* config/mips/mips.h (SUBTARGET_CPP_SIZE_SPEC): Remove duplicate
[official-gcc.git] / gcc / regrename.c
blob6277398945d651457e1d63a0df7bc57124c1697b
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #define REG_OK_STRICT
23 #include "config.h"
24 #include "system.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "reload.h"
32 #include "output.h"
33 #include "function.h"
34 #include "recog.h"
35 #include "flags.h"
36 #include "toplev.h"
37 #include "obstack.h"
39 #define obstack_chunk_alloc xmalloc
40 #define obstack_chunk_free free
42 #ifndef REGNO_MODE_OK_FOR_BASE_P
43 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
44 #endif
46 #ifndef REG_MODE_OK_FOR_BASE_P
47 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
48 #endif
50 static const char *const reg_class_names[] = REG_CLASS_NAMES;
52 struct du_chain
54 struct du_chain *next_chain;
55 struct du_chain *next_use;
57 rtx insn;
58 rtx *loc;
59 enum reg_class class;
60 unsigned int need_caller_save_reg:1;
61 unsigned int earlyclobber:1;
64 enum scan_actions
66 terminate_all_read,
67 terminate_overlapping_read,
68 terminate_write,
69 terminate_dead,
70 mark_read,
71 mark_write
74 static const char * const scan_actions_name[] =
76 "terminate_all_read",
77 "terminate_overlapping_read",
78 "terminate_write",
79 "terminate_dead",
80 "mark_read",
81 "mark_write"
84 static struct obstack rename_obstack;
86 static void do_replace PARAMS ((struct du_chain *, int));
87 static void scan_rtx_reg PARAMS ((rtx, rtx *, enum reg_class,
88 enum scan_actions, enum op_type, int));
89 static void scan_rtx_address PARAMS ((rtx, rtx *, enum reg_class,
90 enum scan_actions, enum machine_mode));
91 static void scan_rtx PARAMS ((rtx, rtx *, enum reg_class,
92 enum scan_actions, enum op_type, int));
93 static struct du_chain *build_def_use PARAMS ((basic_block));
94 static void dump_def_use_chain PARAMS ((struct du_chain *));
95 static void note_sets PARAMS ((rtx, rtx, void *));
96 static void clear_dead_regs PARAMS ((HARD_REG_SET *, enum machine_mode, rtx));
97 static void merge_overlapping_regs PARAMS ((basic_block, HARD_REG_SET *,
98 struct du_chain *));
100 /* Called through note_stores from update_life. Find sets of registers, and
101 record them in *DATA (which is actually a HARD_REG_SET *). */
103 static void
104 note_sets (x, set, data)
105 rtx x;
106 rtx set ATTRIBUTE_UNUSED;
107 void *data;
109 HARD_REG_SET *pset = (HARD_REG_SET *) data;
110 unsigned int regno;
111 int nregs;
112 if (GET_CODE (x) != REG)
113 return;
114 regno = REGNO (x);
115 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
117 /* There must not be pseudos at this point. */
118 if (regno + nregs > FIRST_PSEUDO_REGISTER)
119 abort ();
121 while (nregs-- > 0)
122 SET_HARD_REG_BIT (*pset, regno + nregs);
125 /* Clear all registers from *PSET for which a note of kind KIND can be found
126 in the list NOTES. */
128 static void
129 clear_dead_regs (pset, kind, notes)
130 HARD_REG_SET *pset;
131 enum machine_mode kind;
132 rtx notes;
134 rtx note;
135 for (note = notes; note; note = XEXP (note, 1))
136 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
138 rtx reg = XEXP (note, 0);
139 unsigned int regno = REGNO (reg);
140 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
142 /* There must not be pseudos at this point. */
143 if (regno + nregs > FIRST_PSEUDO_REGISTER)
144 abort ();
146 while (nregs-- > 0)
147 CLEAR_HARD_REG_BIT (*pset, regno + nregs);
151 /* For a def-use chain CHAIN in basic block B, find which registers overlap
152 its lifetime and set the corresponding bits in *PSET. */
154 static void
155 merge_overlapping_regs (b, pset, chain)
156 basic_block b;
157 HARD_REG_SET *pset;
158 struct du_chain *chain;
160 struct du_chain *t = chain;
161 rtx insn;
162 HARD_REG_SET live;
164 REG_SET_TO_HARD_REG_SET (live, b->global_live_at_start);
165 insn = b->head;
166 while (t)
168 /* Search forward until the next reference to the register to be
169 renamed. */
170 while (insn != t->insn)
172 if (INSN_P (insn))
174 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
175 note_stores (PATTERN (insn), note_sets, (void *) &live);
176 /* Only record currently live regs if we are inside the
177 reg's live range. */
178 if (t != chain)
179 IOR_HARD_REG_SET (*pset, live);
180 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
182 insn = NEXT_INSN (insn);
185 IOR_HARD_REG_SET (*pset, live);
187 /* For the last reference, also merge in all registers set in the
188 same insn.
189 @@@ We only have take earlyclobbered sets into account. */
190 if (! t->next_use)
191 note_stores (PATTERN (insn), note_sets, (void *) pset);
193 t = t->next_use;
197 /* Perform register renaming on the current function. */
199 void
200 regrename_optimize ()
202 int tick[FIRST_PSEUDO_REGISTER];
203 int this_tick = 0;
204 int b;
205 char *first_obj;
207 memset (tick, 0, sizeof tick);
209 gcc_obstack_init (&rename_obstack);
210 first_obj = (char *) obstack_alloc (&rename_obstack, 0);
212 for (b = 0; b < n_basic_blocks; b++)
214 basic_block bb = BASIC_BLOCK (b);
215 struct du_chain *all_chains = 0;
216 HARD_REG_SET unavailable;
217 HARD_REG_SET regs_seen;
219 CLEAR_HARD_REG_SET (unavailable);
221 if (rtl_dump_file)
222 fprintf (rtl_dump_file, "\nBasic block %d:\n", b);
224 all_chains = build_def_use (bb);
226 if (rtl_dump_file)
227 dump_def_use_chain (all_chains);
229 CLEAR_HARD_REG_SET (unavailable);
230 /* Don't clobber traceback for noreturn functions. */
231 if (frame_pointer_needed)
233 int i;
235 for (i = HARD_REGNO_NREGS (FRAME_POINTER_REGNUM, Pmode); i--;)
236 SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
238 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
239 for (i = HARD_REGNO_NREGS (HARD_FRAME_POINTER_REGNUM, Pmode); i--;)
240 SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
241 #endif
244 CLEAR_HARD_REG_SET (regs_seen);
245 while (all_chains)
247 int new_reg, best_new_reg = -1;
248 int n_uses;
249 struct du_chain *this = all_chains;
250 struct du_chain *tmp, *last;
251 HARD_REG_SET this_unavailable;
252 int reg = REGNO (*this->loc);
253 int i;
255 all_chains = this->next_chain;
257 #if 0 /* This just disables optimization opportunities. */
258 /* Only rename once we've seen the reg more than once. */
259 if (! TEST_HARD_REG_BIT (regs_seen, reg))
261 SET_HARD_REG_BIT (regs_seen, reg);
262 continue;
264 #endif
266 if (fixed_regs[reg] || global_regs[reg]
267 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
268 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
269 #else
270 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
271 #endif
273 continue;
275 COPY_HARD_REG_SET (this_unavailable, unavailable);
277 /* Find last entry on chain (which has the need_caller_save bit),
278 count number of uses, and narrow the set of registers we can
279 use for renaming. */
280 n_uses = 0;
281 for (last = this; last->next_use; last = last->next_use)
283 n_uses++;
284 IOR_COMPL_HARD_REG_SET (this_unavailable,
285 reg_class_contents[last->class]);
287 if (n_uses < 1)
288 continue;
290 IOR_COMPL_HARD_REG_SET (this_unavailable,
291 reg_class_contents[last->class]);
293 if (this->need_caller_save_reg)
294 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
296 merge_overlapping_regs (bb, &this_unavailable, this);
298 /* Now potential_regs is a reasonable approximation, let's
299 have a closer look at each register still in there. */
300 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
302 int nregs = HARD_REGNO_NREGS (new_reg, GET_MODE (*this->loc));
304 for (i = nregs - 1; i >= 0; --i)
305 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
306 || fixed_regs[new_reg + i]
307 || global_regs[new_reg + i]
308 /* Can't use regs which aren't saved by the prologue. */
309 || (! regs_ever_live[new_reg + i]
310 && ! call_used_regs[new_reg + i])
311 #ifdef LEAF_REGISTERS
312 /* We can't use a non-leaf register if we're in a
313 leaf function. */
314 || (current_function_is_leaf
315 && !LEAF_REGISTERS[new_reg + i])
316 #endif
317 #ifdef HARD_REGNO_RENAME_OK
318 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
319 #endif
321 break;
322 if (i >= 0)
323 continue;
325 /* See whether it accepts all modes that occur in
326 definition and uses. */
327 for (tmp = this; tmp; tmp = tmp->next_use)
328 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
329 || (tmp->need_caller_save_reg
330 && ! (HARD_REGNO_CALL_PART_CLOBBERED
331 (reg, GET_MODE (*tmp->loc)))
332 && (HARD_REGNO_CALL_PART_CLOBBERED
333 (new_reg, GET_MODE (*tmp->loc)))))
334 break;
335 if (! tmp)
337 if (best_new_reg == -1
338 || tick[best_new_reg] > tick[new_reg])
339 best_new_reg = new_reg;
343 if (rtl_dump_file)
345 fprintf (rtl_dump_file, "Register %s in insn %d",
346 reg_names[reg], INSN_UID (last->insn));
347 if (last->need_caller_save_reg)
348 fprintf (rtl_dump_file, " crosses a call");
351 if (best_new_reg == -1)
353 if (rtl_dump_file)
354 fprintf (rtl_dump_file, "; no available registers\n");
355 continue;
358 do_replace (this, best_new_reg);
359 tick[best_new_reg] = this_tick++;
361 if (rtl_dump_file)
362 fprintf (rtl_dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
365 obstack_free (&rename_obstack, first_obj);
368 obstack_free (&rename_obstack, NULL);
370 if (rtl_dump_file)
371 fputc ('\n', rtl_dump_file);
373 count_or_remove_death_notes (NULL, 1);
374 update_life_info (NULL, UPDATE_LIFE_LOCAL,
375 PROP_REG_INFO | PROP_DEATH_NOTES);
378 static void
379 do_replace (chain, reg)
380 struct du_chain *chain;
381 int reg;
383 while (chain)
385 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
386 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
387 if (regno >= FIRST_PSEUDO_REGISTER)
388 ORIGINAL_REGNO (*chain->loc) = regno;
389 chain = chain->next_use;
394 static struct du_chain *open_chains;
395 static struct du_chain *closed_chains;
397 static void
398 scan_rtx_reg (insn, loc, class, action, type, earlyclobber)
399 rtx insn;
400 rtx *loc;
401 enum reg_class class;
402 enum scan_actions action;
403 enum op_type type;
404 int earlyclobber;
406 struct du_chain **p;
407 rtx x = *loc;
408 enum machine_mode mode = GET_MODE (x);
409 int this_regno = REGNO (x);
410 int this_nregs = HARD_REGNO_NREGS (this_regno, mode);
412 if (action == mark_write)
414 if (type == OP_OUT)
416 struct du_chain *this = (struct du_chain *)
417 obstack_alloc (&rename_obstack, sizeof (struct du_chain));
418 this->next_use = 0;
419 this->next_chain = open_chains;
420 this->loc = loc;
421 this->insn = insn;
422 this->class = class;
423 this->need_caller_save_reg = 0;
424 this->earlyclobber = earlyclobber;
425 open_chains = this;
427 return;
430 if ((type == OP_OUT && action != terminate_write)
431 || (type != OP_OUT && action == terminate_write))
432 return;
434 for (p = &open_chains; *p;)
436 struct du_chain *this = *p;
438 /* Check if the chain has been terminated if it has then skip to
439 the next chain.
441 This can happen when we've already appended the location to
442 the chain in Step 3, but are trying to hide in-out operands
443 from terminate_write in Step 5. */
445 if (*this->loc == cc0_rtx)
446 p = &this->next_chain;
447 else
449 int regno = REGNO (*this->loc);
450 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (*this->loc));
451 int exact_match = (regno == this_regno && nregs == this_nregs);
453 if (regno + nregs <= this_regno
454 || this_regno + this_nregs <= regno)
456 p = &this->next_chain;
457 continue;
460 if (action == mark_read)
462 if (! exact_match)
463 abort ();
465 /* ??? Class NO_REGS can happen if the md file makes use of
466 EXTRA_CONSTRAINTS to match registers. Which is arguably
467 wrong, but there we are. Since we know not what this may
468 be replaced with, terminate the chain. */
469 if (class != NO_REGS)
471 this = (struct du_chain *)
472 obstack_alloc (&rename_obstack, sizeof (struct du_chain));
473 this->next_use = 0;
474 this->next_chain = (*p)->next_chain;
475 this->loc = loc;
476 this->insn = insn;
477 this->class = class;
478 this->need_caller_save_reg = 0;
479 while (*p)
480 p = &(*p)->next_use;
481 *p = this;
482 return;
486 if (action != terminate_overlapping_read || ! exact_match)
488 struct du_chain *next = this->next_chain;
490 /* Whether the terminated chain can be used for renaming
491 depends on the action and this being an exact match.
492 In either case, we remove this element from open_chains. */
494 if ((action == terminate_dead || action == terminate_write)
495 && exact_match)
497 this->next_chain = closed_chains;
498 closed_chains = this;
499 if (rtl_dump_file)
500 fprintf (rtl_dump_file,
501 "Closing chain %s at insn %d (%s)\n",
502 reg_names[REGNO (*this->loc)], INSN_UID (insn),
503 scan_actions_name[(int) action]);
505 else
507 if (rtl_dump_file)
508 fprintf (rtl_dump_file,
509 "Discarding chain %s at insn %d (%s)\n",
510 reg_names[REGNO (*this->loc)], INSN_UID (insn),
511 scan_actions_name[(int) action]);
513 *p = next;
515 else
516 p = &this->next_chain;
521 /* Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
522 BASE_REG_CLASS depending on how the register is being considered. */
524 static void
525 scan_rtx_address (insn, loc, class, action, mode)
526 rtx insn;
527 rtx *loc;
528 enum reg_class class;
529 enum scan_actions action;
530 enum machine_mode mode;
532 rtx x = *loc;
533 RTX_CODE code = GET_CODE (x);
534 const char *fmt;
535 int i, j;
537 if (action == mark_write)
538 return;
540 switch (code)
542 case PLUS:
544 rtx orig_op0 = XEXP (x, 0);
545 rtx orig_op1 = XEXP (x, 1);
546 RTX_CODE code0 = GET_CODE (orig_op0);
547 RTX_CODE code1 = GET_CODE (orig_op1);
548 rtx op0 = orig_op0;
549 rtx op1 = orig_op1;
550 rtx *locI = NULL;
551 rtx *locB = NULL;
553 if (GET_CODE (op0) == SUBREG)
555 op0 = SUBREG_REG (op0);
556 code0 = GET_CODE (op0);
559 if (GET_CODE (op1) == SUBREG)
561 op1 = SUBREG_REG (op1);
562 code1 = GET_CODE (op1);
565 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
566 || code0 == ZERO_EXTEND || code1 == MEM)
568 locI = &XEXP (x, 0);
569 locB = &XEXP (x, 1);
571 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
572 || code1 == ZERO_EXTEND || code0 == MEM)
574 locI = &XEXP (x, 1);
575 locB = &XEXP (x, 0);
577 else if (code0 == CONST_INT || code0 == CONST
578 || code0 == SYMBOL_REF || code0 == LABEL_REF)
579 locB = &XEXP (x, 1);
580 else if (code1 == CONST_INT || code1 == CONST
581 || code1 == SYMBOL_REF || code1 == LABEL_REF)
582 locB = &XEXP (x, 0);
583 else if (code0 == REG && code1 == REG)
585 int index_op;
587 if (REG_OK_FOR_INDEX_P (op0)
588 && REG_MODE_OK_FOR_BASE_P (op1, mode))
589 index_op = 0;
590 else if (REG_OK_FOR_INDEX_P (op1)
591 && REG_MODE_OK_FOR_BASE_P (op0, mode))
592 index_op = 1;
593 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
594 index_op = 0;
595 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
596 index_op = 1;
597 else if (REG_OK_FOR_INDEX_P (op1))
598 index_op = 1;
599 else
600 index_op = 0;
602 locI = &XEXP (x, index_op);
603 locB = &XEXP (x, !index_op);
605 else if (code0 == REG)
607 locI = &XEXP (x, 0);
608 locB = &XEXP (x, 1);
610 else if (code1 == REG)
612 locI = &XEXP (x, 1);
613 locB = &XEXP (x, 0);
616 if (locI)
617 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
618 if (locB)
619 scan_rtx_address (insn, locB, MODE_BASE_REG_CLASS (mode), action, mode);
620 return;
623 case POST_INC:
624 case POST_DEC:
625 case POST_MODIFY:
626 case PRE_INC:
627 case PRE_DEC:
628 case PRE_MODIFY:
629 #ifndef AUTO_INC_DEC
630 /* If the target doesn't claim to handle autoinc, this must be
631 something special, like a stack push. Kill this chain. */
632 action = terminate_all_read;
633 #endif
634 break;
636 case MEM:
637 scan_rtx_address (insn, &XEXP (x, 0),
638 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
639 GET_MODE (x));
640 return;
642 case REG:
643 scan_rtx_reg (insn, loc, class, action, OP_IN, 0);
644 return;
646 default:
647 break;
650 fmt = GET_RTX_FORMAT (code);
651 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
653 if (fmt[i] == 'e')
654 scan_rtx_address (insn, &XEXP (x, i), class, action, mode);
655 else if (fmt[i] == 'E')
656 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
657 scan_rtx_address (insn, &XVECEXP (x, i, j), class, action, mode);
661 static void
662 scan_rtx (insn, loc, class, action, type, earlyclobber)
663 rtx insn;
664 rtx *loc;
665 enum reg_class class;
666 enum scan_actions action;
667 enum op_type type;
668 int earlyclobber;
670 const char *fmt;
671 rtx x = *loc;
672 enum rtx_code code = GET_CODE (x);
673 int i, j;
675 code = GET_CODE (x);
676 switch (code)
678 case CONST:
679 case CONST_INT:
680 case CONST_DOUBLE:
681 case CONST_VECTOR:
682 case SYMBOL_REF:
683 case LABEL_REF:
684 case CC0:
685 case PC:
686 return;
688 case REG:
689 scan_rtx_reg (insn, loc, class, action, type, earlyclobber);
690 return;
692 case MEM:
693 scan_rtx_address (insn, &XEXP (x, 0),
694 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
695 GET_MODE (x));
696 return;
698 case SET:
699 scan_rtx (insn, &SET_SRC (x), class, action, OP_IN, 0);
700 scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 0);
701 return;
703 case STRICT_LOW_PART:
704 scan_rtx (insn, &XEXP (x, 0), class, action, OP_INOUT, earlyclobber);
705 return;
707 case ZERO_EXTRACT:
708 case SIGN_EXTRACT:
709 scan_rtx (insn, &XEXP (x, 0), class, action,
710 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
711 scan_rtx (insn, &XEXP (x, 1), class, action, OP_IN, 0);
712 scan_rtx (insn, &XEXP (x, 2), class, action, OP_IN, 0);
713 return;
715 case POST_INC:
716 case PRE_INC:
717 case POST_DEC:
718 case PRE_DEC:
719 case POST_MODIFY:
720 case PRE_MODIFY:
721 /* Should only happen inside MEM. */
722 abort ();
724 case CLOBBER:
725 scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 1);
726 return;
728 case EXPR_LIST:
729 scan_rtx (insn, &XEXP (x, 0), class, action, type, 0);
730 if (XEXP (x, 1))
731 scan_rtx (insn, &XEXP (x, 1), class, action, type, 0);
732 return;
734 default:
735 break;
738 fmt = GET_RTX_FORMAT (code);
739 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
741 if (fmt[i] == 'e')
742 scan_rtx (insn, &XEXP (x, i), class, action, type, 0);
743 else if (fmt[i] == 'E')
744 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
745 scan_rtx (insn, &XVECEXP (x, i, j), class, action, type, 0);
749 /* Build def/use chain */
751 static struct du_chain *
752 build_def_use (bb)
753 basic_block bb;
755 rtx insn;
757 open_chains = closed_chains = NULL;
759 for (insn = bb->head; ; insn = NEXT_INSN (insn))
761 if (INSN_P (insn))
763 int n_ops;
764 rtx note;
765 rtx old_operands[MAX_RECOG_OPERANDS];
766 rtx old_dups[MAX_DUP_OPERANDS];
767 int i;
768 int alt;
769 int predicated;
771 /* Process the insn, determining its effect on the def-use
772 chains. We perform the following steps with the register
773 references in the insn:
774 (1) Any read that overlaps an open chain, but doesn't exactly
775 match, causes that chain to be closed. We can't deal
776 with overlaps yet.
777 (2) Any read outside an operand causes any chain it overlaps
778 with to be closed, since we can't replace it.
779 (3) Any read inside an operand is added if there's already
780 an open chain for it.
781 (4) For any REG_DEAD note we find, close open chains that
782 overlap it.
783 (5) For any write we find, close open chains that overlap it.
784 (6) For any write we find in an operand, make a new chain.
785 (7) For any REG_UNUSED, close any chains we just opened. */
787 extract_insn (insn);
788 constrain_operands (1);
789 preprocess_constraints ();
790 alt = which_alternative;
791 n_ops = recog_data.n_operands;
793 /* Simplify the code below by rewriting things to reflect
794 matching constraints. Also promote OP_OUT to OP_INOUT
795 in predicated instructions. */
797 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
798 for (i = 0; i < n_ops; ++i)
800 int matches = recog_op_alt[i][alt].matches;
801 if (matches >= 0)
802 recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
803 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
804 || (predicated && recog_data.operand_type[i] == OP_OUT))
805 recog_data.operand_type[i] = OP_INOUT;
808 /* Step 1: Close chains for which we have overlapping reads. */
809 for (i = 0; i < n_ops; i++)
810 scan_rtx (insn, recog_data.operand_loc[i],
811 NO_REGS, terminate_overlapping_read,
812 recog_data.operand_type[i], 0);
814 /* Step 2: Close chains for which we have reads outside operands.
815 We do this by munging all operands into CC0, and closing
816 everything remaining. */
818 for (i = 0; i < n_ops; i++)
820 old_operands[i] = recog_data.operand[i];
821 /* Don't squash match_operator or match_parallel here, since
822 we don't know that all of the contained registers are
823 reachable by proper operands. */
824 if (recog_data.constraints[i][0] == '\0')
825 continue;
826 *recog_data.operand_loc[i] = cc0_rtx;
828 for (i = 0; i < recog_data.n_dups; i++)
830 old_dups[i] = *recog_data.dup_loc[i];
831 *recog_data.dup_loc[i] = cc0_rtx;
834 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
835 OP_IN, 0);
837 for (i = 0; i < recog_data.n_dups; i++)
838 *recog_data.dup_loc[i] = old_dups[i];
839 for (i = 0; i < n_ops; i++)
840 *recog_data.operand_loc[i] = old_operands[i];
842 /* Step 2B: Can't rename function call argument registers. */
843 if (GET_CODE (insn) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (insn))
844 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
845 NO_REGS, terminate_all_read, OP_IN, 0);
847 /* Step 2C: Can't rename asm operands that were originally
848 hard registers. */
849 if (asm_noperands (PATTERN (insn)) > 0)
850 for (i = 0; i < n_ops; i++)
852 rtx *loc = recog_data.operand_loc[i];
853 rtx op = *loc;
855 if (GET_CODE (op) == REG
856 && REGNO (op) == ORIGINAL_REGNO (op)
857 && (recog_data.operand_type[i] == OP_IN
858 || recog_data.operand_type[i] == OP_INOUT))
859 scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
862 /* Step 3: Append to chains for reads inside operands. */
863 for (i = 0; i < n_ops + recog_data.n_dups; i++)
865 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
866 rtx *loc = (i < n_ops
867 ? recog_data.operand_loc[opn]
868 : recog_data.dup_loc[i - n_ops]);
869 enum reg_class class = recog_op_alt[opn][alt].class;
870 enum op_type type = recog_data.operand_type[opn];
872 /* Don't scan match_operand here, since we've no reg class
873 information to pass down. Any operands that we could
874 substitute in will be represented elsewhere. */
875 if (recog_data.constraints[opn][0] == '\0')
876 continue;
878 if (recog_op_alt[opn][alt].is_address)
879 scan_rtx_address (insn, loc, class, mark_read, VOIDmode);
880 else
881 scan_rtx (insn, loc, class, mark_read, type, 0);
884 /* Step 4: Close chains for registers that die here.
885 Also record updates for REG_INC notes. */
886 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
888 if (REG_NOTE_KIND (note) == REG_DEAD)
889 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
890 OP_IN, 0);
891 else if (REG_NOTE_KIND (note) == REG_INC)
892 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
893 OP_INOUT, 0);
896 /* Step 4B: If this is a call, any chain live at this point
897 requires a caller-saved reg. */
898 if (GET_CODE (insn) == CALL_INSN)
900 struct du_chain *p;
901 for (p = open_chains; p; p = p->next_chain)
902 p->need_caller_save_reg = 1;
905 /* Step 5: Close open chains that overlap writes. Similar to
906 step 2, we hide in-out operands, since we do not want to
907 close these chains. */
909 for (i = 0; i < n_ops; i++)
911 old_operands[i] = recog_data.operand[i];
912 if (recog_data.operand_type[i] == OP_INOUT)
913 *recog_data.operand_loc[i] = cc0_rtx;
915 for (i = 0; i < recog_data.n_dups; i++)
917 int opn = recog_data.dup_num[i];
918 old_dups[i] = *recog_data.dup_loc[i];
919 if (recog_data.operand_type[opn] == OP_INOUT)
920 *recog_data.dup_loc[i] = cc0_rtx;
923 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
925 for (i = 0; i < recog_data.n_dups; i++)
926 *recog_data.dup_loc[i] = old_dups[i];
927 for (i = 0; i < n_ops; i++)
928 *recog_data.operand_loc[i] = old_operands[i];
930 /* Step 6: Begin new chains for writes inside operands. */
931 /* ??? Many targets have output constraints on the SET_DEST
932 of a call insn, which is stupid, since these are certainly
933 ABI defined hard registers. Don't change calls at all.
934 Similarly take special care for asm statement that originally
935 referenced hard registers. */
936 if (asm_noperands (PATTERN (insn)) > 0)
938 for (i = 0; i < n_ops; i++)
939 if (recog_data.operand_type[i] == OP_OUT)
941 rtx *loc = recog_data.operand_loc[i];
942 rtx op = *loc;
943 enum reg_class class = recog_op_alt[i][alt].class;
945 if (GET_CODE (op) == REG
946 && REGNO (op) == ORIGINAL_REGNO (op))
947 continue;
949 scan_rtx (insn, loc, class, mark_write, OP_OUT,
950 recog_op_alt[i][alt].earlyclobber);
953 else if (GET_CODE (insn) != CALL_INSN)
954 for (i = 0; i < n_ops + recog_data.n_dups; i++)
956 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
957 rtx *loc = (i < n_ops
958 ? recog_data.operand_loc[opn]
959 : recog_data.dup_loc[i - n_ops]);
960 enum reg_class class = recog_op_alt[opn][alt].class;
962 if (recog_data.operand_type[opn] == OP_OUT)
963 scan_rtx (insn, loc, class, mark_write, OP_OUT,
964 recog_op_alt[opn][alt].earlyclobber);
967 /* Step 7: Close chains for registers that were never
968 really used here. */
969 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
970 if (REG_NOTE_KIND (note) == REG_UNUSED)
971 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
972 OP_IN, 0);
974 if (insn == bb->end)
975 break;
978 /* Since we close every chain when we find a REG_DEAD note, anything that
979 is still open lives past the basic block, so it can't be renamed. */
980 return closed_chains;
983 /* Dump all def/use chains in CHAINS to RTL_DUMP_FILE. They are
984 printed in reverse order as that's how we build them. */
986 static void
987 dump_def_use_chain (chains)
988 struct du_chain *chains;
990 while (chains)
992 struct du_chain *this = chains;
993 int r = REGNO (*this->loc);
994 int nregs = HARD_REGNO_NREGS (r, GET_MODE (*this->loc));
995 fprintf (rtl_dump_file, "Register %s (%d):", reg_names[r], nregs);
996 while (this)
998 fprintf (rtl_dump_file, " %d [%s]", INSN_UID (this->insn),
999 reg_class_names[this->class]);
1000 this = this->next_use;
1002 fprintf (rtl_dump_file, "\n");
1003 chains = chains->next_chain;
1007 /* The following code does forward propagation of hard register copies.
1008 The object is to eliminate as many dependencies as possible, so that
1009 we have the most scheduling freedom. As a side effect, we also clean
1010 up some silly register allocation decisions made by reload. This
1011 code may be obsoleted by a new register allocator. */
1013 /* For each register, we have a list of registers that contain the same
1014 value. The OLDEST_REGNO field points to the head of the list, and
1015 the NEXT_REGNO field runs through the list. The MODE field indicates
1016 what mode the data is known to be in; this field is VOIDmode when the
1017 register is not known to contain valid data. */
1019 struct value_data_entry
1021 enum machine_mode mode;
1022 unsigned int oldest_regno;
1023 unsigned int next_regno;
1026 struct value_data
1028 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1029 unsigned int max_value_regs;
1032 static void kill_value_regno PARAMS ((unsigned, struct value_data *));
1033 static void kill_value PARAMS ((rtx, struct value_data *));
1034 static void set_value_regno PARAMS ((unsigned, enum machine_mode,
1035 struct value_data *));
1036 static void init_value_data PARAMS ((struct value_data *));
1037 static void kill_clobbered_value PARAMS ((rtx, rtx, void *));
1038 static void kill_set_value PARAMS ((rtx, rtx, void *));
1039 static int kill_autoinc_value PARAMS ((rtx *, void *));
1040 static void copy_value PARAMS ((rtx, rtx, struct value_data *));
1041 static bool mode_change_ok PARAMS ((enum machine_mode, enum machine_mode,
1042 unsigned int));
1043 static rtx find_oldest_value_reg PARAMS ((enum reg_class, rtx,
1044 struct value_data *));
1045 static bool replace_oldest_value_reg PARAMS ((rtx *, enum reg_class, rtx,
1046 struct value_data *));
1047 static bool replace_oldest_value_addr PARAMS ((rtx *, enum reg_class,
1048 enum machine_mode, rtx,
1049 struct value_data *));
1050 static bool replace_oldest_value_mem PARAMS ((rtx, rtx, struct value_data *));
1051 static bool copyprop_hardreg_forward_1 PARAMS ((basic_block,
1052 struct value_data *));
1053 extern void debug_value_data PARAMS ((struct value_data *));
1054 #ifdef ENABLE_CHECKING
1055 static void validate_value_data PARAMS ((struct value_data *));
1056 #endif
1058 /* Kill register REGNO. This involves removing it from any value lists,
1059 and resetting the value mode to VOIDmode. */
1061 static void
1062 kill_value_regno (regno, vd)
1063 unsigned int regno;
1064 struct value_data *vd;
1066 unsigned int i, next;
1068 if (vd->e[regno].oldest_regno != regno)
1070 for (i = vd->e[regno].oldest_regno;
1071 vd->e[i].next_regno != regno;
1072 i = vd->e[i].next_regno)
1073 continue;
1074 vd->e[i].next_regno = vd->e[regno].next_regno;
1076 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1078 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1079 vd->e[i].oldest_regno = next;
1082 vd->e[regno].mode = VOIDmode;
1083 vd->e[regno].oldest_regno = regno;
1084 vd->e[regno].next_regno = INVALID_REGNUM;
1086 #ifdef ENABLE_CHECKING
1087 validate_value_data (vd);
1088 #endif
1091 /* Kill X. This is a convenience function for kill_value_regno
1092 so that we mind the mode the register is in. */
1094 static void
1095 kill_value (x, vd)
1096 rtx x;
1097 struct value_data *vd;
1099 /* SUBREGS are supposed to have been eliminated by now. But some
1100 ports, e.g. i386 sse, use them to smuggle vector type information
1101 through to instruction selection. Each such SUBREG should simplify,
1102 so if we get a NULL we've done something wrong elsewhere. */
1104 if (GET_CODE (x) == SUBREG)
1105 x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
1106 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
1107 if (REG_P (x))
1109 unsigned int regno = REGNO (x);
1110 unsigned int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
1111 unsigned int i, j;
1113 /* Kill the value we're told to kill. */
1114 for (i = 0; i < n; ++i)
1115 kill_value_regno (regno + i, vd);
1117 /* Kill everything that overlapped what we're told to kill. */
1118 if (regno < vd->max_value_regs)
1119 j = 0;
1120 else
1121 j = regno - vd->max_value_regs;
1122 for (; j < regno; ++j)
1124 if (vd->e[j].mode == VOIDmode)
1125 continue;
1126 n = HARD_REGNO_NREGS (j, vd->e[j].mode);
1127 if (j + n > regno)
1128 for (i = 0; i < n; ++i)
1129 kill_value_regno (j + i, vd);
1134 /* Remember that REGNO is valid in MODE. */
1136 static void
1137 set_value_regno (regno, mode, vd)
1138 unsigned int regno;
1139 enum machine_mode mode;
1140 struct value_data *vd;
1142 unsigned int nregs;
1144 vd->e[regno].mode = mode;
1146 nregs = HARD_REGNO_NREGS (regno, mode);
1147 if (nregs > vd->max_value_regs)
1148 vd->max_value_regs = nregs;
1151 /* Initialize VD such that there are no known relationships between regs. */
1153 static void
1154 init_value_data (vd)
1155 struct value_data *vd;
1157 int i;
1158 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1160 vd->e[i].mode = VOIDmode;
1161 vd->e[i].oldest_regno = i;
1162 vd->e[i].next_regno = INVALID_REGNUM;
1164 vd->max_value_regs = 0;
1167 /* Called through note_stores. If X is clobbered, kill its value. */
1169 static void
1170 kill_clobbered_value (x, set, data)
1171 rtx x;
1172 rtx set;
1173 void *data;
1175 struct value_data *vd = data;
1176 if (GET_CODE (set) == CLOBBER)
1177 kill_value (x, vd);
1180 /* Called through note_stores. If X is set, not clobbered, kill its
1181 current value and install it as the root of its own value list. */
1183 static void
1184 kill_set_value (x, set, data)
1185 rtx x;
1186 rtx set;
1187 void *data;
1189 struct value_data *vd = data;
1190 if (GET_CODE (set) != CLOBBER)
1192 kill_value (x, vd);
1193 if (REG_P (x))
1194 set_value_regno (REGNO (x), GET_MODE (x), vd);
1198 /* Called through for_each_rtx. Kill any register used as the base of an
1199 auto-increment expression, and install that register as the root of its
1200 own value list. */
1202 static int
1203 kill_autoinc_value (px, data)
1204 rtx *px;
1205 void *data;
1207 rtx x = *px;
1208 struct value_data *vd = data;
1210 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
1212 x = XEXP (x, 0);
1213 kill_value (x, vd);
1214 set_value_regno (REGNO (x), Pmode, vd);
1215 return -1;
1218 return 0;
1221 /* Assert that SRC has been copied to DEST. Adjust the data structures
1222 to reflect that SRC contains an older copy of the shared value. */
1224 static void
1225 copy_value (dest, src, vd)
1226 rtx dest;
1227 rtx src;
1228 struct value_data *vd;
1230 unsigned int dr = REGNO (dest);
1231 unsigned int sr = REGNO (src);
1232 unsigned int dn, sn;
1233 unsigned int i;
1235 /* ??? At present, it's possible to see noop sets. It'd be nice if
1236 this were cleaned up beforehand... */
1237 if (sr == dr)
1238 return;
1240 /* Do not propagate copies to the stack pointer, as that can leave
1241 memory accesses with no scheduling dependancy on the stack update. */
1242 if (dr == STACK_POINTER_REGNUM)
1243 return;
1245 /* Likewise with the frame pointer, if we're using one. */
1246 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1247 return;
1249 /* If SRC and DEST overlap, don't record anything. */
1250 dn = HARD_REGNO_NREGS (dr, GET_MODE (dest));
1251 sn = HARD_REGNO_NREGS (sr, GET_MODE (dest));
1252 if ((dr > sr && dr < sr + sn)
1253 || (sr > dr && sr < dr + dn))
1254 return;
1256 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1257 assign it now and assume the value came from an input argument
1258 or somesuch. */
1259 if (vd->e[sr].mode == VOIDmode)
1260 set_value_regno (sr, vd->e[dr].mode, vd);
1262 /* If SRC had been assigned a mode narrower than the copy, we can't
1263 link DEST into the chain, because not all of the pieces of the
1264 copy came from oldest_regno. */
1265 else if (sn > (unsigned int) HARD_REGNO_NREGS (sr, vd->e[sr].mode))
1266 return;
1268 /* Link DR at the end of the value chain used by SR. */
1270 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1272 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1273 continue;
1274 vd->e[i].next_regno = dr;
1276 #ifdef ENABLE_CHECKING
1277 validate_value_data (vd);
1278 #endif
1281 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1283 static bool
1284 mode_change_ok (orig_mode, new_mode, regno)
1285 enum machine_mode orig_mode, new_mode;
1286 unsigned int regno ATTRIBUTE_UNUSED;
1288 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1289 return false;
1291 #ifdef CLASS_CANNOT_CHANGE_MODE
1292 if (TEST_HARD_REG_BIT (reg_class_contents[CLASS_CANNOT_CHANGE_MODE], regno)
1293 && CLASS_CANNOT_CHANGE_MODE_P (orig_mode, new_mode))
1294 return false;
1295 #endif
1297 return true;
1300 /* Find the oldest copy of the value contained in REGNO that is in
1301 register class CLASS and has mode MODE. If found, return an rtx
1302 of that oldest register, otherwise return NULL. */
1304 static rtx
1305 find_oldest_value_reg (class, reg, vd)
1306 enum reg_class class;
1307 rtx reg;
1308 struct value_data *vd;
1310 unsigned int regno = REGNO (reg);
1311 enum machine_mode mode = GET_MODE (reg);
1312 unsigned int i;
1314 /* If we are accessing REG in some mode other that what we set it in,
1315 make sure that the replacement is valid. In particular, consider
1316 (set (reg:DI r11) (...))
1317 (set (reg:SI r9) (reg:SI r11))
1318 (set (reg:SI r10) (...))
1319 (set (...) (reg:DI r9))
1320 Replacing r9 with r11 is invalid. */
1321 if (mode != vd->e[regno].mode)
1323 if (HARD_REGNO_NREGS (regno, mode)
1324 > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
1325 return NULL_RTX;
1328 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1329 if (TEST_HARD_REG_BIT (reg_class_contents[class], i)
1330 && (vd->e[i].mode == mode
1331 || mode_change_ok (vd->e[i].mode, mode, i)))
1333 rtx new = gen_rtx_raw_REG (mode, i);
1334 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
1335 return new;
1338 return NULL_RTX;
1341 /* If possible, replace the register at *LOC with the oldest register
1342 in register class CLASS. Return true if successfully replaced. */
1344 static bool
1345 replace_oldest_value_reg (loc, class, insn, vd)
1346 rtx *loc;
1347 enum reg_class class;
1348 rtx insn;
1349 struct value_data *vd;
1351 rtx new = find_oldest_value_reg (class, *loc, vd);
1352 if (new)
1354 if (rtl_dump_file)
1355 fprintf (rtl_dump_file, "insn %u: replaced reg %u with %u\n",
1356 INSN_UID (insn), REGNO (*loc), REGNO (new));
1358 *loc = new;
1359 return true;
1361 return false;
1364 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1365 Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
1366 BASE_REG_CLASS depending on how the register is being considered. */
1368 static bool
1369 replace_oldest_value_addr (loc, class, mode, insn, vd)
1370 rtx *loc;
1371 enum reg_class class;
1372 enum machine_mode mode;
1373 rtx insn;
1374 struct value_data *vd;
1376 rtx x = *loc;
1377 RTX_CODE code = GET_CODE (x);
1378 const char *fmt;
1379 int i, j;
1380 bool changed = false;
1382 switch (code)
1384 case PLUS:
1386 rtx orig_op0 = XEXP (x, 0);
1387 rtx orig_op1 = XEXP (x, 1);
1388 RTX_CODE code0 = GET_CODE (orig_op0);
1389 RTX_CODE code1 = GET_CODE (orig_op1);
1390 rtx op0 = orig_op0;
1391 rtx op1 = orig_op1;
1392 rtx *locI = NULL;
1393 rtx *locB = NULL;
1395 if (GET_CODE (op0) == SUBREG)
1397 op0 = SUBREG_REG (op0);
1398 code0 = GET_CODE (op0);
1401 if (GET_CODE (op1) == SUBREG)
1403 op1 = SUBREG_REG (op1);
1404 code1 = GET_CODE (op1);
1407 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1408 || code0 == ZERO_EXTEND || code1 == MEM)
1410 locI = &XEXP (x, 0);
1411 locB = &XEXP (x, 1);
1413 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1414 || code1 == ZERO_EXTEND || code0 == MEM)
1416 locI = &XEXP (x, 1);
1417 locB = &XEXP (x, 0);
1419 else if (code0 == CONST_INT || code0 == CONST
1420 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1421 locB = &XEXP (x, 1);
1422 else if (code1 == CONST_INT || code1 == CONST
1423 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1424 locB = &XEXP (x, 0);
1425 else if (code0 == REG && code1 == REG)
1427 int index_op;
1429 if (REG_OK_FOR_INDEX_P (op0)
1430 && REG_MODE_OK_FOR_BASE_P (op1, mode))
1431 index_op = 0;
1432 else if (REG_OK_FOR_INDEX_P (op1)
1433 && REG_MODE_OK_FOR_BASE_P (op0, mode))
1434 index_op = 1;
1435 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
1436 index_op = 0;
1437 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
1438 index_op = 1;
1439 else if (REG_OK_FOR_INDEX_P (op1))
1440 index_op = 1;
1441 else
1442 index_op = 0;
1444 locI = &XEXP (x, index_op);
1445 locB = &XEXP (x, !index_op);
1447 else if (code0 == REG)
1449 locI = &XEXP (x, 0);
1450 locB = &XEXP (x, 1);
1452 else if (code1 == REG)
1454 locI = &XEXP (x, 1);
1455 locB = &XEXP (x, 0);
1458 if (locI)
1459 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1460 insn, vd);
1461 if (locB)
1462 changed |= replace_oldest_value_addr (locB,
1463 MODE_BASE_REG_CLASS (mode),
1464 mode, insn, vd);
1465 return changed;
1468 case POST_INC:
1469 case POST_DEC:
1470 case POST_MODIFY:
1471 case PRE_INC:
1472 case PRE_DEC:
1473 case PRE_MODIFY:
1474 return false;
1476 case MEM:
1477 return replace_oldest_value_mem (x, insn, vd);
1479 case REG:
1480 return replace_oldest_value_reg (loc, class, insn, vd);
1482 default:
1483 break;
1486 fmt = GET_RTX_FORMAT (code);
1487 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1489 if (fmt[i] == 'e')
1490 changed |= replace_oldest_value_addr (&XEXP (x, i), class, mode,
1491 insn, vd);
1492 else if (fmt[i] == 'E')
1493 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1494 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), class,
1495 mode, insn, vd);
1498 return changed;
1501 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1503 static bool
1504 replace_oldest_value_mem (x, insn, vd)
1505 rtx x;
1506 rtx insn;
1507 struct value_data *vd;
1509 return replace_oldest_value_addr (&XEXP (x, 0),
1510 MODE_BASE_REG_CLASS (GET_MODE (x)),
1511 GET_MODE (x), insn, vd);
1514 /* Perform the forward copy propagation on basic block BB. */
1516 static bool
1517 copyprop_hardreg_forward_1 (bb, vd)
1518 basic_block bb;
1519 struct value_data *vd;
1521 bool changed = false;
1522 rtx insn;
1524 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1526 int n_ops, i, alt, predicated;
1527 bool is_asm;
1528 rtx set;
1530 if (! INSN_P (insn))
1532 if (insn == bb->end)
1533 break;
1534 else
1535 continue;
1538 set = single_set (insn);
1539 extract_insn (insn);
1540 constrain_operands (1);
1541 preprocess_constraints ();
1542 alt = which_alternative;
1543 n_ops = recog_data.n_operands;
1544 is_asm = asm_noperands (PATTERN (insn)) >= 0;
1546 /* Simplify the code below by rewriting things to reflect
1547 matching constraints. Also promote OP_OUT to OP_INOUT
1548 in predicated instructions. */
1550 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1551 for (i = 0; i < n_ops; ++i)
1553 int matches = recog_op_alt[i][alt].matches;
1554 if (matches >= 0)
1555 recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
1556 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1557 || (predicated && recog_data.operand_type[i] == OP_OUT))
1558 recog_data.operand_type[i] = OP_INOUT;
1561 /* For each earlyclobber operand, zap the value data. */
1562 for (i = 0; i < n_ops; i++)
1563 if (recog_op_alt[i][alt].earlyclobber)
1564 kill_value (recog_data.operand[i], vd);
1566 /* Within asms, a clobber cannot overlap inputs or outputs.
1567 I wouldn't think this were true for regular insns, but
1568 scan_rtx treats them like that... */
1569 note_stores (PATTERN (insn), kill_clobbered_value, vd);
1571 /* Kill all auto-incremented values. */
1572 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1573 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1575 /* Kill all early-clobbered operands. */
1576 for (i = 0; i < n_ops; i++)
1577 if (recog_op_alt[i][alt].earlyclobber)
1578 kill_value (recog_data.operand[i], vd);
1580 /* Special-case plain move instructions, since we may well
1581 be able to do the move from a different register class. */
1582 if (set && REG_P (SET_SRC (set)))
1584 rtx src = SET_SRC (set);
1585 unsigned int regno = REGNO (src);
1586 enum machine_mode mode = GET_MODE (src);
1587 unsigned int i;
1588 rtx new;
1590 /* If we are accessing SRC in some mode other that what we
1591 set it in, make sure that the replacement is valid. */
1592 if (mode != vd->e[regno].mode)
1594 if (HARD_REGNO_NREGS (regno, mode)
1595 > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
1596 goto no_move_special_case;
1599 /* If the destination is also a register, try to find a source
1600 register in the same class. */
1601 if (REG_P (SET_DEST (set)))
1603 new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1604 if (new && validate_change (insn, &SET_SRC (set), new, 0))
1606 if (rtl_dump_file)
1607 fprintf (rtl_dump_file,
1608 "insn %u: replaced reg %u with %u\n",
1609 INSN_UID (insn), regno, REGNO (new));
1610 changed = true;
1611 goto did_replacement;
1615 /* Otherwise, try all valid registers and see if its valid. */
1616 for (i = vd->e[regno].oldest_regno; i != regno;
1617 i = vd->e[i].next_regno)
1618 if (vd->e[i].mode == mode
1619 || mode_change_ok (vd->e[i].mode, mode, i))
1621 new = gen_rtx_raw_REG (mode, i);
1622 if (validate_change (insn, &SET_SRC (set), new, 0))
1624 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
1625 if (rtl_dump_file)
1626 fprintf (rtl_dump_file,
1627 "insn %u: replaced reg %u with %u\n",
1628 INSN_UID (insn), regno, REGNO (new));
1629 changed = true;
1630 goto did_replacement;
1634 no_move_special_case:
1636 /* For each input operand, replace a hard register with the
1637 eldest live copy that's in an appropriate register class. */
1638 for (i = 0; i < n_ops; i++)
1640 bool replaced = false;
1642 /* Don't scan match_operand here, since we've no reg class
1643 information to pass down. Any operands that we could
1644 substitute in will be represented elsewhere. */
1645 if (recog_data.constraints[i][0] == '\0')
1646 continue;
1648 /* Don't replace in asms intentionally referencing hard regs. */
1649 if (is_asm && GET_CODE (recog_data.operand[i]) == REG
1650 && (REGNO (recog_data.operand[i])
1651 == ORIGINAL_REGNO (recog_data.operand[i])))
1652 continue;
1654 if (recog_data.operand_type[i] == OP_IN)
1656 if (recog_op_alt[i][alt].is_address)
1657 replaced
1658 = replace_oldest_value_addr (recog_data.operand_loc[i],
1659 recog_op_alt[i][alt].class,
1660 VOIDmode, insn, vd);
1661 else if (REG_P (recog_data.operand[i]))
1662 replaced
1663 = replace_oldest_value_reg (recog_data.operand_loc[i],
1664 recog_op_alt[i][alt].class,
1665 insn, vd);
1666 else if (GET_CODE (recog_data.operand[i]) == MEM)
1667 replaced = replace_oldest_value_mem (recog_data.operand[i],
1668 insn, vd);
1670 else if (GET_CODE (recog_data.operand[i]) == MEM)
1671 replaced = replace_oldest_value_mem (recog_data.operand[i],
1672 insn, vd);
1674 /* If we performed any replacement, update match_dups. */
1675 if (replaced)
1677 int j;
1678 rtx new;
1680 changed = true;
1682 new = *recog_data.operand_loc[i];
1683 recog_data.operand[i] = new;
1684 for (j = 0; j < recog_data.n_dups; j++)
1685 if (recog_data.dup_num[j] == i)
1686 *recog_data.dup_loc[j] = new;
1690 did_replacement:
1691 /* Clobber call-clobbered registers. */
1692 if (GET_CODE (insn) == CALL_INSN)
1693 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1694 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1695 kill_value_regno (i, vd);
1697 /* Notice stores. */
1698 note_stores (PATTERN (insn), kill_set_value, vd);
1700 /* Notice copies. */
1701 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1702 copy_value (SET_DEST (set), SET_SRC (set), vd);
1704 if (insn == bb->end)
1705 break;
1708 return changed;
1711 /* Main entry point for the forward copy propagation optimization. */
1713 void
1714 copyprop_hardreg_forward ()
1716 struct value_data *all_vd;
1717 bool need_refresh;
1718 int b;
1720 need_refresh = false;
1722 all_vd = xmalloc (sizeof (struct value_data) * n_basic_blocks);
1724 for (b = 0; b < n_basic_blocks; b++)
1726 basic_block bb = BASIC_BLOCK (b);
1728 /* If a block has a single predecessor, that we've already
1729 processed, begin with the value data that was live at
1730 the end of the predecessor block. */
1731 /* ??? Ought to use more intelligent queueing of blocks. */
1732 if (bb->pred
1733 && ! bb->pred->pred_next
1734 && ! (bb->pred->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1735 && bb->pred->src->index != ENTRY_BLOCK
1736 && bb->pred->src->index < b)
1737 all_vd[b] = all_vd[bb->pred->src->index];
1738 else
1739 init_value_data (all_vd + b);
1741 if (copyprop_hardreg_forward_1 (bb, all_vd + b))
1742 need_refresh = true;
1745 if (need_refresh)
1747 if (rtl_dump_file)
1748 fputs ("\n\n", rtl_dump_file);
1750 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1751 to scan, so we have to do a life update with no initial set of
1752 blocks Just In Case. */
1753 delete_noop_moves (get_insns ());
1754 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1755 PROP_DEATH_NOTES
1756 | PROP_SCAN_DEAD_CODE
1757 | PROP_KILL_DEAD_CODE);
1760 free (all_vd);
1763 /* Dump the value chain data to stderr. */
1765 void
1766 debug_value_data (vd)
1767 struct value_data *vd;
1769 HARD_REG_SET set;
1770 unsigned int i, j;
1772 CLEAR_HARD_REG_SET (set);
1774 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1775 if (vd->e[i].oldest_regno == i)
1777 if (vd->e[i].mode == VOIDmode)
1779 if (vd->e[i].next_regno != INVALID_REGNUM)
1780 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1781 i, vd->e[i].next_regno);
1782 continue;
1785 SET_HARD_REG_BIT (set, i);
1786 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1788 for (j = vd->e[i].next_regno;
1789 j != INVALID_REGNUM;
1790 j = vd->e[j].next_regno)
1792 if (TEST_HARD_REG_BIT (set, j))
1794 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1795 return;
1798 if (vd->e[j].oldest_regno != i)
1800 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1801 j, vd->e[j].oldest_regno);
1802 return;
1804 SET_HARD_REG_BIT (set, j);
1805 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1807 fputc ('\n', stderr);
1810 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1811 if (! TEST_HARD_REG_BIT (set, i)
1812 && (vd->e[i].mode != VOIDmode
1813 || vd->e[i].oldest_regno != i
1814 || vd->e[i].next_regno != INVALID_REGNUM))
1815 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1816 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1817 vd->e[i].next_regno);
1820 #ifdef ENABLE_CHECKING
1821 static void
1822 validate_value_data (vd)
1823 struct value_data *vd;
1825 HARD_REG_SET set;
1826 unsigned int i, j;
1828 CLEAR_HARD_REG_SET (set);
1830 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1831 if (vd->e[i].oldest_regno == i)
1833 if (vd->e[i].mode == VOIDmode)
1835 if (vd->e[i].next_regno != INVALID_REGNUM)
1836 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1837 i, vd->e[i].next_regno);
1838 continue;
1841 SET_HARD_REG_BIT (set, i);
1843 for (j = vd->e[i].next_regno;
1844 j != INVALID_REGNUM;
1845 j = vd->e[j].next_regno)
1847 if (TEST_HARD_REG_BIT (set, j))
1848 internal_error ("validate_value_data: Loop in regno chain (%u)",
1850 if (vd->e[j].oldest_regno != i)
1851 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1852 j, vd->e[j].oldest_regno);
1854 SET_HARD_REG_BIT (set, j);
1858 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1859 if (! TEST_HARD_REG_BIT (set, i)
1860 && (vd->e[i].mode != VOIDmode
1861 || vd->e[i].oldest_regno != i
1862 || vd->e[i].next_regno != INVALID_REGNUM))
1863 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1864 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1865 vd->e[i].next_regno);
1867 #endif