* $(HOST_PREFIX_1)errors.o, $(HOST_PREFIX_1)ggc-none.o,
[official-gcc.git] / gcc / jump.c
blob2b111d4bd59b5327744091daaa69f00a6341cd86
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This is the jump-optimization pass of the compiler.
23 It is run two or three times: once before cse, sometimes once after cse,
24 and once after reload (before final).
26 jump_optimize deletes unreachable code and labels that are not used.
27 It also deletes jumps that jump to the following insn,
28 and simplifies jumps around unconditional jumps and jumps
29 to unconditional jumps.
31 Each CODE_LABEL has a count of the times it is used
32 stored in the LABEL_NUSES internal field, and each JUMP_INSN
33 has one label that it refers to stored in the
34 JUMP_LABEL internal field. With this we can detect labels that
35 become unused because of the deletion of all the jumps that
36 formerly used them. The JUMP_LABEL info is sometimes looked
37 at by later passes.
39 Optionally, cross-jumping can be done. Currently it is done
40 only the last time (when after reload and before final).
41 In fact, the code for cross-jumping now assumes that register
42 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44 Jump optimization is done after cse when cse's constant-propagation
45 causes jumps to become unconditional or to be deleted.
47 Unreachable loops are not detected here, because the labels
48 have references and the insns appear reachable from the labels.
49 find_basic_blocks in flow.c finds and deletes such loops.
51 The subroutines delete_insn, redirect_jump, and invert_jump are used
52 from other passes as well. */
54 #include "config.h"
55 #include "system.h"
56 #include "rtl.h"
57 #include "tm_p.h"
58 #include "flags.h"
59 #include "hard-reg-set.h"
60 #include "regs.h"
61 #include "insn-config.h"
62 #include "insn-attr.h"
63 #include "recog.h"
64 #include "function.h"
65 #include "expr.h"
66 #include "real.h"
67 #include "except.h"
68 #include "toplev.h"
70 /* ??? Eventually must record somehow the labels used by jumps
71 from nested functions. */
72 /* Pre-record the next or previous real insn for each label?
73 No, this pass is very fast anyway. */
74 /* Condense consecutive labels?
75 This would make life analysis faster, maybe. */
76 /* Optimize jump y; x: ... y: jumpif... x?
77 Don't know if it is worth bothering with. */
78 /* Optimize two cases of conditional jump to conditional jump?
79 This can never delete any instruction or make anything dead,
80 or even change what is live at any point.
81 So perhaps let combiner do it. */
83 /* Vector indexed by uid.
84 For each CODE_LABEL, index by its uid to get first unconditional jump
85 that jumps to the label.
86 For each JUMP_INSN, index by its uid to get the next unconditional jump
87 that jumps to the same label.
88 Element 0 is the start of a chain of all return insns.
89 (It is safe to use element 0 because insn uid 0 is not used. */
91 static rtx *jump_chain;
93 /* Maximum index in jump_chain. */
95 static int max_jump_chain;
97 /* Indicates whether death notes are significant in cross jump analysis.
98 Normally they are not significant, because of A and B jump to C,
99 and R dies in A, it must die in B. But this might not be true after
100 stack register conversion, and we must compare death notes in that
101 case. */
103 static int cross_jump_death_matters = 0;
105 static int init_label_info PARAMS ((rtx));
106 static void delete_barrier_successors PARAMS ((rtx));
107 static void mark_all_labels PARAMS ((rtx, int));
108 static rtx delete_unreferenced_labels PARAMS ((rtx));
109 static void delete_noop_moves PARAMS ((rtx));
110 static int duplicate_loop_exit_test PARAMS ((rtx));
111 static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
112 static void do_cross_jump PARAMS ((rtx, rtx, rtx));
113 static int jump_back_p PARAMS ((rtx, rtx));
114 static int tension_vector_labels PARAMS ((rtx, int));
115 static void delete_computation PARAMS ((rtx));
116 static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
117 static int redirect_exp PARAMS ((rtx, rtx, rtx));
118 static void invert_exp_1 PARAMS ((rtx));
119 static int invert_exp PARAMS ((rtx));
120 static void delete_from_jump_chain PARAMS ((rtx));
121 static int delete_labelref_insn PARAMS ((rtx, rtx, int));
122 static void mark_modified_reg PARAMS ((rtx, rtx, void *));
123 static void redirect_tablejump PARAMS ((rtx, rtx));
124 static void jump_optimize_1 PARAMS ((rtx, int, int, int, int, int));
125 static int returnjump_p_1 PARAMS ((rtx *, void *));
126 static void delete_prior_computation PARAMS ((rtx, rtx));
128 /* Main external entry point into the jump optimizer. See comments before
129 jump_optimize_1 for descriptions of the arguments. */
130 void
131 jump_optimize (f, cross_jump, noop_moves, after_regscan)
132 rtx f;
133 int cross_jump;
134 int noop_moves;
135 int after_regscan;
137 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0, 0);
140 /* Alternate entry into the jump optimizer. This entry point only rebuilds
141 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
142 instructions. */
143 void
144 rebuild_jump_labels (f)
145 rtx f;
147 jump_optimize_1 (f, 0, 0, 0, 1, 0);
150 /* Alternate entry into the jump optimizer. Do only trivial optimizations. */
152 void
153 jump_optimize_minimal (f)
154 rtx f;
156 jump_optimize_1 (f, 0, 0, 0, 0, 1);
159 /* Delete no-op jumps and optimize jumps to jumps
160 and jumps around jumps.
161 Delete unused labels and unreachable code.
163 If CROSS_JUMP is 1, detect matching code
164 before a jump and its destination and unify them.
165 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
167 If NOOP_MOVES is nonzero, delete no-op move insns.
169 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
170 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
172 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
173 and JUMP_LABEL field for jumping insns.
175 If `optimize' is zero, don't change any code,
176 just determine whether control drops off the end of the function.
177 This case occurs when we have -W and not -O.
178 It works because `delete_insn' checks the value of `optimize'
179 and refrains from actually deleting when that is 0.
181 If MINIMAL is nonzero, then we only perform trivial optimizations:
183 * Removal of unreachable code after BARRIERs.
184 * Removal of unreferenced CODE_LABELs.
185 * Removal of a jump to the next instruction.
186 * Removal of a conditional jump followed by an unconditional jump
187 to the same target as the conditional jump.
188 * Simplify a conditional jump around an unconditional jump.
189 * Simplify a jump to a jump.
190 * Delete extraneous line number notes.
193 static void
194 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan,
195 mark_labels_only, minimal)
196 rtx f;
197 int cross_jump;
198 int noop_moves;
199 int after_regscan;
200 int mark_labels_only;
201 int minimal;
203 register rtx insn, next;
204 int changed;
205 int old_max_reg;
206 int first = 1;
207 int max_uid = 0;
208 rtx last_insn;
209 #ifdef HAVE_trap
210 enum rtx_code reversed_code;
211 #endif
213 cross_jump_death_matters = (cross_jump == 2);
214 max_uid = init_label_info (f) + 1;
216 if (! mark_labels_only)
217 delete_barrier_successors (f);
219 /* Leave some extra room for labels and duplicate exit test insns
220 we make. */
221 max_jump_chain = max_uid * 14 / 10;
222 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
224 mark_all_labels (f, cross_jump);
226 /* Keep track of labels used from static data; we don't track them
227 closely enough to delete them here, so make sure their reference
228 count doesn't drop to zero. */
230 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
231 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
232 LABEL_NUSES (XEXP (insn, 0))++;
234 /* Keep track of labels used for marking handlers for exception
235 regions; they cannot usually be deleted. */
237 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
238 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
239 LABEL_NUSES (XEXP (insn, 0))++;
241 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
242 notes and recompute LABEL_NUSES. */
243 if (mark_labels_only)
244 goto end;
246 last_insn = delete_unreferenced_labels (f);
248 if (noop_moves)
249 delete_noop_moves (f);
251 /* If we haven't yet gotten to reload and we have just run regscan,
252 delete any insn that sets a register that isn't used elsewhere.
253 This helps some of the optimizations below by having less insns
254 being jumped around. */
256 if (optimize && ! reload_completed && after_regscan)
257 for (insn = f; insn; insn = next)
259 rtx set = single_set (insn);
261 next = NEXT_INSN (insn);
263 if (set && GET_CODE (SET_DEST (set)) == REG
264 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
265 && REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
266 /* We use regno_last_note_uid so as not to delete the setting
267 of a reg that's used in notes. A subsequent optimization
268 might arrange to use that reg for real. */
269 && REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
270 && ! side_effects_p (SET_SRC (set))
271 && ! find_reg_note (insn, REG_RETVAL, 0)
272 /* An ADDRESSOF expression can turn into a use of the internal arg
273 pointer, so do not delete the initialization of the internal
274 arg pointer yet. If it is truly dead, flow will delete the
275 initializing insn. */
276 && SET_DEST (set) != current_function_internal_arg_pointer)
277 delete_insn (insn);
280 /* Now iterate optimizing jumps until nothing changes over one pass. */
281 changed = 1;
282 old_max_reg = max_reg_num ();
283 while (changed)
285 changed = 0;
287 for (insn = f; insn; insn = next)
289 rtx reallabelprev;
290 rtx temp, temp1, temp2 = NULL_RTX;
291 rtx temp4 ATTRIBUTE_UNUSED;
292 rtx nlabel;
293 int this_is_any_uncondjump;
294 int this_is_any_condjump;
295 int this_is_onlyjump;
297 next = NEXT_INSN (insn);
299 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
300 jump. Try to optimize by duplicating the loop exit test if so.
301 This is only safe immediately after regscan, because it uses
302 the values of regno_first_uid and regno_last_uid. */
303 if (after_regscan && GET_CODE (insn) == NOTE
304 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
305 && (temp1 = next_nonnote_insn (insn)) != 0
306 && any_uncondjump_p (temp1)
307 && onlyjump_p (temp1))
309 temp = PREV_INSN (insn);
310 if (duplicate_loop_exit_test (insn))
312 changed = 1;
313 next = NEXT_INSN (temp);
314 continue;
318 if (GET_CODE (insn) != JUMP_INSN)
319 continue;
321 this_is_any_condjump = any_condjump_p (insn);
322 this_is_any_uncondjump = any_uncondjump_p (insn);
323 this_is_onlyjump = onlyjump_p (insn);
325 /* Tension the labels in dispatch tables. */
327 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
328 changed |= tension_vector_labels (PATTERN (insn), 0);
329 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
330 changed |= tension_vector_labels (PATTERN (insn), 1);
332 /* See if this jump goes to another jump and redirect if so. */
333 nlabel = follow_jumps (JUMP_LABEL (insn));
334 if (nlabel != JUMP_LABEL (insn))
335 changed |= redirect_jump (insn, nlabel, 1);
337 if (! optimize || minimal)
338 continue;
340 /* If a dispatch table always goes to the same place,
341 get rid of it and replace the insn that uses it. */
343 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
344 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
346 int i;
347 rtx pat = PATTERN (insn);
348 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
349 int len = XVECLEN (pat, diff_vec_p);
350 rtx dispatch = prev_real_insn (insn);
351 rtx set;
353 for (i = 0; i < len; i++)
354 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
355 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
356 break;
358 if (i == len
359 && dispatch != 0
360 && GET_CODE (dispatch) == JUMP_INSN
361 && JUMP_LABEL (dispatch) != 0
362 /* Don't mess with a casesi insn.
363 XXX according to the comment before computed_jump_p(),
364 all casesi insns should be a parallel of the jump
365 and a USE of a LABEL_REF. */
366 && ! ((set = single_set (dispatch)) != NULL
367 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
368 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
370 redirect_tablejump (dispatch,
371 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
372 changed = 1;
376 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
378 /* Detect jump to following insn. */
379 if (reallabelprev == insn
380 && (this_is_any_condjump || this_is_any_uncondjump)
381 && this_is_onlyjump)
383 next = next_real_insn (JUMP_LABEL (insn));
384 delete_jump (insn);
386 /* Remove the "inactive" but "real" insns (i.e. uses and
387 clobbers) in between here and there. */
388 temp = insn;
389 while ((temp = next_real_insn (temp)) != next)
390 delete_insn (temp);
392 changed = 1;
393 continue;
396 /* Detect a conditional jump going to the same place
397 as an immediately following unconditional jump. */
398 else if (this_is_any_condjump && this_is_onlyjump
399 && (temp = next_active_insn (insn)) != 0
400 && simplejump_p (temp)
401 && (next_active_insn (JUMP_LABEL (insn))
402 == next_active_insn (JUMP_LABEL (temp))))
404 /* Don't mess up test coverage analysis. */
405 temp2 = temp;
406 if (flag_test_coverage && !reload_completed)
407 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
408 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
409 break;
411 if (temp2 == temp)
413 /* Ensure that we jump to the later of the two labels.
414 Consider:
416 if (test) goto L2;
417 goto L1;
420 (clobber return-reg)
422 (use return-reg)
424 If we leave the goto L1, we'll incorrectly leave
425 return-reg dead for TEST true. */
427 temp2 = next_active_insn (JUMP_LABEL (insn));
428 if (!temp2)
429 temp2 = get_last_insn ();
430 if (GET_CODE (temp2) != CODE_LABEL)
431 temp2 = prev_label (temp2);
432 if (temp2 != JUMP_LABEL (temp))
433 redirect_jump (temp, temp2, 1);
435 delete_jump (insn);
436 changed = 1;
437 continue;
441 /* Detect a conditional jump jumping over an unconditional jump. */
443 else if (this_is_any_condjump
444 && reallabelprev != 0
445 && GET_CODE (reallabelprev) == JUMP_INSN
446 && prev_active_insn (reallabelprev) == insn
447 && no_labels_between_p (insn, reallabelprev)
448 && any_uncondjump_p (reallabelprev)
449 && onlyjump_p (reallabelprev))
451 /* When we invert the unconditional jump, we will be
452 decrementing the usage count of its old label.
453 Make sure that we don't delete it now because that
454 might cause the following code to be deleted. */
455 rtx prev_uses = prev_nonnote_insn (reallabelprev);
456 rtx prev_label = JUMP_LABEL (insn);
458 if (prev_label)
459 ++LABEL_NUSES (prev_label);
461 if (invert_jump (insn, JUMP_LABEL (reallabelprev), 1))
463 /* It is very likely that if there are USE insns before
464 this jump, they hold REG_DEAD notes. These REG_DEAD
465 notes are no longer valid due to this optimization,
466 and will cause the life-analysis that following passes
467 (notably delayed-branch scheduling) to think that
468 these registers are dead when they are not.
470 To prevent this trouble, we just remove the USE insns
471 from the insn chain. */
473 while (prev_uses && GET_CODE (prev_uses) == INSN
474 && GET_CODE (PATTERN (prev_uses)) == USE)
476 rtx useless = prev_uses;
477 prev_uses = prev_nonnote_insn (prev_uses);
478 delete_insn (useless);
481 delete_insn (reallabelprev);
482 changed = 1;
485 /* We can now safely delete the label if it is unreferenced
486 since the delete_insn above has deleted the BARRIER. */
487 if (prev_label && --LABEL_NUSES (prev_label) == 0)
488 delete_insn (prev_label);
490 next = NEXT_INSN (insn);
493 /* If we have an unconditional jump preceded by a USE, try to put
494 the USE before the target and jump there. This simplifies many
495 of the optimizations below since we don't have to worry about
496 dealing with these USE insns. We only do this if the label
497 being branch to already has the identical USE or if code
498 never falls through to that label. */
500 else if (this_is_any_uncondjump
501 && (temp = prev_nonnote_insn (insn)) != 0
502 && GET_CODE (temp) == INSN
503 && GET_CODE (PATTERN (temp)) == USE
504 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
505 && (GET_CODE (temp1) == BARRIER
506 || (GET_CODE (temp1) == INSN
507 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
508 /* Don't do this optimization if we have a loop containing
509 only the USE instruction, and the loop start label has
510 a usage count of 1. This is because we will redo this
511 optimization everytime through the outer loop, and jump
512 opt will never exit. */
513 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
514 && temp2 == JUMP_LABEL (insn)
515 && LABEL_NUSES (temp2) == 1))
517 if (GET_CODE (temp1) == BARRIER)
519 emit_insn_after (PATTERN (temp), temp1);
520 temp1 = NEXT_INSN (temp1);
523 delete_insn (temp);
524 redirect_jump (insn, get_label_before (temp1), 1);
525 reallabelprev = prev_real_insn (temp1);
526 changed = 1;
527 next = NEXT_INSN (insn);
530 #ifdef HAVE_trap
531 /* Detect a conditional jump jumping over an unconditional trap. */
532 if (HAVE_trap
533 && this_is_any_condjump && this_is_onlyjump
534 && reallabelprev != 0
535 && GET_CODE (reallabelprev) == INSN
536 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
537 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
538 && prev_active_insn (reallabelprev) == insn
539 && no_labels_between_p (insn, reallabelprev)
540 && (temp2 = get_condition (insn, &temp4))
541 && ((reversed_code = reversed_comparison_code (temp2, insn))
542 != UNKNOWN))
544 rtx new = gen_cond_trap (reversed_code,
545 XEXP (temp2, 0), XEXP (temp2, 1),
546 TRAP_CODE (PATTERN (reallabelprev)));
548 if (new)
550 emit_insn_before (new, temp4);
551 delete_insn (reallabelprev);
552 delete_jump (insn);
553 changed = 1;
554 continue;
557 /* Detect a jump jumping to an unconditional trap. */
558 else if (HAVE_trap && this_is_onlyjump
559 && (temp = next_active_insn (JUMP_LABEL (insn)))
560 && GET_CODE (temp) == INSN
561 && GET_CODE (PATTERN (temp)) == TRAP_IF
562 && (this_is_any_uncondjump
563 || (this_is_any_condjump
564 && (temp2 = get_condition (insn, &temp4)))))
566 rtx tc = TRAP_CONDITION (PATTERN (temp));
568 if (tc == const_true_rtx
569 || (! this_is_any_uncondjump && rtx_equal_p (temp2, tc)))
571 rtx new;
572 /* Replace an unconditional jump to a trap with a trap. */
573 if (this_is_any_uncondjump)
575 emit_barrier_after (emit_insn_before (gen_trap (), insn));
576 delete_jump (insn);
577 changed = 1;
578 continue;
580 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
581 XEXP (temp2, 1),
582 TRAP_CODE (PATTERN (temp)));
583 if (new)
585 emit_insn_before (new, temp4);
586 delete_jump (insn);
587 changed = 1;
588 continue;
591 /* If the trap condition and jump condition are mutually
592 exclusive, redirect the jump to the following insn. */
593 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
594 && this_is_any_condjump
595 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
596 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
597 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
598 && redirect_jump (insn, get_label_after (temp), 1))
600 changed = 1;
601 continue;
604 #endif
605 else
607 /* Now that the jump has been tensioned,
608 try cross jumping: check for identical code
609 before the jump and before its target label. */
611 /* First, cross jumping of conditional jumps: */
613 if (cross_jump && condjump_p (insn))
615 rtx newjpos, newlpos;
616 rtx x = prev_real_insn (JUMP_LABEL (insn));
618 /* A conditional jump may be crossjumped
619 only if the place it jumps to follows
620 an opposing jump that comes back here. */
622 if (x != 0 && ! jump_back_p (x, insn))
623 /* We have no opposing jump;
624 cannot cross jump this insn. */
625 x = 0;
627 newjpos = 0;
628 /* TARGET is nonzero if it is ok to cross jump
629 to code before TARGET. If so, see if matches. */
630 if (x != 0)
631 find_cross_jump (insn, x, 2,
632 &newjpos, &newlpos);
634 if (newjpos != 0)
636 do_cross_jump (insn, newjpos, newlpos);
637 /* Make the old conditional jump
638 into an unconditional one. */
639 SET_SRC (PATTERN (insn))
640 = gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
641 INSN_CODE (insn) = -1;
642 emit_barrier_after (insn);
643 /* Add to jump_chain unless this is a new label
644 whose UID is too large. */
645 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
647 jump_chain[INSN_UID (insn)]
648 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
649 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
651 changed = 1;
652 next = insn;
656 /* Cross jumping of unconditional jumps:
657 a few differences. */
659 if (cross_jump && simplejump_p (insn))
661 rtx newjpos, newlpos;
662 rtx target;
664 newjpos = 0;
666 /* TARGET is nonzero if it is ok to cross jump
667 to code before TARGET. If so, see if matches. */
668 find_cross_jump (insn, JUMP_LABEL (insn), 1,
669 &newjpos, &newlpos);
671 /* If cannot cross jump to code before the label,
672 see if we can cross jump to another jump to
673 the same label. */
674 /* Try each other jump to this label. */
675 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
676 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
677 target != 0 && newjpos == 0;
678 target = jump_chain[INSN_UID (target)])
679 if (target != insn
680 && JUMP_LABEL (target) == JUMP_LABEL (insn)
681 /* Ignore TARGET if it's deleted. */
682 && ! INSN_DELETED_P (target))
683 find_cross_jump (insn, target, 2,
684 &newjpos, &newlpos);
686 if (newjpos != 0)
688 do_cross_jump (insn, newjpos, newlpos);
689 changed = 1;
690 next = insn;
694 /* This code was dead in the previous jump.c! */
695 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
697 /* Return insns all "jump to the same place"
698 so we can cross-jump between any two of them. */
700 rtx newjpos, newlpos, target;
702 newjpos = 0;
704 /* If cannot cross jump to code before the label,
705 see if we can cross jump to another jump to
706 the same label. */
707 /* Try each other jump to this label. */
708 for (target = jump_chain[0];
709 target != 0 && newjpos == 0;
710 target = jump_chain[INSN_UID (target)])
711 if (target != insn
712 && ! INSN_DELETED_P (target)
713 && GET_CODE (PATTERN (target)) == RETURN)
714 find_cross_jump (insn, target, 2,
715 &newjpos, &newlpos);
717 if (newjpos != 0)
719 do_cross_jump (insn, newjpos, newlpos);
720 changed = 1;
721 next = insn;
727 first = 0;
730 /* Delete extraneous line number notes.
731 Note that two consecutive notes for different lines are not really
732 extraneous. There should be some indication where that line belonged,
733 even if it became empty. */
736 rtx last_note = 0;
738 for (insn = f; insn; insn = NEXT_INSN (insn))
739 if (GET_CODE (insn) == NOTE)
741 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
742 /* Any previous line note was for the prologue; gdb wants a new
743 note after the prologue even if it is for the same line. */
744 last_note = NULL_RTX;
745 else if (NOTE_LINE_NUMBER (insn) >= 0)
747 /* Delete this note if it is identical to previous note. */
748 if (last_note
749 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
750 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
752 delete_insn (insn);
753 continue;
756 last_note = insn;
761 end:
762 /* Clean up. */
763 free (jump_chain);
764 jump_chain = 0;
767 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
768 notes whose labels don't occur in the insn any more. Returns the
769 largest INSN_UID found. */
770 static int
771 init_label_info (f)
772 rtx f;
774 int largest_uid = 0;
775 rtx insn;
777 for (insn = f; insn; insn = NEXT_INSN (insn))
779 if (GET_CODE (insn) == CODE_LABEL)
780 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
781 else if (GET_CODE (insn) == JUMP_INSN)
782 JUMP_LABEL (insn) = 0;
783 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
785 rtx note, next;
787 for (note = REG_NOTES (insn); note; note = next)
789 next = XEXP (note, 1);
790 if (REG_NOTE_KIND (note) == REG_LABEL
791 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
792 remove_note (insn, note);
795 if (INSN_UID (insn) > largest_uid)
796 largest_uid = INSN_UID (insn);
799 return largest_uid;
802 /* Delete insns following barriers, up to next label.
804 Also delete no-op jumps created by gcse. */
806 static void
807 delete_barrier_successors (f)
808 rtx f;
810 rtx insn;
811 rtx set;
813 for (insn = f; insn;)
815 if (GET_CODE (insn) == BARRIER)
817 insn = NEXT_INSN (insn);
819 never_reached_warning (insn);
821 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
823 if (GET_CODE (insn) == NOTE
824 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
825 insn = NEXT_INSN (insn);
826 else
827 insn = delete_insn (insn);
829 /* INSN is now the code_label. */
832 /* Also remove (set (pc) (pc)) insns which can be created by
833 gcse. We eliminate such insns now to avoid having them
834 cause problems later. */
835 else if (GET_CODE (insn) == JUMP_INSN
836 && (set = pc_set (insn)) != NULL
837 && SET_SRC (set) == pc_rtx
838 && SET_DEST (set) == pc_rtx
839 && onlyjump_p (insn))
840 insn = delete_insn (insn);
842 else
843 insn = NEXT_INSN (insn);
847 /* Mark the label each jump jumps to.
848 Combine consecutive labels, and count uses of labels.
850 For each label, make a chain (using `jump_chain')
851 of all the *unconditional* jumps that jump to it;
852 also make a chain of all returns.
854 CROSS_JUMP indicates whether we are doing cross jumping
855 and if we are whether we will be paying attention to
856 death notes or not. */
858 static void
859 mark_all_labels (f, cross_jump)
860 rtx f;
861 int cross_jump;
863 rtx insn;
865 for (insn = f; insn; insn = NEXT_INSN (insn))
866 if (INSN_P (insn))
868 if (GET_CODE (insn) == CALL_INSN
869 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
871 mark_all_labels (XEXP (PATTERN (insn), 0), cross_jump);
872 mark_all_labels (XEXP (PATTERN (insn), 1), cross_jump);
873 mark_all_labels (XEXP (PATTERN (insn), 2), cross_jump);
874 continue;
877 mark_jump_label (PATTERN (insn), insn, cross_jump, 0);
878 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
880 /* When we know the LABEL_REF contained in a REG used in
881 an indirect jump, we'll have a REG_LABEL note so that
882 flow can tell where it's going. */
883 if (JUMP_LABEL (insn) == 0)
885 rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
886 if (label_note)
888 /* But a LABEL_REF around the REG_LABEL note, so
889 that we can canonicalize it. */
890 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
891 XEXP (label_note, 0));
893 mark_jump_label (label_ref, insn, cross_jump, 0);
894 XEXP (label_note, 0) = XEXP (label_ref, 0);
895 JUMP_LABEL (insn) = XEXP (label_note, 0);
898 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
900 jump_chain[INSN_UID (insn)]
901 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
902 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
904 if (GET_CODE (PATTERN (insn)) == RETURN)
906 jump_chain[INSN_UID (insn)] = jump_chain[0];
907 jump_chain[0] = insn;
913 /* Delete all labels already not referenced.
914 Also find and return the last insn. */
916 static rtx
917 delete_unreferenced_labels (f)
918 rtx f;
920 rtx final = NULL_RTX;
921 rtx insn;
923 for (insn = f; insn;)
925 if (GET_CODE (insn) == CODE_LABEL
926 && LABEL_NUSES (insn) == 0
927 && LABEL_ALTERNATE_NAME (insn) == NULL)
928 insn = delete_insn (insn);
929 else
931 final = insn;
932 insn = NEXT_INSN (insn);
936 return final;
939 /* Delete various simple forms of moves which have no necessary
940 side effect. */
942 static void
943 delete_noop_moves (f)
944 rtx f;
946 rtx insn, next;
948 for (insn = f; insn;)
950 next = NEXT_INSN (insn);
952 if (GET_CODE (insn) == INSN)
954 register rtx body = PATTERN (insn);
956 /* Detect and delete no-op move instructions
957 resulting from not allocating a parameter in a register. */
959 if (GET_CODE (body) == SET
960 && (SET_DEST (body) == SET_SRC (body)
961 || (GET_CODE (SET_DEST (body)) == MEM
962 && GET_CODE (SET_SRC (body)) == MEM
963 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
964 && ! (GET_CODE (SET_DEST (body)) == MEM
965 && MEM_VOLATILE_P (SET_DEST (body)))
966 && ! (GET_CODE (SET_SRC (body)) == MEM
967 && MEM_VOLATILE_P (SET_SRC (body))))
968 delete_computation (insn);
970 /* Detect and ignore no-op move instructions
971 resulting from smart or fortuitous register allocation. */
973 else if (GET_CODE (body) == SET)
975 int sreg = true_regnum (SET_SRC (body));
976 int dreg = true_regnum (SET_DEST (body));
978 if (sreg == dreg && sreg >= 0)
979 delete_insn (insn);
980 else if (sreg >= 0 && dreg >= 0)
982 rtx trial;
983 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
984 sreg, NULL_PTR, dreg,
985 GET_MODE (SET_SRC (body)));
987 if (tem != 0
988 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
990 /* DREG may have been the target of a REG_DEAD note in
991 the insn which makes INSN redundant. If so, reorg
992 would still think it is dead. So search for such a
993 note and delete it if we find it. */
994 if (! find_regno_note (insn, REG_UNUSED, dreg))
995 for (trial = prev_nonnote_insn (insn);
996 trial && GET_CODE (trial) != CODE_LABEL;
997 trial = prev_nonnote_insn (trial))
998 if (find_regno_note (trial, REG_DEAD, dreg))
1000 remove_death (dreg, trial);
1001 break;
1004 /* Deleting insn could lose a death-note for SREG. */
1005 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
1007 /* Change this into a USE so that we won't emit
1008 code for it, but still can keep the note. */
1009 PATTERN (insn)
1010 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
1011 INSN_CODE (insn) = -1;
1012 /* Remove all reg notes but the REG_DEAD one. */
1013 REG_NOTES (insn) = trial;
1014 XEXP (trial, 1) = NULL_RTX;
1016 else
1017 delete_insn (insn);
1020 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
1021 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
1022 NULL_PTR, 0,
1023 GET_MODE (SET_DEST (body))))
1025 /* This handles the case where we have two consecutive
1026 assignments of the same constant to pseudos that didn't
1027 get a hard reg. Each SET from the constant will be
1028 converted into a SET of the spill register and an
1029 output reload will be made following it. This produces
1030 two loads of the same constant into the same spill
1031 register. */
1033 rtx in_insn = insn;
1035 /* Look back for a death note for the first reg.
1036 If there is one, it is no longer accurate. */
1037 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
1039 if ((GET_CODE (in_insn) == INSN
1040 || GET_CODE (in_insn) == JUMP_INSN)
1041 && find_regno_note (in_insn, REG_DEAD, dreg))
1043 remove_death (dreg, in_insn);
1044 break;
1046 in_insn = PREV_INSN (in_insn);
1049 /* Delete the second load of the value. */
1050 delete_insn (insn);
1053 else if (GET_CODE (body) == PARALLEL)
1055 /* If each part is a set between two identical registers or
1056 a USE or CLOBBER, delete the insn. */
1057 int i, sreg, dreg;
1058 rtx tem;
1060 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1062 tem = XVECEXP (body, 0, i);
1063 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1064 continue;
1066 if (GET_CODE (tem) != SET
1067 || (sreg = true_regnum (SET_SRC (tem))) < 0
1068 || (dreg = true_regnum (SET_DEST (tem))) < 0
1069 || dreg != sreg)
1070 break;
1073 if (i < 0)
1074 delete_insn (insn);
1076 /* Also delete insns to store bit fields if they are no-ops. */
1077 /* Not worth the hair to detect this in the big-endian case. */
1078 else if (! BYTES_BIG_ENDIAN
1079 && GET_CODE (body) == SET
1080 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
1081 && XEXP (SET_DEST (body), 2) == const0_rtx
1082 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
1083 && ! (GET_CODE (SET_SRC (body)) == MEM
1084 && MEM_VOLATILE_P (SET_SRC (body))))
1085 delete_insn (insn);
1087 insn = next;
1091 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1092 jump. Assume that this unconditional jump is to the exit test code. If
1093 the code is sufficiently simple, make a copy of it before INSN,
1094 followed by a jump to the exit of the loop. Then delete the unconditional
1095 jump after INSN.
1097 Return 1 if we made the change, else 0.
1099 This is only safe immediately after a regscan pass because it uses the
1100 values of regno_first_uid and regno_last_uid. */
1102 static int
1103 duplicate_loop_exit_test (loop_start)
1104 rtx loop_start;
1106 rtx insn, set, reg, p, link;
1107 rtx copy = 0, first_copy = 0;
1108 int num_insns = 0;
1109 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1110 rtx lastexit;
1111 int max_reg = max_reg_num ();
1112 rtx *reg_map = 0;
1114 /* Scan the exit code. We do not perform this optimization if any insn:
1116 is a CALL_INSN
1117 is a CODE_LABEL
1118 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1119 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1120 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1121 is not valid.
1123 We also do not do this if we find an insn with ASM_OPERANDS. While
1124 this restriction should not be necessary, copying an insn with
1125 ASM_OPERANDS can confuse asm_noperands in some cases.
1127 Also, don't do this if the exit code is more than 20 insns. */
1129 for (insn = exitcode;
1130 insn
1131 && ! (GET_CODE (insn) == NOTE
1132 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1133 insn = NEXT_INSN (insn))
1135 switch (GET_CODE (insn))
1137 case CODE_LABEL:
1138 case CALL_INSN:
1139 return 0;
1140 case NOTE:
1141 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
1142 a jump immediately after the loop start that branches outside
1143 the loop but within an outer loop, near the exit test.
1144 If we copied this exit test and created a phony
1145 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
1146 before the exit test look like these could be safely moved
1147 out of the loop even if they actually may be never executed.
1148 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
1150 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1151 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
1152 return 0;
1154 if (optimize < 2
1155 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1156 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1157 /* If we were to duplicate this code, we would not move
1158 the BLOCK notes, and so debugging the moved code would
1159 be difficult. Thus, we only move the code with -O2 or
1160 higher. */
1161 return 0;
1163 break;
1164 case JUMP_INSN:
1165 case INSN:
1166 /* The code below would grossly mishandle REG_WAS_0 notes,
1167 so get rid of them here. */
1168 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
1169 remove_note (insn, p);
1170 if (++num_insns > 20
1171 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1172 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1173 return 0;
1174 break;
1175 default:
1176 break;
1180 /* Unless INSN is zero, we can do the optimization. */
1181 if (insn == 0)
1182 return 0;
1184 lastexit = insn;
1186 /* See if any insn sets a register only used in the loop exit code and
1187 not a user variable. If so, replace it with a new register. */
1188 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1189 if (GET_CODE (insn) == INSN
1190 && (set = single_set (insn)) != 0
1191 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
1192 || (GET_CODE (reg) == SUBREG
1193 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
1194 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1195 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
1197 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1198 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
1199 break;
1201 if (p != lastexit)
1203 /* We can do the replacement. Allocate reg_map if this is the
1204 first replacement we found. */
1205 if (reg_map == 0)
1206 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
1208 REG_LOOP_TEST_P (reg) = 1;
1210 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
1214 /* Now copy each insn. */
1215 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1217 switch (GET_CODE (insn))
1219 case BARRIER:
1220 copy = emit_barrier_before (loop_start);
1221 break;
1222 case NOTE:
1223 /* Only copy line-number notes. */
1224 if (NOTE_LINE_NUMBER (insn) >= 0)
1226 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1227 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1229 break;
1231 case INSN:
1232 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
1233 if (reg_map)
1234 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1236 mark_jump_label (PATTERN (copy), copy, 0, 0);
1238 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1239 make them. */
1240 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1241 if (REG_NOTE_KIND (link) != REG_LABEL)
1243 if (GET_CODE (link) == EXPR_LIST)
1244 REG_NOTES (copy)
1245 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
1246 XEXP (link, 0),
1247 REG_NOTES (copy)));
1248 else
1249 REG_NOTES (copy)
1250 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
1251 XEXP (link, 0),
1252 REG_NOTES (copy)));
1255 if (reg_map && REG_NOTES (copy))
1256 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1257 break;
1259 case JUMP_INSN:
1260 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
1261 loop_start);
1262 if (reg_map)
1263 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1264 mark_jump_label (PATTERN (copy), copy, 0, 0);
1265 if (REG_NOTES (insn))
1267 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
1268 if (reg_map)
1269 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1272 /* If this is a simple jump, add it to the jump chain. */
1274 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1275 && simplejump_p (copy))
1277 jump_chain[INSN_UID (copy)]
1278 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1279 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1281 break;
1283 default:
1284 abort ();
1287 /* Record the first insn we copied. We need it so that we can
1288 scan the copied insns for new pseudo registers. */
1289 if (! first_copy)
1290 first_copy = copy;
1293 /* Now clean up by emitting a jump to the end label and deleting the jump
1294 at the start of the loop. */
1295 if (! copy || GET_CODE (copy) != BARRIER)
1297 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1298 loop_start);
1300 /* Record the first insn we copied. We need it so that we can
1301 scan the copied insns for new pseudo registers. This may not
1302 be strictly necessary since we should have copied at least one
1303 insn above. But I am going to be safe. */
1304 if (! first_copy)
1305 first_copy = copy;
1307 mark_jump_label (PATTERN (copy), copy, 0, 0);
1308 if (INSN_UID (copy) < max_jump_chain
1309 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1311 jump_chain[INSN_UID (copy)]
1312 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1313 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1315 emit_barrier_before (loop_start);
1318 /* Now scan from the first insn we copied to the last insn we copied
1319 (copy) for new pseudo registers. Do this after the code to jump to
1320 the end label since that might create a new pseudo too. */
1321 reg_scan_update (first_copy, copy, max_reg);
1323 /* Mark the exit code as the virtual top of the converted loop. */
1324 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1326 delete_insn (next_nonnote_insn (loop_start));
1328 /* Clean up. */
1329 if (reg_map)
1330 free (reg_map);
1332 return 1;
1335 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
1336 notes between START and END out before START. Assume that END is not
1337 such a note. START may be such a note. Returns the value of the new
1338 starting insn, which may be different if the original start was such a
1339 note. */
1342 squeeze_notes (start, end)
1343 rtx start, end;
1345 rtx insn;
1346 rtx next;
1348 for (insn = start; insn != end; insn = next)
1350 next = NEXT_INSN (insn);
1351 if (GET_CODE (insn) == NOTE
1352 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1353 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1354 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1355 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1356 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1357 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
1359 if (insn == start)
1360 start = next;
1361 else
1363 rtx prev = PREV_INSN (insn);
1364 PREV_INSN (insn) = PREV_INSN (start);
1365 NEXT_INSN (insn) = start;
1366 NEXT_INSN (PREV_INSN (insn)) = insn;
1367 PREV_INSN (NEXT_INSN (insn)) = insn;
1368 NEXT_INSN (prev) = next;
1369 PREV_INSN (next) = prev;
1374 return start;
1377 /* Compare the instructions before insn E1 with those before E2
1378 to find an opportunity for cross jumping.
1379 (This means detecting identical sequences of insns followed by
1380 jumps to the same place, or followed by a label and a jump
1381 to that label, and replacing one with a jump to the other.)
1383 Assume E1 is a jump that jumps to label E2
1384 (that is not always true but it might as well be).
1385 Find the longest possible equivalent sequences
1386 and store the first insns of those sequences into *F1 and *F2.
1387 Store zero there if no equivalent preceding instructions are found.
1389 We give up if we find a label in stream 1.
1390 Actually we could transfer that label into stream 2. */
1392 static void
1393 find_cross_jump (e1, e2, minimum, f1, f2)
1394 rtx e1, e2;
1395 int minimum;
1396 rtx *f1, *f2;
1398 register rtx i1 = e1, i2 = e2;
1399 register rtx p1, p2;
1400 int lose = 0;
1402 rtx last1 = 0, last2 = 0;
1403 rtx afterlast1 = 0, afterlast2 = 0;
1405 *f1 = 0;
1406 *f2 = 0;
1408 while (1)
1410 i1 = prev_nonnote_insn (i1);
1412 i2 = PREV_INSN (i2);
1413 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1414 i2 = PREV_INSN (i2);
1416 if (i1 == 0)
1417 break;
1419 /* Don't allow the range of insns preceding E1 or E2
1420 to include the other (E2 or E1). */
1421 if (i2 == e1 || i1 == e2)
1422 break;
1424 /* If we will get to this code by jumping, those jumps will be
1425 tensioned to go directly to the new label (before I2),
1426 so this cross-jumping won't cost extra. So reduce the minimum. */
1427 if (GET_CODE (i1) == CODE_LABEL)
1429 --minimum;
1430 break;
1433 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1434 break;
1436 p1 = PATTERN (i1);
1437 p2 = PATTERN (i2);
1439 /* If this is a CALL_INSN, compare register usage information.
1440 If we don't check this on stack register machines, the two
1441 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1442 numbers of stack registers in the same basic block.
1443 If we don't check this on machines with delay slots, a delay slot may
1444 be filled that clobbers a parameter expected by the subroutine.
1446 ??? We take the simple route for now and assume that if they're
1447 equal, they were constructed identically. */
1449 if (GET_CODE (i1) == CALL_INSN
1450 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1451 CALL_INSN_FUNCTION_USAGE (i2)))
1452 lose = 1;
1454 #ifdef STACK_REGS
1455 /* If cross_jump_death_matters is not 0, the insn's mode
1456 indicates whether or not the insn contains any stack-like
1457 regs. */
1459 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
1461 /* If register stack conversion has already been done, then
1462 death notes must also be compared before it is certain that
1463 the two instruction streams match. */
1465 rtx note;
1466 HARD_REG_SET i1_regset, i2_regset;
1468 CLEAR_HARD_REG_SET (i1_regset);
1469 CLEAR_HARD_REG_SET (i2_regset);
1471 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1472 if (REG_NOTE_KIND (note) == REG_DEAD
1473 && STACK_REG_P (XEXP (note, 0)))
1474 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1476 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1477 if (REG_NOTE_KIND (note) == REG_DEAD
1478 && STACK_REG_P (XEXP (note, 0)))
1479 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1481 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1483 lose = 1;
1485 done:
1488 #endif
1490 /* Don't allow old-style asm or volatile extended asms to be accepted
1491 for cross jumping purposes. It is conceptually correct to allow
1492 them, since cross-jumping preserves the dynamic instruction order
1493 even though it is changing the static instruction order. However,
1494 if an asm is being used to emit an assembler pseudo-op, such as
1495 the MIPS `.set reorder' pseudo-op, then the static instruction order
1496 matters and it must be preserved. */
1497 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
1498 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
1499 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
1500 lose = 1;
1502 if (lose || GET_CODE (p1) != GET_CODE (p2)
1503 || ! rtx_renumbered_equal_p (p1, p2))
1505 /* The following code helps take care of G++ cleanups. */
1506 rtx equiv1;
1507 rtx equiv2;
1509 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1510 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
1511 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
1512 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
1513 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
1514 /* If the equivalences are not to a constant, they may
1515 reference pseudos that no longer exist, so we can't
1516 use them. */
1517 && CONSTANT_P (XEXP (equiv1, 0))
1518 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1520 rtx s1 = single_set (i1);
1521 rtx s2 = single_set (i2);
1522 if (s1 != 0 && s2 != 0
1523 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1525 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1526 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1527 if (! rtx_renumbered_equal_p (p1, p2))
1528 cancel_changes (0);
1529 else if (apply_change_group ())
1530 goto win;
1534 /* Insns fail to match; cross jumping is limited to the following
1535 insns. */
1537 #ifdef HAVE_cc0
1538 /* Don't allow the insn after a compare to be shared by
1539 cross-jumping unless the compare is also shared.
1540 Here, if either of these non-matching insns is a compare,
1541 exclude the following insn from possible cross-jumping. */
1542 if (sets_cc0_p (p1) || sets_cc0_p (p2))
1543 last1 = afterlast1, last2 = afterlast2, ++minimum;
1544 #endif
1546 /* If cross-jumping here will feed a jump-around-jump
1547 optimization, this jump won't cost extra, so reduce
1548 the minimum. */
1549 if (GET_CODE (i1) == JUMP_INSN
1550 && JUMP_LABEL (i1)
1551 && prev_real_insn (JUMP_LABEL (i1)) == e1)
1552 --minimum;
1553 break;
1556 win:
1557 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
1559 /* Ok, this insn is potentially includable in a cross-jump here. */
1560 afterlast1 = last1, afterlast2 = last2;
1561 last1 = i1, last2 = i2, --minimum;
1565 if (minimum <= 0 && last1 != 0 && last1 != e1)
1566 *f1 = last1, *f2 = last2;
1569 static void
1570 do_cross_jump (insn, newjpos, newlpos)
1571 rtx insn, newjpos, newlpos;
1573 /* Find an existing label at this point
1574 or make a new one if there is none. */
1575 register rtx label = get_label_before (newlpos);
1577 /* Make the same jump insn jump to the new point. */
1578 if (GET_CODE (PATTERN (insn)) == RETURN)
1580 /* Remove from jump chain of returns. */
1581 delete_from_jump_chain (insn);
1582 /* Change the insn. */
1583 PATTERN (insn) = gen_jump (label);
1584 INSN_CODE (insn) = -1;
1585 JUMP_LABEL (insn) = label;
1586 LABEL_NUSES (label)++;
1587 /* Add to new the jump chain. */
1588 if (INSN_UID (label) < max_jump_chain
1589 && INSN_UID (insn) < max_jump_chain)
1591 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
1592 jump_chain[INSN_UID (label)] = insn;
1595 else
1596 redirect_jump (insn, label, 1);
1598 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
1599 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
1600 the NEWJPOS stream. */
1602 while (newjpos != insn)
1604 rtx lnote;
1606 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
1607 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
1608 || REG_NOTE_KIND (lnote) == REG_EQUIV)
1609 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
1610 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
1611 remove_note (newlpos, lnote);
1613 delete_insn (newjpos);
1614 newjpos = next_real_insn (newjpos);
1615 newlpos = next_real_insn (newlpos);
1619 /* Return the label before INSN, or put a new label there. */
1622 get_label_before (insn)
1623 rtx insn;
1625 rtx label;
1627 /* Find an existing label at this point
1628 or make a new one if there is none. */
1629 label = prev_nonnote_insn (insn);
1631 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1633 rtx prev = PREV_INSN (insn);
1635 label = gen_label_rtx ();
1636 emit_label_after (label, prev);
1637 LABEL_NUSES (label) = 0;
1639 return label;
1642 /* Return the label after INSN, or put a new label there. */
1645 get_label_after (insn)
1646 rtx insn;
1648 rtx label;
1650 /* Find an existing label at this point
1651 or make a new one if there is none. */
1652 label = next_nonnote_insn (insn);
1654 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1656 label = gen_label_rtx ();
1657 emit_label_after (label, insn);
1658 LABEL_NUSES (label) = 0;
1660 return label;
1663 /* Return 1 if INSN is a jump that jumps to right after TARGET
1664 only on the condition that TARGET itself would drop through.
1665 Assumes that TARGET is a conditional jump. */
1667 static int
1668 jump_back_p (insn, target)
1669 rtx insn, target;
1671 rtx cinsn, ctarget;
1672 enum rtx_code codei, codet;
1673 rtx set, tset;
1675 if (! any_condjump_p (insn)
1676 || any_uncondjump_p (target)
1677 || target != prev_real_insn (JUMP_LABEL (insn)))
1678 return 0;
1679 set = pc_set (insn);
1680 tset = pc_set (target);
1682 cinsn = XEXP (SET_SRC (set), 0);
1683 ctarget = XEXP (SET_SRC (tset), 0);
1685 codei = GET_CODE (cinsn);
1686 codet = GET_CODE (ctarget);
1688 if (XEXP (SET_SRC (set), 1) == pc_rtx)
1690 codei = reversed_comparison_code (cinsn, insn);
1691 if (codei == UNKNOWN)
1692 return 0;
1695 if (XEXP (SET_SRC (tset), 2) == pc_rtx)
1697 codet = reversed_comparison_code (ctarget, target);
1698 if (codei == UNKNOWN)
1699 return 0;
1702 return (codei == codet
1703 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
1704 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
1707 /* Given a comparison (CODE ARG0 ARG1), inside a insn, INSN, return an code
1708 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
1709 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
1710 know whether it's source is floating point or integer comparison. Machine
1711 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
1712 to help this function avoid overhead in these cases. */
1713 enum rtx_code
1714 reversed_comparison_code_parts (code, arg0, arg1, insn)
1715 rtx insn, arg0, arg1;
1716 enum rtx_code code;
1718 enum machine_mode mode;
1720 /* If this is not actually a comparison, we can't reverse it. */
1721 if (GET_RTX_CLASS (code) != '<')
1722 return UNKNOWN;
1724 mode = GET_MODE (arg0);
1725 if (mode == VOIDmode)
1726 mode = GET_MODE (arg1);
1728 /* First see if machine description supply us way to reverse the comparison.
1729 Give it priority over everything else to allow machine description to do
1730 tricks. */
1731 #ifdef REVERSIBLE_CC_MODE
1732 if (GET_MODE_CLASS (mode) == MODE_CC
1733 && REVERSIBLE_CC_MODE (mode))
1735 #ifdef REVERSE_CONDITION
1736 return REVERSE_CONDITION (code, mode);
1737 #endif
1738 return reverse_condition (code);
1740 #endif
1742 /* Try few special cases based on the comparison code. */
1743 switch (code)
1745 case GEU:
1746 case GTU:
1747 case LEU:
1748 case LTU:
1749 case NE:
1750 case EQ:
1751 /* It is always safe to reverse EQ and NE, even for the floating
1752 point. Similary the unsigned comparisons are never used for
1753 floating point so we can reverse them in the default way. */
1754 return reverse_condition (code);
1755 case ORDERED:
1756 case UNORDERED:
1757 case LTGT:
1758 case UNEQ:
1759 /* In case we already see unordered comparison, we can be sure to
1760 be dealing with floating point so we don't need any more tests. */
1761 return reverse_condition_maybe_unordered (code);
1762 case UNLT:
1763 case UNLE:
1764 case UNGT:
1765 case UNGE:
1766 /* We don't have safe way to reverse these yet. */
1767 return UNKNOWN;
1768 default:
1769 break;
1772 /* In case we give up IEEE compatibility, all comparisons are reversible. */
1773 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1774 || flag_unsafe_math_optimizations)
1775 return reverse_condition (code);
1777 if (GET_MODE_CLASS (mode) == MODE_CC
1778 #ifdef HAVE_cc0
1779 || arg0 == cc0_rtx
1780 #endif
1783 rtx prev;
1784 /* Try to search for the comparison to determine the real mode.
1785 This code is expensive, but with sane machine description it
1786 will be never used, since REVERSIBLE_CC_MODE will return true
1787 in all cases. */
1788 if (! insn)
1789 return UNKNOWN;
1791 for (prev = prev_nonnote_insn (insn);
1792 prev != 0 && GET_CODE (prev) != CODE_LABEL;
1793 prev = prev_nonnote_insn (prev))
1795 rtx set = set_of (arg0, prev);
1796 if (set && GET_CODE (set) == SET
1797 && rtx_equal_p (SET_DEST (set), arg0))
1799 rtx src = SET_SRC (set);
1801 if (GET_CODE (src) == COMPARE)
1803 rtx comparison = src;
1804 arg0 = XEXP (src, 0);
1805 mode = GET_MODE (arg0);
1806 if (mode == VOIDmode)
1807 mode = GET_MODE (XEXP (comparison, 1));
1808 break;
1810 /* We can get past reg-reg moves. This may be usefull for model
1811 of i387 comparisons that first move flag registers around. */
1812 if (REG_P (src))
1814 arg0 = src;
1815 continue;
1818 /* If register is clobbered in some ununderstandable way,
1819 give up. */
1820 if (set)
1821 return UNKNOWN;
1825 /* An integer condition. */
1826 if (GET_CODE (arg0) == CONST_INT
1827 || (GET_MODE (arg0) != VOIDmode
1828 && GET_MODE_CLASS (mode) != MODE_CC
1829 && ! FLOAT_MODE_P (mode)))
1830 return reverse_condition (code);
1832 return UNKNOWN;
1835 /* An wrapper around the previous function to take COMPARISON as rtx
1836 expression. This simplifies many callers. */
1837 enum rtx_code
1838 reversed_comparison_code (comparison, insn)
1839 rtx comparison, insn;
1841 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1842 return UNKNOWN;
1843 return reversed_comparison_code_parts (GET_CODE (comparison),
1844 XEXP (comparison, 0),
1845 XEXP (comparison, 1), insn);
1848 /* Given an rtx-code for a comparison, return the code for the negated
1849 comparison. If no such code exists, return UNKNOWN.
1851 WATCH OUT! reverse_condition is not safe to use on a jump that might
1852 be acting on the results of an IEEE floating point comparison, because
1853 of the special treatment of non-signaling nans in comparisons.
1854 Use reversed_comparison_code instead. */
1856 enum rtx_code
1857 reverse_condition (code)
1858 enum rtx_code code;
1860 switch (code)
1862 case EQ:
1863 return NE;
1864 case NE:
1865 return EQ;
1866 case GT:
1867 return LE;
1868 case GE:
1869 return LT;
1870 case LT:
1871 return GE;
1872 case LE:
1873 return GT;
1874 case GTU:
1875 return LEU;
1876 case GEU:
1877 return LTU;
1878 case LTU:
1879 return GEU;
1880 case LEU:
1881 return GTU;
1882 case UNORDERED:
1883 return ORDERED;
1884 case ORDERED:
1885 return UNORDERED;
1887 case UNLT:
1888 case UNLE:
1889 case UNGT:
1890 case UNGE:
1891 case UNEQ:
1892 case LTGT:
1893 return UNKNOWN;
1895 default:
1896 abort ();
1900 /* Similar, but we're allowed to generate unordered comparisons, which
1901 makes it safe for IEEE floating-point. Of course, we have to recognize
1902 that the target will support them too... */
1904 enum rtx_code
1905 reverse_condition_maybe_unordered (code)
1906 enum rtx_code code;
1908 /* Non-IEEE formats don't have unordered conditions. */
1909 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
1910 return reverse_condition (code);
1912 switch (code)
1914 case EQ:
1915 return NE;
1916 case NE:
1917 return EQ;
1918 case GT:
1919 return UNLE;
1920 case GE:
1921 return UNLT;
1922 case LT:
1923 return UNGE;
1924 case LE:
1925 return UNGT;
1926 case LTGT:
1927 return UNEQ;
1928 case UNORDERED:
1929 return ORDERED;
1930 case ORDERED:
1931 return UNORDERED;
1932 case UNLT:
1933 return GE;
1934 case UNLE:
1935 return GT;
1936 case UNGT:
1937 return LE;
1938 case UNGE:
1939 return LT;
1940 case UNEQ:
1941 return LTGT;
1943 default:
1944 abort ();
1948 /* Similar, but return the code when two operands of a comparison are swapped.
1949 This IS safe for IEEE floating-point. */
1951 enum rtx_code
1952 swap_condition (code)
1953 enum rtx_code code;
1955 switch (code)
1957 case EQ:
1958 case NE:
1959 case UNORDERED:
1960 case ORDERED:
1961 case UNEQ:
1962 case LTGT:
1963 return code;
1965 case GT:
1966 return LT;
1967 case GE:
1968 return LE;
1969 case LT:
1970 return GT;
1971 case LE:
1972 return GE;
1973 case GTU:
1974 return LTU;
1975 case GEU:
1976 return LEU;
1977 case LTU:
1978 return GTU;
1979 case LEU:
1980 return GEU;
1981 case UNLT:
1982 return UNGT;
1983 case UNLE:
1984 return UNGE;
1985 case UNGT:
1986 return UNLT;
1987 case UNGE:
1988 return UNLE;
1990 default:
1991 abort ();
1995 /* Given a comparison CODE, return the corresponding unsigned comparison.
1996 If CODE is an equality comparison or already an unsigned comparison,
1997 CODE is returned. */
1999 enum rtx_code
2000 unsigned_condition (code)
2001 enum rtx_code code;
2003 switch (code)
2005 case EQ:
2006 case NE:
2007 case GTU:
2008 case GEU:
2009 case LTU:
2010 case LEU:
2011 return code;
2013 case GT:
2014 return GTU;
2015 case GE:
2016 return GEU;
2017 case LT:
2018 return LTU;
2019 case LE:
2020 return LEU;
2022 default:
2023 abort ();
2027 /* Similarly, return the signed version of a comparison. */
2029 enum rtx_code
2030 signed_condition (code)
2031 enum rtx_code code;
2033 switch (code)
2035 case EQ:
2036 case NE:
2037 case GT:
2038 case GE:
2039 case LT:
2040 case LE:
2041 return code;
2043 case GTU:
2044 return GT;
2045 case GEU:
2046 return GE;
2047 case LTU:
2048 return LT;
2049 case LEU:
2050 return LE;
2052 default:
2053 abort ();
2057 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2058 truth of CODE1 implies the truth of CODE2. */
2061 comparison_dominates_p (code1, code2)
2062 enum rtx_code code1, code2;
2064 /* UNKNOWN comparison codes can happen as a result of trying to revert
2065 comparison codes.
2066 They can't match anything, so we have to reject them here. */
2067 if (code1 == UNKNOWN || code2 == UNKNOWN)
2068 return 0;
2070 if (code1 == code2)
2071 return 1;
2073 switch (code1)
2075 case UNEQ:
2076 if (code2 == UNLE || code2 == UNGE)
2077 return 1;
2078 break;
2080 case EQ:
2081 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
2082 || code2 == ORDERED)
2083 return 1;
2084 break;
2086 case UNLT:
2087 if (code2 == UNLE || code2 == NE)
2088 return 1;
2089 break;
2091 case LT:
2092 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2093 return 1;
2094 break;
2096 case UNGT:
2097 if (code2 == UNGE || code2 == NE)
2098 return 1;
2099 break;
2101 case GT:
2102 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2103 return 1;
2104 break;
2106 case GE:
2107 case LE:
2108 if (code2 == ORDERED)
2109 return 1;
2110 break;
2112 case LTGT:
2113 if (code2 == NE || code2 == ORDERED)
2114 return 1;
2115 break;
2117 case LTU:
2118 if (code2 == LEU || code2 == NE)
2119 return 1;
2120 break;
2122 case GTU:
2123 if (code2 == GEU || code2 == NE)
2124 return 1;
2125 break;
2127 case UNORDERED:
2128 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
2129 || code2 == UNGE || code2 == UNGT)
2130 return 1;
2131 break;
2133 default:
2134 break;
2137 return 0;
2140 /* Return 1 if INSN is an unconditional jump and nothing else. */
2143 simplejump_p (insn)
2144 rtx insn;
2146 return (GET_CODE (insn) == JUMP_INSN
2147 && GET_CODE (PATTERN (insn)) == SET
2148 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2149 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2152 /* Return nonzero if INSN is a (possibly) conditional jump
2153 and nothing more.
2155 Use this function is deprecated, since we need to support combined
2156 branch and compare insns. Use any_condjump_p instead whenever possible. */
2159 condjump_p (insn)
2160 rtx insn;
2162 register rtx x = PATTERN (insn);
2164 if (GET_CODE (x) != SET
2165 || GET_CODE (SET_DEST (x)) != PC)
2166 return 0;
2168 x = SET_SRC (x);
2169 if (GET_CODE (x) == LABEL_REF)
2170 return 1;
2171 else
2172 return (GET_CODE (x) == IF_THEN_ELSE
2173 && ((GET_CODE (XEXP (x, 2)) == PC
2174 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
2175 || GET_CODE (XEXP (x, 1)) == RETURN))
2176 || (GET_CODE (XEXP (x, 1)) == PC
2177 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
2178 || GET_CODE (XEXP (x, 2)) == RETURN))));
2180 return 0;
2183 /* Return nonzero if INSN is a (possibly) conditional jump inside a
2184 PARALLEL.
2186 Use this function is deprecated, since we need to support combined
2187 branch and compare insns. Use any_condjump_p instead whenever possible. */
2190 condjump_in_parallel_p (insn)
2191 rtx insn;
2193 register rtx x = PATTERN (insn);
2195 if (GET_CODE (x) != PARALLEL)
2196 return 0;
2197 else
2198 x = XVECEXP (x, 0, 0);
2200 if (GET_CODE (x) != SET)
2201 return 0;
2202 if (GET_CODE (SET_DEST (x)) != PC)
2203 return 0;
2204 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2205 return 1;
2206 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2207 return 0;
2208 if (XEXP (SET_SRC (x), 2) == pc_rtx
2209 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2210 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2211 return 1;
2212 if (XEXP (SET_SRC (x), 1) == pc_rtx
2213 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2214 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2215 return 1;
2216 return 0;
2219 /* Return set of PC, otherwise NULL. */
2222 pc_set (insn)
2223 rtx insn;
2225 rtx pat;
2226 if (GET_CODE (insn) != JUMP_INSN)
2227 return NULL_RTX;
2228 pat = PATTERN (insn);
2230 /* The set is allowed to appear either as the insn pattern or
2231 the first set in a PARALLEL. */
2232 if (GET_CODE (pat) == PARALLEL)
2233 pat = XVECEXP (pat, 0, 0);
2234 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
2235 return pat;
2237 return NULL_RTX;
2240 /* Return true when insn is an unconditional direct jump,
2241 possibly bundled inside a PARALLEL. */
2244 any_uncondjump_p (insn)
2245 rtx insn;
2247 rtx x = pc_set (insn);
2248 if (!x)
2249 return 0;
2250 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
2251 return 0;
2252 return 1;
2255 /* Return true when insn is a conditional jump. This function works for
2256 instructions containing PC sets in PARALLELs. The instruction may have
2257 various other effects so before removing the jump you must verify
2258 onlyjump_p.
2260 Note that unlike condjump_p it returns false for unconditional jumps. */
2263 any_condjump_p (insn)
2264 rtx insn;
2266 rtx x = pc_set (insn);
2267 enum rtx_code a, b;
2269 if (!x)
2270 return 0;
2271 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2272 return 0;
2274 a = GET_CODE (XEXP (SET_SRC (x), 1));
2275 b = GET_CODE (XEXP (SET_SRC (x), 2));
2277 return ((b == PC && (a == LABEL_REF || a == RETURN))
2278 || (a == PC && (b == LABEL_REF || b == RETURN)));
2281 /* Return the label of a conditional jump. */
2284 condjump_label (insn)
2285 rtx insn;
2287 rtx x = pc_set (insn);
2289 if (!x)
2290 return NULL_RTX;
2291 x = SET_SRC (x);
2292 if (GET_CODE (x) == LABEL_REF)
2293 return x;
2294 if (GET_CODE (x) != IF_THEN_ELSE)
2295 return NULL_RTX;
2296 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
2297 return XEXP (x, 1);
2298 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
2299 return XEXP (x, 2);
2300 return NULL_RTX;
2303 /* Return true if INSN is a (possibly conditional) return insn. */
2305 static int
2306 returnjump_p_1 (loc, data)
2307 rtx *loc;
2308 void *data ATTRIBUTE_UNUSED;
2310 rtx x = *loc;
2311 return x && GET_CODE (x) == RETURN;
2315 returnjump_p (insn)
2316 rtx insn;
2318 if (GET_CODE (insn) != JUMP_INSN)
2319 return 0;
2320 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
2323 /* Return true if INSN is a jump that only transfers control and
2324 nothing more. */
2327 onlyjump_p (insn)
2328 rtx insn;
2330 rtx set;
2332 if (GET_CODE (insn) != JUMP_INSN)
2333 return 0;
2335 set = single_set (insn);
2336 if (set == NULL)
2337 return 0;
2338 if (GET_CODE (SET_DEST (set)) != PC)
2339 return 0;
2340 if (side_effects_p (SET_SRC (set)))
2341 return 0;
2343 return 1;
2346 #ifdef HAVE_cc0
2348 /* Return 1 if X is an RTX that does nothing but set the condition codes
2349 and CLOBBER or USE registers.
2350 Return -1 if X does explicitly set the condition codes,
2351 but also does other things. */
2354 sets_cc0_p (x)
2355 rtx x ATTRIBUTE_UNUSED;
2357 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2358 return 1;
2359 if (GET_CODE (x) == PARALLEL)
2361 int i;
2362 int sets_cc0 = 0;
2363 int other_things = 0;
2364 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2366 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2367 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2368 sets_cc0 = 1;
2369 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2370 other_things = 1;
2372 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2374 return 0;
2376 #endif
2378 /* Follow any unconditional jump at LABEL;
2379 return the ultimate label reached by any such chain of jumps.
2380 If LABEL is not followed by a jump, return LABEL.
2381 If the chain loops or we can't find end, return LABEL,
2382 since that tells caller to avoid changing the insn.
2384 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2385 a USE or CLOBBER. */
2388 follow_jumps (label)
2389 rtx label;
2391 register rtx insn;
2392 register rtx next;
2393 register rtx value = label;
2394 register int depth;
2396 for (depth = 0;
2397 (depth < 10
2398 && (insn = next_active_insn (value)) != 0
2399 && GET_CODE (insn) == JUMP_INSN
2400 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2401 && onlyjump_p (insn))
2402 || GET_CODE (PATTERN (insn)) == RETURN)
2403 && (next = NEXT_INSN (insn))
2404 && GET_CODE (next) == BARRIER);
2405 depth++)
2407 /* Don't chain through the insn that jumps into a loop
2408 from outside the loop,
2409 since that would create multiple loop entry jumps
2410 and prevent loop optimization. */
2411 rtx tem;
2412 if (!reload_completed)
2413 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2414 if (GET_CODE (tem) == NOTE
2415 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
2416 /* ??? Optional. Disables some optimizations, but makes
2417 gcov output more accurate with -O. */
2418 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
2419 return value;
2421 /* If we have found a cycle, make the insn jump to itself. */
2422 if (JUMP_LABEL (insn) == label)
2423 return label;
2425 tem = next_active_insn (JUMP_LABEL (insn));
2426 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2427 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2428 break;
2430 value = JUMP_LABEL (insn);
2432 if (depth == 10)
2433 return label;
2434 return value;
2437 /* Assuming that field IDX of X is a vector of label_refs,
2438 replace each of them by the ultimate label reached by it.
2439 Return nonzero if a change is made.
2440 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2442 static int
2443 tension_vector_labels (x, idx)
2444 register rtx x;
2445 register int idx;
2447 int changed = 0;
2448 register int i;
2449 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2451 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2452 register rtx nlabel = follow_jumps (olabel);
2453 if (nlabel && nlabel != olabel)
2455 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2456 ++LABEL_NUSES (nlabel);
2457 if (--LABEL_NUSES (olabel) == 0)
2458 delete_insn (olabel);
2459 changed = 1;
2462 return changed;
2465 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2466 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2467 in INSN, then store one of them in JUMP_LABEL (INSN).
2468 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2469 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2470 Also, when there are consecutive labels, canonicalize on the last of them.
2472 Note that two labels separated by a loop-beginning note
2473 must be kept distinct if we have not yet done loop-optimization,
2474 because the gap between them is where loop-optimize
2475 will want to move invariant code to. CROSS_JUMP tells us
2476 that loop-optimization is done with.
2478 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2479 two labels distinct if they are separated by only USE or CLOBBER insns. */
2481 void
2482 mark_jump_label (x, insn, cross_jump, in_mem)
2483 register rtx x;
2484 rtx insn;
2485 int cross_jump;
2486 int in_mem;
2488 register RTX_CODE code = GET_CODE (x);
2489 register int i;
2490 register const char *fmt;
2492 switch (code)
2494 case PC:
2495 case CC0:
2496 case REG:
2497 case SUBREG:
2498 case CONST_INT:
2499 case CONST_DOUBLE:
2500 case CLOBBER:
2501 case CALL:
2502 return;
2504 case MEM:
2505 in_mem = 1;
2506 break;
2508 case SYMBOL_REF:
2509 if (!in_mem)
2510 return;
2512 /* If this is a constant-pool reference, see if it is a label. */
2513 if (CONSTANT_POOL_ADDRESS_P (x))
2514 mark_jump_label (get_pool_constant (x), insn, cross_jump, in_mem);
2515 break;
2517 case LABEL_REF:
2519 rtx label = XEXP (x, 0);
2520 rtx olabel = label;
2521 rtx note;
2522 rtx next;
2524 /* Ignore remaining references to unreachable labels that
2525 have been deleted. */
2526 if (GET_CODE (label) == NOTE
2527 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
2528 break;
2530 if (GET_CODE (label) != CODE_LABEL)
2531 abort ();
2533 /* Ignore references to labels of containing functions. */
2534 if (LABEL_REF_NONLOCAL_P (x))
2535 break;
2537 /* If there are other labels following this one,
2538 replace it with the last of the consecutive labels. */
2539 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2541 if (GET_CODE (next) == CODE_LABEL)
2542 label = next;
2543 else if (cross_jump && GET_CODE (next) == INSN
2544 && (GET_CODE (PATTERN (next)) == USE
2545 || GET_CODE (PATTERN (next)) == CLOBBER))
2546 continue;
2547 else if (GET_CODE (next) != NOTE)
2548 break;
2549 else if (! cross_jump
2550 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2551 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
2552 /* ??? Optional. Disables some optimizations, but
2553 makes gcov output more accurate with -O. */
2554 || (flag_test_coverage
2555 && NOTE_LINE_NUMBER (next) > 0)))
2556 break;
2559 XEXP (x, 0) = label;
2560 if (! insn || ! INSN_DELETED_P (insn))
2561 ++LABEL_NUSES (label);
2563 if (insn)
2565 if (GET_CODE (insn) == JUMP_INSN)
2566 JUMP_LABEL (insn) = label;
2568 /* If we've changed OLABEL and we had a REG_LABEL note
2569 for it, update it as well. */
2570 else if (label != olabel
2571 && (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
2572 XEXP (note, 0) = label;
2574 /* Otherwise, add a REG_LABEL note for LABEL unless there already
2575 is one. */
2576 else if (! find_reg_note (insn, REG_LABEL, label))
2578 /* This code used to ignore labels which refered to dispatch
2579 tables to avoid flow.c generating worse code.
2581 However, in the presense of global optimizations like
2582 gcse which call find_basic_blocks without calling
2583 life_analysis, not recording such labels will lead
2584 to compiler aborts because of inconsistencies in the
2585 flow graph. So we go ahead and record the label.
2587 It may also be the case that the optimization argument
2588 is no longer valid because of the more accurate cfg
2589 we build in find_basic_blocks -- it no longer pessimizes
2590 code when it finds a REG_LABEL note. */
2591 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
2592 REG_NOTES (insn));
2595 return;
2598 /* Do walk the labels in a vector, but not the first operand of an
2599 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2600 case ADDR_VEC:
2601 case ADDR_DIFF_VEC:
2602 if (! INSN_DELETED_P (insn))
2604 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2606 for (i = 0; i < XVECLEN (x, eltnum); i++)
2607 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX,
2608 cross_jump, in_mem);
2610 return;
2612 default:
2613 break;
2616 fmt = GET_RTX_FORMAT (code);
2617 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2619 if (fmt[i] == 'e')
2620 mark_jump_label (XEXP (x, i), insn, cross_jump, in_mem);
2621 else if (fmt[i] == 'E')
2623 register int j;
2624 for (j = 0; j < XVECLEN (x, i); j++)
2625 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump, in_mem);
2630 /* If all INSN does is set the pc, delete it,
2631 and delete the insn that set the condition codes for it
2632 if that's what the previous thing was. */
2634 void
2635 delete_jump (insn)
2636 rtx insn;
2638 register rtx set = single_set (insn);
2640 if (set && GET_CODE (SET_DEST (set)) == PC)
2641 delete_computation (insn);
2644 /* Verify INSN is a BARRIER and delete it. */
2646 void
2647 delete_barrier (insn)
2648 rtx insn;
2650 if (GET_CODE (insn) != BARRIER)
2651 abort ();
2653 delete_insn (insn);
2656 /* Recursively delete prior insns that compute the value (used only by INSN
2657 which the caller is deleting) stored in the register mentioned by NOTE
2658 which is a REG_DEAD note associated with INSN. */
2660 static void
2661 delete_prior_computation (note, insn)
2662 rtx note;
2663 rtx insn;
2665 rtx our_prev;
2666 rtx reg = XEXP (note, 0);
2668 for (our_prev = prev_nonnote_insn (insn);
2669 our_prev && (GET_CODE (our_prev) == INSN
2670 || GET_CODE (our_prev) == CALL_INSN);
2671 our_prev = prev_nonnote_insn (our_prev))
2673 rtx pat = PATTERN (our_prev);
2675 /* If we reach a CALL which is not calling a const function
2676 or the callee pops the arguments, then give up. */
2677 if (GET_CODE (our_prev) == CALL_INSN
2678 && (! CONST_CALL_P (our_prev)
2679 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2680 break;
2682 /* If we reach a SEQUENCE, it is too complex to try to
2683 do anything with it, so give up. */
2684 if (GET_CODE (pat) == SEQUENCE)
2685 break;
2687 if (GET_CODE (pat) == USE
2688 && GET_CODE (XEXP (pat, 0)) == INSN)
2689 /* reorg creates USEs that look like this. We leave them
2690 alone because reorg needs them for its own purposes. */
2691 break;
2693 if (reg_set_p (reg, pat))
2695 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
2696 break;
2698 if (GET_CODE (pat) == PARALLEL)
2700 /* If we find a SET of something else, we can't
2701 delete the insn. */
2703 int i;
2705 for (i = 0; i < XVECLEN (pat, 0); i++)
2707 rtx part = XVECEXP (pat, 0, i);
2709 if (GET_CODE (part) == SET
2710 && SET_DEST (part) != reg)
2711 break;
2714 if (i == XVECLEN (pat, 0))
2715 delete_computation (our_prev);
2717 else if (GET_CODE (pat) == SET
2718 && GET_CODE (SET_DEST (pat)) == REG)
2720 int dest_regno = REGNO (SET_DEST (pat));
2721 int dest_endregno
2722 = (dest_regno
2723 + (dest_regno < FIRST_PSEUDO_REGISTER
2724 ? HARD_REGNO_NREGS (dest_regno,
2725 GET_MODE (SET_DEST (pat))) : 1));
2726 int regno = REGNO (reg);
2727 int endregno
2728 = (regno
2729 + (regno < FIRST_PSEUDO_REGISTER
2730 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
2732 if (dest_regno >= regno
2733 && dest_endregno <= endregno)
2734 delete_computation (our_prev);
2736 /* We may have a multi-word hard register and some, but not
2737 all, of the words of the register are needed in subsequent
2738 insns. Write REG_UNUSED notes for those parts that were not
2739 needed. */
2740 else if (dest_regno <= regno
2741 && dest_endregno >= endregno)
2743 int i;
2745 REG_NOTES (our_prev)
2746 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
2747 REG_NOTES (our_prev));
2749 for (i = dest_regno; i < dest_endregno; i++)
2750 if (! find_regno_note (our_prev, REG_UNUSED, i))
2751 break;
2753 if (i == dest_endregno)
2754 delete_computation (our_prev);
2758 break;
2761 /* If PAT references the register that dies here, it is an
2762 additional use. Hence any prior SET isn't dead. However, this
2763 insn becomes the new place for the REG_DEAD note. */
2764 if (reg_overlap_mentioned_p (reg, pat))
2766 XEXP (note, 1) = REG_NOTES (our_prev);
2767 REG_NOTES (our_prev) = note;
2768 break;
2773 /* Delete INSN and recursively delete insns that compute values used only
2774 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2775 If we are running before flow.c, we need do nothing since flow.c will
2776 delete dead code. We also can't know if the registers being used are
2777 dead or not at this point.
2779 Otherwise, look at all our REG_DEAD notes. If a previous insn does
2780 nothing other than set a register that dies in this insn, we can delete
2781 that insn as well.
2783 On machines with CC0, if CC0 is used in this insn, we may be able to
2784 delete the insn that set it. */
2786 static void
2787 delete_computation (insn)
2788 rtx insn;
2790 rtx note, next;
2792 #ifdef HAVE_cc0
2793 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2795 rtx prev = prev_nonnote_insn (insn);
2796 /* We assume that at this stage
2797 CC's are always set explicitly
2798 and always immediately before the jump that
2799 will use them. So if the previous insn
2800 exists to set the CC's, delete it
2801 (unless it performs auto-increments, etc.). */
2802 if (prev && GET_CODE (prev) == INSN
2803 && sets_cc0_p (PATTERN (prev)))
2805 if (sets_cc0_p (PATTERN (prev)) > 0
2806 && ! side_effects_p (PATTERN (prev)))
2807 delete_computation (prev);
2808 else
2809 /* Otherwise, show that cc0 won't be used. */
2810 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
2811 cc0_rtx, REG_NOTES (prev));
2814 #endif
2816 for (note = REG_NOTES (insn); note; note = next)
2818 next = XEXP (note, 1);
2820 if (REG_NOTE_KIND (note) != REG_DEAD
2821 /* Verify that the REG_NOTE is legitimate. */
2822 || GET_CODE (XEXP (note, 0)) != REG)
2823 continue;
2825 delete_prior_computation (note, insn);
2828 delete_insn (insn);
2831 /* Delete insn INSN from the chain of insns and update label ref counts.
2832 May delete some following insns as a consequence; may even delete
2833 a label elsewhere and insns that follow it.
2835 Returns the first insn after INSN that was not deleted. */
2838 delete_insn (insn)
2839 register rtx insn;
2841 register rtx next = NEXT_INSN (insn);
2842 register rtx prev = PREV_INSN (insn);
2843 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
2844 register int dont_really_delete = 0;
2845 rtx note;
2847 while (next && INSN_DELETED_P (next))
2848 next = NEXT_INSN (next);
2850 /* This insn is already deleted => return first following nondeleted. */
2851 if (INSN_DELETED_P (insn))
2852 return next;
2854 if (was_code_label)
2855 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2857 /* Don't delete user-declared labels. When optimizing, convert them
2858 to special NOTEs instead. When not optimizing, leave them alone. */
2859 if (was_code_label && LABEL_NAME (insn) != 0)
2861 if (! optimize)
2862 dont_really_delete = 1;
2863 else if (! dont_really_delete)
2865 const char *name = LABEL_NAME (insn);
2866 PUT_CODE (insn, NOTE);
2867 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
2868 NOTE_SOURCE_FILE (insn) = name;
2869 dont_really_delete = 1;
2872 else
2873 /* Mark this insn as deleted. */
2874 INSN_DELETED_P (insn) = 1;
2876 /* If this is an unconditional jump, delete it from the jump chain. */
2877 if (simplejump_p (insn))
2878 delete_from_jump_chain (insn);
2880 /* If instruction is followed by a barrier,
2881 delete the barrier too. */
2883 if (next != 0 && GET_CODE (next) == BARRIER)
2885 INSN_DELETED_P (next) = 1;
2886 next = NEXT_INSN (next);
2889 /* Patch out INSN (and the barrier if any) */
2891 if (! dont_really_delete)
2893 if (prev)
2895 NEXT_INSN (prev) = next;
2896 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2897 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2898 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2901 if (next)
2903 PREV_INSN (next) = prev;
2904 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2905 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2908 if (prev && NEXT_INSN (prev) == 0)
2909 set_last_insn (prev);
2912 /* If deleting a jump, decrement the count of the label,
2913 and delete the label if it is now unused. */
2915 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2917 rtx lab = JUMP_LABEL (insn), lab_next;
2919 if (--LABEL_NUSES (lab) == 0)
2921 /* This can delete NEXT or PREV,
2922 either directly if NEXT is JUMP_LABEL (INSN),
2923 or indirectly through more levels of jumps. */
2924 delete_insn (lab);
2926 /* I feel a little doubtful about this loop,
2927 but I see no clean and sure alternative way
2928 to find the first insn after INSN that is not now deleted.
2929 I hope this works. */
2930 while (next && INSN_DELETED_P (next))
2931 next = NEXT_INSN (next);
2932 return next;
2934 else if ((lab_next = next_nonnote_insn (lab)) != NULL
2935 && GET_CODE (lab_next) == JUMP_INSN
2936 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
2937 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
2939 /* If we're deleting the tablejump, delete the dispatch table.
2940 We may not be able to kill the label immediately preceeding
2941 just yet, as it might be referenced in code leading up to
2942 the tablejump. */
2943 delete_insn (lab_next);
2947 /* Likewise if we're deleting a dispatch table. */
2949 if (GET_CODE (insn) == JUMP_INSN
2950 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
2951 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
2953 rtx pat = PATTERN (insn);
2954 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2955 int len = XVECLEN (pat, diff_vec_p);
2957 for (i = 0; i < len; i++)
2958 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
2959 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
2960 while (next && INSN_DELETED_P (next))
2961 next = NEXT_INSN (next);
2962 return next;
2965 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
2966 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2967 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2968 if (REG_NOTE_KIND (note) == REG_LABEL
2969 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
2970 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2971 if (--LABEL_NUSES (XEXP (note, 0)) == 0)
2972 delete_insn (XEXP (note, 0));
2974 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
2975 prev = PREV_INSN (prev);
2977 /* If INSN was a label and a dispatch table follows it,
2978 delete the dispatch table. The tablejump must have gone already.
2979 It isn't useful to fall through into a table. */
2981 if (was_code_label
2982 && NEXT_INSN (insn) != 0
2983 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
2984 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
2985 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
2986 next = delete_insn (NEXT_INSN (insn));
2988 /* If INSN was a label, delete insns following it if now unreachable. */
2990 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
2992 register RTX_CODE code;
2993 while (next != 0
2994 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
2995 || code == NOTE || code == BARRIER
2996 || (code == CODE_LABEL && INSN_DELETED_P (next))))
2998 if (code == NOTE
2999 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
3000 next = NEXT_INSN (next);
3001 /* Keep going past other deleted labels to delete what follows. */
3002 else if (code == CODE_LABEL && INSN_DELETED_P (next))
3003 next = NEXT_INSN (next);
3004 else
3005 /* Note: if this deletes a jump, it can cause more
3006 deletion of unreachable code, after a different label.
3007 As long as the value from this recursive call is correct,
3008 this invocation functions correctly. */
3009 next = delete_insn (next);
3013 return next;
3016 /* Advance from INSN till reaching something not deleted
3017 then return that. May return INSN itself. */
3020 next_nondeleted_insn (insn)
3021 rtx insn;
3023 while (INSN_DELETED_P (insn))
3024 insn = NEXT_INSN (insn);
3025 return insn;
3028 /* Delete a range of insns from FROM to TO, inclusive.
3029 This is for the sake of peephole optimization, so assume
3030 that whatever these insns do will still be done by a new
3031 peephole insn that will replace them. */
3033 void
3034 delete_for_peephole (from, to)
3035 register rtx from, to;
3037 register rtx insn = from;
3039 while (1)
3041 register rtx next = NEXT_INSN (insn);
3042 register rtx prev = PREV_INSN (insn);
3044 if (GET_CODE (insn) != NOTE)
3046 INSN_DELETED_P (insn) = 1;
3048 /* Patch this insn out of the chain. */
3049 /* We don't do this all at once, because we
3050 must preserve all NOTEs. */
3051 if (prev)
3052 NEXT_INSN (prev) = next;
3054 if (next)
3055 PREV_INSN (next) = prev;
3058 if (insn == to)
3059 break;
3060 insn = next;
3063 /* Note that if TO is an unconditional jump
3064 we *do not* delete the BARRIER that follows,
3065 since the peephole that replaces this sequence
3066 is also an unconditional jump in that case. */
3069 /* We have determined that INSN is never reached, and are about to
3070 delete it. Print a warning if the user asked for one.
3072 To try to make this warning more useful, this should only be called
3073 once per basic block not reached, and it only warns when the basic
3074 block contains more than one line from the current function, and
3075 contains at least one operation. CSE and inlining can duplicate insns,
3076 so it's possible to get spurious warnings from this. */
3078 void
3079 never_reached_warning (avoided_insn)
3080 rtx avoided_insn;
3082 rtx insn;
3083 rtx a_line_note = NULL;
3084 int two_avoided_lines = 0;
3085 int contains_insn = 0;
3087 if (! warn_notreached)
3088 return;
3090 /* Scan forwards, looking at LINE_NUMBER notes, until
3091 we hit a LABEL or we run out of insns. */
3093 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
3095 if (GET_CODE (insn) == CODE_LABEL)
3096 break;
3097 else if (GET_CODE (insn) == NOTE /* A line number note? */
3098 && NOTE_LINE_NUMBER (insn) >= 0)
3100 if (a_line_note == NULL)
3101 a_line_note = insn;
3102 else
3103 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
3104 != NOTE_LINE_NUMBER (insn));
3106 else if (INSN_P (insn))
3107 contains_insn = 1;
3109 if (two_avoided_lines && contains_insn)
3110 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
3111 NOTE_LINE_NUMBER (a_line_note),
3112 "will never be executed");
3115 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
3116 NLABEL as a return. Accrue modifications into the change group. */
3118 static void
3119 redirect_exp_1 (loc, olabel, nlabel, insn)
3120 rtx *loc;
3121 rtx olabel, nlabel;
3122 rtx insn;
3124 register rtx x = *loc;
3125 register RTX_CODE code = GET_CODE (x);
3126 register int i;
3127 register const char *fmt;
3129 if (code == LABEL_REF)
3131 if (XEXP (x, 0) == olabel)
3133 rtx n;
3134 if (nlabel)
3135 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3136 else
3137 n = gen_rtx_RETURN (VOIDmode);
3139 validate_change (insn, loc, n, 1);
3140 return;
3143 else if (code == RETURN && olabel == 0)
3145 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3146 if (loc == &PATTERN (insn))
3147 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
3148 validate_change (insn, loc, x, 1);
3149 return;
3152 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3153 && GET_CODE (SET_SRC (x)) == LABEL_REF
3154 && XEXP (SET_SRC (x), 0) == olabel)
3156 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
3157 return;
3160 fmt = GET_RTX_FORMAT (code);
3161 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3163 if (fmt[i] == 'e')
3164 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
3165 else if (fmt[i] == 'E')
3167 register int j;
3168 for (j = 0; j < XVECLEN (x, i); j++)
3169 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
3174 /* Similar, but apply the change group and report success or failure. */
3176 static int
3177 redirect_exp (olabel, nlabel, insn)
3178 rtx olabel, nlabel;
3179 rtx insn;
3181 rtx *loc;
3183 if (GET_CODE (PATTERN (insn)) == PARALLEL)
3184 loc = &XVECEXP (PATTERN (insn), 0, 0);
3185 else
3186 loc = &PATTERN (insn);
3188 redirect_exp_1 (loc, olabel, nlabel, insn);
3189 if (num_validated_changes () == 0)
3190 return 0;
3192 return apply_change_group ();
3195 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
3196 the modifications into the change group. Return false if we did
3197 not see how to do that. */
3200 redirect_jump_1 (jump, nlabel)
3201 rtx jump, nlabel;
3203 int ochanges = num_validated_changes ();
3204 rtx *loc;
3206 if (GET_CODE (PATTERN (jump)) == PARALLEL)
3207 loc = &XVECEXP (PATTERN (jump), 0, 0);
3208 else
3209 loc = &PATTERN (jump);
3211 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
3212 return num_validated_changes () > ochanges;
3215 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
3216 jump target label is unused as a result, it and the code following
3217 it may be deleted.
3219 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3220 RETURN insn.
3222 The return value will be 1 if the change was made, 0 if it wasn't
3223 (this can only occur for NLABEL == 0). */
3226 redirect_jump (jump, nlabel, delete_unused)
3227 rtx jump, nlabel;
3228 int delete_unused;
3230 register rtx olabel = JUMP_LABEL (jump);
3232 if (nlabel == olabel)
3233 return 1;
3235 if (! redirect_exp (olabel, nlabel, jump))
3236 return 0;
3238 /* If this is an unconditional branch, delete it from the jump_chain of
3239 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3240 have UID's in range and JUMP_CHAIN is valid). */
3241 if (jump_chain && (simplejump_p (jump)
3242 || GET_CODE (PATTERN (jump)) == RETURN))
3244 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3246 delete_from_jump_chain (jump);
3247 if (label_index < max_jump_chain
3248 && INSN_UID (jump) < max_jump_chain)
3250 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3251 jump_chain[label_index] = jump;
3255 JUMP_LABEL (jump) = nlabel;
3256 if (nlabel)
3257 ++LABEL_NUSES (nlabel);
3259 /* If we're eliding the jump over exception cleanups at the end of a
3260 function, move the function end note so that -Wreturn-type works. */
3261 if (olabel && nlabel
3262 && NEXT_INSN (olabel)
3263 && GET_CODE (NEXT_INSN (olabel)) == NOTE
3264 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
3265 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
3267 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused)
3268 delete_insn (olabel);
3270 return 1;
3273 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3274 Accrue the modifications into the change group. */
3276 static void
3277 invert_exp_1 (insn)
3278 rtx insn;
3280 register RTX_CODE code;
3281 rtx x = pc_set (insn);
3283 if (!x)
3284 abort ();
3285 x = SET_SRC (x);
3287 code = GET_CODE (x);
3289 if (code == IF_THEN_ELSE)
3291 register rtx comp = XEXP (x, 0);
3292 register rtx tem;
3293 enum rtx_code reversed_code;
3295 /* We can do this in two ways: The preferable way, which can only
3296 be done if this is not an integer comparison, is to reverse
3297 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3298 of the IF_THEN_ELSE. If we can't do either, fail. */
3300 reversed_code = reversed_comparison_code (comp, insn);
3302 if (reversed_code != UNKNOWN)
3304 validate_change (insn, &XEXP (x, 0),
3305 gen_rtx_fmt_ee (reversed_code,
3306 GET_MODE (comp), XEXP (comp, 0),
3307 XEXP (comp, 1)),
3309 return;
3312 tem = XEXP (x, 1);
3313 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3314 validate_change (insn, &XEXP (x, 2), tem, 1);
3316 else
3317 abort ();
3320 /* Invert the jump condition of conditional jump insn, INSN.
3322 Return 1 if we can do so, 0 if we cannot find a way to do so that
3323 matches a pattern. */
3325 static int
3326 invert_exp (insn)
3327 rtx insn;
3329 invert_exp_1 (insn);
3330 if (num_validated_changes () == 0)
3331 return 0;
3333 return apply_change_group ();
3336 /* Invert the condition of the jump JUMP, and make it jump to label
3337 NLABEL instead of where it jumps now. Accrue changes into the
3338 change group. Return false if we didn't see how to perform the
3339 inversion and redirection. */
3342 invert_jump_1 (jump, nlabel)
3343 rtx jump, nlabel;
3345 int ochanges;
3347 ochanges = num_validated_changes ();
3348 invert_exp_1 (jump);
3349 if (num_validated_changes () == ochanges)
3350 return 0;
3352 return redirect_jump_1 (jump, nlabel);
3355 /* Invert the condition of the jump JUMP, and make it jump to label
3356 NLABEL instead of where it jumps now. Return true if successful. */
3359 invert_jump (jump, nlabel, delete_unused)
3360 rtx jump, nlabel;
3361 int delete_unused;
3363 /* We have to either invert the condition and change the label or
3364 do neither. Either operation could fail. We first try to invert
3365 the jump. If that succeeds, we try changing the label. If that fails,
3366 we invert the jump back to what it was. */
3368 if (! invert_exp (jump))
3369 return 0;
3371 if (redirect_jump (jump, nlabel, delete_unused))
3373 /* An inverted jump means that a probability taken becomes a
3374 probability not taken. Subtract the branch probability from the
3375 probability base to convert it back to a taken probability. */
3377 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3378 if (note)
3379 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
3381 return 1;
3384 if (! invert_exp (jump))
3385 /* This should just be putting it back the way it was. */
3386 abort ();
3388 return 0;
3391 /* Delete the instruction JUMP from any jump chain it might be on. */
3393 static void
3394 delete_from_jump_chain (jump)
3395 rtx jump;
3397 int index;
3398 rtx olabel = JUMP_LABEL (jump);
3400 /* Handle unconditional jumps. */
3401 if (jump_chain && olabel != 0
3402 && INSN_UID (olabel) < max_jump_chain
3403 && simplejump_p (jump))
3404 index = INSN_UID (olabel);
3405 /* Handle return insns. */
3406 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3407 index = 0;
3408 else
3409 return;
3411 if (jump_chain[index] == jump)
3412 jump_chain[index] = jump_chain[INSN_UID (jump)];
3413 else
3415 rtx insn;
3417 for (insn = jump_chain[index];
3418 insn != 0;
3419 insn = jump_chain[INSN_UID (insn)])
3420 if (jump_chain[INSN_UID (insn)] == jump)
3422 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3423 break;
3428 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3430 If the old jump target label (before the dispatch table) becomes unused,
3431 it and the dispatch table may be deleted. In that case, find the insn
3432 before the jump references that label and delete it and logical successors
3433 too. */
3435 static void
3436 redirect_tablejump (jump, nlabel)
3437 rtx jump, nlabel;
3439 register rtx olabel = JUMP_LABEL (jump);
3440 rtx *notep, note, next;
3442 /* Add this jump to the jump_chain of NLABEL. */
3443 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3444 && INSN_UID (jump) < max_jump_chain)
3446 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3447 jump_chain[INSN_UID (nlabel)] = jump;
3450 for (notep = &REG_NOTES (jump), note = *notep; note; note = next)
3452 next = XEXP (note, 1);
3454 if (REG_NOTE_KIND (note) != REG_DEAD
3455 /* Verify that the REG_NOTE is legitimate. */
3456 || GET_CODE (XEXP (note, 0)) != REG
3457 || ! reg_mentioned_p (XEXP (note, 0), PATTERN (jump)))
3458 notep = &XEXP (note, 1);
3459 else
3461 delete_prior_computation (note, jump);
3462 *notep = next;
3466 PATTERN (jump) = gen_jump (nlabel);
3467 JUMP_LABEL (jump) = nlabel;
3468 ++LABEL_NUSES (nlabel);
3469 INSN_CODE (jump) = -1;
3471 if (--LABEL_NUSES (olabel) == 0)
3473 delete_labelref_insn (jump, olabel, 0);
3474 delete_insn (olabel);
3478 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3479 If we found one, delete it and then delete this insn if DELETE_THIS is
3480 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3482 static int
3483 delete_labelref_insn (insn, label, delete_this)
3484 rtx insn, label;
3485 int delete_this;
3487 int deleted = 0;
3488 rtx link;
3490 if (GET_CODE (insn) != NOTE
3491 && reg_mentioned_p (label, PATTERN (insn)))
3493 if (delete_this)
3495 delete_insn (insn);
3496 deleted = 1;
3498 else
3499 return 1;
3502 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3503 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3505 if (delete_this)
3507 delete_insn (insn);
3508 deleted = 1;
3510 else
3511 return 1;
3514 return deleted;
3517 /* Like rtx_equal_p except that it considers two REGs as equal
3518 if they renumber to the same value and considers two commutative
3519 operations to be the same if the order of the operands has been
3520 reversed.
3522 ??? Addition is not commutative on the PA due to the weird implicit
3523 space register selection rules for memory addresses. Therefore, we
3524 don't consider a + b == b + a.
3526 We could/should make this test a little tighter. Possibly only
3527 disabling it on the PA via some backend macro or only disabling this
3528 case when the PLUS is inside a MEM. */
3531 rtx_renumbered_equal_p (x, y)
3532 rtx x, y;
3534 register int i;
3535 register RTX_CODE code = GET_CODE (x);
3536 register const char *fmt;
3538 if (x == y)
3539 return 1;
3541 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3542 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3543 && GET_CODE (SUBREG_REG (y)) == REG)))
3545 int reg_x = -1, reg_y = -1;
3546 int word_x = 0, word_y = 0;
3548 if (GET_MODE (x) != GET_MODE (y))
3549 return 0;
3551 /* If we haven't done any renumbering, don't
3552 make any assumptions. */
3553 if (reg_renumber == 0)
3554 return rtx_equal_p (x, y);
3556 if (code == SUBREG)
3558 reg_x = REGNO (SUBREG_REG (x));
3559 word_x = SUBREG_WORD (x);
3561 if (reg_renumber[reg_x] >= 0)
3563 reg_x = reg_renumber[reg_x] + word_x;
3564 word_x = 0;
3568 else
3570 reg_x = REGNO (x);
3571 if (reg_renumber[reg_x] >= 0)
3572 reg_x = reg_renumber[reg_x];
3575 if (GET_CODE (y) == SUBREG)
3577 reg_y = REGNO (SUBREG_REG (y));
3578 word_y = SUBREG_WORD (y);
3580 if (reg_renumber[reg_y] >= 0)
3582 reg_y = reg_renumber[reg_y];
3583 word_y = 0;
3587 else
3589 reg_y = REGNO (y);
3590 if (reg_renumber[reg_y] >= 0)
3591 reg_y = reg_renumber[reg_y];
3594 return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
3597 /* Now we have disposed of all the cases
3598 in which different rtx codes can match. */
3599 if (code != GET_CODE (y))
3600 return 0;
3602 switch (code)
3604 case PC:
3605 case CC0:
3606 case ADDR_VEC:
3607 case ADDR_DIFF_VEC:
3608 return 0;
3610 case CONST_INT:
3611 return INTVAL (x) == INTVAL (y);
3613 case LABEL_REF:
3614 /* We can't assume nonlocal labels have their following insns yet. */
3615 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3616 return XEXP (x, 0) == XEXP (y, 0);
3618 /* Two label-refs are equivalent if they point at labels
3619 in the same position in the instruction stream. */
3620 return (next_real_insn (XEXP (x, 0))
3621 == next_real_insn (XEXP (y, 0)));
3623 case SYMBOL_REF:
3624 return XSTR (x, 0) == XSTR (y, 0);
3626 case CODE_LABEL:
3627 /* If we didn't match EQ equality above, they aren't the same. */
3628 return 0;
3630 default:
3631 break;
3634 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3636 if (GET_MODE (x) != GET_MODE (y))
3637 return 0;
3639 /* For commutative operations, the RTX match if the operand match in any
3640 order. Also handle the simple binary and unary cases without a loop.
3642 ??? Don't consider PLUS a commutative operator; see comments above. */
3643 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3644 && code != PLUS)
3645 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3646 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
3647 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
3648 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
3649 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3650 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3651 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
3652 else if (GET_RTX_CLASS (code) == '1')
3653 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
3655 /* Compare the elements. If any pair of corresponding elements
3656 fail to match, return 0 for the whole things. */
3658 fmt = GET_RTX_FORMAT (code);
3659 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3661 register int j;
3662 switch (fmt[i])
3664 case 'w':
3665 if (XWINT (x, i) != XWINT (y, i))
3666 return 0;
3667 break;
3669 case 'i':
3670 if (XINT (x, i) != XINT (y, i))
3671 return 0;
3672 break;
3674 case 's':
3675 if (strcmp (XSTR (x, i), XSTR (y, i)))
3676 return 0;
3677 break;
3679 case 'e':
3680 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3681 return 0;
3682 break;
3684 case 'u':
3685 if (XEXP (x, i) != XEXP (y, i))
3686 return 0;
3687 /* fall through. */
3688 case '0':
3689 break;
3691 case 'E':
3692 if (XVECLEN (x, i) != XVECLEN (y, i))
3693 return 0;
3694 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3695 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3696 return 0;
3697 break;
3699 default:
3700 abort ();
3703 return 1;
3706 /* If X is a hard register or equivalent to one or a subregister of one,
3707 return the hard register number. If X is a pseudo register that was not
3708 assigned a hard register, return the pseudo register number. Otherwise,
3709 return -1. Any rtx is valid for X. */
3712 true_regnum (x)
3713 rtx x;
3715 if (GET_CODE (x) == REG)
3717 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3718 return reg_renumber[REGNO (x)];
3719 return REGNO (x);
3721 if (GET_CODE (x) == SUBREG)
3723 int base = true_regnum (SUBREG_REG (x));
3724 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3725 return SUBREG_WORD (x) + base;
3727 return -1;
3730 /* Optimize code of the form:
3732 for (x = a[i]; x; ...)
3734 for (x = a[i]; x; ...)
3736 foo:
3738 Loop optimize will change the above code into
3740 if (x = a[i])
3741 for (;;)
3742 { ...; if (! (x = ...)) break; }
3743 if (x = a[i])
3744 for (;;)
3745 { ...; if (! (x = ...)) break; }
3746 foo:
3748 In general, if the first test fails, the program can branch
3749 directly to `foo' and skip the second try which is doomed to fail.
3750 We run this after loop optimization and before flow analysis. */
3752 /* When comparing the insn patterns, we track the fact that different
3753 pseudo-register numbers may have been used in each computation.
3754 The following array stores an equivalence -- same_regs[I] == J means
3755 that pseudo register I was used in the first set of tests in a context
3756 where J was used in the second set. We also count the number of such
3757 pending equivalences. If nonzero, the expressions really aren't the
3758 same. */
3760 static int *same_regs;
3762 static int num_same_regs;
3764 /* Track any registers modified between the target of the first jump and
3765 the second jump. They never compare equal. */
3767 static char *modified_regs;
3769 /* Record if memory was modified. */
3771 static int modified_mem;
3773 /* Called via note_stores on each insn between the target of the first
3774 branch and the second branch. It marks any changed registers. */
3776 static void
3777 mark_modified_reg (dest, x, data)
3778 rtx dest;
3779 rtx x ATTRIBUTE_UNUSED;
3780 void *data ATTRIBUTE_UNUSED;
3782 int regno;
3783 unsigned int i;
3785 if (GET_CODE (dest) == SUBREG)
3786 dest = SUBREG_REG (dest);
3788 if (GET_CODE (dest) == MEM)
3789 modified_mem = 1;
3791 if (GET_CODE (dest) != REG)
3792 return;
3794 regno = REGNO (dest);
3795 if (regno >= FIRST_PSEUDO_REGISTER)
3796 modified_regs[regno] = 1;
3797 else
3798 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3799 modified_regs[regno + i] = 1;
3802 /* F is the first insn in the chain of insns. */
3804 void
3805 thread_jumps (f, max_reg, flag_before_loop)
3806 rtx f;
3807 int max_reg;
3808 int flag_before_loop;
3810 /* Basic algorithm is to find a conditional branch,
3811 the label it may branch to, and the branch after
3812 that label. If the two branches test the same condition,
3813 walk back from both branch paths until the insn patterns
3814 differ, or code labels are hit. If we make it back to
3815 the target of the first branch, then we know that the first branch
3816 will either always succeed or always fail depending on the relative
3817 senses of the two branches. So adjust the first branch accordingly
3818 in this case. */
3820 rtx label, b1, b2, t1, t2;
3821 enum rtx_code code1, code2;
3822 rtx b1op0, b1op1, b2op0, b2op1;
3823 int changed = 1;
3824 int i;
3825 int *all_reset;
3826 enum rtx_code reversed_code1, reversed_code2;
3828 /* Allocate register tables and quick-reset table. */
3829 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
3830 same_regs = (int *) xmalloc (max_reg * sizeof (int));
3831 all_reset = (int *) xmalloc (max_reg * sizeof (int));
3832 for (i = 0; i < max_reg; i++)
3833 all_reset[i] = -1;
3835 while (changed)
3837 changed = 0;
3839 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3841 rtx set;
3842 rtx set2;
3844 /* Get to a candidate branch insn. */
3845 if (GET_CODE (b1) != JUMP_INSN
3846 || ! any_condjump_p (b1) || JUMP_LABEL (b1) == 0)
3847 continue;
3849 memset (modified_regs, 0, max_reg * sizeof (char));
3850 modified_mem = 0;
3852 memcpy (same_regs, all_reset, max_reg * sizeof (int));
3853 num_same_regs = 0;
3855 label = JUMP_LABEL (b1);
3857 /* Look for a branch after the target. Record any registers and
3858 memory modified between the target and the branch. Stop when we
3859 get to a label since we can't know what was changed there. */
3860 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3862 if (GET_CODE (b2) == CODE_LABEL)
3863 break;
3865 else if (GET_CODE (b2) == JUMP_INSN)
3867 /* If this is an unconditional jump and is the only use of
3868 its target label, we can follow it. */
3869 if (any_uncondjump_p (b2)
3870 && onlyjump_p (b2)
3871 && JUMP_LABEL (b2) != 0
3872 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3874 b2 = JUMP_LABEL (b2);
3875 continue;
3877 else
3878 break;
3881 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3882 continue;
3884 if (GET_CODE (b2) == CALL_INSN)
3886 modified_mem = 1;
3887 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3888 if (call_used_regs[i] && ! fixed_regs[i]
3889 && i != STACK_POINTER_REGNUM
3890 && i != FRAME_POINTER_REGNUM
3891 && i != HARD_FRAME_POINTER_REGNUM
3892 && i != ARG_POINTER_REGNUM)
3893 modified_regs[i] = 1;
3896 note_stores (PATTERN (b2), mark_modified_reg, NULL);
3899 /* Check the next candidate branch insn from the label
3900 of the first. */
3901 if (b2 == 0
3902 || GET_CODE (b2) != JUMP_INSN
3903 || b2 == b1
3904 || !any_condjump_p (b2)
3905 || !onlyjump_p (b2))
3906 continue;
3907 set = pc_set (b1);
3908 set2 = pc_set (b2);
3910 /* Get the comparison codes and operands, reversing the
3911 codes if appropriate. If we don't have comparison codes,
3912 we can't do anything. */
3913 b1op0 = XEXP (XEXP (SET_SRC (set), 0), 0);
3914 b1op1 = XEXP (XEXP (SET_SRC (set), 0), 1);
3915 code1 = GET_CODE (XEXP (SET_SRC (set), 0));
3916 reversed_code1 = code1;
3917 if (XEXP (SET_SRC (set), 1) == pc_rtx)
3918 code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3919 else
3920 reversed_code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3922 b2op0 = XEXP (XEXP (SET_SRC (set2), 0), 0);
3923 b2op1 = XEXP (XEXP (SET_SRC (set2), 0), 1);
3924 code2 = GET_CODE (XEXP (SET_SRC (set2), 0));
3925 reversed_code2 = code2;
3926 if (XEXP (SET_SRC (set2), 1) == pc_rtx)
3927 code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3928 else
3929 reversed_code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3931 /* If they test the same things and knowing that B1 branches
3932 tells us whether or not B2 branches, check if we
3933 can thread the branch. */
3934 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3935 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3936 && (comparison_dominates_p (code1, code2)
3937 || comparison_dominates_p (code1, reversed_code2)))
3940 t1 = prev_nonnote_insn (b1);
3941 t2 = prev_nonnote_insn (b2);
3943 while (t1 != 0 && t2 != 0)
3945 if (t2 == label)
3947 /* We have reached the target of the first branch.
3948 If there are no pending register equivalents,
3949 we know that this branch will either always
3950 succeed (if the senses of the two branches are
3951 the same) or always fail (if not). */
3952 rtx new_label;
3954 if (num_same_regs != 0)
3955 break;
3957 if (comparison_dominates_p (code1, code2))
3958 new_label = JUMP_LABEL (b2);
3959 else
3960 new_label = get_label_after (b2);
3962 if (JUMP_LABEL (b1) != new_label)
3964 rtx prev = PREV_INSN (new_label);
3966 if (flag_before_loop
3967 && GET_CODE (prev) == NOTE
3968 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
3970 /* Don't thread to the loop label. If a loop
3971 label is reused, loop optimization will
3972 be disabled for that loop. */
3973 new_label = gen_label_rtx ();
3974 emit_label_after (new_label, PREV_INSN (prev));
3976 changed |= redirect_jump (b1, new_label, 1);
3978 break;
3981 /* If either of these is not a normal insn (it might be
3982 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
3983 have already been skipped above.) Similarly, fail
3984 if the insns are different. */
3985 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
3986 || recog_memoized (t1) != recog_memoized (t2)
3987 || ! rtx_equal_for_thread_p (PATTERN (t1),
3988 PATTERN (t2), t2))
3989 break;
3991 t1 = prev_nonnote_insn (t1);
3992 t2 = prev_nonnote_insn (t2);
3998 /* Clean up. */
3999 free (modified_regs);
4000 free (same_regs);
4001 free (all_reset);
4004 /* This is like RTX_EQUAL_P except that it knows about our handling of
4005 possibly equivalent registers and knows to consider volatile and
4006 modified objects as not equal.
4008 YINSN is the insn containing Y. */
4011 rtx_equal_for_thread_p (x, y, yinsn)
4012 rtx x, y;
4013 rtx yinsn;
4015 register int i;
4016 register int j;
4017 register enum rtx_code code;
4018 register const char *fmt;
4020 code = GET_CODE (x);
4021 /* Rtx's of different codes cannot be equal. */
4022 if (code != GET_CODE (y))
4023 return 0;
4025 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
4026 (REG:SI x) and (REG:HI x) are NOT equivalent. */
4028 if (GET_MODE (x) != GET_MODE (y))
4029 return 0;
4031 /* For floating-point, consider everything unequal. This is a bit
4032 pessimistic, but this pass would only rarely do anything for FP
4033 anyway. */
4034 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
4035 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_unsafe_math_optimizations)
4036 return 0;
4038 /* For commutative operations, the RTX match if the operand match in any
4039 order. Also handle the simple binary and unary cases without a loop. */
4040 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
4041 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4042 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
4043 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
4044 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
4045 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
4046 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4047 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
4048 else if (GET_RTX_CLASS (code) == '1')
4049 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4051 /* Handle special-cases first. */
4052 switch (code)
4054 case REG:
4055 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
4056 return 1;
4058 /* If neither is user variable or hard register, check for possible
4059 equivalence. */
4060 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
4061 || REGNO (x) < FIRST_PSEUDO_REGISTER
4062 || REGNO (y) < FIRST_PSEUDO_REGISTER)
4063 return 0;
4065 if (same_regs[REGNO (x)] == -1)
4067 same_regs[REGNO (x)] = REGNO (y);
4068 num_same_regs++;
4070 /* If this is the first time we are seeing a register on the `Y'
4071 side, see if it is the last use. If not, we can't thread the
4072 jump, so mark it as not equivalent. */
4073 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
4074 return 0;
4076 return 1;
4078 else
4079 return (same_regs[REGNO (x)] == (int) REGNO (y));
4081 break;
4083 case MEM:
4084 /* If memory modified or either volatile, not equivalent.
4085 Else, check address. */
4086 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4087 return 0;
4089 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4091 case ASM_INPUT:
4092 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4093 return 0;
4095 break;
4097 case SET:
4098 /* Cancel a pending `same_regs' if setting equivalenced registers.
4099 Then process source. */
4100 if (GET_CODE (SET_DEST (x)) == REG
4101 && GET_CODE (SET_DEST (y)) == REG)
4103 if (same_regs[REGNO (SET_DEST (x))] == (int) REGNO (SET_DEST (y)))
4105 same_regs[REGNO (SET_DEST (x))] = -1;
4106 num_same_regs--;
4108 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4109 return 0;
4111 else
4113 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4114 return 0;
4117 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4119 case LABEL_REF:
4120 return XEXP (x, 0) == XEXP (y, 0);
4122 case SYMBOL_REF:
4123 return XSTR (x, 0) == XSTR (y, 0);
4125 default:
4126 break;
4129 if (x == y)
4130 return 1;
4132 fmt = GET_RTX_FORMAT (code);
4133 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4135 switch (fmt[i])
4137 case 'w':
4138 if (XWINT (x, i) != XWINT (y, i))
4139 return 0;
4140 break;
4142 case 'n':
4143 case 'i':
4144 if (XINT (x, i) != XINT (y, i))
4145 return 0;
4146 break;
4148 case 'V':
4149 case 'E':
4150 /* Two vectors must have the same length. */
4151 if (XVECLEN (x, i) != XVECLEN (y, i))
4152 return 0;
4154 /* And the corresponding elements must match. */
4155 for (j = 0; j < XVECLEN (x, i); j++)
4156 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4157 XVECEXP (y, i, j), yinsn) == 0)
4158 return 0;
4159 break;
4161 case 'e':
4162 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4163 return 0;
4164 break;
4166 case 'S':
4167 case 's':
4168 if (strcmp (XSTR (x, i), XSTR (y, i)))
4169 return 0;
4170 break;
4172 case 'u':
4173 /* These are just backpointers, so they don't matter. */
4174 break;
4176 case '0':
4177 case 't':
4178 break;
4180 /* It is believed that rtx's at this level will never
4181 contain anything but integers and other rtx's,
4182 except for within LABEL_REFs and SYMBOL_REFs. */
4183 default:
4184 abort ();
4187 return 1;