1 /* Functions related to invoking methods and overloaded functions.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) and
5 modified by Brendan Kehoe (brendan@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
25 /* High-level class interface. */
29 #include "coretypes.h"
38 #include "diagnostic.h"
43 static tree
build_field_call (tree
, tree
, tree
);
44 static struct z_candidate
* tourney (struct z_candidate
*);
45 static int equal_functions (tree
, tree
);
46 static int joust (struct z_candidate
*, struct z_candidate
*, bool);
47 static int compare_ics (tree
, tree
);
48 static tree
build_over_call (struct z_candidate
*, int);
49 static tree
build_java_interface_fn_ref (tree
, tree
);
50 #define convert_like(CONV, EXPR) \
51 convert_like_real ((CONV), (EXPR), NULL_TREE, 0, 0, \
52 /*issue_conversion_warnings=*/true)
53 #define convert_like_with_context(CONV, EXPR, FN, ARGNO) \
54 convert_like_real ((CONV), (EXPR), (FN), (ARGNO), 0, \
55 /*issue_conversion_warnings=*/true)
56 static tree
convert_like_real (tree
, tree
, tree
, int, int, bool);
57 static void op_error (enum tree_code
, enum tree_code
, tree
, tree
,
59 static tree
build_object_call (tree
, tree
);
60 static tree
resolve_args (tree
);
61 static struct z_candidate
*build_user_type_conversion_1 (tree
, tree
, int);
62 static void print_z_candidate (const char *, struct z_candidate
*);
63 static void print_z_candidates (struct z_candidate
*);
64 static tree
build_this (tree
);
65 static struct z_candidate
*splice_viable (struct z_candidate
*, bool, bool *);
66 static bool any_strictly_viable (struct z_candidate
*);
67 static struct z_candidate
*add_template_candidate
68 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
,
69 tree
, tree
, int, unification_kind_t
);
70 static struct z_candidate
*add_template_candidate_real
71 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
,
72 tree
, tree
, int, tree
, unification_kind_t
);
73 static struct z_candidate
*add_template_conv_candidate
74 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
, tree
);
75 static void add_builtin_candidates
76 (struct z_candidate
**, enum tree_code
, enum tree_code
,
78 static void add_builtin_candidate
79 (struct z_candidate
**, enum tree_code
, enum tree_code
,
80 tree
, tree
, tree
, tree
*, tree
*, int);
81 static bool is_complete (tree
);
82 static void build_builtin_candidate
83 (struct z_candidate
**, tree
, tree
, tree
, tree
*, tree
*,
85 static struct z_candidate
*add_conv_candidate
86 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
);
87 static struct z_candidate
*add_function_candidate
88 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
, int);
89 static tree
implicit_conversion (tree
, tree
, tree
, int);
90 static tree
standard_conversion (tree
, tree
, tree
);
91 static tree
reference_binding (tree
, tree
, tree
, int);
92 static tree
build_conv (enum tree_code
, tree
, tree
);
93 static bool is_subseq (tree
, tree
);
94 static tree
maybe_handle_ref_bind (tree
*);
95 static void maybe_handle_implicit_object (tree
*);
96 static struct z_candidate
*add_candidate
97 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
, int);
98 static tree
source_type (tree
);
99 static void add_warning (struct z_candidate
*, struct z_candidate
*);
100 static bool reference_related_p (tree
, tree
);
101 static bool reference_compatible_p (tree
, tree
);
102 static tree
convert_class_to_reference (tree
, tree
, tree
);
103 static tree
direct_reference_binding (tree
, tree
);
104 static bool promoted_arithmetic_type_p (tree
);
105 static tree
conditional_conversion (tree
, tree
);
106 static char *name_as_c_string (tree
, tree
, bool *);
107 static tree
call_builtin_trap (void);
108 static tree
prep_operand (tree
);
109 static void add_candidates (tree
, tree
, tree
, bool, tree
, tree
,
110 int, struct z_candidate
**);
111 static tree
merge_conversion_sequences (tree
, tree
);
114 build_vfield_ref (tree datum
, tree type
)
116 if (datum
== error_mark_node
)
117 return error_mark_node
;
119 if (TREE_CODE (TREE_TYPE (datum
)) == REFERENCE_TYPE
)
120 datum
= convert_from_reference (datum
);
122 if (TYPE_BASE_CONVS_MAY_REQUIRE_CODE_P (type
)
123 && !same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum
), type
))
124 datum
= convert_to_base (datum
, type
, /*check_access=*/false);
126 return build (COMPONENT_REF
, TREE_TYPE (TYPE_VFIELD (type
)),
127 datum
, TYPE_VFIELD (type
));
130 /* Build a call to a member of an object. I.e., one that overloads
131 operator ()(), or is a pointer-to-function or pointer-to-method. */
134 build_field_call (tree instance_ptr
, tree decl
, tree parms
)
138 if (decl
== error_mark_node
|| decl
== NULL_TREE
)
141 if (TREE_CODE (decl
) == FIELD_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
143 /* If it's a field, try overloading operator (),
144 or calling if the field is a pointer-to-function. */
145 instance
= build_indirect_ref (instance_ptr
, NULL
);
146 instance
= build_class_member_access_expr (instance
, decl
,
147 /*access_path=*/NULL_TREE
,
148 /*preserve_reference=*/false);
150 if (instance
== error_mark_node
)
151 return error_mark_node
;
153 if (IS_AGGR_TYPE (TREE_TYPE (instance
)))
154 return build_new_op (CALL_EXPR
, LOOKUP_NORMAL
,
155 instance
, parms
, NULL_TREE
);
156 else if (TREE_CODE (TREE_TYPE (instance
)) == FUNCTION_TYPE
157 || (TREE_CODE (TREE_TYPE (instance
)) == POINTER_TYPE
158 && (TREE_CODE (TREE_TYPE (TREE_TYPE (instance
)))
160 return build_function_call (instance
, parms
);
166 /* Returns nonzero iff the destructor name specified in NAME
167 (a BIT_NOT_EXPR) matches BASETYPE. The operand of NAME can take many
171 check_dtor_name (tree basetype
, tree name
)
173 name
= TREE_OPERAND (name
, 0);
175 /* Just accept something we've already complained about. */
176 if (name
== error_mark_node
)
179 if (TREE_CODE (name
) == TYPE_DECL
)
180 name
= TREE_TYPE (name
);
181 else if (TYPE_P (name
))
183 else if (TREE_CODE (name
) == IDENTIFIER_NODE
)
185 if ((IS_AGGR_TYPE (basetype
) && name
== constructor_name (basetype
))
186 || (TREE_CODE (basetype
) == ENUMERAL_TYPE
187 && name
== TYPE_IDENTIFIER (basetype
)))
190 name
= get_type_value (name
);
194 template <class T> struct S { ~S(); };
198 NAME will be a class template. */
199 else if (DECL_CLASS_TEMPLATE_P (name
))
204 if (name
&& TYPE_MAIN_VARIANT (basetype
) == TYPE_MAIN_VARIANT (name
))
209 /* We want the address of a function or method. We avoid creating a
210 pointer-to-member function. */
213 build_addr_func (tree function
)
215 tree type
= TREE_TYPE (function
);
217 /* We have to do these by hand to avoid real pointer to member
219 if (TREE_CODE (type
) == METHOD_TYPE
)
221 if (TREE_CODE (function
) == OFFSET_REF
)
223 tree object
= build_address (TREE_OPERAND (function
, 0));
224 return get_member_function_from_ptrfunc (&object
,
225 TREE_OPERAND (function
, 1));
227 function
= build_address (function
);
230 function
= decay_conversion (function
);
235 /* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or
236 POINTER_TYPE to those. Note, pointer to member function types
237 (TYPE_PTRMEMFUNC_P) must be handled by our callers. */
240 build_call (tree function
, tree parms
)
242 int is_constructor
= 0;
249 function
= build_addr_func (function
);
251 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (function
)))
253 sorry ("unable to call pointer to member function here");
254 return error_mark_node
;
257 fntype
= TREE_TYPE (TREE_TYPE (function
));
258 result_type
= TREE_TYPE (fntype
);
260 if (TREE_CODE (function
) == ADDR_EXPR
261 && TREE_CODE (TREE_OPERAND (function
, 0)) == FUNCTION_DECL
)
262 decl
= TREE_OPERAND (function
, 0);
266 /* We check both the decl and the type; a function may be known not to
267 throw without being declared throw(). */
268 nothrow
= ((decl
&& TREE_NOTHROW (decl
))
269 || TYPE_NOTHROW_P (TREE_TYPE (TREE_TYPE (function
))));
271 if (decl
&& TREE_THIS_VOLATILE (decl
) && cfun
)
272 current_function_returns_abnormally
= 1;
274 if (decl
&& TREE_DEPRECATED (decl
))
275 warn_deprecated_use (decl
);
276 require_complete_eh_spec_types (fntype
, decl
);
278 if (decl
&& DECL_CONSTRUCTOR_P (decl
))
281 if (decl
&& ! TREE_USED (decl
))
283 /* We invoke build_call directly for several library functions.
284 These may have been declared normally if we're building libgcc,
285 so we can't just check DECL_ARTIFICIAL. */
286 if (DECL_ARTIFICIAL (decl
)
287 || !strncmp (IDENTIFIER_POINTER (DECL_NAME (decl
)), "__", 2))
293 /* Don't pass empty class objects by value. This is useful
294 for tags in STL, which are used to control overload resolution.
295 We don't need to handle other cases of copying empty classes. */
296 if (! decl
|| ! DECL_BUILT_IN (decl
))
297 for (tmp
= parms
; tmp
; tmp
= TREE_CHAIN (tmp
))
298 if (is_empty_class (TREE_TYPE (TREE_VALUE (tmp
)))
299 && ! TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (tmp
))))
301 tree t
= build (EMPTY_CLASS_EXPR
, TREE_TYPE (TREE_VALUE (tmp
)));
302 TREE_VALUE (tmp
) = build (COMPOUND_EXPR
, TREE_TYPE (t
),
303 TREE_VALUE (tmp
), t
);
306 function
= build (CALL_EXPR
, result_type
, function
, parms
);
307 TREE_HAS_CONSTRUCTOR (function
) = is_constructor
;
308 TREE_NOTHROW (function
) = nothrow
;
313 /* Build something of the form ptr->method (args)
314 or object.method (args). This can also build
315 calls to constructors, and find friends.
317 Member functions always take their class variable
320 INSTANCE is a class instance.
322 NAME is the name of the method desired, usually an IDENTIFIER_NODE.
324 PARMS help to figure out what that NAME really refers to.
326 BASETYPE_PATH, if non-NULL, contains a chain from the type of INSTANCE
327 down to the real instance type to use for access checking. We need this
328 information to get protected accesses correct.
330 FLAGS is the logical disjunction of zero or more LOOKUP_
331 flags. See cp-tree.h for more info.
333 If this is all OK, calls build_function_call with the resolved
336 This function must also handle being called to perform
337 initialization, promotion/coercion of arguments, and
338 instantiation of default parameters.
340 Note that NAME may refer to an instance variable name. If
341 `operator()()' is defined for the type of that field, then we return
344 #ifdef GATHER_STATISTICS
345 extern int n_build_method_call
;
349 build_method_call (tree instance
, tree name
, tree parms
,
350 tree basetype_path
, int flags
)
354 tree template_args
= NULL_TREE
;
355 bool has_template_args
= false;
357 #ifdef GATHER_STATISTICS
358 n_build_method_call
++;
361 if (error_operand_p (instance
)
362 || name
== error_mark_node
363 || parms
== error_mark_node
)
364 return error_mark_node
;
366 my_friendly_assert (!processing_template_decl
, 20030707);
368 if (TREE_CODE (TREE_TYPE (instance
)) == REFERENCE_TYPE
)
369 instance
= convert_from_reference (instance
);
370 object_type
= TREE_TYPE (instance
);
372 if (TREE_CODE (name
) == BIT_NOT_EXPR
)
377 error ("destructors take no parameters");
379 if (! check_dtor_name (object_type
, name
))
381 ("destructor name `~%T' does not match type `%T' of expression",
382 TREE_OPERAND (name
, 0), object_type
);
384 if (! TYPE_HAS_DESTRUCTOR (complete_type (object_type
)))
385 return convert_to_void (instance
, /*implicit=*/NULL
);
386 instance
= default_conversion (instance
);
387 instance_ptr
= build_unary_op (ADDR_EXPR
, instance
, 0);
388 return build_delete (build_pointer_type (object_type
),
389 instance_ptr
, sfk_complete_destructor
,
390 LOOKUP_NORMAL
|LOOKUP_DESTRUCTOR
, 0);
393 if (!CLASS_TYPE_P (object_type
))
395 if ((flags
& LOOKUP_COMPLAIN
)
396 && TREE_TYPE (instance
) != error_mark_node
)
397 error ("request for member `%D' in `%E', which is of non-aggregate type `%T'",
398 name
, instance
, object_type
);
399 return error_mark_node
;
402 if (TREE_CODE (name
) == TEMPLATE_ID_EXPR
)
404 template_args
= TREE_OPERAND (name
, 1);
405 has_template_args
= true;
406 name
= TREE_OPERAND (name
, 0);
408 if (TREE_CODE (name
) == OVERLOAD
)
409 name
= DECL_NAME (get_first_fn (name
));
410 else if (DECL_P (name
))
411 name
= DECL_NAME (name
);
412 if (has_template_args
)
413 fn
= lookup_fnfields (object_type
, name
, /*protect=*/2);
415 fn
= lookup_member (object_type
, name
, /*protect=*/2, /*want_type=*/false);
417 if (fn
&& TREE_CODE (fn
) == TREE_LIST
)
419 error ("request for member `%D' is ambiguous", name
);
420 print_candidates (fn
);
421 return error_mark_node
;
424 /* If the name could not be found, issue an error. */
426 return unqualified_name_lookup_error (name
);
428 if (BASELINK_P (fn
) && has_template_args
)
429 BASELINK_FUNCTIONS (fn
)
430 = build_nt (TEMPLATE_ID_EXPR
,
431 BASELINK_FUNCTIONS (fn
),
433 if (BASELINK_P (fn
) && basetype_path
)
434 BASELINK_ACCESS_BINFO (fn
) = basetype_path
;
436 return build_new_method_call (instance
, fn
, parms
,
437 /*conversion_path=*/NULL_TREE
, flags
);
440 /* New overloading code. */
442 struct z_candidate
GTY(()) {
443 /* The FUNCTION_DECL that will be called if this candidate is
444 selected by overload resolution. */
446 /* The arguments to use when calling this function. */
448 /* The implicit conversion sequences for each of the arguments to
451 /* If FN is a user-defined conversion, the standard conversion
452 sequence from the type returned by FN to the desired destination
456 /* If FN is a member function, the binfo indicating the path used to
457 qualify the name of FN at the call site. This path is used to
458 determine whether or not FN is accessible if it is selected by
459 overload resolution. The DECL_CONTEXT of FN will always be a
460 (possibly improper) base of this binfo. */
462 /* If FN is a non-static member function, the binfo indicating the
463 subobject to which the `this' pointer should be converted if FN
464 is selected by overload resolution. The type pointed to the by
465 the `this' pointer must correspond to the most derived class
466 indicated by the CONVERSION_PATH. */
467 tree conversion_path
;
470 struct z_candidate
*next
;
473 #define IDENTITY_RANK 0
479 #define ELLIPSIS_RANK 6
482 #define ICS_RANK(NODE) \
483 (ICS_BAD_FLAG (NODE) ? BAD_RANK \
484 : ICS_ELLIPSIS_FLAG (NODE) ? ELLIPSIS_RANK \
485 : ICS_USER_FLAG (NODE) ? USER_RANK \
486 : ICS_STD_RANK (NODE))
488 #define ICS_STD_RANK(NODE) TREE_COMPLEXITY (NODE)
490 #define ICS_USER_FLAG(NODE) TREE_LANG_FLAG_0 (NODE)
491 #define ICS_ELLIPSIS_FLAG(NODE) TREE_LANG_FLAG_1 (NODE)
492 #define ICS_THIS_FLAG(NODE) TREE_LANG_FLAG_2 (NODE)
493 #define ICS_BAD_FLAG(NODE) TREE_LANG_FLAG_3 (NODE)
495 /* In a REF_BIND or a BASE_CONV, this indicates that a temporary
496 should be created to hold the result of the conversion. */
497 #define NEED_TEMPORARY_P(NODE) TREE_LANG_FLAG_4 (NODE)
499 #define USER_CONV_CAND(NODE) WRAPPER_ZC (TREE_OPERAND (NODE, 1))
500 #define USER_CONV_FN(NODE) (USER_CONV_CAND (NODE)->fn)
503 null_ptr_cst_p (tree t
)
507 A null pointer constant is an integral constant expression
508 (_expr.const_) rvalue of integer type that evaluates to zero. */
510 || (CP_INTEGRAL_TYPE_P (TREE_TYPE (t
)) && integer_zerop (t
)))
516 /* Returns nonzero if PARMLIST consists of only default parms and/or
520 sufficient_parms_p (tree parmlist
)
522 for (; parmlist
&& parmlist
!= void_list_node
;
523 parmlist
= TREE_CHAIN (parmlist
))
524 if (!TREE_PURPOSE (parmlist
))
530 build_conv (enum tree_code code
, tree type
, tree from
)
533 int rank
= ICS_STD_RANK (from
);
535 /* We can't use buildl1 here because CODE could be USER_CONV, which
536 takes two arguments. In that case, the caller is responsible for
537 filling in the second argument. */
538 t
= make_node (code
);
539 TREE_TYPE (t
) = type
;
540 TREE_OPERAND (t
, 0) = from
;
553 if (rank
< EXACT_RANK
)
559 ICS_STD_RANK (t
) = rank
;
560 ICS_USER_FLAG (t
) = (code
== USER_CONV
|| ICS_USER_FLAG (from
));
561 ICS_BAD_FLAG (t
) = ICS_BAD_FLAG (from
);
566 strip_top_quals (tree t
)
568 if (TREE_CODE (t
) == ARRAY_TYPE
)
570 return cp_build_qualified_type (t
, 0);
573 /* Returns the standard conversion path (see [conv]) from type FROM to type
574 TO, if any. For proper handling of null pointer constants, you must
575 also pass the expression EXPR to convert from. */
578 standard_conversion (tree to
, tree from
, tree expr
)
580 enum tree_code fcode
, tcode
;
582 bool fromref
= false;
584 to
= non_reference (to
);
585 if (TREE_CODE (from
) == REFERENCE_TYPE
)
588 from
= TREE_TYPE (from
);
590 to
= strip_top_quals (to
);
591 from
= strip_top_quals (from
);
593 if ((TYPE_PTRFN_P (to
) || TYPE_PTRMEMFUNC_P (to
))
594 && expr
&& type_unknown_p (expr
))
596 expr
= instantiate_type (to
, expr
, tf_conv
);
597 if (expr
== error_mark_node
)
599 from
= TREE_TYPE (expr
);
602 fcode
= TREE_CODE (from
);
603 tcode
= TREE_CODE (to
);
605 conv
= build1 (IDENTITY_CONV
, from
, expr
);
607 if (fcode
== FUNCTION_TYPE
)
609 from
= build_pointer_type (from
);
610 fcode
= TREE_CODE (from
);
611 conv
= build_conv (LVALUE_CONV
, from
, conv
);
613 else if (fcode
== ARRAY_TYPE
)
615 from
= build_pointer_type (TREE_TYPE (from
));
616 fcode
= TREE_CODE (from
);
617 conv
= build_conv (LVALUE_CONV
, from
, conv
);
619 else if (fromref
|| (expr
&& lvalue_p (expr
)))
620 conv
= build_conv (RVALUE_CONV
, from
, conv
);
622 /* Allow conversion between `__complex__' data types */
623 if (tcode
== COMPLEX_TYPE
&& fcode
== COMPLEX_TYPE
)
625 /* The standard conversion sequence to convert FROM to TO is
626 the standard conversion sequence to perform componentwise
628 tree part_conv
= standard_conversion
629 (TREE_TYPE (to
), TREE_TYPE (from
), NULL_TREE
);
633 conv
= build_conv (TREE_CODE (part_conv
), to
, conv
);
634 ICS_STD_RANK (conv
) = ICS_STD_RANK (part_conv
);
642 if (same_type_p (from
, to
))
645 if ((tcode
== POINTER_TYPE
|| TYPE_PTR_TO_MEMBER_P (to
))
646 && expr
&& null_ptr_cst_p (expr
))
647 conv
= build_conv (STD_CONV
, to
, conv
);
648 else if (tcode
== POINTER_TYPE
&& fcode
== POINTER_TYPE
649 && TREE_CODE (TREE_TYPE (to
)) == VECTOR_TYPE
650 && TREE_CODE (TREE_TYPE (from
)) == VECTOR_TYPE
651 && ((*targetm
.vector_opaque_p
) (TREE_TYPE (to
))
652 || (*targetm
.vector_opaque_p
) (TREE_TYPE (from
))))
653 conv
= build_conv (STD_CONV
, to
, conv
);
654 else if ((tcode
== INTEGER_TYPE
&& fcode
== POINTER_TYPE
)
655 || (tcode
== POINTER_TYPE
&& fcode
== INTEGER_TYPE
))
657 /* For backwards brain damage compatibility, allow interconversion of
658 pointers and integers with a pedwarn. */
659 conv
= build_conv (STD_CONV
, to
, conv
);
660 ICS_BAD_FLAG (conv
) = 1;
662 else if (tcode
== ENUMERAL_TYPE
&& fcode
== INTEGER_TYPE
)
664 /* For backwards brain damage compatibility, allow interconversion of
665 enums and integers with a pedwarn. */
666 conv
= build_conv (STD_CONV
, to
, conv
);
667 ICS_BAD_FLAG (conv
) = 1;
669 else if ((tcode
== POINTER_TYPE
&& fcode
== POINTER_TYPE
)
670 || (TYPE_PTRMEM_P (to
) && TYPE_PTRMEM_P (from
)))
675 if (tcode
== POINTER_TYPE
676 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (from
),
679 else if (VOID_TYPE_P (TREE_TYPE (to
))
680 && !TYPE_PTRMEM_P (from
)
681 && TREE_CODE (TREE_TYPE (from
)) != FUNCTION_TYPE
)
683 from
= build_pointer_type
684 (cp_build_qualified_type (void_type_node
,
685 cp_type_quals (TREE_TYPE (from
))));
686 conv
= build_conv (PTR_CONV
, from
, conv
);
688 else if (TYPE_PTRMEM_P (from
))
690 tree fbase
= TYPE_PTRMEM_CLASS_TYPE (from
);
691 tree tbase
= TYPE_PTRMEM_CLASS_TYPE (to
);
693 if (DERIVED_FROM_P (fbase
, tbase
)
694 && (same_type_ignoring_top_level_qualifiers_p
695 (TYPE_PTRMEM_POINTED_TO_TYPE (from
),
696 TYPE_PTRMEM_POINTED_TO_TYPE (to
))))
698 from
= build_ptrmem_type (tbase
,
699 TYPE_PTRMEM_POINTED_TO_TYPE (from
));
700 conv
= build_conv (PMEM_CONV
, from
, conv
);
703 else if (IS_AGGR_TYPE (TREE_TYPE (from
))
704 && IS_AGGR_TYPE (TREE_TYPE (to
))
707 An rvalue of type "pointer to cv D," where D is a
708 class type, can be converted to an rvalue of type
709 "pointer to cv B," where B is a base class (clause
710 _class.derived_) of D. If B is an inaccessible
711 (clause _class.access_) or ambiguous
712 (_class.member.lookup_) base class of D, a program
713 that necessitates this conversion is ill-formed. */
714 /* Therefore, we use DERIVED_FROM_P, and not
715 ACESSIBLY_UNIQUELY_DERIVED_FROM_P, in this test. */
716 && DERIVED_FROM_P (TREE_TYPE (to
), TREE_TYPE (from
)))
719 cp_build_qualified_type (TREE_TYPE (to
),
720 cp_type_quals (TREE_TYPE (from
)));
721 from
= build_pointer_type (from
);
722 conv
= build_conv (PTR_CONV
, from
, conv
);
725 if (tcode
== POINTER_TYPE
)
727 to_pointee
= TREE_TYPE (to
);
728 from_pointee
= TREE_TYPE (from
);
732 to_pointee
= TYPE_PTRMEM_POINTED_TO_TYPE (to
);
733 from_pointee
= TYPE_PTRMEM_POINTED_TO_TYPE (from
);
736 if (same_type_p (from
, to
))
738 else if (comp_ptr_ttypes (to_pointee
, from_pointee
))
739 conv
= build_conv (QUAL_CONV
, to
, conv
);
740 else if (expr
&& string_conv_p (to
, expr
, 0))
741 /* converting from string constant to char *. */
742 conv
= build_conv (QUAL_CONV
, to
, conv
);
743 else if (ptr_reasonably_similar (to_pointee
, from_pointee
))
745 conv
= build_conv (PTR_CONV
, to
, conv
);
746 ICS_BAD_FLAG (conv
) = 1;
753 else if (TYPE_PTRMEMFUNC_P (to
) && TYPE_PTRMEMFUNC_P (from
))
755 tree fromfn
= TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from
));
756 tree tofn
= TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to
));
757 tree fbase
= TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fromfn
)));
758 tree tbase
= TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (tofn
)));
760 if (!DERIVED_FROM_P (fbase
, tbase
)
761 || !same_type_p (TREE_TYPE (fromfn
), TREE_TYPE (tofn
))
762 || !compparms (TREE_CHAIN (TYPE_ARG_TYPES (fromfn
)),
763 TREE_CHAIN (TYPE_ARG_TYPES (tofn
)))
764 || cp_type_quals (fbase
) != cp_type_quals (tbase
))
767 from
= cp_build_qualified_type (tbase
, cp_type_quals (fbase
));
768 from
= build_method_type_directly (from
,
770 TREE_CHAIN (TYPE_ARG_TYPES (fromfn
)));
771 from
= build_ptrmemfunc_type (build_pointer_type (from
));
772 conv
= build_conv (PMEM_CONV
, from
, conv
);
774 else if (tcode
== BOOLEAN_TYPE
)
778 An rvalue of arithmetic, enumeration, pointer, or pointer to
779 member type can be converted to an rvalue of type bool. */
780 if (ARITHMETIC_TYPE_P (from
)
781 || fcode
== ENUMERAL_TYPE
782 || fcode
== POINTER_TYPE
783 || TYPE_PTR_TO_MEMBER_P (from
))
785 conv
= build_conv (STD_CONV
, to
, conv
);
786 if (fcode
== POINTER_TYPE
787 || TYPE_PTRMEM_P (from
)
788 || (TYPE_PTRMEMFUNC_P (from
)
789 && ICS_STD_RANK (conv
) < PBOOL_RANK
))
790 ICS_STD_RANK (conv
) = PBOOL_RANK
;
796 /* We don't check for ENUMERAL_TYPE here because there are no standard
797 conversions to enum type. */
798 else if (tcode
== INTEGER_TYPE
|| tcode
== BOOLEAN_TYPE
799 || tcode
== REAL_TYPE
)
801 if (! (INTEGRAL_CODE_P (fcode
) || fcode
== REAL_TYPE
))
803 conv
= build_conv (STD_CONV
, to
, conv
);
805 /* Give this a better rank if it's a promotion. */
806 if (same_type_p (to
, type_promotes_to (from
))
807 && ICS_STD_RANK (TREE_OPERAND (conv
, 0)) <= PROMO_RANK
)
808 ICS_STD_RANK (conv
) = PROMO_RANK
;
810 else if (fcode
== VECTOR_TYPE
&& tcode
== VECTOR_TYPE
811 && ((*targetm
.vector_opaque_p
) (from
)
812 || (*targetm
.vector_opaque_p
) (to
)))
813 return build_conv (STD_CONV
, to
, conv
);
814 else if (IS_AGGR_TYPE (to
) && IS_AGGR_TYPE (from
)
815 && is_properly_derived_from (from
, to
))
817 if (TREE_CODE (conv
) == RVALUE_CONV
)
818 conv
= TREE_OPERAND (conv
, 0);
819 conv
= build_conv (BASE_CONV
, to
, conv
);
820 /* The derived-to-base conversion indicates the initialization
821 of a parameter with base type from an object of a derived
822 type. A temporary object is created to hold the result of
824 NEED_TEMPORARY_P (conv
) = 1;
832 /* Returns nonzero if T1 is reference-related to T2. */
835 reference_related_p (tree t1
, tree t2
)
837 t1
= TYPE_MAIN_VARIANT (t1
);
838 t2
= TYPE_MAIN_VARIANT (t2
);
842 Given types "cv1 T1" and "cv2 T2," "cv1 T1" is reference-related
843 to "cv2 T2" if T1 is the same type as T2, or T1 is a base class
845 return (same_type_p (t1
, t2
)
846 || (CLASS_TYPE_P (t1
) && CLASS_TYPE_P (t2
)
847 && DERIVED_FROM_P (t1
, t2
)));
850 /* Returns nonzero if T1 is reference-compatible with T2. */
853 reference_compatible_p (tree t1
, tree t2
)
857 "cv1 T1" is reference compatible with "cv2 T2" if T1 is
858 reference-related to T2 and cv1 is the same cv-qualification as,
859 or greater cv-qualification than, cv2. */
860 return (reference_related_p (t1
, t2
)
861 && at_least_as_qualified_p (t1
, t2
));
864 /* Determine whether or not the EXPR (of class type S) can be
865 converted to T as in [over.match.ref]. */
868 convert_class_to_reference (tree t
, tree s
, tree expr
)
874 struct z_candidate
*candidates
;
875 struct z_candidate
*cand
;
878 conversions
= lookup_conversions (s
);
884 Assuming that "cv1 T" is the underlying type of the reference
885 being initialized, and "cv S" is the type of the initializer
886 expression, with S a class type, the candidate functions are
889 --The conversion functions of S and its base classes are
890 considered. Those that are not hidden within S and yield type
891 "reference to cv2 T2", where "cv1 T" is reference-compatible
892 (_dcl.init.ref_) with "cv2 T2", are candidate functions.
894 The argument list has one argument, which is the initializer
899 /* Conceptually, we should take the address of EXPR and put it in
900 the argument list. Unfortunately, however, that can result in
901 error messages, which we should not issue now because we are just
902 trying to find a conversion operator. Therefore, we use NULL,
903 cast to the appropriate type. */
904 arglist
= build_int_2 (0, 0);
905 TREE_TYPE (arglist
) = build_pointer_type (s
);
906 arglist
= build_tree_list (NULL_TREE
, arglist
);
908 reference_type
= build_reference_type (t
);
912 tree fns
= TREE_VALUE (conversions
);
914 for (; fns
; fns
= OVL_NEXT (fns
))
916 tree f
= OVL_CURRENT (fns
);
917 tree t2
= TREE_TYPE (TREE_TYPE (f
));
921 /* If this is a template function, try to get an exact
923 if (TREE_CODE (f
) == TEMPLATE_DECL
)
925 cand
= add_template_candidate (&candidates
,
931 TREE_PURPOSE (conversions
),
937 /* Now, see if the conversion function really returns
938 an lvalue of the appropriate type. From the
939 point of view of unification, simply returning an
940 rvalue of the right type is good enough. */
942 t2
= TREE_TYPE (TREE_TYPE (f
));
943 if (TREE_CODE (t2
) != REFERENCE_TYPE
944 || !reference_compatible_p (t
, TREE_TYPE (t2
)))
946 candidates
= candidates
->next
;
951 else if (TREE_CODE (t2
) == REFERENCE_TYPE
952 && reference_compatible_p (t
, TREE_TYPE (t2
)))
953 cand
= add_function_candidate (&candidates
, f
, s
, arglist
,
955 TREE_PURPOSE (conversions
),
959 /* Build a standard conversion sequence indicating the
960 binding from the reference type returned by the
961 function to the desired REFERENCE_TYPE. */
963 = (direct_reference_binding
965 build1 (IDENTITY_CONV
,
966 TREE_TYPE (TREE_TYPE (TREE_TYPE (cand
->fn
))),
969 conversions
= TREE_CHAIN (conversions
);
972 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
973 /* If none of the conversion functions worked out, let our caller
978 cand
= tourney (candidates
);
982 /* Now that we know that this is the function we're going to use fix
983 the dummy first argument. */
984 cand
->args
= tree_cons (NULL_TREE
,
986 TREE_CHAIN (cand
->args
));
988 /* Build a user-defined conversion sequence representing the
990 conv
= build_conv (USER_CONV
,
991 TREE_TYPE (TREE_TYPE (cand
->fn
)),
992 build1 (IDENTITY_CONV
, TREE_TYPE (expr
), expr
));
993 TREE_OPERAND (conv
, 1) = build_zc_wrapper (cand
);
995 /* Merge it with the standard conversion sequence from the
996 conversion function's return type to the desired type. */
997 cand
->second_conv
= merge_conversion_sequences (conv
, cand
->second_conv
);
999 if (cand
->viable
== -1)
1000 ICS_BAD_FLAG (conv
) = 1;
1002 return cand
->second_conv
;
1005 /* A reference of the indicated TYPE is being bound directly to the
1006 expression represented by the implicit conversion sequence CONV.
1007 Return a conversion sequence for this binding. */
1010 direct_reference_binding (tree type
, tree conv
)
1014 my_friendly_assert (TREE_CODE (type
) == REFERENCE_TYPE
, 20030306);
1015 my_friendly_assert (TREE_CODE (TREE_TYPE (conv
)) != REFERENCE_TYPE
,
1018 t
= TREE_TYPE (type
);
1022 When a parameter of reference type binds directly
1023 (_dcl.init.ref_) to an argument expression, the implicit
1024 conversion sequence is the identity conversion, unless the
1025 argument expression has a type that is a derived class of the
1026 parameter type, in which case the implicit conversion sequence is
1027 a derived-to-base Conversion.
1029 If the parameter binds directly to the result of applying a
1030 conversion function to the argument expression, the implicit
1031 conversion sequence is a user-defined conversion sequence
1032 (_over.ics.user_), with the second standard conversion sequence
1033 either an identity conversion or, if the conversion function
1034 returns an entity of a type that is a derived class of the
1035 parameter type, a derived-to-base conversion. */
1036 if (!same_type_ignoring_top_level_qualifiers_p (t
, TREE_TYPE (conv
)))
1038 /* Represent the derived-to-base conversion. */
1039 conv
= build_conv (BASE_CONV
, t
, conv
);
1040 /* We will actually be binding to the base-class subobject in
1041 the derived class, so we mark this conversion appropriately.
1042 That way, convert_like knows not to generate a temporary. */
1043 NEED_TEMPORARY_P (conv
) = 0;
1045 return build_conv (REF_BIND
, type
, conv
);
1048 /* Returns the conversion path from type FROM to reference type TO for
1049 purposes of reference binding. For lvalue binding, either pass a
1050 reference type to FROM or an lvalue expression to EXPR. If the
1051 reference will be bound to a temporary, NEED_TEMPORARY_P is set for
1052 the conversion returned. */
1055 reference_binding (tree rto
, tree rfrom
, tree expr
, int flags
)
1057 tree conv
= NULL_TREE
;
1058 tree to
= TREE_TYPE (rto
);
1062 cp_lvalue_kind lvalue_p
= clk_none
;
1064 if (TREE_CODE (to
) == FUNCTION_TYPE
&& expr
&& type_unknown_p (expr
))
1066 expr
= instantiate_type (to
, expr
, tf_none
);
1067 if (expr
== error_mark_node
)
1069 from
= TREE_TYPE (expr
);
1072 if (TREE_CODE (from
) == REFERENCE_TYPE
)
1074 /* Anything with reference type is an lvalue. */
1075 lvalue_p
= clk_ordinary
;
1076 from
= TREE_TYPE (from
);
1079 lvalue_p
= real_lvalue_p (expr
);
1081 /* Figure out whether or not the types are reference-related and
1082 reference compatible. We have do do this after stripping
1083 references from FROM. */
1084 related_p
= reference_related_p (to
, from
);
1085 compatible_p
= reference_compatible_p (to
, from
);
1087 if (lvalue_p
&& compatible_p
)
1091 If the initializer expression
1093 -- is an lvalue (but not an lvalue for a bit-field), and "cv1 T1"
1094 is reference-compatible with "cv2 T2,"
1096 the reference is bound directly to the initializer expression
1098 conv
= build1 (IDENTITY_CONV
, from
, expr
);
1099 conv
= direct_reference_binding (rto
, conv
);
1100 if ((lvalue_p
& clk_bitfield
) != 0
1101 || ((lvalue_p
& clk_packed
) != 0 && !TYPE_PACKED (to
)))
1102 /* For the purposes of overload resolution, we ignore the fact
1103 this expression is a bitfield or packed field. (In particular,
1104 [over.ics.ref] says specifically that a function with a
1105 non-const reference parameter is viable even if the
1106 argument is a bitfield.)
1108 However, when we actually call the function we must create
1109 a temporary to which to bind the reference. If the
1110 reference is volatile, or isn't const, then we cannot make
1111 a temporary, so we just issue an error when the conversion
1113 NEED_TEMPORARY_P (conv
) = 1;
1117 else if (CLASS_TYPE_P (from
) && !(flags
& LOOKUP_NO_CONVERSION
))
1121 If the initializer expression
1123 -- has a class type (i.e., T2 is a class type) can be
1124 implicitly converted to an lvalue of type "cv3 T3," where
1125 "cv1 T1" is reference-compatible with "cv3 T3". (this
1126 conversion is selected by enumerating the applicable
1127 conversion functions (_over.match.ref_) and choosing the
1128 best one through overload resolution. (_over.match_).
1130 the reference is bound to the lvalue result of the conversion
1131 in the second case. */
1132 conv
= convert_class_to_reference (to
, from
, expr
);
1137 /* From this point on, we conceptually need temporaries, even if we
1138 elide them. Only the cases above are "direct bindings". */
1139 if (flags
& LOOKUP_NO_TEMP_BIND
)
1144 When a parameter of reference type is not bound directly to an
1145 argument expression, the conversion sequence is the one required
1146 to convert the argument expression to the underlying type of the
1147 reference according to _over.best.ics_. Conceptually, this
1148 conversion sequence corresponds to copy-initializing a temporary
1149 of the underlying type with the argument expression. Any
1150 difference in top-level cv-qualification is subsumed by the
1151 initialization itself and does not constitute a conversion. */
1155 Otherwise, the reference shall be to a non-volatile const type. */
1156 if (!CP_TYPE_CONST_NON_VOLATILE_P (to
))
1161 If the initializer expression is an rvalue, with T2 a class type,
1162 and "cv1 T1" is reference-compatible with "cv2 T2", the reference
1163 is bound in one of the following ways:
1165 -- The reference is bound to the object represented by the rvalue
1166 or to a sub-object within that object.
1170 We use the first alternative. The implicit conversion sequence
1171 is supposed to be same as we would obtain by generating a
1172 temporary. Fortunately, if the types are reference compatible,
1173 then this is either an identity conversion or the derived-to-base
1174 conversion, just as for direct binding. */
1175 if (CLASS_TYPE_P (from
) && compatible_p
)
1177 conv
= build1 (IDENTITY_CONV
, from
, expr
);
1178 return direct_reference_binding (rto
, conv
);
1183 Otherwise, a temporary of type "cv1 T1" is created and
1184 initialized from the initializer expression using the rules for a
1185 non-reference copy initialization. If T1 is reference-related to
1186 T2, cv1 must be the same cv-qualification as, or greater
1187 cv-qualification than, cv2; otherwise, the program is ill-formed. */
1188 if (related_p
&& !at_least_as_qualified_p (to
, from
))
1191 conv
= implicit_conversion (to
, from
, expr
, flags
);
1195 conv
= build_conv (REF_BIND
, rto
, conv
);
1196 /* This reference binding, unlike those above, requires the
1197 creation of a temporary. */
1198 NEED_TEMPORARY_P (conv
) = 1;
1203 /* Returns the implicit conversion sequence (see [over.ics]) from type FROM
1204 to type TO. The optional expression EXPR may affect the conversion.
1205 FLAGS are the usual overloading flags. Only LOOKUP_NO_CONVERSION is
1209 implicit_conversion (tree to
, tree from
, tree expr
, int flags
)
1213 if (from
== error_mark_node
|| to
== error_mark_node
1214 || expr
== error_mark_node
)
1217 if (TREE_CODE (to
) == REFERENCE_TYPE
)
1218 conv
= reference_binding (to
, from
, expr
, flags
);
1220 conv
= standard_conversion (to
, from
, expr
);
1225 if (expr
!= NULL_TREE
1226 && (IS_AGGR_TYPE (from
)
1227 || IS_AGGR_TYPE (to
))
1228 && (flags
& LOOKUP_NO_CONVERSION
) == 0)
1230 struct z_candidate
*cand
;
1232 cand
= build_user_type_conversion_1
1233 (to
, expr
, LOOKUP_ONLYCONVERTING
);
1235 conv
= cand
->second_conv
;
1237 /* We used to try to bind a reference to a temporary here, but that
1238 is now handled by the recursive call to this function at the end
1239 of reference_binding. */
1246 /* Add a new entry to the list of candidates. Used by the add_*_candidate
1249 static struct z_candidate
*
1250 add_candidate (struct z_candidate
**candidates
,
1251 tree fn
, tree args
, tree convs
, tree access_path
,
1252 tree conversion_path
, int viable
)
1254 struct z_candidate
*cand
= ggc_alloc_cleared (sizeof (struct z_candidate
));
1258 cand
->convs
= convs
;
1259 cand
->access_path
= access_path
;
1260 cand
->conversion_path
= conversion_path
;
1261 cand
->viable
= viable
;
1262 cand
->next
= *candidates
;
1268 /* Create an overload candidate for the function or method FN called with
1269 the argument list ARGLIST and add it to CANDIDATES. FLAGS is passed on
1270 to implicit_conversion.
1272 CTYPE, if non-NULL, is the type we want to pretend this function
1273 comes from for purposes of overload resolution. */
1275 static struct z_candidate
*
1276 add_function_candidate (struct z_candidate
**candidates
,
1277 tree fn
, tree ctype
, tree arglist
,
1278 tree access_path
, tree conversion_path
,
1281 tree parmlist
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1284 tree parmnode
, argnode
;
1288 /* Built-in functions that haven't been declared don't really
1290 if (DECL_ANTICIPATED (fn
))
1293 /* The `this', `in_chrg' and VTT arguments to constructors are not
1294 considered in overload resolution. */
1295 if (DECL_CONSTRUCTOR_P (fn
))
1297 parmlist
= skip_artificial_parms_for (fn
, parmlist
);
1298 orig_arglist
= arglist
;
1299 arglist
= skip_artificial_parms_for (fn
, arglist
);
1302 orig_arglist
= arglist
;
1304 len
= list_length (arglist
);
1305 convs
= make_tree_vec (len
);
1307 /* 13.3.2 - Viable functions [over.match.viable]
1308 First, to be a viable function, a candidate function shall have enough
1309 parameters to agree in number with the arguments in the list.
1311 We need to check this first; otherwise, checking the ICSes might cause
1312 us to produce an ill-formed template instantiation. */
1314 parmnode
= parmlist
;
1315 for (i
= 0; i
< len
; ++i
)
1317 if (parmnode
== NULL_TREE
|| parmnode
== void_list_node
)
1319 parmnode
= TREE_CHAIN (parmnode
);
1322 if (i
< len
&& parmnode
)
1325 /* Make sure there are default args for the rest of the parms. */
1326 else if (!sufficient_parms_p (parmnode
))
1332 /* Second, for F to be a viable function, there shall exist for each
1333 argument an implicit conversion sequence that converts that argument
1334 to the corresponding parameter of F. */
1336 parmnode
= parmlist
;
1339 for (i
= 0; i
< len
; ++i
)
1341 tree arg
= TREE_VALUE (argnode
);
1342 tree argtype
= lvalue_type (arg
);
1346 if (parmnode
== void_list_node
)
1349 is_this
= (i
== 0 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
)
1350 && ! DECL_CONSTRUCTOR_P (fn
));
1354 tree parmtype
= TREE_VALUE (parmnode
);
1356 /* The type of the implicit object parameter ('this') for
1357 overload resolution is not always the same as for the
1358 function itself; conversion functions are considered to
1359 be members of the class being converted, and functions
1360 introduced by a using-declaration are considered to be
1361 members of the class that uses them.
1363 Since build_over_call ignores the ICS for the `this'
1364 parameter, we can just change the parm type. */
1365 if (ctype
&& is_this
)
1368 = build_qualified_type (ctype
,
1369 TYPE_QUALS (TREE_TYPE (parmtype
)));
1370 parmtype
= build_pointer_type (parmtype
);
1373 t
= implicit_conversion (parmtype
, argtype
, arg
, flags
);
1377 t
= build1 (IDENTITY_CONV
, argtype
, arg
);
1378 ICS_ELLIPSIS_FLAG (t
) = 1;
1382 ICS_THIS_FLAG (t
) = 1;
1384 TREE_VEC_ELT (convs
, i
) = t
;
1391 if (ICS_BAD_FLAG (t
))
1395 parmnode
= TREE_CHAIN (parmnode
);
1396 argnode
= TREE_CHAIN (argnode
);
1400 return add_candidate (candidates
, fn
, orig_arglist
, convs
, access_path
,
1401 conversion_path
, viable
);
1404 /* Create an overload candidate for the conversion function FN which will
1405 be invoked for expression OBJ, producing a pointer-to-function which
1406 will in turn be called with the argument list ARGLIST, and add it to
1407 CANDIDATES. FLAGS is passed on to implicit_conversion.
1409 Actually, we don't really care about FN; we care about the type it
1410 converts to. There may be multiple conversion functions that will
1411 convert to that type, and we rely on build_user_type_conversion_1 to
1412 choose the best one; so when we create our candidate, we record the type
1413 instead of the function. */
1415 static struct z_candidate
*
1416 add_conv_candidate (struct z_candidate
**candidates
, tree fn
, tree obj
,
1417 tree arglist
, tree access_path
, tree conversion_path
)
1419 tree totype
= TREE_TYPE (TREE_TYPE (fn
));
1420 int i
, len
, viable
, flags
;
1421 tree parmlist
, convs
, parmnode
, argnode
;
1423 for (parmlist
= totype
; TREE_CODE (parmlist
) != FUNCTION_TYPE
; )
1424 parmlist
= TREE_TYPE (parmlist
);
1425 parmlist
= TYPE_ARG_TYPES (parmlist
);
1427 len
= list_length (arglist
) + 1;
1428 convs
= make_tree_vec (len
);
1429 parmnode
= parmlist
;
1432 flags
= LOOKUP_NORMAL
;
1434 /* Don't bother looking up the same type twice. */
1435 if (*candidates
&& (*candidates
)->fn
== totype
)
1438 for (i
= 0; i
< len
; ++i
)
1440 tree arg
= i
== 0 ? obj
: TREE_VALUE (argnode
);
1441 tree argtype
= lvalue_type (arg
);
1445 t
= implicit_conversion (totype
, argtype
, arg
, flags
);
1446 else if (parmnode
== void_list_node
)
1449 t
= implicit_conversion (TREE_VALUE (parmnode
), argtype
, arg
, flags
);
1452 t
= build1 (IDENTITY_CONV
, argtype
, arg
);
1453 ICS_ELLIPSIS_FLAG (t
) = 1;
1456 TREE_VEC_ELT (convs
, i
) = t
;
1460 if (ICS_BAD_FLAG (t
))
1467 parmnode
= TREE_CHAIN (parmnode
);
1468 argnode
= TREE_CHAIN (argnode
);
1474 if (!sufficient_parms_p (parmnode
))
1477 return add_candidate (candidates
, totype
, arglist
, convs
, access_path
,
1478 conversion_path
, viable
);
1482 build_builtin_candidate (struct z_candidate
**candidates
, tree fnname
,
1483 tree type1
, tree type2
, tree
*args
, tree
*argtypes
,
1493 convs
= make_tree_vec (args
[2] ? 3 : (args
[1] ? 2 : 1));
1495 for (i
= 0; i
< 2; ++i
)
1500 t
= implicit_conversion (types
[i
], argtypes
[i
], args
[i
], flags
);
1504 /* We need something for printing the candidate. */
1505 t
= build1 (IDENTITY_CONV
, types
[i
], NULL_TREE
);
1507 else if (ICS_BAD_FLAG (t
))
1509 TREE_VEC_ELT (convs
, i
) = t
;
1512 /* For COND_EXPR we rearranged the arguments; undo that now. */
1515 TREE_VEC_ELT (convs
, 2) = TREE_VEC_ELT (convs
, 1);
1516 TREE_VEC_ELT (convs
, 1) = TREE_VEC_ELT (convs
, 0);
1517 t
= implicit_conversion (boolean_type_node
, argtypes
[2], args
[2], flags
);
1519 TREE_VEC_ELT (convs
, 0) = t
;
1524 add_candidate (candidates
, fnname
, /*args=*/NULL_TREE
, convs
,
1525 /*access_path=*/NULL_TREE
,
1526 /*conversion_path=*/NULL_TREE
,
1531 is_complete (tree t
)
1533 return COMPLETE_TYPE_P (complete_type (t
));
1536 /* Returns nonzero if TYPE is a promoted arithmetic type. */
1539 promoted_arithmetic_type_p (tree type
)
1543 In this section, the term promoted integral type is used to refer
1544 to those integral types which are preserved by integral promotion
1545 (including e.g. int and long but excluding e.g. char).
1546 Similarly, the term promoted arithmetic type refers to promoted
1547 integral types plus floating types. */
1548 return ((INTEGRAL_TYPE_P (type
)
1549 && same_type_p (type_promotes_to (type
), type
))
1550 || TREE_CODE (type
) == REAL_TYPE
);
1553 /* Create any builtin operator overload candidates for the operator in
1554 question given the converted operand types TYPE1 and TYPE2. The other
1555 args are passed through from add_builtin_candidates to
1556 build_builtin_candidate.
1558 TYPE1 and TYPE2 may not be permissible, and we must filter them.
1559 If CODE is requires candidates operands of the same type of the kind
1560 of which TYPE1 and TYPE2 are, we add both candidates
1561 CODE (TYPE1, TYPE1) and CODE (TYPE2, TYPE2). */
1564 add_builtin_candidate (struct z_candidate
**candidates
, enum tree_code code
,
1565 enum tree_code code2
, tree fnname
, tree type1
,
1566 tree type2
, tree
*args
, tree
*argtypes
, int flags
)
1570 case POSTINCREMENT_EXPR
:
1571 case POSTDECREMENT_EXPR
:
1572 args
[1] = integer_zero_node
;
1573 type2
= integer_type_node
;
1582 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
1583 and VQ is either volatile or empty, there exist candidate operator
1584 functions of the form
1585 VQ T& operator++(VQ T&);
1586 T operator++(VQ T&, int);
1587 5 For every pair T, VQ), where T is an enumeration type or an arithmetic
1588 type other than bool, and VQ is either volatile or empty, there exist
1589 candidate operator functions of the form
1590 VQ T& operator--(VQ T&);
1591 T operator--(VQ T&, int);
1592 6 For every pair T, VQ), where T is a cv-qualified or cv-unqualified
1593 complete object type, and VQ is either volatile or empty, there exist
1594 candidate operator functions of the form
1595 T*VQ& operator++(T*VQ&);
1596 T*VQ& operator--(T*VQ&);
1597 T* operator++(T*VQ&, int);
1598 T* operator--(T*VQ&, int); */
1600 case POSTDECREMENT_EXPR
:
1601 case PREDECREMENT_EXPR
:
1602 if (TREE_CODE (type1
) == BOOLEAN_TYPE
)
1604 case POSTINCREMENT_EXPR
:
1605 case PREINCREMENT_EXPR
:
1606 if (ARITHMETIC_TYPE_P (type1
) || TYPE_PTROB_P (type1
))
1608 type1
= build_reference_type (type1
);
1613 /* 7 For every cv-qualified or cv-unqualified complete object type T, there
1614 exist candidate operator functions of the form
1618 8 For every function type T, there exist candidate operator functions of
1620 T& operator*(T*); */
1623 if (TREE_CODE (type1
) == POINTER_TYPE
1624 && (TYPE_PTROB_P (type1
)
1625 || TREE_CODE (TREE_TYPE (type1
)) == FUNCTION_TYPE
))
1629 /* 9 For every type T, there exist candidate operator functions of the form
1632 10For every promoted arithmetic type T, there exist candidate operator
1633 functions of the form
1637 case CONVERT_EXPR
: /* unary + */
1638 if (TREE_CODE (type1
) == POINTER_TYPE
)
1641 if (ARITHMETIC_TYPE_P (type1
))
1645 /* 11For every promoted integral type T, there exist candidate operator
1646 functions of the form
1650 if (INTEGRAL_TYPE_P (type1
))
1654 /* 12For every quintuple C1, C2, T, CV1, CV2), where C2 is a class type, C1
1655 is the same type as C2 or is a derived class of C2, T is a complete
1656 object type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
1657 there exist candidate operator functions of the form
1658 CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
1659 where CV12 is the union of CV1 and CV2. */
1662 if (TREE_CODE (type1
) == POINTER_TYPE
1663 && TYPE_PTR_TO_MEMBER_P (type2
))
1665 tree c1
= TREE_TYPE (type1
);
1666 tree c2
= TYPE_PTRMEM_CLASS_TYPE (type2
);
1668 if (IS_AGGR_TYPE (c1
) && DERIVED_FROM_P (c2
, c1
)
1669 && (TYPE_PTRMEMFUNC_P (type2
)
1670 || is_complete (TREE_TYPE (TREE_TYPE (type2
)))))
1675 /* 13For every pair of promoted arithmetic types L and R, there exist can-
1676 didate operator functions of the form
1681 bool operator<(L, R);
1682 bool operator>(L, R);
1683 bool operator<=(L, R);
1684 bool operator>=(L, R);
1685 bool operator==(L, R);
1686 bool operator!=(L, R);
1687 where LR is the result of the usual arithmetic conversions between
1690 14For every pair of types T and I, where T is a cv-qualified or cv-
1691 unqualified complete object type and I is a promoted integral type,
1692 there exist candidate operator functions of the form
1693 T* operator+(T*, I);
1694 T& operator[](T*, I);
1695 T* operator-(T*, I);
1696 T* operator+(I, T*);
1697 T& operator[](I, T*);
1699 15For every T, where T is a pointer to complete object type, there exist
1700 candidate operator functions of the form112)
1701 ptrdiff_t operator-(T, T);
1703 16For every pointer or enumeration type T, there exist candidate operator
1704 functions of the form
1705 bool operator<(T, T);
1706 bool operator>(T, T);
1707 bool operator<=(T, T);
1708 bool operator>=(T, T);
1709 bool operator==(T, T);
1710 bool operator!=(T, T);
1712 17For every pointer to member type T, there exist candidate operator
1713 functions of the form
1714 bool operator==(T, T);
1715 bool operator!=(T, T); */
1718 if (TYPE_PTROB_P (type1
) && TYPE_PTROB_P (type2
))
1720 if (TYPE_PTROB_P (type1
) && INTEGRAL_TYPE_P (type2
))
1722 type2
= ptrdiff_type_node
;
1726 case TRUNC_DIV_EXPR
:
1727 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1733 if ((TYPE_PTRMEMFUNC_P (type1
) && TYPE_PTRMEMFUNC_P (type2
))
1734 || (TYPE_PTRMEM_P (type1
) && TYPE_PTRMEM_P (type2
)))
1736 if (TYPE_PTR_TO_MEMBER_P (type1
) && null_ptr_cst_p (args
[1]))
1741 if (TYPE_PTR_TO_MEMBER_P (type2
) && null_ptr_cst_p (args
[0]))
1753 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1755 if (TYPE_PTR_P (type1
) && TYPE_PTR_P (type2
))
1757 if (TREE_CODE (type1
) == ENUMERAL_TYPE
&& TREE_CODE (type2
) == ENUMERAL_TYPE
)
1759 if (TYPE_PTR_P (type1
) && null_ptr_cst_p (args
[1]))
1764 if (null_ptr_cst_p (args
[0]) && TYPE_PTR_P (type2
))
1772 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1775 if (INTEGRAL_TYPE_P (type1
) && TYPE_PTROB_P (type2
))
1777 type1
= ptrdiff_type_node
;
1780 if (TYPE_PTROB_P (type1
) && INTEGRAL_TYPE_P (type2
))
1782 type2
= ptrdiff_type_node
;
1787 /* 18For every pair of promoted integral types L and R, there exist candi-
1788 date operator functions of the form
1795 where LR is the result of the usual arithmetic conversions between
1798 case TRUNC_MOD_EXPR
:
1804 if (INTEGRAL_TYPE_P (type1
) && INTEGRAL_TYPE_P (type2
))
1808 /* 19For every triple L, VQ, R), where L is an arithmetic or enumeration
1809 type, VQ is either volatile or empty, and R is a promoted arithmetic
1810 type, there exist candidate operator functions of the form
1811 VQ L& operator=(VQ L&, R);
1812 VQ L& operator*=(VQ L&, R);
1813 VQ L& operator/=(VQ L&, R);
1814 VQ L& operator+=(VQ L&, R);
1815 VQ L& operator-=(VQ L&, R);
1817 20For every pair T, VQ), where T is any type and VQ is either volatile
1818 or empty, there exist candidate operator functions of the form
1819 T*VQ& operator=(T*VQ&, T*);
1821 21For every pair T, VQ), where T is a pointer to member type and VQ is
1822 either volatile or empty, there exist candidate operator functions of
1824 VQ T& operator=(VQ T&, T);
1826 22For every triple T, VQ, I), where T is a cv-qualified or cv-
1827 unqualified complete object type, VQ is either volatile or empty, and
1828 I is a promoted integral type, there exist candidate operator func-
1830 T*VQ& operator+=(T*VQ&, I);
1831 T*VQ& operator-=(T*VQ&, I);
1833 23For every triple L, VQ, R), where L is an integral or enumeration
1834 type, VQ is either volatile or empty, and R is a promoted integral
1835 type, there exist candidate operator functions of the form
1837 VQ L& operator%=(VQ L&, R);
1838 VQ L& operator<<=(VQ L&, R);
1839 VQ L& operator>>=(VQ L&, R);
1840 VQ L& operator&=(VQ L&, R);
1841 VQ L& operator^=(VQ L&, R);
1842 VQ L& operator|=(VQ L&, R); */
1849 if (TYPE_PTROB_P (type1
) && INTEGRAL_TYPE_P (type2
))
1851 type2
= ptrdiff_type_node
;
1855 case TRUNC_DIV_EXPR
:
1856 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1860 case TRUNC_MOD_EXPR
:
1866 if (INTEGRAL_TYPE_P (type1
) && INTEGRAL_TYPE_P (type2
))
1871 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1873 if ((TYPE_PTRMEMFUNC_P (type1
) && TYPE_PTRMEMFUNC_P (type2
))
1874 || (TYPE_PTR_P (type1
) && TYPE_PTR_P (type2
))
1875 || (TYPE_PTRMEM_P (type1
) && TYPE_PTRMEM_P (type2
))
1876 || ((TYPE_PTRMEMFUNC_P (type1
)
1877 || TREE_CODE (type1
) == POINTER_TYPE
)
1878 && null_ptr_cst_p (args
[1])))
1888 type1
= build_reference_type (type1
);
1894 For every pair of promoted arithmetic types L and R, there
1895 exist candidate operator functions of the form
1897 LR operator?(bool, L, R);
1899 where LR is the result of the usual arithmetic conversions
1900 between types L and R.
1902 For every type T, where T is a pointer or pointer-to-member
1903 type, there exist candidate operator functions of the form T
1904 operator?(bool, T, T); */
1906 if (promoted_arithmetic_type_p (type1
)
1907 && promoted_arithmetic_type_p (type2
))
1911 /* Otherwise, the types should be pointers. */
1912 if (!(TYPE_PTR_P (type1
) || TYPE_PTR_TO_MEMBER_P (type1
))
1913 || !(TYPE_PTR_P (type2
) || TYPE_PTR_TO_MEMBER_P (type2
)))
1916 /* We don't check that the two types are the same; the logic
1917 below will actually create two candidates; one in which both
1918 parameter types are TYPE1, and one in which both parameter
1926 /* If we're dealing with two pointer types or two enumeral types,
1927 we need candidates for both of them. */
1928 if (type2
&& !same_type_p (type1
, type2
)
1929 && TREE_CODE (type1
) == TREE_CODE (type2
)
1930 && (TREE_CODE (type1
) == REFERENCE_TYPE
1931 || (TYPE_PTR_P (type1
) && TYPE_PTR_P (type2
))
1932 || (TYPE_PTRMEM_P (type1
) && TYPE_PTRMEM_P (type2
))
1933 || TYPE_PTRMEMFUNC_P (type1
)
1934 || IS_AGGR_TYPE (type1
)
1935 || TREE_CODE (type1
) == ENUMERAL_TYPE
))
1937 build_builtin_candidate
1938 (candidates
, fnname
, type1
, type1
, args
, argtypes
, flags
);
1939 build_builtin_candidate
1940 (candidates
, fnname
, type2
, type2
, args
, argtypes
, flags
);
1944 build_builtin_candidate
1945 (candidates
, fnname
, type1
, type2
, args
, argtypes
, flags
);
1949 type_decays_to (tree type
)
1951 if (TREE_CODE (type
) == ARRAY_TYPE
)
1952 return build_pointer_type (TREE_TYPE (type
));
1953 if (TREE_CODE (type
) == FUNCTION_TYPE
)
1954 return build_pointer_type (type
);
1958 /* There are three conditions of builtin candidates:
1960 1) bool-taking candidates. These are the same regardless of the input.
1961 2) pointer-pair taking candidates. These are generated for each type
1962 one of the input types converts to.
1963 3) arithmetic candidates. According to the standard, we should generate
1964 all of these, but I'm trying not to...
1966 Here we generate a superset of the possible candidates for this particular
1967 case. That is a subset of the full set the standard defines, plus some
1968 other cases which the standard disallows. add_builtin_candidate will
1969 filter out the invalid set. */
1972 add_builtin_candidates (struct z_candidate
**candidates
, enum tree_code code
,
1973 enum tree_code code2
, tree fnname
, tree
*args
,
1978 tree type
, argtypes
[3];
1979 /* TYPES[i] is the set of possible builtin-operator parameter types
1980 we will consider for the Ith argument. These are represented as
1981 a TREE_LIST; the TREE_VALUE of each node is the potential
1985 for (i
= 0; i
< 3; ++i
)
1988 argtypes
[i
] = lvalue_type (args
[i
]);
1990 argtypes
[i
] = NULL_TREE
;
1995 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
1996 and VQ is either volatile or empty, there exist candidate operator
1997 functions of the form
1998 VQ T& operator++(VQ T&); */
2000 case POSTINCREMENT_EXPR
:
2001 case PREINCREMENT_EXPR
:
2002 case POSTDECREMENT_EXPR
:
2003 case PREDECREMENT_EXPR
:
2008 /* 24There also exist candidate operator functions of the form
2009 bool operator!(bool);
2010 bool operator&&(bool, bool);
2011 bool operator||(bool, bool); */
2013 case TRUTH_NOT_EXPR
:
2014 build_builtin_candidate
2015 (candidates
, fnname
, boolean_type_node
,
2016 NULL_TREE
, args
, argtypes
, flags
);
2019 case TRUTH_ORIF_EXPR
:
2020 case TRUTH_ANDIF_EXPR
:
2021 build_builtin_candidate
2022 (candidates
, fnname
, boolean_type_node
,
2023 boolean_type_node
, args
, argtypes
, flags
);
2045 types
[0] = types
[1] = NULL_TREE
;
2047 for (i
= 0; i
< 2; ++i
)
2051 else if (IS_AGGR_TYPE (argtypes
[i
]))
2055 if (i
== 0 && code
== MODIFY_EXPR
&& code2
== NOP_EXPR
)
2058 convs
= lookup_conversions (argtypes
[i
]);
2060 if (code
== COND_EXPR
)
2062 if (real_lvalue_p (args
[i
]))
2063 types
[i
] = tree_cons
2064 (NULL_TREE
, build_reference_type (argtypes
[i
]), types
[i
]);
2066 types
[i
] = tree_cons
2067 (NULL_TREE
, TYPE_MAIN_VARIANT (argtypes
[i
]), types
[i
]);
2073 for (; convs
; convs
= TREE_CHAIN (convs
))
2075 type
= TREE_TYPE (TREE_TYPE (OVL_CURRENT (TREE_VALUE (convs
))));
2078 && (TREE_CODE (type
) != REFERENCE_TYPE
2079 || CP_TYPE_CONST_P (TREE_TYPE (type
))))
2082 if (code
== COND_EXPR
&& TREE_CODE (type
) == REFERENCE_TYPE
)
2083 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2085 type
= non_reference (type
);
2086 if (i
!= 0 || ! ref1
)
2088 type
= TYPE_MAIN_VARIANT (type_decays_to (type
));
2089 if (enum_p
&& TREE_CODE (type
) == ENUMERAL_TYPE
)
2090 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2091 if (INTEGRAL_TYPE_P (type
))
2092 type
= type_promotes_to (type
);
2095 if (! value_member (type
, types
[i
]))
2096 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2101 if (code
== COND_EXPR
&& real_lvalue_p (args
[i
]))
2102 types
[i
] = tree_cons
2103 (NULL_TREE
, build_reference_type (argtypes
[i
]), types
[i
]);
2104 type
= non_reference (argtypes
[i
]);
2105 if (i
!= 0 || ! ref1
)
2107 type
= TYPE_MAIN_VARIANT (type_decays_to (type
));
2108 if (enum_p
&& TREE_CODE (type
) == ENUMERAL_TYPE
)
2109 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2110 if (INTEGRAL_TYPE_P (type
))
2111 type
= type_promotes_to (type
);
2113 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2117 /* Run through the possible parameter types of both arguments,
2118 creating candidates with those parameter types. */
2119 for (; types
[0]; types
[0] = TREE_CHAIN (types
[0]))
2122 for (type
= types
[1]; type
; type
= TREE_CHAIN (type
))
2123 add_builtin_candidate
2124 (candidates
, code
, code2
, fnname
, TREE_VALUE (types
[0]),
2125 TREE_VALUE (type
), args
, argtypes
, flags
);
2127 add_builtin_candidate
2128 (candidates
, code
, code2
, fnname
, TREE_VALUE (types
[0]),
2129 NULL_TREE
, args
, argtypes
, flags
);
2136 /* If TMPL can be successfully instantiated as indicated by
2137 EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES.
2139 TMPL is the template. EXPLICIT_TARGS are any explicit template
2140 arguments. ARGLIST is the arguments provided at the call-site.
2141 The RETURN_TYPE is the desired type for conversion operators. If
2142 OBJ is NULL_TREE, FLAGS and CTYPE are as for add_function_candidate.
2143 If an OBJ is supplied, FLAGS and CTYPE are ignored, and OBJ is as for
2144 add_conv_candidate. */
2146 static struct z_candidate
*
2147 add_template_candidate_real (struct z_candidate
**candidates
, tree tmpl
,
2148 tree ctype
, tree explicit_targs
, tree arglist
,
2149 tree return_type
, tree access_path
,
2150 tree conversion_path
, int flags
, tree obj
,
2151 unification_kind_t strict
)
2153 int ntparms
= DECL_NTPARMS (tmpl
);
2154 tree targs
= make_tree_vec (ntparms
);
2155 tree args_without_in_chrg
= arglist
;
2156 struct z_candidate
*cand
;
2160 /* We don't do deduction on the in-charge parameter, the VTT
2161 parameter or 'this'. */
2162 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (tmpl
))
2163 args_without_in_chrg
= TREE_CHAIN (args_without_in_chrg
);
2165 if ((DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (tmpl
)
2166 || DECL_BASE_CONSTRUCTOR_P (tmpl
))
2167 && TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (tmpl
)))
2168 args_without_in_chrg
= TREE_CHAIN (args_without_in_chrg
);
2170 i
= fn_type_unification (tmpl
, explicit_targs
, targs
,
2171 args_without_in_chrg
,
2172 return_type
, strict
, -1);
2177 fn
= instantiate_template (tmpl
, targs
, tf_none
);
2178 if (fn
== error_mark_node
)
2183 A member function template is never instantiated to perform the
2184 copy of a class object to an object of its class type.
2186 It's a little unclear what this means; the standard explicitly
2187 does allow a template to be used to copy a class. For example,
2192 template <class T> A(const T&);
2195 void g () { A a (f ()); }
2197 the member template will be used to make the copy. The section
2198 quoted above appears in the paragraph that forbids constructors
2199 whose only parameter is (a possibly cv-qualified variant of) the
2200 class type, and a logical interpretation is that the intent was
2201 to forbid the instantiation of member templates which would then
2203 if (DECL_CONSTRUCTOR_P (fn
) && list_length (arglist
) == 2)
2205 tree arg_types
= FUNCTION_FIRST_USER_PARMTYPE (fn
);
2206 if (arg_types
&& same_type_p (TYPE_MAIN_VARIANT (TREE_VALUE (arg_types
)),
2211 if (obj
!= NULL_TREE
)
2212 /* Aha, this is a conversion function. */
2213 cand
= add_conv_candidate (candidates
, fn
, obj
, access_path
,
2214 conversion_path
, arglist
);
2216 cand
= add_function_candidate (candidates
, fn
, ctype
,
2217 arglist
, access_path
,
2218 conversion_path
, flags
);
2219 if (DECL_TI_TEMPLATE (fn
) != tmpl
)
2220 /* This situation can occur if a member template of a template
2221 class is specialized. Then, instantiate_template might return
2222 an instantiation of the specialization, in which case the
2223 DECL_TI_TEMPLATE field will point at the original
2224 specialization. For example:
2226 template <class T> struct S { template <class U> void f(U);
2227 template <> void f(int) {}; };
2231 Here, TMPL will be template <class U> S<double>::f(U).
2232 And, instantiate template will give us the specialization
2233 template <> S<double>::f(int). But, the DECL_TI_TEMPLATE field
2234 for this will point at template <class T> template <> S<T>::f(int),
2235 so that we can find the definition. For the purposes of
2236 overload resolution, however, we want the original TMPL. */
2237 cand
->template = tree_cons (tmpl
, targs
, NULL_TREE
);
2239 cand
->template = DECL_TEMPLATE_INFO (fn
);
2245 static struct z_candidate
*
2246 add_template_candidate (struct z_candidate
**candidates
, tree tmpl
, tree ctype
,
2247 tree explicit_targs
, tree arglist
, tree return_type
,
2248 tree access_path
, tree conversion_path
, int flags
,
2249 unification_kind_t strict
)
2252 add_template_candidate_real (candidates
, tmpl
, ctype
,
2253 explicit_targs
, arglist
, return_type
,
2254 access_path
, conversion_path
,
2255 flags
, NULL_TREE
, strict
);
2259 static struct z_candidate
*
2260 add_template_conv_candidate (struct z_candidate
**candidates
, tree tmpl
,
2261 tree obj
, tree arglist
, tree return_type
,
2262 tree access_path
, tree conversion_path
)
2265 add_template_candidate_real (candidates
, tmpl
, NULL_TREE
, NULL_TREE
,
2266 arglist
, return_type
, access_path
,
2267 conversion_path
, 0, obj
, DEDUCE_CONV
);
2270 /* The CANDS are the set of candidates that were considered for
2271 overload resolution. Return the set of viable candidates. If none
2272 of the candidates were viable, set *ANY_VIABLE_P to true. STRICT_P
2273 is true if a candidate should be considered viable only if it is
2276 static struct z_candidate
*
2277 splice_viable (struct z_candidate
*cands
,
2281 struct z_candidate
*viable
;
2282 struct z_candidate
**last_viable
;
2283 struct z_candidate
**cand
;
2286 last_viable
= &viable
;
2287 *any_viable_p
= false;
2292 struct z_candidate
*c
= *cand
;
2293 if (strict_p
? c
->viable
== 1 : c
->viable
)
2298 last_viable
= &c
->next
;
2299 *any_viable_p
= true;
2305 return viable
? viable
: cands
;
2309 any_strictly_viable (struct z_candidate
*cands
)
2311 for (; cands
; cands
= cands
->next
)
2312 if (cands
->viable
== 1)
2318 build_this (tree obj
)
2320 /* Fix this to work on non-lvalues. */
2321 return build_unary_op (ADDR_EXPR
, obj
, 0);
2324 /* Returns true iff functions are equivalent. Equivalent functions are
2325 not '==' only if one is a function-local extern function or if
2326 both are extern "C". */
2329 equal_functions (tree fn1
, tree fn2
)
2331 if (DECL_LOCAL_FUNCTION_P (fn1
) || DECL_LOCAL_FUNCTION_P (fn2
)
2332 || DECL_EXTERN_C_FUNCTION_P (fn1
))
2333 return decls_match (fn1
, fn2
);
2337 /* Print information about one overload candidate CANDIDATE. MSGSTR
2338 is the text to print before the candidate itself.
2340 NOTE: Unlike most diagnostic functions in GCC, MSGSTR is expected
2341 to have been run through gettext by the caller. This wart makes
2342 life simpler in print_z_candidates and for the translators. */
2345 print_z_candidate (const char *msgstr
, struct z_candidate
*candidate
)
2347 if (TREE_CODE (candidate
->fn
) == IDENTIFIER_NODE
)
2349 if (TREE_VEC_LENGTH (candidate
->convs
) == 3)
2350 inform ("%s %D(%T, %T, %T) <built-in>", msgstr
, candidate
->fn
,
2351 TREE_TYPE (TREE_VEC_ELT (candidate
->convs
, 0)),
2352 TREE_TYPE (TREE_VEC_ELT (candidate
->convs
, 1)),
2353 TREE_TYPE (TREE_VEC_ELT (candidate
->convs
, 2)));
2354 else if (TREE_VEC_LENGTH (candidate
->convs
) == 2)
2355 inform ("%s %D(%T, %T) <built-in>", msgstr
, candidate
->fn
,
2356 TREE_TYPE (TREE_VEC_ELT (candidate
->convs
, 0)),
2357 TREE_TYPE (TREE_VEC_ELT (candidate
->convs
, 1)));
2359 inform ("%s %D(%T) <built-in>", msgstr
, candidate
->fn
,
2360 TREE_TYPE (TREE_VEC_ELT (candidate
->convs
, 0)));
2362 else if (TYPE_P (candidate
->fn
))
2363 inform ("%s %T <conversion>", msgstr
, candidate
->fn
);
2364 else if (candidate
->viable
== -1)
2365 inform ("%J%s %+#D <near match>", candidate
->fn
, msgstr
, candidate
->fn
);
2367 inform ("%J%s %+#D", candidate
->fn
, msgstr
, candidate
->fn
);
2371 print_z_candidates (struct z_candidate
*candidates
)
2374 struct z_candidate
*cand1
;
2375 struct z_candidate
**cand2
;
2377 /* There may be duplicates in the set of candidates. We put off
2378 checking this condition as long as possible, since we have no way
2379 to eliminate duplicates from a set of functions in less than n^2
2380 time. Now we are about to emit an error message, so it is more
2381 permissible to go slowly. */
2382 for (cand1
= candidates
; cand1
; cand1
= cand1
->next
)
2384 tree fn
= cand1
->fn
;
2385 /* Skip builtin candidates and conversion functions. */
2386 if (TREE_CODE (fn
) != FUNCTION_DECL
)
2388 cand2
= &cand1
->next
;
2391 if (TREE_CODE ((*cand2
)->fn
) == FUNCTION_DECL
2392 && equal_functions (fn
, (*cand2
)->fn
))
2393 *cand2
= (*cand2
)->next
;
2395 cand2
= &(*cand2
)->next
;
2402 str
= _("candidates are:");
2403 print_z_candidate (str
, candidates
);
2404 if (candidates
->next
)
2406 /* Indent successive candidates by the width of the translation
2407 of the above string. */
2408 size_t len
= gcc_gettext_width (str
) + 1;
2409 char *spaces
= alloca (len
);
2410 memset (spaces
, ' ', len
-1);
2411 spaces
[len
- 1] = '\0';
2413 candidates
= candidates
->next
;
2416 print_z_candidate (spaces
, candidates
);
2417 candidates
= candidates
->next
;
2423 /* USER_SEQ is a user-defined conversion sequence, beginning with a
2424 USER_CONV. STD_SEQ is the standard conversion sequence applied to
2425 the result of the conversion function to convert it to the final
2426 desired type. Merge the the two sequences into a single sequence,
2427 and return the merged sequence. */
2430 merge_conversion_sequences (tree user_seq
, tree std_seq
)
2434 my_friendly_assert (TREE_CODE (user_seq
) == USER_CONV
,
2437 /* Find the end of the second conversion sequence. */
2439 while (TREE_CODE (*t
) != IDENTITY_CONV
)
2440 t
= &TREE_OPERAND (*t
, 0);
2442 /* Replace the identity conversion with the user conversion
2446 /* The entire sequence is a user-conversion sequence. */
2447 ICS_USER_FLAG (std_seq
) = 1;
2452 /* Returns the best overload candidate to perform the requested
2453 conversion. This function is used for three the overloading situations
2454 described in [over.match.copy], [over.match.conv], and [over.match.ref].
2455 If TOTYPE is a REFERENCE_TYPE, we're trying to find an lvalue binding as
2456 per [dcl.init.ref], so we ignore temporary bindings. */
2458 static struct z_candidate
*
2459 build_user_type_conversion_1 (tree totype
, tree expr
, int flags
)
2461 struct z_candidate
*candidates
, *cand
;
2462 tree fromtype
= TREE_TYPE (expr
);
2463 tree ctors
= NULL_TREE
, convs
= NULL_TREE
;
2464 tree args
= NULL_TREE
;
2467 /* We represent conversion within a hierarchy using RVALUE_CONV and
2468 BASE_CONV, as specified by [over.best.ics]; these become plain
2469 constructor calls, as specified in [dcl.init]. */
2470 my_friendly_assert (!IS_AGGR_TYPE (fromtype
) || !IS_AGGR_TYPE (totype
)
2471 || !DERIVED_FROM_P (totype
, fromtype
), 20011226);
2473 if (IS_AGGR_TYPE (totype
))
2474 ctors
= lookup_fnfields (TYPE_BINFO (totype
),
2475 complete_ctor_identifier
,
2478 if (IS_AGGR_TYPE (fromtype
))
2479 convs
= lookup_conversions (fromtype
);
2482 flags
|= LOOKUP_NO_CONVERSION
;
2488 ctors
= BASELINK_FUNCTIONS (ctors
);
2490 t
= build_int_2 (0, 0);
2491 TREE_TYPE (t
) = build_pointer_type (totype
);
2492 args
= build_tree_list (NULL_TREE
, expr
);
2493 /* We should never try to call the abstract or base constructor
2495 my_friendly_assert (!DECL_HAS_IN_CHARGE_PARM_P (OVL_CURRENT (ctors
))
2496 && !DECL_HAS_VTT_PARM_P (OVL_CURRENT (ctors
)),
2498 args
= tree_cons (NULL_TREE
, t
, args
);
2500 for (; ctors
; ctors
= OVL_NEXT (ctors
))
2502 tree ctor
= OVL_CURRENT (ctors
);
2503 if (DECL_NONCONVERTING_P (ctor
))
2506 if (TREE_CODE (ctor
) == TEMPLATE_DECL
)
2507 cand
= add_template_candidate (&candidates
, ctor
, totype
,
2508 NULL_TREE
, args
, NULL_TREE
,
2509 TYPE_BINFO (totype
),
2510 TYPE_BINFO (totype
),
2514 cand
= add_function_candidate (&candidates
, ctor
, totype
,
2515 args
, TYPE_BINFO (totype
),
2516 TYPE_BINFO (totype
),
2520 cand
->second_conv
= build1 (IDENTITY_CONV
, totype
, NULL_TREE
);
2524 args
= build_tree_list (NULL_TREE
, build_this (expr
));
2526 for (; convs
; convs
= TREE_CHAIN (convs
))
2529 tree conversion_path
= TREE_PURPOSE (convs
);
2530 int convflags
= LOOKUP_NO_CONVERSION
;
2532 /* If we are called to convert to a reference type, we are trying to
2533 find an lvalue binding, so don't even consider temporaries. If
2534 we don't find an lvalue binding, the caller will try again to
2535 look for a temporary binding. */
2536 if (TREE_CODE (totype
) == REFERENCE_TYPE
)
2537 convflags
|= LOOKUP_NO_TEMP_BIND
;
2539 for (fns
= TREE_VALUE (convs
); fns
; fns
= OVL_NEXT (fns
))
2541 tree fn
= OVL_CURRENT (fns
);
2543 /* [over.match.funcs] For conversion functions, the function
2544 is considered to be a member of the class of the implicit
2545 object argument for the purpose of defining the type of
2546 the implicit object parameter.
2548 So we pass fromtype as CTYPE to add_*_candidate. */
2550 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
2551 cand
= add_template_candidate (&candidates
, fn
, fromtype
,
2554 TYPE_BINFO (fromtype
),
2559 cand
= add_function_candidate (&candidates
, fn
, fromtype
,
2561 TYPE_BINFO (fromtype
),
2567 tree ics
= implicit_conversion (totype
,
2568 TREE_TYPE (TREE_TYPE (cand
->fn
)),
2571 cand
->second_conv
= ics
;
2573 if (ics
== NULL_TREE
)
2575 else if (candidates
->viable
== 1 && ICS_BAD_FLAG (ics
))
2581 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
2585 cand
= tourney (candidates
);
2588 if (flags
& LOOKUP_COMPLAIN
)
2590 error ("conversion from `%T' to `%T' is ambiguous",
2592 print_z_candidates (candidates
);
2595 cand
= candidates
; /* any one will do */
2596 cand
->second_conv
= build1 (AMBIG_CONV
, totype
, expr
);
2597 ICS_USER_FLAG (cand
->second_conv
) = 1;
2598 if (!any_strictly_viable (candidates
))
2599 ICS_BAD_FLAG (cand
->second_conv
) = 1;
2600 /* If there are viable candidates, don't set ICS_BAD_FLAG; an
2601 ambiguous conversion is no worse than another user-defined
2607 /* Build the user conversion sequence. */
2610 (DECL_CONSTRUCTOR_P (cand
->fn
)
2611 ? totype
: non_reference (TREE_TYPE (TREE_TYPE (cand
->fn
)))),
2612 build1 (IDENTITY_CONV
, TREE_TYPE (expr
), expr
));
2613 TREE_OPERAND (convs
, 1) = build_zc_wrapper (cand
);
2615 /* Combine it with the second conversion sequence. */
2616 cand
->second_conv
= merge_conversion_sequences (convs
,
2619 if (cand
->viable
== -1)
2620 ICS_BAD_FLAG (cand
->second_conv
) = 1;
2626 build_user_type_conversion (tree totype
, tree expr
, int flags
)
2628 struct z_candidate
*cand
2629 = build_user_type_conversion_1 (totype
, expr
, flags
);
2633 if (TREE_CODE (cand
->second_conv
) == AMBIG_CONV
)
2634 return error_mark_node
;
2635 return convert_from_reference (convert_like (cand
->second_conv
, expr
));
2640 /* Do any initial processing on the arguments to a function call. */
2643 resolve_args (tree args
)
2646 for (t
= args
; t
; t
= TREE_CHAIN (t
))
2648 tree arg
= TREE_VALUE (t
);
2650 if (arg
== error_mark_node
)
2651 return error_mark_node
;
2652 else if (VOID_TYPE_P (TREE_TYPE (arg
)))
2654 error ("invalid use of void expression");
2655 return error_mark_node
;
2657 arg
= convert_from_reference (arg
);
2658 TREE_VALUE (t
) = arg
;
2663 /* Perform overload resolution on FN, which is called with the ARGS.
2665 Return the candidate function selected by overload resolution, or
2666 NULL if the event that overload resolution failed. In the case
2667 that overload resolution fails, *CANDIDATES will be the set of
2668 candidates considered, and ANY_VIABLE_P will be set to true or
2669 false to indicate whether or not any of the candidates were
2672 The ARGS should already have gone through RESOLVE_ARGS before this
2673 function is called. */
2675 static struct z_candidate
*
2676 perform_overload_resolution (tree fn
,
2678 struct z_candidate
**candidates
,
2681 struct z_candidate
*cand
;
2682 tree explicit_targs
= NULL_TREE
;
2683 int template_only
= 0;
2686 *any_viable_p
= true;
2688 /* Check FN and ARGS. */
2689 my_friendly_assert (TREE_CODE (fn
) == FUNCTION_DECL
2690 || TREE_CODE (fn
) == TEMPLATE_DECL
2691 || TREE_CODE (fn
) == OVERLOAD
2692 || TREE_CODE (fn
) == TEMPLATE_ID_EXPR
,
2694 my_friendly_assert (!args
|| TREE_CODE (args
) == TREE_LIST
,
2697 if (TREE_CODE (fn
) == TEMPLATE_ID_EXPR
)
2699 explicit_targs
= TREE_OPERAND (fn
, 1);
2700 fn
= TREE_OPERAND (fn
, 0);
2704 /* Add the various candidate functions. */
2705 add_candidates (fn
, args
, explicit_targs
, template_only
,
2706 /*conversion_path=*/NULL_TREE
,
2707 /*access_path=*/NULL_TREE
,
2711 *candidates
= splice_viable (*candidates
, pedantic
, any_viable_p
);
2715 cand
= tourney (*candidates
);
2719 /* Return an expression for a call to FN (a namespace-scope function,
2720 or a static member function) with the ARGS. */
2723 build_new_function_call (tree fn
, tree args
)
2725 struct z_candidate
*candidates
, *cand
;
2728 args
= resolve_args (args
);
2729 if (args
== error_mark_node
)
2730 return error_mark_node
;
2732 cand
= perform_overload_resolution (fn
, args
, &candidates
, &any_viable_p
);
2736 if (!any_viable_p
&& candidates
&& ! candidates
->next
)
2737 return build_function_call (candidates
->fn
, args
);
2738 if (TREE_CODE (fn
) == TEMPLATE_ID_EXPR
)
2739 fn
= TREE_OPERAND (fn
, 0);
2741 error ("no matching function for call to `%D(%A)'",
2742 DECL_NAME (OVL_CURRENT (fn
)), args
);
2744 error ("call of overloaded `%D(%A)' is ambiguous",
2745 DECL_NAME (OVL_CURRENT (fn
)), args
);
2747 print_z_candidates (candidates
);
2748 return error_mark_node
;
2751 return build_over_call (cand
, LOOKUP_NORMAL
);
2754 /* Build a call to a global operator new. FNNAME is the name of the
2755 operator (either "operator new" or "operator new[]") and ARGS are
2756 the arguments provided. *SIZE points to the total number of bytes
2757 required by the allocation, and is updated if that is changed here.
2758 *COOKIE_SIZE is non-NULL if a cookie should be used. If this
2759 function determines that no cookie should be used, after all,
2760 *COOKIE_SIZE is set to NULL_TREE. */
2763 build_operator_new_call (tree fnname
, tree args
, tree
*size
, tree
*cookie_size
)
2766 struct z_candidate
*candidates
;
2767 struct z_candidate
*cand
;
2770 args
= tree_cons (NULL_TREE
, *size
, args
);
2771 args
= resolve_args (args
);
2772 if (args
== error_mark_node
)
2775 fns
= lookup_function_nonclass (fnname
, args
);
2777 /* Figure out what function is being called. */
2778 cand
= perform_overload_resolution (fns
, args
, &candidates
, &any_viable_p
);
2780 /* If no suitable function could be found, issue an error message
2785 error ("no matching function for call to `%D(%A)'",
2786 DECL_NAME (OVL_CURRENT (fns
)), args
);
2788 error ("call of overloaded `%D(%A)' is ambiguous",
2789 DECL_NAME (OVL_CURRENT (fns
)), args
);
2791 print_z_candidates (candidates
);
2792 return error_mark_node
;
2795 /* If a cookie is required, add some extra space. Whether
2796 or not a cookie is required cannot be determined until
2797 after we know which function was called. */
2800 bool use_cookie
= true;
2801 if (!abi_version_at_least (2))
2803 tree placement
= TREE_CHAIN (args
);
2804 /* In G++ 3.2, the check was implemented incorrectly; it
2805 looked at the placement expression, rather than the
2806 type of the function. */
2807 if (placement
&& !TREE_CHAIN (placement
)
2808 && same_type_p (TREE_TYPE (TREE_VALUE (placement
)),
2816 arg_types
= TYPE_ARG_TYPES (TREE_TYPE (cand
->fn
));
2817 /* Skip the size_t parameter. */
2818 arg_types
= TREE_CHAIN (arg_types
);
2819 /* Check the remaining parameters (if any). */
2821 && TREE_CHAIN (arg_types
) == void_list_node
2822 && same_type_p (TREE_VALUE (arg_types
),
2826 /* If we need a cookie, adjust the number of bytes allocated. */
2829 /* Update the total size. */
2830 *size
= size_binop (PLUS_EXPR
, *size
, *cookie_size
);
2831 /* Update the argument list to reflect the adjusted size. */
2832 TREE_VALUE (args
) = *size
;
2835 *cookie_size
= NULL_TREE
;
2838 /* Build the CALL_EXPR. */
2839 return build_over_call (cand
, LOOKUP_NORMAL
);
2843 build_object_call (tree obj
, tree args
)
2845 struct z_candidate
*candidates
= 0, *cand
;
2846 tree fns
, convs
, mem_args
= NULL_TREE
;
2847 tree type
= TREE_TYPE (obj
);
2850 if (TYPE_PTRMEMFUNC_P (type
))
2852 /* It's no good looking for an overloaded operator() on a
2853 pointer-to-member-function. */
2854 error ("pointer-to-member function %E cannot be called without an object; consider using .* or ->*", obj
);
2855 return error_mark_node
;
2858 fns
= lookup_fnfields (TYPE_BINFO (type
), ansi_opname (CALL_EXPR
), 1);
2859 if (fns
== error_mark_node
)
2860 return error_mark_node
;
2862 args
= resolve_args (args
);
2864 if (args
== error_mark_node
)
2865 return error_mark_node
;
2869 tree base
= BINFO_TYPE (BASELINK_BINFO (fns
));
2870 mem_args
= tree_cons (NULL_TREE
, build_this (obj
), args
);
2872 for (fns
= BASELINK_FUNCTIONS (fns
); fns
; fns
= OVL_NEXT (fns
))
2874 tree fn
= OVL_CURRENT (fns
);
2875 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
2876 add_template_candidate (&candidates
, fn
, base
, NULL_TREE
,
2877 mem_args
, NULL_TREE
,
2880 LOOKUP_NORMAL
, DEDUCE_CALL
);
2882 add_function_candidate
2883 (&candidates
, fn
, base
, mem_args
, TYPE_BINFO (type
),
2884 TYPE_BINFO (type
), LOOKUP_NORMAL
);
2888 convs
= lookup_conversions (type
);
2890 for (; convs
; convs
= TREE_CHAIN (convs
))
2892 tree fns
= TREE_VALUE (convs
);
2893 tree totype
= TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns
)));
2895 if ((TREE_CODE (totype
) == POINTER_TYPE
2896 && TREE_CODE (TREE_TYPE (totype
)) == FUNCTION_TYPE
)
2897 || (TREE_CODE (totype
) == REFERENCE_TYPE
2898 && TREE_CODE (TREE_TYPE (totype
)) == FUNCTION_TYPE
)
2899 || (TREE_CODE (totype
) == REFERENCE_TYPE
2900 && TREE_CODE (TREE_TYPE (totype
)) == POINTER_TYPE
2901 && TREE_CODE (TREE_TYPE (TREE_TYPE (totype
))) == FUNCTION_TYPE
))
2902 for (; fns
; fns
= OVL_NEXT (fns
))
2904 tree fn
= OVL_CURRENT (fns
);
2905 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
2906 add_template_conv_candidate
2907 (&candidates
, fn
, obj
, args
, totype
,
2908 /*access_path=*/NULL_TREE
,
2909 /*conversion_path=*/NULL_TREE
);
2911 add_conv_candidate (&candidates
, fn
, obj
, args
,
2912 /*conversion_path=*/NULL_TREE
,
2913 /*access_path=*/NULL_TREE
);
2917 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
2920 error ("no match for call to `(%T) (%A)'", TREE_TYPE (obj
), args
);
2921 print_z_candidates (candidates
);
2922 return error_mark_node
;
2925 cand
= tourney (candidates
);
2928 error ("call of `(%T) (%A)' is ambiguous", TREE_TYPE (obj
), args
);
2929 print_z_candidates (candidates
);
2930 return error_mark_node
;
2933 /* Since cand->fn will be a type, not a function, for a conversion
2934 function, we must be careful not to unconditionally look at
2936 if (TREE_CODE (cand
->fn
) == FUNCTION_DECL
2937 && DECL_OVERLOADED_OPERATOR_P (cand
->fn
) == CALL_EXPR
)
2938 return build_over_call (cand
, LOOKUP_NORMAL
);
2940 obj
= convert_like_with_context
2941 (TREE_VEC_ELT (cand
->convs
, 0), obj
, cand
->fn
, -1);
2944 return build_function_call (obj
, args
);
2948 op_error (enum tree_code code
, enum tree_code code2
,
2949 tree arg1
, tree arg2
, tree arg3
, const char *problem
)
2953 if (code
== MODIFY_EXPR
)
2954 opname
= assignment_operator_name_info
[code2
].name
;
2956 opname
= operator_name_info
[code
].name
;
2961 error ("%s for ternary 'operator?:' in '%E ? %E : %E'",
2962 problem
, arg1
, arg2
, arg3
);
2965 case POSTINCREMENT_EXPR
:
2966 case POSTDECREMENT_EXPR
:
2967 error ("%s for 'operator%s' in '%E%s'", problem
, opname
, arg1
, opname
);
2971 error ("%s for 'operator[]' in '%E[%E]'", problem
, arg1
, arg2
);
2976 error ("%s for '%s' in '%s %E'", problem
, opname
, opname
, arg1
);
2981 error ("%s for 'operator%s' in '%E %s %E'",
2982 problem
, opname
, arg1
, opname
, arg2
);
2984 error ("%s for 'operator%s' in '%s%E'",
2985 problem
, opname
, opname
, arg1
);
2990 /* Return the implicit conversion sequence that could be used to
2991 convert E1 to E2 in [expr.cond]. */
2994 conditional_conversion (tree e1
, tree e2
)
2996 tree t1
= non_reference (TREE_TYPE (e1
));
2997 tree t2
= non_reference (TREE_TYPE (e2
));
3003 If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
3004 implicitly converted (clause _conv_) to the type "reference to
3005 T2", subject to the constraint that in the conversion the
3006 reference must bind directly (_dcl.init.ref_) to E1. */
3007 if (real_lvalue_p (e2
))
3009 conv
= implicit_conversion (build_reference_type (t2
),
3012 LOOKUP_NO_TEMP_BIND
);
3019 If E1 and E2 have class type, and the underlying class types are
3020 the same or one is a base class of the other: E1 can be converted
3021 to match E2 if the class of T2 is the same type as, or a base
3022 class of, the class of T1, and the cv-qualification of T2 is the
3023 same cv-qualification as, or a greater cv-qualification than, the
3024 cv-qualification of T1. If the conversion is applied, E1 is
3025 changed to an rvalue of type T2 that still refers to the original
3026 source class object (or the appropriate subobject thereof).
3028 FIXME we can't express an rvalue that refers to the original object;
3029 we have to create a new one. */
3030 if (CLASS_TYPE_P (t1
) && CLASS_TYPE_P (t2
)
3031 && ((good_base
= DERIVED_FROM_P (t2
, t1
)) || DERIVED_FROM_P (t1
, t2
)))
3033 if (good_base
&& at_least_as_qualified_p (t2
, t1
))
3035 conv
= build1 (IDENTITY_CONV
, t1
, e1
);
3036 if (!same_type_p (TYPE_MAIN_VARIANT (t1
),
3037 TYPE_MAIN_VARIANT (t2
)))
3039 conv
= build_conv (BASE_CONV
, t2
, conv
);
3040 NEED_TEMPORARY_P (conv
) = 1;
3043 conv
= build_conv (RVALUE_CONV
, t2
, conv
);
3052 Otherwise: E1 can be converted to match E2 if E1 can be implicitly
3053 converted to the type that expression E2 would have if E2 were
3054 converted to an rvalue (or the type it has, if E2 is an rvalue). */
3055 return implicit_conversion (t2
, t1
, e1
, LOOKUP_NORMAL
);
3058 /* Implement [expr.cond]. ARG1, ARG2, and ARG3 are the three
3059 arguments to the conditional expression. */
3062 build_conditional_expr (tree arg1
, tree arg2
, tree arg3
)
3067 tree result_type
= NULL_TREE
;
3068 bool lvalue_p
= true;
3069 struct z_candidate
*candidates
= 0;
3070 struct z_candidate
*cand
;
3072 /* As a G++ extension, the second argument to the conditional can be
3073 omitted. (So that `a ? : c' is roughly equivalent to `a ? a :
3074 c'.) If the second operand is omitted, make sure it is
3075 calculated only once. */
3079 pedwarn ("ISO C++ forbids omitting the middle term of a ?: expression");
3081 /* Make sure that lvalues remain lvalues. See g++.oliva/ext1.C. */
3082 if (real_lvalue_p (arg1
))
3083 arg2
= arg1
= stabilize_reference (arg1
);
3085 arg2
= arg1
= save_expr (arg1
);
3090 The first expr ession is implicitly converted to bool (clause
3092 arg1
= perform_implicit_conversion (boolean_type_node
, arg1
);
3094 /* If something has already gone wrong, just pass that fact up the
3096 if (error_operand_p (arg1
)
3097 || error_operand_p (arg2
)
3098 || error_operand_p (arg3
))
3099 return error_mark_node
;
3103 If either the second or the third operand has type (possibly
3104 cv-qualified) void, then the lvalue-to-rvalue (_conv.lval_),
3105 array-to-pointer (_conv.array_), and function-to-pointer
3106 (_conv.func_) standard conversions are performed on the second
3107 and third operands. */
3108 arg2_type
= TREE_TYPE (arg2
);
3109 arg3_type
= TREE_TYPE (arg3
);
3110 if (VOID_TYPE_P (arg2_type
) || VOID_TYPE_P (arg3_type
))
3112 /* Do the conversions. We don't these for `void' type arguments
3113 since it can't have any effect and since decay_conversion
3114 does not handle that case gracefully. */
3115 if (!VOID_TYPE_P (arg2_type
))
3116 arg2
= decay_conversion (arg2
);
3117 if (!VOID_TYPE_P (arg3_type
))
3118 arg3
= decay_conversion (arg3
);
3119 arg2_type
= TREE_TYPE (arg2
);
3120 arg3_type
= TREE_TYPE (arg3
);
3124 One of the following shall hold:
3126 --The second or the third operand (but not both) is a
3127 throw-expression (_except.throw_); the result is of the
3128 type of the other and is an rvalue.
3130 --Both the second and the third operands have type void; the
3131 result is of type void and is an rvalue. */
3132 if ((TREE_CODE (arg2
) == THROW_EXPR
)
3133 ^ (TREE_CODE (arg3
) == THROW_EXPR
))
3134 result_type
= ((TREE_CODE (arg2
) == THROW_EXPR
)
3135 ? arg3_type
: arg2_type
);
3136 else if (VOID_TYPE_P (arg2_type
) && VOID_TYPE_P (arg3_type
))
3137 result_type
= void_type_node
;
3140 error ("`%E' has type `void' and is not a throw-expression",
3141 VOID_TYPE_P (arg2_type
) ? arg2
: arg3
);
3142 return error_mark_node
;
3146 goto valid_operands
;
3150 Otherwise, if the second and third operand have different types,
3151 and either has (possibly cv-qualified) class type, an attempt is
3152 made to convert each of those operands to the type of the other. */
3153 else if (!same_type_p (arg2_type
, arg3_type
)
3154 && (CLASS_TYPE_P (arg2_type
) || CLASS_TYPE_P (arg3_type
)))
3156 tree conv2
= conditional_conversion (arg2
, arg3
);
3157 tree conv3
= conditional_conversion (arg3
, arg2
);
3161 If both can be converted, or one can be converted but the
3162 conversion is ambiguous, the program is ill-formed. If
3163 neither can be converted, the operands are left unchanged and
3164 further checking is performed as described below. If exactly
3165 one conversion is possible, that conversion is applied to the
3166 chosen operand and the converted operand is used in place of
3167 the original operand for the remainder of this section. */
3168 if ((conv2
&& !ICS_BAD_FLAG (conv2
)
3169 && conv3
&& !ICS_BAD_FLAG (conv3
))
3170 || (conv2
&& TREE_CODE (conv2
) == AMBIG_CONV
)
3171 || (conv3
&& TREE_CODE (conv3
) == AMBIG_CONV
))
3173 error ("operands to ?: have different types");
3174 return error_mark_node
;
3176 else if (conv2
&& !ICS_BAD_FLAG (conv2
))
3178 arg2
= convert_like (conv2
, arg2
);
3179 arg2
= convert_from_reference (arg2
);
3180 if (!same_type_p (TREE_TYPE (arg2
), arg3_type
)
3181 && CLASS_TYPE_P (arg3_type
))
3182 /* The types need to match if we're converting to a class type.
3183 If not, we don't care about cv-qual mismatches, since
3184 non-class rvalues are not cv-qualified. */
3186 arg2_type
= TREE_TYPE (arg2
);
3188 else if (conv3
&& !ICS_BAD_FLAG (conv3
))
3190 arg3
= convert_like (conv3
, arg3
);
3191 arg3
= convert_from_reference (arg3
);
3192 if (!same_type_p (TREE_TYPE (arg3
), arg2_type
)
3193 && CLASS_TYPE_P (arg2_type
))
3195 arg3_type
= TREE_TYPE (arg3
);
3201 If the second and third operands are lvalues and have the same
3202 type, the result is of that type and is an lvalue. */
3203 if (real_lvalue_p (arg2
)
3204 && real_lvalue_p (arg3
)
3205 && same_type_p (arg2_type
, arg3_type
))
3207 result_type
= arg2_type
;
3208 goto valid_operands
;
3213 Otherwise, the result is an rvalue. If the second and third
3214 operand do not have the same type, and either has (possibly
3215 cv-qualified) class type, overload resolution is used to
3216 determine the conversions (if any) to be applied to the operands
3217 (_over.match.oper_, _over.built_). */
3219 if (!same_type_p (arg2_type
, arg3_type
)
3220 && (CLASS_TYPE_P (arg2_type
) || CLASS_TYPE_P (arg3_type
)))
3226 /* Rearrange the arguments so that add_builtin_candidate only has
3227 to know about two args. In build_builtin_candidates, the
3228 arguments are unscrambled. */
3232 add_builtin_candidates (&candidates
,
3235 ansi_opname (COND_EXPR
),
3241 If the overload resolution fails, the program is
3243 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
3246 op_error (COND_EXPR
, NOP_EXPR
, arg1
, arg2
, arg3
, "no match");
3247 print_z_candidates (candidates
);
3248 return error_mark_node
;
3250 cand
= tourney (candidates
);
3253 op_error (COND_EXPR
, NOP_EXPR
, arg1
, arg2
, arg3
, "no match");
3254 print_z_candidates (candidates
);
3255 return error_mark_node
;
3260 Otherwise, the conversions thus determined are applied, and
3261 the converted operands are used in place of the original
3262 operands for the remainder of this section. */
3263 conv
= TREE_VEC_ELT (cand
->convs
, 0);
3264 arg1
= convert_like (conv
, arg1
);
3265 conv
= TREE_VEC_ELT (cand
->convs
, 1);
3266 arg2
= convert_like (conv
, arg2
);
3267 conv
= TREE_VEC_ELT (cand
->convs
, 2);
3268 arg3
= convert_like (conv
, arg3
);
3273 Lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_),
3274 and function-to-pointer (_conv.func_) standard conversions are
3275 performed on the second and third operands.
3277 We need to force the lvalue-to-rvalue conversion here for class types,
3278 so we get TARGET_EXPRs; trying to deal with a COND_EXPR of class rvalues
3279 that isn't wrapped with a TARGET_EXPR plays havoc with exception
3282 We use ocp_convert rather than build_user_type_conversion because the
3283 latter returns NULL_TREE on failure, while the former gives an error. */
3285 arg2
= force_rvalue (arg2
);
3286 arg2_type
= TREE_TYPE (arg2
);
3288 arg3
= force_rvalue (arg3
);
3289 arg3_type
= TREE_TYPE (arg3
);
3291 if (arg2
== error_mark_node
|| arg3
== error_mark_node
)
3292 return error_mark_node
;
3296 After those conversions, one of the following shall hold:
3298 --The second and third operands have the same type; the result is of
3300 if (same_type_p (arg2_type
, arg3_type
))
3301 result_type
= arg2_type
;
3304 --The second and third operands have arithmetic or enumeration
3305 type; the usual arithmetic conversions are performed to bring
3306 them to a common type, and the result is of that type. */
3307 else if ((ARITHMETIC_TYPE_P (arg2_type
)
3308 || TREE_CODE (arg2_type
) == ENUMERAL_TYPE
)
3309 && (ARITHMETIC_TYPE_P (arg3_type
)
3310 || TREE_CODE (arg3_type
) == ENUMERAL_TYPE
))
3312 /* In this case, there is always a common type. */
3313 result_type
= type_after_usual_arithmetic_conversions (arg2_type
,
3316 if (TREE_CODE (arg2_type
) == ENUMERAL_TYPE
3317 && TREE_CODE (arg3_type
) == ENUMERAL_TYPE
)
3318 warning ("enumeral mismatch in conditional expression: `%T' vs `%T'",
3319 arg2_type
, arg3_type
);
3320 else if (extra_warnings
3321 && ((TREE_CODE (arg2_type
) == ENUMERAL_TYPE
3322 && !same_type_p (arg3_type
, type_promotes_to (arg2_type
)))
3323 || (TREE_CODE (arg3_type
) == ENUMERAL_TYPE
3324 && !same_type_p (arg2_type
, type_promotes_to (arg3_type
)))))
3325 warning ("enumeral and non-enumeral type in conditional expression");
3327 arg2
= perform_implicit_conversion (result_type
, arg2
);
3328 arg3
= perform_implicit_conversion (result_type
, arg3
);
3332 --The second and third operands have pointer type, or one has
3333 pointer type and the other is a null pointer constant; pointer
3334 conversions (_conv.ptr_) and qualification conversions
3335 (_conv.qual_) are performed to bring them to their composite
3336 pointer type (_expr.rel_). The result is of the composite
3339 --The second and third operands have pointer to member type, or
3340 one has pointer to member type and the other is a null pointer
3341 constant; pointer to member conversions (_conv.mem_) and
3342 qualification conversions (_conv.qual_) are performed to bring
3343 them to a common type, whose cv-qualification shall match the
3344 cv-qualification of either the second or the third operand.
3345 The result is of the common type. */
3346 else if ((null_ptr_cst_p (arg2
)
3347 && (TYPE_PTR_P (arg3_type
) || TYPE_PTR_TO_MEMBER_P (arg3_type
)))
3348 || (null_ptr_cst_p (arg3
)
3349 && (TYPE_PTR_P (arg2_type
) || TYPE_PTR_TO_MEMBER_P (arg2_type
)))
3350 || (TYPE_PTR_P (arg2_type
) && TYPE_PTR_P (arg3_type
))
3351 || (TYPE_PTRMEM_P (arg2_type
) && TYPE_PTRMEM_P (arg3_type
))
3352 || (TYPE_PTRMEMFUNC_P (arg2_type
) && TYPE_PTRMEMFUNC_P (arg3_type
)))
3354 result_type
= composite_pointer_type (arg2_type
, arg3_type
, arg2
,
3355 arg3
, "conditional expression");
3356 if (result_type
== error_mark_node
)
3357 return error_mark_node
;
3358 arg2
= perform_implicit_conversion (result_type
, arg2
);
3359 arg3
= perform_implicit_conversion (result_type
, arg3
);
3364 error ("operands to ?: have different types");
3365 return error_mark_node
;
3369 result
= fold (build (COND_EXPR
, result_type
, arg1
, arg2
, arg3
));
3370 /* We can't use result_type below, as fold might have returned a
3373 /* Expand both sides into the same slot, hopefully the target of the
3374 ?: expression. We used to check for TARGET_EXPRs here, but now we
3375 sometimes wrap them in NOP_EXPRs so the test would fail. */
3376 if (!lvalue_p
&& IS_AGGR_TYPE (TREE_TYPE (result
)))
3377 result
= get_target_expr (result
);
3379 /* If this expression is an rvalue, but might be mistaken for an
3380 lvalue, we must add a NON_LVALUE_EXPR. */
3381 if (!lvalue_p
&& real_lvalue_p (result
))
3382 result
= build1 (NON_LVALUE_EXPR
, TREE_TYPE (result
), result
);
3387 /* OPERAND is an operand to an expression. Perform necessary steps
3388 required before using it. If OPERAND is NULL_TREE, NULL_TREE is
3392 prep_operand (tree operand
)
3396 operand
= convert_from_reference (operand
);
3397 if (CLASS_TYPE_P (TREE_TYPE (operand
))
3398 && CLASSTYPE_TEMPLATE_INSTANTIATION (TREE_TYPE (operand
)))
3399 /* Make sure the template type is instantiated now. */
3400 instantiate_class_template (TYPE_MAIN_VARIANT (TREE_TYPE (operand
)));
3406 /* Add each of the viable functions in FNS (a FUNCTION_DECL or
3407 OVERLOAD) to the CANDIDATES, returning an updated list of
3408 CANDIDATES. The ARGS are the arguments provided to the call,
3409 without any implicit object parameter. The EXPLICIT_TARGS are
3410 explicit template arguments provided. TEMPLATE_ONLY is true if
3411 only template fucntions should be considered. CONVERSION_PATH,
3412 ACCESS_PATH, and FLAGS are as for add_function_candidate. */
3415 add_candidates (tree fns
, tree args
,
3416 tree explicit_targs
, bool template_only
,
3417 tree conversion_path
, tree access_path
,
3419 struct z_candidate
**candidates
)
3422 tree non_static_args
;
3424 ctype
= conversion_path
? BINFO_TYPE (conversion_path
) : NULL_TREE
;
3425 /* Delay creating the implicit this parameter until it is needed. */
3426 non_static_args
= NULL_TREE
;
3433 fn
= OVL_CURRENT (fns
);
3434 /* Figure out which set of arguments to use. */
3435 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
))
3437 /* If this function is a non-static member, prepend the implicit
3438 object parameter. */
3439 if (!non_static_args
)
3440 non_static_args
= tree_cons (NULL_TREE
,
3441 build_this (TREE_VALUE (args
)),
3443 fn_args
= non_static_args
;
3446 /* Otherwise, just use the list of arguments provided. */
3449 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
3450 add_template_candidate (candidates
,
3460 else if (!template_only
)
3461 add_function_candidate (candidates
,
3468 fns
= OVL_NEXT (fns
);
3473 build_new_op (enum tree_code code
, int flags
, tree arg1
, tree arg2
, tree arg3
)
3475 struct z_candidate
*candidates
= 0, *cand
;
3476 tree arglist
, fnname
;
3478 enum tree_code code2
= NOP_EXPR
;
3483 if (error_operand_p (arg1
)
3484 || error_operand_p (arg2
)
3485 || error_operand_p (arg3
))
3486 return error_mark_node
;
3488 if (code
== MODIFY_EXPR
)
3490 code2
= TREE_CODE (arg3
);
3492 fnname
= ansi_assopname (code2
);
3495 fnname
= ansi_opname (code
);
3497 arg1
= prep_operand (arg1
);
3503 case VEC_DELETE_EXPR
:
3505 /* Use build_op_new_call and build_op_delete_call instead. */
3509 return build_object_call (arg1
, arg2
);
3515 arg2
= prep_operand (arg2
);
3516 arg3
= prep_operand (arg3
);
3518 if (code
== COND_EXPR
)
3520 if (arg2
== NULL_TREE
3521 || TREE_CODE (TREE_TYPE (arg2
)) == VOID_TYPE
3522 || TREE_CODE (TREE_TYPE (arg3
)) == VOID_TYPE
3523 || (! IS_OVERLOAD_TYPE (TREE_TYPE (arg2
))
3524 && ! IS_OVERLOAD_TYPE (TREE_TYPE (arg3
))))
3527 else if (! IS_OVERLOAD_TYPE (TREE_TYPE (arg1
))
3528 && (! arg2
|| ! IS_OVERLOAD_TYPE (TREE_TYPE (arg2
))))
3531 if (code
== POSTINCREMENT_EXPR
|| code
== POSTDECREMENT_EXPR
)
3532 arg2
= integer_zero_node
;
3534 arglist
= NULL_TREE
;
3536 arglist
= tree_cons (NULL_TREE
, arg3
, arglist
);
3538 arglist
= tree_cons (NULL_TREE
, arg2
, arglist
);
3539 arglist
= tree_cons (NULL_TREE
, arg1
, arglist
);
3541 /* Add namespace-scope operators to the list of functions to
3543 add_candidates (lookup_function_nonclass (fnname
, arglist
),
3544 arglist
, NULL_TREE
, false, NULL_TREE
, NULL_TREE
,
3545 flags
, &candidates
);
3546 /* Add class-member operators to the candidate set. */
3547 if (CLASS_TYPE_P (TREE_TYPE (arg1
)))
3551 fns
= lookup_fnfields (TYPE_BINFO (TREE_TYPE (arg1
)), fnname
, 1);
3552 if (fns
== error_mark_node
)
3555 add_candidates (BASELINK_FUNCTIONS (fns
), arglist
,
3557 BASELINK_BINFO (fns
),
3558 TYPE_BINFO (TREE_TYPE (arg1
)),
3559 flags
, &candidates
);
3562 /* Rearrange the arguments for ?: so that add_builtin_candidate only has
3563 to know about two args; a builtin candidate will always have a first
3564 parameter of type bool. We'll handle that in
3565 build_builtin_candidate. */
3566 if (code
== COND_EXPR
)
3576 args
[2] = NULL_TREE
;
3579 add_builtin_candidates (&candidates
, code
, code2
, fnname
, args
, flags
);
3585 /* For these, the built-in candidates set is empty
3586 [over.match.oper]/3. We don't want non-strict matches
3587 because exact matches are always possible with built-in
3588 operators. The built-in candidate set for COMPONENT_REF
3589 would be empty too, but since there are no such built-in
3590 operators, we accept non-strict matches for them. */
3595 strict_p
= pedantic
;
3599 candidates
= splice_viable (candidates
, strict_p
, &any_viable_p
);
3604 case POSTINCREMENT_EXPR
:
3605 case POSTDECREMENT_EXPR
:
3606 /* Look for an `operator++ (int)'. If they didn't have
3607 one, then we fall back to the old way of doing things. */
3608 if (flags
& LOOKUP_COMPLAIN
)
3609 pedwarn ("no `%D(int)' declared for postfix `%s', trying prefix operator instead",
3611 operator_name_info
[code
].name
);
3612 if (code
== POSTINCREMENT_EXPR
)
3613 code
= PREINCREMENT_EXPR
;
3615 code
= PREDECREMENT_EXPR
;
3616 return build_new_op (code
, flags
, arg1
, NULL_TREE
, NULL_TREE
);
3618 /* The caller will deal with these. */
3627 if (flags
& LOOKUP_COMPLAIN
)
3629 op_error (code
, code2
, arg1
, arg2
, arg3
, "no match");
3630 print_z_candidates (candidates
);
3632 return error_mark_node
;
3635 cand
= tourney (candidates
);
3638 if (flags
& LOOKUP_COMPLAIN
)
3640 op_error (code
, code2
, arg1
, arg2
, arg3
, "ambiguous overload");
3641 print_z_candidates (candidates
);
3643 return error_mark_node
;
3646 if (TREE_CODE (cand
->fn
) == FUNCTION_DECL
)
3649 && fnname
== ansi_assopname (NOP_EXPR
)
3650 && DECL_ARTIFICIAL (cand
->fn
)
3652 && ! candidates
->next
->next
)
3654 warning ("using synthesized `%#D' for copy assignment",
3656 cp_warning_at (" where cfront would use `%#D'",
3658 ? candidates
->next
->fn
3662 return build_over_call (cand
, LOOKUP_NORMAL
);
3665 /* Check for comparison of different enum types. */
3674 if (TREE_CODE (TREE_TYPE (arg1
)) == ENUMERAL_TYPE
3675 && TREE_CODE (TREE_TYPE (arg2
)) == ENUMERAL_TYPE
3676 && (TYPE_MAIN_VARIANT (TREE_TYPE (arg1
))
3677 != TYPE_MAIN_VARIANT (TREE_TYPE (arg2
))))
3679 warning ("comparison between `%#T' and `%#T'",
3680 TREE_TYPE (arg1
), TREE_TYPE (arg2
));
3687 /* We need to strip any leading REF_BIND so that bitfields don't cause
3688 errors. This should not remove any important conversions, because
3689 builtins don't apply to class objects directly. */
3690 conv
= TREE_VEC_ELT (cand
->convs
, 0);
3691 if (TREE_CODE (conv
) == REF_BIND
)
3692 conv
= TREE_OPERAND (conv
, 0);
3693 arg1
= convert_like (conv
, arg1
);
3696 conv
= TREE_VEC_ELT (cand
->convs
, 1);
3697 if (TREE_CODE (conv
) == REF_BIND
)
3698 conv
= TREE_OPERAND (conv
, 0);
3699 arg2
= convert_like (conv
, arg2
);
3703 conv
= TREE_VEC_ELT (cand
->convs
, 2);
3704 if (TREE_CODE (conv
) == REF_BIND
)
3705 conv
= TREE_OPERAND (conv
, 0);
3706 arg3
= convert_like (conv
, arg3
);
3713 return build_modify_expr (arg1
, code2
, arg2
);
3716 return build_indirect_ref (arg1
, "unary *");
3721 case TRUNC_DIV_EXPR
:
3732 case TRUNC_MOD_EXPR
:
3736 case TRUTH_ANDIF_EXPR
:
3737 case TRUTH_ORIF_EXPR
:
3738 return cp_build_binary_op (code
, arg1
, arg2
);
3743 case TRUTH_NOT_EXPR
:
3744 case PREINCREMENT_EXPR
:
3745 case POSTINCREMENT_EXPR
:
3746 case PREDECREMENT_EXPR
:
3747 case POSTDECREMENT_EXPR
:
3750 return build_unary_op (code
, arg1
, candidates
!= 0);
3753 return build_array_ref (arg1
, arg2
);
3756 return build_conditional_expr (arg1
, arg2
, arg3
);
3759 return build_m_component_ref
3760 (build_indirect_ref (arg1
, NULL
), arg2
);
3762 /* The caller will deal with these. */
3774 /* Build a call to operator delete. This has to be handled very specially,
3775 because the restrictions on what signatures match are different from all
3776 other call instances. For a normal delete, only a delete taking (void *)
3777 or (void *, size_t) is accepted. For a placement delete, only an exact
3778 match with the placement new is accepted.
3780 CODE is either DELETE_EXPR or VEC_DELETE_EXPR.
3781 ADDR is the pointer to be deleted.
3782 SIZE is the size of the memory block to be deleted.
3783 FLAGS are the usual overloading flags.
3784 PLACEMENT is the corresponding placement new call, or NULL_TREE. */
3787 build_op_delete_call (enum tree_code code
, tree addr
, tree size
,
3788 int flags
, tree placement
)
3790 tree fn
= NULL_TREE
;
3791 tree fns
, fnname
, argtypes
, args
, type
;
3794 if (addr
== error_mark_node
)
3795 return error_mark_node
;
3797 type
= strip_array_types (TREE_TYPE (TREE_TYPE (addr
)));
3799 fnname
= ansi_opname (code
);
3801 if (IS_AGGR_TYPE (type
) && ! (flags
& LOOKUP_GLOBAL
))
3804 If the result of the lookup is ambiguous or inaccessible, or if
3805 the lookup selects a placement deallocation function, the
3806 program is ill-formed.
3808 Therefore, we ask lookup_fnfields to complain ambout ambiguity. */
3810 fns
= lookup_fnfields (TYPE_BINFO (type
), fnname
, 1);
3811 if (fns
== error_mark_node
)
3812 return error_mark_node
;
3817 if (fns
== NULL_TREE
)
3818 fns
= lookup_name_nonclass (fnname
);
3825 /* Find the allocation function that is being called. */
3826 call_expr
= placement
;
3827 /* Sometimes we have a COMPOUND_EXPR, rather than a simple
3829 while (TREE_CODE (call_expr
) == COMPOUND_EXPR
)
3830 call_expr
= TREE_OPERAND (call_expr
, 1);
3831 /* Extract the function. */
3832 alloc_fn
= get_callee_fndecl (call_expr
);
3833 my_friendly_assert (alloc_fn
!= NULL_TREE
, 20020327);
3834 /* Then the second parm type. */
3835 argtypes
= TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn
)));
3836 /* Also the second argument. */
3837 args
= TREE_CHAIN (TREE_OPERAND (call_expr
, 1));
3841 /* First try it without the size argument. */
3842 argtypes
= void_list_node
;
3846 /* Strip const and volatile from addr. */
3847 addr
= cp_convert (ptr_type_node
, addr
);
3849 /* We make two tries at finding a matching `operator delete'. On
3850 the first pass, we look for a one-operator (or placement)
3851 operator delete. If we're not doing placement delete, then on
3852 the second pass we look for a two-argument delete. */
3853 for (pass
= 0; pass
< (placement
? 1 : 2); ++pass
)
3855 /* Go through the `operator delete' functions looking for one
3856 with a matching type. */
3857 for (fn
= BASELINK_P (fns
) ? BASELINK_FUNCTIONS (fns
) : fns
;
3863 /* The first argument must be "void *". */
3864 t
= TYPE_ARG_TYPES (TREE_TYPE (OVL_CURRENT (fn
)));
3865 if (!same_type_p (TREE_VALUE (t
), ptr_type_node
))
3868 /* On the first pass, check the rest of the arguments. */
3871 while (argtypes
&& t
)
3873 if (!same_type_p (TREE_VALUE (argtypes
),
3876 argtypes
= TREE_CHAIN (argtypes
);
3879 if (!argtypes
&& !t
)
3882 /* On the second pass, the second argument must be
3885 && same_type_p (TREE_VALUE (t
), sizetype
)
3886 && TREE_CHAIN (t
) == void_list_node
)
3890 /* If we found a match, we're done. */
3895 /* If we have a matching function, call it. */
3898 /* Make sure we have the actual function, and not an
3900 fn
= OVL_CURRENT (fn
);
3902 /* If the FN is a member function, make sure that it is
3904 if (DECL_CLASS_SCOPE_P (fn
))
3905 perform_or_defer_access_check (TYPE_BINFO (type
), fn
);
3908 args
= tree_cons (NULL_TREE
, addr
, args
);
3910 args
= tree_cons (NULL_TREE
, addr
,
3911 build_tree_list (NULL_TREE
, size
));
3913 return build_function_call (fn
, args
);
3916 /* If we are doing placement delete we do nothing if we don't find a
3917 matching op delete. */
3921 error ("no suitable `operator %s' for `%T'",
3922 operator_name_info
[(int)code
].name
, type
);
3923 return error_mark_node
;
3926 /* If the current scope isn't allowed to access DECL along
3927 BASETYPE_PATH, give an error. The most derived class in
3928 BASETYPE_PATH is the one used to qualify DECL. */
3931 enforce_access (tree basetype_path
, tree decl
)
3933 my_friendly_assert (TREE_CODE (basetype_path
) == TREE_VEC
, 20030624);
3935 if (!accessible_p (basetype_path
, decl
))
3937 if (TREE_PRIVATE (decl
))
3938 cp_error_at ("`%+#D' is private", decl
);
3939 else if (TREE_PROTECTED (decl
))
3940 cp_error_at ("`%+#D' is protected", decl
);
3942 cp_error_at ("`%+#D' is inaccessible", decl
);
3943 error ("within this context");
3950 /* Perform the conversions in CONVS on the expression EXPR. FN and
3951 ARGNUM are used for diagnostics. ARGNUM is zero based, -1
3952 indicates the `this' argument of a method. INNER is nonzero when
3953 being called to continue a conversion chain. It is negative when a
3954 reference binding will be applied, positive otherwise. If
3955 ISSUE_CONVERSION_WARNINGS is true, warnings about suspicious
3956 conversions will be emitted if appropriate. */
3959 convert_like_real (tree convs
, tree expr
, tree fn
, int argnum
, int inner
,
3960 bool issue_conversion_warnings
)
3964 tree totype
= TREE_TYPE (convs
);
3966 if (ICS_BAD_FLAG (convs
)
3967 && TREE_CODE (convs
) != USER_CONV
3968 && TREE_CODE (convs
) != AMBIG_CONV
3969 && TREE_CODE (convs
) != REF_BIND
)
3972 for (; t
; t
= TREE_OPERAND (t
, 0))
3974 if (TREE_CODE (t
) == USER_CONV
|| !ICS_BAD_FLAG (t
))
3976 expr
= convert_like_real (t
, expr
, fn
, argnum
, 1,
3977 /*issue_conversion_warnings=*/false);
3980 else if (TREE_CODE (t
) == AMBIG_CONV
)
3981 return convert_like_real (t
, expr
, fn
, argnum
, 1,
3982 /*issue_conversion_warnings=*/false);
3983 else if (TREE_CODE (t
) == IDENTITY_CONV
)
3986 pedwarn ("invalid conversion from `%T' to `%T'", TREE_TYPE (expr
), totype
);
3988 pedwarn (" initializing argument %P of `%D'", argnum
, fn
);
3989 return cp_convert (totype
, expr
);
3992 if (issue_conversion_warnings
)
3993 expr
= dubious_conversion_warnings
3994 (totype
, expr
, "argument", fn
, argnum
);
3995 switch (TREE_CODE (convs
))
3999 struct z_candidate
*cand
= USER_CONV_CAND (convs
);
4000 tree convfn
= cand
->fn
;
4003 if (DECL_CONSTRUCTOR_P (convfn
))
4005 tree t
= build_int_2 (0, 0);
4006 TREE_TYPE (t
) = build_pointer_type (DECL_CONTEXT (convfn
));
4008 args
= build_tree_list (NULL_TREE
, expr
);
4009 if (DECL_HAS_IN_CHARGE_PARM_P (convfn
)
4010 || DECL_HAS_VTT_PARM_P (convfn
))
4011 /* We should never try to call the abstract or base constructor
4014 args
= tree_cons (NULL_TREE
, t
, args
);
4017 args
= build_this (expr
);
4018 expr
= build_over_call (cand
, LOOKUP_NORMAL
);
4020 /* If this is a constructor or a function returning an aggr type,
4021 we need to build up a TARGET_EXPR. */
4022 if (DECL_CONSTRUCTOR_P (convfn
))
4023 expr
= build_cplus_new (totype
, expr
);
4025 /* The result of the call is then used to direct-initialize the object
4026 that is the destination of the copy-initialization. [dcl.init]
4028 Note that this step is not reflected in the conversion sequence;
4029 it affects the semantics when we actually perform the
4030 conversion, but is not considered during overload resolution.
4032 If the target is a class, that means call a ctor. */
4033 if (IS_AGGR_TYPE (totype
)
4034 && (inner
>= 0 || !lvalue_p (expr
)))
4036 savew
= warningcount
, savee
= errorcount
;
4037 expr
= build_special_member_call
4038 (NULL_TREE
, complete_ctor_identifier
,
4039 build_tree_list (NULL_TREE
, expr
), TYPE_BINFO (totype
),
4040 /* Core issue 84, now a DR, says that we don't allow UDCs
4041 for these args (which deliberately breaks copy-init of an
4042 auto_ptr<Base> from an auto_ptr<Derived>). */
4043 LOOKUP_NORMAL
|LOOKUP_ONLYCONVERTING
|LOOKUP_NO_CONVERSION
);
4045 /* Tell the user where this failing constructor call came from. */
4048 if (warningcount
> savew
)
4050 (" initializing argument %P of `%D' from result of `%D'",
4051 argnum
, fn
, convfn
);
4052 else if (errorcount
> savee
)
4054 (" initializing argument %P of `%D' from result of `%D'",
4055 argnum
, fn
, convfn
);
4059 if (warningcount
> savew
)
4060 warning (" initializing temporary from result of `%D'",
4062 else if (errorcount
> savee
)
4063 error (" initializing temporary from result of `%D'",
4066 expr
= build_cplus_new (totype
, expr
);
4071 if (type_unknown_p (expr
))
4072 expr
= instantiate_type (totype
, expr
, tf_error
| tf_warning
);
4073 /* Convert a non-array constant variable to its underlying value, unless we
4074 are about to bind it to a reference, in which case we need to
4075 leave it as an lvalue. */
4077 && TREE_CODE (TREE_TYPE (expr
)) != ARRAY_TYPE
)
4078 expr
= decl_constant_value (expr
);
4081 /* Call build_user_type_conversion again for the error. */
4082 return build_user_type_conversion
4083 (totype
, TREE_OPERAND (convs
, 0), LOOKUP_NORMAL
);
4089 expr
= convert_like_real (TREE_OPERAND (convs
, 0), expr
, fn
, argnum
,
4090 TREE_CODE (convs
) == REF_BIND
? -1 : 1,
4091 /*issue_conversion_warnings=*/false);
4092 if (expr
== error_mark_node
)
4093 return error_mark_node
;
4095 switch (TREE_CODE (convs
))
4098 if (! IS_AGGR_TYPE (totype
))
4100 /* else fall through */
4102 if (TREE_CODE (convs
) == BASE_CONV
&& !NEED_TEMPORARY_P (convs
))
4104 /* We are going to bind a reference directly to a base-class
4105 subobject of EXPR. */
4106 tree base_ptr
= build_pointer_type (totype
);
4108 /* Build an expression for `*((base*) &expr)'. */
4109 expr
= build_unary_op (ADDR_EXPR
, expr
, 0);
4110 expr
= perform_implicit_conversion (base_ptr
, expr
);
4111 expr
= build_indirect_ref (expr
, "implicit conversion");
4115 /* Copy-initialization where the cv-unqualified version of the source
4116 type is the same class as, or a derived class of, the class of the
4117 destination [is treated as direct-initialization]. [dcl.init] */
4118 savew
= warningcount
, savee
= errorcount
;
4119 expr
= build_special_member_call (NULL_TREE
, complete_ctor_identifier
,
4120 build_tree_list (NULL_TREE
, expr
),
4121 TYPE_BINFO (totype
),
4122 LOOKUP_NORMAL
|LOOKUP_ONLYCONVERTING
);
4125 if (warningcount
> savew
)
4126 warning (" initializing argument %P of `%D'", argnum
, fn
);
4127 else if (errorcount
> savee
)
4128 error (" initializing argument %P of `%D'", argnum
, fn
);
4130 return build_cplus_new (totype
, expr
);
4134 tree ref_type
= totype
;
4136 /* If necessary, create a temporary. */
4137 if (NEED_TEMPORARY_P (convs
) || !lvalue_p (expr
))
4139 tree type
= TREE_TYPE (TREE_OPERAND (convs
, 0));
4141 if (!CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (ref_type
)))
4143 /* If the reference is volatile or non-const, we
4144 cannot create a temporary. */
4145 cp_lvalue_kind lvalue
= real_lvalue_p (expr
);
4147 if (lvalue
& clk_bitfield
)
4148 error ("cannot bind bitfield `%E' to `%T'",
4150 else if (lvalue
& clk_packed
)
4151 error ("cannot bind packed field `%E' to `%T'",
4154 error ("cannot bind rvalue `%E' to `%T'", expr
, ref_type
);
4155 return error_mark_node
;
4157 expr
= build_target_expr_with_type (expr
, type
);
4160 /* Take the address of the thing to which we will bind the
4162 expr
= build_unary_op (ADDR_EXPR
, expr
, 1);
4163 if (expr
== error_mark_node
)
4164 return error_mark_node
;
4166 /* Convert it to a pointer to the type referred to by the
4167 reference. This will adjust the pointer if a derived to
4168 base conversion is being performed. */
4169 expr
= cp_convert (build_pointer_type (TREE_TYPE (ref_type
)),
4171 /* Convert the pointer to the desired reference type. */
4172 return build_nop (ref_type
, expr
);
4176 return decay_conversion (expr
);
4179 /* Warn about deprecated conversion if appropriate. */
4180 string_conv_p (totype
, expr
, 1);
4186 return ocp_convert (totype
, expr
, CONV_IMPLICIT
,
4187 LOOKUP_NORMAL
|LOOKUP_NO_CONVERSION
);
4190 /* Build a call to __builtin_trap which can be used in an expression. */
4193 call_builtin_trap (void)
4195 tree fn
= IDENTIFIER_GLOBAL_VALUE (get_identifier ("__builtin_trap"));
4197 my_friendly_assert (fn
!= NULL
, 20030927);
4198 fn
= build_call (fn
, NULL_TREE
);
4199 fn
= build (COMPOUND_EXPR
, integer_type_node
, fn
, integer_zero_node
);
4203 /* ARG is being passed to a varargs function. Perform any conversions
4204 required. Return the converted value. */
4207 convert_arg_to_ellipsis (tree arg
)
4211 The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4212 standard conversions are performed. */
4213 arg
= decay_conversion (arg
);
4216 If the argument has integral or enumeration type that is subject
4217 to the integral promotions (_conv.prom_), or a floating point
4218 type that is subject to the floating point promotion
4219 (_conv.fpprom_), the value of the argument is converted to the
4220 promoted type before the call. */
4221 if (TREE_CODE (TREE_TYPE (arg
)) == REAL_TYPE
4222 && (TYPE_PRECISION (TREE_TYPE (arg
))
4223 < TYPE_PRECISION (double_type_node
)))
4224 arg
= convert_to_real (double_type_node
, arg
);
4225 else if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (arg
)))
4226 arg
= perform_integral_promotions (arg
);
4228 arg
= require_complete_type (arg
);
4230 if (arg
!= error_mark_node
&& ! pod_type_p (TREE_TYPE (arg
)))
4232 /* Undefined behavior [expr.call] 5.2.2/7. We used to just warn
4233 here and do a bitwise copy, but now cp_expr_size will abort if we
4235 warning ("cannot pass objects of non-POD type `%#T' through `...'; \
4236 call will abort at runtime",
4238 arg
= call_builtin_trap ();
4244 /* va_arg (EXPR, TYPE) is a builtin. Make sure it is not abused. */
4247 build_x_va_arg (tree expr
, tree type
)
4249 if (processing_template_decl
)
4250 return build_min (VA_ARG_EXPR
, type
, expr
);
4252 type
= complete_type_or_else (type
, NULL_TREE
);
4254 if (expr
== error_mark_node
|| !type
)
4255 return error_mark_node
;
4257 if (! pod_type_p (type
))
4259 /* Undefined behavior [expr.call] 5.2.2/7. */
4260 warning ("cannot receive objects of non-POD type `%#T' through `...'",
4264 return build_va_arg (expr
, type
);
4267 /* TYPE has been given to va_arg. Apply the default conversions which
4268 would have happened when passed via ellipsis. Return the promoted
4269 type, or the passed type if there is no change. */
4272 cxx_type_promotes_to (tree type
)
4276 /* Perform the array-to-pointer and function-to-pointer
4278 type
= type_decays_to (type
);
4280 promote
= type_promotes_to (type
);
4281 if (same_type_p (type
, promote
))
4287 /* ARG is a default argument expression being passed to a parameter of
4288 the indicated TYPE, which is a parameter to FN. Do any required
4289 conversions. Return the converted value. */
4292 convert_default_arg (tree type
, tree arg
, tree fn
, int parmnum
)
4294 /* If the ARG is an unparsed default argument expression, the
4295 conversion cannot be performed. */
4296 if (TREE_CODE (arg
) == DEFAULT_ARG
)
4298 error ("the default argument for parameter %d of `%D' has "
4299 "not yet been parsed",
4301 return error_mark_node
;
4304 if (fn
&& DECL_TEMPLATE_INFO (fn
))
4305 arg
= tsubst_default_argument (fn
, type
, arg
);
4307 arg
= break_out_target_exprs (arg
);
4309 if (TREE_CODE (arg
) == CONSTRUCTOR
)
4311 arg
= digest_init (type
, arg
, 0);
4312 arg
= convert_for_initialization (0, type
, arg
, LOOKUP_NORMAL
,
4313 "default argument", fn
, parmnum
);
4317 /* This could get clobbered by the following call. */
4318 if (TREE_HAS_CONSTRUCTOR (arg
))
4319 arg
= copy_node (arg
);
4321 arg
= convert_for_initialization (0, type
, arg
, LOOKUP_NORMAL
,
4322 "default argument", fn
, parmnum
);
4323 arg
= convert_for_arg_passing (type
, arg
);
4329 /* Returns the type which will really be used for passing an argument of
4333 type_passed_as (tree type
)
4335 /* Pass classes with copy ctors by invisible reference. */
4336 if (TREE_ADDRESSABLE (type
))
4337 type
= build_reference_type (type
);
4338 else if (PROMOTE_PROTOTYPES
4339 && INTEGRAL_TYPE_P (type
)
4340 && COMPLETE_TYPE_P (type
)
4341 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type
),
4342 TYPE_SIZE (integer_type_node
)))
4343 type
= integer_type_node
;
4348 /* Actually perform the appropriate conversion. */
4351 convert_for_arg_passing (tree type
, tree val
)
4353 if (val
== error_mark_node
)
4355 /* Pass classes with copy ctors by invisible reference. */
4356 else if (TREE_ADDRESSABLE (type
))
4357 val
= build1 (ADDR_EXPR
, build_reference_type (type
), val
);
4358 else if (PROMOTE_PROTOTYPES
4359 && INTEGRAL_TYPE_P (type
)
4360 && COMPLETE_TYPE_P (type
)
4361 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type
),
4362 TYPE_SIZE (integer_type_node
)))
4363 val
= perform_integral_promotions (val
);
4367 /* Subroutine of the various build_*_call functions. Overload resolution
4368 has chosen a winning candidate CAND; build up a CALL_EXPR accordingly.
4369 ARGS is a TREE_LIST of the unconverted arguments to the call. FLAGS is a
4370 bitmask of various LOOKUP_* flags which apply to the call itself. */
4373 build_over_call (struct z_candidate
*cand
, int flags
)
4376 tree args
= cand
->args
;
4377 tree convs
= cand
->convs
;
4378 tree converted_args
= NULL_TREE
;
4379 tree parm
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
4380 tree conv
, arg
, val
;
4384 /* Give any warnings we noticed during overload resolution. */
4386 for (val
= cand
->warnings
; val
; val
= TREE_CHAIN (val
))
4387 joust (cand
, WRAPPER_ZC (TREE_VALUE (val
)), 1);
4389 if (DECL_FUNCTION_MEMBER_P (fn
))
4390 perform_or_defer_access_check (cand
->access_path
, fn
);
4392 if (args
&& TREE_CODE (args
) != TREE_LIST
)
4393 args
= build_tree_list (NULL_TREE
, args
);
4396 /* The implicit parameters to a constructor are not considered by overload
4397 resolution, and must be of the proper type. */
4398 if (DECL_CONSTRUCTOR_P (fn
))
4400 converted_args
= tree_cons (NULL_TREE
, TREE_VALUE (arg
), converted_args
);
4401 arg
= TREE_CHAIN (arg
);
4402 parm
= TREE_CHAIN (parm
);
4403 if (DECL_HAS_IN_CHARGE_PARM_P (fn
))
4404 /* We should never try to call the abstract constructor. */
4406 if (DECL_HAS_VTT_PARM_P (fn
))
4408 converted_args
= tree_cons
4409 (NULL_TREE
, TREE_VALUE (arg
), converted_args
);
4410 arg
= TREE_CHAIN (arg
);
4411 parm
= TREE_CHAIN (parm
);
4414 /* Bypass access control for 'this' parameter. */
4415 else if (TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
4417 tree parmtype
= TREE_VALUE (parm
);
4418 tree argtype
= TREE_TYPE (TREE_VALUE (arg
));
4422 if (ICS_BAD_FLAG (TREE_VEC_ELT (convs
, i
)))
4423 pedwarn ("passing `%T' as `this' argument of `%#D' discards qualifiers",
4424 TREE_TYPE (argtype
), fn
);
4426 /* [class.mfct.nonstatic]: If a nonstatic member function of a class
4427 X is called for an object that is not of type X, or of a type
4428 derived from X, the behavior is undefined.
4430 So we can assume that anything passed as 'this' is non-null, and
4431 optimize accordingly. */
4432 my_friendly_assert (TREE_CODE (parmtype
) == POINTER_TYPE
, 19990811);
4433 /* Convert to the base in which the function was declared. */
4434 my_friendly_assert (cand
->conversion_path
!= NULL_TREE
, 20020730);
4435 converted_arg
= build_base_path (PLUS_EXPR
,
4437 cand
->conversion_path
,
4439 /* Check that the base class is accessible. */
4440 if (!accessible_base_p (TREE_TYPE (argtype
),
4441 BINFO_TYPE (cand
->conversion_path
)))
4442 error ("`%T' is not an accessible base of `%T'",
4443 BINFO_TYPE (cand
->conversion_path
),
4444 TREE_TYPE (argtype
));
4445 /* If fn was found by a using declaration, the conversion path
4446 will be to the derived class, not the base declaring fn. We
4447 must convert from derived to base. */
4448 base_binfo
= lookup_base (TREE_TYPE (TREE_TYPE (converted_arg
)),
4449 TREE_TYPE (parmtype
), ba_ignore
, NULL
);
4450 converted_arg
= build_base_path (PLUS_EXPR
, converted_arg
,
4453 converted_args
= tree_cons (NULL_TREE
, converted_arg
, converted_args
);
4454 parm
= TREE_CHAIN (parm
);
4455 arg
= TREE_CHAIN (arg
);
4461 parm
= TREE_CHAIN (parm
), arg
= TREE_CHAIN (arg
), ++i
)
4463 tree type
= TREE_VALUE (parm
);
4465 conv
= TREE_VEC_ELT (convs
, i
);
4466 val
= convert_like_with_context
4467 (conv
, TREE_VALUE (arg
), fn
, i
- is_method
);
4469 val
= convert_for_arg_passing (type
, val
);
4470 converted_args
= tree_cons (NULL_TREE
, val
, converted_args
);
4473 /* Default arguments */
4474 for (; parm
&& parm
!= void_list_node
; parm
= TREE_CHAIN (parm
), i
++)
4476 = tree_cons (NULL_TREE
,
4477 convert_default_arg (TREE_VALUE (parm
),
4478 TREE_PURPOSE (parm
),
4483 for (; arg
; arg
= TREE_CHAIN (arg
))
4485 = tree_cons (NULL_TREE
,
4486 convert_arg_to_ellipsis (TREE_VALUE (arg
)),
4489 converted_args
= nreverse (converted_args
);
4492 check_function_format (NULL
, TYPE_ATTRIBUTES (TREE_TYPE (fn
)),
4495 /* Avoid actually calling copy constructors and copy assignment operators,
4498 if (! flag_elide_constructors
)
4499 /* Do things the hard way. */;
4500 else if (TREE_VEC_LENGTH (convs
) == 1
4501 && DECL_COPY_CONSTRUCTOR_P (fn
))
4504 arg
= skip_artificial_parms_for (fn
, converted_args
);
4505 arg
= TREE_VALUE (arg
);
4507 /* Pull out the real argument, disregarding const-correctness. */
4509 while (TREE_CODE (targ
) == NOP_EXPR
4510 || TREE_CODE (targ
) == NON_LVALUE_EXPR
4511 || TREE_CODE (targ
) == CONVERT_EXPR
)
4512 targ
= TREE_OPERAND (targ
, 0);
4513 if (TREE_CODE (targ
) == ADDR_EXPR
)
4515 targ
= TREE_OPERAND (targ
, 0);
4516 if (!same_type_ignoring_top_level_qualifiers_p
4517 (TREE_TYPE (TREE_TYPE (arg
)), TREE_TYPE (targ
)))
4526 arg
= build_indirect_ref (arg
, 0);
4528 /* [class.copy]: the copy constructor is implicitly defined even if
4529 the implementation elided its use. */
4530 if (TYPE_HAS_COMPLEX_INIT_REF (DECL_CONTEXT (fn
)))
4533 /* If we're creating a temp and we already have one, don't create a
4534 new one. If we're not creating a temp but we get one, use
4535 INIT_EXPR to collapse the temp into our target. Otherwise, if the
4536 ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a
4537 temp or an INIT_EXPR otherwise. */
4538 if (integer_zerop (TREE_VALUE (args
)))
4540 if (TREE_CODE (arg
) == TARGET_EXPR
)
4542 else if (TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn
)))
4543 return build_target_expr_with_type (arg
, DECL_CONTEXT (fn
));
4545 else if (TREE_CODE (arg
) == TARGET_EXPR
4546 || TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn
)))
4549 tree to
= stabilize_reference
4550 (build_indirect_ref (TREE_VALUE (args
), 0));
4552 val
= build (INIT_EXPR
, DECL_CONTEXT (fn
), to
, arg
);
4553 address
= build_unary_op (ADDR_EXPR
, val
, 0);
4554 /* Avoid a warning about this expression, if the address is
4556 TREE_USED (address
) = 1;
4560 else if (DECL_OVERLOADED_OPERATOR_P (fn
) == NOP_EXPR
4562 && TYPE_HAS_TRIVIAL_ASSIGN_REF (DECL_CONTEXT (fn
)))
4564 tree to
= stabilize_reference
4565 (build_indirect_ref (TREE_VALUE (converted_args
), 0));
4567 arg
= build_indirect_ref (TREE_VALUE (TREE_CHAIN (converted_args
)), 0);
4568 val
= build (MODIFY_EXPR
, TREE_TYPE (to
), to
, arg
);
4574 if (DECL_VINDEX (fn
) && (flags
& LOOKUP_NONVIRTUAL
) == 0)
4576 tree t
, *p
= &TREE_VALUE (converted_args
);
4577 tree binfo
= lookup_base (TREE_TYPE (TREE_TYPE (*p
)),
4580 my_friendly_assert (binfo
&& binfo
!= error_mark_node
, 20010730);
4582 *p
= build_base_path (PLUS_EXPR
, *p
, binfo
, 1);
4583 if (TREE_SIDE_EFFECTS (*p
))
4584 *p
= save_expr (*p
);
4585 t
= build_pointer_type (TREE_TYPE (fn
));
4586 if (DECL_CONTEXT (fn
) && TYPE_JAVA_INTERFACE (DECL_CONTEXT (fn
)))
4587 fn
= build_java_interface_fn_ref (fn
, *p
);
4589 fn
= build_vfn_ref (build_indirect_ref (*p
, 0), DECL_VINDEX (fn
));
4592 else if (DECL_INLINE (fn
))
4593 fn
= inline_conversion (fn
);
4595 fn
= build_addr_func (fn
);
4597 return build_cxx_call (fn
, args
, converted_args
);
4600 /* Build and return a call to FN, using the the CONVERTED_ARGS. ARGS
4601 gives the original form of the arguments. This function performs
4602 no overload resolution, conversion, or other high-level
4606 build_cxx_call(tree fn
, tree args
, tree converted_args
)
4610 /* Recognize certain built-in functions so we can make tree-codes
4611 other than CALL_EXPR. We do this when it enables fold-const.c
4612 to do something useful. */
4613 if (TREE_CODE (fn
) == ADDR_EXPR
4614 && TREE_CODE (TREE_OPERAND (fn
, 0)) == FUNCTION_DECL
4615 && DECL_BUILT_IN (TREE_OPERAND (fn
, 0)))
4618 exp
= expand_tree_builtin (TREE_OPERAND (fn
, 0), args
, converted_args
);
4623 fn
= build_call (fn
, converted_args
);
4625 /* If this call might throw an exception, note that fact. */
4626 fndecl
= get_callee_fndecl (fn
);
4627 if ((!fndecl
|| !TREE_NOTHROW (fndecl
))
4628 && at_function_scope_p ()
4630 cp_function_chain
->can_throw
= 1;
4632 /* Some built-in function calls will be evaluated at compile-time in
4636 if (VOID_TYPE_P (TREE_TYPE (fn
)))
4639 fn
= require_complete_type (fn
);
4640 if (fn
== error_mark_node
)
4641 return error_mark_node
;
4643 if (IS_AGGR_TYPE (TREE_TYPE (fn
)))
4644 fn
= build_cplus_new (TREE_TYPE (fn
), fn
);
4645 return convert_from_reference (fn
);
4648 static GTY(()) tree java_iface_lookup_fn
;
4650 /* Make an expression which yields the address of the Java interface
4651 method FN. This is achieved by generating a call to libjava's
4652 _Jv_LookupInterfaceMethodIdx(). */
4655 build_java_interface_fn_ref (tree fn
, tree instance
)
4657 tree lookup_args
, lookup_fn
, method
, idx
;
4658 tree klass_ref
, iface
, iface_ref
;
4661 if (!java_iface_lookup_fn
)
4663 tree endlink
= build_void_list_node ();
4664 tree t
= tree_cons (NULL_TREE
, ptr_type_node
,
4665 tree_cons (NULL_TREE
, ptr_type_node
,
4666 tree_cons (NULL_TREE
, java_int_type_node
,
4668 java_iface_lookup_fn
4669 = builtin_function ("_Jv_LookupInterfaceMethodIdx",
4670 build_function_type (ptr_type_node
, t
),
4671 0, NOT_BUILT_IN
, NULL
, NULL_TREE
);
4674 /* Look up the pointer to the runtime java.lang.Class object for `instance'.
4675 This is the first entry in the vtable. */
4676 klass_ref
= build_vtbl_ref (build_indirect_ref (instance
, 0),
4679 /* Get the java.lang.Class pointer for the interface being called. */
4680 iface
= DECL_CONTEXT (fn
);
4681 iface_ref
= lookup_field (iface
, get_identifier ("class$"), 0, false);
4682 if (!iface_ref
|| TREE_CODE (iface_ref
) != VAR_DECL
4683 || DECL_CONTEXT (iface_ref
) != iface
)
4685 error ("could not find class$ field in java interface type `%T'",
4687 return error_mark_node
;
4689 iface_ref
= build1 (ADDR_EXPR
, build_pointer_type (iface
), iface_ref
);
4691 /* Determine the itable index of FN. */
4693 for (method
= TYPE_METHODS (iface
); method
; method
= TREE_CHAIN (method
))
4695 if (!DECL_VIRTUAL_P (method
))
4701 idx
= build_int_2 (i
, 0);
4703 lookup_args
= tree_cons (NULL_TREE
, klass_ref
,
4704 tree_cons (NULL_TREE
, iface_ref
,
4705 build_tree_list (NULL_TREE
, idx
)));
4706 lookup_fn
= build1 (ADDR_EXPR
,
4707 build_pointer_type (TREE_TYPE (java_iface_lookup_fn
)),
4708 java_iface_lookup_fn
);
4709 return build (CALL_EXPR
, ptr_type_node
, lookup_fn
, lookup_args
, NULL_TREE
);
4712 /* Returns the value to use for the in-charge parameter when making a
4713 call to a function with the indicated NAME. */
4716 in_charge_arg_for_name (tree name
)
4718 if (name
== base_ctor_identifier
4719 || name
== base_dtor_identifier
)
4720 return integer_zero_node
;
4721 else if (name
== complete_ctor_identifier
)
4722 return integer_one_node
;
4723 else if (name
== complete_dtor_identifier
)
4724 return integer_two_node
;
4725 else if (name
== deleting_dtor_identifier
)
4726 return integer_three_node
;
4728 /* This function should only be called with one of the names listed
4734 /* Build a call to a constructor, destructor, or an assignment
4735 operator for INSTANCE, an expression with class type. NAME
4736 indicates the special member function to call; ARGS are the
4737 arguments. BINFO indicates the base of INSTANCE that is to be
4738 passed as the `this' parameter to the member function called.
4740 FLAGS are the LOOKUP_* flags to use when processing the call.
4742 If NAME indicates a complete object constructor, INSTANCE may be
4743 NULL_TREE. In this case, the caller will call build_cplus_new to
4744 store the newly constructed object into a VAR_DECL. */
4747 build_special_member_call (tree instance
, tree name
, tree args
,
4748 tree binfo
, int flags
)
4751 /* The type of the subobject to be constructed or destroyed. */
4754 my_friendly_assert (name
== complete_ctor_identifier
4755 || name
== base_ctor_identifier
4756 || name
== complete_dtor_identifier
4757 || name
== base_dtor_identifier
4758 || name
== deleting_dtor_identifier
4759 || name
== ansi_assopname (NOP_EXPR
),
4761 my_friendly_assert (binfo
!= NULL_TREE
, 20020712);
4763 class_type
= BINFO_TYPE (binfo
);
4765 /* Handle the special case where INSTANCE is NULL_TREE. */
4766 if (name
== complete_ctor_identifier
&& !instance
)
4768 instance
= build_int_2 (0, 0);
4769 TREE_TYPE (instance
) = build_pointer_type (class_type
);
4770 instance
= build1 (INDIRECT_REF
, class_type
, instance
);
4774 if (name
== complete_dtor_identifier
4775 || name
== base_dtor_identifier
4776 || name
== deleting_dtor_identifier
)
4777 my_friendly_assert (args
== NULL_TREE
, 20020712);
4779 /* We must perform the conversion here so that we do not
4780 subsequently check to see whether BINFO is an accessible
4781 base. (It is OK for a constructor to call a constructor in
4782 an inaccessible base as long as the constructor being called
4784 if (!same_type_ignoring_top_level_qualifiers_p
4785 (TREE_TYPE (instance
), BINFO_TYPE (binfo
)))
4786 instance
= convert_to_base_statically (instance
, binfo
);
4789 my_friendly_assert (instance
!= NULL_TREE
, 20020712);
4791 /* Resolve the name. */
4792 if (!complete_type_or_else (BINFO_TYPE (binfo
), NULL_TREE
))
4793 return error_mark_node
;
4795 fns
= lookup_fnfields (binfo
, name
, 1);
4797 /* When making a call to a constructor or destructor for a subobject
4798 that uses virtual base classes, pass down a pointer to a VTT for
4800 if ((name
== base_ctor_identifier
4801 || name
== base_dtor_identifier
)
4802 && TYPE_USES_VIRTUAL_BASECLASSES (class_type
))
4807 /* If the current function is a complete object constructor
4808 or destructor, then we fetch the VTT directly.
4809 Otherwise, we look it up using the VTT we were given. */
4810 vtt
= TREE_CHAIN (CLASSTYPE_VTABLES (current_class_type
));
4811 vtt
= decay_conversion (vtt
);
4812 vtt
= build (COND_EXPR
, TREE_TYPE (vtt
),
4813 build (EQ_EXPR
, boolean_type_node
,
4814 current_in_charge_parm
, integer_zero_node
),
4817 my_friendly_assert (BINFO_SUBVTT_INDEX (binfo
), 20010110);
4818 sub_vtt
= build (PLUS_EXPR
, TREE_TYPE (vtt
), vtt
,
4819 BINFO_SUBVTT_INDEX (binfo
));
4821 args
= tree_cons (NULL_TREE
, sub_vtt
, args
);
4824 return build_new_method_call (instance
, fns
, args
,
4825 TYPE_BINFO (BINFO_TYPE (binfo
)),
4829 /* Return the NAME, as a C string. The NAME indicates a function that
4830 is a member of TYPE. *FREE_P is set to true if the caller must
4831 free the memory returned.
4833 Rather than go through all of this, we should simply set the names
4834 of constructors and destructors appropriately, and dispense with
4835 ctor_identifier, dtor_identifier, etc. */
4838 name_as_c_string (tree name
, tree type
, bool *free_p
)
4842 /* Assume that we will not allocate memory. */
4844 /* Constructors and destructors are special. */
4845 if (IDENTIFIER_CTOR_OR_DTOR_P (name
))
4848 = (char *) IDENTIFIER_POINTER (constructor_name (type
));
4849 /* For a destructor, add the '~'. */
4850 if (name
== complete_dtor_identifier
4851 || name
== base_dtor_identifier
4852 || name
== deleting_dtor_identifier
)
4854 pretty_name
= concat ("~", pretty_name
, NULL
);
4855 /* Remember that we need to free the memory allocated. */
4860 pretty_name
= (char *) IDENTIFIER_POINTER (name
);
4865 /* Build a call to "INSTANCE.FN (ARGS)". */
4868 build_new_method_call (tree instance
, tree fns
, tree args
,
4869 tree conversion_path
, int flags
)
4871 struct z_candidate
*candidates
= 0, *cand
;
4872 tree explicit_targs
= NULL_TREE
;
4873 tree basetype
= NULL_TREE
;
4876 tree mem_args
= NULL_TREE
, instance_ptr
;
4882 int template_only
= 0;
4888 my_friendly_assert (instance
!= NULL_TREE
, 20020729);
4890 if (error_operand_p (instance
)
4891 || error_operand_p (fns
)
4892 || args
== error_mark_node
)
4893 return error_mark_node
;
4895 orig_instance
= instance
;
4899 if (processing_template_decl
)
4901 instance
= build_non_dependent_expr (instance
);
4902 if (!BASELINK_P (fns
)
4903 && TREE_CODE (fns
) != PSEUDO_DTOR_EXPR
4904 && TREE_TYPE (fns
) != unknown_type_node
)
4905 fns
= build_non_dependent_expr (fns
);
4906 args
= build_non_dependent_args (orig_args
);
4909 /* Process the argument list. */
4911 args
= resolve_args (args
);
4912 if (args
== error_mark_node
)
4913 return error_mark_node
;
4915 if (TREE_CODE (TREE_TYPE (instance
)) == REFERENCE_TYPE
)
4916 instance
= convert_from_reference (instance
);
4917 basetype
= TYPE_MAIN_VARIANT (TREE_TYPE (instance
));
4918 instance_ptr
= build_this (instance
);
4920 if (!BASELINK_P (fns
))
4922 call
= build_field_call (instance_ptr
, fns
, args
);
4925 error ("call to non-function `%D'", fns
);
4926 return error_mark_node
;
4929 if (!conversion_path
)
4930 conversion_path
= BASELINK_BINFO (fns
);
4931 access_binfo
= BASELINK_ACCESS_BINFO (fns
);
4932 optype
= BASELINK_OPTYPE (fns
);
4933 fns
= BASELINK_FUNCTIONS (fns
);
4935 if (TREE_CODE (fns
) == TEMPLATE_ID_EXPR
)
4937 explicit_targs
= TREE_OPERAND (fns
, 1);
4938 fns
= TREE_OPERAND (fns
, 0);
4942 my_friendly_assert (TREE_CODE (fns
) == FUNCTION_DECL
4943 || TREE_CODE (fns
) == TEMPLATE_DECL
4944 || TREE_CODE (fns
) == OVERLOAD
,
4947 /* XXX this should be handled before we get here. */
4948 if (! IS_AGGR_TYPE (basetype
))
4950 if ((flags
& LOOKUP_COMPLAIN
) && basetype
!= error_mark_node
)
4951 error ("request for member `%D' in `%E', which is of non-aggregate type `%T'",
4952 fns
, instance
, basetype
);
4954 return error_mark_node
;
4957 fn
= get_first_fn (fns
);
4958 name
= DECL_NAME (fn
);
4960 if (IDENTIFIER_CTOR_OR_DTOR_P (name
))
4962 /* Callers should explicitly indicate whether they want to construct
4963 the complete object or just the part without virtual bases. */
4964 my_friendly_assert (name
!= ctor_identifier
, 20000408);
4965 /* Similarly for destructors. */
4966 my_friendly_assert (name
!= dtor_identifier
, 20000408);
4969 /* It's OK to call destructors on cv-qualified objects. Therefore,
4970 convert the INSTANCE_PTR to the unqualified type, if necessary. */
4971 if (DECL_DESTRUCTOR_P (fn
))
4973 tree type
= build_pointer_type (basetype
);
4974 if (!same_type_p (type
, TREE_TYPE (instance_ptr
)))
4975 instance_ptr
= build_nop (type
, instance_ptr
);
4978 class_type
= (conversion_path
? BINFO_TYPE (conversion_path
) : NULL_TREE
);
4979 mem_args
= tree_cons (NULL_TREE
, instance_ptr
, args
);
4981 for (fn
= fns
; fn
; fn
= OVL_NEXT (fn
))
4983 tree t
= OVL_CURRENT (fn
);
4986 /* We can end up here for copy-init of same or base class. */
4987 if ((flags
& LOOKUP_ONLYCONVERTING
)
4988 && DECL_NONCONVERTING_P (t
))
4991 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (t
))
4992 this_arglist
= mem_args
;
4994 this_arglist
= args
;
4996 if (TREE_CODE (t
) == TEMPLATE_DECL
)
4997 /* A member template. */
4998 add_template_candidate (&candidates
, t
,
5001 this_arglist
, optype
,
5006 else if (! template_only
)
5007 add_function_candidate (&candidates
, t
,
5015 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
5018 /* XXX will LOOKUP_SPECULATIVELY be needed when this is done? */
5019 if (flags
& LOOKUP_SPECULATIVELY
)
5021 if (!COMPLETE_TYPE_P (basetype
))
5022 cxx_incomplete_type_error (instance_ptr
, basetype
);
5028 pretty_name
= name_as_c_string (name
, basetype
, &free_p
);
5029 error ("no matching function for call to `%T::%s(%A)%#V'",
5030 basetype
, pretty_name
, user_args
,
5031 TREE_TYPE (TREE_TYPE (instance_ptr
)));
5035 print_z_candidates (candidates
);
5036 return error_mark_node
;
5039 cand
= tourney (candidates
);
5045 pretty_name
= name_as_c_string (name
, basetype
, &free_p
);
5046 error ("call of overloaded `%s(%A)' is ambiguous", pretty_name
,
5048 print_z_candidates (candidates
);
5051 return error_mark_node
;
5054 if (DECL_PURE_VIRTUAL_P (cand
->fn
)
5055 && instance
== current_class_ref
5056 && (DECL_CONSTRUCTOR_P (current_function_decl
)
5057 || DECL_DESTRUCTOR_P (current_function_decl
))
5058 && ! (flags
& LOOKUP_NONVIRTUAL
)
5059 && value_member (cand
->fn
, CLASSTYPE_PURE_VIRTUALS (basetype
)))
5060 error ((DECL_CONSTRUCTOR_P (current_function_decl
) ?
5061 "abstract virtual `%#D' called from constructor"
5062 : "abstract virtual `%#D' called from destructor"),
5064 if (TREE_CODE (TREE_TYPE (cand
->fn
)) == METHOD_TYPE
5065 && is_dummy_object (instance_ptr
))
5067 error ("cannot call member function `%D' without object", cand
->fn
);
5068 return error_mark_node
;
5071 if (DECL_VINDEX (cand
->fn
) && ! (flags
& LOOKUP_NONVIRTUAL
)
5072 && resolves_to_fixed_type_p (instance
, 0))
5073 flags
|= LOOKUP_NONVIRTUAL
;
5075 if (TREE_CODE (TREE_TYPE (cand
->fn
)) == METHOD_TYPE
)
5076 call
= build_over_call (cand
, flags
);
5079 call
= build_over_call (cand
, flags
);
5080 /* In an expression of the form `a->f()' where `f' turns out to
5081 be a static member function, `a' is none-the-less evaluated. */
5082 if (!is_dummy_object (instance_ptr
) && TREE_SIDE_EFFECTS (instance
))
5083 call
= build (COMPOUND_EXPR
, TREE_TYPE (call
), instance
, call
);
5087 if (processing_template_decl
&& call
!= error_mark_node
)
5088 return build_min_non_dep
5090 build_min_nt (COMPONENT_REF
, orig_instance
, orig_fns
),
5095 /* Returns true iff standard conversion sequence ICS1 is a proper
5096 subsequence of ICS2. */
5099 is_subseq (tree ics1
, tree ics2
)
5101 /* We can assume that a conversion of the same code
5102 between the same types indicates a subsequence since we only get
5103 here if the types we are converting from are the same. */
5105 while (TREE_CODE (ics1
) == RVALUE_CONV
5106 || TREE_CODE (ics1
) == LVALUE_CONV
)
5107 ics1
= TREE_OPERAND (ics1
, 0);
5111 while (TREE_CODE (ics2
) == RVALUE_CONV
5112 || TREE_CODE (ics2
) == LVALUE_CONV
)
5113 ics2
= TREE_OPERAND (ics2
, 0);
5115 if (TREE_CODE (ics2
) == USER_CONV
5116 || TREE_CODE (ics2
) == AMBIG_CONV
5117 || TREE_CODE (ics2
) == IDENTITY_CONV
)
5118 /* At this point, ICS1 cannot be a proper subsequence of
5119 ICS2. We can get a USER_CONV when we are comparing the
5120 second standard conversion sequence of two user conversion
5124 ics2
= TREE_OPERAND (ics2
, 0);
5126 if (TREE_CODE (ics2
) == TREE_CODE (ics1
)
5127 && same_type_p (TREE_TYPE (ics2
), TREE_TYPE (ics1
))
5128 && same_type_p (TREE_TYPE (TREE_OPERAND (ics2
, 0)),
5129 TREE_TYPE (TREE_OPERAND (ics1
, 0))))
5134 /* Returns nonzero iff DERIVED is derived from BASE. The inputs may
5135 be any _TYPE nodes. */
5138 is_properly_derived_from (tree derived
, tree base
)
5140 if (!IS_AGGR_TYPE_CODE (TREE_CODE (derived
))
5141 || !IS_AGGR_TYPE_CODE (TREE_CODE (base
)))
5144 /* We only allow proper derivation here. The DERIVED_FROM_P macro
5145 considers every class derived from itself. */
5146 return (!same_type_ignoring_top_level_qualifiers_p (derived
, base
)
5147 && DERIVED_FROM_P (base
, derived
));
5150 /* We build the ICS for an implicit object parameter as a pointer
5151 conversion sequence. However, such a sequence should be compared
5152 as if it were a reference conversion sequence. If ICS is the
5153 implicit conversion sequence for an implicit object parameter,
5154 modify it accordingly. */
5157 maybe_handle_implicit_object (tree
*ics
)
5159 if (ICS_THIS_FLAG (*ics
))
5161 /* [over.match.funcs]
5163 For non-static member functions, the type of the
5164 implicit object parameter is "reference to cv X"
5165 where X is the class of which the function is a
5166 member and cv is the cv-qualification on the member
5167 function declaration. */
5169 tree reference_type
;
5171 /* The `this' parameter is a pointer to a class type. Make the
5172 implicit conversion talk about a reference to that same class
5174 reference_type
= TREE_TYPE (TREE_TYPE (*ics
));
5175 reference_type
= build_reference_type (reference_type
);
5177 if (TREE_CODE (t
) == QUAL_CONV
)
5178 t
= TREE_OPERAND (t
, 0);
5179 if (TREE_CODE (t
) == PTR_CONV
)
5180 t
= TREE_OPERAND (t
, 0);
5181 t
= build1 (IDENTITY_CONV
, TREE_TYPE (TREE_TYPE (t
)), NULL_TREE
);
5182 t
= direct_reference_binding (reference_type
, t
);
5187 /* If *ICS is a REF_BIND set *ICS to the remainder of the conversion,
5188 and return the type to which the reference refers. Otherwise,
5189 leave *ICS unchanged and return NULL_TREE. */
5192 maybe_handle_ref_bind (tree
*ics
)
5194 if (TREE_CODE (*ics
) == REF_BIND
)
5196 tree old_ics
= *ics
;
5197 tree type
= TREE_TYPE (TREE_TYPE (old_ics
));
5198 *ics
= TREE_OPERAND (old_ics
, 0);
5199 ICS_USER_FLAG (*ics
) = ICS_USER_FLAG (old_ics
);
5200 ICS_BAD_FLAG (*ics
) = ICS_BAD_FLAG (old_ics
);
5207 /* Compare two implicit conversion sequences according to the rules set out in
5208 [over.ics.rank]. Return values:
5210 1: ics1 is better than ics2
5211 -1: ics2 is better than ics1
5212 0: ics1 and ics2 are indistinguishable */
5215 compare_ics (tree ics1
, tree ics2
)
5221 tree deref_from_type1
= NULL_TREE
;
5222 tree deref_from_type2
= NULL_TREE
;
5223 tree deref_to_type1
= NULL_TREE
;
5224 tree deref_to_type2
= NULL_TREE
;
5227 /* REF_BINDING is nonzero if the result of the conversion sequence
5228 is a reference type. In that case TARGET_TYPE is the
5229 type referred to by the reference. */
5233 /* Handle implicit object parameters. */
5234 maybe_handle_implicit_object (&ics1
);
5235 maybe_handle_implicit_object (&ics2
);
5237 /* Handle reference parameters. */
5238 target_type1
= maybe_handle_ref_bind (&ics1
);
5239 target_type2
= maybe_handle_ref_bind (&ics2
);
5243 When comparing the basic forms of implicit conversion sequences (as
5244 defined in _over.best.ics_)
5246 --a standard conversion sequence (_over.ics.scs_) is a better
5247 conversion sequence than a user-defined conversion sequence
5248 or an ellipsis conversion sequence, and
5250 --a user-defined conversion sequence (_over.ics.user_) is a
5251 better conversion sequence than an ellipsis conversion sequence
5252 (_over.ics.ellipsis_). */
5253 rank1
= ICS_RANK (ics1
);
5254 rank2
= ICS_RANK (ics2
);
5258 else if (rank1
< rank2
)
5261 if (rank1
== BAD_RANK
)
5263 /* XXX Isn't this an extension? */
5264 /* Both ICS are bad. We try to make a decision based on what
5265 would have happenned if they'd been good. */
5266 if (ICS_USER_FLAG (ics1
) > ICS_USER_FLAG (ics2
)
5267 || ICS_STD_RANK (ics1
) > ICS_STD_RANK (ics2
))
5269 else if (ICS_USER_FLAG (ics1
) < ICS_USER_FLAG (ics2
)
5270 || ICS_STD_RANK (ics1
) < ICS_STD_RANK (ics2
))
5273 /* We couldn't make up our minds; try to figure it out below. */
5276 if (ICS_ELLIPSIS_FLAG (ics1
))
5277 /* Both conversions are ellipsis conversions. */
5280 /* User-defined conversion sequence U1 is a better conversion sequence
5281 than another user-defined conversion sequence U2 if they contain the
5282 same user-defined conversion operator or constructor and if the sec-
5283 ond standard conversion sequence of U1 is better than the second
5284 standard conversion sequence of U2. */
5286 if (ICS_USER_FLAG (ics1
))
5290 for (t1
= ics1
; TREE_CODE (t1
) != USER_CONV
; t1
= TREE_OPERAND (t1
, 0))
5291 if (TREE_CODE (t1
) == AMBIG_CONV
)
5293 for (t2
= ics2
; TREE_CODE (t2
) != USER_CONV
; t2
= TREE_OPERAND (t2
, 0))
5294 if (TREE_CODE (t2
) == AMBIG_CONV
)
5297 if (USER_CONV_FN (t1
) != USER_CONV_FN (t2
))
5300 /* We can just fall through here, after setting up
5301 FROM_TYPE1 and FROM_TYPE2. */
5302 from_type1
= TREE_TYPE (t1
);
5303 from_type2
= TREE_TYPE (t2
);
5307 /* We're dealing with two standard conversion sequences.
5311 Standard conversion sequence S1 is a better conversion
5312 sequence than standard conversion sequence S2 if
5314 --S1 is a proper subsequence of S2 (comparing the conversion
5315 sequences in the canonical form defined by _over.ics.scs_,
5316 excluding any Lvalue Transformation; the identity
5317 conversion sequence is considered to be a subsequence of
5318 any non-identity conversion sequence */
5321 while (TREE_CODE (from_type1
) != IDENTITY_CONV
)
5322 from_type1
= TREE_OPERAND (from_type1
, 0);
5323 from_type1
= TREE_TYPE (from_type1
);
5326 while (TREE_CODE (from_type2
) != IDENTITY_CONV
)
5327 from_type2
= TREE_OPERAND (from_type2
, 0);
5328 from_type2
= TREE_TYPE (from_type2
);
5331 if (same_type_p (from_type1
, from_type2
))
5333 if (is_subseq (ics1
, ics2
))
5335 if (is_subseq (ics2
, ics1
))
5338 /* Otherwise, one sequence cannot be a subsequence of the other; they
5339 don't start with the same type. This can happen when comparing the
5340 second standard conversion sequence in two user-defined conversion
5347 --the rank of S1 is better than the rank of S2 (by the rules
5350 Standard conversion sequences are ordered by their ranks: an Exact
5351 Match is a better conversion than a Promotion, which is a better
5352 conversion than a Conversion.
5354 Two conversion sequences with the same rank are indistinguishable
5355 unless one of the following rules applies:
5357 --A conversion that is not a conversion of a pointer, or pointer
5358 to member, to bool is better than another conversion that is such
5361 The ICS_STD_RANK automatically handles the pointer-to-bool rule,
5362 so that we do not have to check it explicitly. */
5363 if (ICS_STD_RANK (ics1
) < ICS_STD_RANK (ics2
))
5365 else if (ICS_STD_RANK (ics2
) < ICS_STD_RANK (ics1
))
5368 to_type1
= TREE_TYPE (ics1
);
5369 to_type2
= TREE_TYPE (ics2
);
5371 if (TYPE_PTR_P (from_type1
)
5372 && TYPE_PTR_P (from_type2
)
5373 && TYPE_PTR_P (to_type1
)
5374 && TYPE_PTR_P (to_type2
))
5376 deref_from_type1
= TREE_TYPE (from_type1
);
5377 deref_from_type2
= TREE_TYPE (from_type2
);
5378 deref_to_type1
= TREE_TYPE (to_type1
);
5379 deref_to_type2
= TREE_TYPE (to_type2
);
5381 /* The rules for pointers to members A::* are just like the rules
5382 for pointers A*, except opposite: if B is derived from A then
5383 A::* converts to B::*, not vice versa. For that reason, we
5384 switch the from_ and to_ variables here. */
5385 else if ((TYPE_PTRMEM_P (from_type1
) && TYPE_PTRMEM_P (from_type2
)
5386 && TYPE_PTRMEM_P (to_type1
) && TYPE_PTRMEM_P (to_type2
))
5387 || (TYPE_PTRMEMFUNC_P (from_type1
)
5388 && TYPE_PTRMEMFUNC_P (from_type2
)
5389 && TYPE_PTRMEMFUNC_P (to_type1
)
5390 && TYPE_PTRMEMFUNC_P (to_type2
)))
5392 deref_to_type1
= TYPE_PTRMEM_CLASS_TYPE (from_type1
);
5393 deref_to_type2
= TYPE_PTRMEM_CLASS_TYPE (from_type2
);
5394 deref_from_type1
= TYPE_PTRMEM_CLASS_TYPE (to_type1
);
5395 deref_from_type2
= TYPE_PTRMEM_CLASS_TYPE (to_type2
);
5398 if (deref_from_type1
!= NULL_TREE
5399 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type1
))
5400 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type2
)))
5402 /* This was one of the pointer or pointer-like conversions.
5406 --If class B is derived directly or indirectly from class A,
5407 conversion of B* to A* is better than conversion of B* to
5408 void*, and conversion of A* to void* is better than
5409 conversion of B* to void*. */
5410 if (TREE_CODE (deref_to_type1
) == VOID_TYPE
5411 && TREE_CODE (deref_to_type2
) == VOID_TYPE
)
5413 if (is_properly_derived_from (deref_from_type1
,
5416 else if (is_properly_derived_from (deref_from_type2
,
5420 else if (TREE_CODE (deref_to_type1
) == VOID_TYPE
5421 || TREE_CODE (deref_to_type2
) == VOID_TYPE
)
5423 if (same_type_p (deref_from_type1
, deref_from_type2
))
5425 if (TREE_CODE (deref_to_type2
) == VOID_TYPE
)
5427 if (is_properly_derived_from (deref_from_type1
,
5431 /* We know that DEREF_TO_TYPE1 is `void' here. */
5432 else if (is_properly_derived_from (deref_from_type1
,
5437 else if (IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type1
))
5438 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type2
)))
5442 --If class B is derived directly or indirectly from class A
5443 and class C is derived directly or indirectly from B,
5445 --conversion of C* to B* is better than conversion of C* to
5448 --conversion of B* to A* is better than conversion of C* to
5450 if (same_type_p (deref_from_type1
, deref_from_type2
))
5452 if (is_properly_derived_from (deref_to_type1
,
5455 else if (is_properly_derived_from (deref_to_type2
,
5459 else if (same_type_p (deref_to_type1
, deref_to_type2
))
5461 if (is_properly_derived_from (deref_from_type2
,
5464 else if (is_properly_derived_from (deref_from_type1
,
5470 else if (CLASS_TYPE_P (non_reference (from_type1
))
5471 && same_type_p (from_type1
, from_type2
))
5473 tree from
= non_reference (from_type1
);
5477 --binding of an expression of type C to a reference of type
5478 B& is better than binding an expression of type C to a
5479 reference of type A&
5481 --conversion of C to B is better than conversion of C to A, */
5482 if (is_properly_derived_from (from
, to_type1
)
5483 && is_properly_derived_from (from
, to_type2
))
5485 if (is_properly_derived_from (to_type1
, to_type2
))
5487 else if (is_properly_derived_from (to_type2
, to_type1
))
5491 else if (CLASS_TYPE_P (non_reference (to_type1
))
5492 && same_type_p (to_type1
, to_type2
))
5494 tree to
= non_reference (to_type1
);
5498 --binding of an expression of type B to a reference of type
5499 A& is better than binding an expression of type C to a
5500 reference of type A&,
5502 --onversion of B to A is better than conversion of C to A */
5503 if (is_properly_derived_from (from_type1
, to
)
5504 && is_properly_derived_from (from_type2
, to
))
5506 if (is_properly_derived_from (from_type2
, from_type1
))
5508 else if (is_properly_derived_from (from_type1
, from_type2
))
5515 --S1 and S2 differ only in their qualification conversion and yield
5516 similar types T1 and T2 (_conv.qual_), respectively, and the cv-
5517 qualification signature of type T1 is a proper subset of the cv-
5518 qualification signature of type T2 */
5519 if (TREE_CODE (ics1
) == QUAL_CONV
5520 && TREE_CODE (ics2
) == QUAL_CONV
5521 && same_type_p (from_type1
, from_type2
))
5522 return comp_cv_qual_signature (to_type1
, to_type2
);
5526 --S1 and S2 are reference bindings (_dcl.init.ref_), and the
5527 types to which the references refer are the same type except for
5528 top-level cv-qualifiers, and the type to which the reference
5529 initialized by S2 refers is more cv-qualified than the type to
5530 which the reference initialized by S1 refers */
5532 if (target_type1
&& target_type2
5533 && same_type_ignoring_top_level_qualifiers_p (to_type1
, to_type2
))
5534 return comp_cv_qualification (target_type2
, target_type1
);
5536 /* Neither conversion sequence is better than the other. */
5540 /* The source type for this standard conversion sequence. */
5543 source_type (tree t
)
5545 for (;; t
= TREE_OPERAND (t
, 0))
5547 if (TREE_CODE (t
) == USER_CONV
5548 || TREE_CODE (t
) == AMBIG_CONV
5549 || TREE_CODE (t
) == IDENTITY_CONV
)
5550 return TREE_TYPE (t
);
5555 /* Note a warning about preferring WINNER to LOSER. We do this by storing
5556 a pointer to LOSER and re-running joust to produce the warning if WINNER
5557 is actually used. */
5560 add_warning (struct z_candidate
*winner
, struct z_candidate
*loser
)
5562 winner
->warnings
= tree_cons (NULL_TREE
,
5563 build_zc_wrapper (loser
),
5567 /* Compare two candidates for overloading as described in
5568 [over.match.best]. Return values:
5570 1: cand1 is better than cand2
5571 -1: cand2 is better than cand1
5572 0: cand1 and cand2 are indistinguishable */
5575 joust (struct z_candidate
*cand1
, struct z_candidate
*cand2
, bool warn
)
5578 int i
, off1
= 0, off2
= 0, len
;
5580 /* Candidates that involve bad conversions are always worse than those
5582 if (cand1
->viable
> cand2
->viable
)
5584 if (cand1
->viable
< cand2
->viable
)
5587 /* If we have two pseudo-candidates for conversions to the same type,
5588 or two candidates for the same function, arbitrarily pick one. */
5589 if (cand1
->fn
== cand2
->fn
5590 && (TYPE_P (cand1
->fn
) || DECL_P (cand1
->fn
)))
5593 /* a viable function F1
5594 is defined to be a better function than another viable function F2 if
5595 for all arguments i, ICSi(F1) is not a worse conversion sequence than
5596 ICSi(F2), and then */
5598 /* for some argument j, ICSj(F1) is a better conversion sequence than
5601 /* For comparing static and non-static member functions, we ignore
5602 the implicit object parameter of the non-static function. The
5603 standard says to pretend that the static function has an object
5604 parm, but that won't work with operator overloading. */
5605 len
= TREE_VEC_LENGTH (cand1
->convs
);
5606 if (len
!= TREE_VEC_LENGTH (cand2
->convs
))
5608 if (DECL_STATIC_FUNCTION_P (cand1
->fn
)
5609 && ! DECL_STATIC_FUNCTION_P (cand2
->fn
))
5611 else if (! DECL_STATIC_FUNCTION_P (cand1
->fn
)
5612 && DECL_STATIC_FUNCTION_P (cand2
->fn
))
5621 for (i
= 0; i
< len
; ++i
)
5623 tree t1
= TREE_VEC_ELT (cand1
->convs
, i
+off1
);
5624 tree t2
= TREE_VEC_ELT (cand2
->convs
, i
+off2
);
5625 int comp
= compare_ics (t1
, t2
);
5630 && ICS_RANK (t1
) + ICS_RANK (t2
) == STD_RANK
+ PROMO_RANK
5631 && TREE_CODE (t1
) == STD_CONV
5632 && TREE_CODE (t2
) == STD_CONV
5633 && TREE_CODE (TREE_TYPE (t1
)) == INTEGER_TYPE
5634 && TREE_CODE (TREE_TYPE (t2
)) == INTEGER_TYPE
5635 && (TYPE_PRECISION (TREE_TYPE (t1
))
5636 == TYPE_PRECISION (TREE_TYPE (t2
)))
5637 && (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (t1
, 0)))
5638 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (t1
, 0)))
5641 tree type
= TREE_TYPE (TREE_OPERAND (t1
, 0));
5643 struct z_candidate
*w
, *l
;
5645 type1
= TREE_TYPE (t1
), type2
= TREE_TYPE (t2
),
5646 w
= cand1
, l
= cand2
;
5648 type1
= TREE_TYPE (t2
), type2
= TREE_TYPE (t1
),
5649 w
= cand2
, l
= cand1
;
5653 warning ("passing `%T' chooses `%T' over `%T'",
5654 type
, type1
, type2
);
5655 warning (" in call to `%D'", w
->fn
);
5661 if (winner
&& comp
!= winner
)
5670 /* warn about confusing overload resolution for user-defined conversions,
5671 either between a constructor and a conversion op, or between two
5673 if (winner
&& warn_conversion
&& cand1
->second_conv
5674 && (!DECL_CONSTRUCTOR_P (cand1
->fn
) || !DECL_CONSTRUCTOR_P (cand2
->fn
))
5675 && winner
!= compare_ics (cand1
->second_conv
, cand2
->second_conv
))
5677 struct z_candidate
*w
, *l
;
5678 bool give_warning
= false;
5681 w
= cand1
, l
= cand2
;
5683 w
= cand2
, l
= cand1
;
5685 /* We don't want to complain about `X::operator T1 ()'
5686 beating `X::operator T2 () const', when T2 is a no less
5687 cv-qualified version of T1. */
5688 if (DECL_CONTEXT (w
->fn
) == DECL_CONTEXT (l
->fn
)
5689 && !DECL_CONSTRUCTOR_P (w
->fn
) && !DECL_CONSTRUCTOR_P (l
->fn
))
5691 tree t
= TREE_TYPE (TREE_TYPE (l
->fn
));
5692 tree f
= TREE_TYPE (TREE_TYPE (w
->fn
));
5694 if (TREE_CODE (t
) == TREE_CODE (f
) && POINTER_TYPE_P (t
))
5699 if (!comp_ptr_ttypes (t
, f
))
5700 give_warning
= true;
5703 give_warning
= true;
5709 tree source
= source_type (TREE_VEC_ELT (w
->convs
, 0));
5710 if (! DECL_CONSTRUCTOR_P (w
->fn
))
5711 source
= TREE_TYPE (source
);
5712 warning ("choosing `%D' over `%D'", w
->fn
, l
->fn
);
5713 warning (" for conversion from `%T' to `%T'",
5714 source
, TREE_TYPE (w
->second_conv
));
5715 warning (" because conversion sequence for the argument is better");
5725 F1 is a non-template function and F2 is a template function
5728 if (! cand1
->template && cand2
->template)
5730 else if (cand1
->template && ! cand2
->template)
5734 F1 and F2 are template functions and the function template for F1 is
5735 more specialized than the template for F2 according to the partial
5738 if (cand1
->template && cand2
->template)
5740 winner
= more_specialized
5741 (TI_TEMPLATE (cand1
->template), TI_TEMPLATE (cand2
->template),
5743 /* Tell the deduction code how many real function arguments
5744 we saw, not counting the implicit 'this' argument. But,
5745 add_function_candidate() suppresses the "this" argument
5748 [temp.func.order]: The presence of unused ellipsis and default
5749 arguments has no effect on the partial ordering of function
5751 TREE_VEC_LENGTH (cand1
->convs
)
5752 - (DECL_NONSTATIC_MEMBER_FUNCTION_P (cand1
->fn
)
5753 - DECL_CONSTRUCTOR_P (cand1
->fn
)));
5759 the context is an initialization by user-defined conversion (see
5760 _dcl.init_ and _over.match.user_) and the standard conversion
5761 sequence from the return type of F1 to the destination type (i.e.,
5762 the type of the entity being initialized) is a better conversion
5763 sequence than the standard conversion sequence from the return type
5764 of F2 to the destination type. */
5766 if (cand1
->second_conv
)
5768 winner
= compare_ics (cand1
->second_conv
, cand2
->second_conv
);
5773 /* Check whether we can discard a builtin candidate, either because we
5774 have two identical ones or matching builtin and non-builtin candidates.
5776 (Pedantically in the latter case the builtin which matched the user
5777 function should not be added to the overload set, but we spot it here.
5780 ... the builtin candidates include ...
5781 - do not have the same parameter type list as any non-template
5782 non-member candidate. */
5784 if (TREE_CODE (cand1
->fn
) == IDENTIFIER_NODE
5785 || TREE_CODE (cand2
->fn
) == IDENTIFIER_NODE
)
5787 for (i
= 0; i
< len
; ++i
)
5788 if (!same_type_p (TREE_TYPE (TREE_VEC_ELT (cand1
->convs
, i
)),
5789 TREE_TYPE (TREE_VEC_ELT (cand2
->convs
, i
))))
5791 if (i
== TREE_VEC_LENGTH (cand1
->convs
))
5793 if (cand1
->fn
== cand2
->fn
)
5794 /* Two built-in candidates; arbitrarily pick one. */
5796 else if (TREE_CODE (cand1
->fn
) == IDENTIFIER_NODE
)
5797 /* cand1 is built-in; prefer cand2. */
5800 /* cand2 is built-in; prefer cand1. */
5805 /* If the two functions are the same (this can happen with declarations
5806 in multiple scopes and arg-dependent lookup), arbitrarily choose one. */
5807 if (DECL_P (cand1
->fn
) && DECL_P (cand2
->fn
)
5808 && equal_functions (cand1
->fn
, cand2
->fn
))
5813 /* Extension: If the worst conversion for one candidate is worse than the
5814 worst conversion for the other, take the first. */
5817 int rank1
= IDENTITY_RANK
, rank2
= IDENTITY_RANK
;
5818 struct z_candidate
*w
= 0, *l
= 0;
5820 for (i
= 0; i
< len
; ++i
)
5822 if (ICS_RANK (TREE_VEC_ELT (cand1
->convs
, i
+off1
)) > rank1
)
5823 rank1
= ICS_RANK (TREE_VEC_ELT (cand1
->convs
, i
+off1
));
5824 if (ICS_RANK (TREE_VEC_ELT (cand2
->convs
, i
+off2
)) > rank2
)
5825 rank2
= ICS_RANK (TREE_VEC_ELT (cand2
->convs
, i
+off2
));
5828 winner
= 1, w
= cand1
, l
= cand2
;
5830 winner
= -1, w
= cand2
, l
= cand1
;
5836 ISO C++ says that these are ambiguous, even \
5837 though the worst conversion for the first is better than \
5838 the worst conversion for the second:");
5839 print_z_candidate (_("candidate 1:"), w
);
5840 print_z_candidate (_("candidate 2:"), l
);
5848 my_friendly_assert (!winner
, 20010121);
5852 /* Given a list of candidates for overloading, find the best one, if any.
5853 This algorithm has a worst case of O(2n) (winner is last), and a best
5854 case of O(n/2) (totally ambiguous); much better than a sorting
5857 static struct z_candidate
*
5858 tourney (struct z_candidate
*candidates
)
5860 struct z_candidate
*champ
= candidates
, *challenger
;
5862 int champ_compared_to_predecessor
= 0;
5864 /* Walk through the list once, comparing each current champ to the next
5865 candidate, knocking out a candidate or two with each comparison. */
5867 for (challenger
= champ
->next
; challenger
; )
5869 fate
= joust (champ
, challenger
, 0);
5871 challenger
= challenger
->next
;
5876 champ
= challenger
->next
;
5879 champ_compared_to_predecessor
= 0;
5884 champ_compared_to_predecessor
= 1;
5887 challenger
= champ
->next
;
5891 /* Make sure the champ is better than all the candidates it hasn't yet
5892 been compared to. */
5894 for (challenger
= candidates
;
5896 && !(champ_compared_to_predecessor
&& challenger
->next
== champ
);
5897 challenger
= challenger
->next
)
5899 fate
= joust (champ
, challenger
, 0);
5907 /* Returns nonzero if things of type FROM can be converted to TO. */
5910 can_convert (tree to
, tree from
)
5912 return can_convert_arg (to
, from
, NULL_TREE
);
5915 /* Returns nonzero if ARG (of type FROM) can be converted to TO. */
5918 can_convert_arg (tree to
, tree from
, tree arg
)
5920 tree t
= implicit_conversion (to
, from
, arg
, LOOKUP_NORMAL
);
5921 return (t
&& ! ICS_BAD_FLAG (t
));
5924 /* Like can_convert_arg, but allows dubious conversions as well. */
5927 can_convert_arg_bad (tree to
, tree from
, tree arg
)
5929 return implicit_conversion (to
, from
, arg
, LOOKUP_NORMAL
) != 0;
5932 /* Convert EXPR to TYPE. Return the converted expression.
5934 Note that we allow bad conversions here because by the time we get to
5935 this point we are committed to doing the conversion. If we end up
5936 doing a bad conversion, convert_like will complain. */
5939 perform_implicit_conversion (tree type
, tree expr
)
5943 if (error_operand_p (expr
))
5944 return error_mark_node
;
5945 conv
= implicit_conversion (type
, TREE_TYPE (expr
), expr
,
5949 error ("could not convert `%E' to `%T'", expr
, type
);
5950 return error_mark_node
;
5953 return convert_like (conv
, expr
);
5956 /* Convert EXPR to TYPE (as a direct-initialization) if that is
5957 permitted. If the conversion is valid, the converted expression is
5958 returned. Otherwise, NULL_TREE is returned, except in the case
5959 that TYPE is a class type; in that case, an error is issued. */
5962 perform_direct_initialization_if_possible (tree type
, tree expr
)
5966 if (type
== error_mark_node
|| error_operand_p (expr
))
5967 return error_mark_node
;
5970 If the destination type is a (possibly cv-qualified) class type:
5972 -- If the initialization is direct-initialization ...,
5973 constructors are considered. ... If no constructor applies, or
5974 the overload resolution is ambiguous, the initialization is
5976 if (CLASS_TYPE_P (type
))
5978 expr
= build_special_member_call (NULL_TREE
, complete_ctor_identifier
,
5979 build_tree_list (NULL_TREE
, expr
),
5982 return build_cplus_new (type
, expr
);
5984 conv
= implicit_conversion (type
, TREE_TYPE (expr
), expr
,
5986 if (!conv
|| ICS_BAD_FLAG (conv
))
5988 return convert_like_real (conv
, expr
, NULL_TREE
, 0, 0,
5989 /*issue_conversion_warnings=*/false);
5992 /* DECL is a VAR_DECL whose type is a REFERENCE_TYPE. The reference
5993 is being bound to a temporary. Create and return a new VAR_DECL
5994 with the indicated TYPE; this variable will store the value to
5995 which the reference is bound. */
5998 make_temporary_var_for_ref_to_temp (tree decl
, tree type
)
6002 /* Create the variable. */
6003 var
= build_decl (VAR_DECL
, NULL_TREE
, type
);
6004 DECL_ARTIFICIAL (var
) = 1;
6005 TREE_USED (var
) = 1;
6007 /* Register the variable. */
6008 if (TREE_STATIC (decl
))
6010 /* Namespace-scope or local static; give it a mangled name. */
6013 TREE_STATIC (var
) = 1;
6014 name
= mangle_ref_init_variable (decl
);
6015 DECL_NAME (var
) = name
;
6016 SET_DECL_ASSEMBLER_NAME (var
, name
);
6017 var
= pushdecl_top_level (var
);
6021 /* Create a new cleanup level if necessary. */
6022 maybe_push_cleanup_level (type
);
6023 /* Don't push unnamed temps. Do set DECL_CONTEXT, though. */
6024 DECL_CONTEXT (var
) = current_function_decl
;
6030 /* Convert EXPR to the indicated reference TYPE, in a way suitable for
6031 initializing a variable of that TYPE. If DECL is non-NULL, it is
6032 the VAR_DECL being initialized with the EXPR. (In that case, the
6033 type of DECL will be TYPE.) If DECL is non-NULL, then CLEANUP must
6034 also be non-NULL, and with *CLEANUP initialized to NULL. Upon
6035 return, if *CLEANUP is no longer NULL, it will be a CLEANUP_STMT
6036 that should be inserted after the returned expression is used to
6039 Return the converted expression. */
6042 initialize_reference (tree type
, tree expr
, tree decl
, tree
*cleanup
)
6046 if (type
== error_mark_node
|| error_operand_p (expr
))
6047 return error_mark_node
;
6049 conv
= reference_binding (type
, TREE_TYPE (expr
), expr
, LOOKUP_NORMAL
);
6050 if (!conv
|| ICS_BAD_FLAG (conv
))
6052 if (!(TYPE_QUALS (TREE_TYPE (type
)) & TYPE_QUAL_CONST
)
6053 && !real_lvalue_p (expr
))
6054 error ("invalid initialization of non-const reference of "
6055 "type '%T' from a temporary of type '%T'",
6056 type
, TREE_TYPE (expr
));
6058 error ("could not convert `%E' to `%T'", expr
, type
);
6059 return error_mark_node
;
6062 /* If DECL is non-NULL, then this special rule applies:
6066 The temporary to which the reference is bound or the temporary
6067 that is the complete object to which the reference is bound
6068 persists for the lifetime of the reference.
6070 The temporaries created during the evaluation of the expression
6071 initializing the reference, except the temporary to which the
6072 reference is bound, are destroyed at the end of the
6073 full-expression in which they are created.
6075 In that case, we store the converted expression into a new
6076 VAR_DECL in a new scope.
6078 However, we want to be careful not to create temporaries when
6079 they are not required. For example, given:
6082 struct D : public B {};
6086 there is no need to copy the return value from "f"; we can just
6087 extend its lifetime. Similarly, given:
6090 struct T { operator S(); };
6094 we can extend the lifetime of the return value of the conversion
6096 my_friendly_assert (TREE_CODE (conv
) == REF_BIND
, 20030302);
6100 tree base_conv_type
;
6102 /* Skip over the REF_BIND. */
6103 conv
= TREE_OPERAND (conv
, 0);
6104 /* If the next conversion is a BASE_CONV, skip that too -- but
6105 remember that the conversion was required. */
6106 if (TREE_CODE (conv
) == BASE_CONV
&& !NEED_TEMPORARY_P (conv
))
6108 base_conv_type
= TREE_TYPE (conv
);
6109 conv
= TREE_OPERAND (conv
, 0);
6112 base_conv_type
= NULL_TREE
;
6113 /* Perform the remainder of the conversion. */
6114 expr
= convert_like (conv
, expr
);
6115 if (!real_lvalue_p (expr
))
6120 /* Create the temporary variable. */
6121 type
= TREE_TYPE (expr
);
6122 var
= make_temporary_var_for_ref_to_temp (decl
, type
);
6123 layout_decl (var
, 0);
6124 /* Create the INIT_EXPR that will initialize the temporary
6126 init
= build (INIT_EXPR
, type
, var
, expr
);
6127 if (at_function_scope_p ())
6129 add_decl_stmt (var
);
6130 *cleanup
= cxx_maybe_build_cleanup (var
);
6132 /* We must be careful to destroy the temporary only
6133 after its initialization has taken place. If the
6134 initialization throws an exception, then the
6135 destructor should not be run. We cannot simply
6136 transform INIT into something like:
6138 (INIT, ({ CLEANUP_STMT; }))
6140 because emit_local_var always treats the
6141 initializer as a full-expression. Thus, the
6142 destructor would run too early; it would run at the
6143 end of initializing the reference variable, rather
6144 than at the end of the block enclosing the
6147 The solution is to pass back a CLEANUP_STMT which
6148 the caller is responsible for attaching to the
6150 *cleanup
= build_stmt (CLEANUP_STMT
, var
, *cleanup
);
6154 rest_of_decl_compilation (var
, NULL
, /*toplev=*/1, at_eof
);
6155 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
6156 static_aggregates
= tree_cons (NULL_TREE
, var
,
6159 /* Use its address to initialize the reference variable. */
6160 expr
= build_address (var
);
6161 expr
= build (COMPOUND_EXPR
, TREE_TYPE (expr
), init
, expr
);
6164 /* Take the address of EXPR. */
6165 expr
= build_unary_op (ADDR_EXPR
, expr
, 0);
6166 /* If a BASE_CONV was required, perform it now. */
6168 expr
= (perform_implicit_conversion
6169 (build_pointer_type (base_conv_type
), expr
));
6170 return build_nop (type
, expr
);
6173 /* Perform the conversion. */
6174 return convert_like (conv
, expr
);
6177 #include "gt-cp-call.h"