unroll_loop_stupid (struct loops *loops, struct loop *loop)
1424 sbitmap wont_exit;
1425 unsigned nunroll = loop->lpt_decision.times;
1426 struct niter_desc *desc = get_simple_loop_desc (loop);
1427 struct opt_info *opt_info = NULL;
1428 bool ok;
1430 if (flag_split_ivs_in_unroller
1431 || flag_variable_expansion_in_unroller)
1432 opt_info = analyze_insns_in_loop (loop);
1435 wont_exit = sbitmap_alloc (nunroll + 1);
1436 sbitmap_zero (wont_exit);
1437 opt_info_start_duplication (opt_info);
1439 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1440 loops, nunroll, wont_exit,
1441 NULL, NULL, NULL,
1442 DLTHE_FLAG_UPDATE_FREQ
1443 | (opt_info
1444 ? DLTHE_RECORD_COPY_NUMBER
1445 : 0));
1446 gcc_assert (ok);
1448 if (opt_info)
1450 apply_opt_in_copies (opt_info, nunroll, true, true);
1451 free_opt_info (opt_info);
1454 free (wont_exit);
1456 if (desc->simple_p)
1458 /* We indeed may get here provided that there are nontrivial assumptions
1459 for a loop to be really simple. We could update the counts, but the
1460 problem is that we are unable to decide which exit will be taken
1461 (not really true in case the number of iterations is constant,
1462 but noone will do anything with this information, so we do not
1463 worry about it). */
1464 desc->simple_p = false;
1467 if (dump_file)
1468 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1469 nunroll, num_loop_insns (loop));
1472 /* A hash function for information about insns to split. */
1474 static hashval_t
1475 si_info_hash (const void *ivts)
1477 return htab_hash_pointer (((struct iv_to_split *) ivts)->insn);
1480 /* An equality functions for information about insns to split. */
1482 static int
1483 si_info_eq (const void *ivts1, const void *ivts2)
1485 const struct iv_to_split *i1 = ivts1;
1486 const struct iv_to_split *i2 = ivts2;
1488 return i1->insn == i2->insn;
1491 /* Return a hash for VES, which is really a "var_to_expand *". */
1493 static hashval_t
1494 ve_info_hash (const void *ves)
1496 return htab_hash_pointer (((struct var_to_expand *) ves)->insn);
1499 /* Return true if IVTS1 and IVTS2 (which are really both of type
1500 "var_to_expand *") refer to the same instruction. */
1502 static int
1503 ve_info_eq (const void *ivts1, const void *ivts2)
1505 const struct var_to_expand *i1 = ivts1;
1506 const struct var_to_expand *i2 = ivts2;
1508 return i1->insn == i2->insn;
1511 /* Returns true if REG is referenced in one insn in LOOP. */
1513 bool
1514 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1516 basic_block *body, bb;
1517 unsigned i;
1518 int count_ref = 0;
1519 rtx insn;
1521 body = get_loop_body (loop);
1522 for (i = 0; i < loop->num_nodes; i++)
1524 bb = body[i];
1526 FOR_BB_INSNS (bb, insn)
1528 if (rtx_referenced_p (reg, insn))
1529 count_ref++;
1532 return (count_ref == 1);
1535 /* Determine whether INSN contains an accumulator
1536 which can be expanded into separate copies,
1537 one for each copy of the LOOP body.
1539 for (i = 0 ; i < n; i++)
1540 sum += a[i];
1544 sum += a[i]
1545 ....
1546 i = i+1;
1547 sum1 += a[i]
1548 ....
1549 i = i+1
1550 sum2 += a[i];
1551 ....
1553 Return NULL if INSN contains no opportunity for expansion of accumulator.
1554 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1555 information and return a pointer to it.
1558 static struct var_to_expand *
1559 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1561 rtx set, dest, src, op1;
1562 struct var_to_expand *ves;
1563 enum machine_mode mode1, mode2;
1565 set = single_set (insn);
1566 if (!set)
1567 return NULL;
1569 dest = SET_DEST (set);
1570 src = SET_SRC (set);
1572 if (GET_CODE (src) != PLUS
1573 && GET_CODE (src) != MINUS
1574 && GET_CODE (src) != MULT)
1575 return NULL;
1577 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1578 in MD. But if there is no optab to generate the insn, we can not
1579 perform the variable expansion. This can happen if an MD provides
1580 an insn but not a named pattern to generate it, for example to avoid
1581 producing code that needs additional mode switches like for x87/mmx.
1583 So we check have_insn_for which looks for an optab for the operation
1584 in SRC. If it doesn't exist, we can't perform the expansion even
1585 though INSN is valid. */
1586 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1587 return NULL;
1589 if (!XEXP (src, 0))
1590 return NULL;
1592 op1 = XEXP (src, 0);
1594 if (!REG_P (dest)
1595 && !(GET_CODE (dest) == SUBREG
1596 && REG_P (SUBREG_REG (dest))))
1597 return NULL;
1599 if (!rtx_equal_p (dest, op1))
1600 return NULL;
1602 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1603 return NULL;
1605 if (rtx_referenced_p (dest, XEXP (src, 1)))
1606 return NULL;
1608 mode1 = GET_MODE (dest);
1609 mode2 = GET_MODE (XEXP (src, 1));
1610 if ((FLOAT_MODE_P (mode1)
1611 || FLOAT_MODE_P (mode2))
1612 && !flag_unsafe_math_optimizations)
1613 return NULL;
1615 /* Record the accumulator to expand. */
1616 ves = xmalloc (sizeof (struct var_to_expand));
1617 ves->insn = insn;
1618 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1619 ves->reg = copy_rtx (dest);
1620 ves->op = GET_CODE (src);
1621 ves->expansion_count = 0;
1622 ves->reuse_expansion = 0;
1623 return ves;
1626 /* Determine whether there is an induction variable in INSN that
1627 we would like to split during unrolling.
1629 I.e. replace
1631 i = i + 1;
1633 i = i + 1;
1635 i = i + 1;
1638 type chains by
1640 i0 = i + 1
1642 i = i0 + 1
1644 i = i0 + 2
1647 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1648 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1649 pointer to it. */
1651 static struct iv_to_split *
1652 analyze_iv_to_split_insn (rtx insn)
1654 rtx set, dest;
1655 struct rtx_iv iv;
1656 struct iv_to_split *ivts;
1657 bool ok;
1659 /* For now we just split the basic induction variables. Later this may be
1660 extended for example by selecting also addresses of memory references. */
1661 set = single_set (insn);
1662 if (!set)
1663 return NULL;
1665 dest = SET_DEST (set);
1666 if (!REG_P (dest))
1667 return NULL;
1669 if (!biv_p (insn, dest))
1670 return NULL;
1672 ok = iv_analyze_result (insn, dest, &iv);
1673 gcc_assert (ok);
1675 if (iv.step == const0_rtx
1676 || iv.mode != iv.extend_mode)
1677 return NULL;
1679 /* Record the insn to split. */
1680 ivts = xmalloc (sizeof (struct iv_to_split));
1681 ivts->insn = insn;
1682 ivts->base_var = NULL_RTX;
1683 ivts->step = iv.step;
1684 ivts->n_loc = 1;
1685 ivts->loc[0] = 1;
1687 return ivts;
1690 /* Determines which of insns in LOOP can be optimized.
1691 Return a OPT_INFO struct with the relevant hash tables filled
1692 with all insns to be optimized. The FIRST_NEW_BLOCK field
1693 is undefined for the return value. */
1695 static struct opt_info *
1696 analyze_insns_in_loop (struct loop *loop)
1698 basic_block *body, bb;
1699 unsigned i, num_edges = 0;
1700 struct opt_info *opt_info = xcalloc (1, sizeof (struct opt_info));
1701 rtx insn;
1702 struct iv_to_split *ivts = NULL;
1703 struct var_to_expand *ves = NULL;
1704 PTR *slot1;
1705 PTR *slot2;
1706 edge *edges = get_loop_exit_edges (loop, &num_edges);
1707 bool can_apply = false;
1709 iv_analysis_loop_init (loop);
1711 body = get_loop_body (loop);
1713 if (flag_split_ivs_in_unroller)
1714 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1715 si_info_hash, si_info_eq, free);
1717 /* Record the loop exit bb and loop preheader before the unrolling. */
1718 if (!loop_preheader_edge (loop)->src)
1720 loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1721 opt_info->loop_preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1723 else
1724 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1726 if (num_edges == 1
1727 && !(edges[0]->flags & EDGE_COMPLEX))
1729 opt_info->loop_exit = loop_split_edge_with (edges[0], NULL_RTX);
1730 can_apply = true;
1733 if (flag_variable_expansion_in_unroller
1734 && can_apply)
1735 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1736 ve_info_hash, ve_info_eq, free);
1738 for (i = 0; i < loop->num_nodes; i++)
1740 bb = body[i];
1741 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1742 continue;
1744 FOR_BB_INSNS (bb, insn)
1746 if (!INSN_P (insn))
1747 continue;
1749 if (opt_info->insns_to_split)
1750 ivts = analyze_iv_to_split_insn (insn);
1752 if (ivts)
1754 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1755 *slot1 = ivts;
1756 continue;
1759 if (opt_info->insns_with_var_to_expand)
1760 ves = analyze_insn_to_expand_var (loop, insn);
1762 if (ves)
1764 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1765 *slot2 = ves;
1770 free (edges);
1771 free (body);
1772 return opt_info;
1775 /* Called just before loop duplication. Records start of duplicated area
1776 to OPT_INFO. */
1778 static void
1779 opt_info_start_duplication (struct opt_info *opt_info)
1781 if (opt_info)
1782 opt_info->first_new_block = last_basic_block;
1785 /* Determine the number of iterations between initialization of the base
1786 variable and the current copy (N_COPY). N_COPIES is the total number
1787 of newly created copies. UNROLLING is true if we are unrolling
1788 (not peeling) the loop. */
1790 static unsigned
1791 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1793 if (unrolling)
1795 /* If we are unrolling, initialization is done in the original loop
1796 body (number 0). */
1797 return n_copy;
1799 else
1801 /* If we are peeling, the copy in that the initialization occurs has
1802 number 1. The original loop (number 0) is the last. */
1803 if (n_copy)
1804 return n_copy - 1;
1805 else
1806 return n_copies;
1810 /* Locate in EXPR the expression corresponding to the location recorded
1811 in IVTS, and return a pointer to the RTX for this location. */
1813 static rtx *
1814 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1816 unsigned i;
1817 rtx *ret = &expr;
1819 for (i = 0; i < ivts->n_loc; i++)
1820 ret = &XEXP (*ret, ivts->loc[i]);
1822 return ret;
1825 /* Allocate basic variable for the induction variable chain. Callback for
1826 htab_traverse. */
1828 static int
1829 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1831 struct iv_to_split *ivts = *slot;
1832 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1834 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1836 return 1;
1839 /* Insert initialization of basic variable of IVTS before INSN, taking
1840 the initial value from INSN. */
1842 static void
1843 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1845 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1846 rtx seq;
1848 start_sequence ();
1849 expr = force_operand (expr, ivts->base_var);
1850 if (expr != ivts->base_var)
1851 emit_move_insn (ivts->base_var, expr);
1852 seq = get_insns ();
1853 end_sequence ();
1855 emit_insn_before (seq, insn);
1858 /* Replace the use of induction variable described in IVTS in INSN
1859 by base variable + DELTA * step. */
1861 static void
1862 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1864 rtx expr, *loc, seq, incr, var;
1865 enum machine_mode mode = GET_MODE (ivts->base_var);
1866 rtx src, dest, set;
1868 /* Construct base + DELTA * step. */
1869 if (!delta)
1870 expr = ivts->base_var;
1871 else
1873 incr = simplify_gen_binary (MULT, mode,
1874 ivts->step, gen_int_mode (delta, mode));
1875 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1876 ivts->base_var, incr);
1879 /* Figure out where to do the replacement. */
1880 loc = get_ivts_expr (single_set (insn), ivts);
1882 /* If we can make the replacement right away, we're done. */
1883 if (validate_change (insn, loc, expr, 0))
1884 return;
1886 /* Otherwise, force EXPR into a register and try again. */
1887 start_sequence ();
1888 var = gen_reg_rtx (mode);
1889 expr = force_operand (expr, var);
1890 if (expr != var)
1891 emit_move_insn (var, expr);
1892 seq = get_insns ();
1893 end_sequence ();
1894 emit_insn_before (seq, insn);
1896 if (validate_change (insn, loc, var, 0))
1897 return;
1899 /* The last chance. Try recreating the assignment in insn
1900 completely from scratch. */
1901 set = single_set (insn);
1902 gcc_assert (set);
1904 start_sequence ();
1905 *loc = var;
1906 src = copy_rtx (SET_SRC (set));
1907 dest = copy_rtx (SET_DEST (set));
1908 src = force_operand (src, dest);
1909 if (src != dest)
1910 emit_move_insn (dest, src);
1911 seq = get_insns ();
1912 end_sequence ();
1914 emit_insn_before (seq, insn);
1915 delete_insn (insn);
1919 /* Return one expansion of the accumulator recorded in struct VE. */
1921 static rtx
1922 get_expansion (struct var_to_expand *ve)
1924 rtx reg;
1926 if (ve->reuse_expansion == 0)
1927 reg = ve->reg;
1928 else
1929 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1931 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1932 ve->reuse_expansion = 0;
1933 else
1934 ve->reuse_expansion++;
1936 return reg;
1940 /* Given INSN replace the uses of the accumulator recorded in VE
1941 with a new register. */
1943 static void
1944 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1946 rtx new_reg, set;
1947 bool really_new_expansion = false;
1949 set = single_set (insn);
1950 gcc_assert (set);
1952 /* Generate a new register only if the expansion limit has not been
1953 reached. Else reuse an already existing expansion. */
1954 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1956 really_new_expansion = true;
1957 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1959 else
1960 new_reg = get_expansion (ve);
1962 validate_change (insn, &SET_DEST (set), new_reg, 1);
1963 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1965 if (apply_change_group ())
1966 if (really_new_expansion)
1968 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
1969 ve->expansion_count++;
1973 /* Initialize the variable expansions in loop preheader.
1974 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1975 basic block where the initialization of the expansions
1976 should take place. */
1978 static int
1979 insert_var_expansion_initialization (void **slot, void *place_p)
1981 struct var_to_expand *ve = *slot;
1982 basic_block place = (basic_block)place_p;
1983 rtx seq, var, zero_init, insn;
1984 unsigned i;
1986 if (VEC_length (rtx, ve->var_expansions) == 0)
1987 return 1;
1989 start_sequence ();
1990 if (ve->op == PLUS || ve->op == MINUS)
1991 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1993 zero_init = CONST0_RTX (GET_MODE (var));
1994 emit_move_insn (var, zero_init);
1996 else if (ve->op == MULT)
1997 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1999 zero_init = CONST1_RTX (GET_MODE (var));
2000 emit_move_insn (var, zero_init);
2003 seq = get_insns ();
2004 end_sequence ();
2006 insn = BB_HEAD (place);
2007 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2008 insn = NEXT_INSN (insn);
2010 emit_insn_after (seq, insn);
2011 /* Continue traversing the hash table. */
2012 return 1;
2015 /* Combine the variable expansions at the loop exit.
2016 Callbacks for htab_traverse. PLACE_P is the loop exit
2017 basic block where the summation of the expansions should
2018 take place. */
2020 static int
2021 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2023 struct var_to_expand *ve = *slot;
2024 basic_block place = (basic_block)place_p;
2025 rtx sum = ve->reg;
2026 rtx expr, seq, var, insn;
2027 unsigned i;
2029 if (VEC_length (rtx, ve->var_expansions) == 0)
2030 return 1;
2032 start_sequence ();
2033 if (ve->op == PLUS || ve->op == MINUS)
2034 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2036 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2037 var, sum);
2039 else if (ve->op == MULT)
2040 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2042 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2043 var, sum);
2046 expr = force_operand (sum, ve->reg);
2047 if (expr != ve->reg)
2048 emit_move_insn (ve->reg, expr);
2049 seq = get_insns ();
2050 end_sequence ();
2052 insn = BB_HEAD (place);
2053 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2054 insn = NEXT_INSN (insn);
2056 emit_insn_after (seq, insn);
2058 /* Continue traversing the hash table. */
2059 return 1;
2062 /* Apply loop optimizations in loop copies using the
2063 data which gathered during the unrolling. Structure
2064 OPT_INFO record that data.
2066 UNROLLING is true if we unrolled (not peeled) the loop.
2067 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2068 the loop (as it should happen in complete unrolling, but not in ordinary
2069 peeling of the loop). */
2071 static void
2072 apply_opt_in_copies (struct opt_info *opt_info,
2073 unsigned n_copies, bool unrolling,
2074 bool rewrite_original_loop)
2076 unsigned i, delta;
2077 basic_block bb, orig_bb;
2078 rtx insn, orig_insn, next;
2079 struct iv_to_split ivts_templ, *ivts;
2080 struct var_to_expand ve_templ, *ves;
2082 /* Sanity check -- we need to put initialization in the original loop
2083 body. */
2084 gcc_assert (!unrolling || rewrite_original_loop);
2086 /* Allocate the basic variables (i0). */
2087 if (opt_info->insns_to_split)
2088 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2090 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2092 bb = BASIC_BLOCK (i);
2093 orig_bb = get_bb_original (bb);
2095 /* bb->aux holds position in copy sequence initialized by
2096 duplicate_loop_to_header_edge. */
2097 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2098 unrolling);
2099 bb->aux = 0;
2100 orig_insn = BB_HEAD (orig_bb);
2101 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2103 next = NEXT_INSN (insn);
2104 if (!INSN_P (insn))
2105 continue;
2107 while (!INSN_P (orig_insn))
2108 orig_insn = NEXT_INSN (orig_insn);
2110 ivts_templ.insn = orig_insn;
2111 ve_templ.insn = orig_insn;
2113 /* Apply splitting iv optimization. */
2114 if (opt_info->insns_to_split)
2116 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2118 if (ivts)
2120 gcc_assert (GET_CODE (PATTERN (insn))
2121 == GET_CODE (PATTERN (orig_insn)));
2123 if (!delta)
2124 insert_base_initialization (ivts, insn);
2125 split_iv (ivts, insn, delta);
2128 /* Apply variable expansion optimization. */
2129 if (unrolling && opt_info->insns_with_var_to_expand)
2131 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2132 if (ves)
2134 gcc_assert (GET_CODE (PATTERN (insn))
2135 == GET_CODE (PATTERN (orig_insn)));
2136 expand_var_during_unrolling (ves, insn);
2139 orig_insn = NEXT_INSN (orig_insn);
2143 if (!rewrite_original_loop)
2144 return;
2146 /* Initialize the variable expansions in the loop preheader
2147 and take care of combining them at the loop exit. */
2148 if (opt_info->insns_with_var_to_expand)
2150 htab_traverse (opt_info->insns_with_var_to_expand,
2151 insert_var_expansion_initialization,
2152 opt_info->loop_preheader);
2153 htab_traverse (opt_info->insns_with_var_to_expand,
2154 combine_var_copies_in_loop_exit,
2155 opt_info->loop_exit);
2158 /* Rewrite also the original loop body. Find them as originals of the blocks
2159 in the last copied iteration, i.e. those that have
2160 get_bb_copy (get_bb_original (bb)) == bb. */
2161 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2163 bb = BASIC_BLOCK (i);
2164 orig_bb = get_bb_original (bb);
2165 if (get_bb_copy (orig_bb) != bb)
2166 continue;
2168 delta = determine_split_iv_delta (0, n_copies, unrolling);
2169 for (orig_insn = BB_HEAD (orig_bb);
2170 orig_insn != NEXT_INSN (BB_END (bb));
2171 orig_insn = next)
2173 next = NEXT_INSN (orig_insn);
2175 if (!INSN_P (orig_insn))
2176 continue;
2178 ivts_templ.insn = orig_insn;
2179 if (opt_info->insns_to_split)
2181 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2182 if (ivts)
2184 if (!delta)
2185 insert_base_initialization (ivts, orig_insn);
2186 split_iv (ivts, orig_insn, delta);
2187 continue;
2195 /* Release the data structures used for the variable expansion
2196 optimization. Callbacks for htab_traverse. */
2198 static int
2199 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2201 struct var_to_expand *ve = *slot;
2203 VEC_free (rtx, heap, ve->var_expansions);
2205 /* Continue traversing the hash table. */
2206 return 1;
2209 /* Release OPT_INFO. */
2211 static void
2212 free_opt_info (struct opt_info *opt_info)
2214 if (opt_info->insns_to_split)
2215 htab_delete (opt_info->insns_to_split);
2216 if (opt_info->insns_with_var_to_expand)
2218 htab_traverse (opt_info->insns_with_var_to_expand,
2219 release_var_copies, NULL);
2220 htab_delete (opt_info->insns_with_var_to_expand);
2222 free (opt_info);