1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989-2018 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
28 #include "coretypes.h"
30 #include "libgcc_tm.h"
32 #ifdef HAVE_GAS_HIDDEN
33 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
35 #define ATTRIBUTE_HIDDEN
38 /* Work out the largest "word" size that we can deal with on this target. */
39 #if MIN_UNITS_PER_WORD > 4
40 # define LIBGCC2_MAX_UNITS_PER_WORD 8
41 #elif (MIN_UNITS_PER_WORD > 2 \
42 || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
43 # define LIBGCC2_MAX_UNITS_PER_WORD 4
45 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
48 /* Work out what word size we are using for this compilation.
49 The value can be set on the command line. */
50 #ifndef LIBGCC2_UNITS_PER_WORD
51 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
54 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
58 #ifdef DECLARE_LIBRARY_RENAMES
59 DECLARE_LIBRARY_RENAMES
62 #if defined (L_negdi2)
66 const DWunion uu
= {.ll
= u
};
67 const DWunion w
= { {.low
= -uu
.s
.low
,
68 .high
= -uu
.s
.high
- ((UWtype
) -uu
.s
.low
> 0) } };
76 __addvSI3 (Wtype a
, Wtype b
)
78 const Wtype w
= (UWtype
) a
+ (UWtype
) b
;
80 if (b
>= 0 ? w
< a
: w
> a
)
85 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
87 __addvsi3 (SItype a
, SItype b
)
89 const SItype w
= (USItype
) a
+ (USItype
) b
;
91 if (b
>= 0 ? w
< a
: w
> a
)
96 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
101 __addvDI3 (DWtype a
, DWtype b
)
103 const DWtype w
= (UDWtype
) a
+ (UDWtype
) b
;
105 if (b
>= 0 ? w
< a
: w
> a
)
114 __subvSI3 (Wtype a
, Wtype b
)
116 const Wtype w
= (UWtype
) a
- (UWtype
) b
;
118 if (b
>= 0 ? w
> a
: w
< a
)
123 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
125 __subvsi3 (SItype a
, SItype b
)
127 const SItype w
= (USItype
) a
- (USItype
) b
;
129 if (b
>= 0 ? w
> a
: w
< a
)
134 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
139 __subvDI3 (DWtype a
, DWtype b
)
141 const DWtype w
= (UDWtype
) a
- (UDWtype
) b
;
143 if (b
>= 0 ? w
> a
: w
< a
)
152 __mulvSI3 (Wtype a
, Wtype b
)
154 const DWtype w
= (DWtype
) a
* (DWtype
) b
;
156 if ((Wtype
) (w
>> W_TYPE_SIZE
) != (Wtype
) w
>> (W_TYPE_SIZE
- 1))
161 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
163 #define WORD_SIZE (sizeof (SItype) * __CHAR_BIT__)
165 __mulvsi3 (SItype a
, SItype b
)
167 const DItype w
= (DItype
) a
* (DItype
) b
;
169 if ((SItype
) (w
>> WORD_SIZE
) != (SItype
) w
>> (WORD_SIZE
-1))
174 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
181 const Wtype w
= -(UWtype
) a
;
183 if (a
>= 0 ? w
> 0 : w
< 0)
188 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
192 const SItype w
= -(USItype
) a
;
194 if (a
>= 0 ? w
> 0 : w
< 0)
199 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
206 const DWtype w
= -(UDWtype
) a
;
208 if (a
>= 0 ? w
> 0 : w
< 0)
233 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
251 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
276 __mulvDI3 (DWtype u
, DWtype v
)
278 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
279 but the checked multiplication needs only two. */
280 const DWunion uu
= {.ll
= u
};
281 const DWunion vv
= {.ll
= v
};
283 if (__builtin_expect (uu
.s
.high
== uu
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
285 /* u fits in a single Wtype. */
286 if (__builtin_expect (vv
.s
.high
== vv
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
288 /* v fits in a single Wtype as well. */
289 /* A single multiplication. No overflow risk. */
290 return (DWtype
) uu
.s
.low
* (DWtype
) vv
.s
.low
;
294 /* Two multiplications. */
295 DWunion w0
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
296 * (UDWtype
) (UWtype
) vv
.s
.low
};
297 DWunion w1
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
298 * (UDWtype
) (UWtype
) vv
.s
.high
};
301 w1
.s
.high
-= uu
.s
.low
;
304 w1
.ll
+= (UWtype
) w0
.s
.high
;
305 if (__builtin_expect (w1
.s
.high
== w1
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
307 w0
.s
.high
= w1
.s
.low
;
314 if (__builtin_expect (vv
.s
.high
== vv
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
316 /* v fits into a single Wtype. */
317 /* Two multiplications. */
318 DWunion w0
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
319 * (UDWtype
) (UWtype
) vv
.s
.low
};
320 DWunion w1
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.high
321 * (UDWtype
) (UWtype
) vv
.s
.low
};
324 w1
.s
.high
-= vv
.s
.low
;
327 w1
.ll
+= (UWtype
) w0
.s
.high
;
328 if (__builtin_expect (w1
.s
.high
== w1
.s
.low
>> (W_TYPE_SIZE
- 1), 1))
330 w0
.s
.high
= w1
.s
.low
;
336 /* A few sign checks and a single multiplication. */
341 if (uu
.s
.high
== 0 && vv
.s
.high
== 0)
343 const DWtype w
= (UDWtype
) (UWtype
) uu
.s
.low
344 * (UDWtype
) (UWtype
) vv
.s
.low
;
345 if (__builtin_expect (w
>= 0, 1))
351 if (uu
.s
.high
== 0 && vv
.s
.high
== (Wtype
) -1)
353 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
354 * (UDWtype
) (UWtype
) vv
.s
.low
};
356 ww
.s
.high
-= uu
.s
.low
;
357 if (__builtin_expect (ww
.s
.high
< 0, 1))
366 if (uu
.s
.high
== (Wtype
) -1 && vv
.s
.high
== 0)
368 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
369 * (UDWtype
) (UWtype
) vv
.s
.low
};
371 ww
.s
.high
-= vv
.s
.low
;
372 if (__builtin_expect (ww
.s
.high
< 0, 1))
378 if ((uu
.s
.high
& vv
.s
.high
) == (Wtype
) -1
379 && (uu
.s
.low
| vv
.s
.low
) != 0)
381 DWunion ww
= {.ll
= (UDWtype
) (UWtype
) uu
.s
.low
382 * (UDWtype
) (UWtype
) vv
.s
.low
};
384 ww
.s
.high
-= uu
.s
.low
;
385 ww
.s
.high
-= vv
.s
.low
;
386 if (__builtin_expect (ww
.s
.high
>= 0, 1))
400 /* Unless shift functions are defined with full ANSI prototypes,
401 parameter b will be promoted to int if shift_count_type is smaller than an int. */
404 __lshrdi3 (DWtype u
, shift_count_type b
)
409 const DWunion uu
= {.ll
= u
};
410 const shift_count_type bm
= W_TYPE_SIZE
- b
;
416 w
.s
.low
= (UWtype
) uu
.s
.high
>> -bm
;
420 const UWtype carries
= (UWtype
) uu
.s
.high
<< bm
;
422 w
.s
.high
= (UWtype
) uu
.s
.high
>> b
;
423 w
.s
.low
= ((UWtype
) uu
.s
.low
>> b
) | carries
;
432 __ashldi3 (DWtype u
, shift_count_type b
)
437 const DWunion uu
= {.ll
= u
};
438 const shift_count_type bm
= W_TYPE_SIZE
- b
;
444 w
.s
.high
= (UWtype
) uu
.s
.low
<< -bm
;
448 const UWtype carries
= (UWtype
) uu
.s
.low
>> bm
;
450 w
.s
.low
= (UWtype
) uu
.s
.low
<< b
;
451 w
.s
.high
= ((UWtype
) uu
.s
.high
<< b
) | carries
;
460 __ashrdi3 (DWtype u
, shift_count_type b
)
465 const DWunion uu
= {.ll
= u
};
466 const shift_count_type bm
= W_TYPE_SIZE
- b
;
471 /* w.s.high = 1..1 or 0..0 */
472 w
.s
.high
= uu
.s
.high
>> (W_TYPE_SIZE
- 1);
473 w
.s
.low
= uu
.s
.high
>> -bm
;
477 const UWtype carries
= (UWtype
) uu
.s
.high
<< bm
;
479 w
.s
.high
= uu
.s
.high
>> b
;
480 w
.s
.low
= ((UWtype
) uu
.s
.low
>> b
) | carries
;
489 __bswapsi2 (SItype u
)
491 return ((((u
) & 0xff000000) >> 24)
492 | (((u
) & 0x00ff0000) >> 8)
493 | (((u
) & 0x0000ff00) << 8)
494 | (((u
) & 0x000000ff) << 24));
499 __bswapdi2 (DItype u
)
501 return ((((u
) & 0xff00000000000000ull
) >> 56)
502 | (((u
) & 0x00ff000000000000ull
) >> 40)
503 | (((u
) & 0x0000ff0000000000ull
) >> 24)
504 | (((u
) & 0x000000ff00000000ull
) >> 8)
505 | (((u
) & 0x00000000ff000000ull
) << 8)
506 | (((u
) & 0x0000000000ff0000ull
) << 24)
507 | (((u
) & 0x000000000000ff00ull
) << 40)
508 | (((u
) & 0x00000000000000ffull
) << 56));
521 count_trailing_zeros (count
, u
);
531 const DWunion uu
= {.ll
= u
};
532 UWtype word
, count
, add
;
535 word
= uu
.s
.low
, add
= 0;
536 else if (uu
.s
.high
!= 0)
537 word
= uu
.s
.high
, add
= W_TYPE_SIZE
;
541 count_trailing_zeros (count
, word
);
542 return count
+ add
+ 1;
548 __muldi3 (DWtype u
, DWtype v
)
550 const DWunion uu
= {.ll
= u
};
551 const DWunion vv
= {.ll
= v
};
552 DWunion w
= {.ll
= __umulsidi3 (uu
.s
.low
, vv
.s
.low
)};
554 w
.s
.high
+= ((UWtype
) uu
.s
.low
* (UWtype
) vv
.s
.high
555 + (UWtype
) uu
.s
.high
* (UWtype
) vv
.s
.low
);
561 #if (defined (L_udivdi3) || defined (L_divdi3) || \
562 defined (L_umoddi3) || defined (L_moddi3))
563 #if defined (sdiv_qrnnd)
564 #define L_udiv_w_sdiv
569 #if defined (sdiv_qrnnd)
570 #if (defined (L_udivdi3) || defined (L_divdi3) || \
571 defined (L_umoddi3) || defined (L_moddi3))
572 static inline __attribute__ ((__always_inline__
))
575 __udiv_w_sdiv (UWtype
*rp
, UWtype a1
, UWtype a0
, UWtype d
)
582 if (a1
< d
- a1
- (a0
>> (W_TYPE_SIZE
- 1)))
584 /* Dividend, divisor, and quotient are nonnegative. */
585 sdiv_qrnnd (q
, r
, a1
, a0
, d
);
589 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
590 sub_ddmmss (c1
, c0
, a1
, a0
, d
>> 1, d
<< (W_TYPE_SIZE
- 1));
591 /* Divide (c1*2^32 + c0) by d. */
592 sdiv_qrnnd (q
, r
, c1
, c0
, d
);
593 /* Add 2^31 to quotient. */
594 q
+= (UWtype
) 1 << (W_TYPE_SIZE
- 1);
599 b1
= d
>> 1; /* d/2, between 2^30 and 2^31 - 1 */
600 c1
= a1
>> 1; /* A/2 */
601 c0
= (a1
<< (W_TYPE_SIZE
- 1)) + (a0
>> 1);
603 if (a1
< b1
) /* A < 2^32*b1, so A/2 < 2^31*b1 */
605 sdiv_qrnnd (q
, r
, c1
, c0
, b1
); /* (A/2) / (d/2) */
607 r
= 2*r
+ (a0
& 1); /* Remainder from A/(2*b1) */
624 else if (c1
< b1
) /* So 2^31 <= (A/2)/b1 < 2^32 */
627 c0
= ~c0
; /* logical NOT */
629 sdiv_qrnnd (q
, r
, c1
, c0
, b1
); /* (A/2) / (d/2) */
631 q
= ~q
; /* (A/2)/b1 */
634 r
= 2*r
+ (a0
& 1); /* A/(2*b1) */
652 else /* Implies c1 = b1 */
653 { /* Hence a1 = d - 1 = 2*b1 - 1 */
671 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
673 __udiv_w_sdiv (UWtype
*rp
__attribute__ ((__unused__
)),
674 UWtype a1
__attribute__ ((__unused__
)),
675 UWtype a0
__attribute__ ((__unused__
)),
676 UWtype d
__attribute__ ((__unused__
)))
683 #if (defined (L_udivdi3) || defined (L_divdi3) || \
684 defined (L_umoddi3) || defined (L_moddi3) || \
685 defined (L_divmoddi4))
690 const UQItype __clz_tab
[256] =
692 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
693 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
694 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
695 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
696 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
697 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
698 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
699 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
710 count_leading_zeros (ret
, x
);
721 const DWunion uu
= {.ll
= x
};
726 word
= uu
.s
.high
, add
= 0;
728 word
= uu
.s
.low
, add
= W_TYPE_SIZE
;
730 count_leading_zeros (ret
, word
);
742 count_trailing_zeros (ret
, x
);
753 const DWunion uu
= {.ll
= x
};
758 word
= uu
.s
.low
, add
= 0;
760 word
= uu
.s
.high
, add
= W_TYPE_SIZE
;
762 count_trailing_zeros (ret
, word
);
777 return W_TYPE_SIZE
- 1;
778 count_leading_zeros (ret
, x
);
786 __clrsbDI2 (DWtype x
)
788 const DWunion uu
= {.ll
= x
};
793 word
= uu
.s
.low
, add
= W_TYPE_SIZE
;
794 else if (uu
.s
.high
== -1)
795 word
= ~uu
.s
.low
, add
= W_TYPE_SIZE
;
796 else if (uu
.s
.high
>= 0)
797 word
= uu
.s
.high
, add
= 0;
799 word
= ~uu
.s
.high
, add
= 0;
804 count_leading_zeros (ret
, word
);
806 return ret
+ add
- 1;
810 #ifdef L_popcount_tab
811 const UQItype __popcount_tab
[256] =
813 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
814 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
815 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
816 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
817 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
818 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
819 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
820 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
824 #if defined(L_popcountsi2) || defined(L_popcountdi2)
825 #define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x)
826 #define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x)
827 #define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x)
828 #if W_TYPE_SIZE == __CHAR_BIT__
829 #define POPCOUNTCST(x) x
830 #elif W_TYPE_SIZE == 2 * __CHAR_BIT__
831 #define POPCOUNTCST(x) POPCOUNTCST2 (x)
832 #elif W_TYPE_SIZE == 4 * __CHAR_BIT__
833 #define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
834 #elif W_TYPE_SIZE == 8 * __CHAR_BIT__
835 #define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
842 __popcountSI2 (UWtype x
)
844 /* Force table lookup on targets like AVR and RL78 which only
845 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
846 have 1, and other small word targets. */
847 #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
848 x
= x
- ((x
>> 1) & POPCOUNTCST (0x55));
849 x
= (x
& POPCOUNTCST (0x33)) + ((x
>> 2) & POPCOUNTCST (0x33));
850 x
= (x
+ (x
>> 4)) & POPCOUNTCST (0x0F);
851 return (x
* POPCOUNTCST (0x01)) >> (W_TYPE_SIZE
- __CHAR_BIT__
);
855 for (i
= 0; i
< W_TYPE_SIZE
; i
+= 8)
856 ret
+= __popcount_tab
[(x
>> i
) & 0xff];
866 __popcountDI2 (UDWtype x
)
868 /* Force table lookup on targets like AVR and RL78 which only
869 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
870 have 1, and other small word targets. */
871 #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
872 const DWunion uu
= {.ll
= x
};
873 UWtype x1
= uu
.s
.low
, x2
= uu
.s
.high
;
874 x1
= x1
- ((x1
>> 1) & POPCOUNTCST (0x55));
875 x2
= x2
- ((x2
>> 1) & POPCOUNTCST (0x55));
876 x1
= (x1
& POPCOUNTCST (0x33)) + ((x1
>> 2) & POPCOUNTCST (0x33));
877 x2
= (x2
& POPCOUNTCST (0x33)) + ((x2
>> 2) & POPCOUNTCST (0x33));
878 x1
= (x1
+ (x1
>> 4)) & POPCOUNTCST (0x0F);
879 x2
= (x2
+ (x2
>> 4)) & POPCOUNTCST (0x0F);
881 return (x1
* POPCOUNTCST (0x01)) >> (W_TYPE_SIZE
- __CHAR_BIT__
);
885 for (i
= 0; i
< 2*W_TYPE_SIZE
; i
+= 8)
886 ret
+= __popcount_tab
[(x
>> i
) & 0xff];
896 __paritySI2 (UWtype x
)
899 # error "fill out the table"
910 return (0x6996 >> x
) & 1;
917 __parityDI2 (UDWtype x
)
919 const DWunion uu
= {.ll
= x
};
920 UWtype nx
= uu
.s
.low
^ uu
.s
.high
;
923 # error "fill out the table"
934 return (0x6996 >> nx
) & 1;
939 #ifdef TARGET_HAS_NO_HW_DIVIDE
941 #if (defined (L_udivdi3) || defined (L_divdi3) || \
942 defined (L_umoddi3) || defined (L_moddi3) || \
943 defined (L_divmoddi4))
944 static inline __attribute__ ((__always_inline__
))
947 __udivmoddi4 (UDWtype n
, UDWtype d
, UDWtype
*rp
)
949 UDWtype q
= 0, r
= n
, y
= d
;
950 UWtype lz1
, lz2
, i
, k
;
952 /* Implements align divisor shift dividend method. This algorithm
953 aligns the divisor under the dividend and then perform number of
954 test-subtract iterations which shift the dividend left. Number of
955 iterations is k + 1 where k is the number of bit positions the
956 divisor must be shifted left to align it under the dividend.
957 quotient bits can be saved in the rightmost positions of the dividend
958 as it shifts left on each test-subtract iteration. */
962 lz1
= __builtin_clzll (d
);
963 lz2
= __builtin_clzll (n
);
968 /* Dividend can exceed 2 ^ (width − 1) − 1 but still be less than the
969 aligned divisor. Normal iteration can drops the high order bit
970 of the dividend. Therefore, first test-subtract iteration is a
971 special case, saving its quotient bit in a separate location and
972 not shifting the dividend. */
983 /* k additional iterations where k regular test subtract shift
984 dividend iterations are done. */
989 r
= ((r
- y
) << 1) + 1;
995 /* First quotient bit is combined with the quotient bits resulting
996 from the k regular iterations. */
1009 #if (defined (L_udivdi3) || defined (L_divdi3) || \
1010 defined (L_umoddi3) || defined (L_moddi3) || \
1011 defined (L_divmoddi4))
1012 static inline __attribute__ ((__always_inline__
))
1015 __udivmoddi4 (UDWtype n
, UDWtype d
, UDWtype
*rp
)
1017 const DWunion nn
= {.ll
= n
};
1018 const DWunion dd
= {.ll
= d
};
1020 UWtype d0
, d1
, n0
, n1
, n2
;
1029 #if !UDIV_NEEDS_NORMALIZATION
1036 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
1039 /* Remainder in n0. */
1046 d0
= 1 / d0
; /* Divide intentionally by zero. */
1048 udiv_qrnnd (q1
, n1
, 0, n1
, d0
);
1049 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
1051 /* Remainder in n0. */
1062 #else /* UDIV_NEEDS_NORMALIZATION */
1070 count_leading_zeros (bm
, d0
);
1074 /* Normalize, i.e. make the most significant bit of the
1078 n1
= (n1
<< bm
) | (n0
>> (W_TYPE_SIZE
- bm
));
1082 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
1085 /* Remainder in n0 >> bm. */
1092 d0
= 1 / d0
; /* Divide intentionally by zero. */
1094 count_leading_zeros (bm
, d0
);
1098 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
1099 conclude (the most significant bit of n1 is set) /\ (the
1100 leading quotient digit q1 = 1).
1102 This special case is necessary, not an optimization.
1103 (Shifts counts of W_TYPE_SIZE are undefined.) */
1112 b
= W_TYPE_SIZE
- bm
;
1116 n1
= (n1
<< bm
) | (n0
>> b
);
1119 udiv_qrnnd (q1
, n1
, n2
, n1
, d0
);
1124 udiv_qrnnd (q0
, n0
, n1
, n0
, d0
);
1126 /* Remainder in n0 >> bm. */
1131 rr
.s
.low
= n0
>> bm
;
1136 #endif /* UDIV_NEEDS_NORMALIZATION */
1147 /* Remainder in n1n0. */
1159 count_leading_zeros (bm
, d1
);
1162 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1163 conclude (the most significant bit of n1 is set) /\ (the
1164 quotient digit q0 = 0 or 1).
1166 This special case is necessary, not an optimization. */
1168 /* The condition on the next line takes advantage of that
1169 n1 >= d1 (true due to program flow). */
1170 if (n1
> d1
|| n0
>= d0
)
1173 sub_ddmmss (n1
, n0
, n1
, n0
, d1
, d0
);
1192 b
= W_TYPE_SIZE
- bm
;
1194 d1
= (d1
<< bm
) | (d0
>> b
);
1197 n1
= (n1
<< bm
) | (n0
>> b
);
1200 udiv_qrnnd (q0
, n1
, n2
, n1
, d1
);
1201 umul_ppmm (m1
, m0
, q0
, d0
);
1203 if (m1
> n1
|| (m1
== n1
&& m0
> n0
))
1206 sub_ddmmss (m1
, m0
, m1
, m0
, d1
, d0
);
1211 /* Remainder in (n1n0 - m1m0) >> bm. */
1214 sub_ddmmss (n1
, n0
, n1
, n0
, m1
, m0
);
1215 rr
.s
.low
= (n1
<< b
) | (n0
>> bm
);
1216 rr
.s
.high
= n1
>> bm
;
1223 const DWunion ww
= {{.low
= q0
, .high
= q1
}};
1231 __divdi3 (DWtype u
, DWtype v
)
1234 DWunion uu
= {.ll
= u
};
1235 DWunion vv
= {.ll
= v
};
1245 w
= __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*) 0);
1255 __moddi3 (DWtype u
, DWtype v
)
1258 DWunion uu
= {.ll
= u
};
1259 DWunion vv
= {.ll
= v
};
1268 (void) __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*)&w
);
1278 __divmoddi4 (DWtype u
, DWtype v
, DWtype
*rp
)
1280 Wtype c1
= 0, c2
= 0;
1281 DWunion uu
= {.ll
= u
};
1282 DWunion vv
= {.ll
= v
};
1293 w
= __udivmoddi4 (uu
.ll
, vv
.ll
, (UDWtype
*)&r
);
1306 __umoddi3 (UDWtype u
, UDWtype v
)
1310 (void) __udivmoddi4 (u
, v
, &w
);
1318 __udivdi3 (UDWtype n
, UDWtype d
)
1320 return __udivmoddi4 (n
, d
, (UDWtype
*) 0);
1326 __cmpdi2 (DWtype a
, DWtype b
)
1328 const DWunion au
= {.ll
= a
};
1329 const DWunion bu
= {.ll
= b
};
1331 if (au
.s
.high
< bu
.s
.high
)
1333 else if (au
.s
.high
> bu
.s
.high
)
1335 if ((UWtype
) au
.s
.low
< (UWtype
) bu
.s
.low
)
1337 else if ((UWtype
) au
.s
.low
> (UWtype
) bu
.s
.low
)
1345 __ucmpdi2 (DWtype a
, DWtype b
)
1347 const DWunion au
= {.ll
= a
};
1348 const DWunion bu
= {.ll
= b
};
1350 if ((UWtype
) au
.s
.high
< (UWtype
) bu
.s
.high
)
1352 else if ((UWtype
) au
.s
.high
> (UWtype
) bu
.s
.high
)
1354 if ((UWtype
) au
.s
.low
< (UWtype
) bu
.s
.low
)
1356 else if ((UWtype
) au
.s
.low
> (UWtype
) bu
.s
.low
)
1362 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1364 __fixunstfDI (TFtype a
)
1369 /* Compute high word of result, as a flonum. */
1370 const TFtype b
= (a
/ Wtype_MAXp1_F
);
1371 /* Convert that to fixed (but not to DWtype!),
1372 and shift it into the high word. */
1373 UDWtype v
= (UWtype
) b
;
1375 /* Remove high part from the TFtype, leaving the low part as flonum. */
1377 /* Convert that to fixed (but not to DWtype!) and add it in.
1378 Sometimes A comes out negative. This is significant, since
1379 A has more bits than a long int does. */
1381 v
-= (UWtype
) (- a
);
1388 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1390 __fixtfdi (TFtype a
)
1393 return - __fixunstfDI (-a
);
1394 return __fixunstfDI (a
);
1398 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1400 __fixunsxfDI (XFtype a
)
1405 /* Compute high word of result, as a flonum. */
1406 const XFtype b
= (a
/ Wtype_MAXp1_F
);
1407 /* Convert that to fixed (but not to DWtype!),
1408 and shift it into the high word. */
1409 UDWtype v
= (UWtype
) b
;
1411 /* Remove high part from the XFtype, leaving the low part as flonum. */
1413 /* Convert that to fixed (but not to DWtype!) and add it in.
1414 Sometimes A comes out negative. This is significant, since
1415 A has more bits than a long int does. */
1417 v
-= (UWtype
) (- a
);
1424 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1426 __fixxfdi (XFtype a
)
1429 return - __fixunsxfDI (-a
);
1430 return __fixunsxfDI (a
);
1434 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1436 __fixunsdfDI (DFtype a
)
1438 /* Get high part of result. The division here will just moves the radix
1439 point and will not cause any rounding. Then the conversion to integral
1440 type chops result as desired. */
1441 const UWtype hi
= a
/ Wtype_MAXp1_F
;
1443 /* Get low part of result. Convert `hi' to floating type and scale it back,
1444 then subtract this from the number being converted. This leaves the low
1445 part. Convert that to integral type. */
1446 const UWtype lo
= a
- (DFtype
) hi
* Wtype_MAXp1_F
;
1448 /* Assemble result from the two parts. */
1449 return ((UDWtype
) hi
<< W_TYPE_SIZE
) | lo
;
1453 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1455 __fixdfdi (DFtype a
)
1458 return - __fixunsdfDI (-a
);
1459 return __fixunsdfDI (a
);
1463 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1465 __fixunssfDI (SFtype a
)
1467 #if LIBGCC2_HAS_DF_MODE
1468 /* Convert the SFtype to a DFtype, because that is surely not going
1469 to lose any bits. Some day someone else can write a faster version
1470 that avoids converting to DFtype, and verify it really works right. */
1471 const DFtype dfa
= a
;
1473 /* Get high part of result. The division here will just moves the radix
1474 point and will not cause any rounding. Then the conversion to integral
1475 type chops result as desired. */
1476 const UWtype hi
= dfa
/ Wtype_MAXp1_F
;
1478 /* Get low part of result. Convert `hi' to floating type and scale it back,
1479 then subtract this from the number being converted. This leaves the low
1480 part. Convert that to integral type. */
1481 const UWtype lo
= dfa
- (DFtype
) hi
* Wtype_MAXp1_F
;
1483 /* Assemble result from the two parts. */
1484 return ((UDWtype
) hi
<< W_TYPE_SIZE
) | lo
;
1485 #elif FLT_MANT_DIG < W_TYPE_SIZE
1488 if (a
< Wtype_MAXp1_F
)
1490 if (a
< Wtype_MAXp1_F
* Wtype_MAXp1_F
)
1492 /* Since we know that there are fewer significant bits in the SFmode
1493 quantity than in a word, we know that we can convert out all the
1494 significant bits in one step, and thus avoid losing bits. */
1496 /* ??? This following loop essentially performs frexpf. If we could
1497 use the real libm function, or poke at the actual bits of the fp
1498 format, it would be significantly faster. */
1500 UWtype shift
= 0, counter
;
1504 for (counter
= W_TYPE_SIZE
/ 2; counter
!= 0; counter
>>= 1)
1506 SFtype counterf
= (UWtype
)1 << counter
;
1514 /* Rescale into the range of one word, extract the bits of that
1515 one word, and shift the result into position. */
1518 return (DWtype
)counter
<< shift
;
1527 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1529 __fixsfdi (SFtype a
)
1532 return - __fixunssfDI (-a
);
1533 return __fixunssfDI (a
);
1537 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1539 __floatdixf (DWtype u
)
1541 #if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
1544 XFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1551 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1553 __floatundixf (UDWtype u
)
1555 #if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
1558 XFtype d
= (UWtype
) (u
>> W_TYPE_SIZE
);
1565 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1567 __floatditf (DWtype u
)
1569 #if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
1572 TFtype d
= (Wtype
) (u
>> W_TYPE_SIZE
);
1579 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1581 __floatunditf (UDWtype u
)
1583 #if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
1586 TFtype d
= (UWtype
) (u
>> W_TYPE_SIZE
);
1593 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1594 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1595 #define DI_SIZE (W_TYPE_SIZE * 2)
1596 #define F_MODE_OK(SIZE) \
1598 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1599 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1600 #if defined(L_floatdisf)
1601 #define FUNC __floatdisf
1602 #define FSTYPE SFtype
1603 #define FSSIZE __LIBGCC_SF_MANT_DIG__
1605 #define FUNC __floatdidf
1606 #define FSTYPE DFtype
1607 #define FSSIZE __LIBGCC_DF_MANT_DIG__
1613 #if FSSIZE >= W_TYPE_SIZE
1614 /* When the word size is small, we never get any rounding error. */
1615 FSTYPE f
= (Wtype
) (u
>> W_TYPE_SIZE
);
1619 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
1620 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
1621 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1623 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
1624 # define FSIZE __LIBGCC_DF_MANT_DIG__
1625 # define FTYPE DFtype
1626 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
1627 # define FSIZE __LIBGCC_XF_MANT_DIG__
1628 # define FTYPE XFtype
1629 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1630 # define FSIZE __LIBGCC_TF_MANT_DIG__
1631 # define FTYPE TFtype
1636 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1638 /* Protect against double-rounding error.
1639 Represent any low-order bits, that might be truncated by a bit that
1640 won't be lost. The bit can go in anywhere below the rounding position
1641 of the FSTYPE. A fixed mask and bit position handles all usual
1643 if (! (- ((DWtype
) 1 << FSIZE
) < u
1644 && u
< ((DWtype
) 1 << FSIZE
)))
1646 if ((UDWtype
) u
& (REP_BIT
- 1))
1648 u
&= ~ (REP_BIT
- 1);
1653 /* Do the calculation in a wider type so that we don't lose any of
1654 the precision of the high word while multiplying it. */
1655 FTYPE f
= (Wtype
) (u
>> W_TYPE_SIZE
);
1660 #if FSSIZE >= W_TYPE_SIZE - 2
1663 /* Finally, the word size is larger than the number of bits in the
1664 required FSTYPE, and we've got no suitable wider type. The only
1665 way to avoid double rounding is to special case the
1668 /* If there are no high bits set, fall back to one conversion. */
1670 return (FSTYPE
)(Wtype
)u
;
1672 /* Otherwise, find the power of two. */
1673 Wtype hi
= u
>> W_TYPE_SIZE
;
1677 UWtype count
, shift
;
1678 #if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE
1680 count
= W_TYPE_SIZE
;
1683 count_leading_zeros (count
, hi
);
1685 /* No leading bits means u == minimum. */
1687 return -(Wtype_MAXp1_F
* (Wtype_MAXp1_F
/ 2));
1689 shift
= 1 + W_TYPE_SIZE
- count
;
1691 /* Shift down the most significant bits. */
1694 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1695 if ((UWtype
)u
<< (W_TYPE_SIZE
- shift
))
1698 /* Convert the one word of data, and rescale. */
1700 if (shift
== W_TYPE_SIZE
)
1702 /* The following two cases could be merged if we knew that the target
1703 supported a native unsigned->float conversion. More often, we only
1704 have a signed conversion, and have to add extra fixup code. */
1705 else if (shift
== W_TYPE_SIZE
- 1)
1706 e
= Wtype_MAXp1_F
/ 2;
1708 e
= (Wtype
)1 << shift
;
1714 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1715 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1716 #define DI_SIZE (W_TYPE_SIZE * 2)
1717 #define F_MODE_OK(SIZE) \
1719 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1720 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1721 #if defined(L_floatundisf)
1722 #define FUNC __floatundisf
1723 #define FSTYPE SFtype
1724 #define FSSIZE __LIBGCC_SF_MANT_DIG__
1726 #define FUNC __floatundidf
1727 #define FSTYPE DFtype
1728 #define FSSIZE __LIBGCC_DF_MANT_DIG__
1734 #if FSSIZE >= W_TYPE_SIZE
1735 /* When the word size is small, we never get any rounding error. */
1736 FSTYPE f
= (UWtype
) (u
>> W_TYPE_SIZE
);
1740 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
1741 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
1742 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1744 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
1745 # define FSIZE __LIBGCC_DF_MANT_DIG__
1746 # define FTYPE DFtype
1747 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
1748 # define FSIZE __LIBGCC_XF_MANT_DIG__
1749 # define FTYPE XFtype
1750 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1751 # define FSIZE __LIBGCC_TF_MANT_DIG__
1752 # define FTYPE TFtype
1757 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1759 /* Protect against double-rounding error.
1760 Represent any low-order bits, that might be truncated by a bit that
1761 won't be lost. The bit can go in anywhere below the rounding position
1762 of the FSTYPE. A fixed mask and bit position handles all usual
1764 if (u
>= ((UDWtype
) 1 << FSIZE
))
1766 if ((UDWtype
) u
& (REP_BIT
- 1))
1768 u
&= ~ (REP_BIT
- 1);
1773 /* Do the calculation in a wider type so that we don't lose any of
1774 the precision of the high word while multiplying it. */
1775 FTYPE f
= (UWtype
) (u
>> W_TYPE_SIZE
);
1780 #if FSSIZE == W_TYPE_SIZE - 1
1783 /* Finally, the word size is larger than the number of bits in the
1784 required FSTYPE, and we've got no suitable wider type. The only
1785 way to avoid double rounding is to special case the
1788 /* If there are no high bits set, fall back to one conversion. */
1790 return (FSTYPE
)(UWtype
)u
;
1792 /* Otherwise, find the power of two. */
1793 UWtype hi
= u
>> W_TYPE_SIZE
;
1795 UWtype count
, shift
;
1796 count_leading_zeros (count
, hi
);
1798 shift
= W_TYPE_SIZE
- count
;
1800 /* Shift down the most significant bits. */
1803 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1804 if ((UWtype
)u
<< (W_TYPE_SIZE
- shift
))
1807 /* Convert the one word of data, and rescale. */
1809 if (shift
== W_TYPE_SIZE
)
1811 /* The following two cases could be merged if we knew that the target
1812 supported a native unsigned->float conversion. More often, we only
1813 have a signed conversion, and have to add extra fixup code. */
1814 else if (shift
== W_TYPE_SIZE
- 1)
1815 e
= Wtype_MAXp1_F
/ 2;
1817 e
= (Wtype
)1 << shift
;
1823 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1825 __fixunsxfSI (XFtype a
)
1827 if (a
>= - (DFtype
) Wtype_MIN
)
1828 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1833 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1835 __fixunsdfSI (DFtype a
)
1837 if (a
>= - (DFtype
) Wtype_MIN
)
1838 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1843 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1845 __fixunssfSI (SFtype a
)
1847 if (a
>= - (SFtype
) Wtype_MIN
)
1848 return (Wtype
) (a
+ Wtype_MIN
) - Wtype_MIN
;
1853 /* Integer power helper used from __builtin_powi for non-constant
1856 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1857 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1858 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1859 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1860 # if defined(L_powisf2)
1861 # define TYPE SFtype
1862 # define NAME __powisf2
1863 # elif defined(L_powidf2)
1864 # define TYPE DFtype
1865 # define NAME __powidf2
1866 # elif defined(L_powixf2)
1867 # define TYPE XFtype
1868 # define NAME __powixf2
1869 # elif defined(L_powitf2)
1870 # define TYPE TFtype
1871 # define NAME __powitf2
1877 NAME (TYPE x
, int m
)
1879 unsigned int n
= m
< 0 ? -m
: m
;
1880 TYPE y
= n
% 2 ? x
: 1;
1887 return m
< 0 ? 1/y
: y
;
1892 #if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \
1893 || ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1894 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1895 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1896 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1902 #if defined(L_mulhc3) || defined(L_divhc3)
1903 # define MTYPE HFtype
1904 # define CTYPE HCtype
1906 # define CEXT __LIBGCC_HF_FUNC_EXT__
1907 # define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__)
1908 #elif defined(L_mulsc3) || defined(L_divsc3)
1909 # define MTYPE SFtype
1910 # define CTYPE SCtype
1912 # define CEXT __LIBGCC_SF_FUNC_EXT__
1913 # define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__)
1914 #elif defined(L_muldc3) || defined(L_divdc3)
1915 # define MTYPE DFtype
1916 # define CTYPE DCtype
1918 # define CEXT __LIBGCC_DF_FUNC_EXT__
1919 # define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__)
1920 #elif defined(L_mulxc3) || defined(L_divxc3)
1921 # define MTYPE XFtype
1922 # define CTYPE XCtype
1924 # define CEXT __LIBGCC_XF_FUNC_EXT__
1925 # define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__)
1926 #elif defined(L_multc3) || defined(L_divtc3)
1927 # define MTYPE TFtype
1928 # define CTYPE TCtype
1930 # define CEXT __LIBGCC_TF_FUNC_EXT__
1931 # define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__)
1936 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1937 #define _CONCAT3(A,B,C) A##B##C
1939 #define CONCAT2(A,B) _CONCAT2(A,B)
1940 #define _CONCAT2(A,B) A##B
1942 /* All of these would be present in a full C99 implementation of <math.h>
1943 and <complex.h>. Our problem is that only a few systems have such full
1944 implementations. Further, libgcc_s.so isn't currently linked against
1945 libm.so, and even for systems that do provide full C99, the extra overhead
1946 of all programs using libgcc having to link against libm. So avoid it. */
1948 #define isnan(x) __builtin_expect ((x) != (x), 0)
1949 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1950 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1952 #define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
1955 /* Helpers to make the following code slightly less gross. */
1956 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1957 #define FABS CONCAT2(__builtin_fabs, CEXT)
1959 /* Verify that MTYPE matches up with CEXT. */
1960 extern void *compile_type_assert
[sizeof(INFINITY
) == sizeof(MTYPE
) ? 1 : -1];
1962 /* Ensure that we've lost any extra precision. */
1966 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1969 #if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \
1970 || defined(L_mulxc3) || defined(L_multc3)
1973 CONCAT3(__mul
,MODE
,3) (MTYPE a
, MTYPE b
, MTYPE c
, MTYPE d
)
1975 MTYPE ac
, bd
, ad
, bc
, x
, y
;
1991 if (isnan (x
) && isnan (y
))
1993 /* Recover infinities that computed as NaN + iNaN. */
1995 if (isinf (a
) || isinf (b
))
1997 /* z is infinite. "Box" the infinity and change NaNs in
1998 the other factor to 0. */
1999 a
= COPYSIGN (isinf (a
) ? 1 : 0, a
);
2000 b
= COPYSIGN (isinf (b
) ? 1 : 0, b
);
2001 if (isnan (c
)) c
= COPYSIGN (0, c
);
2002 if (isnan (d
)) d
= COPYSIGN (0, d
);
2005 if (isinf (c
) || isinf (d
))
2007 /* w is infinite. "Box" the infinity and change NaNs in
2008 the other factor to 0. */
2009 c
= COPYSIGN (isinf (c
) ? 1 : 0, c
);
2010 d
= COPYSIGN (isinf (d
) ? 1 : 0, d
);
2011 if (isnan (a
)) a
= COPYSIGN (0, a
);
2012 if (isnan (b
)) b
= COPYSIGN (0, b
);
2016 && (isinf (ac
) || isinf (bd
)
2017 || isinf (ad
) || isinf (bc
)))
2019 /* Recover infinities from overflow by changing NaNs to 0. */
2020 if (isnan (a
)) a
= COPYSIGN (0, a
);
2021 if (isnan (b
)) b
= COPYSIGN (0, b
);
2022 if (isnan (c
)) c
= COPYSIGN (0, c
);
2023 if (isnan (d
)) d
= COPYSIGN (0, d
);
2028 x
= INFINITY
* (a
* c
- b
* d
);
2029 y
= INFINITY
* (a
* d
+ b
* c
);
2037 #endif /* complex multiply */
2039 #if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \
2040 || defined(L_divxc3) || defined(L_divtc3)
2043 CONCAT3(__div
,MODE
,3) (MTYPE a
, MTYPE b
, MTYPE c
, MTYPE d
)
2045 MTYPE denom
, ratio
, x
, y
;
2048 /* ??? We can get better behavior from logarithmic scaling instead of
2049 the division. But that would mean starting to link libgcc against
2050 libm. We could implement something akin to ldexp/frexp as gcc builtins
2052 if (FABS (c
) < FABS (d
))
2055 denom
= (c
* ratio
) + d
;
2056 x
= ((a
* ratio
) + b
) / denom
;
2057 y
= ((b
* ratio
) - a
) / denom
;
2062 denom
= (d
* ratio
) + c
;
2063 x
= ((b
* ratio
) + a
) / denom
;
2064 y
= (b
- (a
* ratio
)) / denom
;
2067 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
2068 are nonzero/zero, infinite/finite, and finite/infinite. */
2069 if (isnan (x
) && isnan (y
))
2071 if (c
== 0.0 && d
== 0.0 && (!isnan (a
) || !isnan (b
)))
2073 x
= COPYSIGN (INFINITY
, c
) * a
;
2074 y
= COPYSIGN (INFINITY
, c
) * b
;
2076 else if ((isinf (a
) || isinf (b
)) && isfinite (c
) && isfinite (d
))
2078 a
= COPYSIGN (isinf (a
) ? 1 : 0, a
);
2079 b
= COPYSIGN (isinf (b
) ? 1 : 0, b
);
2080 x
= INFINITY
* (a
* c
+ b
* d
);
2081 y
= INFINITY
* (b
* c
- a
* d
);
2083 else if ((isinf (c
) || isinf (d
)) && isfinite (a
) && isfinite (b
))
2085 c
= COPYSIGN (isinf (c
) ? 1 : 0, c
);
2086 d
= COPYSIGN (isinf (d
) ? 1 : 0, d
);
2087 x
= 0.0 * (a
* c
+ b
* d
);
2088 y
= 0.0 * (b
* c
- a
* d
);
2096 #endif /* complex divide */
2098 #endif /* all complex float routines */
2100 /* From here on down, the routines use normal data types. */
2102 #define SItype bogus_type
2103 #define USItype bogus_type
2104 #define DItype bogus_type
2105 #define UDItype bogus_type
2106 #define SFtype bogus_type
2107 #define DFtype bogus_type
2125 /* Like bcmp except the sign is meaningful.
2126 Result is negative if S1 is less than S2,
2127 positive if S1 is greater, 0 if S1 and S2 are equal. */
2130 __gcc_bcmp (const unsigned char *s1
, const unsigned char *s2
, size_t size
)
2134 const unsigned char c1
= *s1
++, c2
= *s2
++;
2144 /* __eprintf used to be used by GCC's private version of <assert.h>.
2145 We no longer provide that header, but this routine remains in libgcc.a
2146 for binary backward compatibility. Note that it is not included in
2147 the shared version of libgcc. */
2149 #ifndef inhibit_libc
2151 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
2155 __eprintf (const char *string
, const char *expression
,
2156 unsigned int line
, const char *filename
)
2158 fprintf (stderr
, string
, expression
, line
, filename
);
2167 #ifdef L_clear_cache
2168 /* Clear part of an instruction cache. */
2171 __clear_cache (char *beg
__attribute__((__unused__
)),
2172 char *end
__attribute__((__unused__
)))
2174 #ifdef CLEAR_INSN_CACHE
2175 CLEAR_INSN_CACHE (beg
, end
);
2176 #endif /* CLEAR_INSN_CACHE */
2179 #endif /* L_clear_cache */
2183 /* Jump to a trampoline, loading the static chain address. */
2185 #if defined(WINNT) && ! defined(__CYGWIN__)
2186 #include <windows.h>
2187 int getpagesize (void);
2188 int mprotect (char *,int, int);
2201 mprotect (char *addr
, int len
, int prot
)
2220 if (VirtualProtect (addr
, len
, np
, &op
))
2226 #endif /* WINNT && ! __CYGWIN__ */
2228 #ifdef TRANSFER_FROM_TRAMPOLINE
2229 TRANSFER_FROM_TRAMPOLINE
2231 #endif /* L_trampoline */
2236 #include "gbl-ctors.h"
2238 /* Some systems use __main in a way incompatible with its use in gcc, in these
2239 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2240 give the same symbol without quotes for an alternative entry point. You
2241 must define both, or neither. */
2243 #define NAME__MAIN "__main"
2244 #define SYMBOL__MAIN __main
2247 #if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \
2248 || defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__)
2249 #undef HAS_INIT_SECTION
2250 #define HAS_INIT_SECTION
2253 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2255 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2256 code to run constructors. In that case, we need to handle EH here, too.
2257 But MINGW32 is special because it handles CRTSTUFF and EH on its own. */
2260 #undef __LIBGCC_EH_FRAME_SECTION_NAME__
2263 #ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
2264 #include "unwind-dw2-fde.h"
2265 extern unsigned char __EH_FRAME_BEGIN__
[];
2268 /* Run all the global destructors on exit from the program. */
2271 __do_global_dtors (void)
2273 #ifdef DO_GLOBAL_DTORS_BODY
2274 DO_GLOBAL_DTORS_BODY
;
2276 static func_ptr
*p
= __DTOR_LIST__
+ 1;
2283 #if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION)
2285 static int completed
= 0;
2289 __deregister_frame_info (__EH_FRAME_BEGIN__
);
2296 #ifndef HAS_INIT_SECTION
2297 /* Run all the global constructors on entry to the program. */
2300 __do_global_ctors (void)
2302 #ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
2304 static struct object object
;
2305 __register_frame_info (__EH_FRAME_BEGIN__
, &object
);
2308 DO_GLOBAL_CTORS_BODY
;
2309 atexit (__do_global_dtors
);
2311 #endif /* no HAS_INIT_SECTION */
2313 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2314 /* Subroutine called automatically by `main'.
2315 Compiling a global function named `main'
2316 produces an automatic call to this function at the beginning.
2318 For many systems, this routine calls __do_global_ctors.
2319 For systems which support a .init section we use the .init section
2320 to run __do_global_ctors, so we need not do anything here. */
2322 extern void SYMBOL__MAIN (void);
2326 /* Support recursive calls to `main': run initializers just once. */
2327 static int initialized
;
2331 __do_global_ctors ();
2334 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2336 #endif /* L__main */
2337 #endif /* __CYGWIN__ */
2341 #include "gbl-ctors.h"
2343 /* Provide default definitions for the lists of constructors and
2344 destructors, so that we don't get linker errors. These symbols are
2345 intentionally bss symbols, so that gld and/or collect will provide
2346 the right values. */
2348 /* We declare the lists here with two elements each,
2349 so that they are valid empty lists if no other definition is loaded.
2351 If we are using the old "set" extensions to have the gnu linker
2352 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2353 must be in the bss/common section.
2355 Long term no port should use those extensions. But many still do. */
2356 #if !defined(__LIBGCC_INIT_SECTION_ASM_OP__)
2357 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2358 func_ptr __CTOR_LIST__
[2] = {0, 0};
2359 func_ptr __DTOR_LIST__
[2] = {0, 0};
2361 func_ptr __CTOR_LIST__
[2];
2362 func_ptr __DTOR_LIST__
[2];
2364 #endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */
2365 #endif /* L_ctors */
2366 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */