1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Elists
; use Elists
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Eval_Fat
; use Eval_Fat
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Disp
; use Exp_Disp
;
35 with Exp_Dist
; use Exp_Dist
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Exp_Util
; use Exp_Util
;
38 with Fname
; use Fname
;
39 with Freeze
; use Freeze
;
40 with Itypes
; use Itypes
;
41 with Layout
; use Layout
;
43 with Lib
.Xref
; use Lib
.Xref
;
44 with Namet
; use Namet
;
45 with Nmake
; use Nmake
;
47 with Restrict
; use Restrict
;
48 with Rident
; use Rident
;
49 with Rtsfind
; use Rtsfind
;
51 with Sem_Case
; use Sem_Case
;
52 with Sem_Cat
; use Sem_Cat
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch7
; use Sem_Ch7
;
55 with Sem_Ch8
; use Sem_Ch8
;
56 with Sem_Ch13
; use Sem_Ch13
;
57 with Sem_Disp
; use Sem_Disp
;
58 with Sem_Dist
; use Sem_Dist
;
59 with Sem_Elim
; use Sem_Elim
;
60 with Sem_Eval
; use Sem_Eval
;
61 with Sem_Mech
; use Sem_Mech
;
62 with Sem_Res
; use Sem_Res
;
63 with Sem_Smem
; use Sem_Smem
;
64 with Sem_Type
; use Sem_Type
;
65 with Sem_Util
; use Sem_Util
;
66 with Sem_Warn
; use Sem_Warn
;
67 with Stand
; use Stand
;
68 with Sinfo
; use Sinfo
;
69 with Snames
; use Snames
;
70 with Targparm
; use Targparm
;
71 with Tbuild
; use Tbuild
;
72 with Ttypes
; use Ttypes
;
73 with Uintp
; use Uintp
;
74 with Urealp
; use Urealp
;
76 package body Sem_Ch3
is
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
83 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
84 -- abstract interface types implemented by a record type or a derived
87 procedure Build_Derived_Type
89 Parent_Type
: Entity_Id
;
90 Derived_Type
: Entity_Id
;
91 Is_Completion
: Boolean;
92 Derive_Subps
: Boolean := True);
93 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
94 -- the N_Full_Type_Declaration node containing the derived type definition.
95 -- Parent_Type is the entity for the parent type in the derived type
96 -- definition and Derived_Type the actual derived type. Is_Completion must
97 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
98 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
99 -- completion of a private type declaration. If Is_Completion is set to
100 -- True, N is the completion of a private type declaration and Derived_Type
101 -- is different from the defining identifier inside N (i.e. Derived_Type /=
102 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
103 -- subprograms should be derived. The only case where this parameter is
104 -- False is when Build_Derived_Type is recursively called to process an
105 -- implicit derived full type for a type derived from a private type (in
106 -- that case the subprograms must only be derived for the private view of
109 -- ??? These flags need a bit of re-examination and re-documentation:
110 -- ??? are they both necessary (both seem related to the recursion)?
112 procedure Build_Derived_Access_Type
114 Parent_Type
: Entity_Id
;
115 Derived_Type
: Entity_Id
);
116 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
117 -- create an implicit base if the parent type is constrained or if the
118 -- subtype indication has a constraint.
120 procedure Build_Derived_Array_Type
122 Parent_Type
: Entity_Id
;
123 Derived_Type
: Entity_Id
);
124 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
125 -- create an implicit base if the parent type is constrained or if the
126 -- subtype indication has a constraint.
128 procedure Build_Derived_Concurrent_Type
130 Parent_Type
: Entity_Id
;
131 Derived_Type
: Entity_Id
);
132 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
133 -- protected type, inherit entries and protected subprograms, check
134 -- legality of discriminant constraints if any.
136 procedure Build_Derived_Enumeration_Type
138 Parent_Type
: Entity_Id
;
139 Derived_Type
: Entity_Id
);
140 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
141 -- type, we must create a new list of literals. Types derived from
142 -- Character and Wide_Character are special-cased.
144 procedure Build_Derived_Numeric_Type
146 Parent_Type
: Entity_Id
;
147 Derived_Type
: Entity_Id
);
148 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
149 -- an anonymous base type, and propagate constraint to subtype if needed.
151 procedure Build_Derived_Private_Type
153 Parent_Type
: Entity_Id
;
154 Derived_Type
: Entity_Id
;
155 Is_Completion
: Boolean;
156 Derive_Subps
: Boolean := True);
157 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
158 -- because the parent may or may not have a completion, and the derivation
159 -- may itself be a completion.
161 procedure Build_Derived_Record_Type
163 Parent_Type
: Entity_Id
;
164 Derived_Type
: Entity_Id
;
165 Derive_Subps
: Boolean := True);
166 -- Subsidiary procedure for Build_Derived_Type and
167 -- Analyze_Private_Extension_Declaration used for tagged and untagged
168 -- record types. All parameters are as in Build_Derived_Type except that
169 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
170 -- N_Private_Extension_Declaration node. See the definition of this routine
171 -- for much more info. Derive_Subps indicates whether subprograms should
172 -- be derived from the parent type. The only case where Derive_Subps is
173 -- False is for an implicit derived full type for a type derived from a
174 -- private type (see Build_Derived_Type).
176 procedure Build_Discriminal
(Discrim
: Entity_Id
);
177 -- Create the discriminal corresponding to discriminant Discrim, that is
178 -- the parameter corresponding to Discrim to be used in initialization
179 -- procedures for the type where Discrim is a discriminant. Discriminals
180 -- are not used during semantic analysis, and are not fully defined
181 -- entities until expansion. Thus they are not given a scope until
182 -- initialization procedures are built.
184 function Build_Discriminant_Constraints
187 Derived_Def
: Boolean := False) return Elist_Id
;
188 -- Validate discriminant constraints and return the list of the constraints
189 -- in order of discriminant declarations, where T is the discriminated
190 -- unconstrained type. Def is the N_Subtype_Indication node where the
191 -- discriminants constraints for T are specified. Derived_Def is True
192 -- when building the discriminant constraints in a derived type definition
193 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
194 -- type and Def is the constraint "(xxx)" on T and this routine sets the
195 -- Corresponding_Discriminant field of the discriminants in the derived
196 -- type D to point to the corresponding discriminants in the parent type T.
198 procedure Build_Discriminated_Subtype
202 Related_Nod
: Node_Id
;
203 For_Access
: Boolean := False);
204 -- Subsidiary procedure to Constrain_Discriminated_Type and to
205 -- Process_Incomplete_Dependents. Given
207 -- T (a possibly discriminated base type)
208 -- Def_Id (a very partially built subtype for T),
210 -- the call completes Def_Id to be the appropriate E_*_Subtype.
212 -- The Elist is the list of discriminant constraints if any (it is set
213 -- to No_Elist if T is not a discriminated type, and to an empty list if
214 -- T has discriminants but there are no discriminant constraints). The
215 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
216 -- The For_Access says whether or not this subtype is really constraining
217 -- an access type. That is its sole purpose is the designated type of an
218 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
219 -- is built to avoid freezing T when the access subtype is frozen.
221 function Build_Scalar_Bound
224 Der_T
: Entity_Id
) return Node_Id
;
225 -- The bounds of a derived scalar type are conversions of the bounds of
226 -- the parent type. Optimize the representation if the bounds are literals.
227 -- Needs a more complete spec--what are the parameters exactly, and what
228 -- exactly is the returned value, and how is Bound affected???
230 procedure Build_Itype_Reference
233 -- Create a reference to an internal type, for use by Gigi. The back-end
234 -- elaborates itypes on demand, i.e. when their first use is seen. This
235 -- can lead to scope anomalies if the first use is within a scope that is
236 -- nested within the scope that contains the point of definition of the
237 -- itype. The Itype_Reference node forces the elaboration of the itype
238 -- in the proper scope. The node is inserted after Nod, which is the
239 -- enclosing declaration that generated Ityp.
241 -- A related mechanism is used during expansion, for itypes created in
242 -- branches of conditionals. See Ensure_Defined in exp_util.
243 -- Could both mechanisms be merged ???
245 procedure Build_Underlying_Full_View
249 -- If the completion of a private type is itself derived from a private
250 -- type, or if the full view of a private subtype is itself private, the
251 -- back-end has no way to compute the actual size of this type. We build
252 -- an internal subtype declaration of the proper parent type to convey
253 -- this information. This extra mechanism is needed because a full
254 -- view cannot itself have a full view (it would get clobbered during
257 procedure Check_Access_Discriminant_Requires_Limited
260 -- Check the restriction that the type to which an access discriminant
261 -- belongs must be a concurrent type or a descendant of a type with
262 -- the reserved word 'limited' in its declaration.
264 procedure Check_Anonymous_Access_Components
268 Comp_List
: Node_Id
);
269 -- Ada 2005 AI-382: an access component in a record definition can refer to
270 -- the enclosing record, in which case it denotes the type itself, and not
271 -- the current instance of the type. We create an anonymous access type for
272 -- the component, and flag it as an access to a component, so accessibility
273 -- checks are properly performed on it. The declaration of the access type
274 -- is placed ahead of that of the record to prevent order-of-elaboration
275 -- circularity issues in Gigi. We create an incomplete type for the record
276 -- declaration, which is the designated type of the anonymous access.
278 procedure Check_Delta_Expression
(E
: Node_Id
);
279 -- Check that the expression represented by E is suitable for use as a
280 -- delta expression, i.e. it is of real type and is static.
282 procedure Check_Digits_Expression
(E
: Node_Id
);
283 -- Check that the expression represented by E is suitable for use as a
284 -- digits expression, i.e. it is of integer type, positive and static.
286 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
287 -- Validate the initialization of an object declaration. T is the required
288 -- type, and Exp is the initialization expression.
290 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
291 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
293 procedure Check_Or_Process_Discriminants
296 Prev
: Entity_Id
:= Empty
);
297 -- If T is the full declaration of an incomplete or private type, check the
298 -- conformance of the discriminants, otherwise process them. Prev is the
299 -- entity of the partial declaration, if any.
301 procedure Check_Real_Bound
(Bound
: Node_Id
);
302 -- Check given bound for being of real type and static. If not, post an
303 -- appropriate message, and rewrite the bound with the real literal zero.
305 procedure Constant_Redeclaration
309 -- Various checks on legality of full declaration of deferred constant.
310 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
311 -- node. The caller has not yet set any attributes of this entity.
313 function Contain_Interface
315 Ifaces
: Elist_Id
) return Boolean;
316 -- Ada 2005: Determine whether Iface is present in the list Ifaces
318 procedure Convert_Scalar_Bounds
320 Parent_Type
: Entity_Id
;
321 Derived_Type
: Entity_Id
;
323 -- For derived scalar types, convert the bounds in the type definition to
324 -- the derived type, and complete their analysis. Given a constraint of the
325 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
326 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
327 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
328 -- subtype are conversions of those bounds to the derived_type, so that
329 -- their typing is consistent.
331 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
332 -- Copies attributes from array base type T2 to array base type T1. Copies
333 -- only attributes that apply to base types, but not subtypes.
335 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
336 -- Copies attributes from array subtype T2 to array subtype T1. Copies
337 -- attributes that apply to both subtypes and base types.
339 procedure Create_Constrained_Components
343 Constraints
: Elist_Id
);
344 -- Build the list of entities for a constrained discriminated record
345 -- subtype. If a component depends on a discriminant, replace its subtype
346 -- using the discriminant values in the discriminant constraint. Subt
347 -- is the defining identifier for the subtype whose list of constrained
348 -- entities we will create. Decl_Node is the type declaration node where
349 -- we will attach all the itypes created. Typ is the base discriminated
350 -- type for the subtype Subt. Constraints is the list of discriminant
351 -- constraints for Typ.
353 function Constrain_Component_Type
355 Constrained_Typ
: Entity_Id
;
356 Related_Node
: Node_Id
;
358 Constraints
: Elist_Id
) return Entity_Id
;
359 -- Given a discriminated base type Typ, a list of discriminant constraint
360 -- Constraints for Typ and a component of Typ, with type Compon_Type,
361 -- create and return the type corresponding to Compon_type where all
362 -- discriminant references are replaced with the corresponding constraint.
363 -- If no discriminant references occur in Compon_Typ then return it as is.
364 -- Constrained_Typ is the final constrained subtype to which the
365 -- constrained Compon_Type belongs. Related_Node is the node where we will
366 -- attach all the itypes created.
368 -- Above description is confused, what is Compon_Type???
370 procedure Constrain_Access
371 (Def_Id
: in out Entity_Id
;
373 Related_Nod
: Node_Id
);
374 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
375 -- an anonymous type created for a subtype indication. In that case it is
376 -- created in the procedure and attached to Related_Nod.
378 procedure Constrain_Array
379 (Def_Id
: in out Entity_Id
;
381 Related_Nod
: Node_Id
;
382 Related_Id
: Entity_Id
;
384 -- Apply a list of index constraints to an unconstrained array type. The
385 -- first parameter is the entity for the resulting subtype. A value of
386 -- Empty for Def_Id indicates that an implicit type must be created, but
387 -- creation is delayed (and must be done by this procedure) because other
388 -- subsidiary implicit types must be created first (which is why Def_Id
389 -- is an in/out parameter). The second parameter is a subtype indication
390 -- node for the constrained array to be created (e.g. something of the
391 -- form string (1 .. 10)). Related_Nod gives the place where this type
392 -- has to be inserted in the tree. The Related_Id and Suffix parameters
393 -- are used to build the associated Implicit type name.
395 procedure Constrain_Concurrent
396 (Def_Id
: in out Entity_Id
;
398 Related_Nod
: Node_Id
;
399 Related_Id
: Entity_Id
;
401 -- Apply list of discriminant constraints to an unconstrained concurrent
404 -- SI is the N_Subtype_Indication node containing the constraint and
405 -- the unconstrained type to constrain.
407 -- Def_Id is the entity for the resulting constrained subtype. A value
408 -- of Empty for Def_Id indicates that an implicit type must be created,
409 -- but creation is delayed (and must be done by this procedure) because
410 -- other subsidiary implicit types must be created first (which is why
411 -- Def_Id is an in/out parameter).
413 -- Related_Nod gives the place where this type has to be inserted
416 -- The last two arguments are used to create its external name if needed.
418 function Constrain_Corresponding_Record
419 (Prot_Subt
: Entity_Id
;
420 Corr_Rec
: Entity_Id
;
421 Related_Nod
: Node_Id
;
422 Related_Id
: Entity_Id
) return Entity_Id
;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
426 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430 procedure Constrain_Discriminated_Type
433 Related_Nod
: Node_Id
;
434 For_Access
: Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
442 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450 procedure Constrain_Index
453 Related_Nod
: Node_Id
;
454 Related_Id
: Entity_Id
;
457 -- Process an index constraint in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
463 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
464 -- Build subtype of a signed or modular integer type
466 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
475 procedure Decimal_Fixed_Point_Type_Declaration
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
481 procedure Complete_Private_Subtype
484 Full_Base
: Entity_Id
;
485 Related_Nod
: Node_Id
);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type
: Entity_Id
;
492 Tagged_Type
: Entity_Id
);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full-view
498 -- subprograms associated with the partial-view of Tagged_Type that cover
499 -- interface primitives.
501 procedure Derived_Standard_Character
503 Parent_Type
: Entity_Id
;
504 Derived_Type
: Entity_Id
);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
508 procedure Derived_Type_Declaration
511 Is_Completion
: Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
518 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
525 function Expand_To_Stored_Constraint
527 Constraint
: Elist_Id
) return Elist_Id
;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
532 function Find_Type_Of_Object
534 Related_Nod
: Node_Id
) return Entity_Id
;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
538 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
539 -- Create a new float and apply the constraint to obtain subtype of it
541 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
547 function Inherit_Components
549 Parent_Base
: Entity_Id
;
550 Derived_Base
: Entity_Id
;
552 Inherit_Discr
: Boolean;
553 Discs
: Elist_Id
) return Elist_Id
;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
559 -- N is the original derived type declaration
561 -- Is_Tagged is set if we are dealing with tagged types
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
573 -- which gets treated as
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
581 -- (Old_Component => New_Component),
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
589 function Is_Progenitor
591 Typ
: Entity_Id
) return Boolean;
592 -- Determine whether type Typ implements interface Iface. This requires
593 -- traversing the list of abstract interfaces of the type, as well as that
594 -- of the ancestor types. The predicate is used to determine when a formal
595 -- in the signature of an inherited operation must carry the derived type.
597 function Is_Valid_Constraint_Kind
599 Constraint_Kind
: Node_Kind
) return Boolean;
600 -- Returns True if it is legal to apply the given kind of constraint to the
601 -- given kind of type (index constraint to an array type, for example).
603 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
604 -- Create new modular type. Verify that modulus is in bounds and is
605 -- a power of two (implementation restriction).
607 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
608 -- Create an abbreviated declaration for an operator in order to
609 -- materialize concatenation on array types.
611 procedure Ordinary_Fixed_Point_Type_Declaration
614 -- Create a new ordinary fixed point type, and apply the constraint to
615 -- obtain subtype of it.
617 procedure Prepare_Private_Subtype_Completion
619 Related_Nod
: Node_Id
);
620 -- Id is a subtype of some private type. Creates the full declaration
621 -- associated with Id whenever possible, i.e. when the full declaration
622 -- of the base type is already known. Records each subtype into
623 -- Private_Dependents of the base type.
625 procedure Process_Incomplete_Dependents
629 -- Process all entities that depend on an incomplete type. There include
630 -- subtypes, subprogram types that mention the incomplete type in their
631 -- profiles, and subprogram with access parameters that designate the
634 -- Inc_T is the defining identifier of an incomplete type declaration, its
635 -- Ekind is E_Incomplete_Type.
637 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
639 -- Full_T is N's defining identifier.
641 -- Subtypes of incomplete types with discriminants are completed when the
642 -- parent type is. This is simpler than private subtypes, because they can
643 -- only appear in the same scope, and there is no need to exchange views.
644 -- Similarly, access_to_subprogram types may have a parameter or a return
645 -- type that is an incomplete type, and that must be replaced with the
648 -- If the full type is tagged, subprogram with access parameters that
649 -- designated the incomplete may be primitive operations of the full type,
650 -- and have to be processed accordingly.
652 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
653 -- Given the type definition for a real type, this procedure processes and
654 -- checks the real range specification of this type definition if one is
655 -- present. If errors are found, error messages are posted, and the
656 -- Real_Range_Specification of Def is reset to Empty.
658 procedure Record_Type_Declaration
662 -- Process a record type declaration (for both untagged and tagged
663 -- records). Parameters T and N are exactly like in procedure
664 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
665 -- for this routine. If this is the completion of an incomplete type
666 -- declaration, Prev is the entity of the incomplete declaration, used for
667 -- cross-referencing. Otherwise Prev = T.
669 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
670 -- This routine is used to process the actual record type definition (both
671 -- for untagged and tagged records). Def is a record type definition node.
672 -- This procedure analyzes the components in this record type definition.
673 -- Prev_T is the entity for the enclosing record type. It is provided so
674 -- that its Has_Task flag can be set if any of the component have Has_Task
675 -- set. If the declaration is the completion of an incomplete type
676 -- declaration, Prev_T is the original incomplete type, whose full view is
679 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
680 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
681 -- build a copy of the declaration tree of the parent, and we create
682 -- independently the list of components for the derived type. Semantic
683 -- information uses the component entities, but record representation
684 -- clauses are validated on the declaration tree. This procedure replaces
685 -- discriminants and components in the declaration with those that have
686 -- been created by Inherit_Components.
688 procedure Set_Fixed_Range
693 -- Build a range node with the given bounds and set it as the Scalar_Range
694 -- of the given fixed-point type entity. Loc is the source location used
695 -- for the constructed range. See body for further details.
697 procedure Set_Scalar_Range_For_Subtype
701 -- This routine is used to set the scalar range field for a subtype given
702 -- Def_Id, the entity for the subtype, and R, the range expression for the
703 -- scalar range. Subt provides the parent subtype to be used to analyze,
704 -- resolve, and check the given range.
706 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
715 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
719 -----------------------
720 -- Access_Definition --
721 -----------------------
723 function Access_Definition
724 (Related_Nod
: Node_Id
;
725 N
: Node_Id
) return Entity_Id
727 Loc
: constant Source_Ptr
:= Sloc
(Related_Nod
);
728 Anon_Type
: Entity_Id
;
729 Anon_Scope
: Entity_Id
;
730 Desig_Type
: Entity_Id
;
734 if Is_Entry
(Current_Scope
)
735 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
737 Error_Msg_N
("task entries cannot have access parameters", N
);
741 -- Ada 2005: for an object declaration the corresponding anonymous
742 -- type is declared in the current scope.
744 -- If the access definition is the return type of another access to
745 -- function, scope is the current one, because it is the one of the
746 -- current type declaration.
748 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
749 N_Access_Function_Definition
)
751 Anon_Scope
:= Current_Scope
;
753 -- For the anonymous function result case, retrieve the scope of the
754 -- function specification's associated entity rather than using the
755 -- current scope. The current scope will be the function itself if the
756 -- formal part is currently being analyzed, but will be the parent scope
757 -- in the case of a parameterless function, and we always want to use
758 -- the function's parent scope. Finally, if the function is a child
759 -- unit, we must traverse the tree to retrieve the proper entity.
761 elsif Nkind
(Related_Nod
) = N_Function_Specification
762 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
764 -- If the current scope is a protected type, the anonymous access
765 -- is associated with one of the protected operations, and must
766 -- be available in the scope that encloses the protected declaration.
767 -- Otherwise the type is is in the scope enclosing the subprogram.
769 if Ekind
(Current_Scope
) = E_Protected_Type
then
770 Anon_Scope
:= Scope
(Scope
(Defining_Entity
(Related_Nod
)));
772 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
776 -- For access formals, access components, and access discriminants,
777 -- the scope is that of the enclosing declaration,
779 Anon_Scope
:= Scope
(Current_Scope
);
784 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
787 and then Ada_Version
>= Ada_05
789 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
792 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
793 -- the corresponding semantic routine
795 if Present
(Access_To_Subprogram_Definition
(N
)) then
796 Access_Subprogram_Declaration
797 (T_Name
=> Anon_Type
,
798 T_Def
=> Access_To_Subprogram_Definition
(N
));
800 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
802 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
805 (Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
808 Set_Can_Use_Internal_Rep
809 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
811 -- If the anonymous access is associated with a protected operation
812 -- create a reference to it after the enclosing protected definition
813 -- because the itype will be used in the subsequent bodies.
815 if Ekind
(Current_Scope
) = E_Protected_Type
then
816 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
822 Find_Type
(Subtype_Mark
(N
));
823 Desig_Type
:= Entity
(Subtype_Mark
(N
));
825 Set_Directly_Designated_Type
826 (Anon_Type
, Desig_Type
);
827 Set_Etype
(Anon_Type
, Anon_Type
);
829 -- Make sure the anonymous access type has size and alignment fields
830 -- set, as required by gigi. This is necessary in the case of the
831 -- Task_Body_Procedure.
833 if not Has_Private_Component
(Desig_Type
) then
834 Layout_Type
(Anon_Type
);
837 -- ???The following makes no sense, because Anon_Type is an access type
838 -- and therefore cannot have components, private or otherwise. Hence
839 -- the assertion. Not sure what was meant, here.
840 Set_Depends_On_Private
(Anon_Type
, Has_Private_Component
(Anon_Type
));
841 pragma Assert
(not Depends_On_Private
(Anon_Type
));
843 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
844 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
845 -- the null value is allowed. In Ada 95 the null value is never allowed.
847 if Ada_Version
>= Ada_05
then
848 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
850 Set_Can_Never_Be_Null
(Anon_Type
, True);
853 -- The anonymous access type is as public as the discriminated type or
854 -- subprogram that defines it. It is imported (for back-end purposes)
855 -- if the designated type is.
857 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
859 -- Ada 2005 (AI-50217): Propagate the attribute that indicates that the
860 -- designated type comes from the limited view.
862 Set_From_With_Type
(Anon_Type
, From_With_Type
(Desig_Type
));
864 -- Ada 2005 (AI-231): Propagate the access-constant attribute
866 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
868 -- The context is either a subprogram declaration, object declaration,
869 -- or an access discriminant, in a private or a full type declaration.
870 -- In the case of a subprogram, if the designated type is incomplete,
871 -- the operation will be a primitive operation of the full type, to be
872 -- updated subsequently. If the type is imported through a limited_with
873 -- clause, the subprogram is not a primitive operation of the type
874 -- (which is declared elsewhere in some other scope).
876 if Ekind
(Desig_Type
) = E_Incomplete_Type
877 and then not From_With_Type
(Desig_Type
)
878 and then Is_Overloadable
(Current_Scope
)
880 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
881 Set_Has_Delayed_Freeze
(Current_Scope
);
884 -- Ada 2005: if the designated type is an interface that may contain
885 -- tasks, create a Master entity for the declaration. This must be done
886 -- before expansion of the full declaration, because the declaration may
887 -- include an expression that is an allocator, whose expansion needs the
888 -- proper Master for the created tasks.
890 if Nkind
(Related_Nod
) = N_Object_Declaration
891 and then Expander_Active
893 if Is_Interface
(Desig_Type
)
894 and then Is_Limited_Record
(Desig_Type
)
896 Build_Class_Wide_Master
(Anon_Type
);
898 -- Similarly, if the type is an anonymous access that designates
899 -- tasks, create a master entity for it in the current context.
901 elsif Has_Task
(Desig_Type
)
902 and then Comes_From_Source
(Related_Nod
)
904 if not Has_Master_Entity
(Current_Scope
) then
906 Make_Object_Declaration
(Loc
,
907 Defining_Identifier
=>
908 Make_Defining_Identifier
(Loc
, Name_uMaster
),
909 Constant_Present
=> True,
911 New_Reference_To
(RTE
(RE_Master_Id
), Loc
),
913 Make_Explicit_Dereference
(Loc
,
914 New_Reference_To
(RTE
(RE_Current_Master
), Loc
)));
916 Insert_Before
(Related_Nod
, Decl
);
919 Set_Master_Id
(Anon_Type
, Defining_Identifier
(Decl
));
920 Set_Has_Master_Entity
(Current_Scope
);
922 Build_Master_Renaming
(Related_Nod
, Anon_Type
);
927 -- For a private component of a protected type, it is imperative that
928 -- the back-end elaborate the type immediately after the protected
929 -- declaration, because this type will be used in the declarations
930 -- created for the component within each protected body, so we must
931 -- create an itype reference for it now.
933 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
934 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
936 -- Similarly, if the access definition is the return result of a
937 -- protected function, create an itype reference for it because it
938 -- will be used within the function body.
940 elsif Nkind
(Related_Nod
) = N_Function_Specification
941 and then Ekind
(Current_Scope
) = E_Protected_Type
943 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
945 -- Finally, create an itype reference for an object declaration of
946 -- an anonymous access type. This is strictly necessary only for
947 -- deferred constants, but in any case will avoid out-of-scope
948 -- problems in the back-end.
950 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
951 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
955 end Access_Definition
;
957 -----------------------------------
958 -- Access_Subprogram_Declaration --
959 -----------------------------------
961 procedure Access_Subprogram_Declaration
966 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
967 -- Check that type T_Name is not used, directly or recursively,
968 -- as a parameter or a return type in Def. Def is either a subtype,
969 -- an access_definition, or an access_to_subprogram_definition.
971 -------------------------------
972 -- Check_For_Premature_Usage --
973 -------------------------------
975 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
979 -- Check for a subtype mark
981 if Nkind
(Def
) in N_Has_Etype
then
982 if Etype
(Def
) = T_Name
then
984 ("type& cannot be used before end of its declaration", Def
);
987 -- If this is not a subtype, then this is an access_definition
989 elsif Nkind
(Def
) = N_Access_Definition
then
990 if Present
(Access_To_Subprogram_Definition
(Def
)) then
991 Check_For_Premature_Usage
992 (Access_To_Subprogram_Definition
(Def
));
994 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
997 -- The only cases left are N_Access_Function_Definition and
998 -- N_Access_Procedure_Definition.
1001 if Present
(Parameter_Specifications
(Def
)) then
1002 Param
:= First
(Parameter_Specifications
(Def
));
1003 while Present
(Param
) loop
1004 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1005 Param
:= Next
(Param
);
1009 if Nkind
(Def
) = N_Access_Function_Definition
then
1010 Check_For_Premature_Usage
(Result_Definition
(Def
));
1013 end Check_For_Premature_Usage
;
1017 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1020 Desig_Type
: constant Entity_Id
:=
1021 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1023 -- Start of processing for Access_Subprogram_Declaration
1026 -- Associate the Itype node with the inner full-type declaration or
1027 -- subprogram spec. This is required to handle nested anonymous
1028 -- declarations. For example:
1031 -- (X : access procedure
1032 -- (Y : access procedure
1035 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1036 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1037 N_Private_Type_Declaration
,
1038 N_Private_Extension_Declaration
,
1039 N_Procedure_Specification
,
1040 N_Function_Specification
)
1042 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1043 N_Object_Renaming_Declaration
,
1044 N_Formal_Type_Declaration
,
1045 N_Task_Type_Declaration
,
1046 N_Protected_Type_Declaration
))
1048 D_Ityp
:= Parent
(D_Ityp
);
1049 pragma Assert
(D_Ityp
/= Empty
);
1052 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1054 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1055 N_Function_Specification
)
1057 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1059 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1060 N_Object_Declaration
,
1061 N_Object_Renaming_Declaration
,
1062 N_Formal_Type_Declaration
)
1064 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1067 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1068 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1070 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1073 if Present
(Access_To_Subprogram_Definition
(Acc
))
1075 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1079 Replace_Anonymous_Access_To_Protected_Subprogram
1085 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1090 Analyze
(Result_Definition
(T_Def
));
1091 Set_Etype
(Desig_Type
, Entity
(Result_Definition
(T_Def
)));
1094 if not (Is_Type
(Etype
(Desig_Type
))) then
1096 ("expect type in function specification",
1097 Result_Definition
(T_Def
));
1101 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1104 if Present
(Formals
) then
1105 Push_Scope
(Desig_Type
);
1106 Process_Formals
(Formals
, Parent
(T_Def
));
1108 -- A bit of a kludge here, End_Scope requires that the parent
1109 -- pointer be set to something reasonable, but Itypes don't have
1110 -- parent pointers. So we set it and then unset it ??? If and when
1111 -- Itypes have proper parent pointers to their declarations, this
1112 -- kludge can be removed.
1114 Set_Parent
(Desig_Type
, T_Name
);
1116 Set_Parent
(Desig_Type
, Empty
);
1119 -- Check for premature usage of the type being defined
1121 Check_For_Premature_Usage
(T_Def
);
1123 -- The return type and/or any parameter type may be incomplete. Mark
1124 -- the subprogram_type as depending on the incomplete type, so that
1125 -- it can be updated when the full type declaration is seen. This
1126 -- only applies to incomplete types declared in some enclosing scope,
1127 -- not to limited views from other packages.
1129 if Present
(Formals
) then
1130 Formal
:= First_Formal
(Desig_Type
);
1131 while Present
(Formal
) loop
1132 if Ekind
(Formal
) /= E_In_Parameter
1133 and then Nkind
(T_Def
) = N_Access_Function_Definition
1135 Error_Msg_N
("functions can only have IN parameters", Formal
);
1138 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1139 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1141 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1142 Set_Has_Delayed_Freeze
(Desig_Type
);
1145 Next_Formal
(Formal
);
1149 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1150 and then not Has_Delayed_Freeze
(Desig_Type
)
1152 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1153 Set_Has_Delayed_Freeze
(Desig_Type
);
1156 Check_Delayed_Subprogram
(Desig_Type
);
1158 if Protected_Present
(T_Def
) then
1159 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1160 Set_Convention
(Desig_Type
, Convention_Protected
);
1162 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1165 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1167 Set_Etype
(T_Name
, T_Name
);
1168 Init_Size_Align
(T_Name
);
1169 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1171 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1173 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1175 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1176 end Access_Subprogram_Declaration
;
1178 ----------------------------
1179 -- Access_Type_Declaration --
1180 ----------------------------
1182 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1183 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1184 P
: constant Node_Id
:= Parent
(Def
);
1190 -- Check for permissible use of incomplete type
1192 if Nkind
(S
) /= N_Subtype_Indication
then
1195 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1196 Set_Directly_Designated_Type
(T
, Entity
(S
));
1198 Set_Directly_Designated_Type
(T
,
1199 Process_Subtype
(S
, P
, T
, 'P'));
1203 Set_Directly_Designated_Type
(T
,
1204 Process_Subtype
(S
, P
, T
, 'P'));
1207 if All_Present
(Def
) or Constant_Present
(Def
) then
1208 Set_Ekind
(T
, E_General_Access_Type
);
1210 Set_Ekind
(T
, E_Access_Type
);
1213 if Base_Type
(Designated_Type
(T
)) = T
then
1214 Error_Msg_N
("access type cannot designate itself", S
);
1216 -- In Ada 2005, the type may have a limited view through some unit
1217 -- in its own context, allowing the following circularity that cannot
1218 -- be detected earlier
1220 elsif Is_Class_Wide_Type
(Designated_Type
(T
))
1221 and then Etype
(Designated_Type
(T
)) = T
1224 ("access type cannot designate its own classwide type", S
);
1226 -- Clean up indication of tagged status to prevent cascaded errors
1228 Set_Is_Tagged_Type
(T
, False);
1233 -- If the type has appeared already in a with_type clause, it is
1234 -- frozen and the pointer size is already set. Else, initialize.
1236 if not From_With_Type
(T
) then
1237 Init_Size_Align
(T
);
1240 Desig
:= Designated_Type
(T
);
1242 -- If designated type is an imported tagged type, indicate that the
1243 -- access type is also imported, and therefore restricted in its use.
1244 -- The access type may already be imported, so keep setting otherwise.
1246 -- Ada 2005 (AI-50217): If the non-limited view of the designated type
1247 -- is available, use it as the designated type of the access type, so
1248 -- that the back-end gets a usable entity.
1250 if From_With_Type
(Desig
)
1251 and then Ekind
(Desig
) /= E_Access_Type
1253 Set_From_With_Type
(T
);
1256 -- Note that Has_Task is always false, since the access type itself
1257 -- is not a task type. See Einfo for more description on this point.
1258 -- Exactly the same consideration applies to Has_Controlled_Component.
1260 Set_Has_Task
(T
, False);
1261 Set_Has_Controlled_Component
(T
, False);
1263 -- Initialize Associated_Final_Chain explicitly to Empty, to avoid
1264 -- problems where an incomplete view of this entity has been previously
1265 -- established by a limited with and an overlaid version of this field
1266 -- (Stored_Constraint) was initialized for the incomplete view.
1268 Set_Associated_Final_Chain
(T
, Empty
);
1270 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1273 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1274 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1275 end Access_Type_Declaration
;
1277 ----------------------------------
1278 -- Add_Interface_Tag_Components --
1279 ----------------------------------
1281 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1282 Loc
: constant Source_Ptr
:= Sloc
(N
);
1286 procedure Add_Tag
(Iface
: Entity_Id
);
1287 -- Add tag for one of the progenitor interfaces
1293 procedure Add_Tag
(Iface
: Entity_Id
) is
1300 pragma Assert
(Is_Tagged_Type
(Iface
)
1301 and then Is_Interface
(Iface
));
1304 Make_Component_Definition
(Loc
,
1305 Aliased_Present
=> True,
1306 Subtype_Indication
=>
1307 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1309 Tag
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('V'));
1312 Make_Component_Declaration
(Loc
,
1313 Defining_Identifier
=> Tag
,
1314 Component_Definition
=> Def
);
1316 Analyze_Component_Declaration
(Decl
);
1318 Set_Analyzed
(Decl
);
1319 Set_Ekind
(Tag
, E_Component
);
1321 Set_Is_Aliased
(Tag
);
1322 Set_Related_Type
(Tag
, Iface
);
1323 Init_Component_Location
(Tag
);
1325 pragma Assert
(Is_Frozen
(Iface
));
1327 Set_DT_Entry_Count
(Tag
,
1328 DT_Entry_Count
(First_Entity
(Iface
)));
1330 if No
(Last_Tag
) then
1333 Insert_After
(Last_Tag
, Decl
);
1338 -- If the ancestor has discriminants we need to give special support
1339 -- to store the offset_to_top value of the secondary dispatch tables.
1340 -- For this purpose we add a supplementary component just after the
1341 -- field that contains the tag associated with each secondary DT.
1343 if Typ
/= Etype
(Typ
)
1344 and then Has_Discriminants
(Etype
(Typ
))
1347 Make_Component_Definition
(Loc
,
1348 Subtype_Indication
=>
1349 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1352 Make_Defining_Identifier
(Loc
, New_Internal_Name
('V'));
1355 Make_Component_Declaration
(Loc
,
1356 Defining_Identifier
=> Offset
,
1357 Component_Definition
=> Def
);
1359 Analyze_Component_Declaration
(Decl
);
1361 Set_Analyzed
(Decl
);
1362 Set_Ekind
(Offset
, E_Component
);
1363 Set_Is_Aliased
(Offset
);
1364 Set_Related_Type
(Offset
, Iface
);
1365 Init_Component_Location
(Offset
);
1366 Insert_After
(Last_Tag
, Decl
);
1377 -- Start of processing for Add_Interface_Tag_Components
1380 if not RTE_Available
(RE_Interface_Tag
) then
1382 ("(Ada 2005) interface types not supported by this run-time!",
1387 if Ekind
(Typ
) /= E_Record_Type
1388 or else (Is_Concurrent_Record_Type
(Typ
)
1389 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1390 or else (not Is_Concurrent_Record_Type
(Typ
)
1391 and then No
(Interfaces
(Typ
))
1392 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1397 -- Find the current last tag
1399 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1400 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1402 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1403 Ext
:= Type_Definition
(N
);
1408 if not (Present
(Component_List
(Ext
))) then
1409 Set_Null_Present
(Ext
, False);
1411 Set_Component_List
(Ext
,
1412 Make_Component_List
(Loc
,
1413 Component_Items
=> L
,
1414 Null_Present
=> False));
1416 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1417 L
:= Component_Items
1419 (Record_Extension_Part
1420 (Type_Definition
(N
))));
1422 L
:= Component_Items
1424 (Type_Definition
(N
)));
1427 -- Find the last tag component
1430 while Present
(Comp
) loop
1431 if Nkind
(Comp
) = N_Component_Declaration
1432 and then Is_Tag
(Defining_Identifier
(Comp
))
1441 -- At this point L references the list of components and Last_Tag
1442 -- references the current last tag (if any). Now we add the tag
1443 -- corresponding with all the interfaces that are not implemented
1446 if Present
(Interfaces
(Typ
)) then
1447 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1448 while Present
(Elmt
) loop
1449 Add_Tag
(Node
(Elmt
));
1453 end Add_Interface_Tag_Components
;
1455 -----------------------------------
1456 -- Analyze_Component_Declaration --
1457 -----------------------------------
1459 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1460 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1461 E
: constant Node_Id
:= Expression
(N
);
1465 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1466 -- Determines whether a constraint uses the discriminant of a record
1467 -- type thus becoming a per-object constraint (POC).
1469 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1470 -- Typ is the type of the current component, check whether this type is
1471 -- a limited type. Used to validate declaration against that of
1472 -- enclosing record.
1478 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1480 -- Prevent cascaded errors
1482 if Error_Posted
(Constr
) then
1486 case Nkind
(Constr
) is
1487 when N_Attribute_Reference
=>
1489 Attribute_Name
(Constr
) = Name_Access
1490 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1492 when N_Discriminant_Association
=>
1493 return Denotes_Discriminant
(Expression
(Constr
));
1495 when N_Identifier
=>
1496 return Denotes_Discriminant
(Constr
);
1498 when N_Index_Or_Discriminant_Constraint
=>
1503 IDC
:= First
(Constraints
(Constr
));
1504 while Present
(IDC
) loop
1506 -- One per-object constraint is sufficient
1508 if Contains_POC
(IDC
) then
1519 return Denotes_Discriminant
(Low_Bound
(Constr
))
1521 Denotes_Discriminant
(High_Bound
(Constr
));
1523 when N_Range_Constraint
=>
1524 return Denotes_Discriminant
(Range_Expression
(Constr
));
1532 ----------------------
1533 -- Is_Known_Limited --
1534 ----------------------
1536 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1537 P
: constant Entity_Id
:= Etype
(Typ
);
1538 R
: constant Entity_Id
:= Root_Type
(Typ
);
1541 if Is_Limited_Record
(Typ
) then
1544 -- If the root type is limited (and not a limited interface)
1545 -- so is the current type
1547 elsif Is_Limited_Record
(R
)
1549 (not Is_Interface
(R
)
1550 or else not Is_Limited_Interface
(R
))
1554 -- Else the type may have a limited interface progenitor, but a
1555 -- limited record parent.
1558 and then Is_Limited_Record
(P
)
1565 end Is_Known_Limited
;
1567 -- Start of processing for Analyze_Component_Declaration
1570 Generate_Definition
(Id
);
1573 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1574 T
:= Find_Type_Of_Object
1575 (Subtype_Indication
(Component_Definition
(N
)), N
);
1577 -- Ada 2005 (AI-230): Access Definition case
1580 pragma Assert
(Present
1581 (Access_Definition
(Component_Definition
(N
))));
1583 T
:= Access_Definition
1585 N
=> Access_Definition
(Component_Definition
(N
)));
1586 Set_Is_Local_Anonymous_Access
(T
);
1588 -- Ada 2005 (AI-254)
1590 if Present
(Access_To_Subprogram_Definition
1591 (Access_Definition
(Component_Definition
(N
))))
1592 and then Protected_Present
(Access_To_Subprogram_Definition
1594 (Component_Definition
(N
))))
1596 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1600 -- If the subtype is a constrained subtype of the enclosing record,
1601 -- (which must have a partial view) the back-end does not properly
1602 -- handle the recursion. Rewrite the component declaration with an
1603 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1604 -- the tree directly because side effects have already been removed from
1605 -- discriminant constraints.
1607 if Ekind
(T
) = E_Access_Subtype
1608 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1609 and then Comes_From_Source
(T
)
1610 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1611 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1614 (Subtype_Indication
(Component_Definition
(N
)),
1615 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1616 T
:= Find_Type_Of_Object
1617 (Subtype_Indication
(Component_Definition
(N
)), N
);
1620 -- If the component declaration includes a default expression, then we
1621 -- check that the component is not of a limited type (RM 3.7(5)),
1622 -- and do the special preanalysis of the expression (see section on
1623 -- "Handling of Default and Per-Object Expressions" in the spec of
1627 Preanalyze_Spec_Expression
(E
, T
);
1628 Check_Initialization
(T
, E
);
1630 if Ada_Version
>= Ada_05
1631 and then Ekind
(T
) = E_Anonymous_Access_Type
1633 -- Check RM 3.9.2(9): "if the expected type for an expression is
1634 -- an anonymous access-to-specific tagged type, then the object
1635 -- designated by the expression shall not be dynamically tagged
1636 -- unless it is a controlling operand in a call on a dispatching
1639 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1641 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1643 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1647 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1650 -- (Ada 2005: AI-230): Accessibility check for anonymous
1653 if Type_Access_Level
(Etype
(E
)) > Type_Access_Level
(T
) then
1655 ("expression has deeper access level than component " &
1656 "(RM 3.10.2 (12.2))", E
);
1659 -- The initialization expression is a reference to an access
1660 -- discriminant. The type of the discriminant is always deeper
1661 -- than any access type.
1663 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1664 and then Is_Entity_Name
(E
)
1665 and then Ekind
(Entity
(E
)) = E_In_Parameter
1666 and then Present
(Discriminal_Link
(Entity
(E
)))
1669 ("discriminant has deeper accessibility level than target",
1675 -- The parent type may be a private view with unknown discriminants,
1676 -- and thus unconstrained. Regular components must be constrained.
1678 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
1679 if Is_Class_Wide_Type
(T
) then
1681 ("class-wide subtype with unknown discriminants" &
1682 " in component declaration",
1683 Subtype_Indication
(Component_Definition
(N
)));
1686 ("unconstrained subtype in component declaration",
1687 Subtype_Indication
(Component_Definition
(N
)));
1690 -- Components cannot be abstract, except for the special case of
1691 -- the _Parent field (case of extending an abstract tagged type)
1693 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
1694 Error_Msg_N
("type of a component cannot be abstract", N
);
1698 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
1700 -- The component declaration may have a per-object constraint, set
1701 -- the appropriate flag in the defining identifier of the subtype.
1703 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1705 Sindic
: constant Node_Id
:=
1706 Subtype_Indication
(Component_Definition
(N
));
1708 if Nkind
(Sindic
) = N_Subtype_Indication
1709 and then Present
(Constraint
(Sindic
))
1710 and then Contains_POC
(Constraint
(Sindic
))
1712 Set_Has_Per_Object_Constraint
(Id
);
1717 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1718 -- out some static checks.
1720 if Ada_Version
>= Ada_05
1721 and then Can_Never_Be_Null
(T
)
1723 Null_Exclusion_Static_Checks
(N
);
1726 -- If this component is private (or depends on a private type), flag the
1727 -- record type to indicate that some operations are not available.
1729 P
:= Private_Component
(T
);
1733 -- Check for circular definitions
1735 if P
= Any_Type
then
1736 Set_Etype
(Id
, Any_Type
);
1738 -- There is a gap in the visibility of operations only if the
1739 -- component type is not defined in the scope of the record type.
1741 elsif Scope
(P
) = Scope
(Current_Scope
) then
1744 elsif Is_Limited_Type
(P
) then
1745 Set_Is_Limited_Composite
(Current_Scope
);
1748 Set_Is_Private_Composite
(Current_Scope
);
1753 and then Is_Limited_Type
(T
)
1754 and then Chars
(Id
) /= Name_uParent
1755 and then Is_Tagged_Type
(Current_Scope
)
1757 if Is_Derived_Type
(Current_Scope
)
1758 and then not Is_Known_Limited
(Current_Scope
)
1761 ("extension of nonlimited type cannot have limited components",
1764 if Is_Interface
(Root_Type
(Current_Scope
)) then
1766 ("\limitedness is not inherited from limited interface", N
);
1768 ("\add LIMITED to type indication", N
);
1771 Explain_Limited_Type
(T
, N
);
1772 Set_Etype
(Id
, Any_Type
);
1773 Set_Is_Limited_Composite
(Current_Scope
, False);
1775 elsif not Is_Derived_Type
(Current_Scope
)
1776 and then not Is_Limited_Record
(Current_Scope
)
1777 and then not Is_Concurrent_Type
(Current_Scope
)
1780 ("nonlimited tagged type cannot have limited components", N
);
1781 Explain_Limited_Type
(T
, N
);
1782 Set_Etype
(Id
, Any_Type
);
1783 Set_Is_Limited_Composite
(Current_Scope
, False);
1787 Set_Original_Record_Component
(Id
, Id
);
1788 end Analyze_Component_Declaration
;
1790 --------------------------
1791 -- Analyze_Declarations --
1792 --------------------------
1794 procedure Analyze_Declarations
(L
: List_Id
) is
1796 Freeze_From
: Entity_Id
:= Empty
;
1797 Next_Node
: Node_Id
;
1800 -- Adjust D not to include implicit label declarations, since these
1801 -- have strange Sloc values that result in elaboration check problems.
1802 -- (They have the sloc of the label as found in the source, and that
1803 -- is ahead of the current declarative part).
1809 procedure Adjust_D
is
1811 while Present
(Prev
(D
))
1812 and then Nkind
(D
) = N_Implicit_Label_Declaration
1818 -- Start of processing for Analyze_Declarations
1822 while Present
(D
) loop
1824 -- Complete analysis of declaration
1827 Next_Node
:= Next
(D
);
1829 if No
(Freeze_From
) then
1830 Freeze_From
:= First_Entity
(Current_Scope
);
1833 -- At the end of a declarative part, freeze remaining entities
1834 -- declared in it. The end of the visible declarations of package
1835 -- specification is not the end of a declarative part if private
1836 -- declarations are present. The end of a package declaration is a
1837 -- freezing point only if it a library package. A task definition or
1838 -- protected type definition is not a freeze point either. Finally,
1839 -- we do not freeze entities in generic scopes, because there is no
1840 -- code generated for them and freeze nodes will be generated for
1843 -- The end of a package instantiation is not a freeze point, but
1844 -- for now we make it one, because the generic body is inserted
1845 -- (currently) immediately after. Generic instantiations will not
1846 -- be a freeze point once delayed freezing of bodies is implemented.
1847 -- (This is needed in any case for early instantiations ???).
1849 if No
(Next_Node
) then
1850 if Nkind_In
(Parent
(L
), N_Component_List
,
1852 N_Protected_Definition
)
1856 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
1857 if Nkind
(Parent
(L
)) = N_Package_Body
then
1858 Freeze_From
:= First_Entity
(Current_Scope
);
1862 Freeze_All
(Freeze_From
, D
);
1863 Freeze_From
:= Last_Entity
(Current_Scope
);
1865 elsif Scope
(Current_Scope
) /= Standard_Standard
1866 and then not Is_Child_Unit
(Current_Scope
)
1867 and then No
(Generic_Parent
(Parent
(L
)))
1871 elsif L
/= Visible_Declarations
(Parent
(L
))
1872 or else No
(Private_Declarations
(Parent
(L
)))
1873 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
1876 Freeze_All
(Freeze_From
, D
);
1877 Freeze_From
:= Last_Entity
(Current_Scope
);
1880 -- If next node is a body then freeze all types before the body.
1881 -- An exception occurs for some expander-generated bodies. If these
1882 -- are generated at places where in general language rules would not
1883 -- allow a freeze point, then we assume that the expander has
1884 -- explicitly checked that all required types are properly frozen,
1885 -- and we do not cause general freezing here. This special circuit
1886 -- is used when the encountered body is marked as having already
1889 -- In all other cases (bodies that come from source, and expander
1890 -- generated bodies that have not been analyzed yet), freeze all
1891 -- types now. Note that in the latter case, the expander must take
1892 -- care to attach the bodies at a proper place in the tree so as to
1893 -- not cause unwanted freezing at that point.
1895 elsif not Analyzed
(Next_Node
)
1896 and then (Nkind_In
(Next_Node
, N_Subprogram_Body
,
1902 Nkind
(Next_Node
) in N_Body_Stub
)
1905 Freeze_All
(Freeze_From
, D
);
1906 Freeze_From
:= Last_Entity
(Current_Scope
);
1911 end Analyze_Declarations
;
1913 ----------------------------------
1914 -- Analyze_Incomplete_Type_Decl --
1915 ----------------------------------
1917 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
1918 F
: constant Boolean := Is_Pure
(Current_Scope
);
1922 Generate_Definition
(Defining_Identifier
(N
));
1924 -- Process an incomplete declaration. The identifier must not have been
1925 -- declared already in the scope. However, an incomplete declaration may
1926 -- appear in the private part of a package, for a private type that has
1927 -- already been declared.
1929 -- In this case, the discriminants (if any) must match
1931 T
:= Find_Type_Name
(N
);
1933 Set_Ekind
(T
, E_Incomplete_Type
);
1934 Init_Size_Align
(T
);
1935 Set_Is_First_Subtype
(T
, True);
1938 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
1939 -- incomplete types.
1941 if Tagged_Present
(N
) then
1942 Set_Is_Tagged_Type
(T
);
1943 Make_Class_Wide_Type
(T
);
1944 Set_Primitive_Operations
(T
, New_Elmt_List
);
1949 Set_Stored_Constraint
(T
, No_Elist
);
1951 if Present
(Discriminant_Specifications
(N
)) then
1952 Process_Discriminants
(N
);
1957 -- If the type has discriminants, non-trivial subtypes may be be
1958 -- declared before the full view of the type. The full views of those
1959 -- subtypes will be built after the full view of the type.
1961 Set_Private_Dependents
(T
, New_Elmt_List
);
1963 end Analyze_Incomplete_Type_Decl
;
1965 -----------------------------------
1966 -- Analyze_Interface_Declaration --
1967 -----------------------------------
1969 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1970 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
1973 Set_Is_Tagged_Type
(T
);
1975 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
1976 or else Task_Present
(Def
)
1977 or else Protected_Present
(Def
)
1978 or else Synchronized_Present
(Def
));
1980 -- Type is abstract if full declaration carries keyword, or if previous
1981 -- partial view did.
1983 Set_Is_Abstract_Type
(T
);
1984 Set_Is_Interface
(T
);
1986 -- Type is a limited interface if it includes the keyword limited, task,
1987 -- protected, or synchronized.
1989 Set_Is_Limited_Interface
1990 (T
, Limited_Present
(Def
)
1991 or else Protected_Present
(Def
)
1992 or else Synchronized_Present
(Def
)
1993 or else Task_Present
(Def
));
1995 Set_Is_Protected_Interface
(T
, Protected_Present
(Def
));
1996 Set_Is_Task_Interface
(T
, Task_Present
(Def
));
1998 -- Type is a synchronized interface if it includes the keyword task,
1999 -- protected, or synchronized.
2001 Set_Is_Synchronized_Interface
2002 (T
, Synchronized_Present
(Def
)
2003 or else Protected_Present
(Def
)
2004 or else Task_Present
(Def
));
2006 Set_Interfaces
(T
, New_Elmt_List
);
2007 Set_Primitive_Operations
(T
, New_Elmt_List
);
2009 -- Complete the decoration of the class-wide entity if it was already
2010 -- built (i.e. during the creation of the limited view)
2012 if Present
(CW
) then
2013 Set_Is_Interface
(CW
);
2014 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2015 Set_Is_Protected_Interface
(CW
, Is_Protected_Interface
(T
));
2016 Set_Is_Synchronized_Interface
(CW
, Is_Synchronized_Interface
(T
));
2017 Set_Is_Task_Interface
(CW
, Is_Task_Interface
(T
));
2020 -- Check runtime support for synchronized interfaces
2022 if VM_Target
= No_VM
2023 and then (Is_Task_Interface
(T
)
2024 or else Is_Protected_Interface
(T
)
2025 or else Is_Synchronized_Interface
(T
))
2026 and then not RTE_Available
(RE_Select_Specific_Data
)
2028 Error_Msg_CRT
("synchronized interfaces", T
);
2030 end Analyze_Interface_Declaration
;
2032 -----------------------------
2033 -- Analyze_Itype_Reference --
2034 -----------------------------
2036 -- Nothing to do. This node is placed in the tree only for the benefit of
2037 -- back end processing, and has no effect on the semantic processing.
2039 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2041 pragma Assert
(Is_Itype
(Itype
(N
)));
2043 end Analyze_Itype_Reference
;
2045 --------------------------------
2046 -- Analyze_Number_Declaration --
2047 --------------------------------
2049 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2050 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2051 E
: constant Node_Id
:= Expression
(N
);
2053 Index
: Interp_Index
;
2057 Generate_Definition
(Id
);
2060 -- This is an optimization of a common case of an integer literal
2062 if Nkind
(E
) = N_Integer_Literal
then
2063 Set_Is_Static_Expression
(E
, True);
2064 Set_Etype
(E
, Universal_Integer
);
2066 Set_Etype
(Id
, Universal_Integer
);
2067 Set_Ekind
(Id
, E_Named_Integer
);
2068 Set_Is_Frozen
(Id
, True);
2072 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2074 -- Process expression, replacing error by integer zero, to avoid
2075 -- cascaded errors or aborts further along in the processing
2077 -- Replace Error by integer zero, which seems least likely to
2078 -- cause cascaded errors.
2081 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
2082 Set_Error_Posted
(E
);
2087 -- Verify that the expression is static and numeric. If
2088 -- the expression is overloaded, we apply the preference
2089 -- rule that favors root numeric types.
2091 if not Is_Overloaded
(E
) then
2097 Get_First_Interp
(E
, Index
, It
);
2098 while Present
(It
.Typ
) loop
2099 if (Is_Integer_Type
(It
.Typ
)
2100 or else Is_Real_Type
(It
.Typ
))
2101 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
2103 if T
= Any_Type
then
2106 elsif It
.Typ
= Universal_Real
2107 or else It
.Typ
= Universal_Integer
2109 -- Choose universal interpretation over any other
2116 Get_Next_Interp
(Index
, It
);
2120 if Is_Integer_Type
(T
) then
2122 Set_Etype
(Id
, Universal_Integer
);
2123 Set_Ekind
(Id
, E_Named_Integer
);
2125 elsif Is_Real_Type
(T
) then
2127 -- Because the real value is converted to universal_real, this is a
2128 -- legal context for a universal fixed expression.
2130 if T
= Universal_Fixed
then
2132 Loc
: constant Source_Ptr
:= Sloc
(N
);
2133 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
2135 New_Occurrence_Of
(Universal_Real
, Loc
),
2136 Expression
=> Relocate_Node
(E
));
2143 elsif T
= Any_Fixed
then
2144 Error_Msg_N
("illegal context for mixed mode operation", E
);
2146 -- Expression is of the form : universal_fixed * integer. Try to
2147 -- resolve as universal_real.
2149 T
:= Universal_Real
;
2154 Set_Etype
(Id
, Universal_Real
);
2155 Set_Ekind
(Id
, E_Named_Real
);
2158 Wrong_Type
(E
, Any_Numeric
);
2162 Set_Ekind
(Id
, E_Constant
);
2163 Set_Never_Set_In_Source
(Id
, True);
2164 Set_Is_True_Constant
(Id
, True);
2168 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
2169 Set_Etype
(E
, Etype
(Id
));
2172 if not Is_OK_Static_Expression
(E
) then
2173 Flag_Non_Static_Expr
2174 ("non-static expression used in number declaration!", E
);
2175 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
2176 Set_Etype
(E
, Any_Type
);
2178 end Analyze_Number_Declaration
;
2180 --------------------------------
2181 -- Analyze_Object_Declaration --
2182 --------------------------------
2184 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
2185 Loc
: constant Source_Ptr
:= Sloc
(N
);
2186 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2190 E
: Node_Id
:= Expression
(N
);
2191 -- E is set to Expression (N) throughout this routine. When
2192 -- Expression (N) is modified, E is changed accordingly.
2194 Prev_Entity
: Entity_Id
:= Empty
;
2196 function Count_Tasks
(T
: Entity_Id
) return Uint
;
2197 -- This function is called when a non-generic library level object of a
2198 -- task type is declared. Its function is to count the static number of
2199 -- tasks declared within the type (it is only called if Has_Tasks is set
2200 -- for T). As a side effect, if an array of tasks with non-static bounds
2201 -- or a variant record type is encountered, Check_Restrictions is called
2202 -- indicating the count is unknown.
2208 function Count_Tasks
(T
: Entity_Id
) return Uint
is
2214 if Is_Task_Type
(T
) then
2217 elsif Is_Record_Type
(T
) then
2218 if Has_Discriminants
(T
) then
2219 Check_Restriction
(Max_Tasks
, N
);
2224 C
:= First_Component
(T
);
2225 while Present
(C
) loop
2226 V
:= V
+ Count_Tasks
(Etype
(C
));
2233 elsif Is_Array_Type
(T
) then
2234 X
:= First_Index
(T
);
2235 V
:= Count_Tasks
(Component_Type
(T
));
2236 while Present
(X
) loop
2239 if not Is_Static_Subtype
(C
) then
2240 Check_Restriction
(Max_Tasks
, N
);
2243 V
:= V
* (UI_Max
(Uint_0
,
2244 Expr_Value
(Type_High_Bound
(C
)) -
2245 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
2258 -- Start of processing for Analyze_Object_Declaration
2261 -- There are three kinds of implicit types generated by an
2262 -- object declaration:
2264 -- 1. Those for generated by the original Object Definition
2266 -- 2. Those generated by the Expression
2268 -- 3. Those used to constrained the Object Definition with the
2269 -- expression constraints when it is unconstrained
2271 -- They must be generated in this order to avoid order of elaboration
2272 -- issues. Thus the first step (after entering the name) is to analyze
2273 -- the object definition.
2275 if Constant_Present
(N
) then
2276 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
2278 -- If the homograph is an implicit subprogram, it is overridden by
2279 -- the current declaration.
2281 if Present
(Prev_Entity
)
2283 ((Is_Overloadable
(Prev_Entity
)
2284 and then Is_Inherited_Operation
(Prev_Entity
))
2286 -- The current object is a discriminal generated for an entry
2287 -- family index. Even though the index is a constant, in this
2288 -- particular context there is no true constant redeclaration.
2289 -- Enter_Name will handle the visibility.
2292 (Is_Discriminal
(Id
)
2293 and then Ekind
(Discriminal_Link
(Id
)) =
2294 E_Entry_Index_Parameter
))
2296 Prev_Entity
:= Empty
;
2300 if Present
(Prev_Entity
) then
2301 Constant_Redeclaration
(Id
, N
, T
);
2303 Generate_Reference
(Prev_Entity
, Id
, 'c');
2304 Set_Completion_Referenced
(Id
);
2306 if Error_Posted
(N
) then
2308 -- Type mismatch or illegal redeclaration, Do not analyze
2309 -- expression to avoid cascaded errors.
2311 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2313 Set_Ekind
(Id
, E_Variable
);
2317 -- In the normal case, enter identifier at the start to catch premature
2318 -- usage in the initialization expression.
2321 Generate_Definition
(Id
);
2324 Mark_Coextensions
(N
, Object_Definition
(N
));
2326 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2328 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
2330 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2331 and then Protected_Present
2332 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2334 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
2337 if Error_Posted
(Id
) then
2339 Set_Ekind
(Id
, E_Variable
);
2344 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2345 -- out some static checks
2347 if Ada_Version
>= Ada_05
2348 and then Can_Never_Be_Null
(T
)
2350 -- In case of aggregates we must also take care of the correct
2351 -- initialization of nested aggregates bug this is done at the
2352 -- point of the analysis of the aggregate (see sem_aggr.adb)
2354 if Present
(Expression
(N
))
2355 and then Nkind
(Expression
(N
)) = N_Aggregate
2361 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
2363 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
2364 Null_Exclusion_Static_Checks
(N
);
2365 Set_Etype
(Id
, Save_Typ
);
2370 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2372 -- If deferred constant, make sure context is appropriate. We detect
2373 -- a deferred constant as a constant declaration with no expression.
2374 -- A deferred constant can appear in a package body if its completion
2375 -- is by means of an interface pragma.
2377 if Constant_Present
(N
)
2380 -- We exclude forward references to tags
2382 if Is_Imported
(Defining_Identifier
(N
))
2386 (Present
(Full_View
(T
))
2387 and then Full_View
(T
) = RTE
(RE_Tag
)))
2391 -- A deferred constant may appear in the declarative part of the
2392 -- following constructs:
2396 -- extended return statements
2399 -- subprogram bodies
2402 -- When declared inside a package spec, a deferred constant must be
2403 -- completed by a full constant declaration or pragma Import. In all
2404 -- other cases, the only proper completion is pragma Import. Extended
2405 -- return statements are flagged as invalid contexts because they do
2406 -- not have a declarative part and so cannot accommodate the pragma.
2408 elsif Ekind
(Current_Scope
) = E_Return_Statement
then
2410 ("invalid context for deferred constant declaration (RM 7.4)",
2413 ("\declaration requires an initialization expression",
2415 Set_Constant_Present
(N
, False);
2417 -- In Ada 83, deferred constant must be of private type
2419 elsif not Is_Private_Type
(T
) then
2420 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
2422 ("(Ada 83) deferred constant must be private type", N
);
2426 -- If not a deferred constant, then object declaration freezes its type
2429 Check_Fully_Declared
(T
, N
);
2430 Freeze_Before
(N
, T
);
2433 -- If the object was created by a constrained array definition, then
2434 -- set the link in both the anonymous base type and anonymous subtype
2435 -- that are built to represent the array type to point to the object.
2437 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
2438 N_Constrained_Array_Definition
2440 Set_Related_Array_Object
(T
, Id
);
2441 Set_Related_Array_Object
(Base_Type
(T
), Id
);
2444 -- Special checks for protected objects not at library level
2446 if Is_Protected_Type
(T
)
2447 and then not Is_Library_Level_Entity
(Id
)
2449 Check_Restriction
(No_Local_Protected_Objects
, Id
);
2451 -- Protected objects with interrupt handlers must be at library level
2453 -- Ada 2005: this test is not needed (and the corresponding clause
2454 -- in the RM is removed) because accessibility checks are sufficient
2455 -- to make handlers not at the library level illegal.
2457 if Has_Interrupt_Handler
(T
)
2458 and then Ada_Version
< Ada_05
2461 ("interrupt object can only be declared at library level", Id
);
2465 -- The actual subtype of the object is the nominal subtype, unless
2466 -- the nominal one is unconstrained and obtained from the expression.
2470 -- Process initialization expression if present and not in error
2472 if Present
(E
) and then E
/= Error
then
2474 -- Generate an error in case of CPP class-wide object initialization.
2475 -- Required because otherwise the expansion of the class-wide
2476 -- assignment would try to use 'size to initialize the object
2477 -- (primitive that is not available in CPP tagged types).
2479 if Is_Class_Wide_Type
(Act_T
)
2481 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
2483 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
2485 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
2488 ("predefined assignment not available for 'C'P'P tagged types",
2492 Mark_Coextensions
(N
, E
);
2495 -- In case of errors detected in the analysis of the expression,
2496 -- decorate it with the expected type to avoid cascaded errors
2498 if No
(Etype
(E
)) then
2502 -- If an initialization expression is present, then we set the
2503 -- Is_True_Constant flag. It will be reset if this is a variable
2504 -- and it is indeed modified.
2506 Set_Is_True_Constant
(Id
, True);
2508 -- If we are analyzing a constant declaration, set its completion
2509 -- flag after analyzing and resolving the expression.
2511 if Constant_Present
(N
) then
2512 Set_Has_Completion
(Id
);
2515 -- Set type and resolve (type may be overridden later on)
2520 -- If the object is an access to variable, the initialization
2521 -- expression cannot be an access to constant.
2523 if Is_Access_Type
(T
)
2524 and then not Is_Access_Constant
(T
)
2525 and then Is_Access_Type
(Etype
(E
))
2526 and then Is_Access_Constant
(Etype
(E
))
2529 ("object that is an access to variable cannot be initialized " &
2530 "with an access-to-constant expression", E
);
2533 if not Assignment_OK
(N
) then
2534 Check_Initialization
(T
, E
);
2537 Check_Unset_Reference
(E
);
2539 -- If this is a variable, then set current value
2541 if not Constant_Present
(N
) then
2542 if Compile_Time_Known_Value
(E
) then
2543 Set_Current_Value
(Id
, E
);
2547 -- Deal with setting of null flags
2549 if Is_Access_Type
(T
) then
2550 if Known_Non_Null
(E
) then
2551 Set_Is_Known_Non_Null
(Id
, True);
2552 elsif Known_Null
(E
)
2553 and then not Can_Never_Be_Null
(Id
)
2555 Set_Is_Known_Null
(Id
, True);
2559 -- Check incorrect use of dynamically tagged expressions. Note
2560 -- the use of Is_Tagged_Type (T) which seems redundant but is in
2561 -- fact important to avoid spurious errors due to expanded code
2562 -- for dispatching functions over an anonymous access type
2564 if (Is_Class_Wide_Type
(Etype
(E
)) or else Is_Dynamically_Tagged
(E
))
2565 and then Is_Tagged_Type
(T
)
2566 and then not Is_Class_Wide_Type
(T
)
2568 Error_Msg_N
("dynamically tagged expression not allowed!", E
);
2571 Apply_Scalar_Range_Check
(E
, T
);
2572 Apply_Static_Length_Check
(E
, T
);
2575 -- If the No_Streams restriction is set, check that the type of the
2576 -- object is not, and does not contain, any subtype derived from
2577 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
2578 -- Has_Stream just for efficiency reasons. There is no point in
2579 -- spending time on a Has_Stream check if the restriction is not set.
2581 if Restrictions
.Set
(No_Streams
) then
2582 if Has_Stream
(T
) then
2583 Check_Restriction
(No_Streams
, N
);
2587 -- Abstract type is never permitted for a variable or constant.
2588 -- Note: we inhibit this check for objects that do not come from
2589 -- source because there is at least one case (the expansion of
2590 -- x'class'input where x is abstract) where we legitimately
2591 -- generate an abstract object.
2593 if Is_Abstract_Type
(T
) and then Comes_From_Source
(N
) then
2594 Error_Msg_N
("type of object cannot be abstract",
2595 Object_Definition
(N
));
2597 if Is_CPP_Class
(T
) then
2598 Error_Msg_NE
("\} may need a cpp_constructor",
2599 Object_Definition
(N
), T
);
2602 -- Case of unconstrained type
2604 elsif Is_Indefinite_Subtype
(T
) then
2606 -- Nothing to do in deferred constant case
2608 if Constant_Present
(N
) and then No
(E
) then
2611 -- Case of no initialization present
2614 if No_Initialization
(N
) then
2617 elsif Is_Class_Wide_Type
(T
) then
2619 ("initialization required in class-wide declaration ", N
);
2623 ("unconstrained subtype not allowed (need initialization)",
2624 Object_Definition
(N
));
2626 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
2628 ("\provide initial value or explicit discriminant values",
2629 Object_Definition
(N
));
2632 ("\or give default discriminant values for type&",
2633 Object_Definition
(N
), T
);
2635 elsif Is_Array_Type
(T
) then
2637 ("\provide initial value or explicit array bounds",
2638 Object_Definition
(N
));
2642 -- Case of initialization present but in error. Set initial
2643 -- expression as absent (but do not make above complaints)
2645 elsif E
= Error
then
2646 Set_Expression
(N
, Empty
);
2649 -- Case of initialization present
2652 -- Not allowed in Ada 83
2654 if not Constant_Present
(N
) then
2655 if Ada_Version
= Ada_83
2656 and then Comes_From_Source
(Object_Definition
(N
))
2659 ("(Ada 83) unconstrained variable not allowed",
2660 Object_Definition
(N
));
2664 -- Now we constrain the variable from the initializing expression
2666 -- If the expression is an aggregate, it has been expanded into
2667 -- individual assignments. Retrieve the actual type from the
2668 -- expanded construct.
2670 if Is_Array_Type
(T
)
2671 and then No_Initialization
(N
)
2672 and then Nkind
(Original_Node
(E
)) = N_Aggregate
2677 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
2678 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2681 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
2683 if Aliased_Present
(N
) then
2684 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
2687 Freeze_Before
(N
, Act_T
);
2688 Freeze_Before
(N
, T
);
2691 elsif Is_Array_Type
(T
)
2692 and then No_Initialization
(N
)
2693 and then Nkind
(Original_Node
(E
)) = N_Aggregate
2695 if not Is_Entity_Name
(Object_Definition
(N
)) then
2697 Check_Compile_Time_Size
(Act_T
);
2699 if Aliased_Present
(N
) then
2700 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
2704 -- When the given object definition and the aggregate are specified
2705 -- independently, and their lengths might differ do a length check.
2706 -- This cannot happen if the aggregate is of the form (others =>...)
2708 if not Is_Constrained
(T
) then
2711 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
2713 -- Aggregate is statically illegal. Place back in declaration
2715 Set_Expression
(N
, E
);
2716 Set_No_Initialization
(N
, False);
2718 elsif T
= Etype
(E
) then
2721 elsif Nkind
(E
) = N_Aggregate
2722 and then Present
(Component_Associations
(E
))
2723 and then Present
(Choices
(First
(Component_Associations
(E
))))
2724 and then Nkind
(First
2725 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
2730 Apply_Length_Check
(E
, T
);
2733 -- If the type is limited unconstrained with defaulted discriminants
2734 -- and there is no expression, then the object is constrained by the
2735 -- defaults, so it is worthwhile building the corresponding subtype.
2737 elsif (Is_Limited_Record
(T
)
2738 or else Is_Concurrent_Type
(T
))
2739 and then not Is_Constrained
(T
)
2740 and then Has_Discriminants
(T
)
2743 Act_T
:= Build_Default_Subtype
(T
, N
);
2745 -- Ada 2005: a limited object may be initialized by means of an
2746 -- aggregate. If the type has default discriminants it has an
2747 -- unconstrained nominal type, Its actual subtype will be obtained
2748 -- from the aggregate, and not from the default discriminants.
2753 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
2755 elsif Present
(Underlying_Type
(T
))
2756 and then not Is_Constrained
(Underlying_Type
(T
))
2757 and then Has_Discriminants
(Underlying_Type
(T
))
2758 and then Nkind
(E
) = N_Function_Call
2759 and then Constant_Present
(N
)
2761 -- The back-end has problems with constants of a discriminated type
2762 -- with defaults, if the initial value is a function call. We
2763 -- generate an intermediate temporary for the result of the call.
2764 -- It is unclear why this should make it acceptable to gcc. ???
2766 Remove_Side_Effects
(E
);
2769 -- Check No_Wide_Characters restriction
2771 if T
= Standard_Wide_Character
2772 or else T
= Standard_Wide_Wide_Character
2773 or else Root_Type
(T
) = Standard_Wide_String
2774 or else Root_Type
(T
) = Standard_Wide_Wide_String
2776 Check_Restriction
(No_Wide_Characters
, Object_Definition
(N
));
2779 -- Indicate this is not set in source. Certainly true for constants,
2780 -- and true for variables so far (will be reset for a variable if and
2781 -- when we encounter a modification in the source).
2783 Set_Never_Set_In_Source
(Id
, True);
2785 -- Now establish the proper kind and type of the object
2787 if Constant_Present
(N
) then
2788 Set_Ekind
(Id
, E_Constant
);
2789 Set_Is_True_Constant
(Id
, True);
2792 Set_Ekind
(Id
, E_Variable
);
2794 -- A variable is set as shared passive if it appears in a shared
2795 -- passive package, and is at the outer level. This is not done
2796 -- for entities generated during expansion, because those are
2797 -- always manipulated locally.
2799 if Is_Shared_Passive
(Current_Scope
)
2800 and then Is_Library_Level_Entity
(Id
)
2801 and then Comes_From_Source
(Id
)
2803 Set_Is_Shared_Passive
(Id
);
2804 Check_Shared_Var
(Id
, T
, N
);
2807 -- Set Has_Initial_Value if initializing expression present. Note
2808 -- that if there is no initializing expression, we leave the state
2809 -- of this flag unchanged (usually it will be False, but notably in
2810 -- the case of exception choice variables, it will already be true).
2813 Set_Has_Initial_Value
(Id
, True);
2817 -- Initialize alignment and size and capture alignment setting
2819 Init_Alignment
(Id
);
2821 Set_Optimize_Alignment_Flags
(Id
);
2823 -- Deal with aliased case
2825 if Aliased_Present
(N
) then
2826 Set_Is_Aliased
(Id
);
2828 -- If the object is aliased and the type is unconstrained with
2829 -- defaulted discriminants and there is no expression, then the
2830 -- object is constrained by the defaults, so it is worthwhile
2831 -- building the corresponding subtype.
2833 -- Ada 2005 (AI-363): If the aliased object is discriminated and
2834 -- unconstrained, then only establish an actual subtype if the
2835 -- nominal subtype is indefinite. In definite cases the object is
2836 -- unconstrained in Ada 2005.
2839 and then Is_Record_Type
(T
)
2840 and then not Is_Constrained
(T
)
2841 and then Has_Discriminants
(T
)
2842 and then (Ada_Version
< Ada_05
or else Is_Indefinite_Subtype
(T
))
2844 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
2848 -- Now we can set the type of the object
2850 Set_Etype
(Id
, Act_T
);
2852 -- Deal with controlled types
2854 if Has_Controlled_Component
(Etype
(Id
))
2855 or else Is_Controlled
(Etype
(Id
))
2857 if not Is_Library_Level_Entity
(Id
) then
2858 Check_Restriction
(No_Nested_Finalization
, N
);
2860 Validate_Controlled_Object
(Id
);
2863 -- Generate a warning when an initialization causes an obvious ABE
2864 -- violation. If the init expression is a simple aggregate there
2865 -- shouldn't be any initialize/adjust call generated. This will be
2866 -- true as soon as aggregates are built in place when possible.
2868 -- ??? at the moment we do not generate warnings for temporaries
2869 -- created for those aggregates although Program_Error might be
2870 -- generated if compiled with -gnato.
2872 if Is_Controlled
(Etype
(Id
))
2873 and then Comes_From_Source
(Id
)
2876 BT
: constant Entity_Id
:= Base_Type
(Etype
(Id
));
2878 Implicit_Call
: Entity_Id
;
2879 pragma Warnings
(Off
, Implicit_Call
);
2880 -- ??? what is this for (never referenced!)
2882 function Is_Aggr
(N
: Node_Id
) return Boolean;
2883 -- Check that N is an aggregate
2889 function Is_Aggr
(N
: Node_Id
) return Boolean is
2891 case Nkind
(Original_Node
(N
)) is
2892 when N_Aggregate | N_Extension_Aggregate
=>
2895 when N_Qualified_Expression |
2897 N_Unchecked_Type_Conversion
=>
2898 return Is_Aggr
(Expression
(Original_Node
(N
)));
2906 -- If no underlying type, we already are in an error situation.
2907 -- Do not try to add a warning since we do not have access to
2910 if No
(Underlying_Type
(BT
)) then
2911 Implicit_Call
:= Empty
;
2913 -- A generic type does not have usable primitive operators.
2914 -- Initialization calls are built for instances.
2916 elsif Is_Generic_Type
(BT
) then
2917 Implicit_Call
:= Empty
;
2919 -- If the init expression is not an aggregate, an adjust call
2920 -- will be generated
2922 elsif Present
(E
) and then not Is_Aggr
(E
) then
2923 Implicit_Call
:= Find_Prim_Op
(BT
, Name_Adjust
);
2925 -- If no init expression and we are not in the deferred
2926 -- constant case, an Initialize call will be generated
2928 elsif No
(E
) and then not Constant_Present
(N
) then
2929 Implicit_Call
:= Find_Prim_Op
(BT
, Name_Initialize
);
2932 Implicit_Call
:= Empty
;
2938 if Has_Task
(Etype
(Id
)) then
2939 Check_Restriction
(No_Tasking
, N
);
2941 -- Deal with counting max tasks
2943 -- Nothing to do if inside a generic
2945 if Inside_A_Generic
then
2948 -- If library level entity, then count tasks
2950 elsif Is_Library_Level_Entity
(Id
) then
2951 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
2953 -- If not library level entity, then indicate we don't know max
2954 -- tasks and also check task hierarchy restriction and blocking
2955 -- operation (since starting a task is definitely blocking!)
2958 Check_Restriction
(Max_Tasks
, N
);
2959 Check_Restriction
(No_Task_Hierarchy
, N
);
2960 Check_Potentially_Blocking_Operation
(N
);
2963 -- A rather specialized test. If we see two tasks being declared
2964 -- of the same type in the same object declaration, and the task
2965 -- has an entry with an address clause, we know that program error
2966 -- will be raised at run-time since we can't have two tasks with
2967 -- entries at the same address.
2969 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
2974 E
:= First_Entity
(Etype
(Id
));
2975 while Present
(E
) loop
2976 if Ekind
(E
) = E_Entry
2977 and then Present
(Get_Attribute_Definition_Clause
2978 (E
, Attribute_Address
))
2981 ("?more than one task with same entry address", N
);
2983 ("\?Program_Error will be raised at run time", N
);
2985 Make_Raise_Program_Error
(Loc
,
2986 Reason
=> PE_Duplicated_Entry_Address
));
2996 -- Some simple constant-propagation: if the expression is a constant
2997 -- string initialized with a literal, share the literal. This avoids
3001 and then Is_Entity_Name
(E
)
3002 and then Ekind
(Entity
(E
)) = E_Constant
3003 and then Base_Type
(Etype
(E
)) = Standard_String
3006 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
3009 and then Nkind
(Val
) = N_String_Literal
3011 Rewrite
(E
, New_Copy
(Val
));
3016 -- Another optimization: if the nominal subtype is unconstrained and
3017 -- the expression is a function call that returns an unconstrained
3018 -- type, rewrite the declaration as a renaming of the result of the
3019 -- call. The exceptions below are cases where the copy is expected,
3020 -- either by the back end (Aliased case) or by the semantics, as for
3021 -- initializing controlled types or copying tags for classwide types.
3024 and then Nkind
(E
) = N_Explicit_Dereference
3025 and then Nkind
(Original_Node
(E
)) = N_Function_Call
3026 and then not Is_Library_Level_Entity
(Id
)
3027 and then not Is_Constrained
(Underlying_Type
(T
))
3028 and then not Is_Aliased
(Id
)
3029 and then not Is_Class_Wide_Type
(T
)
3030 and then not Is_Controlled
(T
)
3031 and then not Has_Controlled_Component
(Base_Type
(T
))
3032 and then Expander_Active
3035 Make_Object_Renaming_Declaration
(Loc
,
3036 Defining_Identifier
=> Id
,
3037 Access_Definition
=> Empty
,
3038 Subtype_Mark
=> New_Occurrence_Of
3039 (Base_Type
(Etype
(Id
)), Loc
),
3042 Set_Renamed_Object
(Id
, E
);
3044 -- Force generation of debugging information for the constant and for
3045 -- the renamed function call.
3047 Set_Debug_Info_Needed
(Id
);
3048 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
3051 if Present
(Prev_Entity
)
3052 and then Is_Frozen
(Prev_Entity
)
3053 and then not Error_Posted
(Id
)
3055 Error_Msg_N
("full constant declaration appears too late", N
);
3058 Check_Eliminated
(Id
);
3060 -- Deal with setting In_Private_Part flag if in private part
3062 if Ekind
(Scope
(Id
)) = E_Package
3063 and then In_Private_Part
(Scope
(Id
))
3065 Set_In_Private_Part
(Id
);
3068 -- Check for violation of No_Local_Timing_Events
3070 if Is_RTE
(Etype
(Id
), RE_Timing_Event
)
3071 and then not Is_Library_Level_Entity
(Id
)
3073 Check_Restriction
(No_Local_Timing_Events
, N
);
3075 end Analyze_Object_Declaration
;
3077 ---------------------------
3078 -- Analyze_Others_Choice --
3079 ---------------------------
3081 -- Nothing to do for the others choice node itself, the semantic analysis
3082 -- of the others choice will occur as part of the processing of the parent
3084 procedure Analyze_Others_Choice
(N
: Node_Id
) is
3085 pragma Warnings
(Off
, N
);
3088 end Analyze_Others_Choice
;
3090 -------------------------------------------
3091 -- Analyze_Private_Extension_Declaration --
3092 -------------------------------------------
3094 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
3095 T
: constant Entity_Id
:= Defining_Identifier
(N
);
3096 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
3097 Parent_Type
: Entity_Id
;
3098 Parent_Base
: Entity_Id
;
3101 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3103 if Is_Non_Empty_List
(Interface_List
(N
)) then
3109 Intf
:= First
(Interface_List
(N
));
3110 while Present
(Intf
) loop
3111 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
3113 Diagnose_Interface
(Intf
, T
);
3119 Generate_Definition
(T
);
3122 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
3123 Parent_Base
:= Base_Type
(Parent_Type
);
3125 if Parent_Type
= Any_Type
3126 or else Etype
(Parent_Type
) = Any_Type
3128 Set_Ekind
(T
, Ekind
(Parent_Type
));
3129 Set_Etype
(T
, Any_Type
);
3132 elsif not Is_Tagged_Type
(Parent_Type
) then
3134 ("parent of type extension must be a tagged type ", Indic
);
3137 elsif Ekind
(Parent_Type
) = E_Void
3138 or else Ekind
(Parent_Type
) = E_Incomplete_Type
3140 Error_Msg_N
("premature derivation of incomplete type", Indic
);
3143 elsif Is_Concurrent_Type
(Parent_Type
) then
3145 ("parent type of a private extension cannot be "
3146 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
3148 Set_Etype
(T
, Any_Type
);
3149 Set_Ekind
(T
, E_Limited_Private_Type
);
3150 Set_Private_Dependents
(T
, New_Elmt_List
);
3151 Set_Error_Posted
(T
);
3155 -- Perhaps the parent type should be changed to the class-wide type's
3156 -- specific type in this case to prevent cascading errors ???
3158 if Is_Class_Wide_Type
(Parent_Type
) then
3160 ("parent of type extension must not be a class-wide type", Indic
);
3164 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
3165 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
3166 or else In_Private_Part
(Current_Scope
)
3169 Error_Msg_N
("invalid context for private extension", N
);
3172 -- Set common attributes
3174 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3175 Set_Scope
(T
, Current_Scope
);
3176 Set_Ekind
(T
, E_Record_Type_With_Private
);
3177 Init_Size_Align
(T
);
3179 Set_Etype
(T
, Parent_Base
);
3180 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
3182 Set_Convention
(T
, Convention
(Parent_Type
));
3183 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
3184 Set_Is_First_Subtype
(T
);
3185 Make_Class_Wide_Type
(T
);
3187 if Unknown_Discriminants_Present
(N
) then
3188 Set_Discriminant_Constraint
(T
, No_Elist
);
3191 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
3193 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3194 -- synchronized formal derived type.
3196 if Ada_Version
>= Ada_05
3197 and then Synchronized_Present
(N
)
3199 Set_Is_Limited_Record
(T
);
3201 -- Formal derived type case
3203 if Is_Generic_Type
(T
) then
3205 -- The parent must be a tagged limited type or a synchronized
3208 if (not Is_Tagged_Type
(Parent_Type
)
3209 or else not Is_Limited_Type
(Parent_Type
))
3211 (not Is_Interface
(Parent_Type
)
3212 or else not Is_Synchronized_Interface
(Parent_Type
))
3214 Error_Msg_NE
("parent type of & must be tagged limited " &
3215 "or synchronized", N
, T
);
3218 -- The progenitors (if any) must be limited or synchronized
3221 if Present
(Interfaces
(T
)) then
3224 Iface_Elmt
: Elmt_Id
;
3227 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
3228 while Present
(Iface_Elmt
) loop
3229 Iface
:= Node
(Iface_Elmt
);
3231 if not Is_Limited_Interface
(Iface
)
3232 and then not Is_Synchronized_Interface
(Iface
)
3234 Error_Msg_NE
("progenitor & must be limited " &
3235 "or synchronized", N
, Iface
);
3238 Next_Elmt
(Iface_Elmt
);
3243 -- Regular derived extension, the parent must be a limited or
3244 -- synchronized interface.
3247 if not Is_Interface
(Parent_Type
)
3248 or else (not Is_Limited_Interface
(Parent_Type
)
3250 not Is_Synchronized_Interface
(Parent_Type
))
3253 ("parent type of & must be limited interface", N
, T
);
3257 elsif Limited_Present
(N
) then
3258 Set_Is_Limited_Record
(T
);
3260 if not Is_Limited_Type
(Parent_Type
)
3262 (not Is_Interface
(Parent_Type
)
3263 or else not Is_Limited_Interface
(Parent_Type
))
3265 Error_Msg_NE
("parent type& of limited extension must be limited",
3269 end Analyze_Private_Extension_Declaration
;
3271 ---------------------------------
3272 -- Analyze_Subtype_Declaration --
3273 ---------------------------------
3275 procedure Analyze_Subtype_Declaration
3277 Skip
: Boolean := False)
3279 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3281 R_Checks
: Check_Result
;
3284 Generate_Definition
(Id
);
3285 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3286 Init_Size_Align
(Id
);
3288 -- The following guard condition on Enter_Name is to handle cases where
3289 -- the defining identifier has already been entered into the scope but
3290 -- the declaration as a whole needs to be analyzed.
3292 -- This case in particular happens for derived enumeration types. The
3293 -- derived enumeration type is processed as an inserted enumeration type
3294 -- declaration followed by a rewritten subtype declaration. The defining
3295 -- identifier, however, is entered into the name scope very early in the
3296 -- processing of the original type declaration and therefore needs to be
3297 -- avoided here, when the created subtype declaration is analyzed. (See
3298 -- Build_Derived_Types)
3300 -- This also happens when the full view of a private type is derived
3301 -- type with constraints. In this case the entity has been introduced
3302 -- in the private declaration.
3305 or else (Present
(Etype
(Id
))
3306 and then (Is_Private_Type
(Etype
(Id
))
3307 or else Is_Task_Type
(Etype
(Id
))
3308 or else Is_Rewrite_Substitution
(N
)))
3316 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
3318 -- Inherit common attributes
3320 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
3321 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
3322 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
3323 Set_Is_Atomic
(Id
, Is_Atomic
(T
));
3324 Set_Is_Ada_2005_Only
(Id
, Is_Ada_2005_Only
(T
));
3325 Set_Convention
(Id
, Convention
(T
));
3327 -- In the case where there is no constraint given in the subtype
3328 -- indication, Process_Subtype just returns the Subtype_Mark, so its
3329 -- semantic attributes must be established here.
3331 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
3332 Set_Etype
(Id
, Base_Type
(T
));
3336 Set_Ekind
(Id
, E_Array_Subtype
);
3337 Copy_Array_Subtype_Attributes
(Id
, T
);
3339 when Decimal_Fixed_Point_Kind
=>
3340 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
3341 Set_Digits_Value
(Id
, Digits_Value
(T
));
3342 Set_Delta_Value
(Id
, Delta_Value
(T
));
3343 Set_Scale_Value
(Id
, Scale_Value
(T
));
3344 Set_Small_Value
(Id
, Small_Value
(T
));
3345 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3346 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
3347 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3348 Set_RM_Size
(Id
, RM_Size
(T
));
3350 when Enumeration_Kind
=>
3351 Set_Ekind
(Id
, E_Enumeration_Subtype
);
3352 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
3353 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3354 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
3355 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3356 Set_RM_Size
(Id
, RM_Size
(T
));
3358 when Ordinary_Fixed_Point_Kind
=>
3359 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
3360 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3361 Set_Small_Value
(Id
, Small_Value
(T
));
3362 Set_Delta_Value
(Id
, Delta_Value
(T
));
3363 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3364 Set_RM_Size
(Id
, RM_Size
(T
));
3367 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
3368 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3369 Set_Digits_Value
(Id
, Digits_Value
(T
));
3370 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3372 when Signed_Integer_Kind
=>
3373 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
3374 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3375 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3376 Set_RM_Size
(Id
, RM_Size
(T
));
3378 when Modular_Integer_Kind
=>
3379 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
3380 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3381 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3382 Set_RM_Size
(Id
, RM_Size
(T
));
3384 when Class_Wide_Kind
=>
3385 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
3386 Set_First_Entity
(Id
, First_Entity
(T
));
3387 Set_Last_Entity
(Id
, Last_Entity
(T
));
3388 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
3389 Set_Cloned_Subtype
(Id
, T
);
3390 Set_Is_Tagged_Type
(Id
, True);
3391 Set_Has_Unknown_Discriminants
3394 if Ekind
(T
) = E_Class_Wide_Subtype
then
3395 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
3398 when E_Record_Type | E_Record_Subtype
=>
3399 Set_Ekind
(Id
, E_Record_Subtype
);
3401 if Ekind
(T
) = E_Record_Subtype
3402 and then Present
(Cloned_Subtype
(T
))
3404 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
3406 Set_Cloned_Subtype
(Id
, T
);
3409 Set_First_Entity
(Id
, First_Entity
(T
));
3410 Set_Last_Entity
(Id
, Last_Entity
(T
));
3411 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
3412 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3413 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
3414 Set_Has_Unknown_Discriminants
3415 (Id
, Has_Unknown_Discriminants
(T
));
3417 if Has_Discriminants
(T
) then
3418 Set_Discriminant_Constraint
3419 (Id
, Discriminant_Constraint
(T
));
3420 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
3422 elsif Has_Unknown_Discriminants
(Id
) then
3423 Set_Discriminant_Constraint
(Id
, No_Elist
);
3426 if Is_Tagged_Type
(T
) then
3427 Set_Is_Tagged_Type
(Id
);
3428 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
3429 Set_Primitive_Operations
3430 (Id
, Primitive_Operations
(T
));
3431 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
3433 if Is_Interface
(T
) then
3434 Set_Is_Interface
(Id
);
3435 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
3439 when Private_Kind
=>
3440 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
3441 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
3442 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3443 Set_First_Entity
(Id
, First_Entity
(T
));
3444 Set_Last_Entity
(Id
, Last_Entity
(T
));
3445 Set_Private_Dependents
(Id
, New_Elmt_List
);
3446 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
3447 Set_Has_Unknown_Discriminants
3448 (Id
, Has_Unknown_Discriminants
(T
));
3449 Set_Known_To_Have_Preelab_Init
3450 (Id
, Known_To_Have_Preelab_Init
(T
));
3452 if Is_Tagged_Type
(T
) then
3453 Set_Is_Tagged_Type
(Id
);
3454 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
3455 Set_Primitive_Operations
(Id
, Primitive_Operations
(T
));
3456 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
3459 -- In general the attributes of the subtype of a private type
3460 -- are the attributes of the partial view of parent. However,
3461 -- the full view may be a discriminated type, and the subtype
3462 -- must share the discriminant constraint to generate correct
3463 -- calls to initialization procedures.
3465 if Has_Discriminants
(T
) then
3466 Set_Discriminant_Constraint
3467 (Id
, Discriminant_Constraint
(T
));
3468 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
3470 elsif Present
(Full_View
(T
))
3471 and then Has_Discriminants
(Full_View
(T
))
3473 Set_Discriminant_Constraint
3474 (Id
, Discriminant_Constraint
(Full_View
(T
)));
3475 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
3477 -- This would seem semantically correct, but apparently
3478 -- confuses the back-end. To be explained and checked with
3479 -- current version ???
3481 -- Set_Has_Discriminants (Id);
3484 Prepare_Private_Subtype_Completion
(Id
, N
);
3487 Set_Ekind
(Id
, E_Access_Subtype
);
3488 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3489 Set_Is_Access_Constant
3490 (Id
, Is_Access_Constant
(T
));
3491 Set_Directly_Designated_Type
3492 (Id
, Designated_Type
(T
));
3493 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
3495 -- A Pure library_item must not contain the declaration of a
3496 -- named access type, except within a subprogram, generic
3497 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
3499 if Comes_From_Source
(Id
)
3500 and then In_Pure_Unit
3501 and then not In_Subprogram_Task_Protected_Unit
3504 ("named access types not allowed in pure unit", N
);
3507 when Concurrent_Kind
=>
3508 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
3509 Set_Corresponding_Record_Type
(Id
,
3510 Corresponding_Record_Type
(T
));
3511 Set_First_Entity
(Id
, First_Entity
(T
));
3512 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
3513 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
3514 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3515 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
3516 Set_Last_Entity
(Id
, Last_Entity
(T
));
3518 if Has_Discriminants
(T
) then
3519 Set_Discriminant_Constraint
(Id
,
3520 Discriminant_Constraint
(T
));
3521 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
3524 when E_Incomplete_Type
=>
3525 if Ada_Version
>= Ada_05
then
3526 Set_Ekind
(Id
, E_Incomplete_Subtype
);
3528 -- Ada 2005 (AI-412): Decorate an incomplete subtype
3529 -- of an incomplete type visible through a limited
3532 if From_With_Type
(T
)
3533 and then Present
(Non_Limited_View
(T
))
3535 Set_From_With_Type
(Id
);
3536 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
3538 -- Ada 2005 (AI-412): Add the regular incomplete subtype
3539 -- to the private dependents of the original incomplete
3540 -- type for future transformation.
3543 Append_Elmt
(Id
, Private_Dependents
(T
));
3546 -- If the subtype name denotes an incomplete type an error
3547 -- was already reported by Process_Subtype.
3550 Set_Etype
(Id
, Any_Type
);
3554 raise Program_Error
;
3558 if Etype
(Id
) = Any_Type
then
3562 -- Some common processing on all types
3564 Set_Size_Info
(Id
, T
);
3565 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
3569 Set_Is_Immediately_Visible
(Id
, True);
3570 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
3571 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
3573 if Is_Interface
(T
) then
3574 Set_Is_Interface
(Id
);
3577 if Present
(Generic_Parent_Type
(N
))
3580 (Parent
(Generic_Parent_Type
(N
))) /= N_Formal_Type_Declaration
3582 (Formal_Type_Definition
(Parent
(Generic_Parent_Type
(N
))))
3583 /= N_Formal_Private_Type_Definition
)
3585 if Is_Tagged_Type
(Id
) then
3587 -- If this is a generic actual subtype for a synchronized type,
3588 -- the primitive operations are those of the corresponding record
3589 -- for which there is a separate subtype declaration.
3591 if Is_Concurrent_Type
(Id
) then
3593 elsif Is_Class_Wide_Type
(Id
) then
3594 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
3596 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
3599 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
3600 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
3604 if Is_Private_Type
(T
)
3605 and then Present
(Full_View
(T
))
3607 Conditional_Delay
(Id
, Full_View
(T
));
3609 -- The subtypes of components or subcomponents of protected types
3610 -- do not need freeze nodes, which would otherwise appear in the
3611 -- wrong scope (before the freeze node for the protected type). The
3612 -- proper subtypes are those of the subcomponents of the corresponding
3615 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
3616 and then Present
(Scope
(Scope
(Id
))) -- error defense!
3617 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
3619 Conditional_Delay
(Id
, T
);
3622 -- Check that constraint_error is raised for a scalar subtype
3623 -- indication when the lower or upper bound of a non-null range
3624 -- lies outside the range of the type mark.
3626 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
3627 if Is_Scalar_Type
(Etype
(Id
))
3628 and then Scalar_Range
(Id
) /=
3629 Scalar_Range
(Etype
(Subtype_Mark
3630 (Subtype_Indication
(N
))))
3634 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
3636 elsif Is_Array_Type
(Etype
(Id
))
3637 and then Present
(First_Index
(Id
))
3639 -- This really should be a subprogram that finds the indications
3642 if ((Nkind
(First_Index
(Id
)) = N_Identifier
3643 and then Ekind
(Entity
(First_Index
(Id
))) in Scalar_Kind
)
3644 or else Nkind
(First_Index
(Id
)) = N_Subtype_Indication
)
3646 Nkind
(Scalar_Range
(Etype
(First_Index
(Id
)))) = N_Range
3649 Target_Typ
: constant Entity_Id
:=
3652 (Subtype_Mark
(Subtype_Indication
(N
)))));
3656 (Scalar_Range
(Etype
(First_Index
(Id
))),
3658 Etype
(First_Index
(Id
)),
3659 Defining_Identifier
(N
));
3665 Sloc
(Defining_Identifier
(N
)));
3671 Set_Optimize_Alignment_Flags
(Id
);
3672 Check_Eliminated
(Id
);
3673 end Analyze_Subtype_Declaration
;
3675 --------------------------------
3676 -- Analyze_Subtype_Indication --
3677 --------------------------------
3679 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
3680 T
: constant Entity_Id
:= Subtype_Mark
(N
);
3681 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
3688 Set_Etype
(N
, Etype
(R
));
3689 Resolve
(R
, Entity
(T
));
3691 Set_Error_Posted
(R
);
3692 Set_Error_Posted
(T
);
3694 end Analyze_Subtype_Indication
;
3696 ------------------------------
3697 -- Analyze_Type_Declaration --
3698 ------------------------------
3700 procedure Analyze_Type_Declaration
(N
: Node_Id
) is
3701 Def
: constant Node_Id
:= Type_Definition
(N
);
3702 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3706 Is_Remote
: constant Boolean :=
3707 (Is_Remote_Types
(Current_Scope
)
3708 or else Is_Remote_Call_Interface
(Current_Scope
))
3709 and then not (In_Private_Part
(Current_Scope
)
3710 or else In_Package_Body
(Current_Scope
));
3712 procedure Check_Ops_From_Incomplete_Type
;
3713 -- If there is a tagged incomplete partial view of the type, transfer
3714 -- its operations to the full view, and indicate that the type of the
3715 -- controlling parameter (s) is this full view.
3717 ------------------------------------
3718 -- Check_Ops_From_Incomplete_Type --
3719 ------------------------------------
3721 procedure Check_Ops_From_Incomplete_Type
is
3728 and then Ekind
(Prev
) = E_Incomplete_Type
3729 and then Is_Tagged_Type
(Prev
)
3730 and then Is_Tagged_Type
(T
)
3732 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
3733 while Present
(Elmt
) loop
3735 Prepend_Elmt
(Op
, Primitive_Operations
(T
));
3737 Formal
:= First_Formal
(Op
);
3738 while Present
(Formal
) loop
3739 if Etype
(Formal
) = Prev
then
3740 Set_Etype
(Formal
, T
);
3743 Next_Formal
(Formal
);
3746 if Etype
(Op
) = Prev
then
3753 end Check_Ops_From_Incomplete_Type
;
3755 -- Start of processing for Analyze_Type_Declaration
3758 Prev
:= Find_Type_Name
(N
);
3760 -- The full view, if present, now points to the current type
3762 -- Ada 2005 (AI-50217): If the type was previously decorated when
3763 -- imported through a LIMITED WITH clause, it appears as incomplete
3764 -- but has no full view.
3765 -- If the incomplete view is tagged, a class_wide type has been
3766 -- created already. Use it for the full view as well, to prevent
3767 -- multiple incompatible class-wide types that may be created for
3768 -- self-referential anonymous access components.
3770 if Ekind
(Prev
) = E_Incomplete_Type
3771 and then Present
(Full_View
(Prev
))
3773 T
:= Full_View
(Prev
);
3775 if Is_Tagged_Type
(Prev
)
3776 and then Present
(Class_Wide_Type
(Prev
))
3778 Set_Ekind
(T
, Ekind
(Prev
)); -- will be reset later
3779 Set_Class_Wide_Type
(T
, Class_Wide_Type
(Prev
));
3780 Set_Etype
(Class_Wide_Type
(T
), T
);
3787 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3789 -- We set the flag Is_First_Subtype here. It is needed to set the
3790 -- corresponding flag for the Implicit class-wide-type created
3791 -- during tagged types processing.
3793 Set_Is_First_Subtype
(T
, True);
3795 -- Only composite types other than array types are allowed to have
3800 -- For derived types, the rule will be checked once we've figured
3801 -- out the parent type.
3803 when N_Derived_Type_Definition
=>
3806 -- For record types, discriminants are allowed
3808 when N_Record_Definition
=>
3812 if Present
(Discriminant_Specifications
(N
)) then
3814 ("elementary or array type cannot have discriminants",
3816 (First
(Discriminant_Specifications
(N
))));
3820 -- Elaborate the type definition according to kind, and generate
3821 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3822 -- already done (this happens during the reanalysis that follows a call
3823 -- to the high level optimizer).
3825 if not Analyzed
(T
) then
3830 when N_Access_To_Subprogram_Definition
=>
3831 Access_Subprogram_Declaration
(T
, Def
);
3833 -- If this is a remote access to subprogram, we must create the
3834 -- equivalent fat pointer type, and related subprograms.
3837 Process_Remote_AST_Declaration
(N
);
3840 -- Validate categorization rule against access type declaration
3841 -- usually a violation in Pure unit, Shared_Passive unit.
3843 Validate_Access_Type_Declaration
(T
, N
);
3845 when N_Access_To_Object_Definition
=>
3846 Access_Type_Declaration
(T
, Def
);
3848 -- Validate categorization rule against access type declaration
3849 -- usually a violation in Pure unit, Shared_Passive unit.
3851 Validate_Access_Type_Declaration
(T
, N
);
3853 -- If we are in a Remote_Call_Interface package and define a
3854 -- RACW, then calling stubs and specific stream attributes
3858 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
3860 Add_RACW_Features
(Def_Id
);
3863 -- Set no strict aliasing flag if config pragma seen
3865 if Opt
.No_Strict_Aliasing
then
3866 Set_No_Strict_Aliasing
(Base_Type
(Def_Id
));
3869 when N_Array_Type_Definition
=>
3870 Array_Type_Declaration
(T
, Def
);
3872 when N_Derived_Type_Definition
=>
3873 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
3875 when N_Enumeration_Type_Definition
=>
3876 Enumeration_Type_Declaration
(T
, Def
);
3878 when N_Floating_Point_Definition
=>
3879 Floating_Point_Type_Declaration
(T
, Def
);
3881 when N_Decimal_Fixed_Point_Definition
=>
3882 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
3884 when N_Ordinary_Fixed_Point_Definition
=>
3885 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
3887 when N_Signed_Integer_Type_Definition
=>
3888 Signed_Integer_Type_Declaration
(T
, Def
);
3890 when N_Modular_Type_Definition
=>
3891 Modular_Type_Declaration
(T
, Def
);
3893 when N_Record_Definition
=>
3894 Record_Type_Declaration
(T
, N
, Prev
);
3897 raise Program_Error
;
3902 if Etype
(T
) = Any_Type
then
3906 -- Some common processing for all types
3908 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
3909 Check_Ops_From_Incomplete_Type
;
3911 -- Both the declared entity, and its anonymous base type if one
3912 -- was created, need freeze nodes allocated.
3915 B
: constant Entity_Id
:= Base_Type
(T
);
3918 -- In the case where the base type differs from the first subtype, we
3919 -- pre-allocate a freeze node, and set the proper link to the first
3920 -- subtype. Freeze_Entity will use this preallocated freeze node when
3921 -- it freezes the entity.
3924 Ensure_Freeze_Node
(B
);
3925 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
3928 if not From_With_Type
(T
) then
3929 Set_Has_Delayed_Freeze
(T
);
3933 -- Case of T is the full declaration of some private type which has
3934 -- been swapped in Defining_Identifier (N).
3936 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
3937 Process_Full_View
(N
, T
, Def_Id
);
3939 -- Record the reference. The form of this is a little strange, since
3940 -- the full declaration has been swapped in. So the first parameter
3941 -- here represents the entity to which a reference is made which is
3942 -- the "real" entity, i.e. the one swapped in, and the second
3943 -- parameter provides the reference location.
3945 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3946 -- since we don't want a complaint about the full type being an
3947 -- unwanted reference to the private type
3950 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
3952 Set_Has_Pragma_Unreferenced
(T
, False);
3953 Generate_Reference
(T
, T
, 'c');
3954 Set_Has_Pragma_Unreferenced
(T
, B
);
3957 Set_Completion_Referenced
(Def_Id
);
3959 -- For completion of incomplete type, process incomplete dependents
3960 -- and always mark the full type as referenced (it is the incomplete
3961 -- type that we get for any real reference).
3963 elsif Ekind
(Prev
) = E_Incomplete_Type
then
3964 Process_Incomplete_Dependents
(N
, T
, Prev
);
3965 Generate_Reference
(Prev
, Def_Id
, 'c');
3966 Set_Completion_Referenced
(Def_Id
);
3968 -- If not private type or incomplete type completion, this is a real
3969 -- definition of a new entity, so record it.
3972 Generate_Definition
(Def_Id
);
3975 if Chars
(Scope
(Def_Id
)) = Name_System
3976 and then Chars
(Def_Id
) = Name_Address
3977 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
3979 Set_Is_Descendent_Of_Address
(Def_Id
);
3980 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
3981 Set_Is_Descendent_Of_Address
(Prev
);
3984 Set_Optimize_Alignment_Flags
(Def_Id
);
3985 Check_Eliminated
(Def_Id
);
3986 end Analyze_Type_Declaration
;
3988 --------------------------
3989 -- Analyze_Variant_Part --
3990 --------------------------
3992 procedure Analyze_Variant_Part
(N
: Node_Id
) is
3994 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
3995 -- Error routine invoked by the generic instantiation below when the
3996 -- variant part has a non static choice.
3998 procedure Process_Declarations
(Variant
: Node_Id
);
3999 -- Analyzes all the declarations associated with a Variant. Needed by
4000 -- the generic instantiation below.
4002 package Variant_Choices_Processing
is new
4003 Generic_Choices_Processing
4004 (Get_Alternatives
=> Variants
,
4005 Get_Choices
=> Discrete_Choices
,
4006 Process_Empty_Choice
=> No_OP
,
4007 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
4008 Process_Associated_Node
=> Process_Declarations
);
4009 use Variant_Choices_Processing
;
4010 -- Instantiation of the generic choice processing package
4012 -----------------------------
4013 -- Non_Static_Choice_Error --
4014 -----------------------------
4016 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
4018 Flag_Non_Static_Expr
4019 ("choice given in variant part is not static!", Choice
);
4020 end Non_Static_Choice_Error
;
4022 --------------------------
4023 -- Process_Declarations --
4024 --------------------------
4026 procedure Process_Declarations
(Variant
: Node_Id
) is
4028 if not Null_Present
(Component_List
(Variant
)) then
4029 Analyze_Declarations
(Component_Items
(Component_List
(Variant
)));
4031 if Present
(Variant_Part
(Component_List
(Variant
))) then
4032 Analyze
(Variant_Part
(Component_List
(Variant
)));
4035 end Process_Declarations
;
4039 Discr_Name
: Node_Id
;
4040 Discr_Type
: Entity_Id
;
4042 Case_Table
: Choice_Table_Type
(1 .. Number_Of_Choices
(N
));
4044 Dont_Care
: Boolean;
4045 Others_Present
: Boolean := False;
4047 pragma Warnings
(Off
, Case_Table
);
4048 pragma Warnings
(Off
, Last_Choice
);
4049 pragma Warnings
(Off
, Dont_Care
);
4050 pragma Warnings
(Off
, Others_Present
);
4051 -- We don't care about the assigned values of any of these
4053 -- Start of processing for Analyze_Variant_Part
4056 Discr_Name
:= Name
(N
);
4057 Analyze
(Discr_Name
);
4059 -- If Discr_Name bad, get out (prevent cascaded errors)
4061 if Etype
(Discr_Name
) = Any_Type
then
4065 -- Check invalid discriminant in variant part
4067 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
4068 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
4071 Discr_Type
:= Etype
(Entity
(Discr_Name
));
4073 if not Is_Discrete_Type
(Discr_Type
) then
4075 ("discriminant in a variant part must be of a discrete type",
4080 -- Call the instantiated Analyze_Choices which does the rest of the work
4083 (N
, Discr_Type
, Case_Table
, Last_Choice
, Dont_Care
, Others_Present
);
4084 end Analyze_Variant_Part
;
4086 ----------------------------
4087 -- Array_Type_Declaration --
4088 ----------------------------
4090 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
4091 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
4092 Element_Type
: Entity_Id
;
4093 Implicit_Base
: Entity_Id
;
4095 Related_Id
: Entity_Id
:= Empty
;
4097 P
: constant Node_Id
:= Parent
(Def
);
4101 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4102 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
4104 Index
:= First
(Subtype_Marks
(Def
));
4107 -- Find proper names for the implicit types which may be public. In case
4108 -- of anonymous arrays we use the name of the first object of that type
4112 Related_Id
:= Defining_Identifier
(P
);
4118 while Present
(Index
) loop
4121 -- Add a subtype declaration for each index of private array type
4122 -- declaration whose etype is also private. For example:
4125 -- type Index is private;
4127 -- type Table is array (Index) of ...
4130 -- This is currently required by the expander for the internally
4131 -- generated equality subprogram of records with variant parts in
4132 -- which the etype of some component is such private type.
4134 if Ekind
(Current_Scope
) = E_Package
4135 and then In_Private_Part
(Current_Scope
)
4136 and then Has_Private_Declaration
(Etype
(Index
))
4139 Loc
: constant Source_Ptr
:= Sloc
(Def
);
4145 Make_Defining_Identifier
(Loc
,
4146 Chars
=> New_Internal_Name
('T'));
4147 Set_Is_Internal
(New_E
);
4150 Make_Subtype_Declaration
(Loc
,
4151 Defining_Identifier
=> New_E
,
4152 Subtype_Indication
=>
4153 New_Occurrence_Of
(Etype
(Index
), Loc
));
4155 Insert_Before
(Parent
(Def
), Decl
);
4157 Set_Etype
(Index
, New_E
);
4159 -- If the index is a range the Entity attribute is not
4160 -- available. Example:
4163 -- type T is private;
4165 -- type T is new Natural;
4166 -- Table : array (T(1) .. T(10)) of Boolean;
4169 if Nkind
(Index
) /= N_Range
then
4170 Set_Entity
(Index
, New_E
);
4175 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
4177 Nb_Index
:= Nb_Index
+ 1;
4180 -- Process subtype indication if one is present
4182 if Present
(Subtype_Indication
(Component_Def
)) then
4185 (Subtype_Indication
(Component_Def
), P
, Related_Id
, 'C');
4187 -- Ada 2005 (AI-230): Access Definition case
4189 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
4191 -- Indicate that the anonymous access type is created by the
4192 -- array type declaration.
4194 Element_Type
:= Access_Definition
4196 N
=> Access_Definition
(Component_Def
));
4197 Set_Is_Local_Anonymous_Access
(Element_Type
);
4199 -- Propagate the parent. This field is needed if we have to generate
4200 -- the master_id associated with an anonymous access to task type
4201 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4203 Set_Parent
(Element_Type
, Parent
(T
));
4205 -- Ada 2005 (AI-230): In case of components that are anonymous access
4206 -- types the level of accessibility depends on the enclosing type
4209 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
4211 -- Ada 2005 (AI-254)
4214 CD
: constant Node_Id
:=
4215 Access_To_Subprogram_Definition
4216 (Access_Definition
(Component_Def
));
4218 if Present
(CD
) and then Protected_Present
(CD
) then
4220 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
4225 -- Constrained array case
4228 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
4231 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4233 -- Establish Implicit_Base as unconstrained base type
4235 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
4237 Set_Etype
(Implicit_Base
, Implicit_Base
);
4238 Set_Scope
(Implicit_Base
, Current_Scope
);
4239 Set_Has_Delayed_Freeze
(Implicit_Base
);
4241 -- The constrained array type is a subtype of the unconstrained one
4243 Set_Ekind
(T
, E_Array_Subtype
);
4244 Init_Size_Align
(T
);
4245 Set_Etype
(T
, Implicit_Base
);
4246 Set_Scope
(T
, Current_Scope
);
4247 Set_Is_Constrained
(T
, True);
4248 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
4249 Set_Has_Delayed_Freeze
(T
);
4251 -- Complete setup of implicit base type
4253 Set_First_Index
(Implicit_Base
, First_Index
(T
));
4254 Set_Component_Type
(Implicit_Base
, Element_Type
);
4255 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
4256 Set_Component_Size
(Implicit_Base
, Uint_0
);
4257 Set_Packed_Array_Type
(Implicit_Base
, Empty
);
4258 Set_Has_Controlled_Component
4259 (Implicit_Base
, Has_Controlled_Component
4261 or else Is_Controlled
4263 Set_Finalize_Storage_Only
4264 (Implicit_Base
, Finalize_Storage_Only
4267 -- Unconstrained array case
4270 Set_Ekind
(T
, E_Array_Type
);
4271 Init_Size_Align
(T
);
4273 Set_Scope
(T
, Current_Scope
);
4274 Set_Component_Size
(T
, Uint_0
);
4275 Set_Is_Constrained
(T
, False);
4276 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
4277 Set_Has_Delayed_Freeze
(T
, True);
4278 Set_Has_Task
(T
, Has_Task
(Element_Type
));
4279 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
4282 Is_Controlled
(Element_Type
));
4283 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
4287 -- Common attributes for both cases
4289 Set_Component_Type
(Base_Type
(T
), Element_Type
);
4290 Set_Packed_Array_Type
(T
, Empty
);
4292 if Aliased_Present
(Component_Definition
(Def
)) then
4293 Set_Has_Aliased_Components
(Etype
(T
));
4296 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4297 -- array type to ensure that objects of this type are initialized.
4299 if Ada_Version
>= Ada_05
4300 and then Can_Never_Be_Null
(Element_Type
)
4302 Set_Can_Never_Be_Null
(T
);
4304 if Null_Exclusion_Present
(Component_Definition
(Def
))
4306 -- No need to check itypes because in their case this check was
4307 -- done at their point of creation
4309 and then not Is_Itype
(Element_Type
)
4312 ("`NOT NULL` not allowed (null already excluded)",
4313 Subtype_Indication
(Component_Definition
(Def
)));
4317 Priv
:= Private_Component
(Element_Type
);
4319 if Present
(Priv
) then
4321 -- Check for circular definitions
4323 if Priv
= Any_Type
then
4324 Set_Component_Type
(Etype
(T
), Any_Type
);
4326 -- There is a gap in the visibility of operations on the composite
4327 -- type only if the component type is defined in a different scope.
4329 elsif Scope
(Priv
) = Current_Scope
then
4332 elsif Is_Limited_Type
(Priv
) then
4333 Set_Is_Limited_Composite
(Etype
(T
));
4334 Set_Is_Limited_Composite
(T
);
4336 Set_Is_Private_Composite
(Etype
(T
));
4337 Set_Is_Private_Composite
(T
);
4341 -- A syntax error in the declaration itself may lead to an empty index
4342 -- list, in which case do a minimal patch.
4344 if No
(First_Index
(T
)) then
4345 Error_Msg_N
("missing index definition in array type declaration", T
);
4348 Indices
: constant List_Id
:=
4349 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
4351 Set_Discrete_Subtype_Definitions
(Def
, Indices
);
4352 Set_First_Index
(T
, First
(Indices
));
4357 -- Create a concatenation operator for the new type. Internal array
4358 -- types created for packed entities do not need such, they are
4359 -- compatible with the user-defined type.
4361 if Number_Dimensions
(T
) = 1
4362 and then not Is_Packed_Array_Type
(T
)
4364 New_Concatenation_Op
(T
);
4367 -- In the case of an unconstrained array the parser has already verified
4368 -- that all the indices are unconstrained but we still need to make sure
4369 -- that the element type is constrained.
4371 if Is_Indefinite_Subtype
(Element_Type
) then
4373 ("unconstrained element type in array declaration",
4374 Subtype_Indication
(Component_Def
));
4376 elsif Is_Abstract_Type
(Element_Type
) then
4378 ("the type of a component cannot be abstract",
4379 Subtype_Indication
(Component_Def
));
4381 end Array_Type_Declaration
;
4383 ------------------------------------------------------
4384 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4385 ------------------------------------------------------
4387 function Replace_Anonymous_Access_To_Protected_Subprogram
4388 (N
: Node_Id
) return Entity_Id
4390 Loc
: constant Source_Ptr
:= Sloc
(N
);
4392 Curr_Scope
: constant Scope_Stack_Entry
:=
4393 Scope_Stack
.Table
(Scope_Stack
.Last
);
4395 Anon
: constant Entity_Id
:=
4396 Make_Defining_Identifier
(Loc
,
4397 Chars
=> New_Internal_Name
('S'));
4405 Set_Is_Internal
(Anon
);
4408 when N_Component_Declaration |
4409 N_Unconstrained_Array_Definition |
4410 N_Constrained_Array_Definition
=>
4411 Comp
:= Component_Definition
(N
);
4412 Acc
:= Access_Definition
(Comp
);
4414 when N_Discriminant_Specification
=>
4415 Comp
:= Discriminant_Type
(N
);
4418 when N_Parameter_Specification
=>
4419 Comp
:= Parameter_Type
(N
);
4422 when N_Access_Function_Definition
=>
4423 Comp
:= Result_Definition
(N
);
4426 when N_Object_Declaration
=>
4427 Comp
:= Object_Definition
(N
);
4431 raise Program_Error
;
4434 Decl
:= Make_Full_Type_Declaration
(Loc
,
4435 Defining_Identifier
=> Anon
,
4437 Copy_Separate_Tree
(Access_To_Subprogram_Definition
(Acc
)));
4439 Mark_Rewrite_Insertion
(Decl
);
4441 -- Insert the new declaration in the nearest enclosing scope
4444 while Present
(P
) and then not Has_Declarations
(P
) loop
4448 pragma Assert
(Present
(P
));
4450 if Nkind
(P
) = N_Package_Specification
then
4451 Prepend
(Decl
, Visible_Declarations
(P
));
4453 Prepend
(Decl
, Declarations
(P
));
4456 -- Replace the anonymous type with an occurrence of the new declaration.
4457 -- In all cases the rewritten node does not have the null-exclusion
4458 -- attribute because (if present) it was already inherited by the
4459 -- anonymous entity (Anon). Thus, in case of components we do not
4460 -- inherit this attribute.
4462 if Nkind
(N
) = N_Parameter_Specification
then
4463 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
4464 Set_Etype
(Defining_Identifier
(N
), Anon
);
4465 Set_Null_Exclusion_Present
(N
, False);
4467 elsif Nkind
(N
) = N_Object_Declaration
then
4468 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
4469 Set_Etype
(Defining_Identifier
(N
), Anon
);
4471 elsif Nkind
(N
) = N_Access_Function_Definition
then
4472 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
4476 Make_Component_Definition
(Loc
,
4477 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
4480 Mark_Rewrite_Insertion
(Comp
);
4482 -- Temporarily remove the current scope from the stack to add the new
4483 -- declarations to the enclosing scope
4485 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
4489 Scope_Stack
.Decrement_Last
;
4491 Set_Is_Itype
(Anon
);
4492 Scope_Stack
.Append
(Curr_Scope
);
4495 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
4496 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
4498 end Replace_Anonymous_Access_To_Protected_Subprogram
;
4500 -------------------------------
4501 -- Build_Derived_Access_Type --
4502 -------------------------------
4504 procedure Build_Derived_Access_Type
4506 Parent_Type
: Entity_Id
;
4507 Derived_Type
: Entity_Id
)
4509 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
4511 Desig_Type
: Entity_Id
;
4513 Discr_Con_Elist
: Elist_Id
;
4514 Discr_Con_El
: Elmt_Id
;
4518 -- Set the designated type so it is available in case this is an access
4519 -- to a self-referential type, e.g. a standard list type with a next
4520 -- pointer. Will be reset after subtype is built.
4522 Set_Directly_Designated_Type
4523 (Derived_Type
, Designated_Type
(Parent_Type
));
4525 Subt
:= Process_Subtype
(S
, N
);
4527 if Nkind
(S
) /= N_Subtype_Indication
4528 and then Subt
/= Base_Type
(Subt
)
4530 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
4533 if Ekind
(Derived_Type
) = E_Access_Subtype
then
4535 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
4536 Ibase
: constant Entity_Id
:=
4537 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
4538 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
4539 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
4542 Copy_Node
(Pbase
, Ibase
);
4544 Set_Chars
(Ibase
, Svg_Chars
);
4545 Set_Next_Entity
(Ibase
, Svg_Next_E
);
4546 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
4547 Set_Scope
(Ibase
, Scope
(Derived_Type
));
4548 Set_Freeze_Node
(Ibase
, Empty
);
4549 Set_Is_Frozen
(Ibase
, False);
4550 Set_Comes_From_Source
(Ibase
, False);
4551 Set_Is_First_Subtype
(Ibase
, False);
4553 Set_Etype
(Ibase
, Pbase
);
4554 Set_Etype
(Derived_Type
, Ibase
);
4558 Set_Directly_Designated_Type
4559 (Derived_Type
, Designated_Type
(Subt
));
4561 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
4562 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
4563 Set_Size_Info
(Derived_Type
, Parent_Type
);
4564 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
4565 Set_Depends_On_Private
(Derived_Type
,
4566 Has_Private_Component
(Derived_Type
));
4567 Conditional_Delay
(Derived_Type
, Subt
);
4569 -- Ada 2005 (AI-231). Set the null-exclusion attribute
4571 if Null_Exclusion_Present
(Type_Definition
(N
))
4572 or else Can_Never_Be_Null
(Parent_Type
)
4574 Set_Can_Never_Be_Null
(Derived_Type
);
4577 -- Note: we do not copy the Storage_Size_Variable, since we always go to
4578 -- the root type for this information.
4580 -- Apply range checks to discriminants for derived record case
4581 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
4583 Desig_Type
:= Designated_Type
(Derived_Type
);
4584 if Is_Composite_Type
(Desig_Type
)
4585 and then (not Is_Array_Type
(Desig_Type
))
4586 and then Has_Discriminants
(Desig_Type
)
4587 and then Base_Type
(Desig_Type
) /= Desig_Type
4589 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
4590 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
4592 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
4593 while Present
(Discr_Con_El
) loop
4594 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
4595 Next_Elmt
(Discr_Con_El
);
4596 Next_Discriminant
(Discr
);
4599 end Build_Derived_Access_Type
;
4601 ------------------------------
4602 -- Build_Derived_Array_Type --
4603 ------------------------------
4605 procedure Build_Derived_Array_Type
4607 Parent_Type
: Entity_Id
;
4608 Derived_Type
: Entity_Id
)
4610 Loc
: constant Source_Ptr
:= Sloc
(N
);
4611 Tdef
: constant Node_Id
:= Type_Definition
(N
);
4612 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
4613 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
4614 Implicit_Base
: Entity_Id
;
4615 New_Indic
: Node_Id
;
4617 procedure Make_Implicit_Base
;
4618 -- If the parent subtype is constrained, the derived type is a subtype
4619 -- of an implicit base type derived from the parent base.
4621 ------------------------
4622 -- Make_Implicit_Base --
4623 ------------------------
4625 procedure Make_Implicit_Base
is
4628 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
4630 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
4631 Set_Etype
(Implicit_Base
, Parent_Base
);
4633 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
4634 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
4636 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
4637 end Make_Implicit_Base
;
4639 -- Start of processing for Build_Derived_Array_Type
4642 if not Is_Constrained
(Parent_Type
) then
4643 if Nkind
(Indic
) /= N_Subtype_Indication
then
4644 Set_Ekind
(Derived_Type
, E_Array_Type
);
4646 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
4647 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
4649 Set_Has_Delayed_Freeze
(Derived_Type
, True);
4653 Set_Etype
(Derived_Type
, Implicit_Base
);
4656 Make_Subtype_Declaration
(Loc
,
4657 Defining_Identifier
=> Derived_Type
,
4658 Subtype_Indication
=>
4659 Make_Subtype_Indication
(Loc
,
4660 Subtype_Mark
=> New_Reference_To
(Implicit_Base
, Loc
),
4661 Constraint
=> Constraint
(Indic
)));
4663 Rewrite
(N
, New_Indic
);
4668 if Nkind
(Indic
) /= N_Subtype_Indication
then
4671 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
4672 Set_Etype
(Derived_Type
, Implicit_Base
);
4673 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
4676 Error_Msg_N
("illegal constraint on constrained type", Indic
);
4680 -- If parent type is not a derived type itself, and is declared in
4681 -- closed scope (e.g. a subprogram), then we must explicitly introduce
4682 -- the new type's concatenation operator since Derive_Subprograms
4683 -- will not inherit the parent's operator. If the parent type is
4684 -- unconstrained, the operator is of the unconstrained base type.
4686 if Number_Dimensions
(Parent_Type
) = 1
4687 and then not Is_Limited_Type
(Parent_Type
)
4688 and then not Is_Derived_Type
(Parent_Type
)
4689 and then not Is_Package_Or_Generic_Package
4690 (Scope
(Base_Type
(Parent_Type
)))
4692 if not Is_Constrained
(Parent_Type
)
4693 and then Is_Constrained
(Derived_Type
)
4695 New_Concatenation_Op
(Implicit_Base
);
4697 New_Concatenation_Op
(Derived_Type
);
4700 end Build_Derived_Array_Type
;
4702 -----------------------------------
4703 -- Build_Derived_Concurrent_Type --
4704 -----------------------------------
4706 procedure Build_Derived_Concurrent_Type
4708 Parent_Type
: Entity_Id
;
4709 Derived_Type
: Entity_Id
)
4711 D_Constraint
: Node_Id
;
4712 Disc_Spec
: Node_Id
;
4713 Old_Disc
: Entity_Id
;
4714 New_Disc
: Entity_Id
;
4716 Constraint_Present
: constant Boolean :=
4717 Nkind
(Subtype_Indication
(Type_Definition
(N
)))
4718 = N_Subtype_Indication
;
4721 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
4723 -- Copy Storage_Size and Relative_Deadline variables if task case
4725 if Is_Task_Type
(Parent_Type
) then
4726 Set_Storage_Size_Variable
(Derived_Type
,
4727 Storage_Size_Variable
(Parent_Type
));
4728 Set_Relative_Deadline_Variable
(Derived_Type
,
4729 Relative_Deadline_Variable
(Parent_Type
));
4732 if Present
(Discriminant_Specifications
(N
)) then
4733 Push_Scope
(Derived_Type
);
4734 Check_Or_Process_Discriminants
(N
, Derived_Type
);
4737 elsif Constraint_Present
then
4739 -- Build constrained subtype and derive from it
4742 Loc
: constant Source_Ptr
:= Sloc
(N
);
4743 Anon
: constant Entity_Id
:=
4744 Make_Defining_Identifier
(Loc
,
4745 New_External_Name
(Chars
(Derived_Type
), 'T'));
4750 Make_Subtype_Declaration
(Loc
,
4751 Defining_Identifier
=> Anon
,
4752 Subtype_Indication
=>
4753 Subtype_Indication
(Type_Definition
(N
)));
4754 Insert_Before
(N
, Decl
);
4757 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
4758 New_Occurrence_Of
(Anon
, Loc
));
4759 Set_Analyzed
(Derived_Type
, False);
4765 -- All attributes are inherited from parent. In particular,
4766 -- entries and the corresponding record type are the same.
4767 -- Discriminants may be renamed, and must be treated separately.
4769 Set_Has_Discriminants
4770 (Derived_Type
, Has_Discriminants
(Parent_Type
));
4771 Set_Corresponding_Record_Type
4772 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
4774 -- Is_Constrained is set according the parent subtype, but is set to
4775 -- False if the derived type is declared with new discriminants.
4779 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
4780 and then not Present
(Discriminant_Specifications
(N
)));
4782 if Constraint_Present
then
4783 if not Has_Discriminants
(Parent_Type
) then
4784 Error_Msg_N
("untagged parent must have discriminants", N
);
4786 elsif Present
(Discriminant_Specifications
(N
)) then
4788 -- Verify that new discriminants are used to constrain old ones
4793 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
4795 Old_Disc
:= First_Discriminant
(Parent_Type
);
4796 New_Disc
:= First_Discriminant
(Derived_Type
);
4797 Disc_Spec
:= First
(Discriminant_Specifications
(N
));
4798 while Present
(Old_Disc
) and then Present
(Disc_Spec
) loop
4799 if Nkind
(Discriminant_Type
(Disc_Spec
)) /=
4802 Analyze
(Discriminant_Type
(Disc_Spec
));
4804 if not Subtypes_Statically_Compatible
(
4805 Etype
(Discriminant_Type
(Disc_Spec
)),
4809 ("not statically compatible with parent discriminant",
4810 Discriminant_Type
(Disc_Spec
));
4814 if Nkind
(D_Constraint
) = N_Identifier
4815 and then Chars
(D_Constraint
) /=
4816 Chars
(Defining_Identifier
(Disc_Spec
))
4818 Error_Msg_N
("new discriminants must constrain old ones",
4821 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
4824 Next_Discriminant
(Old_Disc
);
4825 Next_Discriminant
(New_Disc
);
4829 if Present
(Old_Disc
) or else Present
(Disc_Spec
) then
4830 Error_Msg_N
("discriminant mismatch in derivation", N
);
4835 elsif Present
(Discriminant_Specifications
(N
)) then
4837 ("missing discriminant constraint in untagged derivation",
4841 if Present
(Discriminant_Specifications
(N
)) then
4842 Old_Disc
:= First_Discriminant
(Parent_Type
);
4843 while Present
(Old_Disc
) loop
4845 if No
(Next_Entity
(Old_Disc
))
4846 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
4848 Set_Next_Entity
(Last_Entity
(Derived_Type
),
4849 Next_Entity
(Old_Disc
));
4853 Next_Discriminant
(Old_Disc
);
4857 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
4858 if Has_Discriminants
(Parent_Type
) then
4859 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
4860 Set_Discriminant_Constraint
(
4861 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
4865 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
4867 Set_Has_Completion
(Derived_Type
);
4868 end Build_Derived_Concurrent_Type
;
4870 ------------------------------------
4871 -- Build_Derived_Enumeration_Type --
4872 ------------------------------------
4874 procedure Build_Derived_Enumeration_Type
4876 Parent_Type
: Entity_Id
;
4877 Derived_Type
: Entity_Id
)
4879 Loc
: constant Source_Ptr
:= Sloc
(N
);
4880 Def
: constant Node_Id
:= Type_Definition
(N
);
4881 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
4882 Implicit_Base
: Entity_Id
;
4883 Literal
: Entity_Id
;
4884 New_Lit
: Entity_Id
;
4885 Literals_List
: List_Id
;
4886 Type_Decl
: Node_Id
;
4888 Rang_Expr
: Node_Id
;
4891 -- Since types Standard.Character and Standard.Wide_Character do
4892 -- not have explicit literals lists we need to process types derived
4893 -- from them specially. This is handled by Derived_Standard_Character.
4894 -- If the parent type is a generic type, there are no literals either,
4895 -- and we construct the same skeletal representation as for the generic
4898 if Is_Standard_Character_Type
(Parent_Type
) then
4899 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
4901 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
4908 Make_Attribute_Reference
(Loc
,
4909 Attribute_Name
=> Name_First
,
4910 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
4911 Set_Etype
(Lo
, Derived_Type
);
4914 Make_Attribute_Reference
(Loc
,
4915 Attribute_Name
=> Name_Last
,
4916 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
4917 Set_Etype
(Hi
, Derived_Type
);
4919 Set_Scalar_Range
(Derived_Type
,
4926 -- If a constraint is present, analyze the bounds to catch
4927 -- premature usage of the derived literals.
4929 if Nkind
(Indic
) = N_Subtype_Indication
4930 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
4932 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
4933 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
4936 -- Introduce an implicit base type for the derived type even if there
4937 -- is no constraint attached to it, since this seems closer to the
4938 -- Ada semantics. Build a full type declaration tree for the derived
4939 -- type using the implicit base type as the defining identifier. The
4940 -- build a subtype declaration tree which applies the constraint (if
4941 -- any) have it replace the derived type declaration.
4943 Literal
:= First_Literal
(Parent_Type
);
4944 Literals_List
:= New_List
;
4945 while Present
(Literal
)
4946 and then Ekind
(Literal
) = E_Enumeration_Literal
4948 -- Literals of the derived type have the same representation as
4949 -- those of the parent type, but this representation can be
4950 -- overridden by an explicit representation clause. Indicate
4951 -- that there is no explicit representation given yet. These
4952 -- derived literals are implicit operations of the new type,
4953 -- and can be overridden by explicit ones.
4955 if Nkind
(Literal
) = N_Defining_Character_Literal
then
4957 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
4959 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
4962 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
4963 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
4964 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
4965 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
4966 Set_Alias
(New_Lit
, Literal
);
4967 Set_Is_Known_Valid
(New_Lit
, True);
4969 Append
(New_Lit
, Literals_List
);
4970 Next_Literal
(Literal
);
4974 Make_Defining_Identifier
(Sloc
(Derived_Type
),
4975 New_External_Name
(Chars
(Derived_Type
), 'B'));
4977 -- Indicate the proper nature of the derived type. This must be done
4978 -- before analysis of the literals, to recognize cases when a literal
4979 -- may be hidden by a previous explicit function definition (cf.
4982 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
4983 Set_Etype
(Derived_Type
, Implicit_Base
);
4986 Make_Full_Type_Declaration
(Loc
,
4987 Defining_Identifier
=> Implicit_Base
,
4988 Discriminant_Specifications
=> No_List
,
4990 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
4992 Mark_Rewrite_Insertion
(Type_Decl
);
4993 Insert_Before
(N
, Type_Decl
);
4994 Analyze
(Type_Decl
);
4996 -- After the implicit base is analyzed its Etype needs to be changed
4997 -- to reflect the fact that it is derived from the parent type which
4998 -- was ignored during analysis. We also set the size at this point.
5000 Set_Etype
(Implicit_Base
, Parent_Type
);
5002 Set_Size_Info
(Implicit_Base
, Parent_Type
);
5003 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
5004 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
5006 Set_Has_Non_Standard_Rep
5007 (Implicit_Base
, Has_Non_Standard_Rep
5009 Set_Has_Delayed_Freeze
(Implicit_Base
);
5011 -- Process the subtype indication including a validation check on the
5012 -- constraint, if any. If a constraint is given, its bounds must be
5013 -- implicitly converted to the new type.
5015 if Nkind
(Indic
) = N_Subtype_Indication
then
5017 R
: constant Node_Id
:=
5018 Range_Expression
(Constraint
(Indic
));
5021 if Nkind
(R
) = N_Range
then
5022 Hi
:= Build_Scalar_Bound
5023 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
5024 Lo
:= Build_Scalar_Bound
5025 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
5028 -- Constraint is a Range attribute. Replace with explicit
5029 -- mention of the bounds of the prefix, which must be a
5032 Analyze
(Prefix
(R
));
5034 Convert_To
(Implicit_Base
,
5035 Make_Attribute_Reference
(Loc
,
5036 Attribute_Name
=> Name_Last
,
5038 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5041 Convert_To
(Implicit_Base
,
5042 Make_Attribute_Reference
(Loc
,
5043 Attribute_Name
=> Name_First
,
5045 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5052 (Type_High_Bound
(Parent_Type
),
5053 Parent_Type
, Implicit_Base
);
5056 (Type_Low_Bound
(Parent_Type
),
5057 Parent_Type
, Implicit_Base
);
5065 -- If we constructed a default range for the case where no range
5066 -- was given, then the expressions in the range must not freeze
5067 -- since they do not correspond to expressions in the source.
5069 if Nkind
(Indic
) /= N_Subtype_Indication
then
5070 Set_Must_Not_Freeze
(Lo
);
5071 Set_Must_Not_Freeze
(Hi
);
5072 Set_Must_Not_Freeze
(Rang_Expr
);
5076 Make_Subtype_Declaration
(Loc
,
5077 Defining_Identifier
=> Derived_Type
,
5078 Subtype_Indication
=>
5079 Make_Subtype_Indication
(Loc
,
5080 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
5082 Make_Range_Constraint
(Loc
,
5083 Range_Expression
=> Rang_Expr
))));
5087 -- If pragma Discard_Names applies on the first subtype of the parent
5088 -- type, then it must be applied on this subtype as well.
5090 if Einfo
.Discard_Names
(First_Subtype
(Parent_Type
)) then
5091 Set_Discard_Names
(Derived_Type
);
5094 -- Apply a range check. Since this range expression doesn't have an
5095 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5098 if Nkind
(Indic
) = N_Subtype_Indication
then
5099 Apply_Range_Check
(Range_Expression
(Constraint
(Indic
)),
5101 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
5104 end Build_Derived_Enumeration_Type
;
5106 --------------------------------
5107 -- Build_Derived_Numeric_Type --
5108 --------------------------------
5110 procedure Build_Derived_Numeric_Type
5112 Parent_Type
: Entity_Id
;
5113 Derived_Type
: Entity_Id
)
5115 Loc
: constant Source_Ptr
:= Sloc
(N
);
5116 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5117 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5118 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5119 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
5120 N_Subtype_Indication
;
5121 Implicit_Base
: Entity_Id
;
5127 -- Process the subtype indication including a validation check on
5128 -- the constraint if any.
5130 Discard_Node
(Process_Subtype
(Indic
, N
));
5132 -- Introduce an implicit base type for the derived type even if there
5133 -- is no constraint attached to it, since this seems closer to the Ada
5137 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5139 Set_Etype
(Implicit_Base
, Parent_Base
);
5140 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5141 Set_Size_Info
(Implicit_Base
, Parent_Base
);
5142 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
5143 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
5145 -- Set RM Size for discrete type or decimal fixed-point type
5146 -- Ordinary fixed-point is excluded, why???
5148 if Is_Discrete_Type
(Parent_Base
)
5149 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
5151 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
5154 Set_Has_Delayed_Freeze
(Implicit_Base
);
5156 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
5157 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
5159 Set_Scalar_Range
(Implicit_Base
,
5164 if Has_Infinities
(Parent_Base
) then
5165 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
5168 -- The Derived_Type, which is the entity of the declaration, is a
5169 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5170 -- absence of an explicit constraint.
5172 Set_Etype
(Derived_Type
, Implicit_Base
);
5174 -- If we did not have a constraint, then the Ekind is set from the
5175 -- parent type (otherwise Process_Subtype has set the bounds)
5177 if No_Constraint
then
5178 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
5181 -- If we did not have a range constraint, then set the range from the
5182 -- parent type. Otherwise, the call to Process_Subtype has set the
5186 or else not Has_Range_Constraint
(Indic
)
5188 Set_Scalar_Range
(Derived_Type
,
5190 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
5191 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
5192 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5194 if Has_Infinities
(Parent_Type
) then
5195 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
5199 Set_Is_Descendent_Of_Address
(Derived_Type
,
5200 Is_Descendent_Of_Address
(Parent_Type
));
5201 Set_Is_Descendent_Of_Address
(Implicit_Base
,
5202 Is_Descendent_Of_Address
(Parent_Type
));
5204 -- Set remaining type-specific fields, depending on numeric type
5206 if Is_Modular_Integer_Type
(Parent_Type
) then
5207 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
5209 Set_Non_Binary_Modulus
5210 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
5212 elsif Is_Floating_Point_Type
(Parent_Type
) then
5214 -- Digits of base type is always copied from the digits value of
5215 -- the parent base type, but the digits of the derived type will
5216 -- already have been set if there was a constraint present.
5218 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
5219 Set_Vax_Float
(Implicit_Base
, Vax_Float
(Parent_Base
));
5221 if No_Constraint
then
5222 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
5225 elsif Is_Fixed_Point_Type
(Parent_Type
) then
5227 -- Small of base type and derived type are always copied from the
5228 -- parent base type, since smalls never change. The delta of the
5229 -- base type is also copied from the parent base type. However the
5230 -- delta of the derived type will have been set already if a
5231 -- constraint was present.
5233 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
5234 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
5235 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
5237 if No_Constraint
then
5238 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
5241 -- The scale and machine radix in the decimal case are always
5242 -- copied from the parent base type.
5244 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
5245 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
5246 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
5248 Set_Machine_Radix_10
5249 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
5250 Set_Machine_Radix_10
5251 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
5253 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
5255 if No_Constraint
then
5256 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
5259 -- the analysis of the subtype_indication sets the
5260 -- digits value of the derived type.
5267 -- The type of the bounds is that of the parent type, and they
5268 -- must be converted to the derived type.
5270 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
5272 -- The implicit_base should be frozen when the derived type is frozen,
5273 -- but note that it is used in the conversions of the bounds. For fixed
5274 -- types we delay the determination of the bounds until the proper
5275 -- freezing point. For other numeric types this is rejected by GCC, for
5276 -- reasons that are currently unclear (???), so we choose to freeze the
5277 -- implicit base now. In the case of integers and floating point types
5278 -- this is harmless because subsequent representation clauses cannot
5279 -- affect anything, but it is still baffling that we cannot use the
5280 -- same mechanism for all derived numeric types.
5282 -- There is a further complication: actually *some* representation
5283 -- clauses can affect the implicit base type. Namely, attribute
5284 -- definition clauses for stream-oriented attributes need to set the
5285 -- corresponding TSS entries on the base type, and this normally cannot
5286 -- be done after the base type is frozen, so the circuitry in
5287 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
5288 -- not use Set_TSS in this case.
5290 if Is_Fixed_Point_Type
(Parent_Type
) then
5291 Conditional_Delay
(Implicit_Base
, Parent_Type
);
5293 Freeze_Before
(N
, Implicit_Base
);
5295 end Build_Derived_Numeric_Type
;
5297 --------------------------------
5298 -- Build_Derived_Private_Type --
5299 --------------------------------
5301 procedure Build_Derived_Private_Type
5303 Parent_Type
: Entity_Id
;
5304 Derived_Type
: Entity_Id
;
5305 Is_Completion
: Boolean;
5306 Derive_Subps
: Boolean := True)
5308 Der_Base
: Entity_Id
;
5310 Full_Decl
: Node_Id
:= Empty
;
5311 Full_Der
: Entity_Id
;
5313 Last_Discr
: Entity_Id
;
5314 Par_Scope
: constant Entity_Id
:= Scope
(Base_Type
(Parent_Type
));
5315 Swapped
: Boolean := False;
5317 procedure Copy_And_Build
;
5318 -- Copy derived type declaration, replace parent with its full view,
5319 -- and analyze new declaration.
5321 --------------------
5322 -- Copy_And_Build --
5323 --------------------
5325 procedure Copy_And_Build
is
5329 if Ekind
(Parent_Type
) in Record_Kind
5331 (Ekind
(Parent_Type
) in Enumeration_Kind
5332 and then not Is_Standard_Character_Type
(Parent_Type
)
5333 and then not Is_Generic_Type
(Root_Type
(Parent_Type
)))
5335 Full_N
:= New_Copy_Tree
(N
);
5336 Insert_After
(N
, Full_N
);
5337 Build_Derived_Type
(
5338 Full_N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
5341 Build_Derived_Type
(
5342 N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
5346 -- Start of processing for Build_Derived_Private_Type
5349 if Is_Tagged_Type
(Parent_Type
) then
5350 Build_Derived_Record_Type
5351 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
5354 elsif Has_Discriminants
(Parent_Type
) then
5355 if Present
(Full_View
(Parent_Type
)) then
5356 if not Is_Completion
then
5358 -- Copy declaration for subsequent analysis, to provide a
5359 -- completion for what is a private declaration. Indicate that
5360 -- the full type is internally generated.
5362 Full_Decl
:= New_Copy_Tree
(N
);
5363 Full_Der
:= New_Copy
(Derived_Type
);
5364 Set_Comes_From_Source
(Full_Decl
, False);
5365 Set_Comes_From_Source
(Full_Der
, False);
5367 Insert_After
(N
, Full_Decl
);
5370 -- If this is a completion, the full view being built is
5371 -- itself private. We build a subtype of the parent with
5372 -- the same constraints as this full view, to convey to the
5373 -- back end the constrained components and the size of this
5374 -- subtype. If the parent is constrained, its full view can
5375 -- serve as the underlying full view of the derived type.
5377 if No
(Discriminant_Specifications
(N
)) then
5378 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5379 N_Subtype_Indication
5381 Build_Underlying_Full_View
(N
, Derived_Type
, Parent_Type
);
5383 elsif Is_Constrained
(Full_View
(Parent_Type
)) then
5384 Set_Underlying_Full_View
(Derived_Type
,
5385 Full_View
(Parent_Type
));
5389 -- If there are new discriminants, the parent subtype is
5390 -- constrained by them, but it is not clear how to build
5391 -- the underlying_full_view in this case ???
5398 -- Build partial view of derived type from partial view of parent
5400 Build_Derived_Record_Type
5401 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
5403 if Present
(Full_View
(Parent_Type
))
5404 and then not Is_Completion
5406 if not In_Open_Scopes
(Par_Scope
)
5407 or else not In_Same_Source_Unit
(N
, Parent_Type
)
5409 -- Swap partial and full views temporarily
5411 Install_Private_Declarations
(Par_Scope
);
5412 Install_Visible_Declarations
(Par_Scope
);
5416 -- Build full view of derived type from full view of parent which
5417 -- is now installed. Subprograms have been derived on the partial
5418 -- view, the completion does not derive them anew.
5420 if not Is_Tagged_Type
(Parent_Type
) then
5422 -- If the parent is itself derived from another private type,
5423 -- installing the private declarations has not affected its
5424 -- privacy status, so use its own full view explicitly.
5426 if Is_Private_Type
(Parent_Type
) then
5427 Build_Derived_Record_Type
5428 (Full_Decl
, Full_View
(Parent_Type
), Full_Der
, False);
5430 Build_Derived_Record_Type
5431 (Full_Decl
, Parent_Type
, Full_Der
, False);
5435 -- If full view of parent is tagged, the completion
5436 -- inherits the proper primitive operations.
5438 Set_Defining_Identifier
(Full_Decl
, Full_Der
);
5439 Build_Derived_Record_Type
5440 (Full_Decl
, Parent_Type
, Full_Der
, Derive_Subps
);
5441 Set_Analyzed
(Full_Decl
);
5445 Uninstall_Declarations
(Par_Scope
);
5447 if In_Open_Scopes
(Par_Scope
) then
5448 Install_Visible_Declarations
(Par_Scope
);
5452 Der_Base
:= Base_Type
(Derived_Type
);
5453 Set_Full_View
(Derived_Type
, Full_Der
);
5454 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
5456 -- Copy the discriminant list from full view to the partial views
5457 -- (base type and its subtype). Gigi requires that the partial
5458 -- and full views have the same discriminants.
5460 -- Note that since the partial view is pointing to discriminants
5461 -- in the full view, their scope will be that of the full view.
5462 -- This might cause some front end problems and need
5465 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
5466 Set_First_Entity
(Der_Base
, Discr
);
5469 Last_Discr
:= Discr
;
5470 Next_Discriminant
(Discr
);
5471 exit when No
(Discr
);
5474 Set_Last_Entity
(Der_Base
, Last_Discr
);
5476 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
5477 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
5478 Set_Stored_Constraint
(Full_Der
, Stored_Constraint
(Derived_Type
));
5481 -- If this is a completion, the derived type stays private
5482 -- and there is no need to create a further full view, except
5483 -- in the unusual case when the derivation is nested within a
5484 -- child unit, see below.
5489 elsif Present
(Full_View
(Parent_Type
))
5490 and then Has_Discriminants
(Full_View
(Parent_Type
))
5492 if Has_Unknown_Discriminants
(Parent_Type
)
5493 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5494 N_Subtype_Indication
5497 ("cannot constrain type with unknown discriminants",
5498 Subtype_Indication
(Type_Definition
(N
)));
5502 -- If full view of parent is a record type, Build full view as
5503 -- a derivation from the parent's full view. Partial view remains
5504 -- private. For code generation and linking, the full view must
5505 -- have the same public status as the partial one. This full view
5506 -- is only needed if the parent type is in an enclosing scope, so
5507 -- that the full view may actually become visible, e.g. in a child
5508 -- unit. This is both more efficient, and avoids order of freezing
5509 -- problems with the added entities.
5511 if not Is_Private_Type
(Full_View
(Parent_Type
))
5512 and then (In_Open_Scopes
(Scope
(Parent_Type
)))
5514 Full_Der
:= Make_Defining_Identifier
(Sloc
(Derived_Type
),
5515 Chars
(Derived_Type
));
5516 Set_Is_Itype
(Full_Der
);
5517 Set_Has_Private_Declaration
(Full_Der
);
5518 Set_Has_Private_Declaration
(Derived_Type
);
5519 Set_Associated_Node_For_Itype
(Full_Der
, N
);
5520 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
5521 Set_Full_View
(Derived_Type
, Full_Der
);
5522 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
5523 Full_P
:= Full_View
(Parent_Type
);
5524 Exchange_Declarations
(Parent_Type
);
5526 Exchange_Declarations
(Full_P
);
5529 Build_Derived_Record_Type
5530 (N
, Full_View
(Parent_Type
), Derived_Type
,
5531 Derive_Subps
=> False);
5534 -- In any case, the primitive operations are inherited from
5535 -- the parent type, not from the internal full view.
5537 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
5539 if Derive_Subps
then
5540 Derive_Subprograms
(Parent_Type
, Derived_Type
);
5544 -- Untagged type, No discriminants on either view
5546 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5547 N_Subtype_Indication
5550 ("illegal constraint on type without discriminants", N
);
5553 if Present
(Discriminant_Specifications
(N
))
5554 and then Present
(Full_View
(Parent_Type
))
5555 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
5558 ("cannot add discriminants to untagged type", N
);
5561 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
5562 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5563 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
5564 Set_Has_Controlled_Component
5565 (Derived_Type
, Has_Controlled_Component
5568 -- Direct controlled types do not inherit Finalize_Storage_Only flag
5570 if not Is_Controlled
(Parent_Type
) then
5571 Set_Finalize_Storage_Only
5572 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
5575 -- Construct the implicit full view by deriving from full view of
5576 -- the parent type. In order to get proper visibility, we install
5577 -- the parent scope and its declarations.
5579 -- ??? if the parent is untagged private and its completion is
5580 -- tagged, this mechanism will not work because we cannot derive
5581 -- from the tagged full view unless we have an extension
5583 if Present
(Full_View
(Parent_Type
))
5584 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
5585 and then not Is_Completion
5588 Make_Defining_Identifier
(Sloc
(Derived_Type
),
5589 Chars
=> Chars
(Derived_Type
));
5590 Set_Is_Itype
(Full_Der
);
5591 Set_Has_Private_Declaration
(Full_Der
);
5592 Set_Has_Private_Declaration
(Derived_Type
);
5593 Set_Associated_Node_For_Itype
(Full_Der
, N
);
5594 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
5595 Set_Full_View
(Derived_Type
, Full_Der
);
5597 if not In_Open_Scopes
(Par_Scope
) then
5598 Install_Private_Declarations
(Par_Scope
);
5599 Install_Visible_Declarations
(Par_Scope
);
5601 Uninstall_Declarations
(Par_Scope
);
5603 -- If parent scope is open and in another unit, and parent has a
5604 -- completion, then the derivation is taking place in the visible
5605 -- part of a child unit. In that case retrieve the full view of
5606 -- the parent momentarily.
5608 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
5609 Full_P
:= Full_View
(Parent_Type
);
5610 Exchange_Declarations
(Parent_Type
);
5612 Exchange_Declarations
(Full_P
);
5614 -- Otherwise it is a local derivation
5620 Set_Scope
(Full_Der
, Current_Scope
);
5621 Set_Is_First_Subtype
(Full_Der
,
5622 Is_First_Subtype
(Derived_Type
));
5623 Set_Has_Size_Clause
(Full_Der
, False);
5624 Set_Has_Alignment_Clause
(Full_Der
, False);
5625 Set_Next_Entity
(Full_Der
, Empty
);
5626 Set_Has_Delayed_Freeze
(Full_Der
);
5627 Set_Is_Frozen
(Full_Der
, False);
5628 Set_Freeze_Node
(Full_Der
, Empty
);
5629 Set_Depends_On_Private
(Full_Der
,
5630 Has_Private_Component
(Full_Der
));
5631 Set_Public_Status
(Full_Der
);
5635 Set_Has_Unknown_Discriminants
(Derived_Type
,
5636 Has_Unknown_Discriminants
(Parent_Type
));
5638 if Is_Private_Type
(Derived_Type
) then
5639 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
5642 if Is_Private_Type
(Parent_Type
)
5643 and then Base_Type
(Parent_Type
) = Parent_Type
5644 and then In_Open_Scopes
(Scope
(Parent_Type
))
5646 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
5648 if Is_Child_Unit
(Scope
(Current_Scope
))
5649 and then Is_Completion
5650 and then In_Private_Part
(Current_Scope
)
5651 and then Scope
(Parent_Type
) /= Current_Scope
5653 -- This is the unusual case where a type completed by a private
5654 -- derivation occurs within a package nested in a child unit,
5655 -- and the parent is declared in an ancestor. In this case, the
5656 -- full view of the parent type will become visible in the body
5657 -- of the enclosing child, and only then will the current type
5658 -- be possibly non-private. We build a underlying full view that
5659 -- will be installed when the enclosing child body is compiled.
5662 Make_Defining_Identifier
(Sloc
(Derived_Type
),
5663 Chars
=> Chars
(Derived_Type
));
5664 Set_Is_Itype
(Full_Der
);
5665 Build_Itype_Reference
(Full_Der
, N
);
5667 -- The full view will be used to swap entities on entry/exit to
5668 -- the body, and must appear in the entity list for the package.
5670 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
5671 Set_Has_Private_Declaration
(Full_Der
);
5672 Set_Has_Private_Declaration
(Derived_Type
);
5673 Set_Associated_Node_For_Itype
(Full_Der
, N
);
5674 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
5675 Full_P
:= Full_View
(Parent_Type
);
5676 Exchange_Declarations
(Parent_Type
);
5678 Exchange_Declarations
(Full_P
);
5679 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
5682 end Build_Derived_Private_Type
;
5684 -------------------------------
5685 -- Build_Derived_Record_Type --
5686 -------------------------------
5690 -- Ideally we would like to use the same model of type derivation for
5691 -- tagged and untagged record types. Unfortunately this is not quite
5692 -- possible because the semantics of representation clauses is different
5693 -- for tagged and untagged records under inheritance. Consider the
5696 -- type R (...) is [tagged] record ... end record;
5697 -- type T (...) is new R (...) [with ...];
5699 -- The representation clauses for T can specify a completely different
5700 -- record layout from R's. Hence the same component can be placed in two
5701 -- very different positions in objects of type T and R. If R and are tagged
5702 -- types, representation clauses for T can only specify the layout of non
5703 -- inherited components, thus components that are common in R and T have
5704 -- the same position in objects of type R and T.
5706 -- This has two implications. The first is that the entire tree for R's
5707 -- declaration needs to be copied for T in the untagged case, so that T
5708 -- can be viewed as a record type of its own with its own representation
5709 -- clauses. The second implication is the way we handle discriminants.
5710 -- Specifically, in the untagged case we need a way to communicate to Gigi
5711 -- what are the real discriminants in the record, while for the semantics
5712 -- we need to consider those introduced by the user to rename the
5713 -- discriminants in the parent type. This is handled by introducing the
5714 -- notion of stored discriminants. See below for more.
5716 -- Fortunately the way regular components are inherited can be handled in
5717 -- the same way in tagged and untagged types.
5719 -- To complicate things a bit more the private view of a private extension
5720 -- cannot be handled in the same way as the full view (for one thing the
5721 -- semantic rules are somewhat different). We will explain what differs
5724 -- 2. DISCRIMINANTS UNDER INHERITANCE
5726 -- The semantic rules governing the discriminants of derived types are
5729 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
5730 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
5732 -- If parent type has discriminants, then the discriminants that are
5733 -- declared in the derived type are [3.4 (11)]:
5735 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
5738 -- o Otherwise, each discriminant of the parent type (implicitly declared
5739 -- in the same order with the same specifications). In this case, the
5740 -- discriminants are said to be "inherited", or if unknown in the parent
5741 -- are also unknown in the derived type.
5743 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
5745 -- o The parent subtype shall be constrained;
5747 -- o If the parent type is not a tagged type, then each discriminant of
5748 -- the derived type shall be used in the constraint defining a parent
5749 -- subtype. [Implementation note: This ensures that the new discriminant
5750 -- can share storage with an existing discriminant.]
5752 -- For the derived type each discriminant of the parent type is either
5753 -- inherited, constrained to equal some new discriminant of the derived
5754 -- type, or constrained to the value of an expression.
5756 -- When inherited or constrained to equal some new discriminant, the
5757 -- parent discriminant and the discriminant of the derived type are said
5760 -- If a discriminant of the parent type is constrained to a specific value
5761 -- in the derived type definition, then the discriminant is said to be
5762 -- "specified" by that derived type definition.
5764 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
5766 -- We have spoken about stored discriminants in point 1 (introduction)
5767 -- above. There are two sort of stored discriminants: implicit and
5768 -- explicit. As long as the derived type inherits the same discriminants as
5769 -- the root record type, stored discriminants are the same as regular
5770 -- discriminants, and are said to be implicit. However, if any discriminant
5771 -- in the root type was renamed in the derived type, then the derived
5772 -- type will contain explicit stored discriminants. Explicit stored
5773 -- discriminants are discriminants in addition to the semantically visible
5774 -- discriminants defined for the derived type. Stored discriminants are
5775 -- used by Gigi to figure out what are the physical discriminants in
5776 -- objects of the derived type (see precise definition in einfo.ads).
5777 -- As an example, consider the following:
5779 -- type R (D1, D2, D3 : Int) is record ... end record;
5780 -- type T1 is new R;
5781 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
5782 -- type T3 is new T2;
5783 -- type T4 (Y : Int) is new T3 (Y, 99);
5785 -- The following table summarizes the discriminants and stored
5786 -- discriminants in R and T1 through T4.
5788 -- Type Discrim Stored Discrim Comment
5789 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
5790 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
5791 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
5792 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
5793 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
5795 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
5796 -- find the corresponding discriminant in the parent type, while
5797 -- Original_Record_Component (abbreviated ORC below), the actual physical
5798 -- component that is renamed. Finally the field Is_Completely_Hidden
5799 -- (abbreviated ICH below) is set for all explicit stored discriminants
5800 -- (see einfo.ads for more info). For the above example this gives:
5802 -- Discrim CD ORC ICH
5803 -- ^^^^^^^ ^^ ^^^ ^^^
5804 -- D1 in R empty itself no
5805 -- D2 in R empty itself no
5806 -- D3 in R empty itself no
5808 -- D1 in T1 D1 in R itself no
5809 -- D2 in T1 D2 in R itself no
5810 -- D3 in T1 D3 in R itself no
5812 -- X1 in T2 D3 in T1 D3 in T2 no
5813 -- X2 in T2 D1 in T1 D1 in T2 no
5814 -- D1 in T2 empty itself yes
5815 -- D2 in T2 empty itself yes
5816 -- D3 in T2 empty itself yes
5818 -- X1 in T3 X1 in T2 D3 in T3 no
5819 -- X2 in T3 X2 in T2 D1 in T3 no
5820 -- D1 in T3 empty itself yes
5821 -- D2 in T3 empty itself yes
5822 -- D3 in T3 empty itself yes
5824 -- Y in T4 X1 in T3 D3 in T3 no
5825 -- D1 in T3 empty itself yes
5826 -- D2 in T3 empty itself yes
5827 -- D3 in T3 empty itself yes
5829 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
5831 -- Type derivation for tagged types is fairly straightforward. If no
5832 -- discriminants are specified by the derived type, these are inherited
5833 -- from the parent. No explicit stored discriminants are ever necessary.
5834 -- The only manipulation that is done to the tree is that of adding a
5835 -- _parent field with parent type and constrained to the same constraint
5836 -- specified for the parent in the derived type definition. For instance:
5838 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
5839 -- type T1 is new R with null record;
5840 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
5842 -- are changed into:
5844 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
5845 -- _parent : R (D1, D2, D3);
5848 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
5849 -- _parent : T1 (X2, 88, X1);
5852 -- The discriminants actually present in R, T1 and T2 as well as their CD,
5853 -- ORC and ICH fields are:
5855 -- Discrim CD ORC ICH
5856 -- ^^^^^^^ ^^ ^^^ ^^^
5857 -- D1 in R empty itself no
5858 -- D2 in R empty itself no
5859 -- D3 in R empty itself no
5861 -- D1 in T1 D1 in R D1 in R no
5862 -- D2 in T1 D2 in R D2 in R no
5863 -- D3 in T1 D3 in R D3 in R no
5865 -- X1 in T2 D3 in T1 D3 in R no
5866 -- X2 in T2 D1 in T1 D1 in R no
5868 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
5870 -- Regardless of whether we dealing with a tagged or untagged type
5871 -- we will transform all derived type declarations of the form
5873 -- type T is new R (...) [with ...];
5875 -- subtype S is R (...);
5876 -- type T is new S [with ...];
5878 -- type BT is new R [with ...];
5879 -- subtype T is BT (...);
5881 -- That is, the base derived type is constrained only if it has no
5882 -- discriminants. The reason for doing this is that GNAT's semantic model
5883 -- assumes that a base type with discriminants is unconstrained.
5885 -- Note that, strictly speaking, the above transformation is not always
5886 -- correct. Consider for instance the following excerpt from ACVC b34011a:
5888 -- procedure B34011A is
5889 -- type REC (D : integer := 0) is record
5894 -- type T6 is new Rec;
5895 -- function F return T6;
5900 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
5903 -- The definition of Q6.U is illegal. However transforming Q6.U into
5905 -- type BaseU is new T6;
5906 -- subtype U is BaseU (Q6.F.I)
5908 -- turns U into a legal subtype, which is incorrect. To avoid this problem
5909 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
5910 -- the transformation described above.
5912 -- There is another instance where the above transformation is incorrect.
5916 -- type Base (D : Integer) is tagged null record;
5917 -- procedure P (X : Base);
5919 -- type Der is new Base (2) with null record;
5920 -- procedure P (X : Der);
5923 -- Then the above transformation turns this into
5925 -- type Der_Base is new Base with null record;
5926 -- -- procedure P (X : Base) is implicitly inherited here
5927 -- -- as procedure P (X : Der_Base).
5929 -- subtype Der is Der_Base (2);
5930 -- procedure P (X : Der);
5931 -- -- The overriding of P (X : Der_Base) is illegal since we
5932 -- -- have a parameter conformance problem.
5934 -- To get around this problem, after having semantically processed Der_Base
5935 -- and the rewritten subtype declaration for Der, we copy Der_Base field
5936 -- Discriminant_Constraint from Der so that when parameter conformance is
5937 -- checked when P is overridden, no semantic errors are flagged.
5939 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
5941 -- Regardless of whether we are dealing with a tagged or untagged type
5942 -- we will transform all derived type declarations of the form
5944 -- type R (D1, .., Dn : ...) is [tagged] record ...;
5945 -- type T is new R [with ...];
5947 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
5949 -- The reason for such transformation is that it allows us to implement a
5950 -- very clean form of component inheritance as explained below.
5952 -- Note that this transformation is not achieved by direct tree rewriting
5953 -- and manipulation, but rather by redoing the semantic actions that the
5954 -- above transformation will entail. This is done directly in routine
5955 -- Inherit_Components.
5957 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
5959 -- In both tagged and untagged derived types, regular non discriminant
5960 -- components are inherited in the derived type from the parent type. In
5961 -- the absence of discriminants component, inheritance is straightforward
5962 -- as components can simply be copied from the parent.
5964 -- If the parent has discriminants, inheriting components constrained with
5965 -- these discriminants requires caution. Consider the following example:
5967 -- type R (D1, D2 : Positive) is [tagged] record
5968 -- S : String (D1 .. D2);
5971 -- type T1 is new R [with null record];
5972 -- type T2 (X : positive) is new R (1, X) [with null record];
5974 -- As explained in 6. above, T1 is rewritten as
5975 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
5976 -- which makes the treatment for T1 and T2 identical.
5978 -- What we want when inheriting S, is that references to D1 and D2 in R are
5979 -- replaced with references to their correct constraints, i.e. D1 and D2 in
5980 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
5981 -- with either discriminant references in the derived type or expressions.
5982 -- This replacement is achieved as follows: before inheriting R's
5983 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
5984 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
5985 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
5986 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
5987 -- by String (1 .. X).
5989 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
5991 -- We explain here the rules governing private type extensions relevant to
5992 -- type derivation. These rules are explained on the following example:
5994 -- type D [(...)] is new A [(...)] with private; <-- partial view
5995 -- type D [(...)] is new P [(...)] with null record; <-- full view
5997 -- Type A is called the ancestor subtype of the private extension.
5998 -- Type P is the parent type of the full view of the private extension. It
5999 -- must be A or a type derived from A.
6001 -- The rules concerning the discriminants of private type extensions are
6004 -- o If a private extension inherits known discriminants from the ancestor
6005 -- subtype, then the full view shall also inherit its discriminants from
6006 -- the ancestor subtype and the parent subtype of the full view shall be
6007 -- constrained if and only if the ancestor subtype is constrained.
6009 -- o If a partial view has unknown discriminants, then the full view may
6010 -- define a definite or an indefinite subtype, with or without
6013 -- o If a partial view has neither known nor unknown discriminants, then
6014 -- the full view shall define a definite subtype.
6016 -- o If the ancestor subtype of a private extension has constrained
6017 -- discriminants, then the parent subtype of the full view shall impose a
6018 -- statically matching constraint on those discriminants.
6020 -- This means that only the following forms of private extensions are
6023 -- type D is new A with private; <-- partial view
6024 -- type D is new P with null record; <-- full view
6026 -- If A has no discriminants than P has no discriminants, otherwise P must
6027 -- inherit A's discriminants.
6029 -- type D is new A (...) with private; <-- partial view
6030 -- type D is new P (:::) with null record; <-- full view
6032 -- P must inherit A's discriminants and (...) and (:::) must statically
6035 -- subtype A is R (...);
6036 -- type D is new A with private; <-- partial view
6037 -- type D is new P with null record; <-- full view
6039 -- P must have inherited R's discriminants and must be derived from A or
6040 -- any of its subtypes.
6042 -- type D (..) is new A with private; <-- partial view
6043 -- type D (..) is new P [(:::)] with null record; <-- full view
6045 -- No specific constraints on P's discriminants or constraint (:::).
6046 -- Note that A can be unconstrained, but the parent subtype P must either
6047 -- be constrained or (:::) must be present.
6049 -- type D (..) is new A [(...)] with private; <-- partial view
6050 -- type D (..) is new P [(:::)] with null record; <-- full view
6052 -- P's constraints on A's discriminants must statically match those
6053 -- imposed by (...).
6055 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6057 -- The full view of a private extension is handled exactly as described
6058 -- above. The model chose for the private view of a private extension is
6059 -- the same for what concerns discriminants (i.e. they receive the same
6060 -- treatment as in the tagged case). However, the private view of the
6061 -- private extension always inherits the components of the parent base,
6062 -- without replacing any discriminant reference. Strictly speaking this is
6063 -- incorrect. However, Gigi never uses this view to generate code so this
6064 -- is a purely semantic issue. In theory, a set of transformations similar
6065 -- to those given in 5. and 6. above could be applied to private views of
6066 -- private extensions to have the same model of component inheritance as
6067 -- for non private extensions. However, this is not done because it would
6068 -- further complicate private type processing. Semantically speaking, this
6069 -- leaves us in an uncomfortable situation. As an example consider:
6072 -- type R (D : integer) is tagged record
6073 -- S : String (1 .. D);
6075 -- procedure P (X : R);
6076 -- type T is new R (1) with private;
6078 -- type T is new R (1) with null record;
6081 -- This is transformed into:
6084 -- type R (D : integer) is tagged record
6085 -- S : String (1 .. D);
6087 -- procedure P (X : R);
6088 -- type T is new R (1) with private;
6090 -- type BaseT is new R with null record;
6091 -- subtype T is BaseT (1);
6094 -- (strictly speaking the above is incorrect Ada)
6096 -- From the semantic standpoint the private view of private extension T
6097 -- should be flagged as constrained since one can clearly have
6101 -- in a unit withing Pack. However, when deriving subprograms for the
6102 -- private view of private extension T, T must be seen as unconstrained
6103 -- since T has discriminants (this is a constraint of the current
6104 -- subprogram derivation model). Thus, when processing the private view of
6105 -- a private extension such as T, we first mark T as unconstrained, we
6106 -- process it, we perform program derivation and just before returning from
6107 -- Build_Derived_Record_Type we mark T as constrained.
6109 -- ??? Are there are other uncomfortable cases that we will have to
6112 -- 10. RECORD_TYPE_WITH_PRIVATE complications
6114 -- Types that are derived from a visible record type and have a private
6115 -- extension present other peculiarities. They behave mostly like private
6116 -- types, but if they have primitive operations defined, these will not
6117 -- have the proper signatures for further inheritance, because other
6118 -- primitive operations will use the implicit base that we define for
6119 -- private derivations below. This affect subprogram inheritance (see
6120 -- Derive_Subprograms for details). We also derive the implicit base from
6121 -- the base type of the full view, so that the implicit base is a record
6122 -- type and not another private type, This avoids infinite loops.
6124 procedure Build_Derived_Record_Type
6126 Parent_Type
: Entity_Id
;
6127 Derived_Type
: Entity_Id
;
6128 Derive_Subps
: Boolean := True)
6130 Loc
: constant Source_Ptr
:= Sloc
(N
);
6131 Parent_Base
: Entity_Id
;
6134 Discrim
: Entity_Id
;
6135 Last_Discrim
: Entity_Id
;
6138 Discs
: Elist_Id
:= New_Elmt_List
;
6139 -- An empty Discs list means that there were no constraints in the
6140 -- subtype indication or that there was an error processing it.
6142 Assoc_List
: Elist_Id
;
6143 New_Discrs
: Elist_Id
;
6144 New_Base
: Entity_Id
;
6146 New_Indic
: Node_Id
;
6148 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
6149 Discriminant_Specs
: constant Boolean :=
6150 Present
(Discriminant_Specifications
(N
));
6151 Private_Extension
: constant Boolean :=
6152 Nkind
(N
) = N_Private_Extension_Declaration
;
6154 Constraint_Present
: Boolean;
6155 Inherit_Discrims
: Boolean := False;
6156 Save_Etype
: Entity_Id
;
6157 Save_Discr_Constr
: Elist_Id
;
6158 Save_Next_Entity
: Entity_Id
;
6161 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
6162 and then Present
(Full_View
(Parent_Type
))
6163 and then Has_Discriminants
(Parent_Type
)
6165 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
6167 Parent_Base
:= Base_Type
(Parent_Type
);
6170 -- Before we start the previously documented transformations, here is
6171 -- little fix for size and alignment of tagged types. Normally when we
6172 -- derive type D from type P, we copy the size and alignment of P as the
6173 -- default for D, and in the absence of explicit representation clauses
6174 -- for D, the size and alignment are indeed the same as the parent.
6176 -- But this is wrong for tagged types, since fields may be added, and
6177 -- the default size may need to be larger, and the default alignment may
6178 -- need to be larger.
6180 -- We therefore reset the size and alignment fields in the tagged case.
6181 -- Note that the size and alignment will in any case be at least as
6182 -- large as the parent type (since the derived type has a copy of the
6183 -- parent type in the _parent field)
6185 -- The type is also marked as being tagged here, which is needed when
6186 -- processing components with a self-referential anonymous access type
6187 -- in the call to Check_Anonymous_Access_Components below. Note that
6188 -- this flag is also set later on for completeness.
6191 Set_Is_Tagged_Type
(Derived_Type
);
6192 Init_Size_Align
(Derived_Type
);
6195 -- STEP 0a: figure out what kind of derived type declaration we have
6197 if Private_Extension
then
6199 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
6202 Type_Def
:= Type_Definition
(N
);
6204 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
6205 -- Parent_Base can be a private type or private extension. However,
6206 -- for tagged types with an extension the newly added fields are
6207 -- visible and hence the Derived_Type is always an E_Record_Type.
6208 -- (except that the parent may have its own private fields).
6209 -- For untagged types we preserve the Ekind of the Parent_Base.
6211 if Present
(Record_Extension_Part
(Type_Def
)) then
6212 Set_Ekind
(Derived_Type
, E_Record_Type
);
6214 -- Create internal access types for components with anonymous
6217 if Ada_Version
>= Ada_05
then
6218 Check_Anonymous_Access_Components
6219 (N
, Derived_Type
, Derived_Type
,
6220 Component_List
(Record_Extension_Part
(Type_Def
)));
6224 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
6228 -- Indic can either be an N_Identifier if the subtype indication
6229 -- contains no constraint or an N_Subtype_Indication if the subtype
6230 -- indication has a constraint.
6232 Indic
:= Subtype_Indication
(Type_Def
);
6233 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
6235 -- Check that the type has visible discriminants. The type may be
6236 -- a private type with unknown discriminants whose full view has
6237 -- discriminants which are invisible.
6239 if Constraint_Present
then
6240 if not Has_Discriminants
(Parent_Base
)
6242 (Has_Unknown_Discriminants
(Parent_Base
)
6243 and then Is_Private_Type
(Parent_Base
))
6246 ("invalid constraint: type has no discriminant",
6247 Constraint
(Indic
));
6249 Constraint_Present
:= False;
6250 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
6252 elsif Is_Constrained
(Parent_Type
) then
6254 ("invalid constraint: parent type is already constrained",
6255 Constraint
(Indic
));
6257 Constraint_Present
:= False;
6258 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
6262 -- STEP 0b: If needed, apply transformation given in point 5. above
6264 if not Private_Extension
6265 and then Has_Discriminants
(Parent_Type
)
6266 and then not Discriminant_Specs
6267 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6269 -- First, we must analyze the constraint (see comment in point 5.)
6271 if Constraint_Present
then
6272 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
6274 if Has_Discriminants
(Derived_Type
)
6275 and then Has_Private_Declaration
(Derived_Type
)
6276 and then Present
(Discriminant_Constraint
(Derived_Type
))
6278 -- Verify that constraints of the full view statically match
6279 -- those given in the partial view.
6285 C1
:= First_Elmt
(New_Discrs
);
6286 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
6287 while Present
(C1
) and then Present
(C2
) loop
6288 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
6290 (Is_OK_Static_Expression
(Node
(C1
))
6292 Is_OK_Static_Expression
(Node
(C2
))
6294 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
6300 "constraint not conformant to previous declaration",
6311 -- Insert and analyze the declaration for the unconstrained base type
6313 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
6316 Make_Full_Type_Declaration
(Loc
,
6317 Defining_Identifier
=> New_Base
,
6319 Make_Derived_Type_Definition
(Loc
,
6320 Abstract_Present
=> Abstract_Present
(Type_Def
),
6321 Subtype_Indication
=>
6322 New_Occurrence_Of
(Parent_Base
, Loc
),
6323 Record_Extension_Part
=>
6324 Relocate_Node
(Record_Extension_Part
(Type_Def
))));
6326 Set_Parent
(New_Decl
, Parent
(N
));
6327 Mark_Rewrite_Insertion
(New_Decl
);
6328 Insert_Before
(N
, New_Decl
);
6330 -- Note that this call passes False for the Derive_Subps parameter
6331 -- because subprogram derivation is deferred until after creating
6332 -- the subtype (see below).
6335 (New_Decl
, Parent_Base
, New_Base
,
6336 Is_Completion
=> True, Derive_Subps
=> False);
6338 -- ??? This needs re-examination to determine whether the
6339 -- above call can simply be replaced by a call to Analyze.
6341 Set_Analyzed
(New_Decl
);
6343 -- Insert and analyze the declaration for the constrained subtype
6345 if Constraint_Present
then
6347 Make_Subtype_Indication
(Loc
,
6348 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
6349 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
6353 Constr_List
: constant List_Id
:= New_List
;
6358 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
6359 while Present
(C
) loop
6362 -- It is safe here to call New_Copy_Tree since
6363 -- Force_Evaluation was called on each constraint in
6364 -- Build_Discriminant_Constraints.
6366 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
6372 Make_Subtype_Indication
(Loc
,
6373 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
6375 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
6380 Make_Subtype_Declaration
(Loc
,
6381 Defining_Identifier
=> Derived_Type
,
6382 Subtype_Indication
=> New_Indic
));
6386 -- Derivation of subprograms must be delayed until the full subtype
6387 -- has been established to ensure proper overriding of subprograms
6388 -- inherited by full types. If the derivations occurred as part of
6389 -- the call to Build_Derived_Type above, then the check for type
6390 -- conformance would fail because earlier primitive subprograms
6391 -- could still refer to the full type prior the change to the new
6392 -- subtype and hence would not match the new base type created here.
6394 Derive_Subprograms
(Parent_Type
, Derived_Type
);
6396 -- For tagged types the Discriminant_Constraint of the new base itype
6397 -- is inherited from the first subtype so that no subtype conformance
6398 -- problem arise when the first subtype overrides primitive
6399 -- operations inherited by the implicit base type.
6402 Set_Discriminant_Constraint
6403 (New_Base
, Discriminant_Constraint
(Derived_Type
));
6409 -- If we get here Derived_Type will have no discriminants or it will be
6410 -- a discriminated unconstrained base type.
6412 -- STEP 1a: perform preliminary actions/checks for derived tagged types
6416 -- The parent type is frozen for non-private extensions (RM 13.14(7))
6417 -- The declaration of a specific descendant of an interface type
6418 -- freezes the interface type (RM 13.14).
6420 if not Private_Extension
6421 or else Is_Interface
(Parent_Base
)
6423 Freeze_Before
(N
, Parent_Type
);
6426 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
6427 -- cannot be declared at a deeper level than its parent type is
6428 -- removed. The check on derivation within a generic body is also
6429 -- relaxed, but there's a restriction that a derived tagged type
6430 -- cannot be declared in a generic body if it's derived directly
6431 -- or indirectly from a formal type of that generic.
6433 if Ada_Version
>= Ada_05
then
6434 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
6436 Ancestor_Type
: Entity_Id
;
6439 -- Check to see if any ancestor of the derived type is a
6442 Ancestor_Type
:= Parent_Type
;
6443 while not Is_Generic_Type
(Ancestor_Type
)
6444 and then Etype
(Ancestor_Type
) /= Ancestor_Type
6446 Ancestor_Type
:= Etype
(Ancestor_Type
);
6449 -- If the derived type does have a formal type as an
6450 -- ancestor, then it's an error if the derived type is
6451 -- declared within the body of the generic unit that
6452 -- declares the formal type in its generic formal part. It's
6453 -- sufficient to check whether the ancestor type is declared
6454 -- inside the same generic body as the derived type (such as
6455 -- within a nested generic spec), in which case the
6456 -- derivation is legal. If the formal type is declared
6457 -- outside of that generic body, then it's guaranteed that
6458 -- the derived type is declared within the generic body of
6459 -- the generic unit declaring the formal type.
6461 if Is_Generic_Type
(Ancestor_Type
)
6462 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
6463 Enclosing_Generic_Body
(Derived_Type
)
6466 ("parent type of& must not be descendant of formal type"
6467 & " of an enclosing generic body",
6468 Indic
, Derived_Type
);
6473 elsif Type_Access_Level
(Derived_Type
) /=
6474 Type_Access_Level
(Parent_Type
)
6475 and then not Is_Generic_Type
(Derived_Type
)
6477 if Is_Controlled
(Parent_Type
) then
6479 ("controlled type must be declared at the library level",
6483 ("type extension at deeper accessibility level than parent",
6489 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
6493 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
6496 ("parent type of& must not be outside generic body"
6498 Indic
, Derived_Type
);
6504 -- Ada 2005 (AI-251)
6506 if Ada_Version
= Ada_05
6509 -- "The declaration of a specific descendant of an interface type
6510 -- freezes the interface type" (RM 13.14).
6515 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
6516 Iface
:= First
(Interface_List
(Type_Def
));
6517 while Present
(Iface
) loop
6518 Freeze_Before
(N
, Etype
(Iface
));
6525 -- STEP 1b : preliminary cleanup of the full view of private types
6527 -- If the type is already marked as having discriminants, then it's the
6528 -- completion of a private type or private extension and we need to
6529 -- retain the discriminants from the partial view if the current
6530 -- declaration has Discriminant_Specifications so that we can verify
6531 -- conformance. However, we must remove any existing components that
6532 -- were inherited from the parent (and attached in Copy_And_Swap)
6533 -- because the full type inherits all appropriate components anyway, and
6534 -- we do not want the partial view's components interfering.
6536 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
6537 Discrim
:= First_Discriminant
(Derived_Type
);
6539 Last_Discrim
:= Discrim
;
6540 Next_Discriminant
(Discrim
);
6541 exit when No
(Discrim
);
6544 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
6546 -- In all other cases wipe out the list of inherited components (even
6547 -- inherited discriminants), it will be properly rebuilt here.
6550 Set_First_Entity
(Derived_Type
, Empty
);
6551 Set_Last_Entity
(Derived_Type
, Empty
);
6554 -- STEP 1c: Initialize some flags for the Derived_Type
6556 -- The following flags must be initialized here so that
6557 -- Process_Discriminants can check that discriminants of tagged types do
6558 -- not have a default initial value and that access discriminants are
6559 -- only specified for limited records. For completeness, these flags are
6560 -- also initialized along with all the other flags below.
6562 -- AI-419: Limitedness is not inherited from an interface parent, so to
6563 -- be limited in that case the type must be explicitly declared as
6564 -- limited. However, task and protected interfaces are always limited.
6566 if Limited_Present
(Type_Def
) then
6567 Set_Is_Limited_Record
(Derived_Type
);
6569 elsif Is_Limited_Record
(Parent_Type
)
6570 or else (Present
(Full_View
(Parent_Type
))
6571 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
6573 if not Is_Interface
(Parent_Type
)
6574 or else Is_Synchronized_Interface
(Parent_Type
)
6575 or else Is_Protected_Interface
(Parent_Type
)
6576 or else Is_Task_Interface
(Parent_Type
)
6578 Set_Is_Limited_Record
(Derived_Type
);
6582 -- STEP 2a: process discriminants of derived type if any
6584 Push_Scope
(Derived_Type
);
6586 if Discriminant_Specs
then
6587 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
6589 -- The following call initializes fields Has_Discriminants and
6590 -- Discriminant_Constraint, unless we are processing the completion
6591 -- of a private type declaration.
6593 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6595 -- For non-tagged types the constraint on the Parent_Type must be
6596 -- present and is used to rename the discriminants.
6598 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
6599 Error_Msg_N
("untagged parent must have discriminants", Indic
);
6601 elsif not Is_Tagged
and then not Constraint_Present
then
6603 ("discriminant constraint needed for derived untagged records",
6606 -- Otherwise the parent subtype must be constrained unless we have a
6607 -- private extension.
6609 elsif not Constraint_Present
6610 and then not Private_Extension
6611 and then not Is_Constrained
(Parent_Type
)
6614 ("unconstrained type not allowed in this context", Indic
);
6616 elsif Constraint_Present
then
6617 -- The following call sets the field Corresponding_Discriminant
6618 -- for the discriminants in the Derived_Type.
6620 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
6622 -- For untagged types all new discriminants must rename
6623 -- discriminants in the parent. For private extensions new
6624 -- discriminants cannot rename old ones (implied by [7.3(13)]).
6626 Discrim
:= First_Discriminant
(Derived_Type
);
6627 while Present
(Discrim
) loop
6629 and then No
(Corresponding_Discriminant
(Discrim
))
6632 ("new discriminants must constrain old ones", Discrim
);
6634 elsif Private_Extension
6635 and then Present
(Corresponding_Discriminant
(Discrim
))
6638 ("only static constraints allowed for parent"
6639 & " discriminants in the partial view", Indic
);
6643 -- If a new discriminant is used in the constraint, then its
6644 -- subtype must be statically compatible with the parent
6645 -- discriminant's subtype (3.7(15)).
6647 if Present
(Corresponding_Discriminant
(Discrim
))
6649 not Subtypes_Statically_Compatible
6651 Etype
(Corresponding_Discriminant
(Discrim
)))
6654 ("subtype must be compatible with parent discriminant",
6658 Next_Discriminant
(Discrim
);
6661 -- Check whether the constraints of the full view statically
6662 -- match those imposed by the parent subtype [7.3(13)].
6664 if Present
(Stored_Constraint
(Derived_Type
)) then
6669 C1
:= First_Elmt
(Discs
);
6670 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
6671 while Present
(C1
) and then Present
(C2
) loop
6673 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
6676 ("not conformant with previous declaration",
6687 -- STEP 2b: No new discriminants, inherit discriminants if any
6690 if Private_Extension
then
6691 Set_Has_Unknown_Discriminants
6693 Has_Unknown_Discriminants
(Parent_Type
)
6694 or else Unknown_Discriminants_Present
(N
));
6696 -- The partial view of the parent may have unknown discriminants,
6697 -- but if the full view has discriminants and the parent type is
6698 -- in scope they must be inherited.
6700 elsif Has_Unknown_Discriminants
(Parent_Type
)
6702 (not Has_Discriminants
(Parent_Type
)
6703 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
6705 Set_Has_Unknown_Discriminants
(Derived_Type
);
6708 if not Has_Unknown_Discriminants
(Derived_Type
)
6709 and then not Has_Unknown_Discriminants
(Parent_Base
)
6710 and then Has_Discriminants
(Parent_Type
)
6712 Inherit_Discrims
:= True;
6713 Set_Has_Discriminants
6714 (Derived_Type
, True);
6715 Set_Discriminant_Constraint
6716 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
6719 -- The following test is true for private types (remember
6720 -- transformation 5. is not applied to those) and in an error
6723 if Constraint_Present
then
6724 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
6727 -- For now mark a new derived type as constrained only if it has no
6728 -- discriminants. At the end of Build_Derived_Record_Type we properly
6729 -- set this flag in the case of private extensions. See comments in
6730 -- point 9. just before body of Build_Derived_Record_Type.
6734 not (Inherit_Discrims
6735 or else Has_Unknown_Discriminants
(Derived_Type
)));
6738 -- STEP 3: initialize fields of derived type
6740 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
6741 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6743 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
6744 -- but cannot be interfaces
6746 if not Private_Extension
6747 and then Ekind
(Derived_Type
) /= E_Private_Type
6748 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
6750 if Interface_Present
(Type_Def
) then
6751 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
6754 Set_Interfaces
(Derived_Type
, No_Elist
);
6757 -- Fields inherited from the Parent_Type
6760 (Derived_Type
, Einfo
.Discard_Names
(Parent_Type
));
6761 Set_Has_Specified_Layout
6762 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
6763 Set_Is_Limited_Composite
6764 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
6765 Set_Is_Private_Composite
6766 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
6768 -- Fields inherited from the Parent_Base
6770 Set_Has_Controlled_Component
6771 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
6772 Set_Has_Non_Standard_Rep
6773 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
6774 Set_Has_Primitive_Operations
6775 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
6777 -- Fields inherited from the Parent_Base in the non-private case
6779 if Ekind
(Derived_Type
) = E_Record_Type
then
6780 Set_Has_Complex_Representation
6781 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
6784 -- Fields inherited from the Parent_Base for record types
6786 if Is_Record_Type
(Derived_Type
) then
6787 Set_OK_To_Reorder_Components
6788 (Derived_Type
, OK_To_Reorder_Components
(Parent_Base
));
6789 Set_Reverse_Bit_Order
6790 (Derived_Type
, Reverse_Bit_Order
(Parent_Base
));
6793 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6795 if not Is_Controlled
(Parent_Type
) then
6796 Set_Finalize_Storage_Only
6797 (Derived_Type
, Finalize_Storage_Only
(Parent_Type
));
6800 -- Set fields for private derived types
6802 if Is_Private_Type
(Derived_Type
) then
6803 Set_Depends_On_Private
(Derived_Type
, True);
6804 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
6806 -- Inherit fields from non private record types. If this is the
6807 -- completion of a derivation from a private type, the parent itself
6808 -- is private, and the attributes come from its full view, which must
6812 if Is_Private_Type
(Parent_Base
)
6813 and then not Is_Record_Type
(Parent_Base
)
6815 Set_Component_Alignment
6816 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
6818 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
6820 Set_Component_Alignment
6821 (Derived_Type
, Component_Alignment
(Parent_Base
));
6824 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
6828 -- Set fields for tagged types
6831 Set_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
6833 -- All tagged types defined in Ada.Finalization are controlled
6835 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
6836 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
6837 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
6839 Set_Is_Controlled
(Derived_Type
);
6841 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
6844 Make_Class_Wide_Type
(Derived_Type
);
6845 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
6847 if Has_Discriminants
(Derived_Type
)
6848 and then Constraint_Present
6850 Set_Stored_Constraint
6851 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
6854 if Ada_Version
>= Ada_05
then
6856 Ifaces_List
: Elist_Id
;
6859 -- Checks rules 3.9.4 (13/2 and 14/2)
6861 if Comes_From_Source
(Derived_Type
)
6862 and then not Is_Private_Type
(Derived_Type
)
6863 and then Is_Interface
(Parent_Type
)
6864 and then not Is_Interface
(Derived_Type
)
6866 if Is_Task_Interface
(Parent_Type
) then
6868 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
6871 elsif Is_Protected_Interface
(Parent_Type
) then
6873 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
6878 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
6880 Check_Interfaces
(N
, Type_Def
);
6882 -- Ada 2005 (AI-251): Collect the list of progenitors that are
6883 -- not already in the parents.
6887 Ifaces_List
=> Ifaces_List
,
6888 Exclude_Parents
=> True);
6890 Set_Interfaces
(Derived_Type
, Ifaces_List
);
6895 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
6896 Set_Has_Non_Standard_Rep
6897 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
6900 -- STEP 4: Inherit components from the parent base and constrain them.
6901 -- Apply the second transformation described in point 6. above.
6903 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
6904 or else not Has_Discriminants
(Parent_Type
)
6905 or else not Is_Constrained
(Parent_Type
)
6909 Constrs
:= Discriminant_Constraint
(Parent_Type
);
6914 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
6916 -- STEP 5a: Copy the parent record declaration for untagged types
6918 if not Is_Tagged
then
6920 -- Discriminant_Constraint (Derived_Type) has been properly
6921 -- constructed. Save it and temporarily set it to Empty because we
6922 -- do not want the call to New_Copy_Tree below to mess this list.
6924 if Has_Discriminants
(Derived_Type
) then
6925 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
6926 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
6928 Save_Discr_Constr
:= No_Elist
;
6931 -- Save the Etype field of Derived_Type. It is correctly set now,
6932 -- but the call to New_Copy tree may remap it to point to itself,
6933 -- which is not what we want. Ditto for the Next_Entity field.
6935 Save_Etype
:= Etype
(Derived_Type
);
6936 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
6938 -- Assoc_List maps all stored discriminants in the Parent_Base to
6939 -- stored discriminants in the Derived_Type. It is fundamental that
6940 -- no types or itypes with discriminants other than the stored
6941 -- discriminants appear in the entities declared inside
6942 -- Derived_Type, since the back end cannot deal with it.
6946 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
6948 -- Restore the fields saved prior to the New_Copy_Tree call
6949 -- and compute the stored constraint.
6951 Set_Etype
(Derived_Type
, Save_Etype
);
6952 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
6954 if Has_Discriminants
(Derived_Type
) then
6955 Set_Discriminant_Constraint
6956 (Derived_Type
, Save_Discr_Constr
);
6957 Set_Stored_Constraint
6958 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
6959 Replace_Components
(Derived_Type
, New_Decl
);
6962 -- Insert the new derived type declaration
6964 Rewrite
(N
, New_Decl
);
6966 -- STEP 5b: Complete the processing for record extensions in generics
6968 -- There is no completion for record extensions declared in the
6969 -- parameter part of a generic, so we need to complete processing for
6970 -- these generic record extensions here. The Record_Type_Definition call
6971 -- will change the Ekind of the components from E_Void to E_Component.
6973 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
6974 Record_Type_Definition
(Empty
, Derived_Type
);
6976 -- STEP 5c: Process the record extension for non private tagged types
6978 elsif not Private_Extension
then
6980 -- Add the _parent field in the derived type
6982 Expand_Record_Extension
(Derived_Type
, Type_Def
);
6984 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
6985 -- implemented interfaces if we are in expansion mode
6988 and then Has_Interfaces
(Derived_Type
)
6990 Add_Interface_Tag_Components
(N
, Derived_Type
);
6993 -- Analyze the record extension
6995 Record_Type_Definition
6996 (Record_Extension_Part
(Type_Def
), Derived_Type
);
7001 -- Nothing else to do if there is an error in the derivation.
7002 -- An unusual case: the full view may be derived from a type in an
7003 -- instance, when the partial view was used illegally as an actual
7004 -- in that instance, leading to a circular definition.
7006 if Etype
(Derived_Type
) = Any_Type
7007 or else Etype
(Parent_Type
) = Derived_Type
7012 -- Set delayed freeze and then derive subprograms, we need to do
7013 -- this in this order so that derived subprograms inherit the
7014 -- derived freeze if necessary.
7016 Set_Has_Delayed_Freeze
(Derived_Type
);
7018 if Derive_Subps
then
7019 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7022 -- If we have a private extension which defines a constrained derived
7023 -- type mark as constrained here after we have derived subprograms. See
7024 -- comment on point 9. just above the body of Build_Derived_Record_Type.
7026 if Private_Extension
and then Inherit_Discrims
then
7027 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
7028 Set_Is_Constrained
(Derived_Type
, True);
7029 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
7031 elsif Is_Constrained
(Parent_Type
) then
7033 (Derived_Type
, True);
7034 Set_Discriminant_Constraint
7035 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
7039 -- Update the class_wide type, which shares the now-completed
7040 -- entity list with its specific type.
7044 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
7046 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
7049 -- Update the scope of anonymous access types of discriminants and other
7050 -- components, to prevent scope anomalies in gigi, when the derivation
7051 -- appears in a scope nested within that of the parent.
7057 D
:= First_Entity
(Derived_Type
);
7058 while Present
(D
) loop
7059 if Ekind
(D
) = E_Discriminant
7060 or else Ekind
(D
) = E_Component
7062 if Is_Itype
(Etype
(D
))
7063 and then Ekind
(Etype
(D
)) = E_Anonymous_Access_Type
7065 Set_Scope
(Etype
(D
), Current_Scope
);
7072 end Build_Derived_Record_Type
;
7074 ------------------------
7075 -- Build_Derived_Type --
7076 ------------------------
7078 procedure Build_Derived_Type
7080 Parent_Type
: Entity_Id
;
7081 Derived_Type
: Entity_Id
;
7082 Is_Completion
: Boolean;
7083 Derive_Subps
: Boolean := True)
7085 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
7088 -- Set common attributes
7090 Set_Scope
(Derived_Type
, Current_Scope
);
7092 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7093 Set_Etype
(Derived_Type
, Parent_Base
);
7094 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
7096 Set_Size_Info
(Derived_Type
, Parent_Type
);
7097 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
7098 Set_Convention
(Derived_Type
, Convention
(Parent_Type
));
7099 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7101 -- The derived type inherits the representation clauses of the parent.
7102 -- However, for a private type that is completed by a derivation, there
7103 -- may be operation attributes that have been specified already (stream
7104 -- attributes and External_Tag) and those must be provided. Finally,
7105 -- if the partial view is a private extension, the representation items
7106 -- of the parent have been inherited already, and should not be chained
7107 -- twice to the derived type.
7109 if Is_Tagged_Type
(Parent_Type
)
7110 and then Present
(First_Rep_Item
(Derived_Type
))
7112 -- The existing items are either operational items or items inherited
7113 -- from a private extension declaration.
7117 -- Used to iterate over representation items of the derived type
7120 -- Last representation item of the (non-empty) representation
7121 -- item list of the derived type.
7123 Found
: Boolean := False;
7126 Rep
:= First_Rep_Item
(Derived_Type
);
7128 while Present
(Rep
) loop
7129 if Rep
= First_Rep_Item
(Parent_Type
) then
7134 Rep
:= Next_Rep_Item
(Rep
);
7136 if Present
(Rep
) then
7142 -- Here if we either encountered the parent type's first rep
7143 -- item on the derived type's rep item list (in which case
7144 -- Found is True, and we have nothing else to do), or if we
7145 -- reached the last rep item of the derived type, which is
7146 -- Last_Rep, in which case we further chain the parent type's
7147 -- rep items to those of the derived type.
7150 Set_Next_Rep_Item
(Last_Rep
, First_Rep_Item
(Parent_Type
));
7155 Set_First_Rep_Item
(Derived_Type
, First_Rep_Item
(Parent_Type
));
7158 case Ekind
(Parent_Type
) is
7159 when Numeric_Kind
=>
7160 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
7163 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
7167 | Class_Wide_Kind
=>
7168 Build_Derived_Record_Type
7169 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7172 when Enumeration_Kind
=>
7173 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
7176 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
7178 when Incomplete_Or_Private_Kind
=>
7179 Build_Derived_Private_Type
7180 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
7182 -- For discriminated types, the derivation includes deriving
7183 -- primitive operations. For others it is done below.
7185 if Is_Tagged_Type
(Parent_Type
)
7186 or else Has_Discriminants
(Parent_Type
)
7187 or else (Present
(Full_View
(Parent_Type
))
7188 and then Has_Discriminants
(Full_View
(Parent_Type
)))
7193 when Concurrent_Kind
=>
7194 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
7197 raise Program_Error
;
7200 if Etype
(Derived_Type
) = Any_Type
then
7204 -- Set delayed freeze and then derive subprograms, we need to do this
7205 -- in this order so that derived subprograms inherit the derived freeze
7208 Set_Has_Delayed_Freeze
(Derived_Type
);
7209 if Derive_Subps
then
7210 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7213 Set_Has_Primitive_Operations
7214 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
7215 end Build_Derived_Type
;
7217 -----------------------
7218 -- Build_Discriminal --
7219 -----------------------
7221 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
7222 D_Minal
: Entity_Id
;
7223 CR_Disc
: Entity_Id
;
7226 -- A discriminal has the same name as the discriminant
7229 Make_Defining_Identifier
(Sloc
(Discrim
),
7230 Chars
=> Chars
(Discrim
));
7232 Set_Ekind
(D_Minal
, E_In_Parameter
);
7233 Set_Mechanism
(D_Minal
, Default_Mechanism
);
7234 Set_Etype
(D_Minal
, Etype
(Discrim
));
7236 Set_Discriminal
(Discrim
, D_Minal
);
7237 Set_Discriminal_Link
(D_Minal
, Discrim
);
7239 -- For task types, build at once the discriminants of the corresponding
7240 -- record, which are needed if discriminants are used in entry defaults
7241 -- and in family bounds.
7243 if Is_Concurrent_Type
(Current_Scope
)
7244 or else Is_Limited_Type
(Current_Scope
)
7246 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
7248 Set_Ekind
(CR_Disc
, E_In_Parameter
);
7249 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
7250 Set_Etype
(CR_Disc
, Etype
(Discrim
));
7251 Set_Discriminal_Link
(CR_Disc
, Discrim
);
7252 Set_CR_Discriminant
(Discrim
, CR_Disc
);
7254 end Build_Discriminal
;
7256 ------------------------------------
7257 -- Build_Discriminant_Constraints --
7258 ------------------------------------
7260 function Build_Discriminant_Constraints
7263 Derived_Def
: Boolean := False) return Elist_Id
7265 C
: constant Node_Id
:= Constraint
(Def
);
7266 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
7268 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
7269 -- Saves the expression corresponding to a given discriminant in T
7271 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
7272 -- Return the Position number within array Discr_Expr of a discriminant
7273 -- D within the discriminant list of the discriminated type T.
7279 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
7283 Disc
:= First_Discriminant
(T
);
7284 for J
in Discr_Expr
'Range loop
7289 Next_Discriminant
(Disc
);
7292 -- Note: Since this function is called on discriminants that are
7293 -- known to belong to the discriminated type, falling through the
7294 -- loop with no match signals an internal compiler error.
7296 raise Program_Error
;
7299 -- Declarations local to Build_Discriminant_Constraints
7303 Elist
: constant Elist_Id
:= New_Elmt_List
;
7311 Discrim_Present
: Boolean := False;
7313 -- Start of processing for Build_Discriminant_Constraints
7316 -- The following loop will process positional associations only.
7317 -- For a positional association, the (single) discriminant is
7318 -- implicitly specified by position, in textual order (RM 3.7.2).
7320 Discr
:= First_Discriminant
(T
);
7321 Constr
:= First
(Constraints
(C
));
7322 for D
in Discr_Expr
'Range loop
7323 exit when Nkind
(Constr
) = N_Discriminant_Association
;
7326 Error_Msg_N
("too few discriminants given in constraint", C
);
7327 return New_Elmt_List
;
7329 elsif Nkind
(Constr
) = N_Range
7330 or else (Nkind
(Constr
) = N_Attribute_Reference
7332 Attribute_Name
(Constr
) = Name_Range
)
7335 ("a range is not a valid discriminant constraint", Constr
);
7336 Discr_Expr
(D
) := Error
;
7339 Analyze_And_Resolve
(Constr
, Base_Type
(Etype
(Discr
)));
7340 Discr_Expr
(D
) := Constr
;
7343 Next_Discriminant
(Discr
);
7347 if No
(Discr
) and then Present
(Constr
) then
7348 Error_Msg_N
("too many discriminants given in constraint", Constr
);
7349 return New_Elmt_List
;
7352 -- Named associations can be given in any order, but if both positional
7353 -- and named associations are used in the same discriminant constraint,
7354 -- then positional associations must occur first, at their normal
7355 -- position. Hence once a named association is used, the rest of the
7356 -- discriminant constraint must use only named associations.
7358 while Present
(Constr
) loop
7360 -- Positional association forbidden after a named association
7362 if Nkind
(Constr
) /= N_Discriminant_Association
then
7363 Error_Msg_N
("positional association follows named one", Constr
);
7364 return New_Elmt_List
;
7366 -- Otherwise it is a named association
7369 -- E records the type of the discriminants in the named
7370 -- association. All the discriminants specified in the same name
7371 -- association must have the same type.
7375 -- Search the list of discriminants in T to see if the simple name
7376 -- given in the constraint matches any of them.
7378 Id
:= First
(Selector_Names
(Constr
));
7379 while Present
(Id
) loop
7382 -- If Original_Discriminant is present, we are processing a
7383 -- generic instantiation and this is an instance node. We need
7384 -- to find the name of the corresponding discriminant in the
7385 -- actual record type T and not the name of the discriminant in
7386 -- the generic formal. Example:
7389 -- type G (D : int) is private;
7391 -- subtype W is G (D => 1);
7393 -- type Rec (X : int) is record ... end record;
7394 -- package Q is new P (G => Rec);
7396 -- At the point of the instantiation, formal type G is Rec
7397 -- and therefore when reanalyzing "subtype W is G (D => 1);"
7398 -- which really looks like "subtype W is Rec (D => 1);" at
7399 -- the point of instantiation, we want to find the discriminant
7400 -- that corresponds to D in Rec, i.e. X.
7402 if Present
(Original_Discriminant
(Id
)) then
7403 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
7407 Discr
:= First_Discriminant
(T
);
7408 while Present
(Discr
) loop
7409 if Chars
(Discr
) = Chars
(Id
) then
7414 Next_Discriminant
(Discr
);
7418 Error_Msg_N
("& does not match any discriminant", Id
);
7419 return New_Elmt_List
;
7421 -- The following is only useful for the benefit of generic
7422 -- instances but it does not interfere with other
7423 -- processing for the non-generic case so we do it in all
7424 -- cases (for generics this statement is executed when
7425 -- processing the generic definition, see comment at the
7426 -- beginning of this if statement).
7429 Set_Original_Discriminant
(Id
, Discr
);
7433 Position
:= Pos_Of_Discr
(T
, Discr
);
7435 if Present
(Discr_Expr
(Position
)) then
7436 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
7439 -- Each discriminant specified in the same named association
7440 -- must be associated with a separate copy of the
7441 -- corresponding expression.
7443 if Present
(Next
(Id
)) then
7444 Expr
:= New_Copy_Tree
(Expression
(Constr
));
7445 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
7447 Expr
:= Expression
(Constr
);
7450 Discr_Expr
(Position
) := Expr
;
7451 Analyze_And_Resolve
(Expr
, Base_Type
(Etype
(Discr
)));
7454 -- A discriminant association with more than one discriminant
7455 -- name is only allowed if the named discriminants are all of
7456 -- the same type (RM 3.7.1(8)).
7459 E
:= Base_Type
(Etype
(Discr
));
7461 elsif Base_Type
(Etype
(Discr
)) /= E
then
7463 ("all discriminants in an association " &
7464 "must have the same type", Id
);
7474 -- A discriminant constraint must provide exactly one value for each
7475 -- discriminant of the type (RM 3.7.1(8)).
7477 for J
in Discr_Expr
'Range loop
7478 if No
(Discr_Expr
(J
)) then
7479 Error_Msg_N
("too few discriminants given in constraint", C
);
7480 return New_Elmt_List
;
7484 -- Determine if there are discriminant expressions in the constraint
7486 for J
in Discr_Expr
'Range loop
7487 if Denotes_Discriminant
7488 (Discr_Expr
(J
), Check_Concurrent
=> True)
7490 Discrim_Present
:= True;
7494 -- Build an element list consisting of the expressions given in the
7495 -- discriminant constraint and apply the appropriate checks. The list
7496 -- is constructed after resolving any named discriminant associations
7497 -- and therefore the expressions appear in the textual order of the
7500 Discr
:= First_Discriminant
(T
);
7501 for J
in Discr_Expr
'Range loop
7502 if Discr_Expr
(J
) /= Error
then
7503 Append_Elmt
(Discr_Expr
(J
), Elist
);
7505 -- If any of the discriminant constraints is given by a
7506 -- discriminant and we are in a derived type declaration we
7507 -- have a discriminant renaming. Establish link between new
7508 -- and old discriminant.
7510 if Denotes_Discriminant
(Discr_Expr
(J
)) then
7512 Set_Corresponding_Discriminant
7513 (Entity
(Discr_Expr
(J
)), Discr
);
7516 -- Force the evaluation of non-discriminant expressions.
7517 -- If we have found a discriminant in the constraint 3.4(26)
7518 -- and 3.8(18) demand that no range checks are performed are
7519 -- after evaluation. If the constraint is for a component
7520 -- definition that has a per-object constraint, expressions are
7521 -- evaluated but not checked either. In all other cases perform
7525 if Discrim_Present
then
7528 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
7530 Has_Per_Object_Constraint
7531 (Defining_Identifier
(Parent
(Parent
(Def
))))
7535 elsif Is_Access_Type
(Etype
(Discr
)) then
7536 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
7539 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
7542 Force_Evaluation
(Discr_Expr
(J
));
7545 -- Check that the designated type of an access discriminant's
7546 -- expression is not a class-wide type unless the discriminant's
7547 -- designated type is also class-wide.
7549 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
7550 and then not Is_Class_Wide_Type
7551 (Designated_Type
(Etype
(Discr
)))
7552 and then Etype
(Discr_Expr
(J
)) /= Any_Type
7553 and then Is_Class_Wide_Type
7554 (Designated_Type
(Etype
(Discr_Expr
(J
))))
7556 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
7560 Next_Discriminant
(Discr
);
7564 end Build_Discriminant_Constraints
;
7566 ---------------------------------
7567 -- Build_Discriminated_Subtype --
7568 ---------------------------------
7570 procedure Build_Discriminated_Subtype
7574 Related_Nod
: Node_Id
;
7575 For_Access
: Boolean := False)
7577 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
7578 Constrained
: constant Boolean :=
7580 and then not Is_Empty_Elmt_List
(Elist
)
7581 and then not Is_Class_Wide_Type
(T
))
7582 or else Is_Constrained
(T
);
7585 if Ekind
(T
) = E_Record_Type
then
7587 Set_Ekind
(Def_Id
, E_Private_Subtype
);
7588 Set_Is_For_Access_Subtype
(Def_Id
, True);
7590 Set_Ekind
(Def_Id
, E_Record_Subtype
);
7593 -- Inherit preelaboration flag from base, for types for which it
7594 -- may have been set: records, private types, protected types.
7596 Set_Known_To_Have_Preelab_Init
7597 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
7599 elsif Ekind
(T
) = E_Task_Type
then
7600 Set_Ekind
(Def_Id
, E_Task_Subtype
);
7602 elsif Ekind
(T
) = E_Protected_Type
then
7603 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
7604 Set_Known_To_Have_Preelab_Init
7605 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
7607 elsif Is_Private_Type
(T
) then
7608 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
7609 Set_Known_To_Have_Preelab_Init
7610 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
7612 elsif Is_Class_Wide_Type
(T
) then
7613 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
7616 -- Incomplete type. Attach subtype to list of dependents, to be
7617 -- completed with full view of parent type, unless is it the
7618 -- designated subtype of a record component within an init_proc.
7619 -- This last case arises for a component of an access type whose
7620 -- designated type is incomplete (e.g. a Taft Amendment type).
7621 -- The designated subtype is within an inner scope, and needs no
7622 -- elaboration, because only the access type is needed in the
7623 -- initialization procedure.
7625 Set_Ekind
(Def_Id
, Ekind
(T
));
7627 if For_Access
and then Within_Init_Proc
then
7630 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
7634 Set_Etype
(Def_Id
, T
);
7635 Init_Size_Align
(Def_Id
);
7636 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
7637 Set_Is_Constrained
(Def_Id
, Constrained
);
7639 Set_First_Entity
(Def_Id
, First_Entity
(T
));
7640 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
7642 -- If the subtype is the completion of a private declaration, there may
7643 -- have been representation clauses for the partial view, and they must
7644 -- be preserved. Build_Derived_Type chains the inherited clauses with
7645 -- the ones appearing on the extension. If this comes from a subtype
7646 -- declaration, all clauses are inherited.
7648 if No
(First_Rep_Item
(Def_Id
)) then
7649 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
7652 if Is_Tagged_Type
(T
) then
7653 Set_Is_Tagged_Type
(Def_Id
);
7654 Make_Class_Wide_Type
(Def_Id
);
7657 Set_Stored_Constraint
(Def_Id
, No_Elist
);
7660 Set_Discriminant_Constraint
(Def_Id
, Elist
);
7661 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
7664 if Is_Tagged_Type
(T
) then
7666 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
7667 -- concurrent record type (which has the list of primitive
7670 if Ada_Version
>= Ada_05
7671 and then Is_Concurrent_Type
(T
)
7673 Set_Corresponding_Record_Type
(Def_Id
,
7674 Corresponding_Record_Type
(T
));
7676 Set_Primitive_Operations
(Def_Id
, Primitive_Operations
(T
));
7679 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
7682 -- Subtypes introduced by component declarations do not need to be
7683 -- marked as delayed, and do not get freeze nodes, because the semantics
7684 -- verifies that the parents of the subtypes are frozen before the
7685 -- enclosing record is frozen.
7687 if not Is_Type
(Scope
(Def_Id
)) then
7688 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
7690 if Is_Private_Type
(T
)
7691 and then Present
(Full_View
(T
))
7693 Conditional_Delay
(Def_Id
, Full_View
(T
));
7695 Conditional_Delay
(Def_Id
, T
);
7699 if Is_Record_Type
(T
) then
7700 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
7703 and then not Is_Empty_Elmt_List
(Elist
)
7704 and then not For_Access
7706 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
7707 elsif not For_Access
then
7708 Set_Cloned_Subtype
(Def_Id
, T
);
7711 end Build_Discriminated_Subtype
;
7713 ---------------------------
7714 -- Build_Itype_Reference --
7715 ---------------------------
7717 procedure Build_Itype_Reference
7721 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
7723 Set_Itype
(IR
, Ityp
);
7724 Insert_After
(Nod
, IR
);
7725 end Build_Itype_Reference
;
7727 ------------------------
7728 -- Build_Scalar_Bound --
7729 ------------------------
7731 function Build_Scalar_Bound
7734 Der_T
: Entity_Id
) return Node_Id
7736 New_Bound
: Entity_Id
;
7739 -- Note: not clear why this is needed, how can the original bound
7740 -- be unanalyzed at this point? and if it is, what business do we
7741 -- have messing around with it? and why is the base type of the
7742 -- parent type the right type for the resolution. It probably is
7743 -- not! It is OK for the new bound we are creating, but not for
7744 -- the old one??? Still if it never happens, no problem!
7746 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
7748 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
7749 New_Bound
:= New_Copy
(Bound
);
7750 Set_Etype
(New_Bound
, Der_T
);
7751 Set_Analyzed
(New_Bound
);
7753 elsif Is_Entity_Name
(Bound
) then
7754 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
7756 -- The following is almost certainly wrong. What business do we have
7757 -- relocating a node (Bound) that is presumably still attached to
7758 -- the tree elsewhere???
7761 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
7764 Set_Etype
(New_Bound
, Der_T
);
7766 end Build_Scalar_Bound
;
7768 --------------------------------
7769 -- Build_Underlying_Full_View --
7770 --------------------------------
7772 procedure Build_Underlying_Full_View
7777 Loc
: constant Source_Ptr
:= Sloc
(N
);
7778 Subt
: constant Entity_Id
:=
7779 Make_Defining_Identifier
7780 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
7787 procedure Set_Discriminant_Name
(Id
: Node_Id
);
7788 -- If the derived type has discriminants, they may rename discriminants
7789 -- of the parent. When building the full view of the parent, we need to
7790 -- recover the names of the original discriminants if the constraint is
7791 -- given by named associations.
7793 ---------------------------
7794 -- Set_Discriminant_Name --
7795 ---------------------------
7797 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
7801 Set_Original_Discriminant
(Id
, Empty
);
7803 if Has_Discriminants
(Typ
) then
7804 Disc
:= First_Discriminant
(Typ
);
7805 while Present
(Disc
) loop
7806 if Chars
(Disc
) = Chars
(Id
)
7807 and then Present
(Corresponding_Discriminant
(Disc
))
7809 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
7811 Next_Discriminant
(Disc
);
7814 end Set_Discriminant_Name
;
7816 -- Start of processing for Build_Underlying_Full_View
7819 if Nkind
(N
) = N_Full_Type_Declaration
then
7820 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
7822 elsif Nkind
(N
) = N_Subtype_Declaration
then
7823 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
7825 elsif Nkind
(N
) = N_Component_Declaration
then
7828 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
7831 raise Program_Error
;
7834 C
:= First
(Constraints
(Constr
));
7835 while Present
(C
) loop
7836 if Nkind
(C
) = N_Discriminant_Association
then
7837 Id
:= First
(Selector_Names
(C
));
7838 while Present
(Id
) loop
7839 Set_Discriminant_Name
(Id
);
7848 Make_Subtype_Declaration
(Loc
,
7849 Defining_Identifier
=> Subt
,
7850 Subtype_Indication
=>
7851 Make_Subtype_Indication
(Loc
,
7852 Subtype_Mark
=> New_Reference_To
(Par
, Loc
),
7853 Constraint
=> New_Copy_Tree
(Constr
)));
7855 -- If this is a component subtype for an outer itype, it is not
7856 -- a list member, so simply set the parent link for analysis: if
7857 -- the enclosing type does not need to be in a declarative list,
7858 -- neither do the components.
7860 if Is_List_Member
(N
)
7861 and then Nkind
(N
) /= N_Component_Declaration
7863 Insert_Before
(N
, Indic
);
7865 Set_Parent
(Indic
, Parent
(N
));
7869 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
7870 end Build_Underlying_Full_View
;
7872 -------------------------------
7873 -- Check_Abstract_Overriding --
7874 -------------------------------
7876 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
7877 Alias_Subp
: Entity_Id
;
7884 Op_List
:= Primitive_Operations
(T
);
7886 -- Loop to check primitive operations
7888 Elmt
:= First_Elmt
(Op_List
);
7889 while Present
(Elmt
) loop
7890 Subp
:= Node
(Elmt
);
7891 Alias_Subp
:= Alias
(Subp
);
7893 -- Inherited subprograms are identified by the fact that they do not
7894 -- come from source, and the associated source location is the
7895 -- location of the first subtype of the derived type.
7897 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
7898 -- subprograms that "require overriding".
7900 -- Special exception, do not complain about failure to override the
7901 -- stream routines _Input and _Output, as well as the primitive
7902 -- operations used in dispatching selects since we always provide
7903 -- automatic overridings for these subprograms.
7905 -- Also ignore this rule for convention CIL since .NET libraries
7906 -- do bizarre things with interfaces???
7908 -- The partial view of T may have been a private extension, for
7909 -- which inherited functions dispatching on result are abstract.
7910 -- If the full view is a null extension, there is no need for
7911 -- overriding in Ada2005, but wrappers need to be built for them
7912 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
7914 if Is_Null_Extension
(T
)
7915 and then Has_Controlling_Result
(Subp
)
7916 and then Ada_Version
>= Ada_05
7917 and then Present
(Alias_Subp
)
7918 and then not Comes_From_Source
(Subp
)
7919 and then not Is_Abstract_Subprogram
(Alias_Subp
)
7920 and then not Is_Access_Type
(Etype
(Subp
))
7924 -- Ada 2005 (AI-251): Internal entities of interfaces need no
7925 -- processing because this check is done with the aliased
7928 elsif Present
(Interface_Alias
(Subp
)) then
7931 elsif (Is_Abstract_Subprogram
(Subp
)
7932 or else Requires_Overriding
(Subp
)
7934 (Has_Controlling_Result
(Subp
)
7935 and then Present
(Alias_Subp
)
7936 and then not Comes_From_Source
(Subp
)
7937 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
7938 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
7939 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
7940 and then not Is_Abstract_Type
(T
)
7941 and then Convention
(T
) /= Convention_CIL
7942 and then not Is_Predefined_Interface_Primitive
(Subp
)
7944 -- Ada 2005 (AI-251): Do not consider hidden entities associated
7945 -- with abstract interface types because the check will be done
7946 -- with the aliased entity (otherwise we generate a duplicated
7949 and then not Present
(Interface_Alias
(Subp
))
7951 if Present
(Alias_Subp
) then
7953 -- Only perform the check for a derived subprogram when the
7954 -- type has an explicit record extension. This avoids incorrect
7955 -- flagging of abstract subprograms for the case of a type
7956 -- without an extension that is derived from a formal type
7957 -- with a tagged actual (can occur within a private part).
7959 -- Ada 2005 (AI-391): In the case of an inherited function with
7960 -- a controlling result of the type, the rule does not apply if
7961 -- the type is a null extension (unless the parent function
7962 -- itself is abstract, in which case the function must still be
7963 -- be overridden). The expander will generate an overriding
7964 -- wrapper function calling the parent subprogram (see
7965 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
7967 Type_Def
:= Type_Definition
(Parent
(T
));
7969 if Nkind
(Type_Def
) = N_Derived_Type_Definition
7970 and then Present
(Record_Extension_Part
(Type_Def
))
7972 (Ada_Version
< Ada_05
7973 or else not Is_Null_Extension
(T
)
7974 or else Ekind
(Subp
) = E_Procedure
7975 or else not Has_Controlling_Result
(Subp
)
7976 or else Is_Abstract_Subprogram
(Alias_Subp
)
7977 or else Requires_Overriding
(Subp
)
7978 or else Is_Access_Type
(Etype
(Subp
)))
7980 -- Avoid reporting error in case of abstract predefined
7981 -- primitive inherited from interface type because the
7982 -- body of internally generated predefined primitives
7983 -- of tagged types are generated later by Freeze_Type
7985 if Is_Interface
(Root_Type
(T
))
7986 and then Is_Abstract_Subprogram
(Subp
)
7987 and then Is_Predefined_Dispatching_Operation
(Subp
)
7988 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
7994 ("type must be declared abstract or & overridden",
7997 -- Traverse the whole chain of aliased subprograms to
7998 -- complete the error notification. This is especially
7999 -- useful for traceability of the chain of entities when
8000 -- the subprogram corresponds with an interface
8001 -- subprogram (which may be defined in another package).
8003 if Present
(Alias_Subp
) then
8009 while Present
(Alias
(E
)) loop
8010 Error_Msg_Sloc
:= Sloc
(E
);
8012 ("\& has been inherited #", T
, Subp
);
8016 Error_Msg_Sloc
:= Sloc
(E
);
8018 ("\& has been inherited from subprogram #",
8024 -- Ada 2005 (AI-345): Protected or task type implementing
8025 -- abstract interfaces.
8027 elsif Is_Concurrent_Record_Type
(T
)
8028 and then Present
(Interfaces
(T
))
8030 -- The controlling formal of Subp must be of mode "out",
8031 -- "in out" or an access-to-variable to be overridden.
8033 -- Error message below needs rewording (remember comma
8034 -- in -gnatj mode) ???
8036 if Ekind
(First_Formal
(Subp
)) = E_In_Parameter
then
8037 if not Is_Predefined_Dispatching_Operation
(Subp
) then
8039 ("first formal of & must be of mode `OUT`, " &
8040 "`IN OUT` or access-to-variable", T
, Subp
);
8042 ("\to be overridden by protected procedure or " &
8043 "entry (RM 9.4(11.9/2))", T
);
8046 -- Some other kind of overriding failure
8050 ("interface subprogram & must be overridden",
8056 Error_Msg_Node_2
:= T
;
8058 ("abstract subprogram& not allowed for type&", Subp
);
8060 -- Also post unconditional warning on the type (unconditional
8061 -- so that if there are more than one of these cases, we get
8062 -- them all, and not just the first one).
8064 Error_Msg_Node_2
:= Subp
;
8066 ("nonabstract type& has abstract subprogram&!", T
);
8070 -- Ada 2005 (AI05-0030): Inspect hidden subprograms which provide
8071 -- the mapping between interface and implementing type primitives.
8072 -- If the interface alias is marked as Implemented_By_Entry, the
8073 -- alias must be an entry wrapper.
8075 if Ada_Version
>= Ada_05
8076 and then Is_Hidden
(Subp
)
8077 and then Present
(Interface_Alias
(Subp
))
8078 and then Implemented_By_Entry
(Interface_Alias
(Subp
))
8079 and then Present
(Alias_Subp
)
8081 (not Is_Primitive_Wrapper
(Alias_Subp
)
8082 or else Ekind
(Wrapped_Entity
(Alias_Subp
)) /= E_Entry
)
8085 Error_Ent
: Entity_Id
:= T
;
8088 if Is_Concurrent_Record_Type
(Error_Ent
) then
8089 Error_Ent
:= Corresponding_Concurrent_Type
(Error_Ent
);
8092 Error_Msg_Node_2
:= Interface_Alias
(Subp
);
8094 ("type & must implement abstract subprogram & with an entry",
8095 Error_Ent
, Error_Ent
);
8101 end Check_Abstract_Overriding
;
8103 ------------------------------------------------
8104 -- Check_Access_Discriminant_Requires_Limited --
8105 ------------------------------------------------
8107 procedure Check_Access_Discriminant_Requires_Limited
8112 -- A discriminant_specification for an access discriminant shall appear
8113 -- only in the declaration for a task or protected type, or for a type
8114 -- with the reserved word 'limited' in its definition or in one of its
8115 -- ancestors. (RM 3.7(10))
8117 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
8118 and then not Is_Concurrent_Type
(Current_Scope
)
8119 and then not Is_Concurrent_Record_Type
(Current_Scope
)
8120 and then not Is_Limited_Record
(Current_Scope
)
8121 and then Ekind
(Current_Scope
) /= E_Limited_Private_Type
8124 ("access discriminants allowed only for limited types", Loc
);
8126 end Check_Access_Discriminant_Requires_Limited
;
8128 -----------------------------------
8129 -- Check_Aliased_Component_Types --
8130 -----------------------------------
8132 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
8136 -- ??? Also need to check components of record extensions, but not
8137 -- components of protected types (which are always limited).
8139 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
8140 -- types to be unconstrained. This is safe because it is illegal to
8141 -- create access subtypes to such types with explicit discriminant
8144 if not Is_Limited_Type
(T
) then
8145 if Ekind
(T
) = E_Record_Type
then
8146 C
:= First_Component
(T
);
8147 while Present
(C
) loop
8149 and then Has_Discriminants
(Etype
(C
))
8150 and then not Is_Constrained
(Etype
(C
))
8151 and then not In_Instance_Body
8152 and then Ada_Version
< Ada_05
8155 ("aliased component must be constrained (RM 3.6(11))",
8162 elsif Ekind
(T
) = E_Array_Type
then
8163 if Has_Aliased_Components
(T
)
8164 and then Has_Discriminants
(Component_Type
(T
))
8165 and then not Is_Constrained
(Component_Type
(T
))
8166 and then not In_Instance_Body
8167 and then Ada_Version
< Ada_05
8170 ("aliased component type must be constrained (RM 3.6(11))",
8175 end Check_Aliased_Component_Types
;
8177 ----------------------
8178 -- Check_Completion --
8179 ----------------------
8181 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
8184 procedure Post_Error
;
8185 -- Post error message for lack of completion for entity E
8191 procedure Post_Error
is
8193 if not Comes_From_Source
(E
) then
8195 if Ekind
(E
) = E_Task_Type
8196 or else Ekind
(E
) = E_Protected_Type
8198 -- It may be an anonymous protected type created for a
8199 -- single variable. Post error on variable, if present.
8205 Var
:= First_Entity
(Current_Scope
);
8206 while Present
(Var
) loop
8207 exit when Etype
(Var
) = E
8208 and then Comes_From_Source
(Var
);
8213 if Present
(Var
) then
8220 -- If a generated entity has no completion, then either previous
8221 -- semantic errors have disabled the expansion phase, or else we had
8222 -- missing subunits, or else we are compiling without expansion,
8223 -- or else something is very wrong.
8225 if not Comes_From_Source
(E
) then
8227 (Serious_Errors_Detected
> 0
8228 or else Configurable_Run_Time_Violations
> 0
8229 or else Subunits_Missing
8230 or else not Expander_Active
);
8233 -- Here for source entity
8236 -- Here if no body to post the error message, so we post the error
8237 -- on the declaration that has no completion. This is not really
8238 -- the right place to post it, think about this later ???
8240 if No
(Body_Id
) then
8243 ("missing full declaration for }", Parent
(E
), E
);
8246 ("missing body for &", Parent
(E
), E
);
8249 -- Package body has no completion for a declaration that appears
8250 -- in the corresponding spec. Post error on the body, with a
8251 -- reference to the non-completed declaration.
8254 Error_Msg_Sloc
:= Sloc
(E
);
8258 ("missing full declaration for }!", Body_Id
, E
);
8260 elsif Is_Overloadable
(E
)
8261 and then Current_Entity_In_Scope
(E
) /= E
8263 -- It may be that the completion is mistyped and appears as
8264 -- a distinct overloading of the entity.
8267 Candidate
: constant Entity_Id
:=
8268 Current_Entity_In_Scope
(E
);
8269 Decl
: constant Node_Id
:=
8270 Unit_Declaration_Node
(Candidate
);
8273 if Is_Overloadable
(Candidate
)
8274 and then Ekind
(Candidate
) = Ekind
(E
)
8275 and then Nkind
(Decl
) = N_Subprogram_Body
8276 and then Acts_As_Spec
(Decl
)
8278 Check_Type_Conformant
(Candidate
, E
);
8281 Error_Msg_NE
("missing body for & declared#!",
8286 Error_Msg_NE
("missing body for & declared#!",
8293 -- Start processing for Check_Completion
8296 E
:= First_Entity
(Current_Scope
);
8297 while Present
(E
) loop
8298 if Is_Intrinsic_Subprogram
(E
) then
8301 -- The following situation requires special handling: a child unit
8302 -- that appears in the context clause of the body of its parent:
8304 -- procedure Parent.Child (...);
8306 -- with Parent.Child;
8307 -- package body Parent is
8309 -- Here Parent.Child appears as a local entity, but should not be
8310 -- flagged as requiring completion, because it is a compilation
8313 -- Ignore missing completion for a subprogram that does not come from
8314 -- source (including the _Call primitive operation of RAS types,
8315 -- which has to have the flag Comes_From_Source for other purposes):
8316 -- we assume that the expander will provide the missing completion.
8318 elsif Ekind
(E
) = E_Function
8319 or else Ekind
(E
) = E_Procedure
8320 or else Ekind
(E
) = E_Generic_Function
8321 or else Ekind
(E
) = E_Generic_Procedure
8323 if not Has_Completion
(E
)
8324 and then not (Is_Subprogram
(E
)
8325 and then Is_Abstract_Subprogram
(E
))
8326 and then not (Is_Subprogram
(E
)
8328 (not Comes_From_Source
(E
)
8329 or else Chars
(E
) = Name_uCall
))
8330 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
8332 and then Chars
(E
) /= Name_uSize
8337 elsif Is_Entry
(E
) then
8338 if not Has_Completion
(E
) and then
8339 (Ekind
(Scope
(E
)) = E_Protected_Object
8340 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
8345 elsif Is_Package_Or_Generic_Package
(E
) then
8346 if Unit_Requires_Body
(E
) then
8347 if not Has_Completion
(E
)
8348 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
8354 elsif not Is_Child_Unit
(E
) then
8355 May_Need_Implicit_Body
(E
);
8358 elsif Ekind
(E
) = E_Incomplete_Type
8359 and then No
(Underlying_Type
(E
))
8363 elsif (Ekind
(E
) = E_Task_Type
or else
8364 Ekind
(E
) = E_Protected_Type
)
8365 and then not Has_Completion
(E
)
8369 -- A single task declared in the current scope is a constant, verify
8370 -- that the body of its anonymous type is in the same scope. If the
8371 -- task is defined elsewhere, this may be a renaming declaration for
8372 -- which no completion is needed.
8374 elsif Ekind
(E
) = E_Constant
8375 and then Ekind
(Etype
(E
)) = E_Task_Type
8376 and then not Has_Completion
(Etype
(E
))
8377 and then Scope
(Etype
(E
)) = Current_Scope
8381 elsif Ekind
(E
) = E_Protected_Object
8382 and then not Has_Completion
(Etype
(E
))
8386 elsif Ekind
(E
) = E_Record_Type
then
8387 if Is_Tagged_Type
(E
) then
8388 Check_Abstract_Overriding
(E
);
8389 Check_Conventions
(E
);
8392 Check_Aliased_Component_Types
(E
);
8394 elsif Ekind
(E
) = E_Array_Type
then
8395 Check_Aliased_Component_Types
(E
);
8401 end Check_Completion
;
8403 ----------------------------
8404 -- Check_Delta_Expression --
8405 ----------------------------
8407 procedure Check_Delta_Expression
(E
: Node_Id
) is
8409 if not (Is_Real_Type
(Etype
(E
))) then
8410 Wrong_Type
(E
, Any_Real
);
8412 elsif not Is_OK_Static_Expression
(E
) then
8413 Flag_Non_Static_Expr
8414 ("non-static expression used for delta value!", E
);
8416 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
8417 Error_Msg_N
("delta expression must be positive", E
);
8423 -- If any of above errors occurred, then replace the incorrect
8424 -- expression by the real 0.1, which should prevent further errors.
8427 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
8428 Analyze_And_Resolve
(E
, Standard_Float
);
8429 end Check_Delta_Expression
;
8431 -----------------------------
8432 -- Check_Digits_Expression --
8433 -----------------------------
8435 procedure Check_Digits_Expression
(E
: Node_Id
) is
8437 if not (Is_Integer_Type
(Etype
(E
))) then
8438 Wrong_Type
(E
, Any_Integer
);
8440 elsif not Is_OK_Static_Expression
(E
) then
8441 Flag_Non_Static_Expr
8442 ("non-static expression used for digits value!", E
);
8444 elsif Expr_Value
(E
) <= 0 then
8445 Error_Msg_N
("digits value must be greater than zero", E
);
8451 -- If any of above errors occurred, then replace the incorrect
8452 -- expression by the integer 1, which should prevent further errors.
8454 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
8455 Analyze_And_Resolve
(E
, Standard_Integer
);
8457 end Check_Digits_Expression
;
8459 --------------------------
8460 -- Check_Initialization --
8461 --------------------------
8463 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
8465 if Is_Limited_Type
(T
)
8466 and then not In_Instance
8467 and then not In_Inlined_Body
8469 if not OK_For_Limited_Init
(Exp
) then
8471 -- In GNAT mode, this is just a warning, to allow it to be evilly
8472 -- turned off. Otherwise it is a real error.
8476 ("?cannot initialize entities of limited type!", Exp
);
8478 elsif Ada_Version
< Ada_05
then
8480 ("cannot initialize entities of limited type", Exp
);
8481 Explain_Limited_Type
(T
, Exp
);
8484 -- Specialize error message according to kind of illegal
8485 -- initial expression.
8487 if Nkind
(Exp
) = N_Type_Conversion
8488 and then Nkind
(Expression
(Exp
)) = N_Function_Call
8491 ("illegal context for call"
8492 & " to function with limited result", Exp
);
8496 ("initialization of limited object requires aggregate "
8497 & "or function call", Exp
);
8502 end Check_Initialization
;
8504 ----------------------
8505 -- Check_Interfaces --
8506 ----------------------
8508 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
8509 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
8512 Iface_Def
: Node_Id
;
8513 Iface_Typ
: Entity_Id
;
8514 Parent_Node
: Node_Id
;
8516 Is_Task
: Boolean := False;
8517 -- Set True if parent type or any progenitor is a task interface
8519 Is_Protected
: Boolean := False;
8520 -- Set True if parent type or any progenitor is a protected interface
8522 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
8523 -- Check that a progenitor is compatible with declaration.
8524 -- Error is posted on Error_Node.
8530 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
8531 Iface_Id
: constant Entity_Id
:=
8532 Defining_Identifier
(Parent
(Iface_Def
));
8536 if Nkind
(N
) = N_Private_Extension_Declaration
then
8539 Type_Def
:= Type_Definition
(N
);
8542 if Is_Task_Interface
(Iface_Id
) then
8545 elsif Is_Protected_Interface
(Iface_Id
) then
8546 Is_Protected
:= True;
8549 -- Check that the characteristics of the progenitor are compatible
8550 -- with the explicit qualifier in the declaration.
8551 -- The check only applies to qualifiers that come from source.
8552 -- Limited_Present also appears in the declaration of corresponding
8553 -- records, and the check does not apply to them.
8555 if Limited_Present
(Type_Def
)
8557 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
8559 if Is_Limited_Interface
(Parent_Type
)
8560 and then not Is_Limited_Interface
(Iface_Id
)
8563 ("progenitor& must be limited interface",
8564 Error_Node
, Iface_Id
);
8567 (Task_Present
(Iface_Def
)
8568 or else Protected_Present
(Iface_Def
)
8569 or else Synchronized_Present
(Iface_Def
))
8570 and then Nkind
(N
) /= N_Private_Extension_Declaration
8573 ("progenitor& must be limited interface",
8574 Error_Node
, Iface_Id
);
8577 -- Protected interfaces can only inherit from limited, synchronized
8578 -- or protected interfaces.
8580 elsif Nkind
(N
) = N_Full_Type_Declaration
8581 and then Protected_Present
(Type_Def
)
8583 if Limited_Present
(Iface_Def
)
8584 or else Synchronized_Present
(Iface_Def
)
8585 or else Protected_Present
(Iface_Def
)
8589 elsif Task_Present
(Iface_Def
) then
8590 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
8591 & " from task interface", Error_Node
);
8594 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
8595 & " from non-limited interface", Error_Node
);
8598 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
8599 -- limited and synchronized.
8601 elsif Synchronized_Present
(Type_Def
) then
8602 if Limited_Present
(Iface_Def
)
8603 or else Synchronized_Present
(Iface_Def
)
8607 elsif Protected_Present
(Iface_Def
)
8608 and then Nkind
(N
) /= N_Private_Extension_Declaration
8610 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
8611 & " from protected interface", Error_Node
);
8613 elsif Task_Present
(Iface_Def
)
8614 and then Nkind
(N
) /= N_Private_Extension_Declaration
8616 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
8617 & " from task interface", Error_Node
);
8619 elsif not Is_Limited_Interface
(Iface_Id
) then
8620 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
8621 & " from non-limited interface", Error_Node
);
8624 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
8625 -- synchronized or task interfaces.
8627 elsif Nkind
(N
) = N_Full_Type_Declaration
8628 and then Task_Present
(Type_Def
)
8630 if Limited_Present
(Iface_Def
)
8631 or else Synchronized_Present
(Iface_Def
)
8632 or else Task_Present
(Iface_Def
)
8636 elsif Protected_Present
(Iface_Def
) then
8637 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
8638 & " protected interface", Error_Node
);
8641 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
8642 & " non-limited interface", Error_Node
);
8647 -- Start of processing for Check_Interfaces
8650 if Is_Interface
(Parent_Type
) then
8651 if Is_Task_Interface
(Parent_Type
) then
8654 elsif Is_Protected_Interface
(Parent_Type
) then
8655 Is_Protected
:= True;
8659 if Nkind
(N
) = N_Private_Extension_Declaration
then
8661 -- Check that progenitors are compatible with declaration
8663 Iface
:= First
(Interface_List
(Def
));
8664 while Present
(Iface
) loop
8665 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
8667 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
8668 Iface_Def
:= Type_Definition
(Parent_Node
);
8670 if not Is_Interface
(Iface_Typ
) then
8671 Diagnose_Interface
(Iface
, Iface_Typ
);
8674 Check_Ifaces
(Iface_Def
, Iface
);
8680 if Is_Task
and Is_Protected
then
8682 ("type cannot derive from task and protected interface", N
);
8688 -- Full type declaration of derived type.
8689 -- Check compatibility with parent if it is interface type
8691 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
8692 and then Is_Interface
(Parent_Type
)
8694 Parent_Node
:= Parent
(Parent_Type
);
8696 -- More detailed checks for interface varieties
8699 (Iface_Def
=> Type_Definition
(Parent_Node
),
8700 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
8703 Iface
:= First
(Interface_List
(Def
));
8704 while Present
(Iface
) loop
8705 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
8707 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
8708 Iface_Def
:= Type_Definition
(Parent_Node
);
8710 if not Is_Interface
(Iface_Typ
) then
8711 Diagnose_Interface
(Iface
, Iface_Typ
);
8714 -- "The declaration of a specific descendant of an interface
8715 -- type freezes the interface type" RM 13.14
8717 Freeze_Before
(N
, Iface_Typ
);
8718 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
8724 if Is_Task
and Is_Protected
then
8726 ("type cannot derive from task and protected interface", N
);
8728 end Check_Interfaces
;
8730 ------------------------------------
8731 -- Check_Or_Process_Discriminants --
8732 ------------------------------------
8734 -- If an incomplete or private type declaration was already given for the
8735 -- type, the discriminants may have already been processed if they were
8736 -- present on the incomplete declaration. In this case a full conformance
8737 -- check is performed otherwise just process them.
8739 procedure Check_Or_Process_Discriminants
8742 Prev
: Entity_Id
:= Empty
)
8745 if Has_Discriminants
(T
) then
8747 -- Make the discriminants visible to component declarations
8754 D
:= First_Discriminant
(T
);
8755 while Present
(D
) loop
8756 Prev
:= Current_Entity
(D
);
8757 Set_Current_Entity
(D
);
8758 Set_Is_Immediately_Visible
(D
);
8759 Set_Homonym
(D
, Prev
);
8761 -- Ada 2005 (AI-230): Access discriminant allowed in
8762 -- non-limited record types.
8764 if Ada_Version
< Ada_05
then
8766 -- This restriction gets applied to the full type here. It
8767 -- has already been applied earlier to the partial view.
8769 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
8772 Next_Discriminant
(D
);
8776 elsif Present
(Discriminant_Specifications
(N
)) then
8777 Process_Discriminants
(N
, Prev
);
8779 end Check_Or_Process_Discriminants
;
8781 ----------------------
8782 -- Check_Real_Bound --
8783 ----------------------
8785 procedure Check_Real_Bound
(Bound
: Node_Id
) is
8787 if not Is_Real_Type
(Etype
(Bound
)) then
8789 ("bound in real type definition must be of real type", Bound
);
8791 elsif not Is_OK_Static_Expression
(Bound
) then
8792 Flag_Non_Static_Expr
8793 ("non-static expression used for real type bound!", Bound
);
8800 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
8802 Resolve
(Bound
, Standard_Float
);
8803 end Check_Real_Bound
;
8805 ------------------------------
8806 -- Complete_Private_Subtype --
8807 ------------------------------
8809 procedure Complete_Private_Subtype
8812 Full_Base
: Entity_Id
;
8813 Related_Nod
: Node_Id
)
8815 Save_Next_Entity
: Entity_Id
;
8816 Save_Homonym
: Entity_Id
;
8819 -- Set semantic attributes for (implicit) private subtype completion.
8820 -- If the full type has no discriminants, then it is a copy of the full
8821 -- view of the base. Otherwise, it is a subtype of the base with a
8822 -- possible discriminant constraint. Save and restore the original
8823 -- Next_Entity field of full to ensure that the calls to Copy_Node
8824 -- do not corrupt the entity chain.
8826 -- Note that the type of the full view is the same entity as the type of
8827 -- the partial view. In this fashion, the subtype has access to the
8828 -- correct view of the parent.
8830 Save_Next_Entity
:= Next_Entity
(Full
);
8831 Save_Homonym
:= Homonym
(Priv
);
8833 case Ekind
(Full_Base
) is
8834 when E_Record_Type |
8840 Copy_Node
(Priv
, Full
);
8842 Set_Has_Discriminants
(Full
, Has_Discriminants
(Full_Base
));
8843 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
8844 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
8847 Copy_Node
(Full_Base
, Full
);
8848 Set_Chars
(Full
, Chars
(Priv
));
8849 Conditional_Delay
(Full
, Priv
);
8850 Set_Sloc
(Full
, Sloc
(Priv
));
8853 Set_Next_Entity
(Full
, Save_Next_Entity
);
8854 Set_Homonym
(Full
, Save_Homonym
);
8855 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
8857 -- Set common attributes for all subtypes
8859 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
8861 -- The Etype of the full view is inconsistent. Gigi needs to see the
8862 -- structural full view, which is what the current scheme gives:
8863 -- the Etype of the full view is the etype of the full base. However,
8864 -- if the full base is a derived type, the full view then looks like
8865 -- a subtype of the parent, not a subtype of the full base. If instead
8868 -- Set_Etype (Full, Full_Base);
8870 -- then we get inconsistencies in the front-end (confusion between
8871 -- views). Several outstanding bugs are related to this ???
8873 Set_Is_First_Subtype
(Full
, False);
8874 Set_Scope
(Full
, Scope
(Priv
));
8875 Set_Size_Info
(Full
, Full_Base
);
8876 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
8877 Set_Is_Itype
(Full
);
8879 -- A subtype of a private-type-without-discriminants, whose full-view
8880 -- has discriminants with default expressions, is not constrained!
8882 if not Has_Discriminants
(Priv
) then
8883 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
8885 if Has_Discriminants
(Full_Base
) then
8886 Set_Discriminant_Constraint
8887 (Full
, Discriminant_Constraint
(Full_Base
));
8889 -- The partial view may have been indefinite, the full view
8892 Set_Has_Unknown_Discriminants
8893 (Full
, Has_Unknown_Discriminants
(Full_Base
));
8897 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
8898 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
8900 -- Freeze the private subtype entity if its parent is delayed, and not
8901 -- already frozen. We skip this processing if the type is an anonymous
8902 -- subtype of a record component, or is the corresponding record of a
8903 -- protected type, since ???
8905 if not Is_Type
(Scope
(Full
)) then
8906 Set_Has_Delayed_Freeze
(Full
,
8907 Has_Delayed_Freeze
(Full_Base
)
8908 and then (not Is_Frozen
(Full_Base
)));
8911 Set_Freeze_Node
(Full
, Empty
);
8912 Set_Is_Frozen
(Full
, False);
8913 Set_Full_View
(Priv
, Full
);
8915 if Has_Discriminants
(Full
) then
8916 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
8917 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
8919 if Has_Unknown_Discriminants
(Full
) then
8920 Set_Discriminant_Constraint
(Full
, No_Elist
);
8924 if Ekind
(Full_Base
) = E_Record_Type
8925 and then Has_Discriminants
(Full_Base
)
8926 and then Has_Discriminants
(Priv
) -- might not, if errors
8927 and then not Has_Unknown_Discriminants
(Priv
)
8928 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
8930 Create_Constrained_Components
8931 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
8933 -- If the full base is itself derived from private, build a congruent
8934 -- subtype of its underlying type, for use by the back end. For a
8935 -- constrained record component, the declaration cannot be placed on
8936 -- the component list, but it must nevertheless be built an analyzed, to
8937 -- supply enough information for Gigi to compute the size of component.
8939 elsif Ekind
(Full_Base
) in Private_Kind
8940 and then Is_Derived_Type
(Full_Base
)
8941 and then Has_Discriminants
(Full_Base
)
8942 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
8944 if not Is_Itype
(Priv
)
8946 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
8948 Build_Underlying_Full_View
8949 (Parent
(Priv
), Full
, Etype
(Full_Base
));
8951 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
8952 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
8955 elsif Is_Record_Type
(Full_Base
) then
8957 -- Show Full is simply a renaming of Full_Base
8959 Set_Cloned_Subtype
(Full
, Full_Base
);
8962 -- It is unsafe to share to bounds of a scalar type, because the Itype
8963 -- is elaborated on demand, and if a bound is non-static then different
8964 -- orders of elaboration in different units will lead to different
8965 -- external symbols.
8967 if Is_Scalar_Type
(Full_Base
) then
8968 Set_Scalar_Range
(Full
,
8969 Make_Range
(Sloc
(Related_Nod
),
8971 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
8973 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
8975 -- This completion inherits the bounds of the full parent, but if
8976 -- the parent is an unconstrained floating point type, so is the
8979 if Is_Floating_Point_Type
(Full_Base
) then
8980 Set_Includes_Infinities
8981 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
8985 -- ??? It seems that a lot of fields are missing that should be copied
8986 -- from Full_Base to Full. Here are some that are introduced in a
8987 -- non-disruptive way but a cleanup is necessary.
8989 if Is_Tagged_Type
(Full_Base
) then
8990 Set_Is_Tagged_Type
(Full
);
8991 Set_Primitive_Operations
(Full
, Primitive_Operations
(Full_Base
));
8992 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
8994 -- If this is a subtype of a protected or task type, constrain its
8995 -- corresponding record, unless this is a subtype without constraints,
8996 -- i.e. a simple renaming as with an actual subtype in an instance.
8998 elsif Is_Concurrent_Type
(Full_Base
) then
8999 if Has_Discriminants
(Full
)
9000 and then Present
(Corresponding_Record_Type
(Full_Base
))
9002 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
9004 Set_Corresponding_Record_Type
(Full
,
9005 Constrain_Corresponding_Record
9006 (Full
, Corresponding_Record_Type
(Full_Base
),
9007 Related_Nod
, Full_Base
));
9010 Set_Corresponding_Record_Type
(Full
,
9011 Corresponding_Record_Type
(Full_Base
));
9014 end Complete_Private_Subtype
;
9016 ----------------------------
9017 -- Constant_Redeclaration --
9018 ----------------------------
9020 procedure Constant_Redeclaration
9025 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
9026 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
9029 procedure Check_Possible_Deferred_Completion
9030 (Prev_Id
: Entity_Id
;
9031 Prev_Obj_Def
: Node_Id
;
9032 Curr_Obj_Def
: Node_Id
);
9033 -- Determine whether the two object definitions describe the partial
9034 -- and the full view of a constrained deferred constant. Generate
9035 -- a subtype for the full view and verify that it statically matches
9036 -- the subtype of the partial view.
9038 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
9039 -- If deferred constant is an access type initialized with an allocator,
9040 -- check whether there is an illegal recursion in the definition,
9041 -- through a default value of some record subcomponent. This is normally
9042 -- detected when generating init procs, but requires this additional
9043 -- mechanism when expansion is disabled.
9045 ----------------------------------------
9046 -- Check_Possible_Deferred_Completion --
9047 ----------------------------------------
9049 procedure Check_Possible_Deferred_Completion
9050 (Prev_Id
: Entity_Id
;
9051 Prev_Obj_Def
: Node_Id
;
9052 Curr_Obj_Def
: Node_Id
)
9055 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
9056 and then Present
(Constraint
(Prev_Obj_Def
))
9057 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
9058 and then Present
(Constraint
(Curr_Obj_Def
))
9061 Loc
: constant Source_Ptr
:= Sloc
(N
);
9062 Def_Id
: constant Entity_Id
:=
9063 Make_Defining_Identifier
(Loc
,
9064 New_Internal_Name
('S'));
9065 Decl
: constant Node_Id
:=
9066 Make_Subtype_Declaration
(Loc
,
9067 Defining_Identifier
=>
9069 Subtype_Indication
=>
9070 Relocate_Node
(Curr_Obj_Def
));
9073 Insert_Before_And_Analyze
(N
, Decl
);
9074 Set_Etype
(Id
, Def_Id
);
9076 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
9077 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
9078 Error_Msg_N
("subtype does not statically match deferred " &
9083 end Check_Possible_Deferred_Completion
;
9085 ---------------------------------
9086 -- Check_Recursive_Declaration --
9087 ---------------------------------
9089 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
9093 if Is_Record_Type
(Typ
) then
9094 Comp
:= First_Component
(Typ
);
9095 while Present
(Comp
) loop
9096 if Comes_From_Source
(Comp
) then
9097 if Present
(Expression
(Parent
(Comp
)))
9098 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
9099 and then Entity
(Expression
(Parent
(Comp
))) = Prev
9101 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
9103 ("illegal circularity with declaration for&#",
9107 elsif Is_Record_Type
(Etype
(Comp
)) then
9108 Check_Recursive_Declaration
(Etype
(Comp
));
9112 Next_Component
(Comp
);
9115 end Check_Recursive_Declaration
;
9117 -- Start of processing for Constant_Redeclaration
9120 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
9121 if Nkind
(Object_Definition
9122 (Parent
(Prev
))) = N_Subtype_Indication
9124 -- Find type of new declaration. The constraints of the two
9125 -- views must match statically, but there is no point in
9126 -- creating an itype for the full view.
9128 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
9129 Find_Type
(Subtype_Mark
(Obj_Def
));
9130 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
9133 Find_Type
(Obj_Def
);
9134 New_T
:= Entity
(Obj_Def
);
9140 -- The full view may impose a constraint, even if the partial
9141 -- view does not, so construct the subtype.
9143 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
9148 -- Current declaration is illegal, diagnosed below in Enter_Name
9154 -- If previous full declaration exists, or if a homograph is present,
9155 -- let Enter_Name handle it, either with an error, or with the removal
9156 -- of an overridden implicit subprogram.
9158 if Ekind
(Prev
) /= E_Constant
9159 or else Present
(Expression
(Parent
(Prev
)))
9160 or else Present
(Full_View
(Prev
))
9164 -- Verify that types of both declarations match, or else that both types
9165 -- are anonymous access types whose designated subtypes statically match
9166 -- (as allowed in Ada 2005 by AI-385).
9168 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
9170 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
9171 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
9172 or else Is_Access_Constant
(Etype
(New_T
)) /=
9173 Is_Access_Constant
(Etype
(Prev
))
9174 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
9175 Can_Never_Be_Null
(Etype
(Prev
))
9176 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
9177 Null_Exclusion_Present
(Parent
(Id
))
9178 or else not Subtypes_Statically_Match
9179 (Designated_Type
(Etype
(Prev
)),
9180 Designated_Type
(Etype
(New_T
))))
9182 Error_Msg_Sloc
:= Sloc
(Prev
);
9183 Error_Msg_N
("type does not match declaration#", N
);
9184 Set_Full_View
(Prev
, Id
);
9185 Set_Etype
(Id
, Any_Type
);
9188 Null_Exclusion_Present
(Parent
(Prev
))
9189 and then not Null_Exclusion_Present
(N
)
9191 Error_Msg_Sloc
:= Sloc
(Prev
);
9192 Error_Msg_N
("null-exclusion does not match declaration#", N
);
9193 Set_Full_View
(Prev
, Id
);
9194 Set_Etype
(Id
, Any_Type
);
9196 -- If so, process the full constant declaration
9199 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
9200 -- the deferred declaration is constrained, then the subtype defined
9201 -- by the subtype_indication in the full declaration shall match it
9204 Check_Possible_Deferred_Completion
9206 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
9207 Curr_Obj_Def
=> Obj_Def
);
9209 Set_Full_View
(Prev
, Id
);
9210 Set_Is_Public
(Id
, Is_Public
(Prev
));
9211 Set_Is_Internal
(Id
);
9212 Append_Entity
(Id
, Current_Scope
);
9214 -- Check ALIASED present if present before (RM 7.4(7))
9216 if Is_Aliased
(Prev
)
9217 and then not Aliased_Present
(N
)
9219 Error_Msg_Sloc
:= Sloc
(Prev
);
9220 Error_Msg_N
("ALIASED required (see declaration#)", N
);
9223 -- Allow incomplete declaration of tags (used to handle forward
9224 -- references to tags). The check on Ada_Tags avoids circularities
9225 -- when rebuilding the compiler.
9227 if RTU_Loaded
(Ada_Tags
)
9228 and then T
= RTE
(RE_Tag
)
9232 -- Check that placement is in private part and that the incomplete
9233 -- declaration appeared in the visible part.
9235 elsif Ekind
(Current_Scope
) = E_Package
9236 and then not In_Private_Part
(Current_Scope
)
9238 Error_Msg_Sloc
:= Sloc
(Prev
);
9239 Error_Msg_N
("full constant for declaration#"
9240 & " must be in private part", N
);
9242 elsif Ekind
(Current_Scope
) = E_Package
9243 and then List_Containing
(Parent
(Prev
))
9244 /= Visible_Declarations
9245 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
9248 ("deferred constant must be declared in visible part",
9252 if Is_Access_Type
(T
)
9253 and then Nkind
(Expression
(N
)) = N_Allocator
9255 Check_Recursive_Declaration
(Designated_Type
(T
));
9258 end Constant_Redeclaration
;
9260 ----------------------
9261 -- Constrain_Access --
9262 ----------------------
9264 procedure Constrain_Access
9265 (Def_Id
: in out Entity_Id
;
9267 Related_Nod
: Node_Id
)
9269 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
9270 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
9271 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
9272 Constraint_OK
: Boolean := True;
9274 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean;
9275 -- Simple predicate to test for defaulted discriminants
9276 -- Shouldn't this be in sem_util???
9278 ---------------------------------
9279 -- Has_Defaulted_Discriminants --
9280 ---------------------------------
9282 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean is
9284 return Has_Discriminants
(Typ
)
9285 and then Present
(First_Discriminant
(Typ
))
9287 (Discriminant_Default_Value
(First_Discriminant
(Typ
)));
9288 end Has_Defaulted_Discriminants
;
9290 -- Start of processing for Constrain_Access
9293 if Is_Array_Type
(Desig_Type
) then
9294 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
9296 elsif (Is_Record_Type
(Desig_Type
)
9297 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
9298 and then not Is_Constrained
(Desig_Type
)
9300 -- ??? The following code is a temporary kludge to ignore a
9301 -- discriminant constraint on access type if it is constraining
9302 -- the current record. Avoid creating the implicit subtype of the
9303 -- record we are currently compiling since right now, we cannot
9304 -- handle these. For now, just return the access type itself.
9306 if Desig_Type
= Current_Scope
9307 and then No
(Def_Id
)
9309 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
9310 Def_Id
:= Entity
(Subtype_Mark
(S
));
9312 -- This call added to ensure that the constraint is analyzed
9313 -- (needed for a B test). Note that we still return early from
9314 -- this procedure to avoid recursive processing. ???
9316 Constrain_Discriminated_Type
9317 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
9321 if (Ekind
(T
) = E_General_Access_Type
9322 or else Ada_Version
>= Ada_05
)
9323 and then Has_Private_Declaration
(Desig_Type
)
9324 and then In_Open_Scopes
(Scope
(Desig_Type
))
9325 and then Has_Discriminants
(Desig_Type
)
9327 -- Enforce rule that the constraint is illegal if there is
9328 -- an unconstrained view of the designated type. This means
9329 -- that the partial view (either a private type declaration or
9330 -- a derivation from a private type) has no discriminants.
9331 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
9332 -- by ACATS B371001).
9334 -- Rule updated for Ada 2005: the private type is said to have
9335 -- a constrained partial view, given that objects of the type
9336 -- can be declared. Furthermore, the rule applies to all access
9337 -- types, unlike the rule concerning default discriminants.
9340 Pack
: constant Node_Id
:=
9341 Unit_Declaration_Node
(Scope
(Desig_Type
));
9346 if Nkind
(Pack
) = N_Package_Declaration
then
9347 Decls
:= Visible_Declarations
(Specification
(Pack
));
9348 Decl
:= First
(Decls
);
9349 while Present
(Decl
) loop
9350 if (Nkind
(Decl
) = N_Private_Type_Declaration
9352 Chars
(Defining_Identifier
(Decl
)) =
9356 (Nkind
(Decl
) = N_Full_Type_Declaration
9358 Chars
(Defining_Identifier
(Decl
)) =
9360 and then Is_Derived_Type
(Desig_Type
)
9362 Has_Private_Declaration
(Etype
(Desig_Type
)))
9364 if No
(Discriminant_Specifications
(Decl
)) then
9366 ("cannot constrain general access type if " &
9367 "designated type has constrained partial view",
9380 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
9381 For_Access
=> True);
9383 elsif (Is_Task_Type
(Desig_Type
)
9384 or else Is_Protected_Type
(Desig_Type
))
9385 and then not Is_Constrained
(Desig_Type
)
9387 Constrain_Concurrent
9388 (Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
9391 Error_Msg_N
("invalid constraint on access type", S
);
9392 Desig_Subtype
:= Desig_Type
; -- Ignore invalid constraint.
9393 Constraint_OK
:= False;
9397 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
9399 Set_Ekind
(Def_Id
, E_Access_Subtype
);
9402 if Constraint_OK
then
9403 Set_Etype
(Def_Id
, Base_Type
(T
));
9405 if Is_Private_Type
(Desig_Type
) then
9406 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
9409 Set_Etype
(Def_Id
, Any_Type
);
9412 Set_Size_Info
(Def_Id
, T
);
9413 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
9414 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
9415 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
9416 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
9418 Conditional_Delay
(Def_Id
, T
);
9420 -- AI-363 : Subtypes of general access types whose designated types have
9421 -- default discriminants are disallowed. In instances, the rule has to
9422 -- be checked against the actual, of which T is the subtype. In a
9423 -- generic body, the rule is checked assuming that the actual type has
9424 -- defaulted discriminants.
9426 if Ada_Version
>= Ada_05
or else Warn_On_Ada_2005_Compatibility
then
9427 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
9428 and then Has_Defaulted_Discriminants
(Desig_Type
)
9430 if Ada_Version
< Ada_05
then
9432 ("access subtype of general access type would not " &
9433 "be allowed in Ada 2005?", S
);
9436 ("access subype of general access type not allowed", S
);
9439 Error_Msg_N
("\discriminants have defaults", S
);
9441 elsif Is_Access_Type
(T
)
9442 and then Is_Generic_Type
(Desig_Type
)
9443 and then Has_Discriminants
(Desig_Type
)
9444 and then In_Package_Body
(Current_Scope
)
9446 if Ada_Version
< Ada_05
then
9448 ("access subtype would not be allowed in generic body " &
9452 ("access subtype not allowed in generic body", S
);
9456 ("\designated type is a discriminated formal", S
);
9459 end Constrain_Access
;
9461 ---------------------
9462 -- Constrain_Array --
9463 ---------------------
9465 procedure Constrain_Array
9466 (Def_Id
: in out Entity_Id
;
9468 Related_Nod
: Node_Id
;
9469 Related_Id
: Entity_Id
;
9472 C
: constant Node_Id
:= Constraint
(SI
);
9473 Number_Of_Constraints
: Nat
:= 0;
9476 Constraint_OK
: Boolean := True;
9479 T
:= Entity
(Subtype_Mark
(SI
));
9481 if Ekind
(T
) in Access_Kind
then
9482 T
:= Designated_Type
(T
);
9485 -- If an index constraint follows a subtype mark in a subtype indication
9486 -- then the type or subtype denoted by the subtype mark must not already
9487 -- impose an index constraint. The subtype mark must denote either an
9488 -- unconstrained array type or an access type whose designated type
9489 -- is such an array type... (RM 3.6.1)
9491 if Is_Constrained
(T
) then
9493 ("array type is already constrained", Subtype_Mark
(SI
));
9494 Constraint_OK
:= False;
9497 S
:= First
(Constraints
(C
));
9498 while Present
(S
) loop
9499 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
9503 -- In either case, the index constraint must provide a discrete
9504 -- range for each index of the array type and the type of each
9505 -- discrete range must be the same as that of the corresponding
9506 -- index. (RM 3.6.1)
9508 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
9509 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
9510 Constraint_OK
:= False;
9513 S
:= First
(Constraints
(C
));
9514 Index
:= First_Index
(T
);
9517 -- Apply constraints to each index type
9519 for J
in 1 .. Number_Of_Constraints
loop
9520 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
9530 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
9531 Set_Parent
(Def_Id
, Related_Nod
);
9534 Set_Ekind
(Def_Id
, E_Array_Subtype
);
9537 Set_Size_Info
(Def_Id
, (T
));
9538 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
9539 Set_Etype
(Def_Id
, Base_Type
(T
));
9541 if Constraint_OK
then
9542 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
9544 Set_First_Index
(Def_Id
, First_Index
(T
));
9547 Set_Is_Constrained
(Def_Id
, True);
9548 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
9549 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
9551 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
9552 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
9554 -- A subtype does not inherit the packed_array_type of is parent. We
9555 -- need to initialize the attribute because if Def_Id is previously
9556 -- analyzed through a limited_with clause, it will have the attributes
9557 -- of an incomplete type, one of which is an Elist that overlaps the
9558 -- Packed_Array_Type field.
9560 Set_Packed_Array_Type
(Def_Id
, Empty
);
9562 -- Build a freeze node if parent still needs one. Also make sure that
9563 -- the Depends_On_Private status is set because the subtype will need
9564 -- reprocessing at the time the base type does, and also we must set a
9565 -- conditional delay.
9567 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
9568 Conditional_Delay
(Def_Id
, T
);
9569 end Constrain_Array
;
9571 ------------------------------
9572 -- Constrain_Component_Type --
9573 ------------------------------
9575 function Constrain_Component_Type
9577 Constrained_Typ
: Entity_Id
;
9578 Related_Node
: Node_Id
;
9580 Constraints
: Elist_Id
) return Entity_Id
9582 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
9583 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
9585 function Build_Constrained_Array_Type
9586 (Old_Type
: Entity_Id
) return Entity_Id
;
9587 -- If Old_Type is an array type, one of whose indices is constrained
9588 -- by a discriminant, build an Itype whose constraint replaces the
9589 -- discriminant with its value in the constraint.
9591 function Build_Constrained_Discriminated_Type
9592 (Old_Type
: Entity_Id
) return Entity_Id
;
9593 -- Ditto for record components
9595 function Build_Constrained_Access_Type
9596 (Old_Type
: Entity_Id
) return Entity_Id
;
9597 -- Ditto for access types. Makes use of previous two functions, to
9598 -- constrain designated type.
9600 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
9601 -- T is an array or discriminated type, C is a list of constraints
9602 -- that apply to T. This routine builds the constrained subtype.
9604 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
9605 -- Returns True if Expr is a discriminant
9607 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
9608 -- Find the value of discriminant Discrim in Constraint
9610 -----------------------------------
9611 -- Build_Constrained_Access_Type --
9612 -----------------------------------
9614 function Build_Constrained_Access_Type
9615 (Old_Type
: Entity_Id
) return Entity_Id
9617 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
9619 Desig_Subtype
: Entity_Id
;
9623 -- if the original access type was not embedded in the enclosing
9624 -- type definition, there is no need to produce a new access
9625 -- subtype. In fact every access type with an explicit constraint
9626 -- generates an itype whose scope is the enclosing record.
9628 if not Is_Type
(Scope
(Old_Type
)) then
9631 elsif Is_Array_Type
(Desig_Type
) then
9632 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
9634 elsif Has_Discriminants
(Desig_Type
) then
9636 -- This may be an access type to an enclosing record type for
9637 -- which we are constructing the constrained components. Return
9638 -- the enclosing record subtype. This is not always correct,
9639 -- but avoids infinite recursion. ???
9641 Desig_Subtype
:= Any_Type
;
9643 for J
in reverse 0 .. Scope_Stack
.Last
loop
9644 Scop
:= Scope_Stack
.Table
(J
).Entity
;
9647 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
9649 Desig_Subtype
:= Scop
;
9652 exit when not Is_Type
(Scop
);
9655 if Desig_Subtype
= Any_Type
then
9657 Build_Constrained_Discriminated_Type
(Desig_Type
);
9664 if Desig_Subtype
/= Desig_Type
then
9666 -- The Related_Node better be here or else we won't be able
9667 -- to attach new itypes to a node in the tree.
9669 pragma Assert
(Present
(Related_Node
));
9671 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
9673 Set_Etype
(Itype
, Base_Type
(Old_Type
));
9674 Set_Size_Info
(Itype
, (Old_Type
));
9675 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
9676 Set_Depends_On_Private
(Itype
, Has_Private_Component
9678 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
9681 -- The new itype needs freezing when it depends on a not frozen
9682 -- type and the enclosing subtype needs freezing.
9684 if Has_Delayed_Freeze
(Constrained_Typ
)
9685 and then not Is_Frozen
(Constrained_Typ
)
9687 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
9695 end Build_Constrained_Access_Type
;
9697 ----------------------------------
9698 -- Build_Constrained_Array_Type --
9699 ----------------------------------
9701 function Build_Constrained_Array_Type
9702 (Old_Type
: Entity_Id
) return Entity_Id
9706 Old_Index
: Node_Id
;
9707 Range_Node
: Node_Id
;
9708 Constr_List
: List_Id
;
9710 Need_To_Create_Itype
: Boolean := False;
9713 Old_Index
:= First_Index
(Old_Type
);
9714 while Present
(Old_Index
) loop
9715 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
9717 if Is_Discriminant
(Lo_Expr
)
9718 or else Is_Discriminant
(Hi_Expr
)
9720 Need_To_Create_Itype
:= True;
9723 Next_Index
(Old_Index
);
9726 if Need_To_Create_Itype
then
9727 Constr_List
:= New_List
;
9729 Old_Index
:= First_Index
(Old_Type
);
9730 while Present
(Old_Index
) loop
9731 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
9733 if Is_Discriminant
(Lo_Expr
) then
9734 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
9737 if Is_Discriminant
(Hi_Expr
) then
9738 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
9743 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
9745 Append
(Range_Node
, To
=> Constr_List
);
9747 Next_Index
(Old_Index
);
9750 return Build_Subtype
(Old_Type
, Constr_List
);
9755 end Build_Constrained_Array_Type
;
9757 ------------------------------------------
9758 -- Build_Constrained_Discriminated_Type --
9759 ------------------------------------------
9761 function Build_Constrained_Discriminated_Type
9762 (Old_Type
: Entity_Id
) return Entity_Id
9765 Constr_List
: List_Id
;
9766 Old_Constraint
: Elmt_Id
;
9768 Need_To_Create_Itype
: Boolean := False;
9771 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
9772 while Present
(Old_Constraint
) loop
9773 Expr
:= Node
(Old_Constraint
);
9775 if Is_Discriminant
(Expr
) then
9776 Need_To_Create_Itype
:= True;
9779 Next_Elmt
(Old_Constraint
);
9782 if Need_To_Create_Itype
then
9783 Constr_List
:= New_List
;
9785 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
9786 while Present
(Old_Constraint
) loop
9787 Expr
:= Node
(Old_Constraint
);
9789 if Is_Discriminant
(Expr
) then
9790 Expr
:= Get_Discr_Value
(Expr
);
9793 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
9795 Next_Elmt
(Old_Constraint
);
9798 return Build_Subtype
(Old_Type
, Constr_List
);
9803 end Build_Constrained_Discriminated_Type
;
9809 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
9811 Subtyp_Decl
: Node_Id
;
9813 Btyp
: Entity_Id
:= Base_Type
(T
);
9816 -- The Related_Node better be here or else we won't be able to
9817 -- attach new itypes to a node in the tree.
9819 pragma Assert
(Present
(Related_Node
));
9821 -- If the view of the component's type is incomplete or private
9822 -- with unknown discriminants, then the constraint must be applied
9823 -- to the full type.
9825 if Has_Unknown_Discriminants
(Btyp
)
9826 and then Present
(Underlying_Type
(Btyp
))
9828 Btyp
:= Underlying_Type
(Btyp
);
9832 Make_Subtype_Indication
(Loc
,
9833 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
9834 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
9836 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
9839 Make_Subtype_Declaration
(Loc
,
9840 Defining_Identifier
=> Def_Id
,
9841 Subtype_Indication
=> Indic
);
9843 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
9845 -- Itypes must be analyzed with checks off (see package Itypes)
9847 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
9852 ---------------------
9853 -- Get_Discr_Value --
9854 ---------------------
9856 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
9861 -- The discriminant may be declared for the type, in which case we
9862 -- find it by iterating over the list of discriminants. If the
9863 -- discriminant is inherited from a parent type, it appears as the
9864 -- corresponding discriminant of the current type. This will be the
9865 -- case when constraining an inherited component whose constraint is
9866 -- given by a discriminant of the parent.
9868 D
:= First_Discriminant
(Typ
);
9869 E
:= First_Elmt
(Constraints
);
9871 while Present
(D
) loop
9872 if D
= Entity
(Discrim
)
9873 or else D
= CR_Discriminant
(Entity
(Discrim
))
9874 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
9879 Next_Discriminant
(D
);
9883 -- The corresponding_Discriminant mechanism is incomplete, because
9884 -- the correspondence between new and old discriminants is not one
9885 -- to one: one new discriminant can constrain several old ones. In
9886 -- that case, scan sequentially the stored_constraint, the list of
9887 -- discriminants of the parents, and the constraints.
9888 -- Previous code checked for the present of the Stored_Constraint
9889 -- list for the derived type, but did not use it at all. Should it
9890 -- be present when the component is a discriminated task type?
9892 if Is_Derived_Type
(Typ
)
9893 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
9895 D
:= First_Discriminant
(Etype
(Typ
));
9896 E
:= First_Elmt
(Constraints
);
9897 while Present
(D
) loop
9898 if D
= Entity
(Discrim
) then
9902 Next_Discriminant
(D
);
9907 -- Something is wrong if we did not find the value
9909 raise Program_Error
;
9910 end Get_Discr_Value
;
9912 ---------------------
9913 -- Is_Discriminant --
9914 ---------------------
9916 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
9917 Discrim_Scope
: Entity_Id
;
9920 if Denotes_Discriminant
(Expr
) then
9921 Discrim_Scope
:= Scope
(Entity
(Expr
));
9923 -- Either we have a reference to one of Typ's discriminants,
9925 pragma Assert
(Discrim_Scope
= Typ
9927 -- or to the discriminants of the parent type, in the case
9928 -- of a derivation of a tagged type with variants.
9930 or else Discrim_Scope
= Etype
(Typ
)
9931 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
9933 -- or same as above for the case where the discriminants
9934 -- were declared in Typ's private view.
9936 or else (Is_Private_Type
(Discrim_Scope
)
9937 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
9939 -- or else we are deriving from the full view and the
9940 -- discriminant is declared in the private entity.
9942 or else (Is_Private_Type
(Typ
)
9943 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
9945 -- Or we are constrained the corresponding record of a
9946 -- synchronized type that completes a private declaration.
9948 or else (Is_Concurrent_Record_Type
(Typ
)
9950 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
9952 -- or we have a class-wide type, in which case make sure the
9953 -- discriminant found belongs to the root type.
9955 or else (Is_Class_Wide_Type
(Typ
)
9956 and then Etype
(Typ
) = Discrim_Scope
));
9961 -- In all other cases we have something wrong
9964 end Is_Discriminant
;
9966 -- Start of processing for Constrain_Component_Type
9969 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
9970 and then Comes_From_Source
(Parent
(Comp
))
9971 and then Comes_From_Source
9972 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
9975 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
9979 elsif Is_Array_Type
(Compon_Type
) then
9980 return Build_Constrained_Array_Type
(Compon_Type
);
9982 elsif Has_Discriminants
(Compon_Type
) then
9983 return Build_Constrained_Discriminated_Type
(Compon_Type
);
9985 elsif Is_Access_Type
(Compon_Type
) then
9986 return Build_Constrained_Access_Type
(Compon_Type
);
9991 end Constrain_Component_Type
;
9993 --------------------------
9994 -- Constrain_Concurrent --
9995 --------------------------
9997 -- For concurrent types, the associated record value type carries the same
9998 -- discriminants, so when we constrain a concurrent type, we must constrain
9999 -- the corresponding record type as well.
10001 procedure Constrain_Concurrent
10002 (Def_Id
: in out Entity_Id
;
10004 Related_Nod
: Node_Id
;
10005 Related_Id
: Entity_Id
;
10006 Suffix
: Character)
10008 T_Ent
: Entity_Id
:= Entity
(Subtype_Mark
(SI
));
10012 if Ekind
(T_Ent
) in Access_Kind
then
10013 T_Ent
:= Designated_Type
(T_Ent
);
10016 T_Val
:= Corresponding_Record_Type
(T_Ent
);
10018 if Present
(T_Val
) then
10020 if No
(Def_Id
) then
10021 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
10024 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
10026 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10027 Set_Corresponding_Record_Type
(Def_Id
,
10028 Constrain_Corresponding_Record
10029 (Def_Id
, T_Val
, Related_Nod
, Related_Id
));
10032 -- If there is no associated record, expansion is disabled and this
10033 -- is a generic context. Create a subtype in any case, so that
10034 -- semantic analysis can proceed.
10036 if No
(Def_Id
) then
10037 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
10040 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
10042 end Constrain_Concurrent
;
10044 ------------------------------------
10045 -- Constrain_Corresponding_Record --
10046 ------------------------------------
10048 function Constrain_Corresponding_Record
10049 (Prot_Subt
: Entity_Id
;
10050 Corr_Rec
: Entity_Id
;
10051 Related_Nod
: Node_Id
;
10052 Related_Id
: Entity_Id
) return Entity_Id
10054 T_Sub
: constant Entity_Id
:=
10055 Create_Itype
(E_Record_Subtype
, Related_Nod
, Related_Id
, 'V');
10058 Set_Etype
(T_Sub
, Corr_Rec
);
10059 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
10060 Set_Is_Constrained
(T_Sub
, True);
10061 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
10062 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
10064 -- As elsewhere, we do not want to create a freeze node for this itype
10065 -- if it is created for a constrained component of an enclosing record
10066 -- because references to outer discriminants will appear out of scope.
10068 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
10069 Conditional_Delay
(T_Sub
, Corr_Rec
);
10071 Set_Is_Frozen
(T_Sub
);
10074 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
10075 Set_Discriminant_Constraint
10076 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
10077 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
10078 Create_Constrained_Components
10079 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
10082 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
10085 end Constrain_Corresponding_Record
;
10087 -----------------------
10088 -- Constrain_Decimal --
10089 -----------------------
10091 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
10092 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10093 C
: constant Node_Id
:= Constraint
(S
);
10094 Loc
: constant Source_Ptr
:= Sloc
(C
);
10095 Range_Expr
: Node_Id
;
10096 Digits_Expr
: Node_Id
;
10101 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
10103 if Nkind
(C
) = N_Range_Constraint
then
10104 Range_Expr
:= Range_Expression
(C
);
10105 Digits_Val
:= Digits_Value
(T
);
10108 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
10109 Digits_Expr
:= Digits_Expression
(C
);
10110 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
10112 Check_Digits_Expression
(Digits_Expr
);
10113 Digits_Val
:= Expr_Value
(Digits_Expr
);
10115 if Digits_Val
> Digits_Value
(T
) then
10117 ("digits expression is incompatible with subtype", C
);
10118 Digits_Val
:= Digits_Value
(T
);
10121 if Present
(Range_Constraint
(C
)) then
10122 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
10124 Range_Expr
:= Empty
;
10128 Set_Etype
(Def_Id
, Base_Type
(T
));
10129 Set_Size_Info
(Def_Id
, (T
));
10130 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10131 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
10132 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
10133 Set_Small_Value
(Def_Id
, Small_Value
(T
));
10134 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
10135 Set_Digits_Value
(Def_Id
, Digits_Val
);
10137 -- Manufacture range from given digits value if no range present
10139 if No
(Range_Expr
) then
10140 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
10144 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
10146 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
10149 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
10150 Set_Discrete_RM_Size
(Def_Id
);
10152 -- Unconditionally delay the freeze, since we cannot set size
10153 -- information in all cases correctly until the freeze point.
10155 Set_Has_Delayed_Freeze
(Def_Id
);
10156 end Constrain_Decimal
;
10158 ----------------------------------
10159 -- Constrain_Discriminated_Type --
10160 ----------------------------------
10162 procedure Constrain_Discriminated_Type
10163 (Def_Id
: Entity_Id
;
10165 Related_Nod
: Node_Id
;
10166 For_Access
: Boolean := False)
10168 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10171 Elist
: Elist_Id
:= New_Elmt_List
;
10173 procedure Fixup_Bad_Constraint
;
10174 -- This is called after finding a bad constraint, and after having
10175 -- posted an appropriate error message. The mission is to leave the
10176 -- entity T in as reasonable state as possible!
10178 --------------------------
10179 -- Fixup_Bad_Constraint --
10180 --------------------------
10182 procedure Fixup_Bad_Constraint
is
10184 -- Set a reasonable Ekind for the entity. For an incomplete type,
10185 -- we can't do much, but for other types, we can set the proper
10186 -- corresponding subtype kind.
10188 if Ekind
(T
) = E_Incomplete_Type
then
10189 Set_Ekind
(Def_Id
, Ekind
(T
));
10191 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
10194 -- Set Etype to the known type, to reduce chances of cascaded errors
10196 Set_Etype
(Def_Id
, E
);
10197 Set_Error_Posted
(Def_Id
);
10198 end Fixup_Bad_Constraint
;
10200 -- Start of processing for Constrain_Discriminated_Type
10203 C
:= Constraint
(S
);
10205 -- A discriminant constraint is only allowed in a subtype indication,
10206 -- after a subtype mark. This subtype mark must denote either a type
10207 -- with discriminants, or an access type whose designated type is a
10208 -- type with discriminants. A discriminant constraint specifies the
10209 -- values of these discriminants (RM 3.7.2(5)).
10211 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
10213 if Ekind
(T
) in Access_Kind
then
10214 T
:= Designated_Type
(T
);
10217 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
10218 -- Avoid generating an error for access-to-incomplete subtypes.
10220 if Ada_Version
>= Ada_05
10221 and then Ekind
(T
) = E_Incomplete_Type
10222 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
10223 and then not Is_Itype
(Def_Id
)
10225 -- A little sanity check, emit an error message if the type
10226 -- has discriminants to begin with. Type T may be a regular
10227 -- incomplete type or imported via a limited with clause.
10229 if Has_Discriminants
(T
)
10231 (From_With_Type
(T
)
10232 and then Present
(Non_Limited_View
(T
))
10233 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
10234 N_Full_Type_Declaration
10235 and then Present
(Discriminant_Specifications
10236 (Parent
(Non_Limited_View
(T
)))))
10239 ("(Ada 2005) incomplete subtype may not be constrained", C
);
10242 ("invalid constraint: type has no discriminant", C
);
10245 Fixup_Bad_Constraint
;
10248 -- Check that the type has visible discriminants. The type may be
10249 -- a private type with unknown discriminants whose full view has
10250 -- discriminants which are invisible.
10252 elsif not Has_Discriminants
(T
)
10254 (Has_Unknown_Discriminants
(T
)
10255 and then Is_Private_Type
(T
))
10257 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
10258 Fixup_Bad_Constraint
;
10261 elsif Is_Constrained
(E
)
10262 or else (Ekind
(E
) = E_Class_Wide_Subtype
10263 and then Present
(Discriminant_Constraint
(E
)))
10265 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
10266 Fixup_Bad_Constraint
;
10270 -- T may be an unconstrained subtype (e.g. a generic actual).
10271 -- Constraint applies to the base type.
10273 T
:= Base_Type
(T
);
10275 Elist
:= Build_Discriminant_Constraints
(T
, S
);
10277 -- If the list returned was empty we had an error in building the
10278 -- discriminant constraint. We have also already signalled an error
10279 -- in the incomplete type case
10281 if Is_Empty_Elmt_List
(Elist
) then
10282 Fixup_Bad_Constraint
;
10286 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
10287 end Constrain_Discriminated_Type
;
10289 ---------------------------
10290 -- Constrain_Enumeration --
10291 ---------------------------
10293 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
10294 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10295 C
: constant Node_Id
:= Constraint
(S
);
10298 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
10300 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
10302 Set_Etype
(Def_Id
, Base_Type
(T
));
10303 Set_Size_Info
(Def_Id
, (T
));
10304 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10305 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
10307 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
10309 Set_Discrete_RM_Size
(Def_Id
);
10310 end Constrain_Enumeration
;
10312 ----------------------
10313 -- Constrain_Float --
10314 ----------------------
10316 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
10317 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10323 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
10325 Set_Etype
(Def_Id
, Base_Type
(T
));
10326 Set_Size_Info
(Def_Id
, (T
));
10327 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10329 -- Process the constraint
10331 C
:= Constraint
(S
);
10333 -- Digits constraint present
10335 if Nkind
(C
) = N_Digits_Constraint
then
10336 Check_Restriction
(No_Obsolescent_Features
, C
);
10338 if Warn_On_Obsolescent_Feature
then
10340 ("subtype digits constraint is an " &
10341 "obsolescent feature (RM J.3(8))?", C
);
10344 D
:= Digits_Expression
(C
);
10345 Analyze_And_Resolve
(D
, Any_Integer
);
10346 Check_Digits_Expression
(D
);
10347 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
10349 -- Check that digits value is in range. Obviously we can do this
10350 -- at compile time, but it is strictly a runtime check, and of
10351 -- course there is an ACVC test that checks this!
10353 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
10354 Error_Msg_Uint_1
:= Digits_Value
(T
);
10355 Error_Msg_N
("?digits value is too large, maximum is ^", D
);
10357 Make_Raise_Constraint_Error
(Sloc
(D
),
10358 Reason
=> CE_Range_Check_Failed
);
10359 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
10362 C
:= Range_Constraint
(C
);
10364 -- No digits constraint present
10367 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
10370 -- Range constraint present
10372 if Nkind
(C
) = N_Range_Constraint
then
10373 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
10375 -- No range constraint present
10378 pragma Assert
(No
(C
));
10379 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
10382 Set_Is_Constrained
(Def_Id
);
10383 end Constrain_Float
;
10385 ---------------------
10386 -- Constrain_Index --
10387 ---------------------
10389 procedure Constrain_Index
10392 Related_Nod
: Node_Id
;
10393 Related_Id
: Entity_Id
;
10394 Suffix
: Character;
10395 Suffix_Index
: Nat
)
10397 Def_Id
: Entity_Id
;
10398 R
: Node_Id
:= Empty
;
10399 T
: constant Entity_Id
:= Etype
(Index
);
10402 if Nkind
(S
) = N_Range
10404 (Nkind
(S
) = N_Attribute_Reference
10405 and then Attribute_Name
(S
) = Name_Range
)
10407 -- A Range attribute will transformed into N_Range by Resolve
10413 Process_Range_Expr_In_Decl
(R
, T
, Empty_List
);
10415 if not Error_Posted
(S
)
10417 (Nkind
(S
) /= N_Range
10418 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
10419 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
10421 if Base_Type
(T
) /= Any_Type
10422 and then Etype
(Low_Bound
(S
)) /= Any_Type
10423 and then Etype
(High_Bound
(S
)) /= Any_Type
10425 Error_Msg_N
("range expected", S
);
10429 elsif Nkind
(S
) = N_Subtype_Indication
then
10431 -- The parser has verified that this is a discrete indication
10433 Resolve_Discrete_Subtype_Indication
(S
, T
);
10434 R
:= Range_Expression
(Constraint
(S
));
10436 elsif Nkind
(S
) = N_Discriminant_Association
then
10438 -- Syntactically valid in subtype indication
10440 Error_Msg_N
("invalid index constraint", S
);
10441 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
10444 -- Subtype_Mark case, no anonymous subtypes to construct
10449 if Is_Entity_Name
(S
) then
10450 if not Is_Type
(Entity
(S
)) then
10451 Error_Msg_N
("expect subtype mark for index constraint", S
);
10453 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
10454 Wrong_Type
(S
, Base_Type
(T
));
10460 Error_Msg_N
("invalid index constraint", S
);
10461 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
10467 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
10469 Set_Etype
(Def_Id
, Base_Type
(T
));
10471 if Is_Modular_Integer_Type
(T
) then
10472 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
10474 elsif Is_Integer_Type
(T
) then
10475 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
10478 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
10479 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
10482 Set_Size_Info
(Def_Id
, (T
));
10483 Set_RM_Size
(Def_Id
, RM_Size
(T
));
10484 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10486 Set_Scalar_Range
(Def_Id
, R
);
10488 Set_Etype
(S
, Def_Id
);
10489 Set_Discrete_RM_Size
(Def_Id
);
10490 end Constrain_Index
;
10492 -----------------------
10493 -- Constrain_Integer --
10494 -----------------------
10496 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
10497 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10498 C
: constant Node_Id
:= Constraint
(S
);
10501 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
10503 if Is_Modular_Integer_Type
(T
) then
10504 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
10506 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
10509 Set_Etype
(Def_Id
, Base_Type
(T
));
10510 Set_Size_Info
(Def_Id
, (T
));
10511 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10512 Set_Discrete_RM_Size
(Def_Id
);
10513 end Constrain_Integer
;
10515 ------------------------------
10516 -- Constrain_Ordinary_Fixed --
10517 ------------------------------
10519 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
10520 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10526 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
10527 Set_Etype
(Def_Id
, Base_Type
(T
));
10528 Set_Size_Info
(Def_Id
, (T
));
10529 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10530 Set_Small_Value
(Def_Id
, Small_Value
(T
));
10532 -- Process the constraint
10534 C
:= Constraint
(S
);
10536 -- Delta constraint present
10538 if Nkind
(C
) = N_Delta_Constraint
then
10539 Check_Restriction
(No_Obsolescent_Features
, C
);
10541 if Warn_On_Obsolescent_Feature
then
10543 ("subtype delta constraint is an " &
10544 "obsolescent feature (RM J.3(7))?");
10547 D
:= Delta_Expression
(C
);
10548 Analyze_And_Resolve
(D
, Any_Real
);
10549 Check_Delta_Expression
(D
);
10550 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
10552 -- Check that delta value is in range. Obviously we can do this
10553 -- at compile time, but it is strictly a runtime check, and of
10554 -- course there is an ACVC test that checks this!
10556 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
10557 Error_Msg_N
("?delta value is too small", D
);
10559 Make_Raise_Constraint_Error
(Sloc
(D
),
10560 Reason
=> CE_Range_Check_Failed
);
10561 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
10564 C
:= Range_Constraint
(C
);
10566 -- No delta constraint present
10569 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
10572 -- Range constraint present
10574 if Nkind
(C
) = N_Range_Constraint
then
10575 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
10577 -- No range constraint present
10580 pragma Assert
(No
(C
));
10581 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
10585 Set_Discrete_RM_Size
(Def_Id
);
10587 -- Unconditionally delay the freeze, since we cannot set size
10588 -- information in all cases correctly until the freeze point.
10590 Set_Has_Delayed_Freeze
(Def_Id
);
10591 end Constrain_Ordinary_Fixed
;
10593 -----------------------
10594 -- Contain_Interface --
10595 -----------------------
10597 function Contain_Interface
10598 (Iface
: Entity_Id
;
10599 Ifaces
: Elist_Id
) return Boolean
10601 Iface_Elmt
: Elmt_Id
;
10604 if Present
(Ifaces
) then
10605 Iface_Elmt
:= First_Elmt
(Ifaces
);
10606 while Present
(Iface_Elmt
) loop
10607 if Node
(Iface_Elmt
) = Iface
then
10611 Next_Elmt
(Iface_Elmt
);
10616 end Contain_Interface
;
10618 ---------------------------
10619 -- Convert_Scalar_Bounds --
10620 ---------------------------
10622 procedure Convert_Scalar_Bounds
10624 Parent_Type
: Entity_Id
;
10625 Derived_Type
: Entity_Id
;
10628 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
10635 Lo
:= Build_Scalar_Bound
10636 (Type_Low_Bound
(Derived_Type
),
10637 Parent_Type
, Implicit_Base
);
10639 Hi
:= Build_Scalar_Bound
10640 (Type_High_Bound
(Derived_Type
),
10641 Parent_Type
, Implicit_Base
);
10648 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
10650 Set_Parent
(Rng
, N
);
10651 Set_Scalar_Range
(Derived_Type
, Rng
);
10653 -- Analyze the bounds
10655 Analyze_And_Resolve
(Lo
, Implicit_Base
);
10656 Analyze_And_Resolve
(Hi
, Implicit_Base
);
10658 -- Analyze the range itself, except that we do not analyze it if
10659 -- the bounds are real literals, and we have a fixed-point type.
10660 -- The reason for this is that we delay setting the bounds in this
10661 -- case till we know the final Small and Size values (see circuit
10662 -- in Freeze.Freeze_Fixed_Point_Type for further details).
10664 if Is_Fixed_Point_Type
(Parent_Type
)
10665 and then Nkind
(Lo
) = N_Real_Literal
10666 and then Nkind
(Hi
) = N_Real_Literal
10670 -- Here we do the analysis of the range
10672 -- Note: we do this manually, since if we do a normal Analyze and
10673 -- Resolve call, there are problems with the conversions used for
10674 -- the derived type range.
10677 Set_Etype
(Rng
, Implicit_Base
);
10678 Set_Analyzed
(Rng
, True);
10680 end Convert_Scalar_Bounds
;
10682 -------------------
10683 -- Copy_And_Swap --
10684 -------------------
10686 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
10688 -- Initialize new full declaration entity by copying the pertinent
10689 -- fields of the corresponding private declaration entity.
10691 -- We temporarily set Ekind to a value appropriate for a type to
10692 -- avoid assert failures in Einfo from checking for setting type
10693 -- attributes on something that is not a type. Ekind (Priv) is an
10694 -- appropriate choice, since it allowed the attributes to be set
10695 -- in the first place. This Ekind value will be modified later.
10697 Set_Ekind
(Full
, Ekind
(Priv
));
10699 -- Also set Etype temporarily to Any_Type, again, in the absence
10700 -- of errors, it will be properly reset, and if there are errors,
10701 -- then we want a value of Any_Type to remain.
10703 Set_Etype
(Full
, Any_Type
);
10705 -- Now start copying attributes
10707 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
10709 if Has_Discriminants
(Full
) then
10710 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
10711 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
10714 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
10715 Set_Homonym
(Full
, Homonym
(Priv
));
10716 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
10717 Set_Is_Public
(Full
, Is_Public
(Priv
));
10718 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
10719 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
10720 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
10721 Set_Has_Pragma_Unreferenced_Objects
10722 (Full
, Has_Pragma_Unreferenced_Objects
10725 Conditional_Delay
(Full
, Priv
);
10727 if Is_Tagged_Type
(Full
) then
10728 Set_Primitive_Operations
(Full
, Primitive_Operations
(Priv
));
10730 if Priv
= Base_Type
(Priv
) then
10731 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
10735 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
10736 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
10737 Set_Scope
(Full
, Scope
(Priv
));
10738 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
10739 Set_First_Entity
(Full
, First_Entity
(Priv
));
10740 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
10742 -- If access types have been recorded for later handling, keep them in
10743 -- the full view so that they get handled when the full view freeze
10744 -- node is expanded.
10746 if Present
(Freeze_Node
(Priv
))
10747 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
10749 Ensure_Freeze_Node
(Full
);
10750 Set_Access_Types_To_Process
10751 (Freeze_Node
(Full
),
10752 Access_Types_To_Process
(Freeze_Node
(Priv
)));
10755 -- Swap the two entities. Now Privat is the full type entity and
10756 -- Full is the private one. They will be swapped back at the end
10757 -- of the private part. This swapping ensures that the entity that
10758 -- is visible in the private part is the full declaration.
10760 Exchange_Entities
(Priv
, Full
);
10761 Append_Entity
(Full
, Scope
(Full
));
10764 -------------------------------------
10765 -- Copy_Array_Base_Type_Attributes --
10766 -------------------------------------
10768 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
10770 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
10771 Set_Component_Type
(T1
, Component_Type
(T2
));
10772 Set_Component_Size
(T1
, Component_Size
(T2
));
10773 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
10774 Set_Finalize_Storage_Only
(T1
, Finalize_Storage_Only
(T2
));
10775 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
10776 Set_Has_Task
(T1
, Has_Task
(T2
));
10777 Set_Is_Packed
(T1
, Is_Packed
(T2
));
10778 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
10779 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
10780 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
10781 end Copy_Array_Base_Type_Attributes
;
10783 -----------------------------------
10784 -- Copy_Array_Subtype_Attributes --
10785 -----------------------------------
10787 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
10789 Set_Size_Info
(T1
, T2
);
10791 Set_First_Index
(T1
, First_Index
(T2
));
10792 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
10793 Set_Is_Atomic
(T1
, Is_Atomic
(T2
));
10794 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
10795 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
10796 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
10797 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
10798 Set_First_Rep_Item
(T1
, First_Rep_Item
(T2
));
10799 Set_Convention
(T1
, Convention
(T2
));
10800 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
10801 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
10802 end Copy_Array_Subtype_Attributes
;
10804 -----------------------------------
10805 -- Create_Constrained_Components --
10806 -----------------------------------
10808 procedure Create_Constrained_Components
10810 Decl_Node
: Node_Id
;
10812 Constraints
: Elist_Id
)
10814 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
10815 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
10816 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
10817 Assoc_List
: constant List_Id
:= New_List
;
10818 Discr_Val
: Elmt_Id
;
10822 Is_Static
: Boolean := True;
10824 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
10825 -- Collect parent type components that do not appear in a variant part
10827 procedure Create_All_Components
;
10828 -- Iterate over Comp_List to create the components of the subtype
10830 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
10831 -- Creates a new component from Old_Compon, copying all the fields from
10832 -- it, including its Etype, inserts the new component in the Subt entity
10833 -- chain and returns the new component.
10835 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
10836 -- If true, and discriminants are static, collect only components from
10837 -- variants selected by discriminant values.
10839 ------------------------------
10840 -- Collect_Fixed_Components --
10841 ------------------------------
10843 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
10845 -- Build association list for discriminants, and find components of the
10846 -- variant part selected by the values of the discriminants.
10848 Old_C
:= First_Discriminant
(Typ
);
10849 Discr_Val
:= First_Elmt
(Constraints
);
10850 while Present
(Old_C
) loop
10851 Append_To
(Assoc_List
,
10852 Make_Component_Association
(Loc
,
10853 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
10854 Expression
=> New_Copy
(Node
(Discr_Val
))));
10856 Next_Elmt
(Discr_Val
);
10857 Next_Discriminant
(Old_C
);
10860 -- The tag, and the possible parent and controller components
10861 -- are unconditionally in the subtype.
10863 if Is_Tagged_Type
(Typ
)
10864 or else Has_Controlled_Component
(Typ
)
10866 Old_C
:= First_Component
(Typ
);
10867 while Present
(Old_C
) loop
10868 if Chars
((Old_C
)) = Name_uTag
10869 or else Chars
((Old_C
)) = Name_uParent
10870 or else Chars
((Old_C
)) = Name_uController
10872 Append_Elmt
(Old_C
, Comp_List
);
10875 Next_Component
(Old_C
);
10878 end Collect_Fixed_Components
;
10880 ---------------------------
10881 -- Create_All_Components --
10882 ---------------------------
10884 procedure Create_All_Components
is
10888 Comp
:= First_Elmt
(Comp_List
);
10889 while Present
(Comp
) loop
10890 Old_C
:= Node
(Comp
);
10891 New_C
:= Create_Component
(Old_C
);
10895 Constrain_Component_Type
10896 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
10897 Set_Is_Public
(New_C
, Is_Public
(Subt
));
10901 end Create_All_Components
;
10903 ----------------------
10904 -- Create_Component --
10905 ----------------------
10907 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
10908 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
10911 if Ekind
(Old_Compon
) = E_Discriminant
10912 and then Is_Completely_Hidden
(Old_Compon
)
10914 -- This is a shadow discriminant created for a discriminant of
10915 -- the parent type that is one of several renamed by the same
10916 -- new discriminant. Give the shadow discriminant an internal
10917 -- name that cannot conflict with that of visible components.
10919 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
10922 -- Set the parent so we have a proper link for freezing etc. This is
10923 -- not a real parent pointer, since of course our parent does not own
10924 -- up to us and reference us, we are an illegitimate child of the
10925 -- original parent!
10927 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
10929 -- If the old component's Esize was already determined and is a
10930 -- static value, then the new component simply inherits it. Otherwise
10931 -- the old component's size may require run-time determination, but
10932 -- the new component's size still might be statically determinable
10933 -- (if, for example it has a static constraint). In that case we want
10934 -- Layout_Type to recompute the component's size, so we reset its
10935 -- size and positional fields.
10937 if Frontend_Layout_On_Target
10938 and then not Known_Static_Esize
(Old_Compon
)
10940 Set_Esize
(New_Compon
, Uint_0
);
10941 Init_Normalized_First_Bit
(New_Compon
);
10942 Init_Normalized_Position
(New_Compon
);
10943 Init_Normalized_Position_Max
(New_Compon
);
10946 -- We do not want this node marked as Comes_From_Source, since
10947 -- otherwise it would get first class status and a separate cross-
10948 -- reference line would be generated. Illegitimate children do not
10949 -- rate such recognition.
10951 Set_Comes_From_Source
(New_Compon
, False);
10953 -- But it is a real entity, and a birth certificate must be properly
10954 -- registered by entering it into the entity list.
10956 Enter_Name
(New_Compon
);
10959 end Create_Component
;
10961 -----------------------
10962 -- Is_Variant_Record --
10963 -----------------------
10965 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
10967 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
10968 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
10969 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
10972 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
10973 end Is_Variant_Record
;
10975 -- Start of processing for Create_Constrained_Components
10978 pragma Assert
(Subt
/= Base_Type
(Subt
));
10979 pragma Assert
(Typ
= Base_Type
(Typ
));
10981 Set_First_Entity
(Subt
, Empty
);
10982 Set_Last_Entity
(Subt
, Empty
);
10984 -- Check whether constraint is fully static, in which case we can
10985 -- optimize the list of components.
10987 Discr_Val
:= First_Elmt
(Constraints
);
10988 while Present
(Discr_Val
) loop
10989 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
10990 Is_Static
:= False;
10994 Next_Elmt
(Discr_Val
);
10997 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
11001 -- Inherit the discriminants of the parent type
11003 Add_Discriminants
: declare
11009 Old_C
:= First_Discriminant
(Typ
);
11011 while Present
(Old_C
) loop
11012 Num_Disc
:= Num_Disc
+ 1;
11013 New_C
:= Create_Component
(Old_C
);
11014 Set_Is_Public
(New_C
, Is_Public
(Subt
));
11015 Next_Discriminant
(Old_C
);
11018 -- For an untagged derived subtype, the number of discriminants may
11019 -- be smaller than the number of inherited discriminants, because
11020 -- several of them may be renamed by a single new discriminant.
11021 -- In this case, add the hidden discriminants back into the subtype,
11022 -- because otherwise the size of the subtype is computed incorrectly
11027 if Is_Derived_Type
(Typ
)
11028 and then not Is_Tagged_Type
(Typ
)
11030 Old_C
:= First_Stored_Discriminant
(Typ
);
11032 while Present
(Old_C
) loop
11033 Num_Gird
:= Num_Gird
+ 1;
11034 Next_Stored_Discriminant
(Old_C
);
11038 if Num_Gird
> Num_Disc
then
11040 -- Find out multiple uses of new discriminants, and add hidden
11041 -- components for the extra renamed discriminants. We recognize
11042 -- multiple uses through the Corresponding_Discriminant of a
11043 -- new discriminant: if it constrains several old discriminants,
11044 -- this field points to the last one in the parent type. The
11045 -- stored discriminants of the derived type have the same name
11046 -- as those of the parent.
11050 New_Discr
: Entity_Id
;
11051 Old_Discr
: Entity_Id
;
11054 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
11055 Old_Discr
:= First_Stored_Discriminant
(Typ
);
11056 while Present
(Constr
) loop
11057 if Is_Entity_Name
(Node
(Constr
))
11058 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
11060 New_Discr
:= Entity
(Node
(Constr
));
11062 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
11065 -- The new discriminant has been used to rename a
11066 -- subsequent old discriminant. Introduce a shadow
11067 -- component for the current old discriminant.
11069 New_C
:= Create_Component
(Old_Discr
);
11070 Set_Original_Record_Component
(New_C
, Old_Discr
);
11074 Next_Elmt
(Constr
);
11075 Next_Stored_Discriminant
(Old_Discr
);
11079 end Add_Discriminants
;
11082 and then Is_Variant_Record
(Typ
)
11084 Collect_Fixed_Components
(Typ
);
11086 Gather_Components
(
11088 Component_List
(Type_Definition
(Parent
(Typ
))),
11089 Governed_By
=> Assoc_List
,
11091 Report_Errors
=> Errors
);
11092 pragma Assert
(not Errors
);
11094 Create_All_Components
;
11096 -- If the subtype declaration is created for a tagged type derivation
11097 -- with constraints, we retrieve the record definition of the parent
11098 -- type to select the components of the proper variant.
11101 and then Is_Tagged_Type
(Typ
)
11102 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
11104 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
11105 and then Is_Variant_Record
(Parent_Type
)
11107 Collect_Fixed_Components
(Typ
);
11109 Gather_Components
(
11111 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
11112 Governed_By
=> Assoc_List
,
11114 Report_Errors
=> Errors
);
11115 pragma Assert
(not Errors
);
11117 -- If the tagged derivation has a type extension, collect all the
11118 -- new components therein.
11121 (Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
11123 Old_C
:= First_Component
(Typ
);
11124 while Present
(Old_C
) loop
11125 if Original_Record_Component
(Old_C
) = Old_C
11126 and then Chars
(Old_C
) /= Name_uTag
11127 and then Chars
(Old_C
) /= Name_uParent
11128 and then Chars
(Old_C
) /= Name_uController
11130 Append_Elmt
(Old_C
, Comp_List
);
11133 Next_Component
(Old_C
);
11137 Create_All_Components
;
11140 -- If discriminants are not static, or if this is a multi-level type
11141 -- extension, we have to include all components of the parent type.
11143 Old_C
:= First_Component
(Typ
);
11144 while Present
(Old_C
) loop
11145 New_C
:= Create_Component
(Old_C
);
11149 Constrain_Component_Type
11150 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
11151 Set_Is_Public
(New_C
, Is_Public
(Subt
));
11153 Next_Component
(Old_C
);
11158 end Create_Constrained_Components
;
11160 ------------------------------------------
11161 -- Decimal_Fixed_Point_Type_Declaration --
11162 ------------------------------------------
11164 procedure Decimal_Fixed_Point_Type_Declaration
11168 Loc
: constant Source_Ptr
:= Sloc
(Def
);
11169 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
11170 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
11171 Implicit_Base
: Entity_Id
;
11178 Check_Restriction
(No_Fixed_Point
, Def
);
11180 -- Create implicit base type
11183 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
11184 Set_Etype
(Implicit_Base
, Implicit_Base
);
11186 -- Analyze and process delta expression
11188 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
11190 Check_Delta_Expression
(Delta_Expr
);
11191 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
11193 -- Check delta is power of 10, and determine scale value from it
11199 Scale_Val
:= Uint_0
;
11202 if Val
< Ureal_1
then
11203 while Val
< Ureal_1
loop
11204 Val
:= Val
* Ureal_10
;
11205 Scale_Val
:= Scale_Val
+ 1;
11208 if Scale_Val
> 18 then
11209 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
11210 Scale_Val
:= UI_From_Int
(+18);
11214 while Val
> Ureal_1
loop
11215 Val
:= Val
/ Ureal_10
;
11216 Scale_Val
:= Scale_Val
- 1;
11219 if Scale_Val
< -18 then
11220 Error_Msg_N
("scale is less than minimum value of -18", Def
);
11221 Scale_Val
:= UI_From_Int
(-18);
11225 if Val
/= Ureal_1
then
11226 Error_Msg_N
("delta expression must be a power of 10", Def
);
11227 Delta_Val
:= Ureal_10
** (-Scale_Val
);
11231 -- Set delta, scale and small (small = delta for decimal type)
11233 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
11234 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
11235 Set_Small_Value
(Implicit_Base
, Delta_Val
);
11237 -- Analyze and process digits expression
11239 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
11240 Check_Digits_Expression
(Digs_Expr
);
11241 Digs_Val
:= Expr_Value
(Digs_Expr
);
11243 if Digs_Val
> 18 then
11244 Digs_Val
:= UI_From_Int
(+18);
11245 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
11248 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
11249 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
11251 -- Set range of base type from digits value for now. This will be
11252 -- expanded to represent the true underlying base range by Freeze.
11254 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
11256 -- Note: We leave size as zero for now, size will be set at freeze
11257 -- time. We have to do this for ordinary fixed-point, because the size
11258 -- depends on the specified small, and we might as well do the same for
11259 -- decimal fixed-point.
11261 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
11263 -- If there are bounds given in the declaration use them as the
11264 -- bounds of the first named subtype.
11266 if Present
(Real_Range_Specification
(Def
)) then
11268 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
11269 Low
: constant Node_Id
:= Low_Bound
(RRS
);
11270 High
: constant Node_Id
:= High_Bound
(RRS
);
11275 Analyze_And_Resolve
(Low
, Any_Real
);
11276 Analyze_And_Resolve
(High
, Any_Real
);
11277 Check_Real_Bound
(Low
);
11278 Check_Real_Bound
(High
);
11279 Low_Val
:= Expr_Value_R
(Low
);
11280 High_Val
:= Expr_Value_R
(High
);
11282 if Low_Val
< (-Bound_Val
) then
11284 ("range low bound too small for digits value", Low
);
11285 Low_Val
:= -Bound_Val
;
11288 if High_Val
> Bound_Val
then
11290 ("range high bound too large for digits value", High
);
11291 High_Val
:= Bound_Val
;
11294 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
11297 -- If no explicit range, use range that corresponds to given
11298 -- digits value. This will end up as the final range for the
11302 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
11305 -- Complete entity for first subtype
11307 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
11308 Set_Etype
(T
, Implicit_Base
);
11309 Set_Size_Info
(T
, Implicit_Base
);
11310 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
11311 Set_Digits_Value
(T
, Digs_Val
);
11312 Set_Delta_Value
(T
, Delta_Val
);
11313 Set_Small_Value
(T
, Delta_Val
);
11314 Set_Scale_Value
(T
, Scale_Val
);
11315 Set_Is_Constrained
(T
);
11316 end Decimal_Fixed_Point_Type_Declaration
;
11318 -----------------------------------
11319 -- Derive_Progenitor_Subprograms --
11320 -----------------------------------
11322 procedure Derive_Progenitor_Subprograms
11323 (Parent_Type
: Entity_Id
;
11324 Tagged_Type
: Entity_Id
)
11329 Iface_Elmt
: Elmt_Id
;
11330 Iface_Subp
: Entity_Id
;
11331 New_Subp
: Entity_Id
:= Empty
;
11332 Prim_Elmt
: Elmt_Id
;
11337 pragma Assert
(Ada_Version
>= Ada_05
11338 and then Is_Record_Type
(Tagged_Type
)
11339 and then Is_Tagged_Type
(Tagged_Type
)
11340 and then Has_Interfaces
(Tagged_Type
));
11342 -- Step 1: Transfer to the full-view primitives associated with the
11343 -- partial-view that cover interface primitives. Conceptually this
11344 -- work should be done later by Process_Full_View; done here to
11345 -- simplify its implementation at later stages. It can be safely
11346 -- done here because interfaces must be visible in the partial and
11347 -- private view (RM 7.3(7.3/2)).
11349 -- Small optimization: This work is only required if the parent is
11350 -- abstract. If the tagged type is not abstract, it cannot have
11351 -- abstract primitives (the only entities in the list of primitives of
11352 -- non-abstract tagged types that can reference abstract primitives
11353 -- through its Alias attribute are the internal entities that have
11354 -- attribute Interface_Alias, and these entities are generated later
11355 -- by Freeze_Record_Type).
11357 if In_Private_Part
(Current_Scope
)
11358 and then Is_Abstract_Type
(Parent_Type
)
11360 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
11361 while Present
(Elmt
) loop
11362 Subp
:= Node
(Elmt
);
11364 -- At this stage it is not possible to have entities in the list
11365 -- of primitives that have attribute Interface_Alias
11367 pragma Assert
(No
(Interface_Alias
(Subp
)));
11369 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
11371 if Is_Interface
(Typ
) then
11372 E
:= Find_Primitive_Covering_Interface
11373 (Tagged_Type
=> Tagged_Type
,
11374 Iface_Prim
=> Subp
);
11377 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
11379 Replace_Elmt
(Elmt
, E
);
11380 Remove_Homonym
(Subp
);
11388 -- Step 2: Add primitives of progenitors that are not implemented by
11389 -- parents of Tagged_Type
11391 if Present
(Interfaces
(Tagged_Type
)) then
11392 Iface_Elmt
:= First_Elmt
(Interfaces
(Tagged_Type
));
11393 while Present
(Iface_Elmt
) loop
11394 Iface
:= Node
(Iface_Elmt
);
11396 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
11397 while Present
(Prim_Elmt
) loop
11398 Iface_Subp
:= Node
(Prim_Elmt
);
11400 -- Exclude derivation of predefined primitives except those
11401 -- that come from source. Required to catch declarations of
11402 -- equality operators of interfaces. For example:
11404 -- type Iface is interface;
11405 -- function "=" (Left, Right : Iface) return Boolean;
11407 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
11408 or else Comes_From_Source
(Iface_Subp
)
11410 E
:= Find_Primitive_Covering_Interface
11411 (Tagged_Type
=> Tagged_Type
,
11412 Iface_Prim
=> Iface_Subp
);
11414 -- If not found we derive a new primitive leaving its alias
11415 -- attribute referencing the interface primitive
11419 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
11421 -- Propagate to the full view interface entities associated
11422 -- with the partial view
11424 elsif In_Private_Part
(Current_Scope
)
11425 and then Present
(Alias
(E
))
11426 and then Alias
(E
) = Iface_Subp
11428 List_Containing
(Parent
(E
)) /=
11429 Private_Declarations
11431 (Unit_Declaration_Node
(Current_Scope
)))
11433 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
11437 Next_Elmt
(Prim_Elmt
);
11440 Next_Elmt
(Iface_Elmt
);
11443 end Derive_Progenitor_Subprograms
;
11445 -----------------------
11446 -- Derive_Subprogram --
11447 -----------------------
11449 procedure Derive_Subprogram
11450 (New_Subp
: in out Entity_Id
;
11451 Parent_Subp
: Entity_Id
;
11452 Derived_Type
: Entity_Id
;
11453 Parent_Type
: Entity_Id
;
11454 Actual_Subp
: Entity_Id
:= Empty
)
11456 Formal
: Entity_Id
;
11457 -- Formal parameter of parent primitive operation
11459 Formal_Of_Actual
: Entity_Id
;
11460 -- Formal parameter of actual operation, when the derivation is to
11461 -- create a renaming for a primitive operation of an actual in an
11464 New_Formal
: Entity_Id
;
11465 -- Formal of inherited operation
11467 Visible_Subp
: Entity_Id
:= Parent_Subp
;
11469 function Is_Private_Overriding
return Boolean;
11470 -- If Subp is a private overriding of a visible operation, the inherited
11471 -- operation derives from the overridden op (even though its body is the
11472 -- overriding one) and the inherited operation is visible now. See
11473 -- sem_disp to see the full details of the handling of the overridden
11474 -- subprogram, which is removed from the list of primitive operations of
11475 -- the type. The overridden subprogram is saved locally in Visible_Subp,
11476 -- and used to diagnose abstract operations that need overriding in the
11479 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
11480 -- When the type is an anonymous access type, create a new access type
11481 -- designating the derived type.
11483 procedure Set_Derived_Name
;
11484 -- This procedure sets the appropriate Chars name for New_Subp. This
11485 -- is normally just a copy of the parent name. An exception arises for
11486 -- type support subprograms, where the name is changed to reflect the
11487 -- name of the derived type, e.g. if type foo is derived from type bar,
11488 -- then a procedure barDA is derived with a name fooDA.
11490 ---------------------------
11491 -- Is_Private_Overriding --
11492 ---------------------------
11494 function Is_Private_Overriding
return Boolean is
11498 -- If the parent is not a dispatching operation there is no
11499 -- need to investigate overridings
11501 if not Is_Dispatching_Operation
(Parent_Subp
) then
11505 -- The visible operation that is overridden is a homonym of the
11506 -- parent subprogram. We scan the homonym chain to find the one
11507 -- whose alias is the subprogram we are deriving.
11509 Prev
:= Current_Entity
(Parent_Subp
);
11510 while Present
(Prev
) loop
11511 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
11512 and then Alias
(Prev
) = Parent_Subp
11513 and then Scope
(Parent_Subp
) = Scope
(Prev
)
11514 and then not Is_Hidden
(Prev
)
11516 Visible_Subp
:= Prev
;
11520 Prev
:= Homonym
(Prev
);
11524 end Is_Private_Overriding
;
11530 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
11531 Acc_Type
: Entity_Id
;
11532 Par
: constant Node_Id
:= Parent
(Derived_Type
);
11535 -- When the type is an anonymous access type, create a new access
11536 -- type designating the derived type. This itype must be elaborated
11537 -- at the point of the derivation, not on subsequent calls that may
11538 -- be out of the proper scope for Gigi, so we insert a reference to
11539 -- it after the derivation.
11541 if Ekind
(Etype
(Id
)) = E_Anonymous_Access_Type
then
11543 Desig_Typ
: Entity_Id
:= Designated_Type
(Etype
(Id
));
11546 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
11547 and then Present
(Full_View
(Desig_Typ
))
11548 and then not Is_Private_Type
(Parent_Type
)
11550 Desig_Typ
:= Full_View
(Desig_Typ
);
11553 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
11555 -- Ada 2005 (AI-251): Handle also derivations of abstract
11556 -- interface primitives.
11558 or else (Is_Interface
(Desig_Typ
)
11559 and then not Is_Class_Wide_Type
(Desig_Typ
))
11561 Acc_Type
:= New_Copy
(Etype
(Id
));
11562 Set_Etype
(Acc_Type
, Acc_Type
);
11563 Set_Scope
(Acc_Type
, New_Subp
);
11565 -- Compute size of anonymous access type
11567 if Is_Array_Type
(Desig_Typ
)
11568 and then not Is_Constrained
(Desig_Typ
)
11570 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
11572 Init_Size
(Acc_Type
, System_Address_Size
);
11575 Init_Alignment
(Acc_Type
);
11576 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
11578 Set_Etype
(New_Id
, Acc_Type
);
11579 Set_Scope
(New_Id
, New_Subp
);
11581 -- Create a reference to it
11582 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
11585 Set_Etype
(New_Id
, Etype
(Id
));
11589 elsif Base_Type
(Etype
(Id
)) = Base_Type
(Parent_Type
)
11591 (Ekind
(Etype
(Id
)) = E_Record_Type_With_Private
11592 and then Present
(Full_View
(Etype
(Id
)))
11594 Base_Type
(Full_View
(Etype
(Id
))) = Base_Type
(Parent_Type
))
11596 -- Constraint checks on formals are generated during expansion,
11597 -- based on the signature of the original subprogram. The bounds
11598 -- of the derived type are not relevant, and thus we can use
11599 -- the base type for the formals. However, the return type may be
11600 -- used in a context that requires that the proper static bounds
11601 -- be used (a case statement, for example) and for those cases
11602 -- we must use the derived type (first subtype), not its base.
11604 -- If the derived_type_definition has no constraints, we know that
11605 -- the derived type has the same constraints as the first subtype
11606 -- of the parent, and we can also use it rather than its base,
11607 -- which can lead to more efficient code.
11609 if Etype
(Id
) = Parent_Type
then
11610 if Is_Scalar_Type
(Parent_Type
)
11612 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
11614 Set_Etype
(New_Id
, Derived_Type
);
11616 elsif Nkind
(Par
) = N_Full_Type_Declaration
11618 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
11621 (Subtype_Indication
(Type_Definition
(Par
)))
11623 Set_Etype
(New_Id
, Derived_Type
);
11626 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
11630 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
11633 -- Ada 2005 (AI-251): Handle derivations of abstract interface
11636 elsif Is_Interface
(Etype
(Id
))
11637 and then not Is_Class_Wide_Type
(Etype
(Id
))
11638 and then Is_Progenitor
(Etype
(Id
), Derived_Type
)
11640 Set_Etype
(New_Id
, Derived_Type
);
11643 Set_Etype
(New_Id
, Etype
(Id
));
11647 ----------------------
11648 -- Set_Derived_Name --
11649 ----------------------
11651 procedure Set_Derived_Name
is
11652 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
11654 if Nm
= TSS_Null
then
11655 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
11657 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
11659 end Set_Derived_Name
;
11663 Parent_Overrides_Interface_Primitive
: Boolean := False;
11665 -- Start of processing for Derive_Subprogram
11669 New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
11670 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
11672 -- Check whether the parent overrides an interface primitive
11674 if Is_Overriding_Operation
(Parent_Subp
) then
11676 E
: Entity_Id
:= Parent_Subp
;
11678 while Present
(Overridden_Operation
(E
)) loop
11679 E
:= Ultimate_Alias
(Overridden_Operation
(E
));
11682 Parent_Overrides_Interface_Primitive
:=
11683 Is_Dispatching_Operation
(E
)
11684 and then Present
(Find_Dispatching_Type
(E
))
11685 and then Is_Interface
(Find_Dispatching_Type
(E
));
11689 -- Check whether the inherited subprogram is a private operation that
11690 -- should be inherited but not yet made visible. Such subprograms can
11691 -- become visible at a later point (e.g., the private part of a public
11692 -- child unit) via Declare_Inherited_Private_Subprograms. If the
11693 -- following predicate is true, then this is not such a private
11694 -- operation and the subprogram simply inherits the name of the parent
11695 -- subprogram. Note the special check for the names of controlled
11696 -- operations, which are currently exempted from being inherited with
11697 -- a hidden name because they must be findable for generation of
11698 -- implicit run-time calls.
11700 if not Is_Hidden
(Parent_Subp
)
11701 or else Is_Internal
(Parent_Subp
)
11702 or else Is_Private_Overriding
11703 or else Is_Internal_Name
(Chars
(Parent_Subp
))
11704 or else Chars
(Parent_Subp
) = Name_Initialize
11705 or else Chars
(Parent_Subp
) = Name_Adjust
11706 or else Chars
(Parent_Subp
) = Name_Finalize
11710 -- If parent is hidden, this can be a regular derivation if the
11711 -- parent is immediately visible in a non-instantiating context,
11712 -- or if we are in the private part of an instance. This test
11713 -- should still be refined ???
11715 -- The test for In_Instance_Not_Visible avoids inheriting the derived
11716 -- operation as a non-visible operation in cases where the parent
11717 -- subprogram might not be visible now, but was visible within the
11718 -- original generic, so it would be wrong to make the inherited
11719 -- subprogram non-visible now. (Not clear if this test is fully
11720 -- correct; are there any cases where we should declare the inherited
11721 -- operation as not visible to avoid it being overridden, e.g., when
11722 -- the parent type is a generic actual with private primitives ???)
11724 -- (they should be treated the same as other private inherited
11725 -- subprograms, but it's not clear how to do this cleanly). ???
11727 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
11728 and then Is_Immediately_Visible
(Parent_Subp
)
11729 and then not In_Instance
)
11730 or else In_Instance_Not_Visible
11734 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
11735 -- overrides an interface primitive because interface primitives
11736 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
11738 elsif Parent_Overrides_Interface_Primitive
then
11741 -- The type is inheriting a private operation, so enter
11742 -- it with a special name so it can't be overridden.
11745 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
11748 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
11750 if Present
(Actual_Subp
) then
11751 Replace_Type
(Actual_Subp
, New_Subp
);
11753 Replace_Type
(Parent_Subp
, New_Subp
);
11756 Conditional_Delay
(New_Subp
, Parent_Subp
);
11758 -- If we are creating a renaming for a primitive operation of an
11759 -- actual of a generic derived type, we must examine the signature
11760 -- of the actual primitive, not that of the generic formal, which for
11761 -- example may be an interface. However the name and initial value
11762 -- of the inherited operation are those of the formal primitive.
11764 Formal
:= First_Formal
(Parent_Subp
);
11766 if Present
(Actual_Subp
) then
11767 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
11769 Formal_Of_Actual
:= Empty
;
11772 while Present
(Formal
) loop
11773 New_Formal
:= New_Copy
(Formal
);
11775 -- Normally we do not go copying parents, but in the case of
11776 -- formals, we need to link up to the declaration (which is the
11777 -- parameter specification), and it is fine to link up to the
11778 -- original formal's parameter specification in this case.
11780 Set_Parent
(New_Formal
, Parent
(Formal
));
11781 Append_Entity
(New_Formal
, New_Subp
);
11783 if Present
(Formal_Of_Actual
) then
11784 Replace_Type
(Formal_Of_Actual
, New_Formal
);
11785 Next_Formal
(Formal_Of_Actual
);
11787 Replace_Type
(Formal
, New_Formal
);
11790 Next_Formal
(Formal
);
11793 -- If this derivation corresponds to a tagged generic actual, then
11794 -- primitive operations rename those of the actual. Otherwise the
11795 -- primitive operations rename those of the parent type, If the parent
11796 -- renames an intrinsic operator, so does the new subprogram. We except
11797 -- concatenation, which is always properly typed, and does not get
11798 -- expanded as other intrinsic operations.
11800 if No
(Actual_Subp
) then
11801 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
11802 Set_Is_Intrinsic_Subprogram
(New_Subp
);
11804 if Present
(Alias
(Parent_Subp
))
11805 and then Chars
(Parent_Subp
) /= Name_Op_Concat
11807 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
11809 Set_Alias
(New_Subp
, Parent_Subp
);
11813 Set_Alias
(New_Subp
, Parent_Subp
);
11817 Set_Alias
(New_Subp
, Actual_Subp
);
11820 -- Derived subprograms of a tagged type must inherit the convention
11821 -- of the parent subprogram (a requirement of AI-117). Derived
11822 -- subprograms of untagged types simply get convention Ada by default.
11824 if Is_Tagged_Type
(Derived_Type
) then
11825 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
11828 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
11829 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
11831 if Ekind
(Parent_Subp
) = E_Procedure
then
11832 Set_Is_Valued_Procedure
11833 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
11836 -- No_Return must be inherited properly. If this is overridden in the
11837 -- case of a dispatching operation, then a check is made in Sem_Disp
11838 -- that the overriding operation is also No_Return (no such check is
11839 -- required for the case of non-dispatching operation.
11841 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
11843 -- A derived function with a controlling result is abstract. If the
11844 -- Derived_Type is a nonabstract formal generic derived type, then
11845 -- inherited operations are not abstract: the required check is done at
11846 -- instantiation time. If the derivation is for a generic actual, the
11847 -- function is not abstract unless the actual is.
11849 if Is_Generic_Type
(Derived_Type
)
11850 and then not Is_Abstract_Type
(Derived_Type
)
11854 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
11855 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
11857 elsif Ada_Version
>= Ada_05
11858 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
11859 or else (Is_Tagged_Type
(Derived_Type
)
11860 and then Etype
(New_Subp
) = Derived_Type
11861 and then not Is_Null_Extension
(Derived_Type
))
11862 or else (Is_Tagged_Type
(Derived_Type
)
11863 and then Ekind
(Etype
(New_Subp
)) =
11864 E_Anonymous_Access_Type
11865 and then Designated_Type
(Etype
(New_Subp
)) =
11867 and then not Is_Null_Extension
(Derived_Type
)))
11868 and then No
(Actual_Subp
)
11870 if not Is_Tagged_Type
(Derived_Type
)
11871 or else Is_Abstract_Type
(Derived_Type
)
11872 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
11874 Set_Is_Abstract_Subprogram
(New_Subp
);
11876 Set_Requires_Overriding
(New_Subp
);
11879 elsif Ada_Version
< Ada_05
11880 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
11881 or else (Is_Tagged_Type
(Derived_Type
)
11882 and then Etype
(New_Subp
) = Derived_Type
11883 and then No
(Actual_Subp
)))
11885 Set_Is_Abstract_Subprogram
(New_Subp
);
11887 -- Finally, if the parent type is abstract we must verify that all
11888 -- inherited operations are either non-abstract or overridden, or that
11889 -- the derived type itself is abstract (this check is performed at the
11890 -- end of a package declaration, in Check_Abstract_Overriding). A
11891 -- private overriding in the parent type will not be visible in the
11892 -- derivation if we are not in an inner package or in a child unit of
11893 -- the parent type, in which case the abstractness of the inherited
11894 -- operation is carried to the new subprogram.
11896 elsif Is_Abstract_Type
(Parent_Type
)
11897 and then not In_Open_Scopes
(Scope
(Parent_Type
))
11898 and then Is_Private_Overriding
11899 and then Is_Abstract_Subprogram
(Visible_Subp
)
11901 if No
(Actual_Subp
) then
11902 Set_Alias
(New_Subp
, Visible_Subp
);
11903 Set_Is_Abstract_Subprogram
11906 -- If this is a derivation for an instance of a formal derived
11907 -- type, abstractness comes from the primitive operation of the
11908 -- actual, not from the operation inherited from the ancestor.
11910 Set_Is_Abstract_Subprogram
11911 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
11915 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
11917 -- Check for case of a derived subprogram for the instantiation of a
11918 -- formal derived tagged type, if so mark the subprogram as dispatching
11919 -- and inherit the dispatching attributes of the parent subprogram. The
11920 -- derived subprogram is effectively renaming of the actual subprogram,
11921 -- so it needs to have the same attributes as the actual.
11923 if Present
(Actual_Subp
)
11924 and then Is_Dispatching_Operation
(Parent_Subp
)
11926 Set_Is_Dispatching_Operation
(New_Subp
);
11928 if Present
(DTC_Entity
(Parent_Subp
)) then
11929 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Parent_Subp
));
11930 Set_DT_Position
(New_Subp
, DT_Position
(Parent_Subp
));
11934 -- Indicate that a derived subprogram does not require a body and that
11935 -- it does not require processing of default expressions.
11937 Set_Has_Completion
(New_Subp
);
11938 Set_Default_Expressions_Processed
(New_Subp
);
11940 if Ekind
(New_Subp
) = E_Function
then
11941 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
11943 end Derive_Subprogram
;
11945 ------------------------
11946 -- Derive_Subprograms --
11947 ------------------------
11949 procedure Derive_Subprograms
11950 (Parent_Type
: Entity_Id
;
11951 Derived_Type
: Entity_Id
;
11952 Generic_Actual
: Entity_Id
:= Empty
)
11954 Op_List
: constant Elist_Id
:=
11955 Collect_Primitive_Operations
(Parent_Type
);
11957 function Check_Derived_Type
return Boolean;
11958 -- Check that all primitive inherited from Parent_Type are found in
11959 -- the list of primitives of Derived_Type exactly in the same order.
11961 function Check_Derived_Type
return Boolean is
11965 New_Subp
: Entity_Id
;
11970 -- Traverse list of entities in the current scope searching for
11971 -- an incomplete type whose full-view is derived type
11973 E
:= First_Entity
(Scope
(Derived_Type
));
11975 and then E
/= Derived_Type
11977 if Ekind
(E
) = E_Incomplete_Type
11978 and then Present
(Full_View
(E
))
11979 and then Full_View
(E
) = Derived_Type
11981 -- Disable this test if Derived_Type completes an incomplete
11982 -- type because in such case more primitives can be added
11983 -- later to the list of primitives of Derived_Type by routine
11984 -- Process_Incomplete_Dependents
11989 E
:= Next_Entity
(E
);
11992 List
:= Collect_Primitive_Operations
(Derived_Type
);
11993 Elmt
:= First_Elmt
(List
);
11995 Op_Elmt
:= First_Elmt
(Op_List
);
11996 while Present
(Op_Elmt
) loop
11997 Subp
:= Node
(Op_Elmt
);
11998 New_Subp
:= Node
(Elmt
);
12000 -- At this early stage Derived_Type has no entities with attribute
12001 -- Interface_Alias. In addition, such primitives are always
12002 -- located at the end of the list of primitives of Parent_Type.
12003 -- Therefore, if found we can safely stop processing pending
12006 exit when Present
(Interface_Alias
(Subp
));
12008 -- Handle hidden entities
12010 if not Is_Predefined_Dispatching_Operation
(Subp
)
12011 and then Is_Hidden
(Subp
)
12013 if Present
(New_Subp
)
12014 and then Primitive_Names_Match
(Subp
, New_Subp
)
12020 if not Present
(New_Subp
)
12021 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
12022 or else not Primitive_Names_Match
(Subp
, New_Subp
)
12030 Next_Elmt
(Op_Elmt
);
12034 end Check_Derived_Type
;
12038 Alias_Subp
: Entity_Id
;
12039 Act_List
: Elist_Id
;
12040 Act_Elmt
: Elmt_Id
:= No_Elmt
;
12041 Act_Subp
: Entity_Id
:= Empty
;
12043 Need_Search
: Boolean := False;
12044 New_Subp
: Entity_Id
:= Empty
;
12045 Parent_Base
: Entity_Id
;
12048 -- Start of processing for Derive_Subprograms
12051 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
12052 and then Has_Discriminants
(Parent_Type
)
12053 and then Present
(Full_View
(Parent_Type
))
12055 Parent_Base
:= Full_View
(Parent_Type
);
12057 Parent_Base
:= Parent_Type
;
12060 if Present
(Generic_Actual
) then
12061 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
12062 Act_Elmt
:= First_Elmt
(Act_List
);
12065 -- Derive primitives inherited from the parent. Note that if the generic
12066 -- actual is present, this is not really a type derivation, it is a
12067 -- completion within an instance.
12069 -- Case 1: Derived_Type does not implement interfaces
12071 if not Is_Tagged_Type
(Derived_Type
)
12072 or else (not Has_Interfaces
(Derived_Type
)
12073 and then not (Present
(Generic_Actual
)
12075 Has_Interfaces
(Generic_Actual
)))
12077 Elmt
:= First_Elmt
(Op_List
);
12078 while Present
(Elmt
) loop
12079 Subp
:= Node
(Elmt
);
12081 -- Literals are derived earlier in the process of building the
12082 -- derived type, and are skipped here.
12084 if Ekind
(Subp
) = E_Enumeration_Literal
then
12087 -- The actual is a direct descendant and the common primitive
12088 -- operations appear in the same order.
12090 -- If the generic parent type is present, the derived type is an
12091 -- instance of a formal derived type, and within the instance its
12092 -- operations are those of the actual. We derive from the formal
12093 -- type but make the inherited operations aliases of the
12094 -- corresponding operations of the actual.
12098 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
12100 if Present
(Act_Elmt
) then
12101 Next_Elmt
(Act_Elmt
);
12108 -- Case 2: Derived_Type implements interfaces
12111 -- If the parent type has no predefined primitives we remove
12112 -- predefined primitives from the list of primitives of generic
12113 -- actual to simplify the complexity of this algorithm.
12115 if Present
(Generic_Actual
) then
12117 Has_Predefined_Primitives
: Boolean := False;
12120 -- Check if the parent type has predefined primitives
12122 Elmt
:= First_Elmt
(Op_List
);
12123 while Present
(Elmt
) loop
12124 Subp
:= Node
(Elmt
);
12126 if Is_Predefined_Dispatching_Operation
(Subp
)
12127 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
12129 Has_Predefined_Primitives
:= True;
12136 -- Remove predefined primitives of Generic_Actual. We must use
12137 -- an auxiliary list because in case of tagged types the value
12138 -- returned by Collect_Primitive_Operations is the value stored
12139 -- in its Primitive_Operations attribute (and we don't want to
12140 -- modify its current contents).
12142 if not Has_Predefined_Primitives
then
12144 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
12147 Elmt
:= First_Elmt
(Act_List
);
12148 while Present
(Elmt
) loop
12149 Subp
:= Node
(Elmt
);
12151 if not Is_Predefined_Dispatching_Operation
(Subp
)
12152 or else Comes_From_Source
(Subp
)
12154 Append_Elmt
(Subp
, Aux_List
);
12160 Act_List
:= Aux_List
;
12164 Act_Elmt
:= First_Elmt
(Act_List
);
12165 Act_Subp
:= Node
(Act_Elmt
);
12169 -- Stage 1: If the generic actual is not present we derive the
12170 -- primitives inherited from the parent type. If the generic parent
12171 -- type is present, the derived type is an instance of a formal
12172 -- derived type, and within the instance its operations are those of
12173 -- the actual. We derive from the formal type but make the inherited
12174 -- operations aliases of the corresponding operations of the actual.
12176 Elmt
:= First_Elmt
(Op_List
);
12177 while Present
(Elmt
) loop
12178 Subp
:= Node
(Elmt
);
12179 Alias_Subp
:= Ultimate_Alias
(Subp
);
12181 -- At this early stage Derived_Type has no entities with attribute
12182 -- Interface_Alias. In addition, such primitives are always
12183 -- located at the end of the list of primitives of Parent_Type.
12184 -- Therefore, if found we can safely stop processing pending
12187 exit when Present
(Interface_Alias
(Subp
));
12189 -- If the generic actual is present find the corresponding
12190 -- operation in the generic actual. If the parent type is a
12191 -- direct ancestor of the derived type then, even if it is an
12192 -- interface, the operations are inherited from the primary
12193 -- dispatch table and are in the proper order. If we detect here
12194 -- that primitives are not in the same order we traverse the list
12195 -- of primitive operations of the actual to find the one that
12196 -- implements the interface primitive.
12200 (Present
(Generic_Actual
)
12201 and then Present
(Act_Subp
)
12202 and then not Primitive_Names_Match
(Subp
, Act_Subp
))
12204 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
));
12205 pragma Assert
(Is_Interface
(Parent_Base
));
12207 -- Remember that we need searching for all the pending
12210 Need_Search
:= True;
12212 -- Handle entities associated with interface primitives
12214 if Present
(Alias
(Subp
))
12215 and then Is_Interface
(Find_Dispatching_Type
(Alias
(Subp
)))
12216 and then not Is_Predefined_Dispatching_Operation
(Subp
)
12219 Find_Primitive_Covering_Interface
12220 (Tagged_Type
=> Generic_Actual
,
12221 Iface_Prim
=> Subp
);
12223 -- Handle predefined primitives plus the rest of user-defined
12227 Act_Elmt
:= First_Elmt
(Act_List
);
12228 while Present
(Act_Elmt
) loop
12229 Act_Subp
:= Node
(Act_Elmt
);
12231 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
12232 and then Type_Conformant
(Subp
, Act_Subp
,
12233 Skip_Controlling_Formals
=> True)
12234 and then No
(Interface_Alias
(Act_Subp
));
12236 Next_Elmt
(Act_Elmt
);
12241 -- Case 1: If the parent is a limited interface then it has the
12242 -- predefined primitives of synchronized interfaces. However, the
12243 -- actual type may be a non-limited type and hence it does not
12244 -- have such primitives.
12246 if Present
(Generic_Actual
)
12247 and then not Present
(Act_Subp
)
12248 and then Is_Limited_Interface
(Parent_Base
)
12249 and then Is_Predefined_Interface_Primitive
(Subp
)
12253 -- Case 2: Inherit entities associated with interfaces that
12254 -- were not covered by the parent type. We exclude here null
12255 -- interface primitives because they do not need special
12258 elsif Present
(Alias
(Subp
))
12259 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
12261 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
12262 and then Null_Present
(Parent
(Alias_Subp
)))
12265 (New_Subp
=> New_Subp
,
12266 Parent_Subp
=> Alias_Subp
,
12267 Derived_Type
=> Derived_Type
,
12268 Parent_Type
=> Find_Dispatching_Type
(Alias_Subp
),
12269 Actual_Subp
=> Act_Subp
);
12271 if No
(Generic_Actual
) then
12272 Set_Alias
(New_Subp
, Subp
);
12275 -- Case 3: Common derivation
12279 (New_Subp
=> New_Subp
,
12280 Parent_Subp
=> Subp
,
12281 Derived_Type
=> Derived_Type
,
12282 Parent_Type
=> Parent_Base
,
12283 Actual_Subp
=> Act_Subp
);
12286 -- No need to update Act_Elm if we must search for the
12287 -- corresponding operation in the generic actual
12290 and then Present
(Act_Elmt
)
12292 Next_Elmt
(Act_Elmt
);
12293 Act_Subp
:= Node
(Act_Elmt
);
12299 -- Inherit additional operations from progenitors. If the derived
12300 -- type is a generic actual, there are not new primitive operations
12301 -- for the type because it has those of the actual, and therefore
12302 -- nothing needs to be done. The renamings generated above are not
12303 -- primitive operations, and their purpose is simply to make the
12304 -- proper operations visible within an instantiation.
12306 if No
(Generic_Actual
) then
12307 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
12311 -- Final check: Direct descendants must have their primitives in the
12312 -- same order. We exclude from this test non-tagged types and instances
12313 -- of formal derived types. We skip this test if we have already
12314 -- reported serious errors in the sources.
12316 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
12317 or else Present
(Generic_Actual
)
12318 or else Serious_Errors_Detected
> 0
12319 or else Check_Derived_Type
);
12320 end Derive_Subprograms
;
12322 --------------------------------
12323 -- Derived_Standard_Character --
12324 --------------------------------
12326 procedure Derived_Standard_Character
12328 Parent_Type
: Entity_Id
;
12329 Derived_Type
: Entity_Id
)
12331 Loc
: constant Source_Ptr
:= Sloc
(N
);
12332 Def
: constant Node_Id
:= Type_Definition
(N
);
12333 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
12334 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
12335 Implicit_Base
: constant Entity_Id
:=
12337 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
12343 Discard_Node
(Process_Subtype
(Indic
, N
));
12345 Set_Etype
(Implicit_Base
, Parent_Base
);
12346 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
12347 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
12349 Set_Is_Character_Type
(Implicit_Base
, True);
12350 Set_Has_Delayed_Freeze
(Implicit_Base
);
12352 -- The bounds of the implicit base are the bounds of the parent base.
12353 -- Note that their type is the parent base.
12355 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
12356 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
12358 Set_Scalar_Range
(Implicit_Base
,
12361 High_Bound
=> Hi
));
12363 Conditional_Delay
(Derived_Type
, Parent_Type
);
12365 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
12366 Set_Etype
(Derived_Type
, Implicit_Base
);
12367 Set_Size_Info
(Derived_Type
, Parent_Type
);
12369 if Unknown_RM_Size
(Derived_Type
) then
12370 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
12373 Set_Is_Character_Type
(Derived_Type
, True);
12375 if Nkind
(Indic
) /= N_Subtype_Indication
then
12377 -- If no explicit constraint, the bounds are those
12378 -- of the parent type.
12380 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
12381 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
12382 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
12385 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
12387 -- Because the implicit base is used in the conversion of the bounds, we
12388 -- have to freeze it now. This is similar to what is done for numeric
12389 -- types, and it equally suspicious, but otherwise a non-static bound
12390 -- will have a reference to an unfrozen type, which is rejected by Gigi
12391 -- (???). This requires specific care for definition of stream
12392 -- attributes. For details, see comments at the end of
12393 -- Build_Derived_Numeric_Type.
12395 Freeze_Before
(N
, Implicit_Base
);
12396 end Derived_Standard_Character
;
12398 ------------------------------
12399 -- Derived_Type_Declaration --
12400 ------------------------------
12402 procedure Derived_Type_Declaration
12405 Is_Completion
: Boolean)
12407 Parent_Type
: Entity_Id
;
12409 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
12410 -- Check whether the parent type is a generic formal, or derives
12411 -- directly or indirectly from one.
12413 ------------------------
12414 -- Comes_From_Generic --
12415 ------------------------
12417 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
12419 if Is_Generic_Type
(Typ
) then
12422 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
12425 elsif Is_Private_Type
(Typ
)
12426 and then Present
(Full_View
(Typ
))
12427 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
12431 elsif Is_Generic_Actual_Type
(Typ
) then
12437 end Comes_From_Generic
;
12441 Def
: constant Node_Id
:= Type_Definition
(N
);
12442 Iface_Def
: Node_Id
;
12443 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
12444 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
12445 Parent_Node
: Node_Id
;
12446 Parent_Scope
: Entity_Id
;
12449 -- Start of processing for Derived_Type_Declaration
12452 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
12454 -- Ada 2005 (AI-251): In case of interface derivation check that the
12455 -- parent is also an interface.
12457 if Interface_Present
(Def
) then
12458 if not Is_Interface
(Parent_Type
) then
12459 Diagnose_Interface
(Indic
, Parent_Type
);
12462 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
12463 Iface_Def
:= Type_Definition
(Parent_Node
);
12465 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
12466 -- other limited interfaces.
12468 if Limited_Present
(Def
) then
12469 if Limited_Present
(Iface_Def
) then
12472 elsif Protected_Present
(Iface_Def
) then
12474 ("(Ada 2005) limited interface cannot "
12475 & "inherit from protected interface", Indic
);
12477 elsif Synchronized_Present
(Iface_Def
) then
12479 ("(Ada 2005) limited interface cannot "
12480 & "inherit from synchronized interface", Indic
);
12482 elsif Task_Present
(Iface_Def
) then
12484 ("(Ada 2005) limited interface cannot "
12485 & "inherit from task interface", Indic
);
12489 ("(Ada 2005) limited interface cannot "
12490 & "inherit from non-limited interface", Indic
);
12493 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
12494 -- from non-limited or limited interfaces.
12496 elsif not Protected_Present
(Def
)
12497 and then not Synchronized_Present
(Def
)
12498 and then not Task_Present
(Def
)
12500 if Limited_Present
(Iface_Def
) then
12503 elsif Protected_Present
(Iface_Def
) then
12505 ("(Ada 2005) non-limited interface cannot "
12506 & "inherit from protected interface", Indic
);
12508 elsif Synchronized_Present
(Iface_Def
) then
12510 ("(Ada 2005) non-limited interface cannot "
12511 & "inherit from synchronized interface", Indic
);
12513 elsif Task_Present
(Iface_Def
) then
12515 ("(Ada 2005) non-limited interface cannot "
12516 & "inherit from task interface", Indic
);
12525 if Is_Tagged_Type
(Parent_Type
)
12526 and then Is_Concurrent_Type
(Parent_Type
)
12527 and then not Is_Interface
(Parent_Type
)
12530 ("parent type of a record extension cannot be "
12531 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
12532 Set_Etype
(T
, Any_Type
);
12536 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
12539 if Is_Tagged_Type
(Parent_Type
)
12540 and then Is_Non_Empty_List
(Interface_List
(Def
))
12547 Intf
:= First
(Interface_List
(Def
));
12548 while Present
(Intf
) loop
12549 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
12551 if not Is_Interface
(T
) then
12552 Diagnose_Interface
(Intf
, T
);
12554 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
12555 -- a limited type from having a nonlimited progenitor.
12557 elsif (Limited_Present
(Def
)
12558 or else (not Is_Interface
(Parent_Type
)
12559 and then Is_Limited_Type
(Parent_Type
)))
12560 and then not Is_Limited_Interface
(T
)
12563 ("progenitor interface& of limited type must be limited",
12572 if Parent_Type
= Any_Type
12573 or else Etype
(Parent_Type
) = Any_Type
12574 or else (Is_Class_Wide_Type
(Parent_Type
)
12575 and then Etype
(Parent_Type
) = T
)
12577 -- If Parent_Type is undefined or illegal, make new type into a
12578 -- subtype of Any_Type, and set a few attributes to prevent cascaded
12579 -- errors. If this is a self-definition, emit error now.
12582 or else T
= Etype
(Parent_Type
)
12584 Error_Msg_N
("type cannot be used in its own definition", Indic
);
12587 Set_Ekind
(T
, Ekind
(Parent_Type
));
12588 Set_Etype
(T
, Any_Type
);
12589 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
12591 if Is_Tagged_Type
(T
) then
12592 Set_Primitive_Operations
(T
, New_Elmt_List
);
12598 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
12599 -- an interface is special because the list of interfaces in the full
12600 -- view can be given in any order. For example:
12602 -- type A is interface;
12603 -- type B is interface and A;
12604 -- type D is new B with private;
12606 -- type D is new A and B with null record; -- 1 --
12608 -- In this case we perform the following transformation of -1-:
12610 -- type D is new B and A with null record;
12612 -- If the parent of the full-view covers the parent of the partial-view
12613 -- we have two possible cases:
12615 -- 1) They have the same parent
12616 -- 2) The parent of the full-view implements some further interfaces
12618 -- In both cases we do not need to perform the transformation. In the
12619 -- first case the source program is correct and the transformation is
12620 -- not needed; in the second case the source program does not fulfill
12621 -- the no-hidden interfaces rule (AI-396) and the error will be reported
12624 -- This transformation not only simplifies the rest of the analysis of
12625 -- this type declaration but also simplifies the correct generation of
12626 -- the object layout to the expander.
12628 if In_Private_Part
(Current_Scope
)
12629 and then Is_Interface
(Parent_Type
)
12633 Partial_View
: Entity_Id
;
12634 Partial_View_Parent
: Entity_Id
;
12635 New_Iface
: Node_Id
;
12638 -- Look for the associated private type declaration
12640 Partial_View
:= First_Entity
(Current_Scope
);
12642 exit when No
(Partial_View
)
12643 or else (Has_Private_Declaration
(Partial_View
)
12644 and then Full_View
(Partial_View
) = T
);
12646 Next_Entity
(Partial_View
);
12649 -- If the partial view was not found then the source code has
12650 -- errors and the transformation is not needed.
12652 if Present
(Partial_View
) then
12653 Partial_View_Parent
:= Etype
(Partial_View
);
12655 -- If the parent of the full-view covers the parent of the
12656 -- partial-view we have nothing else to do.
12658 if Interface_Present_In_Ancestor
12659 (Parent_Type
, Partial_View_Parent
)
12663 -- Traverse the list of interfaces of the full-view to look
12664 -- for the parent of the partial-view and perform the tree
12668 Iface
:= First
(Interface_List
(Def
));
12669 while Present
(Iface
) loop
12670 if Etype
(Iface
) = Etype
(Partial_View
) then
12671 Rewrite
(Subtype_Indication
(Def
),
12672 New_Copy
(Subtype_Indication
12673 (Parent
(Partial_View
))));
12675 New_Iface
:= Make_Identifier
(Sloc
(N
),
12676 Chars
(Parent_Type
));
12677 Append
(New_Iface
, Interface_List
(Def
));
12679 -- Analyze the transformed code
12681 Derived_Type_Declaration
(T
, N
, Is_Completion
);
12692 -- Only composite types other than array types are allowed to have
12695 if Present
(Discriminant_Specifications
(N
))
12696 and then (Is_Elementary_Type
(Parent_Type
)
12697 or else Is_Array_Type
(Parent_Type
))
12698 and then not Error_Posted
(N
)
12701 ("elementary or array type cannot have discriminants",
12702 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
12703 Set_Has_Discriminants
(T
, False);
12706 -- In Ada 83, a derived type defined in a package specification cannot
12707 -- be used for further derivation until the end of its visible part.
12708 -- Note that derivation in the private part of the package is allowed.
12710 if Ada_Version
= Ada_83
12711 and then Is_Derived_Type
(Parent_Type
)
12712 and then In_Visible_Part
(Scope
(Parent_Type
))
12714 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
12716 ("(Ada 83): premature use of type for derivation", Indic
);
12720 -- Check for early use of incomplete or private type
12722 if Ekind
(Parent_Type
) = E_Void
12723 or else Ekind
(Parent_Type
) = E_Incomplete_Type
12725 Error_Msg_N
("premature derivation of incomplete type", Indic
);
12728 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
12729 and then not Comes_From_Generic
(Parent_Type
))
12730 or else Has_Private_Component
(Parent_Type
)
12732 -- The ancestor type of a formal type can be incomplete, in which
12733 -- case only the operations of the partial view are available in
12734 -- the generic. Subsequent checks may be required when the full
12735 -- view is analyzed, to verify that derivation from a tagged type
12736 -- has an extension.
12738 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
12741 elsif No
(Underlying_Type
(Parent_Type
))
12742 or else Has_Private_Component
(Parent_Type
)
12745 ("premature derivation of derived or private type", Indic
);
12747 -- Flag the type itself as being in error, this prevents some
12748 -- nasty problems with subsequent uses of the malformed type.
12750 Set_Error_Posted
(T
);
12752 -- Check that within the immediate scope of an untagged partial
12753 -- view it's illegal to derive from the partial view if the
12754 -- full view is tagged. (7.3(7))
12756 -- We verify that the Parent_Type is a partial view by checking
12757 -- that it is not a Full_Type_Declaration (i.e. a private type or
12758 -- private extension declaration), to distinguish a partial view
12759 -- from a derivation from a private type which also appears as
12762 elsif Present
(Full_View
(Parent_Type
))
12763 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
12764 and then not Is_Tagged_Type
(Parent_Type
)
12765 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
12767 Parent_Scope
:= Scope
(T
);
12768 while Present
(Parent_Scope
)
12769 and then Parent_Scope
/= Standard_Standard
12771 if Parent_Scope
= Scope
(Parent_Type
) then
12773 ("premature derivation from type with tagged full view",
12777 Parent_Scope
:= Scope
(Parent_Scope
);
12782 -- Check that form of derivation is appropriate
12784 Taggd
:= Is_Tagged_Type
(Parent_Type
);
12786 -- Perhaps the parent type should be changed to the class-wide type's
12787 -- specific type in this case to prevent cascading errors ???
12789 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
12790 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
12794 if Present
(Extension
) and then not Taggd
then
12796 ("type derived from untagged type cannot have extension", Indic
);
12798 elsif No
(Extension
) and then Taggd
then
12800 -- If this declaration is within a private part (or body) of a
12801 -- generic instantiation then the derivation is allowed (the parent
12802 -- type can only appear tagged in this case if it's a generic actual
12803 -- type, since it would otherwise have been rejected in the analysis
12804 -- of the generic template).
12806 if not Is_Generic_Actual_Type
(Parent_Type
)
12807 or else In_Visible_Part
(Scope
(Parent_Type
))
12810 ("type derived from tagged type must have extension", Indic
);
12814 -- AI-443: Synchronized formal derived types require a private
12815 -- extension. There is no point in checking the ancestor type or
12816 -- the progenitors since the construct is wrong to begin with.
12818 if Ada_Version
>= Ada_05
12819 and then Is_Generic_Type
(T
)
12820 and then Present
(Original_Node
(N
))
12823 Decl
: constant Node_Id
:= Original_Node
(N
);
12826 if Nkind
(Decl
) = N_Formal_Type_Declaration
12827 and then Nkind
(Formal_Type_Definition
(Decl
)) =
12828 N_Formal_Derived_Type_Definition
12829 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
12830 and then No
(Extension
)
12832 -- Avoid emitting a duplicate error message
12834 and then not Error_Posted
(Indic
)
12837 ("synchronized derived type must have extension", N
);
12842 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
);
12844 -- AI-419: The parent type of an explicitly limited derived type must
12845 -- be a limited type or a limited interface.
12847 if Limited_Present
(Def
) then
12848 Set_Is_Limited_Record
(T
);
12850 if Is_Interface
(T
) then
12851 Set_Is_Limited_Interface
(T
);
12854 if not Is_Limited_Type
(Parent_Type
)
12856 (not Is_Interface
(Parent_Type
)
12857 or else not Is_Limited_Interface
(Parent_Type
))
12859 Error_Msg_NE
("parent type& of limited type must be limited",
12863 end Derived_Type_Declaration
;
12865 ------------------------
12866 -- Diagnose_Interface --
12867 ------------------------
12869 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
12871 if not Is_Interface
(E
)
12872 and then E
/= Any_Type
12874 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
12876 end Diagnose_Interface
;
12878 ----------------------------------
12879 -- Enumeration_Type_Declaration --
12880 ----------------------------------
12882 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
12889 -- Create identifier node representing lower bound
12891 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
12892 L
:= First
(Literals
(Def
));
12893 Set_Chars
(B_Node
, Chars
(L
));
12894 Set_Entity
(B_Node
, L
);
12895 Set_Etype
(B_Node
, T
);
12896 Set_Is_Static_Expression
(B_Node
, True);
12898 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
12899 Set_Low_Bound
(R_Node
, B_Node
);
12901 Set_Ekind
(T
, E_Enumeration_Type
);
12902 Set_First_Literal
(T
, L
);
12904 Set_Is_Constrained
(T
);
12908 -- Loop through literals of enumeration type setting pos and rep values
12909 -- except that if the Ekind is already set, then it means that the
12910 -- literal was already constructed (case of a derived type declaration
12911 -- and we should not disturb the Pos and Rep values.
12913 while Present
(L
) loop
12914 if Ekind
(L
) /= E_Enumeration_Literal
then
12915 Set_Ekind
(L
, E_Enumeration_Literal
);
12916 Set_Enumeration_Pos
(L
, Ev
);
12917 Set_Enumeration_Rep
(L
, Ev
);
12918 Set_Is_Known_Valid
(L
, True);
12922 New_Overloaded_Entity
(L
);
12923 Generate_Definition
(L
);
12924 Set_Convention
(L
, Convention_Intrinsic
);
12926 if Nkind
(L
) = N_Defining_Character_Literal
then
12927 Set_Is_Character_Type
(T
, True);
12934 -- Now create a node representing upper bound
12936 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
12937 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
12938 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
12939 Set_Etype
(B_Node
, T
);
12940 Set_Is_Static_Expression
(B_Node
, True);
12942 Set_High_Bound
(R_Node
, B_Node
);
12944 -- Initialize various fields of the type. Some of this information
12945 -- may be overwritten later through rep.clauses.
12947 Set_Scalar_Range
(T
, R_Node
);
12948 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
12949 Set_Enum_Esize
(T
);
12950 Set_Enum_Pos_To_Rep
(T
, Empty
);
12952 -- Set Discard_Names if configuration pragma set, or if there is
12953 -- a parameterless pragma in the current declarative region
12955 if Global_Discard_Names
12956 or else Discard_Names
(Scope
(T
))
12958 Set_Discard_Names
(T
);
12961 -- Process end label if there is one
12963 if Present
(Def
) then
12964 Process_End_Label
(Def
, 'e', T
);
12966 end Enumeration_Type_Declaration
;
12968 ---------------------------------
12969 -- Expand_To_Stored_Constraint --
12970 ---------------------------------
12972 function Expand_To_Stored_Constraint
12974 Constraint
: Elist_Id
) return Elist_Id
12976 Explicitly_Discriminated_Type
: Entity_Id
;
12977 Expansion
: Elist_Id
;
12978 Discriminant
: Entity_Id
;
12980 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
12981 -- Find the nearest type that actually specifies discriminants
12983 ---------------------------------
12984 -- Type_With_Explicit_Discrims --
12985 ---------------------------------
12987 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
12988 Typ
: constant E
:= Base_Type
(Id
);
12991 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
12992 if Present
(Full_View
(Typ
)) then
12993 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
12997 if Has_Discriminants
(Typ
) then
13002 if Etype
(Typ
) = Typ
then
13004 elsif Has_Discriminants
(Typ
) then
13007 return Type_With_Explicit_Discrims
(Etype
(Typ
));
13010 end Type_With_Explicit_Discrims
;
13012 -- Start of processing for Expand_To_Stored_Constraint
13016 or else Is_Empty_Elmt_List
(Constraint
)
13021 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
13023 if No
(Explicitly_Discriminated_Type
) then
13027 Expansion
:= New_Elmt_List
;
13030 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
13031 while Present
(Discriminant
) loop
13033 Get_Discriminant_Value
(
13034 Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
13036 Next_Stored_Discriminant
(Discriminant
);
13040 end Expand_To_Stored_Constraint
;
13042 ---------------------------
13043 -- Find_Hidden_Interface --
13044 ---------------------------
13046 function Find_Hidden_Interface
13048 Dest
: Elist_Id
) return Entity_Id
13051 Iface_Elmt
: Elmt_Id
;
13054 if Present
(Src
) and then Present
(Dest
) then
13055 Iface_Elmt
:= First_Elmt
(Src
);
13056 while Present
(Iface_Elmt
) loop
13057 Iface
:= Node
(Iface_Elmt
);
13059 if Is_Interface
(Iface
)
13060 and then not Contain_Interface
(Iface
, Dest
)
13065 Next_Elmt
(Iface_Elmt
);
13070 end Find_Hidden_Interface
;
13072 --------------------
13073 -- Find_Type_Name --
13074 --------------------
13076 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
13077 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
13079 New_Id
: Entity_Id
;
13080 Prev_Par
: Node_Id
;
13082 procedure Tag_Mismatch
;
13083 -- Diagnose a tagged partial view whose full view is untagged.
13084 -- We post the message on the full view, with a reference to
13085 -- the previous partial view. The partial view can be private
13086 -- or incomplete, and these are handled in a different manner,
13087 -- so we determine the position of the error message from the
13088 -- respective slocs of both.
13094 procedure Tag_Mismatch
is
13096 if Sloc
(Prev
) < Sloc
(Id
) then
13098 ("full declaration of } must be a tagged type ", Id
, Prev
);
13101 ("full declaration of } must be a tagged type ", Prev
, Id
);
13105 -- Start processing for Find_Type_Name
13108 -- Find incomplete declaration, if one was given
13110 Prev
:= Current_Entity_In_Scope
(Id
);
13112 if Present
(Prev
) then
13114 -- Previous declaration exists. Error if not incomplete/private case
13115 -- except if previous declaration is implicit, etc. Enter_Name will
13116 -- emit error if appropriate.
13118 Prev_Par
:= Parent
(Prev
);
13120 if not Is_Incomplete_Or_Private_Type
(Prev
) then
13124 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
13125 N_Task_Type_Declaration
,
13126 N_Protected_Type_Declaration
)
13128 -- Completion must be a full type declarations (RM 7.3(4))
13130 Error_Msg_Sloc
:= Sloc
(Prev
);
13131 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
13133 -- Set scope of Id to avoid cascaded errors. Entity is never
13134 -- examined again, except when saving globals in generics.
13136 Set_Scope
(Id
, Current_Scope
);
13139 -- Case of full declaration of incomplete type
13141 elsif Ekind
(Prev
) = E_Incomplete_Type
then
13143 -- Indicate that the incomplete declaration has a matching full
13144 -- declaration. The defining occurrence of the incomplete
13145 -- declaration remains the visible one, and the procedure
13146 -- Get_Full_View dereferences it whenever the type is used.
13148 if Present
(Full_View
(Prev
)) then
13149 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
13152 Set_Full_View
(Prev
, Id
);
13153 Append_Entity
(Id
, Current_Scope
);
13154 Set_Is_Public
(Id
, Is_Public
(Prev
));
13155 Set_Is_Internal
(Id
);
13158 -- Case of full declaration of private type
13161 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
13162 if Etype
(Prev
) /= Prev
then
13164 -- Prev is a private subtype or a derived type, and needs
13167 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
13170 elsif Ekind
(Prev
) = E_Private_Type
13171 and then Nkind_In
(N
, N_Task_Type_Declaration
,
13172 N_Protected_Type_Declaration
)
13175 ("completion of nonlimited type cannot be limited", N
);
13177 elsif Ekind
(Prev
) = E_Record_Type_With_Private
13178 and then Nkind_In
(N
, N_Task_Type_Declaration
,
13179 N_Protected_Type_Declaration
)
13181 if not Is_Limited_Record
(Prev
) then
13183 ("completion of nonlimited type cannot be limited", N
);
13185 elsif No
(Interface_List
(N
)) then
13187 ("completion of tagged private type must be tagged",
13192 -- Ada 2005 (AI-251): Private extension declaration of a task
13193 -- type or a protected type. This case arises when covering
13194 -- interface types.
13196 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
13197 N_Protected_Type_Declaration
)
13201 elsif Nkind
(N
) /= N_Full_Type_Declaration
13202 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
13205 ("full view of private extension must be an extension", N
);
13207 elsif not (Abstract_Present
(Parent
(Prev
)))
13208 and then Abstract_Present
(Type_Definition
(N
))
13211 ("full view of non-abstract extension cannot be abstract", N
);
13214 if not In_Private_Part
(Current_Scope
) then
13216 ("declaration of full view must appear in private part", N
);
13219 Copy_And_Swap
(Prev
, Id
);
13220 Set_Has_Private_Declaration
(Prev
);
13221 Set_Has_Private_Declaration
(Id
);
13223 -- If no error, propagate freeze_node from private to full view.
13224 -- It may have been generated for an early operational item.
13226 if Present
(Freeze_Node
(Id
))
13227 and then Serious_Errors_Detected
= 0
13228 and then No
(Full_View
(Id
))
13230 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
13231 Set_Freeze_Node
(Id
, Empty
);
13232 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
13235 Set_Full_View
(Id
, Prev
);
13239 -- Verify that full declaration conforms to partial one
13241 if Is_Incomplete_Or_Private_Type
(Prev
)
13242 and then Present
(Discriminant_Specifications
(Prev_Par
))
13244 if Present
(Discriminant_Specifications
(N
)) then
13245 if Ekind
(Prev
) = E_Incomplete_Type
then
13246 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
13248 Check_Discriminant_Conformance
(N
, Prev
, Id
);
13253 ("missing discriminants in full type declaration", N
);
13255 -- To avoid cascaded errors on subsequent use, share the
13256 -- discriminants of the partial view.
13258 Set_Discriminant_Specifications
(N
,
13259 Discriminant_Specifications
(Prev_Par
));
13263 -- A prior untagged partial view can have an associated class-wide
13264 -- type due to use of the class attribute, and in this case the full
13265 -- type must also be tagged. This Ada 95 usage is deprecated in favor
13266 -- of incomplete tagged declarations, but we check for it.
13269 and then (Is_Tagged_Type
(Prev
)
13270 or else Present
(Class_Wide_Type
(Prev
)))
13272 -- The full declaration is either a tagged type (including
13273 -- a synchronized type that implements interfaces) or a
13274 -- type extension, otherwise this is an error.
13276 if Nkind_In
(N
, N_Task_Type_Declaration
,
13277 N_Protected_Type_Declaration
)
13279 if No
(Interface_List
(N
))
13280 and then not Error_Posted
(N
)
13285 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
13287 -- Indicate that the previous declaration (tagged incomplete
13288 -- or private declaration) requires the same on the full one.
13290 if not Tagged_Present
(Type_Definition
(N
)) then
13292 Set_Is_Tagged_Type
(Id
);
13293 Set_Primitive_Operations
(Id
, New_Elmt_List
);
13296 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
13297 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
13299 "full declaration of } must be a record extension",
13301 Set_Is_Tagged_Type
(Id
);
13302 Set_Primitive_Operations
(Id
, New_Elmt_List
);
13313 -- New type declaration
13318 end Find_Type_Name
;
13320 -------------------------
13321 -- Find_Type_Of_Object --
13322 -------------------------
13324 function Find_Type_Of_Object
13325 (Obj_Def
: Node_Id
;
13326 Related_Nod
: Node_Id
) return Entity_Id
13328 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
13329 P
: Node_Id
:= Parent
(Obj_Def
);
13334 -- If the parent is a component_definition node we climb to the
13335 -- component_declaration node
13337 if Nkind
(P
) = N_Component_Definition
then
13341 -- Case of an anonymous array subtype
13343 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
13344 N_Unconstrained_Array_Definition
)
13347 Array_Type_Declaration
(T
, Obj_Def
);
13349 -- Create an explicit subtype whenever possible
13351 elsif Nkind
(P
) /= N_Component_Declaration
13352 and then Def_Kind
= N_Subtype_Indication
13354 -- Base name of subtype on object name, which will be unique in
13355 -- the current scope.
13357 -- If this is a duplicate declaration, return base type, to avoid
13358 -- generating duplicate anonymous types.
13360 if Error_Posted
(P
) then
13361 Analyze
(Subtype_Mark
(Obj_Def
));
13362 return Entity
(Subtype_Mark
(Obj_Def
));
13367 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
13369 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
13371 Insert_Action
(Obj_Def
,
13372 Make_Subtype_Declaration
(Sloc
(P
),
13373 Defining_Identifier
=> T
,
13374 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
13376 -- This subtype may need freezing, and this will not be done
13377 -- automatically if the object declaration is not in declarative
13378 -- part. Since this is an object declaration, the type cannot always
13379 -- be frozen here. Deferred constants do not freeze their type
13380 -- (which often enough will be private).
13382 if Nkind
(P
) = N_Object_Declaration
13383 and then Constant_Present
(P
)
13384 and then No
(Expression
(P
))
13388 Insert_Actions
(Obj_Def
, Freeze_Entity
(T
, Sloc
(P
)));
13391 -- Ada 2005 AI-406: the object definition in an object declaration
13392 -- can be an access definition.
13394 elsif Def_Kind
= N_Access_Definition
then
13395 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
13396 Set_Is_Local_Anonymous_Access
(T
);
13398 -- Otherwise, the object definition is just a subtype_mark
13401 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
13405 end Find_Type_Of_Object
;
13407 --------------------------------
13408 -- Find_Type_Of_Subtype_Indic --
13409 --------------------------------
13411 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
13415 -- Case of subtype mark with a constraint
13417 if Nkind
(S
) = N_Subtype_Indication
then
13418 Find_Type
(Subtype_Mark
(S
));
13419 Typ
:= Entity
(Subtype_Mark
(S
));
13422 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
13425 ("incorrect constraint for this kind of type", Constraint
(S
));
13426 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
13429 -- Otherwise we have a subtype mark without a constraint
13431 elsif Error_Posted
(S
) then
13432 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
13440 -- Check No_Wide_Characters restriction
13442 if Typ
= Standard_Wide_Character
13443 or else Typ
= Standard_Wide_Wide_Character
13444 or else Typ
= Standard_Wide_String
13445 or else Typ
= Standard_Wide_Wide_String
13447 Check_Restriction
(No_Wide_Characters
, S
);
13451 end Find_Type_Of_Subtype_Indic
;
13453 -------------------------------------
13454 -- Floating_Point_Type_Declaration --
13455 -------------------------------------
13457 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
13458 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
13460 Base_Typ
: Entity_Id
;
13461 Implicit_Base
: Entity_Id
;
13464 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
13465 -- Find if given digits value allows derivation from specified type
13467 ---------------------
13468 -- Can_Derive_From --
13469 ---------------------
13471 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
13472 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
13475 if Digs_Val
> Digits_Value
(E
) then
13479 if Present
(Spec
) then
13480 if Expr_Value_R
(Type_Low_Bound
(E
)) >
13481 Expr_Value_R
(Low_Bound
(Spec
))
13486 if Expr_Value_R
(Type_High_Bound
(E
)) <
13487 Expr_Value_R
(High_Bound
(Spec
))
13494 end Can_Derive_From
;
13496 -- Start of processing for Floating_Point_Type_Declaration
13499 Check_Restriction
(No_Floating_Point
, Def
);
13501 -- Create an implicit base type
13504 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
13506 -- Analyze and verify digits value
13508 Analyze_And_Resolve
(Digs
, Any_Integer
);
13509 Check_Digits_Expression
(Digs
);
13510 Digs_Val
:= Expr_Value
(Digs
);
13512 -- Process possible range spec and find correct type to derive from
13514 Process_Real_Range_Specification
(Def
);
13516 if Can_Derive_From
(Standard_Short_Float
) then
13517 Base_Typ
:= Standard_Short_Float
;
13518 elsif Can_Derive_From
(Standard_Float
) then
13519 Base_Typ
:= Standard_Float
;
13520 elsif Can_Derive_From
(Standard_Long_Float
) then
13521 Base_Typ
:= Standard_Long_Float
;
13522 elsif Can_Derive_From
(Standard_Long_Long_Float
) then
13523 Base_Typ
:= Standard_Long_Long_Float
;
13525 -- If we can't derive from any existing type, use long_long_float
13526 -- and give appropriate message explaining the problem.
13529 Base_Typ
:= Standard_Long_Long_Float
;
13531 if Digs_Val
>= Digits_Value
(Standard_Long_Long_Float
) then
13532 Error_Msg_Uint_1
:= Digits_Value
(Standard_Long_Long_Float
);
13533 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
13537 ("range too large for any predefined type",
13538 Real_Range_Specification
(Def
));
13542 -- If there are bounds given in the declaration use them as the bounds
13543 -- of the type, otherwise use the bounds of the predefined base type
13544 -- that was chosen based on the Digits value.
13546 if Present
(Real_Range_Specification
(Def
)) then
13547 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
13548 Set_Is_Constrained
(T
);
13550 -- The bounds of this range must be converted to machine numbers
13551 -- in accordance with RM 4.9(38).
13553 Bound
:= Type_Low_Bound
(T
);
13555 if Nkind
(Bound
) = N_Real_Literal
then
13557 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
13558 Set_Is_Machine_Number
(Bound
);
13561 Bound
:= Type_High_Bound
(T
);
13563 if Nkind
(Bound
) = N_Real_Literal
then
13565 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
13566 Set_Is_Machine_Number
(Bound
);
13570 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
13573 -- Complete definition of implicit base and declared first subtype
13575 Set_Etype
(Implicit_Base
, Base_Typ
);
13577 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
13578 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
13579 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
13580 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
13581 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
13582 Set_Vax_Float
(Implicit_Base
, Vax_Float
(Base_Typ
));
13584 Set_Ekind
(T
, E_Floating_Point_Subtype
);
13585 Set_Etype
(T
, Implicit_Base
);
13587 Set_Size_Info
(T
, (Implicit_Base
));
13588 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
13589 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
13590 Set_Digits_Value
(T
, Digs_Val
);
13591 end Floating_Point_Type_Declaration
;
13593 ----------------------------
13594 -- Get_Discriminant_Value --
13595 ----------------------------
13597 -- This is the situation:
13599 -- There is a non-derived type
13601 -- type T0 (Dx, Dy, Dz...)
13603 -- There are zero or more levels of derivation, with each derivation
13604 -- either purely inheriting the discriminants, or defining its own.
13606 -- type Ti is new Ti-1
13608 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
13610 -- subtype Ti is ...
13612 -- The subtype issue is avoided by the use of Original_Record_Component,
13613 -- and the fact that derived subtypes also derive the constraints.
13615 -- This chain leads back from
13617 -- Typ_For_Constraint
13619 -- Typ_For_Constraint has discriminants, and the value for each
13620 -- discriminant is given by its corresponding Elmt of Constraints.
13622 -- Discriminant is some discriminant in this hierarchy
13624 -- We need to return its value
13626 -- We do this by recursively searching each level, and looking for
13627 -- Discriminant. Once we get to the bottom, we start backing up
13628 -- returning the value for it which may in turn be a discriminant
13629 -- further up, so on the backup we continue the substitution.
13631 function Get_Discriminant_Value
13632 (Discriminant
: Entity_Id
;
13633 Typ_For_Constraint
: Entity_Id
;
13634 Constraint
: Elist_Id
) return Node_Id
13636 function Search_Derivation_Levels
13638 Discrim_Values
: Elist_Id
;
13639 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
13640 -- This is the routine that performs the recursive search of levels
13641 -- as described above.
13643 ------------------------------
13644 -- Search_Derivation_Levels --
13645 ------------------------------
13647 function Search_Derivation_Levels
13649 Discrim_Values
: Elist_Id
;
13650 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
13654 Result
: Node_Or_Entity_Id
;
13655 Result_Entity
: Node_Id
;
13658 -- If inappropriate type, return Error, this happens only in
13659 -- cascaded error situations, and we want to avoid a blow up.
13661 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
13665 -- Look deeper if possible. Use Stored_Constraints only for
13666 -- untagged types. For tagged types use the given constraint.
13667 -- This asymmetry needs explanation???
13669 if not Stored_Discrim_Values
13670 and then Present
(Stored_Constraint
(Ti
))
13671 and then not Is_Tagged_Type
(Ti
)
13674 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
13677 Td
: constant Entity_Id
:= Etype
(Ti
);
13681 Result
:= Discriminant
;
13684 if Present
(Stored_Constraint
(Ti
)) then
13686 Search_Derivation_Levels
13687 (Td
, Stored_Constraint
(Ti
), True);
13690 Search_Derivation_Levels
13691 (Td
, Discrim_Values
, Stored_Discrim_Values
);
13697 -- Extra underlying places to search, if not found above. For
13698 -- concurrent types, the relevant discriminant appears in the
13699 -- corresponding record. For a type derived from a private type
13700 -- without discriminant, the full view inherits the discriminants
13701 -- of the full view of the parent.
13703 if Result
= Discriminant
then
13704 if Is_Concurrent_Type
(Ti
)
13705 and then Present
(Corresponding_Record_Type
(Ti
))
13708 Search_Derivation_Levels
(
13709 Corresponding_Record_Type
(Ti
),
13711 Stored_Discrim_Values
);
13713 elsif Is_Private_Type
(Ti
)
13714 and then not Has_Discriminants
(Ti
)
13715 and then Present
(Full_View
(Ti
))
13716 and then Etype
(Full_View
(Ti
)) /= Ti
13719 Search_Derivation_Levels
(
13722 Stored_Discrim_Values
);
13726 -- If Result is not a (reference to a) discriminant, return it,
13727 -- otherwise set Result_Entity to the discriminant.
13729 if Nkind
(Result
) = N_Defining_Identifier
then
13730 pragma Assert
(Result
= Discriminant
);
13731 Result_Entity
:= Result
;
13734 if not Denotes_Discriminant
(Result
) then
13738 Result_Entity
:= Entity
(Result
);
13741 -- See if this level of derivation actually has discriminants
13742 -- because tagged derivations can add them, hence the lower
13743 -- levels need not have any.
13745 if not Has_Discriminants
(Ti
) then
13749 -- Scan Ti's discriminants for Result_Entity,
13750 -- and return its corresponding value, if any.
13752 Result_Entity
:= Original_Record_Component
(Result_Entity
);
13754 Assoc
:= First_Elmt
(Discrim_Values
);
13756 if Stored_Discrim_Values
then
13757 Disc
:= First_Stored_Discriminant
(Ti
);
13759 Disc
:= First_Discriminant
(Ti
);
13762 while Present
(Disc
) loop
13763 pragma Assert
(Present
(Assoc
));
13765 if Original_Record_Component
(Disc
) = Result_Entity
then
13766 return Node
(Assoc
);
13771 if Stored_Discrim_Values
then
13772 Next_Stored_Discriminant
(Disc
);
13774 Next_Discriminant
(Disc
);
13778 -- Could not find it
13781 end Search_Derivation_Levels
;
13785 Result
: Node_Or_Entity_Id
;
13787 -- Start of processing for Get_Discriminant_Value
13790 -- ??? This routine is a gigantic mess and will be deleted. For the
13791 -- time being just test for the trivial case before calling recurse.
13793 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
13799 D
:= First_Discriminant
(Typ_For_Constraint
);
13800 E
:= First_Elmt
(Constraint
);
13801 while Present
(D
) loop
13802 if Chars
(D
) = Chars
(Discriminant
) then
13806 Next_Discriminant
(D
);
13812 Result
:= Search_Derivation_Levels
13813 (Typ_For_Constraint
, Constraint
, False);
13815 -- ??? hack to disappear when this routine is gone
13817 if Nkind
(Result
) = N_Defining_Identifier
then
13823 D
:= First_Discriminant
(Typ_For_Constraint
);
13824 E
:= First_Elmt
(Constraint
);
13825 while Present
(D
) loop
13826 if Corresponding_Discriminant
(D
) = Discriminant
then
13830 Next_Discriminant
(D
);
13836 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
13838 end Get_Discriminant_Value
;
13840 --------------------------
13841 -- Has_Range_Constraint --
13842 --------------------------
13844 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
13845 C
: constant Node_Id
:= Constraint
(N
);
13848 if Nkind
(C
) = N_Range_Constraint
then
13851 elsif Nkind
(C
) = N_Digits_Constraint
then
13853 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
13855 Present
(Range_Constraint
(C
));
13857 elsif Nkind
(C
) = N_Delta_Constraint
then
13858 return Present
(Range_Constraint
(C
));
13863 end Has_Range_Constraint
;
13865 ------------------------
13866 -- Inherit_Components --
13867 ------------------------
13869 function Inherit_Components
13871 Parent_Base
: Entity_Id
;
13872 Derived_Base
: Entity_Id
;
13873 Is_Tagged
: Boolean;
13874 Inherit_Discr
: Boolean;
13875 Discs
: Elist_Id
) return Elist_Id
13877 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
13879 procedure Inherit_Component
13880 (Old_C
: Entity_Id
;
13881 Plain_Discrim
: Boolean := False;
13882 Stored_Discrim
: Boolean := False);
13883 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
13884 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
13885 -- True, Old_C is a stored discriminant. If they are both false then
13886 -- Old_C is a regular component.
13888 -----------------------
13889 -- Inherit_Component --
13890 -----------------------
13892 procedure Inherit_Component
13893 (Old_C
: Entity_Id
;
13894 Plain_Discrim
: Boolean := False;
13895 Stored_Discrim
: Boolean := False)
13897 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
13899 Discrim
: Entity_Id
;
13900 Corr_Discrim
: Entity_Id
;
13903 pragma Assert
(not Is_Tagged
or else not Stored_Discrim
);
13905 Set_Parent
(New_C
, Parent
(Old_C
));
13907 -- Regular discriminants and components must be inserted in the scope
13908 -- of the Derived_Base. Do it here.
13910 if not Stored_Discrim
then
13911 Enter_Name
(New_C
);
13914 -- For tagged types the Original_Record_Component must point to
13915 -- whatever this field was pointing to in the parent type. This has
13916 -- already been achieved by the call to New_Copy above.
13918 if not Is_Tagged
then
13919 Set_Original_Record_Component
(New_C
, New_C
);
13922 -- If we have inherited a component then see if its Etype contains
13923 -- references to Parent_Base discriminants. In this case, replace
13924 -- these references with the constraints given in Discs. We do not
13925 -- do this for the partial view of private types because this is
13926 -- not needed (only the components of the full view will be used
13927 -- for code generation) and cause problem. We also avoid this
13928 -- transformation in some error situations.
13930 if Ekind
(New_C
) = E_Component
then
13931 if (Is_Private_Type
(Derived_Base
)
13932 and then not Is_Generic_Type
(Derived_Base
))
13933 or else (Is_Empty_Elmt_List
(Discs
)
13934 and then not Expander_Active
)
13936 Set_Etype
(New_C
, Etype
(Old_C
));
13939 -- The current component introduces a circularity of the
13942 -- limited with Pack_2;
13943 -- package Pack_1 is
13944 -- type T_1 is tagged record
13945 -- Comp : access Pack_2.T_2;
13951 -- package Pack_2 is
13952 -- type T_2 is new Pack_1.T_1 with ...;
13957 Constrain_Component_Type
13958 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
13962 -- In derived tagged types it is illegal to reference a non
13963 -- discriminant component in the parent type. To catch this, mark
13964 -- these components with an Ekind of E_Void. This will be reset in
13965 -- Record_Type_Definition after processing the record extension of
13966 -- the derived type.
13968 -- If the declaration is a private extension, there is no further
13969 -- record extension to process, and the components retain their
13970 -- current kind, because they are visible at this point.
13972 if Is_Tagged
and then Ekind
(New_C
) = E_Component
13973 and then Nkind
(N
) /= N_Private_Extension_Declaration
13975 Set_Ekind
(New_C
, E_Void
);
13978 if Plain_Discrim
then
13979 Set_Corresponding_Discriminant
(New_C
, Old_C
);
13980 Build_Discriminal
(New_C
);
13982 -- If we are explicitly inheriting a stored discriminant it will be
13983 -- completely hidden.
13985 elsif Stored_Discrim
then
13986 Set_Corresponding_Discriminant
(New_C
, Empty
);
13987 Set_Discriminal
(New_C
, Empty
);
13988 Set_Is_Completely_Hidden
(New_C
);
13990 -- Set the Original_Record_Component of each discriminant in the
13991 -- derived base to point to the corresponding stored that we just
13994 Discrim
:= First_Discriminant
(Derived_Base
);
13995 while Present
(Discrim
) loop
13996 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
13998 -- Corr_Discrim could be missing in an error situation
14000 if Present
(Corr_Discrim
)
14001 and then Original_Record_Component
(Corr_Discrim
) = Old_C
14003 Set_Original_Record_Component
(Discrim
, New_C
);
14006 Next_Discriminant
(Discrim
);
14009 Append_Entity
(New_C
, Derived_Base
);
14012 if not Is_Tagged
then
14013 Append_Elmt
(Old_C
, Assoc_List
);
14014 Append_Elmt
(New_C
, Assoc_List
);
14016 end Inherit_Component
;
14018 -- Variables local to Inherit_Component
14020 Loc
: constant Source_Ptr
:= Sloc
(N
);
14022 Parent_Discrim
: Entity_Id
;
14023 Stored_Discrim
: Entity_Id
;
14025 Component
: Entity_Id
;
14027 -- Start of processing for Inherit_Components
14030 if not Is_Tagged
then
14031 Append_Elmt
(Parent_Base
, Assoc_List
);
14032 Append_Elmt
(Derived_Base
, Assoc_List
);
14035 -- Inherit parent discriminants if needed
14037 if Inherit_Discr
then
14038 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
14039 while Present
(Parent_Discrim
) loop
14040 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
14041 Next_Discriminant
(Parent_Discrim
);
14045 -- Create explicit stored discrims for untagged types when necessary
14047 if not Has_Unknown_Discriminants
(Derived_Base
)
14048 and then Has_Discriminants
(Parent_Base
)
14049 and then not Is_Tagged
14052 or else First_Discriminant
(Parent_Base
) /=
14053 First_Stored_Discriminant
(Parent_Base
))
14055 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
14056 while Present
(Stored_Discrim
) loop
14057 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
14058 Next_Stored_Discriminant
(Stored_Discrim
);
14062 -- See if we can apply the second transformation for derived types, as
14063 -- explained in point 6. in the comments above Build_Derived_Record_Type
14064 -- This is achieved by appending Derived_Base discriminants into Discs,
14065 -- which has the side effect of returning a non empty Discs list to the
14066 -- caller of Inherit_Components, which is what we want. This must be
14067 -- done for private derived types if there are explicit stored
14068 -- discriminants, to ensure that we can retrieve the values of the
14069 -- constraints provided in the ancestors.
14072 and then Is_Empty_Elmt_List
(Discs
)
14073 and then Present
(First_Discriminant
(Derived_Base
))
14075 (not Is_Private_Type
(Derived_Base
)
14076 or else Is_Completely_Hidden
14077 (First_Stored_Discriminant
(Derived_Base
))
14078 or else Is_Generic_Type
(Derived_Base
))
14080 D
:= First_Discriminant
(Derived_Base
);
14081 while Present
(D
) loop
14082 Append_Elmt
(New_Reference_To
(D
, Loc
), Discs
);
14083 Next_Discriminant
(D
);
14087 -- Finally, inherit non-discriminant components unless they are not
14088 -- visible because defined or inherited from the full view of the
14089 -- parent. Don't inherit the _parent field of the parent type.
14091 Component
:= First_Entity
(Parent_Base
);
14092 while Present
(Component
) loop
14094 -- Ada 2005 (AI-251): Do not inherit components associated with
14095 -- secondary tags of the parent.
14097 if Ekind
(Component
) = E_Component
14098 and then Present
(Related_Type
(Component
))
14102 elsif Ekind
(Component
) /= E_Component
14103 or else Chars
(Component
) = Name_uParent
14107 -- If the derived type is within the parent type's declarative
14108 -- region, then the components can still be inherited even though
14109 -- they aren't visible at this point. This can occur for cases
14110 -- such as within public child units where the components must
14111 -- become visible upon entering the child unit's private part.
14113 elsif not Is_Visible_Component
(Component
)
14114 and then not In_Open_Scopes
(Scope
(Parent_Base
))
14118 elsif Ekind
(Derived_Base
) = E_Private_Type
14119 or else Ekind
(Derived_Base
) = E_Limited_Private_Type
14124 Inherit_Component
(Component
);
14127 Next_Entity
(Component
);
14130 -- For tagged derived types, inherited discriminants cannot be used in
14131 -- component declarations of the record extension part. To achieve this
14132 -- we mark the inherited discriminants as not visible.
14134 if Is_Tagged
and then Inherit_Discr
then
14135 D
:= First_Discriminant
(Derived_Base
);
14136 while Present
(D
) loop
14137 Set_Is_Immediately_Visible
(D
, False);
14138 Next_Discriminant
(D
);
14143 end Inherit_Components
;
14145 -----------------------
14146 -- Is_Null_Extension --
14147 -----------------------
14149 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
14150 Type_Decl
: constant Node_Id
:= Parent
(T
);
14151 Comp_List
: Node_Id
;
14155 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
14156 or else not Is_Tagged_Type
(T
)
14157 or else Nkind
(Type_Definition
(Type_Decl
)) /=
14158 N_Derived_Type_Definition
14159 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
14165 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
14167 if Present
(Discriminant_Specifications
(Type_Decl
)) then
14170 elsif Present
(Comp_List
)
14171 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
14173 Comp
:= First
(Component_Items
(Comp_List
));
14175 -- Only user-defined components are relevant. The component list
14176 -- may also contain a parent component and internal components
14177 -- corresponding to secondary tags, but these do not determine
14178 -- whether this is a null extension.
14180 while Present
(Comp
) loop
14181 if Comes_From_Source
(Comp
) then
14192 end Is_Null_Extension
;
14194 --------------------
14195 -- Is_Progenitor --
14196 --------------------
14198 function Is_Progenitor
14199 (Iface
: Entity_Id
;
14200 Typ
: Entity_Id
) return Boolean
14203 return Implements_Interface
(Typ
, Iface
,
14204 Exclude_Parents
=> True);
14207 ------------------------------
14208 -- Is_Valid_Constraint_Kind --
14209 ------------------------------
14211 function Is_Valid_Constraint_Kind
14212 (T_Kind
: Type_Kind
;
14213 Constraint_Kind
: Node_Kind
) return Boolean
14217 when Enumeration_Kind |
14219 return Constraint_Kind
= N_Range_Constraint
;
14221 when Decimal_Fixed_Point_Kind
=>
14222 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
14223 N_Range_Constraint
);
14225 when Ordinary_Fixed_Point_Kind
=>
14226 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
14227 N_Range_Constraint
);
14230 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
14231 N_Range_Constraint
);
14238 E_Incomplete_Type |
14241 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
14244 return True; -- Error will be detected later
14246 end Is_Valid_Constraint_Kind
;
14248 --------------------------
14249 -- Is_Visible_Component --
14250 --------------------------
14252 function Is_Visible_Component
(C
: Entity_Id
) return Boolean is
14253 Original_Comp
: Entity_Id
:= Empty
;
14254 Original_Scope
: Entity_Id
;
14255 Type_Scope
: Entity_Id
;
14257 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
14258 -- Check whether parent type of inherited component is declared locally,
14259 -- possibly within a nested package or instance. The current scope is
14260 -- the derived record itself.
14262 -------------------
14263 -- Is_Local_Type --
14264 -------------------
14266 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
14270 Scop
:= Scope
(Typ
);
14271 while Present
(Scop
)
14272 and then Scop
/= Standard_Standard
14274 if Scop
= Scope
(Current_Scope
) then
14278 Scop
:= Scope
(Scop
);
14284 -- Start of processing for Is_Visible_Component
14287 if Ekind
(C
) = E_Component
14288 or else Ekind
(C
) = E_Discriminant
14290 Original_Comp
:= Original_Record_Component
(C
);
14293 if No
(Original_Comp
) then
14295 -- Premature usage, or previous error
14300 Original_Scope
:= Scope
(Original_Comp
);
14301 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
14304 -- This test only concerns tagged types
14306 if not Is_Tagged_Type
(Original_Scope
) then
14309 -- If it is _Parent or _Tag, there is no visibility issue
14311 elsif not Comes_From_Source
(Original_Comp
) then
14314 -- If we are in the body of an instantiation, the component is visible
14315 -- even when the parent type (possibly defined in an enclosing unit or
14316 -- in a parent unit) might not.
14318 elsif In_Instance_Body
then
14321 -- Discriminants are always visible
14323 elsif Ekind
(Original_Comp
) = E_Discriminant
14324 and then not Has_Unknown_Discriminants
(Original_Scope
)
14328 -- If the component has been declared in an ancestor which is currently
14329 -- a private type, then it is not visible. The same applies if the
14330 -- component's containing type is not in an open scope and the original
14331 -- component's enclosing type is a visible full view of a private type
14332 -- (which can occur in cases where an attempt is being made to reference
14333 -- a component in a sibling package that is inherited from a visible
14334 -- component of a type in an ancestor package; the component in the
14335 -- sibling package should not be visible even though the component it
14336 -- inherited from is visible). This does not apply however in the case
14337 -- where the scope of the type is a private child unit, or when the
14338 -- parent comes from a local package in which the ancestor is currently
14339 -- visible. The latter suppression of visibility is needed for cases
14340 -- that are tested in B730006.
14342 elsif Is_Private_Type
(Original_Scope
)
14344 (not Is_Private_Descendant
(Type_Scope
)
14345 and then not In_Open_Scopes
(Type_Scope
)
14346 and then Has_Private_Declaration
(Original_Scope
))
14348 -- If the type derives from an entity in a formal package, there
14349 -- are no additional visible components.
14351 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
14352 N_Formal_Package_Declaration
14356 -- if we are not in the private part of the current package, there
14357 -- are no additional visible components.
14359 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
14360 and then not In_Private_Part
(Scope
(Current_Scope
))
14365 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
14366 and then In_Open_Scopes
(Scope
(Original_Scope
))
14367 and then Is_Local_Type
(Type_Scope
);
14370 -- There is another weird way in which a component may be invisible
14371 -- when the private and the full view are not derived from the same
14372 -- ancestor. Here is an example :
14374 -- type A1 is tagged record F1 : integer; end record;
14375 -- type A2 is new A1 with record F2 : integer; end record;
14376 -- type T is new A1 with private;
14378 -- type T is new A2 with null record;
14380 -- In this case, the full view of T inherits F1 and F2 but the private
14381 -- view inherits only F1
14385 Ancestor
: Entity_Id
:= Scope
(C
);
14389 if Ancestor
= Original_Scope
then
14391 elsif Ancestor
= Etype
(Ancestor
) then
14395 Ancestor
:= Etype
(Ancestor
);
14399 end Is_Visible_Component
;
14401 --------------------------
14402 -- Make_Class_Wide_Type --
14403 --------------------------
14405 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
14406 CW_Type
: Entity_Id
;
14408 Next_E
: Entity_Id
;
14411 -- The class wide type can have been defined by the partial view, in
14412 -- which case everything is already done.
14414 if Present
(Class_Wide_Type
(T
)) then
14419 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
14421 -- Inherit root type characteristics
14423 CW_Name
:= Chars
(CW_Type
);
14424 Next_E
:= Next_Entity
(CW_Type
);
14425 Copy_Node
(T
, CW_Type
);
14426 Set_Comes_From_Source
(CW_Type
, False);
14427 Set_Chars
(CW_Type
, CW_Name
);
14428 Set_Parent
(CW_Type
, Parent
(T
));
14429 Set_Next_Entity
(CW_Type
, Next_E
);
14431 -- Ensure we have a new freeze node for the class-wide type. The partial
14432 -- view may have freeze action of its own, requiring a proper freeze
14433 -- node, and the same freeze node cannot be shared between the two
14436 Set_Has_Delayed_Freeze
(CW_Type
);
14437 Set_Freeze_Node
(CW_Type
, Empty
);
14439 -- Customize the class-wide type: It has no prim. op., it cannot be
14440 -- abstract and its Etype points back to the specific root type.
14442 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
14443 Set_Is_Tagged_Type
(CW_Type
, True);
14444 Set_Primitive_Operations
(CW_Type
, New_Elmt_List
);
14445 Set_Is_Abstract_Type
(CW_Type
, False);
14446 Set_Is_Constrained
(CW_Type
, False);
14447 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
14449 if Ekind
(T
) = E_Class_Wide_Subtype
then
14450 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
14452 Set_Etype
(CW_Type
, T
);
14455 -- If this is the class_wide type of a constrained subtype, it does
14456 -- not have discriminants.
14458 Set_Has_Discriminants
(CW_Type
,
14459 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
14461 Set_Has_Unknown_Discriminants
(CW_Type
, True);
14462 Set_Class_Wide_Type
(T
, CW_Type
);
14463 Set_Equivalent_Type
(CW_Type
, Empty
);
14465 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
14467 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
14468 end Make_Class_Wide_Type
;
14474 procedure Make_Index
14476 Related_Nod
: Node_Id
;
14477 Related_Id
: Entity_Id
:= Empty
;
14478 Suffix_Index
: Nat
:= 1)
14482 Def_Id
: Entity_Id
:= Empty
;
14483 Found
: Boolean := False;
14486 -- For a discrete range used in a constrained array definition and
14487 -- defined by a range, an implicit conversion to the predefined type
14488 -- INTEGER is assumed if each bound is either a numeric literal, a named
14489 -- number, or an attribute, and the type of both bounds (prior to the
14490 -- implicit conversion) is the type universal_integer. Otherwise, both
14491 -- bounds must be of the same discrete type, other than universal
14492 -- integer; this type must be determinable independently of the
14493 -- context, but using the fact that the type must be discrete and that
14494 -- both bounds must have the same type.
14496 -- Character literals also have a universal type in the absence of
14497 -- of additional context, and are resolved to Standard_Character.
14499 if Nkind
(I
) = N_Range
then
14501 -- The index is given by a range constraint. The bounds are known
14502 -- to be of a consistent type.
14504 if not Is_Overloaded
(I
) then
14507 -- For universal bounds, choose the specific predefined type
14509 if T
= Universal_Integer
then
14510 T
:= Standard_Integer
;
14512 elsif T
= Any_Character
then
14513 Ambiguous_Character
(Low_Bound
(I
));
14515 T
:= Standard_Character
;
14518 -- The node may be overloaded because some user-defined operators
14519 -- are available, but if a universal interpretation exists it is
14520 -- also the selected one.
14522 elsif Universal_Interpretation
(I
) = Universal_Integer
then
14523 T
:= Standard_Integer
;
14529 Ind
: Interp_Index
;
14533 Get_First_Interp
(I
, Ind
, It
);
14534 while Present
(It
.Typ
) loop
14535 if Is_Discrete_Type
(It
.Typ
) then
14538 and then not Covers
(It
.Typ
, T
)
14539 and then not Covers
(T
, It
.Typ
)
14541 Error_Msg_N
("ambiguous bounds in discrete range", I
);
14549 Get_Next_Interp
(Ind
, It
);
14552 if T
= Any_Type
then
14553 Error_Msg_N
("discrete type required for range", I
);
14554 Set_Etype
(I
, Any_Type
);
14557 elsif T
= Universal_Integer
then
14558 T
:= Standard_Integer
;
14563 if not Is_Discrete_Type
(T
) then
14564 Error_Msg_N
("discrete type required for range", I
);
14565 Set_Etype
(I
, Any_Type
);
14569 if Nkind
(Low_Bound
(I
)) = N_Attribute_Reference
14570 and then Attribute_Name
(Low_Bound
(I
)) = Name_First
14571 and then Is_Entity_Name
(Prefix
(Low_Bound
(I
)))
14572 and then Is_Type
(Entity
(Prefix
(Low_Bound
(I
))))
14573 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(I
))))
14575 -- The type of the index will be the type of the prefix, as long
14576 -- as the upper bound is 'Last of the same type.
14578 Def_Id
:= Entity
(Prefix
(Low_Bound
(I
)));
14580 if Nkind
(High_Bound
(I
)) /= N_Attribute_Reference
14581 or else Attribute_Name
(High_Bound
(I
)) /= Name_Last
14582 or else not Is_Entity_Name
(Prefix
(High_Bound
(I
)))
14583 or else Entity
(Prefix
(High_Bound
(I
))) /= Def_Id
14590 Process_Range_Expr_In_Decl
(R
, T
);
14592 elsif Nkind
(I
) = N_Subtype_Indication
then
14594 -- The index is given by a subtype with a range constraint
14596 T
:= Base_Type
(Entity
(Subtype_Mark
(I
)));
14598 if not Is_Discrete_Type
(T
) then
14599 Error_Msg_N
("discrete type required for range", I
);
14600 Set_Etype
(I
, Any_Type
);
14604 R
:= Range_Expression
(Constraint
(I
));
14607 Process_Range_Expr_In_Decl
(R
, Entity
(Subtype_Mark
(I
)));
14609 elsif Nkind
(I
) = N_Attribute_Reference
then
14611 -- The parser guarantees that the attribute is a RANGE attribute
14613 -- If the node denotes the range of a type mark, that is also the
14614 -- resulting type, and we do no need to create an Itype for it.
14616 if Is_Entity_Name
(Prefix
(I
))
14617 and then Comes_From_Source
(I
)
14618 and then Is_Type
(Entity
(Prefix
(I
)))
14619 and then Is_Discrete_Type
(Entity
(Prefix
(I
)))
14621 Def_Id
:= Entity
(Prefix
(I
));
14624 Analyze_And_Resolve
(I
);
14628 -- If none of the above, must be a subtype. We convert this to a
14629 -- range attribute reference because in the case of declared first
14630 -- named subtypes, the types in the range reference can be different
14631 -- from the type of the entity. A range attribute normalizes the
14632 -- reference and obtains the correct types for the bounds.
14634 -- This transformation is in the nature of an expansion, is only
14635 -- done if expansion is active. In particular, it is not done on
14636 -- formal generic types, because we need to retain the name of the
14637 -- original index for instantiation purposes.
14640 if not Is_Entity_Name
(I
) or else not Is_Type
(Entity
(I
)) then
14641 Error_Msg_N
("invalid subtype mark in discrete range ", I
);
14642 Set_Etype
(I
, Any_Integer
);
14646 -- The type mark may be that of an incomplete type. It is only
14647 -- now that we can get the full view, previous analysis does
14648 -- not look specifically for a type mark.
14650 Set_Entity
(I
, Get_Full_View
(Entity
(I
)));
14651 Set_Etype
(I
, Entity
(I
));
14652 Def_Id
:= Entity
(I
);
14654 if not Is_Discrete_Type
(Def_Id
) then
14655 Error_Msg_N
("discrete type required for index", I
);
14656 Set_Etype
(I
, Any_Type
);
14661 if Expander_Active
then
14663 Make_Attribute_Reference
(Sloc
(I
),
14664 Attribute_Name
=> Name_Range
,
14665 Prefix
=> Relocate_Node
(I
)));
14667 -- The original was a subtype mark that does not freeze. This
14668 -- means that the rewritten version must not freeze either.
14670 Set_Must_Not_Freeze
(I
);
14671 Set_Must_Not_Freeze
(Prefix
(I
));
14673 -- Is order critical??? if so, document why, if not
14674 -- use Analyze_And_Resolve
14676 Analyze_And_Resolve
(I
);
14680 -- If expander is inactive, type is legal, nothing else to construct
14687 if not Is_Discrete_Type
(T
) then
14688 Error_Msg_N
("discrete type required for range", I
);
14689 Set_Etype
(I
, Any_Type
);
14692 elsif T
= Any_Type
then
14693 Set_Etype
(I
, Any_Type
);
14697 -- We will now create the appropriate Itype to describe the range, but
14698 -- first a check. If we originally had a subtype, then we just label
14699 -- the range with this subtype. Not only is there no need to construct
14700 -- a new subtype, but it is wrong to do so for two reasons:
14702 -- 1. A legality concern, if we have a subtype, it must not freeze,
14703 -- and the Itype would cause freezing incorrectly
14705 -- 2. An efficiency concern, if we created an Itype, it would not be
14706 -- recognized as the same type for the purposes of eliminating
14707 -- checks in some circumstances.
14709 -- We signal this case by setting the subtype entity in Def_Id
14711 if No
(Def_Id
) then
14713 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
14714 Set_Etype
(Def_Id
, Base_Type
(T
));
14716 if Is_Signed_Integer_Type
(T
) then
14717 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
14719 elsif Is_Modular_Integer_Type
(T
) then
14720 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
14723 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
14724 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
14725 Set_First_Literal
(Def_Id
, First_Literal
(T
));
14728 Set_Size_Info
(Def_Id
, (T
));
14729 Set_RM_Size
(Def_Id
, RM_Size
(T
));
14730 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
14732 Set_Scalar_Range
(Def_Id
, R
);
14733 Conditional_Delay
(Def_Id
, T
);
14735 -- In the subtype indication case, if the immediate parent of the
14736 -- new subtype is non-static, then the subtype we create is non-
14737 -- static, even if its bounds are static.
14739 if Nkind
(I
) = N_Subtype_Indication
14740 and then not Is_Static_Subtype
(Entity
(Subtype_Mark
(I
)))
14742 Set_Is_Non_Static_Subtype
(Def_Id
);
14746 -- Final step is to label the index with this constructed type
14748 Set_Etype
(I
, Def_Id
);
14751 ------------------------------
14752 -- Modular_Type_Declaration --
14753 ------------------------------
14755 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
14756 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
14759 procedure Set_Modular_Size
(Bits
: Int
);
14760 -- Sets RM_Size to Bits, and Esize to normal word size above this
14762 ----------------------
14763 -- Set_Modular_Size --
14764 ----------------------
14766 procedure Set_Modular_Size
(Bits
: Int
) is
14768 Set_RM_Size
(T
, UI_From_Int
(Bits
));
14773 elsif Bits
<= 16 then
14774 Init_Esize
(T
, 16);
14776 elsif Bits
<= 32 then
14777 Init_Esize
(T
, 32);
14780 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
14782 end Set_Modular_Size
;
14784 -- Start of processing for Modular_Type_Declaration
14787 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
14789 Set_Ekind
(T
, E_Modular_Integer_Type
);
14790 Init_Alignment
(T
);
14791 Set_Is_Constrained
(T
);
14793 if not Is_OK_Static_Expression
(Mod_Expr
) then
14794 Flag_Non_Static_Expr
14795 ("non-static expression used for modular type bound!", Mod_Expr
);
14796 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
14798 M_Val
:= Expr_Value
(Mod_Expr
);
14802 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
14803 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
14806 Set_Modulus
(T
, M_Val
);
14808 -- Create bounds for the modular type based on the modulus given in
14809 -- the type declaration and then analyze and resolve those bounds.
14811 Set_Scalar_Range
(T
,
14812 Make_Range
(Sloc
(Mod_Expr
),
14814 Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
14816 Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
14818 -- Properly analyze the literals for the range. We do this manually
14819 -- because we can't go calling Resolve, since we are resolving these
14820 -- bounds with the type, and this type is certainly not complete yet!
14822 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
14823 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
14824 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
14825 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
14827 -- Loop through powers of two to find number of bits required
14829 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
14833 if M_Val
= 2 ** Bits
then
14834 Set_Modular_Size
(Bits
);
14839 elsif M_Val
< 2 ** Bits
then
14840 Set_Non_Binary_Modulus
(T
);
14842 if Bits
> System_Max_Nonbinary_Modulus_Power
then
14843 Error_Msg_Uint_1
:=
14844 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
14846 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
14847 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
14851 -- In the non-binary case, set size as per RM 13.3(55)
14853 Set_Modular_Size
(Bits
);
14860 -- If we fall through, then the size exceed System.Max_Binary_Modulus
14861 -- so we just signal an error and set the maximum size.
14863 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
14864 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
14866 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
14867 Init_Alignment
(T
);
14869 end Modular_Type_Declaration
;
14871 --------------------------
14872 -- New_Concatenation_Op --
14873 --------------------------
14875 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
14876 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
14879 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
14880 -- Create abbreviated declaration for the formal of a predefined
14881 -- Operator 'Op' of type 'Typ'
14883 --------------------
14884 -- Make_Op_Formal --
14885 --------------------
14887 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
14888 Formal
: Entity_Id
;
14890 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
14891 Set_Etype
(Formal
, Typ
);
14892 Set_Mechanism
(Formal
, Default_Mechanism
);
14894 end Make_Op_Formal
;
14896 -- Start of processing for New_Concatenation_Op
14899 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
14901 Set_Ekind
(Op
, E_Operator
);
14902 Set_Scope
(Op
, Current_Scope
);
14903 Set_Etype
(Op
, Typ
);
14904 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
14905 Set_Is_Immediately_Visible
(Op
);
14906 Set_Is_Intrinsic_Subprogram
(Op
);
14907 Set_Has_Completion
(Op
);
14908 Append_Entity
(Op
, Current_Scope
);
14910 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
14912 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
14913 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
14914 end New_Concatenation_Op
;
14916 -------------------------
14917 -- OK_For_Limited_Init --
14918 -------------------------
14920 -- ???Check all calls of this, and compare the conditions under which it's
14923 function OK_For_Limited_Init
(Exp
: Node_Id
) return Boolean is
14925 return Ada_Version
>= Ada_05
14926 and then not Debug_Flag_Dot_L
14927 and then OK_For_Limited_Init_In_05
(Exp
);
14928 end OK_For_Limited_Init
;
14930 -------------------------------
14931 -- OK_For_Limited_Init_In_05 --
14932 -------------------------------
14934 function OK_For_Limited_Init_In_05
(Exp
: Node_Id
) return Boolean is
14936 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
14937 -- case of limited aggregates (including extension aggregates), and
14938 -- function calls. The function call may have been give in prefixed
14939 -- notation, in which case the original node is an indexed component.
14941 case Nkind
(Original_Node
(Exp
)) is
14942 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
14945 when N_Qualified_Expression
=>
14947 OK_For_Limited_Init_In_05
(Expression
(Original_Node
(Exp
)));
14949 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
14950 -- with a function call, the expander has rewritten the call into an
14951 -- N_Type_Conversion node to force displacement of the pointer to
14952 -- reference the component containing the secondary dispatch table.
14953 -- Otherwise a type conversion is not a legal context.
14955 when N_Type_Conversion
=>
14956 return not Comes_From_Source
(Exp
)
14958 OK_For_Limited_Init_In_05
(Expression
(Original_Node
(Exp
)));
14960 when N_Indexed_Component | N_Selected_Component
=>
14961 return Nkind
(Exp
) = N_Function_Call
;
14963 -- A use of 'Input is a function call, hence allowed. Normally the
14964 -- attribute will be changed to a call, but the attribute by itself
14965 -- can occur with -gnatc.
14967 when N_Attribute_Reference
=>
14968 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
14973 end OK_For_Limited_Init_In_05
;
14975 -------------------------------------------
14976 -- Ordinary_Fixed_Point_Type_Declaration --
14977 -------------------------------------------
14979 procedure Ordinary_Fixed_Point_Type_Declaration
14983 Loc
: constant Source_Ptr
:= Sloc
(Def
);
14984 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
14985 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14986 Implicit_Base
: Entity_Id
;
14993 Check_Restriction
(No_Fixed_Point
, Def
);
14995 -- Create implicit base type
14998 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
14999 Set_Etype
(Implicit_Base
, Implicit_Base
);
15001 -- Analyze and process delta expression
15003 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
15005 Check_Delta_Expression
(Delta_Expr
);
15006 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
15008 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
15010 -- Compute default small from given delta, which is the largest power
15011 -- of two that does not exceed the given delta value.
15021 if Delta_Val
< Ureal_1
then
15022 while Delta_Val
< Tmp
loop
15023 Tmp
:= Tmp
/ Ureal_2
;
15024 Scale
:= Scale
+ 1;
15029 Tmp
:= Tmp
* Ureal_2
;
15030 exit when Tmp
> Delta_Val
;
15031 Scale
:= Scale
- 1;
15035 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
15038 Set_Small_Value
(Implicit_Base
, Small_Val
);
15040 -- If no range was given, set a dummy range
15042 if RRS
<= Empty_Or_Error
then
15043 Low_Val
:= -Small_Val
;
15044 High_Val
:= Small_Val
;
15046 -- Otherwise analyze and process given range
15050 Low
: constant Node_Id
:= Low_Bound
(RRS
);
15051 High
: constant Node_Id
:= High_Bound
(RRS
);
15054 Analyze_And_Resolve
(Low
, Any_Real
);
15055 Analyze_And_Resolve
(High
, Any_Real
);
15056 Check_Real_Bound
(Low
);
15057 Check_Real_Bound
(High
);
15059 -- Obtain and set the range
15061 Low_Val
:= Expr_Value_R
(Low
);
15062 High_Val
:= Expr_Value_R
(High
);
15064 if Low_Val
> High_Val
then
15065 Error_Msg_NE
("?fixed point type& has null range", Def
, T
);
15070 -- The range for both the implicit base and the declared first subtype
15071 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
15072 -- set a temporary range in place. Note that the bounds of the base
15073 -- type will be widened to be symmetrical and to fill the available
15074 -- bits when the type is frozen.
15076 -- We could do this with all discrete types, and probably should, but
15077 -- we absolutely have to do it for fixed-point, since the end-points
15078 -- of the range and the size are determined by the small value, which
15079 -- could be reset before the freeze point.
15081 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
15082 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
15084 -- Complete definition of first subtype
15086 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
15087 Set_Etype
(T
, Implicit_Base
);
15088 Init_Size_Align
(T
);
15089 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
15090 Set_Small_Value
(T
, Small_Val
);
15091 Set_Delta_Value
(T
, Delta_Val
);
15092 Set_Is_Constrained
(T
);
15094 end Ordinary_Fixed_Point_Type_Declaration
;
15096 ----------------------------------------
15097 -- Prepare_Private_Subtype_Completion --
15098 ----------------------------------------
15100 procedure Prepare_Private_Subtype_Completion
15102 Related_Nod
: Node_Id
)
15104 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
15105 Full_B
: constant Entity_Id
:= Full_View
(Id_B
);
15109 if Present
(Full_B
) then
15111 -- The Base_Type is already completed, we can complete the subtype
15112 -- now. We have to create a new entity with the same name, Thus we
15113 -- can't use Create_Itype.
15115 -- This is messy, should be fixed ???
15117 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
15118 Set_Is_Itype
(Full
);
15119 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
15120 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
15123 -- The parent subtype may be private, but the base might not, in some
15124 -- nested instances. In that case, the subtype does not need to be
15125 -- exchanged. It would still be nice to make private subtypes and their
15126 -- bases consistent at all times ???
15128 if Is_Private_Type
(Id_B
) then
15129 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
15132 end Prepare_Private_Subtype_Completion
;
15134 ---------------------------
15135 -- Process_Discriminants --
15136 ---------------------------
15138 procedure Process_Discriminants
15140 Prev
: Entity_Id
:= Empty
)
15142 Elist
: constant Elist_Id
:= New_Elmt_List
;
15145 Discr_Number
: Uint
;
15146 Discr_Type
: Entity_Id
;
15147 Default_Present
: Boolean := False;
15148 Default_Not_Present
: Boolean := False;
15151 -- A composite type other than an array type can have discriminants.
15152 -- On entry, the current scope is the composite type.
15154 -- The discriminants are initially entered into the scope of the type
15155 -- via Enter_Name with the default Ekind of E_Void to prevent premature
15156 -- use, as explained at the end of this procedure.
15158 Discr
:= First
(Discriminant_Specifications
(N
));
15159 while Present
(Discr
) loop
15160 Enter_Name
(Defining_Identifier
(Discr
));
15162 -- For navigation purposes we add a reference to the discriminant
15163 -- in the entity for the type. If the current declaration is a
15164 -- completion, place references on the partial view. Otherwise the
15165 -- type is the current scope.
15167 if Present
(Prev
) then
15169 -- The references go on the partial view, if present. If the
15170 -- partial view has discriminants, the references have been
15171 -- generated already.
15173 if not Has_Discriminants
(Prev
) then
15174 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
15178 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
15181 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
15182 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
15184 -- Ada 2005 (AI-254)
15186 if Present
(Access_To_Subprogram_Definition
15187 (Discriminant_Type
(Discr
)))
15188 and then Protected_Present
(Access_To_Subprogram_Definition
15189 (Discriminant_Type
(Discr
)))
15192 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
15196 Find_Type
(Discriminant_Type
(Discr
));
15197 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
15199 if Error_Posted
(Discriminant_Type
(Discr
)) then
15200 Discr_Type
:= Any_Type
;
15204 if Is_Access_Type
(Discr_Type
) then
15206 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
15209 if Ada_Version
< Ada_05
then
15210 Check_Access_Discriminant_Requires_Limited
15211 (Discr
, Discriminant_Type
(Discr
));
15214 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
15216 ("(Ada 83) access discriminant not allowed", Discr
);
15219 elsif not Is_Discrete_Type
(Discr_Type
) then
15220 Error_Msg_N
("discriminants must have a discrete or access type",
15221 Discriminant_Type
(Discr
));
15224 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
15226 -- If a discriminant specification includes the assignment compound
15227 -- delimiter followed by an expression, the expression is the default
15228 -- expression of the discriminant; the default expression must be of
15229 -- the type of the discriminant. (RM 3.7.1) Since this expression is
15230 -- a default expression, we do the special preanalysis, since this
15231 -- expression does not freeze (see "Handling of Default and Per-
15232 -- Object Expressions" in spec of package Sem).
15234 if Present
(Expression
(Discr
)) then
15235 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
15237 if Nkind
(N
) = N_Formal_Type_Declaration
then
15239 ("discriminant defaults not allowed for formal type",
15240 Expression
(Discr
));
15242 -- Tagged types cannot have defaulted discriminants, but a
15243 -- non-tagged private type with defaulted discriminants
15244 -- can have a tagged completion.
15246 elsif Is_Tagged_Type
(Current_Scope
)
15247 and then Comes_From_Source
(N
)
15250 ("discriminants of tagged type cannot have defaults",
15251 Expression
(Discr
));
15254 Default_Present
:= True;
15255 Append_Elmt
(Expression
(Discr
), Elist
);
15257 -- Tag the defining identifiers for the discriminants with
15258 -- their corresponding default expressions from the tree.
15260 Set_Discriminant_Default_Value
15261 (Defining_Identifier
(Discr
), Expression
(Discr
));
15265 Default_Not_Present
:= True;
15268 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
15269 -- Discr_Type but with the null-exclusion attribute
15271 if Ada_Version
>= Ada_05
then
15273 -- Ada 2005 (AI-231): Static checks
15275 if Can_Never_Be_Null
(Discr_Type
) then
15276 Null_Exclusion_Static_Checks
(Discr
);
15278 elsif Is_Access_Type
(Discr_Type
)
15279 and then Null_Exclusion_Present
(Discr
)
15281 -- No need to check itypes because in their case this check
15282 -- was done at their point of creation
15284 and then not Is_Itype
(Discr_Type
)
15286 if Can_Never_Be_Null
(Discr_Type
) then
15288 ("`NOT NULL` not allowed (& already excludes null)",
15293 Set_Etype
(Defining_Identifier
(Discr
),
15294 Create_Null_Excluding_Itype
15296 Related_Nod
=> Discr
));
15299 -- Ada 2005 (AI-402): access discriminants of nonlimited types
15300 -- can't have defaults. Synchronized types, or types that are
15301 -- explicitly limited are fine, but special tests apply to derived
15302 -- types in generics: in a generic body we have to assume the
15303 -- worst, and therefore defaults are not allowed if the parent is
15304 -- a generic formal private type (see ACATS B370001).
15306 if Is_Access_Type
(Discr_Type
) then
15307 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
15308 or else not Default_Present
15309 or else Is_Limited_Record
(Current_Scope
)
15310 or else Is_Concurrent_Type
(Current_Scope
)
15311 or else Is_Concurrent_Record_Type
(Current_Scope
)
15312 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
15314 if not Is_Derived_Type
(Current_Scope
)
15315 or else not Is_Generic_Type
(Etype
(Current_Scope
))
15316 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
15317 or else Limited_Present
15318 (Type_Definition
(Parent
(Current_Scope
)))
15323 Error_Msg_N
("access discriminants of nonlimited types",
15324 Expression
(Discr
));
15325 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
15328 elsif Present
(Expression
(Discr
)) then
15330 ("(Ada 2005) access discriminants of nonlimited types",
15331 Expression
(Discr
));
15332 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
15340 -- An element list consisting of the default expressions of the
15341 -- discriminants is constructed in the above loop and used to set
15342 -- the Discriminant_Constraint attribute for the type. If an object
15343 -- is declared of this (record or task) type without any explicit
15344 -- discriminant constraint given, this element list will form the
15345 -- actual parameters for the corresponding initialization procedure
15348 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
15349 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
15351 -- Default expressions must be provided either for all or for none
15352 -- of the discriminants of a discriminant part. (RM 3.7.1)
15354 if Default_Present
and then Default_Not_Present
then
15356 ("incomplete specification of defaults for discriminants", N
);
15359 -- The use of the name of a discriminant is not allowed in default
15360 -- expressions of a discriminant part if the specification of the
15361 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
15363 -- To detect this, the discriminant names are entered initially with an
15364 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
15365 -- attempt to use a void entity (for example in an expression that is
15366 -- type-checked) produces the error message: premature usage. Now after
15367 -- completing the semantic analysis of the discriminant part, we can set
15368 -- the Ekind of all the discriminants appropriately.
15370 Discr
:= First
(Discriminant_Specifications
(N
));
15371 Discr_Number
:= Uint_1
;
15372 while Present
(Discr
) loop
15373 Id
:= Defining_Identifier
(Discr
);
15374 Set_Ekind
(Id
, E_Discriminant
);
15375 Init_Component_Location
(Id
);
15377 Set_Discriminant_Number
(Id
, Discr_Number
);
15379 -- Make sure this is always set, even in illegal programs
15381 Set_Corresponding_Discriminant
(Id
, Empty
);
15383 -- Initialize the Original_Record_Component to the entity itself.
15384 -- Inherit_Components will propagate the right value to
15385 -- discriminants in derived record types.
15387 Set_Original_Record_Component
(Id
, Id
);
15389 -- Create the discriminal for the discriminant
15391 Build_Discriminal
(Id
);
15394 Discr_Number
:= Discr_Number
+ 1;
15397 Set_Has_Discriminants
(Current_Scope
);
15398 end Process_Discriminants
;
15400 -----------------------
15401 -- Process_Full_View --
15402 -----------------------
15404 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
15405 Priv_Parent
: Entity_Id
;
15406 Full_Parent
: Entity_Id
;
15407 Full_Indic
: Node_Id
;
15409 procedure Collect_Implemented_Interfaces
15411 Ifaces
: Elist_Id
);
15412 -- Ada 2005: Gather all the interfaces that Typ directly or
15413 -- inherently implements. Duplicate entries are not added to
15414 -- the list Ifaces.
15416 ------------------------------------
15417 -- Collect_Implemented_Interfaces --
15418 ------------------------------------
15420 procedure Collect_Implemented_Interfaces
15425 Iface_Elmt
: Elmt_Id
;
15428 -- Abstract interfaces are only associated with tagged record types
15430 if not Is_Tagged_Type
(Typ
)
15431 or else not Is_Record_Type
(Typ
)
15436 -- Recursively climb to the ancestors
15438 if Etype
(Typ
) /= Typ
15440 -- Protect the frontend against wrong cyclic declarations like:
15442 -- type B is new A with private;
15443 -- type C is new A with private;
15445 -- type B is new C with null record;
15446 -- type C is new B with null record;
15448 and then Etype
(Typ
) /= Priv_T
15449 and then Etype
(Typ
) /= Full_T
15451 -- Keep separate the management of private type declarations
15453 if Ekind
(Typ
) = E_Record_Type_With_Private
then
15455 -- Handle the following erronous case:
15456 -- type Private_Type is tagged private;
15458 -- type Private_Type is new Type_Implementing_Iface;
15460 if Present
(Full_View
(Typ
))
15461 and then Etype
(Typ
) /= Full_View
(Typ
)
15463 if Is_Interface
(Etype
(Typ
)) then
15464 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
15467 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
15470 -- Non-private types
15473 if Is_Interface
(Etype
(Typ
)) then
15474 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
15477 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
15481 -- Handle entities in the list of abstract interfaces
15483 if Present
(Interfaces
(Typ
)) then
15484 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
15485 while Present
(Iface_Elmt
) loop
15486 Iface
:= Node
(Iface_Elmt
);
15488 pragma Assert
(Is_Interface
(Iface
));
15490 if not Contain_Interface
(Iface
, Ifaces
) then
15491 Append_Elmt
(Iface
, Ifaces
);
15492 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
15495 Next_Elmt
(Iface_Elmt
);
15498 end Collect_Implemented_Interfaces
;
15500 -- Start of processing for Process_Full_View
15503 -- First some sanity checks that must be done after semantic
15504 -- decoration of the full view and thus cannot be placed with other
15505 -- similar checks in Find_Type_Name
15507 if not Is_Limited_Type
(Priv_T
)
15508 and then (Is_Limited_Type
(Full_T
)
15509 or else Is_Limited_Composite
(Full_T
))
15512 ("completion of nonlimited type cannot be limited", Full_T
);
15513 Explain_Limited_Type
(Full_T
, Full_T
);
15515 elsif Is_Abstract_Type
(Full_T
)
15516 and then not Is_Abstract_Type
(Priv_T
)
15519 ("completion of nonabstract type cannot be abstract", Full_T
);
15521 elsif Is_Tagged_Type
(Priv_T
)
15522 and then Is_Limited_Type
(Priv_T
)
15523 and then not Is_Limited_Type
(Full_T
)
15525 -- If pragma CPP_Class was applied to the private declaration
15526 -- propagate the limitedness to the full-view
15528 if Is_CPP_Class
(Priv_T
) then
15529 Set_Is_Limited_Record
(Full_T
);
15531 -- GNAT allow its own definition of Limited_Controlled to disobey
15532 -- this rule in order in ease the implementation. The next test is
15533 -- safe because Root_Controlled is defined in a private system child
15535 elsif Etype
(Full_T
) = Full_View
(RTE
(RE_Root_Controlled
)) then
15536 Set_Is_Limited_Composite
(Full_T
);
15539 ("completion of limited tagged type must be limited", Full_T
);
15542 elsif Is_Generic_Type
(Priv_T
) then
15543 Error_Msg_N
("generic type cannot have a completion", Full_T
);
15546 -- Check that ancestor interfaces of private and full views are
15547 -- consistent. We omit this check for synchronized types because
15548 -- they are performed on the corresponding record type when frozen.
15550 if Ada_Version
>= Ada_05
15551 and then Is_Tagged_Type
(Priv_T
)
15552 and then Is_Tagged_Type
(Full_T
)
15553 and then not Is_Concurrent_Type
(Full_T
)
15557 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
15558 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
15561 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
15562 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
15564 -- Ada 2005 (AI-251): The partial view shall be a descendant of
15565 -- an interface type if and only if the full type is descendant
15566 -- of the interface type (AARM 7.3 (7.3/2).
15568 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
15570 if Present
(Iface
) then
15571 Error_Msg_NE
("interface & not implemented by full type " &
15572 "(RM-2005 7.3 (7.3/2))", Priv_T
, Iface
);
15575 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
15577 if Present
(Iface
) then
15578 Error_Msg_NE
("interface & not implemented by partial view " &
15579 "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
15584 if Is_Tagged_Type
(Priv_T
)
15585 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
15586 and then Is_Derived_Type
(Full_T
)
15588 Priv_Parent
:= Etype
(Priv_T
);
15590 -- The full view of a private extension may have been transformed
15591 -- into an unconstrained derived type declaration and a subtype
15592 -- declaration (see build_derived_record_type for details).
15594 if Nkind
(N
) = N_Subtype_Declaration
then
15595 Full_Indic
:= Subtype_Indication
(N
);
15596 Full_Parent
:= Etype
(Base_Type
(Full_T
));
15598 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
15599 Full_Parent
:= Etype
(Full_T
);
15602 -- Check that the parent type of the full type is a descendant of
15603 -- the ancestor subtype given in the private extension. If either
15604 -- entity has an Etype equal to Any_Type then we had some previous
15605 -- error situation [7.3(8)].
15607 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
15610 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
15611 -- any order. Therefore we don't have to check that its parent must
15612 -- be a descendant of the parent of the private type declaration.
15614 elsif Is_Interface
(Priv_Parent
)
15615 and then Is_Interface
(Full_Parent
)
15619 -- Ada 2005 (AI-251): If the parent of the private type declaration
15620 -- is an interface there is no need to check that it is an ancestor
15621 -- of the associated full type declaration. The required tests for
15622 -- this case case are performed by Build_Derived_Record_Type.
15624 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
15625 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
15628 ("parent of full type must descend from parent"
15629 & " of private extension", Full_Indic
);
15631 -- Check the rules of 7.3(10): if the private extension inherits
15632 -- known discriminants, then the full type must also inherit those
15633 -- discriminants from the same (ancestor) type, and the parent
15634 -- subtype of the full type must be constrained if and only if
15635 -- the ancestor subtype of the private extension is constrained.
15637 elsif No
(Discriminant_Specifications
(Parent
(Priv_T
)))
15638 and then not Has_Unknown_Discriminants
(Priv_T
)
15639 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
15642 Priv_Indic
: constant Node_Id
:=
15643 Subtype_Indication
(Parent
(Priv_T
));
15645 Priv_Constr
: constant Boolean :=
15646 Is_Constrained
(Priv_Parent
)
15648 Nkind
(Priv_Indic
) = N_Subtype_Indication
15649 or else Is_Constrained
(Entity
(Priv_Indic
));
15651 Full_Constr
: constant Boolean :=
15652 Is_Constrained
(Full_Parent
)
15654 Nkind
(Full_Indic
) = N_Subtype_Indication
15655 or else Is_Constrained
(Entity
(Full_Indic
));
15657 Priv_Discr
: Entity_Id
;
15658 Full_Discr
: Entity_Id
;
15661 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
15662 Full_Discr
:= First_Discriminant
(Full_Parent
);
15663 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
15664 if Original_Record_Component
(Priv_Discr
) =
15665 Original_Record_Component
(Full_Discr
)
15667 Corresponding_Discriminant
(Priv_Discr
) =
15668 Corresponding_Discriminant
(Full_Discr
)
15675 Next_Discriminant
(Priv_Discr
);
15676 Next_Discriminant
(Full_Discr
);
15679 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
15681 ("full view must inherit discriminants of the parent type"
15682 & " used in the private extension", Full_Indic
);
15684 elsif Priv_Constr
and then not Full_Constr
then
15686 ("parent subtype of full type must be constrained",
15689 elsif Full_Constr
and then not Priv_Constr
then
15691 ("parent subtype of full type must be unconstrained",
15696 -- Check the rules of 7.3(12): if a partial view has neither known
15697 -- or unknown discriminants, then the full type declaration shall
15698 -- define a definite subtype.
15700 elsif not Has_Unknown_Discriminants
(Priv_T
)
15701 and then not Has_Discriminants
(Priv_T
)
15702 and then not Is_Constrained
(Full_T
)
15705 ("full view must define a constrained type if partial view"
15706 & " has no discriminants", Full_T
);
15709 -- ??????? Do we implement the following properly ?????
15710 -- If the ancestor subtype of a private extension has constrained
15711 -- discriminants, then the parent subtype of the full view shall
15712 -- impose a statically matching constraint on those discriminants
15716 -- For untagged types, verify that a type without discriminants
15717 -- is not completed with an unconstrained type.
15719 if not Is_Indefinite_Subtype
(Priv_T
)
15720 and then Is_Indefinite_Subtype
(Full_T
)
15722 Error_Msg_N
("full view of type must be definite subtype", Full_T
);
15726 -- AI-419: verify that the use of "limited" is consistent
15729 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
15732 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
15733 and then not Limited_Present
(Parent
(Priv_T
))
15734 and then not Synchronized_Present
(Parent
(Priv_T
))
15735 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
15737 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
15738 and then Limited_Present
(Type_Definition
(Orig_Decl
))
15741 ("full view of non-limited extension cannot be limited", N
);
15745 -- Ada 2005 (AI-443): A synchronized private extension must be
15746 -- completed by a task or protected type.
15748 if Ada_Version
>= Ada_05
15749 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
15750 and then Synchronized_Present
(Parent
(Priv_T
))
15751 and then not Is_Concurrent_Type
(Full_T
)
15753 Error_Msg_N
("full view of synchronized extension must " &
15754 "be synchronized type", N
);
15757 -- Ada 2005 AI-363: if the full view has discriminants with
15758 -- defaults, it is illegal to declare constrained access subtypes
15759 -- whose designated type is the current type. This allows objects
15760 -- of the type that are declared in the heap to be unconstrained.
15762 if not Has_Unknown_Discriminants
(Priv_T
)
15763 and then not Has_Discriminants
(Priv_T
)
15764 and then Has_Discriminants
(Full_T
)
15766 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
15768 Set_Has_Constrained_Partial_View
(Full_T
);
15769 Set_Has_Constrained_Partial_View
(Priv_T
);
15772 -- Create a full declaration for all its subtypes recorded in
15773 -- Private_Dependents and swap them similarly to the base type. These
15774 -- are subtypes that have been define before the full declaration of
15775 -- the private type. We also swap the entry in Private_Dependents list
15776 -- so we can properly restore the private view on exit from the scope.
15779 Priv_Elmt
: Elmt_Id
;
15784 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
15785 while Present
(Priv_Elmt
) loop
15786 Priv
:= Node
(Priv_Elmt
);
15788 if Ekind
(Priv
) = E_Private_Subtype
15789 or else Ekind
(Priv
) = E_Limited_Private_Subtype
15790 or else Ekind
(Priv
) = E_Record_Subtype_With_Private
15792 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
15793 Set_Is_Itype
(Full
);
15794 Set_Parent
(Full
, Parent
(Priv
));
15795 Set_Associated_Node_For_Itype
(Full
, N
);
15797 -- Now we need to complete the private subtype, but since the
15798 -- base type has already been swapped, we must also swap the
15799 -- subtypes (and thus, reverse the arguments in the call to
15800 -- Complete_Private_Subtype).
15802 Copy_And_Swap
(Priv
, Full
);
15803 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
15804 Replace_Elmt
(Priv_Elmt
, Full
);
15807 Next_Elmt
(Priv_Elmt
);
15811 -- If the private view was tagged, copy the new primitive operations
15812 -- from the private view to the full view.
15814 -- Note: Subprograms covering interface primitives were previously
15815 -- propagated to the full view by Derive_Progenitor_Primitives
15817 if Is_Tagged_Type
(Full_T
)
15818 and then not Is_Concurrent_Type
(Full_T
)
15821 Priv_List
: Elist_Id
;
15822 Full_List
: constant Elist_Id
:= Primitive_Operations
(Full_T
);
15825 D_Type
: Entity_Id
;
15828 if Is_Tagged_Type
(Priv_T
) then
15829 Priv_List
:= Primitive_Operations
(Priv_T
);
15831 P1
:= First_Elmt
(Priv_List
);
15832 while Present
(P1
) loop
15835 -- Transfer explicit primitives, not those inherited from
15836 -- parent of partial view, which will be re-inherited on
15839 if Comes_From_Source
(Prim
) then
15840 P2
:= First_Elmt
(Full_List
);
15841 while Present
(P2
) and then Node
(P2
) /= Prim
loop
15845 -- If not found, that is a new one
15848 Append_Elmt
(Prim
, Full_List
);
15856 -- In this case the partial view is untagged, so here we locate
15857 -- all of the earlier primitives that need to be treated as
15858 -- dispatching (those that appear between the two views). Note
15859 -- that these additional operations must all be new operations
15860 -- (any earlier operations that override inherited operations
15861 -- of the full view will already have been inserted in the
15862 -- primitives list, marked by Check_Operation_From_Private_View
15863 -- as dispatching. Note that implicit "/=" operators are
15864 -- excluded from being added to the primitives list since they
15865 -- shouldn't be treated as dispatching (tagged "/=" is handled
15868 Prim
:= Next_Entity
(Full_T
);
15869 while Present
(Prim
) and then Prim
/= Priv_T
loop
15870 if Ekind
(Prim
) = E_Procedure
15872 Ekind
(Prim
) = E_Function
15875 D_Type
:= Find_Dispatching_Type
(Prim
);
15878 and then (Chars
(Prim
) /= Name_Op_Ne
15879 or else Comes_From_Source
(Prim
))
15881 Check_Controlling_Formals
(Full_T
, Prim
);
15883 if not Is_Dispatching_Operation
(Prim
) then
15884 Append_Elmt
(Prim
, Full_List
);
15885 Set_Is_Dispatching_Operation
(Prim
, True);
15886 Set_DT_Position
(Prim
, No_Uint
);
15889 elsif Is_Dispatching_Operation
(Prim
)
15890 and then D_Type
/= Full_T
15893 -- Verify that it is not otherwise controlled by a
15894 -- formal or a return value of type T.
15896 Check_Controlling_Formals
(D_Type
, Prim
);
15900 Next_Entity
(Prim
);
15904 -- For the tagged case, the two views can share the same
15905 -- Primitive Operation list and the same class wide type.
15906 -- Update attributes of the class-wide type which depend on
15907 -- the full declaration.
15909 if Is_Tagged_Type
(Priv_T
) then
15910 Set_Primitive_Operations
(Priv_T
, Full_List
);
15911 Set_Class_Wide_Type
15912 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
15914 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
15919 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
15921 if Known_To_Have_Preelab_Init
(Priv_T
) then
15923 -- Case where there is a pragma Preelaborable_Initialization. We
15924 -- always allow this in predefined units, which is a bit of a kludge,
15925 -- but it means we don't have to struggle to meet the requirements in
15926 -- the RM for having Preelaborable Initialization. Otherwise we
15927 -- require that the type meets the RM rules. But we can't check that
15928 -- yet, because of the rule about overriding Ininitialize, so we
15929 -- simply set a flag that will be checked at freeze time.
15931 if not In_Predefined_Unit
(Full_T
) then
15932 Set_Must_Have_Preelab_Init
(Full_T
);
15936 -- If pragma CPP_Class was applied to the private type declaration,
15937 -- propagate it now to the full type declaration.
15939 if Is_CPP_Class
(Priv_T
) then
15940 Set_Is_CPP_Class
(Full_T
);
15941 Set_Convention
(Full_T
, Convention_CPP
);
15943 end Process_Full_View
;
15945 -----------------------------------
15946 -- Process_Incomplete_Dependents --
15947 -----------------------------------
15949 procedure Process_Incomplete_Dependents
15951 Full_T
: Entity_Id
;
15954 Inc_Elmt
: Elmt_Id
;
15955 Priv_Dep
: Entity_Id
;
15956 New_Subt
: Entity_Id
;
15958 Disc_Constraint
: Elist_Id
;
15961 if No
(Private_Dependents
(Inc_T
)) then
15965 -- Itypes that may be generated by the completion of an incomplete
15966 -- subtype are not used by the back-end and not attached to the tree.
15967 -- They are created only for constraint-checking purposes.
15969 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
15970 while Present
(Inc_Elmt
) loop
15971 Priv_Dep
:= Node
(Inc_Elmt
);
15973 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
15975 -- An Access_To_Subprogram type may have a return type or a
15976 -- parameter type that is incomplete. Replace with the full view.
15978 if Etype
(Priv_Dep
) = Inc_T
then
15979 Set_Etype
(Priv_Dep
, Full_T
);
15983 Formal
: Entity_Id
;
15986 Formal
:= First_Formal
(Priv_Dep
);
15987 while Present
(Formal
) loop
15988 if Etype
(Formal
) = Inc_T
then
15989 Set_Etype
(Formal
, Full_T
);
15992 Next_Formal
(Formal
);
15996 elsif Is_Overloadable
(Priv_Dep
) then
15998 -- A protected operation is never dispatching: only its
15999 -- wrapper operation (which has convention Ada) is.
16001 if Is_Tagged_Type
(Full_T
)
16002 and then Convention
(Priv_Dep
) /= Convention_Protected
16005 -- Subprogram has an access parameter whose designated type
16006 -- was incomplete. Reexamine declaration now, because it may
16007 -- be a primitive operation of the full type.
16009 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
16010 Set_Is_Dispatching_Operation
(Priv_Dep
);
16011 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
16014 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
16016 -- Can happen during processing of a body before the completion
16017 -- of a TA type. Ignore, because spec is also on dependent list.
16021 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
16022 -- corresponding subtype of the full view.
16024 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
16025 Set_Subtype_Indication
16026 (Parent
(Priv_Dep
), New_Reference_To
(Full_T
, Sloc
(Priv_Dep
)));
16027 Set_Etype
(Priv_Dep
, Full_T
);
16028 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
16029 Set_Analyzed
(Parent
(Priv_Dep
), False);
16031 -- Reanalyze the declaration, suppressing the call to
16032 -- Enter_Name to avoid duplicate names.
16034 Analyze_Subtype_Declaration
16035 (N
=> Parent
(Priv_Dep
),
16038 -- Dependent is a subtype
16041 -- We build a new subtype indication using the full view of the
16042 -- incomplete parent. The discriminant constraints have been
16043 -- elaborated already at the point of the subtype declaration.
16045 New_Subt
:= Create_Itype
(E_Void
, N
);
16047 if Has_Discriminants
(Full_T
) then
16048 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
16050 Disc_Constraint
:= No_Elist
;
16053 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
16054 Set_Full_View
(Priv_Dep
, New_Subt
);
16057 Next_Elmt
(Inc_Elmt
);
16059 end Process_Incomplete_Dependents
;
16061 --------------------------------
16062 -- Process_Range_Expr_In_Decl --
16063 --------------------------------
16065 procedure Process_Range_Expr_In_Decl
16068 Check_List
: List_Id
:= Empty_List
;
16069 R_Check_Off
: Boolean := False)
16072 R_Checks
: Check_Result
;
16073 Type_Decl
: Node_Id
;
16074 Def_Id
: Entity_Id
;
16077 Analyze_And_Resolve
(R
, Base_Type
(T
));
16079 if Nkind
(R
) = N_Range
then
16080 Lo
:= Low_Bound
(R
);
16081 Hi
:= High_Bound
(R
);
16083 -- We need to ensure validity of the bounds here, because if we
16084 -- go ahead and do the expansion, then the expanded code will get
16085 -- analyzed with range checks suppressed and we miss the check.
16087 Validity_Check_Range
(R
);
16089 -- If there were errors in the declaration, try and patch up some
16090 -- common mistakes in the bounds. The cases handled are literals
16091 -- which are Integer where the expected type is Real and vice versa.
16092 -- These corrections allow the compilation process to proceed further
16093 -- along since some basic assumptions of the format of the bounds
16096 if Etype
(R
) = Any_Type
then
16098 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
16100 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
16102 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
16104 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
16106 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
16108 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
16110 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
16112 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
16119 -- If the bounds of the range have been mistakenly given as string
16120 -- literals (perhaps in place of character literals), then an error
16121 -- has already been reported, but we rewrite the string literal as a
16122 -- bound of the range's type to avoid blowups in later processing
16123 -- that looks at static values.
16125 if Nkind
(Lo
) = N_String_Literal
then
16127 Make_Attribute_Reference
(Sloc
(Lo
),
16128 Attribute_Name
=> Name_First
,
16129 Prefix
=> New_Reference_To
(T
, Sloc
(Lo
))));
16130 Analyze_And_Resolve
(Lo
);
16133 if Nkind
(Hi
) = N_String_Literal
then
16135 Make_Attribute_Reference
(Sloc
(Hi
),
16136 Attribute_Name
=> Name_First
,
16137 Prefix
=> New_Reference_To
(T
, Sloc
(Hi
))));
16138 Analyze_And_Resolve
(Hi
);
16141 -- If bounds aren't scalar at this point then exit, avoiding
16142 -- problems with further processing of the range in this procedure.
16144 if not Is_Scalar_Type
(Etype
(Lo
)) then
16148 -- Resolve (actually Sem_Eval) has checked that the bounds are in
16149 -- then range of the base type. Here we check whether the bounds
16150 -- are in the range of the subtype itself. Note that if the bounds
16151 -- represent the null range the Constraint_Error exception should
16154 -- ??? The following code should be cleaned up as follows
16156 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
16157 -- is done in the call to Range_Check (R, T); below
16159 -- 2. The use of R_Check_Off should be investigated and possibly
16160 -- removed, this would clean up things a bit.
16162 if Is_Null_Range
(Lo
, Hi
) then
16166 -- Capture values of bounds and generate temporaries for them
16167 -- if needed, before applying checks, since checks may cause
16168 -- duplication of the expression without forcing evaluation.
16170 if Expander_Active
then
16171 Force_Evaluation
(Lo
);
16172 Force_Evaluation
(Hi
);
16175 -- We use a flag here instead of suppressing checks on the
16176 -- type because the type we check against isn't necessarily
16177 -- the place where we put the check.
16179 if not R_Check_Off
then
16180 R_Checks
:= Get_Range_Checks
(R
, T
);
16182 -- Look up tree to find an appropriate insertion point.
16183 -- This seems really junk code, and very brittle, couldn't
16184 -- we just use an insert actions call of some kind ???
16186 Type_Decl
:= Parent
(R
);
16187 while Present
(Type_Decl
) and then not
16188 (Nkind_In
(Type_Decl
, N_Full_Type_Declaration
,
16189 N_Subtype_Declaration
,
16191 N_Task_Type_Declaration
)
16193 Nkind_In
(Type_Decl
, N_Single_Task_Declaration
,
16194 N_Protected_Type_Declaration
,
16195 N_Single_Protected_Declaration
))
16197 Type_Decl
:= Parent
(Type_Decl
);
16200 -- Why would Type_Decl not be present??? Without this test,
16201 -- short regression tests fail.
16203 if Present
(Type_Decl
) then
16205 -- Case of loop statement (more comments ???)
16207 if Nkind
(Type_Decl
) = N_Loop_Statement
then
16212 Indic
:= Parent
(R
);
16213 while Present
(Indic
)
16214 and then Nkind
(Indic
) /= N_Subtype_Indication
16216 Indic
:= Parent
(Indic
);
16219 if Present
(Indic
) then
16220 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
16222 Insert_Range_Checks
16228 Do_Before
=> True);
16232 -- All other cases (more comments ???)
16235 Def_Id
:= Defining_Identifier
(Type_Decl
);
16237 if (Ekind
(Def_Id
) = E_Record_Type
16238 and then Depends_On_Discriminant
(R
))
16240 (Ekind
(Def_Id
) = E_Protected_Type
16241 and then Has_Discriminants
(Def_Id
))
16243 Append_Range_Checks
16244 (R_Checks
, Check_List
, Def_Id
, Sloc
(Type_Decl
), R
);
16247 Insert_Range_Checks
16248 (R_Checks
, Type_Decl
, Def_Id
, Sloc
(Type_Decl
), R
);
16256 elsif Expander_Active
then
16257 Get_Index_Bounds
(R
, Lo
, Hi
);
16258 Force_Evaluation
(Lo
);
16259 Force_Evaluation
(Hi
);
16261 end Process_Range_Expr_In_Decl
;
16263 --------------------------------------
16264 -- Process_Real_Range_Specification --
16265 --------------------------------------
16267 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
16268 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
16271 Err
: Boolean := False;
16273 procedure Analyze_Bound
(N
: Node_Id
);
16274 -- Analyze and check one bound
16276 -------------------
16277 -- Analyze_Bound --
16278 -------------------
16280 procedure Analyze_Bound
(N
: Node_Id
) is
16282 Analyze_And_Resolve
(N
, Any_Real
);
16284 if not Is_OK_Static_Expression
(N
) then
16285 Flag_Non_Static_Expr
16286 ("bound in real type definition is not static!", N
);
16291 -- Start of processing for Process_Real_Range_Specification
16294 if Present
(Spec
) then
16295 Lo
:= Low_Bound
(Spec
);
16296 Hi
:= High_Bound
(Spec
);
16297 Analyze_Bound
(Lo
);
16298 Analyze_Bound
(Hi
);
16300 -- If error, clear away junk range specification
16303 Set_Real_Range_Specification
(Def
, Empty
);
16306 end Process_Real_Range_Specification
;
16308 ---------------------
16309 -- Process_Subtype --
16310 ---------------------
16312 function Process_Subtype
16314 Related_Nod
: Node_Id
;
16315 Related_Id
: Entity_Id
:= Empty
;
16316 Suffix
: Character := ' ') return Entity_Id
16319 Def_Id
: Entity_Id
;
16320 Error_Node
: Node_Id
;
16321 Full_View_Id
: Entity_Id
;
16322 Subtype_Mark_Id
: Entity_Id
;
16324 May_Have_Null_Exclusion
: Boolean;
16326 procedure Check_Incomplete
(T
: Entity_Id
);
16327 -- Called to verify that an incomplete type is not used prematurely
16329 ----------------------
16330 -- Check_Incomplete --
16331 ----------------------
16333 procedure Check_Incomplete
(T
: Entity_Id
) is
16335 -- Ada 2005 (AI-412): Incomplete subtypes are legal
16337 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
16339 not (Ada_Version
>= Ada_05
16341 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
16343 (Nkind
(Parent
(T
)) = N_Subtype_Indication
16344 and then Nkind
(Parent
(Parent
(T
))) =
16345 N_Subtype_Declaration
)))
16347 Error_Msg_N
("invalid use of type before its full declaration", T
);
16349 end Check_Incomplete
;
16351 -- Start of processing for Process_Subtype
16354 -- Case of no constraints present
16356 if Nkind
(S
) /= N_Subtype_Indication
then
16358 Check_Incomplete
(S
);
16361 -- Ada 2005 (AI-231): Static check
16363 if Ada_Version
>= Ada_05
16364 and then Present
(P
)
16365 and then Null_Exclusion_Present
(P
)
16366 and then Nkind
(P
) /= N_Access_To_Object_Definition
16367 and then not Is_Access_Type
(Entity
(S
))
16369 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
16372 -- The following is ugly, can't we have a range or even a flag???
16374 May_Have_Null_Exclusion
:=
16375 Nkind_In
(P
, N_Access_Definition
,
16376 N_Access_Function_Definition
,
16377 N_Access_Procedure_Definition
,
16378 N_Access_To_Object_Definition
,
16380 N_Component_Definition
)
16382 Nkind_In
(P
, N_Derived_Type_Definition
,
16383 N_Discriminant_Specification
,
16384 N_Object_Declaration
,
16385 N_Parameter_Specification
,
16386 N_Subtype_Declaration
);
16388 -- Create an Itype that is a duplicate of Entity (S) but with the
16389 -- null-exclusion attribute
16391 if May_Have_Null_Exclusion
16392 and then Is_Access_Type
(Entity
(S
))
16393 and then Null_Exclusion_Present
(P
)
16395 -- No need to check the case of an access to object definition.
16396 -- It is correct to define double not-null pointers.
16399 -- type Not_Null_Int_Ptr is not null access Integer;
16400 -- type Acc is not null access Not_Null_Int_Ptr;
16402 and then Nkind
(P
) /= N_Access_To_Object_Definition
16404 if Can_Never_Be_Null
(Entity
(S
)) then
16405 case Nkind
(Related_Nod
) is
16406 when N_Full_Type_Declaration
=>
16407 if Nkind
(Type_Definition
(Related_Nod
))
16408 in N_Array_Type_Definition
16412 (Component_Definition
16413 (Type_Definition
(Related_Nod
)));
16416 Subtype_Indication
(Type_Definition
(Related_Nod
));
16419 when N_Subtype_Declaration
=>
16420 Error_Node
:= Subtype_Indication
(Related_Nod
);
16422 when N_Object_Declaration
=>
16423 Error_Node
:= Object_Definition
(Related_Nod
);
16425 when N_Component_Declaration
=>
16427 Subtype_Indication
(Component_Definition
(Related_Nod
));
16430 pragma Assert
(False);
16431 Error_Node
:= Related_Nod
;
16435 ("`NOT NULL` not allowed (& already excludes null)",
16441 Create_Null_Excluding_Itype
16443 Related_Nod
=> P
));
16444 Set_Entity
(S
, Etype
(S
));
16449 -- Case of constraint present, so that we have an N_Subtype_Indication
16450 -- node (this node is created only if constraints are present).
16453 Find_Type
(Subtype_Mark
(S
));
16455 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
16457 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
16458 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
16460 Check_Incomplete
(Subtype_Mark
(S
));
16464 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
16466 -- Explicit subtype declaration case
16468 if Nkind
(P
) = N_Subtype_Declaration
then
16469 Def_Id
:= Defining_Identifier
(P
);
16471 -- Explicit derived type definition case
16473 elsif Nkind
(P
) = N_Derived_Type_Definition
then
16474 Def_Id
:= Defining_Identifier
(Parent
(P
));
16476 -- Implicit case, the Def_Id must be created as an implicit type.
16477 -- The one exception arises in the case of concurrent types, array
16478 -- and access types, where other subsidiary implicit types may be
16479 -- created and must appear before the main implicit type. In these
16480 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
16481 -- has not yet been called to create Def_Id.
16484 if Is_Array_Type
(Subtype_Mark_Id
)
16485 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
16486 or else Is_Access_Type
(Subtype_Mark_Id
)
16490 -- For the other cases, we create a new unattached Itype,
16491 -- and set the indication to ensure it gets attached later.
16495 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
16499 -- If the kind of constraint is invalid for this kind of type,
16500 -- then give an error, and then pretend no constraint was given.
16502 if not Is_Valid_Constraint_Kind
16503 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
16506 ("incorrect constraint for this kind of type", Constraint
(S
));
16508 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
16510 -- Set Ekind of orphan itype, to prevent cascaded errors
16512 if Present
(Def_Id
) then
16513 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
16516 -- Make recursive call, having got rid of the bogus constraint
16518 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
16521 -- Remaining processing depends on type
16523 case Ekind
(Subtype_Mark_Id
) is
16524 when Access_Kind
=>
16525 Constrain_Access
(Def_Id
, S
, Related_Nod
);
16528 and then Is_Itype
(Designated_Type
(Def_Id
))
16529 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
16530 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
16532 Build_Itype_Reference
16533 (Designated_Type
(Def_Id
), Related_Nod
);
16537 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
16539 when Decimal_Fixed_Point_Kind
=>
16540 Constrain_Decimal
(Def_Id
, S
);
16542 when Enumeration_Kind
=>
16543 Constrain_Enumeration
(Def_Id
, S
);
16545 when Ordinary_Fixed_Point_Kind
=>
16546 Constrain_Ordinary_Fixed
(Def_Id
, S
);
16549 Constrain_Float
(Def_Id
, S
);
16551 when Integer_Kind
=>
16552 Constrain_Integer
(Def_Id
, S
);
16554 when E_Record_Type |
16557 E_Incomplete_Type
=>
16558 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
16560 when Private_Kind
=>
16561 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
16562 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
16564 -- In case of an invalid constraint prevent further processing
16565 -- since the type constructed is missing expected fields.
16567 if Etype
(Def_Id
) = Any_Type
then
16571 -- If the full view is that of a task with discriminants,
16572 -- we must constrain both the concurrent type and its
16573 -- corresponding record type. Otherwise we will just propagate
16574 -- the constraint to the full view, if available.
16576 if Present
(Full_View
(Subtype_Mark_Id
))
16577 and then Has_Discriminants
(Subtype_Mark_Id
)
16578 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
16581 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
16583 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
16584 Constrain_Concurrent
(Full_View_Id
, S
,
16585 Related_Nod
, Related_Id
, Suffix
);
16586 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
16587 Set_Full_View
(Def_Id
, Full_View_Id
);
16589 -- Introduce an explicit reference to the private subtype,
16590 -- to prevent scope anomalies in gigi if first use appears
16591 -- in a nested context, e.g. a later function body.
16592 -- Should this be generated in other contexts than a full
16593 -- type declaration?
16595 if Is_Itype
(Def_Id
)
16597 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
16599 Build_Itype_Reference
(Def_Id
, Parent
(P
));
16603 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
16606 when Concurrent_Kind
=>
16607 Constrain_Concurrent
(Def_Id
, S
,
16608 Related_Nod
, Related_Id
, Suffix
);
16611 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
16614 -- Size and Convention are always inherited from the base type
16616 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
16617 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
16621 end Process_Subtype
;
16623 ---------------------------------------
16624 -- Check_Anonymous_Access_Components --
16625 ---------------------------------------
16627 procedure Check_Anonymous_Access_Components
16628 (Typ_Decl
: Node_Id
;
16631 Comp_List
: Node_Id
)
16633 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
16634 Anon_Access
: Entity_Id
;
16637 Comp_Def
: Node_Id
;
16639 Type_Def
: Node_Id
;
16641 procedure Build_Incomplete_Type_Declaration
;
16642 -- If the record type contains components that include an access to the
16643 -- current record, then create an incomplete type declaration for the
16644 -- record, to be used as the designated type of the anonymous access.
16645 -- This is done only once, and only if there is no previous partial
16646 -- view of the type.
16648 function Designates_T
(Subt
: Node_Id
) return Boolean;
16649 -- Check whether a node designates the enclosing record type, or 'Class
16652 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
16653 -- Check whether an access definition includes a reference to
16654 -- the enclosing record type. The reference can be a subtype mark
16655 -- in the access definition itself, a 'Class attribute reference, or
16656 -- recursively a reference appearing in a parameter specification
16657 -- or result definition of an access_to_subprogram definition.
16659 --------------------------------------
16660 -- Build_Incomplete_Type_Declaration --
16661 --------------------------------------
16663 procedure Build_Incomplete_Type_Declaration
is
16668 -- Is_Tagged indicates whether the type is tagged. It is tagged if
16669 -- it's "is new ... with record" or else "is tagged record ...".
16671 Is_Tagged
: constant Boolean :=
16672 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
16675 (Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
16677 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
16678 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
16681 -- If there is a previous partial view, no need to create a new one
16682 -- If the partial view, given by Prev, is incomplete, If Prev is
16683 -- a private declaration, full declaration is flagged accordingly.
16685 if Prev
/= Typ
then
16687 Make_Class_Wide_Type
(Prev
);
16688 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
16689 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
16694 elsif Has_Private_Declaration
(Typ
) then
16696 -- If we refer to T'Class inside T, and T is the completion of a
16697 -- private type, then we need to make sure the class-wide type
16701 Make_Class_Wide_Type
(Typ
);
16706 -- If there was a previous anonymous access type, the incomplete
16707 -- type declaration will have been created already.
16709 elsif Present
(Current_Entity
(Typ
))
16710 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
16711 and then Full_View
(Current_Entity
(Typ
)) = Typ
16716 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
16717 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
16719 -- Type has already been inserted into the current scope.
16720 -- Remove it, and add incomplete declaration for type, so
16721 -- that subsequent anonymous access types can use it.
16722 -- The entity is unchained from the homonym list and from
16723 -- immediate visibility. After analysis, the entity in the
16724 -- incomplete declaration becomes immediately visible in the
16725 -- record declaration that follows.
16727 H
:= Current_Entity
(Typ
);
16730 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
16733 and then Homonym
(H
) /= Typ
16735 H
:= Homonym
(Typ
);
16738 Set_Homonym
(H
, Homonym
(Typ
));
16741 Insert_Before
(Typ_Decl
, Decl
);
16743 Set_Full_View
(Inc_T
, Typ
);
16746 -- Create a common class-wide type for both views, and set
16747 -- the Etype of the class-wide type to the full view.
16749 Make_Class_Wide_Type
(Inc_T
);
16750 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
16751 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
16754 end Build_Incomplete_Type_Declaration
;
16760 function Designates_T
(Subt
: Node_Id
) return Boolean is
16761 Type_Id
: constant Name_Id
:= Chars
(Typ
);
16763 function Names_T
(Nam
: Node_Id
) return Boolean;
16764 -- The record type has not been introduced in the current scope
16765 -- yet, so we must examine the name of the type itself, either
16766 -- an identifier T, or an expanded name of the form P.T, where
16767 -- P denotes the current scope.
16773 function Names_T
(Nam
: Node_Id
) return Boolean is
16775 if Nkind
(Nam
) = N_Identifier
then
16776 return Chars
(Nam
) = Type_Id
;
16778 elsif Nkind
(Nam
) = N_Selected_Component
then
16779 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
16780 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
16781 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
16783 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
16784 return Chars
(Selector_Name
(Prefix
(Nam
))) =
16785 Chars
(Current_Scope
);
16799 -- Start of processing for Designates_T
16802 if Nkind
(Subt
) = N_Identifier
then
16803 return Chars
(Subt
) = Type_Id
;
16805 -- Reference can be through an expanded name which has not been
16806 -- analyzed yet, and which designates enclosing scopes.
16808 elsif Nkind
(Subt
) = N_Selected_Component
then
16809 if Names_T
(Subt
) then
16812 -- Otherwise it must denote an entity that is already visible.
16813 -- The access definition may name a subtype of the enclosing
16814 -- type, if there is a previous incomplete declaration for it.
16817 Find_Selected_Component
(Subt
);
16819 Is_Entity_Name
(Subt
)
16820 and then Scope
(Entity
(Subt
)) = Current_Scope
16822 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
16824 (Is_Class_Wide_Type
(Entity
(Subt
))
16826 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
16830 -- A reference to the current type may appear as the prefix of
16831 -- a 'Class attribute.
16833 elsif Nkind
(Subt
) = N_Attribute_Reference
16834 and then Attribute_Name
(Subt
) = Name_Class
16836 return Names_T
(Prefix
(Subt
));
16847 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
16848 Param_Spec
: Node_Id
;
16850 Acc_Subprg
: constant Node_Id
:=
16851 Access_To_Subprogram_Definition
(Acc_Def
);
16854 if No
(Acc_Subprg
) then
16855 return Designates_T
(Subtype_Mark
(Acc_Def
));
16858 -- Component is an access_to_subprogram: examine its formals,
16859 -- and result definition in the case of an access_to_function.
16861 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
16862 while Present
(Param_Spec
) loop
16863 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
16864 and then Mentions_T
(Parameter_Type
(Param_Spec
))
16868 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
16875 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
16876 if Nkind
(Result_Definition
(Acc_Subprg
)) =
16877 N_Access_Definition
16879 return Mentions_T
(Result_Definition
(Acc_Subprg
));
16881 return Designates_T
(Result_Definition
(Acc_Subprg
));
16888 -- Start of processing for Check_Anonymous_Access_Components
16891 if No
(Comp_List
) then
16895 Comp
:= First
(Component_Items
(Comp_List
));
16896 while Present
(Comp
) loop
16897 if Nkind
(Comp
) = N_Component_Declaration
16899 (Access_Definition
(Component_Definition
(Comp
)))
16901 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
16903 Comp_Def
:= Component_Definition
(Comp
);
16905 Access_To_Subprogram_Definition
16906 (Access_Definition
(Comp_Def
));
16908 Build_Incomplete_Type_Declaration
;
16910 Make_Defining_Identifier
(Loc
,
16911 Chars
=> New_Internal_Name
('S'));
16913 -- Create a declaration for the anonymous access type: either
16914 -- an access_to_object or an access_to_subprogram.
16916 if Present
(Acc_Def
) then
16917 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
16919 Make_Access_Function_Definition
(Loc
,
16920 Parameter_Specifications
=>
16921 Parameter_Specifications
(Acc_Def
),
16922 Result_Definition
=> Result_Definition
(Acc_Def
));
16925 Make_Access_Procedure_Definition
(Loc
,
16926 Parameter_Specifications
=>
16927 Parameter_Specifications
(Acc_Def
));
16932 Make_Access_To_Object_Definition
(Loc
,
16933 Subtype_Indication
=>
16936 (Access_Definition
(Comp_Def
))));
16938 Set_Constant_Present
16939 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
16941 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
16944 Set_Null_Exclusion_Present
16946 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
16949 Make_Full_Type_Declaration
(Loc
,
16950 Defining_Identifier
=> Anon_Access
,
16951 Type_Definition
=> Type_Def
);
16953 Insert_Before
(Typ_Decl
, Decl
);
16956 -- If an access to object, Preserve entity of designated type,
16957 -- for ASIS use, before rewriting the component definition.
16959 if No
(Acc_Def
) then
16964 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
16966 -- If the access definition is to the current record,
16967 -- the visible entity at this point is an incomplete
16968 -- type. Retrieve the full view to simplify ASIS queries
16970 if Ekind
(Desig
) = E_Incomplete_Type
then
16971 Desig
:= Full_View
(Desig
);
16975 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
16980 Make_Component_Definition
(Loc
,
16981 Subtype_Indication
=>
16982 New_Occurrence_Of
(Anon_Access
, Loc
)));
16984 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
16985 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
16987 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
16990 Set_Is_Local_Anonymous_Access
(Anon_Access
);
16996 if Present
(Variant_Part
(Comp_List
)) then
17000 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
17001 while Present
(V
) loop
17002 Check_Anonymous_Access_Components
17003 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
17004 Next_Non_Pragma
(V
);
17008 end Check_Anonymous_Access_Components
;
17010 --------------------------------
17011 -- Preanalyze_Spec_Expression --
17012 --------------------------------
17014 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
17015 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
17017 In_Spec_Expression
:= True;
17018 Preanalyze_And_Resolve
(N
, T
);
17019 In_Spec_Expression
:= Save_In_Spec_Expression
;
17020 end Preanalyze_Spec_Expression
;
17022 -----------------------------
17023 -- Record_Type_Declaration --
17024 -----------------------------
17026 procedure Record_Type_Declaration
17031 Def
: constant Node_Id
:= Type_Definition
(N
);
17032 Is_Tagged
: Boolean;
17033 Tag_Comp
: Entity_Id
;
17036 -- These flags must be initialized before calling Process_Discriminants
17037 -- because this routine makes use of them.
17039 Set_Ekind
(T
, E_Record_Type
);
17041 Init_Size_Align
(T
);
17042 Set_Interfaces
(T
, No_Elist
);
17043 Set_Stored_Constraint
(T
, No_Elist
);
17047 if Ada_Version
< Ada_05
17048 or else not Interface_Present
(Def
)
17050 -- The flag Is_Tagged_Type might have already been set by
17051 -- Find_Type_Name if it detected an error for declaration T. This
17052 -- arises in the case of private tagged types where the full view
17053 -- omits the word tagged.
17056 Tagged_Present
(Def
)
17057 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
17059 Set_Is_Tagged_Type
(T
, Is_Tagged
);
17060 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
17062 -- Type is abstract if full declaration carries keyword, or if
17063 -- previous partial view did.
17065 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
17066 or else Abstract_Present
(Def
));
17070 Analyze_Interface_Declaration
(T
, Def
);
17072 if Present
(Discriminant_Specifications
(N
)) then
17074 ("interface types cannot have discriminants",
17075 Defining_Identifier
17076 (First
(Discriminant_Specifications
(N
))));
17080 -- First pass: if there are self-referential access components,
17081 -- create the required anonymous access type declarations, and if
17082 -- need be an incomplete type declaration for T itself.
17084 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
17086 if Ada_Version
>= Ada_05
17087 and then Present
(Interface_List
(Def
))
17089 Check_Interfaces
(N
, Def
);
17092 Ifaces_List
: Elist_Id
;
17095 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
17096 -- already in the parents.
17100 Ifaces_List
=> Ifaces_List
,
17101 Exclude_Parents
=> True);
17103 Set_Interfaces
(T
, Ifaces_List
);
17107 -- Records constitute a scope for the component declarations within.
17108 -- The scope is created prior to the processing of these declarations.
17109 -- Discriminants are processed first, so that they are visible when
17110 -- processing the other components. The Ekind of the record type itself
17111 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
17113 -- Enter record scope
17117 -- If an incomplete or private type declaration was already given for
17118 -- the type, then this scope already exists, and the discriminants have
17119 -- been declared within. We must verify that the full declaration
17120 -- matches the incomplete one.
17122 Check_Or_Process_Discriminants
(N
, T
, Prev
);
17124 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
17125 Set_Has_Delayed_Freeze
(T
, True);
17127 -- For tagged types add a manually analyzed component corresponding
17128 -- to the component _tag, the corresponding piece of tree will be
17129 -- expanded as part of the freezing actions if it is not a CPP_Class.
17133 -- Do not add the tag unless we are in expansion mode
17135 if Expander_Active
then
17136 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
17137 Enter_Name
(Tag_Comp
);
17139 Set_Ekind
(Tag_Comp
, E_Component
);
17140 Set_Is_Tag
(Tag_Comp
);
17141 Set_Is_Aliased
(Tag_Comp
);
17142 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
17143 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
17144 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
17145 Init_Component_Location
(Tag_Comp
);
17147 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
17148 -- implemented interfaces.
17150 if Has_Interfaces
(T
) then
17151 Add_Interface_Tag_Components
(N
, T
);
17155 Make_Class_Wide_Type
(T
);
17156 Set_Primitive_Operations
(T
, New_Elmt_List
);
17159 -- We must suppress range checks when processing the components
17160 -- of a record in the presence of discriminants, since we don't
17161 -- want spurious checks to be generated during their analysis, but
17162 -- must reset the Suppress_Range_Checks flags after having processed
17163 -- the record definition.
17165 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
17166 -- couldn't we just use the normal range check suppression method here.
17167 -- That would seem cleaner ???
17169 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
17170 Set_Kill_Range_Checks
(T
, True);
17171 Record_Type_Definition
(Def
, Prev
);
17172 Set_Kill_Range_Checks
(T
, False);
17174 Record_Type_Definition
(Def
, Prev
);
17177 -- Exit from record scope
17181 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
17182 -- the implemented interfaces and associate them an aliased entity.
17185 and then not Is_Empty_List
(Interface_List
(Def
))
17187 Derive_Progenitor_Subprograms
(T
, T
);
17189 end Record_Type_Declaration
;
17191 ----------------------------
17192 -- Record_Type_Definition --
17193 ----------------------------
17195 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
17196 Component
: Entity_Id
;
17197 Ctrl_Components
: Boolean := False;
17198 Final_Storage_Only
: Boolean;
17202 if Ekind
(Prev_T
) = E_Incomplete_Type
then
17203 T
:= Full_View
(Prev_T
);
17208 Final_Storage_Only
:= not Is_Controlled
(T
);
17210 -- Ada 2005: check whether an explicit Limited is present in a derived
17211 -- type declaration.
17213 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
17214 and then Limited_Present
(Parent
(Def
))
17216 Set_Is_Limited_Record
(T
);
17219 -- If the component list of a record type is defined by the reserved
17220 -- word null and there is no discriminant part, then the record type has
17221 -- no components and all records of the type are null records (RM 3.7)
17222 -- This procedure is also called to process the extension part of a
17223 -- record extension, in which case the current scope may have inherited
17227 or else No
(Component_List
(Def
))
17228 or else Null_Present
(Component_List
(Def
))
17233 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
17235 if Present
(Variant_Part
(Component_List
(Def
))) then
17236 Analyze
(Variant_Part
(Component_List
(Def
)));
17240 -- After completing the semantic analysis of the record definition,
17241 -- record components, both new and inherited, are accessible. Set their
17242 -- kind accordingly. Exclude malformed itypes from illegal declarations,
17243 -- whose Ekind may be void.
17245 Component
:= First_Entity
(Current_Scope
);
17246 while Present
(Component
) loop
17247 if Ekind
(Component
) = E_Void
17248 and then not Is_Itype
(Component
)
17250 Set_Ekind
(Component
, E_Component
);
17251 Init_Component_Location
(Component
);
17254 if Has_Task
(Etype
(Component
)) then
17258 if Ekind
(Component
) /= E_Component
then
17261 elsif Has_Controlled_Component
(Etype
(Component
))
17262 or else (Chars
(Component
) /= Name_uParent
17263 and then Is_Controlled
(Etype
(Component
)))
17265 Set_Has_Controlled_Component
(T
, True);
17266 Final_Storage_Only
:=
17268 and then Finalize_Storage_Only
(Etype
(Component
));
17269 Ctrl_Components
:= True;
17272 Next_Entity
(Component
);
17275 -- A Type is Finalize_Storage_Only only if all its controlled components
17278 if Ctrl_Components
then
17279 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
17282 -- Place reference to end record on the proper entity, which may
17283 -- be a partial view.
17285 if Present
(Def
) then
17286 Process_End_Label
(Def
, 'e', Prev_T
);
17288 end Record_Type_Definition
;
17290 ------------------------
17291 -- Replace_Components --
17292 ------------------------
17294 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
17295 function Process
(N
: Node_Id
) return Traverse_Result
;
17301 function Process
(N
: Node_Id
) return Traverse_Result
is
17305 if Nkind
(N
) = N_Discriminant_Specification
then
17306 Comp
:= First_Discriminant
(Typ
);
17307 while Present
(Comp
) loop
17308 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
17309 Set_Defining_Identifier
(N
, Comp
);
17313 Next_Discriminant
(Comp
);
17316 elsif Nkind
(N
) = N_Component_Declaration
then
17317 Comp
:= First_Component
(Typ
);
17318 while Present
(Comp
) loop
17319 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
17320 Set_Defining_Identifier
(N
, Comp
);
17324 Next_Component
(Comp
);
17331 procedure Replace
is new Traverse_Proc
(Process
);
17333 -- Start of processing for Replace_Components
17337 end Replace_Components
;
17339 -------------------------------
17340 -- Set_Completion_Referenced --
17341 -------------------------------
17343 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
17345 -- If in main unit, mark entity that is a completion as referenced,
17346 -- warnings go on the partial view when needed.
17348 if In_Extended_Main_Source_Unit
(E
) then
17349 Set_Referenced
(E
);
17351 end Set_Completion_Referenced
;
17353 ---------------------
17354 -- Set_Fixed_Range --
17355 ---------------------
17357 -- The range for fixed-point types is complicated by the fact that we
17358 -- do not know the exact end points at the time of the declaration. This
17359 -- is true for three reasons:
17361 -- A size clause may affect the fudging of the end-points
17362 -- A small clause may affect the values of the end-points
17363 -- We try to include the end-points if it does not affect the size
17365 -- This means that the actual end-points must be established at the point
17366 -- when the type is frozen. Meanwhile, we first narrow the range as
17367 -- permitted (so that it will fit if necessary in a small specified size),
17368 -- and then build a range subtree with these narrowed bounds.
17370 -- Set_Fixed_Range constructs the range from real literal values, and sets
17371 -- the range as the Scalar_Range of the given fixed-point type entity.
17373 -- The parent of this range is set to point to the entity so that it is
17374 -- properly hooked into the tree (unlike normal Scalar_Range entries for
17375 -- other scalar types, which are just pointers to the range in the
17376 -- original tree, this would otherwise be an orphan).
17378 -- The tree is left unanalyzed. When the type is frozen, the processing
17379 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
17380 -- analyzed, and uses this as an indication that it should complete
17381 -- work on the range (it will know the final small and size values).
17383 procedure Set_Fixed_Range
17389 S
: constant Node_Id
:=
17391 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
17392 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
17394 Set_Scalar_Range
(E
, S
);
17396 end Set_Fixed_Range
;
17398 ----------------------------------
17399 -- Set_Scalar_Range_For_Subtype --
17400 ----------------------------------
17402 procedure Set_Scalar_Range_For_Subtype
17403 (Def_Id
: Entity_Id
;
17407 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
17410 Set_Scalar_Range
(Def_Id
, R
);
17412 -- We need to link the range into the tree before resolving it so
17413 -- that types that are referenced, including importantly the subtype
17414 -- itself, are properly frozen (Freeze_Expression requires that the
17415 -- expression be properly linked into the tree). Of course if it is
17416 -- already linked in, then we do not disturb the current link.
17418 if No
(Parent
(R
)) then
17419 Set_Parent
(R
, Def_Id
);
17422 -- Reset the kind of the subtype during analysis of the range, to
17423 -- catch possible premature use in the bounds themselves.
17425 Set_Ekind
(Def_Id
, E_Void
);
17426 Process_Range_Expr_In_Decl
(R
, Subt
);
17427 Set_Ekind
(Def_Id
, Kind
);
17428 end Set_Scalar_Range_For_Subtype
;
17430 --------------------------------------------------------
17431 -- Set_Stored_Constraint_From_Discriminant_Constraint --
17432 --------------------------------------------------------
17434 procedure Set_Stored_Constraint_From_Discriminant_Constraint
17438 -- Make sure set if encountered during Expand_To_Stored_Constraint
17440 Set_Stored_Constraint
(E
, No_Elist
);
17442 -- Give it the right value
17444 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
17445 Set_Stored_Constraint
(E
,
17446 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
17448 end Set_Stored_Constraint_From_Discriminant_Constraint
;
17450 -------------------------------------
17451 -- Signed_Integer_Type_Declaration --
17452 -------------------------------------
17454 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
17455 Implicit_Base
: Entity_Id
;
17456 Base_Typ
: Entity_Id
;
17459 Errs
: Boolean := False;
17463 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
17464 -- Determine whether given bounds allow derivation from specified type
17466 procedure Check_Bound
(Expr
: Node_Id
);
17467 -- Check bound to make sure it is integral and static. If not, post
17468 -- appropriate error message and set Errs flag
17470 ---------------------
17471 -- Can_Derive_From --
17472 ---------------------
17474 -- Note we check both bounds against both end values, to deal with
17475 -- strange types like ones with a range of 0 .. -12341234.
17477 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
17478 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
17479 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
17481 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
17483 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
17484 end Can_Derive_From
;
17490 procedure Check_Bound
(Expr
: Node_Id
) is
17492 -- If a range constraint is used as an integer type definition, each
17493 -- bound of the range must be defined by a static expression of some
17494 -- integer type, but the two bounds need not have the same integer
17495 -- type (Negative bounds are allowed.) (RM 3.5.4)
17497 if not Is_Integer_Type
(Etype
(Expr
)) then
17499 ("integer type definition bounds must be of integer type", Expr
);
17502 elsif not Is_OK_Static_Expression
(Expr
) then
17503 Flag_Non_Static_Expr
17504 ("non-static expression used for integer type bound!", Expr
);
17507 -- The bounds are folded into literals, and we set their type to be
17508 -- universal, to avoid typing difficulties: we cannot set the type
17509 -- of the literal to the new type, because this would be a forward
17510 -- reference for the back end, and if the original type is user-
17511 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
17514 if Is_Entity_Name
(Expr
) then
17515 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
17518 Set_Etype
(Expr
, Universal_Integer
);
17522 -- Start of processing for Signed_Integer_Type_Declaration
17525 -- Create an anonymous base type
17528 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
17530 -- Analyze and check the bounds, they can be of any integer type
17532 Lo
:= Low_Bound
(Def
);
17533 Hi
:= High_Bound
(Def
);
17535 -- Arbitrarily use Integer as the type if either bound had an error
17537 if Hi
= Error
or else Lo
= Error
then
17538 Base_Typ
:= Any_Integer
;
17539 Set_Error_Posted
(T
, True);
17541 -- Here both bounds are OK expressions
17544 Analyze_And_Resolve
(Lo
, Any_Integer
);
17545 Analyze_And_Resolve
(Hi
, Any_Integer
);
17551 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
17552 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
17555 -- Find type to derive from
17557 Lo_Val
:= Expr_Value
(Lo
);
17558 Hi_Val
:= Expr_Value
(Hi
);
17560 if Can_Derive_From
(Standard_Short_Short_Integer
) then
17561 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
17563 elsif Can_Derive_From
(Standard_Short_Integer
) then
17564 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
17566 elsif Can_Derive_From
(Standard_Integer
) then
17567 Base_Typ
:= Base_Type
(Standard_Integer
);
17569 elsif Can_Derive_From
(Standard_Long_Integer
) then
17570 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
17572 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
17573 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
17576 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
17577 Error_Msg_N
("integer type definition bounds out of range", Def
);
17578 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
17579 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
17583 -- Complete both implicit base and declared first subtype entities
17585 Set_Etype
(Implicit_Base
, Base_Typ
);
17586 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
17587 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
17588 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
17589 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
17591 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
17592 Set_Etype
(T
, Implicit_Base
);
17594 Set_Size_Info
(T
, (Implicit_Base
));
17595 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
17596 Set_Scalar_Range
(T
, Def
);
17597 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
17598 Set_Is_Constrained
(T
);
17599 end Signed_Integer_Type_Declaration
;