objc-act.c (synth_module_prologue): Use TREE_NO_WARNING instead of DECL_IN_SYSTEM_HEADER.
[official-gcc.git] / gcc / ada / uintp.adb
blob416d5d88681b9e3d10c3ef1025581e8e4e792cfd
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- U I N T P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 with Output; use Output;
35 with Tree_IO; use Tree_IO;
37 with GNAT.HTable; use GNAT.HTable;
39 package body Uintp is
41 ------------------------
42 -- Local Declarations --
43 ------------------------
45 Uint_Int_First : Uint := Uint_0;
46 -- Uint value containing Int'First value, set by Initialize. The initial
47 -- value of Uint_0 is used for an assertion check that ensures that this
48 -- value is not used before it is initialized. This value is used in the
49 -- UI_Is_In_Int_Range predicate, and it is right that this is a host value,
50 -- since the issue is host representation of integer values.
52 Uint_Int_Last : Uint;
53 -- Uint value containing Int'Last value set by Initialize
55 UI_Power_2 : array (Int range 0 .. 64) of Uint;
56 -- This table is used to memoize exponentiations by powers of 2. The Nth
57 -- entry, if set, contains the Uint value 2 ** N. Initially UI_Power_2_Set
58 -- is zero and only the 0'th entry is set, the invariant being that all
59 -- entries in the range 0 .. UI_Power_2_Set are initialized.
61 UI_Power_2_Set : Nat;
62 -- Number of entries set in UI_Power_2;
64 UI_Power_10 : array (Int range 0 .. 64) of Uint;
65 -- This table is used to memoize exponentiations by powers of 10 in the
66 -- same manner as described above for UI_Power_2.
68 UI_Power_10_Set : Nat;
69 -- Number of entries set in UI_Power_10;
71 Uints_Min : Uint;
72 Udigits_Min : Int;
73 -- These values are used to make sure that the mark/release mechanism does
74 -- not destroy values saved in the U_Power tables or in the hash table used
75 -- by UI_From_Int. Whenever an entry is made in either of these tables,
76 -- Uints_Min and Udigits_Min are updated to protect the entry, and Release
77 -- never cuts back beyond these minimum values.
79 Int_0 : constant Int := 0;
80 Int_1 : constant Int := 1;
81 Int_2 : constant Int := 2;
82 -- These values are used in some cases where the use of numeric literals
83 -- would cause ambiguities (integer vs Uint).
85 ----------------------------
86 -- UI_From_Int Hash Table --
87 ----------------------------
89 -- UI_From_Int uses a hash table to avoid duplicating entries and wasting
90 -- storage. This is particularly important for complex cases of back
91 -- annotation.
93 subtype Hnum is Nat range 0 .. 1022;
95 function Hash_Num (F : Int) return Hnum;
96 -- Hashing function
98 package UI_Ints is new Simple_HTable (
99 Header_Num => Hnum,
100 Element => Uint,
101 No_Element => No_Uint,
102 Key => Int,
103 Hash => Hash_Num,
104 Equal => "=");
106 -----------------------
107 -- Local Subprograms --
108 -----------------------
110 function Direct (U : Uint) return Boolean;
111 pragma Inline (Direct);
112 -- Returns True if U is represented directly
114 function Direct_Val (U : Uint) return Int;
115 -- U is a Uint for is represented directly. The returned result is the
116 -- value represented.
118 function GCD (Jin, Kin : Int) return Int;
119 -- Compute GCD of two integers. Assumes that Jin >= Kin >= 0
121 procedure Image_Out
122 (Input : Uint;
123 To_Buffer : Boolean;
124 Format : UI_Format);
125 -- Common processing for UI_Image and UI_Write, To_Buffer is set True for
126 -- UI_Image, and false for UI_Write, and Format is copied from the Format
127 -- parameter to UI_Image or UI_Write.
129 procedure Init_Operand (UI : Uint; Vec : out UI_Vector);
130 pragma Inline (Init_Operand);
131 -- This procedure puts the value of UI into the vector in canonical
132 -- multiple precision format. The parameter should be of the correct size
133 -- as determined by a previous call to N_Digits (UI). The first digit of
134 -- Vec contains the sign, all other digits are always non- negative. Note
135 -- that the input may be directly represented, and in this case Vec will
136 -- contain the corresponding one or two digit value. The low bound of Vec
137 -- is always 1.
139 function Least_Sig_Digit (Arg : Uint) return Int;
140 pragma Inline (Least_Sig_Digit);
141 -- Returns the Least Significant Digit of Arg quickly. When the given Uint
142 -- is less than 2**15, the value returned is the input value, in this case
143 -- the result may be negative. It is expected that any use will mask off
144 -- unnecessary bits. This is used for finding Arg mod B where B is a power
145 -- of two. Hence the actual base is irrelevant as long as it is a power of
146 -- two.
148 procedure Most_Sig_2_Digits
149 (Left : Uint;
150 Right : Uint;
151 Left_Hat : out Int;
152 Right_Hat : out Int);
153 -- Returns leading two significant digits from the given pair of Uint's.
154 -- Mathematically: returns Left / (Base ** K) and Right / (Base ** K) where
155 -- K is as small as possible S.T. Right_Hat < Base * Base. It is required
156 -- that Left > Right for the algorithm to work.
158 function N_Digits (Input : Uint) return Int;
159 pragma Inline (N_Digits);
160 -- Returns number of "digits" in a Uint
162 function Sum_Digits (Left : Uint; Sign : Int) return Int;
163 -- If Sign = 1 return the sum of the "digits" of Abs (Left). If the total
164 -- has more then one digit then return Sum_Digits of total.
166 function Sum_Double_Digits (Left : Uint; Sign : Int) return Int;
167 -- Same as above but work in New_Base = Base * Base
169 procedure UI_Div_Rem
170 (Left, Right : Uint;
171 Quotient : out Uint;
172 Remainder : out Uint;
173 Discard_Quotient : Boolean;
174 Discard_Remainder : Boolean);
175 -- Compute Euclidean division of Left by Right, and return Quotient and
176 -- signed Remainder (Left rem Right).
178 -- If Discard_Quotient is True, Quotient is left unchanged.
179 -- If Discard_Remainder is True, Remainder is left unchanged.
181 function Vector_To_Uint
182 (In_Vec : UI_Vector;
183 Negative : Boolean) return Uint;
184 -- Functions that calculate values in UI_Vectors, call this function to
185 -- create and return the Uint value. In_Vec contains the multiple precision
186 -- (Base) representation of a non-negative value. Leading zeroes are
187 -- permitted. Negative is set if the desired result is the negative of the
188 -- given value. The result will be either the appropriate directly
189 -- represented value, or a table entry in the proper canonical format is
190 -- created and returned.
192 -- Note that Init_Operand puts a signed value in the result vector, but
193 -- Vector_To_Uint is always presented with a non-negative value. The
194 -- processing of signs is something that is done by the caller before
195 -- calling Vector_To_Uint.
197 ------------
198 -- Direct --
199 ------------
201 function Direct (U : Uint) return Boolean is
202 begin
203 return Int (U) <= Int (Uint_Direct_Last);
204 end Direct;
206 ----------------
207 -- Direct_Val --
208 ----------------
210 function Direct_Val (U : Uint) return Int is
211 begin
212 pragma Assert (Direct (U));
213 return Int (U) - Int (Uint_Direct_Bias);
214 end Direct_Val;
216 ---------
217 -- GCD --
218 ---------
220 function GCD (Jin, Kin : Int) return Int is
221 J, K, Tmp : Int;
223 begin
224 pragma Assert (Jin >= Kin);
225 pragma Assert (Kin >= Int_0);
227 J := Jin;
228 K := Kin;
229 while K /= Uint_0 loop
230 Tmp := J mod K;
231 J := K;
232 K := Tmp;
233 end loop;
235 return J;
236 end GCD;
238 --------------
239 -- Hash_Num --
240 --------------
242 function Hash_Num (F : Int) return Hnum is
243 begin
244 return Standard."mod" (F, Hnum'Range_Length);
245 end Hash_Num;
247 ---------------
248 -- Image_Out --
249 ---------------
251 procedure Image_Out
252 (Input : Uint;
253 To_Buffer : Boolean;
254 Format : UI_Format)
256 Marks : constant Uintp.Save_Mark := Uintp.Mark;
257 Base : Uint;
258 Ainput : Uint;
260 Digs_Output : Natural := 0;
261 -- Counts digits output. In hex mode, but not in decimal mode, we
262 -- put an underline after every four hex digits that are output.
264 Exponent : Natural := 0;
265 -- If the number is too long to fit in the buffer, we switch to an
266 -- approximate output format with an exponent. This variable records
267 -- the exponent value.
269 function Better_In_Hex return Boolean;
270 -- Determines if it is better to generate digits in base 16 (result
271 -- is true) or base 10 (result is false). The choice is purely a
272 -- matter of convenience and aesthetics, so it does not matter which
273 -- value is returned from a correctness point of view.
275 procedure Image_Char (C : Character);
276 -- Internal procedure to output one character
278 procedure Image_Exponent (N : Natural);
279 -- Output non-zero exponent. Note that we only use the exponent form in
280 -- the buffer case, so we know that To_Buffer is true.
282 procedure Image_Uint (U : Uint);
283 -- Internal procedure to output characters of non-negative Uint
285 -------------------
286 -- Better_In_Hex --
287 -------------------
289 function Better_In_Hex return Boolean is
290 T16 : constant Uint := Uint_2 ** Int'(16);
291 A : Uint;
293 begin
294 A := UI_Abs (Input);
296 -- Small values up to 2**16 can always be in decimal
298 if A < T16 then
299 return False;
300 end if;
302 -- Otherwise, see if we are a power of 2 or one less than a power
303 -- of 2. For the moment these are the only cases printed in hex.
305 if A mod Uint_2 = Uint_1 then
306 A := A + Uint_1;
307 end if;
309 loop
310 if A mod T16 /= Uint_0 then
311 return False;
313 else
314 A := A / T16;
315 end if;
317 exit when A < T16;
318 end loop;
320 while A > Uint_2 loop
321 if A mod Uint_2 /= Uint_0 then
322 return False;
324 else
325 A := A / Uint_2;
326 end if;
327 end loop;
329 return True;
330 end Better_In_Hex;
332 ----------------
333 -- Image_Char --
334 ----------------
336 procedure Image_Char (C : Character) is
337 begin
338 if To_Buffer then
339 if UI_Image_Length + 6 > UI_Image_Max then
340 Exponent := Exponent + 1;
341 else
342 UI_Image_Length := UI_Image_Length + 1;
343 UI_Image_Buffer (UI_Image_Length) := C;
344 end if;
345 else
346 Write_Char (C);
347 end if;
348 end Image_Char;
350 --------------------
351 -- Image_Exponent --
352 --------------------
354 procedure Image_Exponent (N : Natural) is
355 begin
356 if N >= 10 then
357 Image_Exponent (N / 10);
358 end if;
360 UI_Image_Length := UI_Image_Length + 1;
361 UI_Image_Buffer (UI_Image_Length) :=
362 Character'Val (Character'Pos ('0') + N mod 10);
363 end Image_Exponent;
365 ----------------
366 -- Image_Uint --
367 ----------------
369 procedure Image_Uint (U : Uint) is
370 H : constant array (Int range 0 .. 15) of Character :=
371 "0123456789ABCDEF";
373 begin
374 if U >= Base then
375 Image_Uint (U / Base);
376 end if;
378 if Digs_Output = 4 and then Base = Uint_16 then
379 Image_Char ('_');
380 Digs_Output := 0;
381 end if;
383 Image_Char (H (UI_To_Int (U rem Base)));
385 Digs_Output := Digs_Output + 1;
386 end Image_Uint;
388 -- Start of processing for Image_Out
390 begin
391 if Input = No_Uint then
392 Image_Char ('?');
393 return;
394 end if;
396 UI_Image_Length := 0;
398 if Input < Uint_0 then
399 Image_Char ('-');
400 Ainput := -Input;
401 else
402 Ainput := Input;
403 end if;
405 if Format = Hex
406 or else (Format = Auto and then Better_In_Hex)
407 then
408 Base := Uint_16;
409 Image_Char ('1');
410 Image_Char ('6');
411 Image_Char ('#');
412 Image_Uint (Ainput);
413 Image_Char ('#');
415 else
416 Base := Uint_10;
417 Image_Uint (Ainput);
418 end if;
420 if Exponent /= 0 then
421 UI_Image_Length := UI_Image_Length + 1;
422 UI_Image_Buffer (UI_Image_Length) := 'E';
423 Image_Exponent (Exponent);
424 end if;
426 Uintp.Release (Marks);
427 end Image_Out;
429 -------------------
430 -- Init_Operand --
431 -------------------
433 procedure Init_Operand (UI : Uint; Vec : out UI_Vector) is
434 Loc : Int;
436 pragma Assert (Vec'First = Int'(1));
438 begin
439 if Direct (UI) then
440 Vec (1) := Direct_Val (UI);
442 if Vec (1) >= Base then
443 Vec (2) := Vec (1) rem Base;
444 Vec (1) := Vec (1) / Base;
445 end if;
447 else
448 Loc := Uints.Table (UI).Loc;
450 for J in 1 .. Uints.Table (UI).Length loop
451 Vec (J) := Udigits.Table (Loc + J - 1);
452 end loop;
453 end if;
454 end Init_Operand;
456 ----------------
457 -- Initialize --
458 ----------------
460 procedure Initialize is
461 begin
462 Uints.Init;
463 Udigits.Init;
465 Uint_Int_First := UI_From_Int (Int'First);
466 Uint_Int_Last := UI_From_Int (Int'Last);
468 UI_Power_2 (0) := Uint_1;
469 UI_Power_2_Set := 0;
471 UI_Power_10 (0) := Uint_1;
472 UI_Power_10_Set := 0;
474 Uints_Min := Uints.Last;
475 Udigits_Min := Udigits.Last;
477 UI_Ints.Reset;
478 end Initialize;
480 ---------------------
481 -- Least_Sig_Digit --
482 ---------------------
484 function Least_Sig_Digit (Arg : Uint) return Int is
485 V : Int;
487 begin
488 if Direct (Arg) then
489 V := Direct_Val (Arg);
491 if V >= Base then
492 V := V mod Base;
493 end if;
495 -- Note that this result may be negative
497 return V;
499 else
500 return
501 Udigits.Table
502 (Uints.Table (Arg).Loc + Uints.Table (Arg).Length - 1);
503 end if;
504 end Least_Sig_Digit;
506 ----------
507 -- Mark --
508 ----------
510 function Mark return Save_Mark is
511 begin
512 return (Save_Uint => Uints.Last, Save_Udigit => Udigits.Last);
513 end Mark;
515 -----------------------
516 -- Most_Sig_2_Digits --
517 -----------------------
519 procedure Most_Sig_2_Digits
520 (Left : Uint;
521 Right : Uint;
522 Left_Hat : out Int;
523 Right_Hat : out Int)
525 begin
526 pragma Assert (Left >= Right);
528 if Direct (Left) then
529 Left_Hat := Direct_Val (Left);
530 Right_Hat := Direct_Val (Right);
531 return;
533 else
534 declare
535 L1 : constant Int :=
536 Udigits.Table (Uints.Table (Left).Loc);
537 L2 : constant Int :=
538 Udigits.Table (Uints.Table (Left).Loc + 1);
540 begin
541 -- It is not so clear what to return when Arg is negative???
543 Left_Hat := abs (L1) * Base + L2;
544 end;
545 end if;
547 declare
548 Length_L : constant Int := Uints.Table (Left).Length;
549 Length_R : Int;
550 R1 : Int;
551 R2 : Int;
552 T : Int;
554 begin
555 if Direct (Right) then
556 T := Direct_Val (Left);
557 R1 := abs (T / Base);
558 R2 := T rem Base;
559 Length_R := 2;
561 else
562 R1 := abs (Udigits.Table (Uints.Table (Right).Loc));
563 R2 := Udigits.Table (Uints.Table (Right).Loc + 1);
564 Length_R := Uints.Table (Right).Length;
565 end if;
567 if Length_L = Length_R then
568 Right_Hat := R1 * Base + R2;
569 elsif Length_L = Length_R + Int_1 then
570 Right_Hat := R1;
571 else
572 Right_Hat := 0;
573 end if;
574 end;
575 end Most_Sig_2_Digits;
577 ---------------
578 -- N_Digits --
579 ---------------
581 -- Note: N_Digits returns 1 for No_Uint
583 function N_Digits (Input : Uint) return Int is
584 begin
585 if Direct (Input) then
586 if Direct_Val (Input) >= Base then
587 return 2;
588 else
589 return 1;
590 end if;
592 else
593 return Uints.Table (Input).Length;
594 end if;
595 end N_Digits;
597 --------------
598 -- Num_Bits --
599 --------------
601 function Num_Bits (Input : Uint) return Nat is
602 Bits : Nat;
603 Num : Nat;
605 begin
606 -- Largest negative number has to be handled specially, since it is in
607 -- Int_Range, but we cannot take the absolute value.
609 if Input = Uint_Int_First then
610 return Int'Size;
612 -- For any other number in Int_Range, get absolute value of number
614 elsif UI_Is_In_Int_Range (Input) then
615 Num := abs (UI_To_Int (Input));
616 Bits := 0;
618 -- If not in Int_Range then initialize bit count for all low order
619 -- words, and set number to high order digit.
621 else
622 Bits := Base_Bits * (Uints.Table (Input).Length - 1);
623 Num := abs (Udigits.Table (Uints.Table (Input).Loc));
624 end if;
626 -- Increase bit count for remaining value in Num
628 while Types.">" (Num, 0) loop
629 Num := Num / 2;
630 Bits := Bits + 1;
631 end loop;
633 return Bits;
634 end Num_Bits;
636 ---------
637 -- pid --
638 ---------
640 procedure pid (Input : Uint) is
641 begin
642 UI_Write (Input, Decimal);
643 Write_Eol;
644 end pid;
646 ---------
647 -- pih --
648 ---------
650 procedure pih (Input : Uint) is
651 begin
652 UI_Write (Input, Hex);
653 Write_Eol;
654 end pih;
656 -------------
657 -- Release --
658 -------------
660 procedure Release (M : Save_Mark) is
661 begin
662 Uints.Set_Last (Uint'Max (M.Save_Uint, Uints_Min));
663 Udigits.Set_Last (Int'Max (M.Save_Udigit, Udigits_Min));
664 end Release;
666 ----------------------
667 -- Release_And_Save --
668 ----------------------
670 procedure Release_And_Save (M : Save_Mark; UI : in out Uint) is
671 begin
672 if Direct (UI) then
673 Release (M);
675 else
676 declare
677 UE_Len : constant Pos := Uints.Table (UI).Length;
678 UE_Loc : constant Int := Uints.Table (UI).Loc;
680 UD : constant Udigits.Table_Type (1 .. UE_Len) :=
681 Udigits.Table (UE_Loc .. UE_Loc + UE_Len - 1);
683 begin
684 Release (M);
686 Uints.Append ((Length => UE_Len, Loc => Udigits.Last + 1));
687 UI := Uints.Last;
689 for J in 1 .. UE_Len loop
690 Udigits.Append (UD (J));
691 end loop;
692 end;
693 end if;
694 end Release_And_Save;
696 procedure Release_And_Save (M : Save_Mark; UI1, UI2 : in out Uint) is
697 begin
698 if Direct (UI1) then
699 Release_And_Save (M, UI2);
701 elsif Direct (UI2) then
702 Release_And_Save (M, UI1);
704 else
705 declare
706 UE1_Len : constant Pos := Uints.Table (UI1).Length;
707 UE1_Loc : constant Int := Uints.Table (UI1).Loc;
709 UD1 : constant Udigits.Table_Type (1 .. UE1_Len) :=
710 Udigits.Table (UE1_Loc .. UE1_Loc + UE1_Len - 1);
712 UE2_Len : constant Pos := Uints.Table (UI2).Length;
713 UE2_Loc : constant Int := Uints.Table (UI2).Loc;
715 UD2 : constant Udigits.Table_Type (1 .. UE2_Len) :=
716 Udigits.Table (UE2_Loc .. UE2_Loc + UE2_Len - 1);
718 begin
719 Release (M);
721 Uints.Append ((Length => UE1_Len, Loc => Udigits.Last + 1));
722 UI1 := Uints.Last;
724 for J in 1 .. UE1_Len loop
725 Udigits.Append (UD1 (J));
726 end loop;
728 Uints.Append ((Length => UE2_Len, Loc => Udigits.Last + 1));
729 UI2 := Uints.Last;
731 for J in 1 .. UE2_Len loop
732 Udigits.Append (UD2 (J));
733 end loop;
734 end;
735 end if;
736 end Release_And_Save;
738 ----------------
739 -- Sum_Digits --
740 ----------------
742 -- This is done in one pass
744 -- Mathematically: assume base congruent to 1 and compute an equivalent
745 -- integer to Left.
747 -- If Sign = -1 return the alternating sum of the "digits"
749 -- D1 - D2 + D3 - D4 + D5 ...
751 -- (where D1 is Least Significant Digit)
753 -- Mathematically: assume base congruent to -1 and compute an equivalent
754 -- integer to Left.
756 -- This is used in Rem and Base is assumed to be 2 ** 15
758 -- Note: The next two functions are very similar, any style changes made
759 -- to one should be reflected in both. These would be simpler if we
760 -- worked base 2 ** 32.
762 function Sum_Digits (Left : Uint; Sign : Int) return Int is
763 begin
764 pragma Assert (Sign = Int_1 or Sign = Int (-1));
766 -- First try simple case;
768 if Direct (Left) then
769 declare
770 Tmp_Int : Int := Direct_Val (Left);
772 begin
773 if Tmp_Int >= Base then
774 Tmp_Int := (Tmp_Int / Base) +
775 Sign * (Tmp_Int rem Base);
777 -- Now Tmp_Int is in [-(Base - 1) .. 2 * (Base - 1)]
779 if Tmp_Int >= Base then
781 -- Sign must be 1
783 Tmp_Int := (Tmp_Int / Base) + 1;
785 end if;
787 -- Now Tmp_Int is in [-(Base - 1) .. (Base - 1)]
789 end if;
791 return Tmp_Int;
792 end;
794 -- Otherwise full circuit is needed
796 else
797 declare
798 L_Length : constant Int := N_Digits (Left);
799 L_Vec : UI_Vector (1 .. L_Length);
800 Tmp_Int : Int;
801 Carry : Int;
802 Alt : Int;
804 begin
805 Init_Operand (Left, L_Vec);
806 L_Vec (1) := abs L_Vec (1);
807 Tmp_Int := 0;
808 Carry := 0;
809 Alt := 1;
811 for J in reverse 1 .. L_Length loop
812 Tmp_Int := Tmp_Int + Alt * (L_Vec (J) + Carry);
814 -- Tmp_Int is now between [-2 * Base + 1 .. 2 * Base - 1],
815 -- since old Tmp_Int is between [-(Base - 1) .. Base - 1]
816 -- and L_Vec is in [0 .. Base - 1] and Carry in [-1 .. 1]
818 if Tmp_Int >= Base then
819 Tmp_Int := Tmp_Int - Base;
820 Carry := 1;
822 elsif Tmp_Int <= -Base then
823 Tmp_Int := Tmp_Int + Base;
824 Carry := -1;
826 else
827 Carry := 0;
828 end if;
830 -- Tmp_Int is now between [-Base + 1 .. Base - 1]
832 Alt := Alt * Sign;
833 end loop;
835 Tmp_Int := Tmp_Int + Alt * Carry;
837 -- Tmp_Int is now between [-Base .. Base]
839 if Tmp_Int >= Base then
840 Tmp_Int := Tmp_Int - Base + Alt * Sign * 1;
842 elsif Tmp_Int <= -Base then
843 Tmp_Int := Tmp_Int + Base + Alt * Sign * (-1);
844 end if;
846 -- Now Tmp_Int is in [-(Base - 1) .. (Base - 1)]
848 return Tmp_Int;
849 end;
850 end if;
851 end Sum_Digits;
853 -----------------------
854 -- Sum_Double_Digits --
855 -----------------------
857 -- Note: This is used in Rem, Base is assumed to be 2 ** 15
859 function Sum_Double_Digits (Left : Uint; Sign : Int) return Int is
860 begin
861 -- First try simple case;
863 pragma Assert (Sign = Int_1 or Sign = Int (-1));
865 if Direct (Left) then
866 return Direct_Val (Left);
868 -- Otherwise full circuit is needed
870 else
871 declare
872 L_Length : constant Int := N_Digits (Left);
873 L_Vec : UI_Vector (1 .. L_Length);
874 Most_Sig_Int : Int;
875 Least_Sig_Int : Int;
876 Carry : Int;
877 J : Int;
878 Alt : Int;
880 begin
881 Init_Operand (Left, L_Vec);
882 L_Vec (1) := abs L_Vec (1);
883 Most_Sig_Int := 0;
884 Least_Sig_Int := 0;
885 Carry := 0;
886 Alt := 1;
887 J := L_Length;
889 while J > Int_1 loop
890 Least_Sig_Int := Least_Sig_Int + Alt * (L_Vec (J) + Carry);
892 -- Least is in [-2 Base + 1 .. 2 * Base - 1]
893 -- Since L_Vec in [0 .. Base - 1] and Carry in [-1 .. 1]
894 -- and old Least in [-Base + 1 .. Base - 1]
896 if Least_Sig_Int >= Base then
897 Least_Sig_Int := Least_Sig_Int - Base;
898 Carry := 1;
900 elsif Least_Sig_Int <= -Base then
901 Least_Sig_Int := Least_Sig_Int + Base;
902 Carry := -1;
904 else
905 Carry := 0;
906 end if;
908 -- Least is now in [-Base + 1 .. Base - 1]
910 Most_Sig_Int := Most_Sig_Int + Alt * (L_Vec (J - 1) + Carry);
912 -- Most is in [-2 Base + 1 .. 2 * Base - 1]
913 -- Since L_Vec in [0 .. Base - 1] and Carry in [-1 .. 1]
914 -- and old Most in [-Base + 1 .. Base - 1]
916 if Most_Sig_Int >= Base then
917 Most_Sig_Int := Most_Sig_Int - Base;
918 Carry := 1;
920 elsif Most_Sig_Int <= -Base then
921 Most_Sig_Int := Most_Sig_Int + Base;
922 Carry := -1;
923 else
924 Carry := 0;
925 end if;
927 -- Most is now in [-Base + 1 .. Base - 1]
929 J := J - 2;
930 Alt := Alt * Sign;
931 end loop;
933 if J = Int_1 then
934 Least_Sig_Int := Least_Sig_Int + Alt * (L_Vec (J) + Carry);
935 else
936 Least_Sig_Int := Least_Sig_Int + Alt * Carry;
937 end if;
939 if Least_Sig_Int >= Base then
940 Least_Sig_Int := Least_Sig_Int - Base;
941 Most_Sig_Int := Most_Sig_Int + Alt * 1;
943 elsif Least_Sig_Int <= -Base then
944 Least_Sig_Int := Least_Sig_Int + Base;
945 Most_Sig_Int := Most_Sig_Int + Alt * (-1);
946 end if;
948 if Most_Sig_Int >= Base then
949 Most_Sig_Int := Most_Sig_Int - Base;
950 Alt := Alt * Sign;
951 Least_Sig_Int :=
952 Least_Sig_Int + Alt * 1; -- cannot overflow again
954 elsif Most_Sig_Int <= -Base then
955 Most_Sig_Int := Most_Sig_Int + Base;
956 Alt := Alt * Sign;
957 Least_Sig_Int :=
958 Least_Sig_Int + Alt * (-1); -- cannot overflow again.
959 end if;
961 return Most_Sig_Int * Base + Least_Sig_Int;
962 end;
963 end if;
964 end Sum_Double_Digits;
966 ---------------
967 -- Tree_Read --
968 ---------------
970 procedure Tree_Read is
971 begin
972 Uints.Tree_Read;
973 Udigits.Tree_Read;
975 Tree_Read_Int (Int (Uint_Int_First));
976 Tree_Read_Int (Int (Uint_Int_Last));
977 Tree_Read_Int (UI_Power_2_Set);
978 Tree_Read_Int (UI_Power_10_Set);
979 Tree_Read_Int (Int (Uints_Min));
980 Tree_Read_Int (Udigits_Min);
982 for J in 0 .. UI_Power_2_Set loop
983 Tree_Read_Int (Int (UI_Power_2 (J)));
984 end loop;
986 for J in 0 .. UI_Power_10_Set loop
987 Tree_Read_Int (Int (UI_Power_10 (J)));
988 end loop;
990 end Tree_Read;
992 ----------------
993 -- Tree_Write --
994 ----------------
996 procedure Tree_Write is
997 begin
998 Uints.Tree_Write;
999 Udigits.Tree_Write;
1001 Tree_Write_Int (Int (Uint_Int_First));
1002 Tree_Write_Int (Int (Uint_Int_Last));
1003 Tree_Write_Int (UI_Power_2_Set);
1004 Tree_Write_Int (UI_Power_10_Set);
1005 Tree_Write_Int (Int (Uints_Min));
1006 Tree_Write_Int (Udigits_Min);
1008 for J in 0 .. UI_Power_2_Set loop
1009 Tree_Write_Int (Int (UI_Power_2 (J)));
1010 end loop;
1012 for J in 0 .. UI_Power_10_Set loop
1013 Tree_Write_Int (Int (UI_Power_10 (J)));
1014 end loop;
1016 end Tree_Write;
1018 -------------
1019 -- UI_Abs --
1020 -------------
1022 function UI_Abs (Right : Uint) return Uint is
1023 begin
1024 if Right < Uint_0 then
1025 return -Right;
1026 else
1027 return Right;
1028 end if;
1029 end UI_Abs;
1031 -------------
1032 -- UI_Add --
1033 -------------
1035 function UI_Add (Left : Int; Right : Uint) return Uint is
1036 begin
1037 return UI_Add (UI_From_Int (Left), Right);
1038 end UI_Add;
1040 function UI_Add (Left : Uint; Right : Int) return Uint is
1041 begin
1042 return UI_Add (Left, UI_From_Int (Right));
1043 end UI_Add;
1045 function UI_Add (Left : Uint; Right : Uint) return Uint is
1046 begin
1047 -- Simple cases of direct operands and addition of zero
1049 if Direct (Left) then
1050 if Direct (Right) then
1051 return UI_From_Int (Direct_Val (Left) + Direct_Val (Right));
1053 elsif Int (Left) = Int (Uint_0) then
1054 return Right;
1055 end if;
1057 elsif Direct (Right) and then Int (Right) = Int (Uint_0) then
1058 return Left;
1059 end if;
1061 -- Otherwise full circuit is needed
1063 declare
1064 L_Length : constant Int := N_Digits (Left);
1065 R_Length : constant Int := N_Digits (Right);
1066 L_Vec : UI_Vector (1 .. L_Length);
1067 R_Vec : UI_Vector (1 .. R_Length);
1068 Sum_Length : Int;
1069 Tmp_Int : Int;
1070 Carry : Int;
1071 Borrow : Int;
1072 X_Bigger : Boolean := False;
1073 Y_Bigger : Boolean := False;
1074 Result_Neg : Boolean := False;
1076 begin
1077 Init_Operand (Left, L_Vec);
1078 Init_Operand (Right, R_Vec);
1080 -- At least one of the two operands is in multi-digit form.
1081 -- Calculate the number of digits sufficient to hold result.
1083 if L_Length > R_Length then
1084 Sum_Length := L_Length + 1;
1085 X_Bigger := True;
1086 else
1087 Sum_Length := R_Length + 1;
1089 if R_Length > L_Length then
1090 Y_Bigger := True;
1091 end if;
1092 end if;
1094 -- Make copies of the absolute values of L_Vec and R_Vec into X and Y
1095 -- both with lengths equal to the maximum possibly needed. This makes
1096 -- looping over the digits much simpler.
1098 declare
1099 X : UI_Vector (1 .. Sum_Length);
1100 Y : UI_Vector (1 .. Sum_Length);
1101 Tmp_UI : UI_Vector (1 .. Sum_Length);
1103 begin
1104 for J in 1 .. Sum_Length - L_Length loop
1105 X (J) := 0;
1106 end loop;
1108 X (Sum_Length - L_Length + 1) := abs L_Vec (1);
1110 for J in 2 .. L_Length loop
1111 X (J + (Sum_Length - L_Length)) := L_Vec (J);
1112 end loop;
1114 for J in 1 .. Sum_Length - R_Length loop
1115 Y (J) := 0;
1116 end loop;
1118 Y (Sum_Length - R_Length + 1) := abs R_Vec (1);
1120 for J in 2 .. R_Length loop
1121 Y (J + (Sum_Length - R_Length)) := R_Vec (J);
1122 end loop;
1124 if (L_Vec (1) < Int_0) = (R_Vec (1) < Int_0) then
1126 -- Same sign so just add
1128 Carry := 0;
1129 for J in reverse 1 .. Sum_Length loop
1130 Tmp_Int := X (J) + Y (J) + Carry;
1132 if Tmp_Int >= Base then
1133 Tmp_Int := Tmp_Int - Base;
1134 Carry := 1;
1135 else
1136 Carry := 0;
1137 end if;
1139 X (J) := Tmp_Int;
1140 end loop;
1142 return Vector_To_Uint (X, L_Vec (1) < Int_0);
1144 else
1145 -- Find which one has bigger magnitude
1147 if not (X_Bigger or Y_Bigger) then
1148 for J in L_Vec'Range loop
1149 if abs L_Vec (J) > abs R_Vec (J) then
1150 X_Bigger := True;
1151 exit;
1152 elsif abs R_Vec (J) > abs L_Vec (J) then
1153 Y_Bigger := True;
1154 exit;
1155 end if;
1156 end loop;
1157 end if;
1159 -- If they have identical magnitude, just return 0, else swap
1160 -- if necessary so that X had the bigger magnitude. Determine
1161 -- if result is negative at this time.
1163 Result_Neg := False;
1165 if not (X_Bigger or Y_Bigger) then
1166 return Uint_0;
1168 elsif Y_Bigger then
1169 if R_Vec (1) < Int_0 then
1170 Result_Neg := True;
1171 end if;
1173 Tmp_UI := X;
1174 X := Y;
1175 Y := Tmp_UI;
1177 else
1178 if L_Vec (1) < Int_0 then
1179 Result_Neg := True;
1180 end if;
1181 end if;
1183 -- Subtract Y from the bigger X
1185 Borrow := 0;
1187 for J in reverse 1 .. Sum_Length loop
1188 Tmp_Int := X (J) - Y (J) + Borrow;
1190 if Tmp_Int < Int_0 then
1191 Tmp_Int := Tmp_Int + Base;
1192 Borrow := -1;
1193 else
1194 Borrow := 0;
1195 end if;
1197 X (J) := Tmp_Int;
1198 end loop;
1200 return Vector_To_Uint (X, Result_Neg);
1202 end if;
1203 end;
1204 end;
1205 end UI_Add;
1207 --------------------------
1208 -- UI_Decimal_Digits_Hi --
1209 --------------------------
1211 function UI_Decimal_Digits_Hi (U : Uint) return Nat is
1212 begin
1213 -- The maximum value of a "digit" is 32767, which is 5 decimal digits,
1214 -- so an N_Digit number could take up to 5 times this number of digits.
1215 -- This is certainly too high for large numbers but it is not worth
1216 -- worrying about.
1218 return 5 * N_Digits (U);
1219 end UI_Decimal_Digits_Hi;
1221 --------------------------
1222 -- UI_Decimal_Digits_Lo --
1223 --------------------------
1225 function UI_Decimal_Digits_Lo (U : Uint) return Nat is
1226 begin
1227 -- The maximum value of a "digit" is 32767, which is more than four
1228 -- decimal digits, but not a full five digits. The easily computed
1229 -- minimum number of decimal digits is thus 1 + 4 * the number of
1230 -- digits. This is certainly too low for large numbers but it is not
1231 -- worth worrying about.
1233 return 1 + 4 * (N_Digits (U) - 1);
1234 end UI_Decimal_Digits_Lo;
1236 ------------
1237 -- UI_Div --
1238 ------------
1240 function UI_Div (Left : Int; Right : Uint) return Uint is
1241 begin
1242 return UI_Div (UI_From_Int (Left), Right);
1243 end UI_Div;
1245 function UI_Div (Left : Uint; Right : Int) return Uint is
1246 begin
1247 return UI_Div (Left, UI_From_Int (Right));
1248 end UI_Div;
1250 function UI_Div (Left, Right : Uint) return Uint is
1251 Quotient : Uint;
1252 Remainder : Uint;
1253 pragma Warnings (Off, Remainder);
1254 begin
1255 UI_Div_Rem
1256 (Left, Right,
1257 Quotient, Remainder,
1258 Discard_Quotient => False,
1259 Discard_Remainder => True);
1260 return Quotient;
1261 end UI_Div;
1263 ----------------
1264 -- UI_Div_Rem --
1265 ----------------
1267 procedure UI_Div_Rem
1268 (Left, Right : Uint;
1269 Quotient : out Uint;
1270 Remainder : out Uint;
1271 Discard_Quotient : Boolean;
1272 Discard_Remainder : Boolean)
1274 pragma Warnings (Off, Quotient);
1275 pragma Warnings (Off, Remainder);
1276 begin
1277 pragma Assert (Right /= Uint_0);
1279 -- Cases where both operands are represented directly
1281 if Direct (Left) and then Direct (Right) then
1282 declare
1283 DV_Left : constant Int := Direct_Val (Left);
1284 DV_Right : constant Int := Direct_Val (Right);
1286 begin
1287 if not Discard_Quotient then
1288 Quotient := UI_From_Int (DV_Left / DV_Right);
1289 end if;
1291 if not Discard_Remainder then
1292 Remainder := UI_From_Int (DV_Left rem DV_Right);
1293 end if;
1295 return;
1296 end;
1297 end if;
1299 declare
1300 L_Length : constant Int := N_Digits (Left);
1301 R_Length : constant Int := N_Digits (Right);
1302 Q_Length : constant Int := L_Length - R_Length + 1;
1303 L_Vec : UI_Vector (1 .. L_Length);
1304 R_Vec : UI_Vector (1 .. R_Length);
1305 D : Int;
1306 Remainder_I : Int;
1307 Tmp_Divisor : Int;
1308 Carry : Int;
1309 Tmp_Int : Int;
1310 Tmp_Dig : Int;
1312 procedure UI_Div_Vector
1313 (L_Vec : UI_Vector;
1314 R_Int : Int;
1315 Quotient : out UI_Vector;
1316 Remainder : out Int);
1317 pragma Inline (UI_Div_Vector);
1318 -- Specialised variant for case where the divisor is a single digit
1320 procedure UI_Div_Vector
1321 (L_Vec : UI_Vector;
1322 R_Int : Int;
1323 Quotient : out UI_Vector;
1324 Remainder : out Int)
1326 Tmp_Int : Int;
1328 begin
1329 Remainder := 0;
1330 for J in L_Vec'Range loop
1331 Tmp_Int := Remainder * Base + abs L_Vec (J);
1332 Quotient (Quotient'First + J - L_Vec'First) := Tmp_Int / R_Int;
1333 Remainder := Tmp_Int rem R_Int;
1334 end loop;
1336 if L_Vec (L_Vec'First) < Int_0 then
1337 Remainder := -Remainder;
1338 end if;
1339 end UI_Div_Vector;
1341 -- Start of processing for UI_Div_Rem
1343 begin
1344 -- Result is zero if left operand is shorter than right
1346 if L_Length < R_Length then
1347 if not Discard_Quotient then
1348 Quotient := Uint_0;
1349 end if;
1350 if not Discard_Remainder then
1351 Remainder := Left;
1352 end if;
1353 return;
1354 end if;
1356 Init_Operand (Left, L_Vec);
1357 Init_Operand (Right, R_Vec);
1359 -- Case of right operand is single digit. Here we can simply divide
1360 -- each digit of the left operand by the divisor, from most to least
1361 -- significant, carrying the remainder to the next digit (just like
1362 -- ordinary long division by hand).
1364 if R_Length = Int_1 then
1365 Tmp_Divisor := abs R_Vec (1);
1367 declare
1368 Quotient_V : UI_Vector (1 .. L_Length);
1370 begin
1371 UI_Div_Vector (L_Vec, Tmp_Divisor, Quotient_V, Remainder_I);
1373 if not Discard_Quotient then
1374 Quotient :=
1375 Vector_To_Uint
1376 (Quotient_V, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
1377 end if;
1379 if not Discard_Remainder then
1380 Remainder := UI_From_Int (Remainder_I);
1381 end if;
1382 return;
1383 end;
1384 end if;
1386 -- The possible simple cases have been exhausted. Now turn to the
1387 -- algorithm D from the section of Knuth mentioned at the top of
1388 -- this package.
1390 Algorithm_D : declare
1391 Dividend : UI_Vector (1 .. L_Length + 1);
1392 Divisor : UI_Vector (1 .. R_Length);
1393 Quotient_V : UI_Vector (1 .. Q_Length);
1394 Divisor_Dig1 : Int;
1395 Divisor_Dig2 : Int;
1396 Q_Guess : Int;
1398 begin
1399 -- [ NORMALIZE ] (step D1 in the algorithm). First calculate the
1400 -- scale d, and then multiply Left and Right (u and v in the book)
1401 -- by d to get the dividend and divisor to work with.
1403 D := Base / (abs R_Vec (1) + 1);
1405 Dividend (1) := 0;
1406 Dividend (2) := abs L_Vec (1);
1408 for J in 3 .. L_Length + Int_1 loop
1409 Dividend (J) := L_Vec (J - 1);
1410 end loop;
1412 Divisor (1) := abs R_Vec (1);
1414 for J in Int_2 .. R_Length loop
1415 Divisor (J) := R_Vec (J);
1416 end loop;
1418 if D > Int_1 then
1420 -- Multiply Dividend by D
1422 Carry := 0;
1423 for J in reverse Dividend'Range loop
1424 Tmp_Int := Dividend (J) * D + Carry;
1425 Dividend (J) := Tmp_Int rem Base;
1426 Carry := Tmp_Int / Base;
1427 end loop;
1429 -- Multiply Divisor by d
1431 Carry := 0;
1432 for J in reverse Divisor'Range loop
1433 Tmp_Int := Divisor (J) * D + Carry;
1434 Divisor (J) := Tmp_Int rem Base;
1435 Carry := Tmp_Int / Base;
1436 end loop;
1437 end if;
1439 -- Main loop of long division algorithm
1441 Divisor_Dig1 := Divisor (1);
1442 Divisor_Dig2 := Divisor (2);
1444 for J in Quotient_V'Range loop
1446 -- [ CALCULATE Q (hat) ] (step D3 in the algorithm)
1448 Tmp_Int := Dividend (J) * Base + Dividend (J + 1);
1450 -- Initial guess
1452 if Dividend (J) = Divisor_Dig1 then
1453 Q_Guess := Base - 1;
1454 else
1455 Q_Guess := Tmp_Int / Divisor_Dig1;
1456 end if;
1458 -- Refine the guess
1460 while Divisor_Dig2 * Q_Guess >
1461 (Tmp_Int - Q_Guess * Divisor_Dig1) * Base +
1462 Dividend (J + 2)
1463 loop
1464 Q_Guess := Q_Guess - 1;
1465 end loop;
1467 -- [ MULTIPLY & SUBTRACT ] (step D4). Q_Guess * Divisor is
1468 -- subtracted from the remaining dividend.
1470 Carry := 0;
1471 for K in reverse Divisor'Range loop
1472 Tmp_Int := Dividend (J + K) - Q_Guess * Divisor (K) + Carry;
1473 Tmp_Dig := Tmp_Int rem Base;
1474 Carry := Tmp_Int / Base;
1476 if Tmp_Dig < Int_0 then
1477 Tmp_Dig := Tmp_Dig + Base;
1478 Carry := Carry - 1;
1479 end if;
1481 Dividend (J + K) := Tmp_Dig;
1482 end loop;
1484 Dividend (J) := Dividend (J) + Carry;
1486 -- [ TEST REMAINDER ] & [ ADD BACK ] (steps D5 and D6)
1488 -- Here there is a slight difference from the book: the last
1489 -- carry is always added in above and below (cancelling each
1490 -- other). In fact the dividend going negative is used as
1491 -- the test.
1493 -- If the Dividend went negative, then Q_Guess was off by
1494 -- one, so it is decremented, and the divisor is added back
1495 -- into the relevant portion of the dividend.
1497 if Dividend (J) < Int_0 then
1498 Q_Guess := Q_Guess - 1;
1500 Carry := 0;
1501 for K in reverse Divisor'Range loop
1502 Tmp_Int := Dividend (J + K) + Divisor (K) + Carry;
1504 if Tmp_Int >= Base then
1505 Tmp_Int := Tmp_Int - Base;
1506 Carry := 1;
1507 else
1508 Carry := 0;
1509 end if;
1511 Dividend (J + K) := Tmp_Int;
1512 end loop;
1514 Dividend (J) := Dividend (J) + Carry;
1515 end if;
1517 -- Finally we can get the next quotient digit
1519 Quotient_V (J) := Q_Guess;
1520 end loop;
1522 -- [ UNNORMALIZE ] (step D8)
1524 if not Discard_Quotient then
1525 Quotient := Vector_To_Uint
1526 (Quotient_V, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
1527 end if;
1529 if not Discard_Remainder then
1530 declare
1531 Remainder_V : UI_Vector (1 .. R_Length);
1532 Discard_Int : Int;
1533 pragma Warnings (Off, Discard_Int);
1534 begin
1535 UI_Div_Vector
1536 (Dividend (Dividend'Last - R_Length + 1 .. Dividend'Last),
1538 Remainder_V, Discard_Int);
1539 Remainder := Vector_To_Uint (Remainder_V, L_Vec (1) < Int_0);
1540 end;
1541 end if;
1542 end Algorithm_D;
1543 end;
1544 end UI_Div_Rem;
1546 ------------
1547 -- UI_Eq --
1548 ------------
1550 function UI_Eq (Left : Int; Right : Uint) return Boolean is
1551 begin
1552 return not UI_Ne (UI_From_Int (Left), Right);
1553 end UI_Eq;
1555 function UI_Eq (Left : Uint; Right : Int) return Boolean is
1556 begin
1557 return not UI_Ne (Left, UI_From_Int (Right));
1558 end UI_Eq;
1560 function UI_Eq (Left : Uint; Right : Uint) return Boolean is
1561 begin
1562 return not UI_Ne (Left, Right);
1563 end UI_Eq;
1565 --------------
1566 -- UI_Expon --
1567 --------------
1569 function UI_Expon (Left : Int; Right : Uint) return Uint is
1570 begin
1571 return UI_Expon (UI_From_Int (Left), Right);
1572 end UI_Expon;
1574 function UI_Expon (Left : Uint; Right : Int) return Uint is
1575 begin
1576 return UI_Expon (Left, UI_From_Int (Right));
1577 end UI_Expon;
1579 function UI_Expon (Left : Int; Right : Int) return Uint is
1580 begin
1581 return UI_Expon (UI_From_Int (Left), UI_From_Int (Right));
1582 end UI_Expon;
1584 function UI_Expon (Left : Uint; Right : Uint) return Uint is
1585 begin
1586 pragma Assert (Right >= Uint_0);
1588 -- Any value raised to power of 0 is 1
1590 if Right = Uint_0 then
1591 return Uint_1;
1593 -- 0 to any positive power is 0
1595 elsif Left = Uint_0 then
1596 return Uint_0;
1598 -- 1 to any power is 1
1600 elsif Left = Uint_1 then
1601 return Uint_1;
1603 -- Any value raised to power of 1 is that value
1605 elsif Right = Uint_1 then
1606 return Left;
1608 -- Cases which can be done by table lookup
1610 elsif Right <= Uint_64 then
1612 -- 2 ** N for N in 2 .. 64
1614 if Left = Uint_2 then
1615 declare
1616 Right_Int : constant Int := Direct_Val (Right);
1618 begin
1619 if Right_Int > UI_Power_2_Set then
1620 for J in UI_Power_2_Set + Int_1 .. Right_Int loop
1621 UI_Power_2 (J) := UI_Power_2 (J - Int_1) * Int_2;
1622 Uints_Min := Uints.Last;
1623 Udigits_Min := Udigits.Last;
1624 end loop;
1626 UI_Power_2_Set := Right_Int;
1627 end if;
1629 return UI_Power_2 (Right_Int);
1630 end;
1632 -- 10 ** N for N in 2 .. 64
1634 elsif Left = Uint_10 then
1635 declare
1636 Right_Int : constant Int := Direct_Val (Right);
1638 begin
1639 if Right_Int > UI_Power_10_Set then
1640 for J in UI_Power_10_Set + Int_1 .. Right_Int loop
1641 UI_Power_10 (J) := UI_Power_10 (J - Int_1) * Int (10);
1642 Uints_Min := Uints.Last;
1643 Udigits_Min := Udigits.Last;
1644 end loop;
1646 UI_Power_10_Set := Right_Int;
1647 end if;
1649 return UI_Power_10 (Right_Int);
1650 end;
1651 end if;
1652 end if;
1654 -- If we fall through, then we have the general case (see Knuth 4.6.3)
1656 declare
1657 N : Uint := Right;
1658 Squares : Uint := Left;
1659 Result : Uint := Uint_1;
1660 M : constant Uintp.Save_Mark := Uintp.Mark;
1662 begin
1663 loop
1664 if (Least_Sig_Digit (N) mod Int_2) = Int_1 then
1665 Result := Result * Squares;
1666 end if;
1668 N := N / Uint_2;
1669 exit when N = Uint_0;
1670 Squares := Squares * Squares;
1671 end loop;
1673 Uintp.Release_And_Save (M, Result);
1674 return Result;
1675 end;
1676 end UI_Expon;
1678 ----------------
1679 -- UI_From_CC --
1680 ----------------
1682 function UI_From_CC (Input : Char_Code) return Uint is
1683 begin
1684 return UI_From_Dint (Dint (Input));
1685 end UI_From_CC;
1687 ------------------
1688 -- UI_From_Dint --
1689 ------------------
1691 function UI_From_Dint (Input : Dint) return Uint is
1692 begin
1694 if Dint (Min_Direct) <= Input and then Input <= Dint (Max_Direct) then
1695 return Uint (Dint (Uint_Direct_Bias) + Input);
1697 -- For values of larger magnitude, compute digits into a vector and call
1698 -- Vector_To_Uint.
1700 else
1701 declare
1702 Max_For_Dint : constant := 5;
1703 -- Base is defined so that 5 Uint digits is sufficient to hold the
1704 -- largest possible Dint value.
1706 V : UI_Vector (1 .. Max_For_Dint);
1708 Temp_Integer : Dint;
1710 begin
1711 for J in V'Range loop
1712 V (J) := 0;
1713 end loop;
1715 Temp_Integer := Input;
1717 for J in reverse V'Range loop
1718 V (J) := Int (abs (Temp_Integer rem Dint (Base)));
1719 Temp_Integer := Temp_Integer / Dint (Base);
1720 end loop;
1722 return Vector_To_Uint (V, Input < Dint'(0));
1723 end;
1724 end if;
1725 end UI_From_Dint;
1727 -----------------
1728 -- UI_From_Int --
1729 -----------------
1731 function UI_From_Int (Input : Int) return Uint is
1732 U : Uint;
1734 begin
1735 if Min_Direct <= Input and then Input <= Max_Direct then
1736 return Uint (Int (Uint_Direct_Bias) + Input);
1737 end if;
1739 -- If already in the hash table, return entry
1741 U := UI_Ints.Get (Input);
1743 if U /= No_Uint then
1744 return U;
1745 end if;
1747 -- For values of larger magnitude, compute digits into a vector and call
1748 -- Vector_To_Uint.
1750 declare
1751 Max_For_Int : constant := 3;
1752 -- Base is defined so that 3 Uint digits is sufficient to hold the
1753 -- largest possible Int value.
1755 V : UI_Vector (1 .. Max_For_Int);
1757 Temp_Integer : Int;
1759 begin
1760 for J in V'Range loop
1761 V (J) := 0;
1762 end loop;
1764 Temp_Integer := Input;
1766 for J in reverse V'Range loop
1767 V (J) := abs (Temp_Integer rem Base);
1768 Temp_Integer := Temp_Integer / Base;
1769 end loop;
1771 U := Vector_To_Uint (V, Input < Int_0);
1772 UI_Ints.Set (Input, U);
1773 Uints_Min := Uints.Last;
1774 Udigits_Min := Udigits.Last;
1775 return U;
1776 end;
1777 end UI_From_Int;
1779 ------------
1780 -- UI_GCD --
1781 ------------
1783 -- Lehmer's algorithm for GCD
1785 -- The idea is to avoid using multiple precision arithmetic wherever
1786 -- possible, substituting Int arithmetic instead. See Knuth volume II,
1787 -- Algorithm L (page 329).
1789 -- We use the same notation as Knuth (U_Hat standing for the obvious!)
1791 function UI_GCD (Uin, Vin : Uint) return Uint is
1792 U, V : Uint;
1793 -- Copies of Uin and Vin
1795 U_Hat, V_Hat : Int;
1796 -- The most Significant digits of U,V
1798 A, B, C, D, T, Q, Den1, Den2 : Int;
1800 Tmp_UI : Uint;
1801 Marks : constant Uintp.Save_Mark := Uintp.Mark;
1802 Iterations : Integer := 0;
1804 begin
1805 pragma Assert (Uin >= Vin);
1806 pragma Assert (Vin >= Uint_0);
1808 U := Uin;
1809 V := Vin;
1811 loop
1812 Iterations := Iterations + 1;
1814 if Direct (V) then
1815 if V = Uint_0 then
1816 return U;
1817 else
1818 return
1819 UI_From_Int (GCD (Direct_Val (V), UI_To_Int (U rem V)));
1820 end if;
1821 end if;
1823 Most_Sig_2_Digits (U, V, U_Hat, V_Hat);
1824 A := 1;
1825 B := 0;
1826 C := 0;
1827 D := 1;
1829 loop
1830 -- We might overflow and get division by zero here. This just
1831 -- means we cannot take the single precision step
1833 Den1 := V_Hat + C;
1834 Den2 := V_Hat + D;
1835 exit when (Den1 * Den2) = Int_0;
1837 -- Compute Q, the trial quotient
1839 Q := (U_Hat + A) / Den1;
1841 exit when Q /= ((U_Hat + B) / Den2);
1843 -- A single precision step Euclid step will give same answer as a
1844 -- multiprecision one.
1846 T := A - (Q * C);
1847 A := C;
1848 C := T;
1850 T := B - (Q * D);
1851 B := D;
1852 D := T;
1854 T := U_Hat - (Q * V_Hat);
1855 U_Hat := V_Hat;
1856 V_Hat := T;
1858 end loop;
1860 -- Take a multiprecision Euclid step
1862 if B = Int_0 then
1864 -- No single precision steps take a regular Euclid step
1866 Tmp_UI := U rem V;
1867 U := V;
1868 V := Tmp_UI;
1870 else
1871 -- Use prior single precision steps to compute this Euclid step
1873 -- For constructs such as:
1874 -- sqrt_2: constant := 1.41421_35623_73095_04880_16887_24209_698;
1875 -- sqrt_eps: constant long_float := long_float( 1.0 / sqrt_2)
1876 -- ** long_float'machine_mantissa;
1878 -- we spend 80% of our time working on this step. Perhaps we need
1879 -- a special case Int / Uint dot product to speed things up. ???
1881 -- Alternatively we could increase the single precision iterations
1882 -- to handle Uint's of some small size ( <5 digits?). Then we
1883 -- would have more iterations on small Uint. On the code above, we
1884 -- only get 5 (on average) single precision iterations per large
1885 -- iteration. ???
1887 Tmp_UI := (UI_From_Int (A) * U) + (UI_From_Int (B) * V);
1888 V := (UI_From_Int (C) * U) + (UI_From_Int (D) * V);
1889 U := Tmp_UI;
1890 end if;
1892 -- If the operands are very different in magnitude, the loop will
1893 -- generate large amounts of short-lived data, which it is worth
1894 -- removing periodically.
1896 if Iterations > 100 then
1897 Release_And_Save (Marks, U, V);
1898 Iterations := 0;
1899 end if;
1900 end loop;
1901 end UI_GCD;
1903 ------------
1904 -- UI_Ge --
1905 ------------
1907 function UI_Ge (Left : Int; Right : Uint) return Boolean is
1908 begin
1909 return not UI_Lt (UI_From_Int (Left), Right);
1910 end UI_Ge;
1912 function UI_Ge (Left : Uint; Right : Int) return Boolean is
1913 begin
1914 return not UI_Lt (Left, UI_From_Int (Right));
1915 end UI_Ge;
1917 function UI_Ge (Left : Uint; Right : Uint) return Boolean is
1918 begin
1919 return not UI_Lt (Left, Right);
1920 end UI_Ge;
1922 ------------
1923 -- UI_Gt --
1924 ------------
1926 function UI_Gt (Left : Int; Right : Uint) return Boolean is
1927 begin
1928 return UI_Lt (Right, UI_From_Int (Left));
1929 end UI_Gt;
1931 function UI_Gt (Left : Uint; Right : Int) return Boolean is
1932 begin
1933 return UI_Lt (UI_From_Int (Right), Left);
1934 end UI_Gt;
1936 function UI_Gt (Left : Uint; Right : Uint) return Boolean is
1937 begin
1938 return UI_Lt (Left => Right, Right => Left);
1939 end UI_Gt;
1941 ---------------
1942 -- UI_Image --
1943 ---------------
1945 procedure UI_Image (Input : Uint; Format : UI_Format := Auto) is
1946 begin
1947 Image_Out (Input, True, Format);
1948 end UI_Image;
1950 -------------------------
1951 -- UI_Is_In_Int_Range --
1952 -------------------------
1954 function UI_Is_In_Int_Range (Input : Uint) return Boolean is
1955 begin
1956 -- Make sure we don't get called before Initialize
1958 pragma Assert (Uint_Int_First /= Uint_0);
1960 if Direct (Input) then
1961 return True;
1962 else
1963 return Input >= Uint_Int_First
1964 and then Input <= Uint_Int_Last;
1965 end if;
1966 end UI_Is_In_Int_Range;
1968 ------------
1969 -- UI_Le --
1970 ------------
1972 function UI_Le (Left : Int; Right : Uint) return Boolean is
1973 begin
1974 return not UI_Lt (Right, UI_From_Int (Left));
1975 end UI_Le;
1977 function UI_Le (Left : Uint; Right : Int) return Boolean is
1978 begin
1979 return not UI_Lt (UI_From_Int (Right), Left);
1980 end UI_Le;
1982 function UI_Le (Left : Uint; Right : Uint) return Boolean is
1983 begin
1984 return not UI_Lt (Left => Right, Right => Left);
1985 end UI_Le;
1987 ------------
1988 -- UI_Lt --
1989 ------------
1991 function UI_Lt (Left : Int; Right : Uint) return Boolean is
1992 begin
1993 return UI_Lt (UI_From_Int (Left), Right);
1994 end UI_Lt;
1996 function UI_Lt (Left : Uint; Right : Int) return Boolean is
1997 begin
1998 return UI_Lt (Left, UI_From_Int (Right));
1999 end UI_Lt;
2001 function UI_Lt (Left : Uint; Right : Uint) return Boolean is
2002 begin
2003 -- Quick processing for identical arguments
2005 if Int (Left) = Int (Right) then
2006 return False;
2008 -- Quick processing for both arguments directly represented
2010 elsif Direct (Left) and then Direct (Right) then
2011 return Int (Left) < Int (Right);
2013 -- At least one argument is more than one digit long
2015 else
2016 declare
2017 L_Length : constant Int := N_Digits (Left);
2018 R_Length : constant Int := N_Digits (Right);
2020 L_Vec : UI_Vector (1 .. L_Length);
2021 R_Vec : UI_Vector (1 .. R_Length);
2023 begin
2024 Init_Operand (Left, L_Vec);
2025 Init_Operand (Right, R_Vec);
2027 if L_Vec (1) < Int_0 then
2029 -- First argument negative, second argument non-negative
2031 if R_Vec (1) >= Int_0 then
2032 return True;
2034 -- Both arguments negative
2036 else
2037 if L_Length /= R_Length then
2038 return L_Length > R_Length;
2040 elsif L_Vec (1) /= R_Vec (1) then
2041 return L_Vec (1) < R_Vec (1);
2043 else
2044 for J in 2 .. L_Vec'Last loop
2045 if L_Vec (J) /= R_Vec (J) then
2046 return L_Vec (J) > R_Vec (J);
2047 end if;
2048 end loop;
2050 return False;
2051 end if;
2052 end if;
2054 else
2055 -- First argument non-negative, second argument negative
2057 if R_Vec (1) < Int_0 then
2058 return False;
2060 -- Both arguments non-negative
2062 else
2063 if L_Length /= R_Length then
2064 return L_Length < R_Length;
2065 else
2066 for J in L_Vec'Range loop
2067 if L_Vec (J) /= R_Vec (J) then
2068 return L_Vec (J) < R_Vec (J);
2069 end if;
2070 end loop;
2072 return False;
2073 end if;
2074 end if;
2075 end if;
2076 end;
2077 end if;
2078 end UI_Lt;
2080 ------------
2081 -- UI_Max --
2082 ------------
2084 function UI_Max (Left : Int; Right : Uint) return Uint is
2085 begin
2086 return UI_Max (UI_From_Int (Left), Right);
2087 end UI_Max;
2089 function UI_Max (Left : Uint; Right : Int) return Uint is
2090 begin
2091 return UI_Max (Left, UI_From_Int (Right));
2092 end UI_Max;
2094 function UI_Max (Left : Uint; Right : Uint) return Uint is
2095 begin
2096 if Left >= Right then
2097 return Left;
2098 else
2099 return Right;
2100 end if;
2101 end UI_Max;
2103 ------------
2104 -- UI_Min --
2105 ------------
2107 function UI_Min (Left : Int; Right : Uint) return Uint is
2108 begin
2109 return UI_Min (UI_From_Int (Left), Right);
2110 end UI_Min;
2112 function UI_Min (Left : Uint; Right : Int) return Uint is
2113 begin
2114 return UI_Min (Left, UI_From_Int (Right));
2115 end UI_Min;
2117 function UI_Min (Left : Uint; Right : Uint) return Uint is
2118 begin
2119 if Left <= Right then
2120 return Left;
2121 else
2122 return Right;
2123 end if;
2124 end UI_Min;
2126 -------------
2127 -- UI_Mod --
2128 -------------
2130 function UI_Mod (Left : Int; Right : Uint) return Uint is
2131 begin
2132 return UI_Mod (UI_From_Int (Left), Right);
2133 end UI_Mod;
2135 function UI_Mod (Left : Uint; Right : Int) return Uint is
2136 begin
2137 return UI_Mod (Left, UI_From_Int (Right));
2138 end UI_Mod;
2140 function UI_Mod (Left : Uint; Right : Uint) return Uint is
2141 Urem : constant Uint := Left rem Right;
2143 begin
2144 if (Left < Uint_0) = (Right < Uint_0)
2145 or else Urem = Uint_0
2146 then
2147 return Urem;
2148 else
2149 return Right + Urem;
2150 end if;
2151 end UI_Mod;
2153 -------------------------------
2154 -- UI_Modular_Exponentiation --
2155 -------------------------------
2157 function UI_Modular_Exponentiation
2158 (B : Uint;
2159 E : Uint;
2160 Modulo : Uint) return Uint
2162 M : constant Save_Mark := Mark;
2164 Result : Uint := Uint_1;
2165 Base : Uint := B;
2166 Exponent : Uint := E;
2168 begin
2169 while Exponent /= Uint_0 loop
2170 if Least_Sig_Digit (Exponent) rem Int'(2) = Int'(1) then
2171 Result := (Result * Base) rem Modulo;
2172 end if;
2174 Exponent := Exponent / Uint_2;
2175 Base := (Base * Base) rem Modulo;
2176 end loop;
2178 Release_And_Save (M, Result);
2179 return Result;
2180 end UI_Modular_Exponentiation;
2182 ------------------------
2183 -- UI_Modular_Inverse --
2184 ------------------------
2186 function UI_Modular_Inverse (N : Uint; Modulo : Uint) return Uint is
2187 M : constant Save_Mark := Mark;
2188 U : Uint;
2189 V : Uint;
2190 Q : Uint;
2191 R : Uint;
2192 X : Uint;
2193 Y : Uint;
2194 T : Uint;
2195 S : Int := 1;
2197 begin
2198 U := Modulo;
2199 V := N;
2201 X := Uint_1;
2202 Y := Uint_0;
2204 loop
2205 UI_Div_Rem
2206 (U, V,
2207 Quotient => Q, Remainder => R,
2208 Discard_Quotient => False,
2209 Discard_Remainder => False);
2211 U := V;
2212 V := R;
2214 T := X;
2215 X := Y + Q * X;
2216 Y := T;
2217 S := -S;
2219 exit when R = Uint_1;
2220 end loop;
2222 if S = Int'(-1) then
2223 X := Modulo - X;
2224 end if;
2226 Release_And_Save (M, X);
2227 return X;
2228 end UI_Modular_Inverse;
2230 ------------
2231 -- UI_Mul --
2232 ------------
2234 function UI_Mul (Left : Int; Right : Uint) return Uint is
2235 begin
2236 return UI_Mul (UI_From_Int (Left), Right);
2237 end UI_Mul;
2239 function UI_Mul (Left : Uint; Right : Int) return Uint is
2240 begin
2241 return UI_Mul (Left, UI_From_Int (Right));
2242 end UI_Mul;
2244 function UI_Mul (Left : Uint; Right : Uint) return Uint is
2245 begin
2246 -- Simple case of single length operands
2248 if Direct (Left) and then Direct (Right) then
2249 return
2250 UI_From_Dint
2251 (Dint (Direct_Val (Left)) * Dint (Direct_Val (Right)));
2252 end if;
2254 -- Otherwise we have the general case (Algorithm M in Knuth)
2256 declare
2257 L_Length : constant Int := N_Digits (Left);
2258 R_Length : constant Int := N_Digits (Right);
2259 L_Vec : UI_Vector (1 .. L_Length);
2260 R_Vec : UI_Vector (1 .. R_Length);
2261 Neg : Boolean;
2263 begin
2264 Init_Operand (Left, L_Vec);
2265 Init_Operand (Right, R_Vec);
2266 Neg := (L_Vec (1) < Int_0) xor (R_Vec (1) < Int_0);
2267 L_Vec (1) := abs (L_Vec (1));
2268 R_Vec (1) := abs (R_Vec (1));
2270 Algorithm_M : declare
2271 Product : UI_Vector (1 .. L_Length + R_Length);
2272 Tmp_Sum : Int;
2273 Carry : Int;
2275 begin
2276 for J in Product'Range loop
2277 Product (J) := 0;
2278 end loop;
2280 for J in reverse R_Vec'Range loop
2281 Carry := 0;
2282 for K in reverse L_Vec'Range loop
2283 Tmp_Sum :=
2284 L_Vec (K) * R_Vec (J) + Product (J + K) + Carry;
2285 Product (J + K) := Tmp_Sum rem Base;
2286 Carry := Tmp_Sum / Base;
2287 end loop;
2289 Product (J) := Carry;
2290 end loop;
2292 return Vector_To_Uint (Product, Neg);
2293 end Algorithm_M;
2294 end;
2295 end UI_Mul;
2297 ------------
2298 -- UI_Ne --
2299 ------------
2301 function UI_Ne (Left : Int; Right : Uint) return Boolean is
2302 begin
2303 return UI_Ne (UI_From_Int (Left), Right);
2304 end UI_Ne;
2306 function UI_Ne (Left : Uint; Right : Int) return Boolean is
2307 begin
2308 return UI_Ne (Left, UI_From_Int (Right));
2309 end UI_Ne;
2311 function UI_Ne (Left : Uint; Right : Uint) return Boolean is
2312 begin
2313 -- Quick processing for identical arguments. Note that this takes
2314 -- care of the case of two No_Uint arguments.
2316 if Int (Left) = Int (Right) then
2317 return False;
2318 end if;
2320 -- See if left operand directly represented
2322 if Direct (Left) then
2324 -- If right operand directly represented then compare
2326 if Direct (Right) then
2327 return Int (Left) /= Int (Right);
2329 -- Left operand directly represented, right not, must be unequal
2331 else
2332 return True;
2333 end if;
2335 -- Right operand directly represented, left not, must be unequal
2337 elsif Direct (Right) then
2338 return True;
2339 end if;
2341 -- Otherwise both multi-word, do comparison
2343 declare
2344 Size : constant Int := N_Digits (Left);
2345 Left_Loc : Int;
2346 Right_Loc : Int;
2348 begin
2349 if Size /= N_Digits (Right) then
2350 return True;
2351 end if;
2353 Left_Loc := Uints.Table (Left).Loc;
2354 Right_Loc := Uints.Table (Right).Loc;
2356 for J in Int_0 .. Size - Int_1 loop
2357 if Udigits.Table (Left_Loc + J) /=
2358 Udigits.Table (Right_Loc + J)
2359 then
2360 return True;
2361 end if;
2362 end loop;
2364 return False;
2365 end;
2366 end UI_Ne;
2368 ----------------
2369 -- UI_Negate --
2370 ----------------
2372 function UI_Negate (Right : Uint) return Uint is
2373 begin
2374 -- Case where input is directly represented. Note that since the range
2375 -- of Direct values is non-symmetrical, the result may not be directly
2376 -- represented, this is taken care of in UI_From_Int.
2378 if Direct (Right) then
2379 return UI_From_Int (-Direct_Val (Right));
2381 -- Full processing for multi-digit case. Note that we cannot just copy
2382 -- the value to the end of the table negating the first digit, since the
2383 -- range of Direct values is non-symmetrical, so we can have a negative
2384 -- value that is not Direct whose negation can be represented directly.
2386 else
2387 declare
2388 R_Length : constant Int := N_Digits (Right);
2389 R_Vec : UI_Vector (1 .. R_Length);
2390 Neg : Boolean;
2392 begin
2393 Init_Operand (Right, R_Vec);
2394 Neg := R_Vec (1) > Int_0;
2395 R_Vec (1) := abs R_Vec (1);
2396 return Vector_To_Uint (R_Vec, Neg);
2397 end;
2398 end if;
2399 end UI_Negate;
2401 -------------
2402 -- UI_Rem --
2403 -------------
2405 function UI_Rem (Left : Int; Right : Uint) return Uint is
2406 begin
2407 return UI_Rem (UI_From_Int (Left), Right);
2408 end UI_Rem;
2410 function UI_Rem (Left : Uint; Right : Int) return Uint is
2411 begin
2412 return UI_Rem (Left, UI_From_Int (Right));
2413 end UI_Rem;
2415 function UI_Rem (Left, Right : Uint) return Uint is
2416 Sign : Int;
2417 Tmp : Int;
2419 subtype Int1_12 is Integer range 1 .. 12;
2421 begin
2422 pragma Assert (Right /= Uint_0);
2424 if Direct (Right) then
2425 if Direct (Left) then
2426 return UI_From_Int (Direct_Val (Left) rem Direct_Val (Right));
2428 else
2430 -- Special cases when Right is less than 13 and Left is larger
2431 -- larger than one digit. All of these algorithms depend on the
2432 -- base being 2 ** 15 We work with Abs (Left) and Abs(Right)
2433 -- then multiply result by Sign (Left)
2435 if (Right <= Uint_12) and then (Right >= Uint_Minus_12) then
2437 if Left < Uint_0 then
2438 Sign := -1;
2439 else
2440 Sign := 1;
2441 end if;
2443 -- All cases are listed, grouped by mathematical method It is
2444 -- not inefficient to do have this case list out of order since
2445 -- GCC sorts the cases we list.
2447 case Int1_12 (abs (Direct_Val (Right))) is
2449 when 1 =>
2450 return Uint_0;
2452 -- Powers of two are simple AND's with LS Left Digit GCC
2453 -- will recognise these constants as powers of 2 and replace
2454 -- the rem with simpler operations where possible.
2456 -- Least_Sig_Digit might return Negative numbers
2458 when 2 =>
2459 return UI_From_Int (
2460 Sign * (Least_Sig_Digit (Left) mod 2));
2462 when 4 =>
2463 return UI_From_Int (
2464 Sign * (Least_Sig_Digit (Left) mod 4));
2466 when 8 =>
2467 return UI_From_Int (
2468 Sign * (Least_Sig_Digit (Left) mod 8));
2470 -- Some number theoretical tricks:
2472 -- If B Rem Right = 1 then
2473 -- Left Rem Right = Sum_Of_Digits_Base_B (Left) Rem Right
2475 -- Note: 2^32 mod 3 = 1
2477 when 3 =>
2478 return UI_From_Int (
2479 Sign * (Sum_Double_Digits (Left, 1) rem Int (3)));
2481 -- Note: 2^15 mod 7 = 1
2483 when 7 =>
2484 return UI_From_Int (
2485 Sign * (Sum_Digits (Left, 1) rem Int (7)));
2487 -- Note: 2^32 mod 5 = -1
2489 -- Alternating sums might be negative, but rem is always
2490 -- positive hence we must use mod here.
2492 when 5 =>
2493 Tmp := Sum_Double_Digits (Left, -1) mod Int (5);
2494 return UI_From_Int (Sign * Tmp);
2496 -- Note: 2^15 mod 9 = -1
2498 -- Alternating sums might be negative, but rem is always
2499 -- positive hence we must use mod here.
2501 when 9 =>
2502 Tmp := Sum_Digits (Left, -1) mod Int (9);
2503 return UI_From_Int (Sign * Tmp);
2505 -- Note: 2^15 mod 11 = -1
2507 -- Alternating sums might be negative, but rem is always
2508 -- positive hence we must use mod here.
2510 when 11 =>
2511 Tmp := Sum_Digits (Left, -1) mod Int (11);
2512 return UI_From_Int (Sign * Tmp);
2514 -- Now resort to Chinese Remainder theorem to reduce 6, 10,
2515 -- 12 to previous special cases
2517 -- There is no reason we could not add more cases like these
2518 -- if it proves useful.
2520 -- Perhaps we should go up to 16, however we have no "trick"
2521 -- for 13.
2523 -- To find u mod m we:
2525 -- Pick m1, m2 S.T.
2526 -- GCD(m1, m2) = 1 AND m = (m1 * m2).
2528 -- Next we pick (Basis) M1, M2 small S.T.
2529 -- (M1 mod m1) = (M2 mod m2) = 1 AND
2530 -- (M1 mod m2) = (M2 mod m1) = 0
2532 -- So u mod m = (u1 * M1 + u2 * M2) mod m Where u1 = (u mod
2533 -- m1) AND u2 = (u mod m2); Under typical circumstances the
2534 -- last mod m can be done with a (possible) single
2535 -- subtraction.
2537 -- m1 = 2; m2 = 3; M1 = 3; M2 = 4;
2539 when 6 =>
2540 Tmp := 3 * (Least_Sig_Digit (Left) rem 2) +
2541 4 * (Sum_Double_Digits (Left, 1) rem 3);
2542 return UI_From_Int (Sign * (Tmp rem 6));
2544 -- m1 = 2; m2 = 5; M1 = 5; M2 = 6;
2546 when 10 =>
2547 Tmp := 5 * (Least_Sig_Digit (Left) rem 2) +
2548 6 * (Sum_Double_Digits (Left, -1) mod 5);
2549 return UI_From_Int (Sign * (Tmp rem 10));
2551 -- m1 = 3; m2 = 4; M1 = 4; M2 = 9;
2553 when 12 =>
2554 Tmp := 4 * (Sum_Double_Digits (Left, 1) rem 3) +
2555 9 * (Least_Sig_Digit (Left) rem 4);
2556 return UI_From_Int (Sign * (Tmp rem 12));
2557 end case;
2559 end if;
2561 -- Else fall through to general case
2563 -- The special case Length (Left) = Length (Right) = 1 in Div
2564 -- looks slow. It uses UI_To_Int when Int should suffice. ???
2565 end if;
2566 end if;
2568 declare
2569 Remainder : Uint;
2570 Quotient : Uint;
2571 pragma Warnings (Off, Quotient);
2572 begin
2573 UI_Div_Rem
2574 (Left, Right, Quotient, Remainder,
2575 Discard_Quotient => True,
2576 Discard_Remainder => False);
2577 return Remainder;
2578 end;
2579 end UI_Rem;
2581 ------------
2582 -- UI_Sub --
2583 ------------
2585 function UI_Sub (Left : Int; Right : Uint) return Uint is
2586 begin
2587 return UI_Add (Left, -Right);
2588 end UI_Sub;
2590 function UI_Sub (Left : Uint; Right : Int) return Uint is
2591 begin
2592 return UI_Add (Left, -Right);
2593 end UI_Sub;
2595 function UI_Sub (Left : Uint; Right : Uint) return Uint is
2596 begin
2597 if Direct (Left) and then Direct (Right) then
2598 return UI_From_Int (Direct_Val (Left) - Direct_Val (Right));
2599 else
2600 return UI_Add (Left, -Right);
2601 end if;
2602 end UI_Sub;
2604 --------------
2605 -- UI_To_CC --
2606 --------------
2608 function UI_To_CC (Input : Uint) return Char_Code is
2609 begin
2610 if Direct (Input) then
2611 return Char_Code (Direct_Val (Input));
2613 -- Case of input is more than one digit
2615 else
2616 declare
2617 In_Length : constant Int := N_Digits (Input);
2618 In_Vec : UI_Vector (1 .. In_Length);
2619 Ret_CC : Char_Code;
2621 begin
2622 Init_Operand (Input, In_Vec);
2624 -- We assume value is positive
2626 Ret_CC := 0;
2627 for Idx in In_Vec'Range loop
2628 Ret_CC := Ret_CC * Char_Code (Base) +
2629 Char_Code (abs In_Vec (Idx));
2630 end loop;
2632 return Ret_CC;
2633 end;
2634 end if;
2635 end UI_To_CC;
2637 ----------------
2638 -- UI_To_Int --
2639 ----------------
2641 function UI_To_Int (Input : Uint) return Int is
2642 begin
2643 if Direct (Input) then
2644 return Direct_Val (Input);
2646 -- Case of input is more than one digit
2648 else
2649 declare
2650 In_Length : constant Int := N_Digits (Input);
2651 In_Vec : UI_Vector (1 .. In_Length);
2652 Ret_Int : Int;
2654 begin
2655 -- Uints of more than one digit could be outside the range for
2656 -- Ints. Caller should have checked for this if not certain.
2657 -- Fatal error to attempt to convert from value outside Int'Range.
2659 pragma Assert (UI_Is_In_Int_Range (Input));
2661 -- Otherwise, proceed ahead, we are OK
2663 Init_Operand (Input, In_Vec);
2664 Ret_Int := 0;
2666 -- Calculate -|Input| and then negates if value is positive. This
2667 -- handles our current definition of Int (based on 2s complement).
2668 -- Is it secure enough???
2670 for Idx in In_Vec'Range loop
2671 Ret_Int := Ret_Int * Base - abs In_Vec (Idx);
2672 end loop;
2674 if In_Vec (1) < Int_0 then
2675 return Ret_Int;
2676 else
2677 return -Ret_Int;
2678 end if;
2679 end;
2680 end if;
2681 end UI_To_Int;
2683 --------------
2684 -- UI_Write --
2685 --------------
2687 procedure UI_Write (Input : Uint; Format : UI_Format := Auto) is
2688 begin
2689 Image_Out (Input, False, Format);
2690 end UI_Write;
2692 ---------------------
2693 -- Vector_To_Uint --
2694 ---------------------
2696 function Vector_To_Uint
2697 (In_Vec : UI_Vector;
2698 Negative : Boolean)
2699 return Uint
2701 Size : Int;
2702 Val : Int;
2704 begin
2705 -- The vector can contain leading zeros. These are not stored in the
2706 -- table, so loop through the vector looking for first non-zero digit
2708 for J in In_Vec'Range loop
2709 if In_Vec (J) /= Int_0 then
2711 -- The length of the value is the length of the rest of the vector
2713 Size := In_Vec'Last - J + 1;
2715 -- One digit value can always be represented directly
2717 if Size = Int_1 then
2718 if Negative then
2719 return Uint (Int (Uint_Direct_Bias) - In_Vec (J));
2720 else
2721 return Uint (Int (Uint_Direct_Bias) + In_Vec (J));
2722 end if;
2724 -- Positive two digit values may be in direct representation range
2726 elsif Size = Int_2 and then not Negative then
2727 Val := In_Vec (J) * Base + In_Vec (J + 1);
2729 if Val <= Max_Direct then
2730 return Uint (Int (Uint_Direct_Bias) + Val);
2731 end if;
2732 end if;
2734 -- The value is outside the direct representation range and must
2735 -- therefore be stored in the table. Expand the table to contain
2736 -- the count and digits. The index of the new table entry will be
2737 -- returned as the result.
2739 Uints.Append ((Length => Size, Loc => Udigits.Last + 1));
2741 if Negative then
2742 Val := -In_Vec (J);
2743 else
2744 Val := +In_Vec (J);
2745 end if;
2747 Udigits.Append (Val);
2749 for K in 2 .. Size loop
2750 Udigits.Append (In_Vec (J + K - 1));
2751 end loop;
2753 return Uints.Last;
2754 end if;
2755 end loop;
2757 -- Dropped through loop only if vector contained all zeros
2759 return Uint_0;
2760 end Vector_To_Uint;
2762 end Uintp;