2008-06-06 Nicolas Setton <setton@adacore.com>
[official-gcc.git] / libgfortran / generated / minloc1_16_r4.c
blob37cda9b2c1cb0be1c816deadc90188fb7133a8e7
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <limits.h>
37 #if defined (HAVE_GFC_REAL_4) && defined (HAVE_GFC_INTEGER_16)
40 extern void minloc1_16_r4 (gfc_array_i16 * const restrict,
41 gfc_array_r4 * const restrict, const index_type * const restrict);
42 export_proto(minloc1_16_r4);
44 void
45 minloc1_16_r4 (gfc_array_i16 * const restrict retarray,
46 gfc_array_r4 * const restrict array,
47 const index_type * const restrict pdim)
49 index_type count[GFC_MAX_DIMENSIONS];
50 index_type extent[GFC_MAX_DIMENSIONS];
51 index_type sstride[GFC_MAX_DIMENSIONS];
52 index_type dstride[GFC_MAX_DIMENSIONS];
53 const GFC_REAL_4 * restrict base;
54 GFC_INTEGER_16 * restrict dest;
55 index_type rank;
56 index_type n;
57 index_type len;
58 index_type delta;
59 index_type dim;
60 int continue_loop;
62 /* Make dim zero based to avoid confusion. */
63 dim = (*pdim) - 1;
64 rank = GFC_DESCRIPTOR_RANK (array) - 1;
66 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
67 if (len < 0)
68 len = 0;
69 delta = array->dim[dim].stride;
71 for (n = 0; n < dim; n++)
73 sstride[n] = array->dim[n].stride;
74 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
76 if (extent[n] < 0)
77 extent[n] = 0;
79 for (n = dim; n < rank; n++)
81 sstride[n] = array->dim[n + 1].stride;
82 extent[n] =
83 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
85 if (extent[n] < 0)
86 extent[n] = 0;
89 if (retarray->data == NULL)
91 size_t alloc_size;
93 for (n = 0; n < rank; n++)
95 retarray->dim[n].lbound = 0;
96 retarray->dim[n].ubound = extent[n]-1;
97 if (n == 0)
98 retarray->dim[n].stride = 1;
99 else
100 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
103 retarray->offset = 0;
104 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
106 alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
107 * extent[rank-1];
109 if (alloc_size == 0)
111 /* Make sure we have a zero-sized array. */
112 retarray->dim[0].lbound = 0;
113 retarray->dim[0].ubound = -1;
114 return;
116 else
117 retarray->data = internal_malloc_size (alloc_size);
119 else
121 if (rank != GFC_DESCRIPTOR_RANK (retarray))
122 runtime_error ("rank of return array incorrect in"
123 " MINLOC intrinsic: is %ld, should be %ld",
124 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
125 (long int) rank);
127 if (compile_options.bounds_check)
129 for (n=0; n < rank; n++)
131 index_type ret_extent;
133 ret_extent = retarray->dim[n].ubound + 1
134 - retarray->dim[n].lbound;
135 if (extent[n] != ret_extent)
136 runtime_error ("Incorrect extent in return value of"
137 " MINLOC intrinsic in dimension %ld:"
138 " is %ld, should be %ld", (long int) n + 1,
139 (long int) ret_extent, (long int) extent[n]);
144 for (n = 0; n < rank; n++)
146 count[n] = 0;
147 dstride[n] = retarray->dim[n].stride;
148 if (extent[n] <= 0)
149 len = 0;
152 base = array->data;
153 dest = retarray->data;
155 continue_loop = 1;
156 while (continue_loop)
158 const GFC_REAL_4 * restrict src;
159 GFC_INTEGER_16 result;
160 src = base;
163 GFC_REAL_4 minval;
164 minval = GFC_REAL_4_HUGE;
165 result = 0;
166 if (len <= 0)
167 *dest = 0;
168 else
170 for (n = 0; n < len; n++, src += delta)
173 if (*src < minval || !result)
175 minval = *src;
176 result = (GFC_INTEGER_16)n + 1;
179 *dest = result;
182 /* Advance to the next element. */
183 count[0]++;
184 base += sstride[0];
185 dest += dstride[0];
186 n = 0;
187 while (count[n] == extent[n])
189 /* When we get to the end of a dimension, reset it and increment
190 the next dimension. */
191 count[n] = 0;
192 /* We could precalculate these products, but this is a less
193 frequently used path so probably not worth it. */
194 base -= sstride[n] * extent[n];
195 dest -= dstride[n] * extent[n];
196 n++;
197 if (n == rank)
199 /* Break out of the look. */
200 continue_loop = 0;
201 break;
203 else
205 count[n]++;
206 base += sstride[n];
207 dest += dstride[n];
214 extern void mminloc1_16_r4 (gfc_array_i16 * const restrict,
215 gfc_array_r4 * const restrict, const index_type * const restrict,
216 gfc_array_l1 * const restrict);
217 export_proto(mminloc1_16_r4);
219 void
220 mminloc1_16_r4 (gfc_array_i16 * const restrict retarray,
221 gfc_array_r4 * const restrict array,
222 const index_type * const restrict pdim,
223 gfc_array_l1 * const restrict mask)
225 index_type count[GFC_MAX_DIMENSIONS];
226 index_type extent[GFC_MAX_DIMENSIONS];
227 index_type sstride[GFC_MAX_DIMENSIONS];
228 index_type dstride[GFC_MAX_DIMENSIONS];
229 index_type mstride[GFC_MAX_DIMENSIONS];
230 GFC_INTEGER_16 * restrict dest;
231 const GFC_REAL_4 * restrict base;
232 const GFC_LOGICAL_1 * restrict mbase;
233 int rank;
234 int dim;
235 index_type n;
236 index_type len;
237 index_type delta;
238 index_type mdelta;
239 int mask_kind;
241 dim = (*pdim) - 1;
242 rank = GFC_DESCRIPTOR_RANK (array) - 1;
244 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
245 if (len <= 0)
246 return;
248 mbase = mask->data;
250 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
252 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
253 #ifdef HAVE_GFC_LOGICAL_16
254 || mask_kind == 16
255 #endif
257 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
258 else
259 runtime_error ("Funny sized logical array");
261 delta = array->dim[dim].stride;
262 mdelta = mask->dim[dim].stride * mask_kind;
264 for (n = 0; n < dim; n++)
266 sstride[n] = array->dim[n].stride;
267 mstride[n] = mask->dim[n].stride * mask_kind;
268 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
270 if (extent[n] < 0)
271 extent[n] = 0;
274 for (n = dim; n < rank; n++)
276 sstride[n] = array->dim[n + 1].stride;
277 mstride[n] = mask->dim[n + 1].stride * mask_kind;
278 extent[n] =
279 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
281 if (extent[n] < 0)
282 extent[n] = 0;
285 if (retarray->data == NULL)
287 size_t alloc_size;
289 for (n = 0; n < rank; n++)
291 retarray->dim[n].lbound = 0;
292 retarray->dim[n].ubound = extent[n]-1;
293 if (n == 0)
294 retarray->dim[n].stride = 1;
295 else
296 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
299 alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
300 * extent[rank-1];
302 retarray->offset = 0;
303 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
305 if (alloc_size == 0)
307 /* Make sure we have a zero-sized array. */
308 retarray->dim[0].lbound = 0;
309 retarray->dim[0].ubound = -1;
310 return;
312 else
313 retarray->data = internal_malloc_size (alloc_size);
316 else
318 if (rank != GFC_DESCRIPTOR_RANK (retarray))
319 runtime_error ("rank of return array incorrect in MINLOC intrinsic");
321 if (compile_options.bounds_check)
323 for (n=0; n < rank; n++)
325 index_type ret_extent;
327 ret_extent = retarray->dim[n].ubound + 1
328 - retarray->dim[n].lbound;
329 if (extent[n] != ret_extent)
330 runtime_error ("Incorrect extent in return value of"
331 " MINLOC intrinsic in dimension %ld:"
332 " is %ld, should be %ld", (long int) n + 1,
333 (long int) ret_extent, (long int) extent[n]);
335 for (n=0; n<= rank; n++)
337 index_type mask_extent, array_extent;
339 array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound;
340 mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound;
341 if (array_extent != mask_extent)
342 runtime_error ("Incorrect extent in MASK argument of"
343 " MINLOC intrinsic in dimension %ld:"
344 " is %ld, should be %ld", (long int) n + 1,
345 (long int) mask_extent, (long int) array_extent);
350 for (n = 0; n < rank; n++)
352 count[n] = 0;
353 dstride[n] = retarray->dim[n].stride;
354 if (extent[n] <= 0)
355 return;
358 dest = retarray->data;
359 base = array->data;
361 while (base)
363 const GFC_REAL_4 * restrict src;
364 const GFC_LOGICAL_1 * restrict msrc;
365 GFC_INTEGER_16 result;
366 src = base;
367 msrc = mbase;
370 GFC_REAL_4 minval;
371 minval = GFC_REAL_4_HUGE;
372 result = 0;
373 if (len <= 0)
374 *dest = 0;
375 else
377 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
380 if (*msrc && (*src < minval || !result))
382 minval = *src;
383 result = (GFC_INTEGER_16)n + 1;
386 *dest = result;
389 /* Advance to the next element. */
390 count[0]++;
391 base += sstride[0];
392 mbase += mstride[0];
393 dest += dstride[0];
394 n = 0;
395 while (count[n] == extent[n])
397 /* When we get to the end of a dimension, reset it and increment
398 the next dimension. */
399 count[n] = 0;
400 /* We could precalculate these products, but this is a less
401 frequently used path so probably not worth it. */
402 base -= sstride[n] * extent[n];
403 mbase -= mstride[n] * extent[n];
404 dest -= dstride[n] * extent[n];
405 n++;
406 if (n == rank)
408 /* Break out of the look. */
409 base = NULL;
410 break;
412 else
414 count[n]++;
415 base += sstride[n];
416 mbase += mstride[n];
417 dest += dstride[n];
424 extern void sminloc1_16_r4 (gfc_array_i16 * const restrict,
425 gfc_array_r4 * const restrict, const index_type * const restrict,
426 GFC_LOGICAL_4 *);
427 export_proto(sminloc1_16_r4);
429 void
430 sminloc1_16_r4 (gfc_array_i16 * const restrict retarray,
431 gfc_array_r4 * const restrict array,
432 const index_type * const restrict pdim,
433 GFC_LOGICAL_4 * mask)
435 index_type count[GFC_MAX_DIMENSIONS];
436 index_type extent[GFC_MAX_DIMENSIONS];
437 index_type sstride[GFC_MAX_DIMENSIONS];
438 index_type dstride[GFC_MAX_DIMENSIONS];
439 GFC_INTEGER_16 * restrict dest;
440 index_type rank;
441 index_type n;
442 index_type dim;
445 if (*mask)
447 minloc1_16_r4 (retarray, array, pdim);
448 return;
450 /* Make dim zero based to avoid confusion. */
451 dim = (*pdim) - 1;
452 rank = GFC_DESCRIPTOR_RANK (array) - 1;
454 for (n = 0; n < dim; n++)
456 sstride[n] = array->dim[n].stride;
457 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
459 if (extent[n] <= 0)
460 extent[n] = 0;
463 for (n = dim; n < rank; n++)
465 sstride[n] = array->dim[n + 1].stride;
466 extent[n] =
467 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
469 if (extent[n] <= 0)
470 extent[n] = 0;
473 if (retarray->data == NULL)
475 size_t alloc_size;
477 for (n = 0; n < rank; n++)
479 retarray->dim[n].lbound = 0;
480 retarray->dim[n].ubound = extent[n]-1;
481 if (n == 0)
482 retarray->dim[n].stride = 1;
483 else
484 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
487 retarray->offset = 0;
488 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
490 alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
491 * extent[rank-1];
493 if (alloc_size == 0)
495 /* Make sure we have a zero-sized array. */
496 retarray->dim[0].lbound = 0;
497 retarray->dim[0].ubound = -1;
498 return;
500 else
501 retarray->data = internal_malloc_size (alloc_size);
503 else
505 if (rank != GFC_DESCRIPTOR_RANK (retarray))
506 runtime_error ("rank of return array incorrect in"
507 " MINLOC intrinsic: is %ld, should be %ld",
508 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
509 (long int) rank);
511 if (compile_options.bounds_check)
513 for (n=0; n < rank; n++)
515 index_type ret_extent;
517 ret_extent = retarray->dim[n].ubound + 1
518 - retarray->dim[n].lbound;
519 if (extent[n] != ret_extent)
520 runtime_error ("Incorrect extent in return value of"
521 " MINLOC intrinsic in dimension %ld:"
522 " is %ld, should be %ld", (long int) n + 1,
523 (long int) ret_extent, (long int) extent[n]);
528 for (n = 0; n < rank; n++)
530 count[n] = 0;
531 dstride[n] = retarray->dim[n].stride;
534 dest = retarray->data;
536 while(1)
538 *dest = 0;
539 count[0]++;
540 dest += dstride[0];
541 n = 0;
542 while (count[n] == extent[n])
544 /* When we get to the end of a dimension, reset it and increment
545 the next dimension. */
546 count[n] = 0;
547 /* We could precalculate these products, but this is a less
548 frequently used path so probably not worth it. */
549 dest -= dstride[n] * extent[n];
550 n++;
551 if (n == rank)
552 return;
553 else
555 count[n]++;
556 dest += dstride[n];
562 #endif