* config/mips/mips.h (SUBTARGET_CPP_SIZE_SPEC): Remove duplicate
[official-gcc.git] / gcc / ifcvt.c
blobf7b4957be427294abdef201fadf06860555c7b7f
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
24 #include "rtl.h"
25 #include "regs.h"
26 #include "function.h"
27 #include "flags.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "expr.h"
33 #include "real.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "tm_p.h"
39 #ifndef HAVE_conditional_execution
40 #define HAVE_conditional_execution 0
41 #endif
42 #ifndef HAVE_conditional_move
43 #define HAVE_conditional_move 0
44 #endif
45 #ifndef HAVE_incscc
46 #define HAVE_incscc 0
47 #endif
48 #ifndef HAVE_decscc
49 #define HAVE_decscc 0
50 #endif
51 #ifndef HAVE_trap
52 #define HAVE_trap 0
53 #endif
54 #ifndef HAVE_conditional_trap
55 #define HAVE_conditional_trap 0
56 #endif
58 #ifndef MAX_CONDITIONAL_EXECUTE
59 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
60 #endif
62 #define NULL_EDGE ((struct edge_def *)NULL)
63 #define NULL_BLOCK ((struct basic_block_def *)NULL)
65 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
66 static int num_possible_if_blocks;
68 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
69 execution. */
70 static int num_updated_if_blocks;
72 /* # of basic blocks that were removed. */
73 static int num_removed_blocks;
75 /* True if life data ok at present. */
76 static bool life_data_ok;
78 /* The post-dominator relation on the original block numbers. */
79 static sbitmap *post_dominators;
81 /* Forward references. */
82 static int count_bb_insns PARAMS ((basic_block));
83 static rtx first_active_insn PARAMS ((basic_block));
84 static int last_active_insn_p PARAMS ((basic_block, rtx));
85 static int seq_contains_jump PARAMS ((rtx));
87 static int cond_exec_process_insns PARAMS ((rtx, rtx, rtx, rtx, int));
88 static rtx cond_exec_get_condition PARAMS ((rtx));
89 static int cond_exec_process_if_block PARAMS ((basic_block, basic_block,
90 basic_block, basic_block));
92 static rtx noce_get_condition PARAMS ((rtx, rtx *));
93 static int noce_operand_ok PARAMS ((rtx));
94 static int noce_process_if_block PARAMS ((basic_block, basic_block,
95 basic_block, basic_block));
97 static int process_if_block PARAMS ((basic_block, basic_block,
98 basic_block, basic_block));
99 static void merge_if_block PARAMS ((basic_block, basic_block,
100 basic_block, basic_block));
102 static int find_if_header PARAMS ((basic_block));
103 static int find_if_block PARAMS ((basic_block, edge, edge));
104 static int find_if_case_1 PARAMS ((basic_block, edge, edge));
105 static int find_if_case_2 PARAMS ((basic_block, edge, edge));
106 static int find_cond_trap PARAMS ((basic_block, edge, edge));
107 static int find_memory PARAMS ((rtx *, void *));
108 static int dead_or_predicable PARAMS ((basic_block, basic_block,
109 basic_block, basic_block, int));
110 static void noce_emit_move_insn PARAMS ((rtx, rtx));
112 /* Abuse the basic_block AUX field to store the original block index,
113 as well as a flag indicating that the block should be rescaned for
114 life analysis. */
116 #define SET_ORIG_INDEX(BB,I) ((BB)->aux = (void *)((size_t)(I)))
117 #define ORIG_INDEX(BB) ((size_t)(BB)->aux)
120 /* Count the number of non-jump active insns in BB. */
122 static int
123 count_bb_insns (bb)
124 basic_block bb;
126 int count = 0;
127 rtx insn = bb->head;
129 while (1)
131 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == INSN)
132 count++;
134 if (insn == bb->end)
135 break;
136 insn = NEXT_INSN (insn);
139 return count;
142 /* Return the first non-jump active insn in the basic block. */
144 static rtx
145 first_active_insn (bb)
146 basic_block bb;
148 rtx insn = bb->head;
150 if (GET_CODE (insn) == CODE_LABEL)
152 if (insn == bb->end)
153 return NULL_RTX;
154 insn = NEXT_INSN (insn);
157 while (GET_CODE (insn) == NOTE)
159 if (insn == bb->end)
160 return NULL_RTX;
161 insn = NEXT_INSN (insn);
164 if (GET_CODE (insn) == JUMP_INSN)
165 return NULL_RTX;
167 return insn;
170 /* Return true if INSN is the last active non-jump insn in BB. */
172 static int
173 last_active_insn_p (bb, insn)
174 basic_block bb;
175 rtx insn;
179 if (insn == bb->end)
180 return TRUE;
181 insn = NEXT_INSN (insn);
183 while (GET_CODE (insn) == NOTE);
185 return GET_CODE (insn) == JUMP_INSN;
188 /* It is possible, especially when having dealt with multi-word
189 arithmetic, for the expanders to have emitted jumps. Search
190 through the sequence and return TRUE if a jump exists so that
191 we can abort the conversion. */
193 static int
194 seq_contains_jump (insn)
195 rtx insn;
197 while (insn)
199 if (GET_CODE (insn) == JUMP_INSN)
200 return 1;
201 insn = NEXT_INSN (insn);
203 return 0;
206 /* Go through a bunch of insns, converting them to conditional
207 execution format if possible. Return TRUE if all of the non-note
208 insns were processed. */
210 static int
211 cond_exec_process_insns (start, end, test, prob_val, mod_ok)
212 rtx start; /* first insn to look at */
213 rtx end; /* last insn to look at */
214 rtx test; /* conditional execution test */
215 rtx prob_val; /* probability of branch taken. */
216 int mod_ok; /* true if modifications ok last insn. */
218 int must_be_last = FALSE;
219 rtx insn;
220 rtx pattern;
222 for (insn = start; ; insn = NEXT_INSN (insn))
224 if (GET_CODE (insn) == NOTE)
225 goto insn_done;
227 if (GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN)
228 abort ();
230 /* Remove USE insns that get in the way. */
231 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
233 /* ??? Ug. Actually unlinking the thing is problematic,
234 given what we'd have to coordinate with our callers. */
235 PUT_CODE (insn, NOTE);
236 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
237 NOTE_SOURCE_FILE (insn) = 0;
238 goto insn_done;
241 /* Last insn wasn't last? */
242 if (must_be_last)
243 return FALSE;
245 if (modified_in_p (test, insn))
247 if (!mod_ok)
248 return FALSE;
249 must_be_last = TRUE;
252 /* Now build the conditional form of the instruction. */
253 pattern = PATTERN (insn);
255 /* If the machine needs to modify the insn being conditionally executed,
256 say for example to force a constant integer operand into a temp
257 register, do so here. */
258 #ifdef IFCVT_MODIFY_INSN
259 IFCVT_MODIFY_INSN (pattern, insn);
260 if (! pattern)
261 return FALSE;
262 #endif
264 validate_change (insn, &PATTERN (insn),
265 gen_rtx_COND_EXEC (VOIDmode, copy_rtx (test),
266 pattern), 1);
268 if (GET_CODE (insn) == CALL_INSN && prob_val)
269 validate_change (insn, &REG_NOTES (insn),
270 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
271 REG_NOTES (insn)), 1);
273 insn_done:
274 if (insn == end)
275 break;
278 return TRUE;
281 /* Return the condition for a jump. Do not do any special processing. */
283 static rtx
284 cond_exec_get_condition (jump)
285 rtx jump;
287 rtx test_if, cond;
289 if (any_condjump_p (jump))
290 test_if = SET_SRC (pc_set (jump));
291 else
292 return NULL_RTX;
293 cond = XEXP (test_if, 0);
295 /* If this branches to JUMP_LABEL when the condition is false,
296 reverse the condition. */
297 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
298 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
300 enum rtx_code rev = reversed_comparison_code (cond, jump);
301 if (rev == UNKNOWN)
302 return NULL_RTX;
304 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
305 XEXP (cond, 1));
308 return cond;
311 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
312 to conditional execution. Return TRUE if we were successful at
313 converting the the block. */
315 static int
316 cond_exec_process_if_block (test_bb, then_bb, else_bb, join_bb)
317 basic_block test_bb; /* Basic block test is in */
318 basic_block then_bb; /* Basic block for THEN block */
319 basic_block else_bb; /* Basic block for ELSE block */
320 basic_block join_bb; /* Basic block the join label is in */
322 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
323 rtx then_start; /* first insn in THEN block */
324 rtx then_end; /* last insn + 1 in THEN block */
325 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
326 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
327 int max; /* max # of insns to convert. */
328 int then_mod_ok; /* whether conditional mods are ok in THEN */
329 rtx true_expr; /* test for else block insns */
330 rtx false_expr; /* test for then block insns */
331 rtx true_prob_val; /* probability of else block */
332 rtx false_prob_val; /* probability of then block */
333 int n_insns;
334 enum rtx_code false_code;
336 /* Find the conditional jump to the ELSE or JOIN part, and isolate
337 the test. */
338 test_expr = cond_exec_get_condition (test_bb->end);
339 if (! test_expr)
340 return FALSE;
342 /* If the conditional jump is more than just a conditional jump,
343 then we can not do conditional execution conversion on this block. */
344 if (!onlyjump_p (test_bb->end))
345 return FALSE;
347 /* Collect the bounds of where we're to search. */
349 then_start = then_bb->head;
350 then_end = then_bb->end;
352 /* Skip a label heading THEN block. */
353 if (GET_CODE (then_start) == CODE_LABEL)
354 then_start = NEXT_INSN (then_start);
356 /* Skip a (use (const_int 0)) or branch as the final insn. */
357 if (GET_CODE (then_end) == INSN
358 && GET_CODE (PATTERN (then_end)) == USE
359 && GET_CODE (XEXP (PATTERN (then_end), 0)) == CONST_INT)
360 then_end = PREV_INSN (then_end);
361 else if (GET_CODE (then_end) == JUMP_INSN)
362 then_end = PREV_INSN (then_end);
364 if (else_bb)
366 /* Skip the ELSE block's label. */
367 else_start = NEXT_INSN (else_bb->head);
368 else_end = else_bb->end;
370 /* Skip a (use (const_int 0)) or branch as the final insn. */
371 if (GET_CODE (else_end) == INSN
372 && GET_CODE (PATTERN (else_end)) == USE
373 && GET_CODE (XEXP (PATTERN (else_end), 0)) == CONST_INT)
374 else_end = PREV_INSN (else_end);
375 else if (GET_CODE (else_end) == JUMP_INSN)
376 else_end = PREV_INSN (else_end);
379 /* How many instructions should we convert in total? */
380 n_insns = 0;
381 if (else_bb)
383 max = 2 * MAX_CONDITIONAL_EXECUTE;
384 n_insns = count_bb_insns (else_bb);
386 else
387 max = MAX_CONDITIONAL_EXECUTE;
388 n_insns += count_bb_insns (then_bb);
389 if (n_insns > max)
390 return FALSE;
392 /* Map test_expr/test_jump into the appropriate MD tests to use on
393 the conditionally executed code. */
395 true_expr = test_expr;
397 false_code = reversed_comparison_code (true_expr, test_bb->end);
398 if (false_code != UNKNOWN)
399 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
400 XEXP (true_expr, 0), XEXP (true_expr, 1));
401 else
402 false_expr = NULL_RTX;
404 #ifdef IFCVT_MODIFY_TESTS
405 /* If the machine description needs to modify the tests, such as setting a
406 conditional execution register from a comparison, it can do so here. */
407 IFCVT_MODIFY_TESTS (true_expr, false_expr, test_bb, then_bb, else_bb,
408 join_bb);
410 /* See if the conversion failed */
411 if (!true_expr || !false_expr)
412 goto fail;
413 #endif
415 true_prob_val = find_reg_note (test_bb->end, REG_BR_PROB, NULL_RTX);
416 if (true_prob_val)
418 true_prob_val = XEXP (true_prob_val, 0);
419 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
421 else
422 false_prob_val = NULL_RTX;
424 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
425 on then THEN block. */
426 then_mod_ok = (else_bb == NULL_BLOCK);
428 /* Go through the THEN and ELSE blocks converting the insns if possible
429 to conditional execution. */
431 if (then_end
432 && (! false_expr
433 || ! cond_exec_process_insns (then_start, then_end, false_expr,
434 false_prob_val, then_mod_ok)))
435 goto fail;
437 if (else_bb
438 && ! cond_exec_process_insns (else_start, else_end,
439 true_expr, true_prob_val, TRUE))
440 goto fail;
442 if (! apply_change_group ())
443 return FALSE;
445 #ifdef IFCVT_MODIFY_FINAL
446 /* Do any machine dependent final modifications */
447 IFCVT_MODIFY_FINAL (test_bb, then_bb, else_bb, join_bb);
448 #endif
450 /* Conversion succeeded. */
451 if (rtl_dump_file)
452 fprintf (rtl_dump_file, "%d insn%s converted to conditional execution.\n",
453 n_insns, (n_insns == 1) ? " was" : "s were");
455 /* Merge the blocks! */
456 merge_if_block (test_bb, then_bb, else_bb, join_bb);
457 return TRUE;
459 fail:
460 #ifdef IFCVT_MODIFY_CANCEL
461 /* Cancel any machine dependent changes. */
462 IFCVT_MODIFY_CANCEL (test_bb, then_bb, else_bb, join_bb);
463 #endif
465 cancel_changes (0);
466 return FALSE;
469 /* Used by noce_process_if_block to communicate with its subroutines.
471 The subroutines know that A and B may be evaluated freely. They
472 know that X is a register. They should insert new instructions
473 before cond_earliest. */
475 struct noce_if_info
477 basic_block test_bb;
478 rtx insn_a, insn_b;
479 rtx x, a, b;
480 rtx jump, cond, cond_earliest;
483 static rtx noce_emit_store_flag PARAMS ((struct noce_if_info *,
484 rtx, int, int));
485 static int noce_try_store_flag PARAMS ((struct noce_if_info *));
486 static int noce_try_store_flag_inc PARAMS ((struct noce_if_info *));
487 static int noce_try_store_flag_constants PARAMS ((struct noce_if_info *));
488 static int noce_try_store_flag_mask PARAMS ((struct noce_if_info *));
489 static rtx noce_emit_cmove PARAMS ((struct noce_if_info *,
490 rtx, enum rtx_code, rtx,
491 rtx, rtx, rtx));
492 static int noce_try_cmove PARAMS ((struct noce_if_info *));
493 static int noce_try_cmove_arith PARAMS ((struct noce_if_info *));
494 static rtx noce_get_alt_condition PARAMS ((struct noce_if_info *,
495 rtx, rtx *));
496 static int noce_try_minmax PARAMS ((struct noce_if_info *));
497 static int noce_try_abs PARAMS ((struct noce_if_info *));
499 /* Helper function for noce_try_store_flag*. */
501 static rtx
502 noce_emit_store_flag (if_info, x, reversep, normalize)
503 struct noce_if_info *if_info;
504 rtx x;
505 int reversep, normalize;
507 rtx cond = if_info->cond;
508 int cond_complex;
509 enum rtx_code code;
511 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
512 || ! general_operand (XEXP (cond, 1), VOIDmode));
514 /* If earliest == jump, or when the condition is complex, try to
515 build the store_flag insn directly. */
517 if (cond_complex)
518 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
520 if (reversep)
521 code = reversed_comparison_code (cond, if_info->jump);
522 else
523 code = GET_CODE (cond);
525 if ((if_info->cond_earliest == if_info->jump || cond_complex)
526 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
528 rtx tmp;
530 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
531 XEXP (cond, 1));
532 tmp = gen_rtx_SET (VOIDmode, x, tmp);
534 start_sequence ();
535 tmp = emit_insn (tmp);
537 if (recog_memoized (tmp) >= 0)
539 tmp = get_insns ();
540 end_sequence ();
541 emit_insns (tmp);
543 if_info->cond_earliest = if_info->jump;
545 return x;
548 end_sequence ();
551 /* Don't even try if the comparison operands are weird. */
552 if (cond_complex)
553 return NULL_RTX;
555 return emit_store_flag (x, code, XEXP (cond, 0),
556 XEXP (cond, 1), VOIDmode,
557 (code == LTU || code == LEU
558 || code == GEU || code == GTU), normalize);
561 /* Emit instruction to move an rtx into STRICT_LOW_PART. */
562 static void
563 noce_emit_move_insn (x, y)
564 rtx x, y;
566 enum machine_mode outmode, inmode;
567 rtx outer, inner;
568 int bitpos;
570 if (GET_CODE (x) != STRICT_LOW_PART)
572 emit_move_insn (x, y);
573 return;
576 outer = XEXP (x, 0);
577 inner = XEXP (outer, 0);
578 outmode = GET_MODE (outer);
579 inmode = GET_MODE (inner);
580 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
581 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y,
582 GET_MODE_BITSIZE (inmode));
585 /* Convert "if (test) x = 1; else x = 0".
587 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
588 tried in noce_try_store_flag_constants after noce_try_cmove has had
589 a go at the conversion. */
591 static int
592 noce_try_store_flag (if_info)
593 struct noce_if_info *if_info;
595 int reversep;
596 rtx target, seq;
598 if (GET_CODE (if_info->b) == CONST_INT
599 && INTVAL (if_info->b) == STORE_FLAG_VALUE
600 && if_info->a == const0_rtx)
601 reversep = 0;
602 else if (if_info->b == const0_rtx
603 && GET_CODE (if_info->a) == CONST_INT
604 && INTVAL (if_info->a) == STORE_FLAG_VALUE
605 && (reversed_comparison_code (if_info->cond, if_info->jump)
606 != UNKNOWN))
607 reversep = 1;
608 else
609 return FALSE;
611 start_sequence ();
613 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
614 if (target)
616 if (target != if_info->x)
617 noce_emit_move_insn (if_info->x, target);
619 seq = get_insns ();
620 end_sequence ();
621 emit_insns_before (seq, if_info->cond_earliest);
623 return TRUE;
625 else
627 end_sequence ();
628 return FALSE;
632 /* Convert "if (test) x = a; else x = b", for A and B constant. */
634 static int
635 noce_try_store_flag_constants (if_info)
636 struct noce_if_info *if_info;
638 rtx target, seq;
639 int reversep;
640 HOST_WIDE_INT itrue, ifalse, diff, tmp;
641 int normalize, can_reverse;
642 enum machine_mode mode;
644 if (! no_new_pseudos
645 && GET_CODE (if_info->a) == CONST_INT
646 && GET_CODE (if_info->b) == CONST_INT)
648 mode = GET_MODE (if_info->x);
649 ifalse = INTVAL (if_info->a);
650 itrue = INTVAL (if_info->b);
652 /* Make sure we can represent the difference between the two values. */
653 if ((itrue - ifalse > 0)
654 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
655 return FALSE;
657 diff = trunc_int_for_mode (itrue - ifalse, mode);
659 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
660 != UNKNOWN);
662 reversep = 0;
663 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
664 normalize = 0;
665 else if (ifalse == 0 && exact_log2 (itrue) >= 0
666 && (STORE_FLAG_VALUE == 1
667 || BRANCH_COST >= 2))
668 normalize = 1;
669 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
670 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
671 normalize = 1, reversep = 1;
672 else if (itrue == -1
673 && (STORE_FLAG_VALUE == -1
674 || BRANCH_COST >= 2))
675 normalize = -1;
676 else if (ifalse == -1 && can_reverse
677 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
678 normalize = -1, reversep = 1;
679 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
680 || BRANCH_COST >= 3)
681 normalize = -1;
682 else
683 return FALSE;
685 if (reversep)
687 tmp = itrue; itrue = ifalse; ifalse = tmp;
688 diff = trunc_int_for_mode (-diff, mode);
691 start_sequence ();
692 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
693 if (! target)
695 end_sequence ();
696 return FALSE;
699 /* if (test) x = 3; else x = 4;
700 => x = 3 + (test == 0); */
701 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
703 target = expand_simple_binop (mode,
704 (diff == STORE_FLAG_VALUE
705 ? PLUS : MINUS),
706 GEN_INT (ifalse), target, if_info->x, 0,
707 OPTAB_WIDEN);
710 /* if (test) x = 8; else x = 0;
711 => x = (test != 0) << 3; */
712 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
714 target = expand_simple_binop (mode, ASHIFT,
715 target, GEN_INT (tmp), if_info->x, 0,
716 OPTAB_WIDEN);
719 /* if (test) x = -1; else x = b;
720 => x = -(test != 0) | b; */
721 else if (itrue == -1)
723 target = expand_simple_binop (mode, IOR,
724 target, GEN_INT (ifalse), if_info->x, 0,
725 OPTAB_WIDEN);
728 /* if (test) x = a; else x = b;
729 => x = (-(test != 0) & (b - a)) + a; */
730 else
732 target = expand_simple_binop (mode, AND,
733 target, GEN_INT (diff), if_info->x, 0,
734 OPTAB_WIDEN);
735 if (target)
736 target = expand_simple_binop (mode, PLUS,
737 target, GEN_INT (ifalse),
738 if_info->x, 0, OPTAB_WIDEN);
741 if (! target)
743 end_sequence ();
744 return FALSE;
747 if (target != if_info->x)
748 noce_emit_move_insn (if_info->x, target);
750 seq = get_insns ();
751 end_sequence ();
753 if (seq_contains_jump (seq))
754 return FALSE;
756 emit_insns_before (seq, if_info->cond_earliest);
758 return TRUE;
761 return FALSE;
764 /* Convert "if (test) foo++" into "foo += (test != 0)", and
765 similarly for "foo--". */
767 static int
768 noce_try_store_flag_inc (if_info)
769 struct noce_if_info *if_info;
771 rtx target, seq;
772 int subtract, normalize;
774 if (! no_new_pseudos
775 && (BRANCH_COST >= 2
776 || HAVE_incscc
777 || HAVE_decscc)
778 /* Should be no `else' case to worry about. */
779 && if_info->b == if_info->x
780 && GET_CODE (if_info->a) == PLUS
781 && (XEXP (if_info->a, 1) == const1_rtx
782 || XEXP (if_info->a, 1) == constm1_rtx)
783 && rtx_equal_p (XEXP (if_info->a, 0), if_info->x)
784 && (reversed_comparison_code (if_info->cond, if_info->jump)
785 != UNKNOWN))
787 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
788 subtract = 0, normalize = 0;
789 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
790 subtract = 1, normalize = 0;
791 else
792 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
794 start_sequence ();
796 target = noce_emit_store_flag (if_info,
797 gen_reg_rtx (GET_MODE (if_info->x)),
798 1, normalize);
800 if (target)
801 target = expand_simple_binop (GET_MODE (if_info->x),
802 subtract ? MINUS : PLUS,
803 if_info->x, target, if_info->x,
804 0, OPTAB_WIDEN);
805 if (target)
807 if (target != if_info->x)
808 noce_emit_move_insn (if_info->x, target);
810 seq = get_insns ();
811 end_sequence ();
813 if (seq_contains_jump (seq))
814 return FALSE;
816 emit_insns_before (seq, if_info->cond_earliest);
818 return TRUE;
821 end_sequence ();
824 return FALSE;
827 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
829 static int
830 noce_try_store_flag_mask (if_info)
831 struct noce_if_info *if_info;
833 rtx target, seq;
834 int reversep;
836 reversep = 0;
837 if (! no_new_pseudos
838 && (BRANCH_COST >= 2
839 || STORE_FLAG_VALUE == -1)
840 && ((if_info->a == const0_rtx
841 && rtx_equal_p (if_info->b, if_info->x))
842 || ((reversep = (reversed_comparison_code (if_info->cond,
843 if_info->jump)
844 != UNKNOWN))
845 && if_info->b == const0_rtx
846 && rtx_equal_p (if_info->a, if_info->x))))
848 start_sequence ();
849 target = noce_emit_store_flag (if_info,
850 gen_reg_rtx (GET_MODE (if_info->x)),
851 reversep, -1);
852 if (target)
853 target = expand_simple_binop (GET_MODE (if_info->x), AND,
854 if_info->x, target, if_info->x, 0,
855 OPTAB_WIDEN);
857 if (target)
859 if (target != if_info->x)
860 noce_emit_move_insn (if_info->x, target);
862 seq = get_insns ();
863 end_sequence ();
865 if (seq_contains_jump (seq))
866 return FALSE;
868 emit_insns_before (seq, if_info->cond_earliest);
870 return TRUE;
873 end_sequence ();
876 return FALSE;
879 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
881 static rtx
882 noce_emit_cmove (if_info, x, code, cmp_a, cmp_b, vfalse, vtrue)
883 struct noce_if_info *if_info;
884 rtx x, cmp_a, cmp_b, vfalse, vtrue;
885 enum rtx_code code;
887 /* If earliest == jump, try to build the cmove insn directly.
888 This is helpful when combine has created some complex condition
889 (like for alpha's cmovlbs) that we can't hope to regenerate
890 through the normal interface. */
892 if (if_info->cond_earliest == if_info->jump)
894 rtx tmp;
896 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
897 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
898 tmp = gen_rtx_SET (VOIDmode, x, tmp);
900 start_sequence ();
901 tmp = emit_insn (tmp);
903 if (recog_memoized (tmp) >= 0)
905 tmp = get_insns ();
906 end_sequence ();
907 emit_insns (tmp);
909 return x;
912 end_sequence ();
915 /* Don't even try if the comparison operands are weird. */
916 if (! general_operand (cmp_a, GET_MODE (cmp_a))
917 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
918 return NULL_RTX;
920 #if HAVE_conditional_move
921 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
922 vtrue, vfalse, GET_MODE (x),
923 (code == LTU || code == GEU
924 || code == LEU || code == GTU));
925 #else
926 /* We'll never get here, as noce_process_if_block doesn't call the
927 functions involved. Ifdef code, however, should be discouraged
928 because it leads to typos in the code not selected. However,
929 emit_conditional_move won't exist either. */
930 return NULL_RTX;
931 #endif
934 /* Try only simple constants and registers here. More complex cases
935 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
936 has had a go at it. */
938 static int
939 noce_try_cmove (if_info)
940 struct noce_if_info *if_info;
942 enum rtx_code code;
943 rtx target, seq;
945 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
946 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
948 start_sequence ();
950 code = GET_CODE (if_info->cond);
951 target = noce_emit_cmove (if_info, if_info->x, code,
952 XEXP (if_info->cond, 0),
953 XEXP (if_info->cond, 1),
954 if_info->a, if_info->b);
956 if (target)
958 if (target != if_info->x)
959 noce_emit_move_insn (if_info->x, target);
961 seq = get_insns ();
962 end_sequence ();
963 emit_insns_before (seq, if_info->cond_earliest);
964 return TRUE;
966 else
968 end_sequence ();
969 return FALSE;
973 return FALSE;
976 /* Try more complex cases involving conditional_move. */
978 static int
979 noce_try_cmove_arith (if_info)
980 struct noce_if_info *if_info;
982 rtx a = if_info->a;
983 rtx b = if_info->b;
984 rtx x = if_info->x;
985 rtx insn_a, insn_b;
986 rtx tmp, target;
987 int is_mem = 0;
988 enum rtx_code code;
990 /* A conditional move from two memory sources is equivalent to a
991 conditional on their addresses followed by a load. Don't do this
992 early because it'll screw alias analysis. Note that we've
993 already checked for no side effects. */
994 if (! no_new_pseudos && cse_not_expected
995 && GET_CODE (a) == MEM && GET_CODE (b) == MEM
996 && BRANCH_COST >= 5)
998 a = XEXP (a, 0);
999 b = XEXP (b, 0);
1000 x = gen_reg_rtx (Pmode);
1001 is_mem = 1;
1004 /* ??? We could handle this if we knew that a load from A or B could
1005 not fault. This is also true if we've already loaded
1006 from the address along the path from ENTRY. */
1007 else if (may_trap_p (a) || may_trap_p (b))
1008 return FALSE;
1010 /* if (test) x = a + b; else x = c - d;
1011 => y = a + b;
1012 x = c - d;
1013 if (test)
1014 x = y;
1017 code = GET_CODE (if_info->cond);
1018 insn_a = if_info->insn_a;
1019 insn_b = if_info->insn_b;
1021 /* Possibly rearrange operands to make things come out more natural. */
1022 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1024 int reversep = 0;
1025 if (rtx_equal_p (b, x))
1026 reversep = 1;
1027 else if (general_operand (b, GET_MODE (b)))
1028 reversep = 1;
1030 if (reversep)
1032 code = reversed_comparison_code (if_info->cond, if_info->jump);
1033 tmp = a, a = b, b = tmp;
1034 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1038 start_sequence ();
1040 /* If either operand is complex, load it into a register first.
1041 The best way to do this is to copy the original insn. In this
1042 way we preserve any clobbers etc that the insn may have had.
1043 This is of course not possible in the IS_MEM case. */
1044 if (! general_operand (a, GET_MODE (a)))
1046 rtx set;
1048 if (no_new_pseudos)
1049 goto end_seq_and_fail;
1051 if (is_mem)
1053 tmp = gen_reg_rtx (GET_MODE (a));
1054 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1056 else if (! insn_a)
1057 goto end_seq_and_fail;
1058 else
1060 a = gen_reg_rtx (GET_MODE (a));
1061 tmp = copy_rtx (insn_a);
1062 set = single_set (tmp);
1063 SET_DEST (set) = a;
1064 tmp = emit_insn (PATTERN (tmp));
1066 if (recog_memoized (tmp) < 0)
1067 goto end_seq_and_fail;
1069 if (! general_operand (b, GET_MODE (b)))
1071 rtx set;
1073 if (no_new_pseudos)
1074 goto end_seq_and_fail;
1076 if (is_mem)
1078 tmp = gen_reg_rtx (GET_MODE (b));
1079 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, b));
1081 else if (! insn_b)
1082 goto end_seq_and_fail;
1083 else
1085 b = gen_reg_rtx (GET_MODE (b));
1086 tmp = copy_rtx (insn_b);
1087 set = single_set (tmp);
1088 SET_DEST (set) = b;
1089 tmp = emit_insn (PATTERN (tmp));
1091 if (recog_memoized (tmp) < 0)
1092 goto end_seq_and_fail;
1095 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1096 XEXP (if_info->cond, 1), a, b);
1098 if (! target)
1099 goto end_seq_and_fail;
1101 /* If we're handling a memory for above, emit the load now. */
1102 if (is_mem)
1104 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1106 /* Copy over flags as appropriate. */
1107 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1108 MEM_VOLATILE_P (tmp) = 1;
1109 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1110 MEM_IN_STRUCT_P (tmp) = 1;
1111 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1112 MEM_SCALAR_P (tmp) = 1;
1113 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1114 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1115 set_mem_align (tmp,
1116 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1118 noce_emit_move_insn (if_info->x, tmp);
1120 else if (target != x)
1121 noce_emit_move_insn (x, target);
1123 tmp = get_insns ();
1124 end_sequence ();
1125 emit_insns_before (tmp, if_info->cond_earliest);
1126 return TRUE;
1128 end_seq_and_fail:
1129 end_sequence ();
1130 return FALSE;
1133 /* For most cases, the simplified condition we found is the best
1134 choice, but this is not the case for the min/max/abs transforms.
1135 For these we wish to know that it is A or B in the condition. */
1137 static rtx
1138 noce_get_alt_condition (if_info, target, earliest)
1139 struct noce_if_info *if_info;
1140 rtx target;
1141 rtx *earliest;
1143 rtx cond, set, insn;
1144 int reverse;
1146 /* If target is already mentioned in the known condition, return it. */
1147 if (reg_mentioned_p (target, if_info->cond))
1149 *earliest = if_info->cond_earliest;
1150 return if_info->cond;
1153 set = pc_set (if_info->jump);
1154 cond = XEXP (SET_SRC (set), 0);
1155 reverse
1156 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1157 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1159 /* If we're looking for a constant, try to make the conditional
1160 have that constant in it. There are two reasons why it may
1161 not have the constant we want:
1163 1. GCC may have needed to put the constant in a register, because
1164 the target can't compare directly against that constant. For
1165 this case, we look for a SET immediately before the comparison
1166 that puts a constant in that register.
1168 2. GCC may have canonicalized the conditional, for example
1169 replacing "if x < 4" with "if x <= 3". We can undo that (or
1170 make equivalent types of changes) to get the constants we need
1171 if they're off by one in the right direction. */
1173 if (GET_CODE (target) == CONST_INT)
1175 enum rtx_code code = GET_CODE (if_info->cond);
1176 rtx op_a = XEXP (if_info->cond, 0);
1177 rtx op_b = XEXP (if_info->cond, 1);
1178 rtx prev_insn;
1180 /* First, look to see if we put a constant in a register. */
1181 prev_insn = PREV_INSN (if_info->cond_earliest);
1182 if (prev_insn
1183 && INSN_P (prev_insn)
1184 && GET_CODE (PATTERN (prev_insn)) == SET)
1186 rtx src = find_reg_equal_equiv_note (prev_insn);
1187 if (!src)
1188 src = SET_SRC (PATTERN (prev_insn));
1189 if (GET_CODE (src) == CONST_INT)
1191 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1192 op_a = src;
1193 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1194 op_b = src;
1196 if (GET_CODE (op_a) == CONST_INT)
1198 rtx tmp = op_a;
1199 op_a = op_b;
1200 op_b = tmp;
1201 code = swap_condition (code);
1206 /* Now, look to see if we can get the right constant by
1207 adjusting the conditional. */
1208 if (GET_CODE (op_b) == CONST_INT)
1210 HOST_WIDE_INT desired_val = INTVAL (target);
1211 HOST_WIDE_INT actual_val = INTVAL (op_b);
1213 switch (code)
1215 case LT:
1216 if (actual_val == desired_val + 1)
1218 code = LE;
1219 op_b = GEN_INT (desired_val);
1221 break;
1222 case LE:
1223 if (actual_val == desired_val - 1)
1225 code = LT;
1226 op_b = GEN_INT (desired_val);
1228 break;
1229 case GT:
1230 if (actual_val == desired_val - 1)
1232 code = GE;
1233 op_b = GEN_INT (desired_val);
1235 break;
1236 case GE:
1237 if (actual_val == desired_val + 1)
1239 code = GT;
1240 op_b = GEN_INT (desired_val);
1242 break;
1243 default:
1244 break;
1248 /* If we made any changes, generate a new conditional that is
1249 equivalent to what we started with, but has the right
1250 constants in it. */
1251 if (code != GET_CODE (if_info->cond)
1252 || op_a != XEXP (if_info->cond, 0)
1253 || op_b != XEXP (if_info->cond, 1))
1255 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1256 *earliest = if_info->cond_earliest;
1257 return cond;
1261 cond = canonicalize_condition (if_info->jump, cond, reverse,
1262 earliest, target);
1263 if (! cond || ! reg_mentioned_p (target, cond))
1264 return NULL;
1266 /* We almost certainly searched back to a different place.
1267 Need to re-verify correct lifetimes. */
1269 /* X may not be mentioned in the range (cond_earliest, jump]. */
1270 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1271 if (INSN_P (insn) && reg_mentioned_p (if_info->x, insn))
1272 return NULL;
1274 /* A and B may not be modified in the range [cond_earliest, jump). */
1275 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1276 if (INSN_P (insn)
1277 && (modified_in_p (if_info->a, insn)
1278 || modified_in_p (if_info->b, insn)))
1279 return NULL;
1281 return cond;
1284 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1286 static int
1287 noce_try_minmax (if_info)
1288 struct noce_if_info *if_info;
1290 rtx cond, earliest, target, seq;
1291 enum rtx_code code, op;
1292 int unsignedp;
1294 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1295 if (no_new_pseudos)
1296 return FALSE;
1298 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1299 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1300 to get the target to tell us... */
1301 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1302 || HONOR_NANS (GET_MODE (if_info->x)))
1303 return FALSE;
1305 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1306 if (!cond)
1307 return FALSE;
1309 /* Verify the condition is of the form we expect, and canonicalize
1310 the comparison code. */
1311 code = GET_CODE (cond);
1312 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1314 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1315 return FALSE;
1317 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1319 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1320 return FALSE;
1321 code = swap_condition (code);
1323 else
1324 return FALSE;
1326 /* Determine what sort of operation this is. Note that the code is for
1327 a taken branch, so the code->operation mapping appears backwards. */
1328 switch (code)
1330 case LT:
1331 case LE:
1332 case UNLT:
1333 case UNLE:
1334 op = SMAX;
1335 unsignedp = 0;
1336 break;
1337 case GT:
1338 case GE:
1339 case UNGT:
1340 case UNGE:
1341 op = SMIN;
1342 unsignedp = 0;
1343 break;
1344 case LTU:
1345 case LEU:
1346 op = UMAX;
1347 unsignedp = 1;
1348 break;
1349 case GTU:
1350 case GEU:
1351 op = UMIN;
1352 unsignedp = 1;
1353 break;
1354 default:
1355 return FALSE;
1358 start_sequence ();
1360 target = expand_simple_binop (GET_MODE (if_info->x), op,
1361 if_info->a, if_info->b,
1362 if_info->x, unsignedp, OPTAB_WIDEN);
1363 if (! target)
1365 end_sequence ();
1366 return FALSE;
1368 if (target != if_info->x)
1369 noce_emit_move_insn (if_info->x, target);
1371 seq = get_insns ();
1372 end_sequence ();
1374 if (seq_contains_jump (seq))
1375 return FALSE;
1377 emit_insns_before (seq, earliest);
1378 if_info->cond = cond;
1379 if_info->cond_earliest = earliest;
1381 return TRUE;
1384 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1386 static int
1387 noce_try_abs (if_info)
1388 struct noce_if_info *if_info;
1390 rtx cond, earliest, target, seq, a, b, c;
1391 int negate;
1393 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1394 if (no_new_pseudos)
1395 return FALSE;
1397 /* Recognize A and B as constituting an ABS or NABS. */
1398 a = if_info->a;
1399 b = if_info->b;
1400 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1401 negate = 0;
1402 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1404 c = a; a = b; b = c;
1405 negate = 1;
1407 else
1408 return FALSE;
1410 cond = noce_get_alt_condition (if_info, b, &earliest);
1411 if (!cond)
1412 return FALSE;
1414 /* Verify the condition is of the form we expect. */
1415 if (rtx_equal_p (XEXP (cond, 0), b))
1416 c = XEXP (cond, 1);
1417 else if (rtx_equal_p (XEXP (cond, 1), b))
1418 c = XEXP (cond, 0);
1419 else
1420 return FALSE;
1422 /* Verify that C is zero. Search backward through the block for
1423 a REG_EQUAL note if necessary. */
1424 if (REG_P (c))
1426 rtx insn, note = NULL;
1427 for (insn = earliest;
1428 insn != if_info->test_bb->head;
1429 insn = PREV_INSN (insn))
1430 if (INSN_P (insn)
1431 && ((note = find_reg_note (insn, REG_EQUAL, c))
1432 || (note = find_reg_note (insn, REG_EQUIV, c))))
1433 break;
1434 if (! note)
1435 return FALSE;
1436 c = XEXP (note, 0);
1438 if (GET_CODE (c) == MEM
1439 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1440 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1441 c = get_pool_constant (XEXP (c, 0));
1443 /* Work around funny ideas get_condition has wrt canonicalization.
1444 Note that these rtx constants are known to be CONST_INT, and
1445 therefore imply integer comparisons. */
1446 if (c == constm1_rtx && GET_CODE (cond) == GT)
1448 else if (c == const1_rtx && GET_CODE (cond) == LT)
1450 else if (c != CONST0_RTX (GET_MODE (b)))
1451 return FALSE;
1453 /* Determine what sort of operation this is. */
1454 switch (GET_CODE (cond))
1456 case LT:
1457 case LE:
1458 case UNLT:
1459 case UNLE:
1460 negate = !negate;
1461 break;
1462 case GT:
1463 case GE:
1464 case UNGT:
1465 case UNGE:
1466 break;
1467 default:
1468 return FALSE;
1471 start_sequence ();
1473 target = expand_simple_unop (GET_MODE (if_info->x), ABS, b, if_info->x, 0);
1475 /* ??? It's a quandry whether cmove would be better here, especially
1476 for integers. Perhaps combine will clean things up. */
1477 if (target && negate)
1478 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1480 if (! target)
1482 end_sequence ();
1483 return FALSE;
1486 if (target != if_info->x)
1487 noce_emit_move_insn (if_info->x, target);
1489 seq = get_insns ();
1490 end_sequence ();
1492 if (seq_contains_jump (seq))
1493 return FALSE;
1495 emit_insns_before (seq, earliest);
1496 if_info->cond = cond;
1497 if_info->cond_earliest = earliest;
1499 return TRUE;
1502 /* Look for the condition for the jump first. We'd prefer to avoid
1503 get_condition if we can -- it tries to look back for the contents
1504 of an original compare. On targets that use normal integers for
1505 comparisons, e.g. alpha, this is wasteful. */
1507 static rtx
1508 noce_get_condition (jump, earliest)
1509 rtx jump;
1510 rtx *earliest;
1512 rtx cond;
1513 rtx set;
1515 /* If the condition variable is a register and is MODE_INT, accept it.
1516 Otherwise, fall back on get_condition. */
1518 if (! any_condjump_p (jump))
1519 return NULL_RTX;
1521 set = pc_set (jump);
1523 cond = XEXP (SET_SRC (set), 0);
1524 if (GET_CODE (XEXP (cond, 0)) == REG
1525 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_INT)
1527 *earliest = jump;
1529 /* If this branches to JUMP_LABEL when the condition is false,
1530 reverse the condition. */
1531 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1532 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump))
1533 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
1534 GET_MODE (cond), XEXP (cond, 0),
1535 XEXP (cond, 1));
1537 else
1538 cond = get_condition (jump, earliest);
1540 return cond;
1543 /* Return true if OP is ok for if-then-else processing. */
1545 static int
1546 noce_operand_ok (op)
1547 rtx op;
1549 /* We special-case memories, so handle any of them with
1550 no address side effects. */
1551 if (GET_CODE (op) == MEM)
1552 return ! side_effects_p (XEXP (op, 0));
1554 if (side_effects_p (op))
1555 return FALSE;
1557 /* ??? Unfortuantely may_trap_p can't look at flag_trapping_math, due to
1558 being linked into the genfoo programs. This is probably a mistake.
1559 With finite operands, most fp operations don't trap. */
1560 if (!flag_trapping_math && FLOAT_MODE_P (GET_MODE (op)))
1561 switch (GET_CODE (op))
1563 case DIV:
1564 case MOD:
1565 case UDIV:
1566 case UMOD:
1567 /* ??? This is kinda lame -- almost every target will have forced
1568 the constant into a register first. But given the expense of
1569 division, this is probably for the best. */
1570 return (CONSTANT_P (XEXP (op, 1))
1571 && XEXP (op, 1) != CONST0_RTX (GET_MODE (op))
1572 && ! may_trap_p (XEXP (op, 0)));
1574 default:
1575 switch (GET_RTX_CLASS (GET_CODE (op)))
1577 case '1':
1578 return ! may_trap_p (XEXP (op, 0));
1579 case 'c':
1580 case '2':
1581 return ! may_trap_p (XEXP (op, 0)) && ! may_trap_p (XEXP (op, 1));
1583 break;
1586 return ! may_trap_p (op);
1589 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
1590 without using conditional execution. Return TRUE if we were
1591 successful at converting the the block. */
1593 static int
1594 noce_process_if_block (test_bb, then_bb, else_bb, join_bb)
1595 basic_block test_bb; /* Basic block test is in */
1596 basic_block then_bb; /* Basic block for THEN block */
1597 basic_block else_bb; /* Basic block for ELSE block */
1598 basic_block join_bb; /* Basic block the join label is in */
1600 /* We're looking for patterns of the form
1602 (1) if (...) x = a; else x = b;
1603 (2) x = b; if (...) x = a;
1604 (3) if (...) x = a; // as if with an initial x = x.
1606 The later patterns require jumps to be more expensive.
1608 ??? For future expansion, look for multiple X in such patterns. */
1610 struct noce_if_info if_info;
1611 rtx insn_a, insn_b;
1612 rtx set_a, set_b;
1613 rtx orig_x, x, a, b;
1614 rtx jump, cond, insn;
1616 /* If this is not a standard conditional jump, we can't parse it. */
1617 jump = test_bb->end;
1618 cond = noce_get_condition (jump, &if_info.cond_earliest);
1619 if (! cond)
1620 return FALSE;
1622 /* If the conditional jump is more than just a conditional jump,
1623 then we can not do if-conversion on this block. */
1624 if (! onlyjump_p (jump))
1625 return FALSE;
1627 /* We must be comparing objects whose modes imply the size. */
1628 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
1629 return FALSE;
1631 /* Look for one of the potential sets. */
1632 insn_a = first_active_insn (then_bb);
1633 if (! insn_a
1634 || ! last_active_insn_p (then_bb, insn_a)
1635 || (set_a = single_set (insn_a)) == NULL_RTX)
1636 return FALSE;
1638 x = SET_DEST (set_a);
1639 a = SET_SRC (set_a);
1641 /* Look for the other potential set. Make sure we've got equivalent
1642 destinations. */
1643 /* ??? This is overconservative. Storing to two different mems is
1644 as easy as conditionally computing the address. Storing to a
1645 single mem merely requires a scratch memory to use as one of the
1646 destination addresses; often the memory immediately below the
1647 stack pointer is available for this. */
1648 set_b = NULL_RTX;
1649 if (else_bb)
1651 insn_b = first_active_insn (else_bb);
1652 if (! insn_b
1653 || ! last_active_insn_p (else_bb, insn_b)
1654 || (set_b = single_set (insn_b)) == NULL_RTX
1655 || ! rtx_equal_p (x, SET_DEST (set_b)))
1656 return FALSE;
1658 else
1660 insn_b = prev_nonnote_insn (if_info.cond_earliest);
1661 if (! insn_b
1662 || GET_CODE (insn_b) != INSN
1663 || (set_b = single_set (insn_b)) == NULL_RTX
1664 || ! rtx_equal_p (x, SET_DEST (set_b))
1665 || reg_mentioned_p (x, cond)
1666 || reg_mentioned_p (x, a)
1667 || reg_mentioned_p (x, SET_SRC (set_b)))
1668 insn_b = set_b = NULL_RTX;
1670 b = (set_b ? SET_SRC (set_b) : x);
1672 /* X may not be mentioned in the range (cond_earliest, jump]. */
1673 for (insn = jump; insn != if_info.cond_earliest; insn = PREV_INSN (insn))
1674 if (INSN_P (insn) && reg_mentioned_p (x, insn))
1675 return FALSE;
1677 /* A and B may not be modified in the range [cond_earliest, jump). */
1678 for (insn = if_info.cond_earliest; insn != jump; insn = NEXT_INSN (insn))
1679 if (INSN_P (insn)
1680 && (modified_in_p (a, insn) || modified_in_p (b, insn)))
1681 return FALSE;
1683 /* Only operate on register destinations, and even then avoid extending
1684 the lifetime of hard registers on small register class machines. */
1685 orig_x = x;
1686 if (GET_CODE (x) != REG
1687 || (SMALL_REGISTER_CLASSES
1688 && REGNO (x) < FIRST_PSEUDO_REGISTER))
1690 if (no_new_pseudos)
1691 return FALSE;
1692 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
1693 ? XEXP (x, 0) : x));
1696 /* Don't operate on sources that may trap or are volatile. */
1697 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
1698 return FALSE;
1700 /* Set up the info block for our subroutines. */
1701 if_info.test_bb = test_bb;
1702 if_info.cond = cond;
1703 if_info.jump = jump;
1704 if_info.insn_a = insn_a;
1705 if_info.insn_b = insn_b;
1706 if_info.x = x;
1707 if_info.a = a;
1708 if_info.b = b;
1710 /* Try optimizations in some approximation of a useful order. */
1711 /* ??? Should first look to see if X is live incoming at all. If it
1712 isn't, we don't need anything but an unconditional set. */
1714 /* Look and see if A and B are really the same. Avoid creating silly
1715 cmove constructs that no one will fix up later. */
1716 if (rtx_equal_p (a, b))
1718 /* If we have an INSN_B, we don't have to create any new rtl. Just
1719 move the instruction that we already have. If we don't have an
1720 INSN_B, that means that A == X, and we've got a noop move. In
1721 that case don't do anything and let the code below delete INSN_A. */
1722 if (insn_b && else_bb)
1724 rtx note;
1726 if (else_bb && insn_b == else_bb->end)
1727 else_bb->end = PREV_INSN (insn_b);
1728 reorder_insns (insn_b, insn_b, PREV_INSN (if_info.cond_earliest));
1730 /* If there was a REG_EQUAL note, delete it since it may have been
1731 true due to this insn being after a jump. */
1732 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
1733 remove_note (insn_b, note);
1735 insn_b = NULL_RTX;
1737 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
1738 x must be executed twice. */
1739 else if (insn_b && side_effects_p (orig_x))
1740 return FALSE;
1742 x = orig_x;
1743 goto success;
1746 if (noce_try_store_flag (&if_info))
1747 goto success;
1748 if (noce_try_minmax (&if_info))
1749 goto success;
1750 if (noce_try_abs (&if_info))
1751 goto success;
1752 if (HAVE_conditional_move
1753 && noce_try_cmove (&if_info))
1754 goto success;
1755 if (! HAVE_conditional_execution)
1757 if (noce_try_store_flag_constants (&if_info))
1758 goto success;
1759 if (noce_try_store_flag_inc (&if_info))
1760 goto success;
1761 if (noce_try_store_flag_mask (&if_info))
1762 goto success;
1763 if (HAVE_conditional_move
1764 && noce_try_cmove_arith (&if_info))
1765 goto success;
1768 return FALSE;
1770 success:
1771 /* The original sets may now be killed. */
1772 delete_insn (insn_a);
1774 /* Several special cases here: First, we may have reused insn_b above,
1775 in which case insn_b is now NULL. Second, we want to delete insn_b
1776 if it came from the ELSE block, because follows the now correct
1777 write that appears in the TEST block. However, if we got insn_b from
1778 the TEST block, it may in fact be loading data needed for the comparison.
1779 We'll let life_analysis remove the insn if it's really dead. */
1780 if (insn_b && else_bb)
1781 delete_insn (insn_b);
1783 /* The new insns will have been inserted before cond_earliest. We should
1784 be able to remove the jump with impunity, but the condition itself may
1785 have been modified by gcse to be shared across basic blocks. */
1786 delete_insn (jump);
1788 /* If we used a temporary, fix it up now. */
1789 if (orig_x != x)
1791 start_sequence ();
1792 noce_emit_move_insn (copy_rtx (orig_x), x);
1793 insn_b = gen_sequence ();
1794 end_sequence ();
1796 emit_insn_after (insn_b, test_bb->end);
1799 /* Merge the blocks! */
1800 merge_if_block (test_bb, then_bb, else_bb, join_bb);
1802 return TRUE;
1805 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
1806 straight line code. Return true if successful. */
1808 static int
1809 process_if_block (test_bb, then_bb, else_bb, join_bb)
1810 basic_block test_bb; /* Basic block test is in */
1811 basic_block then_bb; /* Basic block for THEN block */
1812 basic_block else_bb; /* Basic block for ELSE block */
1813 basic_block join_bb; /* Basic block the join label is in */
1815 if (! reload_completed
1816 && noce_process_if_block (test_bb, then_bb, else_bb, join_bb))
1817 return TRUE;
1819 if (HAVE_conditional_execution
1820 && reload_completed
1821 && cond_exec_process_if_block (test_bb, then_bb, else_bb, join_bb))
1822 return TRUE;
1824 return FALSE;
1827 /* Merge the blocks and mark for local life update. */
1829 static void
1830 merge_if_block (test_bb, then_bb, else_bb, join_bb)
1831 basic_block test_bb; /* Basic block test is in */
1832 basic_block then_bb; /* Basic block for THEN block */
1833 basic_block else_bb; /* Basic block for ELSE block */
1834 basic_block join_bb; /* Basic block the join label is in */
1836 basic_block combo_bb;
1838 /* All block merging is done into the lower block numbers. */
1840 combo_bb = test_bb;
1842 /* First merge TEST block into THEN block. This is a no-brainer since
1843 the THEN block did not have a code label to begin with. */
1845 if (combo_bb->global_live_at_end)
1846 COPY_REG_SET (combo_bb->global_live_at_end, then_bb->global_live_at_end);
1847 merge_blocks_nomove (combo_bb, then_bb);
1848 num_removed_blocks++;
1850 /* The ELSE block, if it existed, had a label. That label count
1851 will almost always be zero, but odd things can happen when labels
1852 get their addresses taken. */
1853 if (else_bb)
1855 merge_blocks_nomove (combo_bb, else_bb);
1856 num_removed_blocks++;
1859 /* If there was no join block reported, that means it was not adjacent
1860 to the others, and so we cannot merge them. */
1862 if (! join_bb)
1864 /* The outgoing edge for the current COMBO block should already
1865 be correct. Verify this. */
1866 if (combo_bb->succ == NULL_EDGE)
1867 abort ();
1869 /* There should still be a branch at the end of the THEN or ELSE
1870 blocks taking us to our final destination. */
1871 if (GET_CODE (combo_bb->end) != JUMP_INSN)
1872 abort ();
1875 /* The JOIN block may have had quite a number of other predecessors too.
1876 Since we've already merged the TEST, THEN and ELSE blocks, we should
1877 have only one remaining edge from our if-then-else diamond. If there
1878 is more than one remaining edge, it must come from elsewhere. There
1879 may be zero incoming edges if the THEN block didn't actually join
1880 back up (as with a call to abort). */
1881 else if ((join_bb->pred == NULL
1882 || join_bb->pred->pred_next == NULL)
1883 && join_bb != EXIT_BLOCK_PTR)
1885 /* We can merge the JOIN. */
1886 if (combo_bb->global_live_at_end)
1887 COPY_REG_SET (combo_bb->global_live_at_end,
1888 join_bb->global_live_at_end);
1889 merge_blocks_nomove (combo_bb, join_bb);
1890 num_removed_blocks++;
1892 else
1894 /* We cannot merge the JOIN. */
1896 /* The outgoing edge for the current COMBO block should already
1897 be correct. Verify this. */
1898 if (combo_bb->succ->succ_next != NULL_EDGE
1899 || combo_bb->succ->dest != join_bb)
1900 abort ();
1902 /* Remove the jump and cruft from the end of the COMBO block. */
1903 if (join_bb != EXIT_BLOCK_PTR)
1904 tidy_fallthru_edge (combo_bb->succ, combo_bb, join_bb);
1907 num_updated_if_blocks++;
1910 /* Find a block ending in a simple IF condition. Return TRUE if
1911 we were able to transform it in some way. */
1913 static int
1914 find_if_header (test_bb)
1915 basic_block test_bb;
1917 edge then_edge;
1918 edge else_edge;
1920 /* The kind of block we're looking for has exactly two successors. */
1921 if ((then_edge = test_bb->succ) == NULL_EDGE
1922 || (else_edge = then_edge->succ_next) == NULL_EDGE
1923 || else_edge->succ_next != NULL_EDGE)
1924 return FALSE;
1926 /* Neither edge should be abnormal. */
1927 if ((then_edge->flags & EDGE_COMPLEX)
1928 || (else_edge->flags & EDGE_COMPLEX))
1929 return FALSE;
1931 /* The THEN edge is canonically the one that falls through. */
1932 if (then_edge->flags & EDGE_FALLTHRU)
1934 else if (else_edge->flags & EDGE_FALLTHRU)
1936 edge e = else_edge;
1937 else_edge = then_edge;
1938 then_edge = e;
1940 else
1941 /* Otherwise this must be a multiway branch of some sort. */
1942 return FALSE;
1944 if (find_if_block (test_bb, then_edge, else_edge))
1945 goto success;
1946 if (HAVE_trap && HAVE_conditional_trap
1947 && find_cond_trap (test_bb, then_edge, else_edge))
1948 goto success;
1949 if (post_dominators
1950 && (! HAVE_conditional_execution || reload_completed))
1952 if (find_if_case_1 (test_bb, then_edge, else_edge))
1953 goto success;
1954 if (find_if_case_2 (test_bb, then_edge, else_edge))
1955 goto success;
1958 return FALSE;
1960 success:
1961 if (rtl_dump_file)
1962 fprintf (rtl_dump_file, "Conversion succeeded.\n");
1963 return TRUE;
1966 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
1967 block. If so, we'll try to convert the insns to not require the branch.
1968 Return TRUE if we were successful at converting the the block. */
1970 static int
1971 find_if_block (test_bb, then_edge, else_edge)
1972 basic_block test_bb;
1973 edge then_edge, else_edge;
1975 basic_block then_bb = then_edge->dest;
1976 basic_block else_bb = else_edge->dest;
1977 basic_block join_bb = NULL_BLOCK;
1978 edge then_succ = then_bb->succ;
1979 edge else_succ = else_bb->succ;
1980 int next_index;
1982 /* The THEN block of an IF-THEN combo must have exactly one predecessor. */
1983 if (then_bb->pred->pred_next != NULL_EDGE)
1984 return FALSE;
1986 /* The THEN block of an IF-THEN combo must have zero or one successors. */
1987 if (then_succ != NULL_EDGE
1988 && (then_succ->succ_next != NULL_EDGE
1989 || (then_succ->flags & EDGE_COMPLEX)))
1990 return FALSE;
1992 /* If the THEN block has no successors, conditional execution can still
1993 make a conditional call. Don't do this unless the ELSE block has
1994 only one incoming edge -- the CFG manipulation is too ugly otherwise.
1995 Check for the last insn of the THEN block being an indirect jump, which
1996 is listed as not having any successors, but confuses the rest of the CE
1997 code processing. XXX we should fix this in the future. */
1998 if (then_succ == NULL)
2000 if (else_bb->pred->pred_next == NULL_EDGE)
2002 rtx last_insn = then_bb->end;
2004 while (last_insn
2005 && GET_CODE (last_insn) == NOTE
2006 && last_insn != then_bb->head)
2007 last_insn = PREV_INSN (last_insn);
2009 if (last_insn
2010 && GET_CODE (last_insn) == JUMP_INSN
2011 && ! simplejump_p (last_insn))
2012 return FALSE;
2014 join_bb = else_bb;
2015 else_bb = NULL_BLOCK;
2017 else
2018 return FALSE;
2021 /* If the THEN block's successor is the other edge out of the TEST block,
2022 then we have an IF-THEN combo without an ELSE. */
2023 else if (then_succ->dest == else_bb)
2025 join_bb = else_bb;
2026 else_bb = NULL_BLOCK;
2029 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
2030 has exactly one predecessor and one successor, and the outgoing edge
2031 is not complex, then we have an IF-THEN-ELSE combo. */
2032 else if (else_succ != NULL_EDGE
2033 && then_succ->dest == else_succ->dest
2034 && else_bb->pred->pred_next == NULL_EDGE
2035 && else_succ->succ_next == NULL_EDGE
2036 && ! (else_succ->flags & EDGE_COMPLEX))
2037 join_bb = else_succ->dest;
2039 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
2040 else
2041 return FALSE;
2043 num_possible_if_blocks++;
2045 if (rtl_dump_file)
2047 if (else_bb)
2048 fprintf (rtl_dump_file,
2049 "\nIF-THEN-ELSE block found, start %d, then %d, else %d, join %d\n",
2050 test_bb->index, then_bb->index, else_bb->index,
2051 join_bb->index);
2052 else
2053 fprintf (rtl_dump_file,
2054 "\nIF-THEN block found, start %d, then %d, join %d\n",
2055 test_bb->index, then_bb->index, join_bb->index);
2058 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we
2059 get the first condition for free, since we've already asserted that
2060 there's a fallthru edge from IF to THEN. */
2061 /* ??? As an enhancement, move the ELSE block. Have to deal with
2062 BLOCK notes, if by no other means than aborting the merge if they
2063 exist. Sticky enough I don't want to think about it now. */
2064 next_index = then_bb->index;
2065 if (else_bb && ++next_index != else_bb->index)
2066 return FALSE;
2067 if (++next_index != join_bb->index && join_bb->index != EXIT_BLOCK)
2069 if (else_bb)
2070 join_bb = NULL;
2071 else
2072 return FALSE;
2075 /* Do the real work. */
2076 return process_if_block (test_bb, then_bb, else_bb, join_bb);
2079 /* Convert a branch over a trap, or a branch to a trap,
2080 into a conditional trap. */
2082 static int
2083 find_cond_trap (test_bb, then_edge, else_edge)
2084 basic_block test_bb;
2085 edge then_edge, else_edge;
2087 basic_block then_bb, else_bb, join_bb, trap_bb;
2088 rtx trap, jump, cond, cond_earliest, seq;
2089 enum rtx_code code;
2091 then_bb = then_edge->dest;
2092 else_bb = else_edge->dest;
2093 join_bb = NULL;
2095 /* Locate the block with the trap instruction. */
2096 /* ??? While we look for no successors, we really ought to allow
2097 EH successors. Need to fix merge_if_block for that to work. */
2098 /* ??? We can't currently handle merging the blocks if they are not
2099 already adjacent. Prevent losage in merge_if_block by detecting
2100 this now. */
2101 if (then_bb->succ == NULL)
2103 trap_bb = then_bb;
2104 if (else_bb->index != then_bb->index + 1)
2105 return FALSE;
2106 join_bb = else_bb;
2107 else_bb = NULL;
2109 else if (else_bb->succ == NULL)
2111 trap_bb = else_bb;
2112 if (else_bb->index != then_bb->index + 1)
2113 else_bb = NULL;
2114 else if (then_bb->succ
2115 && ! then_bb->succ->succ_next
2116 && ! (then_bb->succ->flags & EDGE_COMPLEX)
2117 && then_bb->succ->dest->index == else_bb->index + 1)
2118 join_bb = then_bb->succ->dest;
2120 else
2121 return FALSE;
2123 /* Don't confuse a conditional return with something we want to
2124 optimize here. */
2125 if (trap_bb == EXIT_BLOCK_PTR)
2126 return FALSE;
2128 /* The only instruction in the THEN block must be the trap. */
2129 trap = first_active_insn (trap_bb);
2130 if (! (trap == trap_bb->end
2131 && GET_CODE (PATTERN (trap)) == TRAP_IF
2132 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
2133 return FALSE;
2135 if (rtl_dump_file)
2137 if (trap_bb == then_bb)
2138 fprintf (rtl_dump_file,
2139 "\nTRAP-IF block found, start %d, trap %d",
2140 test_bb->index, then_bb->index);
2141 else
2142 fprintf (rtl_dump_file,
2143 "\nTRAP-IF block found, start %d, then %d, trap %d",
2144 test_bb->index, then_bb->index, trap_bb->index);
2145 if (join_bb)
2146 fprintf (rtl_dump_file, ", join %d\n", join_bb->index);
2147 else
2148 fputc ('\n', rtl_dump_file);
2151 /* If this is not a standard conditional jump, we can't parse it. */
2152 jump = test_bb->end;
2153 cond = noce_get_condition (jump, &cond_earliest);
2154 if (! cond)
2155 return FALSE;
2157 /* If the conditional jump is more than just a conditional jump,
2158 then we can not do if-conversion on this block. */
2159 if (! onlyjump_p (jump))
2160 return FALSE;
2162 /* We must be comparing objects whose modes imply the size. */
2163 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2164 return FALSE;
2166 /* Reverse the comparison code, if necessary. */
2167 code = GET_CODE (cond);
2168 if (then_bb == trap_bb)
2170 code = reversed_comparison_code (cond, jump);
2171 if (code == UNKNOWN)
2172 return FALSE;
2175 /* Attempt to generate the conditional trap. */
2176 seq = gen_cond_trap (code, XEXP (cond, 0), XEXP (cond, 1),
2177 TRAP_CODE (PATTERN (trap)));
2178 if (seq == NULL)
2179 return FALSE;
2181 /* Emit the new insns before cond_earliest; delete the old jump
2182 and trap insns. */
2184 emit_insn_before (seq, cond_earliest);
2186 delete_insn (jump);
2188 delete_insn (trap);
2190 /* Merge the blocks! */
2191 if (trap_bb != then_bb && ! else_bb)
2193 flow_delete_block (trap_bb);
2194 num_removed_blocks++;
2196 merge_if_block (test_bb, then_bb, else_bb, join_bb);
2198 return TRUE;
2201 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
2202 transformable, but not necessarily the other. There need be no
2203 JOIN block.
2205 Return TRUE if we were successful at converting the the block.
2207 Cases we'd like to look at:
2210 if (test) goto over; // x not live
2211 x = a;
2212 goto label;
2213 over:
2215 becomes
2217 x = a;
2218 if (! test) goto label;
2221 if (test) goto E; // x not live
2222 x = big();
2223 goto L;
2225 x = b;
2226 goto M;
2228 becomes
2230 x = b;
2231 if (test) goto M;
2232 x = big();
2233 goto L;
2235 (3) // This one's really only interesting for targets that can do
2236 // multiway branching, e.g. IA-64 BBB bundles. For other targets
2237 // it results in multiple branches on a cache line, which often
2238 // does not sit well with predictors.
2240 if (test1) goto E; // predicted not taken
2241 x = a;
2242 if (test2) goto F;
2245 x = b;
2248 becomes
2250 x = a;
2251 if (test1) goto E;
2252 if (test2) goto F;
2254 Notes:
2256 (A) Don't do (2) if the branch is predicted against the block we're
2257 eliminating. Do it anyway if we can eliminate a branch; this requires
2258 that the sole successor of the eliminated block postdominate the other
2259 side of the if.
2261 (B) With CE, on (3) we can steal from both sides of the if, creating
2263 if (test1) x = a;
2264 if (!test1) x = b;
2265 if (test1) goto J;
2266 if (test2) goto F;
2270 Again, this is most useful if J postdominates.
2272 (C) CE substitutes for helpful life information.
2274 (D) These heuristics need a lot of work. */
2276 /* Tests for case 1 above. */
2278 static int
2279 find_if_case_1 (test_bb, then_edge, else_edge)
2280 basic_block test_bb;
2281 edge then_edge, else_edge;
2283 basic_block then_bb = then_edge->dest;
2284 basic_block else_bb = else_edge->dest, new_bb;
2285 edge then_succ = then_bb->succ;
2287 /* THEN has one successor. */
2288 if (!then_succ || then_succ->succ_next != NULL)
2289 return FALSE;
2291 /* THEN does not fall through, but is not strange either. */
2292 if (then_succ->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
2293 return FALSE;
2295 /* THEN has one predecessor. */
2296 if (then_bb->pred->pred_next != NULL)
2297 return FALSE;
2299 /* THEN must do something. */
2300 if (forwarder_block_p (then_bb))
2301 return FALSE;
2303 num_possible_if_blocks++;
2304 if (rtl_dump_file)
2305 fprintf (rtl_dump_file,
2306 "\nIF-CASE-1 found, start %d, then %d\n",
2307 test_bb->index, then_bb->index);
2309 /* THEN is small. */
2310 if (count_bb_insns (then_bb) > BRANCH_COST)
2311 return FALSE;
2313 /* Registers set are dead, or are predicable. */
2314 if (! dead_or_predicable (test_bb, then_bb, else_bb,
2315 then_bb->succ->dest, 1))
2316 return FALSE;
2318 /* Conversion went ok, including moving the insns and fixing up the
2319 jump. Adjust the CFG to match. */
2321 bitmap_operation (test_bb->global_live_at_end,
2322 else_bb->global_live_at_start,
2323 then_bb->global_live_at_end, BITMAP_IOR);
2325 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb), else_bb);
2326 /* Make rest of code believe that the newly created block is the THEN_BB
2327 block we are going to remove. */
2328 if (new_bb)
2329 new_bb->aux = then_bb->aux;
2330 flow_delete_block (then_bb);
2331 /* We've possibly created jump to next insn, cleanup_cfg will solve that
2332 later. */
2334 num_removed_blocks++;
2335 num_updated_if_blocks++;
2337 return TRUE;
2340 /* Test for case 2 above. */
2342 static int
2343 find_if_case_2 (test_bb, then_edge, else_edge)
2344 basic_block test_bb;
2345 edge then_edge, else_edge;
2347 basic_block then_bb = then_edge->dest;
2348 basic_block else_bb = else_edge->dest;
2349 edge else_succ = else_bb->succ;
2350 rtx note;
2352 /* ELSE has one successor. */
2353 if (!else_succ || else_succ->succ_next != NULL)
2354 return FALSE;
2356 /* ELSE outgoing edge is not complex. */
2357 if (else_succ->flags & EDGE_COMPLEX)
2358 return FALSE;
2360 /* ELSE has one predecessor. */
2361 if (else_bb->pred->pred_next != NULL)
2362 return FALSE;
2364 /* THEN is not EXIT. */
2365 if (then_bb->index < 0)
2366 return FALSE;
2368 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
2369 note = find_reg_note (test_bb->end, REG_BR_PROB, NULL_RTX);
2370 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
2372 else if (else_succ->dest->index < 0
2373 || TEST_BIT (post_dominators[ORIG_INDEX (then_bb)],
2374 ORIG_INDEX (else_succ->dest)))
2376 else
2377 return FALSE;
2379 num_possible_if_blocks++;
2380 if (rtl_dump_file)
2381 fprintf (rtl_dump_file,
2382 "\nIF-CASE-2 found, start %d, else %d\n",
2383 test_bb->index, else_bb->index);
2385 /* ELSE is small. */
2386 if (count_bb_insns (then_bb) > BRANCH_COST)
2387 return FALSE;
2389 /* Registers set are dead, or are predicable. */
2390 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
2391 return FALSE;
2393 /* Conversion went ok, including moving the insns and fixing up the
2394 jump. Adjust the CFG to match. */
2396 bitmap_operation (test_bb->global_live_at_end,
2397 then_bb->global_live_at_start,
2398 else_bb->global_live_at_end, BITMAP_IOR);
2400 flow_delete_block (else_bb);
2402 num_removed_blocks++;
2403 num_updated_if_blocks++;
2405 /* ??? We may now fallthru from one of THEN's successors into a join
2406 block. Rerun cleanup_cfg? Examine things manually? Wait? */
2408 return TRUE;
2411 /* A subroutine of dead_or_predicable called through for_each_rtx.
2412 Return 1 if a memory is found. */
2414 static int
2415 find_memory (px, data)
2416 rtx *px;
2417 void *data ATTRIBUTE_UNUSED;
2419 return GET_CODE (*px) == MEM;
2422 /* Used by the code above to perform the actual rtl transformations.
2423 Return TRUE if successful.
2425 TEST_BB is the block containing the conditional branch. MERGE_BB
2426 is the block containing the code to manipulate. NEW_DEST is the
2427 label TEST_BB should be branching to after the conversion.
2428 REVERSEP is true if the sense of the branch should be reversed. */
2430 static int
2431 dead_or_predicable (test_bb, merge_bb, other_bb, new_dest, reversep)
2432 basic_block test_bb, merge_bb, other_bb;
2433 basic_block new_dest;
2434 int reversep;
2436 rtx head, end, jump, earliest, old_dest, new_label;
2438 jump = test_bb->end;
2440 /* Find the extent of the real code in the merge block. */
2441 head = merge_bb->head;
2442 end = merge_bb->end;
2444 if (GET_CODE (head) == CODE_LABEL)
2445 head = NEXT_INSN (head);
2446 if (GET_CODE (head) == NOTE)
2448 if (head == end)
2450 head = end = NULL_RTX;
2451 goto no_body;
2453 head = NEXT_INSN (head);
2456 if (GET_CODE (end) == JUMP_INSN)
2458 if (head == end)
2460 head = end = NULL_RTX;
2461 goto no_body;
2463 end = PREV_INSN (end);
2466 /* Disable handling dead code by conditional execution if the machine needs
2467 to do anything funny with the tests, etc. */
2468 #ifndef IFCVT_MODIFY_TESTS
2469 if (HAVE_conditional_execution)
2471 /* In the conditional execution case, we have things easy. We know
2472 the condition is reversable. We don't have to check life info,
2473 becase we're going to conditionally execute the code anyway.
2474 All that's left is making sure the insns involved can actually
2475 be predicated. */
2477 rtx cond, prob_val;
2479 cond = cond_exec_get_condition (jump);
2480 if (! cond)
2481 return FALSE;
2483 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
2484 if (prob_val)
2485 prob_val = XEXP (prob_val, 0);
2487 if (reversep)
2489 enum rtx_code rev = reversed_comparison_code (cond, jump);
2490 if (rev == UNKNOWN)
2491 return FALSE;
2492 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
2493 XEXP (cond, 1));
2494 if (prob_val)
2495 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
2498 if (! cond_exec_process_insns (head, end, cond, prob_val, 0))
2499 goto cancel;
2501 earliest = jump;
2503 else
2504 #endif
2506 /* In the non-conditional execution case, we have to verify that there
2507 are no trapping operations, no calls, no references to memory, and
2508 that any registers modified are dead at the branch site. */
2510 rtx insn, cond, prev;
2511 regset_head merge_set_head, tmp_head, test_live_head, test_set_head;
2512 regset merge_set, tmp, test_live, test_set;
2513 struct propagate_block_info *pbi;
2514 int i, fail = 0;
2516 /* Check for no calls or trapping operations. */
2517 for (insn = head; ; insn = NEXT_INSN (insn))
2519 if (GET_CODE (insn) == CALL_INSN)
2520 return FALSE;
2521 if (INSN_P (insn))
2523 if (may_trap_p (PATTERN (insn)))
2524 return FALSE;
2526 /* ??? Even non-trapping memories such as stack frame
2527 references must be avoided. For stores, we collect
2528 no lifetime info; for reads, we'd have to assert
2529 true_dependence false against every store in the
2530 TEST range. */
2531 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
2532 return FALSE;
2534 if (insn == end)
2535 break;
2538 if (! any_condjump_p (jump))
2539 return FALSE;
2541 /* Find the extent of the conditional. */
2542 cond = noce_get_condition (jump, &earliest);
2543 if (! cond)
2544 return FALSE;
2546 /* Collect:
2547 MERGE_SET = set of registers set in MERGE_BB
2548 TEST_LIVE = set of registers live at EARLIEST
2549 TEST_SET = set of registers set between EARLIEST and the
2550 end of the block. */
2552 tmp = INITIALIZE_REG_SET (tmp_head);
2553 merge_set = INITIALIZE_REG_SET (merge_set_head);
2554 test_live = INITIALIZE_REG_SET (test_live_head);
2555 test_set = INITIALIZE_REG_SET (test_set_head);
2557 /* ??? bb->local_set is only valid during calculate_global_regs_live,
2558 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
2559 since we've already asserted that MERGE_BB is small. */
2560 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
2562 /* For small register class machines, don't lengthen lifetimes of
2563 hard registers before reload. */
2564 if (SMALL_REGISTER_CLASSES && ! reload_completed)
2566 EXECUTE_IF_SET_IN_BITMAP
2567 (merge_set, 0, i,
2569 if (i < FIRST_PSEUDO_REGISTER
2570 && ! fixed_regs[i]
2571 && ! global_regs[i])
2572 fail = 1;
2576 /* For TEST, we're interested in a range of insns, not a whole block.
2577 Moreover, we're interested in the insns live from OTHER_BB. */
2579 COPY_REG_SET (test_live, other_bb->global_live_at_start);
2580 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
2583 for (insn = jump; ; insn = prev)
2585 prev = propagate_one_insn (pbi, insn);
2586 if (insn == earliest)
2587 break;
2590 free_propagate_block_info (pbi);
2592 /* We can perform the transformation if
2593 MERGE_SET & (TEST_SET | TEST_LIVE)
2595 TEST_SET & merge_bb->global_live_at_start
2596 are empty. */
2598 bitmap_operation (tmp, test_set, test_live, BITMAP_IOR);
2599 bitmap_operation (tmp, tmp, merge_set, BITMAP_AND);
2600 EXECUTE_IF_SET_IN_BITMAP(tmp, 0, i, fail = 1);
2602 bitmap_operation (tmp, test_set, merge_bb->global_live_at_start,
2603 BITMAP_AND);
2604 EXECUTE_IF_SET_IN_BITMAP(tmp, 0, i, fail = 1);
2606 FREE_REG_SET (tmp);
2607 FREE_REG_SET (merge_set);
2608 FREE_REG_SET (test_live);
2609 FREE_REG_SET (test_set);
2611 if (fail)
2612 return FALSE;
2615 no_body:
2616 /* We don't want to use normal invert_jump or redirect_jump because
2617 we don't want to delete_insn called. Also, we want to do our own
2618 change group management. */
2620 old_dest = JUMP_LABEL (jump);
2621 if (other_bb != new_dest)
2623 new_label = block_label (new_dest);
2624 if (reversep
2625 ? ! invert_jump_1 (jump, new_label)
2626 : ! redirect_jump_1 (jump, new_label))
2627 goto cancel;
2630 if (! apply_change_group ())
2631 return FALSE;
2633 if (other_bb != new_dest)
2635 if (old_dest)
2636 LABEL_NUSES (old_dest) -= 1;
2637 if (new_label)
2638 LABEL_NUSES (new_label) += 1;
2639 JUMP_LABEL (jump) = new_label;
2640 if (reversep)
2641 invert_br_probabilities (jump);
2643 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
2644 if (reversep)
2646 gcov_type count, probability;
2647 count = BRANCH_EDGE (test_bb)->count;
2648 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
2649 FALLTHRU_EDGE (test_bb)->count = count;
2650 probability = BRANCH_EDGE (test_bb)->probability;
2651 BRANCH_EDGE (test_bb)->probability
2652 = FALLTHRU_EDGE (test_bb)->probability;
2653 FALLTHRU_EDGE (test_bb)->probability = probability;
2654 update_br_prob_note (test_bb);
2658 /* Move the insns out of MERGE_BB to before the branch. */
2659 if (head != NULL)
2661 if (end == merge_bb->end)
2662 merge_bb->end = PREV_INSN (head);
2664 if (squeeze_notes (&head, &end))
2665 return TRUE;
2667 reorder_insns (head, end, PREV_INSN (earliest));
2670 /* Remove the jump and edge if we can. */
2671 if (other_bb == new_dest)
2673 delete_insn (jump);
2674 remove_edge (BRANCH_EDGE (test_bb));
2675 /* ??? Can't merge blocks here, as then_bb is still in use.
2676 At minimum, the merge will get done just before bb-reorder. */
2679 return TRUE;
2681 cancel:
2682 cancel_changes (0);
2683 return FALSE;
2686 /* Main entry point for all if-conversion. */
2688 void
2689 if_convert (x_life_data_ok)
2690 int x_life_data_ok;
2692 int block_num;
2694 num_possible_if_blocks = 0;
2695 num_updated_if_blocks = 0;
2696 num_removed_blocks = 0;
2697 life_data_ok = (x_life_data_ok != 0);
2699 /* Free up basic_block_for_insn so that we don't have to keep it
2700 up to date, either here or in merge_blocks_nomove. */
2701 free_basic_block_vars (1);
2703 /* Compute postdominators if we think we'll use them. */
2704 post_dominators = NULL;
2705 if (HAVE_conditional_execution || life_data_ok)
2707 post_dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
2708 calculate_dominance_info (NULL, post_dominators, CDI_POST_DOMINATORS);
2710 if (life_data_ok)
2711 clear_bb_flags ();
2713 /* Record initial block numbers. */
2714 for (block_num = 0; block_num < n_basic_blocks; block_num++)
2715 SET_ORIG_INDEX (BASIC_BLOCK (block_num), block_num);
2717 /* Go through each of the basic blocks looking for things to convert. */
2718 for (block_num = 0; block_num < n_basic_blocks; )
2720 basic_block bb = BASIC_BLOCK (block_num);
2721 if (find_if_header (bb))
2722 block_num = bb->index;
2723 else
2724 block_num++;
2727 if (post_dominators)
2728 sbitmap_vector_free (post_dominators);
2730 if (rtl_dump_file)
2731 fflush (rtl_dump_file);
2733 /* Rebuild life info for basic blocks that require it. */
2734 if (num_removed_blocks && life_data_ok)
2736 /* If we allocated new pseudos, we must resize the array for sched1. */
2737 if (max_regno < max_reg_num ())
2739 max_regno = max_reg_num ();
2740 allocate_reg_info (max_regno, FALSE, FALSE);
2742 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
2743 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
2744 | PROP_KILL_DEAD_CODE);
2746 clear_aux_for_blocks ();
2748 /* Write the final stats. */
2749 if (rtl_dump_file && num_possible_if_blocks > 0)
2751 fprintf (rtl_dump_file,
2752 "\n%d possible IF blocks searched.\n",
2753 num_possible_if_blocks);
2754 fprintf (rtl_dump_file,
2755 "%d IF blocks converted.\n",
2756 num_updated_if_blocks);
2757 fprintf (rtl_dump_file,
2758 "%d basic blocks deleted.\n\n\n",
2759 num_removed_blocks);
2762 #ifdef ENABLE_CHECKING
2763 verify_flow_info ();
2764 #endif