1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "diagnostic-core.h"
28 #include "hard-reg-set.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
38 #include "sched-int.h"
42 #include "langhooks.h"
43 #include "rtlhooks-def.h"
44 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 /* We don't have to use it except for sel_print_insn. */
49 #include "sel-sched-dump.h"
51 /* A vector holding bb info for whole scheduling pass. */
52 vec
<sel_global_bb_info_def
>
53 sel_global_bb_info
= vNULL
;
55 /* A vector holding bb info. */
56 vec
<sel_region_bb_info_def
>
57 sel_region_bb_info
= vNULL
;
59 /* A pool for allocating all lists. */
60 alloc_pool sched_lists_pool
;
62 /* This contains information about successors for compute_av_set. */
63 struct succs_info current_succs
;
65 /* Data structure to describe interaction with the generic scheduler utils. */
66 static struct common_sched_info_def sel_common_sched_info
;
68 /* The loop nest being pipelined. */
69 struct loop
*current_loop_nest
;
71 /* LOOP_NESTS is a vector containing the corresponding loop nest for
73 static vec
<loop_p
> loop_nests
= vNULL
;
75 /* Saves blocks already in loop regions, indexed by bb->index. */
76 static sbitmap bbs_in_loop_rgns
= NULL
;
78 /* CFG hooks that are saved before changing create_basic_block hook. */
79 static struct cfg_hooks orig_cfg_hooks
;
82 /* Array containing reverse topological index of function basic blocks,
83 indexed by BB->INDEX. */
84 static int *rev_top_order_index
= NULL
;
86 /* Length of the above array. */
87 static int rev_top_order_index_len
= -1;
89 /* A regset pool structure. */
92 /* The stack to which regsets are returned. */
101 /* In VV we save all generated regsets so that, when destructing the
102 pool, we can compare it with V and check that every regset was returned
106 /* The pointer of VV stack. */
112 /* The difference between allocated and returned regsets. */
114 } regset_pool
= { NULL
, 0, 0, NULL
, 0, 0, 0 };
116 /* This represents the nop pool. */
119 /* The vector which holds previously emitted nops. */
127 } nop_pool
= { NULL
, 0, 0 };
129 /* The pool for basic block notes. */
130 static rtx_vec_t bb_note_pool
;
132 /* A NOP pattern used to emit placeholder insns. */
133 rtx nop_pattern
= NULL_RTX
;
134 /* A special instruction that resides in EXIT_BLOCK.
135 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
136 rtx exit_insn
= NULL_RTX
;
138 /* TRUE if while scheduling current region, which is loop, its preheader
140 bool preheader_removed
= false;
143 /* Forward static declarations. */
144 static void fence_clear (fence_t
);
146 static void deps_init_id (idata_t
, insn_t
, bool);
147 static void init_id_from_df (idata_t
, insn_t
, bool);
148 static expr_t
set_insn_init (expr_t
, vinsn_t
, int);
150 static void cfg_preds (basic_block
, insn_t
**, int *);
151 static void prepare_insn_expr (insn_t
, int);
152 static void free_history_vect (vec
<expr_history_def
> &);
154 static void move_bb_info (basic_block
, basic_block
);
155 static void remove_empty_bb (basic_block
, bool);
156 static void sel_merge_blocks (basic_block
, basic_block
);
157 static void sel_remove_loop_preheader (void);
158 static bool bb_has_removable_jump_to_p (basic_block
, basic_block
);
160 static bool insn_is_the_only_one_in_bb_p (insn_t
);
161 static void create_initial_data_sets (basic_block
);
163 static void free_av_set (basic_block
);
164 static void invalidate_av_set (basic_block
);
165 static void extend_insn_data (void);
166 static void sel_init_new_insn (insn_t
, int);
167 static void finish_insns (void);
169 /* Various list functions. */
171 /* Copy an instruction list L. */
173 ilist_copy (ilist_t l
)
175 ilist_t head
= NULL
, *tailp
= &head
;
179 ilist_add (tailp
, ILIST_INSN (l
));
180 tailp
= &ILIST_NEXT (*tailp
);
187 /* Invert an instruction list L. */
189 ilist_invert (ilist_t l
)
195 ilist_add (&res
, ILIST_INSN (l
));
202 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
204 blist_add (blist_t
*lp
, insn_t to
, ilist_t ptr
, deps_t dc
)
209 bnd
= BLIST_BND (*lp
);
214 BND_AV1 (bnd
) = NULL
;
218 /* Remove the list note pointed to by LP. */
220 blist_remove (blist_t
*lp
)
222 bnd_t b
= BLIST_BND (*lp
);
224 av_set_clear (&BND_AV (b
));
225 av_set_clear (&BND_AV1 (b
));
226 ilist_clear (&BND_PTR (b
));
231 /* Init a fence tail L. */
233 flist_tail_init (flist_tail_t l
)
235 FLIST_TAIL_HEAD (l
) = NULL
;
236 FLIST_TAIL_TAILP (l
) = &FLIST_TAIL_HEAD (l
);
239 /* Try to find fence corresponding to INSN in L. */
241 flist_lookup (flist_t l
, insn_t insn
)
245 if (FENCE_INSN (FLIST_FENCE (l
)) == insn
)
246 return FLIST_FENCE (l
);
254 /* Init the fields of F before running fill_insns. */
256 init_fence_for_scheduling (fence_t f
)
258 FENCE_BNDS (f
) = NULL
;
259 FENCE_PROCESSED_P (f
) = false;
260 FENCE_SCHEDULED_P (f
) = false;
263 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
265 flist_add (flist_t
*lp
, insn_t insn
, state_t state
, deps_t dc
, void *tc
,
266 insn_t last_scheduled_insn
, vec
<rtx
, va_gc
> *executing_insns
,
267 int *ready_ticks
, int ready_ticks_size
, insn_t sched_next
,
268 int cycle
, int cycle_issued_insns
, int issue_more
,
269 bool starts_cycle_p
, bool after_stall_p
)
274 f
= FLIST_FENCE (*lp
);
276 FENCE_INSN (f
) = insn
;
278 gcc_assert (state
!= NULL
);
279 FENCE_STATE (f
) = state
;
281 FENCE_CYCLE (f
) = cycle
;
282 FENCE_ISSUED_INSNS (f
) = cycle_issued_insns
;
283 FENCE_STARTS_CYCLE_P (f
) = starts_cycle_p
;
284 FENCE_AFTER_STALL_P (f
) = after_stall_p
;
286 gcc_assert (dc
!= NULL
);
289 gcc_assert (tc
!= NULL
|| targetm
.sched
.alloc_sched_context
== NULL
);
292 FENCE_LAST_SCHEDULED_INSN (f
) = last_scheduled_insn
;
293 FENCE_ISSUE_MORE (f
) = issue_more
;
294 FENCE_EXECUTING_INSNS (f
) = executing_insns
;
295 FENCE_READY_TICKS (f
) = ready_ticks
;
296 FENCE_READY_TICKS_SIZE (f
) = ready_ticks_size
;
297 FENCE_SCHED_NEXT (f
) = sched_next
;
299 init_fence_for_scheduling (f
);
302 /* Remove the head node of the list pointed to by LP. */
304 flist_remove (flist_t
*lp
)
306 if (FENCE_INSN (FLIST_FENCE (*lp
)))
307 fence_clear (FLIST_FENCE (*lp
));
311 /* Clear the fence list pointed to by LP. */
313 flist_clear (flist_t
*lp
)
319 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
321 def_list_add (def_list_t
*dl
, insn_t original_insn
, bool crosses_call
)
326 d
= DEF_LIST_DEF (*dl
);
328 d
->orig_insn
= original_insn
;
329 d
->crosses_call
= crosses_call
;
333 /* Functions to work with target contexts. */
335 /* Bulk target context. It is convenient for debugging purposes to ensure
336 that there are no uninitialized (null) target contexts. */
337 static tc_t bulk_tc
= (tc_t
) 1;
339 /* Target hooks wrappers. In the future we can provide some default
340 implementations for them. */
342 /* Allocate a store for the target context. */
344 alloc_target_context (void)
346 return (targetm
.sched
.alloc_sched_context
347 ? targetm
.sched
.alloc_sched_context () : bulk_tc
);
350 /* Init target context TC.
351 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
352 Overwise, copy current backend context to TC. */
354 init_target_context (tc_t tc
, bool clean_p
)
356 if (targetm
.sched
.init_sched_context
)
357 targetm
.sched
.init_sched_context (tc
, clean_p
);
360 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
361 int init_target_context (). */
363 create_target_context (bool clean_p
)
365 tc_t tc
= alloc_target_context ();
367 init_target_context (tc
, clean_p
);
371 /* Copy TC to the current backend context. */
373 set_target_context (tc_t tc
)
375 if (targetm
.sched
.set_sched_context
)
376 targetm
.sched
.set_sched_context (tc
);
379 /* TC is about to be destroyed. Free any internal data. */
381 clear_target_context (tc_t tc
)
383 if (targetm
.sched
.clear_sched_context
)
384 targetm
.sched
.clear_sched_context (tc
);
387 /* Clear and free it. */
389 delete_target_context (tc_t tc
)
391 clear_target_context (tc
);
393 if (targetm
.sched
.free_sched_context
)
394 targetm
.sched
.free_sched_context (tc
);
397 /* Make a copy of FROM in TO.
398 NB: May be this should be a hook. */
400 copy_target_context (tc_t to
, tc_t from
)
402 tc_t tmp
= create_target_context (false);
404 set_target_context (from
);
405 init_target_context (to
, false);
407 set_target_context (tmp
);
408 delete_target_context (tmp
);
411 /* Create a copy of TC. */
413 create_copy_of_target_context (tc_t tc
)
415 tc_t copy
= alloc_target_context ();
417 copy_target_context (copy
, tc
);
422 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
423 is the same as in init_target_context (). */
425 reset_target_context (tc_t tc
, bool clean_p
)
427 clear_target_context (tc
);
428 init_target_context (tc
, clean_p
);
431 /* Functions to work with dependence contexts.
432 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
433 context. It accumulates information about processed insns to decide if
434 current insn is dependent on the processed ones. */
436 /* Make a copy of FROM in TO. */
438 copy_deps_context (deps_t to
, deps_t from
)
440 init_deps (to
, false);
441 deps_join (to
, from
);
444 /* Allocate store for dep context. */
446 alloc_deps_context (void)
448 return XNEW (struct deps_desc
);
451 /* Allocate and initialize dep context. */
453 create_deps_context (void)
455 deps_t dc
= alloc_deps_context ();
457 init_deps (dc
, false);
461 /* Create a copy of FROM. */
463 create_copy_of_deps_context (deps_t from
)
465 deps_t to
= alloc_deps_context ();
467 copy_deps_context (to
, from
);
471 /* Clean up internal data of DC. */
473 clear_deps_context (deps_t dc
)
478 /* Clear and free DC. */
480 delete_deps_context (deps_t dc
)
482 clear_deps_context (dc
);
486 /* Clear and init DC. */
488 reset_deps_context (deps_t dc
)
490 clear_deps_context (dc
);
491 init_deps (dc
, false);
494 /* This structure describes the dependence analysis hooks for advancing
495 dependence context. */
496 static struct sched_deps_info_def advance_deps_context_sched_deps_info
=
500 NULL
, /* start_insn */
501 NULL
, /* finish_insn */
502 NULL
, /* start_lhs */
503 NULL
, /* finish_lhs */
504 NULL
, /* start_rhs */
505 NULL
, /* finish_rhs */
507 haifa_note_reg_clobber
,
509 NULL
, /* note_mem_dep */
515 /* Process INSN and add its impact on DC. */
517 advance_deps_context (deps_t dc
, insn_t insn
)
519 sched_deps_info
= &advance_deps_context_sched_deps_info
;
520 deps_analyze_insn (dc
, insn
);
524 /* Functions to work with DFA states. */
526 /* Allocate store for a DFA state. */
530 return xmalloc (dfa_state_size
);
533 /* Allocate and initialize DFA state. */
537 state_t state
= state_alloc ();
540 advance_state (state
);
544 /* Free DFA state. */
546 state_free (state_t state
)
551 /* Make a copy of FROM in TO. */
553 state_copy (state_t to
, state_t from
)
555 memcpy (to
, from
, dfa_state_size
);
558 /* Create a copy of FROM. */
560 state_create_copy (state_t from
)
562 state_t to
= state_alloc ();
564 state_copy (to
, from
);
569 /* Functions to work with fences. */
571 /* Clear the fence. */
573 fence_clear (fence_t f
)
575 state_t s
= FENCE_STATE (f
);
576 deps_t dc
= FENCE_DC (f
);
577 void *tc
= FENCE_TC (f
);
579 ilist_clear (&FENCE_BNDS (f
));
581 gcc_assert ((s
!= NULL
&& dc
!= NULL
&& tc
!= NULL
)
582 || (s
== NULL
&& dc
== NULL
&& tc
== NULL
));
587 delete_deps_context (dc
);
590 delete_target_context (tc
);
591 vec_free (FENCE_EXECUTING_INSNS (f
));
592 free (FENCE_READY_TICKS (f
));
593 FENCE_READY_TICKS (f
) = NULL
;
596 /* Init a list of fences with successors of OLD_FENCE. */
598 init_fences (insn_t old_fence
)
603 int ready_ticks_size
= get_max_uid () + 1;
605 FOR_EACH_SUCC_1 (succ
, si
, old_fence
,
606 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
612 gcc_assert (flag_sel_sched_pipelining_outer_loops
);
614 flist_add (&fences
, succ
,
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
618 NULL_RTX
/* last_scheduled_insn */,
619 NULL
, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size
), /* ready_ticks */
622 NULL_RTX
/* sched_next */,
623 1 /* cycle */, 0 /* cycle_issued_insns */,
624 issue_rate
, /* issue_more */
625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
629 /* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
631 propagated from fallthrough edge if it is available;
632 2) deps context and cycle is propagated from more probable edge;
633 3) all other fields are set to corresponding constant values.
635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
639 merge_fences (fence_t f
, insn_t insn
,
640 state_t state
, deps_t dc
, void *tc
,
641 rtx last_scheduled_insn
, vec
<rtx
, va_gc
> *executing_insns
,
642 int *ready_ticks
, int ready_ticks_size
,
643 rtx sched_next
, int cycle
, int issue_more
, bool after_stall_p
)
645 insn_t last_scheduled_insn_old
= FENCE_LAST_SCHEDULED_INSN (f
);
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f
))
648 && !sched_next
&& !FENCE_SCHED_NEXT (f
));
650 /* Check if we can decide which path fences came.
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn
== NULL
653 || last_scheduled_insn_old
== NULL
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn
== last_scheduled_insn_old
)
660 state_reset (FENCE_STATE (f
));
663 reset_deps_context (FENCE_DC (f
));
664 delete_deps_context (dc
);
666 reset_target_context (FENCE_TC (f
), true);
667 delete_target_context (tc
);
669 if (cycle
> FENCE_CYCLE (f
))
670 FENCE_CYCLE (f
) = cycle
;
672 FENCE_LAST_SCHEDULED_INSN (f
) = NULL
;
673 FENCE_ISSUE_MORE (f
) = issue_rate
;
674 vec_free (executing_insns
);
676 if (FENCE_EXECUTING_INSNS (f
))
677 FENCE_EXECUTING_INSNS (f
)->block_remove (0,
678 FENCE_EXECUTING_INSNS (f
)->length ());
679 if (FENCE_READY_TICKS (f
))
680 memset (FENCE_READY_TICKS (f
), 0, FENCE_READY_TICKS_SIZE (f
));
684 edge edge_old
= NULL
, edge_new
= NULL
;
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn
)->prev_bb
);
691 candidate
= find_fallthru_edge_from (BLOCK_FOR_INSN (insn
)->prev_bb
);
694 || (candidate
->src
!= BLOCK_FOR_INSN (last_scheduled_insn
)
695 && candidate
->src
!= BLOCK_FOR_INSN (last_scheduled_insn_old
)))
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f
));
701 reset_target_context (FENCE_TC (f
), true);
702 delete_target_context (tc
);
704 FENCE_LAST_SCHEDULED_INSN (f
) = NULL
;
705 FENCE_ISSUE_MORE (f
) = issue_rate
;
708 if (candidate
->src
== BLOCK_FOR_INSN (last_scheduled_insn
))
710 /* Would be weird if same insn is successor of several fallthrough
712 gcc_assert (BLOCK_FOR_INSN (insn
)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old
));
715 state_free (FENCE_STATE (f
));
716 FENCE_STATE (f
) = state
;
718 delete_target_context (FENCE_TC (f
));
721 FENCE_LAST_SCHEDULED_INSN (f
) = last_scheduled_insn
;
722 FENCE_ISSUE_MORE (f
) = issue_more
;
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
728 delete_target_context (tc
);
730 gcc_assert (BLOCK_FOR_INSN (insn
)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn
));
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ
, si
, last_scheduled_insn_old
,
736 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old
);
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ
, si
, last_scheduled_insn
,
747 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new
);
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old
== NULL
|| edge_new
== NULL
)
760 reset_deps_context (FENCE_DC (f
));
761 delete_deps_context (dc
);
762 vec_free (executing_insns
);
765 FENCE_CYCLE (f
) = MAX (FENCE_CYCLE (f
), cycle
);
766 if (FENCE_EXECUTING_INSNS (f
))
767 FENCE_EXECUTING_INSNS (f
)->block_remove (0,
768 FENCE_EXECUTING_INSNS (f
)->length ());
769 if (FENCE_READY_TICKS (f
))
770 memset (FENCE_READY_TICKS (f
), 0, FENCE_READY_TICKS_SIZE (f
));
773 if (edge_new
->probability
> edge_old
->probability
)
775 delete_deps_context (FENCE_DC (f
));
777 vec_free (FENCE_EXECUTING_INSNS (f
));
778 FENCE_EXECUTING_INSNS (f
) = executing_insns
;
779 free (FENCE_READY_TICKS (f
));
780 FENCE_READY_TICKS (f
) = ready_ticks
;
781 FENCE_READY_TICKS_SIZE (f
) = ready_ticks_size
;
782 FENCE_CYCLE (f
) = cycle
;
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc
);
788 vec_free (executing_insns
);
793 /* Fill remaining invariant fields. */
795 FENCE_AFTER_STALL_P (f
) = 1;
797 FENCE_ISSUED_INSNS (f
) = 0;
798 FENCE_STARTS_CYCLE_P (f
) = 1;
799 FENCE_SCHED_NEXT (f
) = NULL
;
802 /* Add a new fence to NEW_FENCES list, initializing it from all
805 add_to_fences (flist_tail_t new_fences
, insn_t insn
,
806 state_t state
, deps_t dc
, void *tc
, rtx last_scheduled_insn
,
807 vec
<rtx
, va_gc
> *executing_insns
, int *ready_ticks
,
808 int ready_ticks_size
, rtx sched_next
, int cycle
,
809 int cycle_issued_insns
, int issue_rate
,
810 bool starts_cycle_p
, bool after_stall_p
)
812 fence_t f
= flist_lookup (FLIST_TAIL_HEAD (new_fences
), insn
);
816 flist_add (FLIST_TAIL_TAILP (new_fences
), insn
, state
, dc
, tc
,
817 last_scheduled_insn
, executing_insns
, ready_ticks
,
818 ready_ticks_size
, sched_next
, cycle
, cycle_issued_insns
,
819 issue_rate
, starts_cycle_p
, after_stall_p
);
821 FLIST_TAIL_TAILP (new_fences
)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences
));
826 merge_fences (f
, insn
, state
, dc
, tc
, last_scheduled_insn
,
827 executing_insns
, ready_ticks
, ready_ticks_size
,
828 sched_next
, cycle
, issue_rate
, after_stall_p
);
832 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
834 move_fence_to_fences (flist_t old_fences
, flist_tail_t new_fences
)
837 flist_t
*tailp
= FLIST_TAIL_TAILP (new_fences
);
839 old
= FLIST_FENCE (old_fences
);
840 f
= flist_lookup (FLIST_TAIL_HEAD (new_fences
),
841 FENCE_INSN (FLIST_FENCE (old_fences
)));
844 merge_fences (f
, old
->insn
, old
->state
, old
->dc
, old
->tc
,
845 old
->last_scheduled_insn
, old
->executing_insns
,
846 old
->ready_ticks
, old
->ready_ticks_size
,
847 old
->sched_next
, old
->cycle
, old
->issue_more
,
853 FLIST_TAIL_TAILP (new_fences
) = &FLIST_NEXT (*tailp
);
854 *FLIST_FENCE (*tailp
) = *old
;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp
));
857 FENCE_INSN (old
) = NULL
;
860 /* Add a new fence to NEW_FENCES list and initialize most of its data
863 add_clean_fence_to_fences (flist_tail_t new_fences
, insn_t succ
, fence_t fence
)
865 int ready_ticks_size
= get_max_uid () + 1;
867 add_to_fences (new_fences
,
868 succ
, state_create (), create_deps_context (),
869 create_target_context (true),
871 XCNEWVEC (int, ready_ticks_size
), ready_ticks_size
,
872 NULL_RTX
, FENCE_CYCLE (fence
) + 1,
873 0, issue_rate
, 1, FENCE_AFTER_STALL_P (fence
));
876 /* Add a new fence to NEW_FENCES list and initialize all of its data
877 from FENCE and SUCC. */
879 add_dirty_fence_to_fences (flist_tail_t new_fences
, insn_t succ
, fence_t fence
)
881 int * new_ready_ticks
882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence
));
884 memcpy (new_ready_ticks
, FENCE_READY_TICKS (fence
),
885 FENCE_READY_TICKS_SIZE (fence
) * sizeof (int));
886 add_to_fences (new_fences
,
887 succ
, state_create_copy (FENCE_STATE (fence
)),
888 create_copy_of_deps_context (FENCE_DC (fence
)),
889 create_copy_of_target_context (FENCE_TC (fence
)),
890 FENCE_LAST_SCHEDULED_INSN (fence
),
891 vec_safe_copy (FENCE_EXECUTING_INSNS (fence
)),
893 FENCE_READY_TICKS_SIZE (fence
),
894 FENCE_SCHED_NEXT (fence
),
896 FENCE_ISSUED_INSNS (fence
),
897 FENCE_ISSUE_MORE (fence
),
898 FENCE_STARTS_CYCLE_P (fence
),
899 FENCE_AFTER_STALL_P (fence
));
903 /* Functions to work with regset and nop pools. */
905 /* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
908 get_regset_from_pool (void)
912 if (regset_pool
.n
!= 0)
913 rs
= regset_pool
.v
[--regset_pool
.n
];
915 /* We need to create the regset. */
917 rs
= ALLOC_REG_SET (®_obstack
);
919 if (regset_pool
.nn
== regset_pool
.ss
)
920 regset_pool
.vv
= XRESIZEVEC (regset
, regset_pool
.vv
,
921 (regset_pool
.ss
= 2 * regset_pool
.ss
+ 1));
922 regset_pool
.vv
[regset_pool
.nn
++] = rs
;
930 /* Same as above, but returns the empty regset. */
932 get_clear_regset_from_pool (void)
934 regset rs
= get_regset_from_pool ();
940 /* Return regset RS to the pool for future use. */
942 return_regset_to_pool (regset rs
)
947 if (regset_pool
.n
== regset_pool
.s
)
948 regset_pool
.v
= XRESIZEVEC (regset
, regset_pool
.v
,
949 (regset_pool
.s
= 2 * regset_pool
.s
+ 1));
950 regset_pool
.v
[regset_pool
.n
++] = rs
;
953 #ifdef ENABLE_CHECKING
954 /* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
957 cmp_v_in_regset_pool (const void *x
, const void *xx
)
959 uintptr_t r1
= (uintptr_t) *((const regset
*) x
);
960 uintptr_t r2
= (uintptr_t) *((const regset
*) xx
);
969 /* Free the regset pool possibly checking for memory leaks. */
971 free_regset_pool (void)
973 #ifdef ENABLE_CHECKING
975 regset
*v
= regset_pool
.v
;
977 int n
= regset_pool
.n
;
979 regset
*vv
= regset_pool
.vv
;
981 int nn
= regset_pool
.nn
;
985 gcc_assert (n
<= nn
);
987 /* Sort both vectors so it will be possible to compare them. */
988 qsort (v
, n
, sizeof (*v
), cmp_v_in_regset_pool
);
989 qsort (vv
, nn
, sizeof (*vv
), cmp_v_in_regset_pool
);
996 /* VV[II] was lost. */
1002 gcc_assert (diff
== regset_pool
.diff
);
1006 /* If not true - we have a memory leak. */
1007 gcc_assert (regset_pool
.diff
== 0);
1009 while (regset_pool
.n
)
1012 FREE_REG_SET (regset_pool
.v
[regset_pool
.n
]);
1015 free (regset_pool
.v
);
1016 regset_pool
.v
= NULL
;
1019 free (regset_pool
.vv
);
1020 regset_pool
.vv
= NULL
;
1024 regset_pool
.diff
= 0;
1028 /* Functions to work with nop pools. NOP insns are used as temporary
1029 placeholders of the insns being scheduled to allow correct update of
1030 the data sets. When update is finished, NOPs are deleted. */
1032 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1033 nops sel-sched generates. */
1034 static vinsn_t nop_vinsn
= NULL
;
1036 /* Emit a nop before INSN, taking it from pool. */
1038 get_nop_from_pool (insn_t insn
)
1041 bool old_p
= nop_pool
.n
!= 0;
1045 nop
= nop_pool
.v
[--nop_pool
.n
];
1049 nop
= emit_insn_before (nop
, insn
);
1052 flags
= INSN_INIT_TODO_SSID
;
1054 flags
= INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SSID
;
1056 set_insn_init (INSN_EXPR (insn
), nop_vinsn
, INSN_SEQNO (insn
));
1057 sel_init_new_insn (nop
, flags
);
1062 /* Remove NOP from the instruction stream and return it to the pool. */
1064 return_nop_to_pool (insn_t nop
, bool full_tidying
)
1066 gcc_assert (INSN_IN_STREAM_P (nop
));
1067 sel_remove_insn (nop
, false, full_tidying
);
1069 if (nop_pool
.n
== nop_pool
.s
)
1070 nop_pool
.v
= XRESIZEVEC (rtx
, nop_pool
.v
,
1071 (nop_pool
.s
= 2 * nop_pool
.s
+ 1));
1072 nop_pool
.v
[nop_pool
.n
++] = nop
;
1075 /* Free the nop pool. */
1077 free_nop_pool (void)
1086 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1087 The callback is given two rtxes XX and YY and writes the new rtxes
1088 to NX and NY in case some needs to be skipped. */
1090 skip_unspecs_callback (const_rtx
*xx
, const_rtx
*yy
, rtx
*nx
, rtx
* ny
)
1095 if (GET_CODE (x
) == UNSPEC
1096 && (targetm
.sched
.skip_rtx_p
== NULL
1097 || targetm
.sched
.skip_rtx_p (x
)))
1099 *nx
= XVECEXP (x
, 0, 0);
1100 *ny
= CONST_CAST_RTX (y
);
1104 if (GET_CODE (y
) == UNSPEC
1105 && (targetm
.sched
.skip_rtx_p
== NULL
1106 || targetm
.sched
.skip_rtx_p (y
)))
1108 *nx
= CONST_CAST_RTX (x
);
1109 *ny
= XVECEXP (y
, 0, 0);
1116 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1117 to support ia64 speculation. When changes are needed, new rtx X and new mode
1118 NMODE are written, and the callback returns true. */
1120 hash_with_unspec_callback (const_rtx x
, enum machine_mode mode ATTRIBUTE_UNUSED
,
1121 rtx
*nx
, enum machine_mode
* nmode
)
1123 if (GET_CODE (x
) == UNSPEC
1124 && targetm
.sched
.skip_rtx_p
1125 && targetm
.sched
.skip_rtx_p (x
))
1127 *nx
= XVECEXP (x
, 0 ,0);
1135 /* Returns LHS and RHS are ok to be scheduled separately. */
1137 lhs_and_rhs_separable_p (rtx lhs
, rtx rhs
)
1139 if (lhs
== NULL
|| rhs
== NULL
)
1142 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1143 to use reg, if const can be used. Moreover, scheduling const as rhs may
1144 lead to mode mismatch cause consts don't have modes but they could be
1145 merged from branches where the same const used in different modes. */
1146 if (CONSTANT_P (rhs
))
1149 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1150 if (COMPARISON_P (rhs
))
1153 /* Do not allow single REG to be an rhs. */
1157 /* See comment at find_used_regs_1 (*1) for explanation of this
1159 /* FIXME: remove this later. */
1163 /* This will filter all tricky things like ZERO_EXTRACT etc.
1164 For now we don't handle it. */
1165 if (!REG_P (lhs
) && !MEM_P (lhs
))
1171 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1172 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1173 used e.g. for insns from recovery blocks. */
1175 vinsn_init (vinsn_t vi
, insn_t insn
, bool force_unique_p
)
1177 hash_rtx_callback_function hrcf
;
1180 VINSN_INSN_RTX (vi
) = insn
;
1181 VINSN_COUNT (vi
) = 0;
1184 if (INSN_NOP_P (insn
))
1187 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn
)) != NULL
)
1188 init_id_from_df (VINSN_ID (vi
), insn
, force_unique_p
);
1190 deps_init_id (VINSN_ID (vi
), insn
, force_unique_p
);
1192 /* Hash vinsn depending on whether it is separable or not. */
1193 hrcf
= targetm
.sched
.skip_rtx_p
? hash_with_unspec_callback
: NULL
;
1194 if (VINSN_SEPARABLE_P (vi
))
1196 rtx rhs
= VINSN_RHS (vi
);
1198 VINSN_HASH (vi
) = hash_rtx_cb (rhs
, GET_MODE (rhs
),
1199 NULL
, NULL
, false, hrcf
);
1200 VINSN_HASH_RTX (vi
) = hash_rtx_cb (VINSN_PATTERN (vi
),
1201 VOIDmode
, NULL
, NULL
,
1206 VINSN_HASH (vi
) = hash_rtx_cb (VINSN_PATTERN (vi
), VOIDmode
,
1207 NULL
, NULL
, false, hrcf
);
1208 VINSN_HASH_RTX (vi
) = VINSN_HASH (vi
);
1211 insn_class
= haifa_classify_insn (insn
);
1213 && (!targetm
.sched
.get_insn_spec_ds
1214 || ((targetm
.sched
.get_insn_spec_ds (insn
) & BEGIN_CONTROL
)
1216 VINSN_MAY_TRAP_P (vi
) = true;
1218 VINSN_MAY_TRAP_P (vi
) = false;
1221 /* Indicate that VI has become the part of an rtx object. */
1223 vinsn_attach (vinsn_t vi
)
1225 /* Assert that VI is not pending for deletion. */
1226 gcc_assert (VINSN_INSN_RTX (vi
));
1231 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1234 vinsn_create (insn_t insn
, bool force_unique_p
)
1236 vinsn_t vi
= XCNEW (struct vinsn_def
);
1238 vinsn_init (vi
, insn
, force_unique_p
);
1242 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1245 vinsn_copy (vinsn_t vi
, bool reattach_p
)
1248 bool unique
= VINSN_UNIQUE_P (vi
);
1251 copy
= create_copy_of_insn_rtx (VINSN_INSN_RTX (vi
));
1252 new_vi
= create_vinsn_from_insn_rtx (copy
, unique
);
1256 vinsn_attach (new_vi
);
1262 /* Delete the VI vinsn and free its data. */
1264 vinsn_delete (vinsn_t vi
)
1266 gcc_assert (VINSN_COUNT (vi
) == 0);
1268 if (!INSN_NOP_P (VINSN_INSN_RTX (vi
)))
1270 return_regset_to_pool (VINSN_REG_SETS (vi
));
1271 return_regset_to_pool (VINSN_REG_USES (vi
));
1272 return_regset_to_pool (VINSN_REG_CLOBBERS (vi
));
1278 /* Indicate that VI is no longer a part of some rtx object.
1279 Remove VI if it is no longer needed. */
1281 vinsn_detach (vinsn_t vi
)
1283 gcc_assert (VINSN_COUNT (vi
) > 0);
1285 if (--VINSN_COUNT (vi
) == 0)
1289 /* Returns TRUE if VI is a branch. */
1291 vinsn_cond_branch_p (vinsn_t vi
)
1295 if (!VINSN_UNIQUE_P (vi
))
1298 insn
= VINSN_INSN_RTX (vi
);
1299 if (BB_END (BLOCK_FOR_INSN (insn
)) != insn
)
1302 return control_flow_insn_p (insn
);
1305 /* Return latency of INSN. */
1307 sel_insn_rtx_cost (rtx insn
)
1311 /* A USE insn, or something else we don't need to
1312 understand. We can't pass these directly to
1313 result_ready_cost or insn_default_latency because it will
1314 trigger a fatal error for unrecognizable insns. */
1315 if (recog_memoized (insn
) < 0)
1319 cost
= insn_default_latency (insn
);
1328 /* Return the cost of the VI.
1329 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1331 sel_vinsn_cost (vinsn_t vi
)
1333 int cost
= vi
->cost
;
1337 cost
= sel_insn_rtx_cost (VINSN_INSN_RTX (vi
));
1345 /* Functions for insn emitting. */
1347 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1350 sel_gen_insn_from_rtx_after (rtx pattern
, expr_t expr
, int seqno
, insn_t after
)
1354 gcc_assert (EXPR_TARGET_AVAILABLE (expr
) == true);
1356 new_insn
= emit_insn_after (pattern
, after
);
1357 set_insn_init (expr
, NULL
, seqno
);
1358 sel_init_new_insn (new_insn
, INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SSID
);
1363 /* Force newly generated vinsns to be unique. */
1364 static bool init_insn_force_unique_p
= false;
1366 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1367 initialize its data from EXPR and SEQNO. */
1369 sel_gen_recovery_insn_from_rtx_after (rtx pattern
, expr_t expr
, int seqno
,
1374 gcc_assert (!init_insn_force_unique_p
);
1376 init_insn_force_unique_p
= true;
1377 insn
= sel_gen_insn_from_rtx_after (pattern
, expr
, seqno
, after
);
1378 CANT_MOVE (insn
) = 1;
1379 init_insn_force_unique_p
= false;
1384 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1385 take it as a new vinsn instead of EXPR's vinsn.
1386 We simplify insns later, after scheduling region in
1387 simplify_changed_insns. */
1389 sel_gen_insn_from_expr_after (expr_t expr
, vinsn_t vinsn
, int seqno
,
1396 emit_expr
= set_insn_init (expr
, vinsn
? vinsn
: EXPR_VINSN (expr
),
1398 insn
= EXPR_INSN_RTX (emit_expr
);
1399 add_insn_after (insn
, after
, BLOCK_FOR_INSN (insn
));
1401 flags
= INSN_INIT_TODO_SSID
;
1402 if (INSN_LUID (insn
) == 0)
1403 flags
|= INSN_INIT_TODO_LUID
;
1404 sel_init_new_insn (insn
, flags
);
1409 /* Move insn from EXPR after AFTER. */
1411 sel_move_insn (expr_t expr
, int seqno
, insn_t after
)
1413 insn_t insn
= EXPR_INSN_RTX (expr
);
1414 basic_block bb
= BLOCK_FOR_INSN (after
);
1415 insn_t next
= NEXT_INSN (after
);
1417 /* Assert that in move_op we disconnected this insn properly. */
1418 gcc_assert (EXPR_VINSN (INSN_EXPR (insn
)) != NULL
);
1419 PREV_INSN (insn
) = after
;
1420 NEXT_INSN (insn
) = next
;
1422 NEXT_INSN (after
) = insn
;
1423 PREV_INSN (next
) = insn
;
1425 /* Update links from insn to bb and vice versa. */
1426 df_insn_change_bb (insn
, bb
);
1427 if (BB_END (bb
) == after
)
1430 prepare_insn_expr (insn
, seqno
);
1435 /* Functions to work with right-hand sides. */
1437 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1438 VECT and return true when found. Use NEW_VINSN for comparison only when
1439 COMPARE_VINSNS is true. Write to INDP the index on which
1440 the search has stopped, such that inserting the new element at INDP will
1441 retain VECT's sort order. */
1443 find_in_history_vect_1 (vec
<expr_history_def
> vect
,
1444 unsigned uid
, vinsn_t new_vinsn
,
1445 bool compare_vinsns
, int *indp
)
1447 expr_history_def
*arr
;
1448 int i
, j
, len
= vect
.length ();
1456 arr
= vect
.address ();
1461 unsigned auid
= arr
[i
].uid
;
1462 vinsn_t avinsn
= arr
[i
].new_expr_vinsn
;
1465 /* When undoing transformation on a bookkeeping copy, the new vinsn
1466 may not be exactly equal to the one that is saved in the vector.
1467 This is because the insn whose copy we're checking was possibly
1468 substituted itself. */
1469 && (! compare_vinsns
1470 || vinsn_equal_p (avinsn
, new_vinsn
)))
1475 else if (auid
> uid
)
1484 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1485 the position found or -1, if no such value is in vector.
1486 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1488 find_in_history_vect (vec
<expr_history_def
> vect
, rtx insn
,
1489 vinsn_t new_vinsn
, bool originators_p
)
1493 if (find_in_history_vect_1 (vect
, INSN_UID (insn
), new_vinsn
,
1497 if (INSN_ORIGINATORS (insn
) && originators_p
)
1502 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn
), 0, uid
, bi
)
1503 if (find_in_history_vect_1 (vect
, uid
, new_vinsn
, false, &ind
))
1510 /* Insert new element in a sorted history vector pointed to by PVECT,
1511 if it is not there already. The element is searched using
1512 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1513 the history of a transformation. */
1515 insert_in_history_vect (vec
<expr_history_def
> *pvect
,
1516 unsigned uid
, enum local_trans_type type
,
1517 vinsn_t old_expr_vinsn
, vinsn_t new_expr_vinsn
,
1520 vec
<expr_history_def
> vect
= *pvect
;
1521 expr_history_def temp
;
1525 res
= find_in_history_vect_1 (vect
, uid
, new_expr_vinsn
, true, &ind
);
1529 expr_history_def
*phist
= &vect
[ind
];
1531 /* It is possible that speculation types of expressions that were
1532 propagated through different paths will be different here. In this
1533 case, merge the status to get the correct check later. */
1534 if (phist
->spec_ds
!= spec_ds
)
1535 phist
->spec_ds
= ds_max_merge (phist
->spec_ds
, spec_ds
);
1540 temp
.old_expr_vinsn
= old_expr_vinsn
;
1541 temp
.new_expr_vinsn
= new_expr_vinsn
;
1542 temp
.spec_ds
= spec_ds
;
1545 vinsn_attach (old_expr_vinsn
);
1546 vinsn_attach (new_expr_vinsn
);
1547 vect
.safe_insert (ind
, temp
);
1551 /* Free history vector PVECT. */
1553 free_history_vect (vec
<expr_history_def
> &pvect
)
1556 expr_history_def
*phist
;
1558 if (! pvect
.exists ())
1561 for (i
= 0; pvect
.iterate (i
, &phist
); i
++)
1563 vinsn_detach (phist
->old_expr_vinsn
);
1564 vinsn_detach (phist
->new_expr_vinsn
);
1570 /* Merge vector FROM to PVECT. */
1572 merge_history_vect (vec
<expr_history_def
> *pvect
,
1573 vec
<expr_history_def
> from
)
1575 expr_history_def
*phist
;
1578 /* We keep this vector sorted. */
1579 for (i
= 0; from
.iterate (i
, &phist
); i
++)
1580 insert_in_history_vect (pvect
, phist
->uid
, phist
->type
,
1581 phist
->old_expr_vinsn
, phist
->new_expr_vinsn
,
1585 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1587 vinsn_equal_p (vinsn_t x
, vinsn_t y
)
1589 rtx_equal_p_callback_function repcf
;
1594 if (VINSN_TYPE (x
) != VINSN_TYPE (y
))
1597 if (VINSN_HASH (x
) != VINSN_HASH (y
))
1600 repcf
= targetm
.sched
.skip_rtx_p
? skip_unspecs_callback
: NULL
;
1601 if (VINSN_SEPARABLE_P (x
))
1603 /* Compare RHSes of VINSNs. */
1604 gcc_assert (VINSN_RHS (x
));
1605 gcc_assert (VINSN_RHS (y
));
1607 return rtx_equal_p_cb (VINSN_RHS (x
), VINSN_RHS (y
), repcf
);
1610 return rtx_equal_p_cb (VINSN_PATTERN (x
), VINSN_PATTERN (y
), repcf
);
1614 /* Functions for working with expressions. */
1616 /* Initialize EXPR. */
1618 init_expr (expr_t expr
, vinsn_t vi
, int spec
, int use
, int priority
,
1619 int sched_times
, int orig_bb_index
, ds_t spec_done_ds
,
1620 ds_t spec_to_check_ds
, int orig_sched_cycle
,
1621 vec
<expr_history_def
> history
,
1622 signed char target_available
,
1623 bool was_substituted
, bool was_renamed
, bool needs_spec_check_p
,
1628 EXPR_VINSN (expr
) = vi
;
1629 EXPR_SPEC (expr
) = spec
;
1630 EXPR_USEFULNESS (expr
) = use
;
1631 EXPR_PRIORITY (expr
) = priority
;
1632 EXPR_PRIORITY_ADJ (expr
) = 0;
1633 EXPR_SCHED_TIMES (expr
) = sched_times
;
1634 EXPR_ORIG_BB_INDEX (expr
) = orig_bb_index
;
1635 EXPR_ORIG_SCHED_CYCLE (expr
) = orig_sched_cycle
;
1636 EXPR_SPEC_DONE_DS (expr
) = spec_done_ds
;
1637 EXPR_SPEC_TO_CHECK_DS (expr
) = spec_to_check_ds
;
1639 if (history
.exists ())
1640 EXPR_HISTORY_OF_CHANGES (expr
) = history
;
1642 EXPR_HISTORY_OF_CHANGES (expr
).create (0);
1644 EXPR_TARGET_AVAILABLE (expr
) = target_available
;
1645 EXPR_WAS_SUBSTITUTED (expr
) = was_substituted
;
1646 EXPR_WAS_RENAMED (expr
) = was_renamed
;
1647 EXPR_NEEDS_SPEC_CHECK_P (expr
) = needs_spec_check_p
;
1648 EXPR_CANT_MOVE (expr
) = cant_move
;
1651 /* Make a copy of the expr FROM into the expr TO. */
1653 copy_expr (expr_t to
, expr_t from
)
1655 vec
<expr_history_def
> temp
= vNULL
;
1657 if (EXPR_HISTORY_OF_CHANGES (from
).exists ())
1660 expr_history_def
*phist
;
1662 temp
= EXPR_HISTORY_OF_CHANGES (from
).copy ();
1664 temp
.iterate (i
, &phist
);
1667 vinsn_attach (phist
->old_expr_vinsn
);
1668 vinsn_attach (phist
->new_expr_vinsn
);
1672 init_expr (to
, EXPR_VINSN (from
), EXPR_SPEC (from
),
1673 EXPR_USEFULNESS (from
), EXPR_PRIORITY (from
),
1674 EXPR_SCHED_TIMES (from
), EXPR_ORIG_BB_INDEX (from
),
1675 EXPR_SPEC_DONE_DS (from
), EXPR_SPEC_TO_CHECK_DS (from
),
1676 EXPR_ORIG_SCHED_CYCLE (from
), temp
,
1677 EXPR_TARGET_AVAILABLE (from
), EXPR_WAS_SUBSTITUTED (from
),
1678 EXPR_WAS_RENAMED (from
), EXPR_NEEDS_SPEC_CHECK_P (from
),
1679 EXPR_CANT_MOVE (from
));
1682 /* Same, but the final expr will not ever be in av sets, so don't copy
1683 "uninteresting" data such as bitmap cache. */
1685 copy_expr_onside (expr_t to
, expr_t from
)
1687 init_expr (to
, EXPR_VINSN (from
), EXPR_SPEC (from
), EXPR_USEFULNESS (from
),
1688 EXPR_PRIORITY (from
), EXPR_SCHED_TIMES (from
), 0,
1689 EXPR_SPEC_DONE_DS (from
), EXPR_SPEC_TO_CHECK_DS (from
), 0,
1691 EXPR_TARGET_AVAILABLE (from
), EXPR_WAS_SUBSTITUTED (from
),
1692 EXPR_WAS_RENAMED (from
), EXPR_NEEDS_SPEC_CHECK_P (from
),
1693 EXPR_CANT_MOVE (from
));
1696 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1697 initializing new insns. */
1699 prepare_insn_expr (insn_t insn
, int seqno
)
1701 expr_t expr
= INSN_EXPR (insn
);
1704 INSN_SEQNO (insn
) = seqno
;
1705 EXPR_ORIG_BB_INDEX (expr
) = BLOCK_NUM (insn
);
1706 EXPR_SPEC (expr
) = 0;
1707 EXPR_ORIG_SCHED_CYCLE (expr
) = 0;
1708 EXPR_WAS_SUBSTITUTED (expr
) = 0;
1709 EXPR_WAS_RENAMED (expr
) = 0;
1710 EXPR_TARGET_AVAILABLE (expr
) = 1;
1711 INSN_LIVE_VALID_P (insn
) = false;
1713 /* ??? If this expression is speculative, make its dependence
1714 as weak as possible. We can filter this expression later
1715 in process_spec_exprs, because we do not distinguish
1716 between the status we got during compute_av_set and the
1717 existing status. To be fixed. */
1718 ds
= EXPR_SPEC_DONE_DS (expr
);
1720 EXPR_SPEC_DONE_DS (expr
) = ds_get_max_dep_weak (ds
);
1722 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr
));
1725 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1726 is non-null when expressions are merged from different successors at
1729 update_target_availability (expr_t to
, expr_t from
, insn_t split_point
)
1731 if (EXPR_TARGET_AVAILABLE (to
) < 0
1732 || EXPR_TARGET_AVAILABLE (from
) < 0)
1733 EXPR_TARGET_AVAILABLE (to
) = -1;
1736 /* We try to detect the case when one of the expressions
1737 can only be reached through another one. In this case,
1738 we can do better. */
1739 if (split_point
== NULL
)
1743 toind
= EXPR_ORIG_BB_INDEX (to
);
1744 fromind
= EXPR_ORIG_BB_INDEX (from
);
1746 if (toind
&& toind
== fromind
)
1747 /* Do nothing -- everything is done in
1748 merge_with_other_exprs. */
1751 EXPR_TARGET_AVAILABLE (to
) = -1;
1753 else if (EXPR_TARGET_AVAILABLE (from
) == 0
1755 && REG_P (EXPR_LHS (from
))
1756 && REGNO (EXPR_LHS (to
)) != REGNO (EXPR_LHS (from
)))
1757 EXPR_TARGET_AVAILABLE (to
) = -1;
1759 EXPR_TARGET_AVAILABLE (to
) &= EXPR_TARGET_AVAILABLE (from
);
1763 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1764 is non-null when expressions are merged from different successors at
1767 update_speculative_bits (expr_t to
, expr_t from
, insn_t split_point
)
1769 ds_t old_to_ds
, old_from_ds
;
1771 old_to_ds
= EXPR_SPEC_DONE_DS (to
);
1772 old_from_ds
= EXPR_SPEC_DONE_DS (from
);
1774 EXPR_SPEC_DONE_DS (to
) = ds_max_merge (old_to_ds
, old_from_ds
);
1775 EXPR_SPEC_TO_CHECK_DS (to
) |= EXPR_SPEC_TO_CHECK_DS (from
);
1776 EXPR_NEEDS_SPEC_CHECK_P (to
) |= EXPR_NEEDS_SPEC_CHECK_P (from
);
1778 /* When merging e.g. control & data speculative exprs, or a control
1779 speculative with a control&data speculative one, we really have
1780 to change vinsn too. Also, when speculative status is changed,
1781 we also need to record this as a transformation in expr's history. */
1782 if ((old_to_ds
& SPECULATIVE
) || (old_from_ds
& SPECULATIVE
))
1784 old_to_ds
= ds_get_speculation_types (old_to_ds
);
1785 old_from_ds
= ds_get_speculation_types (old_from_ds
);
1787 if (old_to_ds
!= old_from_ds
)
1791 /* When both expressions are speculative, we need to change
1793 if ((old_to_ds
& SPECULATIVE
) && (old_from_ds
& SPECULATIVE
))
1797 res
= speculate_expr (to
, EXPR_SPEC_DONE_DS (to
));
1798 gcc_assert (res
>= 0);
1801 if (split_point
!= NULL
)
1803 /* Record the change with proper status. */
1804 record_ds
= EXPR_SPEC_DONE_DS (to
) & SPECULATIVE
;
1805 record_ds
&= ~(old_to_ds
& SPECULATIVE
);
1806 record_ds
&= ~(old_from_ds
& SPECULATIVE
);
1808 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to
),
1809 INSN_UID (split_point
), TRANS_SPECULATION
,
1810 EXPR_VINSN (from
), EXPR_VINSN (to
),
1818 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1819 this is done along different paths. */
1821 merge_expr_data (expr_t to
, expr_t from
, insn_t split_point
)
1823 /* Choose the maximum of the specs of merged exprs. This is required
1824 for correctness of bookkeeping. */
1825 if (EXPR_SPEC (to
) < EXPR_SPEC (from
))
1826 EXPR_SPEC (to
) = EXPR_SPEC (from
);
1829 EXPR_USEFULNESS (to
) += EXPR_USEFULNESS (from
);
1831 EXPR_USEFULNESS (to
) = MAX (EXPR_USEFULNESS (to
),
1832 EXPR_USEFULNESS (from
));
1834 if (EXPR_PRIORITY (to
) < EXPR_PRIORITY (from
))
1835 EXPR_PRIORITY (to
) = EXPR_PRIORITY (from
);
1837 if (EXPR_SCHED_TIMES (to
) > EXPR_SCHED_TIMES (from
))
1838 EXPR_SCHED_TIMES (to
) = EXPR_SCHED_TIMES (from
);
1840 if (EXPR_ORIG_BB_INDEX (to
) != EXPR_ORIG_BB_INDEX (from
))
1841 EXPR_ORIG_BB_INDEX (to
) = 0;
1843 EXPR_ORIG_SCHED_CYCLE (to
) = MIN (EXPR_ORIG_SCHED_CYCLE (to
),
1844 EXPR_ORIG_SCHED_CYCLE (from
));
1846 EXPR_WAS_SUBSTITUTED (to
) |= EXPR_WAS_SUBSTITUTED (from
);
1847 EXPR_WAS_RENAMED (to
) |= EXPR_WAS_RENAMED (from
);
1848 EXPR_CANT_MOVE (to
) |= EXPR_CANT_MOVE (from
);
1850 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to
),
1851 EXPR_HISTORY_OF_CHANGES (from
));
1852 update_target_availability (to
, from
, split_point
);
1853 update_speculative_bits (to
, from
, split_point
);
1856 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1857 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1858 are merged from different successors at a split point. */
1860 merge_expr (expr_t to
, expr_t from
, insn_t split_point
)
1862 vinsn_t to_vi
= EXPR_VINSN (to
);
1863 vinsn_t from_vi
= EXPR_VINSN (from
);
1865 gcc_assert (vinsn_equal_p (to_vi
, from_vi
));
1867 /* Make sure that speculative pattern is propagated into exprs that
1868 have non-speculative one. This will provide us with consistent
1869 speculative bits and speculative patterns inside expr. */
1870 if (EXPR_SPEC_DONE_DS (to
) == 0
1871 && EXPR_SPEC_DONE_DS (from
) != 0)
1872 change_vinsn_in_expr (to
, EXPR_VINSN (from
));
1874 merge_expr_data (to
, from
, split_point
);
1875 gcc_assert (EXPR_USEFULNESS (to
) <= REG_BR_PROB_BASE
);
1878 /* Clear the information of this EXPR. */
1880 clear_expr (expr_t expr
)
1883 vinsn_detach (EXPR_VINSN (expr
));
1884 EXPR_VINSN (expr
) = NULL
;
1886 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr
));
1889 /* For a given LV_SET, mark EXPR having unavailable target register. */
1891 set_unavailable_target_for_expr (expr_t expr
, regset lv_set
)
1893 if (EXPR_SEPARABLE_P (expr
))
1895 if (REG_P (EXPR_LHS (expr
))
1896 && register_unavailable_p (lv_set
, EXPR_LHS (expr
)))
1898 /* If it's an insn like r1 = use (r1, ...), and it exists in
1899 different forms in each of the av_sets being merged, we can't say
1900 whether original destination register is available or not.
1901 However, this still works if destination register is not used
1902 in the original expression: if the branch at which LV_SET we're
1903 looking here is not actually 'other branch' in sense that same
1904 expression is available through it (but it can't be determined
1905 at computation stage because of transformations on one of the
1906 branches), it still won't affect the availability.
1907 Liveness of a register somewhere on a code motion path means
1908 it's either read somewhere on a codemotion path, live on
1909 'other' branch, live at the point immediately following
1910 the original operation, or is read by the original operation.
1911 The latter case is filtered out in the condition below.
1912 It still doesn't cover the case when register is defined and used
1913 somewhere within the code motion path, and in this case we could
1914 miss a unifying code motion along both branches using a renamed
1915 register, but it won't affect a code correctness since upon
1916 an actual code motion a bookkeeping code would be generated. */
1917 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr
)),
1919 EXPR_TARGET_AVAILABLE (expr
) = -1;
1921 EXPR_TARGET_AVAILABLE (expr
) = false;
1927 reg_set_iterator rsi
;
1929 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr
)),
1931 if (bitmap_bit_p (lv_set
, regno
))
1933 EXPR_TARGET_AVAILABLE (expr
) = false;
1937 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr
)),
1939 if (bitmap_bit_p (lv_set
, regno
))
1941 EXPR_TARGET_AVAILABLE (expr
) = false;
1947 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1948 or dependence status have changed, 2 when also the target register
1949 became unavailable, 0 if nothing had to be changed. */
1951 speculate_expr (expr_t expr
, ds_t ds
)
1956 ds_t target_ds
, current_ds
;
1958 /* Obtain the status we need to put on EXPR. */
1959 target_ds
= (ds
& SPECULATIVE
);
1960 current_ds
= EXPR_SPEC_DONE_DS (expr
);
1961 ds
= ds_full_merge (current_ds
, target_ds
, NULL_RTX
, NULL_RTX
);
1963 orig_insn_rtx
= EXPR_INSN_RTX (expr
);
1965 res
= sched_speculate_insn (orig_insn_rtx
, ds
, &spec_pat
);
1970 EXPR_SPEC_DONE_DS (expr
) = ds
;
1971 return current_ds
!= ds
? 1 : 0;
1975 rtx spec_insn_rtx
= create_insn_rtx_from_pattern (spec_pat
, NULL_RTX
);
1976 vinsn_t spec_vinsn
= create_vinsn_from_insn_rtx (spec_insn_rtx
, false);
1978 change_vinsn_in_expr (expr
, spec_vinsn
);
1979 EXPR_SPEC_DONE_DS (expr
) = ds
;
1980 EXPR_NEEDS_SPEC_CHECK_P (expr
) = true;
1982 /* Do not allow clobbering the address register of speculative
1984 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr
)),
1985 expr_dest_reg (expr
)))
1987 EXPR_TARGET_AVAILABLE (expr
) = false;
2003 /* Return a destination register, if any, of EXPR. */
2005 expr_dest_reg (expr_t expr
)
2007 rtx dest
= VINSN_LHS (EXPR_VINSN (expr
));
2009 if (dest
!= NULL_RTX
&& REG_P (dest
))
2015 /* Returns the REGNO of the R's destination. */
2017 expr_dest_regno (expr_t expr
)
2019 rtx dest
= expr_dest_reg (expr
);
2021 gcc_assert (dest
!= NULL_RTX
);
2022 return REGNO (dest
);
2025 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2026 AV_SET having unavailable target register. */
2028 mark_unavailable_targets (av_set_t join_set
, av_set_t av_set
, regset lv_set
)
2031 av_set_iterator avi
;
2033 FOR_EACH_EXPR (expr
, avi
, join_set
)
2034 if (av_set_lookup (av_set
, EXPR_VINSN (expr
)) == NULL
)
2035 set_unavailable_target_for_expr (expr
, lv_set
);
2039 /* Returns true if REG (at least partially) is present in REGS. */
2041 register_unavailable_p (regset regs
, rtx reg
)
2043 unsigned regno
, end_regno
;
2045 regno
= REGNO (reg
);
2046 if (bitmap_bit_p (regs
, regno
))
2049 end_regno
= END_REGNO (reg
);
2051 while (++regno
< end_regno
)
2052 if (bitmap_bit_p (regs
, regno
))
2058 /* Av set functions. */
2060 /* Add a new element to av set SETP.
2061 Return the element added. */
2063 av_set_add_element (av_set_t
*setp
)
2065 /* Insert at the beginning of the list. */
2070 /* Add EXPR to SETP. */
2072 av_set_add (av_set_t
*setp
, expr_t expr
)
2076 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr
)));
2077 elem
= av_set_add_element (setp
);
2078 copy_expr (_AV_SET_EXPR (elem
), expr
);
2081 /* Same, but do not copy EXPR. */
2083 av_set_add_nocopy (av_set_t
*setp
, expr_t expr
)
2087 elem
= av_set_add_element (setp
);
2088 *_AV_SET_EXPR (elem
) = *expr
;
2091 /* Remove expr pointed to by IP from the av_set. */
2093 av_set_iter_remove (av_set_iterator
*ip
)
2095 clear_expr (_AV_SET_EXPR (*ip
->lp
));
2096 _list_iter_remove (ip
);
2099 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2100 sense of vinsn_equal_p function. Return NULL if no such expr is
2101 in SET was found. */
2103 av_set_lookup (av_set_t set
, vinsn_t sought_vinsn
)
2108 FOR_EACH_EXPR (expr
, i
, set
)
2109 if (vinsn_equal_p (EXPR_VINSN (expr
), sought_vinsn
))
2114 /* Same, but also remove the EXPR found. */
2116 av_set_lookup_and_remove (av_set_t
*setp
, vinsn_t sought_vinsn
)
2121 FOR_EACH_EXPR_1 (expr
, i
, setp
)
2122 if (vinsn_equal_p (EXPR_VINSN (expr
), sought_vinsn
))
2124 _list_iter_remove_nofree (&i
);
2130 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2131 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2132 Returns NULL if no such expr is in SET was found. */
2134 av_set_lookup_other_equiv_expr (av_set_t set
, expr_t expr
)
2139 FOR_EACH_EXPR (cur_expr
, i
, set
)
2141 if (cur_expr
== expr
)
2143 if (vinsn_equal_p (EXPR_VINSN (cur_expr
), EXPR_VINSN (expr
)))
2150 /* If other expression is already in AVP, remove one of them. */
2152 merge_with_other_exprs (av_set_t
*avp
, av_set_iterator
*ip
, expr_t expr
)
2156 expr2
= av_set_lookup_other_equiv_expr (*avp
, expr
);
2159 /* Reset target availability on merge, since taking it only from one
2160 of the exprs would be controversial for different code. */
2161 EXPR_TARGET_AVAILABLE (expr2
) = -1;
2162 EXPR_USEFULNESS (expr2
) = 0;
2164 merge_expr (expr2
, expr
, NULL
);
2166 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2167 EXPR_USEFULNESS (expr2
) = REG_BR_PROB_BASE
;
2169 av_set_iter_remove (ip
);
2176 /* Return true if there is an expr that correlates to VI in SET. */
2178 av_set_is_in_p (av_set_t set
, vinsn_t vi
)
2180 return av_set_lookup (set
, vi
) != NULL
;
2183 /* Return a copy of SET. */
2185 av_set_copy (av_set_t set
)
2189 av_set_t res
= NULL
;
2191 FOR_EACH_EXPR (expr
, i
, set
)
2192 av_set_add (&res
, expr
);
2197 /* Join two av sets that do not have common elements by attaching second set
2198 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2199 _AV_SET_NEXT of first set's last element). */
2201 join_distinct_sets (av_set_t
*to_tailp
, av_set_t
*fromp
)
2203 gcc_assert (*to_tailp
== NULL
);
2208 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2209 pointed to by FROMP afterwards. */
2211 av_set_union_and_clear (av_set_t
*top
, av_set_t
*fromp
, insn_t insn
)
2216 /* Delete from TOP all exprs, that present in FROMP. */
2217 FOR_EACH_EXPR_1 (expr1
, i
, top
)
2219 expr_t expr2
= av_set_lookup (*fromp
, EXPR_VINSN (expr1
));
2223 merge_expr (expr2
, expr1
, insn
);
2224 av_set_iter_remove (&i
);
2228 join_distinct_sets (i
.lp
, fromp
);
2231 /* Same as above, but also update availability of target register in
2232 TOP judging by TO_LV_SET and FROM_LV_SET. */
2234 av_set_union_and_live (av_set_t
*top
, av_set_t
*fromp
, regset to_lv_set
,
2235 regset from_lv_set
, insn_t insn
)
2239 av_set_t
*to_tailp
, in_both_set
= NULL
;
2241 /* Delete from TOP all expres, that present in FROMP. */
2242 FOR_EACH_EXPR_1 (expr1
, i
, top
)
2244 expr_t expr2
= av_set_lookup_and_remove (fromp
, EXPR_VINSN (expr1
));
2248 /* It may be that the expressions have different destination
2249 registers, in which case we need to check liveness here. */
2250 if (EXPR_SEPARABLE_P (expr1
))
2252 int regno1
= (REG_P (EXPR_LHS (expr1
))
2253 ? (int) expr_dest_regno (expr1
) : -1);
2254 int regno2
= (REG_P (EXPR_LHS (expr2
))
2255 ? (int) expr_dest_regno (expr2
) : -1);
2257 /* ??? We don't have a way to check restrictions for
2258 *other* register on the current path, we did it only
2259 for the current target register. Give up. */
2260 if (regno1
!= regno2
)
2261 EXPR_TARGET_AVAILABLE (expr2
) = -1;
2263 else if (EXPR_INSN_RTX (expr1
) != EXPR_INSN_RTX (expr2
))
2264 EXPR_TARGET_AVAILABLE (expr2
) = -1;
2266 merge_expr (expr2
, expr1
, insn
);
2267 av_set_add_nocopy (&in_both_set
, expr2
);
2268 av_set_iter_remove (&i
);
2271 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2273 set_unavailable_target_for_expr (expr1
, from_lv_set
);
2277 /* These expressions are not present in TOP. Check liveness
2278 restrictions on TO_LV_SET. */
2279 FOR_EACH_EXPR (expr1
, i
, *fromp
)
2280 set_unavailable_target_for_expr (expr1
, to_lv_set
);
2282 join_distinct_sets (i
.lp
, &in_both_set
);
2283 join_distinct_sets (to_tailp
, fromp
);
2286 /* Clear av_set pointed to by SETP. */
2288 av_set_clear (av_set_t
*setp
)
2293 FOR_EACH_EXPR_1 (expr
, i
, setp
)
2294 av_set_iter_remove (&i
);
2296 gcc_assert (*setp
== NULL
);
2299 /* Leave only one non-speculative element in the SETP. */
2301 av_set_leave_one_nonspec (av_set_t
*setp
)
2305 bool has_one_nonspec
= false;
2307 /* Keep all speculative exprs, and leave one non-speculative
2309 FOR_EACH_EXPR_1 (expr
, i
, setp
)
2311 if (!EXPR_SPEC_DONE_DS (expr
))
2313 if (has_one_nonspec
)
2314 av_set_iter_remove (&i
);
2316 has_one_nonspec
= true;
2321 /* Return the N'th element of the SET. */
2323 av_set_element (av_set_t set
, int n
)
2328 FOR_EACH_EXPR (expr
, i
, set
)
2336 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2338 av_set_substract_cond_branches (av_set_t
*avp
)
2343 FOR_EACH_EXPR_1 (expr
, i
, avp
)
2344 if (vinsn_cond_branch_p (EXPR_VINSN (expr
)))
2345 av_set_iter_remove (&i
);
2348 /* Multiplies usefulness attribute of each member of av-set *AVP by
2349 value PROB / ALL_PROB. */
2351 av_set_split_usefulness (av_set_t av
, int prob
, int all_prob
)
2356 FOR_EACH_EXPR (expr
, i
, av
)
2357 EXPR_USEFULNESS (expr
) = (all_prob
2358 ? (EXPR_USEFULNESS (expr
) * prob
) / all_prob
2362 /* Leave in AVP only those expressions, which are present in AV,
2363 and return it, merging history expressions. */
2365 av_set_code_motion_filter (av_set_t
*avp
, av_set_t av
)
2370 FOR_EACH_EXPR_1 (expr
, i
, avp
)
2371 if ((expr2
= av_set_lookup (av
, EXPR_VINSN (expr
))) == NULL
)
2372 av_set_iter_remove (&i
);
2374 /* When updating av sets in bookkeeping blocks, we can add more insns
2375 there which will be transformed but the upper av sets will not
2376 reflect those transformations. We then fail to undo those
2377 when searching for such insns. So merge the history saved
2378 in the av set of the block we are processing. */
2379 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr
),
2380 EXPR_HISTORY_OF_CHANGES (expr2
));
2385 /* Dependence hooks to initialize insn data. */
2387 /* This is used in hooks callable from dependence analysis when initializing
2388 instruction's data. */
2391 /* Where the dependence was found (lhs/rhs). */
2394 /* The actual data object to initialize. */
2397 /* True when the insn should not be made clonable. */
2398 bool force_unique_p
;
2400 /* True when insn should be treated as of type USE, i.e. never renamed. */
2402 } deps_init_id_data
;
2405 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2408 setup_id_for_insn (idata_t id
, insn_t insn
, bool force_unique_p
)
2412 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2413 That clonable insns which can be separated into lhs and rhs have type SET.
2414 Other clonable insns have type USE. */
2415 type
= GET_CODE (insn
);
2417 /* Only regular insns could be cloned. */
2418 if (type
== INSN
&& !force_unique_p
)
2420 else if (type
== JUMP_INSN
&& simplejump_p (insn
))
2422 else if (type
== DEBUG_INSN
)
2423 type
= !force_unique_p
? USE
: INSN
;
2425 IDATA_TYPE (id
) = type
;
2426 IDATA_REG_SETS (id
) = get_clear_regset_from_pool ();
2427 IDATA_REG_USES (id
) = get_clear_regset_from_pool ();
2428 IDATA_REG_CLOBBERS (id
) = get_clear_regset_from_pool ();
2431 /* Start initializing insn data. */
2433 deps_init_id_start_insn (insn_t insn
)
2435 gcc_assert (deps_init_id_data
.where
== DEPS_IN_NOWHERE
);
2437 setup_id_for_insn (deps_init_id_data
.id
, insn
,
2438 deps_init_id_data
.force_unique_p
);
2439 deps_init_id_data
.where
= DEPS_IN_INSN
;
2442 /* Start initializing lhs data. */
2444 deps_init_id_start_lhs (rtx lhs
)
2446 gcc_assert (deps_init_id_data
.where
== DEPS_IN_INSN
);
2447 gcc_assert (IDATA_LHS (deps_init_id_data
.id
) == NULL
);
2449 if (IDATA_TYPE (deps_init_id_data
.id
) == SET
)
2451 IDATA_LHS (deps_init_id_data
.id
) = lhs
;
2452 deps_init_id_data
.where
= DEPS_IN_LHS
;
2456 /* Finish initializing lhs data. */
2458 deps_init_id_finish_lhs (void)
2460 deps_init_id_data
.where
= DEPS_IN_INSN
;
2463 /* Note a set of REGNO. */
2465 deps_init_id_note_reg_set (int regno
)
2467 haifa_note_reg_set (regno
);
2469 if (deps_init_id_data
.where
== DEPS_IN_RHS
)
2470 deps_init_id_data
.force_use_p
= true;
2472 if (IDATA_TYPE (deps_init_id_data
.id
) != PC
)
2473 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data
.id
), regno
);
2476 /* Make instructions that set stack registers to be ineligible for
2477 renaming to avoid issues with find_used_regs. */
2478 if (IN_RANGE (regno
, FIRST_STACK_REG
, LAST_STACK_REG
))
2479 deps_init_id_data
.force_use_p
= true;
2483 /* Note a clobber of REGNO. */
2485 deps_init_id_note_reg_clobber (int regno
)
2487 haifa_note_reg_clobber (regno
);
2489 if (deps_init_id_data
.where
== DEPS_IN_RHS
)
2490 deps_init_id_data
.force_use_p
= true;
2492 if (IDATA_TYPE (deps_init_id_data
.id
) != PC
)
2493 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data
.id
), regno
);
2496 /* Note a use of REGNO. */
2498 deps_init_id_note_reg_use (int regno
)
2500 haifa_note_reg_use (regno
);
2502 if (IDATA_TYPE (deps_init_id_data
.id
) != PC
)
2503 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data
.id
), regno
);
2506 /* Start initializing rhs data. */
2508 deps_init_id_start_rhs (rtx rhs
)
2510 gcc_assert (deps_init_id_data
.where
== DEPS_IN_INSN
);
2512 /* And there was no sel_deps_reset_to_insn (). */
2513 if (IDATA_LHS (deps_init_id_data
.id
) != NULL
)
2515 IDATA_RHS (deps_init_id_data
.id
) = rhs
;
2516 deps_init_id_data
.where
= DEPS_IN_RHS
;
2520 /* Finish initializing rhs data. */
2522 deps_init_id_finish_rhs (void)
2524 gcc_assert (deps_init_id_data
.where
== DEPS_IN_RHS
2525 || deps_init_id_data
.where
== DEPS_IN_INSN
);
2526 deps_init_id_data
.where
= DEPS_IN_INSN
;
2529 /* Finish initializing insn data. */
2531 deps_init_id_finish_insn (void)
2533 gcc_assert (deps_init_id_data
.where
== DEPS_IN_INSN
);
2535 if (IDATA_TYPE (deps_init_id_data
.id
) == SET
)
2537 rtx lhs
= IDATA_LHS (deps_init_id_data
.id
);
2538 rtx rhs
= IDATA_RHS (deps_init_id_data
.id
);
2540 if (lhs
== NULL
|| rhs
== NULL
|| !lhs_and_rhs_separable_p (lhs
, rhs
)
2541 || deps_init_id_data
.force_use_p
)
2543 /* This should be a USE, as we don't want to schedule its RHS
2544 separately. However, we still want to have them recorded
2545 for the purposes of substitution. That's why we don't
2546 simply call downgrade_to_use () here. */
2547 gcc_assert (IDATA_TYPE (deps_init_id_data
.id
) == SET
);
2548 gcc_assert (!lhs
== !rhs
);
2550 IDATA_TYPE (deps_init_id_data
.id
) = USE
;
2554 deps_init_id_data
.where
= DEPS_IN_NOWHERE
;
2557 /* This is dependence info used for initializing insn's data. */
2558 static struct sched_deps_info_def deps_init_id_sched_deps_info
;
2560 /* This initializes most of the static part of the above structure. */
2561 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info
=
2565 deps_init_id_start_insn
,
2566 deps_init_id_finish_insn
,
2567 deps_init_id_start_lhs
,
2568 deps_init_id_finish_lhs
,
2569 deps_init_id_start_rhs
,
2570 deps_init_id_finish_rhs
,
2571 deps_init_id_note_reg_set
,
2572 deps_init_id_note_reg_clobber
,
2573 deps_init_id_note_reg_use
,
2574 NULL
, /* note_mem_dep */
2575 NULL
, /* note_dep */
2578 0, /* use_deps_list */
2579 0 /* generate_spec_deps */
2582 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2583 we don't actually need information about lhs and rhs. */
2585 setup_id_lhs_rhs (idata_t id
, insn_t insn
, bool force_unique_p
)
2587 rtx pat
= PATTERN (insn
);
2589 if (NONJUMP_INSN_P (insn
)
2590 && GET_CODE (pat
) == SET
2593 IDATA_RHS (id
) = SET_SRC (pat
);
2594 IDATA_LHS (id
) = SET_DEST (pat
);
2597 IDATA_LHS (id
) = IDATA_RHS (id
) = NULL
;
2600 /* Possibly downgrade INSN to USE. */
2602 maybe_downgrade_id_to_use (idata_t id
, insn_t insn
)
2604 bool must_be_use
= false;
2605 unsigned uid
= INSN_UID (insn
);
2607 rtx lhs
= IDATA_LHS (id
);
2608 rtx rhs
= IDATA_RHS (id
);
2610 /* We downgrade only SETs. */
2611 if (IDATA_TYPE (id
) != SET
)
2614 if (!lhs
|| !lhs_and_rhs_separable_p (lhs
, rhs
))
2616 IDATA_TYPE (id
) = USE
;
2620 for (rec
= DF_INSN_UID_DEFS (uid
); *rec
; rec
++)
2624 if (DF_REF_INSN (def
)
2625 && DF_REF_FLAGS_IS_SET (def
, DF_REF_PRE_POST_MODIFY
)
2626 && loc_mentioned_in_p (DF_REF_LOC (def
), IDATA_RHS (id
)))
2633 /* Make instructions that set stack registers to be ineligible for
2634 renaming to avoid issues with find_used_regs. */
2635 if (IN_RANGE (DF_REF_REGNO (def
), FIRST_STACK_REG
, LAST_STACK_REG
))
2644 IDATA_TYPE (id
) = USE
;
2647 /* Setup register sets describing INSN in ID. */
2649 setup_id_reg_sets (idata_t id
, insn_t insn
)
2651 unsigned uid
= INSN_UID (insn
);
2653 regset tmp
= get_clear_regset_from_pool ();
2655 for (rec
= DF_INSN_UID_DEFS (uid
); *rec
; rec
++)
2658 unsigned int regno
= DF_REF_REGNO (def
);
2660 /* Post modifies are treated like clobbers by sched-deps.c. */
2661 if (DF_REF_FLAGS_IS_SET (def
, (DF_REF_MUST_CLOBBER
2662 | DF_REF_PRE_POST_MODIFY
)))
2663 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id
), regno
);
2664 else if (! DF_REF_FLAGS_IS_SET (def
, DF_REF_MAY_CLOBBER
))
2666 SET_REGNO_REG_SET (IDATA_REG_SETS (id
), regno
);
2669 /* For stack registers, treat writes to them as writes
2670 to the first one to be consistent with sched-deps.c. */
2671 if (IN_RANGE (regno
, FIRST_STACK_REG
, LAST_STACK_REG
))
2672 SET_REGNO_REG_SET (IDATA_REG_SETS (id
), FIRST_STACK_REG
);
2675 /* Mark special refs that generate read/write def pair. */
2676 if (DF_REF_FLAGS_IS_SET (def
, DF_REF_CONDITIONAL
)
2677 || regno
== STACK_POINTER_REGNUM
)
2678 bitmap_set_bit (tmp
, regno
);
2681 for (rec
= DF_INSN_UID_USES (uid
); *rec
; rec
++)
2684 unsigned int regno
= DF_REF_REGNO (use
);
2686 /* When these refs are met for the first time, skip them, as
2687 these uses are just counterparts of some defs. */
2688 if (bitmap_bit_p (tmp
, regno
))
2689 bitmap_clear_bit (tmp
, regno
);
2690 else if (! DF_REF_FLAGS_IS_SET (use
, DF_REF_CALL_STACK_USAGE
))
2692 SET_REGNO_REG_SET (IDATA_REG_USES (id
), regno
);
2695 /* For stack registers, treat reads from them as reads from
2696 the first one to be consistent with sched-deps.c. */
2697 if (IN_RANGE (regno
, FIRST_STACK_REG
, LAST_STACK_REG
))
2698 SET_REGNO_REG_SET (IDATA_REG_USES (id
), FIRST_STACK_REG
);
2703 return_regset_to_pool (tmp
);
2706 /* Initialize instruction data for INSN in ID using DF's data. */
2708 init_id_from_df (idata_t id
, insn_t insn
, bool force_unique_p
)
2710 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn
)) != NULL
);
2712 setup_id_for_insn (id
, insn
, force_unique_p
);
2713 setup_id_lhs_rhs (id
, insn
, force_unique_p
);
2715 if (INSN_NOP_P (insn
))
2718 maybe_downgrade_id_to_use (id
, insn
);
2719 setup_id_reg_sets (id
, insn
);
2722 /* Initialize instruction data for INSN in ID. */
2724 deps_init_id (idata_t id
, insn_t insn
, bool force_unique_p
)
2726 struct deps_desc _dc
, *dc
= &_dc
;
2728 deps_init_id_data
.where
= DEPS_IN_NOWHERE
;
2729 deps_init_id_data
.id
= id
;
2730 deps_init_id_data
.force_unique_p
= force_unique_p
;
2731 deps_init_id_data
.force_use_p
= false;
2733 init_deps (dc
, false);
2735 memcpy (&deps_init_id_sched_deps_info
,
2736 &const_deps_init_id_sched_deps_info
,
2737 sizeof (deps_init_id_sched_deps_info
));
2739 if (spec_info
!= NULL
)
2740 deps_init_id_sched_deps_info
.generate_spec_deps
= 1;
2742 sched_deps_info
= &deps_init_id_sched_deps_info
;
2744 deps_analyze_insn (dc
, insn
);
2748 deps_init_id_data
.id
= NULL
;
2752 struct sched_scan_info_def
2754 /* This hook notifies scheduler frontend to extend its internal per basic
2755 block data structures. This hook should be called once before a series of
2756 calls to bb_init (). */
2757 void (*extend_bb
) (void);
2759 /* This hook makes scheduler frontend to initialize its internal data
2760 structures for the passed basic block. */
2761 void (*init_bb
) (basic_block
);
2763 /* This hook notifies scheduler frontend to extend its internal per insn data
2764 structures. This hook should be called once before a series of calls to
2766 void (*extend_insn
) (void);
2768 /* This hook makes scheduler frontend to initialize its internal data
2769 structures for the passed insn. */
2770 void (*init_insn
) (rtx
);
2773 /* A driver function to add a set of basic blocks (BBS) to the
2774 scheduling region. */
2776 sched_scan (const struct sched_scan_info_def
*ssi
, bb_vec_t bbs
)
2785 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
2788 if (ssi
->extend_insn
)
2789 ssi
->extend_insn ();
2792 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
2796 FOR_BB_INSNS (bb
, insn
)
2797 ssi
->init_insn (insn
);
2801 /* Implement hooks for collecting fundamental insn properties like if insn is
2802 an ASM or is within a SCHED_GROUP. */
2804 /* True when a "one-time init" data for INSN was already inited. */
2806 first_time_insn_init (insn_t insn
)
2808 return INSN_LIVE (insn
) == NULL
;
2811 /* Hash an entry in a transformed_insns hashtable. */
2813 hash_transformed_insns (const void *p
)
2815 return VINSN_HASH_RTX (((const struct transformed_insns
*) p
)->vinsn_old
);
2818 /* Compare the entries in a transformed_insns hashtable. */
2820 eq_transformed_insns (const void *p
, const void *q
)
2822 rtx i1
= VINSN_INSN_RTX (((const struct transformed_insns
*) p
)->vinsn_old
);
2823 rtx i2
= VINSN_INSN_RTX (((const struct transformed_insns
*) q
)->vinsn_old
);
2825 if (INSN_UID (i1
) == INSN_UID (i2
))
2827 return rtx_equal_p (PATTERN (i1
), PATTERN (i2
));
2830 /* Free an entry in a transformed_insns hashtable. */
2832 free_transformed_insns (void *p
)
2834 struct transformed_insns
*pti
= (struct transformed_insns
*) p
;
2836 vinsn_detach (pti
->vinsn_old
);
2837 vinsn_detach (pti
->vinsn_new
);
2841 /* Init the s_i_d data for INSN which should be inited just once, when
2842 we first see the insn. */
2844 init_first_time_insn_data (insn_t insn
)
2846 /* This should not be set if this is the first time we init data for
2848 gcc_assert (first_time_insn_init (insn
));
2850 /* These are needed for nops too. */
2851 INSN_LIVE (insn
) = get_regset_from_pool ();
2852 INSN_LIVE_VALID_P (insn
) = false;
2854 if (!INSN_NOP_P (insn
))
2856 INSN_ANALYZED_DEPS (insn
) = BITMAP_ALLOC (NULL
);
2857 INSN_FOUND_DEPS (insn
) = BITMAP_ALLOC (NULL
);
2858 INSN_TRANSFORMED_INSNS (insn
)
2859 = htab_create (16, hash_transformed_insns
,
2860 eq_transformed_insns
, free_transformed_insns
);
2861 init_deps (&INSN_DEPS_CONTEXT (insn
), true);
2865 /* Free almost all above data for INSN that is scheduled already.
2866 Used for extra-large basic blocks. */
2868 free_data_for_scheduled_insn (insn_t insn
)
2870 gcc_assert (! first_time_insn_init (insn
));
2872 if (! INSN_ANALYZED_DEPS (insn
))
2875 BITMAP_FREE (INSN_ANALYZED_DEPS (insn
));
2876 BITMAP_FREE (INSN_FOUND_DEPS (insn
));
2877 htab_delete (INSN_TRANSFORMED_INSNS (insn
));
2879 /* This is allocated only for bookkeeping insns. */
2880 if (INSN_ORIGINATORS (insn
))
2881 BITMAP_FREE (INSN_ORIGINATORS (insn
));
2882 free_deps (&INSN_DEPS_CONTEXT (insn
));
2884 INSN_ANALYZED_DEPS (insn
) = NULL
;
2886 /* Clear the readonly flag so we would ICE when trying to recalculate
2887 the deps context (as we believe that it should not happen). */
2888 (&INSN_DEPS_CONTEXT (insn
))->readonly
= 0;
2891 /* Free the same data as above for INSN. */
2893 free_first_time_insn_data (insn_t insn
)
2895 gcc_assert (! first_time_insn_init (insn
));
2897 free_data_for_scheduled_insn (insn
);
2898 return_regset_to_pool (INSN_LIVE (insn
));
2899 INSN_LIVE (insn
) = NULL
;
2900 INSN_LIVE_VALID_P (insn
) = false;
2903 /* Initialize region-scope data structures for basic blocks. */
2905 init_global_and_expr_for_bb (basic_block bb
)
2907 if (sel_bb_empty_p (bb
))
2910 invalidate_av_set (bb
);
2913 /* Data for global dependency analysis (to initialize CANT_MOVE and
2917 /* Previous insn. */
2921 /* Determine if INSN is in the sched_group, is an asm or should not be
2922 cloned. After that initialize its expr. */
2924 init_global_and_expr_for_insn (insn_t insn
)
2929 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
2931 init_global_data
.prev_insn
= NULL_RTX
;
2935 gcc_assert (INSN_P (insn
));
2937 if (SCHED_GROUP_P (insn
))
2938 /* Setup a sched_group. */
2940 insn_t prev_insn
= init_global_data
.prev_insn
;
2943 INSN_SCHED_NEXT (prev_insn
) = insn
;
2945 init_global_data
.prev_insn
= insn
;
2948 init_global_data
.prev_insn
= NULL_RTX
;
2950 if (GET_CODE (PATTERN (insn
)) == ASM_INPUT
2951 || asm_noperands (PATTERN (insn
)) >= 0)
2952 /* Mark INSN as an asm. */
2953 INSN_ASM_P (insn
) = true;
2956 bool force_unique_p
;
2959 /* Certain instructions cannot be cloned, and frame related insns and
2960 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2962 if (prologue_epilogue_contains (insn
))
2964 if (RTX_FRAME_RELATED_P (insn
))
2965 CANT_MOVE (insn
) = 1;
2969 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2970 if (REG_NOTE_KIND (note
) == REG_SAVE_NOTE
2971 && ((enum insn_note
) INTVAL (XEXP (note
, 0))
2972 == NOTE_INSN_EPILOGUE_BEG
))
2974 CANT_MOVE (insn
) = 1;
2978 force_unique_p
= true;
2981 if (CANT_MOVE (insn
)
2982 || INSN_ASM_P (insn
)
2983 || SCHED_GROUP_P (insn
)
2985 /* Exception handling insns are always unique. */
2986 || (cfun
->can_throw_non_call_exceptions
&& can_throw_internal (insn
))
2987 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2988 || control_flow_insn_p (insn
)
2989 || volatile_insn_p (PATTERN (insn
))
2990 || (targetm
.cannot_copy_insn_p
2991 && targetm
.cannot_copy_insn_p (insn
)))
2992 force_unique_p
= true;
2994 force_unique_p
= false;
2996 if (targetm
.sched
.get_insn_spec_ds
)
2998 spec_done_ds
= targetm
.sched
.get_insn_spec_ds (insn
);
2999 spec_done_ds
= ds_get_max_dep_weak (spec_done_ds
);
3004 /* Initialize INSN's expr. */
3005 init_expr (INSN_EXPR (insn
), vinsn_create (insn
, force_unique_p
), 0,
3006 REG_BR_PROB_BASE
, INSN_PRIORITY (insn
), 0, BLOCK_NUM (insn
),
3007 spec_done_ds
, 0, 0, vNULL
, true,
3008 false, false, false, CANT_MOVE (insn
));
3011 init_first_time_insn_data (insn
);
3014 /* Scan the region and initialize instruction data for basic blocks BBS. */
3016 sel_init_global_and_expr (bb_vec_t bbs
)
3018 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3019 const struct sched_scan_info_def ssi
=
3021 NULL
, /* extend_bb */
3022 init_global_and_expr_for_bb
, /* init_bb */
3023 extend_insn_data
, /* extend_insn */
3024 init_global_and_expr_for_insn
/* init_insn */
3027 sched_scan (&ssi
, bbs
);
3030 /* Finalize region-scope data structures for basic blocks. */
3032 finish_global_and_expr_for_bb (basic_block bb
)
3034 av_set_clear (&BB_AV_SET (bb
));
3035 BB_AV_LEVEL (bb
) = 0;
3038 /* Finalize INSN's data. */
3040 finish_global_and_expr_insn (insn_t insn
)
3042 if (LABEL_P (insn
) || NOTE_INSN_BASIC_BLOCK_P (insn
))
3045 gcc_assert (INSN_P (insn
));
3047 if (INSN_LUID (insn
) > 0)
3049 free_first_time_insn_data (insn
);
3050 INSN_WS_LEVEL (insn
) = 0;
3051 CANT_MOVE (insn
) = 0;
3053 /* We can no longer assert this, as vinsns of this insn could be
3054 easily live in other insn's caches. This should be changed to
3055 a counter-like approach among all vinsns. */
3056 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn
)) == 1);
3057 clear_expr (INSN_EXPR (insn
));
3061 /* Finalize per instruction data for the whole region. */
3063 sel_finish_global_and_expr (void)
3069 bbs
.create (current_nr_blocks
);
3071 for (i
= 0; i
< current_nr_blocks
; i
++)
3072 bbs
.quick_push (BASIC_BLOCK (BB_TO_BLOCK (i
)));
3074 /* Clear AV_SETs and INSN_EXPRs. */
3076 const struct sched_scan_info_def ssi
=
3078 NULL
, /* extend_bb */
3079 finish_global_and_expr_for_bb
, /* init_bb */
3080 NULL
, /* extend_insn */
3081 finish_global_and_expr_insn
/* init_insn */
3084 sched_scan (&ssi
, bbs
);
3094 /* In the below hooks, we merely calculate whether or not a dependence
3095 exists, and in what part of insn. However, we will need more data
3096 when we'll start caching dependence requests. */
3098 /* Container to hold information for dependency analysis. */
3103 /* A variable to track which part of rtx we are scanning in
3104 sched-deps.c: sched_analyze_insn (). */
3107 /* Current producer. */
3110 /* Current consumer. */
3113 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3114 X is from { INSN, LHS, RHS }. */
3115 ds_t has_dep_p
[DEPS_IN_NOWHERE
];
3116 } has_dependence_data
;
3118 /* Start analyzing dependencies of INSN. */
3120 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED
)
3122 gcc_assert (has_dependence_data
.where
== DEPS_IN_NOWHERE
);
3124 has_dependence_data
.where
= DEPS_IN_INSN
;
3127 /* Finish analyzing dependencies of an insn. */
3129 has_dependence_finish_insn (void)
3131 gcc_assert (has_dependence_data
.where
== DEPS_IN_INSN
);
3133 has_dependence_data
.where
= DEPS_IN_NOWHERE
;
3136 /* Start analyzing dependencies of LHS. */
3138 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED
)
3140 gcc_assert (has_dependence_data
.where
== DEPS_IN_INSN
);
3142 if (VINSN_LHS (has_dependence_data
.con
) != NULL
)
3143 has_dependence_data
.where
= DEPS_IN_LHS
;
3146 /* Finish analyzing dependencies of an lhs. */
3148 has_dependence_finish_lhs (void)
3150 has_dependence_data
.where
= DEPS_IN_INSN
;
3153 /* Start analyzing dependencies of RHS. */
3155 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED
)
3157 gcc_assert (has_dependence_data
.where
== DEPS_IN_INSN
);
3159 if (VINSN_RHS (has_dependence_data
.con
) != NULL
)
3160 has_dependence_data
.where
= DEPS_IN_RHS
;
3163 /* Start analyzing dependencies of an rhs. */
3165 has_dependence_finish_rhs (void)
3167 gcc_assert (has_dependence_data
.where
== DEPS_IN_RHS
3168 || has_dependence_data
.where
== DEPS_IN_INSN
);
3170 has_dependence_data
.where
= DEPS_IN_INSN
;
3173 /* Note a set of REGNO. */
3175 has_dependence_note_reg_set (int regno
)
3177 struct deps_reg
*reg_last
= &has_dependence_data
.dc
->reg_last
[regno
];
3179 if (!sched_insns_conditions_mutex_p (has_dependence_data
.pro
,
3181 (has_dependence_data
.con
)))
3183 ds_t
*dsp
= &has_dependence_data
.has_dep_p
[has_dependence_data
.where
];
3185 if (reg_last
->sets
!= NULL
3186 || reg_last
->clobbers
!= NULL
)
3187 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_OUTPUT
;
3189 if (reg_last
->uses
|| reg_last
->implicit_sets
)
3190 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_ANTI
;
3194 /* Note a clobber of REGNO. */
3196 has_dependence_note_reg_clobber (int regno
)
3198 struct deps_reg
*reg_last
= &has_dependence_data
.dc
->reg_last
[regno
];
3200 if (!sched_insns_conditions_mutex_p (has_dependence_data
.pro
,
3202 (has_dependence_data
.con
)))
3204 ds_t
*dsp
= &has_dependence_data
.has_dep_p
[has_dependence_data
.where
];
3207 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_OUTPUT
;
3209 if (reg_last
->uses
|| reg_last
->implicit_sets
)
3210 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_ANTI
;
3214 /* Note a use of REGNO. */
3216 has_dependence_note_reg_use (int regno
)
3218 struct deps_reg
*reg_last
= &has_dependence_data
.dc
->reg_last
[regno
];
3220 if (!sched_insns_conditions_mutex_p (has_dependence_data
.pro
,
3222 (has_dependence_data
.con
)))
3224 ds_t
*dsp
= &has_dependence_data
.has_dep_p
[has_dependence_data
.where
];
3227 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_TRUE
;
3229 if (reg_last
->clobbers
|| reg_last
->implicit_sets
)
3230 *dsp
= (*dsp
& ~SPECULATIVE
) | DEP_ANTI
;
3232 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3233 is actually a check insn. We need to do this for any register
3234 read-read dependency with the check unless we track properly
3235 all registers written by BE_IN_SPEC-speculated insns, as
3236 we don't have explicit dependence lists. See PR 53975. */
3239 ds_t pro_spec_checked_ds
;
3241 pro_spec_checked_ds
= INSN_SPEC_CHECKED_DS (has_dependence_data
.pro
);
3242 pro_spec_checked_ds
= ds_get_max_dep_weak (pro_spec_checked_ds
);
3244 if (pro_spec_checked_ds
!= 0)
3245 *dsp
= ds_full_merge (*dsp
, pro_spec_checked_ds
,
3246 NULL_RTX
, NULL_RTX
);
3251 /* Note a memory dependence. */
3253 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED
,
3254 rtx pending_mem ATTRIBUTE_UNUSED
,
3255 insn_t pending_insn ATTRIBUTE_UNUSED
,
3256 ds_t ds ATTRIBUTE_UNUSED
)
3258 if (!sched_insns_conditions_mutex_p (has_dependence_data
.pro
,
3259 VINSN_INSN_RTX (has_dependence_data
.con
)))
3261 ds_t
*dsp
= &has_dependence_data
.has_dep_p
[has_dependence_data
.where
];
3263 *dsp
= ds_full_merge (ds
, *dsp
, pending_mem
, mem
);
3267 /* Note a dependence. */
3269 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED
,
3270 ds_t ds ATTRIBUTE_UNUSED
)
3272 if (!sched_insns_conditions_mutex_p (has_dependence_data
.pro
,
3273 VINSN_INSN_RTX (has_dependence_data
.con
)))
3275 ds_t
*dsp
= &has_dependence_data
.has_dep_p
[has_dependence_data
.where
];
3277 *dsp
= ds_full_merge (ds
, *dsp
, NULL_RTX
, NULL_RTX
);
3281 /* Mark the insn as having a hard dependence that prevents speculation. */
3283 sel_mark_hard_insn (rtx insn
)
3287 /* Only work when we're in has_dependence_p mode.
3288 ??? This is a hack, this should actually be a hook. */
3289 if (!has_dependence_data
.dc
|| !has_dependence_data
.pro
)
3292 gcc_assert (insn
== VINSN_INSN_RTX (has_dependence_data
.con
));
3293 gcc_assert (has_dependence_data
.where
== DEPS_IN_INSN
);
3295 for (i
= 0; i
< DEPS_IN_NOWHERE
; i
++)
3296 has_dependence_data
.has_dep_p
[i
] &= ~SPECULATIVE
;
3299 /* This structure holds the hooks for the dependency analysis used when
3300 actually processing dependencies in the scheduler. */
3301 static struct sched_deps_info_def has_dependence_sched_deps_info
;
3303 /* This initializes most of the fields of the above structure. */
3304 static const struct sched_deps_info_def const_has_dependence_sched_deps_info
=
3308 has_dependence_start_insn
,
3309 has_dependence_finish_insn
,
3310 has_dependence_start_lhs
,
3311 has_dependence_finish_lhs
,
3312 has_dependence_start_rhs
,
3313 has_dependence_finish_rhs
,
3314 has_dependence_note_reg_set
,
3315 has_dependence_note_reg_clobber
,
3316 has_dependence_note_reg_use
,
3317 has_dependence_note_mem_dep
,
3318 has_dependence_note_dep
,
3321 0, /* use_deps_list */
3322 0 /* generate_spec_deps */
3325 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3327 setup_has_dependence_sched_deps_info (void)
3329 memcpy (&has_dependence_sched_deps_info
,
3330 &const_has_dependence_sched_deps_info
,
3331 sizeof (has_dependence_sched_deps_info
));
3333 if (spec_info
!= NULL
)
3334 has_dependence_sched_deps_info
.generate_spec_deps
= 1;
3336 sched_deps_info
= &has_dependence_sched_deps_info
;
3339 /* Remove all dependences found and recorded in has_dependence_data array. */
3341 sel_clear_has_dependence (void)
3345 for (i
= 0; i
< DEPS_IN_NOWHERE
; i
++)
3346 has_dependence_data
.has_dep_p
[i
] = 0;
3349 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3350 to the dependence information array in HAS_DEP_PP. */
3352 has_dependence_p (expr_t expr
, insn_t pred
, ds_t
**has_dep_pp
)
3356 struct deps_desc
*dc
;
3358 if (INSN_SIMPLEJUMP_P (pred
))
3359 /* Unconditional jump is just a transfer of control flow.
3363 dc
= &INSN_DEPS_CONTEXT (pred
);
3365 /* We init this field lazily. */
3366 if (dc
->reg_last
== NULL
)
3367 init_deps_reg_last (dc
);
3371 has_dependence_data
.pro
= NULL
;
3372 /* Initialize empty dep context with information about PRED. */
3373 advance_deps_context (dc
, pred
);
3377 has_dependence_data
.where
= DEPS_IN_NOWHERE
;
3378 has_dependence_data
.pro
= pred
;
3379 has_dependence_data
.con
= EXPR_VINSN (expr
);
3380 has_dependence_data
.dc
= dc
;
3382 sel_clear_has_dependence ();
3384 /* Now catch all dependencies that would be generated between PRED and
3386 setup_has_dependence_sched_deps_info ();
3387 deps_analyze_insn (dc
, EXPR_INSN_RTX (expr
));
3388 has_dependence_data
.dc
= NULL
;
3390 /* When a barrier was found, set DEPS_IN_INSN bits. */
3391 if (dc
->last_reg_pending_barrier
== TRUE_BARRIER
)
3392 has_dependence_data
.has_dep_p
[DEPS_IN_INSN
] = DEP_TRUE
;
3393 else if (dc
->last_reg_pending_barrier
== MOVE_BARRIER
)
3394 has_dependence_data
.has_dep_p
[DEPS_IN_INSN
] = DEP_ANTI
;
3396 /* Do not allow stores to memory to move through checks. Currently
3397 we don't move this to sched-deps.c as the check doesn't have
3398 obvious places to which this dependence can be attached.
3399 FIMXE: this should go to a hook. */
3401 && MEM_P (EXPR_LHS (expr
))
3402 && sel_insn_is_speculation_check (pred
))
3403 has_dependence_data
.has_dep_p
[DEPS_IN_INSN
] = DEP_ANTI
;
3405 *has_dep_pp
= has_dependence_data
.has_dep_p
;
3407 for (i
= 0; i
< DEPS_IN_NOWHERE
; i
++)
3408 ds
= ds_full_merge (ds
, has_dependence_data
.has_dep_p
[i
],
3409 NULL_RTX
, NULL_RTX
);
3415 /* Dependence hooks implementation that checks dependence latency constraints
3416 on the insns being scheduled. The entry point for these routines is
3417 tick_check_p predicate. */
3421 /* An expr we are currently checking. */
3424 /* A minimal cycle for its scheduling. */
3427 /* Whether we have seen a true dependence while checking. */
3428 bool seen_true_dep_p
;
3431 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3432 on PRO with status DS and weight DW. */
3434 tick_check_dep_with_dw (insn_t pro_insn
, ds_t ds
, dw_t dw
)
3436 expr_t con_expr
= tick_check_data
.expr
;
3437 insn_t con_insn
= EXPR_INSN_RTX (con_expr
);
3439 if (con_insn
!= pro_insn
)
3444 if (/* PROducer was removed from above due to pipelining. */
3445 !INSN_IN_STREAM_P (pro_insn
)
3446 /* Or PROducer was originally on the next iteration regarding the
3448 || (INSN_SCHED_TIMES (pro_insn
)
3449 - EXPR_SCHED_TIMES (con_expr
)) > 1)
3450 /* Don't count this dependence. */
3454 if (dt
== REG_DEP_TRUE
)
3455 tick_check_data
.seen_true_dep_p
= true;
3457 gcc_assert (INSN_SCHED_CYCLE (pro_insn
) > 0);
3460 dep_def _dep
, *dep
= &_dep
;
3462 init_dep (dep
, pro_insn
, con_insn
, dt
);
3464 tick
= INSN_SCHED_CYCLE (pro_insn
) + dep_cost_1 (dep
, dw
);
3467 /* When there are several kinds of dependencies between pro and con,
3468 only REG_DEP_TRUE should be taken into account. */
3469 if (tick
> tick_check_data
.cycle
3470 && (dt
== REG_DEP_TRUE
|| !tick_check_data
.seen_true_dep_p
))
3471 tick_check_data
.cycle
= tick
;
3475 /* An implementation of note_dep hook. */
3477 tick_check_note_dep (insn_t pro
, ds_t ds
)
3479 tick_check_dep_with_dw (pro
, ds
, 0);
3482 /* An implementation of note_mem_dep hook. */
3484 tick_check_note_mem_dep (rtx mem1
, rtx mem2
, insn_t pro
, ds_t ds
)
3488 dw
= (ds_to_dt (ds
) == REG_DEP_TRUE
3489 ? estimate_dep_weak (mem1
, mem2
)
3492 tick_check_dep_with_dw (pro
, ds
, dw
);
3495 /* This structure contains hooks for dependence analysis used when determining
3496 whether an insn is ready for scheduling. */
3497 static struct sched_deps_info_def tick_check_sched_deps_info
=
3508 haifa_note_reg_clobber
,
3510 tick_check_note_mem_dep
,
3511 tick_check_note_dep
,
3516 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3517 scheduled. Return 0 if all data from producers in DC is ready. */
3519 tick_check_p (expr_t expr
, deps_t dc
, fence_t fence
)
3522 /* Initialize variables. */
3523 tick_check_data
.expr
= expr
;
3524 tick_check_data
.cycle
= 0;
3525 tick_check_data
.seen_true_dep_p
= false;
3526 sched_deps_info
= &tick_check_sched_deps_info
;
3528 gcc_assert (!dc
->readonly
);
3530 deps_analyze_insn (dc
, EXPR_INSN_RTX (expr
));
3533 cycles_left
= tick_check_data
.cycle
- FENCE_CYCLE (fence
);
3535 return cycles_left
>= 0 ? cycles_left
: 0;
3539 /* Functions to work with insns. */
3541 /* Returns true if LHS of INSN is the same as DEST of an insn
3544 lhs_of_insn_equals_to_dest_p (insn_t insn
, rtx dest
)
3546 rtx lhs
= INSN_LHS (insn
);
3548 if (lhs
== NULL
|| dest
== NULL
)
3551 return rtx_equal_p (lhs
, dest
);
3554 /* Return s_i_d entry of INSN. Callable from debugger. */
3556 insn_sid (insn_t insn
)
3561 /* True when INSN is a speculative check. We can tell this by looking
3562 at the data structures of the selective scheduler, not by examining
3565 sel_insn_is_speculation_check (rtx insn
)
3567 return s_i_d
.exists () && !! INSN_SPEC_CHECKED_DS (insn
);
3570 /* Extracts machine mode MODE and destination location DST_LOC
3573 get_dest_and_mode (rtx insn
, rtx
*dst_loc
, enum machine_mode
*mode
)
3575 rtx pat
= PATTERN (insn
);
3577 gcc_assert (dst_loc
);
3578 gcc_assert (GET_CODE (pat
) == SET
);
3580 *dst_loc
= SET_DEST (pat
);
3582 gcc_assert (*dst_loc
);
3583 gcc_assert (MEM_P (*dst_loc
) || REG_P (*dst_loc
));
3586 *mode
= GET_MODE (*dst_loc
);
3589 /* Returns true when moving through JUMP will result in bookkeeping
3592 bookkeeping_can_be_created_if_moved_through_p (insn_t jump
)
3597 FOR_EACH_SUCC (succ
, si
, jump
)
3598 if (sel_num_cfg_preds_gt_1 (succ
))
3604 /* Return 'true' if INSN is the only one in its basic block. */
3606 insn_is_the_only_one_in_bb_p (insn_t insn
)
3608 return sel_bb_head_p (insn
) && sel_bb_end_p (insn
);
3611 #ifdef ENABLE_CHECKING
3612 /* Check that the region we're scheduling still has at most one
3615 verify_backedges (void)
3623 for (i
= 0; i
< current_nr_blocks
; i
++)
3624 FOR_EACH_EDGE (e
, ei
, BASIC_BLOCK (BB_TO_BLOCK (i
))->succs
)
3625 if (in_current_region_p (e
->dest
)
3626 && BLOCK_TO_BB (e
->dest
->index
) < i
)
3629 gcc_assert (n
<= 1);
3635 /* Functions to work with control flow. */
3637 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3638 are sorted in topological order (it might have been invalidated by
3639 redirecting an edge). */
3641 sel_recompute_toporder (void)
3644 int *postorder
, n_blocks
;
3646 postorder
= XALLOCAVEC (int, n_basic_blocks
);
3647 n_blocks
= post_order_compute (postorder
, false, false);
3649 rgn
= CONTAINING_RGN (BB_TO_BLOCK (0));
3650 for (n
= 0, i
= n_blocks
- 1; i
>= 0; i
--)
3651 if (CONTAINING_RGN (postorder
[i
]) == rgn
)
3653 BLOCK_TO_BB (postorder
[i
]) = n
;
3654 BB_TO_BLOCK (n
) = postorder
[i
];
3658 /* Assert that we updated info for all blocks. We may miss some blocks if
3659 this function is called when redirecting an edge made a block
3660 unreachable, but that block is not deleted yet. */
3661 gcc_assert (n
== RGN_NR_BLOCKS (rgn
));
3664 /* Tidy the possibly empty block BB. */
3666 maybe_tidy_empty_bb (basic_block bb
)
3668 basic_block succ_bb
, pred_bb
, note_bb
;
3669 vec
<basic_block
> dom_bbs
;
3674 /* Keep empty bb only if this block immediately precedes EXIT and
3675 has incoming non-fallthrough edge, or it has no predecessors or
3676 successors. Otherwise remove it. */
3677 if (!sel_bb_empty_p (bb
)
3678 || (single_succ_p (bb
)
3679 && single_succ (bb
) == EXIT_BLOCK_PTR
3680 && (!single_pred_p (bb
)
3681 || !(single_pred_edge (bb
)->flags
& EDGE_FALLTHRU
)))
3682 || EDGE_COUNT (bb
->preds
) == 0
3683 || EDGE_COUNT (bb
->succs
) == 0)
3686 /* Do not attempt to redirect complex edges. */
3687 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3688 if (e
->flags
& EDGE_COMPLEX
)
3690 else if (e
->flags
& EDGE_FALLTHRU
)
3693 /* If prev bb ends with asm goto, see if any of the
3694 ASM_OPERANDS_LABELs don't point to the fallthru
3695 label. Do not attempt to redirect it in that case. */
3696 if (JUMP_P (BB_END (e
->src
))
3697 && (note
= extract_asm_operands (PATTERN (BB_END (e
->src
)))))
3699 int i
, n
= ASM_OPERANDS_LABEL_LENGTH (note
);
3701 for (i
= 0; i
< n
; ++i
)
3702 if (XEXP (ASM_OPERANDS_LABEL (note
, i
), 0) == BB_HEAD (bb
))
3707 free_data_sets (bb
);
3709 /* Do not delete BB if it has more than one successor.
3710 That can occur when we moving a jump. */
3711 if (!single_succ_p (bb
))
3713 gcc_assert (can_merge_blocks_p (bb
->prev_bb
, bb
));
3714 sel_merge_blocks (bb
->prev_bb
, bb
);
3718 succ_bb
= single_succ (bb
);
3723 /* Save a pred/succ from the current region to attach the notes to. */
3725 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3726 if (in_current_region_p (e
->src
))
3731 if (note_bb
== NULL
)
3734 /* Redirect all non-fallthru edges to the next bb. */
3739 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3743 if (!(e
->flags
& EDGE_FALLTHRU
))
3745 /* We can not invalidate computed topological order by moving
3746 the edge destination block (E->SUCC) along a fallthru edge.
3748 We will update dominators here only when we'll get
3749 an unreachable block when redirecting, otherwise
3750 sel_redirect_edge_and_branch will take care of it. */
3752 && single_pred_p (e
->dest
))
3753 dom_bbs
.safe_push (e
->dest
);
3754 sel_redirect_edge_and_branch (e
, succ_bb
);
3758 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3759 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3760 still have to adjust it. */
3761 else if (single_succ_p (pred_bb
) && any_condjump_p (BB_END (pred_bb
)))
3763 /* If possible, try to remove the unneeded conditional jump. */
3764 if (INSN_SCHED_TIMES (BB_END (pred_bb
)) == 0
3765 && !IN_CURRENT_FENCE_P (BB_END (pred_bb
)))
3767 if (!sel_remove_insn (BB_END (pred_bb
), false, false))
3768 tidy_fallthru_edge (e
);
3771 sel_redirect_edge_and_branch (e
, succ_bb
);
3778 if (can_merge_blocks_p (bb
->prev_bb
, bb
))
3779 sel_merge_blocks (bb
->prev_bb
, bb
);
3782 /* This is a block without fallthru predecessor. Just delete it. */
3783 gcc_assert (note_bb
);
3784 move_bb_info (note_bb
, bb
);
3785 remove_empty_bb (bb
, true);
3788 if (!dom_bbs
.is_empty ())
3790 dom_bbs
.safe_push (succ_bb
);
3791 iterate_fix_dominators (CDI_DOMINATORS
, dom_bbs
, false);
3798 /* Tidy the control flow after we have removed original insn from
3799 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3800 is true, also try to optimize control flow on non-empty blocks. */
3802 tidy_control_flow (basic_block xbb
, bool full_tidying
)
3804 bool changed
= true;
3807 /* First check whether XBB is empty. */
3808 changed
= maybe_tidy_empty_bb (xbb
);
3809 if (changed
|| !full_tidying
)
3812 /* Check if there is a unnecessary jump after insn left. */
3813 if (bb_has_removable_jump_to_p (xbb
, xbb
->next_bb
)
3814 && INSN_SCHED_TIMES (BB_END (xbb
)) == 0
3815 && !IN_CURRENT_FENCE_P (BB_END (xbb
)))
3817 if (sel_remove_insn (BB_END (xbb
), false, false))
3819 tidy_fallthru_edge (EDGE_SUCC (xbb
, 0));
3822 first
= sel_bb_head (xbb
);
3823 last
= sel_bb_end (xbb
);
3824 if (MAY_HAVE_DEBUG_INSNS
)
3826 if (first
!= last
&& DEBUG_INSN_P (first
))
3828 first
= NEXT_INSN (first
);
3829 while (first
!= last
&& (DEBUG_INSN_P (first
) || NOTE_P (first
)));
3831 if (first
!= last
&& DEBUG_INSN_P (last
))
3833 last
= PREV_INSN (last
);
3834 while (first
!= last
&& (DEBUG_INSN_P (last
) || NOTE_P (last
)));
3836 /* Check if there is an unnecessary jump in previous basic block leading
3837 to next basic block left after removing INSN from stream.
3838 If it is so, remove that jump and redirect edge to current
3839 basic block (where there was INSN before deletion). This way
3840 when NOP will be deleted several instructions later with its
3841 basic block we will not get a jump to next instruction, which
3844 && !sel_bb_empty_p (xbb
)
3845 && INSN_NOP_P (last
)
3846 /* Flow goes fallthru from current block to the next. */
3847 && EDGE_COUNT (xbb
->succs
) == 1
3848 && (EDGE_SUCC (xbb
, 0)->flags
& EDGE_FALLTHRU
)
3849 /* When successor is an EXIT block, it may not be the next block. */
3850 && single_succ (xbb
) != EXIT_BLOCK_PTR
3851 /* And unconditional jump in previous basic block leads to
3852 next basic block of XBB and this jump can be safely removed. */
3853 && in_current_region_p (xbb
->prev_bb
)
3854 && bb_has_removable_jump_to_p (xbb
->prev_bb
, xbb
->next_bb
)
3855 && INSN_SCHED_TIMES (BB_END (xbb
->prev_bb
)) == 0
3856 /* Also this jump is not at the scheduling boundary. */
3857 && !IN_CURRENT_FENCE_P (BB_END (xbb
->prev_bb
)))
3859 bool recompute_toporder_p
;
3860 /* Clear data structures of jump - jump itself will be removed
3861 by sel_redirect_edge_and_branch. */
3862 clear_expr (INSN_EXPR (BB_END (xbb
->prev_bb
)));
3863 recompute_toporder_p
3864 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb
->prev_bb
, 0), xbb
);
3866 gcc_assert (EDGE_SUCC (xbb
->prev_bb
, 0)->flags
& EDGE_FALLTHRU
);
3868 /* It can turn out that after removing unused jump, basic block
3869 that contained that jump, becomes empty too. In such case
3871 if (sel_bb_empty_p (xbb
->prev_bb
))
3872 changed
= maybe_tidy_empty_bb (xbb
->prev_bb
);
3873 if (recompute_toporder_p
)
3874 sel_recompute_toporder ();
3877 #ifdef ENABLE_CHECKING
3878 verify_backedges ();
3879 verify_dominators (CDI_DOMINATORS
);
3885 /* Purge meaningless empty blocks in the middle of a region. */
3887 purge_empty_blocks (void)
3891 /* Do not attempt to delete the first basic block in the region. */
3892 for (i
= 1; i
< current_nr_blocks
; )
3894 basic_block b
= BASIC_BLOCK (BB_TO_BLOCK (i
));
3896 if (maybe_tidy_empty_bb (b
))
3903 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3904 do not delete insn's data, because it will be later re-emitted.
3905 Return true if we have removed some blocks afterwards. */
3907 sel_remove_insn (insn_t insn
, bool only_disconnect
, bool full_tidying
)
3909 basic_block bb
= BLOCK_FOR_INSN (insn
);
3911 gcc_assert (INSN_IN_STREAM_P (insn
));
3913 if (DEBUG_INSN_P (insn
) && BB_AV_SET_VALID_P (bb
))
3918 /* When we remove a debug insn that is head of a BB, it remains
3919 in the AV_SET of the block, but it shouldn't. */
3920 FOR_EACH_EXPR_1 (expr
, i
, &BB_AV_SET (bb
))
3921 if (EXPR_INSN_RTX (expr
) == insn
)
3923 av_set_iter_remove (&i
);
3928 if (only_disconnect
)
3930 insn_t prev
= PREV_INSN (insn
);
3931 insn_t next
= NEXT_INSN (insn
);
3932 basic_block bb
= BLOCK_FOR_INSN (insn
);
3934 NEXT_INSN (prev
) = next
;
3935 PREV_INSN (next
) = prev
;
3937 if (BB_HEAD (bb
) == insn
)
3939 gcc_assert (BLOCK_FOR_INSN (prev
) == bb
);
3940 BB_HEAD (bb
) = prev
;
3942 if (BB_END (bb
) == insn
)
3948 clear_expr (INSN_EXPR (insn
));
3951 /* It is necessary to null this fields before calling add_insn (). */
3952 PREV_INSN (insn
) = NULL_RTX
;
3953 NEXT_INSN (insn
) = NULL_RTX
;
3955 return tidy_control_flow (bb
, full_tidying
);
3958 /* Estimate number of the insns in BB. */
3960 sel_estimate_number_of_insns (basic_block bb
)
3963 insn_t insn
= NEXT_INSN (BB_HEAD (bb
)), next_tail
= NEXT_INSN (BB_END (bb
));
3965 for (; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
3966 if (NONDEBUG_INSN_P (insn
))
3972 /* We don't need separate luids for notes or labels. */
3974 sel_luid_for_non_insn (rtx x
)
3976 gcc_assert (NOTE_P (x
) || LABEL_P (x
));
3981 /* Find the proper seqno for inserting at INSN by successors.
3982 Return -1 if no successors with positive seqno exist. */
3984 get_seqno_by_succs (rtx insn
)
3986 basic_block bb
= BLOCK_FOR_INSN (insn
);
3987 rtx tmp
= insn
, end
= BB_END (bb
);
3994 tmp
= NEXT_INSN (tmp
);
3996 return INSN_SEQNO (tmp
);
4001 FOR_EACH_SUCC_1 (succ
, si
, end
, SUCCS_NORMAL
)
4002 if (INSN_SEQNO (succ
) > 0)
4003 seqno
= MIN (seqno
, INSN_SEQNO (succ
));
4005 if (seqno
== INT_MAX
)
4011 /* Compute seqno for INSN by its preds or succs. */
4013 get_seqno_for_a_jump (insn_t insn
)
4017 gcc_assert (INSN_SIMPLEJUMP_P (insn
));
4019 if (!sel_bb_head_p (insn
))
4020 seqno
= INSN_SEQNO (PREV_INSN (insn
));
4023 basic_block bb
= BLOCK_FOR_INSN (insn
);
4025 if (single_pred_p (bb
)
4026 && !in_current_region_p (single_pred (bb
)))
4028 /* We can have preds outside a region when splitting edges
4029 for pipelining of an outer loop. Use succ instead.
4030 There should be only one of them. */
4035 gcc_assert (flag_sel_sched_pipelining_outer_loops
4036 && current_loop_nest
);
4037 FOR_EACH_SUCC_1 (succ
, si
, insn
,
4038 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
4044 gcc_assert (succ
!= NULL
);
4045 seqno
= INSN_SEQNO (succ
);
4052 cfg_preds (BLOCK_FOR_INSN (insn
), &preds
, &n
);
4055 /* For one predecessor, use simple method. */
4057 seqno
= INSN_SEQNO (preds
[0]);
4059 seqno
= get_seqno_by_preds (insn
);
4065 /* We were unable to find a good seqno among preds. */
4067 seqno
= get_seqno_by_succs (insn
);
4069 gcc_assert (seqno
>= 0);
4074 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4075 with positive seqno exist. */
4077 get_seqno_by_preds (rtx insn
)
4079 basic_block bb
= BLOCK_FOR_INSN (insn
);
4080 rtx tmp
= insn
, head
= BB_HEAD (bb
);
4086 tmp
= PREV_INSN (tmp
);
4088 return INSN_SEQNO (tmp
);
4091 cfg_preds (bb
, &preds
, &n
);
4092 for (i
= 0, seqno
= -1; i
< n
; i
++)
4093 seqno
= MAX (seqno
, INSN_SEQNO (preds
[i
]));
4100 /* Extend pass-scope data structures for basic blocks. */
4102 sel_extend_global_bb_info (void)
4104 sel_global_bb_info
.safe_grow_cleared (last_basic_block
);
4107 /* Extend region-scope data structures for basic blocks. */
4109 extend_region_bb_info (void)
4111 sel_region_bb_info
.safe_grow_cleared (last_basic_block
);
4114 /* Extend all data structures to fit for all basic blocks. */
4116 extend_bb_info (void)
4118 sel_extend_global_bb_info ();
4119 extend_region_bb_info ();
4122 /* Finalize pass-scope data structures for basic blocks. */
4124 sel_finish_global_bb_info (void)
4126 sel_global_bb_info
.release ();
4129 /* Finalize region-scope data structures for basic blocks. */
4131 finish_region_bb_info (void)
4133 sel_region_bb_info
.release ();
4137 /* Data for each insn in current region. */
4138 vec
<sel_insn_data_def
> s_i_d
= vNULL
;
4140 /* Extend data structures for insns from current region. */
4142 extend_insn_data (void)
4146 sched_extend_target ();
4147 sched_deps_init (false);
4149 /* Extend data structures for insns from current region. */
4150 reserve
= (sched_max_luid
+ 1 - s_i_d
.length ());
4151 if (reserve
> 0 && ! s_i_d
.space (reserve
))
4155 if (sched_max_luid
/ 2 > 1024)
4156 size
= sched_max_luid
+ 1024;
4158 size
= 3 * sched_max_luid
/ 2;
4161 s_i_d
.safe_grow_cleared (size
);
4165 /* Finalize data structures for insns from current region. */
4171 /* Clear here all dependence contexts that may have left from insns that were
4172 removed during the scheduling. */
4173 for (i
= 0; i
< s_i_d
.length (); i
++)
4175 sel_insn_data_def
*sid_entry
= &s_i_d
[i
];
4177 if (sid_entry
->live
)
4178 return_regset_to_pool (sid_entry
->live
);
4179 if (sid_entry
->analyzed_deps
)
4181 BITMAP_FREE (sid_entry
->analyzed_deps
);
4182 BITMAP_FREE (sid_entry
->found_deps
);
4183 htab_delete (sid_entry
->transformed_insns
);
4184 free_deps (&sid_entry
->deps_context
);
4186 if (EXPR_VINSN (&sid_entry
->expr
))
4188 clear_expr (&sid_entry
->expr
);
4190 /* Also, clear CANT_MOVE bit here, because we really don't want it
4191 to be passed to the next region. */
4192 CANT_MOVE_BY_LUID (i
) = 0;
4199 /* A proxy to pass initialization data to init_insn (). */
4200 static sel_insn_data_def _insn_init_ssid
;
4201 static sel_insn_data_t insn_init_ssid
= &_insn_init_ssid
;
4203 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4204 static bool insn_init_create_new_vinsn_p
;
4206 /* Set all necessary data for initialization of the new insn[s]. */
4208 set_insn_init (expr_t expr
, vinsn_t vi
, int seqno
)
4210 expr_t x
= &insn_init_ssid
->expr
;
4212 copy_expr_onside (x
, expr
);
4215 insn_init_create_new_vinsn_p
= false;
4216 change_vinsn_in_expr (x
, vi
);
4219 insn_init_create_new_vinsn_p
= true;
4221 insn_init_ssid
->seqno
= seqno
;
4225 /* Init data for INSN. */
4227 init_insn_data (insn_t insn
)
4230 sel_insn_data_t ssid
= insn_init_ssid
;
4232 /* The fields mentioned below are special and hence are not being
4233 propagated to the new insns. */
4234 gcc_assert (!ssid
->asm_p
&& ssid
->sched_next
== NULL
4235 && !ssid
->after_stall_p
&& ssid
->sched_cycle
== 0);
4236 gcc_assert (INSN_P (insn
) && INSN_LUID (insn
) > 0);
4238 expr
= INSN_EXPR (insn
);
4239 copy_expr (expr
, &ssid
->expr
);
4240 prepare_insn_expr (insn
, ssid
->seqno
);
4242 if (insn_init_create_new_vinsn_p
)
4243 change_vinsn_in_expr (expr
, vinsn_create (insn
, init_insn_force_unique_p
));
4245 if (first_time_insn_init (insn
))
4246 init_first_time_insn_data (insn
);
4249 /* This is used to initialize spurious jumps generated by
4250 sel_redirect_edge (). */
4252 init_simplejump_data (insn_t insn
)
4254 init_expr (INSN_EXPR (insn
), vinsn_create (insn
, false), 0,
4255 REG_BR_PROB_BASE
, 0, 0, 0, 0, 0, 0,
4256 vNULL
, true, false, false,
4258 INSN_SEQNO (insn
) = get_seqno_for_a_jump (insn
);
4259 init_first_time_insn_data (insn
);
4262 /* Perform deferred initialization of insns. This is used to process
4263 a new jump that may be created by redirect_edge. */
4265 sel_init_new_insn (insn_t insn
, int flags
)
4267 /* We create data structures for bb when the first insn is emitted in it. */
4269 && INSN_IN_STREAM_P (insn
)
4270 && insn_is_the_only_one_in_bb_p (insn
))
4273 create_initial_data_sets (BLOCK_FOR_INSN (insn
));
4276 if (flags
& INSN_INIT_TODO_LUID
)
4278 sched_extend_luids ();
4279 sched_init_insn_luid (insn
);
4282 if (flags
& INSN_INIT_TODO_SSID
)
4284 extend_insn_data ();
4285 init_insn_data (insn
);
4286 clear_expr (&insn_init_ssid
->expr
);
4289 if (flags
& INSN_INIT_TODO_SIMPLEJUMP
)
4291 extend_insn_data ();
4292 init_simplejump_data (insn
);
4295 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn
))
4296 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4300 /* Functions to init/finish work with lv sets. */
4302 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4304 init_lv_set (basic_block bb
)
4306 gcc_assert (!BB_LV_SET_VALID_P (bb
));
4308 BB_LV_SET (bb
) = get_regset_from_pool ();
4309 COPY_REG_SET (BB_LV_SET (bb
), DF_LR_IN (bb
));
4310 BB_LV_SET_VALID_P (bb
) = true;
4313 /* Copy liveness information to BB from FROM_BB. */
4315 copy_lv_set_from (basic_block bb
, basic_block from_bb
)
4317 gcc_assert (!BB_LV_SET_VALID_P (bb
));
4319 COPY_REG_SET (BB_LV_SET (bb
), BB_LV_SET (from_bb
));
4320 BB_LV_SET_VALID_P (bb
) = true;
4323 /* Initialize lv set of all bb headers. */
4329 /* Initialize of LV sets. */
4333 /* Don't forget EXIT_BLOCK. */
4334 init_lv_set (EXIT_BLOCK_PTR
);
4337 /* Release lv set of HEAD. */
4339 free_lv_set (basic_block bb
)
4341 gcc_assert (BB_LV_SET (bb
) != NULL
);
4343 return_regset_to_pool (BB_LV_SET (bb
));
4344 BB_LV_SET (bb
) = NULL
;
4345 BB_LV_SET_VALID_P (bb
) = false;
4348 /* Finalize lv sets of all bb headers. */
4354 /* Don't forget EXIT_BLOCK. */
4355 free_lv_set (EXIT_BLOCK_PTR
);
4363 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4364 compute_av() processes BB. This function is called when creating new basic
4365 blocks, as well as for blocks (either new or existing) where new jumps are
4366 created when the control flow is being updated. */
4368 invalidate_av_set (basic_block bb
)
4370 BB_AV_LEVEL (bb
) = -1;
4373 /* Create initial data sets for BB (they will be invalid). */
4375 create_initial_data_sets (basic_block bb
)
4378 BB_LV_SET_VALID_P (bb
) = false;
4380 BB_LV_SET (bb
) = get_regset_from_pool ();
4381 invalidate_av_set (bb
);
4384 /* Free av set of BB. */
4386 free_av_set (basic_block bb
)
4388 av_set_clear (&BB_AV_SET (bb
));
4389 BB_AV_LEVEL (bb
) = 0;
4392 /* Free data sets of BB. */
4394 free_data_sets (basic_block bb
)
4400 /* Exchange lv sets of TO and FROM. */
4402 exchange_lv_sets (basic_block to
, basic_block from
)
4405 regset to_lv_set
= BB_LV_SET (to
);
4407 BB_LV_SET (to
) = BB_LV_SET (from
);
4408 BB_LV_SET (from
) = to_lv_set
;
4412 bool to_lv_set_valid_p
= BB_LV_SET_VALID_P (to
);
4414 BB_LV_SET_VALID_P (to
) = BB_LV_SET_VALID_P (from
);
4415 BB_LV_SET_VALID_P (from
) = to_lv_set_valid_p
;
4420 /* Exchange av sets of TO and FROM. */
4422 exchange_av_sets (basic_block to
, basic_block from
)
4425 av_set_t to_av_set
= BB_AV_SET (to
);
4427 BB_AV_SET (to
) = BB_AV_SET (from
);
4428 BB_AV_SET (from
) = to_av_set
;
4432 int to_av_level
= BB_AV_LEVEL (to
);
4434 BB_AV_LEVEL (to
) = BB_AV_LEVEL (from
);
4435 BB_AV_LEVEL (from
) = to_av_level
;
4439 /* Exchange data sets of TO and FROM. */
4441 exchange_data_sets (basic_block to
, basic_block from
)
4443 exchange_lv_sets (to
, from
);
4444 exchange_av_sets (to
, from
);
4447 /* Copy data sets of FROM to TO. */
4449 copy_data_sets (basic_block to
, basic_block from
)
4451 gcc_assert (!BB_LV_SET_VALID_P (to
) && !BB_AV_SET_VALID_P (to
));
4452 gcc_assert (BB_AV_SET (to
) == NULL
);
4454 BB_AV_LEVEL (to
) = BB_AV_LEVEL (from
);
4455 BB_LV_SET_VALID_P (to
) = BB_LV_SET_VALID_P (from
);
4457 if (BB_AV_SET_VALID_P (from
))
4459 BB_AV_SET (to
) = av_set_copy (BB_AV_SET (from
));
4461 if (BB_LV_SET_VALID_P (from
))
4463 gcc_assert (BB_LV_SET (to
) != NULL
);
4464 COPY_REG_SET (BB_LV_SET (to
), BB_LV_SET (from
));
4468 /* Return an av set for INSN, if any. */
4470 get_av_set (insn_t insn
)
4474 gcc_assert (AV_SET_VALID_P (insn
));
4476 if (sel_bb_head_p (insn
))
4477 av_set
= BB_AV_SET (BLOCK_FOR_INSN (insn
));
4484 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4486 get_av_level (insn_t insn
)
4490 gcc_assert (INSN_P (insn
));
4492 if (sel_bb_head_p (insn
))
4493 av_level
= BB_AV_LEVEL (BLOCK_FOR_INSN (insn
));
4495 av_level
= INSN_WS_LEVEL (insn
);
4502 /* Variables to work with control-flow graph. */
4504 /* The basic block that already has been processed by the sched_data_update (),
4505 but hasn't been in sel_add_bb () yet. */
4506 static vec
<basic_block
>
4507 last_added_blocks
= vNULL
;
4509 /* A pool for allocating successor infos. */
4512 /* A stack for saving succs_info structures. */
4513 struct succs_info
*stack
;
4518 /* Top of the stack. */
4521 /* Maximal value of the top. */
4525 /* Functions to work with control-flow graph. */
4527 /* Return basic block note of BB. */
4529 sel_bb_head (basic_block bb
)
4533 if (bb
== EXIT_BLOCK_PTR
)
4535 gcc_assert (exit_insn
!= NULL_RTX
);
4542 note
= bb_note (bb
);
4543 head
= next_nonnote_insn (note
);
4545 if (head
&& (BARRIER_P (head
) || BLOCK_FOR_INSN (head
) != bb
))
4552 /* Return true if INSN is a basic block header. */
4554 sel_bb_head_p (insn_t insn
)
4556 return sel_bb_head (BLOCK_FOR_INSN (insn
)) == insn
;
4559 /* Return last insn of BB. */
4561 sel_bb_end (basic_block bb
)
4563 if (sel_bb_empty_p (bb
))
4566 gcc_assert (bb
!= EXIT_BLOCK_PTR
);
4571 /* Return true if INSN is the last insn in its basic block. */
4573 sel_bb_end_p (insn_t insn
)
4575 return insn
== sel_bb_end (BLOCK_FOR_INSN (insn
));
4578 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4580 sel_bb_empty_p (basic_block bb
)
4582 return sel_bb_head (bb
) == NULL
;
4585 /* True when BB belongs to the current scheduling region. */
4587 in_current_region_p (basic_block bb
)
4589 if (bb
->index
< NUM_FIXED_BLOCKS
)
4592 return CONTAINING_RGN (bb
->index
) == CONTAINING_RGN (BB_TO_BLOCK (0));
4595 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4597 fallthru_bb_of_jump (rtx jump
)
4602 if (!any_condjump_p (jump
))
4605 /* A basic block that ends with a conditional jump may still have one successor
4606 (and be followed by a barrier), we are not interested. */
4607 if (single_succ_p (BLOCK_FOR_INSN (jump
)))
4610 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump
))->dest
;
4613 /* Remove all notes from BB. */
4615 init_bb (basic_block bb
)
4617 remove_notes (bb_note (bb
), BB_END (bb
));
4618 BB_NOTE_LIST (bb
) = note_list
;
4622 sel_init_bbs (bb_vec_t bbs
)
4624 const struct sched_scan_info_def ssi
=
4626 extend_bb_info
, /* extend_bb */
4627 init_bb
, /* init_bb */
4628 NULL
, /* extend_insn */
4629 NULL
/* init_insn */
4632 sched_scan (&ssi
, bbs
);
4635 /* Restore notes for the whole region. */
4637 sel_restore_notes (void)
4642 for (bb
= 0; bb
< current_nr_blocks
; bb
++)
4644 basic_block first
, last
;
4646 first
= EBB_FIRST_BB (bb
);
4647 last
= EBB_LAST_BB (bb
)->next_bb
;
4651 note_list
= BB_NOTE_LIST (first
);
4652 restore_other_notes (NULL
, first
);
4653 BB_NOTE_LIST (first
) = NULL_RTX
;
4655 FOR_BB_INSNS (first
, insn
)
4656 if (NONDEBUG_INSN_P (insn
))
4657 reemit_notes (insn
);
4659 first
= first
->next_bb
;
4661 while (first
!= last
);
4665 /* Free per-bb data structures. */
4667 sel_finish_bbs (void)
4669 sel_restore_notes ();
4671 /* Remove current loop preheader from this loop. */
4672 if (current_loop_nest
)
4673 sel_remove_loop_preheader ();
4675 finish_region_bb_info ();
4678 /* Return true if INSN has a single successor of type FLAGS. */
4680 sel_insn_has_single_succ_p (insn_t insn
, int flags
)
4684 bool first_p
= true;
4686 FOR_EACH_SUCC_1 (succ
, si
, insn
, flags
)
4697 /* Allocate successor's info. */
4698 static struct succs_info
*
4699 alloc_succs_info (void)
4701 if (succs_info_pool
.top
== succs_info_pool
.max_top
)
4705 if (++succs_info_pool
.max_top
>= succs_info_pool
.size
)
4708 i
= ++succs_info_pool
.top
;
4709 succs_info_pool
.stack
[i
].succs_ok
.create (10);
4710 succs_info_pool
.stack
[i
].succs_other
.create (10);
4711 succs_info_pool
.stack
[i
].probs_ok
.create (10);
4714 succs_info_pool
.top
++;
4716 return &succs_info_pool
.stack
[succs_info_pool
.top
];
4719 /* Free successor's info. */
4721 free_succs_info (struct succs_info
* sinfo
)
4723 gcc_assert (succs_info_pool
.top
>= 0
4724 && &succs_info_pool
.stack
[succs_info_pool
.top
] == sinfo
);
4725 succs_info_pool
.top
--;
4727 /* Clear stale info. */
4728 sinfo
->succs_ok
.block_remove (0, sinfo
->succs_ok
.length ());
4729 sinfo
->succs_other
.block_remove (0, sinfo
->succs_other
.length ());
4730 sinfo
->probs_ok
.block_remove (0, sinfo
->probs_ok
.length ());
4731 sinfo
->all_prob
= 0;
4732 sinfo
->succs_ok_n
= 0;
4733 sinfo
->all_succs_n
= 0;
4736 /* Compute successor info for INSN. FLAGS are the flags passed
4737 to the FOR_EACH_SUCC_1 iterator. */
4739 compute_succs_info (insn_t insn
, short flags
)
4743 struct succs_info
*sinfo
= alloc_succs_info ();
4745 /* Traverse *all* successors and decide what to do with each. */
4746 FOR_EACH_SUCC_1 (succ
, si
, insn
, SUCCS_ALL
)
4748 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4749 perform code motion through inner loops. */
4750 short current_flags
= si
.current_flags
& ~SUCCS_SKIP_TO_LOOP_EXITS
;
4752 if (current_flags
& flags
)
4754 sinfo
->succs_ok
.safe_push (succ
);
4755 sinfo
->probs_ok
.safe_push (
4756 /* FIXME: Improve calculation when skipping
4757 inner loop to exits. */
4758 si
.bb_end
? si
.e1
->probability
: REG_BR_PROB_BASE
);
4759 sinfo
->succs_ok_n
++;
4762 sinfo
->succs_other
.safe_push (succ
);
4764 /* Compute all_prob. */
4766 sinfo
->all_prob
= REG_BR_PROB_BASE
;
4768 sinfo
->all_prob
+= si
.e1
->probability
;
4770 sinfo
->all_succs_n
++;
4776 /* Return the predecessors of BB in PREDS and their number in N.
4777 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4779 cfg_preds_1 (basic_block bb
, insn_t
**preds
, int *n
, int *size
)
4784 gcc_assert (BLOCK_TO_BB (bb
->index
) != 0);
4786 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4788 basic_block pred_bb
= e
->src
;
4789 insn_t bb_end
= BB_END (pred_bb
);
4791 if (!in_current_region_p (pred_bb
))
4793 gcc_assert (flag_sel_sched_pipelining_outer_loops
4794 && current_loop_nest
);
4798 if (sel_bb_empty_p (pred_bb
))
4799 cfg_preds_1 (pred_bb
, preds
, n
, size
);
4803 *preds
= XRESIZEVEC (insn_t
, *preds
,
4804 (*size
= 2 * *size
+ 1));
4805 (*preds
)[(*n
)++] = bb_end
;
4810 || (flag_sel_sched_pipelining_outer_loops
4811 && current_loop_nest
));
4814 /* Find all predecessors of BB and record them in PREDS and their number
4815 in N. Empty blocks are skipped, and only normal (forward in-region)
4816 edges are processed. */
4818 cfg_preds (basic_block bb
, insn_t
**preds
, int *n
)
4824 cfg_preds_1 (bb
, preds
, n
, &size
);
4827 /* Returns true if we are moving INSN through join point. */
4829 sel_num_cfg_preds_gt_1 (insn_t insn
)
4833 if (!sel_bb_head_p (insn
) || INSN_BB (insn
) == 0)
4836 bb
= BLOCK_FOR_INSN (insn
);
4840 if (EDGE_COUNT (bb
->preds
) > 1)
4843 gcc_assert (EDGE_PRED (bb
, 0)->dest
== bb
);
4844 bb
= EDGE_PRED (bb
, 0)->src
;
4846 if (!sel_bb_empty_p (bb
))
4853 /* Returns true when BB should be the end of an ebb. Adapted from the
4854 code in sched-ebb.c. */
4856 bb_ends_ebb_p (basic_block bb
)
4858 basic_block next_bb
= bb_next_bb (bb
);
4861 if (next_bb
== EXIT_BLOCK_PTR
4862 || bitmap_bit_p (forced_ebb_heads
, next_bb
->index
)
4863 || (LABEL_P (BB_HEAD (next_bb
))
4864 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4865 Work around that. */
4866 && !single_pred_p (next_bb
)))
4869 if (!in_current_region_p (next_bb
))
4872 e
= find_fallthru_edge (bb
->succs
);
4875 gcc_assert (e
->dest
== next_bb
);
4883 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4884 successor of INSN. */
4886 in_same_ebb_p (insn_t insn
, insn_t succ
)
4888 basic_block ptr
= BLOCK_FOR_INSN (insn
);
4892 if (ptr
== BLOCK_FOR_INSN (succ
))
4895 if (bb_ends_ebb_p (ptr
))
4898 ptr
= bb_next_bb (ptr
);
4905 /* Recomputes the reverse topological order for the function and
4906 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4907 modified appropriately. */
4909 recompute_rev_top_order (void)
4914 if (!rev_top_order_index
|| rev_top_order_index_len
< last_basic_block
)
4916 rev_top_order_index_len
= last_basic_block
;
4917 rev_top_order_index
= XRESIZEVEC (int, rev_top_order_index
,
4918 rev_top_order_index_len
);
4921 postorder
= XNEWVEC (int, n_basic_blocks
);
4923 n_blocks
= post_order_compute (postorder
, true, false);
4924 gcc_assert (n_basic_blocks
== n_blocks
);
4926 /* Build reverse function: for each basic block with BB->INDEX == K
4927 rev_top_order_index[K] is it's reverse topological sort number. */
4928 for (i
= 0; i
< n_blocks
; i
++)
4930 gcc_assert (postorder
[i
] < rev_top_order_index_len
);
4931 rev_top_order_index
[postorder
[i
]] = i
;
4937 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4939 clear_outdated_rtx_info (basic_block bb
)
4943 FOR_BB_INSNS (bb
, insn
)
4946 SCHED_GROUP_P (insn
) = 0;
4947 INSN_AFTER_STALL_P (insn
) = 0;
4948 INSN_SCHED_TIMES (insn
) = 0;
4949 EXPR_PRIORITY_ADJ (INSN_EXPR (insn
)) = 0;
4951 /* We cannot use the changed caches, as previously we could ignore
4952 the LHS dependence due to enabled renaming and transform
4953 the expression, and currently we'll be unable to do this. */
4954 htab_empty (INSN_TRANSFORMED_INSNS (insn
));
4958 /* Add BB_NOTE to the pool of available basic block notes. */
4960 return_bb_to_pool (basic_block bb
)
4962 rtx note
= bb_note (bb
);
4964 gcc_assert (NOTE_BASIC_BLOCK (note
) == bb
4965 && bb
->aux
== NULL
);
4967 /* It turns out that current cfg infrastructure does not support
4968 reuse of basic blocks. Don't bother for now. */
4969 /*bb_note_pool.safe_push (note);*/
4972 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4974 get_bb_note_from_pool (void)
4976 if (bb_note_pool
.is_empty ())
4980 rtx note
= bb_note_pool
.pop ();
4982 PREV_INSN (note
) = NULL_RTX
;
4983 NEXT_INSN (note
) = NULL_RTX
;
4989 /* Free bb_note_pool. */
4991 free_bb_note_pool (void)
4993 bb_note_pool
.release ();
4996 /* Setup scheduler pool and successor structure. */
4998 alloc_sched_pools (void)
5002 succs_size
= MAX_WS
+ 1;
5003 succs_info_pool
.stack
= XCNEWVEC (struct succs_info
, succs_size
);
5004 succs_info_pool
.size
= succs_size
;
5005 succs_info_pool
.top
= -1;
5006 succs_info_pool
.max_top
= -1;
5008 sched_lists_pool
= create_alloc_pool ("sel-sched-lists",
5009 sizeof (struct _list_node
), 500);
5012 /* Free the pools. */
5014 free_sched_pools (void)
5018 free_alloc_pool (sched_lists_pool
);
5019 gcc_assert (succs_info_pool
.top
== -1);
5020 for (i
= 0; i
< succs_info_pool
.max_top
; i
++)
5022 succs_info_pool
.stack
[i
].succs_ok
.release ();
5023 succs_info_pool
.stack
[i
].succs_other
.release ();
5024 succs_info_pool
.stack
[i
].probs_ok
.release ();
5026 free (succs_info_pool
.stack
);
5030 /* Returns a position in RGN where BB can be inserted retaining
5031 topological order. */
5033 find_place_to_insert_bb (basic_block bb
, int rgn
)
5035 bool has_preds_outside_rgn
= false;
5039 /* Find whether we have preds outside the region. */
5040 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5041 if (!in_current_region_p (e
->src
))
5043 has_preds_outside_rgn
= true;
5047 /* Recompute the top order -- needed when we have > 1 pred
5048 and in case we don't have preds outside. */
5049 if (flag_sel_sched_pipelining_outer_loops
5050 && (has_preds_outside_rgn
|| EDGE_COUNT (bb
->preds
) > 1))
5052 int i
, bbi
= bb
->index
, cur_bbi
;
5054 recompute_rev_top_order ();
5055 for (i
= RGN_NR_BLOCKS (rgn
) - 1; i
>= 0; i
--)
5057 cur_bbi
= BB_TO_BLOCK (i
);
5058 if (rev_top_order_index
[bbi
]
5059 < rev_top_order_index
[cur_bbi
])
5063 /* We skipped the right block, so we increase i. We accommodate
5064 it for increasing by step later, so we decrease i. */
5067 else if (has_preds_outside_rgn
)
5069 /* This is the case when we generate an extra empty block
5070 to serve as region head during pipelining. */
5071 e
= EDGE_SUCC (bb
, 0);
5072 gcc_assert (EDGE_COUNT (bb
->succs
) == 1
5073 && in_current_region_p (EDGE_SUCC (bb
, 0)->dest
)
5074 && (BLOCK_TO_BB (e
->dest
->index
) == 0));
5078 /* We don't have preds outside the region. We should have
5079 the only pred, because the multiple preds case comes from
5080 the pipelining of outer loops, and that is handled above.
5081 Just take the bbi of this single pred. */
5082 if (EDGE_COUNT (bb
->succs
) > 0)
5086 gcc_assert (EDGE_COUNT (bb
->preds
) == 1);
5088 pred_bbi
= EDGE_PRED (bb
, 0)->src
->index
;
5089 return BLOCK_TO_BB (pred_bbi
);
5092 /* BB has no successors. It is safe to put it in the end. */
5093 return current_nr_blocks
- 1;
5096 /* Deletes an empty basic block freeing its data. */
5098 delete_and_free_basic_block (basic_block bb
)
5100 gcc_assert (sel_bb_empty_p (bb
));
5105 bitmap_clear_bit (blocks_to_reschedule
, bb
->index
);
5107 /* Can't assert av_set properties because we use sel_aremove_bb
5108 when removing loop preheader from the region. At the point of
5109 removing the preheader we already have deallocated sel_region_bb_info. */
5110 gcc_assert (BB_LV_SET (bb
) == NULL
5111 && !BB_LV_SET_VALID_P (bb
)
5112 && BB_AV_LEVEL (bb
) == 0
5113 && BB_AV_SET (bb
) == NULL
);
5115 delete_basic_block (bb
);
5118 /* Add BB to the current region and update the region data. */
5120 add_block_to_current_region (basic_block bb
)
5122 int i
, pos
, bbi
= -2, rgn
;
5124 rgn
= CONTAINING_RGN (BB_TO_BLOCK (0));
5125 bbi
= find_place_to_insert_bb (bb
, rgn
);
5127 pos
= RGN_BLOCKS (rgn
) + bbi
;
5129 gcc_assert (RGN_HAS_REAL_EBB (rgn
) == 0
5130 && ebb_head
[bbi
] == pos
);
5132 /* Make a place for the new block. */
5135 for (i
= RGN_BLOCKS (rgn
+ 1) - 1; i
>= pos
; i
--)
5136 BLOCK_TO_BB (rgn_bb_table
[i
])++;
5138 memmove (rgn_bb_table
+ pos
+ 1,
5140 (RGN_BLOCKS (nr_regions
) - pos
) * sizeof (*rgn_bb_table
));
5142 /* Initialize data for BB. */
5143 rgn_bb_table
[pos
] = bb
->index
;
5144 BLOCK_TO_BB (bb
->index
) = bbi
;
5145 CONTAINING_RGN (bb
->index
) = rgn
;
5147 RGN_NR_BLOCKS (rgn
)++;
5149 for (i
= rgn
+ 1; i
<= nr_regions
; i
++)
5153 /* Remove BB from the current region and update the region data. */
5155 remove_bb_from_region (basic_block bb
)
5157 int i
, pos
, bbi
= -2, rgn
;
5159 rgn
= CONTAINING_RGN (BB_TO_BLOCK (0));
5160 bbi
= BLOCK_TO_BB (bb
->index
);
5161 pos
= RGN_BLOCKS (rgn
) + bbi
;
5163 gcc_assert (RGN_HAS_REAL_EBB (rgn
) == 0
5164 && ebb_head
[bbi
] == pos
);
5166 for (i
= RGN_BLOCKS (rgn
+ 1) - 1; i
>= pos
; i
--)
5167 BLOCK_TO_BB (rgn_bb_table
[i
])--;
5169 memmove (rgn_bb_table
+ pos
,
5170 rgn_bb_table
+ pos
+ 1,
5171 (RGN_BLOCKS (nr_regions
) - pos
) * sizeof (*rgn_bb_table
));
5173 RGN_NR_BLOCKS (rgn
)--;
5174 for (i
= rgn
+ 1; i
<= nr_regions
; i
++)
5178 /* Add BB to the current region and update all data. If BB is NULL, add all
5179 blocks from last_added_blocks vector. */
5181 sel_add_bb (basic_block bb
)
5183 /* Extend luids so that new notes will receive zero luids. */
5184 sched_extend_luids ();
5186 sel_init_bbs (last_added_blocks
);
5188 /* When bb is passed explicitly, the vector should contain
5189 the only element that equals to bb; otherwise, the vector
5190 should not be NULL. */
5191 gcc_assert (last_added_blocks
.exists ());
5195 gcc_assert (last_added_blocks
.length () == 1
5196 && last_added_blocks
[0] == bb
);
5197 add_block_to_current_region (bb
);
5199 /* We associate creating/deleting data sets with the first insn
5200 appearing / disappearing in the bb. */
5201 if (!sel_bb_empty_p (bb
) && BB_LV_SET (bb
) == NULL
)
5202 create_initial_data_sets (bb
);
5204 last_added_blocks
.release ();
5207 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5210 basic_block temp_bb
= NULL
;
5213 last_added_blocks
.iterate (i
, &bb
); i
++)
5215 add_block_to_current_region (bb
);
5219 /* We need to fetch at least one bb so we know the region
5221 gcc_assert (temp_bb
!= NULL
);
5224 last_added_blocks
.release ();
5227 rgn_setup_region (CONTAINING_RGN (bb
->index
));
5230 /* Remove BB from the current region and update all data.
5231 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5233 sel_remove_bb (basic_block bb
, bool remove_from_cfg_p
)
5235 unsigned idx
= bb
->index
;
5237 gcc_assert (bb
!= NULL
&& BB_NOTE_LIST (bb
) == NULL_RTX
);
5239 remove_bb_from_region (bb
);
5240 return_bb_to_pool (bb
);
5241 bitmap_clear_bit (blocks_to_reschedule
, idx
);
5243 if (remove_from_cfg_p
)
5245 basic_block succ
= single_succ (bb
);
5246 delete_and_free_basic_block (bb
);
5247 set_immediate_dominator (CDI_DOMINATORS
, succ
,
5248 recompute_dominator (CDI_DOMINATORS
, succ
));
5251 rgn_setup_region (CONTAINING_RGN (idx
));
5254 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5256 move_bb_info (basic_block merge_bb
, basic_block empty_bb
)
5258 if (in_current_region_p (merge_bb
))
5259 concat_note_lists (BB_NOTE_LIST (empty_bb
),
5260 &BB_NOTE_LIST (merge_bb
));
5261 BB_NOTE_LIST (empty_bb
) = NULL_RTX
;
5265 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5266 region, but keep it in CFG. */
5268 remove_empty_bb (basic_block empty_bb
, bool remove_from_cfg_p
)
5270 /* The block should contain just a note or a label.
5271 We try to check whether it is unused below. */
5272 gcc_assert (BB_HEAD (empty_bb
) == BB_END (empty_bb
)
5273 || LABEL_P (BB_HEAD (empty_bb
)));
5275 /* If basic block has predecessors or successors, redirect them. */
5276 if (remove_from_cfg_p
5277 && (EDGE_COUNT (empty_bb
->preds
) > 0
5278 || EDGE_COUNT (empty_bb
->succs
) > 0))
5283 /* We need to init PRED and SUCC before redirecting edges. */
5284 if (EDGE_COUNT (empty_bb
->preds
) > 0)
5288 gcc_assert (EDGE_COUNT (empty_bb
->preds
) == 1);
5290 e
= EDGE_PRED (empty_bb
, 0);
5291 gcc_assert (e
->src
== empty_bb
->prev_bb
5292 && (e
->flags
& EDGE_FALLTHRU
));
5294 pred
= empty_bb
->prev_bb
;
5299 if (EDGE_COUNT (empty_bb
->succs
) > 0)
5301 /* We do not check fallthruness here as above, because
5302 after removing a jump the edge may actually be not fallthru. */
5303 gcc_assert (EDGE_COUNT (empty_bb
->succs
) == 1);
5304 succ
= EDGE_SUCC (empty_bb
, 0)->dest
;
5309 if (EDGE_COUNT (empty_bb
->preds
) > 0 && succ
!= NULL
)
5311 edge e
= EDGE_PRED (empty_bb
, 0);
5313 if (e
->flags
& EDGE_FALLTHRU
)
5314 redirect_edge_succ_nodup (e
, succ
);
5316 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb
, 0), succ
);
5319 if (EDGE_COUNT (empty_bb
->succs
) > 0 && pred
!= NULL
)
5321 edge e
= EDGE_SUCC (empty_bb
, 0);
5323 if (find_edge (pred
, e
->dest
) == NULL
)
5324 redirect_edge_pred (e
, pred
);
5328 /* Finish removing. */
5329 sel_remove_bb (empty_bb
, remove_from_cfg_p
);
5332 /* An implementation of create_basic_block hook, which additionally updates
5333 per-bb data structures. */
5335 sel_create_basic_block (void *headp
, void *endp
, basic_block after
)
5340 gcc_assert (flag_sel_sched_pipelining_outer_loops
5341 || !last_added_blocks
.exists ());
5343 new_bb_note
= get_bb_note_from_pool ();
5345 if (new_bb_note
== NULL_RTX
)
5346 new_bb
= orig_cfg_hooks
.create_basic_block (headp
, endp
, after
);
5349 new_bb
= create_basic_block_structure ((rtx
) headp
, (rtx
) endp
,
5350 new_bb_note
, after
);
5354 last_added_blocks
.safe_push (new_bb
);
5359 /* Implement sched_init_only_bb (). */
5361 sel_init_only_bb (basic_block bb
, basic_block after
)
5363 gcc_assert (after
== NULL
);
5366 rgn_make_new_region_out_of_new_block (bb
);
5369 /* Update the latch when we've splitted or merged it from FROM block to TO.
5370 This should be checked for all outer loops, too. */
5372 change_loops_latches (basic_block from
, basic_block to
)
5374 gcc_assert (from
!= to
);
5376 if (current_loop_nest
)
5380 for (loop
= current_loop_nest
; loop
; loop
= loop_outer (loop
))
5381 if (considered_for_pipelining_p (loop
) && loop
->latch
== from
)
5383 gcc_assert (loop
== current_loop_nest
);
5385 gcc_assert (loop_latch_edge (loop
));
5390 /* Splits BB on two basic blocks, adding it to the region and extending
5391 per-bb data structures. Returns the newly created bb. */
5393 sel_split_block (basic_block bb
, rtx after
)
5398 new_bb
= sched_split_block_1 (bb
, after
);
5399 sel_add_bb (new_bb
);
5401 /* This should be called after sel_add_bb, because this uses
5402 CONTAINING_RGN for the new block, which is not yet initialized.
5403 FIXME: this function may be a no-op now. */
5404 change_loops_latches (bb
, new_bb
);
5406 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5407 FOR_BB_INSNS (new_bb
, insn
)
5409 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn
)) = new_bb
->index
;
5411 if (sel_bb_empty_p (bb
))
5413 gcc_assert (!sel_bb_empty_p (new_bb
));
5415 /* NEW_BB has data sets that need to be updated and BB holds
5416 data sets that should be removed. Exchange these data sets
5417 so that we won't lose BB's valid data sets. */
5418 exchange_data_sets (new_bb
, bb
);
5419 free_data_sets (bb
);
5422 if (!sel_bb_empty_p (new_bb
)
5423 && bitmap_bit_p (blocks_to_reschedule
, bb
->index
))
5424 bitmap_set_bit (blocks_to_reschedule
, new_bb
->index
);
5429 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5430 Otherwise returns NULL. */
5432 check_for_new_jump (basic_block bb
, int prev_max_uid
)
5436 end
= sel_bb_end (bb
);
5437 if (end
&& INSN_UID (end
) >= prev_max_uid
)
5442 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5443 New means having UID at least equal to PREV_MAX_UID. */
5445 find_new_jump (basic_block from
, basic_block jump_bb
, int prev_max_uid
)
5449 /* Return immediately if no new insns were emitted. */
5450 if (get_max_uid () == prev_max_uid
)
5453 /* Now check both blocks for new jumps. It will ever be only one. */
5454 if ((jump
= check_for_new_jump (from
, prev_max_uid
)))
5458 && (jump
= check_for_new_jump (jump_bb
, prev_max_uid
)))
5463 /* Splits E and adds the newly created basic block to the current region.
5464 Returns this basic block. */
5466 sel_split_edge (edge e
)
5468 basic_block new_bb
, src
, other_bb
= NULL
;
5473 prev_max_uid
= get_max_uid ();
5474 new_bb
= split_edge (e
);
5476 if (flag_sel_sched_pipelining_outer_loops
5477 && current_loop_nest
)
5482 /* Some of the basic blocks might not have been added to the loop.
5483 Add them here, until this is fixed in force_fallthru. */
5485 last_added_blocks
.iterate (i
, &bb
); i
++)
5486 if (!bb
->loop_father
)
5488 add_bb_to_loop (bb
, e
->dest
->loop_father
);
5490 gcc_assert (!other_bb
&& (new_bb
->index
!= bb
->index
));
5495 /* Add all last_added_blocks to the region. */
5498 jump
= find_new_jump (src
, new_bb
, prev_max_uid
);
5500 sel_init_new_insn (jump
, INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SIMPLEJUMP
);
5502 /* Put the correct lv set on this block. */
5503 if (other_bb
&& !sel_bb_empty_p (other_bb
))
5504 compute_live (sel_bb_head (other_bb
));
5509 /* Implement sched_create_empty_bb (). */
5511 sel_create_empty_bb (basic_block after
)
5515 new_bb
= sched_create_empty_bb_1 (after
);
5517 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5519 gcc_assert (last_added_blocks
.length () == 1
5520 && last_added_blocks
[0] == new_bb
);
5522 last_added_blocks
.release ();
5526 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5527 will be splitted to insert a check. */
5529 sel_create_recovery_block (insn_t orig_insn
)
5531 basic_block first_bb
, second_bb
, recovery_block
;
5532 basic_block before_recovery
= NULL
;
5535 first_bb
= BLOCK_FOR_INSN (orig_insn
);
5536 if (sel_bb_end_p (orig_insn
))
5538 /* Avoid introducing an empty block while splitting. */
5539 gcc_assert (single_succ_p (first_bb
));
5540 second_bb
= single_succ (first_bb
);
5543 second_bb
= sched_split_block (first_bb
, orig_insn
);
5545 recovery_block
= sched_create_recovery_block (&before_recovery
);
5546 if (before_recovery
)
5547 copy_lv_set_from (before_recovery
, EXIT_BLOCK_PTR
);
5549 gcc_assert (sel_bb_empty_p (recovery_block
));
5550 sched_create_recovery_edges (first_bb
, recovery_block
, second_bb
);
5551 if (current_loops
!= NULL
)
5552 add_bb_to_loop (recovery_block
, first_bb
->loop_father
);
5554 sel_add_bb (recovery_block
);
5556 jump
= BB_END (recovery_block
);
5557 gcc_assert (sel_bb_head (recovery_block
) == jump
);
5558 sel_init_new_insn (jump
, INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SIMPLEJUMP
);
5560 return recovery_block
;
5563 /* Merge basic block B into basic block A. */
5565 sel_merge_blocks (basic_block a
, basic_block b
)
5567 gcc_assert (sel_bb_empty_p (b
)
5568 && EDGE_COUNT (b
->preds
) == 1
5569 && EDGE_PRED (b
, 0)->src
== b
->prev_bb
);
5571 move_bb_info (b
->prev_bb
, b
);
5572 remove_empty_bb (b
, false);
5573 merge_blocks (a
, b
);
5574 change_loops_latches (b
, a
);
5577 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5578 data structures for possibly created bb and insns. Returns the newly
5579 added bb or NULL, when a bb was not needed. */
5581 sel_redirect_edge_and_branch_force (edge e
, basic_block to
)
5583 basic_block jump_bb
, src
, orig_dest
= e
->dest
;
5587 /* This function is now used only for bookkeeping code creation, where
5588 we'll never get the single pred of orig_dest block and thus will not
5589 hit unreachable blocks when updating dominator info. */
5590 gcc_assert (!sel_bb_empty_p (e
->src
)
5591 && !single_pred_p (orig_dest
));
5593 prev_max_uid
= get_max_uid ();
5594 jump_bb
= redirect_edge_and_branch_force (e
, to
);
5596 if (jump_bb
!= NULL
)
5597 sel_add_bb (jump_bb
);
5599 /* This function could not be used to spoil the loop structure by now,
5600 thus we don't care to update anything. But check it to be sure. */
5601 if (current_loop_nest
5603 gcc_assert (loop_latch_edge (current_loop_nest
));
5605 jump
= find_new_jump (src
, jump_bb
, prev_max_uid
);
5607 sel_init_new_insn (jump
, INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SIMPLEJUMP
);
5608 set_immediate_dominator (CDI_DOMINATORS
, to
,
5609 recompute_dominator (CDI_DOMINATORS
, to
));
5610 set_immediate_dominator (CDI_DOMINATORS
, orig_dest
,
5611 recompute_dominator (CDI_DOMINATORS
, orig_dest
));
5614 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5615 redirected edge are in reverse topological order. */
5617 sel_redirect_edge_and_branch (edge e
, basic_block to
)
5620 basic_block src
, orig_dest
= e
->dest
;
5624 bool recompute_toporder_p
= false;
5625 bool maybe_unreachable
= single_pred_p (orig_dest
);
5627 latch_edge_p
= (pipelining_p
5628 && current_loop_nest
5629 && e
== loop_latch_edge (current_loop_nest
));
5632 prev_max_uid
= get_max_uid ();
5634 redirected
= redirect_edge_and_branch (e
, to
);
5636 gcc_assert (redirected
&& !last_added_blocks
.exists ());
5638 /* When we've redirected a latch edge, update the header. */
5641 current_loop_nest
->header
= to
;
5642 gcc_assert (loop_latch_edge (current_loop_nest
));
5645 /* In rare situations, the topological relation between the blocks connected
5646 by the redirected edge can change (see PR42245 for an example). Update
5647 block_to_bb/bb_to_block. */
5648 if (CONTAINING_RGN (e
->src
->index
) == CONTAINING_RGN (to
->index
)
5649 && BLOCK_TO_BB (e
->src
->index
) > BLOCK_TO_BB (to
->index
))
5650 recompute_toporder_p
= true;
5652 jump
= find_new_jump (src
, NULL
, prev_max_uid
);
5654 sel_init_new_insn (jump
, INSN_INIT_TODO_LUID
| INSN_INIT_TODO_SIMPLEJUMP
);
5656 /* Only update dominator info when we don't have unreachable blocks.
5657 Otherwise we'll update in maybe_tidy_empty_bb. */
5658 if (!maybe_unreachable
)
5660 set_immediate_dominator (CDI_DOMINATORS
, to
,
5661 recompute_dominator (CDI_DOMINATORS
, to
));
5662 set_immediate_dominator (CDI_DOMINATORS
, orig_dest
,
5663 recompute_dominator (CDI_DOMINATORS
, orig_dest
));
5665 return recompute_toporder_p
;
5668 /* This variable holds the cfg hooks used by the selective scheduler. */
5669 static struct cfg_hooks sel_cfg_hooks
;
5671 /* Register sel-sched cfg hooks. */
5673 sel_register_cfg_hooks (void)
5675 sched_split_block
= sel_split_block
;
5677 orig_cfg_hooks
= get_cfg_hooks ();
5678 sel_cfg_hooks
= orig_cfg_hooks
;
5680 sel_cfg_hooks
.create_basic_block
= sel_create_basic_block
;
5682 set_cfg_hooks (sel_cfg_hooks
);
5684 sched_init_only_bb
= sel_init_only_bb
;
5685 sched_split_block
= sel_split_block
;
5686 sched_create_empty_bb
= sel_create_empty_bb
;
5689 /* Unregister sel-sched cfg hooks. */
5691 sel_unregister_cfg_hooks (void)
5693 sched_create_empty_bb
= NULL
;
5694 sched_split_block
= NULL
;
5695 sched_init_only_bb
= NULL
;
5697 set_cfg_hooks (orig_cfg_hooks
);
5701 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5702 LABEL is where this jump should be directed. */
5704 create_insn_rtx_from_pattern (rtx pattern
, rtx label
)
5708 gcc_assert (!INSN_P (pattern
));
5712 if (label
== NULL_RTX
)
5713 insn_rtx
= emit_insn (pattern
);
5714 else if (DEBUG_INSN_P (label
))
5715 insn_rtx
= emit_debug_insn (pattern
);
5718 insn_rtx
= emit_jump_insn (pattern
);
5719 JUMP_LABEL (insn_rtx
) = label
;
5720 ++LABEL_NUSES (label
);
5725 sched_extend_luids ();
5726 sched_extend_target ();
5727 sched_deps_init (false);
5729 /* Initialize INSN_CODE now. */
5730 recog_memoized (insn_rtx
);
5734 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5735 must not be clonable. */
5737 create_vinsn_from_insn_rtx (rtx insn_rtx
, bool force_unique_p
)
5739 gcc_assert (INSN_P (insn_rtx
) && !INSN_IN_STREAM_P (insn_rtx
));
5741 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5742 return vinsn_create (insn_rtx
, force_unique_p
);
5745 /* Create a copy of INSN_RTX. */
5747 create_copy_of_insn_rtx (rtx insn_rtx
)
5751 if (DEBUG_INSN_P (insn_rtx
))
5752 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx
)),
5755 gcc_assert (NONJUMP_INSN_P (insn_rtx
));
5757 res
= create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx
)),
5760 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5761 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5762 there too, but are supposed to be sticky, so we copy them. */
5763 for (link
= REG_NOTES (insn_rtx
); link
; link
= XEXP (link
, 1))
5764 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
5765 && REG_NOTE_KIND (link
) != REG_EQUAL
5766 && REG_NOTE_KIND (link
) != REG_EQUIV
)
5768 if (GET_CODE (link
) == EXPR_LIST
)
5769 add_reg_note (res
, REG_NOTE_KIND (link
),
5770 copy_insn_1 (XEXP (link
, 0)));
5772 add_reg_note (res
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5778 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5780 change_vinsn_in_expr (expr_t expr
, vinsn_t new_vinsn
)
5782 vinsn_detach (EXPR_VINSN (expr
));
5784 EXPR_VINSN (expr
) = new_vinsn
;
5785 vinsn_attach (new_vinsn
);
5788 /* Helpers for global init. */
5789 /* This structure is used to be able to call existing bundling mechanism
5790 and calculate insn priorities. */
5791 static struct haifa_sched_info sched_sel_haifa_sched_info
=
5793 NULL
, /* init_ready_list */
5794 NULL
, /* can_schedule_ready_p */
5795 NULL
, /* schedule_more_p */
5796 NULL
, /* new_ready */
5797 NULL
, /* rgn_rank */
5798 sel_print_insn
, /* rgn_print_insn */
5799 contributes_to_priority
,
5800 NULL
, /* insn_finishes_block_p */
5806 NULL
, /* add_remove_insn */
5807 NULL
, /* begin_schedule_ready */
5808 NULL
, /* begin_move_insn */
5809 NULL
, /* advance_target_bb */
5817 /* Setup special insns used in the scheduler. */
5819 setup_nop_and_exit_insns (void)
5821 gcc_assert (nop_pattern
== NULL_RTX
5822 && exit_insn
== NULL_RTX
);
5824 nop_pattern
= constm1_rtx
;
5827 emit_insn (nop_pattern
);
5828 exit_insn
= get_insns ();
5830 set_block_for_insn (exit_insn
, EXIT_BLOCK_PTR
);
5833 /* Free special insns used in the scheduler. */
5835 free_nop_and_exit_insns (void)
5837 exit_insn
= NULL_RTX
;
5838 nop_pattern
= NULL_RTX
;
5841 /* Setup a special vinsn used in new insns initialization. */
5843 setup_nop_vinsn (void)
5845 nop_vinsn
= vinsn_create (exit_insn
, false);
5846 vinsn_attach (nop_vinsn
);
5849 /* Free a special vinsn used in new insns initialization. */
5851 free_nop_vinsn (void)
5853 gcc_assert (VINSN_COUNT (nop_vinsn
) == 1);
5854 vinsn_detach (nop_vinsn
);
5858 /* Call a set_sched_flags hook. */
5860 sel_set_sched_flags (void)
5862 /* ??? This means that set_sched_flags were called, and we decided to
5863 support speculation. However, set_sched_flags also modifies flags
5864 on current_sched_info, doing this only at global init. And we
5865 sometimes change c_s_i later. So put the correct flags again. */
5866 if (spec_info
&& targetm
.sched
.set_sched_flags
)
5867 targetm
.sched
.set_sched_flags (spec_info
);
5870 /* Setup pointers to global sched info structures. */
5872 sel_setup_sched_infos (void)
5874 rgn_setup_common_sched_info ();
5876 memcpy (&sel_common_sched_info
, common_sched_info
,
5877 sizeof (sel_common_sched_info
));
5879 sel_common_sched_info
.fix_recovery_cfg
= NULL
;
5880 sel_common_sched_info
.add_block
= NULL
;
5881 sel_common_sched_info
.estimate_number_of_insns
5882 = sel_estimate_number_of_insns
;
5883 sel_common_sched_info
.luid_for_non_insn
= sel_luid_for_non_insn
;
5884 sel_common_sched_info
.sched_pass_id
= SCHED_SEL_PASS
;
5886 common_sched_info
= &sel_common_sched_info
;
5888 current_sched_info
= &sched_sel_haifa_sched_info
;
5889 current_sched_info
->sched_max_insns_priority
=
5890 get_rgn_sched_max_insns_priority ();
5892 sel_set_sched_flags ();
5896 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5897 *BB_ORD_INDEX after that is increased. */
5899 sel_add_block_to_region (basic_block bb
, int *bb_ord_index
, int rgn
)
5901 RGN_NR_BLOCKS (rgn
) += 1;
5902 RGN_DONT_CALC_DEPS (rgn
) = 0;
5903 RGN_HAS_REAL_EBB (rgn
) = 0;
5904 CONTAINING_RGN (bb
->index
) = rgn
;
5905 BLOCK_TO_BB (bb
->index
) = *bb_ord_index
;
5906 rgn_bb_table
[RGN_BLOCKS (rgn
) + *bb_ord_index
] = bb
->index
;
5909 /* FIXME: it is true only when not scheduling ebbs. */
5910 RGN_BLOCKS (rgn
+ 1) = RGN_BLOCKS (rgn
) + RGN_NR_BLOCKS (rgn
);
5913 /* Functions to support pipelining of outer loops. */
5915 /* Creates a new empty region and returns it's number. */
5917 sel_create_new_region (void)
5919 int new_rgn_number
= nr_regions
;
5921 RGN_NR_BLOCKS (new_rgn_number
) = 0;
5923 /* FIXME: This will work only when EBBs are not created. */
5924 if (new_rgn_number
!= 0)
5925 RGN_BLOCKS (new_rgn_number
) = RGN_BLOCKS (new_rgn_number
- 1) +
5926 RGN_NR_BLOCKS (new_rgn_number
- 1);
5928 RGN_BLOCKS (new_rgn_number
) = 0;
5930 /* Set the blocks of the next region so the other functions may
5931 calculate the number of blocks in the region. */
5932 RGN_BLOCKS (new_rgn_number
+ 1) = RGN_BLOCKS (new_rgn_number
) +
5933 RGN_NR_BLOCKS (new_rgn_number
);
5937 return new_rgn_number
;
5940 /* If X has a smaller topological sort number than Y, returns -1;
5941 if greater, returns 1. */
5943 bb_top_order_comparator (const void *x
, const void *y
)
5945 basic_block bb1
= *(const basic_block
*) x
;
5946 basic_block bb2
= *(const basic_block
*) y
;
5948 gcc_assert (bb1
== bb2
5949 || rev_top_order_index
[bb1
->index
]
5950 != rev_top_order_index
[bb2
->index
]);
5952 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5953 bbs with greater number should go earlier. */
5954 if (rev_top_order_index
[bb1
->index
] > rev_top_order_index
[bb2
->index
])
5960 /* Create a region for LOOP and return its number. If we don't want
5961 to pipeline LOOP, return -1. */
5963 make_region_from_loop (struct loop
*loop
)
5966 int new_rgn_number
= -1;
5969 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5970 int bb_ord_index
= 0;
5971 basic_block
*loop_blocks
;
5972 basic_block preheader_block
;
5975 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS
))
5978 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5979 for (inner
= loop
->inner
; inner
; inner
= inner
->inner
)
5980 if (flow_bb_inside_loop_p (inner
, loop
->latch
))
5983 loop
->ninsns
= num_loop_insns (loop
);
5984 if ((int) loop
->ninsns
> PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS
))
5987 loop_blocks
= get_loop_body_in_custom_order (loop
, bb_top_order_comparator
);
5989 for (i
= 0; i
< loop
->num_nodes
; i
++)
5990 if (loop_blocks
[i
]->flags
& BB_IRREDUCIBLE_LOOP
)
5996 preheader_block
= loop_preheader_edge (loop
)->src
;
5997 gcc_assert (preheader_block
);
5998 gcc_assert (loop_blocks
[0] == loop
->header
);
6000 new_rgn_number
= sel_create_new_region ();
6002 sel_add_block_to_region (preheader_block
, &bb_ord_index
, new_rgn_number
);
6003 bitmap_set_bit (bbs_in_loop_rgns
, preheader_block
->index
);
6005 for (i
= 0; i
< loop
->num_nodes
; i
++)
6007 /* Add only those blocks that haven't been scheduled in the inner loop.
6008 The exception is the basic blocks with bookkeeping code - they should
6009 be added to the region (and they actually don't belong to the loop
6010 body, but to the region containing that loop body). */
6012 gcc_assert (new_rgn_number
>= 0);
6014 if (! bitmap_bit_p (bbs_in_loop_rgns
, loop_blocks
[i
]->index
))
6016 sel_add_block_to_region (loop_blocks
[i
], &bb_ord_index
,
6018 bitmap_set_bit (bbs_in_loop_rgns
, loop_blocks
[i
]->index
);
6023 MARK_LOOP_FOR_PIPELINING (loop
);
6025 return new_rgn_number
;
6028 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6030 make_region_from_loop_preheader (vec
<basic_block
> *&loop_blocks
)
6033 int new_rgn_number
= -1;
6036 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6037 int bb_ord_index
= 0;
6039 new_rgn_number
= sel_create_new_region ();
6041 FOR_EACH_VEC_ELT (*loop_blocks
, i
, bb
)
6043 gcc_assert (new_rgn_number
>= 0);
6045 sel_add_block_to_region (bb
, &bb_ord_index
, new_rgn_number
);
6048 vec_free (loop_blocks
);
6052 /* Create region(s) from loop nest LOOP, such that inner loops will be
6053 pipelined before outer loops. Returns true when a region for LOOP
6056 make_regions_from_loop_nest (struct loop
*loop
)
6058 struct loop
*cur_loop
;
6061 /* Traverse all inner nodes of the loop. */
6062 for (cur_loop
= loop
->inner
; cur_loop
; cur_loop
= cur_loop
->next
)
6063 if (! bitmap_bit_p (bbs_in_loop_rgns
, cur_loop
->header
->index
))
6066 /* At this moment all regular inner loops should have been pipelined.
6067 Try to create a region from this loop. */
6068 rgn_number
= make_region_from_loop (loop
);
6073 loop_nests
.safe_push (loop
);
6077 /* Initalize data structures needed. */
6079 sel_init_pipelining (void)
6081 /* Collect loop information to be used in outer loops pipelining. */
6082 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6083 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6084 | LOOPS_HAVE_RECORDED_EXITS
6085 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS
);
6086 current_loop_nest
= NULL
;
6088 bbs_in_loop_rgns
= sbitmap_alloc (last_basic_block
);
6089 bitmap_clear (bbs_in_loop_rgns
);
6091 recompute_rev_top_order ();
6094 /* Returns a struct loop for region RGN. */
6096 get_loop_nest_for_rgn (unsigned int rgn
)
6098 /* Regions created with extend_rgns don't have corresponding loop nests,
6099 because they don't represent loops. */
6100 if (rgn
< loop_nests
.length ())
6101 return loop_nests
[rgn
];
6106 /* True when LOOP was included into pipelining regions. */
6108 considered_for_pipelining_p (struct loop
*loop
)
6110 if (loop_depth (loop
) == 0)
6113 /* Now, the loop could be too large or irreducible. Check whether its
6114 region is in LOOP_NESTS.
6115 We determine the region number of LOOP as the region number of its
6116 latch. We can't use header here, because this header could be
6117 just removed preheader and it will give us the wrong region number.
6118 Latch can't be used because it could be in the inner loop too. */
6119 if (LOOP_MARKED_FOR_PIPELINING_P (loop
))
6121 int rgn
= CONTAINING_RGN (loop
->latch
->index
);
6123 gcc_assert ((unsigned) rgn
< loop_nests
.length ());
6130 /* Makes regions from the rest of the blocks, after loops are chosen
6133 make_regions_from_the_rest (void)
6144 /* Index in rgn_bb_table where to start allocating new regions. */
6145 cur_rgn_blocks
= nr_regions
? RGN_BLOCKS (nr_regions
) : 0;
6147 /* Make regions from all the rest basic blocks - those that don't belong to
6148 any loop or belong to irreducible loops. Prepare the data structures
6151 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6152 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6154 loop_hdr
= XNEWVEC (int, last_basic_block
);
6155 degree
= XCNEWVEC (int, last_basic_block
);
6158 /* For each basic block that belongs to some loop assign the number
6159 of innermost loop it belongs to. */
6160 for (i
= 0; i
< last_basic_block
; i
++)
6165 if (bb
->loop_father
&& !bb
->loop_father
->num
== 0
6166 && !(bb
->flags
& BB_IRREDUCIBLE_LOOP
))
6167 loop_hdr
[bb
->index
] = bb
->loop_father
->num
;
6170 /* For each basic block degree is calculated as the number of incoming
6171 edges, that are going out of bbs that are not yet scheduled.
6172 The basic blocks that are scheduled have degree value of zero. */
6175 degree
[bb
->index
] = 0;
6177 if (!bitmap_bit_p (bbs_in_loop_rgns
, bb
->index
))
6179 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6180 if (!bitmap_bit_p (bbs_in_loop_rgns
, e
->src
->index
))
6181 degree
[bb
->index
]++;
6184 degree
[bb
->index
] = -1;
6187 extend_rgns (degree
, &cur_rgn_blocks
, bbs_in_loop_rgns
, loop_hdr
);
6189 /* Any block that did not end up in a region is placed into a region
6192 if (degree
[bb
->index
] >= 0)
6194 rgn_bb_table
[cur_rgn_blocks
] = bb
->index
;
6195 RGN_NR_BLOCKS (nr_regions
) = 1;
6196 RGN_BLOCKS (nr_regions
) = cur_rgn_blocks
++;
6197 RGN_DONT_CALC_DEPS (nr_regions
) = 0;
6198 RGN_HAS_REAL_EBB (nr_regions
) = 0;
6199 CONTAINING_RGN (bb
->index
) = nr_regions
++;
6200 BLOCK_TO_BB (bb
->index
) = 0;
6207 /* Free data structures used in pipelining of loops. */
6208 void sel_finish_pipelining (void)
6213 /* Release aux fields so we don't free them later by mistake. */
6214 FOR_EACH_LOOP (li
, loop
, 0)
6217 loop_optimizer_finalize ();
6219 loop_nests
.release ();
6221 free (rev_top_order_index
);
6222 rev_top_order_index
= NULL
;
6225 /* This function replaces the find_rgns when
6226 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6228 sel_find_rgns (void)
6230 sel_init_pipelining ();
6238 FOR_EACH_LOOP (li
, loop
, (flag_sel_sched_pipelining_outer_loops
6240 : LI_ONLY_INNERMOST
))
6241 make_regions_from_loop_nest (loop
);
6244 /* Make regions from all the rest basic blocks and schedule them.
6245 These blocks include blocks that don't belong to any loop or belong
6246 to irreducible loops. */
6247 make_regions_from_the_rest ();
6249 /* We don't need bbs_in_loop_rgns anymore. */
6250 sbitmap_free (bbs_in_loop_rgns
);
6251 bbs_in_loop_rgns
= NULL
;
6254 /* Add the preheader blocks from previous loop to current region taking
6255 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6256 This function is only used with -fsel-sched-pipelining-outer-loops. */
6258 sel_add_loop_preheaders (bb_vec_t
*bbs
)
6262 vec
<basic_block
> *preheader_blocks
6263 = LOOP_PREHEADER_BLOCKS (current_loop_nest
);
6265 if (!preheader_blocks
)
6268 for (i
= 0; preheader_blocks
->iterate (i
, &bb
); i
++)
6270 bbs
->safe_push (bb
);
6271 last_added_blocks
.safe_push (bb
);
6275 vec_free (preheader_blocks
);
6278 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6279 Please note that the function should also work when pipelining_p is
6280 false, because it is used when deciding whether we should or should
6281 not reschedule pipelined code. */
6283 sel_is_loop_preheader_p (basic_block bb
)
6285 if (current_loop_nest
)
6289 if (preheader_removed
)
6292 /* Preheader is the first block in the region. */
6293 if (BLOCK_TO_BB (bb
->index
) == 0)
6296 /* We used to find a preheader with the topological information.
6297 Check that the above code is equivalent to what we did before. */
6299 if (in_current_region_p (current_loop_nest
->header
))
6300 gcc_assert (!(BLOCK_TO_BB (bb
->index
)
6301 < BLOCK_TO_BB (current_loop_nest
->header
->index
)));
6303 /* Support the situation when the latch block of outer loop
6304 could be from here. */
6305 for (outer
= loop_outer (current_loop_nest
);
6307 outer
= loop_outer (outer
))
6308 if (considered_for_pipelining_p (outer
) && outer
->latch
== bb
)
6315 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6316 can be removed, making the corresponding edge fallthrough (assuming that
6317 all basic blocks between JUMP_BB and DEST_BB are empty). */
6319 bb_has_removable_jump_to_p (basic_block jump_bb
, basic_block dest_bb
)
6321 if (!onlyjump_p (BB_END (jump_bb
))
6322 || tablejump_p (BB_END (jump_bb
), NULL
, NULL
))
6325 /* Several outgoing edges, abnormal edge or destination of jump is
6327 if (EDGE_COUNT (jump_bb
->succs
) != 1
6328 || EDGE_SUCC (jump_bb
, 0)->flags
& (EDGE_ABNORMAL
| EDGE_CROSSING
)
6329 || EDGE_SUCC (jump_bb
, 0)->dest
!= dest_bb
)
6332 /* If not anything of the upper. */
6336 /* Removes the loop preheader from the current region and saves it in
6337 PREHEADER_BLOCKS of the father loop, so they will be added later to
6338 region that represents an outer loop. */
6340 sel_remove_loop_preheader (void)
6343 int cur_rgn
= CONTAINING_RGN (BB_TO_BLOCK (0));
6345 bool all_empty_p
= true;
6346 vec
<basic_block
> *preheader_blocks
6347 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest
));
6349 vec_check_alloc (preheader_blocks
, 0);
6351 gcc_assert (current_loop_nest
);
6352 old_len
= preheader_blocks
->length ();
6354 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6355 for (i
= 0; i
< RGN_NR_BLOCKS (cur_rgn
); i
++)
6357 bb
= BASIC_BLOCK (BB_TO_BLOCK (i
));
6359 /* If the basic block belongs to region, but doesn't belong to
6360 corresponding loop, then it should be a preheader. */
6361 if (sel_is_loop_preheader_p (bb
))
6363 preheader_blocks
->safe_push (bb
);
6364 if (BB_END (bb
) != bb_note (bb
))
6365 all_empty_p
= false;
6369 /* Remove these blocks only after iterating over the whole region. */
6370 for (i
= preheader_blocks
->length () - 1; i
>= old_len
; i
--)
6372 bb
= (*preheader_blocks
)[i
];
6373 sel_remove_bb (bb
, false);
6376 if (!considered_for_pipelining_p (loop_outer (current_loop_nest
)))
6379 /* Immediately create new region from preheader. */
6380 make_region_from_loop_preheader (preheader_blocks
);
6383 /* If all preheader blocks are empty - dont create new empty region.
6384 Instead, remove them completely. */
6385 FOR_EACH_VEC_ELT (*preheader_blocks
, i
, bb
)
6389 basic_block prev_bb
= bb
->prev_bb
, next_bb
= bb
->next_bb
;
6391 /* Redirect all incoming edges to next basic block. */
6392 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
6394 if (! (e
->flags
& EDGE_FALLTHRU
))
6395 redirect_edge_and_branch (e
, bb
->next_bb
);
6397 redirect_edge_succ (e
, bb
->next_bb
);
6399 gcc_assert (BB_NOTE_LIST (bb
) == NULL
);
6400 delete_and_free_basic_block (bb
);
6402 /* Check if after deleting preheader there is a nonconditional
6403 jump in PREV_BB that leads to the next basic block NEXT_BB.
6404 If it is so - delete this jump and clear data sets of its
6405 basic block if it becomes empty. */
6406 if (next_bb
->prev_bb
== prev_bb
6407 && prev_bb
!= ENTRY_BLOCK_PTR
6408 && bb_has_removable_jump_to_p (prev_bb
, next_bb
))
6410 redirect_edge_and_branch (EDGE_SUCC (prev_bb
, 0), next_bb
);
6411 if (BB_END (prev_bb
) == bb_note (prev_bb
))
6412 free_data_sets (prev_bb
);
6415 set_immediate_dominator (CDI_DOMINATORS
, next_bb
,
6416 recompute_dominator (CDI_DOMINATORS
,
6420 vec_free (preheader_blocks
);
6423 /* Store preheader within the father's loop structure. */
6424 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest
),