1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "tree-pass.h"
31 #include "fold-const.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
50 #include "insn-config.h"
53 #include "langhooks.h"
54 #include "tree-vector-builder.h"
55 #include "optabs-tree.h"
57 /*************************************************************************
58 Simple Loop Peeling Utilities
60 Utilities to support loop peeling for vectorization purposes.
61 *************************************************************************/
64 /* Renames the use *OP_P. */
67 rename_use_op (use_operand_p op_p
)
71 if (TREE_CODE (USE_FROM_PTR (op_p
)) != SSA_NAME
)
74 new_name
= get_current_def (USE_FROM_PTR (op_p
));
76 /* Something defined outside of the loop. */
80 /* An ordinary ssa name defined in the loop. */
82 SET_USE (op_p
, new_name
);
86 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
87 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
91 rename_variables_in_bb (basic_block bb
, bool rename_from_outer_loop
)
98 class loop
*loop
= bb
->loop_father
;
99 class loop
*outer_loop
= NULL
;
101 if (rename_from_outer_loop
)
104 outer_loop
= loop_outer (loop
);
107 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
110 stmt
= gsi_stmt (gsi
);
111 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
112 rename_use_op (use_p
);
115 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
117 if (!flow_bb_inside_loop_p (loop
, e
->src
))
119 if (!rename_from_outer_loop
)
121 if (e
->src
!= outer_loop
->header
)
123 if (outer_loop
->inner
->next
)
125 /* If outer_loop has 2 inner loops, allow there to
126 be an extra basic block which decides which of the
127 two loops to use using LOOP_VECTORIZED. */
128 if (!single_pred_p (e
->src
)
129 || single_pred (e
->src
) != outer_loop
->header
)
134 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
136 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi
.phi (), e
));
147 /* A stack of values to be adjusted in debug stmts. We have to
148 process them LIFO, so that the closest substitution applies. If we
149 processed them FIFO, without the stack, we might substitute uses
150 with a PHI DEF that would soon become non-dominant, and when we got
151 to the suitable one, it wouldn't have anything to substitute any
153 static vec
<adjust_info
, va_heap
> adjust_vec
;
155 /* Adjust any debug stmts that referenced AI->from values to use the
156 loop-closed AI->to, if the references are dominated by AI->bb and
157 not by the definition of AI->from. */
160 adjust_debug_stmts_now (adjust_info
*ai
)
162 basic_block bbphi
= ai
->bb
;
163 tree orig_def
= ai
->from
;
164 tree new_def
= ai
->to
;
165 imm_use_iterator imm_iter
;
167 basic_block bbdef
= gimple_bb (SSA_NAME_DEF_STMT (orig_def
));
169 gcc_assert (dom_info_available_p (CDI_DOMINATORS
));
171 /* Adjust any debug stmts that held onto non-loop-closed
173 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, orig_def
)
178 if (!is_gimple_debug (stmt
))
181 gcc_assert (gimple_debug_bind_p (stmt
));
183 bbuse
= gimple_bb (stmt
);
186 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbphi
))
188 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
)))
191 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
192 SET_USE (use_p
, new_def
);
195 gimple_debug_bind_reset_value (stmt
);
202 /* Adjust debug stmts as scheduled before. */
205 adjust_vec_debug_stmts (void)
207 if (!MAY_HAVE_DEBUG_BIND_STMTS
)
210 gcc_assert (adjust_vec
.exists ());
212 while (!adjust_vec
.is_empty ())
214 adjust_debug_stmts_now (&adjust_vec
.last ());
219 /* Adjust any debug stmts that referenced FROM values to use the
220 loop-closed TO, if the references are dominated by BB and not by
221 the definition of FROM. If adjust_vec is non-NULL, adjustments
222 will be postponed until adjust_vec_debug_stmts is called. */
225 adjust_debug_stmts (tree from
, tree to
, basic_block bb
)
229 if (MAY_HAVE_DEBUG_BIND_STMTS
230 && TREE_CODE (from
) == SSA_NAME
231 && ! SSA_NAME_IS_DEFAULT_DEF (from
)
232 && ! virtual_operand_p (from
))
238 if (adjust_vec
.exists ())
239 adjust_vec
.safe_push (ai
);
241 adjust_debug_stmts_now (&ai
);
245 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
246 to adjust any debug stmts that referenced the old phi arg,
247 presumably non-loop-closed references left over from other
251 adjust_phi_and_debug_stmts (gimple
*update_phi
, edge e
, tree new_def
)
253 tree orig_def
= PHI_ARG_DEF_FROM_EDGE (update_phi
, e
);
255 SET_PHI_ARG_DEF (update_phi
, e
->dest_idx
, new_def
);
257 if (MAY_HAVE_DEBUG_BIND_STMTS
)
258 adjust_debug_stmts (orig_def
, PHI_RESULT (update_phi
),
259 gimple_bb (update_phi
));
262 /* Define one loop rgroup control CTRL from loop LOOP. INIT_CTRL is the value
263 that the control should have during the first iteration and NEXT_CTRL is the
264 value that it should have on subsequent iterations. */
267 vect_set_loop_control (class loop
*loop
, tree ctrl
, tree init_ctrl
,
270 gphi
*phi
= create_phi_node (ctrl
, loop
->header
);
271 add_phi_arg (phi
, init_ctrl
, loop_preheader_edge (loop
), UNKNOWN_LOCATION
);
272 add_phi_arg (phi
, next_ctrl
, loop_latch_edge (loop
), UNKNOWN_LOCATION
);
275 /* Add SEQ to the end of LOOP's preheader block. */
278 add_preheader_seq (class loop
*loop
, gimple_seq seq
)
282 edge pe
= loop_preheader_edge (loop
);
283 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, seq
);
284 gcc_assert (!new_bb
);
288 /* Add SEQ to the beginning of LOOP's header block. */
291 add_header_seq (class loop
*loop
, gimple_seq seq
)
295 gimple_stmt_iterator gsi
= gsi_after_labels (loop
->header
);
296 gsi_insert_seq_before (&gsi
, seq
, GSI_SAME_STMT
);
300 /* Return true if the target can interleave elements of two vectors.
301 OFFSET is 0 if the first half of the vectors should be interleaved
302 or 1 if the second half should. When returning true, store the
303 associated permutation in INDICES. */
306 interleave_supported_p (vec_perm_indices
*indices
, tree vectype
,
309 poly_uint64 nelts
= TYPE_VECTOR_SUBPARTS (vectype
);
310 poly_uint64 base
= exact_div (nelts
, 2) * offset
;
311 vec_perm_builder
sel (nelts
, 2, 3);
312 for (unsigned int i
= 0; i
< 3; ++i
)
314 sel
.quick_push (base
+ i
);
315 sel
.quick_push (base
+ i
+ nelts
);
317 indices
->new_vector (sel
, 2, nelts
);
318 return can_vec_perm_const_p (TYPE_MODE (vectype
), TYPE_MODE (vectype
),
322 /* Try to use permutes to define the masks in DEST_RGM using the masks
323 in SRC_RGM, given that the former has twice as many masks as the
324 latter. Return true on success, adding any new statements to SEQ. */
327 vect_maybe_permute_loop_masks (gimple_seq
*seq
, rgroup_controls
*dest_rgm
,
328 rgroup_controls
*src_rgm
)
330 tree src_masktype
= src_rgm
->type
;
331 tree dest_masktype
= dest_rgm
->type
;
332 machine_mode src_mode
= TYPE_MODE (src_masktype
);
333 insn_code icode1
, icode2
;
334 if (dest_rgm
->max_nscalars_per_iter
<= src_rgm
->max_nscalars_per_iter
335 && (icode1
= optab_handler (vec_unpacku_hi_optab
,
336 src_mode
)) != CODE_FOR_nothing
337 && (icode2
= optab_handler (vec_unpacku_lo_optab
,
338 src_mode
)) != CODE_FOR_nothing
)
340 /* Unpacking the source masks gives at least as many mask bits as
341 we need. We can then VIEW_CONVERT any excess bits away. */
342 machine_mode dest_mode
= insn_data
[icode1
].operand
[0].mode
;
343 gcc_assert (dest_mode
== insn_data
[icode2
].operand
[0].mode
);
344 tree unpack_masktype
= vect_halve_mask_nunits (src_masktype
, dest_mode
);
345 for (unsigned int i
= 0; i
< dest_rgm
->controls
.length (); ++i
)
347 tree src
= src_rgm
->controls
[i
/ 2];
348 tree dest
= dest_rgm
->controls
[i
];
349 tree_code code
= ((i
& 1) == (BYTES_BIG_ENDIAN
? 0 : 1)
351 : VEC_UNPACK_LO_EXPR
);
353 if (dest_masktype
== unpack_masktype
)
354 stmt
= gimple_build_assign (dest
, code
, src
);
357 tree temp
= make_ssa_name (unpack_masktype
);
358 stmt
= gimple_build_assign (temp
, code
, src
);
359 gimple_seq_add_stmt (seq
, stmt
);
360 stmt
= gimple_build_assign (dest
, VIEW_CONVERT_EXPR
,
361 build1 (VIEW_CONVERT_EXPR
,
362 dest_masktype
, temp
));
364 gimple_seq_add_stmt (seq
, stmt
);
368 vec_perm_indices indices
[2];
369 if (dest_masktype
== src_masktype
370 && interleave_supported_p (&indices
[0], src_masktype
, 0)
371 && interleave_supported_p (&indices
[1], src_masktype
, 1))
373 /* The destination requires twice as many mask bits as the source, so
374 we can use interleaving permutes to double up the number of bits. */
376 for (unsigned int i
= 0; i
< 2; ++i
)
377 masks
[i
] = vect_gen_perm_mask_checked (src_masktype
, indices
[i
]);
378 for (unsigned int i
= 0; i
< dest_rgm
->controls
.length (); ++i
)
380 tree src
= src_rgm
->controls
[i
/ 2];
381 tree dest
= dest_rgm
->controls
[i
];
382 gimple
*stmt
= gimple_build_assign (dest
, VEC_PERM_EXPR
,
383 src
, src
, masks
[i
& 1]);
384 gimple_seq_add_stmt (seq
, stmt
);
391 /* Populate DEST_RGM->controls, given that they should add up to STEP.
393 STEP = MIN_EXPR <ivtmp_34, VF>;
395 First length (MIN (X, VF/N)):
396 loop_len_15 = MIN_EXPR <STEP, VF/N>;
399 tmp = STEP - loop_len_15;
400 loop_len_16 = MIN (tmp, VF/N);
403 tmp2 = tmp - loop_len_16;
404 loop_len_17 = MIN (tmp2, VF/N);
407 loop_len_18 = tmp2 - loop_len_17;
411 vect_adjust_loop_lens_control (tree iv_type
, gimple_seq
*seq
,
412 rgroup_controls
*dest_rgm
, tree step
)
414 tree ctrl_type
= dest_rgm
->type
;
415 poly_uint64 nitems_per_ctrl
416 = TYPE_VECTOR_SUBPARTS (ctrl_type
) * dest_rgm
->factor
;
417 tree length_limit
= build_int_cst (iv_type
, nitems_per_ctrl
);
419 for (unsigned int i
= 0; i
< dest_rgm
->controls
.length (); ++i
)
421 tree ctrl
= dest_rgm
->controls
[i
];
424 /* First iteration: MIN (X, VF/N) capped to the range [0, VF/N]. */
426 = gimple_build_assign (ctrl
, MIN_EXPR
, step
, length_limit
);
427 gimple_seq_add_stmt (seq
, assign
);
429 else if (i
== dest_rgm
->controls
.length () - 1)
431 /* Last iteration: Remain capped to the range [0, VF/N]. */
432 gassign
*assign
= gimple_build_assign (ctrl
, MINUS_EXPR
, step
,
433 dest_rgm
->controls
[i
- 1]);
434 gimple_seq_add_stmt (seq
, assign
);
438 /* (MIN (remain, VF*I/N)) capped to the range [0, VF/N]. */
439 step
= gimple_build (seq
, MINUS_EXPR
, iv_type
, step
,
440 dest_rgm
->controls
[i
- 1]);
442 = gimple_build_assign (ctrl
, MIN_EXPR
, step
, length_limit
);
443 gimple_seq_add_stmt (seq
, assign
);
448 /* Helper for vect_set_loop_condition_partial_vectors. Generate definitions
449 for all the rgroup controls in RGC and return a control that is nonzero
450 when the loop needs to iterate. Add any new preheader statements to
451 PREHEADER_SEQ. Use LOOP_COND_GSI to insert code before the exit gcond.
453 RGC belongs to loop LOOP. The loop originally iterated NITERS
454 times and has been vectorized according to LOOP_VINFO.
456 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
457 starts with NITERS_SKIP dummy iterations of the scalar loop before
458 the real work starts. The mask elements for these dummy iterations
459 must be 0, to ensure that the extra iterations do not have an effect.
463 NITERS * RGC->max_nscalars_per_iter * RGC->factor
465 does not overflow. However, MIGHT_WRAP_P says whether an induction
466 variable that starts at 0 and has step:
468 VF * RGC->max_nscalars_per_iter * RGC->factor
470 might overflow before hitting a value above:
472 (NITERS + NITERS_SKIP) * RGC->max_nscalars_per_iter * RGC->factor
474 This means that we cannot guarantee that such an induction variable
475 would ever hit a value that produces a set of all-false masks or zero
478 Note: the cost of the code generated by this function is modeled
479 by vect_estimate_min_profitable_iters, so changes here may need
480 corresponding changes there. */
483 vect_set_loop_controls_directly (class loop
*loop
, loop_vec_info loop_vinfo
,
484 gimple_seq
*preheader_seq
,
485 gimple_seq
*header_seq
,
486 gimple_stmt_iterator loop_cond_gsi
,
487 rgroup_controls
*rgc
, tree niters
,
488 tree niters_skip
, bool might_wrap_p
,
489 tree
*iv_step
, tree
*compare_step
)
491 tree compare_type
= LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo
);
492 tree iv_type
= LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo
);
493 bool use_masks_p
= LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
);
495 tree ctrl_type
= rgc
->type
;
496 unsigned int nitems_per_iter
= rgc
->max_nscalars_per_iter
* rgc
->factor
;
497 poly_uint64 nitems_per_ctrl
= TYPE_VECTOR_SUBPARTS (ctrl_type
) * rgc
->factor
;
498 poly_uint64 vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
499 tree length_limit
= NULL_TREE
;
500 /* For length, we need length_limit to ensure length in range. */
502 length_limit
= build_int_cst (compare_type
, nitems_per_ctrl
);
504 /* Calculate the maximum number of item values that the rgroup
505 handles in total, the number that it handles for each iteration
506 of the vector loop, and the number that it should skip during the
507 first iteration of the vector loop. */
508 tree nitems_total
= niters
;
509 tree nitems_step
= build_int_cst (iv_type
, vf
);
510 tree nitems_skip
= niters_skip
;
511 if (nitems_per_iter
!= 1)
513 /* We checked before setting LOOP_VINFO_USING_PARTIAL_VECTORS_P that
514 these multiplications don't overflow. */
515 tree compare_factor
= build_int_cst (compare_type
, nitems_per_iter
);
516 tree iv_factor
= build_int_cst (iv_type
, nitems_per_iter
);
517 nitems_total
= gimple_build (preheader_seq
, MULT_EXPR
, compare_type
,
518 nitems_total
, compare_factor
);
519 nitems_step
= gimple_build (preheader_seq
, MULT_EXPR
, iv_type
,
520 nitems_step
, iv_factor
);
522 nitems_skip
= gimple_build (preheader_seq
, MULT_EXPR
, compare_type
,
523 nitems_skip
, compare_factor
);
526 /* Create an induction variable that counts the number of items
528 tree index_before_incr
, index_after_incr
;
529 gimple_stmt_iterator incr_gsi
;
531 standard_iv_increment_position (loop
, &incr_gsi
, &insert_after
);
532 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo
))
534 /* Create an IV that counts down from niters_total and whose step
535 is the (variable) amount processed in the current iteration:
537 _10 = (unsigned long) count_12(D);
539 # ivtmp_9 = PHI <ivtmp_35(6), _10(5)>
540 _36 = (MIN_EXPR | SELECT_VL) <ivtmp_9, POLY_INT_CST [4, 4]>;
542 vect__4.8_28 = .LEN_LOAD (_17, 32B, _36, 0);
544 ivtmp_35 = ivtmp_9 - POLY_INT_CST [4, 4];
546 if (ivtmp_9 > POLY_INT_CST [4, 4])
547 goto <bb 4>; [83.33%]
549 goto <bb 5>; [16.67%]
551 nitems_total
= gimple_convert (preheader_seq
, iv_type
, nitems_total
);
552 tree step
= rgc
->controls
.length () == 1 ? rgc
->controls
[0]
553 : make_ssa_name (iv_type
);
554 /* Create decrement IV. */
555 if (LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo
))
557 create_iv (nitems_total
, MINUS_EXPR
, step
, NULL_TREE
, loop
, &incr_gsi
,
558 insert_after
, &index_before_incr
, &index_after_incr
);
559 tree len
= gimple_build (header_seq
, IFN_SELECT_VL
, iv_type
,
560 index_before_incr
, nitems_step
);
561 gimple_seq_add_stmt (header_seq
, gimple_build_assign (step
, len
));
565 create_iv (nitems_total
, MINUS_EXPR
, nitems_step
, NULL_TREE
, loop
,
566 &incr_gsi
, insert_after
, &index_before_incr
,
568 gimple_seq_add_stmt (header_seq
,
569 gimple_build_assign (step
, MIN_EXPR
,
574 *compare_step
= nitems_step
;
575 return LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo
) ? index_after_incr
579 /* Create increment IV. */
580 create_iv (build_int_cst (iv_type
, 0), PLUS_EXPR
, nitems_step
, NULL_TREE
,
581 loop
, &incr_gsi
, insert_after
, &index_before_incr
,
584 tree zero_index
= build_int_cst (compare_type
, 0);
585 tree test_index
, test_limit
, first_limit
;
586 gimple_stmt_iterator
*test_gsi
;
589 /* In principle the loop should stop iterating once the incremented
590 IV reaches a value greater than or equal to:
592 NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP
594 However, there's no guarantee that this addition doesn't overflow
595 the comparison type, or that the IV hits a value above it before
596 wrapping around. We therefore adjust the limit down by one
599 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
600 -[infinite-prec] NITEMS_STEP
602 and compare the IV against this limit _before_ incrementing it.
603 Since the comparison type is unsigned, we actually want the
604 subtraction to saturate at zero:
606 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
609 And since NITEMS_SKIP < NITEMS_STEP, we can reassociate this as:
611 NITEMS_TOTAL -[sat] (NITEMS_STEP - NITEMS_SKIP)
613 where the rightmost subtraction can be done directly in
615 test_index
= index_before_incr
;
616 tree adjust
= gimple_convert (preheader_seq
, compare_type
,
619 adjust
= gimple_build (preheader_seq
, MINUS_EXPR
, compare_type
,
620 adjust
, nitems_skip
);
621 test_limit
= gimple_build (preheader_seq
, MAX_EXPR
, compare_type
,
622 nitems_total
, adjust
);
623 test_limit
= gimple_build (preheader_seq
, MINUS_EXPR
, compare_type
,
625 test_gsi
= &incr_gsi
;
627 /* Get a safe limit for the first iteration. */
630 /* The first vector iteration can handle at most NITEMS_STEP
631 items. NITEMS_STEP <= CONST_LIMIT, and adding
632 NITEMS_SKIP to that cannot overflow. */
633 tree const_limit
= build_int_cst (compare_type
,
634 LOOP_VINFO_VECT_FACTOR (loop_vinfo
)
636 first_limit
= gimple_build (preheader_seq
, MIN_EXPR
, compare_type
,
637 nitems_total
, const_limit
);
638 first_limit
= gimple_build (preheader_seq
, PLUS_EXPR
, compare_type
,
639 first_limit
, nitems_skip
);
642 /* For the first iteration it doesn't matter whether the IV hits
643 a value above NITEMS_TOTAL. That only matters for the latch
645 first_limit
= nitems_total
;
649 /* Test the incremented IV, which will always hit a value above
650 the bound before wrapping. */
651 test_index
= index_after_incr
;
652 test_limit
= nitems_total
;
654 test_limit
= gimple_build (preheader_seq
, PLUS_EXPR
, compare_type
,
655 test_limit
, nitems_skip
);
656 test_gsi
= &loop_cond_gsi
;
658 first_limit
= test_limit
;
661 /* Convert the IV value to the comparison type (either a no-op or
663 gimple_seq test_seq
= NULL
;
664 test_index
= gimple_convert (&test_seq
, compare_type
, test_index
);
665 gsi_insert_seq_before (test_gsi
, test_seq
, GSI_SAME_STMT
);
667 /* Provide a definition of each control in the group. */
668 tree next_ctrl
= NULL_TREE
;
671 FOR_EACH_VEC_ELT_REVERSE (rgc
->controls
, i
, ctrl
)
673 /* Previous controls will cover BIAS items. This control covers the
675 poly_uint64 bias
= nitems_per_ctrl
* i
;
676 tree bias_tree
= build_int_cst (compare_type
, bias
);
678 /* See whether the first iteration of the vector loop is known
679 to have a full control. */
680 poly_uint64 const_limit
;
681 bool first_iteration_full
682 = (poly_int_tree_p (first_limit
, &const_limit
)
683 && known_ge (const_limit
, (i
+ 1) * nitems_per_ctrl
));
685 /* Rather than have a new IV that starts at BIAS and goes up to
686 TEST_LIMIT, prefer to use the same 0-based IV for each control
687 and adjust the bound down by BIAS. */
688 tree this_test_limit
= test_limit
;
691 this_test_limit
= gimple_build (preheader_seq
, MAX_EXPR
,
692 compare_type
, this_test_limit
,
694 this_test_limit
= gimple_build (preheader_seq
, MINUS_EXPR
,
695 compare_type
, this_test_limit
,
699 /* Create the initial control. First include all items that
700 are within the loop limit. */
701 tree init_ctrl
= NULL_TREE
;
702 if (!first_iteration_full
)
705 if (first_limit
== test_limit
)
707 /* Use a natural test between zero (the initial IV value)
708 and the loop limit. The "else" block would be valid too,
709 but this choice can avoid the need to load BIAS_TREE into
712 end
= this_test_limit
;
716 /* FIRST_LIMIT is the maximum number of items handled by the
717 first iteration of the vector loop. Test the portion
718 associated with this control. */
724 init_ctrl
= vect_gen_while (preheader_seq
, ctrl_type
,
725 start
, end
, "max_mask");
728 init_ctrl
= make_temp_ssa_name (compare_type
, NULL
, "max_len");
729 gimple_seq seq
= vect_gen_len (init_ctrl
, start
,
731 gimple_seq_add_seq (preheader_seq
, seq
);
735 /* Now AND out the bits that are within the number of skipped
737 poly_uint64 const_skip
;
739 && !(poly_int_tree_p (nitems_skip
, &const_skip
)
740 && known_le (const_skip
, bias
)))
742 gcc_assert (use_masks_p
);
743 tree unskipped_mask
= vect_gen_while_not (preheader_seq
, ctrl_type
,
744 bias_tree
, nitems_skip
);
746 init_ctrl
= gimple_build (preheader_seq
, BIT_AND_EXPR
, ctrl_type
,
747 init_ctrl
, unskipped_mask
);
749 init_ctrl
= unskipped_mask
;
754 /* First iteration is full. */
756 init_ctrl
= build_minus_one_cst (ctrl_type
);
758 init_ctrl
= length_limit
;
761 /* Get the control value for the next iteration of the loop. */
764 gimple_seq stmts
= NULL
;
765 next_ctrl
= vect_gen_while (&stmts
, ctrl_type
, test_index
,
766 this_test_limit
, "next_mask");
767 gsi_insert_seq_before (test_gsi
, stmts
, GSI_SAME_STMT
);
771 next_ctrl
= make_temp_ssa_name (compare_type
, NULL
, "next_len");
772 gimple_seq seq
= vect_gen_len (next_ctrl
, test_index
, this_test_limit
,
774 gsi_insert_seq_before (test_gsi
, seq
, GSI_SAME_STMT
);
777 vect_set_loop_control (loop
, ctrl
, init_ctrl
, next_ctrl
);
780 int partial_load_bias
= LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo
);
781 if (partial_load_bias
!= 0)
783 tree adjusted_len
= rgc
->bias_adjusted_ctrl
;
784 gassign
*minus
= gimple_build_assign (adjusted_len
, PLUS_EXPR
,
787 (TREE_TYPE (rgc
->controls
[0]),
789 gimple_seq_add_stmt (header_seq
, minus
);
795 /* Set up the iteration condition and rgroup controls for LOOP, given
796 that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the vectorized
797 loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
798 the number of iterations of the original scalar loop that should be
799 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
800 for vect_set_loop_condition.
802 Insert the branch-back condition before LOOP_COND_GSI and return the
806 vect_set_loop_condition_partial_vectors (class loop
*loop
,
807 loop_vec_info loop_vinfo
, tree niters
,
808 tree final_iv
, bool niters_maybe_zero
,
809 gimple_stmt_iterator loop_cond_gsi
)
811 gimple_seq preheader_seq
= NULL
;
812 gimple_seq header_seq
= NULL
;
814 bool use_masks_p
= LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
);
815 tree compare_type
= LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo
);
816 unsigned int compare_precision
= TYPE_PRECISION (compare_type
);
817 tree orig_niters
= niters
;
819 /* Type of the initial value of NITERS. */
820 tree ni_actual_type
= TREE_TYPE (niters
);
821 unsigned int ni_actual_precision
= TYPE_PRECISION (ni_actual_type
);
822 tree niters_skip
= LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo
);
824 niters_skip
= gimple_convert (&preheader_seq
, compare_type
, niters_skip
);
826 /* Convert NITERS to the same size as the compare. */
827 if (compare_precision
> ni_actual_precision
828 && niters_maybe_zero
)
830 /* We know that there is always at least one iteration, so if the
831 count is zero then it must have wrapped. Cope with this by
832 subtracting 1 before the conversion and adding 1 to the result. */
833 gcc_assert (TYPE_UNSIGNED (ni_actual_type
));
834 niters
= gimple_build (&preheader_seq
, PLUS_EXPR
, ni_actual_type
,
835 niters
, build_minus_one_cst (ni_actual_type
));
836 niters
= gimple_convert (&preheader_seq
, compare_type
, niters
);
837 niters
= gimple_build (&preheader_seq
, PLUS_EXPR
, compare_type
,
838 niters
, build_one_cst (compare_type
));
841 niters
= gimple_convert (&preheader_seq
, compare_type
, niters
);
843 /* Iterate over all the rgroups and fill in their controls. We could use
844 the first control from any rgroup for the loop condition; here we
845 arbitrarily pick the last. */
846 tree test_ctrl
= NULL_TREE
;
847 tree iv_step
= NULL_TREE
;
848 tree compare_step
= NULL_TREE
;
849 rgroup_controls
*rgc
;
850 rgroup_controls
*iv_rgc
= nullptr;
852 auto_vec
<rgroup_controls
> *controls
= use_masks_p
853 ? &LOOP_VINFO_MASKS (loop_vinfo
).rgc_vec
854 : &LOOP_VINFO_LENS (loop_vinfo
);
855 FOR_EACH_VEC_ELT (*controls
, i
, rgc
)
856 if (!rgc
->controls
.is_empty ())
858 /* First try using permutes. This adds a single vector
859 instruction to the loop for each mask, but needs no extra
860 loop invariants or IVs. */
861 unsigned int nmasks
= i
+ 1;
862 if (use_masks_p
&& (nmasks
& 1) == 0)
864 rgroup_controls
*half_rgc
= &(*controls
)[nmasks
/ 2 - 1];
865 if (!half_rgc
->controls
.is_empty ()
866 && vect_maybe_permute_loop_masks (&header_seq
, rgc
, half_rgc
))
870 if (!LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo
)
872 || (iv_rgc
->max_nscalars_per_iter
* iv_rgc
->factor
873 != rgc
->max_nscalars_per_iter
* rgc
->factor
))
875 /* See whether zero-based IV would ever generate all-false masks
876 or zero length before wrapping around. */
877 bool might_wrap_p
= vect_rgroup_iv_might_wrap_p (loop_vinfo
, rgc
);
879 /* Set up all controls for this group. */
881 = vect_set_loop_controls_directly (loop
, loop_vinfo
,
882 &preheader_seq
, &header_seq
,
883 loop_cond_gsi
, rgc
, niters
,
884 niters_skip
, might_wrap_p
,
885 &iv_step
, &compare_step
);
890 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo
)
891 && rgc
->controls
.length () > 1)
893 /* vect_set_loop_controls_directly creates an IV whose step
894 is equal to the expected sum of RGC->controls. Use that
895 information to populate RGC->controls. */
896 tree iv_type
= LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo
);
897 gcc_assert (iv_step
);
898 vect_adjust_loop_lens_control (iv_type
, &header_seq
, rgc
, iv_step
);
902 /* Emit all accumulated statements. */
903 add_preheader_seq (loop
, preheader_seq
);
904 add_header_seq (loop
, header_seq
);
906 /* Get a boolean result that tells us whether to iterate. */
907 edge exit_edge
= single_exit (loop
);
909 if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo
)
910 && !LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo
))
912 gcc_assert (compare_step
);
913 tree_code code
= (exit_edge
->flags
& EDGE_TRUE_VALUE
) ? LE_EXPR
: GT_EXPR
;
914 cond_stmt
= gimple_build_cond (code
, test_ctrl
, compare_step
, NULL_TREE
,
919 tree_code code
= (exit_edge
->flags
& EDGE_TRUE_VALUE
) ? EQ_EXPR
: NE_EXPR
;
920 tree zero_ctrl
= build_zero_cst (TREE_TYPE (test_ctrl
));
922 = gimple_build_cond (code
, test_ctrl
, zero_ctrl
, NULL_TREE
, NULL_TREE
);
924 gsi_insert_before (&loop_cond_gsi
, cond_stmt
, GSI_SAME_STMT
);
926 /* The loop iterates (NITERS - 1) / VF + 1 times.
927 Subtract one from this to get the latch count. */
928 tree step
= build_int_cst (compare_type
,
929 LOOP_VINFO_VECT_FACTOR (loop_vinfo
));
930 tree niters_minus_one
= fold_build2 (PLUS_EXPR
, compare_type
, niters
,
931 build_minus_one_cst (compare_type
));
932 loop
->nb_iterations
= fold_build2 (TRUNC_DIV_EXPR
, compare_type
,
933 niters_minus_one
, step
);
937 gassign
*assign
= gimple_build_assign (final_iv
, orig_niters
);
938 gsi_insert_on_edge_immediate (single_exit (loop
), assign
);
944 /* Set up the iteration condition and rgroup controls for LOOP in AVX512
945 style, given that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the
946 vectorized loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
947 the number of iterations of the original scalar loop that should be
948 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
949 for vect_set_loop_condition.
951 Insert the branch-back condition before LOOP_COND_GSI and return the
955 vect_set_loop_condition_partial_vectors_avx512 (class loop
*loop
,
956 loop_vec_info loop_vinfo
, tree niters
,
958 bool niters_maybe_zero
,
959 gimple_stmt_iterator loop_cond_gsi
)
961 tree niters_skip
= LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo
);
962 tree iv_type
= LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo
);
963 poly_uint64 vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
964 tree orig_niters
= niters
;
965 gimple_seq preheader_seq
= NULL
;
967 /* Create an IV that counts down from niters and whose step
968 is the number of iterations processed in the current iteration.
969 Produce the controls with compares like the following.
971 # iv_2 = PHI <niters, iv_3>
972 rem_4 = MIN <iv_2, VF>;
973 remv_6 = { rem_4, rem_4, rem_4, ... }
974 mask_5 = { 0, 0, 1, 1, 2, 2, ... } < remv6;
979 Where the constant is built with elements at most VF - 1 and
980 repetitions according to max_nscalars_per_iter which is guarnateed
981 to be the same within a group. */
983 /* Convert NITERS to the determined IV type. */
984 if (TYPE_PRECISION (iv_type
) > TYPE_PRECISION (TREE_TYPE (niters
))
985 && niters_maybe_zero
)
987 /* We know that there is always at least one iteration, so if the
988 count is zero then it must have wrapped. Cope with this by
989 subtracting 1 before the conversion and adding 1 to the result. */
990 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (niters
)));
991 niters
= gimple_build (&preheader_seq
, PLUS_EXPR
, TREE_TYPE (niters
),
992 niters
, build_minus_one_cst (TREE_TYPE (niters
)));
993 niters
= gimple_convert (&preheader_seq
, iv_type
, niters
);
994 niters
= gimple_build (&preheader_seq
, PLUS_EXPR
, iv_type
,
995 niters
, build_one_cst (iv_type
));
998 niters
= gimple_convert (&preheader_seq
, iv_type
, niters
);
1000 /* Bias the initial value of the IV in case we need to skip iterations
1001 at the beginning. */
1002 tree niters_adj
= niters
;
1005 tree skip
= gimple_convert (&preheader_seq
, iv_type
, niters_skip
);
1006 niters_adj
= gimple_build (&preheader_seq
, PLUS_EXPR
,
1007 iv_type
, niters
, skip
);
1010 /* The iteration step is the vectorization factor. */
1011 tree iv_step
= build_int_cst (iv_type
, vf
);
1013 /* Create the decrement IV. */
1014 tree index_before_incr
, index_after_incr
;
1015 gimple_stmt_iterator incr_gsi
;
1017 standard_iv_increment_position (loop
, &incr_gsi
, &insert_after
);
1018 create_iv (niters_adj
, MINUS_EXPR
, iv_step
, NULL_TREE
, loop
,
1019 &incr_gsi
, insert_after
, &index_before_incr
,
1022 /* Iterate over all the rgroups and fill in their controls. */
1023 for (auto &rgc
: LOOP_VINFO_MASKS (loop_vinfo
).rgc_vec
)
1025 if (rgc
.controls
.is_empty ())
1028 tree ctrl_type
= rgc
.type
;
1029 poly_uint64 nitems_per_ctrl
= TYPE_VECTOR_SUBPARTS (ctrl_type
);
1031 tree vectype
= rgc
.compare_type
;
1033 /* index_after_incr is the IV specifying the remaining iterations in
1034 the next iteration. */
1035 tree rem
= index_after_incr
;
1036 /* When the data type for the compare to produce the mask is
1037 smaller than the IV type we need to saturate. Saturate to
1038 the smallest possible value (IV_TYPE) so we only have to
1039 saturate once (CSE will catch redundant ones we add). */
1040 if (TYPE_PRECISION (TREE_TYPE (vectype
)) < TYPE_PRECISION (iv_type
))
1041 rem
= gimple_build (&incr_gsi
, false, GSI_CONTINUE_LINKING
,
1043 MIN_EXPR
, TREE_TYPE (rem
), rem
, iv_step
);
1044 rem
= gimple_convert (&incr_gsi
, false, GSI_CONTINUE_LINKING
,
1045 UNKNOWN_LOCATION
, TREE_TYPE (vectype
), rem
);
1047 /* Build a data vector composed of the remaining iterations. */
1048 rem
= gimple_build_vector_from_val (&incr_gsi
, false, GSI_CONTINUE_LINKING
,
1049 UNKNOWN_LOCATION
, vectype
, rem
);
1051 /* Provide a definition of each vector in the control group. */
1052 tree next_ctrl
= NULL_TREE
;
1053 tree first_rem
= NULL_TREE
;
1056 FOR_EACH_VEC_ELT_REVERSE (rgc
.controls
, i
, ctrl
)
1058 /* Previous controls will cover BIAS items. This control covers the
1060 poly_uint64 bias
= nitems_per_ctrl
* i
;
1062 /* Build the constant to compare the remaining iters against,
1063 this is sth like { 0, 0, 1, 1, 2, 2, 3, 3, ... } appropriately
1064 split into pieces. */
1065 unsigned n
= TYPE_VECTOR_SUBPARTS (ctrl_type
).to_constant ();
1066 tree_vector_builder
builder (vectype
, n
, 1);
1067 for (unsigned i
= 0; i
< n
; ++i
)
1069 unsigned HOST_WIDE_INT val
1070 = (i
+ bias
.to_constant ()) / rgc
.max_nscalars_per_iter
;
1071 gcc_assert (val
< vf
.to_constant ());
1072 builder
.quick_push (build_int_cst (TREE_TYPE (vectype
), val
));
1074 tree cmp_series
= builder
.build ();
1076 /* Create the initial control. First include all items that
1077 are within the loop limit. */
1078 tree init_ctrl
= NULL_TREE
;
1079 poly_uint64 const_limit
;
1080 /* See whether the first iteration of the vector loop is known
1081 to have a full control. */
1082 if (poly_int_tree_p (niters
, &const_limit
)
1083 && known_ge (const_limit
, (i
+ 1) * nitems_per_ctrl
))
1084 init_ctrl
= build_minus_one_cst (ctrl_type
);
1087 /* The remaining work items initially are niters. Saturate,
1088 splat and compare. */
1092 if (TYPE_PRECISION (TREE_TYPE (vectype
))
1093 < TYPE_PRECISION (iv_type
))
1094 first_rem
= gimple_build (&preheader_seq
,
1095 MIN_EXPR
, TREE_TYPE (first_rem
),
1096 first_rem
, iv_step
);
1097 first_rem
= gimple_convert (&preheader_seq
, TREE_TYPE (vectype
),
1099 first_rem
= gimple_build_vector_from_val (&preheader_seq
,
1100 vectype
, first_rem
);
1102 init_ctrl
= gimple_build (&preheader_seq
, LT_EXPR
, ctrl_type
,
1103 cmp_series
, first_rem
);
1106 /* Now AND out the bits that are within the number of skipped
1108 poly_uint64 const_skip
;
1110 && !(poly_int_tree_p (niters_skip
, &const_skip
)
1111 && known_le (const_skip
, bias
)))
1113 /* For integer mode masks it's cheaper to shift out the bits
1114 since that avoids loading a constant. */
1115 gcc_assert (GET_MODE_CLASS (TYPE_MODE (ctrl_type
)) == MODE_INT
);
1116 init_ctrl
= gimple_build (&preheader_seq
, VIEW_CONVERT_EXPR
,
1117 lang_hooks
.types
.type_for_mode
1118 (TYPE_MODE (ctrl_type
), 1),
1120 /* ??? But when the shift amount isn't constant this requires
1121 a round-trip to GRPs. We could apply the bias to either
1122 side of the compare instead. */
1123 tree shift
= gimple_build (&preheader_seq
, MULT_EXPR
,
1124 TREE_TYPE (niters_skip
), niters_skip
,
1125 build_int_cst (TREE_TYPE (niters_skip
),
1126 rgc
.max_nscalars_per_iter
));
1127 init_ctrl
= gimple_build (&preheader_seq
, LSHIFT_EXPR
,
1128 TREE_TYPE (init_ctrl
),
1130 init_ctrl
= gimple_build (&preheader_seq
, VIEW_CONVERT_EXPR
,
1131 ctrl_type
, init_ctrl
);
1134 /* Get the control value for the next iteration of the loop. */
1135 next_ctrl
= gimple_build (&incr_gsi
, false, GSI_CONTINUE_LINKING
,
1137 LT_EXPR
, ctrl_type
, cmp_series
, rem
);
1139 vect_set_loop_control (loop
, ctrl
, init_ctrl
, next_ctrl
);
1143 /* Emit all accumulated statements. */
1144 add_preheader_seq (loop
, preheader_seq
);
1146 /* Adjust the exit test using the decrementing IV. */
1147 edge exit_edge
= single_exit (loop
);
1148 tree_code code
= (exit_edge
->flags
& EDGE_TRUE_VALUE
) ? LE_EXPR
: GT_EXPR
;
1149 /* When we peel for alignment with niter_skip != 0 this can
1150 cause niter + niter_skip to wrap and since we are comparing the
1151 value before the decrement here we get a false early exit.
1152 We can't compare the value after decrement either because that
1153 decrement could wrap as well as we're not doing a saturating
1154 decrement. To avoid this situation we force a larger
1156 gcond
*cond_stmt
= gimple_build_cond (code
, index_before_incr
, iv_step
,
1157 NULL_TREE
, NULL_TREE
);
1158 gsi_insert_before (&loop_cond_gsi
, cond_stmt
, GSI_SAME_STMT
);
1160 /* The loop iterates (NITERS - 1 + NITERS_SKIP) / VF + 1 times.
1161 Subtract one from this to get the latch count. */
1162 tree niters_minus_one
1163 = fold_build2 (PLUS_EXPR
, TREE_TYPE (orig_niters
), orig_niters
,
1164 build_minus_one_cst (TREE_TYPE (orig_niters
)));
1165 tree niters_adj2
= fold_convert (iv_type
, niters_minus_one
);
1167 niters_adj2
= fold_build2 (PLUS_EXPR
, iv_type
, niters_minus_one
,
1168 fold_convert (iv_type
, niters_skip
));
1169 loop
->nb_iterations
= fold_build2 (TRUNC_DIV_EXPR
, iv_type
,
1170 niters_adj2
, iv_step
);
1174 gassign
*assign
= gimple_build_assign (final_iv
, orig_niters
);
1175 gsi_insert_on_edge_immediate (single_exit (loop
), assign
);
1182 /* Like vect_set_loop_condition, but handle the case in which the vector
1183 loop handles exactly VF scalars per iteration. */
1186 vect_set_loop_condition_normal (class loop
*loop
, tree niters
, tree step
,
1187 tree final_iv
, bool niters_maybe_zero
,
1188 gimple_stmt_iterator loop_cond_gsi
)
1190 tree indx_before_incr
, indx_after_incr
;
1193 edge pe
= loop_preheader_edge (loop
);
1194 edge exit_edge
= single_exit (loop
);
1195 gimple_stmt_iterator incr_gsi
;
1197 enum tree_code code
;
1198 tree niters_type
= TREE_TYPE (niters
);
1200 orig_cond
= get_loop_exit_condition (loop
);
1201 gcc_assert (orig_cond
);
1202 loop_cond_gsi
= gsi_for_stmt (orig_cond
);
1205 if (!niters_maybe_zero
&& integer_onep (step
))
1207 /* In this case we can use a simple 0-based IV:
1216 while (x < NITERS); */
1217 code
= (exit_edge
->flags
& EDGE_TRUE_VALUE
) ? GE_EXPR
: LT_EXPR
;
1218 init
= build_zero_cst (niters_type
);
1223 /* The following works for all values of NITERS except 0:
1232 while (x <= NITERS - STEP);
1234 so that the loop continues to iterate if x + STEP - 1 < NITERS
1235 but stops if x + STEP - 1 >= NITERS.
1237 However, if NITERS is zero, x never hits a value above NITERS - STEP
1238 before wrapping around. There are two obvious ways of dealing with
1241 - start at STEP - 1 and compare x before incrementing it
1242 - start at -1 and compare x after incrementing it
1244 The latter is simpler and is what we use. The loop in this case
1254 while (x < NITERS - STEP);
1256 In both cases the loop limit is NITERS - STEP. */
1257 gimple_seq seq
= NULL
;
1258 limit
= force_gimple_operand (niters
, &seq
, true, NULL_TREE
);
1259 limit
= gimple_build (&seq
, MINUS_EXPR
, TREE_TYPE (limit
), limit
, step
);
1262 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, seq
);
1263 gcc_assert (!new_bb
);
1265 if (niters_maybe_zero
)
1268 code
= (exit_edge
->flags
& EDGE_TRUE_VALUE
) ? GE_EXPR
: LT_EXPR
;
1269 init
= build_all_ones_cst (niters_type
);
1274 code
= (exit_edge
->flags
& EDGE_TRUE_VALUE
) ? GT_EXPR
: LE_EXPR
;
1275 init
= build_zero_cst (niters_type
);
1279 standard_iv_increment_position (loop
, &incr_gsi
, &insert_after
);
1280 create_iv (init
, PLUS_EXPR
, step
, NULL_TREE
, loop
,
1281 &incr_gsi
, insert_after
, &indx_before_incr
, &indx_after_incr
);
1282 indx_after_incr
= force_gimple_operand_gsi (&loop_cond_gsi
, indx_after_incr
,
1283 true, NULL_TREE
, true,
1285 limit
= force_gimple_operand_gsi (&loop_cond_gsi
, limit
, true, NULL_TREE
,
1286 true, GSI_SAME_STMT
);
1288 cond_stmt
= gimple_build_cond (code
, indx_after_incr
, limit
, NULL_TREE
,
1291 gsi_insert_before (&loop_cond_gsi
, cond_stmt
, GSI_SAME_STMT
);
1293 /* Record the number of latch iterations. */
1294 if (limit
== niters
)
1295 /* Case A: the loop iterates NITERS times. Subtract one to get the
1297 loop
->nb_iterations
= fold_build2 (MINUS_EXPR
, niters_type
, niters
,
1298 build_int_cst (niters_type
, 1));
1300 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
1301 Subtract one from this to get the latch count. */
1302 loop
->nb_iterations
= fold_build2 (TRUNC_DIV_EXPR
, niters_type
,
1308 edge exit
= single_exit (loop
);
1309 gcc_assert (single_pred_p (exit
->dest
));
1311 = integer_zerop (init
) ? final_iv
: copy_ssa_name (indx_after_incr
);
1312 /* Make sure to maintain LC SSA form here and elide the subtraction
1313 if the value is zero. */
1314 gphi
*phi
= create_phi_node (phi_dest
, exit
->dest
);
1315 add_phi_arg (phi
, indx_after_incr
, exit
, UNKNOWN_LOCATION
);
1316 if (!integer_zerop (init
))
1318 assign
= gimple_build_assign (final_iv
, MINUS_EXPR
,
1320 gimple_stmt_iterator gsi
= gsi_after_labels (exit
->dest
);
1321 gsi_insert_before (&gsi
, assign
, GSI_SAME_STMT
);
1328 /* If we're using fully-masked loops, make LOOP iterate:
1330 N == (NITERS - 1) / STEP + 1
1332 times. When NITERS is zero, this is equivalent to making the loop
1333 execute (1 << M) / STEP times, where M is the precision of NITERS.
1334 NITERS_MAYBE_ZERO is true if this last case might occur.
1336 If we're not using fully-masked loops, make LOOP iterate:
1338 N == (NITERS - STEP) / STEP + 1
1340 times, where NITERS is known to be outside the range [1, STEP - 1].
1341 This is equivalent to making the loop execute NITERS / STEP times
1342 when NITERS is nonzero and (1 << M) / STEP times otherwise.
1343 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
1345 If FINAL_IV is nonnull, it is an SSA name that should be set to
1346 N * STEP on exit from the loop.
1348 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
1351 vect_set_loop_condition (class loop
*loop
, loop_vec_info loop_vinfo
,
1352 tree niters
, tree step
, tree final_iv
,
1353 bool niters_maybe_zero
)
1356 gcond
*orig_cond
= get_loop_exit_condition (loop
);
1357 gimple_stmt_iterator loop_cond_gsi
= gsi_for_stmt (orig_cond
);
1359 if (loop_vinfo
&& LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo
))
1361 if (LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo
) == vect_partial_vectors_avx512
)
1362 cond_stmt
= vect_set_loop_condition_partial_vectors_avx512 (loop
, loop_vinfo
,
1367 cond_stmt
= vect_set_loop_condition_partial_vectors (loop
, loop_vinfo
,
1373 cond_stmt
= vect_set_loop_condition_normal (loop
, niters
, step
, final_iv
,
1377 /* Remove old loop exit test. */
1378 stmt_vec_info orig_cond_info
;
1380 && (orig_cond_info
= loop_vinfo
->lookup_stmt (orig_cond
)))
1381 loop_vinfo
->remove_stmt (orig_cond_info
);
1383 gsi_remove (&loop_cond_gsi
, true);
1385 if (dump_enabled_p ())
1386 dump_printf_loc (MSG_NOTE
, vect_location
, "New loop exit condition: %G",
1387 (gimple
*) cond_stmt
);
1390 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
1391 For all PHI arguments in FROM->dest and TO->dest from those
1392 edges ensure that TO->dest PHI arguments have current_def
1396 slpeel_duplicate_current_defs_from_edges (edge from
, edge to
)
1398 gimple_stmt_iterator gsi_from
, gsi_to
;
1400 for (gsi_from
= gsi_start_phis (from
->dest
),
1401 gsi_to
= gsi_start_phis (to
->dest
);
1402 !gsi_end_p (gsi_from
) && !gsi_end_p (gsi_to
);)
1404 gimple
*from_phi
= gsi_stmt (gsi_from
);
1405 gimple
*to_phi
= gsi_stmt (gsi_to
);
1406 tree from_arg
= PHI_ARG_DEF_FROM_EDGE (from_phi
, from
);
1407 tree to_arg
= PHI_ARG_DEF_FROM_EDGE (to_phi
, to
);
1408 if (virtual_operand_p (from_arg
))
1410 gsi_next (&gsi_from
);
1413 if (virtual_operand_p (to_arg
))
1418 if (TREE_CODE (from_arg
) != SSA_NAME
)
1419 gcc_assert (operand_equal_p (from_arg
, to_arg
, 0));
1420 else if (TREE_CODE (to_arg
) == SSA_NAME
1421 && from_arg
!= to_arg
)
1423 if (get_current_def (to_arg
) == NULL_TREE
)
1425 gcc_assert (types_compatible_p (TREE_TYPE (to_arg
),
1426 TREE_TYPE (get_current_def
1428 set_current_def (to_arg
, get_current_def (from_arg
));
1431 gsi_next (&gsi_from
);
1435 gphi
*from_phi
= get_virtual_phi (from
->dest
);
1436 gphi
*to_phi
= get_virtual_phi (to
->dest
);
1438 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi
, to
),
1439 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi
, from
)));
1443 /* Given LOOP this function generates a new copy of it and puts it
1444 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
1445 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
1446 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
1447 entry or exit of LOOP. */
1450 slpeel_tree_duplicate_loop_to_edge_cfg (class loop
*loop
,
1451 class loop
*scalar_loop
, edge e
)
1453 class loop
*new_loop
;
1454 basic_block
*new_bbs
, *bbs
, *pbbs
;
1457 basic_block exit_dest
;
1458 edge exit
, new_exit
;
1459 bool duplicate_outer_loop
= false;
1461 exit
= single_exit (loop
);
1462 at_exit
= (e
== exit
);
1463 if (!at_exit
&& e
!= loop_preheader_edge (loop
))
1466 if (scalar_loop
== NULL
)
1469 bbs
= XNEWVEC (basic_block
, scalar_loop
->num_nodes
+ 1);
1471 get_loop_body_with_size (scalar_loop
, pbbs
, scalar_loop
->num_nodes
);
1472 /* Allow duplication of outer loops. */
1473 if (scalar_loop
->inner
)
1474 duplicate_outer_loop
= true;
1476 /* Generate new loop structure. */
1477 new_loop
= duplicate_loop (scalar_loop
, loop_outer (scalar_loop
));
1478 duplicate_subloops (scalar_loop
, new_loop
);
1480 exit_dest
= exit
->dest
;
1481 was_imm_dom
= (get_immediate_dominator (CDI_DOMINATORS
,
1482 exit_dest
) == loop
->header
?
1485 /* Also copy the pre-header, this avoids jumping through hoops to
1486 duplicate the loop entry PHI arguments. Create an empty
1487 pre-header unconditionally for this. */
1488 basic_block preheader
= split_edge (loop_preheader_edge (scalar_loop
));
1489 edge entry_e
= single_pred_edge (preheader
);
1491 new_bbs
= XNEWVEC (basic_block
, scalar_loop
->num_nodes
+ 1);
1493 exit
= single_exit (scalar_loop
);
1494 copy_bbs (bbs
, scalar_loop
->num_nodes
+ 1, new_bbs
,
1495 &exit
, 1, &new_exit
, NULL
,
1496 at_exit
? loop
->latch
: e
->src
, true);
1497 exit
= single_exit (loop
);
1498 basic_block new_preheader
= new_bbs
[0];
1500 /* Before installing PHI arguments make sure that the edges
1501 into them match that of the scalar loop we analyzed. This
1502 makes sure the SLP tree matches up between the main vectorized
1503 loop and the epilogue vectorized copies. */
1504 if (single_succ_edge (preheader
)->dest_idx
1505 != single_succ_edge (new_bbs
[0])->dest_idx
)
1507 basic_block swap_bb
= new_bbs
[1];
1508 gcc_assert (EDGE_COUNT (swap_bb
->preds
) == 2);
1509 std::swap (EDGE_PRED (swap_bb
, 0), EDGE_PRED (swap_bb
, 1));
1510 EDGE_PRED (swap_bb
, 0)->dest_idx
= 0;
1511 EDGE_PRED (swap_bb
, 1)->dest_idx
= 1;
1513 if (duplicate_outer_loop
)
1515 class loop
*new_inner_loop
= get_loop_copy (scalar_loop
->inner
);
1516 if (loop_preheader_edge (scalar_loop
)->dest_idx
1517 != loop_preheader_edge (new_inner_loop
)->dest_idx
)
1519 basic_block swap_bb
= new_inner_loop
->header
;
1520 gcc_assert (EDGE_COUNT (swap_bb
->preds
) == 2);
1521 std::swap (EDGE_PRED (swap_bb
, 0), EDGE_PRED (swap_bb
, 1));
1522 EDGE_PRED (swap_bb
, 0)->dest_idx
= 0;
1523 EDGE_PRED (swap_bb
, 1)->dest_idx
= 1;
1527 add_phi_args_after_copy (new_bbs
, scalar_loop
->num_nodes
+ 1, NULL
);
1529 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1530 for (unsigned i
= (at_exit
? 0 : 1); i
< scalar_loop
->num_nodes
+ 1; i
++)
1531 rename_variables_in_bb (new_bbs
[i
], duplicate_outer_loop
);
1533 if (scalar_loop
!= loop
)
1535 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
1536 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
1537 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
1538 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
1539 header) to have current_def set, so copy them over. */
1540 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop
),
1542 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop
->latch
,
1544 EDGE_SUCC (loop
->latch
, 0));
1547 if (at_exit
) /* Add the loop copy at exit. */
1549 if (scalar_loop
!= loop
)
1552 new_exit
= redirect_edge_and_branch (new_exit
, exit_dest
);
1554 for (gsi
= gsi_start_phis (exit_dest
); !gsi_end_p (gsi
);
1557 gphi
*phi
= gsi
.phi ();
1558 tree orig_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1559 location_t orig_locus
1560 = gimple_phi_arg_location_from_edge (phi
, e
);
1562 add_phi_arg (phi
, orig_arg
, new_exit
, orig_locus
);
1565 redirect_edge_and_branch_force (e
, new_preheader
);
1566 flush_pending_stmts (e
);
1567 set_immediate_dominator (CDI_DOMINATORS
, new_preheader
, e
->src
);
1568 if (was_imm_dom
|| duplicate_outer_loop
)
1569 set_immediate_dominator (CDI_DOMINATORS
, exit_dest
, new_exit
->src
);
1571 /* And remove the non-necessary forwarder again. Keep the other
1572 one so we have a proper pre-header for the loop at the exit edge. */
1573 redirect_edge_pred (single_succ_edge (preheader
),
1574 single_pred (preheader
));
1575 delete_basic_block (preheader
);
1576 set_immediate_dominator (CDI_DOMINATORS
, scalar_loop
->header
,
1577 loop_preheader_edge (scalar_loop
)->src
);
1579 else /* Add the copy at entry. */
1581 if (scalar_loop
!= loop
)
1583 /* Remove the non-necessary forwarder of scalar_loop again. */
1584 redirect_edge_pred (single_succ_edge (preheader
),
1585 single_pred (preheader
));
1586 delete_basic_block (preheader
);
1587 set_immediate_dominator (CDI_DOMINATORS
, scalar_loop
->header
,
1588 loop_preheader_edge (scalar_loop
)->src
);
1589 preheader
= split_edge (loop_preheader_edge (loop
));
1590 entry_e
= single_pred_edge (preheader
);
1593 redirect_edge_and_branch_force (entry_e
, new_preheader
);
1594 flush_pending_stmts (entry_e
);
1595 set_immediate_dominator (CDI_DOMINATORS
, new_preheader
, entry_e
->src
);
1597 redirect_edge_and_branch_force (new_exit
, preheader
);
1598 flush_pending_stmts (new_exit
);
1599 set_immediate_dominator (CDI_DOMINATORS
, preheader
, new_exit
->src
);
1601 /* And remove the non-necessary forwarder again. Keep the other
1602 one so we have a proper pre-header for the loop at the exit edge. */
1603 redirect_edge_pred (single_succ_edge (new_preheader
),
1604 single_pred (new_preheader
));
1605 delete_basic_block (new_preheader
);
1606 set_immediate_dominator (CDI_DOMINATORS
, new_loop
->header
,
1607 loop_preheader_edge (new_loop
)->src
);
1610 if (scalar_loop
!= loop
)
1612 /* Update new_loop->header PHIs, so that on the preheader
1613 edge they are the ones from loop rather than scalar_loop. */
1614 gphi_iterator gsi_orig
, gsi_new
;
1615 edge orig_e
= loop_preheader_edge (loop
);
1616 edge new_e
= loop_preheader_edge (new_loop
);
1618 for (gsi_orig
= gsi_start_phis (loop
->header
),
1619 gsi_new
= gsi_start_phis (new_loop
->header
);
1620 !gsi_end_p (gsi_orig
) && !gsi_end_p (gsi_new
);
1621 gsi_next (&gsi_orig
), gsi_next (&gsi_new
))
1623 gphi
*orig_phi
= gsi_orig
.phi ();
1624 gphi
*new_phi
= gsi_new
.phi ();
1625 tree orig_arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, orig_e
);
1626 location_t orig_locus
1627 = gimple_phi_arg_location_from_edge (orig_phi
, orig_e
);
1629 add_phi_arg (new_phi
, orig_arg
, new_e
, orig_locus
);
1636 checking_verify_dominators (CDI_DOMINATORS
);
1642 /* Given the condition expression COND, put it as the last statement of
1643 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1644 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1645 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1646 new edge as irreducible if IRREDUCIBLE_P is true. */
1649 slpeel_add_loop_guard (basic_block guard_bb
, tree cond
,
1650 basic_block guard_to
, basic_block dom_bb
,
1651 profile_probability probability
, bool irreducible_p
)
1653 gimple_stmt_iterator gsi
;
1654 edge new_e
, enter_e
;
1656 gimple_seq gimplify_stmt_list
= NULL
;
1658 enter_e
= EDGE_SUCC (guard_bb
, 0);
1659 enter_e
->flags
&= ~EDGE_FALLTHRU
;
1660 enter_e
->flags
|= EDGE_FALSE_VALUE
;
1661 gsi
= gsi_last_bb (guard_bb
);
1663 cond
= force_gimple_operand_1 (cond
, &gimplify_stmt_list
,
1664 is_gimple_condexpr_for_cond
, NULL_TREE
);
1665 if (gimplify_stmt_list
)
1666 gsi_insert_seq_after (&gsi
, gimplify_stmt_list
, GSI_NEW_STMT
);
1668 cond_stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1669 gsi
= gsi_last_bb (guard_bb
);
1670 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
1672 /* Add new edge to connect guard block to the merge/loop-exit block. */
1673 new_e
= make_edge (guard_bb
, guard_to
, EDGE_TRUE_VALUE
);
1675 new_e
->probability
= probability
;
1677 new_e
->flags
|= EDGE_IRREDUCIBLE_LOOP
;
1679 enter_e
->probability
= probability
.invert ();
1680 set_immediate_dominator (CDI_DOMINATORS
, guard_to
, dom_bb
);
1682 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1683 if (enter_e
->dest
->loop_father
->header
== enter_e
->dest
)
1684 split_edge (enter_e
);
1690 /* This function verifies that the following restrictions apply to LOOP:
1691 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1692 for innermost loop and 5 basic blocks for outer-loop.
1693 (2) it is single entry, single exit
1694 (3) its exit condition is the last stmt in the header
1695 (4) E is the entry/exit edge of LOOP.
1699 slpeel_can_duplicate_loop_p (const class loop
*loop
, const_edge e
)
1701 edge exit_e
= single_exit (loop
);
1702 edge entry_e
= loop_preheader_edge (loop
);
1703 gcond
*orig_cond
= get_loop_exit_condition (loop
);
1704 gimple_stmt_iterator loop_exit_gsi
= gsi_last_bb (exit_e
->src
);
1705 unsigned int num_bb
= loop
->inner
? 5 : 2;
1707 /* All loops have an outer scope; the only case loop->outer is NULL is for
1708 the function itself. */
1709 if (!loop_outer (loop
)
1710 || loop
->num_nodes
!= num_bb
1711 || !empty_block_p (loop
->latch
)
1712 || !single_exit (loop
)
1713 /* Verify that new loop exit condition can be trivially modified. */
1714 || (!orig_cond
|| orig_cond
!= gsi_stmt (loop_exit_gsi
))
1715 || (e
!= exit_e
&& e
!= entry_e
))
1718 basic_block
*bbs
= XNEWVEC (basic_block
, loop
->num_nodes
);
1719 get_loop_body_with_size (loop
, bbs
, loop
->num_nodes
);
1720 bool ret
= can_copy_bbs_p (bbs
, loop
->num_nodes
);
1725 /* Function vect_get_loop_location.
1727 Extract the location of the loop in the source code.
1728 If the loop is not well formed for vectorization, an estimated
1729 location is calculated.
1730 Return the loop location if succeed and NULL if not. */
1732 dump_user_location_t
1733 find_loop_location (class loop
*loop
)
1735 gimple
*stmt
= NULL
;
1737 gimple_stmt_iterator si
;
1740 return dump_user_location_t ();
1742 stmt
= get_loop_exit_condition (loop
);
1745 && LOCATION_LOCUS (gimple_location (stmt
)) > BUILTINS_LOCATION
)
1748 /* If we got here the loop is probably not "well formed",
1749 try to estimate the loop location */
1752 return dump_user_location_t ();
1756 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
1758 stmt
= gsi_stmt (si
);
1759 if (LOCATION_LOCUS (gimple_location (stmt
)) > BUILTINS_LOCATION
)
1763 return dump_user_location_t ();
1766 /* Return true if the phi described by STMT_INFO defines an IV of the
1767 loop to be vectorized. */
1770 iv_phi_p (stmt_vec_info stmt_info
)
1772 gphi
*phi
= as_a
<gphi
*> (stmt_info
->stmt
);
1773 if (virtual_operand_p (PHI_RESULT (phi
)))
1776 if (STMT_VINFO_DEF_TYPE (stmt_info
) == vect_reduction_def
1777 || STMT_VINFO_DEF_TYPE (stmt_info
) == vect_double_reduction_def
)
1783 /* Return true if vectorizer can peel for nonlinear iv. */
1785 vect_can_peel_nonlinear_iv_p (loop_vec_info loop_vinfo
,
1786 enum vect_induction_op_type induction_type
)
1789 /* Init_expr will be update by vect_update_ivs_after_vectorizer,
1790 if niters or vf is unkown:
1791 For shift, when shift mount >= precision, there would be UD.
1792 For mult, don't known how to generate
1793 init_expr * pow (step, niters) for variable niters.
1794 For neg, it should be ok, since niters of vectorized main loop
1795 will always be multiple of 2. */
1796 if ((!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
1797 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo
).is_constant ())
1798 && induction_type
!= vect_step_op_neg
)
1800 if (dump_enabled_p ())
1801 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1802 "Peeling for epilogue is not supported"
1803 " for nonlinear induction except neg"
1804 " when iteration count is unknown.\n");
1808 /* Also doens't support peel for neg when niter is variable.
1809 ??? generate something like niter_expr & 1 ? init_expr : -init_expr? */
1810 niters_skip
= LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo
);
1811 if ((niters_skip
!= NULL_TREE
1812 && TREE_CODE (niters_skip
) != INTEGER_CST
)
1813 || (!vect_use_loop_mask_for_alignment_p (loop_vinfo
)
1814 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
) < 0))
1816 if (dump_enabled_p ())
1817 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1818 "Peeling for alignement is not supported"
1819 " for nonlinear induction when niters_skip"
1820 " is not constant.\n");
1827 /* Function vect_can_advance_ivs_p
1829 In case the number of iterations that LOOP iterates is unknown at compile
1830 time, an epilog loop will be generated, and the loop induction variables
1831 (IVs) will be "advanced" to the value they are supposed to take just before
1832 the epilog loop. Here we check that the access function of the loop IVs
1833 and the expression that represents the loop bound are simple enough.
1834 These restrictions will be relaxed in the future. */
1837 vect_can_advance_ivs_p (loop_vec_info loop_vinfo
)
1839 class loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1840 basic_block bb
= loop
->header
;
1843 /* Analyze phi functions of the loop header. */
1845 if (dump_enabled_p ())
1846 dump_printf_loc (MSG_NOTE
, vect_location
, "vect_can_advance_ivs_p:\n");
1847 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1849 tree evolution_part
;
1850 enum vect_induction_op_type induction_type
;
1852 gphi
*phi
= gsi
.phi ();
1853 stmt_vec_info phi_info
= loop_vinfo
->lookup_stmt (phi
);
1854 if (dump_enabled_p ())
1855 dump_printf_loc (MSG_NOTE
, vect_location
, "Analyze phi: %G",
1858 /* Skip virtual phi's. The data dependences that are associated with
1859 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
1861 Skip reduction phis. */
1862 if (!iv_phi_p (phi_info
))
1864 if (dump_enabled_p ())
1865 dump_printf_loc (MSG_NOTE
, vect_location
,
1866 "reduc or virtual phi. skip.\n");
1870 induction_type
= STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info
);
1871 if (induction_type
!= vect_step_op_add
)
1873 if (!vect_can_peel_nonlinear_iv_p (loop_vinfo
, induction_type
))
1879 /* Analyze the evolution function. */
1881 evolution_part
= STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info
);
1882 if (evolution_part
== NULL_TREE
)
1884 if (dump_enabled_p ())
1885 dump_printf (MSG_MISSED_OPTIMIZATION
,
1886 "No access function or evolution.\n");
1890 /* FORNOW: We do not transform initial conditions of IVs
1891 which evolution functions are not invariants in the loop. */
1893 if (!expr_invariant_in_loop_p (loop
, evolution_part
))
1895 if (dump_enabled_p ())
1896 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1897 "evolution not invariant in loop.\n");
1901 /* FORNOW: We do not transform initial conditions of IVs
1902 which evolution functions are a polynomial of degree >= 2. */
1904 if (tree_is_chrec (evolution_part
))
1906 if (dump_enabled_p ())
1907 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1908 "evolution is chrec.\n");
1917 /* Function vect_update_ivs_after_vectorizer.
1919 "Advance" the induction variables of LOOP to the value they should take
1920 after the execution of LOOP. This is currently necessary because the
1921 vectorizer does not handle induction variables that are used after the
1922 loop. Such a situation occurs when the last iterations of LOOP are
1924 1. We introduced new uses after LOOP for IVs that were not originally used
1925 after LOOP: the IVs of LOOP are now used by an epilog loop.
1926 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1927 times, whereas the loop IVs should be bumped N times.
1930 - LOOP - a loop that is going to be vectorized. The last few iterations
1931 of LOOP were peeled.
1932 - NITERS - the number of iterations that LOOP executes (before it is
1933 vectorized). i.e, the number of times the ivs should be bumped.
1934 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1935 coming out from LOOP on which there are uses of the LOOP ivs
1936 (this is the path from LOOP->exit to epilog_loop->preheader).
1938 The new definitions of the ivs are placed in LOOP->exit.
1939 The phi args associated with the edge UPDATE_E in the bb
1940 UPDATE_E->dest are updated accordingly.
1942 Assumption 1: Like the rest of the vectorizer, this function assumes
1943 a single loop exit that has a single predecessor.
1945 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1946 organized in the same order.
1948 Assumption 3: The access function of the ivs is simple enough (see
1949 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1951 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1952 coming out of LOOP on which the ivs of LOOP are used (this is the path
1953 that leads to the epilog loop; other paths skip the epilog loop). This
1954 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1955 needs to have its phis updated.
1959 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo
,
1960 tree niters
, edge update_e
)
1962 gphi_iterator gsi
, gsi1
;
1963 class loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1964 basic_block update_bb
= update_e
->dest
;
1965 basic_block exit_bb
= single_exit (loop
)->dest
;
1967 /* Make sure there exists a single-predecessor exit bb: */
1968 gcc_assert (single_pred_p (exit_bb
));
1969 gcc_assert (single_succ_edge (exit_bb
) == update_e
);
1971 for (gsi
= gsi_start_phis (loop
->header
), gsi1
= gsi_start_phis (update_bb
);
1972 !gsi_end_p (gsi
) && !gsi_end_p (gsi1
);
1973 gsi_next (&gsi
), gsi_next (&gsi1
))
1976 tree step_expr
, off
;
1978 tree var
, ni
, ni_name
;
1979 gimple_stmt_iterator last_gsi
;
1981 gphi
*phi
= gsi
.phi ();
1982 gphi
*phi1
= gsi1
.phi ();
1983 stmt_vec_info phi_info
= loop_vinfo
->lookup_stmt (phi
);
1984 if (dump_enabled_p ())
1985 dump_printf_loc (MSG_NOTE
, vect_location
,
1986 "vect_update_ivs_after_vectorizer: phi: %G",
1989 /* Skip reduction and virtual phis. */
1990 if (!iv_phi_p (phi_info
))
1992 if (dump_enabled_p ())
1993 dump_printf_loc (MSG_NOTE
, vect_location
,
1994 "reduc or virtual phi. skip.\n");
1998 type
= TREE_TYPE (gimple_phi_result (phi
));
1999 step_expr
= STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info
);
2000 step_expr
= unshare_expr (step_expr
);
2002 /* FORNOW: We do not support IVs whose evolution function is a polynomial
2003 of degree >= 2 or exponential. */
2004 gcc_assert (!tree_is_chrec (step_expr
));
2006 init_expr
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2007 gimple_seq stmts
= NULL
;
2008 enum vect_induction_op_type induction_type
2009 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info
);
2011 if (induction_type
== vect_step_op_add
)
2013 tree stype
= TREE_TYPE (step_expr
);
2014 off
= fold_build2 (MULT_EXPR
, stype
,
2015 fold_convert (stype
, niters
), step_expr
);
2016 if (POINTER_TYPE_P (type
))
2017 ni
= fold_build_pointer_plus (init_expr
, off
);
2019 ni
= fold_convert (type
,
2020 fold_build2 (PLUS_EXPR
, stype
,
2021 fold_convert (stype
, init_expr
),
2024 /* Don't bother call vect_peel_nonlinear_iv_init. */
2025 else if (induction_type
== vect_step_op_neg
)
2028 ni
= vect_peel_nonlinear_iv_init (&stmts
, init_expr
,
2032 var
= create_tmp_var (type
, "tmp");
2034 last_gsi
= gsi_last_bb (exit_bb
);
2035 gimple_seq new_stmts
= NULL
;
2036 ni_name
= force_gimple_operand (ni
, &new_stmts
, false, var
);
2037 /* Exit_bb shouldn't be empty. */
2038 if (!gsi_end_p (last_gsi
))
2040 gsi_insert_seq_after (&last_gsi
, stmts
, GSI_SAME_STMT
);
2041 gsi_insert_seq_after (&last_gsi
, new_stmts
, GSI_SAME_STMT
);
2045 gsi_insert_seq_before (&last_gsi
, stmts
, GSI_SAME_STMT
);
2046 gsi_insert_seq_before (&last_gsi
, new_stmts
, GSI_SAME_STMT
);
2049 /* Fix phi expressions in the successor bb. */
2050 adjust_phi_and_debug_stmts (phi1
, update_e
, ni_name
);
2054 /* Return a gimple value containing the misalignment (measured in vector
2055 elements) for the loop described by LOOP_VINFO, i.e. how many elements
2056 it is away from a perfectly aligned address. Add any new statements
2060 get_misalign_in_elems (gimple
**seq
, loop_vec_info loop_vinfo
)
2062 dr_vec_info
*dr_info
= LOOP_VINFO_UNALIGNED_DR (loop_vinfo
);
2063 stmt_vec_info stmt_info
= dr_info
->stmt
;
2064 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
2066 poly_uint64 target_align
= DR_TARGET_ALIGNMENT (dr_info
);
2067 unsigned HOST_WIDE_INT target_align_c
;
2068 tree target_align_minus_1
;
2070 bool negative
= tree_int_cst_compare (DR_STEP (dr_info
->dr
),
2071 size_zero_node
) < 0;
2072 tree offset
= (negative
2073 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype
) + 1)
2075 (TYPE_SIZE_UNIT (TREE_TYPE (vectype
))))
2077 tree start_addr
= vect_create_addr_base_for_vector_ref (loop_vinfo
,
2080 tree type
= unsigned_type_for (TREE_TYPE (start_addr
));
2081 if (target_align
.is_constant (&target_align_c
))
2082 target_align_minus_1
= build_int_cst (type
, target_align_c
- 1);
2085 tree vla
= build_int_cst (type
, target_align
);
2086 tree vla_align
= fold_build2 (BIT_AND_EXPR
, type
, vla
,
2087 fold_build2 (MINUS_EXPR
, type
,
2088 build_int_cst (type
, 0), vla
));
2089 target_align_minus_1
= fold_build2 (MINUS_EXPR
, type
, vla_align
,
2090 build_int_cst (type
, 1));
2093 HOST_WIDE_INT elem_size
2094 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype
)));
2095 tree elem_size_log
= build_int_cst (type
, exact_log2 (elem_size
));
2097 /* Create: misalign_in_bytes = addr & (target_align - 1). */
2098 tree int_start_addr
= fold_convert (type
, start_addr
);
2099 tree misalign_in_bytes
= fold_build2 (BIT_AND_EXPR
, type
, int_start_addr
,
2100 target_align_minus_1
);
2102 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
2103 tree misalign_in_elems
= fold_build2 (RSHIFT_EXPR
, type
, misalign_in_bytes
,
2106 return misalign_in_elems
;
2109 /* Function vect_gen_prolog_loop_niters
2111 Generate the number of iterations which should be peeled as prolog for the
2112 loop represented by LOOP_VINFO. It is calculated as the misalignment of
2113 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
2114 As a result, after the execution of this loop, the data reference DR will
2115 refer to an aligned location. The following computation is generated:
2117 If the misalignment of DR is known at compile time:
2118 addr_mis = int mis = DR_MISALIGNMENT (dr);
2119 Else, compute address misalignment in bytes:
2120 addr_mis = addr & (target_align - 1)
2122 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
2124 (elem_size = element type size; an element is the scalar element whose type
2125 is the inner type of the vectype)
2127 The computations will be emitted at the end of BB. We also compute and
2128 store upper bound (included) of the result in BOUND.
2130 When the step of the data-ref in the loop is not 1 (as in interleaved data
2131 and SLP), the number of iterations of the prolog must be divided by the step
2132 (which is equal to the size of interleaved group).
2134 The above formulas assume that VF == number of elements in the vector. This
2135 may not hold when there are multiple-types in the loop.
2136 In this case, for some data-references in the loop the VF does not represent
2137 the number of elements that fit in the vector. Therefore, instead of VF we
2138 use TYPE_VECTOR_SUBPARTS. */
2141 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo
,
2142 basic_block bb
, int *bound
)
2144 dr_vec_info
*dr_info
= LOOP_VINFO_UNALIGNED_DR (loop_vinfo
);
2146 tree niters_type
= TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo
));
2147 gimple_seq stmts
= NULL
, new_stmts
= NULL
;
2148 tree iters
, iters_name
;
2149 stmt_vec_info stmt_info
= dr_info
->stmt
;
2150 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
2151 poly_uint64 target_align
= DR_TARGET_ALIGNMENT (dr_info
);
2153 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
) > 0)
2155 int npeel
= LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
);
2157 if (dump_enabled_p ())
2158 dump_printf_loc (MSG_NOTE
, vect_location
,
2159 "known peeling = %d.\n", npeel
);
2161 iters
= build_int_cst (niters_type
, npeel
);
2162 *bound
= LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
);
2166 tree misalign_in_elems
= get_misalign_in_elems (&stmts
, loop_vinfo
);
2167 tree type
= TREE_TYPE (misalign_in_elems
);
2168 HOST_WIDE_INT elem_size
2169 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype
)));
2170 /* We only do prolog peeling if the target alignment is known at compile
2172 poly_uint64 align_in_elems
=
2173 exact_div (target_align
, elem_size
);
2174 tree align_in_elems_minus_1
=
2175 build_int_cst (type
, align_in_elems
- 1);
2176 tree align_in_elems_tree
= build_int_cst (type
, align_in_elems
);
2178 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
2179 & (align_in_elems - 1)). */
2180 bool negative
= tree_int_cst_compare (DR_STEP (dr_info
->dr
),
2181 size_zero_node
) < 0;
2183 iters
= fold_build2 (MINUS_EXPR
, type
, misalign_in_elems
,
2184 align_in_elems_tree
);
2186 iters
= fold_build2 (MINUS_EXPR
, type
, align_in_elems_tree
,
2188 iters
= fold_build2 (BIT_AND_EXPR
, type
, iters
, align_in_elems_minus_1
);
2189 iters
= fold_convert (niters_type
, iters
);
2190 unsigned HOST_WIDE_INT align_in_elems_c
;
2191 if (align_in_elems
.is_constant (&align_in_elems_c
))
2192 *bound
= align_in_elems_c
- 1;
2197 if (dump_enabled_p ())
2198 dump_printf_loc (MSG_NOTE
, vect_location
,
2199 "niters for prolog loop: %T\n", iters
);
2201 var
= create_tmp_var (niters_type
, "prolog_loop_niters");
2202 iters_name
= force_gimple_operand (iters
, &new_stmts
, false, var
);
2205 gimple_seq_add_seq (&stmts
, new_stmts
);
2208 gcc_assert (single_succ_p (bb
));
2209 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
2210 if (gsi_end_p (gsi
))
2211 gsi_insert_seq_before (&gsi
, stmts
, GSI_SAME_STMT
);
2213 gsi_insert_seq_after (&gsi
, stmts
, GSI_SAME_STMT
);
2219 /* Function vect_update_init_of_dr
2221 If CODE is PLUS, the vector loop starts NITERS iterations after the
2222 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
2223 iterations before the scalar one (using masking to skip inactive
2224 elements). This function updates the information recorded in DR to
2225 account for the difference. Specifically, it updates the OFFSET
2226 field of DR_INFO. */
2229 vect_update_init_of_dr (dr_vec_info
*dr_info
, tree niters
, tree_code code
)
2231 struct data_reference
*dr
= dr_info
->dr
;
2232 tree offset
= dr_info
->offset
;
2234 offset
= build_zero_cst (sizetype
);
2236 niters
= fold_build2 (MULT_EXPR
, sizetype
,
2237 fold_convert (sizetype
, niters
),
2238 fold_convert (sizetype
, DR_STEP (dr
)));
2239 offset
= fold_build2 (code
, sizetype
,
2240 fold_convert (sizetype
, offset
), niters
);
2241 dr_info
->offset
= offset
;
2245 /* Function vect_update_inits_of_drs
2247 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
2248 CODE and NITERS are as for vect_update_inits_of_dr. */
2251 vect_update_inits_of_drs (loop_vec_info loop_vinfo
, tree niters
,
2255 vec
<data_reference_p
> datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
2256 struct data_reference
*dr
;
2258 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
2260 /* Adjust niters to sizetype. We used to insert the stmts on loop preheader
2261 here, but since we might use these niters to update the epilogues niters
2262 and data references we can't insert them here as this definition might not
2263 always dominate its uses. */
2264 if (!types_compatible_p (sizetype
, TREE_TYPE (niters
)))
2265 niters
= fold_convert (sizetype
, niters
);
2267 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
2269 dr_vec_info
*dr_info
= loop_vinfo
->lookup_dr (dr
);
2270 if (!STMT_VINFO_GATHER_SCATTER_P (dr_info
->stmt
)
2271 && !STMT_VINFO_SIMD_LANE_ACCESS_P (dr_info
->stmt
))
2272 vect_update_init_of_dr (dr_info
, niters
, code
);
2276 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
2277 by masking. This involves calculating the number of iterations to
2278 be peeled and then aligning all memory references appropriately. */
2281 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo
)
2283 tree misalign_in_elems
;
2284 tree type
= TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo
));
2286 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo
));
2288 /* From the information recorded in LOOP_VINFO get the number of iterations
2289 that need to be skipped via masking. */
2290 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
) > 0)
2292 poly_int64 misalign
= (LOOP_VINFO_VECT_FACTOR (loop_vinfo
)
2293 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
));
2294 misalign_in_elems
= build_int_cst (type
, misalign
);
2298 gimple_seq seq1
= NULL
, seq2
= NULL
;
2299 misalign_in_elems
= get_misalign_in_elems (&seq1
, loop_vinfo
);
2300 misalign_in_elems
= fold_convert (type
, misalign_in_elems
);
2301 misalign_in_elems
= force_gimple_operand (misalign_in_elems
,
2302 &seq2
, true, NULL_TREE
);
2303 gimple_seq_add_seq (&seq1
, seq2
);
2306 edge pe
= loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo
));
2307 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, seq1
);
2308 gcc_assert (!new_bb
);
2312 if (dump_enabled_p ())
2313 dump_printf_loc (MSG_NOTE
, vect_location
,
2314 "misalignment for fully-masked loop: %T\n",
2317 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo
) = misalign_in_elems
;
2319 vect_update_inits_of_drs (loop_vinfo
, misalign_in_elems
, MINUS_EXPR
);
2322 /* This function builds ni_name = number of iterations. Statements
2323 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
2324 it to TRUE if new ssa_var is generated. */
2327 vect_build_loop_niters (loop_vec_info loop_vinfo
, bool *new_var_p
)
2329 tree ni
= unshare_expr (LOOP_VINFO_NITERS (loop_vinfo
));
2330 if (TREE_CODE (ni
) == INTEGER_CST
)
2335 gimple_seq stmts
= NULL
;
2336 edge pe
= loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo
));
2338 var
= create_tmp_var (TREE_TYPE (ni
), "niters");
2339 ni_name
= force_gimple_operand (ni
, &stmts
, false, var
);
2342 gsi_insert_seq_on_edge_immediate (pe
, stmts
);
2343 if (new_var_p
!= NULL
)
2351 /* Calculate the number of iterations above which vectorized loop will be
2352 preferred than scalar loop. NITERS_PROLOG is the number of iterations
2353 of prolog loop. If it's integer const, the integer number is also passed
2354 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
2355 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
2356 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
2357 threshold below which the scalar (rather than vectorized) loop will be
2358 executed. This function stores the upper bound (inclusive) of the result
2362 vect_gen_scalar_loop_niters (tree niters_prolog
, int int_niters_prolog
,
2363 int bound_prolog
, poly_int64 bound_epilog
, int th
,
2364 poly_uint64
*bound_scalar
,
2365 bool check_profitability
)
2367 tree type
= TREE_TYPE (niters_prolog
);
2368 tree niters
= fold_build2 (PLUS_EXPR
, type
, niters_prolog
,
2369 build_int_cst (type
, bound_epilog
));
2371 *bound_scalar
= bound_prolog
+ bound_epilog
;
2372 if (check_profitability
)
2374 /* TH indicates the minimum niters of vectorized loop, while we
2375 compute the maximum niters of scalar loop. */
2377 /* Peeling for constant times. */
2378 if (int_niters_prolog
>= 0)
2380 *bound_scalar
= upper_bound (int_niters_prolog
+ bound_epilog
, th
);
2381 return build_int_cst (type
, *bound_scalar
);
2383 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
2384 and BOUND_EPILOG are inclusive upper bounds. */
2385 if (known_ge (th
, bound_prolog
+ bound_epilog
))
2388 return build_int_cst (type
, th
);
2390 /* Need to do runtime comparison. */
2391 else if (maybe_gt (th
, bound_epilog
))
2393 *bound_scalar
= upper_bound (*bound_scalar
, th
);
2394 return fold_build2 (MAX_EXPR
, type
,
2395 build_int_cst (type
, th
), niters
);
2401 /* NITERS is the number of times that the original scalar loop executes
2402 after peeling. Work out the maximum number of iterations N that can
2403 be handled by the vectorized form of the loop and then either:
2405 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
2409 b) set *STEP_VECTOR_PTR to one and generate:
2411 niters_vector = N / vf
2413 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
2414 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
2415 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
2418 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo
, tree niters
,
2419 tree
*niters_vector_ptr
, tree
*step_vector_ptr
,
2420 bool niters_no_overflow
)
2422 tree ni_minus_gap
, var
;
2423 tree niters_vector
, step_vector
, type
= TREE_TYPE (niters
);
2424 poly_uint64 vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
2425 edge pe
= loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo
));
2426 tree log_vf
= NULL_TREE
;
2428 /* If epilogue loop is required because of data accesses with gaps, we
2429 subtract one iteration from the total number of iterations here for
2430 correct calculation of RATIO. */
2431 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
))
2433 ni_minus_gap
= fold_build2 (MINUS_EXPR
, type
, niters
,
2434 build_one_cst (type
));
2435 if (!is_gimple_val (ni_minus_gap
))
2437 var
= create_tmp_var (type
, "ni_gap");
2438 gimple
*stmts
= NULL
;
2439 ni_minus_gap
= force_gimple_operand (ni_minus_gap
, &stmts
,
2441 gsi_insert_seq_on_edge_immediate (pe
, stmts
);
2445 ni_minus_gap
= niters
;
2447 /* To silence some unexpected warnings, simply initialize to 0. */
2448 unsigned HOST_WIDE_INT const_vf
= 0;
2449 if (vf
.is_constant (&const_vf
)
2450 && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo
))
2452 /* Create: niters >> log2(vf) */
2453 /* If it's known that niters == number of latch executions + 1 doesn't
2454 overflow, we can generate niters >> log2(vf); otherwise we generate
2455 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
2456 will be at least one. */
2457 log_vf
= build_int_cst (type
, exact_log2 (const_vf
));
2458 if (niters_no_overflow
)
2459 niters_vector
= fold_build2 (RSHIFT_EXPR
, type
, ni_minus_gap
, log_vf
);
2462 = fold_build2 (PLUS_EXPR
, type
,
2463 fold_build2 (RSHIFT_EXPR
, type
,
2464 fold_build2 (MINUS_EXPR
, type
,
2466 build_int_cst (type
, vf
)),
2468 build_int_cst (type
, 1));
2469 step_vector
= build_one_cst (type
);
2473 niters_vector
= ni_minus_gap
;
2474 step_vector
= build_int_cst (type
, vf
);
2477 if (!is_gimple_val (niters_vector
))
2479 var
= create_tmp_var (type
, "bnd");
2480 gimple_seq stmts
= NULL
;
2481 niters_vector
= force_gimple_operand (niters_vector
, &stmts
, true, var
);
2482 gsi_insert_seq_on_edge_immediate (pe
, stmts
);
2483 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
2484 we set range information to make niters analyzer's life easier.
2485 Note the number of latch iteration value can be TYPE_MAX_VALUE so
2486 we have to represent the vector niter TYPE_MAX_VALUE + 1 >> log_vf. */
2487 if (stmts
!= NULL
&& log_vf
)
2489 if (niters_no_overflow
)
2491 value_range
vr (type
,
2492 wi::one (TYPE_PRECISION (type
)),
2493 wi::rshift (wi::max_value (TYPE_PRECISION (type
),
2495 exact_log2 (const_vf
),
2497 set_range_info (niters_vector
, vr
);
2499 /* For VF == 1 the vector IV might also overflow so we cannot
2500 assert a minimum value of 1. */
2501 else if (const_vf
> 1)
2503 value_range
vr (type
,
2504 wi::one (TYPE_PRECISION (type
)),
2505 wi::rshift (wi::max_value (TYPE_PRECISION (type
),
2508 exact_log2 (const_vf
), TYPE_SIGN (type
))
2510 set_range_info (niters_vector
, vr
);
2514 *niters_vector_ptr
= niters_vector
;
2515 *step_vector_ptr
= step_vector
;
2520 /* Given NITERS_VECTOR which is the number of iterations for vectorized
2521 loop specified by LOOP_VINFO after vectorization, compute the number
2522 of iterations before vectorization (niters_vector * vf) and store it
2523 to NITERS_VECTOR_MULT_VF_PTR. */
2526 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo
,
2528 tree
*niters_vector_mult_vf_ptr
)
2530 /* We should be using a step_vector of VF if VF is variable. */
2531 int vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
).to_constant ();
2532 class loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2533 tree type
= TREE_TYPE (niters_vector
);
2534 tree log_vf
= build_int_cst (type
, exact_log2 (vf
));
2535 basic_block exit_bb
= single_exit (loop
)->dest
;
2537 gcc_assert (niters_vector_mult_vf_ptr
!= NULL
);
2538 tree niters_vector_mult_vf
= fold_build2 (LSHIFT_EXPR
, type
,
2539 niters_vector
, log_vf
);
2540 if (!is_gimple_val (niters_vector_mult_vf
))
2542 tree var
= create_tmp_var (type
, "niters_vector_mult_vf");
2543 gimple_seq stmts
= NULL
;
2544 niters_vector_mult_vf
= force_gimple_operand (niters_vector_mult_vf
,
2546 gimple_stmt_iterator gsi
= gsi_start_bb (exit_bb
);
2547 gsi_insert_seq_before (&gsi
, stmts
, GSI_SAME_STMT
);
2549 *niters_vector_mult_vf_ptr
= niters_vector_mult_vf
;
2552 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
2553 this function searches for the corresponding lcssa phi node in exit
2554 bb of LOOP. If it is found, return the phi result; otherwise return
2558 find_guard_arg (class loop
*loop
, class loop
*epilog ATTRIBUTE_UNUSED
,
2562 edge e
= single_exit (loop
);
2564 gcc_assert (single_pred_p (e
->dest
));
2565 for (gsi
= gsi_start_phis (e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2567 gphi
*phi
= gsi
.phi ();
2568 if (operand_equal_p (PHI_ARG_DEF (phi
, 0),
2569 PHI_ARG_DEF (lcssa_phi
, 0), 0))
2570 return PHI_RESULT (phi
);
2575 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
2576 from SECOND/FIRST and puts it at the original loop's preheader/exit
2577 edge, the two loops are arranged as below:
2582 i_1 = PHI<i_0, i_2>;
2593 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
2597 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
2598 or with i_2 if no LCSSA phi is created
2599 under condition of CREATE_LCSSA_FOR_IV_PHIS.
2611 This function creates loop closed SSA for the first loop; update the
2612 second loop's PHI nodes by replacing argument on incoming edge with the
2613 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
2614 is false, Loop closed ssa phis will only be created for non-iv phis for
2617 This function assumes exit bb of the first loop is preheader bb of the
2618 second loop, i.e, between_bb in the example code. With PHIs updated,
2619 the second loop will execute rest iterations of the first. */
2622 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo
,
2623 class loop
*first
, class loop
*second
,
2624 bool create_lcssa_for_iv_phis
)
2626 gphi_iterator gsi_update
, gsi_orig
;
2627 class loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2629 edge first_latch_e
= EDGE_SUCC (first
->latch
, 0);
2630 edge second_preheader_e
= loop_preheader_edge (second
);
2631 basic_block between_bb
= single_exit (first
)->dest
;
2633 gcc_assert (between_bb
== second_preheader_e
->src
);
2634 gcc_assert (single_pred_p (between_bb
) && single_succ_p (between_bb
));
2635 /* Either the first loop or the second is the loop to be vectorized. */
2636 gcc_assert (loop
== first
|| loop
== second
);
2638 for (gsi_orig
= gsi_start_phis (first
->header
),
2639 gsi_update
= gsi_start_phis (second
->header
);
2640 !gsi_end_p (gsi_orig
) && !gsi_end_p (gsi_update
);
2641 gsi_next (&gsi_orig
), gsi_next (&gsi_update
))
2643 gphi
*orig_phi
= gsi_orig
.phi ();
2644 gphi
*update_phi
= gsi_update
.phi ();
2646 tree arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, first_latch_e
);
2647 /* Generate lcssa PHI node for the first loop. */
2648 gphi
*vect_phi
= (loop
== first
) ? orig_phi
: update_phi
;
2649 stmt_vec_info vect_phi_info
= loop_vinfo
->lookup_stmt (vect_phi
);
2650 if (create_lcssa_for_iv_phis
|| !iv_phi_p (vect_phi_info
))
2652 tree new_res
= copy_ssa_name (PHI_RESULT (orig_phi
));
2653 gphi
*lcssa_phi
= create_phi_node (new_res
, between_bb
);
2654 add_phi_arg (lcssa_phi
, arg
, single_exit (first
), UNKNOWN_LOCATION
);
2658 /* Update PHI node in the second loop by replacing arg on the loop's
2660 adjust_phi_and_debug_stmts (update_phi
, second_preheader_e
, arg
);
2663 /* For epilogue peeling we have to make sure to copy all LC PHIs
2664 for correct vectorization of live stmts. */
2667 basic_block orig_exit
= single_exit (second
)->dest
;
2668 for (gsi_orig
= gsi_start_phis (orig_exit
);
2669 !gsi_end_p (gsi_orig
); gsi_next (&gsi_orig
))
2671 gphi
*orig_phi
= gsi_orig
.phi ();
2672 tree orig_arg
= PHI_ARG_DEF (orig_phi
, 0);
2673 if (TREE_CODE (orig_arg
) != SSA_NAME
|| virtual_operand_p (orig_arg
))
2676 /* Already created in the above loop. */
2677 if (find_guard_arg (first
, second
, orig_phi
))
2680 tree new_res
= copy_ssa_name (orig_arg
);
2681 gphi
*lcphi
= create_phi_node (new_res
, between_bb
);
2682 add_phi_arg (lcphi
, orig_arg
, single_exit (first
), UNKNOWN_LOCATION
);
2687 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2688 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2689 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2700 i_1 = PHI<i_0, i_2>;
2714 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2718 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2730 This function creates PHI nodes at merge_bb and replaces the use of i_5
2731 in the update_loop's PHI node with the result of new PHI result. */
2734 slpeel_update_phi_nodes_for_guard1 (class loop
*skip_loop
,
2735 class loop
*update_loop
,
2736 edge guard_edge
, edge merge_edge
)
2738 location_t merge_loc
, guard_loc
;
2739 edge orig_e
= loop_preheader_edge (skip_loop
);
2740 edge update_e
= loop_preheader_edge (update_loop
);
2741 gphi_iterator gsi_orig
, gsi_update
;
2743 for ((gsi_orig
= gsi_start_phis (skip_loop
->header
),
2744 gsi_update
= gsi_start_phis (update_loop
->header
));
2745 !gsi_end_p (gsi_orig
) && !gsi_end_p (gsi_update
);
2746 gsi_next (&gsi_orig
), gsi_next (&gsi_update
))
2748 gphi
*orig_phi
= gsi_orig
.phi ();
2749 gphi
*update_phi
= gsi_update
.phi ();
2751 /* Generate new phi node at merge bb of the guard. */
2752 tree new_res
= copy_ssa_name (PHI_RESULT (orig_phi
));
2753 gphi
*new_phi
= create_phi_node (new_res
, guard_edge
->dest
);
2755 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2756 args in NEW_PHI for these edges. */
2757 tree merge_arg
= PHI_ARG_DEF_FROM_EDGE (update_phi
, update_e
);
2758 tree guard_arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, orig_e
);
2759 merge_loc
= gimple_phi_arg_location_from_edge (update_phi
, update_e
);
2760 guard_loc
= gimple_phi_arg_location_from_edge (orig_phi
, orig_e
);
2761 add_phi_arg (new_phi
, merge_arg
, merge_edge
, merge_loc
);
2762 add_phi_arg (new_phi
, guard_arg
, guard_edge
, guard_loc
);
2764 /* Update phi in UPDATE_PHI. */
2765 adjust_phi_and_debug_stmts (update_phi
, update_e
, new_res
);
2769 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
2770 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
2771 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
2772 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
2777 i_1 = PHI<i_0, i_2>;
2799 i_3 = PHI<i_2, i_4>;
2810 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
2813 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
2815 For each name used out side EPILOG (i.e - for each name that has a lcssa
2816 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
2817 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
2818 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
2819 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
2820 in exit_bb will also be updated. */
2823 slpeel_update_phi_nodes_for_guard2 (class loop
*loop
, class loop
*epilog
,
2824 edge guard_edge
, edge merge_edge
)
2827 basic_block merge_bb
= guard_edge
->dest
;
2829 gcc_assert (single_succ_p (merge_bb
));
2830 edge e
= single_succ_edge (merge_bb
);
2831 basic_block exit_bb
= e
->dest
;
2832 gcc_assert (single_pred_p (exit_bb
));
2833 gcc_assert (single_pred (exit_bb
) == single_exit (epilog
)->dest
);
2835 for (gsi
= gsi_start_phis (exit_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2837 gphi
*update_phi
= gsi
.phi ();
2838 tree old_arg
= PHI_ARG_DEF (update_phi
, 0);
2840 tree merge_arg
= NULL_TREE
;
2842 /* If the old argument is a SSA_NAME use its current_def. */
2843 if (TREE_CODE (old_arg
) == SSA_NAME
)
2844 merge_arg
= get_current_def (old_arg
);
2845 /* If it's a constant or doesn't have a current_def, just use the old
2848 merge_arg
= old_arg
;
2850 tree guard_arg
= find_guard_arg (loop
, epilog
, update_phi
);
2851 /* If the var is live after loop but not a reduction, we simply
2854 guard_arg
= old_arg
;
2856 /* Create new phi node in MERGE_BB: */
2857 tree new_res
= copy_ssa_name (PHI_RESULT (update_phi
));
2858 gphi
*merge_phi
= create_phi_node (new_res
, merge_bb
);
2860 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
2861 the two PHI args in merge_phi for these edges. */
2862 add_phi_arg (merge_phi
, merge_arg
, merge_edge
, UNKNOWN_LOCATION
);
2863 add_phi_arg (merge_phi
, guard_arg
, guard_edge
, UNKNOWN_LOCATION
);
2865 /* Update the original phi in exit_bb. */
2866 adjust_phi_and_debug_stmts (update_phi
, e
, new_res
);
2870 /* EPILOG loop is duplicated from the original loop for vectorizing,
2871 the arg of its loop closed ssa PHI needs to be updated. */
2874 slpeel_update_phi_nodes_for_lcssa (class loop
*epilog
)
2877 basic_block exit_bb
= single_exit (epilog
)->dest
;
2879 gcc_assert (single_pred_p (exit_bb
));
2880 edge e
= EDGE_PRED (exit_bb
, 0);
2881 for (gsi
= gsi_start_phis (exit_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2882 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi
.phi (), e
));
2885 /* LOOP_VINFO is an epilogue loop whose corresponding main loop can be skipped.
2886 Return a value that equals:
2888 - MAIN_LOOP_VALUE when LOOP_VINFO is entered from the main loop and
2889 - SKIP_VALUE when the main loop is skipped. */
2892 vect_get_main_loop_result (loop_vec_info loop_vinfo
, tree main_loop_value
,
2895 gcc_assert (loop_vinfo
->main_loop_edge
);
2897 tree phi_result
= make_ssa_name (TREE_TYPE (main_loop_value
));
2898 basic_block bb
= loop_vinfo
->main_loop_edge
->dest
;
2899 gphi
*new_phi
= create_phi_node (phi_result
, bb
);
2900 add_phi_arg (new_phi
, main_loop_value
, loop_vinfo
->main_loop_edge
,
2902 add_phi_arg (new_phi
, skip_value
,
2903 loop_vinfo
->skip_main_loop_edge
, UNKNOWN_LOCATION
);
2907 /* Function vect_do_peeling.
2910 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2916 if (exit_loop_cond) goto exit_bb
2920 - NITERS: The number of iterations of the loop.
2921 - NITERSM1: The number of iterations of the loop's latch.
2922 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2923 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2924 CHECK_PROFITABILITY is true.
2926 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2927 iterate after vectorization; see vect_set_loop_condition for details.
2928 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2929 should be set to the number of scalar iterations handled by the
2930 vector loop. The SSA name is only used on exit from the loop.
2932 This function peels prolog and epilog from the loop, adds guards skipping
2933 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2937 if (prefer_scalar_loop) goto merge_bb_1
2938 else goto guard_bb_2
2941 if (skip_prolog) goto merge_bb_2
2942 else goto prolog_preheader
2948 if (exit_prolog_cond) goto prolog_exit_bb
2949 else goto prolog_header_bb
2958 if (exit_vector_cond) goto vector_exit_bb
2959 else goto vector_header_bb
2963 if (skip_epilog) goto merge_bb_3
2964 else goto epilog_preheader
2972 if (exit_epilog_cond) goto merge_bb_3
2973 else goto epilog_header_bb
2977 Note this function peels prolog and epilog only if it's necessary,
2979 This function returns the epilogue loop if a decision was made to vectorize
2982 The analysis resulting in this epilogue loop's loop_vec_info was performed
2983 in the same vect_analyze_loop call as the main loop's. At that time
2984 vect_analyze_loop constructs a list of accepted loop_vec_info's for lower
2985 vectorization factors than the main loop. This list is stored in the main
2986 loop's loop_vec_info in the 'epilogue_vinfos' member. Everytime we decide to
2987 vectorize the epilogue loop for a lower vectorization factor, the
2988 loop_vec_info sitting at the top of the epilogue_vinfos list is removed,
2989 updated and linked to the epilogue loop. This is later used to vectorize
2990 the epilogue. The reason the loop_vec_info needs updating is that it was
2991 constructed based on the original main loop, and the epilogue loop is a
2992 copy of this loop, so all links pointing to statements in the original loop
2993 need updating. Furthermore, these loop_vec_infos share the
2994 data_reference's records, which will also need to be updated.
2996 TODO: Guard for prefer_scalar_loop should be emitted along with
2997 versioning conditions if loop versioning is needed. */
3001 vect_do_peeling (loop_vec_info loop_vinfo
, tree niters
, tree nitersm1
,
3002 tree
*niters_vector
, tree
*step_vector
,
3003 tree
*niters_vector_mult_vf_var
, int th
,
3004 bool check_profitability
, bool niters_no_overflow
,
3008 tree type
= TREE_TYPE (niters
), guard_cond
;
3009 basic_block guard_bb
, guard_to
;
3010 profile_probability prob_prolog
, prob_vector
, prob_epilog
;
3012 int prolog_peeling
= 0;
3013 bool vect_epilogues
= loop_vinfo
->epilogue_vinfos
.length () > 0;
3014 /* We currently do not support prolog peeling if the target alignment is not
3015 known at compile time. 'vect_gen_prolog_loop_niters' depends on the
3016 target alignment being constant. */
3017 dr_vec_info
*dr_info
= LOOP_VINFO_UNALIGNED_DR (loop_vinfo
);
3018 if (dr_info
&& !DR_TARGET_ALIGNMENT (dr_info
).is_constant ())
3021 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo
))
3022 prolog_peeling
= LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
);
3024 poly_uint64 vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
3025 poly_uint64 bound_epilog
= 0;
3026 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo
)
3027 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo
))
3028 bound_epilog
+= vf
- 1;
3029 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
))
3031 bool epilog_peeling
= maybe_ne (bound_epilog
, 0U);
3032 poly_uint64 bound_scalar
= bound_epilog
;
3034 if (!prolog_peeling
&& !epilog_peeling
)
3037 /* Before doing any peeling make sure to reset debug binds outside of
3038 the loop refering to defs not in LC SSA. */
3039 class loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
3040 for (unsigned i
= 0; i
< loop
->num_nodes
; ++i
)
3042 basic_block bb
= LOOP_VINFO_BBS (loop_vinfo
)[i
];
3043 imm_use_iterator ui
;
3045 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
3048 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, gimple_phi_result (gsi
.phi ()))
3049 if (gimple_debug_bind_p (use_stmt
)
3050 && loop
!= gimple_bb (use_stmt
)->loop_father
3051 && !flow_loop_nested_p (loop
,
3052 gimple_bb (use_stmt
)->loop_father
))
3054 gimple_debug_bind_reset_value (use_stmt
);
3055 update_stmt (use_stmt
);
3058 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
3061 ssa_op_iter op_iter
;
3062 def_operand_p def_p
;
3063 FOR_EACH_SSA_DEF_OPERAND (def_p
, gsi_stmt (gsi
), op_iter
, SSA_OP_DEF
)
3064 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, DEF_FROM_PTR (def_p
))
3065 if (gimple_debug_bind_p (use_stmt
)
3066 && loop
!= gimple_bb (use_stmt
)->loop_father
3067 && !flow_loop_nested_p (loop
,
3068 gimple_bb (use_stmt
)->loop_father
))
3070 gimple_debug_bind_reset_value (use_stmt
);
3071 update_stmt (use_stmt
);
3076 prob_vector
= profile_probability::guessed_always ().apply_scale (9, 10);
3077 estimated_vf
= vect_vf_for_cost (loop_vinfo
);
3078 if (estimated_vf
== 2)
3080 prob_prolog
= prob_epilog
= profile_probability::guessed_always ()
3081 .apply_scale (estimated_vf
- 1, estimated_vf
);
3083 class loop
*prolog
, *epilog
= NULL
;
3084 class loop
*first_loop
= loop
;
3085 bool irred_flag
= loop_preheader_edge (loop
)->flags
& EDGE_IRREDUCIBLE_LOOP
;
3087 /* SSA form needs to be up-to-date since we are going to manually
3088 update SSA form in slpeel_tree_duplicate_loop_to_edge_cfg and delete all
3089 update SSA state after that, so we have to make sure to not lose any
3090 pending update needs. */
3091 gcc_assert (!need_ssa_update_p (cfun
));
3093 /* If we're vectorizing an epilogue loop, we have ensured that the
3094 virtual operand is in SSA form throughout the vectorized main loop.
3095 Normally it is possible to trace the updated
3096 vector-stmt vdefs back to scalar-stmt vdefs and vector-stmt vuses
3097 back to scalar-stmt vuses, meaning that the effect of the SSA update
3098 remains local to the main loop. However, there are rare cases in
3099 which the vectorized loop should have vdefs even when the original scalar
3100 loop didn't. For example, vectorizing a load with IFN_LOAD_LANES
3101 introduces clobbers of the temporary vector array, which in turn
3102 needs new vdefs. If the scalar loop doesn't write to memory, these
3103 new vdefs will be the only ones in the vector loop.
3104 We are currently defering updating virtual SSA form and creating
3105 of a virtual PHI for this case so we do not have to make sure the
3106 newly introduced virtual def is in LCSSA form. */
3108 if (MAY_HAVE_DEBUG_BIND_STMTS
)
3110 gcc_assert (!adjust_vec
.exists ());
3111 adjust_vec
.create (32);
3113 initialize_original_copy_tables ();
3115 /* Record the anchor bb at which the guard should be placed if the scalar
3116 loop might be preferred. */
3117 basic_block anchor
= loop_preheader_edge (loop
)->src
;
3119 /* Generate the number of iterations for the prolog loop. We do this here
3120 so that we can also get the upper bound on the number of iterations. */
3122 int bound_prolog
= 0;
3124 niters_prolog
= vect_gen_prolog_loop_niters (loop_vinfo
, anchor
,
3127 niters_prolog
= build_int_cst (type
, 0);
3129 loop_vec_info epilogue_vinfo
= NULL
;
3132 epilogue_vinfo
= loop_vinfo
->epilogue_vinfos
[0];
3133 loop_vinfo
->epilogue_vinfos
.ordered_remove (0);
3136 tree niters_vector_mult_vf
= NULL_TREE
;
3137 /* Saving NITERs before the loop, as this may be changed by prologue. */
3138 tree before_loop_niters
= LOOP_VINFO_NITERS (loop_vinfo
);
3139 edge update_e
= NULL
, skip_e
= NULL
;
3140 unsigned int lowest_vf
= constant_lower_bound (vf
);
3141 /* Prolog loop may be skipped. */
3142 bool skip_prolog
= (prolog_peeling
!= 0);
3143 /* Skip this loop to epilog when there are not enough iterations to enter this
3144 vectorized loop. If true we should perform runtime checks on the NITERS
3145 to check whether we should skip the current vectorized loop. If we know
3146 the number of scalar iterations we may choose to add a runtime check if
3147 this number "maybe" smaller than the number of iterations required
3148 when we know the number of scalar iterations may potentially
3149 be smaller than the number of iterations required to enter this loop, for
3150 this we use the upper bounds on the prolog and epilog peeling. When we
3151 don't know the number of iterations and don't require versioning it is
3152 because we have asserted that there are enough scalar iterations to enter
3153 the main loop, so this skip is not necessary. When we are versioning then
3154 we only add such a skip if we have chosen to vectorize the epilogue. */
3155 bool skip_vector
= (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
3156 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo
),
3157 bound_prolog
+ bound_epilog
)
3158 : (!LOOP_REQUIRES_VERSIONING (loop_vinfo
)
3159 || vect_epilogues
));
3160 /* Epilog loop must be executed if the number of iterations for epilog
3161 loop is known at compile time, otherwise we need to add a check at
3162 the end of vector loop and skip to the end of epilog loop. */
3163 bool skip_epilog
= (prolog_peeling
< 0
3164 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
3165 || !vf
.is_constant ());
3166 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
3167 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
))
3168 skip_epilog
= false;
3170 class loop
*scalar_loop
= LOOP_VINFO_SCALAR_LOOP (loop_vinfo
);
3171 auto_vec
<profile_count
> original_counts
;
3172 basic_block
*original_bbs
= NULL
;
3176 split_edge (loop_preheader_edge (loop
));
3178 if (epilog_peeling
&& (vect_epilogues
|| scalar_loop
== NULL
))
3180 original_bbs
= get_loop_body (loop
);
3181 for (unsigned int i
= 0; i
< loop
->num_nodes
; i
++)
3182 original_counts
.safe_push(original_bbs
[i
]->count
);
3185 /* Due to the order in which we peel prolog and epilog, we first
3186 propagate probability to the whole loop. The purpose is to
3187 avoid adjusting probabilities of both prolog and vector loops
3188 separately. Note in this case, the probability of epilog loop
3189 needs to be scaled back later. */
3190 basic_block bb_before_loop
= loop_preheader_edge (loop
)->src
;
3191 if (prob_vector
.initialized_p ())
3193 scale_bbs_frequencies (&bb_before_loop
, 1, prob_vector
);
3194 scale_loop_profile (loop
, prob_vector
, 0);
3199 /* Make sure to set the epilogue's epilogue scalar loop, such that we can
3200 use the original scalar loop as remaining epilogue if necessary. */
3201 LOOP_VINFO_SCALAR_LOOP (epilogue_vinfo
)
3202 = LOOP_VINFO_SCALAR_LOOP (loop_vinfo
);
3206 e
= loop_preheader_edge (loop
);
3207 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop
, e
));
3209 /* Peel prolog and put it on preheader edge of loop. */
3210 prolog
= slpeel_tree_duplicate_loop_to_edge_cfg (loop
, scalar_loop
, e
);
3211 gcc_assert (prolog
);
3212 prolog
->force_vectorize
= false;
3213 slpeel_update_phi_nodes_for_loops (loop_vinfo
, prolog
, loop
, true);
3214 first_loop
= prolog
;
3215 reset_original_copy_tables ();
3217 /* Update the number of iterations for prolog loop. */
3218 tree step_prolog
= build_one_cst (TREE_TYPE (niters_prolog
));
3219 vect_set_loop_condition (prolog
, NULL
, niters_prolog
,
3220 step_prolog
, NULL_TREE
, false);
3222 /* Skip the prolog loop. */
3225 guard_cond
= fold_build2 (EQ_EXPR
, boolean_type_node
,
3226 niters_prolog
, build_int_cst (type
, 0));
3227 guard_bb
= loop_preheader_edge (prolog
)->src
;
3228 basic_block bb_after_prolog
= loop_preheader_edge (loop
)->src
;
3229 guard_to
= split_edge (loop_preheader_edge (loop
));
3230 guard_e
= slpeel_add_loop_guard (guard_bb
, guard_cond
,
3232 prob_prolog
.invert (),
3234 e
= EDGE_PRED (guard_to
, 0);
3235 e
= (e
!= guard_e
? e
: EDGE_PRED (guard_to
, 1));
3236 slpeel_update_phi_nodes_for_guard1 (prolog
, loop
, guard_e
, e
);
3238 scale_bbs_frequencies (&bb_after_prolog
, 1, prob_prolog
);
3239 scale_loop_profile (prolog
, prob_prolog
, bound_prolog
);
3242 /* Update init address of DRs. */
3243 vect_update_inits_of_drs (loop_vinfo
, niters_prolog
, PLUS_EXPR
);
3244 /* Update niters for vector loop. */
3245 LOOP_VINFO_NITERS (loop_vinfo
)
3246 = fold_build2 (MINUS_EXPR
, type
, niters
, niters_prolog
);
3247 LOOP_VINFO_NITERSM1 (loop_vinfo
)
3248 = fold_build2 (MINUS_EXPR
, type
,
3249 LOOP_VINFO_NITERSM1 (loop_vinfo
), niters_prolog
);
3250 bool new_var_p
= false;
3251 niters
= vect_build_loop_niters (loop_vinfo
, &new_var_p
);
3252 /* It's guaranteed that vector loop bound before vectorization is at
3253 least VF, so set range information for newly generated var. */
3256 value_range
vr (type
,
3257 wi::to_wide (build_int_cst (type
, lowest_vf
)),
3258 wi::to_wide (TYPE_MAX_VALUE (type
)));
3259 set_range_info (niters
, vr
);
3262 /* Prolog iterates at most bound_prolog times, latch iterates at
3263 most bound_prolog - 1 times. */
3264 record_niter_bound (prolog
, bound_prolog
- 1, false, true);
3265 delete_update_ssa ();
3266 adjust_vec_debug_stmts ();
3272 e
= single_exit (loop
);
3273 gcc_checking_assert (slpeel_can_duplicate_loop_p (loop
, e
));
3275 /* Peel epilog and put it on exit edge of loop. If we are vectorizing
3276 said epilog then we should use a copy of the main loop as a starting
3277 point. This loop may have already had some preliminary transformations
3278 to allow for more optimal vectorization, for example if-conversion.
3279 If we are not vectorizing the epilog then we should use the scalar loop
3280 as the transformations mentioned above make less or no sense when not
3282 epilog
= vect_epilogues
? get_loop_copy (loop
) : scalar_loop
;
3283 epilog
= slpeel_tree_duplicate_loop_to_edge_cfg (loop
, epilog
, e
);
3284 gcc_assert (epilog
);
3286 epilog
->force_vectorize
= false;
3287 slpeel_update_phi_nodes_for_loops (loop_vinfo
, loop
, epilog
, false);
3289 /* Scalar version loop may be preferred. In this case, add guard
3290 and skip to epilog. Note this only happens when the number of
3291 iterations of loop is unknown at compile time, otherwise this
3292 won't be vectorized. */
3295 /* Additional epilogue iteration is peeled if gap exists. */
3296 tree t
= vect_gen_scalar_loop_niters (niters_prolog
, prolog_peeling
,
3297 bound_prolog
, bound_epilog
,
3299 check_profitability
);
3300 /* Build guard against NITERSM1 since NITERS may overflow. */
3301 guard_cond
= fold_build2 (LT_EXPR
, boolean_type_node
, nitersm1
, t
);
3303 guard_to
= split_edge (loop_preheader_edge (epilog
));
3304 guard_e
= slpeel_add_loop_guard (guard_bb
, guard_cond
,
3306 prob_vector
.invert (),
3309 e
= EDGE_PRED (guard_to
, 0);
3310 e
= (e
!= guard_e
? e
: EDGE_PRED (guard_to
, 1));
3311 slpeel_update_phi_nodes_for_guard1 (first_loop
, epilog
, guard_e
, e
);
3313 /* Simply propagate profile info from guard_bb to guard_to which is
3314 a merge point of control flow. */
3315 guard_to
->count
= guard_bb
->count
;
3317 /* Restore the counts of the epilog loop if we didn't use the scalar loop. */
3318 if (vect_epilogues
|| scalar_loop
== NULL
)
3320 gcc_assert(epilog
->num_nodes
== loop
->num_nodes
);
3321 basic_block
*bbs
= get_loop_body (epilog
);
3322 for (unsigned int i
= 0; i
< epilog
->num_nodes
; i
++)
3324 gcc_assert(get_bb_original (bbs
[i
]) == original_bbs
[i
]);
3325 bbs
[i
]->count
= original_counts
[i
];
3328 free (original_bbs
);
3332 basic_block bb_before_epilog
= loop_preheader_edge (epilog
)->src
;
3333 /* If loop is peeled for non-zero constant times, now niters refers to
3334 orig_niters - prolog_peeling, it won't overflow even the orig_niters
3336 niters_no_overflow
|= (prolog_peeling
> 0);
3337 vect_gen_vector_loop_niters (loop_vinfo
, niters
,
3338 niters_vector
, step_vector
,
3339 niters_no_overflow
);
3340 if (!integer_onep (*step_vector
))
3342 /* On exit from the loop we will have an easy way of calcalating
3343 NITERS_VECTOR / STEP * STEP. Install a dummy definition
3345 niters_vector_mult_vf
= make_ssa_name (TREE_TYPE (*niters_vector
));
3346 SSA_NAME_DEF_STMT (niters_vector_mult_vf
) = gimple_build_nop ();
3347 *niters_vector_mult_vf_var
= niters_vector_mult_vf
;
3350 vect_gen_vector_loop_niters_mult_vf (loop_vinfo
, *niters_vector
,
3351 &niters_vector_mult_vf
);
3352 /* Update IVs of original loop as if they were advanced by
3353 niters_vector_mult_vf steps. */
3354 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo
));
3355 update_e
= skip_vector
? e
: loop_preheader_edge (epilog
);
3356 vect_update_ivs_after_vectorizer (loop_vinfo
, niters_vector_mult_vf
,
3361 guard_cond
= fold_build2 (EQ_EXPR
, boolean_type_node
,
3362 niters
, niters_vector_mult_vf
);
3363 guard_bb
= single_exit (loop
)->dest
;
3364 guard_to
= split_edge (single_exit (epilog
));
3365 guard_e
= slpeel_add_loop_guard (guard_bb
, guard_cond
, guard_to
,
3366 skip_vector
? anchor
: guard_bb
,
3367 prob_epilog
.invert (),
3370 epilogue_vinfo
->skip_this_loop_edge
= guard_e
;
3371 slpeel_update_phi_nodes_for_guard2 (loop
, epilog
, guard_e
,
3372 single_exit (epilog
));
3373 /* Only need to handle basic block before epilog loop if it's not
3374 the guard_bb, which is the case when skip_vector is true. */
3375 if (guard_bb
!= bb_before_epilog
)
3377 prob_epilog
= prob_vector
* prob_epilog
+ prob_vector
.invert ();
3379 scale_bbs_frequencies (&bb_before_epilog
, 1, prob_epilog
);
3381 scale_loop_profile (epilog
, prob_epilog
, 0);
3384 slpeel_update_phi_nodes_for_lcssa (epilog
);
3386 unsigned HOST_WIDE_INT bound
;
3387 if (bound_scalar
.is_constant (&bound
))
3389 gcc_assert (bound
!= 0);
3390 /* -1 to convert loop iterations to latch iterations. */
3391 record_niter_bound (epilog
, bound
- 1, false, true);
3394 delete_update_ssa ();
3395 adjust_vec_debug_stmts ();
3401 epilog
->aux
= epilogue_vinfo
;
3402 LOOP_VINFO_LOOP (epilogue_vinfo
) = epilog
;
3404 loop_constraint_clear (epilog
, LOOP_C_INFINITE
);
3406 /* We now must calculate the number of NITERS performed by the previous
3407 loop and EPILOGUE_NITERS to be performed by the epilogue. */
3408 tree niters
= fold_build2 (PLUS_EXPR
, TREE_TYPE (niters_vector_mult_vf
),
3409 niters_prolog
, niters_vector_mult_vf
);
3411 /* If skip_vector we may skip the previous loop, we insert a phi-node to
3412 determine whether we are coming from the previous vectorized loop
3413 using the update_e edge or the skip_vector basic block using the
3417 gcc_assert (update_e
!= NULL
&& skip_e
!= NULL
);
3418 gphi
*new_phi
= create_phi_node (make_ssa_name (TREE_TYPE (niters
)),
3420 tree new_ssa
= make_ssa_name (TREE_TYPE (niters
));
3421 gimple
*stmt
= gimple_build_assign (new_ssa
, niters
);
3422 gimple_stmt_iterator gsi
;
3423 if (TREE_CODE (niters_vector_mult_vf
) == SSA_NAME
3424 && SSA_NAME_DEF_STMT (niters_vector_mult_vf
)->bb
!= NULL
)
3426 gsi
= gsi_for_stmt (SSA_NAME_DEF_STMT (niters_vector_mult_vf
));
3427 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
3431 gsi
= gsi_last_bb (update_e
->src
);
3432 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
3436 add_phi_arg (new_phi
, niters
, update_e
, UNKNOWN_LOCATION
);
3437 add_phi_arg (new_phi
, build_zero_cst (TREE_TYPE (niters
)), skip_e
,
3439 niters
= PHI_RESULT (new_phi
);
3440 epilogue_vinfo
->main_loop_edge
= update_e
;
3441 epilogue_vinfo
->skip_main_loop_edge
= skip_e
;
3444 /* Set ADVANCE to the number of iterations performed by the previous
3445 loop and its prologue. */
3448 /* Subtract the number of iterations performed by the vectorized loop
3449 from the number of total iterations. */
3450 tree epilogue_niters
= fold_build2 (MINUS_EXPR
, TREE_TYPE (niters
),
3454 LOOP_VINFO_NITERS (epilogue_vinfo
) = epilogue_niters
;
3455 LOOP_VINFO_NITERSM1 (epilogue_vinfo
)
3456 = fold_build2 (MINUS_EXPR
, TREE_TYPE (epilogue_niters
),
3458 build_one_cst (TREE_TYPE (epilogue_niters
)));
3460 /* Decide what to do if the number of epilogue iterations is not
3461 a multiple of the epilogue loop's vectorization factor.
3462 We should have rejected the loop during the analysis phase
3464 bool res
= vect_determine_partial_vectors_and_peeling (epilogue_vinfo
);
3468 adjust_vec
.release ();
3469 free_original_copy_tables ();
3471 return vect_epilogues
? epilog
: NULL
;
3474 /* Function vect_create_cond_for_niters_checks.
3476 Create a conditional expression that represents the run-time checks for
3477 loop's niter. The loop is guaranteed to terminate if the run-time
3481 COND_EXPR - input conditional expression. New conditions will be chained
3482 with logical AND operation. If it is NULL, then the function
3483 is used to return the number of alias checks.
3484 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3488 COND_EXPR - conditional expression.
3490 The returned COND_EXPR is the conditional expression to be used in the
3491 if statement that controls which version of the loop gets executed at
3495 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo
, tree
*cond_expr
)
3497 tree part_cond_expr
= LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo
);
3500 *cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
3501 *cond_expr
, part_cond_expr
);
3503 *cond_expr
= part_cond_expr
;
3506 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3507 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
3510 chain_cond_expr (tree
*cond_expr
, tree part_cond_expr
)
3513 *cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
3514 *cond_expr
, part_cond_expr
);
3516 *cond_expr
= part_cond_expr
;
3519 /* Function vect_create_cond_for_align_checks.
3521 Create a conditional expression that represents the alignment checks for
3522 all of data references (array element references) whose alignment must be
3526 COND_EXPR - input conditional expression. New conditions will be chained
3527 with logical AND operation.
3528 LOOP_VINFO - two fields of the loop information are used.
3529 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
3530 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
3533 COND_EXPR_STMT_LIST - statements needed to construct the conditional
3535 The returned value is the conditional expression to be used in the if
3536 statement that controls which version of the loop gets executed at runtime.
3538 The algorithm makes two assumptions:
3539 1) The number of bytes "n" in a vector is a power of 2.
3540 2) An address "a" is aligned if a%n is zero and that this
3541 test can be done as a&(n-1) == 0. For example, for 16
3542 byte vectors the test is a&0xf == 0. */
3545 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo
,
3547 gimple_seq
*cond_expr_stmt_list
)
3549 const vec
<stmt_vec_info
> &may_misalign_stmts
3550 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
);
3551 stmt_vec_info stmt_info
;
3552 int mask
= LOOP_VINFO_PTR_MASK (loop_vinfo
);
3555 tree int_ptrsize_type
;
3557 tree or_tmp_name
= NULL_TREE
;
3561 tree part_cond_expr
;
3563 /* Check that mask is one less than a power of 2, i.e., mask is
3564 all zeros followed by all ones. */
3565 gcc_assert ((mask
!= 0) && ((mask
& (mask
+1)) == 0));
3567 int_ptrsize_type
= signed_type_for (ptr_type_node
);
3569 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
3570 of the first vector of the i'th data reference. */
3572 FOR_EACH_VEC_ELT (may_misalign_stmts
, i
, stmt_info
)
3574 gimple_seq new_stmt_list
= NULL
;
3577 tree new_or_tmp_name
;
3578 gimple
*addr_stmt
, *or_stmt
;
3579 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
3580 bool negative
= tree_int_cst_compare
3581 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info
)), size_zero_node
) < 0;
3582 tree offset
= negative
3583 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype
) + 1)
3584 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype
))))
3587 /* create: addr_tmp = (int)(address_of_first_vector) */
3589 vect_create_addr_base_for_vector_ref (loop_vinfo
,
3590 stmt_info
, &new_stmt_list
,
3592 if (new_stmt_list
!= NULL
)
3593 gimple_seq_add_seq (cond_expr_stmt_list
, new_stmt_list
);
3595 sprintf (tmp_name
, "addr2int%d", i
);
3596 addr_tmp_name
= make_temp_ssa_name (int_ptrsize_type
, NULL
, tmp_name
);
3597 addr_stmt
= gimple_build_assign (addr_tmp_name
, NOP_EXPR
, addr_base
);
3598 gimple_seq_add_stmt (cond_expr_stmt_list
, addr_stmt
);
3600 /* The addresses are OR together. */
3602 if (or_tmp_name
!= NULL_TREE
)
3604 /* create: or_tmp = or_tmp | addr_tmp */
3605 sprintf (tmp_name
, "orptrs%d", i
);
3606 new_or_tmp_name
= make_temp_ssa_name (int_ptrsize_type
, NULL
, tmp_name
);
3607 or_stmt
= gimple_build_assign (new_or_tmp_name
, BIT_IOR_EXPR
,
3608 or_tmp_name
, addr_tmp_name
);
3609 gimple_seq_add_stmt (cond_expr_stmt_list
, or_stmt
);
3610 or_tmp_name
= new_or_tmp_name
;
3613 or_tmp_name
= addr_tmp_name
;
3617 mask_cst
= build_int_cst (int_ptrsize_type
, mask
);
3619 /* create: and_tmp = or_tmp & mask */
3620 and_tmp_name
= make_temp_ssa_name (int_ptrsize_type
, NULL
, "andmask");
3622 and_stmt
= gimple_build_assign (and_tmp_name
, BIT_AND_EXPR
,
3623 or_tmp_name
, mask_cst
);
3624 gimple_seq_add_stmt (cond_expr_stmt_list
, and_stmt
);
3626 /* Make and_tmp the left operand of the conditional test against zero.
3627 if and_tmp has a nonzero bit then some address is unaligned. */
3628 ptrsize_zero
= build_int_cst (int_ptrsize_type
, 0);
3629 part_cond_expr
= fold_build2 (EQ_EXPR
, boolean_type_node
,
3630 and_tmp_name
, ptrsize_zero
);
3631 chain_cond_expr (cond_expr
, part_cond_expr
);
3634 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
3635 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
3636 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3637 and this new condition are true. Treat a null *COND_EXPR as "true". */
3640 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo
, tree
*cond_expr
)
3642 const vec
<vec_object_pair
> &pairs
3643 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo
);
3645 vec_object_pair
*pair
;
3646 FOR_EACH_VEC_ELT (pairs
, i
, pair
)
3648 tree addr1
= build_fold_addr_expr (pair
->first
);
3649 tree addr2
= build_fold_addr_expr (pair
->second
);
3650 tree part_cond_expr
= fold_build2 (NE_EXPR
, boolean_type_node
,
3652 chain_cond_expr (cond_expr
, part_cond_expr
);
3656 /* Create an expression that is true when all lower-bound conditions for
3657 the vectorized loop are met. Chain this condition with *COND_EXPR. */
3660 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo
, tree
*cond_expr
)
3662 const vec
<vec_lower_bound
> &lower_bounds
3663 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo
);
3664 for (unsigned int i
= 0; i
< lower_bounds
.length (); ++i
)
3666 tree expr
= lower_bounds
[i
].expr
;
3667 tree type
= unsigned_type_for (TREE_TYPE (expr
));
3668 expr
= fold_convert (type
, expr
);
3669 poly_uint64 bound
= lower_bounds
[i
].min_value
;
3670 if (!lower_bounds
[i
].unsigned_p
)
3672 expr
= fold_build2 (PLUS_EXPR
, type
, expr
,
3673 build_int_cstu (type
, bound
- 1));
3676 tree part_cond_expr
= fold_build2 (GE_EXPR
, boolean_type_node
, expr
,
3677 build_int_cstu (type
, bound
));
3678 chain_cond_expr (cond_expr
, part_cond_expr
);
3682 /* Function vect_create_cond_for_alias_checks.
3684 Create a conditional expression that represents the run-time checks for
3685 overlapping of address ranges represented by a list of data references
3686 relations passed as input.
3689 COND_EXPR - input conditional expression. New conditions will be chained
3690 with logical AND operation. If it is NULL, then the function
3691 is used to return the number of alias checks.
3692 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3696 COND_EXPR - conditional expression.
3698 The returned COND_EXPR is the conditional expression to be used in the if
3699 statement that controls which version of the loop gets executed at runtime.
3703 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo
, tree
* cond_expr
)
3705 const vec
<dr_with_seg_len_pair_t
> &comp_alias_ddrs
=
3706 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo
);
3708 if (comp_alias_ddrs
.is_empty ())
3711 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo
),
3712 &comp_alias_ddrs
, cond_expr
);
3713 if (dump_enabled_p ())
3714 dump_printf_loc (MSG_NOTE
, vect_location
,
3715 "created %u versioning for alias checks.\n",
3716 comp_alias_ddrs
.length ());
3720 /* Function vect_loop_versioning.
3722 If the loop has data references that may or may not be aligned or/and
3723 has data reference relations whose independence was not proven then
3724 two versions of the loop need to be generated, one which is vectorized
3725 and one which isn't. A test is then generated to control which of the
3726 loops is executed. The test checks for the alignment of all of the
3727 data references that may or may not be aligned. An additional
3728 sequence of runtime tests is generated for each pairs of DDRs whose
3729 independence was not proven. The vectorized version of loop is
3730 executed only if both alias and alignment tests are passed.
3732 The test generated to check which version of loop is executed
3733 is modified to also check for profitability as indicated by the
3734 cost model threshold TH.
3736 The versioning precondition(s) are placed in *COND_EXPR and
3737 *COND_EXPR_STMT_LIST. */
3740 vect_loop_versioning (loop_vec_info loop_vinfo
,
3741 gimple
*loop_vectorized_call
)
3743 class loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
), *nloop
;
3744 class loop
*scalar_loop
= LOOP_VINFO_SCALAR_LOOP (loop_vinfo
);
3745 basic_block condition_bb
;
3747 gimple_stmt_iterator cond_exp_gsi
;
3748 basic_block merge_bb
;
3749 basic_block new_exit_bb
;
3751 gphi
*orig_phi
, *new_phi
;
3752 tree cond_expr
= NULL_TREE
;
3753 gimple_seq cond_expr_stmt_list
= NULL
;
3755 profile_probability prob
= profile_probability::likely ();
3756 gimple_seq gimplify_stmt_list
= NULL
;
3757 tree scalar_loop_iters
= LOOP_VINFO_NITERSM1 (loop_vinfo
);
3758 bool version_align
= LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
);
3759 bool version_alias
= LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
);
3760 bool version_niter
= LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo
);
3761 poly_uint64 versioning_threshold
3762 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo
);
3763 tree version_simd_if_cond
3764 = LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (loop_vinfo
);
3765 unsigned th
= LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
);
3767 if (vect_apply_runtime_profitability_check_p (loop_vinfo
)
3768 && !ordered_p (th
, versioning_threshold
))
3769 cond_expr
= fold_build2 (GE_EXPR
, boolean_type_node
, scalar_loop_iters
,
3770 build_int_cst (TREE_TYPE (scalar_loop_iters
),
3772 if (maybe_ne (versioning_threshold
, 0U))
3774 tree expr
= fold_build2 (GE_EXPR
, boolean_type_node
, scalar_loop_iters
,
3775 build_int_cst (TREE_TYPE (scalar_loop_iters
),
3776 versioning_threshold
- 1));
3778 cond_expr
= fold_build2 (BIT_AND_EXPR
, boolean_type_node
,
3784 tree cost_name
= NULL_TREE
;
3785 profile_probability prob2
= profile_probability::uninitialized ();
3787 && EXPR_P (cond_expr
)
3791 || version_simd_if_cond
))
3793 cost_name
= cond_expr
= force_gimple_operand_1 (unshare_expr (cond_expr
),
3794 &cond_expr_stmt_list
,
3795 is_gimple_val
, NULL_TREE
);
3796 /* Split prob () into two so that the overall probability of passing
3797 both the cost-model and versioning checks is the orig prob. */
3798 prob2
= prob
.split (prob
);
3802 vect_create_cond_for_niters_checks (loop_vinfo
, &cond_expr
);
3806 gimple_seq tem
= NULL
;
3807 cond_expr
= force_gimple_operand_1 (unshare_expr (cond_expr
),
3808 &tem
, is_gimple_condexpr_for_cond
,
3810 gimple_seq_add_seq (&cond_expr_stmt_list
, tem
);
3814 vect_create_cond_for_align_checks (loop_vinfo
, &cond_expr
,
3815 &cond_expr_stmt_list
);
3819 vect_create_cond_for_unequal_addrs (loop_vinfo
, &cond_expr
);
3820 vect_create_cond_for_lower_bounds (loop_vinfo
, &cond_expr
);
3821 vect_create_cond_for_alias_checks (loop_vinfo
, &cond_expr
);
3824 if (version_simd_if_cond
)
3826 gcc_assert (dom_info_available_p (CDI_DOMINATORS
));
3829 = gimple_bb (SSA_NAME_DEF_STMT (version_simd_if_cond
)))
3830 gcc_assert (bb
!= loop
->header
3831 && dominated_by_p (CDI_DOMINATORS
, loop
->header
, bb
)
3832 && (scalar_loop
== NULL
3833 || (bb
!= scalar_loop
->header
3834 && dominated_by_p (CDI_DOMINATORS
,
3835 scalar_loop
->header
, bb
))));
3836 tree zero
= build_zero_cst (TREE_TYPE (version_simd_if_cond
));
3837 tree c
= fold_build2 (NE_EXPR
, boolean_type_node
,
3838 version_simd_if_cond
, zero
);
3840 cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
3844 if (dump_enabled_p ())
3845 dump_printf_loc (MSG_NOTE
, vect_location
,
3846 "created versioning for simd if condition check.\n");
3849 cond_expr
= force_gimple_operand_1 (unshare_expr (cond_expr
),
3850 &gimplify_stmt_list
,
3851 is_gimple_condexpr_for_cond
, NULL_TREE
);
3852 gimple_seq_add_seq (&cond_expr_stmt_list
, gimplify_stmt_list
);
3854 /* Compute the outermost loop cond_expr and cond_expr_stmt_list are
3856 class loop
*outermost
= outermost_invariant_loop_for_expr (loop
, cond_expr
);
3857 for (gimple_stmt_iterator gsi
= gsi_start (cond_expr_stmt_list
);
3858 !gsi_end_p (gsi
); gsi_next (&gsi
))
3860 gimple
*stmt
= gsi_stmt (gsi
);
3863 use_operand_p use_p
;
3865 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_USE
)
3866 if ((def_bb
= gimple_bb (SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p
))))
3867 && flow_bb_inside_loop_p (outermost
, def_bb
))
3868 outermost
= superloop_at_depth (loop
, bb_loop_depth (def_bb
) + 1);
3871 /* Search for the outermost loop we can version. Avoid versioning of
3872 non-perfect nests but allow if-conversion versioned loops inside. */
3873 class loop
*loop_to_version
= loop
;
3874 if (flow_loop_nested_p (outermost
, loop
))
3876 if (dump_enabled_p ())
3877 dump_printf_loc (MSG_NOTE
, vect_location
,
3878 "trying to apply versioning to outer loop %d\n",
3880 if (outermost
->num
== 0)
3881 outermost
= superloop_at_depth (loop
, 1);
3882 /* And avoid applying versioning on non-perfect nests. */
3883 while (loop_to_version
!= outermost
3884 && (e
= single_exit (loop_outer (loop_to_version
)))
3885 && !(e
->flags
& EDGE_COMPLEX
)
3886 && (!loop_outer (loop_to_version
)->inner
->next
3887 || vect_loop_vectorized_call (loop_to_version
))
3888 && (!loop_outer (loop_to_version
)->inner
->next
3889 || !loop_outer (loop_to_version
)->inner
->next
->next
))
3890 loop_to_version
= loop_outer (loop_to_version
);
3893 /* Apply versioning. If there is already a scalar version created by
3894 if-conversion re-use that. Note we cannot re-use the copy of
3895 an if-converted outer-loop when vectorizing the inner loop only. */
3897 if ((!loop_to_version
->inner
|| loop
== loop_to_version
)
3898 && loop_vectorized_call
)
3900 gcc_assert (scalar_loop
);
3901 condition_bb
= gimple_bb (loop_vectorized_call
);
3902 cond
= as_a
<gcond
*> (*gsi_last_bb (condition_bb
));
3903 gimple_cond_set_condition_from_tree (cond
, cond_expr
);
3906 if (cond_expr_stmt_list
)
3908 cond_exp_gsi
= gsi_for_stmt (loop_vectorized_call
);
3909 gsi_insert_seq_before (&cond_exp_gsi
, cond_expr_stmt_list
,
3913 /* if-conversion uses profile_probability::always () for both paths,
3914 reset the paths probabilities appropriately. */
3916 extract_true_false_edges_from_block (condition_bb
, &te
, &fe
);
3917 te
->probability
= prob
;
3918 fe
->probability
= prob
.invert ();
3919 /* We can scale loops counts immediately but have to postpone
3920 scaling the scalar loop because we re-use it during peeling. */
3921 scale_loop_frequencies (loop_to_version
, te
->probability
);
3922 LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo
) = fe
->probability
;
3924 nloop
= scalar_loop
;
3925 if (dump_enabled_p ())
3926 dump_printf_loc (MSG_NOTE
, vect_location
,
3927 "reusing %sloop version created by if conversion\n",
3928 loop_to_version
!= loop
? "outer " : "");
3932 if (loop_to_version
!= loop
3933 && dump_enabled_p ())
3934 dump_printf_loc (MSG_NOTE
, vect_location
,
3935 "applying loop versioning to outer loop %d\n",
3936 loop_to_version
->num
);
3938 unsigned orig_pe_idx
= loop_preheader_edge (loop
)->dest_idx
;
3940 initialize_original_copy_tables ();
3941 nloop
= loop_version (loop_to_version
, cond_expr
, &condition_bb
,
3942 prob
, prob
.invert (), prob
, prob
.invert (), true);
3944 nloop
= get_loop_copy (loop
);
3946 /* For cycle vectorization with SLP we rely on the PHI arguments
3947 appearing in the same order as the SLP node operands which for the
3948 loop PHI nodes means the preheader edge dest index needs to remain
3949 the same for the analyzed loop which also becomes the vectorized one.
3950 Make it so in case the state after versioning differs by redirecting
3951 the first edge into the header to the same destination which moves
3953 if (loop_preheader_edge (loop
)->dest_idx
!= orig_pe_idx
)
3955 edge e
= EDGE_PRED (loop
->header
, 0);
3956 ssa_redirect_edge (e
, e
->dest
);
3957 flush_pending_stmts (e
);
3959 gcc_assert (loop_preheader_edge (loop
)->dest_idx
== orig_pe_idx
);
3961 /* Kill off IFN_LOOP_VECTORIZED_CALL in the copy, nobody will
3962 reap those otherwise; they also refer to the original
3964 class loop
*l
= loop
;
3965 while (gimple
*call
= vect_loop_vectorized_call (l
))
3967 call
= SSA_NAME_DEF_STMT (get_current_def (gimple_call_lhs (call
)));
3968 fold_loop_internal_call (call
, boolean_false_node
);
3971 free_original_copy_tables ();
3973 if (cond_expr_stmt_list
)
3975 cond_exp_gsi
= gsi_last_bb (condition_bb
);
3976 gsi_insert_seq_before (&cond_exp_gsi
, cond_expr_stmt_list
,
3980 /* Loop versioning violates an assumption we try to maintain during
3981 vectorization - that the loop exit block has a single predecessor.
3982 After versioning, the exit block of both loop versions is the same
3983 basic block (i.e. it has two predecessors). Just in order to simplify
3984 following transformations in the vectorizer, we fix this situation
3985 here by adding a new (empty) block on the exit-edge of the loop,
3986 with the proper loop-exit phis to maintain loop-closed-form.
3987 If loop versioning wasn't done from loop, but scalar_loop instead,
3988 merge_bb will have already just a single successor. */
3990 merge_bb
= single_exit (loop_to_version
)->dest
;
3991 if (EDGE_COUNT (merge_bb
->preds
) >= 2)
3993 gcc_assert (EDGE_COUNT (merge_bb
->preds
) >= 2);
3994 new_exit_bb
= split_edge (single_exit (loop_to_version
));
3995 new_exit_e
= single_exit (loop_to_version
);
3996 e
= EDGE_SUCC (new_exit_bb
, 0);
3998 for (gsi
= gsi_start_phis (merge_bb
); !gsi_end_p (gsi
);
4002 orig_phi
= gsi
.phi ();
4003 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
));
4004 new_phi
= create_phi_node (new_res
, new_exit_bb
);
4005 arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, e
);
4006 add_phi_arg (new_phi
, arg
, new_exit_e
,
4007 gimple_phi_arg_location_from_edge (orig_phi
, e
));
4008 adjust_phi_and_debug_stmts (orig_phi
, e
, PHI_RESULT (new_phi
));
4012 update_ssa (TODO_update_ssa_no_phi
);
4015 /* Split the cost model check off to a separate BB. Costing assumes
4016 this is the only thing we perform when we enter the scalar loop
4017 from a failed cost decision. */
4018 if (cost_name
&& TREE_CODE (cost_name
) == SSA_NAME
)
4020 gimple
*def
= SSA_NAME_DEF_STMT (cost_name
);
4021 gcc_assert (gimple_bb (def
) == condition_bb
);
4022 /* All uses of the cost check are 'true' after the check we
4023 are going to insert. */
4024 replace_uses_by (cost_name
, boolean_true_node
);
4025 /* And we're going to build the new single use of it. */
4026 gcond
*cond
= gimple_build_cond (NE_EXPR
, cost_name
, boolean_false_node
,
4027 NULL_TREE
, NULL_TREE
);
4028 edge e
= split_block (gimple_bb (def
), def
);
4029 gimple_stmt_iterator gsi
= gsi_for_stmt (def
);
4030 gsi_insert_after (&gsi
, cond
, GSI_NEW_STMT
);
4031 edge true_e
, false_e
;
4032 extract_true_false_edges_from_block (e
->dest
, &true_e
, &false_e
);
4033 e
->flags
&= ~EDGE_FALLTHRU
;
4034 e
->flags
|= EDGE_TRUE_VALUE
;
4035 edge e2
= make_edge (e
->src
, false_e
->dest
, EDGE_FALSE_VALUE
);
4036 e
->probability
= prob2
;
4037 e2
->probability
= prob2
.invert ();
4038 set_immediate_dominator (CDI_DOMINATORS
, false_e
->dest
, e
->src
);
4039 auto_vec
<basic_block
, 3> adj
;
4040 for (basic_block son
= first_dom_son (CDI_DOMINATORS
, e
->dest
);
4042 son
= next_dom_son (CDI_DOMINATORS
, son
))
4043 if (EDGE_COUNT (son
->preds
) > 1)
4044 adj
.safe_push (son
);
4045 for (auto son
: adj
)
4046 set_immediate_dominator (CDI_DOMINATORS
, son
, e
->src
);
4051 /* The versioned loop could be infinite, we need to clear existing
4052 niter information which is copied from the original loop. */
4053 gcc_assert (loop_constraint_set_p (loop
, LOOP_C_FINITE
));
4054 vect_free_loop_info_assumptions (nloop
);
4057 if (LOCATION_LOCUS (vect_location
.get_location_t ()) != UNKNOWN_LOCATION
4058 && dump_enabled_p ())
4061 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
| MSG_PRIORITY_USER_FACING
,
4063 "loop versioned for vectorization because of "
4064 "possible aliasing\n");
4066 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
| MSG_PRIORITY_USER_FACING
,
4068 "loop versioned for vectorization to enhance "