objc-act.c (synth_module_prologue): Use TREE_NO_WARNING instead of DECL_IN_SYSTEM_HEADER.
[official-gcc.git] / gcc / expr.c
blobe7c24e2b838671e48962baa755eff9a0d6cd7551
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55 #include "df.h"
56 #include "diagnostic.h"
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
64 #ifdef PUSH_ROUNDING
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
72 #endif
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
111 struct store_by_pieces
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
162 /* Record for each mode whether we can move a register directly to or
163 from an object of that mode in memory. If we can't, we won't try
164 to use that mode directly when accessing a field of that mode. */
166 static char direct_load[NUM_MACHINE_MODES];
167 static char direct_store[NUM_MACHINE_MODES];
169 /* Record for each mode whether we can float-extend from memory. */
171 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
173 /* This macro is used to determine whether move_by_pieces should be called
174 to perform a structure copy. */
175 #ifndef MOVE_BY_PIECES_P
176 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
177 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
178 < (unsigned int) MOVE_RATIO)
179 #endif
181 /* This macro is used to determine whether clear_by_pieces should be
182 called to clear storage. */
183 #ifndef CLEAR_BY_PIECES_P
184 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
185 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
186 < (unsigned int) CLEAR_RATIO)
187 #endif
189 /* This macro is used to determine whether store_by_pieces should be
190 called to "memset" storage with byte values other than zero. */
191 #ifndef SET_BY_PIECES_P
192 #define SET_BY_PIECES_P(SIZE, ALIGN) \
193 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
194 < (unsigned int) SET_RATIO)
195 #endif
197 /* This macro is used to determine whether store_by_pieces should be
198 called to "memcpy" storage when the source is a constant string. */
199 #ifndef STORE_BY_PIECES_P
200 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
201 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
202 < (unsigned int) MOVE_RATIO)
203 #endif
205 /* This array records the insn_code of insns to perform block moves. */
206 enum insn_code movmem_optab[NUM_MACHINE_MODES];
208 /* This array records the insn_code of insns to perform block sets. */
209 enum insn_code setmem_optab[NUM_MACHINE_MODES];
211 /* These arrays record the insn_code of three different kinds of insns
212 to perform block compares. */
213 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
214 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
215 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
217 /* Synchronization primitives. */
218 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
236 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
237 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
238 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
239 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
245 #endif
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
251 void
252 init_expr_target (void)
254 rtx insn, pat;
255 enum machine_mode mode;
256 int num_clobbers;
257 rtx mem, mem1;
258 rtx reg;
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
264 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg = gen_rtx_REG (VOIDmode, -1);
270 insn = rtx_alloc (INSN);
271 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
272 PATTERN (insn) = pat;
274 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
275 mode = (enum machine_mode) ((int) mode + 1))
277 int regno;
279 direct_load[(int) mode] = direct_store[(int) mode] = 0;
280 PUT_MODE (mem, mode);
281 PUT_MODE (mem1, mode);
282 PUT_MODE (reg, mode);
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
287 if (mode != VOIDmode && mode != BLKmode)
288 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
289 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
290 regno++)
292 if (! HARD_REGNO_MODE_OK (regno, mode))
293 continue;
295 SET_REGNO (reg, regno);
297 SET_SRC (pat) = mem;
298 SET_DEST (pat) = reg;
299 if (recog (pat, insn, &num_clobbers) >= 0)
300 direct_load[(int) mode] = 1;
302 SET_SRC (pat) = mem1;
303 SET_DEST (pat) = reg;
304 if (recog (pat, insn, &num_clobbers) >= 0)
305 direct_load[(int) mode] = 1;
307 SET_SRC (pat) = reg;
308 SET_DEST (pat) = mem;
309 if (recog (pat, insn, &num_clobbers) >= 0)
310 direct_store[(int) mode] = 1;
312 SET_SRC (pat) = reg;
313 SET_DEST (pat) = mem1;
314 if (recog (pat, insn, &num_clobbers) >= 0)
315 direct_store[(int) mode] = 1;
319 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
324 enum machine_mode srcmode;
325 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
326 srcmode = GET_MODE_WIDER_MODE (srcmode))
328 enum insn_code ic;
330 ic = can_extend_p (mode, srcmode, 0);
331 if (ic == CODE_FOR_nothing)
332 continue;
334 PUT_MODE (mem, srcmode);
336 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
337 float_extend_from_mem[mode][srcmode] = true;
342 /* This is run at the start of compiling a function. */
344 void
345 init_expr (void)
347 memset (&crtl->expr, 0, sizeof (crtl->expr));
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
352 fixed-point.
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
356 void
357 convert_move (rtx to, rtx from, int unsignedp)
359 enum machine_mode to_mode = GET_MODE (to);
360 enum machine_mode from_mode = GET_MODE (from);
361 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
362 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
363 enum insn_code code;
364 rtx libcall;
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
368 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
371 gcc_assert (to_real == from_real);
372 gcc_assert (to_mode != BLKmode);
373 gcc_assert (from_mode != BLKmode);
375 /* If the source and destination are already the same, then there's
376 nothing to do. */
377 if (to == from)
378 return;
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
382 TO here. */
384 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
386 >= GET_MODE_SIZE (to_mode))
387 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
388 from = gen_lowpart (to_mode, from), from_mode = to_mode;
390 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
392 if (to_mode == from_mode
393 || (from_mode == VOIDmode && CONSTANT_P (from)))
395 emit_move_insn (to, from);
396 return;
399 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
401 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
403 if (VECTOR_MODE_P (to_mode))
404 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
405 else
406 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
408 emit_move_insn (to, from);
409 return;
412 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
414 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
415 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
416 return;
419 if (to_real)
421 rtx value, insns;
422 convert_optab tab;
424 gcc_assert ((GET_MODE_PRECISION (from_mode)
425 != GET_MODE_PRECISION (to_mode))
426 || (DECIMAL_FLOAT_MODE_P (from_mode)
427 != DECIMAL_FLOAT_MODE_P (to_mode)));
429 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
430 /* Conversion between decimal float and binary float, same size. */
431 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
432 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
433 tab = sext_optab;
434 else
435 tab = trunc_optab;
437 /* Try converting directly if the insn is supported. */
439 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
440 if (code != CODE_FOR_nothing)
442 emit_unop_insn (code, to, from,
443 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
444 return;
447 /* Otherwise use a libcall. */
448 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall);
453 start_sequence ();
454 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
455 1, from, from_mode);
456 insns = get_insns ();
457 end_sequence ();
458 emit_libcall_block (insns, to, value,
459 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
460 from)
461 : gen_rtx_FLOAT_EXTEND (to_mode, from));
462 return;
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
473 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
474 != CODE_FOR_nothing);
476 if (full_mode != from_mode)
477 from = convert_to_mode (full_mode, from, unsignedp);
478 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
479 to, from, UNKNOWN);
480 return;
482 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
484 rtx new_from;
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
488 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
489 != CODE_FOR_nothing);
491 if (to_mode == full_mode)
493 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
494 to, from, UNKNOWN);
495 return;
498 new_from = gen_reg_rtx (full_mode);
499 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
500 new_from, from, UNKNOWN);
502 /* else proceed to integer conversions below. */
503 from_mode = full_mode;
504 from = new_from;
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
516 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
517 expand_fixed_convert (to, from, 0, 0);
518 else
519 expand_fixed_convert (to, from, 0, 1);
520 return;
523 /* Now both modes are integers. */
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
527 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
529 rtx insns;
530 rtx lowpart;
531 rtx fill_value;
532 rtx lowfrom;
533 int i;
534 enum machine_mode lowpart_mode;
535 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
537 /* Try converting directly if the insn is supported. */
538 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
539 != CODE_FOR_nothing)
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize > 0 && GET_CODE (from) == SUBREG)
546 from = force_reg (from_mode, from);
547 emit_unop_insn (code, to, from, equiv_code);
548 return;
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
552 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
553 != CODE_FOR_nothing))
555 rtx word_to = gen_reg_rtx (word_mode);
556 if (REG_P (to))
558 if (reg_overlap_mentioned_p (to, from))
559 from = force_reg (from_mode, from);
560 emit_clobber (to);
562 convert_move (word_to, from, unsignedp);
563 emit_unop_insn (code, to, word_to, equiv_code);
564 return;
567 /* No special multiword conversion insn; do it by hand. */
568 start_sequence ();
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
573 if (reg_overlap_mentioned_p (to, from))
574 from = force_reg (from_mode, from);
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
578 lowpart_mode = word_mode;
579 else
580 lowpart_mode = from_mode;
582 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
584 lowpart = gen_lowpart (lowpart_mode, to);
585 emit_move_insn (lowpart, lowfrom);
587 /* Compute the value to put in each remaining word. */
588 if (unsignedp)
589 fill_value = const0_rtx;
590 else
592 #ifdef HAVE_slt
593 if (HAVE_slt
594 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
595 && STORE_FLAG_VALUE == -1)
597 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
598 lowpart_mode, 0);
599 fill_value = gen_reg_rtx (word_mode);
600 emit_insn (gen_slt (fill_value));
602 else
603 #endif
605 fill_value
606 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
607 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
608 NULL_RTX, 0);
609 fill_value = convert_to_mode (word_mode, fill_value, 1);
613 /* Fill the remaining words. */
614 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
616 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
617 rtx subword = operand_subword (to, index, 1, to_mode);
619 gcc_assert (subword);
621 if (fill_value != subword)
622 emit_move_insn (subword, fill_value);
625 insns = get_insns ();
626 end_sequence ();
628 emit_insn (insns);
629 return;
632 /* Truncating multi-word to a word or less. */
633 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
634 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
636 if (!((MEM_P (from)
637 && ! MEM_VOLATILE_P (from)
638 && direct_load[(int) to_mode]
639 && ! mode_dependent_address_p (XEXP (from, 0)))
640 || REG_P (from)
641 || GET_CODE (from) == SUBREG))
642 from = force_reg (from_mode, from);
643 convert_move (to, gen_lowpart (word_mode, from), 0);
644 return;
647 /* Now follow all the conversions between integers
648 no more than a word long. */
650 /* For truncation, usually we can just refer to FROM in a narrower mode. */
651 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
652 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
653 GET_MODE_BITSIZE (from_mode)))
655 if (!((MEM_P (from)
656 && ! MEM_VOLATILE_P (from)
657 && direct_load[(int) to_mode]
658 && ! mode_dependent_address_p (XEXP (from, 0)))
659 || REG_P (from)
660 || GET_CODE (from) == SUBREG))
661 from = force_reg (from_mode, from);
662 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
663 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
664 from = copy_to_reg (from);
665 emit_move_insn (to, gen_lowpart (to_mode, from));
666 return;
669 /* Handle extension. */
670 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
672 /* Convert directly if that works. */
673 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
674 != CODE_FOR_nothing)
676 emit_unop_insn (code, to, from, equiv_code);
677 return;
679 else
681 enum machine_mode intermediate;
682 rtx tmp;
683 tree shift_amount;
685 /* Search for a mode to convert via. */
686 for (intermediate = from_mode; intermediate != VOIDmode;
687 intermediate = GET_MODE_WIDER_MODE (intermediate))
688 if (((can_extend_p (to_mode, intermediate, unsignedp)
689 != CODE_FOR_nothing)
690 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
691 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
692 GET_MODE_BITSIZE (intermediate))))
693 && (can_extend_p (intermediate, from_mode, unsignedp)
694 != CODE_FOR_nothing))
696 convert_move (to, convert_to_mode (intermediate, from,
697 unsignedp), unsignedp);
698 return;
701 /* No suitable intermediate mode.
702 Generate what we need with shifts. */
703 shift_amount = build_int_cst (NULL_TREE,
704 GET_MODE_BITSIZE (to_mode)
705 - GET_MODE_BITSIZE (from_mode));
706 from = gen_lowpart (to_mode, force_reg (from_mode, from));
707 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
708 to, unsignedp);
709 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
710 to, unsignedp);
711 if (tmp != to)
712 emit_move_insn (to, tmp);
713 return;
717 /* Support special truncate insns for certain modes. */
718 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
720 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
721 to, from, UNKNOWN);
722 return;
725 /* Handle truncation of volatile memrefs, and so on;
726 the things that couldn't be truncated directly,
727 and for which there was no special instruction.
729 ??? Code above formerly short-circuited this, for most integer
730 mode pairs, with a force_reg in from_mode followed by a recursive
731 call to this routine. Appears always to have been wrong. */
732 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
734 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
735 emit_move_insn (to, temp);
736 return;
739 /* Mode combination is not recognized. */
740 gcc_unreachable ();
743 /* Return an rtx for a value that would result
744 from converting X to mode MODE.
745 Both X and MODE may be floating, or both integer.
746 UNSIGNEDP is nonzero if X is an unsigned value.
747 This can be done by referring to a part of X in place
748 or by copying to a new temporary with conversion. */
751 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
753 return convert_modes (mode, VOIDmode, x, unsignedp);
756 /* Return an rtx for a value that would result
757 from converting X from mode OLDMODE to mode MODE.
758 Both modes may be floating, or both integer.
759 UNSIGNEDP is nonzero if X is an unsigned value.
761 This can be done by referring to a part of X in place
762 or by copying to a new temporary with conversion.
764 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
767 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
769 rtx temp;
771 /* If FROM is a SUBREG that indicates that we have already done at least
772 the required extension, strip it. */
774 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
775 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
776 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
777 x = gen_lowpart (mode, x);
779 if (GET_MODE (x) != VOIDmode)
780 oldmode = GET_MODE (x);
782 if (mode == oldmode)
783 return x;
785 /* There is one case that we must handle specially: If we are converting
786 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
787 we are to interpret the constant as unsigned, gen_lowpart will do
788 the wrong if the constant appears negative. What we want to do is
789 make the high-order word of the constant zero, not all ones. */
791 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
793 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
795 HOST_WIDE_INT val = INTVAL (x);
797 if (oldmode != VOIDmode
798 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
800 int width = GET_MODE_BITSIZE (oldmode);
802 /* We need to zero extend VAL. */
803 val &= ((HOST_WIDE_INT) 1 << width) - 1;
806 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
809 /* We can do this with a gen_lowpart if both desired and current modes
810 are integer, and this is either a constant integer, a register, or a
811 non-volatile MEM. Except for the constant case where MODE is no
812 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
814 if ((GET_CODE (x) == CONST_INT
815 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
816 || (GET_MODE_CLASS (mode) == MODE_INT
817 && GET_MODE_CLASS (oldmode) == MODE_INT
818 && (GET_CODE (x) == CONST_DOUBLE
819 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
820 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
821 && direct_load[(int) mode])
822 || (REG_P (x)
823 && (! HARD_REGISTER_P (x)
824 || HARD_REGNO_MODE_OK (REGNO (x), mode))
825 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
826 GET_MODE_BITSIZE (GET_MODE (x)))))))))
828 /* ?? If we don't know OLDMODE, we have to assume here that
829 X does not need sign- or zero-extension. This may not be
830 the case, but it's the best we can do. */
831 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
832 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
834 HOST_WIDE_INT val = INTVAL (x);
835 int width = GET_MODE_BITSIZE (oldmode);
837 /* We must sign or zero-extend in this case. Start by
838 zero-extending, then sign extend if we need to. */
839 val &= ((HOST_WIDE_INT) 1 << width) - 1;
840 if (! unsignedp
841 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
842 val |= (HOST_WIDE_INT) (-1) << width;
844 return gen_int_mode (val, mode);
847 return gen_lowpart (mode, x);
850 /* Converting from integer constant into mode is always equivalent to an
851 subreg operation. */
852 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
854 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
855 return simplify_gen_subreg (mode, x, oldmode, 0);
858 temp = gen_reg_rtx (mode);
859 convert_move (temp, x, unsignedp);
860 return temp;
863 /* STORE_MAX_PIECES is the number of bytes at a time that we can
864 store efficiently. Due to internal GCC limitations, this is
865 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
866 for an immediate constant. */
868 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
870 /* Determine whether the LEN bytes can be moved by using several move
871 instructions. Return nonzero if a call to move_by_pieces should
872 succeed. */
875 can_move_by_pieces (unsigned HOST_WIDE_INT len,
876 unsigned int align ATTRIBUTE_UNUSED)
878 return MOVE_BY_PIECES_P (len, align);
881 /* Generate several move instructions to copy LEN bytes from block FROM to
882 block TO. (These are MEM rtx's with BLKmode).
884 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
885 used to push FROM to the stack.
887 ALIGN is maximum stack alignment we can assume.
889 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
890 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
891 stpcpy. */
894 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
895 unsigned int align, int endp)
897 struct move_by_pieces data;
898 rtx to_addr, from_addr = XEXP (from, 0);
899 unsigned int max_size = MOVE_MAX_PIECES + 1;
900 enum machine_mode mode = VOIDmode, tmode;
901 enum insn_code icode;
903 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
905 data.offset = 0;
906 data.from_addr = from_addr;
907 if (to)
909 to_addr = XEXP (to, 0);
910 data.to = to;
911 data.autinc_to
912 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
913 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
914 data.reverse
915 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
917 else
919 to_addr = NULL_RTX;
920 data.to = NULL_RTX;
921 data.autinc_to = 1;
922 #ifdef STACK_GROWS_DOWNWARD
923 data.reverse = 1;
924 #else
925 data.reverse = 0;
926 #endif
928 data.to_addr = to_addr;
929 data.from = from;
930 data.autinc_from
931 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
932 || GET_CODE (from_addr) == POST_INC
933 || GET_CODE (from_addr) == POST_DEC);
935 data.explicit_inc_from = 0;
936 data.explicit_inc_to = 0;
937 if (data.reverse) data.offset = len;
938 data.len = len;
940 /* If copying requires more than two move insns,
941 copy addresses to registers (to make displacements shorter)
942 and use post-increment if available. */
943 if (!(data.autinc_from && data.autinc_to)
944 && move_by_pieces_ninsns (len, align, max_size) > 2)
946 /* Find the mode of the largest move... */
947 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
948 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
949 if (GET_MODE_SIZE (tmode) < max_size)
950 mode = tmode;
952 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
954 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
955 data.autinc_from = 1;
956 data.explicit_inc_from = -1;
958 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
960 data.from_addr = copy_addr_to_reg (from_addr);
961 data.autinc_from = 1;
962 data.explicit_inc_from = 1;
964 if (!data.autinc_from && CONSTANT_P (from_addr))
965 data.from_addr = copy_addr_to_reg (from_addr);
966 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
968 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
969 data.autinc_to = 1;
970 data.explicit_inc_to = -1;
972 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
974 data.to_addr = copy_addr_to_reg (to_addr);
975 data.autinc_to = 1;
976 data.explicit_inc_to = 1;
978 if (!data.autinc_to && CONSTANT_P (to_addr))
979 data.to_addr = copy_addr_to_reg (to_addr);
982 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
983 if (align >= GET_MODE_ALIGNMENT (tmode))
984 align = GET_MODE_ALIGNMENT (tmode);
985 else
987 enum machine_mode xmode;
989 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
990 tmode != VOIDmode;
991 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
992 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
993 || SLOW_UNALIGNED_ACCESS (tmode, align))
994 break;
996 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
999 /* First move what we can in the largest integer mode, then go to
1000 successively smaller modes. */
1002 while (max_size > 1)
1004 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1005 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1006 if (GET_MODE_SIZE (tmode) < max_size)
1007 mode = tmode;
1009 if (mode == VOIDmode)
1010 break;
1012 icode = optab_handler (mov_optab, mode)->insn_code;
1013 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1014 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1016 max_size = GET_MODE_SIZE (mode);
1019 /* The code above should have handled everything. */
1020 gcc_assert (!data.len);
1022 if (endp)
1024 rtx to1;
1026 gcc_assert (!data.reverse);
1027 if (data.autinc_to)
1029 if (endp == 2)
1031 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1032 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1033 else
1034 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1035 -1));
1037 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1038 data.offset);
1040 else
1042 if (endp == 2)
1043 --data.offset;
1044 to1 = adjust_address (data.to, QImode, data.offset);
1046 return to1;
1048 else
1049 return data.to;
1052 /* Return number of insns required to move L bytes by pieces.
1053 ALIGN (in bits) is maximum alignment we can assume. */
1055 static unsigned HOST_WIDE_INT
1056 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1057 unsigned int max_size)
1059 unsigned HOST_WIDE_INT n_insns = 0;
1060 enum machine_mode tmode;
1062 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1063 if (align >= GET_MODE_ALIGNMENT (tmode))
1064 align = GET_MODE_ALIGNMENT (tmode);
1065 else
1067 enum machine_mode tmode, xmode;
1069 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1070 tmode != VOIDmode;
1071 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1072 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1073 || SLOW_UNALIGNED_ACCESS (tmode, align))
1074 break;
1076 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1079 while (max_size > 1)
1081 enum machine_mode mode = VOIDmode;
1082 enum insn_code icode;
1084 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1085 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1086 if (GET_MODE_SIZE (tmode) < max_size)
1087 mode = tmode;
1089 if (mode == VOIDmode)
1090 break;
1092 icode = optab_handler (mov_optab, mode)->insn_code;
1093 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1094 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1096 max_size = GET_MODE_SIZE (mode);
1099 gcc_assert (!l);
1100 return n_insns;
1103 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1104 with move instructions for mode MODE. GENFUN is the gen_... function
1105 to make a move insn for that mode. DATA has all the other info. */
1107 static void
1108 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1109 struct move_by_pieces *data)
1111 unsigned int size = GET_MODE_SIZE (mode);
1112 rtx to1 = NULL_RTX, from1;
1114 while (data->len >= size)
1116 if (data->reverse)
1117 data->offset -= size;
1119 if (data->to)
1121 if (data->autinc_to)
1122 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1123 data->offset);
1124 else
1125 to1 = adjust_address (data->to, mode, data->offset);
1128 if (data->autinc_from)
1129 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1130 data->offset);
1131 else
1132 from1 = adjust_address (data->from, mode, data->offset);
1134 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1135 emit_insn (gen_add2_insn (data->to_addr,
1136 GEN_INT (-(HOST_WIDE_INT)size)));
1137 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1138 emit_insn (gen_add2_insn (data->from_addr,
1139 GEN_INT (-(HOST_WIDE_INT)size)));
1141 if (data->to)
1142 emit_insn ((*genfun) (to1, from1));
1143 else
1145 #ifdef PUSH_ROUNDING
1146 emit_single_push_insn (mode, from1, NULL);
1147 #else
1148 gcc_unreachable ();
1149 #endif
1152 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1153 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1154 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1155 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1157 if (! data->reverse)
1158 data->offset += size;
1160 data->len -= size;
1164 /* Emit code to move a block Y to a block X. This may be done with
1165 string-move instructions, with multiple scalar move instructions,
1166 or with a library call.
1168 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1169 SIZE is an rtx that says how long they are.
1170 ALIGN is the maximum alignment we can assume they have.
1171 METHOD describes what kind of copy this is, and what mechanisms may be used.
1173 Return the address of the new block, if memcpy is called and returns it,
1174 0 otherwise. */
1177 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1178 unsigned int expected_align, HOST_WIDE_INT expected_size)
1180 bool may_use_call;
1181 rtx retval = 0;
1182 unsigned int align;
1184 switch (method)
1186 case BLOCK_OP_NORMAL:
1187 case BLOCK_OP_TAILCALL:
1188 may_use_call = true;
1189 break;
1191 case BLOCK_OP_CALL_PARM:
1192 may_use_call = block_move_libcall_safe_for_call_parm ();
1194 /* Make inhibit_defer_pop nonzero around the library call
1195 to force it to pop the arguments right away. */
1196 NO_DEFER_POP;
1197 break;
1199 case BLOCK_OP_NO_LIBCALL:
1200 may_use_call = false;
1201 break;
1203 default:
1204 gcc_unreachable ();
1207 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1209 gcc_assert (MEM_P (x));
1210 gcc_assert (MEM_P (y));
1211 gcc_assert (size);
1213 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1214 block copy is more efficient for other large modes, e.g. DCmode. */
1215 x = adjust_address (x, BLKmode, 0);
1216 y = adjust_address (y, BLKmode, 0);
1218 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1219 can be incorrect is coming from __builtin_memcpy. */
1220 if (GET_CODE (size) == CONST_INT)
1222 if (INTVAL (size) == 0)
1223 return 0;
1225 x = shallow_copy_rtx (x);
1226 y = shallow_copy_rtx (y);
1227 set_mem_size (x, size);
1228 set_mem_size (y, size);
1231 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1232 move_by_pieces (x, y, INTVAL (size), align, 0);
1233 else if (emit_block_move_via_movmem (x, y, size, align,
1234 expected_align, expected_size))
1236 else if (may_use_call)
1237 retval = emit_block_move_via_libcall (x, y, size,
1238 method == BLOCK_OP_TAILCALL);
1239 else
1240 emit_block_move_via_loop (x, y, size, align);
1242 if (method == BLOCK_OP_CALL_PARM)
1243 OK_DEFER_POP;
1245 return retval;
1249 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1251 return emit_block_move_hints (x, y, size, method, 0, -1);
1254 /* A subroutine of emit_block_move. Returns true if calling the
1255 block move libcall will not clobber any parameters which may have
1256 already been placed on the stack. */
1258 static bool
1259 block_move_libcall_safe_for_call_parm (void)
1261 #if defined (REG_PARM_STACK_SPACE)
1262 tree fn;
1263 #endif
1265 /* If arguments are pushed on the stack, then they're safe. */
1266 if (PUSH_ARGS)
1267 return true;
1269 /* If registers go on the stack anyway, any argument is sure to clobber
1270 an outgoing argument. */
1271 #if defined (REG_PARM_STACK_SPACE)
1272 fn = emit_block_move_libcall_fn (false);
1273 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1274 && REG_PARM_STACK_SPACE (fn) != 0)
1275 return false;
1276 #endif
1278 /* If any argument goes in memory, then it might clobber an outgoing
1279 argument. */
1281 CUMULATIVE_ARGS args_so_far;
1282 tree fn, arg;
1284 fn = emit_block_move_libcall_fn (false);
1285 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1287 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1288 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1290 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1291 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1292 if (!tmp || !REG_P (tmp))
1293 return false;
1294 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1295 return false;
1296 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1299 return true;
1302 /* A subroutine of emit_block_move. Expand a movmem pattern;
1303 return true if successful. */
1305 static bool
1306 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1307 unsigned int expected_align, HOST_WIDE_INT expected_size)
1309 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1310 int save_volatile_ok = volatile_ok;
1311 enum machine_mode mode;
1313 if (expected_align < align)
1314 expected_align = align;
1316 /* Since this is a move insn, we don't care about volatility. */
1317 volatile_ok = 1;
1319 /* Try the most limited insn first, because there's no point
1320 including more than one in the machine description unless
1321 the more limited one has some advantage. */
1323 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1324 mode = GET_MODE_WIDER_MODE (mode))
1326 enum insn_code code = movmem_optab[(int) mode];
1327 insn_operand_predicate_fn pred;
1329 if (code != CODE_FOR_nothing
1330 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1331 here because if SIZE is less than the mode mask, as it is
1332 returned by the macro, it will definitely be less than the
1333 actual mode mask. */
1334 && ((GET_CODE (size) == CONST_INT
1335 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1336 <= (GET_MODE_MASK (mode) >> 1)))
1337 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1338 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1339 || (*pred) (x, BLKmode))
1340 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1341 || (*pred) (y, BLKmode))
1342 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1343 || (*pred) (opalign, VOIDmode)))
1345 rtx op2;
1346 rtx last = get_last_insn ();
1347 rtx pat;
1349 op2 = convert_to_mode (mode, size, 1);
1350 pred = insn_data[(int) code].operand[2].predicate;
1351 if (pred != 0 && ! (*pred) (op2, mode))
1352 op2 = copy_to_mode_reg (mode, op2);
1354 /* ??? When called via emit_block_move_for_call, it'd be
1355 nice if there were some way to inform the backend, so
1356 that it doesn't fail the expansion because it thinks
1357 emitting the libcall would be more efficient. */
1359 if (insn_data[(int) code].n_operands == 4)
1360 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1361 else
1362 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1363 GEN_INT (expected_align
1364 / BITS_PER_UNIT),
1365 GEN_INT (expected_size));
1366 if (pat)
1368 emit_insn (pat);
1369 volatile_ok = save_volatile_ok;
1370 return true;
1372 else
1373 delete_insns_since (last);
1377 volatile_ok = save_volatile_ok;
1378 return false;
1381 /* A subroutine of emit_block_move. Expand a call to memcpy.
1382 Return the return value from memcpy, 0 otherwise. */
1385 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1387 rtx dst_addr, src_addr;
1388 tree call_expr, fn, src_tree, dst_tree, size_tree;
1389 enum machine_mode size_mode;
1390 rtx retval;
1392 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1393 pseudos. We can then place those new pseudos into a VAR_DECL and
1394 use them later. */
1396 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1397 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1399 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1400 src_addr = convert_memory_address (ptr_mode, src_addr);
1402 dst_tree = make_tree (ptr_type_node, dst_addr);
1403 src_tree = make_tree (ptr_type_node, src_addr);
1405 size_mode = TYPE_MODE (sizetype);
1407 size = convert_to_mode (size_mode, size, 1);
1408 size = copy_to_mode_reg (size_mode, size);
1410 /* It is incorrect to use the libcall calling conventions to call
1411 memcpy in this context. This could be a user call to memcpy and
1412 the user may wish to examine the return value from memcpy. For
1413 targets where libcalls and normal calls have different conventions
1414 for returning pointers, we could end up generating incorrect code. */
1416 size_tree = make_tree (sizetype, size);
1418 fn = emit_block_move_libcall_fn (true);
1419 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1420 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1422 retval = expand_normal (call_expr);
1424 return retval;
1427 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1428 for the function we use for block copies. The first time FOR_CALL
1429 is true, we call assemble_external. */
1431 static GTY(()) tree block_move_fn;
1433 void
1434 init_block_move_fn (const char *asmspec)
1436 if (!block_move_fn)
1438 tree args, fn;
1440 fn = get_identifier ("memcpy");
1441 args = build_function_type_list (ptr_type_node, ptr_type_node,
1442 const_ptr_type_node, sizetype,
1443 NULL_TREE);
1445 fn = build_decl (FUNCTION_DECL, fn, args);
1446 DECL_EXTERNAL (fn) = 1;
1447 TREE_PUBLIC (fn) = 1;
1448 DECL_ARTIFICIAL (fn) = 1;
1449 TREE_NOTHROW (fn) = 1;
1450 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1451 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1453 block_move_fn = fn;
1456 if (asmspec)
1457 set_user_assembler_name (block_move_fn, asmspec);
1460 static tree
1461 emit_block_move_libcall_fn (int for_call)
1463 static bool emitted_extern;
1465 if (!block_move_fn)
1466 init_block_move_fn (NULL);
1468 if (for_call && !emitted_extern)
1470 emitted_extern = true;
1471 make_decl_rtl (block_move_fn);
1472 assemble_external (block_move_fn);
1475 return block_move_fn;
1478 /* A subroutine of emit_block_move. Copy the data via an explicit
1479 loop. This is used only when libcalls are forbidden. */
1480 /* ??? It'd be nice to copy in hunks larger than QImode. */
1482 static void
1483 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1484 unsigned int align ATTRIBUTE_UNUSED)
1486 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1487 enum machine_mode iter_mode;
1489 iter_mode = GET_MODE (size);
1490 if (iter_mode == VOIDmode)
1491 iter_mode = word_mode;
1493 top_label = gen_label_rtx ();
1494 cmp_label = gen_label_rtx ();
1495 iter = gen_reg_rtx (iter_mode);
1497 emit_move_insn (iter, const0_rtx);
1499 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1500 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1501 do_pending_stack_adjust ();
1503 emit_jump (cmp_label);
1504 emit_label (top_label);
1506 tmp = convert_modes (Pmode, iter_mode, iter, true);
1507 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1508 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1509 x = change_address (x, QImode, x_addr);
1510 y = change_address (y, QImode, y_addr);
1512 emit_move_insn (x, y);
1514 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1515 true, OPTAB_LIB_WIDEN);
1516 if (tmp != iter)
1517 emit_move_insn (iter, tmp);
1519 emit_label (cmp_label);
1521 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1522 true, top_label);
1525 /* Copy all or part of a value X into registers starting at REGNO.
1526 The number of registers to be filled is NREGS. */
1528 void
1529 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1531 int i;
1532 #ifdef HAVE_load_multiple
1533 rtx pat;
1534 rtx last;
1535 #endif
1537 if (nregs == 0)
1538 return;
1540 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1541 x = validize_mem (force_const_mem (mode, x));
1543 /* See if the machine can do this with a load multiple insn. */
1544 #ifdef HAVE_load_multiple
1545 if (HAVE_load_multiple)
1547 last = get_last_insn ();
1548 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1549 GEN_INT (nregs));
1550 if (pat)
1552 emit_insn (pat);
1553 return;
1555 else
1556 delete_insns_since (last);
1558 #endif
1560 for (i = 0; i < nregs; i++)
1561 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1562 operand_subword_force (x, i, mode));
1565 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1566 The number of registers to be filled is NREGS. */
1568 void
1569 move_block_from_reg (int regno, rtx x, int nregs)
1571 int i;
1573 if (nregs == 0)
1574 return;
1576 /* See if the machine can do this with a store multiple insn. */
1577 #ifdef HAVE_store_multiple
1578 if (HAVE_store_multiple)
1580 rtx last = get_last_insn ();
1581 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1582 GEN_INT (nregs));
1583 if (pat)
1585 emit_insn (pat);
1586 return;
1588 else
1589 delete_insns_since (last);
1591 #endif
1593 for (i = 0; i < nregs; i++)
1595 rtx tem = operand_subword (x, i, 1, BLKmode);
1597 gcc_assert (tem);
1599 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1603 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1604 ORIG, where ORIG is a non-consecutive group of registers represented by
1605 a PARALLEL. The clone is identical to the original except in that the
1606 original set of registers is replaced by a new set of pseudo registers.
1607 The new set has the same modes as the original set. */
1610 gen_group_rtx (rtx orig)
1612 int i, length;
1613 rtx *tmps;
1615 gcc_assert (GET_CODE (orig) == PARALLEL);
1617 length = XVECLEN (orig, 0);
1618 tmps = XALLOCAVEC (rtx, length);
1620 /* Skip a NULL entry in first slot. */
1621 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1623 if (i)
1624 tmps[0] = 0;
1626 for (; i < length; i++)
1628 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1629 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1631 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1634 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1637 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1638 except that values are placed in TMPS[i], and must later be moved
1639 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1641 static void
1642 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1644 rtx src;
1645 int start, i;
1646 enum machine_mode m = GET_MODE (orig_src);
1648 gcc_assert (GET_CODE (dst) == PARALLEL);
1650 if (m != VOIDmode
1651 && !SCALAR_INT_MODE_P (m)
1652 && !MEM_P (orig_src)
1653 && GET_CODE (orig_src) != CONCAT)
1655 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1656 if (imode == BLKmode)
1657 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1658 else
1659 src = gen_reg_rtx (imode);
1660 if (imode != BLKmode)
1661 src = gen_lowpart (GET_MODE (orig_src), src);
1662 emit_move_insn (src, orig_src);
1663 /* ...and back again. */
1664 if (imode != BLKmode)
1665 src = gen_lowpart (imode, src);
1666 emit_group_load_1 (tmps, dst, src, type, ssize);
1667 return;
1670 /* Check for a NULL entry, used to indicate that the parameter goes
1671 both on the stack and in registers. */
1672 if (XEXP (XVECEXP (dst, 0, 0), 0))
1673 start = 0;
1674 else
1675 start = 1;
1677 /* Process the pieces. */
1678 for (i = start; i < XVECLEN (dst, 0); i++)
1680 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1681 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1682 unsigned int bytelen = GET_MODE_SIZE (mode);
1683 int shift = 0;
1685 /* Handle trailing fragments that run over the size of the struct. */
1686 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1688 /* Arrange to shift the fragment to where it belongs.
1689 extract_bit_field loads to the lsb of the reg. */
1690 if (
1691 #ifdef BLOCK_REG_PADDING
1692 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1693 == (BYTES_BIG_ENDIAN ? upward : downward)
1694 #else
1695 BYTES_BIG_ENDIAN
1696 #endif
1698 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1699 bytelen = ssize - bytepos;
1700 gcc_assert (bytelen > 0);
1703 /* If we won't be loading directly from memory, protect the real source
1704 from strange tricks we might play; but make sure that the source can
1705 be loaded directly into the destination. */
1706 src = orig_src;
1707 if (!MEM_P (orig_src)
1708 && (!CONSTANT_P (orig_src)
1709 || (GET_MODE (orig_src) != mode
1710 && GET_MODE (orig_src) != VOIDmode)))
1712 if (GET_MODE (orig_src) == VOIDmode)
1713 src = gen_reg_rtx (mode);
1714 else
1715 src = gen_reg_rtx (GET_MODE (orig_src));
1717 emit_move_insn (src, orig_src);
1720 /* Optimize the access just a bit. */
1721 if (MEM_P (src)
1722 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1723 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1724 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1725 && bytelen == GET_MODE_SIZE (mode))
1727 tmps[i] = gen_reg_rtx (mode);
1728 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1730 else if (COMPLEX_MODE_P (mode)
1731 && GET_MODE (src) == mode
1732 && bytelen == GET_MODE_SIZE (mode))
1733 /* Let emit_move_complex do the bulk of the work. */
1734 tmps[i] = src;
1735 else if (GET_CODE (src) == CONCAT)
1737 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1738 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1740 if ((bytepos == 0 && bytelen == slen0)
1741 || (bytepos != 0 && bytepos + bytelen <= slen))
1743 /* The following assumes that the concatenated objects all
1744 have the same size. In this case, a simple calculation
1745 can be used to determine the object and the bit field
1746 to be extracted. */
1747 tmps[i] = XEXP (src, bytepos / slen0);
1748 if (! CONSTANT_P (tmps[i])
1749 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1750 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1751 (bytepos % slen0) * BITS_PER_UNIT,
1752 1, NULL_RTX, mode, mode);
1754 else
1756 rtx mem;
1758 gcc_assert (!bytepos);
1759 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1760 emit_move_insn (mem, src);
1761 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1762 0, 1, NULL_RTX, mode, mode);
1765 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1766 SIMD register, which is currently broken. While we get GCC
1767 to emit proper RTL for these cases, let's dump to memory. */
1768 else if (VECTOR_MODE_P (GET_MODE (dst))
1769 && REG_P (src))
1771 int slen = GET_MODE_SIZE (GET_MODE (src));
1772 rtx mem;
1774 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1775 emit_move_insn (mem, src);
1776 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1778 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1779 && XVECLEN (dst, 0) > 1)
1780 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1781 else if (CONSTANT_P (src))
1783 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1785 if (len == ssize)
1786 tmps[i] = src;
1787 else
1789 rtx first, second;
1791 gcc_assert (2 * len == ssize);
1792 split_double (src, &first, &second);
1793 if (i)
1794 tmps[i] = second;
1795 else
1796 tmps[i] = first;
1799 else if (REG_P (src) && GET_MODE (src) == mode)
1800 tmps[i] = src;
1801 else
1802 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1803 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1804 mode, mode);
1806 if (shift)
1807 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1808 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1812 /* Emit code to move a block SRC of type TYPE to a block DST,
1813 where DST is non-consecutive registers represented by a PARALLEL.
1814 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1815 if not known. */
1817 void
1818 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1820 rtx *tmps;
1821 int i;
1823 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1824 emit_group_load_1 (tmps, dst, src, type, ssize);
1826 /* Copy the extracted pieces into the proper (probable) hard regs. */
1827 for (i = 0; i < XVECLEN (dst, 0); i++)
1829 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1830 if (d == NULL)
1831 continue;
1832 emit_move_insn (d, tmps[i]);
1836 /* Similar, but load SRC into new pseudos in a format that looks like
1837 PARALLEL. This can later be fed to emit_group_move to get things
1838 in the right place. */
1841 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1843 rtvec vec;
1844 int i;
1846 vec = rtvec_alloc (XVECLEN (parallel, 0));
1847 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1849 /* Convert the vector to look just like the original PARALLEL, except
1850 with the computed values. */
1851 for (i = 0; i < XVECLEN (parallel, 0); i++)
1853 rtx e = XVECEXP (parallel, 0, i);
1854 rtx d = XEXP (e, 0);
1856 if (d)
1858 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1859 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1861 RTVEC_ELT (vec, i) = e;
1864 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1867 /* Emit code to move a block SRC to block DST, where SRC and DST are
1868 non-consecutive groups of registers, each represented by a PARALLEL. */
1870 void
1871 emit_group_move (rtx dst, rtx src)
1873 int i;
1875 gcc_assert (GET_CODE (src) == PARALLEL
1876 && GET_CODE (dst) == PARALLEL
1877 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1879 /* Skip first entry if NULL. */
1880 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1881 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1882 XEXP (XVECEXP (src, 0, i), 0));
1885 /* Move a group of registers represented by a PARALLEL into pseudos. */
1888 emit_group_move_into_temps (rtx src)
1890 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1891 int i;
1893 for (i = 0; i < XVECLEN (src, 0); i++)
1895 rtx e = XVECEXP (src, 0, i);
1896 rtx d = XEXP (e, 0);
1898 if (d)
1899 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1900 RTVEC_ELT (vec, i) = e;
1903 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1906 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1907 where SRC is non-consecutive registers represented by a PARALLEL.
1908 SSIZE represents the total size of block ORIG_DST, or -1 if not
1909 known. */
1911 void
1912 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1914 rtx *tmps, dst;
1915 int start, finish, i;
1916 enum machine_mode m = GET_MODE (orig_dst);
1918 gcc_assert (GET_CODE (src) == PARALLEL);
1920 if (!SCALAR_INT_MODE_P (m)
1921 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1923 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1924 if (imode == BLKmode)
1925 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1926 else
1927 dst = gen_reg_rtx (imode);
1928 emit_group_store (dst, src, type, ssize);
1929 if (imode != BLKmode)
1930 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1931 emit_move_insn (orig_dst, dst);
1932 return;
1935 /* Check for a NULL entry, used to indicate that the parameter goes
1936 both on the stack and in registers. */
1937 if (XEXP (XVECEXP (src, 0, 0), 0))
1938 start = 0;
1939 else
1940 start = 1;
1941 finish = XVECLEN (src, 0);
1943 tmps = XALLOCAVEC (rtx, finish);
1945 /* Copy the (probable) hard regs into pseudos. */
1946 for (i = start; i < finish; i++)
1948 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1949 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1951 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1952 emit_move_insn (tmps[i], reg);
1954 else
1955 tmps[i] = reg;
1958 /* If we won't be storing directly into memory, protect the real destination
1959 from strange tricks we might play. */
1960 dst = orig_dst;
1961 if (GET_CODE (dst) == PARALLEL)
1963 rtx temp;
1965 /* We can get a PARALLEL dst if there is a conditional expression in
1966 a return statement. In that case, the dst and src are the same,
1967 so no action is necessary. */
1968 if (rtx_equal_p (dst, src))
1969 return;
1971 /* It is unclear if we can ever reach here, but we may as well handle
1972 it. Allocate a temporary, and split this into a store/load to/from
1973 the temporary. */
1975 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1976 emit_group_store (temp, src, type, ssize);
1977 emit_group_load (dst, temp, type, ssize);
1978 return;
1980 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1982 enum machine_mode outer = GET_MODE (dst);
1983 enum machine_mode inner;
1984 HOST_WIDE_INT bytepos;
1985 bool done = false;
1986 rtx temp;
1988 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1989 dst = gen_reg_rtx (outer);
1991 /* Make life a bit easier for combine. */
1992 /* If the first element of the vector is the low part
1993 of the destination mode, use a paradoxical subreg to
1994 initialize the destination. */
1995 if (start < finish)
1997 inner = GET_MODE (tmps[start]);
1998 bytepos = subreg_lowpart_offset (inner, outer);
1999 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2001 temp = simplify_gen_subreg (outer, tmps[start],
2002 inner, 0);
2003 if (temp)
2005 emit_move_insn (dst, temp);
2006 done = true;
2007 start++;
2012 /* If the first element wasn't the low part, try the last. */
2013 if (!done
2014 && start < finish - 1)
2016 inner = GET_MODE (tmps[finish - 1]);
2017 bytepos = subreg_lowpart_offset (inner, outer);
2018 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2020 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2021 inner, 0);
2022 if (temp)
2024 emit_move_insn (dst, temp);
2025 done = true;
2026 finish--;
2031 /* Otherwise, simply initialize the result to zero. */
2032 if (!done)
2033 emit_move_insn (dst, CONST0_RTX (outer));
2036 /* Process the pieces. */
2037 for (i = start; i < finish; i++)
2039 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2040 enum machine_mode mode = GET_MODE (tmps[i]);
2041 unsigned int bytelen = GET_MODE_SIZE (mode);
2042 rtx dest = dst;
2044 /* Handle trailing fragments that run over the size of the struct. */
2045 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2047 /* store_bit_field always takes its value from the lsb.
2048 Move the fragment to the lsb if it's not already there. */
2049 if (
2050 #ifdef BLOCK_REG_PADDING
2051 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2052 == (BYTES_BIG_ENDIAN ? upward : downward)
2053 #else
2054 BYTES_BIG_ENDIAN
2055 #endif
2058 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2059 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2060 build_int_cst (NULL_TREE, shift),
2061 tmps[i], 0);
2063 bytelen = ssize - bytepos;
2066 if (GET_CODE (dst) == CONCAT)
2068 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2069 dest = XEXP (dst, 0);
2070 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2072 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2073 dest = XEXP (dst, 1);
2075 else
2077 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2078 dest = assign_stack_temp (GET_MODE (dest),
2079 GET_MODE_SIZE (GET_MODE (dest)), 0);
2080 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
2081 tmps[i]);
2082 dst = dest;
2083 break;
2087 /* Optimize the access just a bit. */
2088 if (MEM_P (dest)
2089 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2090 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2091 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2092 && bytelen == GET_MODE_SIZE (mode))
2093 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2094 else
2095 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2096 mode, tmps[i]);
2099 /* Copy from the pseudo into the (probable) hard reg. */
2100 if (orig_dst != dst)
2101 emit_move_insn (orig_dst, dst);
2104 /* Generate code to copy a BLKmode object of TYPE out of a
2105 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2106 is null, a stack temporary is created. TGTBLK is returned.
2108 The purpose of this routine is to handle functions that return
2109 BLKmode structures in registers. Some machines (the PA for example)
2110 want to return all small structures in registers regardless of the
2111 structure's alignment. */
2114 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2116 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2117 rtx src = NULL, dst = NULL;
2118 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2119 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2120 enum machine_mode copy_mode;
2122 if (tgtblk == 0)
2124 tgtblk = assign_temp (build_qualified_type (type,
2125 (TYPE_QUALS (type)
2126 | TYPE_QUAL_CONST)),
2127 0, 1, 1);
2128 preserve_temp_slots (tgtblk);
2131 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2132 into a new pseudo which is a full word. */
2134 if (GET_MODE (srcreg) != BLKmode
2135 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2136 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2138 /* If the structure doesn't take up a whole number of words, see whether
2139 SRCREG is padded on the left or on the right. If it's on the left,
2140 set PADDING_CORRECTION to the number of bits to skip.
2142 In most ABIs, the structure will be returned at the least end of
2143 the register, which translates to right padding on little-endian
2144 targets and left padding on big-endian targets. The opposite
2145 holds if the structure is returned at the most significant
2146 end of the register. */
2147 if (bytes % UNITS_PER_WORD != 0
2148 && (targetm.calls.return_in_msb (type)
2149 ? !BYTES_BIG_ENDIAN
2150 : BYTES_BIG_ENDIAN))
2151 padding_correction
2152 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2154 /* Copy the structure BITSIZE bits at a time. If the target lives in
2155 memory, take care of not reading/writing past its end by selecting
2156 a copy mode suited to BITSIZE. This should always be possible given
2157 how it is computed.
2159 We could probably emit more efficient code for machines which do not use
2160 strict alignment, but it doesn't seem worth the effort at the current
2161 time. */
2163 copy_mode = word_mode;
2164 if (MEM_P (tgtblk))
2166 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2167 if (mem_mode != BLKmode)
2168 copy_mode = mem_mode;
2171 for (bitpos = 0, xbitpos = padding_correction;
2172 bitpos < bytes * BITS_PER_UNIT;
2173 bitpos += bitsize, xbitpos += bitsize)
2175 /* We need a new source operand each time xbitpos is on a
2176 word boundary and when xbitpos == padding_correction
2177 (the first time through). */
2178 if (xbitpos % BITS_PER_WORD == 0
2179 || xbitpos == padding_correction)
2180 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2181 GET_MODE (srcreg));
2183 /* We need a new destination operand each time bitpos is on
2184 a word boundary. */
2185 if (bitpos % BITS_PER_WORD == 0)
2186 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2188 /* Use xbitpos for the source extraction (right justified) and
2189 bitpos for the destination store (left justified). */
2190 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2191 extract_bit_field (src, bitsize,
2192 xbitpos % BITS_PER_WORD, 1,
2193 NULL_RTX, copy_mode, copy_mode));
2196 return tgtblk;
2199 /* Add a USE expression for REG to the (possibly empty) list pointed
2200 to by CALL_FUSAGE. REG must denote a hard register. */
2202 void
2203 use_reg (rtx *call_fusage, rtx reg)
2205 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2207 *call_fusage
2208 = gen_rtx_EXPR_LIST (VOIDmode,
2209 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2212 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2213 starting at REGNO. All of these registers must be hard registers. */
2215 void
2216 use_regs (rtx *call_fusage, int regno, int nregs)
2218 int i;
2220 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2222 for (i = 0; i < nregs; i++)
2223 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2226 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2227 PARALLEL REGS. This is for calls that pass values in multiple
2228 non-contiguous locations. The Irix 6 ABI has examples of this. */
2230 void
2231 use_group_regs (rtx *call_fusage, rtx regs)
2233 int i;
2235 for (i = 0; i < XVECLEN (regs, 0); i++)
2237 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2239 /* A NULL entry means the parameter goes both on the stack and in
2240 registers. This can also be a MEM for targets that pass values
2241 partially on the stack and partially in registers. */
2242 if (reg != 0 && REG_P (reg))
2243 use_reg (call_fusage, reg);
2248 /* Determine whether the LEN bytes generated by CONSTFUN can be
2249 stored to memory using several move instructions. CONSTFUNDATA is
2250 a pointer which will be passed as argument in every CONSTFUN call.
2251 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2252 a memset operation and false if it's a copy of a constant string.
2253 Return nonzero if a call to store_by_pieces should succeed. */
2256 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2257 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2258 void *constfundata, unsigned int align, bool memsetp)
2260 unsigned HOST_WIDE_INT l;
2261 unsigned int max_size;
2262 HOST_WIDE_INT offset = 0;
2263 enum machine_mode mode, tmode;
2264 enum insn_code icode;
2265 int reverse;
2266 rtx cst;
2268 if (len == 0)
2269 return 1;
2271 if (! (memsetp
2272 ? SET_BY_PIECES_P (len, align)
2273 : STORE_BY_PIECES_P (len, align)))
2274 return 0;
2276 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2277 if (align >= GET_MODE_ALIGNMENT (tmode))
2278 align = GET_MODE_ALIGNMENT (tmode);
2279 else
2281 enum machine_mode xmode;
2283 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2284 tmode != VOIDmode;
2285 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2286 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2287 || SLOW_UNALIGNED_ACCESS (tmode, align))
2288 break;
2290 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2293 /* We would first store what we can in the largest integer mode, then go to
2294 successively smaller modes. */
2296 for (reverse = 0;
2297 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2298 reverse++)
2300 l = len;
2301 mode = VOIDmode;
2302 max_size = STORE_MAX_PIECES + 1;
2303 while (max_size > 1)
2305 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2306 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2307 if (GET_MODE_SIZE (tmode) < max_size)
2308 mode = tmode;
2310 if (mode == VOIDmode)
2311 break;
2313 icode = optab_handler (mov_optab, mode)->insn_code;
2314 if (icode != CODE_FOR_nothing
2315 && align >= GET_MODE_ALIGNMENT (mode))
2317 unsigned int size = GET_MODE_SIZE (mode);
2319 while (l >= size)
2321 if (reverse)
2322 offset -= size;
2324 cst = (*constfun) (constfundata, offset, mode);
2325 if (!LEGITIMATE_CONSTANT_P (cst))
2326 return 0;
2328 if (!reverse)
2329 offset += size;
2331 l -= size;
2335 max_size = GET_MODE_SIZE (mode);
2338 /* The code above should have handled everything. */
2339 gcc_assert (!l);
2342 return 1;
2345 /* Generate several move instructions to store LEN bytes generated by
2346 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2347 pointer which will be passed as argument in every CONSTFUN call.
2348 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2349 a memset operation and false if it's a copy of a constant string.
2350 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2351 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2352 stpcpy. */
2355 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2356 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2357 void *constfundata, unsigned int align, bool memsetp, int endp)
2359 struct store_by_pieces data;
2361 if (len == 0)
2363 gcc_assert (endp != 2);
2364 return to;
2367 gcc_assert (memsetp
2368 ? SET_BY_PIECES_P (len, align)
2369 : STORE_BY_PIECES_P (len, align));
2370 data.constfun = constfun;
2371 data.constfundata = constfundata;
2372 data.len = len;
2373 data.to = to;
2374 store_by_pieces_1 (&data, align);
2375 if (endp)
2377 rtx to1;
2379 gcc_assert (!data.reverse);
2380 if (data.autinc_to)
2382 if (endp == 2)
2384 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2385 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2386 else
2387 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2388 -1));
2390 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2391 data.offset);
2393 else
2395 if (endp == 2)
2396 --data.offset;
2397 to1 = adjust_address (data.to, QImode, data.offset);
2399 return to1;
2401 else
2402 return data.to;
2405 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2406 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2408 static void
2409 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2411 struct store_by_pieces data;
2413 if (len == 0)
2414 return;
2416 data.constfun = clear_by_pieces_1;
2417 data.constfundata = NULL;
2418 data.len = len;
2419 data.to = to;
2420 store_by_pieces_1 (&data, align);
2423 /* Callback routine for clear_by_pieces.
2424 Return const0_rtx unconditionally. */
2426 static rtx
2427 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2428 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2429 enum machine_mode mode ATTRIBUTE_UNUSED)
2431 return const0_rtx;
2434 /* Subroutine of clear_by_pieces and store_by_pieces.
2435 Generate several move instructions to store LEN bytes of block TO. (A MEM
2436 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2438 static void
2439 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2440 unsigned int align ATTRIBUTE_UNUSED)
2442 rtx to_addr = XEXP (data->to, 0);
2443 unsigned int max_size = STORE_MAX_PIECES + 1;
2444 enum machine_mode mode = VOIDmode, tmode;
2445 enum insn_code icode;
2447 data->offset = 0;
2448 data->to_addr = to_addr;
2449 data->autinc_to
2450 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2451 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2453 data->explicit_inc_to = 0;
2454 data->reverse
2455 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2456 if (data->reverse)
2457 data->offset = data->len;
2459 /* If storing requires more than two move insns,
2460 copy addresses to registers (to make displacements shorter)
2461 and use post-increment if available. */
2462 if (!data->autinc_to
2463 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2465 /* Determine the main mode we'll be using. */
2466 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2467 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2468 if (GET_MODE_SIZE (tmode) < max_size)
2469 mode = tmode;
2471 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2473 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2474 data->autinc_to = 1;
2475 data->explicit_inc_to = -1;
2478 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2479 && ! data->autinc_to)
2481 data->to_addr = copy_addr_to_reg (to_addr);
2482 data->autinc_to = 1;
2483 data->explicit_inc_to = 1;
2486 if ( !data->autinc_to && CONSTANT_P (to_addr))
2487 data->to_addr = copy_addr_to_reg (to_addr);
2490 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2491 if (align >= GET_MODE_ALIGNMENT (tmode))
2492 align = GET_MODE_ALIGNMENT (tmode);
2493 else
2495 enum machine_mode xmode;
2497 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2498 tmode != VOIDmode;
2499 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2500 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2501 || SLOW_UNALIGNED_ACCESS (tmode, align))
2502 break;
2504 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2507 /* First store what we can in the largest integer mode, then go to
2508 successively smaller modes. */
2510 while (max_size > 1)
2512 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2513 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2514 if (GET_MODE_SIZE (tmode) < max_size)
2515 mode = tmode;
2517 if (mode == VOIDmode)
2518 break;
2520 icode = optab_handler (mov_optab, mode)->insn_code;
2521 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2522 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2524 max_size = GET_MODE_SIZE (mode);
2527 /* The code above should have handled everything. */
2528 gcc_assert (!data->len);
2531 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2532 with move instructions for mode MODE. GENFUN is the gen_... function
2533 to make a move insn for that mode. DATA has all the other info. */
2535 static void
2536 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2537 struct store_by_pieces *data)
2539 unsigned int size = GET_MODE_SIZE (mode);
2540 rtx to1, cst;
2542 while (data->len >= size)
2544 if (data->reverse)
2545 data->offset -= size;
2547 if (data->autinc_to)
2548 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2549 data->offset);
2550 else
2551 to1 = adjust_address (data->to, mode, data->offset);
2553 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2554 emit_insn (gen_add2_insn (data->to_addr,
2555 GEN_INT (-(HOST_WIDE_INT) size)));
2557 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2558 emit_insn ((*genfun) (to1, cst));
2560 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2561 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2563 if (! data->reverse)
2564 data->offset += size;
2566 data->len -= size;
2570 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2571 its length in bytes. */
2574 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2575 unsigned int expected_align, HOST_WIDE_INT expected_size)
2577 enum machine_mode mode = GET_MODE (object);
2578 unsigned int align;
2580 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2582 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2583 just move a zero. Otherwise, do this a piece at a time. */
2584 if (mode != BLKmode
2585 && GET_CODE (size) == CONST_INT
2586 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2588 rtx zero = CONST0_RTX (mode);
2589 if (zero != NULL)
2591 emit_move_insn (object, zero);
2592 return NULL;
2595 if (COMPLEX_MODE_P (mode))
2597 zero = CONST0_RTX (GET_MODE_INNER (mode));
2598 if (zero != NULL)
2600 write_complex_part (object, zero, 0);
2601 write_complex_part (object, zero, 1);
2602 return NULL;
2607 if (size == const0_rtx)
2608 return NULL;
2610 align = MEM_ALIGN (object);
2612 if (GET_CODE (size) == CONST_INT
2613 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2614 clear_by_pieces (object, INTVAL (size), align);
2615 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2616 expected_align, expected_size))
2618 else
2619 return set_storage_via_libcall (object, size, const0_rtx,
2620 method == BLOCK_OP_TAILCALL);
2622 return NULL;
2626 clear_storage (rtx object, rtx size, enum block_op_methods method)
2628 return clear_storage_hints (object, size, method, 0, -1);
2632 /* A subroutine of clear_storage. Expand a call to memset.
2633 Return the return value of memset, 0 otherwise. */
2636 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2638 tree call_expr, fn, object_tree, size_tree, val_tree;
2639 enum machine_mode size_mode;
2640 rtx retval;
2642 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2643 place those into new pseudos into a VAR_DECL and use them later. */
2645 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2647 size_mode = TYPE_MODE (sizetype);
2648 size = convert_to_mode (size_mode, size, 1);
2649 size = copy_to_mode_reg (size_mode, size);
2651 /* It is incorrect to use the libcall calling conventions to call
2652 memset in this context. This could be a user call to memset and
2653 the user may wish to examine the return value from memset. For
2654 targets where libcalls and normal calls have different conventions
2655 for returning pointers, we could end up generating incorrect code. */
2657 object_tree = make_tree (ptr_type_node, object);
2658 if (GET_CODE (val) != CONST_INT)
2659 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2660 size_tree = make_tree (sizetype, size);
2661 val_tree = make_tree (integer_type_node, val);
2663 fn = clear_storage_libcall_fn (true);
2664 call_expr = build_call_expr (fn, 3,
2665 object_tree, integer_zero_node, size_tree);
2666 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2668 retval = expand_normal (call_expr);
2670 return retval;
2673 /* A subroutine of set_storage_via_libcall. Create the tree node
2674 for the function we use for block clears. The first time FOR_CALL
2675 is true, we call assemble_external. */
2677 static GTY(()) tree block_clear_fn;
2679 void
2680 init_block_clear_fn (const char *asmspec)
2682 if (!block_clear_fn)
2684 tree fn, args;
2686 fn = get_identifier ("memset");
2687 args = build_function_type_list (ptr_type_node, ptr_type_node,
2688 integer_type_node, sizetype,
2689 NULL_TREE);
2691 fn = build_decl (FUNCTION_DECL, fn, args);
2692 DECL_EXTERNAL (fn) = 1;
2693 TREE_PUBLIC (fn) = 1;
2694 DECL_ARTIFICIAL (fn) = 1;
2695 TREE_NOTHROW (fn) = 1;
2696 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2697 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2699 block_clear_fn = fn;
2702 if (asmspec)
2703 set_user_assembler_name (block_clear_fn, asmspec);
2706 static tree
2707 clear_storage_libcall_fn (int for_call)
2709 static bool emitted_extern;
2711 if (!block_clear_fn)
2712 init_block_clear_fn (NULL);
2714 if (for_call && !emitted_extern)
2716 emitted_extern = true;
2717 make_decl_rtl (block_clear_fn);
2718 assemble_external (block_clear_fn);
2721 return block_clear_fn;
2724 /* Expand a setmem pattern; return true if successful. */
2726 bool
2727 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2728 unsigned int expected_align, HOST_WIDE_INT expected_size)
2730 /* Try the most limited insn first, because there's no point
2731 including more than one in the machine description unless
2732 the more limited one has some advantage. */
2734 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2735 enum machine_mode mode;
2737 if (expected_align < align)
2738 expected_align = align;
2740 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2741 mode = GET_MODE_WIDER_MODE (mode))
2743 enum insn_code code = setmem_optab[(int) mode];
2744 insn_operand_predicate_fn pred;
2746 if (code != CODE_FOR_nothing
2747 /* We don't need MODE to be narrower than
2748 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2749 the mode mask, as it is returned by the macro, it will
2750 definitely be less than the actual mode mask. */
2751 && ((GET_CODE (size) == CONST_INT
2752 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2753 <= (GET_MODE_MASK (mode) >> 1)))
2754 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2755 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2756 || (*pred) (object, BLKmode))
2757 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2758 || (*pred) (opalign, VOIDmode)))
2760 rtx opsize, opchar;
2761 enum machine_mode char_mode;
2762 rtx last = get_last_insn ();
2763 rtx pat;
2765 opsize = convert_to_mode (mode, size, 1);
2766 pred = insn_data[(int) code].operand[1].predicate;
2767 if (pred != 0 && ! (*pred) (opsize, mode))
2768 opsize = copy_to_mode_reg (mode, opsize);
2770 opchar = val;
2771 char_mode = insn_data[(int) code].operand[2].mode;
2772 if (char_mode != VOIDmode)
2774 opchar = convert_to_mode (char_mode, opchar, 1);
2775 pred = insn_data[(int) code].operand[2].predicate;
2776 if (pred != 0 && ! (*pred) (opchar, char_mode))
2777 opchar = copy_to_mode_reg (char_mode, opchar);
2780 if (insn_data[(int) code].n_operands == 4)
2781 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2782 else
2783 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2784 GEN_INT (expected_align
2785 / BITS_PER_UNIT),
2786 GEN_INT (expected_size));
2787 if (pat)
2789 emit_insn (pat);
2790 return true;
2792 else
2793 delete_insns_since (last);
2797 return false;
2801 /* Write to one of the components of the complex value CPLX. Write VAL to
2802 the real part if IMAG_P is false, and the imaginary part if its true. */
2804 static void
2805 write_complex_part (rtx cplx, rtx val, bool imag_p)
2807 enum machine_mode cmode;
2808 enum machine_mode imode;
2809 unsigned ibitsize;
2811 if (GET_CODE (cplx) == CONCAT)
2813 emit_move_insn (XEXP (cplx, imag_p), val);
2814 return;
2817 cmode = GET_MODE (cplx);
2818 imode = GET_MODE_INNER (cmode);
2819 ibitsize = GET_MODE_BITSIZE (imode);
2821 /* For MEMs simplify_gen_subreg may generate an invalid new address
2822 because, e.g., the original address is considered mode-dependent
2823 by the target, which restricts simplify_subreg from invoking
2824 adjust_address_nv. Instead of preparing fallback support for an
2825 invalid address, we call adjust_address_nv directly. */
2826 if (MEM_P (cplx))
2828 emit_move_insn (adjust_address_nv (cplx, imode,
2829 imag_p ? GET_MODE_SIZE (imode) : 0),
2830 val);
2831 return;
2834 /* If the sub-object is at least word sized, then we know that subregging
2835 will work. This special case is important, since store_bit_field
2836 wants to operate on integer modes, and there's rarely an OImode to
2837 correspond to TCmode. */
2838 if (ibitsize >= BITS_PER_WORD
2839 /* For hard regs we have exact predicates. Assume we can split
2840 the original object if it spans an even number of hard regs.
2841 This special case is important for SCmode on 64-bit platforms
2842 where the natural size of floating-point regs is 32-bit. */
2843 || (REG_P (cplx)
2844 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2845 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2847 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2848 imag_p ? GET_MODE_SIZE (imode) : 0);
2849 if (part)
2851 emit_move_insn (part, val);
2852 return;
2854 else
2855 /* simplify_gen_subreg may fail for sub-word MEMs. */
2856 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2859 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2862 /* Extract one of the components of the complex value CPLX. Extract the
2863 real part if IMAG_P is false, and the imaginary part if it's true. */
2865 static rtx
2866 read_complex_part (rtx cplx, bool imag_p)
2868 enum machine_mode cmode, imode;
2869 unsigned ibitsize;
2871 if (GET_CODE (cplx) == CONCAT)
2872 return XEXP (cplx, imag_p);
2874 cmode = GET_MODE (cplx);
2875 imode = GET_MODE_INNER (cmode);
2876 ibitsize = GET_MODE_BITSIZE (imode);
2878 /* Special case reads from complex constants that got spilled to memory. */
2879 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2881 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2882 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2884 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2885 if (CONSTANT_CLASS_P (part))
2886 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2890 /* For MEMs simplify_gen_subreg may generate an invalid new address
2891 because, e.g., the original address is considered mode-dependent
2892 by the target, which restricts simplify_subreg from invoking
2893 adjust_address_nv. Instead of preparing fallback support for an
2894 invalid address, we call adjust_address_nv directly. */
2895 if (MEM_P (cplx))
2896 return adjust_address_nv (cplx, imode,
2897 imag_p ? GET_MODE_SIZE (imode) : 0);
2899 /* If the sub-object is at least word sized, then we know that subregging
2900 will work. This special case is important, since extract_bit_field
2901 wants to operate on integer modes, and there's rarely an OImode to
2902 correspond to TCmode. */
2903 if (ibitsize >= BITS_PER_WORD
2904 /* For hard regs we have exact predicates. Assume we can split
2905 the original object if it spans an even number of hard regs.
2906 This special case is important for SCmode on 64-bit platforms
2907 where the natural size of floating-point regs is 32-bit. */
2908 || (REG_P (cplx)
2909 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2910 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2912 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2913 imag_p ? GET_MODE_SIZE (imode) : 0);
2914 if (ret)
2915 return ret;
2916 else
2917 /* simplify_gen_subreg may fail for sub-word MEMs. */
2918 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2921 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2922 true, NULL_RTX, imode, imode);
2925 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2926 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2927 represented in NEW_MODE. If FORCE is true, this will never happen, as
2928 we'll force-create a SUBREG if needed. */
2930 static rtx
2931 emit_move_change_mode (enum machine_mode new_mode,
2932 enum machine_mode old_mode, rtx x, bool force)
2934 rtx ret;
2936 if (push_operand (x, GET_MODE (x)))
2938 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2939 MEM_COPY_ATTRIBUTES (ret, x);
2941 else if (MEM_P (x))
2943 /* We don't have to worry about changing the address since the
2944 size in bytes is supposed to be the same. */
2945 if (reload_in_progress)
2947 /* Copy the MEM to change the mode and move any
2948 substitutions from the old MEM to the new one. */
2949 ret = adjust_address_nv (x, new_mode, 0);
2950 copy_replacements (x, ret);
2952 else
2953 ret = adjust_address (x, new_mode, 0);
2955 else
2957 /* Note that we do want simplify_subreg's behavior of validating
2958 that the new mode is ok for a hard register. If we were to use
2959 simplify_gen_subreg, we would create the subreg, but would
2960 probably run into the target not being able to implement it. */
2961 /* Except, of course, when FORCE is true, when this is exactly what
2962 we want. Which is needed for CCmodes on some targets. */
2963 if (force)
2964 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2965 else
2966 ret = simplify_subreg (new_mode, x, old_mode, 0);
2969 return ret;
2972 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2973 an integer mode of the same size as MODE. Returns the instruction
2974 emitted, or NULL if such a move could not be generated. */
2976 static rtx
2977 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2979 enum machine_mode imode;
2980 enum insn_code code;
2982 /* There must exist a mode of the exact size we require. */
2983 imode = int_mode_for_mode (mode);
2984 if (imode == BLKmode)
2985 return NULL_RTX;
2987 /* The target must support moves in this mode. */
2988 code = optab_handler (mov_optab, imode)->insn_code;
2989 if (code == CODE_FOR_nothing)
2990 return NULL_RTX;
2992 x = emit_move_change_mode (imode, mode, x, force);
2993 if (x == NULL_RTX)
2994 return NULL_RTX;
2995 y = emit_move_change_mode (imode, mode, y, force);
2996 if (y == NULL_RTX)
2997 return NULL_RTX;
2998 return emit_insn (GEN_FCN (code) (x, y));
3001 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3002 Return an equivalent MEM that does not use an auto-increment. */
3004 static rtx
3005 emit_move_resolve_push (enum machine_mode mode, rtx x)
3007 enum rtx_code code = GET_CODE (XEXP (x, 0));
3008 HOST_WIDE_INT adjust;
3009 rtx temp;
3011 adjust = GET_MODE_SIZE (mode);
3012 #ifdef PUSH_ROUNDING
3013 adjust = PUSH_ROUNDING (adjust);
3014 #endif
3015 if (code == PRE_DEC || code == POST_DEC)
3016 adjust = -adjust;
3017 else if (code == PRE_MODIFY || code == POST_MODIFY)
3019 rtx expr = XEXP (XEXP (x, 0), 1);
3020 HOST_WIDE_INT val;
3022 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3023 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
3024 val = INTVAL (XEXP (expr, 1));
3025 if (GET_CODE (expr) == MINUS)
3026 val = -val;
3027 gcc_assert (adjust == val || adjust == -val);
3028 adjust = val;
3031 /* Do not use anti_adjust_stack, since we don't want to update
3032 stack_pointer_delta. */
3033 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3034 GEN_INT (adjust), stack_pointer_rtx,
3035 0, OPTAB_LIB_WIDEN);
3036 if (temp != stack_pointer_rtx)
3037 emit_move_insn (stack_pointer_rtx, temp);
3039 switch (code)
3041 case PRE_INC:
3042 case PRE_DEC:
3043 case PRE_MODIFY:
3044 temp = stack_pointer_rtx;
3045 break;
3046 case POST_INC:
3047 case POST_DEC:
3048 case POST_MODIFY:
3049 temp = plus_constant (stack_pointer_rtx, -adjust);
3050 break;
3051 default:
3052 gcc_unreachable ();
3055 return replace_equiv_address (x, temp);
3058 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3059 X is known to satisfy push_operand, and MODE is known to be complex.
3060 Returns the last instruction emitted. */
3063 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3065 enum machine_mode submode = GET_MODE_INNER (mode);
3066 bool imag_first;
3068 #ifdef PUSH_ROUNDING
3069 unsigned int submodesize = GET_MODE_SIZE (submode);
3071 /* In case we output to the stack, but the size is smaller than the
3072 machine can push exactly, we need to use move instructions. */
3073 if (PUSH_ROUNDING (submodesize) != submodesize)
3075 x = emit_move_resolve_push (mode, x);
3076 return emit_move_insn (x, y);
3078 #endif
3080 /* Note that the real part always precedes the imag part in memory
3081 regardless of machine's endianness. */
3082 switch (GET_CODE (XEXP (x, 0)))
3084 case PRE_DEC:
3085 case POST_DEC:
3086 imag_first = true;
3087 break;
3088 case PRE_INC:
3089 case POST_INC:
3090 imag_first = false;
3091 break;
3092 default:
3093 gcc_unreachable ();
3096 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3097 read_complex_part (y, imag_first));
3098 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3099 read_complex_part (y, !imag_first));
3102 /* A subroutine of emit_move_complex. Perform the move from Y to X
3103 via two moves of the parts. Returns the last instruction emitted. */
3106 emit_move_complex_parts (rtx x, rtx y)
3108 /* Show the output dies here. This is necessary for SUBREGs
3109 of pseudos since we cannot track their lifetimes correctly;
3110 hard regs shouldn't appear here except as return values. */
3111 if (!reload_completed && !reload_in_progress
3112 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3113 emit_clobber (x);
3115 write_complex_part (x, read_complex_part (y, false), false);
3116 write_complex_part (x, read_complex_part (y, true), true);
3118 return get_last_insn ();
3121 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3122 MODE is known to be complex. Returns the last instruction emitted. */
3124 static rtx
3125 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3127 bool try_int;
3129 /* Need to take special care for pushes, to maintain proper ordering
3130 of the data, and possibly extra padding. */
3131 if (push_operand (x, mode))
3132 return emit_move_complex_push (mode, x, y);
3134 /* See if we can coerce the target into moving both values at once. */
3136 /* Move floating point as parts. */
3137 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3138 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3139 try_int = false;
3140 /* Not possible if the values are inherently not adjacent. */
3141 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3142 try_int = false;
3143 /* Is possible if both are registers (or subregs of registers). */
3144 else if (register_operand (x, mode) && register_operand (y, mode))
3145 try_int = true;
3146 /* If one of the operands is a memory, and alignment constraints
3147 are friendly enough, we may be able to do combined memory operations.
3148 We do not attempt this if Y is a constant because that combination is
3149 usually better with the by-parts thing below. */
3150 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3151 && (!STRICT_ALIGNMENT
3152 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3153 try_int = true;
3154 else
3155 try_int = false;
3157 if (try_int)
3159 rtx ret;
3161 /* For memory to memory moves, optimal behavior can be had with the
3162 existing block move logic. */
3163 if (MEM_P (x) && MEM_P (y))
3165 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3166 BLOCK_OP_NO_LIBCALL);
3167 return get_last_insn ();
3170 ret = emit_move_via_integer (mode, x, y, true);
3171 if (ret)
3172 return ret;
3175 return emit_move_complex_parts (x, y);
3178 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3179 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3181 static rtx
3182 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3184 rtx ret;
3186 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3187 if (mode != CCmode)
3189 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3190 if (code != CODE_FOR_nothing)
3192 x = emit_move_change_mode (CCmode, mode, x, true);
3193 y = emit_move_change_mode (CCmode, mode, y, true);
3194 return emit_insn (GEN_FCN (code) (x, y));
3198 /* Otherwise, find the MODE_INT mode of the same width. */
3199 ret = emit_move_via_integer (mode, x, y, false);
3200 gcc_assert (ret != NULL);
3201 return ret;
3204 /* Return true if word I of OP lies entirely in the
3205 undefined bits of a paradoxical subreg. */
3207 static bool
3208 undefined_operand_subword_p (const_rtx op, int i)
3210 enum machine_mode innermode, innermostmode;
3211 int offset;
3212 if (GET_CODE (op) != SUBREG)
3213 return false;
3214 innermode = GET_MODE (op);
3215 innermostmode = GET_MODE (SUBREG_REG (op));
3216 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3217 /* The SUBREG_BYTE represents offset, as if the value were stored in
3218 memory, except for a paradoxical subreg where we define
3219 SUBREG_BYTE to be 0; undo this exception as in
3220 simplify_subreg. */
3221 if (SUBREG_BYTE (op) == 0
3222 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3224 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3225 if (WORDS_BIG_ENDIAN)
3226 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3227 if (BYTES_BIG_ENDIAN)
3228 offset += difference % UNITS_PER_WORD;
3230 if (offset >= GET_MODE_SIZE (innermostmode)
3231 || offset <= -GET_MODE_SIZE (word_mode))
3232 return true;
3233 return false;
3236 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3237 MODE is any multi-word or full-word mode that lacks a move_insn
3238 pattern. Note that you will get better code if you define such
3239 patterns, even if they must turn into multiple assembler instructions. */
3241 static rtx
3242 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3244 rtx last_insn = 0;
3245 rtx seq, inner;
3246 bool need_clobber;
3247 int i;
3249 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3251 /* If X is a push on the stack, do the push now and replace
3252 X with a reference to the stack pointer. */
3253 if (push_operand (x, mode))
3254 x = emit_move_resolve_push (mode, x);
3256 /* If we are in reload, see if either operand is a MEM whose address
3257 is scheduled for replacement. */
3258 if (reload_in_progress && MEM_P (x)
3259 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3260 x = replace_equiv_address_nv (x, inner);
3261 if (reload_in_progress && MEM_P (y)
3262 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3263 y = replace_equiv_address_nv (y, inner);
3265 start_sequence ();
3267 need_clobber = false;
3268 for (i = 0;
3269 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3270 i++)
3272 rtx xpart = operand_subword (x, i, 1, mode);
3273 rtx ypart;
3275 /* Do not generate code for a move if it would come entirely
3276 from the undefined bits of a paradoxical subreg. */
3277 if (undefined_operand_subword_p (y, i))
3278 continue;
3280 ypart = operand_subword (y, i, 1, mode);
3282 /* If we can't get a part of Y, put Y into memory if it is a
3283 constant. Otherwise, force it into a register. Then we must
3284 be able to get a part of Y. */
3285 if (ypart == 0 && CONSTANT_P (y))
3287 y = use_anchored_address (force_const_mem (mode, y));
3288 ypart = operand_subword (y, i, 1, mode);
3290 else if (ypart == 0)
3291 ypart = operand_subword_force (y, i, mode);
3293 gcc_assert (xpart && ypart);
3295 need_clobber |= (GET_CODE (xpart) == SUBREG);
3297 last_insn = emit_move_insn (xpart, ypart);
3300 seq = get_insns ();
3301 end_sequence ();
3303 /* Show the output dies here. This is necessary for SUBREGs
3304 of pseudos since we cannot track their lifetimes correctly;
3305 hard regs shouldn't appear here except as return values.
3306 We never want to emit such a clobber after reload. */
3307 if (x != y
3308 && ! (reload_in_progress || reload_completed)
3309 && need_clobber != 0)
3310 emit_clobber (x);
3312 emit_insn (seq);
3314 return last_insn;
3317 /* Low level part of emit_move_insn.
3318 Called just like emit_move_insn, but assumes X and Y
3319 are basically valid. */
3322 emit_move_insn_1 (rtx x, rtx y)
3324 enum machine_mode mode = GET_MODE (x);
3325 enum insn_code code;
3327 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3329 code = optab_handler (mov_optab, mode)->insn_code;
3330 if (code != CODE_FOR_nothing)
3331 return emit_insn (GEN_FCN (code) (x, y));
3333 /* Expand complex moves by moving real part and imag part. */
3334 if (COMPLEX_MODE_P (mode))
3335 return emit_move_complex (mode, x, y);
3337 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3338 || ALL_FIXED_POINT_MODE_P (mode))
3340 rtx result = emit_move_via_integer (mode, x, y, true);
3342 /* If we can't find an integer mode, use multi words. */
3343 if (result)
3344 return result;
3345 else
3346 return emit_move_multi_word (mode, x, y);
3349 if (GET_MODE_CLASS (mode) == MODE_CC)
3350 return emit_move_ccmode (mode, x, y);
3352 /* Try using a move pattern for the corresponding integer mode. This is
3353 only safe when simplify_subreg can convert MODE constants into integer
3354 constants. At present, it can only do this reliably if the value
3355 fits within a HOST_WIDE_INT. */
3356 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3358 rtx ret = emit_move_via_integer (mode, x, y, false);
3359 if (ret)
3360 return ret;
3363 return emit_move_multi_word (mode, x, y);
3366 /* Generate code to copy Y into X.
3367 Both Y and X must have the same mode, except that
3368 Y can be a constant with VOIDmode.
3369 This mode cannot be BLKmode; use emit_block_move for that.
3371 Return the last instruction emitted. */
3374 emit_move_insn (rtx x, rtx y)
3376 enum machine_mode mode = GET_MODE (x);
3377 rtx y_cst = NULL_RTX;
3378 rtx last_insn, set;
3380 gcc_assert (mode != BLKmode
3381 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3383 if (CONSTANT_P (y))
3385 if (optimize
3386 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3387 && (last_insn = compress_float_constant (x, y)))
3388 return last_insn;
3390 y_cst = y;
3392 if (!LEGITIMATE_CONSTANT_P (y))
3394 y = force_const_mem (mode, y);
3396 /* If the target's cannot_force_const_mem prevented the spill,
3397 assume that the target's move expanders will also take care
3398 of the non-legitimate constant. */
3399 if (!y)
3400 y = y_cst;
3401 else
3402 y = use_anchored_address (y);
3406 /* If X or Y are memory references, verify that their addresses are valid
3407 for the machine. */
3408 if (MEM_P (x)
3409 && (! memory_address_p (GET_MODE (x), XEXP (x, 0))
3410 && ! push_operand (x, GET_MODE (x))))
3411 x = validize_mem (x);
3413 if (MEM_P (y)
3414 && ! memory_address_p (GET_MODE (y), XEXP (y, 0)))
3415 y = validize_mem (y);
3417 gcc_assert (mode != BLKmode);
3419 last_insn = emit_move_insn_1 (x, y);
3421 if (y_cst && REG_P (x)
3422 && (set = single_set (last_insn)) != NULL_RTX
3423 && SET_DEST (set) == x
3424 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3425 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3427 return last_insn;
3430 /* If Y is representable exactly in a narrower mode, and the target can
3431 perform the extension directly from constant or memory, then emit the
3432 move as an extension. */
3434 static rtx
3435 compress_float_constant (rtx x, rtx y)
3437 enum machine_mode dstmode = GET_MODE (x);
3438 enum machine_mode orig_srcmode = GET_MODE (y);
3439 enum machine_mode srcmode;
3440 REAL_VALUE_TYPE r;
3441 int oldcost, newcost;
3443 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3445 if (LEGITIMATE_CONSTANT_P (y))
3446 oldcost = rtx_cost (y, SET);
3447 else
3448 oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3450 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3451 srcmode != orig_srcmode;
3452 srcmode = GET_MODE_WIDER_MODE (srcmode))
3454 enum insn_code ic;
3455 rtx trunc_y, last_insn;
3457 /* Skip if the target can't extend this way. */
3458 ic = can_extend_p (dstmode, srcmode, 0);
3459 if (ic == CODE_FOR_nothing)
3460 continue;
3462 /* Skip if the narrowed value isn't exact. */
3463 if (! exact_real_truncate (srcmode, &r))
3464 continue;
3466 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3468 if (LEGITIMATE_CONSTANT_P (trunc_y))
3470 /* Skip if the target needs extra instructions to perform
3471 the extension. */
3472 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3473 continue;
3474 /* This is valid, but may not be cheaper than the original. */
3475 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3476 if (oldcost < newcost)
3477 continue;
3479 else if (float_extend_from_mem[dstmode][srcmode])
3481 trunc_y = force_const_mem (srcmode, trunc_y);
3482 /* This is valid, but may not be cheaper than the original. */
3483 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3484 if (oldcost < newcost)
3485 continue;
3486 trunc_y = validize_mem (trunc_y);
3488 else
3489 continue;
3491 /* For CSE's benefit, force the compressed constant pool entry
3492 into a new pseudo. This constant may be used in different modes,
3493 and if not, combine will put things back together for us. */
3494 trunc_y = force_reg (srcmode, trunc_y);
3495 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3496 last_insn = get_last_insn ();
3498 if (REG_P (x))
3499 set_unique_reg_note (last_insn, REG_EQUAL, y);
3501 return last_insn;
3504 return NULL_RTX;
3507 /* Pushing data onto the stack. */
3509 /* Push a block of length SIZE (perhaps variable)
3510 and return an rtx to address the beginning of the block.
3511 The value may be virtual_outgoing_args_rtx.
3513 EXTRA is the number of bytes of padding to push in addition to SIZE.
3514 BELOW nonzero means this padding comes at low addresses;
3515 otherwise, the padding comes at high addresses. */
3518 push_block (rtx size, int extra, int below)
3520 rtx temp;
3522 size = convert_modes (Pmode, ptr_mode, size, 1);
3523 if (CONSTANT_P (size))
3524 anti_adjust_stack (plus_constant (size, extra));
3525 else if (REG_P (size) && extra == 0)
3526 anti_adjust_stack (size);
3527 else
3529 temp = copy_to_mode_reg (Pmode, size);
3530 if (extra != 0)
3531 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3532 temp, 0, OPTAB_LIB_WIDEN);
3533 anti_adjust_stack (temp);
3536 #ifndef STACK_GROWS_DOWNWARD
3537 if (0)
3538 #else
3539 if (1)
3540 #endif
3542 temp = virtual_outgoing_args_rtx;
3543 if (extra != 0 && below)
3544 temp = plus_constant (temp, extra);
3546 else
3548 if (GET_CODE (size) == CONST_INT)
3549 temp = plus_constant (virtual_outgoing_args_rtx,
3550 -INTVAL (size) - (below ? 0 : extra));
3551 else if (extra != 0 && !below)
3552 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3553 negate_rtx (Pmode, plus_constant (size, extra)));
3554 else
3555 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3556 negate_rtx (Pmode, size));
3559 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3562 #ifdef PUSH_ROUNDING
3564 /* Emit single push insn. */
3566 static void
3567 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3569 rtx dest_addr;
3570 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3571 rtx dest;
3572 enum insn_code icode;
3573 insn_operand_predicate_fn pred;
3575 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3576 /* If there is push pattern, use it. Otherwise try old way of throwing
3577 MEM representing push operation to move expander. */
3578 icode = optab_handler (push_optab, mode)->insn_code;
3579 if (icode != CODE_FOR_nothing)
3581 if (((pred = insn_data[(int) icode].operand[0].predicate)
3582 && !((*pred) (x, mode))))
3583 x = force_reg (mode, x);
3584 emit_insn (GEN_FCN (icode) (x));
3585 return;
3587 if (GET_MODE_SIZE (mode) == rounded_size)
3588 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3589 /* If we are to pad downward, adjust the stack pointer first and
3590 then store X into the stack location using an offset. This is
3591 because emit_move_insn does not know how to pad; it does not have
3592 access to type. */
3593 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3595 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3596 HOST_WIDE_INT offset;
3598 emit_move_insn (stack_pointer_rtx,
3599 expand_binop (Pmode,
3600 #ifdef STACK_GROWS_DOWNWARD
3601 sub_optab,
3602 #else
3603 add_optab,
3604 #endif
3605 stack_pointer_rtx,
3606 GEN_INT (rounded_size),
3607 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3609 offset = (HOST_WIDE_INT) padding_size;
3610 #ifdef STACK_GROWS_DOWNWARD
3611 if (STACK_PUSH_CODE == POST_DEC)
3612 /* We have already decremented the stack pointer, so get the
3613 previous value. */
3614 offset += (HOST_WIDE_INT) rounded_size;
3615 #else
3616 if (STACK_PUSH_CODE == POST_INC)
3617 /* We have already incremented the stack pointer, so get the
3618 previous value. */
3619 offset -= (HOST_WIDE_INT) rounded_size;
3620 #endif
3621 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3623 else
3625 #ifdef STACK_GROWS_DOWNWARD
3626 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3627 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3628 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3629 #else
3630 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3631 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3632 GEN_INT (rounded_size));
3633 #endif
3634 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3637 dest = gen_rtx_MEM (mode, dest_addr);
3639 if (type != 0)
3641 set_mem_attributes (dest, type, 1);
3643 if (flag_optimize_sibling_calls)
3644 /* Function incoming arguments may overlap with sibling call
3645 outgoing arguments and we cannot allow reordering of reads
3646 from function arguments with stores to outgoing arguments
3647 of sibling calls. */
3648 set_mem_alias_set (dest, 0);
3650 emit_move_insn (dest, x);
3652 #endif
3654 /* Generate code to push X onto the stack, assuming it has mode MODE and
3655 type TYPE.
3656 MODE is redundant except when X is a CONST_INT (since they don't
3657 carry mode info).
3658 SIZE is an rtx for the size of data to be copied (in bytes),
3659 needed only if X is BLKmode.
3661 ALIGN (in bits) is maximum alignment we can assume.
3663 If PARTIAL and REG are both nonzero, then copy that many of the first
3664 bytes of X into registers starting with REG, and push the rest of X.
3665 The amount of space pushed is decreased by PARTIAL bytes.
3666 REG must be a hard register in this case.
3667 If REG is zero but PARTIAL is not, take any all others actions for an
3668 argument partially in registers, but do not actually load any
3669 registers.
3671 EXTRA is the amount in bytes of extra space to leave next to this arg.
3672 This is ignored if an argument block has already been allocated.
3674 On a machine that lacks real push insns, ARGS_ADDR is the address of
3675 the bottom of the argument block for this call. We use indexing off there
3676 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3677 argument block has not been preallocated.
3679 ARGS_SO_FAR is the size of args previously pushed for this call.
3681 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3682 for arguments passed in registers. If nonzero, it will be the number
3683 of bytes required. */
3685 void
3686 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3687 unsigned int align, int partial, rtx reg, int extra,
3688 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3689 rtx alignment_pad)
3691 rtx xinner;
3692 enum direction stack_direction
3693 #ifdef STACK_GROWS_DOWNWARD
3694 = downward;
3695 #else
3696 = upward;
3697 #endif
3699 /* Decide where to pad the argument: `downward' for below,
3700 `upward' for above, or `none' for don't pad it.
3701 Default is below for small data on big-endian machines; else above. */
3702 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3704 /* Invert direction if stack is post-decrement.
3705 FIXME: why? */
3706 if (STACK_PUSH_CODE == POST_DEC)
3707 if (where_pad != none)
3708 where_pad = (where_pad == downward ? upward : downward);
3710 xinner = x;
3712 if (mode == BLKmode
3713 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3715 /* Copy a block into the stack, entirely or partially. */
3717 rtx temp;
3718 int used;
3719 int offset;
3720 int skip;
3722 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3723 used = partial - offset;
3725 if (mode != BLKmode)
3727 /* A value is to be stored in an insufficiently aligned
3728 stack slot; copy via a suitably aligned slot if
3729 necessary. */
3730 size = GEN_INT (GET_MODE_SIZE (mode));
3731 if (!MEM_P (xinner))
3733 temp = assign_temp (type, 0, 1, 1);
3734 emit_move_insn (temp, xinner);
3735 xinner = temp;
3739 gcc_assert (size);
3741 /* USED is now the # of bytes we need not copy to the stack
3742 because registers will take care of them. */
3744 if (partial != 0)
3745 xinner = adjust_address (xinner, BLKmode, used);
3747 /* If the partial register-part of the arg counts in its stack size,
3748 skip the part of stack space corresponding to the registers.
3749 Otherwise, start copying to the beginning of the stack space,
3750 by setting SKIP to 0. */
3751 skip = (reg_parm_stack_space == 0) ? 0 : used;
3753 #ifdef PUSH_ROUNDING
3754 /* Do it with several push insns if that doesn't take lots of insns
3755 and if there is no difficulty with push insns that skip bytes
3756 on the stack for alignment purposes. */
3757 if (args_addr == 0
3758 && PUSH_ARGS
3759 && GET_CODE (size) == CONST_INT
3760 && skip == 0
3761 && MEM_ALIGN (xinner) >= align
3762 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3763 /* Here we avoid the case of a structure whose weak alignment
3764 forces many pushes of a small amount of data,
3765 and such small pushes do rounding that causes trouble. */
3766 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3767 || align >= BIGGEST_ALIGNMENT
3768 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3769 == (align / BITS_PER_UNIT)))
3770 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3772 /* Push padding now if padding above and stack grows down,
3773 or if padding below and stack grows up.
3774 But if space already allocated, this has already been done. */
3775 if (extra && args_addr == 0
3776 && where_pad != none && where_pad != stack_direction)
3777 anti_adjust_stack (GEN_INT (extra));
3779 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3781 else
3782 #endif /* PUSH_ROUNDING */
3784 rtx target;
3786 /* Otherwise make space on the stack and copy the data
3787 to the address of that space. */
3789 /* Deduct words put into registers from the size we must copy. */
3790 if (partial != 0)
3792 if (GET_CODE (size) == CONST_INT)
3793 size = GEN_INT (INTVAL (size) - used);
3794 else
3795 size = expand_binop (GET_MODE (size), sub_optab, size,
3796 GEN_INT (used), NULL_RTX, 0,
3797 OPTAB_LIB_WIDEN);
3800 /* Get the address of the stack space.
3801 In this case, we do not deal with EXTRA separately.
3802 A single stack adjust will do. */
3803 if (! args_addr)
3805 temp = push_block (size, extra, where_pad == downward);
3806 extra = 0;
3808 else if (GET_CODE (args_so_far) == CONST_INT)
3809 temp = memory_address (BLKmode,
3810 plus_constant (args_addr,
3811 skip + INTVAL (args_so_far)));
3812 else
3813 temp = memory_address (BLKmode,
3814 plus_constant (gen_rtx_PLUS (Pmode,
3815 args_addr,
3816 args_so_far),
3817 skip));
3819 if (!ACCUMULATE_OUTGOING_ARGS)
3821 /* If the source is referenced relative to the stack pointer,
3822 copy it to another register to stabilize it. We do not need
3823 to do this if we know that we won't be changing sp. */
3825 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3826 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3827 temp = copy_to_reg (temp);
3830 target = gen_rtx_MEM (BLKmode, temp);
3832 /* We do *not* set_mem_attributes here, because incoming arguments
3833 may overlap with sibling call outgoing arguments and we cannot
3834 allow reordering of reads from function arguments with stores
3835 to outgoing arguments of sibling calls. We do, however, want
3836 to record the alignment of the stack slot. */
3837 /* ALIGN may well be better aligned than TYPE, e.g. due to
3838 PARM_BOUNDARY. Assume the caller isn't lying. */
3839 set_mem_align (target, align);
3841 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3844 else if (partial > 0)
3846 /* Scalar partly in registers. */
3848 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3849 int i;
3850 int not_stack;
3851 /* # bytes of start of argument
3852 that we must make space for but need not store. */
3853 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3854 int args_offset = INTVAL (args_so_far);
3855 int skip;
3857 /* Push padding now if padding above and stack grows down,
3858 or if padding below and stack grows up.
3859 But if space already allocated, this has already been done. */
3860 if (extra && args_addr == 0
3861 && where_pad != none && where_pad != stack_direction)
3862 anti_adjust_stack (GEN_INT (extra));
3864 /* If we make space by pushing it, we might as well push
3865 the real data. Otherwise, we can leave OFFSET nonzero
3866 and leave the space uninitialized. */
3867 if (args_addr == 0)
3868 offset = 0;
3870 /* Now NOT_STACK gets the number of words that we don't need to
3871 allocate on the stack. Convert OFFSET to words too. */
3872 not_stack = (partial - offset) / UNITS_PER_WORD;
3873 offset /= UNITS_PER_WORD;
3875 /* If the partial register-part of the arg counts in its stack size,
3876 skip the part of stack space corresponding to the registers.
3877 Otherwise, start copying to the beginning of the stack space,
3878 by setting SKIP to 0. */
3879 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3881 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3882 x = validize_mem (force_const_mem (mode, x));
3884 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3885 SUBREGs of such registers are not allowed. */
3886 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3887 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3888 x = copy_to_reg (x);
3890 /* Loop over all the words allocated on the stack for this arg. */
3891 /* We can do it by words, because any scalar bigger than a word
3892 has a size a multiple of a word. */
3893 #ifndef PUSH_ARGS_REVERSED
3894 for (i = not_stack; i < size; i++)
3895 #else
3896 for (i = size - 1; i >= not_stack; i--)
3897 #endif
3898 if (i >= not_stack + offset)
3899 emit_push_insn (operand_subword_force (x, i, mode),
3900 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3901 0, args_addr,
3902 GEN_INT (args_offset + ((i - not_stack + skip)
3903 * UNITS_PER_WORD)),
3904 reg_parm_stack_space, alignment_pad);
3906 else
3908 rtx addr;
3909 rtx dest;
3911 /* Push padding now if padding above and stack grows down,
3912 or if padding below and stack grows up.
3913 But if space already allocated, this has already been done. */
3914 if (extra && args_addr == 0
3915 && where_pad != none && where_pad != stack_direction)
3916 anti_adjust_stack (GEN_INT (extra));
3918 #ifdef PUSH_ROUNDING
3919 if (args_addr == 0 && PUSH_ARGS)
3920 emit_single_push_insn (mode, x, type);
3921 else
3922 #endif
3924 if (GET_CODE (args_so_far) == CONST_INT)
3925 addr
3926 = memory_address (mode,
3927 plus_constant (args_addr,
3928 INTVAL (args_so_far)));
3929 else
3930 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3931 args_so_far));
3932 dest = gen_rtx_MEM (mode, addr);
3934 /* We do *not* set_mem_attributes here, because incoming arguments
3935 may overlap with sibling call outgoing arguments and we cannot
3936 allow reordering of reads from function arguments with stores
3937 to outgoing arguments of sibling calls. We do, however, want
3938 to record the alignment of the stack slot. */
3939 /* ALIGN may well be better aligned than TYPE, e.g. due to
3940 PARM_BOUNDARY. Assume the caller isn't lying. */
3941 set_mem_align (dest, align);
3943 emit_move_insn (dest, x);
3947 /* If part should go in registers, copy that part
3948 into the appropriate registers. Do this now, at the end,
3949 since mem-to-mem copies above may do function calls. */
3950 if (partial > 0 && reg != 0)
3952 /* Handle calls that pass values in multiple non-contiguous locations.
3953 The Irix 6 ABI has examples of this. */
3954 if (GET_CODE (reg) == PARALLEL)
3955 emit_group_load (reg, x, type, -1);
3956 else
3958 gcc_assert (partial % UNITS_PER_WORD == 0);
3959 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3963 if (extra && args_addr == 0 && where_pad == stack_direction)
3964 anti_adjust_stack (GEN_INT (extra));
3966 if (alignment_pad && args_addr == 0)
3967 anti_adjust_stack (alignment_pad);
3970 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3971 operations. */
3973 static rtx
3974 get_subtarget (rtx x)
3976 return (optimize
3977 || x == 0
3978 /* Only registers can be subtargets. */
3979 || !REG_P (x)
3980 /* Don't use hard regs to avoid extending their life. */
3981 || REGNO (x) < FIRST_PSEUDO_REGISTER
3982 ? 0 : x);
3985 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3986 FIELD is a bitfield. Returns true if the optimization was successful,
3987 and there's nothing else to do. */
3989 static bool
3990 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3991 unsigned HOST_WIDE_INT bitpos,
3992 enum machine_mode mode1, rtx str_rtx,
3993 tree to, tree src)
3995 enum machine_mode str_mode = GET_MODE (str_rtx);
3996 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3997 tree op0, op1;
3998 rtx value, result;
3999 optab binop;
4001 if (mode1 != VOIDmode
4002 || bitsize >= BITS_PER_WORD
4003 || str_bitsize > BITS_PER_WORD
4004 || TREE_SIDE_EFFECTS (to)
4005 || TREE_THIS_VOLATILE (to))
4006 return false;
4008 STRIP_NOPS (src);
4009 if (!BINARY_CLASS_P (src)
4010 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4011 return false;
4013 op0 = TREE_OPERAND (src, 0);
4014 op1 = TREE_OPERAND (src, 1);
4015 STRIP_NOPS (op0);
4017 if (!operand_equal_p (to, op0, 0))
4018 return false;
4020 if (MEM_P (str_rtx))
4022 unsigned HOST_WIDE_INT offset1;
4024 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4025 str_mode = word_mode;
4026 str_mode = get_best_mode (bitsize, bitpos,
4027 MEM_ALIGN (str_rtx), str_mode, 0);
4028 if (str_mode == VOIDmode)
4029 return false;
4030 str_bitsize = GET_MODE_BITSIZE (str_mode);
4032 offset1 = bitpos;
4033 bitpos %= str_bitsize;
4034 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4035 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4037 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4038 return false;
4040 /* If the bit field covers the whole REG/MEM, store_field
4041 will likely generate better code. */
4042 if (bitsize >= str_bitsize)
4043 return false;
4045 /* We can't handle fields split across multiple entities. */
4046 if (bitpos + bitsize > str_bitsize)
4047 return false;
4049 if (BYTES_BIG_ENDIAN)
4050 bitpos = str_bitsize - bitpos - bitsize;
4052 switch (TREE_CODE (src))
4054 case PLUS_EXPR:
4055 case MINUS_EXPR:
4056 /* For now, just optimize the case of the topmost bitfield
4057 where we don't need to do any masking and also
4058 1 bit bitfields where xor can be used.
4059 We might win by one instruction for the other bitfields
4060 too if insv/extv instructions aren't used, so that
4061 can be added later. */
4062 if (bitpos + bitsize != str_bitsize
4063 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4064 break;
4066 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4067 value = convert_modes (str_mode,
4068 TYPE_MODE (TREE_TYPE (op1)), value,
4069 TYPE_UNSIGNED (TREE_TYPE (op1)));
4071 /* We may be accessing data outside the field, which means
4072 we can alias adjacent data. */
4073 if (MEM_P (str_rtx))
4075 str_rtx = shallow_copy_rtx (str_rtx);
4076 set_mem_alias_set (str_rtx, 0);
4077 set_mem_expr (str_rtx, 0);
4080 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4081 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4083 value = expand_and (str_mode, value, const1_rtx, NULL);
4084 binop = xor_optab;
4086 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4087 build_int_cst (NULL_TREE, bitpos),
4088 NULL_RTX, 1);
4089 result = expand_binop (str_mode, binop, str_rtx,
4090 value, str_rtx, 1, OPTAB_WIDEN);
4091 if (result != str_rtx)
4092 emit_move_insn (str_rtx, result);
4093 return true;
4095 case BIT_IOR_EXPR:
4096 case BIT_XOR_EXPR:
4097 if (TREE_CODE (op1) != INTEGER_CST)
4098 break;
4099 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4100 value = convert_modes (GET_MODE (str_rtx),
4101 TYPE_MODE (TREE_TYPE (op1)), value,
4102 TYPE_UNSIGNED (TREE_TYPE (op1)));
4104 /* We may be accessing data outside the field, which means
4105 we can alias adjacent data. */
4106 if (MEM_P (str_rtx))
4108 str_rtx = shallow_copy_rtx (str_rtx);
4109 set_mem_alias_set (str_rtx, 0);
4110 set_mem_expr (str_rtx, 0);
4113 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4114 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4116 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4117 - 1);
4118 value = expand_and (GET_MODE (str_rtx), value, mask,
4119 NULL_RTX);
4121 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4122 build_int_cst (NULL_TREE, bitpos),
4123 NULL_RTX, 1);
4124 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4125 value, str_rtx, 1, OPTAB_WIDEN);
4126 if (result != str_rtx)
4127 emit_move_insn (str_rtx, result);
4128 return true;
4130 default:
4131 break;
4134 return false;
4138 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4139 is true, try generating a nontemporal store. */
4141 void
4142 expand_assignment (tree to, tree from, bool nontemporal)
4144 rtx to_rtx = 0;
4145 rtx result;
4147 /* Don't crash if the lhs of the assignment was erroneous. */
4148 if (TREE_CODE (to) == ERROR_MARK)
4150 result = expand_normal (from);
4151 return;
4154 /* Optimize away no-op moves without side-effects. */
4155 if (operand_equal_p (to, from, 0))
4156 return;
4158 /* Assignment of a structure component needs special treatment
4159 if the structure component's rtx is not simply a MEM.
4160 Assignment of an array element at a constant index, and assignment of
4161 an array element in an unaligned packed structure field, has the same
4162 problem. */
4163 if (handled_component_p (to)
4164 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4166 enum machine_mode mode1;
4167 HOST_WIDE_INT bitsize, bitpos;
4168 tree offset;
4169 int unsignedp;
4170 int volatilep = 0;
4171 tree tem;
4173 push_temp_slots ();
4174 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4175 &unsignedp, &volatilep, true);
4177 /* If we are going to use store_bit_field and extract_bit_field,
4178 make sure to_rtx will be safe for multiple use. */
4180 to_rtx = expand_normal (tem);
4182 if (offset != 0)
4184 rtx offset_rtx;
4186 if (!MEM_P (to_rtx))
4188 /* We can get constant negative offsets into arrays with broken
4189 user code. Translate this to a trap instead of ICEing. */
4190 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4191 expand_builtin_trap ();
4192 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4195 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4196 #ifdef POINTERS_EXTEND_UNSIGNED
4197 if (GET_MODE (offset_rtx) != Pmode)
4198 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4199 #else
4200 if (GET_MODE (offset_rtx) != ptr_mode)
4201 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4202 #endif
4204 /* A constant address in TO_RTX can have VOIDmode, we must not try
4205 to call force_reg for that case. Avoid that case. */
4206 if (MEM_P (to_rtx)
4207 && GET_MODE (to_rtx) == BLKmode
4208 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4209 && bitsize > 0
4210 && (bitpos % bitsize) == 0
4211 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4212 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4214 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4215 bitpos = 0;
4218 to_rtx = offset_address (to_rtx, offset_rtx,
4219 highest_pow2_factor_for_target (to,
4220 offset));
4223 /* Handle expand_expr of a complex value returning a CONCAT. */
4224 if (GET_CODE (to_rtx) == CONCAT)
4226 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4228 gcc_assert (bitpos == 0);
4229 result = store_expr (from, to_rtx, false, nontemporal);
4231 else
4233 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4234 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4235 nontemporal);
4238 else
4240 if (MEM_P (to_rtx))
4242 /* If the field is at offset zero, we could have been given the
4243 DECL_RTX of the parent struct. Don't munge it. */
4244 to_rtx = shallow_copy_rtx (to_rtx);
4246 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4248 /* Deal with volatile and readonly fields. The former is only
4249 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4250 if (volatilep)
4251 MEM_VOLATILE_P (to_rtx) = 1;
4252 if (component_uses_parent_alias_set (to))
4253 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4256 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4257 to_rtx, to, from))
4258 result = NULL;
4259 else
4260 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4261 TREE_TYPE (tem), get_alias_set (to),
4262 nontemporal);
4265 if (result)
4266 preserve_temp_slots (result);
4267 free_temp_slots ();
4268 pop_temp_slots ();
4269 return;
4272 /* If the rhs is a function call and its value is not an aggregate,
4273 call the function before we start to compute the lhs.
4274 This is needed for correct code for cases such as
4275 val = setjmp (buf) on machines where reference to val
4276 requires loading up part of an address in a separate insn.
4278 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4279 since it might be a promoted variable where the zero- or sign- extension
4280 needs to be done. Handling this in the normal way is safe because no
4281 computation is done before the call. */
4282 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4283 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4284 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4285 && REG_P (DECL_RTL (to))))
4287 rtx value;
4289 push_temp_slots ();
4290 value = expand_normal (from);
4291 if (to_rtx == 0)
4292 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4294 /* Handle calls that return values in multiple non-contiguous locations.
4295 The Irix 6 ABI has examples of this. */
4296 if (GET_CODE (to_rtx) == PARALLEL)
4297 emit_group_load (to_rtx, value, TREE_TYPE (from),
4298 int_size_in_bytes (TREE_TYPE (from)));
4299 else if (GET_MODE (to_rtx) == BLKmode)
4300 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4301 else
4303 if (POINTER_TYPE_P (TREE_TYPE (to)))
4304 value = convert_memory_address (GET_MODE (to_rtx), value);
4305 emit_move_insn (to_rtx, value);
4307 preserve_temp_slots (to_rtx);
4308 free_temp_slots ();
4309 pop_temp_slots ();
4310 return;
4313 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4314 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4316 if (to_rtx == 0)
4317 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4319 /* Don't move directly into a return register. */
4320 if (TREE_CODE (to) == RESULT_DECL
4321 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4323 rtx temp;
4325 push_temp_slots ();
4326 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4328 if (GET_CODE (to_rtx) == PARALLEL)
4329 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4330 int_size_in_bytes (TREE_TYPE (from)));
4331 else
4332 emit_move_insn (to_rtx, temp);
4334 preserve_temp_slots (to_rtx);
4335 free_temp_slots ();
4336 pop_temp_slots ();
4337 return;
4340 /* In case we are returning the contents of an object which overlaps
4341 the place the value is being stored, use a safe function when copying
4342 a value through a pointer into a structure value return block. */
4343 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4344 && cfun->returns_struct
4345 && !cfun->returns_pcc_struct)
4347 rtx from_rtx, size;
4349 push_temp_slots ();
4350 size = expr_size (from);
4351 from_rtx = expand_normal (from);
4353 emit_library_call (memmove_libfunc, LCT_NORMAL,
4354 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4355 XEXP (from_rtx, 0), Pmode,
4356 convert_to_mode (TYPE_MODE (sizetype),
4357 size, TYPE_UNSIGNED (sizetype)),
4358 TYPE_MODE (sizetype));
4360 preserve_temp_slots (to_rtx);
4361 free_temp_slots ();
4362 pop_temp_slots ();
4363 return;
4366 /* Compute FROM and store the value in the rtx we got. */
4368 push_temp_slots ();
4369 result = store_expr (from, to_rtx, 0, nontemporal);
4370 preserve_temp_slots (result);
4371 free_temp_slots ();
4372 pop_temp_slots ();
4373 return;
4376 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4377 succeeded, false otherwise. */
4379 static bool
4380 emit_storent_insn (rtx to, rtx from)
4382 enum machine_mode mode = GET_MODE (to), imode;
4383 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4384 rtx pattern;
4386 if (code == CODE_FOR_nothing)
4387 return false;
4389 imode = insn_data[code].operand[0].mode;
4390 if (!insn_data[code].operand[0].predicate (to, imode))
4391 return false;
4393 imode = insn_data[code].operand[1].mode;
4394 if (!insn_data[code].operand[1].predicate (from, imode))
4396 from = copy_to_mode_reg (imode, from);
4397 if (!insn_data[code].operand[1].predicate (from, imode))
4398 return false;
4401 pattern = GEN_FCN (code) (to, from);
4402 if (pattern == NULL_RTX)
4403 return false;
4405 emit_insn (pattern);
4406 return true;
4409 /* Generate code for computing expression EXP,
4410 and storing the value into TARGET.
4412 If the mode is BLKmode then we may return TARGET itself.
4413 It turns out that in BLKmode it doesn't cause a problem.
4414 because C has no operators that could combine two different
4415 assignments into the same BLKmode object with different values
4416 with no sequence point. Will other languages need this to
4417 be more thorough?
4419 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4420 stack, and block moves may need to be treated specially.
4422 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4425 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4427 rtx temp;
4428 rtx alt_rtl = NULL_RTX;
4429 int dont_return_target = 0;
4431 if (VOID_TYPE_P (TREE_TYPE (exp)))
4433 /* C++ can generate ?: expressions with a throw expression in one
4434 branch and an rvalue in the other. Here, we resolve attempts to
4435 store the throw expression's nonexistent result. */
4436 gcc_assert (!call_param_p);
4437 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4438 return NULL_RTX;
4440 if (TREE_CODE (exp) == COMPOUND_EXPR)
4442 /* Perform first part of compound expression, then assign from second
4443 part. */
4444 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4445 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4446 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4447 nontemporal);
4449 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4451 /* For conditional expression, get safe form of the target. Then
4452 test the condition, doing the appropriate assignment on either
4453 side. This avoids the creation of unnecessary temporaries.
4454 For non-BLKmode, it is more efficient not to do this. */
4456 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4458 do_pending_stack_adjust ();
4459 NO_DEFER_POP;
4460 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4461 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4462 nontemporal);
4463 emit_jump_insn (gen_jump (lab2));
4464 emit_barrier ();
4465 emit_label (lab1);
4466 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4467 nontemporal);
4468 emit_label (lab2);
4469 OK_DEFER_POP;
4471 return NULL_RTX;
4473 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4474 /* If this is a scalar in a register that is stored in a wider mode
4475 than the declared mode, compute the result into its declared mode
4476 and then convert to the wider mode. Our value is the computed
4477 expression. */
4479 rtx inner_target = 0;
4481 /* We can do the conversion inside EXP, which will often result
4482 in some optimizations. Do the conversion in two steps: first
4483 change the signedness, if needed, then the extend. But don't
4484 do this if the type of EXP is a subtype of something else
4485 since then the conversion might involve more than just
4486 converting modes. */
4487 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4488 && TREE_TYPE (TREE_TYPE (exp)) == 0
4489 && GET_MODE_PRECISION (GET_MODE (target))
4490 == TYPE_PRECISION (TREE_TYPE (exp)))
4492 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4493 != SUBREG_PROMOTED_UNSIGNED_P (target))
4495 /* Some types, e.g. Fortran's logical*4, won't have a signed
4496 version, so use the mode instead. */
4497 tree ntype
4498 = (signed_or_unsigned_type_for
4499 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4500 if (ntype == NULL)
4501 ntype = lang_hooks.types.type_for_mode
4502 (TYPE_MODE (TREE_TYPE (exp)),
4503 SUBREG_PROMOTED_UNSIGNED_P (target));
4505 exp = fold_convert (ntype, exp);
4508 exp = fold_convert (lang_hooks.types.type_for_mode
4509 (GET_MODE (SUBREG_REG (target)),
4510 SUBREG_PROMOTED_UNSIGNED_P (target)),
4511 exp);
4513 inner_target = SUBREG_REG (target);
4516 temp = expand_expr (exp, inner_target, VOIDmode,
4517 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4519 /* If TEMP is a VOIDmode constant, use convert_modes to make
4520 sure that we properly convert it. */
4521 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4523 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4524 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4525 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4526 GET_MODE (target), temp,
4527 SUBREG_PROMOTED_UNSIGNED_P (target));
4530 convert_move (SUBREG_REG (target), temp,
4531 SUBREG_PROMOTED_UNSIGNED_P (target));
4533 return NULL_RTX;
4535 else if (TREE_CODE (exp) == STRING_CST
4536 && !nontemporal && !call_param_p
4537 && TREE_STRING_LENGTH (exp) > 0
4538 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4540 /* Optimize initialization of an array with a STRING_CST. */
4541 HOST_WIDE_INT exp_len, str_copy_len;
4542 rtx dest_mem;
4544 exp_len = int_expr_size (exp);
4545 if (exp_len <= 0)
4546 goto normal_expr;
4548 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4549 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4550 goto normal_expr;
4552 str_copy_len = TREE_STRING_LENGTH (exp);
4553 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4555 str_copy_len += STORE_MAX_PIECES - 1;
4556 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4558 str_copy_len = MIN (str_copy_len, exp_len);
4559 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4560 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4561 MEM_ALIGN (target), false))
4562 goto normal_expr;
4564 dest_mem = target;
4566 dest_mem = store_by_pieces (dest_mem,
4567 str_copy_len, builtin_strncpy_read_str,
4568 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4569 MEM_ALIGN (target), false,
4570 exp_len > str_copy_len ? 1 : 0);
4571 if (exp_len > str_copy_len)
4572 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4573 GEN_INT (exp_len - str_copy_len),
4574 BLOCK_OP_NORMAL);
4575 return NULL_RTX;
4577 else
4579 rtx tmp_target;
4581 normal_expr:
4582 /* If we want to use a nontemporal store, force the value to
4583 register first. */
4584 tmp_target = nontemporal ? NULL_RTX : target;
4585 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4586 (call_param_p
4587 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4588 &alt_rtl);
4589 /* Return TARGET if it's a specified hardware register.
4590 If TARGET is a volatile mem ref, either return TARGET
4591 or return a reg copied *from* TARGET; ANSI requires this.
4593 Otherwise, if TEMP is not TARGET, return TEMP
4594 if it is constant (for efficiency),
4595 or if we really want the correct value. */
4596 if (!(target && REG_P (target)
4597 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4598 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4599 && ! rtx_equal_p (temp, target)
4600 && CONSTANT_P (temp))
4601 dont_return_target = 1;
4604 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4605 the same as that of TARGET, adjust the constant. This is needed, for
4606 example, in case it is a CONST_DOUBLE and we want only a word-sized
4607 value. */
4608 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4609 && TREE_CODE (exp) != ERROR_MARK
4610 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4611 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4612 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4614 /* If value was not generated in the target, store it there.
4615 Convert the value to TARGET's type first if necessary and emit the
4616 pending incrementations that have been queued when expanding EXP.
4617 Note that we cannot emit the whole queue blindly because this will
4618 effectively disable the POST_INC optimization later.
4620 If TEMP and TARGET compare equal according to rtx_equal_p, but
4621 one or both of them are volatile memory refs, we have to distinguish
4622 two cases:
4623 - expand_expr has used TARGET. In this case, we must not generate
4624 another copy. This can be detected by TARGET being equal according
4625 to == .
4626 - expand_expr has not used TARGET - that means that the source just
4627 happens to have the same RTX form. Since temp will have been created
4628 by expand_expr, it will compare unequal according to == .
4629 We must generate a copy in this case, to reach the correct number
4630 of volatile memory references. */
4632 if ((! rtx_equal_p (temp, target)
4633 || (temp != target && (side_effects_p (temp)
4634 || side_effects_p (target))))
4635 && TREE_CODE (exp) != ERROR_MARK
4636 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4637 but TARGET is not valid memory reference, TEMP will differ
4638 from TARGET although it is really the same location. */
4639 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4640 /* If there's nothing to copy, don't bother. Don't call
4641 expr_size unless necessary, because some front-ends (C++)
4642 expr_size-hook must not be given objects that are not
4643 supposed to be bit-copied or bit-initialized. */
4644 && expr_size (exp) != const0_rtx)
4646 if (GET_MODE (temp) != GET_MODE (target)
4647 && GET_MODE (temp) != VOIDmode)
4649 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4650 if (dont_return_target)
4652 /* In this case, we will return TEMP,
4653 so make sure it has the proper mode.
4654 But don't forget to store the value into TARGET. */
4655 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4656 emit_move_insn (target, temp);
4658 else if (GET_MODE (target) == BLKmode
4659 || GET_MODE (temp) == BLKmode)
4660 emit_block_move (target, temp, expr_size (exp),
4661 (call_param_p
4662 ? BLOCK_OP_CALL_PARM
4663 : BLOCK_OP_NORMAL));
4664 else
4665 convert_move (target, temp, unsignedp);
4668 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4670 /* Handle copying a string constant into an array. The string
4671 constant may be shorter than the array. So copy just the string's
4672 actual length, and clear the rest. First get the size of the data
4673 type of the string, which is actually the size of the target. */
4674 rtx size = expr_size (exp);
4676 if (GET_CODE (size) == CONST_INT
4677 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4678 emit_block_move (target, temp, size,
4679 (call_param_p
4680 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4681 else
4683 /* Compute the size of the data to copy from the string. */
4684 tree copy_size
4685 = size_binop (MIN_EXPR,
4686 make_tree (sizetype, size),
4687 size_int (TREE_STRING_LENGTH (exp)));
4688 rtx copy_size_rtx
4689 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4690 (call_param_p
4691 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4692 rtx label = 0;
4694 /* Copy that much. */
4695 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4696 TYPE_UNSIGNED (sizetype));
4697 emit_block_move (target, temp, copy_size_rtx,
4698 (call_param_p
4699 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4701 /* Figure out how much is left in TARGET that we have to clear.
4702 Do all calculations in ptr_mode. */
4703 if (GET_CODE (copy_size_rtx) == CONST_INT)
4705 size = plus_constant (size, -INTVAL (copy_size_rtx));
4706 target = adjust_address (target, BLKmode,
4707 INTVAL (copy_size_rtx));
4709 else
4711 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4712 copy_size_rtx, NULL_RTX, 0,
4713 OPTAB_LIB_WIDEN);
4715 #ifdef POINTERS_EXTEND_UNSIGNED
4716 if (GET_MODE (copy_size_rtx) != Pmode)
4717 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4718 TYPE_UNSIGNED (sizetype));
4719 #endif
4721 target = offset_address (target, copy_size_rtx,
4722 highest_pow2_factor (copy_size));
4723 label = gen_label_rtx ();
4724 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4725 GET_MODE (size), 0, label);
4728 if (size != const0_rtx)
4729 clear_storage (target, size, BLOCK_OP_NORMAL);
4731 if (label)
4732 emit_label (label);
4735 /* Handle calls that return values in multiple non-contiguous locations.
4736 The Irix 6 ABI has examples of this. */
4737 else if (GET_CODE (target) == PARALLEL)
4738 emit_group_load (target, temp, TREE_TYPE (exp),
4739 int_size_in_bytes (TREE_TYPE (exp)));
4740 else if (GET_MODE (temp) == BLKmode)
4741 emit_block_move (target, temp, expr_size (exp),
4742 (call_param_p
4743 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4744 else if (nontemporal
4745 && emit_storent_insn (target, temp))
4746 /* If we managed to emit a nontemporal store, there is nothing else to
4747 do. */
4749 else
4751 temp = force_operand (temp, target);
4752 if (temp != target)
4753 emit_move_insn (target, temp);
4757 return NULL_RTX;
4760 /* Helper for categorize_ctor_elements. Identical interface. */
4762 static bool
4763 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4764 HOST_WIDE_INT *p_elt_count,
4765 bool *p_must_clear)
4767 unsigned HOST_WIDE_INT idx;
4768 HOST_WIDE_INT nz_elts, elt_count;
4769 tree value, purpose;
4771 /* Whether CTOR is a valid constant initializer, in accordance with what
4772 initializer_constant_valid_p does. If inferred from the constructor
4773 elements, true until proven otherwise. */
4774 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4775 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4777 nz_elts = 0;
4778 elt_count = 0;
4780 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4782 HOST_WIDE_INT mult;
4784 mult = 1;
4785 if (TREE_CODE (purpose) == RANGE_EXPR)
4787 tree lo_index = TREE_OPERAND (purpose, 0);
4788 tree hi_index = TREE_OPERAND (purpose, 1);
4790 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4791 mult = (tree_low_cst (hi_index, 1)
4792 - tree_low_cst (lo_index, 1) + 1);
4795 switch (TREE_CODE (value))
4797 case CONSTRUCTOR:
4799 HOST_WIDE_INT nz = 0, ic = 0;
4801 bool const_elt_p
4802 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4804 nz_elts += mult * nz;
4805 elt_count += mult * ic;
4807 if (const_from_elts_p && const_p)
4808 const_p = const_elt_p;
4810 break;
4812 case INTEGER_CST:
4813 case REAL_CST:
4814 case FIXED_CST:
4815 if (!initializer_zerop (value))
4816 nz_elts += mult;
4817 elt_count += mult;
4818 break;
4820 case STRING_CST:
4821 nz_elts += mult * TREE_STRING_LENGTH (value);
4822 elt_count += mult * TREE_STRING_LENGTH (value);
4823 break;
4825 case COMPLEX_CST:
4826 if (!initializer_zerop (TREE_REALPART (value)))
4827 nz_elts += mult;
4828 if (!initializer_zerop (TREE_IMAGPART (value)))
4829 nz_elts += mult;
4830 elt_count += mult;
4831 break;
4833 case VECTOR_CST:
4835 tree v;
4836 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4838 if (!initializer_zerop (TREE_VALUE (v)))
4839 nz_elts += mult;
4840 elt_count += mult;
4843 break;
4845 default:
4846 nz_elts += mult;
4847 elt_count += mult;
4849 if (const_from_elts_p && const_p)
4850 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4851 != NULL_TREE;
4852 break;
4856 if (!*p_must_clear
4857 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4858 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4860 tree init_sub_type;
4861 bool clear_this = true;
4863 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4865 /* We don't expect more than one element of the union to be
4866 initialized. Not sure what we should do otherwise... */
4867 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4868 == 1);
4870 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4871 CONSTRUCTOR_ELTS (ctor),
4872 0)->value);
4874 /* ??? We could look at each element of the union, and find the
4875 largest element. Which would avoid comparing the size of the
4876 initialized element against any tail padding in the union.
4877 Doesn't seem worth the effort... */
4878 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4879 TYPE_SIZE (init_sub_type)) == 1)
4881 /* And now we have to find out if the element itself is fully
4882 constructed. E.g. for union { struct { int a, b; } s; } u
4883 = { .s = { .a = 1 } }. */
4884 if (elt_count == count_type_elements (init_sub_type, false))
4885 clear_this = false;
4889 *p_must_clear = clear_this;
4892 *p_nz_elts += nz_elts;
4893 *p_elt_count += elt_count;
4895 return const_p;
4898 /* Examine CTOR to discover:
4899 * how many scalar fields are set to nonzero values,
4900 and place it in *P_NZ_ELTS;
4901 * how many scalar fields in total are in CTOR,
4902 and place it in *P_ELT_COUNT.
4903 * if a type is a union, and the initializer from the constructor
4904 is not the largest element in the union, then set *p_must_clear.
4906 Return whether or not CTOR is a valid static constant initializer, the same
4907 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4909 bool
4910 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4911 HOST_WIDE_INT *p_elt_count,
4912 bool *p_must_clear)
4914 *p_nz_elts = 0;
4915 *p_elt_count = 0;
4916 *p_must_clear = false;
4918 return
4919 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4922 /* Count the number of scalars in TYPE. Return -1 on overflow or
4923 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4924 array member at the end of the structure. */
4926 HOST_WIDE_INT
4927 count_type_elements (const_tree type, bool allow_flexarr)
4929 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4930 switch (TREE_CODE (type))
4932 case ARRAY_TYPE:
4934 tree telts = array_type_nelts (type);
4935 if (telts && host_integerp (telts, 1))
4937 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4938 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4939 if (n == 0)
4940 return 0;
4941 else if (max / n > m)
4942 return n * m;
4944 return -1;
4947 case RECORD_TYPE:
4949 HOST_WIDE_INT n = 0, t;
4950 tree f;
4952 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4953 if (TREE_CODE (f) == FIELD_DECL)
4955 t = count_type_elements (TREE_TYPE (f), false);
4956 if (t < 0)
4958 /* Check for structures with flexible array member. */
4959 tree tf = TREE_TYPE (f);
4960 if (allow_flexarr
4961 && TREE_CHAIN (f) == NULL
4962 && TREE_CODE (tf) == ARRAY_TYPE
4963 && TYPE_DOMAIN (tf)
4964 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4965 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4966 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4967 && int_size_in_bytes (type) >= 0)
4968 break;
4970 return -1;
4972 n += t;
4975 return n;
4978 case UNION_TYPE:
4979 case QUAL_UNION_TYPE:
4980 return -1;
4982 case COMPLEX_TYPE:
4983 return 2;
4985 case VECTOR_TYPE:
4986 return TYPE_VECTOR_SUBPARTS (type);
4988 case INTEGER_TYPE:
4989 case REAL_TYPE:
4990 case FIXED_POINT_TYPE:
4991 case ENUMERAL_TYPE:
4992 case BOOLEAN_TYPE:
4993 case POINTER_TYPE:
4994 case OFFSET_TYPE:
4995 case REFERENCE_TYPE:
4996 return 1;
4998 case VOID_TYPE:
4999 case METHOD_TYPE:
5000 case FUNCTION_TYPE:
5001 case LANG_TYPE:
5002 default:
5003 gcc_unreachable ();
5007 /* Return 1 if EXP contains mostly (3/4) zeros. */
5009 static int
5010 mostly_zeros_p (const_tree exp)
5012 if (TREE_CODE (exp) == CONSTRUCTOR)
5015 HOST_WIDE_INT nz_elts, count, elts;
5016 bool must_clear;
5018 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5019 if (must_clear)
5020 return 1;
5022 elts = count_type_elements (TREE_TYPE (exp), false);
5024 return nz_elts < elts / 4;
5027 return initializer_zerop (exp);
5030 /* Return 1 if EXP contains all zeros. */
5032 static int
5033 all_zeros_p (const_tree exp)
5035 if (TREE_CODE (exp) == CONSTRUCTOR)
5038 HOST_WIDE_INT nz_elts, count;
5039 bool must_clear;
5041 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5042 return nz_elts == 0;
5045 return initializer_zerop (exp);
5048 /* Helper function for store_constructor.
5049 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5050 TYPE is the type of the CONSTRUCTOR, not the element type.
5051 CLEARED is as for store_constructor.
5052 ALIAS_SET is the alias set to use for any stores.
5054 This provides a recursive shortcut back to store_constructor when it isn't
5055 necessary to go through store_field. This is so that we can pass through
5056 the cleared field to let store_constructor know that we may not have to
5057 clear a substructure if the outer structure has already been cleared. */
5059 static void
5060 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5061 HOST_WIDE_INT bitpos, enum machine_mode mode,
5062 tree exp, tree type, int cleared,
5063 alias_set_type alias_set)
5065 if (TREE_CODE (exp) == CONSTRUCTOR
5066 /* We can only call store_constructor recursively if the size and
5067 bit position are on a byte boundary. */
5068 && bitpos % BITS_PER_UNIT == 0
5069 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5070 /* If we have a nonzero bitpos for a register target, then we just
5071 let store_field do the bitfield handling. This is unlikely to
5072 generate unnecessary clear instructions anyways. */
5073 && (bitpos == 0 || MEM_P (target)))
5075 if (MEM_P (target))
5076 target
5077 = adjust_address (target,
5078 GET_MODE (target) == BLKmode
5079 || 0 != (bitpos
5080 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5081 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5084 /* Update the alias set, if required. */
5085 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5086 && MEM_ALIAS_SET (target) != 0)
5088 target = copy_rtx (target);
5089 set_mem_alias_set (target, alias_set);
5092 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5094 else
5095 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5098 /* Store the value of constructor EXP into the rtx TARGET.
5099 TARGET is either a REG or a MEM; we know it cannot conflict, since
5100 safe_from_p has been called.
5101 CLEARED is true if TARGET is known to have been zero'd.
5102 SIZE is the number of bytes of TARGET we are allowed to modify: this
5103 may not be the same as the size of EXP if we are assigning to a field
5104 which has been packed to exclude padding bits. */
5106 static void
5107 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5109 tree type = TREE_TYPE (exp);
5110 #ifdef WORD_REGISTER_OPERATIONS
5111 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5112 #endif
5114 switch (TREE_CODE (type))
5116 case RECORD_TYPE:
5117 case UNION_TYPE:
5118 case QUAL_UNION_TYPE:
5120 unsigned HOST_WIDE_INT idx;
5121 tree field, value;
5123 /* If size is zero or the target is already cleared, do nothing. */
5124 if (size == 0 || cleared)
5125 cleared = 1;
5126 /* We either clear the aggregate or indicate the value is dead. */
5127 else if ((TREE_CODE (type) == UNION_TYPE
5128 || TREE_CODE (type) == QUAL_UNION_TYPE)
5129 && ! CONSTRUCTOR_ELTS (exp))
5130 /* If the constructor is empty, clear the union. */
5132 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5133 cleared = 1;
5136 /* If we are building a static constructor into a register,
5137 set the initial value as zero so we can fold the value into
5138 a constant. But if more than one register is involved,
5139 this probably loses. */
5140 else if (REG_P (target) && TREE_STATIC (exp)
5141 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5143 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5144 cleared = 1;
5147 /* If the constructor has fewer fields than the structure or
5148 if we are initializing the structure to mostly zeros, clear
5149 the whole structure first. Don't do this if TARGET is a
5150 register whose mode size isn't equal to SIZE since
5151 clear_storage can't handle this case. */
5152 else if (size > 0
5153 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5154 != fields_length (type))
5155 || mostly_zeros_p (exp))
5156 && (!REG_P (target)
5157 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5158 == size)))
5160 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5161 cleared = 1;
5164 if (REG_P (target) && !cleared)
5165 emit_clobber (target);
5167 /* Store each element of the constructor into the
5168 corresponding field of TARGET. */
5169 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5171 enum machine_mode mode;
5172 HOST_WIDE_INT bitsize;
5173 HOST_WIDE_INT bitpos = 0;
5174 tree offset;
5175 rtx to_rtx = target;
5177 /* Just ignore missing fields. We cleared the whole
5178 structure, above, if any fields are missing. */
5179 if (field == 0)
5180 continue;
5182 if (cleared && initializer_zerop (value))
5183 continue;
5185 if (host_integerp (DECL_SIZE (field), 1))
5186 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5187 else
5188 bitsize = -1;
5190 mode = DECL_MODE (field);
5191 if (DECL_BIT_FIELD (field))
5192 mode = VOIDmode;
5194 offset = DECL_FIELD_OFFSET (field);
5195 if (host_integerp (offset, 0)
5196 && host_integerp (bit_position (field), 0))
5198 bitpos = int_bit_position (field);
5199 offset = 0;
5201 else
5202 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5204 if (offset)
5206 rtx offset_rtx;
5208 offset
5209 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5210 make_tree (TREE_TYPE (exp),
5211 target));
5213 offset_rtx = expand_normal (offset);
5214 gcc_assert (MEM_P (to_rtx));
5216 #ifdef POINTERS_EXTEND_UNSIGNED
5217 if (GET_MODE (offset_rtx) != Pmode)
5218 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
5219 #else
5220 if (GET_MODE (offset_rtx) != ptr_mode)
5221 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
5222 #endif
5224 to_rtx = offset_address (to_rtx, offset_rtx,
5225 highest_pow2_factor (offset));
5228 #ifdef WORD_REGISTER_OPERATIONS
5229 /* If this initializes a field that is smaller than a
5230 word, at the start of a word, try to widen it to a full
5231 word. This special case allows us to output C++ member
5232 function initializations in a form that the optimizers
5233 can understand. */
5234 if (REG_P (target)
5235 && bitsize < BITS_PER_WORD
5236 && bitpos % BITS_PER_WORD == 0
5237 && GET_MODE_CLASS (mode) == MODE_INT
5238 && TREE_CODE (value) == INTEGER_CST
5239 && exp_size >= 0
5240 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5242 tree type = TREE_TYPE (value);
5244 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5246 type = lang_hooks.types.type_for_size
5247 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5248 value = fold_convert (type, value);
5251 if (BYTES_BIG_ENDIAN)
5252 value
5253 = fold_build2 (LSHIFT_EXPR, type, value,
5254 build_int_cst (type,
5255 BITS_PER_WORD - bitsize));
5256 bitsize = BITS_PER_WORD;
5257 mode = word_mode;
5259 #endif
5261 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5262 && DECL_NONADDRESSABLE_P (field))
5264 to_rtx = copy_rtx (to_rtx);
5265 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5268 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5269 value, type, cleared,
5270 get_alias_set (TREE_TYPE (field)));
5272 break;
5274 case ARRAY_TYPE:
5276 tree value, index;
5277 unsigned HOST_WIDE_INT i;
5278 int need_to_clear;
5279 tree domain;
5280 tree elttype = TREE_TYPE (type);
5281 int const_bounds_p;
5282 HOST_WIDE_INT minelt = 0;
5283 HOST_WIDE_INT maxelt = 0;
5285 domain = TYPE_DOMAIN (type);
5286 const_bounds_p = (TYPE_MIN_VALUE (domain)
5287 && TYPE_MAX_VALUE (domain)
5288 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5289 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5291 /* If we have constant bounds for the range of the type, get them. */
5292 if (const_bounds_p)
5294 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5295 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5298 /* If the constructor has fewer elements than the array, clear
5299 the whole array first. Similarly if this is static
5300 constructor of a non-BLKmode object. */
5301 if (cleared)
5302 need_to_clear = 0;
5303 else if (REG_P (target) && TREE_STATIC (exp))
5304 need_to_clear = 1;
5305 else
5307 unsigned HOST_WIDE_INT idx;
5308 tree index, value;
5309 HOST_WIDE_INT count = 0, zero_count = 0;
5310 need_to_clear = ! const_bounds_p;
5312 /* This loop is a more accurate version of the loop in
5313 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5314 is also needed to check for missing elements. */
5315 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5317 HOST_WIDE_INT this_node_count;
5319 if (need_to_clear)
5320 break;
5322 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5324 tree lo_index = TREE_OPERAND (index, 0);
5325 tree hi_index = TREE_OPERAND (index, 1);
5327 if (! host_integerp (lo_index, 1)
5328 || ! host_integerp (hi_index, 1))
5330 need_to_clear = 1;
5331 break;
5334 this_node_count = (tree_low_cst (hi_index, 1)
5335 - tree_low_cst (lo_index, 1) + 1);
5337 else
5338 this_node_count = 1;
5340 count += this_node_count;
5341 if (mostly_zeros_p (value))
5342 zero_count += this_node_count;
5345 /* Clear the entire array first if there are any missing
5346 elements, or if the incidence of zero elements is >=
5347 75%. */
5348 if (! need_to_clear
5349 && (count < maxelt - minelt + 1
5350 || 4 * zero_count >= 3 * count))
5351 need_to_clear = 1;
5354 if (need_to_clear && size > 0)
5356 if (REG_P (target))
5357 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5358 else
5359 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5360 cleared = 1;
5363 if (!cleared && REG_P (target))
5364 /* Inform later passes that the old value is dead. */
5365 emit_clobber (target);
5367 /* Store each element of the constructor into the
5368 corresponding element of TARGET, determined by counting the
5369 elements. */
5370 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5372 enum machine_mode mode;
5373 HOST_WIDE_INT bitsize;
5374 HOST_WIDE_INT bitpos;
5375 int unsignedp;
5376 rtx xtarget = target;
5378 if (cleared && initializer_zerop (value))
5379 continue;
5381 unsignedp = TYPE_UNSIGNED (elttype);
5382 mode = TYPE_MODE (elttype);
5383 if (mode == BLKmode)
5384 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5385 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5386 : -1);
5387 else
5388 bitsize = GET_MODE_BITSIZE (mode);
5390 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5392 tree lo_index = TREE_OPERAND (index, 0);
5393 tree hi_index = TREE_OPERAND (index, 1);
5394 rtx index_r, pos_rtx;
5395 HOST_WIDE_INT lo, hi, count;
5396 tree position;
5398 /* If the range is constant and "small", unroll the loop. */
5399 if (const_bounds_p
5400 && host_integerp (lo_index, 0)
5401 && host_integerp (hi_index, 0)
5402 && (lo = tree_low_cst (lo_index, 0),
5403 hi = tree_low_cst (hi_index, 0),
5404 count = hi - lo + 1,
5405 (!MEM_P (target)
5406 || count <= 2
5407 || (host_integerp (TYPE_SIZE (elttype), 1)
5408 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5409 <= 40 * 8)))))
5411 lo -= minelt; hi -= minelt;
5412 for (; lo <= hi; lo++)
5414 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5416 if (MEM_P (target)
5417 && !MEM_KEEP_ALIAS_SET_P (target)
5418 && TREE_CODE (type) == ARRAY_TYPE
5419 && TYPE_NONALIASED_COMPONENT (type))
5421 target = copy_rtx (target);
5422 MEM_KEEP_ALIAS_SET_P (target) = 1;
5425 store_constructor_field
5426 (target, bitsize, bitpos, mode, value, type, cleared,
5427 get_alias_set (elttype));
5430 else
5432 rtx loop_start = gen_label_rtx ();
5433 rtx loop_end = gen_label_rtx ();
5434 tree exit_cond;
5436 expand_normal (hi_index);
5437 unsignedp = TYPE_UNSIGNED (domain);
5439 index = build_decl (VAR_DECL, NULL_TREE, domain);
5441 index_r
5442 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5443 &unsignedp, 0));
5444 SET_DECL_RTL (index, index_r);
5445 store_expr (lo_index, index_r, 0, false);
5447 /* Build the head of the loop. */
5448 do_pending_stack_adjust ();
5449 emit_label (loop_start);
5451 /* Assign value to element index. */
5452 position =
5453 fold_convert (ssizetype,
5454 fold_build2 (MINUS_EXPR,
5455 TREE_TYPE (index),
5456 index,
5457 TYPE_MIN_VALUE (domain)));
5459 position =
5460 size_binop (MULT_EXPR, position,
5461 fold_convert (ssizetype,
5462 TYPE_SIZE_UNIT (elttype)));
5464 pos_rtx = expand_normal (position);
5465 xtarget = offset_address (target, pos_rtx,
5466 highest_pow2_factor (position));
5467 xtarget = adjust_address (xtarget, mode, 0);
5468 if (TREE_CODE (value) == CONSTRUCTOR)
5469 store_constructor (value, xtarget, cleared,
5470 bitsize / BITS_PER_UNIT);
5471 else
5472 store_expr (value, xtarget, 0, false);
5474 /* Generate a conditional jump to exit the loop. */
5475 exit_cond = build2 (LT_EXPR, integer_type_node,
5476 index, hi_index);
5477 jumpif (exit_cond, loop_end);
5479 /* Update the loop counter, and jump to the head of
5480 the loop. */
5481 expand_assignment (index,
5482 build2 (PLUS_EXPR, TREE_TYPE (index),
5483 index, integer_one_node),
5484 false);
5486 emit_jump (loop_start);
5488 /* Build the end of the loop. */
5489 emit_label (loop_end);
5492 else if ((index != 0 && ! host_integerp (index, 0))
5493 || ! host_integerp (TYPE_SIZE (elttype), 1))
5495 tree position;
5497 if (index == 0)
5498 index = ssize_int (1);
5500 if (minelt)
5501 index = fold_convert (ssizetype,
5502 fold_build2 (MINUS_EXPR,
5503 TREE_TYPE (index),
5504 index,
5505 TYPE_MIN_VALUE (domain)));
5507 position =
5508 size_binop (MULT_EXPR, index,
5509 fold_convert (ssizetype,
5510 TYPE_SIZE_UNIT (elttype)));
5511 xtarget = offset_address (target,
5512 expand_normal (position),
5513 highest_pow2_factor (position));
5514 xtarget = adjust_address (xtarget, mode, 0);
5515 store_expr (value, xtarget, 0, false);
5517 else
5519 if (index != 0)
5520 bitpos = ((tree_low_cst (index, 0) - minelt)
5521 * tree_low_cst (TYPE_SIZE (elttype), 1));
5522 else
5523 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5525 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5526 && TREE_CODE (type) == ARRAY_TYPE
5527 && TYPE_NONALIASED_COMPONENT (type))
5529 target = copy_rtx (target);
5530 MEM_KEEP_ALIAS_SET_P (target) = 1;
5532 store_constructor_field (target, bitsize, bitpos, mode, value,
5533 type, cleared, get_alias_set (elttype));
5536 break;
5539 case VECTOR_TYPE:
5541 unsigned HOST_WIDE_INT idx;
5542 constructor_elt *ce;
5543 int i;
5544 int need_to_clear;
5545 int icode = 0;
5546 tree elttype = TREE_TYPE (type);
5547 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5548 enum machine_mode eltmode = TYPE_MODE (elttype);
5549 HOST_WIDE_INT bitsize;
5550 HOST_WIDE_INT bitpos;
5551 rtvec vector = NULL;
5552 unsigned n_elts;
5554 gcc_assert (eltmode != BLKmode);
5556 n_elts = TYPE_VECTOR_SUBPARTS (type);
5557 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5559 enum machine_mode mode = GET_MODE (target);
5561 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5562 if (icode != CODE_FOR_nothing)
5564 unsigned int i;
5566 vector = rtvec_alloc (n_elts);
5567 for (i = 0; i < n_elts; i++)
5568 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5572 /* If the constructor has fewer elements than the vector,
5573 clear the whole array first. Similarly if this is static
5574 constructor of a non-BLKmode object. */
5575 if (cleared)
5576 need_to_clear = 0;
5577 else if (REG_P (target) && TREE_STATIC (exp))
5578 need_to_clear = 1;
5579 else
5581 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5582 tree value;
5584 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5586 int n_elts_here = tree_low_cst
5587 (int_const_binop (TRUNC_DIV_EXPR,
5588 TYPE_SIZE (TREE_TYPE (value)),
5589 TYPE_SIZE (elttype), 0), 1);
5591 count += n_elts_here;
5592 if (mostly_zeros_p (value))
5593 zero_count += n_elts_here;
5596 /* Clear the entire vector first if there are any missing elements,
5597 or if the incidence of zero elements is >= 75%. */
5598 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5601 if (need_to_clear && size > 0 && !vector)
5603 if (REG_P (target))
5604 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5605 else
5606 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5607 cleared = 1;
5610 /* Inform later passes that the old value is dead. */
5611 if (!cleared && !vector && REG_P (target))
5612 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5614 /* Store each element of the constructor into the corresponding
5615 element of TARGET, determined by counting the elements. */
5616 for (idx = 0, i = 0;
5617 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5618 idx++, i += bitsize / elt_size)
5620 HOST_WIDE_INT eltpos;
5621 tree value = ce->value;
5623 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5624 if (cleared && initializer_zerop (value))
5625 continue;
5627 if (ce->index)
5628 eltpos = tree_low_cst (ce->index, 1);
5629 else
5630 eltpos = i;
5632 if (vector)
5634 /* Vector CONSTRUCTORs should only be built from smaller
5635 vectors in the case of BLKmode vectors. */
5636 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5637 RTVEC_ELT (vector, eltpos)
5638 = expand_normal (value);
5640 else
5642 enum machine_mode value_mode =
5643 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5644 ? TYPE_MODE (TREE_TYPE (value))
5645 : eltmode;
5646 bitpos = eltpos * elt_size;
5647 store_constructor_field (target, bitsize, bitpos,
5648 value_mode, value, type,
5649 cleared, get_alias_set (elttype));
5653 if (vector)
5654 emit_insn (GEN_FCN (icode)
5655 (target,
5656 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5657 break;
5660 default:
5661 gcc_unreachable ();
5665 /* Store the value of EXP (an expression tree)
5666 into a subfield of TARGET which has mode MODE and occupies
5667 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5668 If MODE is VOIDmode, it means that we are storing into a bit-field.
5670 Always return const0_rtx unless we have something particular to
5671 return.
5673 TYPE is the type of the underlying object,
5675 ALIAS_SET is the alias set for the destination. This value will
5676 (in general) be different from that for TARGET, since TARGET is a
5677 reference to the containing structure.
5679 If NONTEMPORAL is true, try generating a nontemporal store. */
5681 static rtx
5682 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5683 enum machine_mode mode, tree exp, tree type,
5684 alias_set_type alias_set, bool nontemporal)
5686 HOST_WIDE_INT width_mask = 0;
5688 if (TREE_CODE (exp) == ERROR_MARK)
5689 return const0_rtx;
5691 /* If we have nothing to store, do nothing unless the expression has
5692 side-effects. */
5693 if (bitsize == 0)
5694 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5695 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5696 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5698 /* If we are storing into an unaligned field of an aligned union that is
5699 in a register, we may have the mode of TARGET being an integer mode but
5700 MODE == BLKmode. In that case, get an aligned object whose size and
5701 alignment are the same as TARGET and store TARGET into it (we can avoid
5702 the store if the field being stored is the entire width of TARGET). Then
5703 call ourselves recursively to store the field into a BLKmode version of
5704 that object. Finally, load from the object into TARGET. This is not
5705 very efficient in general, but should only be slightly more expensive
5706 than the otherwise-required unaligned accesses. Perhaps this can be
5707 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5708 twice, once with emit_move_insn and once via store_field. */
5710 if (mode == BLKmode
5711 && (REG_P (target) || GET_CODE (target) == SUBREG))
5713 rtx object = assign_temp (type, 0, 1, 1);
5714 rtx blk_object = adjust_address (object, BLKmode, 0);
5716 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5717 emit_move_insn (object, target);
5719 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5720 nontemporal);
5722 emit_move_insn (target, object);
5724 /* We want to return the BLKmode version of the data. */
5725 return blk_object;
5728 if (GET_CODE (target) == CONCAT)
5730 /* We're storing into a struct containing a single __complex. */
5732 gcc_assert (!bitpos);
5733 return store_expr (exp, target, 0, nontemporal);
5736 /* If the structure is in a register or if the component
5737 is a bit field, we cannot use addressing to access it.
5738 Use bit-field techniques or SUBREG to store in it. */
5740 if (mode == VOIDmode
5741 || (mode != BLKmode && ! direct_store[(int) mode]
5742 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5743 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5744 || REG_P (target)
5745 || GET_CODE (target) == SUBREG
5746 /* If the field isn't aligned enough to store as an ordinary memref,
5747 store it as a bit field. */
5748 || (mode != BLKmode
5749 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5750 || bitpos % GET_MODE_ALIGNMENT (mode))
5751 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5752 || (bitpos % BITS_PER_UNIT != 0)))
5753 /* If the RHS and field are a constant size and the size of the
5754 RHS isn't the same size as the bitfield, we must use bitfield
5755 operations. */
5756 || (bitsize >= 0
5757 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5758 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5760 rtx temp;
5762 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5763 implies a mask operation. If the precision is the same size as
5764 the field we're storing into, that mask is redundant. This is
5765 particularly common with bit field assignments generated by the
5766 C front end. */
5767 if (TREE_CODE (exp) == NOP_EXPR)
5769 tree type = TREE_TYPE (exp);
5770 if (INTEGRAL_TYPE_P (type)
5771 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5772 && bitsize == TYPE_PRECISION (type))
5774 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5775 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5776 exp = TREE_OPERAND (exp, 0);
5780 temp = expand_normal (exp);
5782 /* If BITSIZE is narrower than the size of the type of EXP
5783 we will be narrowing TEMP. Normally, what's wanted are the
5784 low-order bits. However, if EXP's type is a record and this is
5785 big-endian machine, we want the upper BITSIZE bits. */
5786 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5787 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5788 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5789 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5790 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5791 - bitsize),
5792 NULL_RTX, 1);
5794 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5795 MODE. */
5796 if (mode != VOIDmode && mode != BLKmode
5797 && mode != TYPE_MODE (TREE_TYPE (exp)))
5798 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5800 /* If the modes of TEMP and TARGET are both BLKmode, both
5801 must be in memory and BITPOS must be aligned on a byte
5802 boundary. If so, we simply do a block copy. Likewise
5803 for a BLKmode-like TARGET. */
5804 if (GET_MODE (temp) == BLKmode
5805 && (GET_MODE (target) == BLKmode
5806 || (MEM_P (target)
5807 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5808 && (bitpos % BITS_PER_UNIT) == 0
5809 && (bitsize % BITS_PER_UNIT) == 0)))
5811 gcc_assert (MEM_P (target) && MEM_P (temp)
5812 && (bitpos % BITS_PER_UNIT) == 0);
5814 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5815 emit_block_move (target, temp,
5816 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5817 / BITS_PER_UNIT),
5818 BLOCK_OP_NORMAL);
5820 return const0_rtx;
5823 /* Store the value in the bitfield. */
5824 store_bit_field (target, bitsize, bitpos, mode, temp);
5826 return const0_rtx;
5828 else
5830 /* Now build a reference to just the desired component. */
5831 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5833 if (to_rtx == target)
5834 to_rtx = copy_rtx (to_rtx);
5836 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5837 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5838 set_mem_alias_set (to_rtx, alias_set);
5840 return store_expr (exp, to_rtx, 0, nontemporal);
5844 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5845 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5846 codes and find the ultimate containing object, which we return.
5848 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5849 bit position, and *PUNSIGNEDP to the signedness of the field.
5850 If the position of the field is variable, we store a tree
5851 giving the variable offset (in units) in *POFFSET.
5852 This offset is in addition to the bit position.
5853 If the position is not variable, we store 0 in *POFFSET.
5855 If any of the extraction expressions is volatile,
5856 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5858 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5859 Otherwise, it is a mode that can be used to access the field.
5861 If the field describes a variable-sized object, *PMODE is set to
5862 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5863 this case, but the address of the object can be found.
5865 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5866 look through nodes that serve as markers of a greater alignment than
5867 the one that can be deduced from the expression. These nodes make it
5868 possible for front-ends to prevent temporaries from being created by
5869 the middle-end on alignment considerations. For that purpose, the
5870 normal operating mode at high-level is to always pass FALSE so that
5871 the ultimate containing object is really returned; moreover, the
5872 associated predicate handled_component_p will always return TRUE
5873 on these nodes, thus indicating that they are essentially handled
5874 by get_inner_reference. TRUE should only be passed when the caller
5875 is scanning the expression in order to build another representation
5876 and specifically knows how to handle these nodes; as such, this is
5877 the normal operating mode in the RTL expanders. */
5879 tree
5880 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5881 HOST_WIDE_INT *pbitpos, tree *poffset,
5882 enum machine_mode *pmode, int *punsignedp,
5883 int *pvolatilep, bool keep_aligning)
5885 tree size_tree = 0;
5886 enum machine_mode mode = VOIDmode;
5887 bool blkmode_bitfield = false;
5888 tree offset = size_zero_node;
5889 tree bit_offset = bitsize_zero_node;
5891 /* First get the mode, signedness, and size. We do this from just the
5892 outermost expression. */
5893 if (TREE_CODE (exp) == COMPONENT_REF)
5895 tree field = TREE_OPERAND (exp, 1);
5896 size_tree = DECL_SIZE (field);
5897 if (!DECL_BIT_FIELD (field))
5898 mode = DECL_MODE (field);
5899 else if (DECL_MODE (field) == BLKmode)
5900 blkmode_bitfield = true;
5902 *punsignedp = DECL_UNSIGNED (field);
5904 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5906 size_tree = TREE_OPERAND (exp, 1);
5907 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
5908 || TYPE_UNSIGNED (TREE_TYPE (exp)));
5910 /* For vector types, with the correct size of access, use the mode of
5911 inner type. */
5912 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5913 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5914 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5915 mode = TYPE_MODE (TREE_TYPE (exp));
5917 else
5919 mode = TYPE_MODE (TREE_TYPE (exp));
5920 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5922 if (mode == BLKmode)
5923 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5924 else
5925 *pbitsize = GET_MODE_BITSIZE (mode);
5928 if (size_tree != 0)
5930 if (! host_integerp (size_tree, 1))
5931 mode = BLKmode, *pbitsize = -1;
5932 else
5933 *pbitsize = tree_low_cst (size_tree, 1);
5936 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5937 and find the ultimate containing object. */
5938 while (1)
5940 switch (TREE_CODE (exp))
5942 case BIT_FIELD_REF:
5943 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5944 TREE_OPERAND (exp, 2));
5945 break;
5947 case COMPONENT_REF:
5949 tree field = TREE_OPERAND (exp, 1);
5950 tree this_offset = component_ref_field_offset (exp);
5952 /* If this field hasn't been filled in yet, don't go past it.
5953 This should only happen when folding expressions made during
5954 type construction. */
5955 if (this_offset == 0)
5956 break;
5958 offset = size_binop (PLUS_EXPR, offset, this_offset);
5959 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5960 DECL_FIELD_BIT_OFFSET (field));
5962 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5964 break;
5966 case ARRAY_REF:
5967 case ARRAY_RANGE_REF:
5969 tree index = TREE_OPERAND (exp, 1);
5970 tree low_bound = array_ref_low_bound (exp);
5971 tree unit_size = array_ref_element_size (exp);
5973 /* We assume all arrays have sizes that are a multiple of a byte.
5974 First subtract the lower bound, if any, in the type of the
5975 index, then convert to sizetype and multiply by the size of
5976 the array element. */
5977 if (! integer_zerop (low_bound))
5978 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5979 index, low_bound);
5981 offset = size_binop (PLUS_EXPR, offset,
5982 size_binop (MULT_EXPR,
5983 fold_convert (sizetype, index),
5984 unit_size));
5986 break;
5988 case REALPART_EXPR:
5989 break;
5991 case IMAGPART_EXPR:
5992 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5993 bitsize_int (*pbitsize));
5994 break;
5996 case VIEW_CONVERT_EXPR:
5997 if (keep_aligning && STRICT_ALIGNMENT
5998 && (TYPE_ALIGN (TREE_TYPE (exp))
5999 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6000 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6001 < BIGGEST_ALIGNMENT)
6002 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6003 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6004 goto done;
6005 break;
6007 default:
6008 goto done;
6011 /* If any reference in the chain is volatile, the effect is volatile. */
6012 if (TREE_THIS_VOLATILE (exp))
6013 *pvolatilep = 1;
6015 exp = TREE_OPERAND (exp, 0);
6017 done:
6019 /* If OFFSET is constant, see if we can return the whole thing as a
6020 constant bit position. Make sure to handle overflow during
6021 this conversion. */
6022 if (host_integerp (offset, 0))
6024 double_int tem = double_int_mul (tree_to_double_int (offset),
6025 uhwi_to_double_int (BITS_PER_UNIT));
6026 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6027 if (double_int_fits_in_shwi_p (tem))
6029 *pbitpos = double_int_to_shwi (tem);
6030 *poffset = offset = NULL_TREE;
6034 /* Otherwise, split it up. */
6035 if (offset)
6037 *pbitpos = tree_low_cst (bit_offset, 0);
6038 *poffset = offset;
6041 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6042 if (mode == VOIDmode
6043 && blkmode_bitfield
6044 && (*pbitpos % BITS_PER_UNIT) == 0
6045 && (*pbitsize % BITS_PER_UNIT) == 0)
6046 *pmode = BLKmode;
6047 else
6048 *pmode = mode;
6050 return exp;
6053 /* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
6054 look for whether EXP or any nested component-refs within EXP is marked
6055 as PACKED. */
6057 bool
6058 contains_packed_reference (const_tree exp)
6060 bool packed_p = false;
6062 while (1)
6064 switch (TREE_CODE (exp))
6066 case COMPONENT_REF:
6068 tree field = TREE_OPERAND (exp, 1);
6069 packed_p = DECL_PACKED (field)
6070 || TYPE_PACKED (TREE_TYPE (field))
6071 || TYPE_PACKED (TREE_TYPE (exp));
6072 if (packed_p)
6073 goto done;
6075 break;
6077 case BIT_FIELD_REF:
6078 case ARRAY_REF:
6079 case ARRAY_RANGE_REF:
6080 case REALPART_EXPR:
6081 case IMAGPART_EXPR:
6082 case VIEW_CONVERT_EXPR:
6083 break;
6085 default:
6086 goto done;
6088 exp = TREE_OPERAND (exp, 0);
6090 done:
6091 return packed_p;
6094 /* Return a tree of sizetype representing the size, in bytes, of the element
6095 of EXP, an ARRAY_REF. */
6097 tree
6098 array_ref_element_size (tree exp)
6100 tree aligned_size = TREE_OPERAND (exp, 3);
6101 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6103 /* If a size was specified in the ARRAY_REF, it's the size measured
6104 in alignment units of the element type. So multiply by that value. */
6105 if (aligned_size)
6107 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6108 sizetype from another type of the same width and signedness. */
6109 if (TREE_TYPE (aligned_size) != sizetype)
6110 aligned_size = fold_convert (sizetype, aligned_size);
6111 return size_binop (MULT_EXPR, aligned_size,
6112 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6115 /* Otherwise, take the size from that of the element type. Substitute
6116 any PLACEHOLDER_EXPR that we have. */
6117 else
6118 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6121 /* Return a tree representing the lower bound of the array mentioned in
6122 EXP, an ARRAY_REF. */
6124 tree
6125 array_ref_low_bound (tree exp)
6127 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6129 /* If a lower bound is specified in EXP, use it. */
6130 if (TREE_OPERAND (exp, 2))
6131 return TREE_OPERAND (exp, 2);
6133 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6134 substituting for a PLACEHOLDER_EXPR as needed. */
6135 if (domain_type && TYPE_MIN_VALUE (domain_type))
6136 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6138 /* Otherwise, return a zero of the appropriate type. */
6139 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6142 /* Return a tree representing the upper bound of the array mentioned in
6143 EXP, an ARRAY_REF. */
6145 tree
6146 array_ref_up_bound (tree exp)
6148 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6150 /* If there is a domain type and it has an upper bound, use it, substituting
6151 for a PLACEHOLDER_EXPR as needed. */
6152 if (domain_type && TYPE_MAX_VALUE (domain_type))
6153 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6155 /* Otherwise fail. */
6156 return NULL_TREE;
6159 /* Return a tree representing the offset, in bytes, of the field referenced
6160 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6162 tree
6163 component_ref_field_offset (tree exp)
6165 tree aligned_offset = TREE_OPERAND (exp, 2);
6166 tree field = TREE_OPERAND (exp, 1);
6168 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6169 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6170 value. */
6171 if (aligned_offset)
6173 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6174 sizetype from another type of the same width and signedness. */
6175 if (TREE_TYPE (aligned_offset) != sizetype)
6176 aligned_offset = fold_convert (sizetype, aligned_offset);
6177 return size_binop (MULT_EXPR, aligned_offset,
6178 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
6181 /* Otherwise, take the offset from that of the field. Substitute
6182 any PLACEHOLDER_EXPR that we have. */
6183 else
6184 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6187 /* Return 1 if T is an expression that get_inner_reference handles. */
6190 handled_component_p (const_tree t)
6192 switch (TREE_CODE (t))
6194 case BIT_FIELD_REF:
6195 case COMPONENT_REF:
6196 case ARRAY_REF:
6197 case ARRAY_RANGE_REF:
6198 case VIEW_CONVERT_EXPR:
6199 case REALPART_EXPR:
6200 case IMAGPART_EXPR:
6201 return 1;
6203 default:
6204 return 0;
6208 /* Given an rtx VALUE that may contain additions and multiplications, return
6209 an equivalent value that just refers to a register, memory, or constant.
6210 This is done by generating instructions to perform the arithmetic and
6211 returning a pseudo-register containing the value.
6213 The returned value may be a REG, SUBREG, MEM or constant. */
6216 force_operand (rtx value, rtx target)
6218 rtx op1, op2;
6219 /* Use subtarget as the target for operand 0 of a binary operation. */
6220 rtx subtarget = get_subtarget (target);
6221 enum rtx_code code = GET_CODE (value);
6223 /* Check for subreg applied to an expression produced by loop optimizer. */
6224 if (code == SUBREG
6225 && !REG_P (SUBREG_REG (value))
6226 && !MEM_P (SUBREG_REG (value)))
6228 value
6229 = simplify_gen_subreg (GET_MODE (value),
6230 force_reg (GET_MODE (SUBREG_REG (value)),
6231 force_operand (SUBREG_REG (value),
6232 NULL_RTX)),
6233 GET_MODE (SUBREG_REG (value)),
6234 SUBREG_BYTE (value));
6235 code = GET_CODE (value);
6238 /* Check for a PIC address load. */
6239 if ((code == PLUS || code == MINUS)
6240 && XEXP (value, 0) == pic_offset_table_rtx
6241 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6242 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6243 || GET_CODE (XEXP (value, 1)) == CONST))
6245 if (!subtarget)
6246 subtarget = gen_reg_rtx (GET_MODE (value));
6247 emit_move_insn (subtarget, value);
6248 return subtarget;
6251 if (ARITHMETIC_P (value))
6253 op2 = XEXP (value, 1);
6254 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6255 subtarget = 0;
6256 if (code == MINUS && GET_CODE (op2) == CONST_INT)
6258 code = PLUS;
6259 op2 = negate_rtx (GET_MODE (value), op2);
6262 /* Check for an addition with OP2 a constant integer and our first
6263 operand a PLUS of a virtual register and something else. In that
6264 case, we want to emit the sum of the virtual register and the
6265 constant first and then add the other value. This allows virtual
6266 register instantiation to simply modify the constant rather than
6267 creating another one around this addition. */
6268 if (code == PLUS && GET_CODE (op2) == CONST_INT
6269 && GET_CODE (XEXP (value, 0)) == PLUS
6270 && REG_P (XEXP (XEXP (value, 0), 0))
6271 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6272 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6274 rtx temp = expand_simple_binop (GET_MODE (value), code,
6275 XEXP (XEXP (value, 0), 0), op2,
6276 subtarget, 0, OPTAB_LIB_WIDEN);
6277 return expand_simple_binop (GET_MODE (value), code, temp,
6278 force_operand (XEXP (XEXP (value,
6279 0), 1), 0),
6280 target, 0, OPTAB_LIB_WIDEN);
6283 op1 = force_operand (XEXP (value, 0), subtarget);
6284 op2 = force_operand (op2, NULL_RTX);
6285 switch (code)
6287 case MULT:
6288 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6289 case DIV:
6290 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6291 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6292 target, 1, OPTAB_LIB_WIDEN);
6293 else
6294 return expand_divmod (0,
6295 FLOAT_MODE_P (GET_MODE (value))
6296 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6297 GET_MODE (value), op1, op2, target, 0);
6298 case MOD:
6299 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6300 target, 0);
6301 case UDIV:
6302 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6303 target, 1);
6304 case UMOD:
6305 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6306 target, 1);
6307 case ASHIFTRT:
6308 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6309 target, 0, OPTAB_LIB_WIDEN);
6310 default:
6311 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6312 target, 1, OPTAB_LIB_WIDEN);
6315 if (UNARY_P (value))
6317 if (!target)
6318 target = gen_reg_rtx (GET_MODE (value));
6319 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6320 switch (code)
6322 case ZERO_EXTEND:
6323 case SIGN_EXTEND:
6324 case TRUNCATE:
6325 case FLOAT_EXTEND:
6326 case FLOAT_TRUNCATE:
6327 convert_move (target, op1, code == ZERO_EXTEND);
6328 return target;
6330 case FIX:
6331 case UNSIGNED_FIX:
6332 expand_fix (target, op1, code == UNSIGNED_FIX);
6333 return target;
6335 case FLOAT:
6336 case UNSIGNED_FLOAT:
6337 expand_float (target, op1, code == UNSIGNED_FLOAT);
6338 return target;
6340 default:
6341 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6345 #ifdef INSN_SCHEDULING
6346 /* On machines that have insn scheduling, we want all memory reference to be
6347 explicit, so we need to deal with such paradoxical SUBREGs. */
6348 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6349 && (GET_MODE_SIZE (GET_MODE (value))
6350 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6351 value
6352 = simplify_gen_subreg (GET_MODE (value),
6353 force_reg (GET_MODE (SUBREG_REG (value)),
6354 force_operand (SUBREG_REG (value),
6355 NULL_RTX)),
6356 GET_MODE (SUBREG_REG (value)),
6357 SUBREG_BYTE (value));
6358 #endif
6360 return value;
6363 /* Subroutine of expand_expr: return nonzero iff there is no way that
6364 EXP can reference X, which is being modified. TOP_P is nonzero if this
6365 call is going to be used to determine whether we need a temporary
6366 for EXP, as opposed to a recursive call to this function.
6368 It is always safe for this routine to return zero since it merely
6369 searches for optimization opportunities. */
6372 safe_from_p (const_rtx x, tree exp, int top_p)
6374 rtx exp_rtl = 0;
6375 int i, nops;
6377 if (x == 0
6378 /* If EXP has varying size, we MUST use a target since we currently
6379 have no way of allocating temporaries of variable size
6380 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6381 So we assume here that something at a higher level has prevented a
6382 clash. This is somewhat bogus, but the best we can do. Only
6383 do this when X is BLKmode and when we are at the top level. */
6384 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6385 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6386 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6387 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6388 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6389 != INTEGER_CST)
6390 && GET_MODE (x) == BLKmode)
6391 /* If X is in the outgoing argument area, it is always safe. */
6392 || (MEM_P (x)
6393 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6394 || (GET_CODE (XEXP (x, 0)) == PLUS
6395 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6396 return 1;
6398 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6399 find the underlying pseudo. */
6400 if (GET_CODE (x) == SUBREG)
6402 x = SUBREG_REG (x);
6403 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6404 return 0;
6407 /* Now look at our tree code and possibly recurse. */
6408 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6410 case tcc_declaration:
6411 exp_rtl = DECL_RTL_IF_SET (exp);
6412 break;
6414 case tcc_constant:
6415 return 1;
6417 case tcc_exceptional:
6418 if (TREE_CODE (exp) == TREE_LIST)
6420 while (1)
6422 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6423 return 0;
6424 exp = TREE_CHAIN (exp);
6425 if (!exp)
6426 return 1;
6427 if (TREE_CODE (exp) != TREE_LIST)
6428 return safe_from_p (x, exp, 0);
6431 else if (TREE_CODE (exp) == CONSTRUCTOR)
6433 constructor_elt *ce;
6434 unsigned HOST_WIDE_INT idx;
6436 for (idx = 0;
6437 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6438 idx++)
6439 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6440 || !safe_from_p (x, ce->value, 0))
6441 return 0;
6442 return 1;
6444 else if (TREE_CODE (exp) == ERROR_MARK)
6445 return 1; /* An already-visited SAVE_EXPR? */
6446 else
6447 return 0;
6449 case tcc_statement:
6450 /* The only case we look at here is the DECL_INITIAL inside a
6451 DECL_EXPR. */
6452 return (TREE_CODE (exp) != DECL_EXPR
6453 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6454 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6455 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6457 case tcc_binary:
6458 case tcc_comparison:
6459 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6460 return 0;
6461 /* Fall through. */
6463 case tcc_unary:
6464 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6466 case tcc_expression:
6467 case tcc_reference:
6468 case tcc_vl_exp:
6469 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6470 the expression. If it is set, we conflict iff we are that rtx or
6471 both are in memory. Otherwise, we check all operands of the
6472 expression recursively. */
6474 switch (TREE_CODE (exp))
6476 case ADDR_EXPR:
6477 /* If the operand is static or we are static, we can't conflict.
6478 Likewise if we don't conflict with the operand at all. */
6479 if (staticp (TREE_OPERAND (exp, 0))
6480 || TREE_STATIC (exp)
6481 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6482 return 1;
6484 /* Otherwise, the only way this can conflict is if we are taking
6485 the address of a DECL a that address if part of X, which is
6486 very rare. */
6487 exp = TREE_OPERAND (exp, 0);
6488 if (DECL_P (exp))
6490 if (!DECL_RTL_SET_P (exp)
6491 || !MEM_P (DECL_RTL (exp)))
6492 return 0;
6493 else
6494 exp_rtl = XEXP (DECL_RTL (exp), 0);
6496 break;
6498 case MISALIGNED_INDIRECT_REF:
6499 case ALIGN_INDIRECT_REF:
6500 case INDIRECT_REF:
6501 if (MEM_P (x)
6502 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6503 get_alias_set (exp)))
6504 return 0;
6505 break;
6507 case CALL_EXPR:
6508 /* Assume that the call will clobber all hard registers and
6509 all of memory. */
6510 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6511 || MEM_P (x))
6512 return 0;
6513 break;
6515 case WITH_CLEANUP_EXPR:
6516 case CLEANUP_POINT_EXPR:
6517 /* Lowered by gimplify.c. */
6518 gcc_unreachable ();
6520 case SAVE_EXPR:
6521 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6523 default:
6524 break;
6527 /* If we have an rtx, we do not need to scan our operands. */
6528 if (exp_rtl)
6529 break;
6531 nops = TREE_OPERAND_LENGTH (exp);
6532 for (i = 0; i < nops; i++)
6533 if (TREE_OPERAND (exp, i) != 0
6534 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6535 return 0;
6537 break;
6539 case tcc_type:
6540 /* Should never get a type here. */
6541 gcc_unreachable ();
6543 case tcc_gimple_stmt:
6544 gcc_unreachable ();
6547 /* If we have an rtl, find any enclosed object. Then see if we conflict
6548 with it. */
6549 if (exp_rtl)
6551 if (GET_CODE (exp_rtl) == SUBREG)
6553 exp_rtl = SUBREG_REG (exp_rtl);
6554 if (REG_P (exp_rtl)
6555 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6556 return 0;
6559 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6560 are memory and they conflict. */
6561 return ! (rtx_equal_p (x, exp_rtl)
6562 || (MEM_P (x) && MEM_P (exp_rtl)
6563 && true_dependence (exp_rtl, VOIDmode, x,
6564 rtx_addr_varies_p)));
6567 /* If we reach here, it is safe. */
6568 return 1;
6572 /* Return the highest power of two that EXP is known to be a multiple of.
6573 This is used in updating alignment of MEMs in array references. */
6575 unsigned HOST_WIDE_INT
6576 highest_pow2_factor (const_tree exp)
6578 unsigned HOST_WIDE_INT c0, c1;
6580 switch (TREE_CODE (exp))
6582 case INTEGER_CST:
6583 /* We can find the lowest bit that's a one. If the low
6584 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6585 We need to handle this case since we can find it in a COND_EXPR,
6586 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6587 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6588 later ICE. */
6589 if (TREE_OVERFLOW (exp))
6590 return BIGGEST_ALIGNMENT;
6591 else
6593 /* Note: tree_low_cst is intentionally not used here,
6594 we don't care about the upper bits. */
6595 c0 = TREE_INT_CST_LOW (exp);
6596 c0 &= -c0;
6597 return c0 ? c0 : BIGGEST_ALIGNMENT;
6599 break;
6601 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6602 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6603 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6604 return MIN (c0, c1);
6606 case MULT_EXPR:
6607 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6608 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6609 return c0 * c1;
6611 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6612 case CEIL_DIV_EXPR:
6613 if (integer_pow2p (TREE_OPERAND (exp, 1))
6614 && host_integerp (TREE_OPERAND (exp, 1), 1))
6616 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6617 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6618 return MAX (1, c0 / c1);
6620 break;
6622 case BIT_AND_EXPR:
6623 /* The highest power of two of a bit-and expression is the maximum of
6624 that of its operands. We typically get here for a complex LHS and
6625 a constant negative power of two on the RHS to force an explicit
6626 alignment, so don't bother looking at the LHS. */
6627 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6629 CASE_CONVERT:
6630 case SAVE_EXPR:
6631 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6633 case COMPOUND_EXPR:
6634 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6636 case COND_EXPR:
6637 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6638 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6639 return MIN (c0, c1);
6641 default:
6642 break;
6645 return 1;
6648 /* Similar, except that the alignment requirements of TARGET are
6649 taken into account. Assume it is at least as aligned as its
6650 type, unless it is a COMPONENT_REF in which case the layout of
6651 the structure gives the alignment. */
6653 static unsigned HOST_WIDE_INT
6654 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6656 unsigned HOST_WIDE_INT target_align, factor;
6658 factor = highest_pow2_factor (exp);
6659 if (TREE_CODE (target) == COMPONENT_REF)
6660 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6661 else
6662 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6663 return MAX (factor, target_align);
6666 /* Return &VAR expression for emulated thread local VAR. */
6668 static tree
6669 emutls_var_address (tree var)
6671 tree emuvar = emutls_decl (var);
6672 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6673 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6674 tree arglist = build_tree_list (NULL_TREE, arg);
6675 tree call = build_function_call_expr (fn, arglist);
6676 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6680 /* Subroutine of expand_expr. Expand the two operands of a binary
6681 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6682 The value may be stored in TARGET if TARGET is nonzero. The
6683 MODIFIER argument is as documented by expand_expr. */
6685 static void
6686 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6687 enum expand_modifier modifier)
6689 if (! safe_from_p (target, exp1, 1))
6690 target = 0;
6691 if (operand_equal_p (exp0, exp1, 0))
6693 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6694 *op1 = copy_rtx (*op0);
6696 else
6698 /* If we need to preserve evaluation order, copy exp0 into its own
6699 temporary variable so that it can't be clobbered by exp1. */
6700 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6701 exp0 = save_expr (exp0);
6702 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6703 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6708 /* Return a MEM that contains constant EXP. DEFER is as for
6709 output_constant_def and MODIFIER is as for expand_expr. */
6711 static rtx
6712 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6714 rtx mem;
6716 mem = output_constant_def (exp, defer);
6717 if (modifier != EXPAND_INITIALIZER)
6718 mem = use_anchored_address (mem);
6719 return mem;
6722 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6723 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6725 static rtx
6726 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6727 enum expand_modifier modifier)
6729 rtx result, subtarget;
6730 tree inner, offset;
6731 HOST_WIDE_INT bitsize, bitpos;
6732 int volatilep, unsignedp;
6733 enum machine_mode mode1;
6735 /* If we are taking the address of a constant and are at the top level,
6736 we have to use output_constant_def since we can't call force_const_mem
6737 at top level. */
6738 /* ??? This should be considered a front-end bug. We should not be
6739 generating ADDR_EXPR of something that isn't an LVALUE. The only
6740 exception here is STRING_CST. */
6741 if (CONSTANT_CLASS_P (exp))
6742 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6744 /* Everything must be something allowed by is_gimple_addressable. */
6745 switch (TREE_CODE (exp))
6747 case INDIRECT_REF:
6748 /* This case will happen via recursion for &a->b. */
6749 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6751 case CONST_DECL:
6752 /* Recurse and make the output_constant_def clause above handle this. */
6753 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6754 tmode, modifier);
6756 case REALPART_EXPR:
6757 /* The real part of the complex number is always first, therefore
6758 the address is the same as the address of the parent object. */
6759 offset = 0;
6760 bitpos = 0;
6761 inner = TREE_OPERAND (exp, 0);
6762 break;
6764 case IMAGPART_EXPR:
6765 /* The imaginary part of the complex number is always second.
6766 The expression is therefore always offset by the size of the
6767 scalar type. */
6768 offset = 0;
6769 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6770 inner = TREE_OPERAND (exp, 0);
6771 break;
6773 case VAR_DECL:
6774 /* TLS emulation hook - replace __thread VAR's &VAR with
6775 __emutls_get_address (&_emutls.VAR). */
6776 if (! targetm.have_tls
6777 && TREE_CODE (exp) == VAR_DECL
6778 && DECL_THREAD_LOCAL_P (exp))
6780 exp = emutls_var_address (exp);
6781 return expand_expr (exp, target, tmode, modifier);
6783 /* Fall through. */
6785 default:
6786 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6787 expand_expr, as that can have various side effects; LABEL_DECLs for
6788 example, may not have their DECL_RTL set yet. Expand the rtl of
6789 CONSTRUCTORs too, which should yield a memory reference for the
6790 constructor's contents. Assume language specific tree nodes can
6791 be expanded in some interesting way. */
6792 if (DECL_P (exp)
6793 || TREE_CODE (exp) == CONSTRUCTOR
6794 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6796 result = expand_expr (exp, target, tmode,
6797 modifier == EXPAND_INITIALIZER
6798 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6800 /* If the DECL isn't in memory, then the DECL wasn't properly
6801 marked TREE_ADDRESSABLE, which will be either a front-end
6802 or a tree optimizer bug. */
6803 gcc_assert (MEM_P (result));
6804 result = XEXP (result, 0);
6806 /* ??? Is this needed anymore? */
6807 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6809 assemble_external (exp);
6810 TREE_USED (exp) = 1;
6813 if (modifier != EXPAND_INITIALIZER
6814 && modifier != EXPAND_CONST_ADDRESS)
6815 result = force_operand (result, target);
6816 return result;
6819 /* Pass FALSE as the last argument to get_inner_reference although
6820 we are expanding to RTL. The rationale is that we know how to
6821 handle "aligning nodes" here: we can just bypass them because
6822 they won't change the final object whose address will be returned
6823 (they actually exist only for that purpose). */
6824 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6825 &mode1, &unsignedp, &volatilep, false);
6826 break;
6829 /* We must have made progress. */
6830 gcc_assert (inner != exp);
6832 subtarget = offset || bitpos ? NULL_RTX : target;
6833 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6835 if (offset)
6837 rtx tmp;
6839 if (modifier != EXPAND_NORMAL)
6840 result = force_operand (result, NULL);
6841 tmp = expand_expr (offset, NULL_RTX, tmode,
6842 modifier == EXPAND_INITIALIZER
6843 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6845 result = convert_memory_address (tmode, result);
6846 tmp = convert_memory_address (tmode, tmp);
6848 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6849 result = gen_rtx_PLUS (tmode, result, tmp);
6850 else
6852 subtarget = bitpos ? NULL_RTX : target;
6853 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6854 1, OPTAB_LIB_WIDEN);
6858 if (bitpos)
6860 /* Someone beforehand should have rejected taking the address
6861 of such an object. */
6862 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6864 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6865 if (modifier < EXPAND_SUM)
6866 result = force_operand (result, target);
6869 return result;
6872 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6873 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6875 static rtx
6876 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6877 enum expand_modifier modifier)
6879 enum machine_mode rmode;
6880 rtx result;
6882 /* Target mode of VOIDmode says "whatever's natural". */
6883 if (tmode == VOIDmode)
6884 tmode = TYPE_MODE (TREE_TYPE (exp));
6886 /* We can get called with some Weird Things if the user does silliness
6887 like "(short) &a". In that case, convert_memory_address won't do
6888 the right thing, so ignore the given target mode. */
6889 if (tmode != Pmode && tmode != ptr_mode)
6890 tmode = Pmode;
6892 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6893 tmode, modifier);
6895 /* Despite expand_expr claims concerning ignoring TMODE when not
6896 strictly convenient, stuff breaks if we don't honor it. Note
6897 that combined with the above, we only do this for pointer modes. */
6898 rmode = GET_MODE (result);
6899 if (rmode == VOIDmode)
6900 rmode = tmode;
6901 if (rmode != tmode)
6902 result = convert_memory_address (tmode, result);
6904 return result;
6907 /* Generate code for computing CONSTRUCTOR EXP.
6908 An rtx for the computed value is returned. If AVOID_TEMP_MEM
6909 is TRUE, instead of creating a temporary variable in memory
6910 NULL is returned and the caller needs to handle it differently. */
6912 static rtx
6913 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
6914 bool avoid_temp_mem)
6916 tree type = TREE_TYPE (exp);
6917 enum machine_mode mode = TYPE_MODE (type);
6919 /* Try to avoid creating a temporary at all. This is possible
6920 if all of the initializer is zero.
6921 FIXME: try to handle all [0..255] initializers we can handle
6922 with memset. */
6923 if (TREE_STATIC (exp)
6924 && !TREE_ADDRESSABLE (exp)
6925 && target != 0 && mode == BLKmode
6926 && all_zeros_p (exp))
6928 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6929 return target;
6932 /* All elts simple constants => refer to a constant in memory. But
6933 if this is a non-BLKmode mode, let it store a field at a time
6934 since that should make a CONST_INT or CONST_DOUBLE when we
6935 fold. Likewise, if we have a target we can use, it is best to
6936 store directly into the target unless the type is large enough
6937 that memcpy will be used. If we are making an initializer and
6938 all operands are constant, put it in memory as well.
6940 FIXME: Avoid trying to fill vector constructors piece-meal.
6941 Output them with output_constant_def below unless we're sure
6942 they're zeros. This should go away when vector initializers
6943 are treated like VECTOR_CST instead of arrays. */
6944 if ((TREE_STATIC (exp)
6945 && ((mode == BLKmode
6946 && ! (target != 0 && safe_from_p (target, exp, 1)))
6947 || TREE_ADDRESSABLE (exp)
6948 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6949 && (! MOVE_BY_PIECES_P
6950 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6951 TYPE_ALIGN (type)))
6952 && ! mostly_zeros_p (exp))))
6953 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
6954 && TREE_CONSTANT (exp)))
6956 rtx constructor;
6958 if (avoid_temp_mem)
6959 return NULL_RTX;
6961 constructor = expand_expr_constant (exp, 1, modifier);
6963 if (modifier != EXPAND_CONST_ADDRESS
6964 && modifier != EXPAND_INITIALIZER
6965 && modifier != EXPAND_SUM)
6966 constructor = validize_mem (constructor);
6968 return constructor;
6971 /* Handle calls that pass values in multiple non-contiguous
6972 locations. The Irix 6 ABI has examples of this. */
6973 if (target == 0 || ! safe_from_p (target, exp, 1)
6974 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
6976 if (avoid_temp_mem)
6977 return NULL_RTX;
6979 target
6980 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
6981 | (TREE_READONLY (exp)
6982 * TYPE_QUAL_CONST))),
6983 0, TREE_ADDRESSABLE (exp), 1);
6986 store_constructor (exp, target, 0, int_expr_size (exp));
6987 return target;
6991 /* expand_expr: generate code for computing expression EXP.
6992 An rtx for the computed value is returned. The value is never null.
6993 In the case of a void EXP, const0_rtx is returned.
6995 The value may be stored in TARGET if TARGET is nonzero.
6996 TARGET is just a suggestion; callers must assume that
6997 the rtx returned may not be the same as TARGET.
6999 If TARGET is CONST0_RTX, it means that the value will be ignored.
7001 If TMODE is not VOIDmode, it suggests generating the
7002 result in mode TMODE. But this is done only when convenient.
7003 Otherwise, TMODE is ignored and the value generated in its natural mode.
7004 TMODE is just a suggestion; callers must assume that
7005 the rtx returned may not have mode TMODE.
7007 Note that TARGET may have neither TMODE nor MODE. In that case, it
7008 probably will not be used.
7010 If MODIFIER is EXPAND_SUM then when EXP is an addition
7011 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7012 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7013 products as above, or REG or MEM, or constant.
7014 Ordinarily in such cases we would output mul or add instructions
7015 and then return a pseudo reg containing the sum.
7017 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7018 it also marks a label as absolutely required (it can't be dead).
7019 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7020 This is used for outputting expressions used in initializers.
7022 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7023 with a constant address even if that address is not normally legitimate.
7024 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7026 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7027 a call parameter. Such targets require special care as we haven't yet
7028 marked TARGET so that it's safe from being trashed by libcalls. We
7029 don't want to use TARGET for anything but the final result;
7030 Intermediate values must go elsewhere. Additionally, calls to
7031 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7033 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7034 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7035 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7036 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7037 recursively. */
7039 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
7040 enum expand_modifier, rtx *);
7043 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7044 enum expand_modifier modifier, rtx *alt_rtl)
7046 int rn = -1;
7047 rtx ret, last = NULL;
7049 /* Handle ERROR_MARK before anybody tries to access its type. */
7050 if (TREE_CODE (exp) == ERROR_MARK
7051 || TREE_CODE (exp) == PREDICT_EXPR
7052 || (!GIMPLE_TUPLE_P (exp) && TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7054 ret = CONST0_RTX (tmode);
7055 return ret ? ret : const0_rtx;
7058 if (flag_non_call_exceptions)
7060 rn = lookup_stmt_eh_region (exp);
7061 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7062 if (rn >= 0)
7063 last = get_last_insn ();
7066 /* If this is an expression of some kind and it has an associated line
7067 number, then emit the line number before expanding the expression.
7069 We need to save and restore the file and line information so that
7070 errors discovered during expansion are emitted with the right
7071 information. It would be better of the diagnostic routines
7072 used the file/line information embedded in the tree nodes rather
7073 than globals. */
7074 if (cfun && EXPR_HAS_LOCATION (exp))
7076 location_t saved_location = input_location;
7077 input_location = EXPR_LOCATION (exp);
7078 set_curr_insn_source_location (input_location);
7080 /* Record where the insns produced belong. */
7081 set_curr_insn_block (TREE_BLOCK (exp));
7083 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7085 input_location = saved_location;
7087 else
7089 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7092 /* If using non-call exceptions, mark all insns that may trap.
7093 expand_call() will mark CALL_INSNs before we get to this code,
7094 but it doesn't handle libcalls, and these may trap. */
7095 if (rn >= 0)
7097 rtx insn;
7098 for (insn = next_real_insn (last); insn;
7099 insn = next_real_insn (insn))
7101 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7102 /* If we want exceptions for non-call insns, any
7103 may_trap_p instruction may throw. */
7104 && GET_CODE (PATTERN (insn)) != CLOBBER
7105 && GET_CODE (PATTERN (insn)) != USE
7106 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
7107 add_reg_note (insn, REG_EH_REGION, GEN_INT (rn));
7111 return ret;
7114 static rtx
7115 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
7116 enum expand_modifier modifier, rtx *alt_rtl)
7118 rtx op0, op1, op2, temp, decl_rtl;
7119 tree type;
7120 int unsignedp;
7121 enum machine_mode mode;
7122 enum tree_code code = TREE_CODE (exp);
7123 optab this_optab;
7124 rtx subtarget, original_target;
7125 int ignore;
7126 tree context, subexp0, subexp1;
7127 bool reduce_bit_field;
7128 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7129 ? reduce_to_bit_field_precision ((expr), \
7130 target, \
7131 type) \
7132 : (expr))
7134 if (GIMPLE_STMT_P (exp))
7136 type = void_type_node;
7137 mode = VOIDmode;
7138 unsignedp = 0;
7140 else
7142 type = TREE_TYPE (exp);
7143 mode = TYPE_MODE (type);
7144 unsignedp = TYPE_UNSIGNED (type);
7147 ignore = (target == const0_rtx
7148 || ((code == NOP_EXPR || code == CONVERT_EXPR
7149 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7150 && TREE_CODE (type) == VOID_TYPE));
7152 /* An operation in what may be a bit-field type needs the
7153 result to be reduced to the precision of the bit-field type,
7154 which is narrower than that of the type's mode. */
7155 reduce_bit_field = (!ignore
7156 && TREE_CODE (type) == INTEGER_TYPE
7157 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7159 /* If we are going to ignore this result, we need only do something
7160 if there is a side-effect somewhere in the expression. If there
7161 is, short-circuit the most common cases here. Note that we must
7162 not call expand_expr with anything but const0_rtx in case this
7163 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
7165 if (ignore)
7167 if (! TREE_SIDE_EFFECTS (exp))
7168 return const0_rtx;
7170 /* Ensure we reference a volatile object even if value is ignored, but
7171 don't do this if all we are doing is taking its address. */
7172 if (TREE_THIS_VOLATILE (exp)
7173 && TREE_CODE (exp) != FUNCTION_DECL
7174 && mode != VOIDmode && mode != BLKmode
7175 && modifier != EXPAND_CONST_ADDRESS)
7177 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
7178 if (MEM_P (temp))
7179 temp = copy_to_reg (temp);
7180 return const0_rtx;
7183 if (TREE_CODE_CLASS (code) == tcc_unary
7184 || code == COMPONENT_REF || code == INDIRECT_REF)
7185 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
7186 modifier);
7188 else if (TREE_CODE_CLASS (code) == tcc_binary
7189 || TREE_CODE_CLASS (code) == tcc_comparison
7190 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
7192 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7193 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7194 return const0_rtx;
7196 else if (code == BIT_FIELD_REF)
7198 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7199 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7200 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
7201 return const0_rtx;
7204 target = 0;
7207 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7208 target = 0;
7210 /* Use subtarget as the target for operand 0 of a binary operation. */
7211 subtarget = get_subtarget (target);
7212 original_target = target;
7214 switch (code)
7216 case LABEL_DECL:
7218 tree function = decl_function_context (exp);
7220 temp = label_rtx (exp);
7221 temp = gen_rtx_LABEL_REF (Pmode, temp);
7223 if (function != current_function_decl
7224 && function != 0)
7225 LABEL_REF_NONLOCAL_P (temp) = 1;
7227 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
7228 return temp;
7231 case SSA_NAME:
7232 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
7233 NULL);
7235 case PARM_DECL:
7236 case VAR_DECL:
7237 /* If a static var's type was incomplete when the decl was written,
7238 but the type is complete now, lay out the decl now. */
7239 if (DECL_SIZE (exp) == 0
7240 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
7241 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
7242 layout_decl (exp, 0);
7244 /* TLS emulation hook - replace __thread vars with
7245 *__emutls_get_address (&_emutls.var). */
7246 if (! targetm.have_tls
7247 && TREE_CODE (exp) == VAR_DECL
7248 && DECL_THREAD_LOCAL_P (exp))
7250 exp = build_fold_indirect_ref (emutls_var_address (exp));
7251 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
7254 /* ... fall through ... */
7256 case FUNCTION_DECL:
7257 case RESULT_DECL:
7258 decl_rtl = DECL_RTL (exp);
7259 gcc_assert (decl_rtl);
7260 decl_rtl = copy_rtx (decl_rtl);
7262 /* Ensure variable marked as used even if it doesn't go through
7263 a parser. If it hasn't be used yet, write out an external
7264 definition. */
7265 if (! TREE_USED (exp))
7267 assemble_external (exp);
7268 TREE_USED (exp) = 1;
7271 /* Show we haven't gotten RTL for this yet. */
7272 temp = 0;
7274 /* Variables inherited from containing functions should have
7275 been lowered by this point. */
7276 context = decl_function_context (exp);
7277 gcc_assert (!context
7278 || context == current_function_decl
7279 || TREE_STATIC (exp)
7280 /* ??? C++ creates functions that are not TREE_STATIC. */
7281 || TREE_CODE (exp) == FUNCTION_DECL);
7283 /* This is the case of an array whose size is to be determined
7284 from its initializer, while the initializer is still being parsed.
7285 See expand_decl. */
7287 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
7288 temp = validize_mem (decl_rtl);
7290 /* If DECL_RTL is memory, we are in the normal case and the
7291 address is not valid, get the address into a register. */
7293 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
7295 if (alt_rtl)
7296 *alt_rtl = decl_rtl;
7297 decl_rtl = use_anchored_address (decl_rtl);
7298 if (modifier != EXPAND_CONST_ADDRESS
7299 && modifier != EXPAND_SUM
7300 && !memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0)))
7301 temp = replace_equiv_address (decl_rtl,
7302 copy_rtx (XEXP (decl_rtl, 0)));
7305 /* If we got something, return it. But first, set the alignment
7306 if the address is a register. */
7307 if (temp != 0)
7309 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
7310 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
7312 return temp;
7315 /* If the mode of DECL_RTL does not match that of the decl, it
7316 must be a promoted value. We return a SUBREG of the wanted mode,
7317 but mark it so that we know that it was already extended. */
7319 if (REG_P (decl_rtl)
7320 && GET_MODE (decl_rtl) != DECL_MODE (exp))
7322 enum machine_mode pmode;
7324 /* Get the signedness used for this variable. Ensure we get the
7325 same mode we got when the variable was declared. */
7326 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
7327 (TREE_CODE (exp) == RESULT_DECL
7328 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
7329 gcc_assert (GET_MODE (decl_rtl) == pmode);
7331 temp = gen_lowpart_SUBREG (mode, decl_rtl);
7332 SUBREG_PROMOTED_VAR_P (temp) = 1;
7333 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
7334 return temp;
7337 return decl_rtl;
7339 case INTEGER_CST:
7340 temp = immed_double_const (TREE_INT_CST_LOW (exp),
7341 TREE_INT_CST_HIGH (exp), mode);
7343 return temp;
7345 case VECTOR_CST:
7347 tree tmp = NULL_TREE;
7348 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
7349 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
7350 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
7351 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
7352 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
7353 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
7354 return const_vector_from_tree (exp);
7355 if (GET_MODE_CLASS (mode) == MODE_INT)
7357 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
7358 if (type_for_mode)
7359 tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
7361 if (!tmp)
7362 tmp = build_constructor_from_list (type,
7363 TREE_VECTOR_CST_ELTS (exp));
7364 return expand_expr (tmp, ignore ? const0_rtx : target,
7365 tmode, modifier);
7368 case CONST_DECL:
7369 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
7371 case REAL_CST:
7372 /* If optimized, generate immediate CONST_DOUBLE
7373 which will be turned into memory by reload if necessary.
7375 We used to force a register so that loop.c could see it. But
7376 this does not allow gen_* patterns to perform optimizations with
7377 the constants. It also produces two insns in cases like "x = 1.0;".
7378 On most machines, floating-point constants are not permitted in
7379 many insns, so we'd end up copying it to a register in any case.
7381 Now, we do the copying in expand_binop, if appropriate. */
7382 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
7383 TYPE_MODE (TREE_TYPE (exp)));
7385 case FIXED_CST:
7386 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
7387 TYPE_MODE (TREE_TYPE (exp)));
7389 case COMPLEX_CST:
7390 /* Handle evaluating a complex constant in a CONCAT target. */
7391 if (original_target && GET_CODE (original_target) == CONCAT)
7393 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
7394 rtx rtarg, itarg;
7396 rtarg = XEXP (original_target, 0);
7397 itarg = XEXP (original_target, 1);
7399 /* Move the real and imaginary parts separately. */
7400 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
7401 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
7403 if (op0 != rtarg)
7404 emit_move_insn (rtarg, op0);
7405 if (op1 != itarg)
7406 emit_move_insn (itarg, op1);
7408 return original_target;
7411 /* ... fall through ... */
7413 case STRING_CST:
7414 temp = expand_expr_constant (exp, 1, modifier);
7416 /* temp contains a constant address.
7417 On RISC machines where a constant address isn't valid,
7418 make some insns to get that address into a register. */
7419 if (modifier != EXPAND_CONST_ADDRESS
7420 && modifier != EXPAND_INITIALIZER
7421 && modifier != EXPAND_SUM
7422 && ! memory_address_p (mode, XEXP (temp, 0)))
7423 return replace_equiv_address (temp,
7424 copy_rtx (XEXP (temp, 0)));
7425 return temp;
7427 case SAVE_EXPR:
7429 tree val = TREE_OPERAND (exp, 0);
7430 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
7432 if (!SAVE_EXPR_RESOLVED_P (exp))
7434 /* We can indeed still hit this case, typically via builtin
7435 expanders calling save_expr immediately before expanding
7436 something. Assume this means that we only have to deal
7437 with non-BLKmode values. */
7438 gcc_assert (GET_MODE (ret) != BLKmode);
7440 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
7441 DECL_ARTIFICIAL (val) = 1;
7442 DECL_IGNORED_P (val) = 1;
7443 TREE_OPERAND (exp, 0) = val;
7444 SAVE_EXPR_RESOLVED_P (exp) = 1;
7446 if (!CONSTANT_P (ret))
7447 ret = copy_to_reg (ret);
7448 SET_DECL_RTL (val, ret);
7451 return ret;
7454 case GOTO_EXPR:
7455 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
7456 expand_goto (TREE_OPERAND (exp, 0));
7457 else
7458 expand_computed_goto (TREE_OPERAND (exp, 0));
7459 return const0_rtx;
7461 case CONSTRUCTOR:
7462 /* If we don't need the result, just ensure we evaluate any
7463 subexpressions. */
7464 if (ignore)
7466 unsigned HOST_WIDE_INT idx;
7467 tree value;
7469 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7470 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
7472 return const0_rtx;
7475 return expand_constructor (exp, target, modifier, false);
7477 case MISALIGNED_INDIRECT_REF:
7478 case ALIGN_INDIRECT_REF:
7479 case INDIRECT_REF:
7481 tree exp1 = TREE_OPERAND (exp, 0);
7483 if (modifier != EXPAND_WRITE)
7485 tree t;
7487 t = fold_read_from_constant_string (exp);
7488 if (t)
7489 return expand_expr (t, target, tmode, modifier);
7492 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7493 op0 = memory_address (mode, op0);
7495 if (code == ALIGN_INDIRECT_REF)
7497 int align = TYPE_ALIGN_UNIT (type);
7498 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7499 op0 = memory_address (mode, op0);
7502 temp = gen_rtx_MEM (mode, op0);
7504 set_mem_attributes (temp, exp, 0);
7506 /* Resolve the misalignment now, so that we don't have to remember
7507 to resolve it later. Of course, this only works for reads. */
7508 /* ??? When we get around to supporting writes, we'll have to handle
7509 this in store_expr directly. The vectorizer isn't generating
7510 those yet, however. */
7511 if (code == MISALIGNED_INDIRECT_REF)
7513 int icode;
7514 rtx reg, insn;
7516 gcc_assert (modifier == EXPAND_NORMAL
7517 || modifier == EXPAND_STACK_PARM);
7519 /* The vectorizer should have already checked the mode. */
7520 icode = optab_handler (movmisalign_optab, mode)->insn_code;
7521 gcc_assert (icode != CODE_FOR_nothing);
7523 /* We've already validated the memory, and we're creating a
7524 new pseudo destination. The predicates really can't fail. */
7525 reg = gen_reg_rtx (mode);
7527 /* Nor can the insn generator. */
7528 insn = GEN_FCN (icode) (reg, temp);
7529 emit_insn (insn);
7531 return reg;
7534 return temp;
7537 case TARGET_MEM_REF:
7539 struct mem_address addr;
7541 get_address_description (exp, &addr);
7542 op0 = addr_for_mem_ref (&addr, true);
7543 op0 = memory_address (mode, op0);
7544 temp = gen_rtx_MEM (mode, op0);
7545 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7547 return temp;
7549 case ARRAY_REF:
7552 tree array = TREE_OPERAND (exp, 0);
7553 tree index = TREE_OPERAND (exp, 1);
7555 /* Fold an expression like: "foo"[2].
7556 This is not done in fold so it won't happen inside &.
7557 Don't fold if this is for wide characters since it's too
7558 difficult to do correctly and this is a very rare case. */
7560 if (modifier != EXPAND_CONST_ADDRESS
7561 && modifier != EXPAND_INITIALIZER
7562 && modifier != EXPAND_MEMORY)
7564 tree t = fold_read_from_constant_string (exp);
7566 if (t)
7567 return expand_expr (t, target, tmode, modifier);
7570 /* If this is a constant index into a constant array,
7571 just get the value from the array. Handle both the cases when
7572 we have an explicit constructor and when our operand is a variable
7573 that was declared const. */
7575 if (modifier != EXPAND_CONST_ADDRESS
7576 && modifier != EXPAND_INITIALIZER
7577 && modifier != EXPAND_MEMORY
7578 && TREE_CODE (array) == CONSTRUCTOR
7579 && ! TREE_SIDE_EFFECTS (array)
7580 && TREE_CODE (index) == INTEGER_CST)
7582 unsigned HOST_WIDE_INT ix;
7583 tree field, value;
7585 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7586 field, value)
7587 if (tree_int_cst_equal (field, index))
7589 if (!TREE_SIDE_EFFECTS (value))
7590 return expand_expr (fold (value), target, tmode, modifier);
7591 break;
7595 else if (optimize >= 1
7596 && modifier != EXPAND_CONST_ADDRESS
7597 && modifier != EXPAND_INITIALIZER
7598 && modifier != EXPAND_MEMORY
7599 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7600 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7601 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7602 && targetm.binds_local_p (array))
7604 if (TREE_CODE (index) == INTEGER_CST)
7606 tree init = DECL_INITIAL (array);
7608 if (TREE_CODE (init) == CONSTRUCTOR)
7610 unsigned HOST_WIDE_INT ix;
7611 tree field, value;
7613 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7614 field, value)
7615 if (tree_int_cst_equal (field, index))
7617 if (TREE_SIDE_EFFECTS (value))
7618 break;
7620 if (TREE_CODE (value) == CONSTRUCTOR)
7622 /* If VALUE is a CONSTRUCTOR, this
7623 optimization is only useful if
7624 this doesn't store the CONSTRUCTOR
7625 into memory. If it does, it is more
7626 efficient to just load the data from
7627 the array directly. */
7628 rtx ret = expand_constructor (value, target,
7629 modifier, true);
7630 if (ret == NULL_RTX)
7631 break;
7634 return expand_expr (fold (value), target, tmode,
7635 modifier);
7638 else if(TREE_CODE (init) == STRING_CST)
7640 tree index1 = index;
7641 tree low_bound = array_ref_low_bound (exp);
7642 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7644 /* Optimize the special-case of a zero lower bound.
7646 We convert the low_bound to sizetype to avoid some problems
7647 with constant folding. (E.g. suppose the lower bound is 1,
7648 and its mode is QI. Without the conversion,l (ARRAY
7649 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7650 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7652 if (! integer_zerop (low_bound))
7653 index1 = size_diffop (index1, fold_convert (sizetype,
7654 low_bound));
7656 if (0 > compare_tree_int (index1,
7657 TREE_STRING_LENGTH (init)))
7659 tree type = TREE_TYPE (TREE_TYPE (init));
7660 enum machine_mode mode = TYPE_MODE (type);
7662 if (GET_MODE_CLASS (mode) == MODE_INT
7663 && GET_MODE_SIZE (mode) == 1)
7664 return gen_int_mode (TREE_STRING_POINTER (init)
7665 [TREE_INT_CST_LOW (index1)],
7666 mode);
7672 goto normal_inner_ref;
7674 case COMPONENT_REF:
7675 /* If the operand is a CONSTRUCTOR, we can just extract the
7676 appropriate field if it is present. */
7677 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7679 unsigned HOST_WIDE_INT idx;
7680 tree field, value;
7682 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7683 idx, field, value)
7684 if (field == TREE_OPERAND (exp, 1)
7685 /* We can normally use the value of the field in the
7686 CONSTRUCTOR. However, if this is a bitfield in
7687 an integral mode that we can fit in a HOST_WIDE_INT,
7688 we must mask only the number of bits in the bitfield,
7689 since this is done implicitly by the constructor. If
7690 the bitfield does not meet either of those conditions,
7691 we can't do this optimization. */
7692 && (! DECL_BIT_FIELD (field)
7693 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7694 && (GET_MODE_BITSIZE (DECL_MODE (field))
7695 <= HOST_BITS_PER_WIDE_INT))))
7697 if (DECL_BIT_FIELD (field)
7698 && modifier == EXPAND_STACK_PARM)
7699 target = 0;
7700 op0 = expand_expr (value, target, tmode, modifier);
7701 if (DECL_BIT_FIELD (field))
7703 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7704 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7706 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7708 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7709 op0 = expand_and (imode, op0, op1, target);
7711 else
7713 tree count
7714 = build_int_cst (NULL_TREE,
7715 GET_MODE_BITSIZE (imode) - bitsize);
7717 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7718 target, 0);
7719 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7720 target, 0);
7724 return op0;
7727 goto normal_inner_ref;
7729 case BIT_FIELD_REF:
7730 case ARRAY_RANGE_REF:
7731 normal_inner_ref:
7733 enum machine_mode mode1;
7734 HOST_WIDE_INT bitsize, bitpos;
7735 tree offset;
7736 int volatilep = 0;
7737 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7738 &mode1, &unsignedp, &volatilep, true);
7739 rtx orig_op0;
7741 /* If we got back the original object, something is wrong. Perhaps
7742 we are evaluating an expression too early. In any event, don't
7743 infinitely recurse. */
7744 gcc_assert (tem != exp);
7746 /* If TEM's type is a union of variable size, pass TARGET to the inner
7747 computation, since it will need a temporary and TARGET is known
7748 to have to do. This occurs in unchecked conversion in Ada. */
7750 orig_op0 = op0
7751 = expand_expr (tem,
7752 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7753 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7754 != INTEGER_CST)
7755 && modifier != EXPAND_STACK_PARM
7756 ? target : NULL_RTX),
7757 VOIDmode,
7758 (modifier == EXPAND_INITIALIZER
7759 || modifier == EXPAND_CONST_ADDRESS
7760 || modifier == EXPAND_STACK_PARM)
7761 ? modifier : EXPAND_NORMAL);
7763 /* If this is a constant, put it into a register if it is a legitimate
7764 constant, OFFSET is 0, and we won't try to extract outside the
7765 register (in case we were passed a partially uninitialized object
7766 or a view_conversion to a larger size) or a BLKmode piece of it
7767 (e.g. if it is unchecked-converted to a record type in Ada). Force
7768 the constant to memory otherwise. */
7769 if (CONSTANT_P (op0))
7771 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7772 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7773 && offset == 0
7774 && mode1 != BLKmode
7775 && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7776 op0 = force_reg (mode, op0);
7777 else
7778 op0 = validize_mem (force_const_mem (mode, op0));
7781 /* Otherwise, if this object not in memory and we either have an
7782 offset, a BLKmode result, or a reference outside the object, put it
7783 there. Such cases can occur in Ada if we have unchecked conversion
7784 of an expression from a scalar type to an array or record type or
7785 for an ARRAY_RANGE_REF whose type is BLKmode. */
7786 else if (!MEM_P (op0)
7787 && (offset != 0
7788 || mode1 == BLKmode
7789 || (bitpos + bitsize
7790 > GET_MODE_BITSIZE (GET_MODE (op0)))))
7792 tree nt = build_qualified_type (TREE_TYPE (tem),
7793 (TYPE_QUALS (TREE_TYPE (tem))
7794 | TYPE_QUAL_CONST));
7795 rtx memloc = assign_temp (nt, 1, 1, 1);
7797 emit_move_insn (memloc, op0);
7798 op0 = memloc;
7801 if (offset != 0)
7803 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7804 EXPAND_SUM);
7806 gcc_assert (MEM_P (op0));
7808 #ifdef POINTERS_EXTEND_UNSIGNED
7809 if (GET_MODE (offset_rtx) != Pmode)
7810 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7811 #else
7812 if (GET_MODE (offset_rtx) != ptr_mode)
7813 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7814 #endif
7816 if (GET_MODE (op0) == BLKmode
7817 /* A constant address in OP0 can have VOIDmode, we must
7818 not try to call force_reg in that case. */
7819 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7820 && bitsize != 0
7821 && (bitpos % bitsize) == 0
7822 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7823 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7825 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7826 bitpos = 0;
7829 op0 = offset_address (op0, offset_rtx,
7830 highest_pow2_factor (offset));
7833 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7834 record its alignment as BIGGEST_ALIGNMENT. */
7835 if (MEM_P (op0) && bitpos == 0 && offset != 0
7836 && is_aligning_offset (offset, tem))
7837 set_mem_align (op0, BIGGEST_ALIGNMENT);
7839 /* Don't forget about volatility even if this is a bitfield. */
7840 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7842 if (op0 == orig_op0)
7843 op0 = copy_rtx (op0);
7845 MEM_VOLATILE_P (op0) = 1;
7848 /* The following code doesn't handle CONCAT.
7849 Assume only bitpos == 0 can be used for CONCAT, due to
7850 one element arrays having the same mode as its element. */
7851 if (GET_CODE (op0) == CONCAT)
7853 gcc_assert (bitpos == 0
7854 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7855 return op0;
7858 /* In cases where an aligned union has an unaligned object
7859 as a field, we might be extracting a BLKmode value from
7860 an integer-mode (e.g., SImode) object. Handle this case
7861 by doing the extract into an object as wide as the field
7862 (which we know to be the width of a basic mode), then
7863 storing into memory, and changing the mode to BLKmode. */
7864 if (mode1 == VOIDmode
7865 || REG_P (op0) || GET_CODE (op0) == SUBREG
7866 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7867 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7868 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7869 && modifier != EXPAND_CONST_ADDRESS
7870 && modifier != EXPAND_INITIALIZER)
7871 /* If the field isn't aligned enough to fetch as a memref,
7872 fetch it as a bit field. */
7873 || (mode1 != BLKmode
7874 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7875 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7876 || (MEM_P (op0)
7877 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7878 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7879 && ((modifier == EXPAND_CONST_ADDRESS
7880 || modifier == EXPAND_INITIALIZER)
7881 ? STRICT_ALIGNMENT
7882 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7883 || (bitpos % BITS_PER_UNIT != 0)))
7884 /* If the type and the field are a constant size and the
7885 size of the type isn't the same size as the bitfield,
7886 we must use bitfield operations. */
7887 || (bitsize >= 0
7888 && TYPE_SIZE (TREE_TYPE (exp))
7889 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7890 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7891 bitsize)))
7893 enum machine_mode ext_mode = mode;
7895 if (ext_mode == BLKmode
7896 && ! (target != 0 && MEM_P (op0)
7897 && MEM_P (target)
7898 && bitpos % BITS_PER_UNIT == 0))
7899 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7901 if (ext_mode == BLKmode)
7903 if (target == 0)
7904 target = assign_temp (type, 0, 1, 1);
7906 if (bitsize == 0)
7907 return target;
7909 /* In this case, BITPOS must start at a byte boundary and
7910 TARGET, if specified, must be a MEM. */
7911 gcc_assert (MEM_P (op0)
7912 && (!target || MEM_P (target))
7913 && !(bitpos % BITS_PER_UNIT));
7915 emit_block_move (target,
7916 adjust_address (op0, VOIDmode,
7917 bitpos / BITS_PER_UNIT),
7918 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7919 / BITS_PER_UNIT),
7920 (modifier == EXPAND_STACK_PARM
7921 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7923 return target;
7926 op0 = validize_mem (op0);
7928 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7929 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7931 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7932 (modifier == EXPAND_STACK_PARM
7933 ? NULL_RTX : target),
7934 ext_mode, ext_mode);
7936 /* If the result is a record type and BITSIZE is narrower than
7937 the mode of OP0, an integral mode, and this is a big endian
7938 machine, we must put the field into the high-order bits. */
7939 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7940 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7941 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7942 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7943 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7944 - bitsize),
7945 op0, 1);
7947 /* If the result type is BLKmode, store the data into a temporary
7948 of the appropriate type, but with the mode corresponding to the
7949 mode for the data we have (op0's mode). It's tempting to make
7950 this a constant type, since we know it's only being stored once,
7951 but that can cause problems if we are taking the address of this
7952 COMPONENT_REF because the MEM of any reference via that address
7953 will have flags corresponding to the type, which will not
7954 necessarily be constant. */
7955 if (mode == BLKmode)
7957 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
7958 rtx new;
7960 /* If the reference doesn't use the alias set of its type,
7961 we cannot create the temporary using that type. */
7962 if (component_uses_parent_alias_set (exp))
7964 new = assign_stack_local (ext_mode, size, 0);
7965 set_mem_alias_set (new, get_alias_set (exp));
7967 else
7968 new = assign_stack_temp_for_type (ext_mode, size, 0, type);
7970 emit_move_insn (new, op0);
7971 op0 = copy_rtx (new);
7972 PUT_MODE (op0, BLKmode);
7973 set_mem_attributes (op0, exp, 1);
7976 return op0;
7979 /* If the result is BLKmode, use that to access the object
7980 now as well. */
7981 if (mode == BLKmode)
7982 mode1 = BLKmode;
7984 /* Get a reference to just this component. */
7985 if (modifier == EXPAND_CONST_ADDRESS
7986 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7987 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7988 else
7989 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7991 if (op0 == orig_op0)
7992 op0 = copy_rtx (op0);
7994 set_mem_attributes (op0, exp, 0);
7995 if (REG_P (XEXP (op0, 0)))
7996 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7998 MEM_VOLATILE_P (op0) |= volatilep;
7999 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
8000 || modifier == EXPAND_CONST_ADDRESS
8001 || modifier == EXPAND_INITIALIZER)
8002 return op0;
8003 else if (target == 0)
8004 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8006 convert_move (target, op0, unsignedp);
8007 return target;
8010 case OBJ_TYPE_REF:
8011 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
8013 case CALL_EXPR:
8014 /* All valid uses of __builtin_va_arg_pack () are removed during
8015 inlining. */
8016 if (CALL_EXPR_VA_ARG_PACK (exp))
8017 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
8019 tree fndecl = get_callee_fndecl (exp), attr;
8021 if (fndecl
8022 && (attr = lookup_attribute ("error",
8023 DECL_ATTRIBUTES (fndecl))) != NULL)
8024 error ("%Kcall to %qs declared with attribute error: %s",
8025 exp, lang_hooks.decl_printable_name (fndecl, 1),
8026 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8027 if (fndecl
8028 && (attr = lookup_attribute ("warning",
8029 DECL_ATTRIBUTES (fndecl))) != NULL)
8030 warning (0, "%Kcall to %qs declared with attribute warning: %s",
8031 exp, lang_hooks.decl_printable_name (fndecl, 1),
8032 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8034 /* Check for a built-in function. */
8035 if (fndecl && DECL_BUILT_IN (fndecl))
8037 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_FRONTEND)
8038 return lang_hooks.expand_expr (exp, original_target,
8039 tmode, modifier, alt_rtl);
8040 else
8041 return expand_builtin (exp, target, subtarget, tmode, ignore);
8044 return expand_call (exp, target, ignore);
8046 case PAREN_EXPR:
8047 CASE_CONVERT:
8048 if (TREE_OPERAND (exp, 0) == error_mark_node)
8049 return const0_rtx;
8051 if (TREE_CODE (type) == UNION_TYPE)
8053 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
8055 /* If both input and output are BLKmode, this conversion isn't doing
8056 anything except possibly changing memory attribute. */
8057 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8059 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
8060 modifier);
8062 result = copy_rtx (result);
8063 set_mem_attributes (result, exp, 0);
8064 return result;
8067 if (target == 0)
8069 if (TYPE_MODE (type) != BLKmode)
8070 target = gen_reg_rtx (TYPE_MODE (type));
8071 else
8072 target = assign_temp (type, 0, 1, 1);
8075 if (MEM_P (target))
8076 /* Store data into beginning of memory target. */
8077 store_expr (TREE_OPERAND (exp, 0),
8078 adjust_address (target, TYPE_MODE (valtype), 0),
8079 modifier == EXPAND_STACK_PARM,
8080 false);
8082 else
8084 gcc_assert (REG_P (target));
8086 /* Store this field into a union of the proper type. */
8087 store_field (target,
8088 MIN ((int_size_in_bytes (TREE_TYPE
8089 (TREE_OPERAND (exp, 0)))
8090 * BITS_PER_UNIT),
8091 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8092 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
8093 type, 0, false);
8096 /* Return the entire union. */
8097 return target;
8100 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8102 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
8103 modifier);
8105 /* If the signedness of the conversion differs and OP0 is
8106 a promoted SUBREG, clear that indication since we now
8107 have to do the proper extension. */
8108 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
8109 && GET_CODE (op0) == SUBREG)
8110 SUBREG_PROMOTED_VAR_P (op0) = 0;
8112 return REDUCE_BIT_FIELD (op0);
8115 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
8116 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8117 if (GET_MODE (op0) == mode)
8120 /* If OP0 is a constant, just convert it into the proper mode. */
8121 else if (CONSTANT_P (op0))
8123 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8124 enum machine_mode inner_mode = TYPE_MODE (inner_type);
8126 if (modifier == EXPAND_INITIALIZER)
8127 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8128 subreg_lowpart_offset (mode,
8129 inner_mode));
8130 else
8131 op0= convert_modes (mode, inner_mode, op0,
8132 TYPE_UNSIGNED (inner_type));
8135 else if (modifier == EXPAND_INITIALIZER)
8136 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8138 else if (target == 0)
8139 op0 = convert_to_mode (mode, op0,
8140 TYPE_UNSIGNED (TREE_TYPE
8141 (TREE_OPERAND (exp, 0))));
8142 else
8144 convert_move (target, op0,
8145 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8146 op0 = target;
8149 return REDUCE_BIT_FIELD (op0);
8151 case VIEW_CONVERT_EXPR:
8152 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
8154 /* If the input and output modes are both the same, we are done. */
8155 if (TYPE_MODE (type) == GET_MODE (op0))
8157 /* If neither mode is BLKmode, and both modes are the same size
8158 then we can use gen_lowpart. */
8159 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
8160 && GET_MODE_SIZE (TYPE_MODE (type))
8161 == GET_MODE_SIZE (GET_MODE (op0)))
8163 if (GET_CODE (op0) == SUBREG)
8164 op0 = force_reg (GET_MODE (op0), op0);
8165 op0 = gen_lowpart (TYPE_MODE (type), op0);
8167 /* If both modes are integral, then we can convert from one to the
8168 other. */
8169 else if (SCALAR_INT_MODE_P (GET_MODE (op0))
8170 && SCALAR_INT_MODE_P (TYPE_MODE (type)))
8171 op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
8172 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8173 /* As a last resort, spill op0 to memory, and reload it in a
8174 different mode. */
8175 else if (!MEM_P (op0))
8177 /* If the operand is not a MEM, force it into memory. Since we
8178 are going to be changing the mode of the MEM, don't call
8179 force_const_mem for constants because we don't allow pool
8180 constants to change mode. */
8181 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8183 gcc_assert (!TREE_ADDRESSABLE (exp));
8185 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
8186 target
8187 = assign_stack_temp_for_type
8188 (TYPE_MODE (inner_type),
8189 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
8191 emit_move_insn (target, op0);
8192 op0 = target;
8195 /* At this point, OP0 is in the correct mode. If the output type is such
8196 that the operand is known to be aligned, indicate that it is.
8197 Otherwise, we need only be concerned about alignment for non-BLKmode
8198 results. */
8199 if (MEM_P (op0))
8201 op0 = copy_rtx (op0);
8203 if (TYPE_ALIGN_OK (type))
8204 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
8205 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
8206 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
8208 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8209 HOST_WIDE_INT temp_size
8210 = MAX (int_size_in_bytes (inner_type),
8211 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
8212 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
8213 temp_size, 0, type);
8214 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
8216 gcc_assert (!TREE_ADDRESSABLE (exp));
8218 if (GET_MODE (op0) == BLKmode)
8219 emit_block_move (new_with_op0_mode, op0,
8220 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
8221 (modifier == EXPAND_STACK_PARM
8222 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
8223 else
8224 emit_move_insn (new_with_op0_mode, op0);
8226 op0 = new;
8229 op0 = adjust_address (op0, TYPE_MODE (type), 0);
8232 return op0;
8234 case POINTER_PLUS_EXPR:
8235 /* Even though the sizetype mode and the pointer's mode can be different
8236 expand is able to handle this correctly and get the correct result out
8237 of the PLUS_EXPR code. */
8238 case PLUS_EXPR:
8240 /* Check if this is a case for multiplication and addition. */
8241 if ((TREE_CODE (type) == INTEGER_TYPE
8242 || TREE_CODE (type) == FIXED_POINT_TYPE)
8243 && TREE_CODE (TREE_OPERAND (exp, 0)) == MULT_EXPR)
8245 tree subsubexp0, subsubexp1;
8246 enum tree_code code0, code1, this_code;
8248 subexp0 = TREE_OPERAND (exp, 0);
8249 subsubexp0 = TREE_OPERAND (subexp0, 0);
8250 subsubexp1 = TREE_OPERAND (subexp0, 1);
8251 code0 = TREE_CODE (subsubexp0);
8252 code1 = TREE_CODE (subsubexp1);
8253 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8254 : FIXED_CONVERT_EXPR;
8255 if (code0 == this_code && code1 == this_code
8256 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8257 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8258 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8259 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8260 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8261 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8263 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8264 enum machine_mode innermode = TYPE_MODE (op0type);
8265 bool zextend_p = TYPE_UNSIGNED (op0type);
8266 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8267 if (sat_p == 0)
8268 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
8269 else
8270 this_optab = zextend_p ? usmadd_widen_optab
8271 : ssmadd_widen_optab;
8272 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8273 && (optab_handler (this_optab, mode)->insn_code
8274 != CODE_FOR_nothing))
8276 expand_operands (TREE_OPERAND (subsubexp0, 0),
8277 TREE_OPERAND (subsubexp1, 0),
8278 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8279 op2 = expand_expr (TREE_OPERAND (exp, 1), subtarget,
8280 VOIDmode, EXPAND_NORMAL);
8281 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8282 target, unsignedp);
8283 gcc_assert (temp);
8284 return REDUCE_BIT_FIELD (temp);
8289 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8290 something else, make sure we add the register to the constant and
8291 then to the other thing. This case can occur during strength
8292 reduction and doing it this way will produce better code if the
8293 frame pointer or argument pointer is eliminated.
8295 fold-const.c will ensure that the constant is always in the inner
8296 PLUS_EXPR, so the only case we need to do anything about is if
8297 sp, ap, or fp is our second argument, in which case we must swap
8298 the innermost first argument and our second argument. */
8300 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
8301 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
8302 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
8303 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
8304 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
8305 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
8307 tree t = TREE_OPERAND (exp, 1);
8309 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8310 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
8313 /* If the result is to be ptr_mode and we are adding an integer to
8314 something, we might be forming a constant. So try to use
8315 plus_constant. If it produces a sum and we can't accept it,
8316 use force_operand. This allows P = &ARR[const] to generate
8317 efficient code on machines where a SYMBOL_REF is not a valid
8318 address.
8320 If this is an EXPAND_SUM call, always return the sum. */
8321 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8322 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8324 if (modifier == EXPAND_STACK_PARM)
8325 target = 0;
8326 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
8327 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8328 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
8330 rtx constant_part;
8332 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
8333 EXPAND_SUM);
8334 /* Use immed_double_const to ensure that the constant is
8335 truncated according to the mode of OP1, then sign extended
8336 to a HOST_WIDE_INT. Using the constant directly can result
8337 in non-canonical RTL in a 64x32 cross compile. */
8338 constant_part
8339 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
8340 (HOST_WIDE_INT) 0,
8341 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8342 op1 = plus_constant (op1, INTVAL (constant_part));
8343 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8344 op1 = force_operand (op1, target);
8345 return REDUCE_BIT_FIELD (op1);
8348 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8349 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8350 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
8352 rtx constant_part;
8354 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8355 (modifier == EXPAND_INITIALIZER
8356 ? EXPAND_INITIALIZER : EXPAND_SUM));
8357 if (! CONSTANT_P (op0))
8359 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
8360 VOIDmode, modifier);
8361 /* Return a PLUS if modifier says it's OK. */
8362 if (modifier == EXPAND_SUM
8363 || modifier == EXPAND_INITIALIZER)
8364 return simplify_gen_binary (PLUS, mode, op0, op1);
8365 goto binop2;
8367 /* Use immed_double_const to ensure that the constant is
8368 truncated according to the mode of OP1, then sign extended
8369 to a HOST_WIDE_INT. Using the constant directly can result
8370 in non-canonical RTL in a 64x32 cross compile. */
8371 constant_part
8372 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
8373 (HOST_WIDE_INT) 0,
8374 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
8375 op0 = plus_constant (op0, INTVAL (constant_part));
8376 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8377 op0 = force_operand (op0, target);
8378 return REDUCE_BIT_FIELD (op0);
8382 /* No sense saving up arithmetic to be done
8383 if it's all in the wrong mode to form part of an address.
8384 And force_operand won't know whether to sign-extend or
8385 zero-extend. */
8386 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8387 || mode != ptr_mode)
8389 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8390 subtarget, &op0, &op1, 0);
8391 if (op0 == const0_rtx)
8392 return op1;
8393 if (op1 == const0_rtx)
8394 return op0;
8395 goto binop2;
8398 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8399 subtarget, &op0, &op1, modifier);
8400 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8402 case MINUS_EXPR:
8403 /* Check if this is a case for multiplication and subtraction. */
8404 if ((TREE_CODE (type) == INTEGER_TYPE
8405 || TREE_CODE (type) == FIXED_POINT_TYPE)
8406 && TREE_CODE (TREE_OPERAND (exp, 1)) == MULT_EXPR)
8408 tree subsubexp0, subsubexp1;
8409 enum tree_code code0, code1, this_code;
8411 subexp1 = TREE_OPERAND (exp, 1);
8412 subsubexp0 = TREE_OPERAND (subexp1, 0);
8413 subsubexp1 = TREE_OPERAND (subexp1, 1);
8414 code0 = TREE_CODE (subsubexp0);
8415 code1 = TREE_CODE (subsubexp1);
8416 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8417 : FIXED_CONVERT_EXPR;
8418 if (code0 == this_code && code1 == this_code
8419 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8420 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8421 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8422 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8423 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8424 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8426 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8427 enum machine_mode innermode = TYPE_MODE (op0type);
8428 bool zextend_p = TYPE_UNSIGNED (op0type);
8429 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8430 if (sat_p == 0)
8431 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
8432 else
8433 this_optab = zextend_p ? usmsub_widen_optab
8434 : ssmsub_widen_optab;
8435 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8436 && (optab_handler (this_optab, mode)->insn_code
8437 != CODE_FOR_nothing))
8439 expand_operands (TREE_OPERAND (subsubexp0, 0),
8440 TREE_OPERAND (subsubexp1, 0),
8441 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8442 op2 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8443 VOIDmode, EXPAND_NORMAL);
8444 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8445 target, unsignedp);
8446 gcc_assert (temp);
8447 return REDUCE_BIT_FIELD (temp);
8452 /* For initializers, we are allowed to return a MINUS of two
8453 symbolic constants. Here we handle all cases when both operands
8454 are constant. */
8455 /* Handle difference of two symbolic constants,
8456 for the sake of an initializer. */
8457 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8458 && really_constant_p (TREE_OPERAND (exp, 0))
8459 && really_constant_p (TREE_OPERAND (exp, 1)))
8461 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8462 NULL_RTX, &op0, &op1, modifier);
8464 /* If the last operand is a CONST_INT, use plus_constant of
8465 the negated constant. Else make the MINUS. */
8466 if (GET_CODE (op1) == CONST_INT)
8467 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
8468 else
8469 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8472 /* No sense saving up arithmetic to be done
8473 if it's all in the wrong mode to form part of an address.
8474 And force_operand won't know whether to sign-extend or
8475 zero-extend. */
8476 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8477 || mode != ptr_mode)
8478 goto binop;
8480 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8481 subtarget, &op0, &op1, modifier);
8483 /* Convert A - const to A + (-const). */
8484 if (GET_CODE (op1) == CONST_INT)
8486 op1 = negate_rtx (mode, op1);
8487 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8490 goto binop2;
8492 case MULT_EXPR:
8493 /* If this is a fixed-point operation, then we cannot use the code
8494 below because "expand_mult" doesn't support sat/no-sat fixed-point
8495 multiplications. */
8496 if (ALL_FIXED_POINT_MODE_P (mode))
8497 goto binop;
8499 /* If first operand is constant, swap them.
8500 Thus the following special case checks need only
8501 check the second operand. */
8502 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
8504 tree t1 = TREE_OPERAND (exp, 0);
8505 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
8506 TREE_OPERAND (exp, 1) = t1;
8509 /* Attempt to return something suitable for generating an
8510 indexed address, for machines that support that. */
8512 if (modifier == EXPAND_SUM && mode == ptr_mode
8513 && host_integerp (TREE_OPERAND (exp, 1), 0))
8515 tree exp1 = TREE_OPERAND (exp, 1);
8517 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8518 EXPAND_SUM);
8520 if (!REG_P (op0))
8521 op0 = force_operand (op0, NULL_RTX);
8522 if (!REG_P (op0))
8523 op0 = copy_to_mode_reg (mode, op0);
8525 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8526 gen_int_mode (tree_low_cst (exp1, 0),
8527 TYPE_MODE (TREE_TYPE (exp1)))));
8530 if (modifier == EXPAND_STACK_PARM)
8531 target = 0;
8533 /* Check for multiplying things that have been extended
8534 from a narrower type. If this machine supports multiplying
8535 in that narrower type with a result in the desired type,
8536 do it that way, and avoid the explicit type-conversion. */
8538 subexp0 = TREE_OPERAND (exp, 0);
8539 subexp1 = TREE_OPERAND (exp, 1);
8540 /* First, check if we have a multiplication of one signed and one
8541 unsigned operand. */
8542 if (TREE_CODE (subexp0) == NOP_EXPR
8543 && TREE_CODE (subexp1) == NOP_EXPR
8544 && TREE_CODE (type) == INTEGER_TYPE
8545 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8546 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8547 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8548 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
8549 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8550 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
8552 enum machine_mode innermode
8553 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
8554 this_optab = usmul_widen_optab;
8555 if (mode == GET_MODE_WIDER_MODE (innermode))
8557 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8559 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
8560 expand_operands (TREE_OPERAND (subexp0, 0),
8561 TREE_OPERAND (subexp1, 0),
8562 NULL_RTX, &op0, &op1, 0);
8563 else
8564 expand_operands (TREE_OPERAND (subexp0, 0),
8565 TREE_OPERAND (subexp1, 0),
8566 NULL_RTX, &op1, &op0, 0);
8568 goto binop3;
8572 /* Check for a multiplication with matching signedness. */
8573 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
8574 && TREE_CODE (type) == INTEGER_TYPE
8575 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8576 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8577 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8578 && int_fits_type_p (TREE_OPERAND (exp, 1),
8579 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8580 /* Don't use a widening multiply if a shift will do. */
8581 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8582 > HOST_BITS_PER_WIDE_INT)
8583 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
8585 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
8586 && (TYPE_PRECISION (TREE_TYPE
8587 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8588 == TYPE_PRECISION (TREE_TYPE
8589 (TREE_OPERAND
8590 (TREE_OPERAND (exp, 0), 0))))
8591 /* If both operands are extended, they must either both
8592 be zero-extended or both be sign-extended. */
8593 && (TYPE_UNSIGNED (TREE_TYPE
8594 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8595 == TYPE_UNSIGNED (TREE_TYPE
8596 (TREE_OPERAND
8597 (TREE_OPERAND (exp, 0), 0)))))))
8599 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8600 enum machine_mode innermode = TYPE_MODE (op0type);
8601 bool zextend_p = TYPE_UNSIGNED (op0type);
8602 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8603 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8605 if (mode == GET_MODE_2XWIDER_MODE (innermode))
8607 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8609 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8610 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8611 TREE_OPERAND (exp, 1),
8612 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8613 else
8614 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8615 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
8616 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8617 goto binop3;
8619 else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
8620 && innermode == word_mode)
8622 rtx htem, hipart;
8623 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8624 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8625 op1 = convert_modes (innermode, mode,
8626 expand_normal (TREE_OPERAND (exp, 1)),
8627 unsignedp);
8628 else
8629 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8630 temp = expand_binop (mode, other_optab, op0, op1, target,
8631 unsignedp, OPTAB_LIB_WIDEN);
8632 hipart = gen_highpart (innermode, temp);
8633 htem = expand_mult_highpart_adjust (innermode, hipart,
8634 op0, op1, hipart,
8635 zextend_p);
8636 if (htem != hipart)
8637 emit_move_insn (hipart, htem);
8638 return REDUCE_BIT_FIELD (temp);
8642 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8643 subtarget, &op0, &op1, 0);
8644 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8646 case TRUNC_DIV_EXPR:
8647 case FLOOR_DIV_EXPR:
8648 case CEIL_DIV_EXPR:
8649 case ROUND_DIV_EXPR:
8650 case EXACT_DIV_EXPR:
8651 /* If this is a fixed-point operation, then we cannot use the code
8652 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8653 divisions. */
8654 if (ALL_FIXED_POINT_MODE_P (mode))
8655 goto binop;
8657 if (modifier == EXPAND_STACK_PARM)
8658 target = 0;
8659 /* Possible optimization: compute the dividend with EXPAND_SUM
8660 then if the divisor is constant can optimize the case
8661 where some terms of the dividend have coeffs divisible by it. */
8662 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8663 subtarget, &op0, &op1, 0);
8664 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8666 case RDIV_EXPR:
8667 goto binop;
8669 case TRUNC_MOD_EXPR:
8670 case FLOOR_MOD_EXPR:
8671 case CEIL_MOD_EXPR:
8672 case ROUND_MOD_EXPR:
8673 if (modifier == EXPAND_STACK_PARM)
8674 target = 0;
8675 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8676 subtarget, &op0, &op1, 0);
8677 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8679 case FIXED_CONVERT_EXPR:
8680 op0 = expand_normal (TREE_OPERAND (exp, 0));
8681 if (target == 0 || modifier == EXPAND_STACK_PARM)
8682 target = gen_reg_rtx (mode);
8684 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == INTEGER_TYPE
8685 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
8686 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8687 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8688 else
8689 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8690 return target;
8692 case FIX_TRUNC_EXPR:
8693 op0 = expand_normal (TREE_OPERAND (exp, 0));
8694 if (target == 0 || modifier == EXPAND_STACK_PARM)
8695 target = gen_reg_rtx (mode);
8696 expand_fix (target, op0, unsignedp);
8697 return target;
8699 case FLOAT_EXPR:
8700 op0 = expand_normal (TREE_OPERAND (exp, 0));
8701 if (target == 0 || modifier == EXPAND_STACK_PARM)
8702 target = gen_reg_rtx (mode);
8703 /* expand_float can't figure out what to do if FROM has VOIDmode.
8704 So give it the correct mode. With -O, cse will optimize this. */
8705 if (GET_MODE (op0) == VOIDmode)
8706 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8707 op0);
8708 expand_float (target, op0,
8709 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8710 return target;
8712 case NEGATE_EXPR:
8713 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8714 VOIDmode, EXPAND_NORMAL);
8715 if (modifier == EXPAND_STACK_PARM)
8716 target = 0;
8717 temp = expand_unop (mode,
8718 optab_for_tree_code (NEGATE_EXPR, type,
8719 optab_default),
8720 op0, target, 0);
8721 gcc_assert (temp);
8722 return REDUCE_BIT_FIELD (temp);
8724 case ABS_EXPR:
8725 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8726 VOIDmode, EXPAND_NORMAL);
8727 if (modifier == EXPAND_STACK_PARM)
8728 target = 0;
8730 /* ABS_EXPR is not valid for complex arguments. */
8731 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8732 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8734 /* Unsigned abs is simply the operand. Testing here means we don't
8735 risk generating incorrect code below. */
8736 if (TYPE_UNSIGNED (type))
8737 return op0;
8739 return expand_abs (mode, op0, target, unsignedp,
8740 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8742 case MAX_EXPR:
8743 case MIN_EXPR:
8744 target = original_target;
8745 if (target == 0
8746 || modifier == EXPAND_STACK_PARM
8747 || (MEM_P (target) && MEM_VOLATILE_P (target))
8748 || GET_MODE (target) != mode
8749 || (REG_P (target)
8750 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8751 target = gen_reg_rtx (mode);
8752 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8753 target, &op0, &op1, 0);
8755 /* First try to do it with a special MIN or MAX instruction.
8756 If that does not win, use a conditional jump to select the proper
8757 value. */
8758 this_optab = optab_for_tree_code (code, type, optab_default);
8759 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8760 OPTAB_WIDEN);
8761 if (temp != 0)
8762 return temp;
8764 /* At this point, a MEM target is no longer useful; we will get better
8765 code without it. */
8767 if (! REG_P (target))
8768 target = gen_reg_rtx (mode);
8770 /* If op1 was placed in target, swap op0 and op1. */
8771 if (target != op0 && target == op1)
8773 temp = op0;
8774 op0 = op1;
8775 op1 = temp;
8778 /* We generate better code and avoid problems with op1 mentioning
8779 target by forcing op1 into a pseudo if it isn't a constant. */
8780 if (! CONSTANT_P (op1))
8781 op1 = force_reg (mode, op1);
8784 enum rtx_code comparison_code;
8785 rtx cmpop1 = op1;
8787 if (code == MAX_EXPR)
8788 comparison_code = unsignedp ? GEU : GE;
8789 else
8790 comparison_code = unsignedp ? LEU : LE;
8792 /* Canonicalize to comparisons against 0. */
8793 if (op1 == const1_rtx)
8795 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8796 or (a != 0 ? a : 1) for unsigned.
8797 For MIN we are safe converting (a <= 1 ? a : 1)
8798 into (a <= 0 ? a : 1) */
8799 cmpop1 = const0_rtx;
8800 if (code == MAX_EXPR)
8801 comparison_code = unsignedp ? NE : GT;
8803 if (op1 == constm1_rtx && !unsignedp)
8805 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8806 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8807 cmpop1 = const0_rtx;
8808 if (code == MIN_EXPR)
8809 comparison_code = LT;
8811 #ifdef HAVE_conditional_move
8812 /* Use a conditional move if possible. */
8813 if (can_conditionally_move_p (mode))
8815 rtx insn;
8817 /* ??? Same problem as in expmed.c: emit_conditional_move
8818 forces a stack adjustment via compare_from_rtx, and we
8819 lose the stack adjustment if the sequence we are about
8820 to create is discarded. */
8821 do_pending_stack_adjust ();
8823 start_sequence ();
8825 /* Try to emit the conditional move. */
8826 insn = emit_conditional_move (target, comparison_code,
8827 op0, cmpop1, mode,
8828 op0, op1, mode,
8829 unsignedp);
8831 /* If we could do the conditional move, emit the sequence,
8832 and return. */
8833 if (insn)
8835 rtx seq = get_insns ();
8836 end_sequence ();
8837 emit_insn (seq);
8838 return target;
8841 /* Otherwise discard the sequence and fall back to code with
8842 branches. */
8843 end_sequence ();
8845 #endif
8846 if (target != op0)
8847 emit_move_insn (target, op0);
8849 temp = gen_label_rtx ();
8850 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8851 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8853 emit_move_insn (target, op1);
8854 emit_label (temp);
8855 return target;
8857 case BIT_NOT_EXPR:
8858 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8859 VOIDmode, EXPAND_NORMAL);
8860 if (modifier == EXPAND_STACK_PARM)
8861 target = 0;
8862 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8863 gcc_assert (temp);
8864 return temp;
8866 /* ??? Can optimize bitwise operations with one arg constant.
8867 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8868 and (a bitwise1 b) bitwise2 b (etc)
8869 but that is probably not worth while. */
8871 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8872 boolean values when we want in all cases to compute both of them. In
8873 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8874 as actual zero-or-1 values and then bitwise anding. In cases where
8875 there cannot be any side effects, better code would be made by
8876 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8877 how to recognize those cases. */
8879 case TRUTH_AND_EXPR:
8880 code = BIT_AND_EXPR;
8881 case BIT_AND_EXPR:
8882 goto binop;
8884 case TRUTH_OR_EXPR:
8885 code = BIT_IOR_EXPR;
8886 case BIT_IOR_EXPR:
8887 goto binop;
8889 case TRUTH_XOR_EXPR:
8890 code = BIT_XOR_EXPR;
8891 case BIT_XOR_EXPR:
8892 goto binop;
8894 case LROTATE_EXPR:
8895 case RROTATE_EXPR:
8896 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8897 || (GET_MODE_PRECISION (TYPE_MODE (type))
8898 == TYPE_PRECISION (type)));
8899 /* fall through */
8901 case LSHIFT_EXPR:
8902 case RSHIFT_EXPR:
8903 /* If this is a fixed-point operation, then we cannot use the code
8904 below because "expand_shift" doesn't support sat/no-sat fixed-point
8905 shifts. */
8906 if (ALL_FIXED_POINT_MODE_P (mode))
8907 goto binop;
8909 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8910 subtarget = 0;
8911 if (modifier == EXPAND_STACK_PARM)
8912 target = 0;
8913 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8914 VOIDmode, EXPAND_NORMAL);
8915 temp = expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8916 unsignedp);
8917 if (code == LSHIFT_EXPR)
8918 temp = REDUCE_BIT_FIELD (temp);
8919 return temp;
8921 /* Could determine the answer when only additive constants differ. Also,
8922 the addition of one can be handled by changing the condition. */
8923 case LT_EXPR:
8924 case LE_EXPR:
8925 case GT_EXPR:
8926 case GE_EXPR:
8927 case EQ_EXPR:
8928 case NE_EXPR:
8929 case UNORDERED_EXPR:
8930 case ORDERED_EXPR:
8931 case UNLT_EXPR:
8932 case UNLE_EXPR:
8933 case UNGT_EXPR:
8934 case UNGE_EXPR:
8935 case UNEQ_EXPR:
8936 case LTGT_EXPR:
8937 temp = do_store_flag (exp,
8938 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8939 tmode != VOIDmode ? tmode : mode, 0);
8940 if (temp != 0)
8941 return temp;
8943 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8944 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8945 && original_target
8946 && REG_P (original_target)
8947 && (GET_MODE (original_target)
8948 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8950 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8951 VOIDmode, EXPAND_NORMAL);
8953 /* If temp is constant, we can just compute the result. */
8954 if (GET_CODE (temp) == CONST_INT)
8956 if (INTVAL (temp) != 0)
8957 emit_move_insn (target, const1_rtx);
8958 else
8959 emit_move_insn (target, const0_rtx);
8961 return target;
8964 if (temp != original_target)
8966 enum machine_mode mode1 = GET_MODE (temp);
8967 if (mode1 == VOIDmode)
8968 mode1 = tmode != VOIDmode ? tmode : mode;
8970 temp = copy_to_mode_reg (mode1, temp);
8973 op1 = gen_label_rtx ();
8974 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8975 GET_MODE (temp), unsignedp, op1);
8976 emit_move_insn (temp, const1_rtx);
8977 emit_label (op1);
8978 return temp;
8981 /* If no set-flag instruction, must generate a conditional store
8982 into a temporary variable. Drop through and handle this
8983 like && and ||. */
8985 if (! ignore
8986 && (target == 0
8987 || modifier == EXPAND_STACK_PARM
8988 || ! safe_from_p (target, exp, 1)
8989 /* Make sure we don't have a hard reg (such as function's return
8990 value) live across basic blocks, if not optimizing. */
8991 || (!optimize && REG_P (target)
8992 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8993 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8995 if (target)
8996 emit_move_insn (target, const0_rtx);
8998 op1 = gen_label_rtx ();
8999 jumpifnot (exp, op1);
9001 if (target)
9002 emit_move_insn (target, const1_rtx);
9004 emit_label (op1);
9005 return ignore ? const0_rtx : target;
9007 case TRUTH_NOT_EXPR:
9008 if (modifier == EXPAND_STACK_PARM)
9009 target = 0;
9010 op0 = expand_expr (TREE_OPERAND (exp, 0), target,
9011 VOIDmode, EXPAND_NORMAL);
9012 /* The parser is careful to generate TRUTH_NOT_EXPR
9013 only with operands that are always zero or one. */
9014 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
9015 target, 1, OPTAB_LIB_WIDEN);
9016 gcc_assert (temp);
9017 return temp;
9019 case STATEMENT_LIST:
9021 tree_stmt_iterator iter;
9023 gcc_assert (ignore);
9025 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9026 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9028 return const0_rtx;
9030 case COND_EXPR:
9031 /* A COND_EXPR with its type being VOID_TYPE represents a
9032 conditional jump and is handled in
9033 expand_gimple_cond_expr. */
9034 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
9036 /* Note that COND_EXPRs whose type is a structure or union
9037 are required to be constructed to contain assignments of
9038 a temporary variable, so that we can evaluate them here
9039 for side effect only. If type is void, we must do likewise. */
9041 gcc_assert (!TREE_ADDRESSABLE (type)
9042 && !ignore
9043 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
9044 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
9046 /* If we are not to produce a result, we have no target. Otherwise,
9047 if a target was specified use it; it will not be used as an
9048 intermediate target unless it is safe. If no target, use a
9049 temporary. */
9051 if (modifier != EXPAND_STACK_PARM
9052 && original_target
9053 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
9054 && GET_MODE (original_target) == mode
9055 #ifdef HAVE_conditional_move
9056 && (! can_conditionally_move_p (mode)
9057 || REG_P (original_target))
9058 #endif
9059 && !MEM_P (original_target))
9060 temp = original_target;
9061 else
9062 temp = assign_temp (type, 0, 0, 1);
9064 do_pending_stack_adjust ();
9065 NO_DEFER_POP;
9066 op0 = gen_label_rtx ();
9067 op1 = gen_label_rtx ();
9068 jumpifnot (TREE_OPERAND (exp, 0), op0);
9069 store_expr (TREE_OPERAND (exp, 1), temp,
9070 modifier == EXPAND_STACK_PARM,
9071 false);
9073 emit_jump_insn (gen_jump (op1));
9074 emit_barrier ();
9075 emit_label (op0);
9076 store_expr (TREE_OPERAND (exp, 2), temp,
9077 modifier == EXPAND_STACK_PARM,
9078 false);
9080 emit_label (op1);
9081 OK_DEFER_POP;
9082 return temp;
9084 case VEC_COND_EXPR:
9085 target = expand_vec_cond_expr (exp, target);
9086 return target;
9088 case MODIFY_EXPR:
9090 tree lhs = TREE_OPERAND (exp, 0);
9091 tree rhs = TREE_OPERAND (exp, 1);
9092 gcc_assert (ignore);
9093 expand_assignment (lhs, rhs, false);
9094 return const0_rtx;
9097 case GIMPLE_MODIFY_STMT:
9099 tree lhs = GIMPLE_STMT_OPERAND (exp, 0);
9100 tree rhs = GIMPLE_STMT_OPERAND (exp, 1);
9102 gcc_assert (ignore);
9104 /* Check for |= or &= of a bitfield of size one into another bitfield
9105 of size 1. In this case, (unless we need the result of the
9106 assignment) we can do this more efficiently with a
9107 test followed by an assignment, if necessary.
9109 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9110 things change so we do, this code should be enhanced to
9111 support it. */
9112 if (TREE_CODE (lhs) == COMPONENT_REF
9113 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9114 || TREE_CODE (rhs) == BIT_AND_EXPR)
9115 && TREE_OPERAND (rhs, 0) == lhs
9116 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9117 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9118 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9120 rtx label = gen_label_rtx ();
9121 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9122 do_jump (TREE_OPERAND (rhs, 1),
9123 value ? label : 0,
9124 value ? 0 : label);
9125 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9126 MOVE_NONTEMPORAL (exp));
9127 do_pending_stack_adjust ();
9128 emit_label (label);
9129 return const0_rtx;
9132 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9133 return const0_rtx;
9136 case RETURN_EXPR:
9137 if (!TREE_OPERAND (exp, 0))
9138 expand_null_return ();
9139 else
9140 expand_return (TREE_OPERAND (exp, 0));
9141 return const0_rtx;
9143 case ADDR_EXPR:
9144 return expand_expr_addr_expr (exp, target, tmode, modifier);
9146 case COMPLEX_EXPR:
9147 /* Get the rtx code of the operands. */
9148 op0 = expand_normal (TREE_OPERAND (exp, 0));
9149 op1 = expand_normal (TREE_OPERAND (exp, 1));
9151 if (!target)
9152 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
9154 /* Move the real (op0) and imaginary (op1) parts to their location. */
9155 write_complex_part (target, op0, false);
9156 write_complex_part (target, op1, true);
9158 return target;
9160 case REALPART_EXPR:
9161 op0 = expand_normal (TREE_OPERAND (exp, 0));
9162 return read_complex_part (op0, false);
9164 case IMAGPART_EXPR:
9165 op0 = expand_normal (TREE_OPERAND (exp, 0));
9166 return read_complex_part (op0, true);
9168 case RESX_EXPR:
9169 expand_resx_expr (exp);
9170 return const0_rtx;
9172 case TRY_CATCH_EXPR:
9173 case CATCH_EXPR:
9174 case EH_FILTER_EXPR:
9175 case TRY_FINALLY_EXPR:
9176 /* Lowered by tree-eh.c. */
9177 gcc_unreachable ();
9179 case WITH_CLEANUP_EXPR:
9180 case CLEANUP_POINT_EXPR:
9181 case TARGET_EXPR:
9182 case CASE_LABEL_EXPR:
9183 case VA_ARG_EXPR:
9184 case BIND_EXPR:
9185 case INIT_EXPR:
9186 case CONJ_EXPR:
9187 case COMPOUND_EXPR:
9188 case PREINCREMENT_EXPR:
9189 case PREDECREMENT_EXPR:
9190 case POSTINCREMENT_EXPR:
9191 case POSTDECREMENT_EXPR:
9192 case LOOP_EXPR:
9193 case EXIT_EXPR:
9194 case TRUTH_ANDIF_EXPR:
9195 case TRUTH_ORIF_EXPR:
9196 /* Lowered by gimplify.c. */
9197 gcc_unreachable ();
9199 case CHANGE_DYNAMIC_TYPE_EXPR:
9200 /* This is ignored at the RTL level. The tree level set
9201 DECL_POINTER_ALIAS_SET of any variable to be 0, which is
9202 overkill for the RTL layer but is all that we can
9203 represent. */
9204 return const0_rtx;
9206 case EXC_PTR_EXPR:
9207 return get_exception_pointer ();
9209 case FILTER_EXPR:
9210 return get_exception_filter ();
9212 case FDESC_EXPR:
9213 /* Function descriptors are not valid except for as
9214 initialization constants, and should not be expanded. */
9215 gcc_unreachable ();
9217 case SWITCH_EXPR:
9218 expand_case (exp);
9219 return const0_rtx;
9221 case LABEL_EXPR:
9222 expand_label (TREE_OPERAND (exp, 0));
9223 return const0_rtx;
9225 case ASM_EXPR:
9226 expand_asm_expr (exp);
9227 return const0_rtx;
9229 case WITH_SIZE_EXPR:
9230 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9231 have pulled out the size to use in whatever context it needed. */
9232 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
9233 modifier, alt_rtl);
9235 case REALIGN_LOAD_EXPR:
9237 tree oprnd0 = TREE_OPERAND (exp, 0);
9238 tree oprnd1 = TREE_OPERAND (exp, 1);
9239 tree oprnd2 = TREE_OPERAND (exp, 2);
9240 rtx op2;
9242 this_optab = optab_for_tree_code (code, type, optab_default);
9243 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9244 op2 = expand_normal (oprnd2);
9245 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9246 target, unsignedp);
9247 gcc_assert (temp);
9248 return temp;
9251 case DOT_PROD_EXPR:
9253 tree oprnd0 = TREE_OPERAND (exp, 0);
9254 tree oprnd1 = TREE_OPERAND (exp, 1);
9255 tree oprnd2 = TREE_OPERAND (exp, 2);
9256 rtx op2;
9258 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9259 op2 = expand_normal (oprnd2);
9260 target = expand_widen_pattern_expr (exp, op0, op1, op2,
9261 target, unsignedp);
9262 return target;
9265 case WIDEN_SUM_EXPR:
9267 tree oprnd0 = TREE_OPERAND (exp, 0);
9268 tree oprnd1 = TREE_OPERAND (exp, 1);
9270 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9271 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
9272 target, unsignedp);
9273 return target;
9276 case REDUC_MAX_EXPR:
9277 case REDUC_MIN_EXPR:
9278 case REDUC_PLUS_EXPR:
9280 op0 = expand_normal (TREE_OPERAND (exp, 0));
9281 this_optab = optab_for_tree_code (code, type, optab_default);
9282 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9283 gcc_assert (temp);
9284 return temp;
9287 case VEC_EXTRACT_EVEN_EXPR:
9288 case VEC_EXTRACT_ODD_EXPR:
9290 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9291 NULL_RTX, &op0, &op1, 0);
9292 this_optab = optab_for_tree_code (code, type, optab_default);
9293 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9294 OPTAB_WIDEN);
9295 gcc_assert (temp);
9296 return temp;
9299 case VEC_INTERLEAVE_HIGH_EXPR:
9300 case VEC_INTERLEAVE_LOW_EXPR:
9302 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9303 NULL_RTX, &op0, &op1, 0);
9304 this_optab = optab_for_tree_code (code, type, optab_default);
9305 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9306 OPTAB_WIDEN);
9307 gcc_assert (temp);
9308 return temp;
9311 case VEC_LSHIFT_EXPR:
9312 case VEC_RSHIFT_EXPR:
9314 target = expand_vec_shift_expr (exp, target);
9315 return target;
9318 case VEC_UNPACK_HI_EXPR:
9319 case VEC_UNPACK_LO_EXPR:
9321 op0 = expand_normal (TREE_OPERAND (exp, 0));
9322 this_optab = optab_for_tree_code (code, type, optab_default);
9323 temp = expand_widen_pattern_expr (exp, op0, NULL_RTX, NULL_RTX,
9324 target, unsignedp);
9325 gcc_assert (temp);
9326 return temp;
9329 case VEC_UNPACK_FLOAT_HI_EXPR:
9330 case VEC_UNPACK_FLOAT_LO_EXPR:
9332 op0 = expand_normal (TREE_OPERAND (exp, 0));
9333 /* The signedness is determined from input operand. */
9334 this_optab = optab_for_tree_code (code,
9335 TREE_TYPE (TREE_OPERAND (exp, 0)),
9336 optab_default);
9337 temp = expand_widen_pattern_expr
9338 (exp, op0, NULL_RTX, NULL_RTX,
9339 target, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
9341 gcc_assert (temp);
9342 return temp;
9345 case VEC_WIDEN_MULT_HI_EXPR:
9346 case VEC_WIDEN_MULT_LO_EXPR:
9348 tree oprnd0 = TREE_OPERAND (exp, 0);
9349 tree oprnd1 = TREE_OPERAND (exp, 1);
9351 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9352 target = expand_widen_pattern_expr (exp, op0, op1, NULL_RTX,
9353 target, unsignedp);
9354 gcc_assert (target);
9355 return target;
9358 case VEC_PACK_TRUNC_EXPR:
9359 case VEC_PACK_SAT_EXPR:
9360 case VEC_PACK_FIX_TRUNC_EXPR:
9362 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9363 goto binop;
9366 case OMP_ATOMIC_LOAD:
9367 case OMP_ATOMIC_STORE:
9368 /* OMP expansion is not run when there were errors, so these codes
9369 can get here. */
9370 gcc_assert (errorcount != 0);
9371 return NULL_RTX;
9373 default:
9374 return lang_hooks.expand_expr (exp, original_target, tmode,
9375 modifier, alt_rtl);
9378 /* Here to do an ordinary binary operator. */
9379 binop:
9380 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9381 subtarget, &op0, &op1, 0);
9382 binop2:
9383 this_optab = optab_for_tree_code (code, type, optab_default);
9384 binop3:
9385 if (modifier == EXPAND_STACK_PARM)
9386 target = 0;
9387 temp = expand_binop (mode, this_optab, op0, op1, target,
9388 unsignedp, OPTAB_LIB_WIDEN);
9389 gcc_assert (temp);
9390 return REDUCE_BIT_FIELD (temp);
9392 #undef REDUCE_BIT_FIELD
9394 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9395 signedness of TYPE), possibly returning the result in TARGET. */
9396 static rtx
9397 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9399 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9400 if (target && GET_MODE (target) != GET_MODE (exp))
9401 target = 0;
9402 /* For constant values, reduce using build_int_cst_type. */
9403 if (GET_CODE (exp) == CONST_INT)
9405 HOST_WIDE_INT value = INTVAL (exp);
9406 tree t = build_int_cst_type (type, value);
9407 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9409 else if (TYPE_UNSIGNED (type))
9411 rtx mask;
9412 if (prec < HOST_BITS_PER_WIDE_INT)
9413 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
9414 GET_MODE (exp));
9415 else
9416 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
9417 ((unsigned HOST_WIDE_INT) 1
9418 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
9419 GET_MODE (exp));
9420 return expand_and (GET_MODE (exp), exp, mask, target);
9422 else
9424 tree count = build_int_cst (NULL_TREE,
9425 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9426 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9427 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9431 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9432 when applied to the address of EXP produces an address known to be
9433 aligned more than BIGGEST_ALIGNMENT. */
9435 static int
9436 is_aligning_offset (const_tree offset, const_tree exp)
9438 /* Strip off any conversions. */
9439 while (CONVERT_EXPR_P (offset))
9440 offset = TREE_OPERAND (offset, 0);
9442 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9443 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9444 if (TREE_CODE (offset) != BIT_AND_EXPR
9445 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9446 || compare_tree_int (TREE_OPERAND (offset, 1),
9447 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9448 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9449 return 0;
9451 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9452 It must be NEGATE_EXPR. Then strip any more conversions. */
9453 offset = TREE_OPERAND (offset, 0);
9454 while (CONVERT_EXPR_P (offset))
9455 offset = TREE_OPERAND (offset, 0);
9457 if (TREE_CODE (offset) != NEGATE_EXPR)
9458 return 0;
9460 offset = TREE_OPERAND (offset, 0);
9461 while (CONVERT_EXPR_P (offset))
9462 offset = TREE_OPERAND (offset, 0);
9464 /* This must now be the address of EXP. */
9465 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9468 /* Return the tree node if an ARG corresponds to a string constant or zero
9469 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9470 in bytes within the string that ARG is accessing. The type of the
9471 offset will be `sizetype'. */
9473 tree
9474 string_constant (tree arg, tree *ptr_offset)
9476 tree array, offset, lower_bound;
9477 STRIP_NOPS (arg);
9479 if (TREE_CODE (arg) == ADDR_EXPR)
9481 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9483 *ptr_offset = size_zero_node;
9484 return TREE_OPERAND (arg, 0);
9486 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9488 array = TREE_OPERAND (arg, 0);
9489 offset = size_zero_node;
9491 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9493 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9494 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9495 if (TREE_CODE (array) != STRING_CST
9496 && TREE_CODE (array) != VAR_DECL)
9497 return 0;
9499 /* Check if the array has a nonzero lower bound. */
9500 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9501 if (!integer_zerop (lower_bound))
9503 /* If the offset and base aren't both constants, return 0. */
9504 if (TREE_CODE (lower_bound) != INTEGER_CST)
9505 return 0;
9506 if (TREE_CODE (offset) != INTEGER_CST)
9507 return 0;
9508 /* Adjust offset by the lower bound. */
9509 offset = size_diffop (fold_convert (sizetype, offset),
9510 fold_convert (sizetype, lower_bound));
9513 else
9514 return 0;
9516 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9518 tree arg0 = TREE_OPERAND (arg, 0);
9519 tree arg1 = TREE_OPERAND (arg, 1);
9521 STRIP_NOPS (arg0);
9522 STRIP_NOPS (arg1);
9524 if (TREE_CODE (arg0) == ADDR_EXPR
9525 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9526 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9528 array = TREE_OPERAND (arg0, 0);
9529 offset = arg1;
9531 else if (TREE_CODE (arg1) == ADDR_EXPR
9532 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9533 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9535 array = TREE_OPERAND (arg1, 0);
9536 offset = arg0;
9538 else
9539 return 0;
9541 else
9542 return 0;
9544 if (TREE_CODE (array) == STRING_CST)
9546 *ptr_offset = fold_convert (sizetype, offset);
9547 return array;
9549 else if (TREE_CODE (array) == VAR_DECL)
9551 int length;
9553 /* Variables initialized to string literals can be handled too. */
9554 if (DECL_INITIAL (array) == NULL_TREE
9555 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9556 return 0;
9558 /* If they are read-only, non-volatile and bind locally. */
9559 if (! TREE_READONLY (array)
9560 || TREE_SIDE_EFFECTS (array)
9561 || ! targetm.binds_local_p (array))
9562 return 0;
9564 /* Avoid const char foo[4] = "abcde"; */
9565 if (DECL_SIZE_UNIT (array) == NULL_TREE
9566 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9567 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9568 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9569 return 0;
9571 /* If variable is bigger than the string literal, OFFSET must be constant
9572 and inside of the bounds of the string literal. */
9573 offset = fold_convert (sizetype, offset);
9574 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9575 && (! host_integerp (offset, 1)
9576 || compare_tree_int (offset, length) >= 0))
9577 return 0;
9579 *ptr_offset = offset;
9580 return DECL_INITIAL (array);
9583 return 0;
9586 /* Generate code to calculate EXP using a store-flag instruction
9587 and return an rtx for the result. EXP is either a comparison
9588 or a TRUTH_NOT_EXPR whose operand is a comparison.
9590 If TARGET is nonzero, store the result there if convenient.
9592 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9593 cheap.
9595 Return zero if there is no suitable set-flag instruction
9596 available on this machine.
9598 Once expand_expr has been called on the arguments of the comparison,
9599 we are committed to doing the store flag, since it is not safe to
9600 re-evaluate the expression. We emit the store-flag insn by calling
9601 emit_store_flag, but only expand the arguments if we have a reason
9602 to believe that emit_store_flag will be successful. If we think that
9603 it will, but it isn't, we have to simulate the store-flag with a
9604 set/jump/set sequence. */
9606 static rtx
9607 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
9609 enum rtx_code code;
9610 tree arg0, arg1, type;
9611 tree tem;
9612 enum machine_mode operand_mode;
9613 int invert = 0;
9614 int unsignedp;
9615 rtx op0, op1;
9616 enum insn_code icode;
9617 rtx subtarget = target;
9618 rtx result, label;
9620 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9621 result at the end. We can't simply invert the test since it would
9622 have already been inverted if it were valid. This case occurs for
9623 some floating-point comparisons. */
9625 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
9626 invert = 1, exp = TREE_OPERAND (exp, 0);
9628 arg0 = TREE_OPERAND (exp, 0);
9629 arg1 = TREE_OPERAND (exp, 1);
9631 /* Don't crash if the comparison was erroneous. */
9632 if (arg0 == error_mark_node || arg1 == error_mark_node)
9633 return const0_rtx;
9635 type = TREE_TYPE (arg0);
9636 operand_mode = TYPE_MODE (type);
9637 unsignedp = TYPE_UNSIGNED (type);
9639 /* We won't bother with BLKmode store-flag operations because it would mean
9640 passing a lot of information to emit_store_flag. */
9641 if (operand_mode == BLKmode)
9642 return 0;
9644 /* We won't bother with store-flag operations involving function pointers
9645 when function pointers must be canonicalized before comparisons. */
9646 #ifdef HAVE_canonicalize_funcptr_for_compare
9647 if (HAVE_canonicalize_funcptr_for_compare
9648 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9649 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9650 == FUNCTION_TYPE))
9651 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9652 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9653 == FUNCTION_TYPE))))
9654 return 0;
9655 #endif
9657 STRIP_NOPS (arg0);
9658 STRIP_NOPS (arg1);
9660 /* Get the rtx comparison code to use. We know that EXP is a comparison
9661 operation of some type. Some comparisons against 1 and -1 can be
9662 converted to comparisons with zero. Do so here so that the tests
9663 below will be aware that we have a comparison with zero. These
9664 tests will not catch constants in the first operand, but constants
9665 are rarely passed as the first operand. */
9667 switch (TREE_CODE (exp))
9669 case EQ_EXPR:
9670 code = EQ;
9671 break;
9672 case NE_EXPR:
9673 code = NE;
9674 break;
9675 case LT_EXPR:
9676 if (integer_onep (arg1))
9677 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9678 else
9679 code = unsignedp ? LTU : LT;
9680 break;
9681 case LE_EXPR:
9682 if (! unsignedp && integer_all_onesp (arg1))
9683 arg1 = integer_zero_node, code = LT;
9684 else
9685 code = unsignedp ? LEU : LE;
9686 break;
9687 case GT_EXPR:
9688 if (! unsignedp && integer_all_onesp (arg1))
9689 arg1 = integer_zero_node, code = GE;
9690 else
9691 code = unsignedp ? GTU : GT;
9692 break;
9693 case GE_EXPR:
9694 if (integer_onep (arg1))
9695 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9696 else
9697 code = unsignedp ? GEU : GE;
9698 break;
9700 case UNORDERED_EXPR:
9701 code = UNORDERED;
9702 break;
9703 case ORDERED_EXPR:
9704 code = ORDERED;
9705 break;
9706 case UNLT_EXPR:
9707 code = UNLT;
9708 break;
9709 case UNLE_EXPR:
9710 code = UNLE;
9711 break;
9712 case UNGT_EXPR:
9713 code = UNGT;
9714 break;
9715 case UNGE_EXPR:
9716 code = UNGE;
9717 break;
9718 case UNEQ_EXPR:
9719 code = UNEQ;
9720 break;
9721 case LTGT_EXPR:
9722 code = LTGT;
9723 break;
9725 default:
9726 gcc_unreachable ();
9729 /* Put a constant second. */
9730 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9731 || TREE_CODE (arg0) == FIXED_CST)
9733 tem = arg0; arg0 = arg1; arg1 = tem;
9734 code = swap_condition (code);
9737 /* If this is an equality or inequality test of a single bit, we can
9738 do this by shifting the bit being tested to the low-order bit and
9739 masking the result with the constant 1. If the condition was EQ,
9740 we xor it with 1. This does not require an scc insn and is faster
9741 than an scc insn even if we have it.
9743 The code to make this transformation was moved into fold_single_bit_test,
9744 so we just call into the folder and expand its result. */
9746 if ((code == NE || code == EQ)
9747 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9748 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9750 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9751 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
9752 arg0, arg1, type),
9753 target, VOIDmode, EXPAND_NORMAL);
9756 /* Now see if we are likely to be able to do this. Return if not. */
9757 if (! can_compare_p (code, operand_mode, ccp_store_flag))
9758 return 0;
9760 icode = setcc_gen_code[(int) code];
9762 if (icode == CODE_FOR_nothing)
9764 enum machine_mode wmode;
9766 for (wmode = operand_mode;
9767 icode == CODE_FOR_nothing && wmode != VOIDmode;
9768 wmode = GET_MODE_WIDER_MODE (wmode))
9769 icode = optab_handler (cstore_optab, wmode)->insn_code;
9772 if (icode == CODE_FOR_nothing
9773 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
9775 /* We can only do this if it is one of the special cases that
9776 can be handled without an scc insn. */
9777 if ((code == LT && integer_zerop (arg1))
9778 || (! only_cheap && code == GE && integer_zerop (arg1)))
9780 else if (! only_cheap && (code == NE || code == EQ)
9781 && TREE_CODE (type) != REAL_TYPE
9782 && ((optab_handler (abs_optab, operand_mode)->insn_code
9783 != CODE_FOR_nothing)
9784 || (optab_handler (ffs_optab, operand_mode)->insn_code
9785 != CODE_FOR_nothing)))
9787 else
9788 return 0;
9791 if (! get_subtarget (target)
9792 || GET_MODE (subtarget) != operand_mode)
9793 subtarget = 0;
9795 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9797 if (target == 0)
9798 target = gen_reg_rtx (mode);
9800 result = emit_store_flag (target, code, op0, op1,
9801 operand_mode, unsignedp, 1);
9803 if (result)
9805 if (invert)
9806 result = expand_binop (mode, xor_optab, result, const1_rtx,
9807 result, 0, OPTAB_LIB_WIDEN);
9808 return result;
9811 /* If this failed, we have to do this with set/compare/jump/set code. */
9812 if (!REG_P (target)
9813 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9814 target = gen_reg_rtx (GET_MODE (target));
9816 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9817 label = gen_label_rtx ();
9818 do_compare_rtx_and_jump (op0, op1, code, unsignedp, operand_mode, NULL_RTX,
9819 NULL_RTX, label);
9821 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9822 emit_label (label);
9824 return target;
9828 /* Stubs in case we haven't got a casesi insn. */
9829 #ifndef HAVE_casesi
9830 # define HAVE_casesi 0
9831 # define gen_casesi(a, b, c, d, e) (0)
9832 # define CODE_FOR_casesi CODE_FOR_nothing
9833 #endif
9835 /* If the machine does not have a case insn that compares the bounds,
9836 this means extra overhead for dispatch tables, which raises the
9837 threshold for using them. */
9838 #ifndef CASE_VALUES_THRESHOLD
9839 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9840 #endif /* CASE_VALUES_THRESHOLD */
9842 unsigned int
9843 case_values_threshold (void)
9845 return CASE_VALUES_THRESHOLD;
9848 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9849 0 otherwise (i.e. if there is no casesi instruction). */
9851 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9852 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
9853 rtx fallback_label ATTRIBUTE_UNUSED)
9855 enum machine_mode index_mode = SImode;
9856 int index_bits = GET_MODE_BITSIZE (index_mode);
9857 rtx op1, op2, index;
9858 enum machine_mode op_mode;
9860 if (! HAVE_casesi)
9861 return 0;
9863 /* Convert the index to SImode. */
9864 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9866 enum machine_mode omode = TYPE_MODE (index_type);
9867 rtx rangertx = expand_normal (range);
9869 /* We must handle the endpoints in the original mode. */
9870 index_expr = build2 (MINUS_EXPR, index_type,
9871 index_expr, minval);
9872 minval = integer_zero_node;
9873 index = expand_normal (index_expr);
9874 if (default_label)
9875 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9876 omode, 1, default_label);
9877 /* Now we can safely truncate. */
9878 index = convert_to_mode (index_mode, index, 0);
9880 else
9882 if (TYPE_MODE (index_type) != index_mode)
9884 index_type = lang_hooks.types.type_for_size (index_bits, 0);
9885 index_expr = fold_convert (index_type, index_expr);
9888 index = expand_normal (index_expr);
9891 do_pending_stack_adjust ();
9893 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9894 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9895 (index, op_mode))
9896 index = copy_to_mode_reg (op_mode, index);
9898 op1 = expand_normal (minval);
9900 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9901 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9902 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9903 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9904 (op1, op_mode))
9905 op1 = copy_to_mode_reg (op_mode, op1);
9907 op2 = expand_normal (range);
9909 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9910 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9911 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9912 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9913 (op2, op_mode))
9914 op2 = copy_to_mode_reg (op_mode, op2);
9916 emit_jump_insn (gen_casesi (index, op1, op2,
9917 table_label, !default_label
9918 ? fallback_label : default_label));
9919 return 1;
9922 /* Attempt to generate a tablejump instruction; same concept. */
9923 #ifndef HAVE_tablejump
9924 #define HAVE_tablejump 0
9925 #define gen_tablejump(x, y) (0)
9926 #endif
9928 /* Subroutine of the next function.
9930 INDEX is the value being switched on, with the lowest value
9931 in the table already subtracted.
9932 MODE is its expected mode (needed if INDEX is constant).
9933 RANGE is the length of the jump table.
9934 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9936 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9937 index value is out of range. */
9939 static void
9940 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9941 rtx default_label)
9943 rtx temp, vector;
9945 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
9946 cfun->cfg->max_jumptable_ents = INTVAL (range);
9948 /* Do an unsigned comparison (in the proper mode) between the index
9949 expression and the value which represents the length of the range.
9950 Since we just finished subtracting the lower bound of the range
9951 from the index expression, this comparison allows us to simultaneously
9952 check that the original index expression value is both greater than
9953 or equal to the minimum value of the range and less than or equal to
9954 the maximum value of the range. */
9956 if (default_label)
9957 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9958 default_label);
9960 /* If index is in range, it must fit in Pmode.
9961 Convert to Pmode so we can index with it. */
9962 if (mode != Pmode)
9963 index = convert_to_mode (Pmode, index, 1);
9965 /* Don't let a MEM slip through, because then INDEX that comes
9966 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9967 and break_out_memory_refs will go to work on it and mess it up. */
9968 #ifdef PIC_CASE_VECTOR_ADDRESS
9969 if (flag_pic && !REG_P (index))
9970 index = copy_to_mode_reg (Pmode, index);
9971 #endif
9973 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9974 GET_MODE_SIZE, because this indicates how large insns are. The other
9975 uses should all be Pmode, because they are addresses. This code
9976 could fail if addresses and insns are not the same size. */
9977 index = gen_rtx_PLUS (Pmode,
9978 gen_rtx_MULT (Pmode, index,
9979 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9980 gen_rtx_LABEL_REF (Pmode, table_label));
9981 #ifdef PIC_CASE_VECTOR_ADDRESS
9982 if (flag_pic)
9983 index = PIC_CASE_VECTOR_ADDRESS (index);
9984 else
9985 #endif
9986 index = memory_address (CASE_VECTOR_MODE, index);
9987 temp = gen_reg_rtx (CASE_VECTOR_MODE);
9988 vector = gen_const_mem (CASE_VECTOR_MODE, index);
9989 convert_move (temp, vector, 0);
9991 emit_jump_insn (gen_tablejump (temp, table_label));
9993 /* If we are generating PIC code or if the table is PC-relative, the
9994 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9995 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
9996 emit_barrier ();
10000 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10001 rtx table_label, rtx default_label)
10003 rtx index;
10005 if (! HAVE_tablejump)
10006 return 0;
10008 index_expr = fold_build2 (MINUS_EXPR, index_type,
10009 fold_convert (index_type, index_expr),
10010 fold_convert (index_type, minval));
10011 index = expand_normal (index_expr);
10012 do_pending_stack_adjust ();
10014 do_tablejump (index, TYPE_MODE (index_type),
10015 convert_modes (TYPE_MODE (index_type),
10016 TYPE_MODE (TREE_TYPE (range)),
10017 expand_normal (range),
10018 TYPE_UNSIGNED (TREE_TYPE (range))),
10019 table_label, default_label);
10020 return 1;
10023 /* Nonzero if the mode is a valid vector mode for this architecture.
10024 This returns nonzero even if there is no hardware support for the
10025 vector mode, but we can emulate with narrower modes. */
10028 vector_mode_valid_p (enum machine_mode mode)
10030 enum mode_class class = GET_MODE_CLASS (mode);
10031 enum machine_mode innermode;
10033 /* Doh! What's going on? */
10034 if (class != MODE_VECTOR_INT
10035 && class != MODE_VECTOR_FLOAT
10036 && class != MODE_VECTOR_FRACT
10037 && class != MODE_VECTOR_UFRACT
10038 && class != MODE_VECTOR_ACCUM
10039 && class != MODE_VECTOR_UACCUM)
10040 return 0;
10042 /* Hardware support. Woo hoo! */
10043 if (targetm.vector_mode_supported_p (mode))
10044 return 1;
10046 innermode = GET_MODE_INNER (mode);
10048 /* We should probably return 1 if requesting V4DI and we have no DI,
10049 but we have V2DI, but this is probably very unlikely. */
10051 /* If we have support for the inner mode, we can safely emulate it.
10052 We may not have V2DI, but me can emulate with a pair of DIs. */
10053 return targetm.scalar_mode_supported_p (innermode);
10056 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10057 static rtx
10058 const_vector_from_tree (tree exp)
10060 rtvec v;
10061 int units, i;
10062 tree link, elt;
10063 enum machine_mode inner, mode;
10065 mode = TYPE_MODE (TREE_TYPE (exp));
10067 if (initializer_zerop (exp))
10068 return CONST0_RTX (mode);
10070 units = GET_MODE_NUNITS (mode);
10071 inner = GET_MODE_INNER (mode);
10073 v = rtvec_alloc (units);
10075 link = TREE_VECTOR_CST_ELTS (exp);
10076 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10078 elt = TREE_VALUE (link);
10080 if (TREE_CODE (elt) == REAL_CST)
10081 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10082 inner);
10083 else if (TREE_CODE (elt) == FIXED_CST)
10084 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10085 inner);
10086 else
10087 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
10088 TREE_INT_CST_HIGH (elt),
10089 inner);
10092 /* Initialize remaining elements to 0. */
10093 for (; i < units; ++i)
10094 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10096 return gen_rtx_CONST_VECTOR (mode, v);
10098 #include "gt-expr.h"