Remove dg-options for sh*-*-* from gcc.c-torture/execute/pr44683.c.
[official-gcc.git] / gcc / cse.c
blob866b0ee5bc793716b10ac2909cc42ee0c1494fc7
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "diagnostic-core.h"
35 #include "toplev.h"
36 #include "ggc.h"
37 #include "except.h"
38 #include "target.h"
39 #include "params.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "dbgcnt.h"
44 #include "hash-set.h"
45 #include "rtl-iter.h"
47 /* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
52 It is too complicated to keep track of the different possibilities
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
62 We use two data structures to record the equivalent expressions:
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
75 Registers and "quantity numbers":
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `REG_QTY (N)' records what quantity register N is currently thought
84 of as containing.
86 All real quantity numbers are greater than or equal to zero.
87 If register N has not been assigned a quantity, `REG_QTY (N)' will
88 equal -N - 1, which is always negative.
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
93 We also maintain a bidirectional chain of registers for each
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
101 If two registers have the same quantity number, it must be true that
102 REG expressions with qty_table `mode' must be in the hash table for both
103 registers and must be in the same class.
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
110 Constants and quantity numbers
112 When a quantity has a known constant value, that value is stored
113 in the appropriate qty_table `const_rtx'. This is in addition to
114 putting the constant in the hash table as is usual for non-regs.
116 Whether a reg or a constant is preferred is determined by the configuration
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
120 When a quantity has a known nearly constant value (such as an address
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
130 Other expressions:
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
141 Register references in an expression are canonicalized before hashing
142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
175 `REG_TICK' and `REG_IN_TABLE', accessors for members of
176 cse_reg_info, are used to detect this case. REG_TICK (i) is
177 incremented whenever a value is stored in register i.
178 REG_IN_TABLE (i) holds -1 if no references to register i have been
179 entered in the table; otherwise, it contains the value REG_TICK (i)
180 had when the references were entered. If we want to enter a
181 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182 remove old references. Until we want to enter a new entry, the
183 mere fact that the two vectors don't match makes the entries be
184 ignored if anyone tries to match them.
186 Registers themselves are entered in the hash table as well as in
187 the equivalent-register chains. However, `REG_TICK' and
188 `REG_IN_TABLE' do not apply to expressions which are simple
189 register references. These expressions are removed from the table
190 immediately when they become invalid, and this can be done even if
191 we do not immediately search for all the expressions that refer to
192 the register.
194 A CLOBBER rtx in an instruction invalidates its operand for further
195 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
196 invalidates everything that resides in memory.
198 Related expressions:
200 Constant expressions that differ only by an additive integer
201 are called related. When a constant expression is put in
202 the table, the related expression with no constant term
203 is also entered. These are made to point at each other
204 so that it is possible to find out if there exists any
205 register equivalent to an expression related to a given expression. */
207 /* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
210 static int max_qty;
212 /* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
215 static int next_qty;
217 /* Per-qty information tracking.
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
222 `mode' contains the machine mode of this quantity.
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
242 struct qty_table_elem
244 rtx const_rtx;
245 rtx_insn *const_insn;
246 rtx comparison_const;
247 int comparison_qty;
248 unsigned int first_reg, last_reg;
249 /* The sizes of these fields should match the sizes of the
250 code and mode fields of struct rtx_def (see rtl.h). */
251 ENUM_BITFIELD(rtx_code) comparison_code : 16;
252 ENUM_BITFIELD(machine_mode) mode : 8;
255 /* The table of all qtys, indexed by qty number. */
256 static struct qty_table_elem *qty_table;
258 #ifdef HAVE_cc0
259 /* For machines that have a CC0, we do not record its value in the hash
260 table since its use is guaranteed to be the insn immediately following
261 its definition and any other insn is presumed to invalidate it.
263 Instead, we store below the current and last value assigned to CC0.
264 If it should happen to be a constant, it is stored in preference
265 to the actual assigned value. In case it is a constant, we store
266 the mode in which the constant should be interpreted. */
268 static rtx this_insn_cc0, prev_insn_cc0;
269 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
270 #endif
272 /* Insn being scanned. */
274 static rtx_insn *this_insn;
275 static bool optimize_this_for_speed_p;
277 /* Index by register number, gives the number of the next (or
278 previous) register in the chain of registers sharing the same
279 value.
281 Or -1 if this register is at the end of the chain.
283 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
285 /* Per-register equivalence chain. */
286 struct reg_eqv_elem
288 int next, prev;
291 /* The table of all register equivalence chains. */
292 static struct reg_eqv_elem *reg_eqv_table;
294 struct cse_reg_info
296 /* The timestamp at which this register is initialized. */
297 unsigned int timestamp;
299 /* The quantity number of the register's current contents. */
300 int reg_qty;
302 /* The number of times the register has been altered in the current
303 basic block. */
304 int reg_tick;
306 /* The REG_TICK value at which rtx's containing this register are
307 valid in the hash table. If this does not equal the current
308 reg_tick value, such expressions existing in the hash table are
309 invalid. */
310 int reg_in_table;
312 /* The SUBREG that was set when REG_TICK was last incremented. Set
313 to -1 if the last store was to the whole register, not a subreg. */
314 unsigned int subreg_ticked;
317 /* A table of cse_reg_info indexed by register numbers. */
318 static struct cse_reg_info *cse_reg_info_table;
320 /* The size of the above table. */
321 static unsigned int cse_reg_info_table_size;
323 /* The index of the first entry that has not been initialized. */
324 static unsigned int cse_reg_info_table_first_uninitialized;
326 /* The timestamp at the beginning of the current run of
327 cse_extended_basic_block. We increment this variable at the beginning of
328 the current run of cse_extended_basic_block. The timestamp field of a
329 cse_reg_info entry matches the value of this variable if and only
330 if the entry has been initialized during the current run of
331 cse_extended_basic_block. */
332 static unsigned int cse_reg_info_timestamp;
334 /* A HARD_REG_SET containing all the hard registers for which there is
335 currently a REG expression in the hash table. Note the difference
336 from the above variables, which indicate if the REG is mentioned in some
337 expression in the table. */
339 static HARD_REG_SET hard_regs_in_table;
341 /* True if CSE has altered the CFG. */
342 static bool cse_cfg_altered;
344 /* True if CSE has altered conditional jump insns in such a way
345 that jump optimization should be redone. */
346 static bool cse_jumps_altered;
348 /* True if we put a LABEL_REF into the hash table for an INSN
349 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
350 to put in the note. */
351 static bool recorded_label_ref;
353 /* canon_hash stores 1 in do_not_record
354 if it notices a reference to CC0, PC, or some other volatile
355 subexpression. */
357 static int do_not_record;
359 /* canon_hash stores 1 in hash_arg_in_memory
360 if it notices a reference to memory within the expression being hashed. */
362 static int hash_arg_in_memory;
364 /* The hash table contains buckets which are chains of `struct table_elt's,
365 each recording one expression's information.
366 That expression is in the `exp' field.
368 The canon_exp field contains a canonical (from the point of view of
369 alias analysis) version of the `exp' field.
371 Those elements with the same hash code are chained in both directions
372 through the `next_same_hash' and `prev_same_hash' fields.
374 Each set of expressions with equivalent values
375 are on a two-way chain through the `next_same_value'
376 and `prev_same_value' fields, and all point with
377 the `first_same_value' field at the first element in
378 that chain. The chain is in order of increasing cost.
379 Each element's cost value is in its `cost' field.
381 The `in_memory' field is nonzero for elements that
382 involve any reference to memory. These elements are removed
383 whenever a write is done to an unidentified location in memory.
384 To be safe, we assume that a memory address is unidentified unless
385 the address is either a symbol constant or a constant plus
386 the frame pointer or argument pointer.
388 The `related_value' field is used to connect related expressions
389 (that differ by adding an integer).
390 The related expressions are chained in a circular fashion.
391 `related_value' is zero for expressions for which this
392 chain is not useful.
394 The `cost' field stores the cost of this element's expression.
395 The `regcost' field stores the value returned by approx_reg_cost for
396 this element's expression.
398 The `is_const' flag is set if the element is a constant (including
399 a fixed address).
401 The `flag' field is used as a temporary during some search routines.
403 The `mode' field is usually the same as GET_MODE (`exp'), but
404 if `exp' is a CONST_INT and has no machine mode then the `mode'
405 field is the mode it was being used as. Each constant is
406 recorded separately for each mode it is used with. */
408 struct table_elt
410 rtx exp;
411 rtx canon_exp;
412 struct table_elt *next_same_hash;
413 struct table_elt *prev_same_hash;
414 struct table_elt *next_same_value;
415 struct table_elt *prev_same_value;
416 struct table_elt *first_same_value;
417 struct table_elt *related_value;
418 int cost;
419 int regcost;
420 /* The size of this field should match the size
421 of the mode field of struct rtx_def (see rtl.h). */
422 ENUM_BITFIELD(machine_mode) mode : 8;
423 char in_memory;
424 char is_const;
425 char flag;
428 /* We don't want a lot of buckets, because we rarely have very many
429 things stored in the hash table, and a lot of buckets slows
430 down a lot of loops that happen frequently. */
431 #define HASH_SHIFT 5
432 #define HASH_SIZE (1 << HASH_SHIFT)
433 #define HASH_MASK (HASH_SIZE - 1)
435 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
436 register (hard registers may require `do_not_record' to be set). */
438 #define HASH(X, M) \
439 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
440 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
441 : canon_hash (X, M)) & HASH_MASK)
443 /* Like HASH, but without side-effects. */
444 #define SAFE_HASH(X, M) \
445 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
446 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
447 : safe_hash (X, M)) & HASH_MASK)
449 /* Determine whether register number N is considered a fixed register for the
450 purpose of approximating register costs.
451 It is desirable to replace other regs with fixed regs, to reduce need for
452 non-fixed hard regs.
453 A reg wins if it is either the frame pointer or designated as fixed. */
454 #define FIXED_REGNO_P(N) \
455 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
456 || fixed_regs[N] || global_regs[N])
458 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
459 hard registers and pointers into the frame are the cheapest with a cost
460 of 0. Next come pseudos with a cost of one and other hard registers with
461 a cost of 2. Aside from these special cases, call `rtx_cost'. */
463 #define CHEAP_REGNO(N) \
464 (REGNO_PTR_FRAME_P (N) \
465 || (HARD_REGISTER_NUM_P (N) \
466 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
468 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
469 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
471 /* Get the number of times this register has been updated in this
472 basic block. */
474 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
476 /* Get the point at which REG was recorded in the table. */
478 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
480 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
481 SUBREG). */
483 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
485 /* Get the quantity number for REG. */
487 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
489 /* Determine if the quantity number for register X represents a valid index
490 into the qty_table. */
492 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
494 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
496 #define CHEAPER(X, Y) \
497 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
499 static struct table_elt *table[HASH_SIZE];
501 /* Chain of `struct table_elt's made so far for this function
502 but currently removed from the table. */
504 static struct table_elt *free_element_chain;
506 /* Set to the cost of a constant pool reference if one was found for a
507 symbolic constant. If this was found, it means we should try to
508 convert constants into constant pool entries if they don't fit in
509 the insn. */
511 static int constant_pool_entries_cost;
512 static int constant_pool_entries_regcost;
514 /* Trace a patch through the CFG. */
516 struct branch_path
518 /* The basic block for this path entry. */
519 basic_block bb;
522 /* This data describes a block that will be processed by
523 cse_extended_basic_block. */
525 struct cse_basic_block_data
527 /* Total number of SETs in block. */
528 int nsets;
529 /* Size of current branch path, if any. */
530 int path_size;
531 /* Current path, indicating which basic_blocks will be processed. */
532 struct branch_path *path;
536 /* Pointers to the live in/live out bitmaps for the boundaries of the
537 current EBB. */
538 static bitmap cse_ebb_live_in, cse_ebb_live_out;
540 /* A simple bitmap to track which basic blocks have been visited
541 already as part of an already processed extended basic block. */
542 static sbitmap cse_visited_basic_blocks;
544 static bool fixed_base_plus_p (rtx x);
545 static int notreg_cost (rtx, enum rtx_code, int);
546 static int preferable (int, int, int, int);
547 static void new_basic_block (void);
548 static void make_new_qty (unsigned int, enum machine_mode);
549 static void make_regs_eqv (unsigned int, unsigned int);
550 static void delete_reg_equiv (unsigned int);
551 static int mention_regs (rtx);
552 static int insert_regs (rtx, struct table_elt *, int);
553 static void remove_from_table (struct table_elt *, unsigned);
554 static void remove_pseudo_from_table (rtx, unsigned);
555 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
556 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
557 static rtx lookup_as_function (rtx, enum rtx_code);
558 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
559 enum machine_mode, int, int);
560 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
561 enum machine_mode);
562 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
563 static void invalidate (rtx, enum machine_mode);
564 static void remove_invalid_refs (unsigned int);
565 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
566 enum machine_mode);
567 static void rehash_using_reg (rtx);
568 static void invalidate_memory (void);
569 static void invalidate_for_call (void);
570 static rtx use_related_value (rtx, struct table_elt *);
572 static inline unsigned canon_hash (rtx, enum machine_mode);
573 static inline unsigned safe_hash (rtx, enum machine_mode);
574 static inline unsigned hash_rtx_string (const char *);
576 static rtx canon_reg (rtx, rtx_insn *);
577 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
578 enum machine_mode *,
579 enum machine_mode *);
580 static rtx fold_rtx (rtx, rtx_insn *);
581 static rtx equiv_constant (rtx);
582 static void record_jump_equiv (rtx_insn *, bool);
583 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
584 int);
585 static void cse_insn (rtx_insn *);
586 static void cse_prescan_path (struct cse_basic_block_data *);
587 static void invalidate_from_clobbers (rtx_insn *);
588 static void invalidate_from_sets_and_clobbers (rtx_insn *);
589 static rtx cse_process_notes (rtx, rtx, bool *);
590 static void cse_extended_basic_block (struct cse_basic_block_data *);
591 extern void dump_class (struct table_elt*);
592 static void get_cse_reg_info_1 (unsigned int regno);
593 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
595 static void flush_hash_table (void);
596 static bool insn_live_p (rtx_insn *, int *);
597 static bool set_live_p (rtx, rtx_insn *, int *);
598 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
599 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
600 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
601 bool);
604 #undef RTL_HOOKS_GEN_LOWPART
605 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
607 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
609 /* Nonzero if X has the form (PLUS frame-pointer integer). */
611 static bool
612 fixed_base_plus_p (rtx x)
614 switch (GET_CODE (x))
616 case REG:
617 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
618 return true;
619 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
620 return true;
621 return false;
623 case PLUS:
624 if (!CONST_INT_P (XEXP (x, 1)))
625 return false;
626 return fixed_base_plus_p (XEXP (x, 0));
628 default:
629 return false;
633 /* Dump the expressions in the equivalence class indicated by CLASSP.
634 This function is used only for debugging. */
635 DEBUG_FUNCTION void
636 dump_class (struct table_elt *classp)
638 struct table_elt *elt;
640 fprintf (stderr, "Equivalence chain for ");
641 print_rtl (stderr, classp->exp);
642 fprintf (stderr, ": \n");
644 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
646 print_rtl (stderr, elt->exp);
647 fprintf (stderr, "\n");
651 /* Return an estimate of the cost of the registers used in an rtx.
652 This is mostly the number of different REG expressions in the rtx;
653 however for some exceptions like fixed registers we use a cost of
654 0. If any other hard register reference occurs, return MAX_COST. */
656 static int
657 approx_reg_cost (const_rtx x)
659 int cost = 0;
660 subrtx_iterator::array_type array;
661 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
663 const_rtx x = *iter;
664 if (REG_P (x))
666 unsigned int regno = REGNO (x);
667 if (!CHEAP_REGNO (regno))
669 if (regno < FIRST_PSEUDO_REGISTER)
671 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
672 return MAX_COST;
673 cost += 2;
675 else
676 cost += 1;
680 return cost;
683 /* Return a negative value if an rtx A, whose costs are given by COST_A
684 and REGCOST_A, is more desirable than an rtx B.
685 Return a positive value if A is less desirable, or 0 if the two are
686 equally good. */
687 static int
688 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
690 /* First, get rid of cases involving expressions that are entirely
691 unwanted. */
692 if (cost_a != cost_b)
694 if (cost_a == MAX_COST)
695 return 1;
696 if (cost_b == MAX_COST)
697 return -1;
700 /* Avoid extending lifetimes of hardregs. */
701 if (regcost_a != regcost_b)
703 if (regcost_a == MAX_COST)
704 return 1;
705 if (regcost_b == MAX_COST)
706 return -1;
709 /* Normal operation costs take precedence. */
710 if (cost_a != cost_b)
711 return cost_a - cost_b;
712 /* Only if these are identical consider effects on register pressure. */
713 if (regcost_a != regcost_b)
714 return regcost_a - regcost_b;
715 return 0;
718 /* Internal function, to compute cost when X is not a register; called
719 from COST macro to keep it simple. */
721 static int
722 notreg_cost (rtx x, enum rtx_code outer, int opno)
724 return ((GET_CODE (x) == SUBREG
725 && REG_P (SUBREG_REG (x))
726 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
727 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
728 && (GET_MODE_SIZE (GET_MODE (x))
729 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
730 && subreg_lowpart_p (x)
731 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
732 GET_MODE (SUBREG_REG (x))))
734 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
738 /* Initialize CSE_REG_INFO_TABLE. */
740 static void
741 init_cse_reg_info (unsigned int nregs)
743 /* Do we need to grow the table? */
744 if (nregs > cse_reg_info_table_size)
746 unsigned int new_size;
748 if (cse_reg_info_table_size < 2048)
750 /* Compute a new size that is a power of 2 and no smaller
751 than the large of NREGS and 64. */
752 new_size = (cse_reg_info_table_size
753 ? cse_reg_info_table_size : 64);
755 while (new_size < nregs)
756 new_size *= 2;
758 else
760 /* If we need a big table, allocate just enough to hold
761 NREGS registers. */
762 new_size = nregs;
765 /* Reallocate the table with NEW_SIZE entries. */
766 free (cse_reg_info_table);
767 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
768 cse_reg_info_table_size = new_size;
769 cse_reg_info_table_first_uninitialized = 0;
772 /* Do we have all of the first NREGS entries initialized? */
773 if (cse_reg_info_table_first_uninitialized < nregs)
775 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
776 unsigned int i;
778 /* Put the old timestamp on newly allocated entries so that they
779 will all be considered out of date. We do not touch those
780 entries beyond the first NREGS entries to be nice to the
781 virtual memory. */
782 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
783 cse_reg_info_table[i].timestamp = old_timestamp;
785 cse_reg_info_table_first_uninitialized = nregs;
789 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
791 static void
792 get_cse_reg_info_1 (unsigned int regno)
794 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
795 entry will be considered to have been initialized. */
796 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
798 /* Initialize the rest of the entry. */
799 cse_reg_info_table[regno].reg_tick = 1;
800 cse_reg_info_table[regno].reg_in_table = -1;
801 cse_reg_info_table[regno].subreg_ticked = -1;
802 cse_reg_info_table[regno].reg_qty = -regno - 1;
805 /* Find a cse_reg_info entry for REGNO. */
807 static inline struct cse_reg_info *
808 get_cse_reg_info (unsigned int regno)
810 struct cse_reg_info *p = &cse_reg_info_table[regno];
812 /* If this entry has not been initialized, go ahead and initialize
813 it. */
814 if (p->timestamp != cse_reg_info_timestamp)
815 get_cse_reg_info_1 (regno);
817 return p;
820 /* Clear the hash table and initialize each register with its own quantity,
821 for a new basic block. */
823 static void
824 new_basic_block (void)
826 int i;
828 next_qty = 0;
830 /* Invalidate cse_reg_info_table. */
831 cse_reg_info_timestamp++;
833 /* Clear out hash table state for this pass. */
834 CLEAR_HARD_REG_SET (hard_regs_in_table);
836 /* The per-quantity values used to be initialized here, but it is
837 much faster to initialize each as it is made in `make_new_qty'. */
839 for (i = 0; i < HASH_SIZE; i++)
841 struct table_elt *first;
843 first = table[i];
844 if (first != NULL)
846 struct table_elt *last = first;
848 table[i] = NULL;
850 while (last->next_same_hash != NULL)
851 last = last->next_same_hash;
853 /* Now relink this hash entire chain into
854 the free element list. */
856 last->next_same_hash = free_element_chain;
857 free_element_chain = first;
861 #ifdef HAVE_cc0
862 prev_insn_cc0 = 0;
863 #endif
866 /* Say that register REG contains a quantity in mode MODE not in any
867 register before and initialize that quantity. */
869 static void
870 make_new_qty (unsigned int reg, enum machine_mode mode)
872 int q;
873 struct qty_table_elem *ent;
874 struct reg_eqv_elem *eqv;
876 gcc_assert (next_qty < max_qty);
878 q = REG_QTY (reg) = next_qty++;
879 ent = &qty_table[q];
880 ent->first_reg = reg;
881 ent->last_reg = reg;
882 ent->mode = mode;
883 ent->const_rtx = ent->const_insn = NULL;
884 ent->comparison_code = UNKNOWN;
886 eqv = &reg_eqv_table[reg];
887 eqv->next = eqv->prev = -1;
890 /* Make reg NEW equivalent to reg OLD.
891 OLD is not changing; NEW is. */
893 static void
894 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
896 unsigned int lastr, firstr;
897 int q = REG_QTY (old_reg);
898 struct qty_table_elem *ent;
900 ent = &qty_table[q];
902 /* Nothing should become eqv until it has a "non-invalid" qty number. */
903 gcc_assert (REGNO_QTY_VALID_P (old_reg));
905 REG_QTY (new_reg) = q;
906 firstr = ent->first_reg;
907 lastr = ent->last_reg;
909 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
910 hard regs. Among pseudos, if NEW will live longer than any other reg
911 of the same qty, and that is beyond the current basic block,
912 make it the new canonical replacement for this qty. */
913 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
914 /* Certain fixed registers might be of the class NO_REGS. This means
915 that not only can they not be allocated by the compiler, but
916 they cannot be used in substitutions or canonicalizations
917 either. */
918 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
919 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
920 || (new_reg >= FIRST_PSEUDO_REGISTER
921 && (firstr < FIRST_PSEUDO_REGISTER
922 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
923 && !bitmap_bit_p (cse_ebb_live_out, firstr))
924 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
925 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
927 reg_eqv_table[firstr].prev = new_reg;
928 reg_eqv_table[new_reg].next = firstr;
929 reg_eqv_table[new_reg].prev = -1;
930 ent->first_reg = new_reg;
932 else
934 /* If NEW is a hard reg (known to be non-fixed), insert at end.
935 Otherwise, insert before any non-fixed hard regs that are at the
936 end. Registers of class NO_REGS cannot be used as an
937 equivalent for anything. */
938 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
939 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
940 && new_reg >= FIRST_PSEUDO_REGISTER)
941 lastr = reg_eqv_table[lastr].prev;
942 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
943 if (reg_eqv_table[lastr].next >= 0)
944 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
945 else
946 qty_table[q].last_reg = new_reg;
947 reg_eqv_table[lastr].next = new_reg;
948 reg_eqv_table[new_reg].prev = lastr;
952 /* Remove REG from its equivalence class. */
954 static void
955 delete_reg_equiv (unsigned int reg)
957 struct qty_table_elem *ent;
958 int q = REG_QTY (reg);
959 int p, n;
961 /* If invalid, do nothing. */
962 if (! REGNO_QTY_VALID_P (reg))
963 return;
965 ent = &qty_table[q];
967 p = reg_eqv_table[reg].prev;
968 n = reg_eqv_table[reg].next;
970 if (n != -1)
971 reg_eqv_table[n].prev = p;
972 else
973 ent->last_reg = p;
974 if (p != -1)
975 reg_eqv_table[p].next = n;
976 else
977 ent->first_reg = n;
979 REG_QTY (reg) = -reg - 1;
982 /* Remove any invalid expressions from the hash table
983 that refer to any of the registers contained in expression X.
985 Make sure that newly inserted references to those registers
986 as subexpressions will be considered valid.
988 mention_regs is not called when a register itself
989 is being stored in the table.
991 Return 1 if we have done something that may have changed the hash code
992 of X. */
994 static int
995 mention_regs (rtx x)
997 enum rtx_code code;
998 int i, j;
999 const char *fmt;
1000 int changed = 0;
1002 if (x == 0)
1003 return 0;
1005 code = GET_CODE (x);
1006 if (code == REG)
1008 unsigned int regno = REGNO (x);
1009 unsigned int endregno = END_REGNO (x);
1010 unsigned int i;
1012 for (i = regno; i < endregno; i++)
1014 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1015 remove_invalid_refs (i);
1017 REG_IN_TABLE (i) = REG_TICK (i);
1018 SUBREG_TICKED (i) = -1;
1021 return 0;
1024 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1025 pseudo if they don't use overlapping words. We handle only pseudos
1026 here for simplicity. */
1027 if (code == SUBREG && REG_P (SUBREG_REG (x))
1028 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1030 unsigned int i = REGNO (SUBREG_REG (x));
1032 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1034 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1035 the last store to this register really stored into this
1036 subreg, then remove the memory of this subreg.
1037 Otherwise, remove any memory of the entire register and
1038 all its subregs from the table. */
1039 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1040 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1041 remove_invalid_refs (i);
1042 else
1043 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1046 REG_IN_TABLE (i) = REG_TICK (i);
1047 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1048 return 0;
1051 /* If X is a comparison or a COMPARE and either operand is a register
1052 that does not have a quantity, give it one. This is so that a later
1053 call to record_jump_equiv won't cause X to be assigned a different
1054 hash code and not found in the table after that call.
1056 It is not necessary to do this here, since rehash_using_reg can
1057 fix up the table later, but doing this here eliminates the need to
1058 call that expensive function in the most common case where the only
1059 use of the register is in the comparison. */
1061 if (code == COMPARE || COMPARISON_P (x))
1063 if (REG_P (XEXP (x, 0))
1064 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1065 if (insert_regs (XEXP (x, 0), NULL, 0))
1067 rehash_using_reg (XEXP (x, 0));
1068 changed = 1;
1071 if (REG_P (XEXP (x, 1))
1072 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1073 if (insert_regs (XEXP (x, 1), NULL, 0))
1075 rehash_using_reg (XEXP (x, 1));
1076 changed = 1;
1080 fmt = GET_RTX_FORMAT (code);
1081 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1082 if (fmt[i] == 'e')
1083 changed |= mention_regs (XEXP (x, i));
1084 else if (fmt[i] == 'E')
1085 for (j = 0; j < XVECLEN (x, i); j++)
1086 changed |= mention_regs (XVECEXP (x, i, j));
1088 return changed;
1091 /* Update the register quantities for inserting X into the hash table
1092 with a value equivalent to CLASSP.
1093 (If the class does not contain a REG, it is irrelevant.)
1094 If MODIFIED is nonzero, X is a destination; it is being modified.
1095 Note that delete_reg_equiv should be called on a register
1096 before insert_regs is done on that register with MODIFIED != 0.
1098 Nonzero value means that elements of reg_qty have changed
1099 so X's hash code may be different. */
1101 static int
1102 insert_regs (rtx x, struct table_elt *classp, int modified)
1104 if (REG_P (x))
1106 unsigned int regno = REGNO (x);
1107 int qty_valid;
1109 /* If REGNO is in the equivalence table already but is of the
1110 wrong mode for that equivalence, don't do anything here. */
1112 qty_valid = REGNO_QTY_VALID_P (regno);
1113 if (qty_valid)
1115 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1117 if (ent->mode != GET_MODE (x))
1118 return 0;
1121 if (modified || ! qty_valid)
1123 if (classp)
1124 for (classp = classp->first_same_value;
1125 classp != 0;
1126 classp = classp->next_same_value)
1127 if (REG_P (classp->exp)
1128 && GET_MODE (classp->exp) == GET_MODE (x))
1130 unsigned c_regno = REGNO (classp->exp);
1132 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1134 /* Suppose that 5 is hard reg and 100 and 101 are
1135 pseudos. Consider
1137 (set (reg:si 100) (reg:si 5))
1138 (set (reg:si 5) (reg:si 100))
1139 (set (reg:di 101) (reg:di 5))
1141 We would now set REG_QTY (101) = REG_QTY (5), but the
1142 entry for 5 is in SImode. When we use this later in
1143 copy propagation, we get the register in wrong mode. */
1144 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1145 continue;
1147 make_regs_eqv (regno, c_regno);
1148 return 1;
1151 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1152 than REG_IN_TABLE to find out if there was only a single preceding
1153 invalidation - for the SUBREG - or another one, which would be
1154 for the full register. However, if we find here that REG_TICK
1155 indicates that the register is invalid, it means that it has
1156 been invalidated in a separate operation. The SUBREG might be used
1157 now (then this is a recursive call), or we might use the full REG
1158 now and a SUBREG of it later. So bump up REG_TICK so that
1159 mention_regs will do the right thing. */
1160 if (! modified
1161 && REG_IN_TABLE (regno) >= 0
1162 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1163 REG_TICK (regno)++;
1164 make_new_qty (regno, GET_MODE (x));
1165 return 1;
1168 return 0;
1171 /* If X is a SUBREG, we will likely be inserting the inner register in the
1172 table. If that register doesn't have an assigned quantity number at
1173 this point but does later, the insertion that we will be doing now will
1174 not be accessible because its hash code will have changed. So assign
1175 a quantity number now. */
1177 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1178 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1180 insert_regs (SUBREG_REG (x), NULL, 0);
1181 mention_regs (x);
1182 return 1;
1184 else
1185 return mention_regs (x);
1189 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1190 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1191 CST is equal to an anchor. */
1193 static bool
1194 compute_const_anchors (rtx cst,
1195 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1196 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1198 HOST_WIDE_INT n = INTVAL (cst);
1200 *lower_base = n & ~(targetm.const_anchor - 1);
1201 if (*lower_base == n)
1202 return false;
1204 *upper_base =
1205 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1206 *upper_offs = n - *upper_base;
1207 *lower_offs = n - *lower_base;
1208 return true;
1211 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1213 static void
1214 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1215 enum machine_mode mode)
1217 struct table_elt *elt;
1218 unsigned hash;
1219 rtx anchor_exp;
1220 rtx exp;
1222 anchor_exp = GEN_INT (anchor);
1223 hash = HASH (anchor_exp, mode);
1224 elt = lookup (anchor_exp, hash, mode);
1225 if (!elt)
1226 elt = insert (anchor_exp, NULL, hash, mode);
1228 exp = plus_constant (mode, reg, offs);
1229 /* REG has just been inserted and the hash codes recomputed. */
1230 mention_regs (exp);
1231 hash = HASH (exp, mode);
1233 /* Use the cost of the register rather than the whole expression. When
1234 looking up constant anchors we will further offset the corresponding
1235 expression therefore it does not make sense to prefer REGs over
1236 reg-immediate additions. Prefer instead the oldest expression. Also
1237 don't prefer pseudos over hard regs so that we derive constants in
1238 argument registers from other argument registers rather than from the
1239 original pseudo that was used to synthesize the constant. */
1240 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1243 /* The constant CST is equivalent to the register REG. Create
1244 equivalences between the two anchors of CST and the corresponding
1245 register-offset expressions using REG. */
1247 static void
1248 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1250 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1252 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1253 &upper_base, &upper_offs))
1254 return;
1256 /* Ignore anchors of value 0. Constants accessible from zero are
1257 simple. */
1258 if (lower_base != 0)
1259 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1261 if (upper_base != 0)
1262 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1265 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1266 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1267 valid expression. Return the cheapest and oldest of such expressions. In
1268 *OLD, return how old the resulting expression is compared to the other
1269 equivalent expressions. */
1271 static rtx
1272 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1273 unsigned *old)
1275 struct table_elt *elt;
1276 unsigned idx;
1277 struct table_elt *match_elt;
1278 rtx match;
1280 /* Find the cheapest and *oldest* expression to maximize the chance of
1281 reusing the same pseudo. */
1283 match_elt = NULL;
1284 match = NULL_RTX;
1285 for (elt = anchor_elt->first_same_value, idx = 0;
1286 elt;
1287 elt = elt->next_same_value, idx++)
1289 if (match_elt && CHEAPER (match_elt, elt))
1290 return match;
1292 if (REG_P (elt->exp)
1293 || (GET_CODE (elt->exp) == PLUS
1294 && REG_P (XEXP (elt->exp, 0))
1295 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1297 rtx x;
1299 /* Ignore expressions that are no longer valid. */
1300 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1301 continue;
1303 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1304 if (REG_P (x)
1305 || (GET_CODE (x) == PLUS
1306 && IN_RANGE (INTVAL (XEXP (x, 1)),
1307 -targetm.const_anchor,
1308 targetm.const_anchor - 1)))
1310 match = x;
1311 match_elt = elt;
1312 *old = idx;
1317 return match;
1320 /* Try to express the constant SRC_CONST using a register+offset expression
1321 derived from a constant anchor. Return it if successful or NULL_RTX,
1322 otherwise. */
1324 static rtx
1325 try_const_anchors (rtx src_const, enum machine_mode mode)
1327 struct table_elt *lower_elt, *upper_elt;
1328 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1329 rtx lower_anchor_rtx, upper_anchor_rtx;
1330 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1331 unsigned lower_old, upper_old;
1333 /* CONST_INT is used for CC modes, but we should leave those alone. */
1334 if (GET_MODE_CLASS (mode) == MODE_CC)
1335 return NULL_RTX;
1337 gcc_assert (SCALAR_INT_MODE_P (mode));
1338 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1339 &upper_base, &upper_offs))
1340 return NULL_RTX;
1342 lower_anchor_rtx = GEN_INT (lower_base);
1343 upper_anchor_rtx = GEN_INT (upper_base);
1344 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1345 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1347 if (lower_elt)
1348 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1349 if (upper_elt)
1350 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1352 if (!lower_exp)
1353 return upper_exp;
1354 if (!upper_exp)
1355 return lower_exp;
1357 /* Return the older expression. */
1358 return (upper_old > lower_old ? upper_exp : lower_exp);
1361 /* Look in or update the hash table. */
1363 /* Remove table element ELT from use in the table.
1364 HASH is its hash code, made using the HASH macro.
1365 It's an argument because often that is known in advance
1366 and we save much time not recomputing it. */
1368 static void
1369 remove_from_table (struct table_elt *elt, unsigned int hash)
1371 if (elt == 0)
1372 return;
1374 /* Mark this element as removed. See cse_insn. */
1375 elt->first_same_value = 0;
1377 /* Remove the table element from its equivalence class. */
1380 struct table_elt *prev = elt->prev_same_value;
1381 struct table_elt *next = elt->next_same_value;
1383 if (next)
1384 next->prev_same_value = prev;
1386 if (prev)
1387 prev->next_same_value = next;
1388 else
1390 struct table_elt *newfirst = next;
1391 while (next)
1393 next->first_same_value = newfirst;
1394 next = next->next_same_value;
1399 /* Remove the table element from its hash bucket. */
1402 struct table_elt *prev = elt->prev_same_hash;
1403 struct table_elt *next = elt->next_same_hash;
1405 if (next)
1406 next->prev_same_hash = prev;
1408 if (prev)
1409 prev->next_same_hash = next;
1410 else if (table[hash] == elt)
1411 table[hash] = next;
1412 else
1414 /* This entry is not in the proper hash bucket. This can happen
1415 when two classes were merged by `merge_equiv_classes'. Search
1416 for the hash bucket that it heads. This happens only very
1417 rarely, so the cost is acceptable. */
1418 for (hash = 0; hash < HASH_SIZE; hash++)
1419 if (table[hash] == elt)
1420 table[hash] = next;
1424 /* Remove the table element from its related-value circular chain. */
1426 if (elt->related_value != 0 && elt->related_value != elt)
1428 struct table_elt *p = elt->related_value;
1430 while (p->related_value != elt)
1431 p = p->related_value;
1432 p->related_value = elt->related_value;
1433 if (p->related_value == p)
1434 p->related_value = 0;
1437 /* Now add it to the free element chain. */
1438 elt->next_same_hash = free_element_chain;
1439 free_element_chain = elt;
1442 /* Same as above, but X is a pseudo-register. */
1444 static void
1445 remove_pseudo_from_table (rtx x, unsigned int hash)
1447 struct table_elt *elt;
1449 /* Because a pseudo-register can be referenced in more than one
1450 mode, we might have to remove more than one table entry. */
1451 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1452 remove_from_table (elt, hash);
1455 /* Look up X in the hash table and return its table element,
1456 or 0 if X is not in the table.
1458 MODE is the machine-mode of X, or if X is an integer constant
1459 with VOIDmode then MODE is the mode with which X will be used.
1461 Here we are satisfied to find an expression whose tree structure
1462 looks like X. */
1464 static struct table_elt *
1465 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1467 struct table_elt *p;
1469 for (p = table[hash]; p; p = p->next_same_hash)
1470 if (mode == p->mode && ((x == p->exp && REG_P (x))
1471 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1472 return p;
1474 return 0;
1477 /* Like `lookup' but don't care whether the table element uses invalid regs.
1478 Also ignore discrepancies in the machine mode of a register. */
1480 static struct table_elt *
1481 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1483 struct table_elt *p;
1485 if (REG_P (x))
1487 unsigned int regno = REGNO (x);
1489 /* Don't check the machine mode when comparing registers;
1490 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1491 for (p = table[hash]; p; p = p->next_same_hash)
1492 if (REG_P (p->exp)
1493 && REGNO (p->exp) == regno)
1494 return p;
1496 else
1498 for (p = table[hash]; p; p = p->next_same_hash)
1499 if (mode == p->mode
1500 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1501 return p;
1504 return 0;
1507 /* Look for an expression equivalent to X and with code CODE.
1508 If one is found, return that expression. */
1510 static rtx
1511 lookup_as_function (rtx x, enum rtx_code code)
1513 struct table_elt *p
1514 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1516 if (p == 0)
1517 return 0;
1519 for (p = p->first_same_value; p; p = p->next_same_value)
1520 if (GET_CODE (p->exp) == code
1521 /* Make sure this is a valid entry in the table. */
1522 && exp_equiv_p (p->exp, p->exp, 1, false))
1523 return p->exp;
1525 return 0;
1528 /* Insert X in the hash table, assuming HASH is its hash code and
1529 CLASSP is an element of the class it should go in (or 0 if a new
1530 class should be made). COST is the code of X and reg_cost is the
1531 cost of registers in X. It is inserted at the proper position to
1532 keep the class in the order cheapest first.
1534 MODE is the machine-mode of X, or if X is an integer constant
1535 with VOIDmode then MODE is the mode with which X will be used.
1537 For elements of equal cheapness, the most recent one
1538 goes in front, except that the first element in the list
1539 remains first unless a cheaper element is added. The order of
1540 pseudo-registers does not matter, as canon_reg will be called to
1541 find the cheapest when a register is retrieved from the table.
1543 The in_memory field in the hash table element is set to 0.
1544 The caller must set it nonzero if appropriate.
1546 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1547 and if insert_regs returns a nonzero value
1548 you must then recompute its hash code before calling here.
1550 If necessary, update table showing constant values of quantities. */
1552 static struct table_elt *
1553 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1554 enum machine_mode mode, int cost, int reg_cost)
1556 struct table_elt *elt;
1558 /* If X is a register and we haven't made a quantity for it,
1559 something is wrong. */
1560 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1562 /* If X is a hard register, show it is being put in the table. */
1563 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1564 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1566 /* Put an element for X into the right hash bucket. */
1568 elt = free_element_chain;
1569 if (elt)
1570 free_element_chain = elt->next_same_hash;
1571 else
1572 elt = XNEW (struct table_elt);
1574 elt->exp = x;
1575 elt->canon_exp = NULL_RTX;
1576 elt->cost = cost;
1577 elt->regcost = reg_cost;
1578 elt->next_same_value = 0;
1579 elt->prev_same_value = 0;
1580 elt->next_same_hash = table[hash];
1581 elt->prev_same_hash = 0;
1582 elt->related_value = 0;
1583 elt->in_memory = 0;
1584 elt->mode = mode;
1585 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1587 if (table[hash])
1588 table[hash]->prev_same_hash = elt;
1589 table[hash] = elt;
1591 /* Put it into the proper value-class. */
1592 if (classp)
1594 classp = classp->first_same_value;
1595 if (CHEAPER (elt, classp))
1596 /* Insert at the head of the class. */
1598 struct table_elt *p;
1599 elt->next_same_value = classp;
1600 classp->prev_same_value = elt;
1601 elt->first_same_value = elt;
1603 for (p = classp; p; p = p->next_same_value)
1604 p->first_same_value = elt;
1606 else
1608 /* Insert not at head of the class. */
1609 /* Put it after the last element cheaper than X. */
1610 struct table_elt *p, *next;
1612 for (p = classp;
1613 (next = p->next_same_value) && CHEAPER (next, elt);
1614 p = next)
1617 /* Put it after P and before NEXT. */
1618 elt->next_same_value = next;
1619 if (next)
1620 next->prev_same_value = elt;
1622 elt->prev_same_value = p;
1623 p->next_same_value = elt;
1624 elt->first_same_value = classp;
1627 else
1628 elt->first_same_value = elt;
1630 /* If this is a constant being set equivalent to a register or a register
1631 being set equivalent to a constant, note the constant equivalence.
1633 If this is a constant, it cannot be equivalent to a different constant,
1634 and a constant is the only thing that can be cheaper than a register. So
1635 we know the register is the head of the class (before the constant was
1636 inserted).
1638 If this is a register that is not already known equivalent to a
1639 constant, we must check the entire class.
1641 If this is a register that is already known equivalent to an insn,
1642 update the qtys `const_insn' to show that `this_insn' is the latest
1643 insn making that quantity equivalent to the constant. */
1645 if (elt->is_const && classp && REG_P (classp->exp)
1646 && !REG_P (x))
1648 int exp_q = REG_QTY (REGNO (classp->exp));
1649 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1651 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1652 exp_ent->const_insn = this_insn;
1655 else if (REG_P (x)
1656 && classp
1657 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1658 && ! elt->is_const)
1660 struct table_elt *p;
1662 for (p = classp; p != 0; p = p->next_same_value)
1664 if (p->is_const && !REG_P (p->exp))
1666 int x_q = REG_QTY (REGNO (x));
1667 struct qty_table_elem *x_ent = &qty_table[x_q];
1669 x_ent->const_rtx
1670 = gen_lowpart (GET_MODE (x), p->exp);
1671 x_ent->const_insn = this_insn;
1672 break;
1677 else if (REG_P (x)
1678 && qty_table[REG_QTY (REGNO (x))].const_rtx
1679 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1680 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1682 /* If this is a constant with symbolic value,
1683 and it has a term with an explicit integer value,
1684 link it up with related expressions. */
1685 if (GET_CODE (x) == CONST)
1687 rtx subexp = get_related_value (x);
1688 unsigned subhash;
1689 struct table_elt *subelt, *subelt_prev;
1691 if (subexp != 0)
1693 /* Get the integer-free subexpression in the hash table. */
1694 subhash = SAFE_HASH (subexp, mode);
1695 subelt = lookup (subexp, subhash, mode);
1696 if (subelt == 0)
1697 subelt = insert (subexp, NULL, subhash, mode);
1698 /* Initialize SUBELT's circular chain if it has none. */
1699 if (subelt->related_value == 0)
1700 subelt->related_value = subelt;
1701 /* Find the element in the circular chain that precedes SUBELT. */
1702 subelt_prev = subelt;
1703 while (subelt_prev->related_value != subelt)
1704 subelt_prev = subelt_prev->related_value;
1705 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1706 This way the element that follows SUBELT is the oldest one. */
1707 elt->related_value = subelt_prev->related_value;
1708 subelt_prev->related_value = elt;
1712 return elt;
1715 /* Wrap insert_with_costs by passing the default costs. */
1717 static struct table_elt *
1718 insert (rtx x, struct table_elt *classp, unsigned int hash,
1719 enum machine_mode mode)
1721 return
1722 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1726 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1727 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1728 the two classes equivalent.
1730 CLASS1 will be the surviving class; CLASS2 should not be used after this
1731 call.
1733 Any invalid entries in CLASS2 will not be copied. */
1735 static void
1736 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1738 struct table_elt *elt, *next, *new_elt;
1740 /* Ensure we start with the head of the classes. */
1741 class1 = class1->first_same_value;
1742 class2 = class2->first_same_value;
1744 /* If they were already equal, forget it. */
1745 if (class1 == class2)
1746 return;
1748 for (elt = class2; elt; elt = next)
1750 unsigned int hash;
1751 rtx exp = elt->exp;
1752 enum machine_mode mode = elt->mode;
1754 next = elt->next_same_value;
1756 /* Remove old entry, make a new one in CLASS1's class.
1757 Don't do this for invalid entries as we cannot find their
1758 hash code (it also isn't necessary). */
1759 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1761 bool need_rehash = false;
1763 hash_arg_in_memory = 0;
1764 hash = HASH (exp, mode);
1766 if (REG_P (exp))
1768 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1769 delete_reg_equiv (REGNO (exp));
1772 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1773 remove_pseudo_from_table (exp, hash);
1774 else
1775 remove_from_table (elt, hash);
1777 if (insert_regs (exp, class1, 0) || need_rehash)
1779 rehash_using_reg (exp);
1780 hash = HASH (exp, mode);
1782 new_elt = insert (exp, class1, hash, mode);
1783 new_elt->in_memory = hash_arg_in_memory;
1788 /* Flush the entire hash table. */
1790 static void
1791 flush_hash_table (void)
1793 int i;
1794 struct table_elt *p;
1796 for (i = 0; i < HASH_SIZE; i++)
1797 for (p = table[i]; p; p = table[i])
1799 /* Note that invalidate can remove elements
1800 after P in the current hash chain. */
1801 if (REG_P (p->exp))
1802 invalidate (p->exp, VOIDmode);
1803 else
1804 remove_from_table (p, i);
1808 /* Check whether an anti dependence exists between X and EXP. MODE and
1809 ADDR are as for canon_anti_dependence. */
1811 static bool
1812 check_dependence (const_rtx x, rtx exp, enum machine_mode mode, rtx addr)
1814 subrtx_iterator::array_type array;
1815 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1817 const_rtx x = *iter;
1818 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1819 return true;
1821 return false;
1824 /* Remove from the hash table, or mark as invalid, all expressions whose
1825 values could be altered by storing in X. X is a register, a subreg, or
1826 a memory reference with nonvarying address (because, when a memory
1827 reference with a varying address is stored in, all memory references are
1828 removed by invalidate_memory so specific invalidation is superfluous).
1829 FULL_MODE, if not VOIDmode, indicates that this much should be
1830 invalidated instead of just the amount indicated by the mode of X. This
1831 is only used for bitfield stores into memory.
1833 A nonvarying address may be just a register or just a symbol reference,
1834 or it may be either of those plus a numeric offset. */
1836 static void
1837 invalidate (rtx x, enum machine_mode full_mode)
1839 int i;
1840 struct table_elt *p;
1841 rtx addr;
1843 switch (GET_CODE (x))
1845 case REG:
1847 /* If X is a register, dependencies on its contents are recorded
1848 through the qty number mechanism. Just change the qty number of
1849 the register, mark it as invalid for expressions that refer to it,
1850 and remove it itself. */
1851 unsigned int regno = REGNO (x);
1852 unsigned int hash = HASH (x, GET_MODE (x));
1854 /* Remove REGNO from any quantity list it might be on and indicate
1855 that its value might have changed. If it is a pseudo, remove its
1856 entry from the hash table.
1858 For a hard register, we do the first two actions above for any
1859 additional hard registers corresponding to X. Then, if any of these
1860 registers are in the table, we must remove any REG entries that
1861 overlap these registers. */
1863 delete_reg_equiv (regno);
1864 REG_TICK (regno)++;
1865 SUBREG_TICKED (regno) = -1;
1867 if (regno >= FIRST_PSEUDO_REGISTER)
1868 remove_pseudo_from_table (x, hash);
1869 else
1871 HOST_WIDE_INT in_table
1872 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1873 unsigned int endregno = END_HARD_REGNO (x);
1874 unsigned int tregno, tendregno, rn;
1875 struct table_elt *p, *next;
1877 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1879 for (rn = regno + 1; rn < endregno; rn++)
1881 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1882 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1883 delete_reg_equiv (rn);
1884 REG_TICK (rn)++;
1885 SUBREG_TICKED (rn) = -1;
1888 if (in_table)
1889 for (hash = 0; hash < HASH_SIZE; hash++)
1890 for (p = table[hash]; p; p = next)
1892 next = p->next_same_hash;
1894 if (!REG_P (p->exp)
1895 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1896 continue;
1898 tregno = REGNO (p->exp);
1899 tendregno = END_HARD_REGNO (p->exp);
1900 if (tendregno > regno && tregno < endregno)
1901 remove_from_table (p, hash);
1905 return;
1907 case SUBREG:
1908 invalidate (SUBREG_REG (x), VOIDmode);
1909 return;
1911 case PARALLEL:
1912 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1913 invalidate (XVECEXP (x, 0, i), VOIDmode);
1914 return;
1916 case EXPR_LIST:
1917 /* This is part of a disjoint return value; extract the location in
1918 question ignoring the offset. */
1919 invalidate (XEXP (x, 0), VOIDmode);
1920 return;
1922 case MEM:
1923 addr = canon_rtx (get_addr (XEXP (x, 0)));
1924 /* Calculate the canonical version of X here so that
1925 true_dependence doesn't generate new RTL for X on each call. */
1926 x = canon_rtx (x);
1928 /* Remove all hash table elements that refer to overlapping pieces of
1929 memory. */
1930 if (full_mode == VOIDmode)
1931 full_mode = GET_MODE (x);
1933 for (i = 0; i < HASH_SIZE; i++)
1935 struct table_elt *next;
1937 for (p = table[i]; p; p = next)
1939 next = p->next_same_hash;
1940 if (p->in_memory)
1942 /* Just canonicalize the expression once;
1943 otherwise each time we call invalidate
1944 true_dependence will canonicalize the
1945 expression again. */
1946 if (!p->canon_exp)
1947 p->canon_exp = canon_rtx (p->exp);
1948 if (check_dependence (p->canon_exp, x, full_mode, addr))
1949 remove_from_table (p, i);
1953 return;
1955 default:
1956 gcc_unreachable ();
1960 /* Remove all expressions that refer to register REGNO,
1961 since they are already invalid, and we are about to
1962 mark that register valid again and don't want the old
1963 expressions to reappear as valid. */
1965 static void
1966 remove_invalid_refs (unsigned int regno)
1968 unsigned int i;
1969 struct table_elt *p, *next;
1971 for (i = 0; i < HASH_SIZE; i++)
1972 for (p = table[i]; p; p = next)
1974 next = p->next_same_hash;
1975 if (!REG_P (p->exp)
1976 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1977 remove_from_table (p, i);
1981 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1982 and mode MODE. */
1983 static void
1984 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1985 enum machine_mode mode)
1987 unsigned int i;
1988 struct table_elt *p, *next;
1989 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1991 for (i = 0; i < HASH_SIZE; i++)
1992 for (p = table[i]; p; p = next)
1994 rtx exp = p->exp;
1995 next = p->next_same_hash;
1997 if (!REG_P (exp)
1998 && (GET_CODE (exp) != SUBREG
1999 || !REG_P (SUBREG_REG (exp))
2000 || REGNO (SUBREG_REG (exp)) != regno
2001 || (((SUBREG_BYTE (exp)
2002 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2003 && SUBREG_BYTE (exp) <= end))
2004 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2005 remove_from_table (p, i);
2009 /* Recompute the hash codes of any valid entries in the hash table that
2010 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2012 This is called when we make a jump equivalence. */
2014 static void
2015 rehash_using_reg (rtx x)
2017 unsigned int i;
2018 struct table_elt *p, *next;
2019 unsigned hash;
2021 if (GET_CODE (x) == SUBREG)
2022 x = SUBREG_REG (x);
2024 /* If X is not a register or if the register is known not to be in any
2025 valid entries in the table, we have no work to do. */
2027 if (!REG_P (x)
2028 || REG_IN_TABLE (REGNO (x)) < 0
2029 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2030 return;
2032 /* Scan all hash chains looking for valid entries that mention X.
2033 If we find one and it is in the wrong hash chain, move it. */
2035 for (i = 0; i < HASH_SIZE; i++)
2036 for (p = table[i]; p; p = next)
2038 next = p->next_same_hash;
2039 if (reg_mentioned_p (x, p->exp)
2040 && exp_equiv_p (p->exp, p->exp, 1, false)
2041 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2043 if (p->next_same_hash)
2044 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2046 if (p->prev_same_hash)
2047 p->prev_same_hash->next_same_hash = p->next_same_hash;
2048 else
2049 table[i] = p->next_same_hash;
2051 p->next_same_hash = table[hash];
2052 p->prev_same_hash = 0;
2053 if (table[hash])
2054 table[hash]->prev_same_hash = p;
2055 table[hash] = p;
2060 /* Remove from the hash table any expression that is a call-clobbered
2061 register. Also update their TICK values. */
2063 static void
2064 invalidate_for_call (void)
2066 unsigned int regno, endregno;
2067 unsigned int i;
2068 unsigned hash;
2069 struct table_elt *p, *next;
2070 int in_table = 0;
2071 hard_reg_set_iterator hrsi;
2073 /* Go through all the hard registers. For each that is clobbered in
2074 a CALL_INSN, remove the register from quantity chains and update
2075 reg_tick if defined. Also see if any of these registers is currently
2076 in the table. */
2077 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2079 delete_reg_equiv (regno);
2080 if (REG_TICK (regno) >= 0)
2082 REG_TICK (regno)++;
2083 SUBREG_TICKED (regno) = -1;
2085 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2088 /* In the case where we have no call-clobbered hard registers in the
2089 table, we are done. Otherwise, scan the table and remove any
2090 entry that overlaps a call-clobbered register. */
2092 if (in_table)
2093 for (hash = 0; hash < HASH_SIZE; hash++)
2094 for (p = table[hash]; p; p = next)
2096 next = p->next_same_hash;
2098 if (!REG_P (p->exp)
2099 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2100 continue;
2102 regno = REGNO (p->exp);
2103 endregno = END_HARD_REGNO (p->exp);
2105 for (i = regno; i < endregno; i++)
2106 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2108 remove_from_table (p, hash);
2109 break;
2114 /* Given an expression X of type CONST,
2115 and ELT which is its table entry (or 0 if it
2116 is not in the hash table),
2117 return an alternate expression for X as a register plus integer.
2118 If none can be found, return 0. */
2120 static rtx
2121 use_related_value (rtx x, struct table_elt *elt)
2123 struct table_elt *relt = 0;
2124 struct table_elt *p, *q;
2125 HOST_WIDE_INT offset;
2127 /* First, is there anything related known?
2128 If we have a table element, we can tell from that.
2129 Otherwise, must look it up. */
2131 if (elt != 0 && elt->related_value != 0)
2132 relt = elt;
2133 else if (elt == 0 && GET_CODE (x) == CONST)
2135 rtx subexp = get_related_value (x);
2136 if (subexp != 0)
2137 relt = lookup (subexp,
2138 SAFE_HASH (subexp, GET_MODE (subexp)),
2139 GET_MODE (subexp));
2142 if (relt == 0)
2143 return 0;
2145 /* Search all related table entries for one that has an
2146 equivalent register. */
2148 p = relt;
2149 while (1)
2151 /* This loop is strange in that it is executed in two different cases.
2152 The first is when X is already in the table. Then it is searching
2153 the RELATED_VALUE list of X's class (RELT). The second case is when
2154 X is not in the table. Then RELT points to a class for the related
2155 value.
2157 Ensure that, whatever case we are in, that we ignore classes that have
2158 the same value as X. */
2160 if (rtx_equal_p (x, p->exp))
2161 q = 0;
2162 else
2163 for (q = p->first_same_value; q; q = q->next_same_value)
2164 if (REG_P (q->exp))
2165 break;
2167 if (q)
2168 break;
2170 p = p->related_value;
2172 /* We went all the way around, so there is nothing to be found.
2173 Alternatively, perhaps RELT was in the table for some other reason
2174 and it has no related values recorded. */
2175 if (p == relt || p == 0)
2176 break;
2179 if (q == 0)
2180 return 0;
2182 offset = (get_integer_term (x) - get_integer_term (p->exp));
2183 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2184 return plus_constant (q->mode, q->exp, offset);
2188 /* Hash a string. Just add its bytes up. */
2189 static inline unsigned
2190 hash_rtx_string (const char *ps)
2192 unsigned hash = 0;
2193 const unsigned char *p = (const unsigned char *) ps;
2195 if (p)
2196 while (*p)
2197 hash += *p++;
2199 return hash;
2202 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2203 When the callback returns true, we continue with the new rtx. */
2205 unsigned
2206 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2207 int *do_not_record_p, int *hash_arg_in_memory_p,
2208 bool have_reg_qty, hash_rtx_callback_function cb)
2210 int i, j;
2211 unsigned hash = 0;
2212 enum rtx_code code;
2213 const char *fmt;
2214 enum machine_mode newmode;
2215 rtx newx;
2217 /* Used to turn recursion into iteration. We can't rely on GCC's
2218 tail-recursion elimination since we need to keep accumulating values
2219 in HASH. */
2220 repeat:
2221 if (x == 0)
2222 return hash;
2224 /* Invoke the callback first. */
2225 if (cb != NULL
2226 && ((*cb) (x, mode, &newx, &newmode)))
2228 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2229 hash_arg_in_memory_p, have_reg_qty, cb);
2230 return hash;
2233 code = GET_CODE (x);
2234 switch (code)
2236 case REG:
2238 unsigned int regno = REGNO (x);
2240 if (do_not_record_p && !reload_completed)
2242 /* On some machines, we can't record any non-fixed hard register,
2243 because extending its life will cause reload problems. We
2244 consider ap, fp, sp, gp to be fixed for this purpose.
2246 We also consider CCmode registers to be fixed for this purpose;
2247 failure to do so leads to failure to simplify 0<100 type of
2248 conditionals.
2250 On all machines, we can't record any global registers.
2251 Nor should we record any register that is in a small
2252 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2253 bool record;
2255 if (regno >= FIRST_PSEUDO_REGISTER)
2256 record = true;
2257 else if (x == frame_pointer_rtx
2258 || x == hard_frame_pointer_rtx
2259 || x == arg_pointer_rtx
2260 || x == stack_pointer_rtx
2261 || x == pic_offset_table_rtx)
2262 record = true;
2263 else if (global_regs[regno])
2264 record = false;
2265 else if (fixed_regs[regno])
2266 record = true;
2267 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2268 record = true;
2269 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2270 record = false;
2271 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2272 record = false;
2273 else
2274 record = true;
2276 if (!record)
2278 *do_not_record_p = 1;
2279 return 0;
2283 hash += ((unsigned int) REG << 7);
2284 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2285 return hash;
2288 /* We handle SUBREG of a REG specially because the underlying
2289 reg changes its hash value with every value change; we don't
2290 want to have to forget unrelated subregs when one subreg changes. */
2291 case SUBREG:
2293 if (REG_P (SUBREG_REG (x)))
2295 hash += (((unsigned int) SUBREG << 7)
2296 + REGNO (SUBREG_REG (x))
2297 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2298 return hash;
2300 break;
2303 case CONST_INT:
2304 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2305 + (unsigned int) INTVAL (x));
2306 return hash;
2308 case CONST_WIDE_INT:
2309 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2310 hash += CONST_WIDE_INT_ELT (x, i);
2311 return hash;
2313 case CONST_DOUBLE:
2314 /* This is like the general case, except that it only counts
2315 the integers representing the constant. */
2316 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2317 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2318 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2319 + (unsigned int) CONST_DOUBLE_HIGH (x));
2320 else
2321 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2322 return hash;
2324 case CONST_FIXED:
2325 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2326 hash += fixed_hash (CONST_FIXED_VALUE (x));
2327 return hash;
2329 case CONST_VECTOR:
2331 int units;
2332 rtx elt;
2334 units = CONST_VECTOR_NUNITS (x);
2336 for (i = 0; i < units; ++i)
2338 elt = CONST_VECTOR_ELT (x, i);
2339 hash += hash_rtx_cb (elt, GET_MODE (elt),
2340 do_not_record_p, hash_arg_in_memory_p,
2341 have_reg_qty, cb);
2344 return hash;
2347 /* Assume there is only one rtx object for any given label. */
2348 case LABEL_REF:
2349 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2350 differences and differences between each stage's debugging dumps. */
2351 hash += (((unsigned int) LABEL_REF << 7)
2352 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2353 return hash;
2355 case SYMBOL_REF:
2357 /* Don't hash on the symbol's address to avoid bootstrap differences.
2358 Different hash values may cause expressions to be recorded in
2359 different orders and thus different registers to be used in the
2360 final assembler. This also avoids differences in the dump files
2361 between various stages. */
2362 unsigned int h = 0;
2363 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2365 while (*p)
2366 h += (h << 7) + *p++; /* ??? revisit */
2368 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2369 return hash;
2372 case MEM:
2373 /* We don't record if marked volatile or if BLKmode since we don't
2374 know the size of the move. */
2375 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2377 *do_not_record_p = 1;
2378 return 0;
2380 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2381 *hash_arg_in_memory_p = 1;
2383 /* Now that we have already found this special case,
2384 might as well speed it up as much as possible. */
2385 hash += (unsigned) MEM;
2386 x = XEXP (x, 0);
2387 goto repeat;
2389 case USE:
2390 /* A USE that mentions non-volatile memory needs special
2391 handling since the MEM may be BLKmode which normally
2392 prevents an entry from being made. Pure calls are
2393 marked by a USE which mentions BLKmode memory.
2394 See calls.c:emit_call_1. */
2395 if (MEM_P (XEXP (x, 0))
2396 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2398 hash += (unsigned) USE;
2399 x = XEXP (x, 0);
2401 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2402 *hash_arg_in_memory_p = 1;
2404 /* Now that we have already found this special case,
2405 might as well speed it up as much as possible. */
2406 hash += (unsigned) MEM;
2407 x = XEXP (x, 0);
2408 goto repeat;
2410 break;
2412 case PRE_DEC:
2413 case PRE_INC:
2414 case POST_DEC:
2415 case POST_INC:
2416 case PRE_MODIFY:
2417 case POST_MODIFY:
2418 case PC:
2419 case CC0:
2420 case CALL:
2421 case UNSPEC_VOLATILE:
2422 if (do_not_record_p) {
2423 *do_not_record_p = 1;
2424 return 0;
2426 else
2427 return hash;
2428 break;
2430 case ASM_OPERANDS:
2431 if (do_not_record_p && MEM_VOLATILE_P (x))
2433 *do_not_record_p = 1;
2434 return 0;
2436 else
2438 /* We don't want to take the filename and line into account. */
2439 hash += (unsigned) code + (unsigned) GET_MODE (x)
2440 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2441 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2442 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2444 if (ASM_OPERANDS_INPUT_LENGTH (x))
2446 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2448 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2449 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2450 do_not_record_p, hash_arg_in_memory_p,
2451 have_reg_qty, cb)
2452 + hash_rtx_string
2453 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2456 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2457 x = ASM_OPERANDS_INPUT (x, 0);
2458 mode = GET_MODE (x);
2459 goto repeat;
2462 return hash;
2464 break;
2466 default:
2467 break;
2470 i = GET_RTX_LENGTH (code) - 1;
2471 hash += (unsigned) code + (unsigned) GET_MODE (x);
2472 fmt = GET_RTX_FORMAT (code);
2473 for (; i >= 0; i--)
2475 switch (fmt[i])
2477 case 'e':
2478 /* If we are about to do the last recursive call
2479 needed at this level, change it into iteration.
2480 This function is called enough to be worth it. */
2481 if (i == 0)
2483 x = XEXP (x, i);
2484 goto repeat;
2487 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2488 hash_arg_in_memory_p,
2489 have_reg_qty, cb);
2490 break;
2492 case 'E':
2493 for (j = 0; j < XVECLEN (x, i); j++)
2494 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2495 hash_arg_in_memory_p,
2496 have_reg_qty, cb);
2497 break;
2499 case 's':
2500 hash += hash_rtx_string (XSTR (x, i));
2501 break;
2503 case 'i':
2504 hash += (unsigned int) XINT (x, i);
2505 break;
2507 case '0': case 't':
2508 /* Unused. */
2509 break;
2511 default:
2512 gcc_unreachable ();
2516 return hash;
2519 /* Hash an rtx. We are careful to make sure the value is never negative.
2520 Equivalent registers hash identically.
2521 MODE is used in hashing for CONST_INTs only;
2522 otherwise the mode of X is used.
2524 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2526 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2527 a MEM rtx which does not have the MEM_READONLY_P flag set.
2529 Note that cse_insn knows that the hash code of a MEM expression
2530 is just (int) MEM plus the hash code of the address. */
2532 unsigned
2533 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2534 int *hash_arg_in_memory_p, bool have_reg_qty)
2536 return hash_rtx_cb (x, mode, do_not_record_p,
2537 hash_arg_in_memory_p, have_reg_qty, NULL);
2540 /* Hash an rtx X for cse via hash_rtx.
2541 Stores 1 in do_not_record if any subexpression is volatile.
2542 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2543 does not have the MEM_READONLY_P flag set. */
2545 static inline unsigned
2546 canon_hash (rtx x, enum machine_mode mode)
2548 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2551 /* Like canon_hash but with no side effects, i.e. do_not_record
2552 and hash_arg_in_memory are not changed. */
2554 static inline unsigned
2555 safe_hash (rtx x, enum machine_mode mode)
2557 int dummy_do_not_record;
2558 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2561 /* Return 1 iff X and Y would canonicalize into the same thing,
2562 without actually constructing the canonicalization of either one.
2563 If VALIDATE is nonzero,
2564 we assume X is an expression being processed from the rtl
2565 and Y was found in the hash table. We check register refs
2566 in Y for being marked as valid.
2568 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2571 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2573 int i, j;
2574 enum rtx_code code;
2575 const char *fmt;
2577 /* Note: it is incorrect to assume an expression is equivalent to itself
2578 if VALIDATE is nonzero. */
2579 if (x == y && !validate)
2580 return 1;
2582 if (x == 0 || y == 0)
2583 return x == y;
2585 code = GET_CODE (x);
2586 if (code != GET_CODE (y))
2587 return 0;
2589 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2590 if (GET_MODE (x) != GET_MODE (y))
2591 return 0;
2593 /* MEMs referring to different address space are not equivalent. */
2594 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2595 return 0;
2597 switch (code)
2599 case PC:
2600 case CC0:
2601 CASE_CONST_UNIQUE:
2602 return x == y;
2604 case LABEL_REF:
2605 return XEXP (x, 0) == XEXP (y, 0);
2607 case SYMBOL_REF:
2608 return XSTR (x, 0) == XSTR (y, 0);
2610 case REG:
2611 if (for_gcse)
2612 return REGNO (x) == REGNO (y);
2613 else
2615 unsigned int regno = REGNO (y);
2616 unsigned int i;
2617 unsigned int endregno = END_REGNO (y);
2619 /* If the quantities are not the same, the expressions are not
2620 equivalent. If there are and we are not to validate, they
2621 are equivalent. Otherwise, ensure all regs are up-to-date. */
2623 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2624 return 0;
2626 if (! validate)
2627 return 1;
2629 for (i = regno; i < endregno; i++)
2630 if (REG_IN_TABLE (i) != REG_TICK (i))
2631 return 0;
2633 return 1;
2636 case MEM:
2637 if (for_gcse)
2639 /* A volatile mem should not be considered equivalent to any
2640 other. */
2641 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2642 return 0;
2644 /* Can't merge two expressions in different alias sets, since we
2645 can decide that the expression is transparent in a block when
2646 it isn't, due to it being set with the different alias set.
2648 Also, can't merge two expressions with different MEM_ATTRS.
2649 They could e.g. be two different entities allocated into the
2650 same space on the stack (see e.g. PR25130). In that case, the
2651 MEM addresses can be the same, even though the two MEMs are
2652 absolutely not equivalent.
2654 But because really all MEM attributes should be the same for
2655 equivalent MEMs, we just use the invariant that MEMs that have
2656 the same attributes share the same mem_attrs data structure. */
2657 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2658 return 0;
2660 /* If we are handling exceptions, we cannot consider two expressions
2661 with different trapping status as equivalent, because simple_mem
2662 might accept one and reject the other. */
2663 if (cfun->can_throw_non_call_exceptions
2664 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2665 return 0;
2667 break;
2669 /* For commutative operations, check both orders. */
2670 case PLUS:
2671 case MULT:
2672 case AND:
2673 case IOR:
2674 case XOR:
2675 case NE:
2676 case EQ:
2677 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2678 validate, for_gcse)
2679 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2680 validate, for_gcse))
2681 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2682 validate, for_gcse)
2683 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2684 validate, for_gcse)));
2686 case ASM_OPERANDS:
2687 /* We don't use the generic code below because we want to
2688 disregard filename and line numbers. */
2690 /* A volatile asm isn't equivalent to any other. */
2691 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2692 return 0;
2694 if (GET_MODE (x) != GET_MODE (y)
2695 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2696 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2697 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2698 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2699 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2700 return 0;
2702 if (ASM_OPERANDS_INPUT_LENGTH (x))
2704 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2705 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2706 ASM_OPERANDS_INPUT (y, i),
2707 validate, for_gcse)
2708 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2709 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2710 return 0;
2713 return 1;
2715 default:
2716 break;
2719 /* Compare the elements. If any pair of corresponding elements
2720 fail to match, return 0 for the whole thing. */
2722 fmt = GET_RTX_FORMAT (code);
2723 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2725 switch (fmt[i])
2727 case 'e':
2728 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2729 validate, for_gcse))
2730 return 0;
2731 break;
2733 case 'E':
2734 if (XVECLEN (x, i) != XVECLEN (y, i))
2735 return 0;
2736 for (j = 0; j < XVECLEN (x, i); j++)
2737 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2738 validate, for_gcse))
2739 return 0;
2740 break;
2742 case 's':
2743 if (strcmp (XSTR (x, i), XSTR (y, i)))
2744 return 0;
2745 break;
2747 case 'i':
2748 if (XINT (x, i) != XINT (y, i))
2749 return 0;
2750 break;
2752 case 'w':
2753 if (XWINT (x, i) != XWINT (y, i))
2754 return 0;
2755 break;
2757 case '0':
2758 case 't':
2759 break;
2761 default:
2762 gcc_unreachable ();
2766 return 1;
2769 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2770 the result if necessary. INSN is as for canon_reg. */
2772 static void
2773 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2775 if (*xloc)
2777 rtx new_rtx = canon_reg (*xloc, insn);
2779 /* If replacing pseudo with hard reg or vice versa, ensure the
2780 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2781 gcc_assert (insn && new_rtx);
2782 validate_change (insn, xloc, new_rtx, 1);
2786 /* Canonicalize an expression:
2787 replace each register reference inside it
2788 with the "oldest" equivalent register.
2790 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2791 after we make our substitution. The calls are made with IN_GROUP nonzero
2792 so apply_change_group must be called upon the outermost return from this
2793 function (unless INSN is zero). The result of apply_change_group can
2794 generally be discarded since the changes we are making are optional. */
2796 static rtx
2797 canon_reg (rtx x, rtx_insn *insn)
2799 int i;
2800 enum rtx_code code;
2801 const char *fmt;
2803 if (x == 0)
2804 return x;
2806 code = GET_CODE (x);
2807 switch (code)
2809 case PC:
2810 case CC0:
2811 case CONST:
2812 CASE_CONST_ANY:
2813 case SYMBOL_REF:
2814 case LABEL_REF:
2815 case ADDR_VEC:
2816 case ADDR_DIFF_VEC:
2817 return x;
2819 case REG:
2821 int first;
2822 int q;
2823 struct qty_table_elem *ent;
2825 /* Never replace a hard reg, because hard regs can appear
2826 in more than one machine mode, and we must preserve the mode
2827 of each occurrence. Also, some hard regs appear in
2828 MEMs that are shared and mustn't be altered. Don't try to
2829 replace any reg that maps to a reg of class NO_REGS. */
2830 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2831 || ! REGNO_QTY_VALID_P (REGNO (x)))
2832 return x;
2834 q = REG_QTY (REGNO (x));
2835 ent = &qty_table[q];
2836 first = ent->first_reg;
2837 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2838 : REGNO_REG_CLASS (first) == NO_REGS ? x
2839 : gen_rtx_REG (ent->mode, first));
2842 default:
2843 break;
2846 fmt = GET_RTX_FORMAT (code);
2847 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2849 int j;
2851 if (fmt[i] == 'e')
2852 validate_canon_reg (&XEXP (x, i), insn);
2853 else if (fmt[i] == 'E')
2854 for (j = 0; j < XVECLEN (x, i); j++)
2855 validate_canon_reg (&XVECEXP (x, i, j), insn);
2858 return x;
2861 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2862 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2863 what values are being compared.
2865 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2866 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2867 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2868 compared to produce cc0.
2870 The return value is the comparison operator and is either the code of
2871 A or the code corresponding to the inverse of the comparison. */
2873 static enum rtx_code
2874 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2875 enum machine_mode *pmode1, enum machine_mode *pmode2)
2877 rtx arg1, arg2;
2878 hash_set<rtx> *visited = NULL;
2879 /* Set nonzero when we find something of interest. */
2880 rtx x = NULL;
2882 arg1 = *parg1, arg2 = *parg2;
2884 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2886 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2888 int reverse_code = 0;
2889 struct table_elt *p = 0;
2891 /* Remember state from previous iteration. */
2892 if (x)
2894 if (!visited)
2895 visited = new hash_set<rtx>;
2896 visited->add (x);
2897 x = 0;
2900 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2901 On machines with CC0, this is the only case that can occur, since
2902 fold_rtx will return the COMPARE or item being compared with zero
2903 when given CC0. */
2905 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2906 x = arg1;
2908 /* If ARG1 is a comparison operator and CODE is testing for
2909 STORE_FLAG_VALUE, get the inner arguments. */
2911 else if (COMPARISON_P (arg1))
2913 #ifdef FLOAT_STORE_FLAG_VALUE
2914 REAL_VALUE_TYPE fsfv;
2915 #endif
2917 if (code == NE
2918 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2919 && code == LT && STORE_FLAG_VALUE == -1)
2920 #ifdef FLOAT_STORE_FLAG_VALUE
2921 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2922 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2923 REAL_VALUE_NEGATIVE (fsfv)))
2924 #endif
2926 x = arg1;
2927 else if (code == EQ
2928 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2929 && code == GE && STORE_FLAG_VALUE == -1)
2930 #ifdef FLOAT_STORE_FLAG_VALUE
2931 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2932 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2933 REAL_VALUE_NEGATIVE (fsfv)))
2934 #endif
2936 x = arg1, reverse_code = 1;
2939 /* ??? We could also check for
2941 (ne (and (eq (...) (const_int 1))) (const_int 0))
2943 and related forms, but let's wait until we see them occurring. */
2945 if (x == 0)
2946 /* Look up ARG1 in the hash table and see if it has an equivalence
2947 that lets us see what is being compared. */
2948 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2949 if (p)
2951 p = p->first_same_value;
2953 /* If what we compare is already known to be constant, that is as
2954 good as it gets.
2955 We need to break the loop in this case, because otherwise we
2956 can have an infinite loop when looking at a reg that is known
2957 to be a constant which is the same as a comparison of a reg
2958 against zero which appears later in the insn stream, which in
2959 turn is constant and the same as the comparison of the first reg
2960 against zero... */
2961 if (p->is_const)
2962 break;
2965 for (; p; p = p->next_same_value)
2967 enum machine_mode inner_mode = GET_MODE (p->exp);
2968 #ifdef FLOAT_STORE_FLAG_VALUE
2969 REAL_VALUE_TYPE fsfv;
2970 #endif
2972 /* If the entry isn't valid, skip it. */
2973 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2974 continue;
2976 /* If it's a comparison we've used before, skip it. */
2977 if (visited && visited->contains (p->exp))
2978 continue;
2980 if (GET_CODE (p->exp) == COMPARE
2981 /* Another possibility is that this machine has a compare insn
2982 that includes the comparison code. In that case, ARG1 would
2983 be equivalent to a comparison operation that would set ARG1 to
2984 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2985 ORIG_CODE is the actual comparison being done; if it is an EQ,
2986 we must reverse ORIG_CODE. On machine with a negative value
2987 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2988 || ((code == NE
2989 || (code == LT
2990 && val_signbit_known_set_p (inner_mode,
2991 STORE_FLAG_VALUE))
2992 #ifdef FLOAT_STORE_FLAG_VALUE
2993 || (code == LT
2994 && SCALAR_FLOAT_MODE_P (inner_mode)
2995 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2996 REAL_VALUE_NEGATIVE (fsfv)))
2997 #endif
2999 && COMPARISON_P (p->exp)))
3001 x = p->exp;
3002 break;
3004 else if ((code == EQ
3005 || (code == GE
3006 && val_signbit_known_set_p (inner_mode,
3007 STORE_FLAG_VALUE))
3008 #ifdef FLOAT_STORE_FLAG_VALUE
3009 || (code == GE
3010 && SCALAR_FLOAT_MODE_P (inner_mode)
3011 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3012 REAL_VALUE_NEGATIVE (fsfv)))
3013 #endif
3015 && COMPARISON_P (p->exp))
3017 reverse_code = 1;
3018 x = p->exp;
3019 break;
3022 /* If this non-trapping address, e.g. fp + constant, the
3023 equivalent is a better operand since it may let us predict
3024 the value of the comparison. */
3025 else if (!rtx_addr_can_trap_p (p->exp))
3027 arg1 = p->exp;
3028 continue;
3032 /* If we didn't find a useful equivalence for ARG1, we are done.
3033 Otherwise, set up for the next iteration. */
3034 if (x == 0)
3035 break;
3037 /* If we need to reverse the comparison, make sure that that is
3038 possible -- we can't necessarily infer the value of GE from LT
3039 with floating-point operands. */
3040 if (reverse_code)
3042 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3043 if (reversed == UNKNOWN)
3044 break;
3045 else
3046 code = reversed;
3048 else if (COMPARISON_P (x))
3049 code = GET_CODE (x);
3050 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3053 /* Return our results. Return the modes from before fold_rtx
3054 because fold_rtx might produce const_int, and then it's too late. */
3055 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3056 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3058 if (visited)
3059 delete visited;
3060 return code;
3063 /* If X is a nontrivial arithmetic operation on an argument for which
3064 a constant value can be determined, return the result of operating
3065 on that value, as a constant. Otherwise, return X, possibly with
3066 one or more operands changed to a forward-propagated constant.
3068 If X is a register whose contents are known, we do NOT return
3069 those contents here; equiv_constant is called to perform that task.
3070 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3072 INSN is the insn that we may be modifying. If it is 0, make a copy
3073 of X before modifying it. */
3075 static rtx
3076 fold_rtx (rtx x, rtx_insn *insn)
3078 enum rtx_code code;
3079 enum machine_mode mode;
3080 const char *fmt;
3081 int i;
3082 rtx new_rtx = 0;
3083 int changed = 0;
3085 /* Operands of X. */
3086 rtx folded_arg0;
3087 rtx folded_arg1;
3089 /* Constant equivalents of first three operands of X;
3090 0 when no such equivalent is known. */
3091 rtx const_arg0;
3092 rtx const_arg1;
3093 rtx const_arg2;
3095 /* The mode of the first operand of X. We need this for sign and zero
3096 extends. */
3097 enum machine_mode mode_arg0;
3099 if (x == 0)
3100 return x;
3102 /* Try to perform some initial simplifications on X. */
3103 code = GET_CODE (x);
3104 switch (code)
3106 case MEM:
3107 case SUBREG:
3108 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3109 return new_rtx;
3110 return x;
3112 case CONST:
3113 CASE_CONST_ANY:
3114 case SYMBOL_REF:
3115 case LABEL_REF:
3116 case REG:
3117 case PC:
3118 /* No use simplifying an EXPR_LIST
3119 since they are used only for lists of args
3120 in a function call's REG_EQUAL note. */
3121 case EXPR_LIST:
3122 return x;
3124 #ifdef HAVE_cc0
3125 case CC0:
3126 return prev_insn_cc0;
3127 #endif
3129 case ASM_OPERANDS:
3130 if (insn)
3132 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3133 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3134 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3136 return x;
3138 #ifdef NO_FUNCTION_CSE
3139 case CALL:
3140 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3141 return x;
3142 break;
3143 #endif
3145 /* Anything else goes through the loop below. */
3146 default:
3147 break;
3150 mode = GET_MODE (x);
3151 const_arg0 = 0;
3152 const_arg1 = 0;
3153 const_arg2 = 0;
3154 mode_arg0 = VOIDmode;
3156 /* Try folding our operands.
3157 Then see which ones have constant values known. */
3159 fmt = GET_RTX_FORMAT (code);
3160 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3161 if (fmt[i] == 'e')
3163 rtx folded_arg = XEXP (x, i), const_arg;
3164 enum machine_mode mode_arg = GET_MODE (folded_arg);
3166 switch (GET_CODE (folded_arg))
3168 case MEM:
3169 case REG:
3170 case SUBREG:
3171 const_arg = equiv_constant (folded_arg);
3172 break;
3174 case CONST:
3175 CASE_CONST_ANY:
3176 case SYMBOL_REF:
3177 case LABEL_REF:
3178 const_arg = folded_arg;
3179 break;
3181 #ifdef HAVE_cc0
3182 case CC0:
3183 /* The cc0-user and cc0-setter may be in different blocks if
3184 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3185 will have been cleared as we exited the block with the
3186 setter.
3188 While we could potentially track cc0 in this case, it just
3189 doesn't seem to be worth it given that cc0 targets are not
3190 terribly common or important these days and trapping math
3191 is rarely used. The combination of those two conditions
3192 necessary to trip this situation is exceedingly rare in the
3193 real world. */
3194 if (!prev_insn_cc0)
3196 const_arg = NULL_RTX;
3198 else
3200 folded_arg = prev_insn_cc0;
3201 mode_arg = prev_insn_cc0_mode;
3202 const_arg = equiv_constant (folded_arg);
3204 break;
3205 #endif
3207 default:
3208 folded_arg = fold_rtx (folded_arg, insn);
3209 const_arg = equiv_constant (folded_arg);
3210 break;
3213 /* For the first three operands, see if the operand
3214 is constant or equivalent to a constant. */
3215 switch (i)
3217 case 0:
3218 folded_arg0 = folded_arg;
3219 const_arg0 = const_arg;
3220 mode_arg0 = mode_arg;
3221 break;
3222 case 1:
3223 folded_arg1 = folded_arg;
3224 const_arg1 = const_arg;
3225 break;
3226 case 2:
3227 const_arg2 = const_arg;
3228 break;
3231 /* Pick the least expensive of the argument and an equivalent constant
3232 argument. */
3233 if (const_arg != 0
3234 && const_arg != folded_arg
3235 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3237 /* It's not safe to substitute the operand of a conversion
3238 operator with a constant, as the conversion's identity
3239 depends upon the mode of its operand. This optimization
3240 is handled by the call to simplify_unary_operation. */
3241 && (GET_RTX_CLASS (code) != RTX_UNARY
3242 || GET_MODE (const_arg) == mode_arg0
3243 || (code != ZERO_EXTEND
3244 && code != SIGN_EXTEND
3245 && code != TRUNCATE
3246 && code != FLOAT_TRUNCATE
3247 && code != FLOAT_EXTEND
3248 && code != FLOAT
3249 && code != FIX
3250 && code != UNSIGNED_FLOAT
3251 && code != UNSIGNED_FIX)))
3252 folded_arg = const_arg;
3254 if (folded_arg == XEXP (x, i))
3255 continue;
3257 if (insn == NULL_RTX && !changed)
3258 x = copy_rtx (x);
3259 changed = 1;
3260 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3263 if (changed)
3265 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3266 consistent with the order in X. */
3267 if (canonicalize_change_group (insn, x))
3269 rtx tem;
3270 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3271 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3274 apply_change_group ();
3277 /* If X is an arithmetic operation, see if we can simplify it. */
3279 switch (GET_RTX_CLASS (code))
3281 case RTX_UNARY:
3283 /* We can't simplify extension ops unless we know the
3284 original mode. */
3285 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3286 && mode_arg0 == VOIDmode)
3287 break;
3289 new_rtx = simplify_unary_operation (code, mode,
3290 const_arg0 ? const_arg0 : folded_arg0,
3291 mode_arg0);
3293 break;
3295 case RTX_COMPARE:
3296 case RTX_COMM_COMPARE:
3297 /* See what items are actually being compared and set FOLDED_ARG[01]
3298 to those values and CODE to the actual comparison code. If any are
3299 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3300 do anything if both operands are already known to be constant. */
3302 /* ??? Vector mode comparisons are not supported yet. */
3303 if (VECTOR_MODE_P (mode))
3304 break;
3306 if (const_arg0 == 0 || const_arg1 == 0)
3308 struct table_elt *p0, *p1;
3309 rtx true_rtx, false_rtx;
3310 enum machine_mode mode_arg1;
3312 if (SCALAR_FLOAT_MODE_P (mode))
3314 #ifdef FLOAT_STORE_FLAG_VALUE
3315 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3316 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3317 #else
3318 true_rtx = NULL_RTX;
3319 #endif
3320 false_rtx = CONST0_RTX (mode);
3322 else
3324 true_rtx = const_true_rtx;
3325 false_rtx = const0_rtx;
3328 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3329 &mode_arg0, &mode_arg1);
3331 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3332 what kinds of things are being compared, so we can't do
3333 anything with this comparison. */
3335 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3336 break;
3338 const_arg0 = equiv_constant (folded_arg0);
3339 const_arg1 = equiv_constant (folded_arg1);
3341 /* If we do not now have two constants being compared, see
3342 if we can nevertheless deduce some things about the
3343 comparison. */
3344 if (const_arg0 == 0 || const_arg1 == 0)
3346 if (const_arg1 != NULL)
3348 rtx cheapest_simplification;
3349 int cheapest_cost;
3350 rtx simp_result;
3351 struct table_elt *p;
3353 /* See if we can find an equivalent of folded_arg0
3354 that gets us a cheaper expression, possibly a
3355 constant through simplifications. */
3356 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3357 mode_arg0);
3359 if (p != NULL)
3361 cheapest_simplification = x;
3362 cheapest_cost = COST (x);
3364 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3366 int cost;
3368 /* If the entry isn't valid, skip it. */
3369 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3370 continue;
3372 /* Try to simplify using this equivalence. */
3373 simp_result
3374 = simplify_relational_operation (code, mode,
3375 mode_arg0,
3376 p->exp,
3377 const_arg1);
3379 if (simp_result == NULL)
3380 continue;
3382 cost = COST (simp_result);
3383 if (cost < cheapest_cost)
3385 cheapest_cost = cost;
3386 cheapest_simplification = simp_result;
3390 /* If we have a cheaper expression now, use that
3391 and try folding it further, from the top. */
3392 if (cheapest_simplification != x)
3393 return fold_rtx (copy_rtx (cheapest_simplification),
3394 insn);
3398 /* See if the two operands are the same. */
3400 if ((REG_P (folded_arg0)
3401 && REG_P (folded_arg1)
3402 && (REG_QTY (REGNO (folded_arg0))
3403 == REG_QTY (REGNO (folded_arg1))))
3404 || ((p0 = lookup (folded_arg0,
3405 SAFE_HASH (folded_arg0, mode_arg0),
3406 mode_arg0))
3407 && (p1 = lookup (folded_arg1,
3408 SAFE_HASH (folded_arg1, mode_arg0),
3409 mode_arg0))
3410 && p0->first_same_value == p1->first_same_value))
3411 folded_arg1 = folded_arg0;
3413 /* If FOLDED_ARG0 is a register, see if the comparison we are
3414 doing now is either the same as we did before or the reverse
3415 (we only check the reverse if not floating-point). */
3416 else if (REG_P (folded_arg0))
3418 int qty = REG_QTY (REGNO (folded_arg0));
3420 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3422 struct qty_table_elem *ent = &qty_table[qty];
3424 if ((comparison_dominates_p (ent->comparison_code, code)
3425 || (! FLOAT_MODE_P (mode_arg0)
3426 && comparison_dominates_p (ent->comparison_code,
3427 reverse_condition (code))))
3428 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3429 || (const_arg1
3430 && rtx_equal_p (ent->comparison_const,
3431 const_arg1))
3432 || (REG_P (folded_arg1)
3433 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3435 if (comparison_dominates_p (ent->comparison_code, code))
3437 if (true_rtx)
3438 return true_rtx;
3439 else
3440 break;
3442 else
3443 return false_rtx;
3450 /* If we are comparing against zero, see if the first operand is
3451 equivalent to an IOR with a constant. If so, we may be able to
3452 determine the result of this comparison. */
3453 if (const_arg1 == const0_rtx && !const_arg0)
3455 rtx y = lookup_as_function (folded_arg0, IOR);
3456 rtx inner_const;
3458 if (y != 0
3459 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3460 && CONST_INT_P (inner_const)
3461 && INTVAL (inner_const) != 0)
3462 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3466 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3467 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3468 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3469 op0, op1);
3471 break;
3473 case RTX_BIN_ARITH:
3474 case RTX_COMM_ARITH:
3475 switch (code)
3477 case PLUS:
3478 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3479 with that LABEL_REF as its second operand. If so, the result is
3480 the first operand of that MINUS. This handles switches with an
3481 ADDR_DIFF_VEC table. */
3482 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3484 rtx y
3485 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3486 : lookup_as_function (folded_arg0, MINUS);
3488 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3489 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3490 return XEXP (y, 0);
3492 /* Now try for a CONST of a MINUS like the above. */
3493 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3494 : lookup_as_function (folded_arg0, CONST))) != 0
3495 && GET_CODE (XEXP (y, 0)) == MINUS
3496 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3497 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3498 return XEXP (XEXP (y, 0), 0);
3501 /* Likewise if the operands are in the other order. */
3502 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3504 rtx y
3505 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3506 : lookup_as_function (folded_arg1, MINUS);
3508 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3509 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3510 return XEXP (y, 0);
3512 /* Now try for a CONST of a MINUS like the above. */
3513 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3514 : lookup_as_function (folded_arg1, CONST))) != 0
3515 && GET_CODE (XEXP (y, 0)) == MINUS
3516 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3517 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3518 return XEXP (XEXP (y, 0), 0);
3521 /* If second operand is a register equivalent to a negative
3522 CONST_INT, see if we can find a register equivalent to the
3523 positive constant. Make a MINUS if so. Don't do this for
3524 a non-negative constant since we might then alternate between
3525 choosing positive and negative constants. Having the positive
3526 constant previously-used is the more common case. Be sure
3527 the resulting constant is non-negative; if const_arg1 were
3528 the smallest negative number this would overflow: depending
3529 on the mode, this would either just be the same value (and
3530 hence not save anything) or be incorrect. */
3531 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3532 && INTVAL (const_arg1) < 0
3533 /* This used to test
3535 -INTVAL (const_arg1) >= 0
3537 But The Sun V5.0 compilers mis-compiled that test. So
3538 instead we test for the problematic value in a more direct
3539 manner and hope the Sun compilers get it correct. */
3540 && INTVAL (const_arg1) !=
3541 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3542 && REG_P (folded_arg1))
3544 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3545 struct table_elt *p
3546 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3548 if (p)
3549 for (p = p->first_same_value; p; p = p->next_same_value)
3550 if (REG_P (p->exp))
3551 return simplify_gen_binary (MINUS, mode, folded_arg0,
3552 canon_reg (p->exp, NULL));
3554 goto from_plus;
3556 case MINUS:
3557 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3558 If so, produce (PLUS Z C2-C). */
3559 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3561 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3562 if (y && CONST_INT_P (XEXP (y, 1)))
3563 return fold_rtx (plus_constant (mode, copy_rtx (y),
3564 -INTVAL (const_arg1)),
3565 NULL);
3568 /* Fall through. */
3570 from_plus:
3571 case SMIN: case SMAX: case UMIN: case UMAX:
3572 case IOR: case AND: case XOR:
3573 case MULT:
3574 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3575 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3576 is known to be of similar form, we may be able to replace the
3577 operation with a combined operation. This may eliminate the
3578 intermediate operation if every use is simplified in this way.
3579 Note that the similar optimization done by combine.c only works
3580 if the intermediate operation's result has only one reference. */
3582 if (REG_P (folded_arg0)
3583 && const_arg1 && CONST_INT_P (const_arg1))
3585 int is_shift
3586 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3587 rtx y, inner_const, new_const;
3588 rtx canon_const_arg1 = const_arg1;
3589 enum rtx_code associate_code;
3591 if (is_shift
3592 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3593 || INTVAL (const_arg1) < 0))
3595 if (SHIFT_COUNT_TRUNCATED)
3596 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3597 & (GET_MODE_BITSIZE (mode)
3598 - 1));
3599 else
3600 break;
3603 y = lookup_as_function (folded_arg0, code);
3604 if (y == 0)
3605 break;
3607 /* If we have compiled a statement like
3608 "if (x == (x & mask1))", and now are looking at
3609 "x & mask2", we will have a case where the first operand
3610 of Y is the same as our first operand. Unless we detect
3611 this case, an infinite loop will result. */
3612 if (XEXP (y, 0) == folded_arg0)
3613 break;
3615 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3616 if (!inner_const || !CONST_INT_P (inner_const))
3617 break;
3619 /* Don't associate these operations if they are a PLUS with the
3620 same constant and it is a power of two. These might be doable
3621 with a pre- or post-increment. Similarly for two subtracts of
3622 identical powers of two with post decrement. */
3624 if (code == PLUS && const_arg1 == inner_const
3625 && ((HAVE_PRE_INCREMENT
3626 && exact_log2 (INTVAL (const_arg1)) >= 0)
3627 || (HAVE_POST_INCREMENT
3628 && exact_log2 (INTVAL (const_arg1)) >= 0)
3629 || (HAVE_PRE_DECREMENT
3630 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3631 || (HAVE_POST_DECREMENT
3632 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3633 break;
3635 /* ??? Vector mode shifts by scalar
3636 shift operand are not supported yet. */
3637 if (is_shift && VECTOR_MODE_P (mode))
3638 break;
3640 if (is_shift
3641 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3642 || INTVAL (inner_const) < 0))
3644 if (SHIFT_COUNT_TRUNCATED)
3645 inner_const = GEN_INT (INTVAL (inner_const)
3646 & (GET_MODE_BITSIZE (mode) - 1));
3647 else
3648 break;
3651 /* Compute the code used to compose the constants. For example,
3652 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3654 associate_code = (is_shift || code == MINUS ? PLUS : code);
3656 new_const = simplify_binary_operation (associate_code, mode,
3657 canon_const_arg1,
3658 inner_const);
3660 if (new_const == 0)
3661 break;
3663 /* If we are associating shift operations, don't let this
3664 produce a shift of the size of the object or larger.
3665 This could occur when we follow a sign-extend by a right
3666 shift on a machine that does a sign-extend as a pair
3667 of shifts. */
3669 if (is_shift
3670 && CONST_INT_P (new_const)
3671 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3673 /* As an exception, we can turn an ASHIFTRT of this
3674 form into a shift of the number of bits - 1. */
3675 if (code == ASHIFTRT)
3676 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3677 else if (!side_effects_p (XEXP (y, 0)))
3678 return CONST0_RTX (mode);
3679 else
3680 break;
3683 y = copy_rtx (XEXP (y, 0));
3685 /* If Y contains our first operand (the most common way this
3686 can happen is if Y is a MEM), we would do into an infinite
3687 loop if we tried to fold it. So don't in that case. */
3689 if (! reg_mentioned_p (folded_arg0, y))
3690 y = fold_rtx (y, insn);
3692 return simplify_gen_binary (code, mode, y, new_const);
3694 break;
3696 case DIV: case UDIV:
3697 /* ??? The associative optimization performed immediately above is
3698 also possible for DIV and UDIV using associate_code of MULT.
3699 However, we would need extra code to verify that the
3700 multiplication does not overflow, that is, there is no overflow
3701 in the calculation of new_const. */
3702 break;
3704 default:
3705 break;
3708 new_rtx = simplify_binary_operation (code, mode,
3709 const_arg0 ? const_arg0 : folded_arg0,
3710 const_arg1 ? const_arg1 : folded_arg1);
3711 break;
3713 case RTX_OBJ:
3714 /* (lo_sum (high X) X) is simply X. */
3715 if (code == LO_SUM && const_arg0 != 0
3716 && GET_CODE (const_arg0) == HIGH
3717 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3718 return const_arg1;
3719 break;
3721 case RTX_TERNARY:
3722 case RTX_BITFIELD_OPS:
3723 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3724 const_arg0 ? const_arg0 : folded_arg0,
3725 const_arg1 ? const_arg1 : folded_arg1,
3726 const_arg2 ? const_arg2 : XEXP (x, 2));
3727 break;
3729 default:
3730 break;
3733 return new_rtx ? new_rtx : x;
3736 /* Return a constant value currently equivalent to X.
3737 Return 0 if we don't know one. */
3739 static rtx
3740 equiv_constant (rtx x)
3742 if (REG_P (x)
3743 && REGNO_QTY_VALID_P (REGNO (x)))
3745 int x_q = REG_QTY (REGNO (x));
3746 struct qty_table_elem *x_ent = &qty_table[x_q];
3748 if (x_ent->const_rtx)
3749 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3752 if (x == 0 || CONSTANT_P (x))
3753 return x;
3755 if (GET_CODE (x) == SUBREG)
3757 enum machine_mode mode = GET_MODE (x);
3758 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3759 rtx new_rtx;
3761 /* See if we previously assigned a constant value to this SUBREG. */
3762 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3763 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3764 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3765 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3766 return new_rtx;
3768 /* If we didn't and if doing so makes sense, see if we previously
3769 assigned a constant value to the enclosing word mode SUBREG. */
3770 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3771 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3773 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3774 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3776 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3777 new_rtx = lookup_as_function (y, CONST_INT);
3778 if (new_rtx)
3779 return gen_lowpart (mode, new_rtx);
3783 /* Otherwise see if we already have a constant for the inner REG,
3784 and if that is enough to calculate an equivalent constant for
3785 the subreg. Note that the upper bits of paradoxical subregs
3786 are undefined, so they cannot be said to equal anything. */
3787 if (REG_P (SUBREG_REG (x))
3788 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3789 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3790 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3792 return 0;
3795 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3796 the hash table in case its value was seen before. */
3798 if (MEM_P (x))
3800 struct table_elt *elt;
3802 x = avoid_constant_pool_reference (x);
3803 if (CONSTANT_P (x))
3804 return x;
3806 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3807 if (elt == 0)
3808 return 0;
3810 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3811 if (elt->is_const && CONSTANT_P (elt->exp))
3812 return elt->exp;
3815 return 0;
3818 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3819 "taken" branch.
3821 In certain cases, this can cause us to add an equivalence. For example,
3822 if we are following the taken case of
3823 if (i == 2)
3824 we can add the fact that `i' and '2' are now equivalent.
3826 In any case, we can record that this comparison was passed. If the same
3827 comparison is seen later, we will know its value. */
3829 static void
3830 record_jump_equiv (rtx_insn *insn, bool taken)
3832 int cond_known_true;
3833 rtx op0, op1;
3834 rtx set;
3835 enum machine_mode mode, mode0, mode1;
3836 int reversed_nonequality = 0;
3837 enum rtx_code code;
3839 /* Ensure this is the right kind of insn. */
3840 gcc_assert (any_condjump_p (insn));
3842 set = pc_set (insn);
3844 /* See if this jump condition is known true or false. */
3845 if (taken)
3846 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3847 else
3848 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3850 /* Get the type of comparison being done and the operands being compared.
3851 If we had to reverse a non-equality condition, record that fact so we
3852 know that it isn't valid for floating-point. */
3853 code = GET_CODE (XEXP (SET_SRC (set), 0));
3854 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3855 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3857 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3858 if (! cond_known_true)
3860 code = reversed_comparison_code_parts (code, op0, op1, insn);
3862 /* Don't remember if we can't find the inverse. */
3863 if (code == UNKNOWN)
3864 return;
3867 /* The mode is the mode of the non-constant. */
3868 mode = mode0;
3869 if (mode1 != VOIDmode)
3870 mode = mode1;
3872 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3875 /* Yet another form of subreg creation. In this case, we want something in
3876 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3878 static rtx
3879 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3881 enum machine_mode op_mode = GET_MODE (op);
3882 if (op_mode == mode || op_mode == VOIDmode)
3883 return op;
3884 return lowpart_subreg (mode, op, op_mode);
3887 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3888 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3889 Make any useful entries we can with that information. Called from
3890 above function and called recursively. */
3892 static void
3893 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3894 rtx op1, int reversed_nonequality)
3896 unsigned op0_hash, op1_hash;
3897 int op0_in_memory, op1_in_memory;
3898 struct table_elt *op0_elt, *op1_elt;
3900 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3901 we know that they are also equal in the smaller mode (this is also
3902 true for all smaller modes whether or not there is a SUBREG, but
3903 is not worth testing for with no SUBREG). */
3905 /* Note that GET_MODE (op0) may not equal MODE. */
3906 if (code == EQ && paradoxical_subreg_p (op0))
3908 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3909 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3910 if (tem)
3911 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3912 reversed_nonequality);
3915 if (code == EQ && paradoxical_subreg_p (op1))
3917 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3918 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3919 if (tem)
3920 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3921 reversed_nonequality);
3924 /* Similarly, if this is an NE comparison, and either is a SUBREG
3925 making a smaller mode, we know the whole thing is also NE. */
3927 /* Note that GET_MODE (op0) may not equal MODE;
3928 if we test MODE instead, we can get an infinite recursion
3929 alternating between two modes each wider than MODE. */
3931 if (code == NE && GET_CODE (op0) == SUBREG
3932 && subreg_lowpart_p (op0)
3933 && (GET_MODE_SIZE (GET_MODE (op0))
3934 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3936 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3937 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3938 if (tem)
3939 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3940 reversed_nonequality);
3943 if (code == NE && GET_CODE (op1) == SUBREG
3944 && subreg_lowpart_p (op1)
3945 && (GET_MODE_SIZE (GET_MODE (op1))
3946 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3948 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3949 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3950 if (tem)
3951 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3952 reversed_nonequality);
3955 /* Hash both operands. */
3957 do_not_record = 0;
3958 hash_arg_in_memory = 0;
3959 op0_hash = HASH (op0, mode);
3960 op0_in_memory = hash_arg_in_memory;
3962 if (do_not_record)
3963 return;
3965 do_not_record = 0;
3966 hash_arg_in_memory = 0;
3967 op1_hash = HASH (op1, mode);
3968 op1_in_memory = hash_arg_in_memory;
3970 if (do_not_record)
3971 return;
3973 /* Look up both operands. */
3974 op0_elt = lookup (op0, op0_hash, mode);
3975 op1_elt = lookup (op1, op1_hash, mode);
3977 /* If both operands are already equivalent or if they are not in the
3978 table but are identical, do nothing. */
3979 if ((op0_elt != 0 && op1_elt != 0
3980 && op0_elt->first_same_value == op1_elt->first_same_value)
3981 || op0 == op1 || rtx_equal_p (op0, op1))
3982 return;
3984 /* If we aren't setting two things equal all we can do is save this
3985 comparison. Similarly if this is floating-point. In the latter
3986 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3987 If we record the equality, we might inadvertently delete code
3988 whose intent was to change -0 to +0. */
3990 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3992 struct qty_table_elem *ent;
3993 int qty;
3995 /* If we reversed a floating-point comparison, if OP0 is not a
3996 register, or if OP1 is neither a register or constant, we can't
3997 do anything. */
3999 if (!REG_P (op1))
4000 op1 = equiv_constant (op1);
4002 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4003 || !REG_P (op0) || op1 == 0)
4004 return;
4006 /* Put OP0 in the hash table if it isn't already. This gives it a
4007 new quantity number. */
4008 if (op0_elt == 0)
4010 if (insert_regs (op0, NULL, 0))
4012 rehash_using_reg (op0);
4013 op0_hash = HASH (op0, mode);
4015 /* If OP0 is contained in OP1, this changes its hash code
4016 as well. Faster to rehash than to check, except
4017 for the simple case of a constant. */
4018 if (! CONSTANT_P (op1))
4019 op1_hash = HASH (op1,mode);
4022 op0_elt = insert (op0, NULL, op0_hash, mode);
4023 op0_elt->in_memory = op0_in_memory;
4026 qty = REG_QTY (REGNO (op0));
4027 ent = &qty_table[qty];
4029 ent->comparison_code = code;
4030 if (REG_P (op1))
4032 /* Look it up again--in case op0 and op1 are the same. */
4033 op1_elt = lookup (op1, op1_hash, mode);
4035 /* Put OP1 in the hash table so it gets a new quantity number. */
4036 if (op1_elt == 0)
4038 if (insert_regs (op1, NULL, 0))
4040 rehash_using_reg (op1);
4041 op1_hash = HASH (op1, mode);
4044 op1_elt = insert (op1, NULL, op1_hash, mode);
4045 op1_elt->in_memory = op1_in_memory;
4048 ent->comparison_const = NULL_RTX;
4049 ent->comparison_qty = REG_QTY (REGNO (op1));
4051 else
4053 ent->comparison_const = op1;
4054 ent->comparison_qty = -1;
4057 return;
4060 /* If either side is still missing an equivalence, make it now,
4061 then merge the equivalences. */
4063 if (op0_elt == 0)
4065 if (insert_regs (op0, NULL, 0))
4067 rehash_using_reg (op0);
4068 op0_hash = HASH (op0, mode);
4071 op0_elt = insert (op0, NULL, op0_hash, mode);
4072 op0_elt->in_memory = op0_in_memory;
4075 if (op1_elt == 0)
4077 if (insert_regs (op1, NULL, 0))
4079 rehash_using_reg (op1);
4080 op1_hash = HASH (op1, mode);
4083 op1_elt = insert (op1, NULL, op1_hash, mode);
4084 op1_elt->in_memory = op1_in_memory;
4087 merge_equiv_classes (op0_elt, op1_elt);
4090 /* CSE processing for one instruction.
4092 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4093 but the few that "leak through" are cleaned up by cse_insn, and complex
4094 addressing modes are often formed here.
4096 The main function is cse_insn, and between here and that function
4097 a couple of helper functions is defined to keep the size of cse_insn
4098 within reasonable proportions.
4100 Data is shared between the main and helper functions via STRUCT SET,
4101 that contains all data related for every set in the instruction that
4102 is being processed.
4104 Note that cse_main processes all sets in the instruction. Most
4105 passes in GCC only process simple SET insns or single_set insns, but
4106 CSE processes insns with multiple sets as well. */
4108 /* Data on one SET contained in the instruction. */
4110 struct set
4112 /* The SET rtx itself. */
4113 rtx rtl;
4114 /* The SET_SRC of the rtx (the original value, if it is changing). */
4115 rtx src;
4116 /* The hash-table element for the SET_SRC of the SET. */
4117 struct table_elt *src_elt;
4118 /* Hash value for the SET_SRC. */
4119 unsigned src_hash;
4120 /* Hash value for the SET_DEST. */
4121 unsigned dest_hash;
4122 /* The SET_DEST, with SUBREG, etc., stripped. */
4123 rtx inner_dest;
4124 /* Nonzero if the SET_SRC is in memory. */
4125 char src_in_memory;
4126 /* Nonzero if the SET_SRC contains something
4127 whose value cannot be predicted and understood. */
4128 char src_volatile;
4129 /* Original machine mode, in case it becomes a CONST_INT.
4130 The size of this field should match the size of the mode
4131 field of struct rtx_def (see rtl.h). */
4132 ENUM_BITFIELD(machine_mode) mode : 8;
4133 /* A constant equivalent for SET_SRC, if any. */
4134 rtx src_const;
4135 /* Hash value of constant equivalent for SET_SRC. */
4136 unsigned src_const_hash;
4137 /* Table entry for constant equivalent for SET_SRC, if any. */
4138 struct table_elt *src_const_elt;
4139 /* Table entry for the destination address. */
4140 struct table_elt *dest_addr_elt;
4143 /* Special handling for (set REG0 REG1) where REG0 is the
4144 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4145 be used in the sequel, so (if easily done) change this insn to
4146 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4147 that computed their value. Then REG1 will become a dead store
4148 and won't cloud the situation for later optimizations.
4150 Do not make this change if REG1 is a hard register, because it will
4151 then be used in the sequel and we may be changing a two-operand insn
4152 into a three-operand insn.
4154 This is the last transformation that cse_insn will try to do. */
4156 static void
4157 try_back_substitute_reg (rtx set, rtx_insn *insn)
4159 rtx dest = SET_DEST (set);
4160 rtx src = SET_SRC (set);
4162 if (REG_P (dest)
4163 && REG_P (src) && ! HARD_REGISTER_P (src)
4164 && REGNO_QTY_VALID_P (REGNO (src)))
4166 int src_q = REG_QTY (REGNO (src));
4167 struct qty_table_elem *src_ent = &qty_table[src_q];
4169 if (src_ent->first_reg == REGNO (dest))
4171 /* Scan for the previous nonnote insn, but stop at a basic
4172 block boundary. */
4173 rtx_insn *prev = insn;
4174 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4177 prev = PREV_INSN (prev);
4179 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4181 /* Do not swap the registers around if the previous instruction
4182 attaches a REG_EQUIV note to REG1.
4184 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4185 from the pseudo that originally shadowed an incoming argument
4186 to another register. Some uses of REG_EQUIV might rely on it
4187 being attached to REG1 rather than REG2.
4189 This section previously turned the REG_EQUIV into a REG_EQUAL
4190 note. We cannot do that because REG_EQUIV may provide an
4191 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4192 if (NONJUMP_INSN_P (prev)
4193 && GET_CODE (PATTERN (prev)) == SET
4194 && SET_DEST (PATTERN (prev)) == src
4195 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4197 rtx note;
4199 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4200 validate_change (insn, &SET_DEST (set), src, 1);
4201 validate_change (insn, &SET_SRC (set), dest, 1);
4202 apply_change_group ();
4204 /* If INSN has a REG_EQUAL note, and this note mentions
4205 REG0, then we must delete it, because the value in
4206 REG0 has changed. If the note's value is REG1, we must
4207 also delete it because that is now this insn's dest. */
4208 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4209 if (note != 0
4210 && (reg_mentioned_p (dest, XEXP (note, 0))
4211 || rtx_equal_p (src, XEXP (note, 0))))
4212 remove_note (insn, note);
4218 /* Record all the SETs in this instruction into SETS_PTR,
4219 and return the number of recorded sets. */
4220 static int
4221 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4223 struct set *sets = *psets;
4224 int n_sets = 0;
4225 rtx x = PATTERN (insn);
4227 if (GET_CODE (x) == SET)
4229 /* Ignore SETs that are unconditional jumps.
4230 They never need cse processing, so this does not hurt.
4231 The reason is not efficiency but rather
4232 so that we can test at the end for instructions
4233 that have been simplified to unconditional jumps
4234 and not be misled by unchanged instructions
4235 that were unconditional jumps to begin with. */
4236 if (SET_DEST (x) == pc_rtx
4237 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4239 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4240 The hard function value register is used only once, to copy to
4241 someplace else, so it isn't worth cse'ing. */
4242 else if (GET_CODE (SET_SRC (x)) == CALL)
4244 else
4245 sets[n_sets++].rtl = x;
4247 else if (GET_CODE (x) == PARALLEL)
4249 int i, lim = XVECLEN (x, 0);
4251 /* Go over the epressions of the PARALLEL in forward order, to
4252 put them in the same order in the SETS array. */
4253 for (i = 0; i < lim; i++)
4255 rtx y = XVECEXP (x, 0, i);
4256 if (GET_CODE (y) == SET)
4258 /* As above, we ignore unconditional jumps and call-insns and
4259 ignore the result of apply_change_group. */
4260 if (SET_DEST (y) == pc_rtx
4261 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4263 else if (GET_CODE (SET_SRC (y)) == CALL)
4265 else
4266 sets[n_sets++].rtl = y;
4271 return n_sets;
4274 /* Where possible, substitute every register reference in the N_SETS
4275 number of SETS in INSN with the the canonical register.
4277 Register canonicalization propagatest the earliest register (i.e.
4278 one that is set before INSN) with the same value. This is a very
4279 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4280 to RTL. For instance, a CONST for an address is usually expanded
4281 multiple times to loads into different registers, thus creating many
4282 subexpressions of the form:
4284 (set (reg1) (some_const))
4285 (set (mem (... reg1 ...) (thing)))
4286 (set (reg2) (some_const))
4287 (set (mem (... reg2 ...) (thing)))
4289 After canonicalizing, the code takes the following form:
4291 (set (reg1) (some_const))
4292 (set (mem (... reg1 ...) (thing)))
4293 (set (reg2) (some_const))
4294 (set (mem (... reg1 ...) (thing)))
4296 The set to reg2 is now trivially dead, and the memory reference (or
4297 address, or whatever) may be a candidate for further CSEing.
4299 In this function, the result of apply_change_group can be ignored;
4300 see canon_reg. */
4302 static void
4303 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4305 struct set *sets = *psets;
4306 rtx tem;
4307 rtx x = PATTERN (insn);
4308 int i;
4310 if (CALL_P (insn))
4312 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4313 if (GET_CODE (XEXP (tem, 0)) != SET)
4314 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4317 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4319 canon_reg (SET_SRC (x), insn);
4320 apply_change_group ();
4321 fold_rtx (SET_SRC (x), insn);
4323 else if (GET_CODE (x) == CLOBBER)
4325 /* If we clobber memory, canon the address.
4326 This does nothing when a register is clobbered
4327 because we have already invalidated the reg. */
4328 if (MEM_P (XEXP (x, 0)))
4329 canon_reg (XEXP (x, 0), insn);
4331 else if (GET_CODE (x) == USE
4332 && ! (REG_P (XEXP (x, 0))
4333 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4334 /* Canonicalize a USE of a pseudo register or memory location. */
4335 canon_reg (x, insn);
4336 else if (GET_CODE (x) == ASM_OPERANDS)
4338 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4340 rtx input = ASM_OPERANDS_INPUT (x, i);
4341 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4343 input = canon_reg (input, insn);
4344 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4348 else if (GET_CODE (x) == CALL)
4350 canon_reg (x, insn);
4351 apply_change_group ();
4352 fold_rtx (x, insn);
4354 else if (DEBUG_INSN_P (insn))
4355 canon_reg (PATTERN (insn), insn);
4356 else if (GET_CODE (x) == PARALLEL)
4358 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4360 rtx y = XVECEXP (x, 0, i);
4361 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4363 canon_reg (SET_SRC (y), insn);
4364 apply_change_group ();
4365 fold_rtx (SET_SRC (y), insn);
4367 else if (GET_CODE (y) == CLOBBER)
4369 if (MEM_P (XEXP (y, 0)))
4370 canon_reg (XEXP (y, 0), insn);
4372 else if (GET_CODE (y) == USE
4373 && ! (REG_P (XEXP (y, 0))
4374 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4375 canon_reg (y, insn);
4376 else if (GET_CODE (y) == CALL)
4378 canon_reg (y, insn);
4379 apply_change_group ();
4380 fold_rtx (y, insn);
4385 if (n_sets == 1 && REG_NOTES (insn) != 0
4386 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4388 /* We potentially will process this insn many times. Therefore,
4389 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4390 unique set in INSN.
4392 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4393 because cse_insn handles those specially. */
4394 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4395 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4396 remove_note (insn, tem);
4397 else
4399 canon_reg (XEXP (tem, 0), insn);
4400 apply_change_group ();
4401 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4402 df_notes_rescan (insn);
4406 /* Canonicalize sources and addresses of destinations.
4407 We do this in a separate pass to avoid problems when a MATCH_DUP is
4408 present in the insn pattern. In that case, we want to ensure that
4409 we don't break the duplicate nature of the pattern. So we will replace
4410 both operands at the same time. Otherwise, we would fail to find an
4411 equivalent substitution in the loop calling validate_change below.
4413 We used to suppress canonicalization of DEST if it appears in SRC,
4414 but we don't do this any more. */
4416 for (i = 0; i < n_sets; i++)
4418 rtx dest = SET_DEST (sets[i].rtl);
4419 rtx src = SET_SRC (sets[i].rtl);
4420 rtx new_rtx = canon_reg (src, insn);
4422 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4424 if (GET_CODE (dest) == ZERO_EXTRACT)
4426 validate_change (insn, &XEXP (dest, 1),
4427 canon_reg (XEXP (dest, 1), insn), 1);
4428 validate_change (insn, &XEXP (dest, 2),
4429 canon_reg (XEXP (dest, 2), insn), 1);
4432 while (GET_CODE (dest) == SUBREG
4433 || GET_CODE (dest) == ZERO_EXTRACT
4434 || GET_CODE (dest) == STRICT_LOW_PART)
4435 dest = XEXP (dest, 0);
4437 if (MEM_P (dest))
4438 canon_reg (dest, insn);
4441 /* Now that we have done all the replacements, we can apply the change
4442 group and see if they all work. Note that this will cause some
4443 canonicalizations that would have worked individually not to be applied
4444 because some other canonicalization didn't work, but this should not
4445 occur often.
4447 The result of apply_change_group can be ignored; see canon_reg. */
4449 apply_change_group ();
4452 /* Main function of CSE.
4453 First simplify sources and addresses of all assignments
4454 in the instruction, using previously-computed equivalents values.
4455 Then install the new sources and destinations in the table
4456 of available values. */
4458 static void
4459 cse_insn (rtx_insn *insn)
4461 rtx x = PATTERN (insn);
4462 int i;
4463 rtx tem;
4464 int n_sets = 0;
4466 rtx src_eqv = 0;
4467 struct table_elt *src_eqv_elt = 0;
4468 int src_eqv_volatile = 0;
4469 int src_eqv_in_memory = 0;
4470 unsigned src_eqv_hash = 0;
4472 struct set *sets = (struct set *) 0;
4474 if (GET_CODE (x) == SET)
4475 sets = XALLOCA (struct set);
4476 else if (GET_CODE (x) == PARALLEL)
4477 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4479 this_insn = insn;
4480 #ifdef HAVE_cc0
4481 /* Records what this insn does to set CC0. */
4482 this_insn_cc0 = 0;
4483 this_insn_cc0_mode = VOIDmode;
4484 #endif
4486 /* Find all regs explicitly clobbered in this insn,
4487 to ensure they are not replaced with any other regs
4488 elsewhere in this insn. */
4489 invalidate_from_sets_and_clobbers (insn);
4491 /* Record all the SETs in this instruction. */
4492 n_sets = find_sets_in_insn (insn, &sets);
4494 /* Substitute the canonical register where possible. */
4495 canonicalize_insn (insn, &sets, n_sets);
4497 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4498 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4499 is necessary because SRC_EQV is handled specially for this case, and if
4500 it isn't set, then there will be no equivalence for the destination. */
4501 if (n_sets == 1 && REG_NOTES (insn) != 0
4502 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4503 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4504 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4505 src_eqv = copy_rtx (XEXP (tem, 0));
4507 /* Set sets[i].src_elt to the class each source belongs to.
4508 Detect assignments from or to volatile things
4509 and set set[i] to zero so they will be ignored
4510 in the rest of this function.
4512 Nothing in this loop changes the hash table or the register chains. */
4514 for (i = 0; i < n_sets; i++)
4516 bool repeat = false;
4517 rtx src, dest;
4518 rtx src_folded;
4519 struct table_elt *elt = 0, *p;
4520 enum machine_mode mode;
4521 rtx src_eqv_here;
4522 rtx src_const = 0;
4523 rtx src_related = 0;
4524 bool src_related_is_const_anchor = false;
4525 struct table_elt *src_const_elt = 0;
4526 int src_cost = MAX_COST;
4527 int src_eqv_cost = MAX_COST;
4528 int src_folded_cost = MAX_COST;
4529 int src_related_cost = MAX_COST;
4530 int src_elt_cost = MAX_COST;
4531 int src_regcost = MAX_COST;
4532 int src_eqv_regcost = MAX_COST;
4533 int src_folded_regcost = MAX_COST;
4534 int src_related_regcost = MAX_COST;
4535 int src_elt_regcost = MAX_COST;
4536 /* Set nonzero if we need to call force_const_mem on with the
4537 contents of src_folded before using it. */
4538 int src_folded_force_flag = 0;
4540 dest = SET_DEST (sets[i].rtl);
4541 src = SET_SRC (sets[i].rtl);
4543 /* If SRC is a constant that has no machine mode,
4544 hash it with the destination's machine mode.
4545 This way we can keep different modes separate. */
4547 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4548 sets[i].mode = mode;
4550 if (src_eqv)
4552 enum machine_mode eqvmode = mode;
4553 if (GET_CODE (dest) == STRICT_LOW_PART)
4554 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4555 do_not_record = 0;
4556 hash_arg_in_memory = 0;
4557 src_eqv_hash = HASH (src_eqv, eqvmode);
4559 /* Find the equivalence class for the equivalent expression. */
4561 if (!do_not_record)
4562 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4564 src_eqv_volatile = do_not_record;
4565 src_eqv_in_memory = hash_arg_in_memory;
4568 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4569 value of the INNER register, not the destination. So it is not
4570 a valid substitution for the source. But save it for later. */
4571 if (GET_CODE (dest) == STRICT_LOW_PART)
4572 src_eqv_here = 0;
4573 else
4574 src_eqv_here = src_eqv;
4576 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4577 simplified result, which may not necessarily be valid. */
4578 src_folded = fold_rtx (src, insn);
4580 #if 0
4581 /* ??? This caused bad code to be generated for the m68k port with -O2.
4582 Suppose src is (CONST_INT -1), and that after truncation src_folded
4583 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4584 At the end we will add src and src_const to the same equivalence
4585 class. We now have 3 and -1 on the same equivalence class. This
4586 causes later instructions to be mis-optimized. */
4587 /* If storing a constant in a bitfield, pre-truncate the constant
4588 so we will be able to record it later. */
4589 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4591 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4593 if (CONST_INT_P (src)
4594 && CONST_INT_P (width)
4595 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4596 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4597 src_folded
4598 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4599 << INTVAL (width)) - 1));
4601 #endif
4603 /* Compute SRC's hash code, and also notice if it
4604 should not be recorded at all. In that case,
4605 prevent any further processing of this assignment. */
4606 do_not_record = 0;
4607 hash_arg_in_memory = 0;
4609 sets[i].src = src;
4610 sets[i].src_hash = HASH (src, mode);
4611 sets[i].src_volatile = do_not_record;
4612 sets[i].src_in_memory = hash_arg_in_memory;
4614 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4615 a pseudo, do not record SRC. Using SRC as a replacement for
4616 anything else will be incorrect in that situation. Note that
4617 this usually occurs only for stack slots, in which case all the
4618 RTL would be referring to SRC, so we don't lose any optimization
4619 opportunities by not having SRC in the hash table. */
4621 if (MEM_P (src)
4622 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4623 && REG_P (dest)
4624 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4625 sets[i].src_volatile = 1;
4627 /* Also do not record result of a non-volatile inline asm with
4628 more than one result or with clobbers, we do not want CSE to
4629 break the inline asm apart. */
4630 else if (GET_CODE (src) == ASM_OPERANDS
4631 && GET_CODE (x) == PARALLEL)
4632 sets[i].src_volatile = 1;
4634 #if 0
4635 /* It is no longer clear why we used to do this, but it doesn't
4636 appear to still be needed. So let's try without it since this
4637 code hurts cse'ing widened ops. */
4638 /* If source is a paradoxical subreg (such as QI treated as an SI),
4639 treat it as volatile. It may do the work of an SI in one context
4640 where the extra bits are not being used, but cannot replace an SI
4641 in general. */
4642 if (paradoxical_subreg_p (src))
4643 sets[i].src_volatile = 1;
4644 #endif
4646 /* Locate all possible equivalent forms for SRC. Try to replace
4647 SRC in the insn with each cheaper equivalent.
4649 We have the following types of equivalents: SRC itself, a folded
4650 version, a value given in a REG_EQUAL note, or a value related
4651 to a constant.
4653 Each of these equivalents may be part of an additional class
4654 of equivalents (if more than one is in the table, they must be in
4655 the same class; we check for this).
4657 If the source is volatile, we don't do any table lookups.
4659 We note any constant equivalent for possible later use in a
4660 REG_NOTE. */
4662 if (!sets[i].src_volatile)
4663 elt = lookup (src, sets[i].src_hash, mode);
4665 sets[i].src_elt = elt;
4667 if (elt && src_eqv_here && src_eqv_elt)
4669 if (elt->first_same_value != src_eqv_elt->first_same_value)
4671 /* The REG_EQUAL is indicating that two formerly distinct
4672 classes are now equivalent. So merge them. */
4673 merge_equiv_classes (elt, src_eqv_elt);
4674 src_eqv_hash = HASH (src_eqv, elt->mode);
4675 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4678 src_eqv_here = 0;
4681 else if (src_eqv_elt)
4682 elt = src_eqv_elt;
4684 /* Try to find a constant somewhere and record it in `src_const'.
4685 Record its table element, if any, in `src_const_elt'. Look in
4686 any known equivalences first. (If the constant is not in the
4687 table, also set `sets[i].src_const_hash'). */
4688 if (elt)
4689 for (p = elt->first_same_value; p; p = p->next_same_value)
4690 if (p->is_const)
4692 src_const = p->exp;
4693 src_const_elt = elt;
4694 break;
4697 if (src_const == 0
4698 && (CONSTANT_P (src_folded)
4699 /* Consider (minus (label_ref L1) (label_ref L2)) as
4700 "constant" here so we will record it. This allows us
4701 to fold switch statements when an ADDR_DIFF_VEC is used. */
4702 || (GET_CODE (src_folded) == MINUS
4703 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4704 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4705 src_const = src_folded, src_const_elt = elt;
4706 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4707 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4709 /* If we don't know if the constant is in the table, get its
4710 hash code and look it up. */
4711 if (src_const && src_const_elt == 0)
4713 sets[i].src_const_hash = HASH (src_const, mode);
4714 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4717 sets[i].src_const = src_const;
4718 sets[i].src_const_elt = src_const_elt;
4720 /* If the constant and our source are both in the table, mark them as
4721 equivalent. Otherwise, if a constant is in the table but the source
4722 isn't, set ELT to it. */
4723 if (src_const_elt && elt
4724 && src_const_elt->first_same_value != elt->first_same_value)
4725 merge_equiv_classes (elt, src_const_elt);
4726 else if (src_const_elt && elt == 0)
4727 elt = src_const_elt;
4729 /* See if there is a register linearly related to a constant
4730 equivalent of SRC. */
4731 if (src_const
4732 && (GET_CODE (src_const) == CONST
4733 || (src_const_elt && src_const_elt->related_value != 0)))
4735 src_related = use_related_value (src_const, src_const_elt);
4736 if (src_related)
4738 struct table_elt *src_related_elt
4739 = lookup (src_related, HASH (src_related, mode), mode);
4740 if (src_related_elt && elt)
4742 if (elt->first_same_value
4743 != src_related_elt->first_same_value)
4744 /* This can occur when we previously saw a CONST
4745 involving a SYMBOL_REF and then see the SYMBOL_REF
4746 twice. Merge the involved classes. */
4747 merge_equiv_classes (elt, src_related_elt);
4749 src_related = 0;
4750 src_related_elt = 0;
4752 else if (src_related_elt && elt == 0)
4753 elt = src_related_elt;
4757 /* See if we have a CONST_INT that is already in a register in a
4758 wider mode. */
4760 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4761 && GET_MODE_CLASS (mode) == MODE_INT
4762 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4764 enum machine_mode wider_mode;
4766 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4767 wider_mode != VOIDmode
4768 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4769 && src_related == 0;
4770 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4772 struct table_elt *const_elt
4773 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4775 if (const_elt == 0)
4776 continue;
4778 for (const_elt = const_elt->first_same_value;
4779 const_elt; const_elt = const_elt->next_same_value)
4780 if (REG_P (const_elt->exp))
4782 src_related = gen_lowpart (mode, const_elt->exp);
4783 break;
4788 /* Another possibility is that we have an AND with a constant in
4789 a mode narrower than a word. If so, it might have been generated
4790 as part of an "if" which would narrow the AND. If we already
4791 have done the AND in a wider mode, we can use a SUBREG of that
4792 value. */
4794 if (flag_expensive_optimizations && ! src_related
4795 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4796 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4798 enum machine_mode tmode;
4799 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4801 for (tmode = GET_MODE_WIDER_MODE (mode);
4802 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4803 tmode = GET_MODE_WIDER_MODE (tmode))
4805 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4806 struct table_elt *larger_elt;
4808 if (inner)
4810 PUT_MODE (new_and, tmode);
4811 XEXP (new_and, 0) = inner;
4812 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4813 if (larger_elt == 0)
4814 continue;
4816 for (larger_elt = larger_elt->first_same_value;
4817 larger_elt; larger_elt = larger_elt->next_same_value)
4818 if (REG_P (larger_elt->exp))
4820 src_related
4821 = gen_lowpart (mode, larger_elt->exp);
4822 break;
4825 if (src_related)
4826 break;
4831 #ifdef LOAD_EXTEND_OP
4832 /* See if a MEM has already been loaded with a widening operation;
4833 if it has, we can use a subreg of that. Many CISC machines
4834 also have such operations, but this is only likely to be
4835 beneficial on these machines. */
4837 if (flag_expensive_optimizations && src_related == 0
4838 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4839 && GET_MODE_CLASS (mode) == MODE_INT
4840 && MEM_P (src) && ! do_not_record
4841 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4843 struct rtx_def memory_extend_buf;
4844 rtx memory_extend_rtx = &memory_extend_buf;
4845 enum machine_mode tmode;
4847 /* Set what we are trying to extend and the operation it might
4848 have been extended with. */
4849 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4850 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4851 XEXP (memory_extend_rtx, 0) = src;
4853 for (tmode = GET_MODE_WIDER_MODE (mode);
4854 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4855 tmode = GET_MODE_WIDER_MODE (tmode))
4857 struct table_elt *larger_elt;
4859 PUT_MODE (memory_extend_rtx, tmode);
4860 larger_elt = lookup (memory_extend_rtx,
4861 HASH (memory_extend_rtx, tmode), tmode);
4862 if (larger_elt == 0)
4863 continue;
4865 for (larger_elt = larger_elt->first_same_value;
4866 larger_elt; larger_elt = larger_elt->next_same_value)
4867 if (REG_P (larger_elt->exp))
4869 src_related = gen_lowpart (mode, larger_elt->exp);
4870 break;
4873 if (src_related)
4874 break;
4877 #endif /* LOAD_EXTEND_OP */
4879 /* Try to express the constant using a register+offset expression
4880 derived from a constant anchor. */
4882 if (targetm.const_anchor
4883 && !src_related
4884 && src_const
4885 && GET_CODE (src_const) == CONST_INT)
4887 src_related = try_const_anchors (src_const, mode);
4888 src_related_is_const_anchor = src_related != NULL_RTX;
4892 if (src == src_folded)
4893 src_folded = 0;
4895 /* At this point, ELT, if nonzero, points to a class of expressions
4896 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4897 and SRC_RELATED, if nonzero, each contain additional equivalent
4898 expressions. Prune these latter expressions by deleting expressions
4899 already in the equivalence class.
4901 Check for an equivalent identical to the destination. If found,
4902 this is the preferred equivalent since it will likely lead to
4903 elimination of the insn. Indicate this by placing it in
4904 `src_related'. */
4906 if (elt)
4907 elt = elt->first_same_value;
4908 for (p = elt; p; p = p->next_same_value)
4910 enum rtx_code code = GET_CODE (p->exp);
4912 /* If the expression is not valid, ignore it. Then we do not
4913 have to check for validity below. In most cases, we can use
4914 `rtx_equal_p', since canonicalization has already been done. */
4915 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4916 continue;
4918 /* Also skip paradoxical subregs, unless that's what we're
4919 looking for. */
4920 if (paradoxical_subreg_p (p->exp)
4921 && ! (src != 0
4922 && GET_CODE (src) == SUBREG
4923 && GET_MODE (src) == GET_MODE (p->exp)
4924 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4925 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4926 continue;
4928 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4929 src = 0;
4930 else if (src_folded && GET_CODE (src_folded) == code
4931 && rtx_equal_p (src_folded, p->exp))
4932 src_folded = 0;
4933 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4934 && rtx_equal_p (src_eqv_here, p->exp))
4935 src_eqv_here = 0;
4936 else if (src_related && GET_CODE (src_related) == code
4937 && rtx_equal_p (src_related, p->exp))
4938 src_related = 0;
4940 /* This is the same as the destination of the insns, we want
4941 to prefer it. Copy it to src_related. The code below will
4942 then give it a negative cost. */
4943 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4944 src_related = dest;
4947 /* Find the cheapest valid equivalent, trying all the available
4948 possibilities. Prefer items not in the hash table to ones
4949 that are when they are equal cost. Note that we can never
4950 worsen an insn as the current contents will also succeed.
4951 If we find an equivalent identical to the destination, use it as best,
4952 since this insn will probably be eliminated in that case. */
4953 if (src)
4955 if (rtx_equal_p (src, dest))
4956 src_cost = src_regcost = -1;
4957 else
4959 src_cost = COST (src);
4960 src_regcost = approx_reg_cost (src);
4964 if (src_eqv_here)
4966 if (rtx_equal_p (src_eqv_here, dest))
4967 src_eqv_cost = src_eqv_regcost = -1;
4968 else
4970 src_eqv_cost = COST (src_eqv_here);
4971 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4975 if (src_folded)
4977 if (rtx_equal_p (src_folded, dest))
4978 src_folded_cost = src_folded_regcost = -1;
4979 else
4981 src_folded_cost = COST (src_folded);
4982 src_folded_regcost = approx_reg_cost (src_folded);
4986 if (src_related)
4988 if (rtx_equal_p (src_related, dest))
4989 src_related_cost = src_related_regcost = -1;
4990 else
4992 src_related_cost = COST (src_related);
4993 src_related_regcost = approx_reg_cost (src_related);
4995 /* If a const-anchor is used to synthesize a constant that
4996 normally requires multiple instructions then slightly prefer
4997 it over the original sequence. These instructions are likely
4998 to become redundant now. We can't compare against the cost
4999 of src_eqv_here because, on MIPS for example, multi-insn
5000 constants have zero cost; they are assumed to be hoisted from
5001 loops. */
5002 if (src_related_is_const_anchor
5003 && src_related_cost == src_cost
5004 && src_eqv_here)
5005 src_related_cost--;
5009 /* If this was an indirect jump insn, a known label will really be
5010 cheaper even though it looks more expensive. */
5011 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5012 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5014 /* Terminate loop when replacement made. This must terminate since
5015 the current contents will be tested and will always be valid. */
5016 while (1)
5018 rtx trial;
5020 /* Skip invalid entries. */
5021 while (elt && !REG_P (elt->exp)
5022 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5023 elt = elt->next_same_value;
5025 /* A paradoxical subreg would be bad here: it'll be the right
5026 size, but later may be adjusted so that the upper bits aren't
5027 what we want. So reject it. */
5028 if (elt != 0
5029 && paradoxical_subreg_p (elt->exp)
5030 /* It is okay, though, if the rtx we're trying to match
5031 will ignore any of the bits we can't predict. */
5032 && ! (src != 0
5033 && GET_CODE (src) == SUBREG
5034 && GET_MODE (src) == GET_MODE (elt->exp)
5035 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5036 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5038 elt = elt->next_same_value;
5039 continue;
5042 if (elt)
5044 src_elt_cost = elt->cost;
5045 src_elt_regcost = elt->regcost;
5048 /* Find cheapest and skip it for the next time. For items
5049 of equal cost, use this order:
5050 src_folded, src, src_eqv, src_related and hash table entry. */
5051 if (src_folded
5052 && preferable (src_folded_cost, src_folded_regcost,
5053 src_cost, src_regcost) <= 0
5054 && preferable (src_folded_cost, src_folded_regcost,
5055 src_eqv_cost, src_eqv_regcost) <= 0
5056 && preferable (src_folded_cost, src_folded_regcost,
5057 src_related_cost, src_related_regcost) <= 0
5058 && preferable (src_folded_cost, src_folded_regcost,
5059 src_elt_cost, src_elt_regcost) <= 0)
5061 trial = src_folded, src_folded_cost = MAX_COST;
5062 if (src_folded_force_flag)
5064 rtx forced = force_const_mem (mode, trial);
5065 if (forced)
5066 trial = forced;
5069 else if (src
5070 && preferable (src_cost, src_regcost,
5071 src_eqv_cost, src_eqv_regcost) <= 0
5072 && preferable (src_cost, src_regcost,
5073 src_related_cost, src_related_regcost) <= 0
5074 && preferable (src_cost, src_regcost,
5075 src_elt_cost, src_elt_regcost) <= 0)
5076 trial = src, src_cost = MAX_COST;
5077 else if (src_eqv_here
5078 && preferable (src_eqv_cost, src_eqv_regcost,
5079 src_related_cost, src_related_regcost) <= 0
5080 && preferable (src_eqv_cost, src_eqv_regcost,
5081 src_elt_cost, src_elt_regcost) <= 0)
5082 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5083 else if (src_related
5084 && preferable (src_related_cost, src_related_regcost,
5085 src_elt_cost, src_elt_regcost) <= 0)
5086 trial = src_related, src_related_cost = MAX_COST;
5087 else
5089 trial = elt->exp;
5090 elt = elt->next_same_value;
5091 src_elt_cost = MAX_COST;
5094 /* Avoid creation of overlapping memory moves. */
5095 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5097 rtx src, dest;
5099 /* BLKmode moves are not handled by cse anyway. */
5100 if (GET_MODE (trial) == BLKmode)
5101 break;
5103 src = canon_rtx (trial);
5104 dest = canon_rtx (SET_DEST (sets[i].rtl));
5106 if (!MEM_P (src) || !MEM_P (dest)
5107 || !nonoverlapping_memrefs_p (src, dest, false))
5108 break;
5111 /* Try to optimize
5112 (set (reg:M N) (const_int A))
5113 (set (reg:M2 O) (const_int B))
5114 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5115 (reg:M2 O)). */
5116 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5117 && CONST_INT_P (trial)
5118 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5119 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5120 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5121 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5122 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5123 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5124 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5125 <= HOST_BITS_PER_WIDE_INT))
5127 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5128 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5129 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5130 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5131 struct table_elt *dest_elt
5132 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5133 rtx dest_cst = NULL;
5135 if (dest_elt)
5136 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5137 if (p->is_const && CONST_INT_P (p->exp))
5139 dest_cst = p->exp;
5140 break;
5142 if (dest_cst)
5144 HOST_WIDE_INT val = INTVAL (dest_cst);
5145 HOST_WIDE_INT mask;
5146 unsigned int shift;
5147 if (BITS_BIG_ENDIAN)
5148 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5149 - INTVAL (pos) - INTVAL (width);
5150 else
5151 shift = INTVAL (pos);
5152 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5153 mask = ~(HOST_WIDE_INT) 0;
5154 else
5155 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5156 val &= ~(mask << shift);
5157 val |= (INTVAL (trial) & mask) << shift;
5158 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5159 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5160 dest_reg, 1);
5161 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5162 GEN_INT (val), 1);
5163 if (apply_change_group ())
5165 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5166 if (note)
5168 remove_note (insn, note);
5169 df_notes_rescan (insn);
5171 src_eqv = NULL_RTX;
5172 src_eqv_elt = NULL;
5173 src_eqv_volatile = 0;
5174 src_eqv_in_memory = 0;
5175 src_eqv_hash = 0;
5176 repeat = true;
5177 break;
5182 /* We don't normally have an insn matching (set (pc) (pc)), so
5183 check for this separately here. We will delete such an
5184 insn below.
5186 For other cases such as a table jump or conditional jump
5187 where we know the ultimate target, go ahead and replace the
5188 operand. While that may not make a valid insn, we will
5189 reemit the jump below (and also insert any necessary
5190 barriers). */
5191 if (n_sets == 1 && dest == pc_rtx
5192 && (trial == pc_rtx
5193 || (GET_CODE (trial) == LABEL_REF
5194 && ! condjump_p (insn))))
5196 /* Don't substitute non-local labels, this confuses CFG. */
5197 if (GET_CODE (trial) == LABEL_REF
5198 && LABEL_REF_NONLOCAL_P (trial))
5199 continue;
5201 SET_SRC (sets[i].rtl) = trial;
5202 cse_jumps_altered = true;
5203 break;
5206 /* Reject certain invalid forms of CONST that we create. */
5207 else if (CONSTANT_P (trial)
5208 && GET_CODE (trial) == CONST
5209 /* Reject cases that will cause decode_rtx_const to
5210 die. On the alpha when simplifying a switch, we
5211 get (const (truncate (minus (label_ref)
5212 (label_ref)))). */
5213 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5214 /* Likewise on IA-64, except without the
5215 truncate. */
5216 || (GET_CODE (XEXP (trial, 0)) == MINUS
5217 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5218 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5219 /* Do nothing for this case. */
5222 /* Look for a substitution that makes a valid insn. */
5223 else if (validate_unshare_change
5224 (insn, &SET_SRC (sets[i].rtl), trial, 0))
5226 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5228 /* The result of apply_change_group can be ignored; see
5229 canon_reg. */
5231 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5232 apply_change_group ();
5234 break;
5237 /* If we previously found constant pool entries for
5238 constants and this is a constant, try making a
5239 pool entry. Put it in src_folded unless we already have done
5240 this since that is where it likely came from. */
5242 else if (constant_pool_entries_cost
5243 && CONSTANT_P (trial)
5244 && (src_folded == 0
5245 || (!MEM_P (src_folded)
5246 && ! src_folded_force_flag))
5247 && GET_MODE_CLASS (mode) != MODE_CC
5248 && mode != VOIDmode)
5250 src_folded_force_flag = 1;
5251 src_folded = trial;
5252 src_folded_cost = constant_pool_entries_cost;
5253 src_folded_regcost = constant_pool_entries_regcost;
5257 /* If we changed the insn too much, handle this set from scratch. */
5258 if (repeat)
5260 i--;
5261 continue;
5264 src = SET_SRC (sets[i].rtl);
5266 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5267 However, there is an important exception: If both are registers
5268 that are not the head of their equivalence class, replace SET_SRC
5269 with the head of the class. If we do not do this, we will have
5270 both registers live over a portion of the basic block. This way,
5271 their lifetimes will likely abut instead of overlapping. */
5272 if (REG_P (dest)
5273 && REGNO_QTY_VALID_P (REGNO (dest)))
5275 int dest_q = REG_QTY (REGNO (dest));
5276 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5278 if (dest_ent->mode == GET_MODE (dest)
5279 && dest_ent->first_reg != REGNO (dest)
5280 && REG_P (src) && REGNO (src) == REGNO (dest)
5281 /* Don't do this if the original insn had a hard reg as
5282 SET_SRC or SET_DEST. */
5283 && (!REG_P (sets[i].src)
5284 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5285 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5286 /* We can't call canon_reg here because it won't do anything if
5287 SRC is a hard register. */
5289 int src_q = REG_QTY (REGNO (src));
5290 struct qty_table_elem *src_ent = &qty_table[src_q];
5291 int first = src_ent->first_reg;
5292 rtx new_src
5293 = (first >= FIRST_PSEUDO_REGISTER
5294 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5296 /* We must use validate-change even for this, because this
5297 might be a special no-op instruction, suitable only to
5298 tag notes onto. */
5299 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5301 src = new_src;
5302 /* If we had a constant that is cheaper than what we are now
5303 setting SRC to, use that constant. We ignored it when we
5304 thought we could make this into a no-op. */
5305 if (src_const && COST (src_const) < COST (src)
5306 && validate_change (insn, &SET_SRC (sets[i].rtl),
5307 src_const, 0))
5308 src = src_const;
5313 /* If we made a change, recompute SRC values. */
5314 if (src != sets[i].src)
5316 do_not_record = 0;
5317 hash_arg_in_memory = 0;
5318 sets[i].src = src;
5319 sets[i].src_hash = HASH (src, mode);
5320 sets[i].src_volatile = do_not_record;
5321 sets[i].src_in_memory = hash_arg_in_memory;
5322 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5325 /* If this is a single SET, we are setting a register, and we have an
5326 equivalent constant, we want to add a REG_EQUAL note if the constant
5327 is different from the source. We don't want to do it for a constant
5328 pseudo since verifying that this pseudo hasn't been eliminated is a
5329 pain; moreover such a note won't help anything.
5331 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5332 which can be created for a reference to a compile time computable
5333 entry in a jump table. */
5334 if (n_sets == 1
5335 && REG_P (dest)
5336 && src_const
5337 && !REG_P (src_const)
5338 && !(GET_CODE (src_const) == SUBREG
5339 && REG_P (SUBREG_REG (src_const)))
5340 && !(GET_CODE (src_const) == CONST
5341 && GET_CODE (XEXP (src_const, 0)) == MINUS
5342 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5343 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5344 && !rtx_equal_p (src, src_const))
5346 /* Make sure that the rtx is not shared. */
5347 src_const = copy_rtx (src_const);
5349 /* Record the actual constant value in a REG_EQUAL note,
5350 making a new one if one does not already exist. */
5351 set_unique_reg_note (insn, REG_EQUAL, src_const);
5352 df_notes_rescan (insn);
5355 /* Now deal with the destination. */
5356 do_not_record = 0;
5358 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5359 while (GET_CODE (dest) == SUBREG
5360 || GET_CODE (dest) == ZERO_EXTRACT
5361 || GET_CODE (dest) == STRICT_LOW_PART)
5362 dest = XEXP (dest, 0);
5364 sets[i].inner_dest = dest;
5366 if (MEM_P (dest))
5368 #ifdef PUSH_ROUNDING
5369 /* Stack pushes invalidate the stack pointer. */
5370 rtx addr = XEXP (dest, 0);
5371 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5372 && XEXP (addr, 0) == stack_pointer_rtx)
5373 invalidate (stack_pointer_rtx, VOIDmode);
5374 #endif
5375 dest = fold_rtx (dest, insn);
5378 /* Compute the hash code of the destination now,
5379 before the effects of this instruction are recorded,
5380 since the register values used in the address computation
5381 are those before this instruction. */
5382 sets[i].dest_hash = HASH (dest, mode);
5384 /* Don't enter a bit-field in the hash table
5385 because the value in it after the store
5386 may not equal what was stored, due to truncation. */
5388 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5390 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5392 if (src_const != 0 && CONST_INT_P (src_const)
5393 && CONST_INT_P (width)
5394 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5395 && ! (INTVAL (src_const)
5396 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5397 /* Exception: if the value is constant,
5398 and it won't be truncated, record it. */
5400 else
5402 /* This is chosen so that the destination will be invalidated
5403 but no new value will be recorded.
5404 We must invalidate because sometimes constant
5405 values can be recorded for bitfields. */
5406 sets[i].src_elt = 0;
5407 sets[i].src_volatile = 1;
5408 src_eqv = 0;
5409 src_eqv_elt = 0;
5413 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5414 the insn. */
5415 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5417 /* One less use of the label this insn used to jump to. */
5418 delete_insn_and_edges (insn);
5419 cse_jumps_altered = true;
5420 /* No more processing for this set. */
5421 sets[i].rtl = 0;
5424 /* If this SET is now setting PC to a label, we know it used to
5425 be a conditional or computed branch. */
5426 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5427 && !LABEL_REF_NONLOCAL_P (src))
5429 /* We reemit the jump in as many cases as possible just in
5430 case the form of an unconditional jump is significantly
5431 different than a computed jump or conditional jump.
5433 If this insn has multiple sets, then reemitting the
5434 jump is nontrivial. So instead we just force rerecognition
5435 and hope for the best. */
5436 if (n_sets == 1)
5438 rtx new_rtx, note;
5440 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5441 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5442 LABEL_NUSES (XEXP (src, 0))++;
5444 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5445 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5446 if (note)
5448 XEXP (note, 1) = NULL_RTX;
5449 REG_NOTES (new_rtx) = note;
5452 delete_insn_and_edges (insn);
5453 insn = as_a <rtx_insn *> (new_rtx);
5455 else
5456 INSN_CODE (insn) = -1;
5458 /* Do not bother deleting any unreachable code, let jump do it. */
5459 cse_jumps_altered = true;
5460 sets[i].rtl = 0;
5463 /* If destination is volatile, invalidate it and then do no further
5464 processing for this assignment. */
5466 else if (do_not_record)
5468 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5469 invalidate (dest, VOIDmode);
5470 else if (MEM_P (dest))
5471 invalidate (dest, VOIDmode);
5472 else if (GET_CODE (dest) == STRICT_LOW_PART
5473 || GET_CODE (dest) == ZERO_EXTRACT)
5474 invalidate (XEXP (dest, 0), GET_MODE (dest));
5475 sets[i].rtl = 0;
5478 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5479 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5481 #ifdef HAVE_cc0
5482 /* If setting CC0, record what it was set to, or a constant, if it
5483 is equivalent to a constant. If it is being set to a floating-point
5484 value, make a COMPARE with the appropriate constant of 0. If we
5485 don't do this, later code can interpret this as a test against
5486 const0_rtx, which can cause problems if we try to put it into an
5487 insn as a floating-point operand. */
5488 if (dest == cc0_rtx)
5490 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5491 this_insn_cc0_mode = mode;
5492 if (FLOAT_MODE_P (mode))
5493 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5494 CONST0_RTX (mode));
5496 #endif
5499 /* Now enter all non-volatile source expressions in the hash table
5500 if they are not already present.
5501 Record their equivalence classes in src_elt.
5502 This way we can insert the corresponding destinations into
5503 the same classes even if the actual sources are no longer in them
5504 (having been invalidated). */
5506 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5507 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5509 struct table_elt *elt;
5510 struct table_elt *classp = sets[0].src_elt;
5511 rtx dest = SET_DEST (sets[0].rtl);
5512 enum machine_mode eqvmode = GET_MODE (dest);
5514 if (GET_CODE (dest) == STRICT_LOW_PART)
5516 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5517 classp = 0;
5519 if (insert_regs (src_eqv, classp, 0))
5521 rehash_using_reg (src_eqv);
5522 src_eqv_hash = HASH (src_eqv, eqvmode);
5524 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5525 elt->in_memory = src_eqv_in_memory;
5526 src_eqv_elt = elt;
5528 /* Check to see if src_eqv_elt is the same as a set source which
5529 does not yet have an elt, and if so set the elt of the set source
5530 to src_eqv_elt. */
5531 for (i = 0; i < n_sets; i++)
5532 if (sets[i].rtl && sets[i].src_elt == 0
5533 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5534 sets[i].src_elt = src_eqv_elt;
5537 for (i = 0; i < n_sets; i++)
5538 if (sets[i].rtl && ! sets[i].src_volatile
5539 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5541 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5543 /* REG_EQUAL in setting a STRICT_LOW_PART
5544 gives an equivalent for the entire destination register,
5545 not just for the subreg being stored in now.
5546 This is a more interesting equivalence, so we arrange later
5547 to treat the entire reg as the destination. */
5548 sets[i].src_elt = src_eqv_elt;
5549 sets[i].src_hash = src_eqv_hash;
5551 else
5553 /* Insert source and constant equivalent into hash table, if not
5554 already present. */
5555 struct table_elt *classp = src_eqv_elt;
5556 rtx src = sets[i].src;
5557 rtx dest = SET_DEST (sets[i].rtl);
5558 enum machine_mode mode
5559 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5561 /* It's possible that we have a source value known to be
5562 constant but don't have a REG_EQUAL note on the insn.
5563 Lack of a note will mean src_eqv_elt will be NULL. This
5564 can happen where we've generated a SUBREG to access a
5565 CONST_INT that is already in a register in a wider mode.
5566 Ensure that the source expression is put in the proper
5567 constant class. */
5568 if (!classp)
5569 classp = sets[i].src_const_elt;
5571 if (sets[i].src_elt == 0)
5573 struct table_elt *elt;
5575 /* Note that these insert_regs calls cannot remove
5576 any of the src_elt's, because they would have failed to
5577 match if not still valid. */
5578 if (insert_regs (src, classp, 0))
5580 rehash_using_reg (src);
5581 sets[i].src_hash = HASH (src, mode);
5583 elt = insert (src, classp, sets[i].src_hash, mode);
5584 elt->in_memory = sets[i].src_in_memory;
5585 sets[i].src_elt = classp = elt;
5587 if (sets[i].src_const && sets[i].src_const_elt == 0
5588 && src != sets[i].src_const
5589 && ! rtx_equal_p (sets[i].src_const, src))
5590 sets[i].src_elt = insert (sets[i].src_const, classp,
5591 sets[i].src_const_hash, mode);
5594 else if (sets[i].src_elt == 0)
5595 /* If we did not insert the source into the hash table (e.g., it was
5596 volatile), note the equivalence class for the REG_EQUAL value, if any,
5597 so that the destination goes into that class. */
5598 sets[i].src_elt = src_eqv_elt;
5600 /* Record destination addresses in the hash table. This allows us to
5601 check if they are invalidated by other sets. */
5602 for (i = 0; i < n_sets; i++)
5604 if (sets[i].rtl)
5606 rtx x = sets[i].inner_dest;
5607 struct table_elt *elt;
5608 enum machine_mode mode;
5609 unsigned hash;
5611 if (MEM_P (x))
5613 x = XEXP (x, 0);
5614 mode = GET_MODE (x);
5615 hash = HASH (x, mode);
5616 elt = lookup (x, hash, mode);
5617 if (!elt)
5619 if (insert_regs (x, NULL, 0))
5621 rtx dest = SET_DEST (sets[i].rtl);
5623 rehash_using_reg (x);
5624 hash = HASH (x, mode);
5625 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5627 elt = insert (x, NULL, hash, mode);
5630 sets[i].dest_addr_elt = elt;
5632 else
5633 sets[i].dest_addr_elt = NULL;
5637 invalidate_from_clobbers (insn);
5639 /* Some registers are invalidated by subroutine calls. Memory is
5640 invalidated by non-constant calls. */
5642 if (CALL_P (insn))
5644 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5645 invalidate_memory ();
5646 invalidate_for_call ();
5649 /* Now invalidate everything set by this instruction.
5650 If a SUBREG or other funny destination is being set,
5651 sets[i].rtl is still nonzero, so here we invalidate the reg
5652 a part of which is being set. */
5654 for (i = 0; i < n_sets; i++)
5655 if (sets[i].rtl)
5657 /* We can't use the inner dest, because the mode associated with
5658 a ZERO_EXTRACT is significant. */
5659 rtx dest = SET_DEST (sets[i].rtl);
5661 /* Needed for registers to remove the register from its
5662 previous quantity's chain.
5663 Needed for memory if this is a nonvarying address, unless
5664 we have just done an invalidate_memory that covers even those. */
5665 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5666 invalidate (dest, VOIDmode);
5667 else if (MEM_P (dest))
5668 invalidate (dest, VOIDmode);
5669 else if (GET_CODE (dest) == STRICT_LOW_PART
5670 || GET_CODE (dest) == ZERO_EXTRACT)
5671 invalidate (XEXP (dest, 0), GET_MODE (dest));
5674 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5675 the regs restored by the longjmp come from a later time
5676 than the setjmp. */
5677 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5679 flush_hash_table ();
5680 goto done;
5683 /* Make sure registers mentioned in destinations
5684 are safe for use in an expression to be inserted.
5685 This removes from the hash table
5686 any invalid entry that refers to one of these registers.
5688 We don't care about the return value from mention_regs because
5689 we are going to hash the SET_DEST values unconditionally. */
5691 for (i = 0; i < n_sets; i++)
5693 if (sets[i].rtl)
5695 rtx x = SET_DEST (sets[i].rtl);
5697 if (!REG_P (x))
5698 mention_regs (x);
5699 else
5701 /* We used to rely on all references to a register becoming
5702 inaccessible when a register changes to a new quantity,
5703 since that changes the hash code. However, that is not
5704 safe, since after HASH_SIZE new quantities we get a
5705 hash 'collision' of a register with its own invalid
5706 entries. And since SUBREGs have been changed not to
5707 change their hash code with the hash code of the register,
5708 it wouldn't work any longer at all. So we have to check
5709 for any invalid references lying around now.
5710 This code is similar to the REG case in mention_regs,
5711 but it knows that reg_tick has been incremented, and
5712 it leaves reg_in_table as -1 . */
5713 unsigned int regno = REGNO (x);
5714 unsigned int endregno = END_REGNO (x);
5715 unsigned int i;
5717 for (i = regno; i < endregno; i++)
5719 if (REG_IN_TABLE (i) >= 0)
5721 remove_invalid_refs (i);
5722 REG_IN_TABLE (i) = -1;
5729 /* We may have just removed some of the src_elt's from the hash table.
5730 So replace each one with the current head of the same class.
5731 Also check if destination addresses have been removed. */
5733 for (i = 0; i < n_sets; i++)
5734 if (sets[i].rtl)
5736 if (sets[i].dest_addr_elt
5737 && sets[i].dest_addr_elt->first_same_value == 0)
5739 /* The elt was removed, which means this destination is not
5740 valid after this instruction. */
5741 sets[i].rtl = NULL_RTX;
5743 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5744 /* If elt was removed, find current head of same class,
5745 or 0 if nothing remains of that class. */
5747 struct table_elt *elt = sets[i].src_elt;
5749 while (elt && elt->prev_same_value)
5750 elt = elt->prev_same_value;
5752 while (elt && elt->first_same_value == 0)
5753 elt = elt->next_same_value;
5754 sets[i].src_elt = elt ? elt->first_same_value : 0;
5758 /* Now insert the destinations into their equivalence classes. */
5760 for (i = 0; i < n_sets; i++)
5761 if (sets[i].rtl)
5763 rtx dest = SET_DEST (sets[i].rtl);
5764 struct table_elt *elt;
5766 /* Don't record value if we are not supposed to risk allocating
5767 floating-point values in registers that might be wider than
5768 memory. */
5769 if ((flag_float_store
5770 && MEM_P (dest)
5771 && FLOAT_MODE_P (GET_MODE (dest)))
5772 /* Don't record BLKmode values, because we don't know the
5773 size of it, and can't be sure that other BLKmode values
5774 have the same or smaller size. */
5775 || GET_MODE (dest) == BLKmode
5776 /* If we didn't put a REG_EQUAL value or a source into the hash
5777 table, there is no point is recording DEST. */
5778 || sets[i].src_elt == 0
5779 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5780 or SIGN_EXTEND, don't record DEST since it can cause
5781 some tracking to be wrong.
5783 ??? Think about this more later. */
5784 || (paradoxical_subreg_p (dest)
5785 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5786 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5787 continue;
5789 /* STRICT_LOW_PART isn't part of the value BEING set,
5790 and neither is the SUBREG inside it.
5791 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5792 if (GET_CODE (dest) == STRICT_LOW_PART)
5793 dest = SUBREG_REG (XEXP (dest, 0));
5795 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5796 /* Registers must also be inserted into chains for quantities. */
5797 if (insert_regs (dest, sets[i].src_elt, 1))
5799 /* If `insert_regs' changes something, the hash code must be
5800 recalculated. */
5801 rehash_using_reg (dest);
5802 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5805 elt = insert (dest, sets[i].src_elt,
5806 sets[i].dest_hash, GET_MODE (dest));
5808 /* If this is a constant, insert the constant anchors with the
5809 equivalent register-offset expressions using register DEST. */
5810 if (targetm.const_anchor
5811 && REG_P (dest)
5812 && SCALAR_INT_MODE_P (GET_MODE (dest))
5813 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5814 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5816 elt->in_memory = (MEM_P (sets[i].inner_dest)
5817 && !MEM_READONLY_P (sets[i].inner_dest));
5819 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5820 narrower than M2, and both M1 and M2 are the same number of words,
5821 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5822 make that equivalence as well.
5824 However, BAR may have equivalences for which gen_lowpart
5825 will produce a simpler value than gen_lowpart applied to
5826 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5827 BAR's equivalences. If we don't get a simplified form, make
5828 the SUBREG. It will not be used in an equivalence, but will
5829 cause two similar assignments to be detected.
5831 Note the loop below will find SUBREG_REG (DEST) since we have
5832 already entered SRC and DEST of the SET in the table. */
5834 if (GET_CODE (dest) == SUBREG
5835 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5836 / UNITS_PER_WORD)
5837 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5838 && (GET_MODE_SIZE (GET_MODE (dest))
5839 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5840 && sets[i].src_elt != 0)
5842 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5843 struct table_elt *elt, *classp = 0;
5845 for (elt = sets[i].src_elt->first_same_value; elt;
5846 elt = elt->next_same_value)
5848 rtx new_src = 0;
5849 unsigned src_hash;
5850 struct table_elt *src_elt;
5851 int byte = 0;
5853 /* Ignore invalid entries. */
5854 if (!REG_P (elt->exp)
5855 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5856 continue;
5858 /* We may have already been playing subreg games. If the
5859 mode is already correct for the destination, use it. */
5860 if (GET_MODE (elt->exp) == new_mode)
5861 new_src = elt->exp;
5862 else
5864 /* Calculate big endian correction for the SUBREG_BYTE.
5865 We have already checked that M1 (GET_MODE (dest))
5866 is not narrower than M2 (new_mode). */
5867 if (BYTES_BIG_ENDIAN)
5868 byte = (GET_MODE_SIZE (GET_MODE (dest))
5869 - GET_MODE_SIZE (new_mode));
5871 new_src = simplify_gen_subreg (new_mode, elt->exp,
5872 GET_MODE (dest), byte);
5875 /* The call to simplify_gen_subreg fails if the value
5876 is VOIDmode, yet we can't do any simplification, e.g.
5877 for EXPR_LISTs denoting function call results.
5878 It is invalid to construct a SUBREG with a VOIDmode
5879 SUBREG_REG, hence a zero new_src means we can't do
5880 this substitution. */
5881 if (! new_src)
5882 continue;
5884 src_hash = HASH (new_src, new_mode);
5885 src_elt = lookup (new_src, src_hash, new_mode);
5887 /* Put the new source in the hash table is if isn't
5888 already. */
5889 if (src_elt == 0)
5891 if (insert_regs (new_src, classp, 0))
5893 rehash_using_reg (new_src);
5894 src_hash = HASH (new_src, new_mode);
5896 src_elt = insert (new_src, classp, src_hash, new_mode);
5897 src_elt->in_memory = elt->in_memory;
5899 else if (classp && classp != src_elt->first_same_value)
5900 /* Show that two things that we've seen before are
5901 actually the same. */
5902 merge_equiv_classes (src_elt, classp);
5904 classp = src_elt->first_same_value;
5905 /* Ignore invalid entries. */
5906 while (classp
5907 && !REG_P (classp->exp)
5908 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5909 classp = classp->next_same_value;
5914 /* Special handling for (set REG0 REG1) where REG0 is the
5915 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5916 be used in the sequel, so (if easily done) change this insn to
5917 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5918 that computed their value. Then REG1 will become a dead store
5919 and won't cloud the situation for later optimizations.
5921 Do not make this change if REG1 is a hard register, because it will
5922 then be used in the sequel and we may be changing a two-operand insn
5923 into a three-operand insn.
5925 Also do not do this if we are operating on a copy of INSN. */
5927 if (n_sets == 1 && sets[0].rtl)
5928 try_back_substitute_reg (sets[0].rtl, insn);
5930 done:;
5933 /* Remove from the hash table all expressions that reference memory. */
5935 static void
5936 invalidate_memory (void)
5938 int i;
5939 struct table_elt *p, *next;
5941 for (i = 0; i < HASH_SIZE; i++)
5942 for (p = table[i]; p; p = next)
5944 next = p->next_same_hash;
5945 if (p->in_memory)
5946 remove_from_table (p, i);
5950 /* Perform invalidation on the basis of everything about INSN,
5951 except for invalidating the actual places that are SET in it.
5952 This includes the places CLOBBERed, and anything that might
5953 alias with something that is SET or CLOBBERed. */
5955 static void
5956 invalidate_from_clobbers (rtx_insn *insn)
5958 rtx x = PATTERN (insn);
5960 if (GET_CODE (x) == CLOBBER)
5962 rtx ref = XEXP (x, 0);
5963 if (ref)
5965 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5966 || MEM_P (ref))
5967 invalidate (ref, VOIDmode);
5968 else if (GET_CODE (ref) == STRICT_LOW_PART
5969 || GET_CODE (ref) == ZERO_EXTRACT)
5970 invalidate (XEXP (ref, 0), GET_MODE (ref));
5973 else if (GET_CODE (x) == PARALLEL)
5975 int i;
5976 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5978 rtx y = XVECEXP (x, 0, i);
5979 if (GET_CODE (y) == CLOBBER)
5981 rtx ref = XEXP (y, 0);
5982 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5983 || MEM_P (ref))
5984 invalidate (ref, VOIDmode);
5985 else if (GET_CODE (ref) == STRICT_LOW_PART
5986 || GET_CODE (ref) == ZERO_EXTRACT)
5987 invalidate (XEXP (ref, 0), GET_MODE (ref));
5993 /* Perform invalidation on the basis of everything about INSN.
5994 This includes the places CLOBBERed, and anything that might
5995 alias with something that is SET or CLOBBERed. */
5997 static void
5998 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6000 rtx tem;
6001 rtx x = PATTERN (insn);
6003 if (CALL_P (insn))
6005 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6006 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6007 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6010 /* Ensure we invalidate the destination register of a CALL insn.
6011 This is necessary for machines where this register is a fixed_reg,
6012 because no other code would invalidate it. */
6013 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6014 invalidate (SET_DEST (x), VOIDmode);
6016 else if (GET_CODE (x) == PARALLEL)
6018 int i;
6020 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6022 rtx y = XVECEXP (x, 0, i);
6023 if (GET_CODE (y) == CLOBBER)
6025 rtx clobbered = XEXP (y, 0);
6027 if (REG_P (clobbered)
6028 || GET_CODE (clobbered) == SUBREG)
6029 invalidate (clobbered, VOIDmode);
6030 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6031 || GET_CODE (clobbered) == ZERO_EXTRACT)
6032 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6034 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6035 invalidate (SET_DEST (y), VOIDmode);
6040 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6041 and replace any registers in them with either an equivalent constant
6042 or the canonical form of the register. If we are inside an address,
6043 only do this if the address remains valid.
6045 OBJECT is 0 except when within a MEM in which case it is the MEM.
6047 Return the replacement for X. */
6049 static rtx
6050 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6052 enum rtx_code code = GET_CODE (x);
6053 const char *fmt = GET_RTX_FORMAT (code);
6054 int i;
6056 switch (code)
6058 case CONST:
6059 case SYMBOL_REF:
6060 case LABEL_REF:
6061 CASE_CONST_ANY:
6062 case PC:
6063 case CC0:
6064 case LO_SUM:
6065 return x;
6067 case MEM:
6068 validate_change (x, &XEXP (x, 0),
6069 cse_process_notes (XEXP (x, 0), x, changed), 0);
6070 return x;
6072 case EXPR_LIST:
6073 if (REG_NOTE_KIND (x) == REG_EQUAL)
6074 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6075 /* Fall through. */
6077 case INSN_LIST:
6078 case INT_LIST:
6079 if (XEXP (x, 1))
6080 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6081 return x;
6083 case SIGN_EXTEND:
6084 case ZERO_EXTEND:
6085 case SUBREG:
6087 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6088 /* We don't substitute VOIDmode constants into these rtx,
6089 since they would impede folding. */
6090 if (GET_MODE (new_rtx) != VOIDmode)
6091 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6092 return x;
6095 case UNSIGNED_FLOAT:
6097 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6098 /* We don't substitute negative VOIDmode constants into these rtx,
6099 since they would impede folding. */
6100 if (GET_MODE (new_rtx) != VOIDmode
6101 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6102 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6103 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6104 return x;
6107 case REG:
6108 i = REG_QTY (REGNO (x));
6110 /* Return a constant or a constant register. */
6111 if (REGNO_QTY_VALID_P (REGNO (x)))
6113 struct qty_table_elem *ent = &qty_table[i];
6115 if (ent->const_rtx != NULL_RTX
6116 && (CONSTANT_P (ent->const_rtx)
6117 || REG_P (ent->const_rtx)))
6119 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6120 if (new_rtx)
6121 return copy_rtx (new_rtx);
6125 /* Otherwise, canonicalize this register. */
6126 return canon_reg (x, NULL);
6128 default:
6129 break;
6132 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6133 if (fmt[i] == 'e')
6134 validate_change (object, &XEXP (x, i),
6135 cse_process_notes (XEXP (x, i), object, changed), 0);
6137 return x;
6140 static rtx
6141 cse_process_notes (rtx x, rtx object, bool *changed)
6143 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6144 if (new_rtx != x)
6145 *changed = true;
6146 return new_rtx;
6150 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6152 DATA is a pointer to a struct cse_basic_block_data, that is used to
6153 describe the path.
6154 It is filled with a queue of basic blocks, starting with FIRST_BB
6155 and following a trace through the CFG.
6157 If all paths starting at FIRST_BB have been followed, or no new path
6158 starting at FIRST_BB can be constructed, this function returns FALSE.
6159 Otherwise, DATA->path is filled and the function returns TRUE indicating
6160 that a path to follow was found.
6162 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6163 block in the path will be FIRST_BB. */
6165 static bool
6166 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6167 int follow_jumps)
6169 basic_block bb;
6170 edge e;
6171 int path_size;
6173 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6175 /* See if there is a previous path. */
6176 path_size = data->path_size;
6178 /* There is a previous path. Make sure it started with FIRST_BB. */
6179 if (path_size)
6180 gcc_assert (data->path[0].bb == first_bb);
6182 /* There was only one basic block in the last path. Clear the path and
6183 return, so that paths starting at another basic block can be tried. */
6184 if (path_size == 1)
6186 path_size = 0;
6187 goto done;
6190 /* If the path was empty from the beginning, construct a new path. */
6191 if (path_size == 0)
6192 data->path[path_size++].bb = first_bb;
6193 else
6195 /* Otherwise, path_size must be equal to or greater than 2, because
6196 a previous path exists that is at least two basic blocks long.
6198 Update the previous branch path, if any. If the last branch was
6199 previously along the branch edge, take the fallthrough edge now. */
6200 while (path_size >= 2)
6202 basic_block last_bb_in_path, previous_bb_in_path;
6203 edge e;
6205 --path_size;
6206 last_bb_in_path = data->path[path_size].bb;
6207 previous_bb_in_path = data->path[path_size - 1].bb;
6209 /* If we previously followed a path along the branch edge, try
6210 the fallthru edge now. */
6211 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6212 && any_condjump_p (BB_END (previous_bb_in_path))
6213 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6214 && e == BRANCH_EDGE (previous_bb_in_path))
6216 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6217 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6218 && single_pred_p (bb)
6219 /* We used to assert here that we would only see blocks
6220 that we have not visited yet. But we may end up
6221 visiting basic blocks twice if the CFG has changed
6222 in this run of cse_main, because when the CFG changes
6223 the topological sort of the CFG also changes. A basic
6224 blocks that previously had more than two predecessors
6225 may now have a single predecessor, and become part of
6226 a path that starts at another basic block.
6228 We still want to visit each basic block only once, so
6229 halt the path here if we have already visited BB. */
6230 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6232 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6233 data->path[path_size++].bb = bb;
6234 break;
6238 data->path[path_size].bb = NULL;
6241 /* If only one block remains in the path, bail. */
6242 if (path_size == 1)
6244 path_size = 0;
6245 goto done;
6249 /* Extend the path if possible. */
6250 if (follow_jumps)
6252 bb = data->path[path_size - 1].bb;
6253 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6255 if (single_succ_p (bb))
6256 e = single_succ_edge (bb);
6257 else if (EDGE_COUNT (bb->succs) == 2
6258 && any_condjump_p (BB_END (bb)))
6260 /* First try to follow the branch. If that doesn't lead
6261 to a useful path, follow the fallthru edge. */
6262 e = BRANCH_EDGE (bb);
6263 if (!single_pred_p (e->dest))
6264 e = FALLTHRU_EDGE (bb);
6266 else
6267 e = NULL;
6269 if (e
6270 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6271 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6272 && single_pred_p (e->dest)
6273 /* Avoid visiting basic blocks twice. The large comment
6274 above explains why this can happen. */
6275 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6277 basic_block bb2 = e->dest;
6278 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6279 data->path[path_size++].bb = bb2;
6280 bb = bb2;
6282 else
6283 bb = NULL;
6287 done:
6288 data->path_size = path_size;
6289 return path_size != 0;
6292 /* Dump the path in DATA to file F. NSETS is the number of sets
6293 in the path. */
6295 static void
6296 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6298 int path_entry;
6300 fprintf (f, ";; Following path with %d sets: ", nsets);
6301 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6302 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6303 fputc ('\n', dump_file);
6304 fflush (f);
6308 /* Return true if BB has exception handling successor edges. */
6310 static bool
6311 have_eh_succ_edges (basic_block bb)
6313 edge e;
6314 edge_iterator ei;
6316 FOR_EACH_EDGE (e, ei, bb->succs)
6317 if (e->flags & EDGE_EH)
6318 return true;
6320 return false;
6324 /* Scan to the end of the path described by DATA. Return an estimate of
6325 the total number of SETs of all insns in the path. */
6327 static void
6328 cse_prescan_path (struct cse_basic_block_data *data)
6330 int nsets = 0;
6331 int path_size = data->path_size;
6332 int path_entry;
6334 /* Scan to end of each basic block in the path. */
6335 for (path_entry = 0; path_entry < path_size; path_entry++)
6337 basic_block bb;
6338 rtx_insn *insn;
6340 bb = data->path[path_entry].bb;
6342 FOR_BB_INSNS (bb, insn)
6344 if (!INSN_P (insn))
6345 continue;
6347 /* A PARALLEL can have lots of SETs in it,
6348 especially if it is really an ASM_OPERANDS. */
6349 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6350 nsets += XVECLEN (PATTERN (insn), 0);
6351 else
6352 nsets += 1;
6356 data->nsets = nsets;
6359 /* Return true if the pattern of INSN uses a LABEL_REF for which
6360 there isn't a REG_LABEL_OPERAND note. */
6362 static bool
6363 check_for_label_ref (rtx_insn *insn)
6365 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6366 note for it, we must rerun jump since it needs to place the note. If
6367 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6368 don't do this since no REG_LABEL_OPERAND will be added. */
6369 subrtx_iterator::array_type array;
6370 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6372 const_rtx x = *iter;
6373 if (GET_CODE (x) == LABEL_REF
6374 && !LABEL_REF_NONLOCAL_P (x)
6375 && (!JUMP_P (insn)
6376 || !label_is_jump_target_p (XEXP (x, 0), insn))
6377 && LABEL_P (XEXP (x, 0))
6378 && INSN_UID (XEXP (x, 0)) != 0
6379 && !find_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0)))
6380 return true;
6382 return false;
6385 /* Process a single extended basic block described by EBB_DATA. */
6387 static void
6388 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6390 int path_size = ebb_data->path_size;
6391 int path_entry;
6392 int num_insns = 0;
6394 /* Allocate the space needed by qty_table. */
6395 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6397 new_basic_block ();
6398 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6399 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6400 for (path_entry = 0; path_entry < path_size; path_entry++)
6402 basic_block bb;
6403 rtx_insn *insn;
6405 bb = ebb_data->path[path_entry].bb;
6407 /* Invalidate recorded information for eh regs if there is an EH
6408 edge pointing to that bb. */
6409 if (bb_has_eh_pred (bb))
6411 df_ref def;
6413 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6414 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6415 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6418 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6419 FOR_BB_INSNS (bb, insn)
6421 /* If we have processed 1,000 insns, flush the hash table to
6422 avoid extreme quadratic behavior. We must not include NOTEs
6423 in the count since there may be more of them when generating
6424 debugging information. If we clear the table at different
6425 times, code generated with -g -O might be different than code
6426 generated with -O but not -g.
6428 FIXME: This is a real kludge and needs to be done some other
6429 way. */
6430 if (NONDEBUG_INSN_P (insn)
6431 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6433 flush_hash_table ();
6434 num_insns = 0;
6437 if (INSN_P (insn))
6439 /* Process notes first so we have all notes in canonical forms
6440 when looking for duplicate operations. */
6441 if (REG_NOTES (insn))
6443 bool changed = false;
6444 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6445 NULL_RTX, &changed);
6446 if (changed)
6447 df_notes_rescan (insn);
6450 cse_insn (insn);
6452 /* If we haven't already found an insn where we added a LABEL_REF,
6453 check this one. */
6454 if (INSN_P (insn) && !recorded_label_ref
6455 && check_for_label_ref (insn))
6456 recorded_label_ref = true;
6458 #ifdef HAVE_cc0
6459 if (NONDEBUG_INSN_P (insn))
6461 /* If the previous insn sets CC0 and this insn no
6462 longer references CC0, delete the previous insn.
6463 Here we use fact that nothing expects CC0 to be
6464 valid over an insn, which is true until the final
6465 pass. */
6466 rtx_insn *prev_insn;
6467 rtx tem;
6469 prev_insn = prev_nonnote_nondebug_insn (insn);
6470 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6471 && (tem = single_set (prev_insn)) != NULL_RTX
6472 && SET_DEST (tem) == cc0_rtx
6473 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6474 delete_insn (prev_insn);
6476 /* If this insn is not the last insn in the basic
6477 block, it will be PREV_INSN(insn) in the next
6478 iteration. If we recorded any CC0-related
6479 information for this insn, remember it. */
6480 if (insn != BB_END (bb))
6482 prev_insn_cc0 = this_insn_cc0;
6483 prev_insn_cc0_mode = this_insn_cc0_mode;
6486 #endif
6490 /* With non-call exceptions, we are not always able to update
6491 the CFG properly inside cse_insn. So clean up possibly
6492 redundant EH edges here. */
6493 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6494 cse_cfg_altered |= purge_dead_edges (bb);
6496 /* If we changed a conditional jump, we may have terminated
6497 the path we are following. Check that by verifying that
6498 the edge we would take still exists. If the edge does
6499 not exist anymore, purge the remainder of the path.
6500 Note that this will cause us to return to the caller. */
6501 if (path_entry < path_size - 1)
6503 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6504 if (!find_edge (bb, next_bb))
6508 path_size--;
6510 /* If we truncate the path, we must also reset the
6511 visited bit on the remaining blocks in the path,
6512 or we will never visit them at all. */
6513 bitmap_clear_bit (cse_visited_basic_blocks,
6514 ebb_data->path[path_size].bb->index);
6515 ebb_data->path[path_size].bb = NULL;
6517 while (path_size - 1 != path_entry);
6518 ebb_data->path_size = path_size;
6522 /* If this is a conditional jump insn, record any known
6523 equivalences due to the condition being tested. */
6524 insn = BB_END (bb);
6525 if (path_entry < path_size - 1
6526 && JUMP_P (insn)
6527 && single_set (insn)
6528 && any_condjump_p (insn))
6530 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6531 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6532 record_jump_equiv (insn, taken);
6535 #ifdef HAVE_cc0
6536 /* Clear the CC0-tracking related insns, they can't provide
6537 useful information across basic block boundaries. */
6538 prev_insn_cc0 = 0;
6539 #endif
6542 gcc_assert (next_qty <= max_qty);
6544 free (qty_table);
6548 /* Perform cse on the instructions of a function.
6549 F is the first instruction.
6550 NREGS is one plus the highest pseudo-reg number used in the instruction.
6552 Return 2 if jump optimizations should be redone due to simplifications
6553 in conditional jump instructions.
6554 Return 1 if the CFG should be cleaned up because it has been modified.
6555 Return 0 otherwise. */
6557 static int
6558 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6560 struct cse_basic_block_data ebb_data;
6561 basic_block bb;
6562 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6563 int i, n_blocks;
6565 df_set_flags (DF_LR_RUN_DCE);
6566 df_note_add_problem ();
6567 df_analyze ();
6568 df_set_flags (DF_DEFER_INSN_RESCAN);
6570 reg_scan (get_insns (), max_reg_num ());
6571 init_cse_reg_info (nregs);
6573 ebb_data.path = XNEWVEC (struct branch_path,
6574 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6576 cse_cfg_altered = false;
6577 cse_jumps_altered = false;
6578 recorded_label_ref = false;
6579 constant_pool_entries_cost = 0;
6580 constant_pool_entries_regcost = 0;
6581 ebb_data.path_size = 0;
6582 ebb_data.nsets = 0;
6583 rtl_hooks = cse_rtl_hooks;
6585 init_recog ();
6586 init_alias_analysis ();
6588 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6590 /* Set up the table of already visited basic blocks. */
6591 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6592 bitmap_clear (cse_visited_basic_blocks);
6594 /* Loop over basic blocks in reverse completion order (RPO),
6595 excluding the ENTRY and EXIT blocks. */
6596 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6597 i = 0;
6598 while (i < n_blocks)
6600 /* Find the first block in the RPO queue that we have not yet
6601 processed before. */
6604 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6606 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6607 && i < n_blocks);
6609 /* Find all paths starting with BB, and process them. */
6610 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6612 /* Pre-scan the path. */
6613 cse_prescan_path (&ebb_data);
6615 /* If this basic block has no sets, skip it. */
6616 if (ebb_data.nsets == 0)
6617 continue;
6619 /* Get a reasonable estimate for the maximum number of qty's
6620 needed for this path. For this, we take the number of sets
6621 and multiply that by MAX_RECOG_OPERANDS. */
6622 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6624 /* Dump the path we're about to process. */
6625 if (dump_file)
6626 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6628 cse_extended_basic_block (&ebb_data);
6632 /* Clean up. */
6633 end_alias_analysis ();
6634 free (reg_eqv_table);
6635 free (ebb_data.path);
6636 sbitmap_free (cse_visited_basic_blocks);
6637 free (rc_order);
6638 rtl_hooks = general_rtl_hooks;
6640 if (cse_jumps_altered || recorded_label_ref)
6641 return 2;
6642 else if (cse_cfg_altered)
6643 return 1;
6644 else
6645 return 0;
6648 /* Count the number of times registers are used (not set) in X.
6649 COUNTS is an array in which we accumulate the count, INCR is how much
6650 we count each register usage.
6652 Don't count a usage of DEST, which is the SET_DEST of a SET which
6653 contains X in its SET_SRC. This is because such a SET does not
6654 modify the liveness of DEST.
6655 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6656 We must then count uses of a SET_DEST regardless, because the insn can't be
6657 deleted here. */
6659 static void
6660 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6662 enum rtx_code code;
6663 rtx note;
6664 const char *fmt;
6665 int i, j;
6667 if (x == 0)
6668 return;
6670 switch (code = GET_CODE (x))
6672 case REG:
6673 if (x != dest)
6674 counts[REGNO (x)] += incr;
6675 return;
6677 case PC:
6678 case CC0:
6679 case CONST:
6680 CASE_CONST_ANY:
6681 case SYMBOL_REF:
6682 case LABEL_REF:
6683 return;
6685 case CLOBBER:
6686 /* If we are clobbering a MEM, mark any registers inside the address
6687 as being used. */
6688 if (MEM_P (XEXP (x, 0)))
6689 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6690 return;
6692 case SET:
6693 /* Unless we are setting a REG, count everything in SET_DEST. */
6694 if (!REG_P (SET_DEST (x)))
6695 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6696 count_reg_usage (SET_SRC (x), counts,
6697 dest ? dest : SET_DEST (x),
6698 incr);
6699 return;
6701 case DEBUG_INSN:
6702 return;
6704 case CALL_INSN:
6705 case INSN:
6706 case JUMP_INSN:
6707 /* We expect dest to be NULL_RTX here. If the insn may throw,
6708 or if it cannot be deleted due to side-effects, mark this fact
6709 by setting DEST to pc_rtx. */
6710 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6711 || side_effects_p (PATTERN (x)))
6712 dest = pc_rtx;
6713 if (code == CALL_INSN)
6714 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6715 count_reg_usage (PATTERN (x), counts, dest, incr);
6717 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6718 use them. */
6720 note = find_reg_equal_equiv_note (x);
6721 if (note)
6723 rtx eqv = XEXP (note, 0);
6725 if (GET_CODE (eqv) == EXPR_LIST)
6726 /* This REG_EQUAL note describes the result of a function call.
6727 Process all the arguments. */
6730 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6731 eqv = XEXP (eqv, 1);
6733 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6734 else
6735 count_reg_usage (eqv, counts, dest, incr);
6737 return;
6739 case EXPR_LIST:
6740 if (REG_NOTE_KIND (x) == REG_EQUAL
6741 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6742 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6743 involving registers in the address. */
6744 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6745 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6747 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6748 return;
6750 case ASM_OPERANDS:
6751 /* Iterate over just the inputs, not the constraints as well. */
6752 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6753 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6754 return;
6756 case INSN_LIST:
6757 case INT_LIST:
6758 gcc_unreachable ();
6760 default:
6761 break;
6764 fmt = GET_RTX_FORMAT (code);
6765 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6767 if (fmt[i] == 'e')
6768 count_reg_usage (XEXP (x, i), counts, dest, incr);
6769 else if (fmt[i] == 'E')
6770 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6771 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6775 /* Return true if X is a dead register. */
6777 static inline int
6778 is_dead_reg (const_rtx x, int *counts)
6780 return (REG_P (x)
6781 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6782 && counts[REGNO (x)] == 0);
6785 /* Return true if set is live. */
6786 static bool
6787 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6788 int *counts)
6790 #ifdef HAVE_cc0
6791 rtx tem;
6792 #endif
6794 if (set_noop_p (set))
6797 #ifdef HAVE_cc0
6798 else if (GET_CODE (SET_DEST (set)) == CC0
6799 && !side_effects_p (SET_SRC (set))
6800 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6801 || !INSN_P (tem)
6802 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6803 return false;
6804 #endif
6805 else if (!is_dead_reg (SET_DEST (set), counts)
6806 || side_effects_p (SET_SRC (set)))
6807 return true;
6808 return false;
6811 /* Return true if insn is live. */
6813 static bool
6814 insn_live_p (rtx_insn *insn, int *counts)
6816 int i;
6817 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6818 return true;
6819 else if (GET_CODE (PATTERN (insn)) == SET)
6820 return set_live_p (PATTERN (insn), insn, counts);
6821 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6823 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6825 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6827 if (GET_CODE (elt) == SET)
6829 if (set_live_p (elt, insn, counts))
6830 return true;
6832 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6833 return true;
6835 return false;
6837 else if (DEBUG_INSN_P (insn))
6839 rtx_insn *next;
6841 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6842 if (NOTE_P (next))
6843 continue;
6844 else if (!DEBUG_INSN_P (next))
6845 return true;
6846 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6847 return false;
6849 return true;
6851 else
6852 return true;
6855 /* Count the number of stores into pseudo. Callback for note_stores. */
6857 static void
6858 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6860 int *counts = (int *) data;
6861 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6862 counts[REGNO (x)]++;
6865 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6866 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6867 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6868 Set *SEEN_REPL to true if we see a dead register that does have
6869 a replacement. */
6871 static bool
6872 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6873 bool *seen_repl)
6875 subrtx_iterator::array_type array;
6876 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6878 const_rtx x = *iter;
6879 if (is_dead_reg (x, counts))
6881 if (replacements && replacements[REGNO (x)] != NULL_RTX)
6882 *seen_repl = true;
6883 else
6884 return true;
6887 return false;
6890 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6891 Callback for simplify_replace_fn_rtx. */
6893 static rtx
6894 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6896 rtx *replacements = (rtx *) data;
6898 if (REG_P (x)
6899 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6900 && replacements[REGNO (x)] != NULL_RTX)
6902 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6903 return replacements[REGNO (x)];
6904 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6905 GET_MODE (replacements[REGNO (x)]));
6907 return NULL_RTX;
6910 /* Scan all the insns and delete any that are dead; i.e., they store a register
6911 that is never used or they copy a register to itself.
6913 This is used to remove insns made obviously dead by cse, loop or other
6914 optimizations. It improves the heuristics in loop since it won't try to
6915 move dead invariants out of loops or make givs for dead quantities. The
6916 remaining passes of the compilation are also sped up. */
6919 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
6921 int *counts;
6922 rtx_insn *insn, *prev;
6923 rtx *replacements = NULL;
6924 int ndead = 0;
6926 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6927 /* First count the number of times each register is used. */
6928 if (MAY_HAVE_DEBUG_INSNS)
6930 counts = XCNEWVEC (int, nreg * 3);
6931 for (insn = insns; insn; insn = NEXT_INSN (insn))
6932 if (DEBUG_INSN_P (insn))
6933 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6934 NULL_RTX, 1);
6935 else if (INSN_P (insn))
6937 count_reg_usage (insn, counts, NULL_RTX, 1);
6938 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6940 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6941 First one counts how many times each pseudo is used outside
6942 of debug insns, second counts how many times each pseudo is
6943 used in debug insns and third counts how many times a pseudo
6944 is stored. */
6946 else
6948 counts = XCNEWVEC (int, nreg);
6949 for (insn = insns; insn; insn = NEXT_INSN (insn))
6950 if (INSN_P (insn))
6951 count_reg_usage (insn, counts, NULL_RTX, 1);
6952 /* If no debug insns can be present, COUNTS is just an array
6953 which counts how many times each pseudo is used. */
6955 /* Go from the last insn to the first and delete insns that only set unused
6956 registers or copy a register to itself. As we delete an insn, remove
6957 usage counts for registers it uses.
6959 The first jump optimization pass may leave a real insn as the last
6960 insn in the function. We must not skip that insn or we may end
6961 up deleting code that is not really dead.
6963 If some otherwise unused register is only used in DEBUG_INSNs,
6964 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6965 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
6966 has been created for the unused register, replace it with
6967 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
6968 for (insn = get_last_insn (); insn; insn = prev)
6970 int live_insn = 0;
6972 prev = PREV_INSN (insn);
6973 if (!INSN_P (insn))
6974 continue;
6976 live_insn = insn_live_p (insn, counts);
6978 /* If this is a dead insn, delete it and show registers in it aren't
6979 being used. */
6981 if (! live_insn && dbg_cnt (delete_trivial_dead))
6983 if (DEBUG_INSN_P (insn))
6984 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6985 NULL_RTX, -1);
6986 else
6988 rtx set;
6989 if (MAY_HAVE_DEBUG_INSNS
6990 && (set = single_set (insn)) != NULL_RTX
6991 && is_dead_reg (SET_DEST (set), counts)
6992 /* Used at least once in some DEBUG_INSN. */
6993 && counts[REGNO (SET_DEST (set)) + nreg] > 0
6994 /* And set exactly once. */
6995 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
6996 && !side_effects_p (SET_SRC (set))
6997 && asm_noperands (PATTERN (insn)) < 0)
6999 rtx dval, bind_var_loc;
7000 rtx_insn *bind;
7002 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7003 dval = make_debug_expr_from_rtl (SET_DEST (set));
7005 /* Emit a debug bind insn before the insn in which
7006 reg dies. */
7007 bind_var_loc =
7008 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7009 DEBUG_EXPR_TREE_DECL (dval),
7010 SET_SRC (set),
7011 VAR_INIT_STATUS_INITIALIZED);
7012 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7014 bind = emit_debug_insn_before (bind_var_loc, insn);
7015 df_insn_rescan (bind);
7017 if (replacements == NULL)
7018 replacements = XCNEWVEC (rtx, nreg);
7019 replacements[REGNO (SET_DEST (set))] = dval;
7022 count_reg_usage (insn, counts, NULL_RTX, -1);
7023 ndead++;
7025 delete_insn_and_edges (insn);
7029 if (MAY_HAVE_DEBUG_INSNS)
7031 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7032 if (DEBUG_INSN_P (insn))
7034 /* If this debug insn references a dead register that wasn't replaced
7035 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7036 bool seen_repl = false;
7037 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7038 counts, replacements, &seen_repl))
7040 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7041 df_insn_rescan (insn);
7043 else if (seen_repl)
7045 INSN_VAR_LOCATION_LOC (insn)
7046 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7047 NULL_RTX, replace_dead_reg,
7048 replacements);
7049 df_insn_rescan (insn);
7052 free (replacements);
7055 if (dump_file && ndead)
7056 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7057 ndead);
7058 /* Clean up. */
7059 free (counts);
7060 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7061 return ndead;
7064 /* If LOC contains references to NEWREG in a different mode, change them
7065 to use NEWREG instead. */
7067 static void
7068 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7069 rtx *loc, rtx insn, rtx newreg)
7071 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7073 rtx *loc = *iter;
7074 rtx x = *loc;
7075 if (x
7076 && REG_P (x)
7077 && REGNO (x) == REGNO (newreg)
7078 && GET_MODE (x) != GET_MODE (newreg))
7080 validate_change (insn, loc, newreg, 1);
7081 iter.skip_subrtxes ();
7086 /* Change the mode of any reference to the register REGNO (NEWREG) to
7087 GET_MODE (NEWREG) in INSN. */
7089 static void
7090 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7092 int success;
7094 if (!INSN_P (insn))
7095 return;
7097 subrtx_ptr_iterator::array_type array;
7098 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7099 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7101 /* If the following assertion was triggered, there is most probably
7102 something wrong with the cc_modes_compatible back end function.
7103 CC modes only can be considered compatible if the insn - with the mode
7104 replaced by any of the compatible modes - can still be recognized. */
7105 success = apply_change_group ();
7106 gcc_assert (success);
7109 /* Change the mode of any reference to the register REGNO (NEWREG) to
7110 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7111 any instruction which modifies NEWREG. */
7113 static void
7114 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7116 rtx_insn *insn;
7118 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7120 if (! INSN_P (insn))
7121 continue;
7123 if (reg_set_p (newreg, insn))
7124 return;
7126 cse_change_cc_mode_insn (insn, newreg);
7130 /* BB is a basic block which finishes with CC_REG as a condition code
7131 register which is set to CC_SRC. Look through the successors of BB
7132 to find blocks which have a single predecessor (i.e., this one),
7133 and look through those blocks for an assignment to CC_REG which is
7134 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7135 permitted to change the mode of CC_SRC to a compatible mode. This
7136 returns VOIDmode if no equivalent assignments were found.
7137 Otherwise it returns the mode which CC_SRC should wind up with.
7138 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7139 but is passed unmodified down to recursive calls in order to prevent
7140 endless recursion.
7142 The main complexity in this function is handling the mode issues.
7143 We may have more than one duplicate which we can eliminate, and we
7144 try to find a mode which will work for multiple duplicates. */
7146 static enum machine_mode
7147 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7148 bool can_change_mode)
7150 bool found_equiv;
7151 enum machine_mode mode;
7152 unsigned int insn_count;
7153 edge e;
7154 rtx_insn *insns[2];
7155 enum machine_mode modes[2];
7156 rtx_insn *last_insns[2];
7157 unsigned int i;
7158 rtx newreg;
7159 edge_iterator ei;
7161 /* We expect to have two successors. Look at both before picking
7162 the final mode for the comparison. If we have more successors
7163 (i.e., some sort of table jump, although that seems unlikely),
7164 then we require all beyond the first two to use the same
7165 mode. */
7167 found_equiv = false;
7168 mode = GET_MODE (cc_src);
7169 insn_count = 0;
7170 FOR_EACH_EDGE (e, ei, bb->succs)
7172 rtx_insn *insn;
7173 rtx_insn *end;
7175 if (e->flags & EDGE_COMPLEX)
7176 continue;
7178 if (EDGE_COUNT (e->dest->preds) != 1
7179 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7180 /* Avoid endless recursion on unreachable blocks. */
7181 || e->dest == orig_bb)
7182 continue;
7184 end = NEXT_INSN (BB_END (e->dest));
7185 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7187 rtx set;
7189 if (! INSN_P (insn))
7190 continue;
7192 /* If CC_SRC is modified, we have to stop looking for
7193 something which uses it. */
7194 if (modified_in_p (cc_src, insn))
7195 break;
7197 /* Check whether INSN sets CC_REG to CC_SRC. */
7198 set = single_set (insn);
7199 if (set
7200 && REG_P (SET_DEST (set))
7201 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7203 bool found;
7204 enum machine_mode set_mode;
7205 enum machine_mode comp_mode;
7207 found = false;
7208 set_mode = GET_MODE (SET_SRC (set));
7209 comp_mode = set_mode;
7210 if (rtx_equal_p (cc_src, SET_SRC (set)))
7211 found = true;
7212 else if (GET_CODE (cc_src) == COMPARE
7213 && GET_CODE (SET_SRC (set)) == COMPARE
7214 && mode != set_mode
7215 && rtx_equal_p (XEXP (cc_src, 0),
7216 XEXP (SET_SRC (set), 0))
7217 && rtx_equal_p (XEXP (cc_src, 1),
7218 XEXP (SET_SRC (set), 1)))
7221 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7222 if (comp_mode != VOIDmode
7223 && (can_change_mode || comp_mode == mode))
7224 found = true;
7227 if (found)
7229 found_equiv = true;
7230 if (insn_count < ARRAY_SIZE (insns))
7232 insns[insn_count] = insn;
7233 modes[insn_count] = set_mode;
7234 last_insns[insn_count] = end;
7235 ++insn_count;
7237 if (mode != comp_mode)
7239 gcc_assert (can_change_mode);
7240 mode = comp_mode;
7242 /* The modified insn will be re-recognized later. */
7243 PUT_MODE (cc_src, mode);
7246 else
7248 if (set_mode != mode)
7250 /* We found a matching expression in the
7251 wrong mode, but we don't have room to
7252 store it in the array. Punt. This case
7253 should be rare. */
7254 break;
7256 /* INSN sets CC_REG to a value equal to CC_SRC
7257 with the right mode. We can simply delete
7258 it. */
7259 delete_insn (insn);
7262 /* We found an instruction to delete. Keep looking,
7263 in the hopes of finding a three-way jump. */
7264 continue;
7267 /* We found an instruction which sets the condition
7268 code, so don't look any farther. */
7269 break;
7272 /* If INSN sets CC_REG in some other way, don't look any
7273 farther. */
7274 if (reg_set_p (cc_reg, insn))
7275 break;
7278 /* If we fell off the bottom of the block, we can keep looking
7279 through successors. We pass CAN_CHANGE_MODE as false because
7280 we aren't prepared to handle compatibility between the
7281 further blocks and this block. */
7282 if (insn == end)
7284 enum machine_mode submode;
7286 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7287 if (submode != VOIDmode)
7289 gcc_assert (submode == mode);
7290 found_equiv = true;
7291 can_change_mode = false;
7296 if (! found_equiv)
7297 return VOIDmode;
7299 /* Now INSN_COUNT is the number of instructions we found which set
7300 CC_REG to a value equivalent to CC_SRC. The instructions are in
7301 INSNS. The modes used by those instructions are in MODES. */
7303 newreg = NULL_RTX;
7304 for (i = 0; i < insn_count; ++i)
7306 if (modes[i] != mode)
7308 /* We need to change the mode of CC_REG in INSNS[i] and
7309 subsequent instructions. */
7310 if (! newreg)
7312 if (GET_MODE (cc_reg) == mode)
7313 newreg = cc_reg;
7314 else
7315 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7317 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7318 newreg);
7321 delete_insn_and_edges (insns[i]);
7324 return mode;
7327 /* If we have a fixed condition code register (or two), walk through
7328 the instructions and try to eliminate duplicate assignments. */
7330 static void
7331 cse_condition_code_reg (void)
7333 unsigned int cc_regno_1;
7334 unsigned int cc_regno_2;
7335 rtx cc_reg_1;
7336 rtx cc_reg_2;
7337 basic_block bb;
7339 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7340 return;
7342 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7343 if (cc_regno_2 != INVALID_REGNUM)
7344 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7345 else
7346 cc_reg_2 = NULL_RTX;
7348 FOR_EACH_BB_FN (bb, cfun)
7350 rtx_insn *last_insn;
7351 rtx cc_reg;
7352 rtx_insn *insn;
7353 rtx_insn *cc_src_insn;
7354 rtx cc_src;
7355 enum machine_mode mode;
7356 enum machine_mode orig_mode;
7358 /* Look for blocks which end with a conditional jump based on a
7359 condition code register. Then look for the instruction which
7360 sets the condition code register. Then look through the
7361 successor blocks for instructions which set the condition
7362 code register to the same value. There are other possible
7363 uses of the condition code register, but these are by far the
7364 most common and the ones which we are most likely to be able
7365 to optimize. */
7367 last_insn = BB_END (bb);
7368 if (!JUMP_P (last_insn))
7369 continue;
7371 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7372 cc_reg = cc_reg_1;
7373 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7374 cc_reg = cc_reg_2;
7375 else
7376 continue;
7378 cc_src_insn = NULL;
7379 cc_src = NULL_RTX;
7380 for (insn = PREV_INSN (last_insn);
7381 insn && insn != PREV_INSN (BB_HEAD (bb));
7382 insn = PREV_INSN (insn))
7384 rtx set;
7386 if (! INSN_P (insn))
7387 continue;
7388 set = single_set (insn);
7389 if (set
7390 && REG_P (SET_DEST (set))
7391 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7393 cc_src_insn = insn;
7394 cc_src = SET_SRC (set);
7395 break;
7397 else if (reg_set_p (cc_reg, insn))
7398 break;
7401 if (! cc_src_insn)
7402 continue;
7404 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7405 continue;
7407 /* Now CC_REG is a condition code register used for a
7408 conditional jump at the end of the block, and CC_SRC, in
7409 CC_SRC_INSN, is the value to which that condition code
7410 register is set, and CC_SRC is still meaningful at the end of
7411 the basic block. */
7413 orig_mode = GET_MODE (cc_src);
7414 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7415 if (mode != VOIDmode)
7417 gcc_assert (mode == GET_MODE (cc_src));
7418 if (mode != orig_mode)
7420 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7422 cse_change_cc_mode_insn (cc_src_insn, newreg);
7424 /* Do the same in the following insns that use the
7425 current value of CC_REG within BB. */
7426 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7427 NEXT_INSN (last_insn),
7428 newreg);
7435 /* Perform common subexpression elimination. Nonzero value from
7436 `cse_main' means that jumps were simplified and some code may now
7437 be unreachable, so do jump optimization again. */
7438 static unsigned int
7439 rest_of_handle_cse (void)
7441 int tem;
7443 if (dump_file)
7444 dump_flow_info (dump_file, dump_flags);
7446 tem = cse_main (get_insns (), max_reg_num ());
7448 /* If we are not running more CSE passes, then we are no longer
7449 expecting CSE to be run. But always rerun it in a cheap mode. */
7450 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7452 if (tem == 2)
7454 timevar_push (TV_JUMP);
7455 rebuild_jump_labels (get_insns ());
7456 cleanup_cfg (CLEANUP_CFG_CHANGED);
7457 timevar_pop (TV_JUMP);
7459 else if (tem == 1 || optimize > 1)
7460 cleanup_cfg (0);
7462 return 0;
7465 namespace {
7467 const pass_data pass_data_cse =
7469 RTL_PASS, /* type */
7470 "cse1", /* name */
7471 OPTGROUP_NONE, /* optinfo_flags */
7472 TV_CSE, /* tv_id */
7473 0, /* properties_required */
7474 0, /* properties_provided */
7475 0, /* properties_destroyed */
7476 0, /* todo_flags_start */
7477 TODO_df_finish, /* todo_flags_finish */
7480 class pass_cse : public rtl_opt_pass
7482 public:
7483 pass_cse (gcc::context *ctxt)
7484 : rtl_opt_pass (pass_data_cse, ctxt)
7487 /* opt_pass methods: */
7488 virtual bool gate (function *) { return optimize > 0; }
7489 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7491 }; // class pass_cse
7493 } // anon namespace
7495 rtl_opt_pass *
7496 make_pass_cse (gcc::context *ctxt)
7498 return new pass_cse (ctxt);
7502 /* Run second CSE pass after loop optimizations. */
7503 static unsigned int
7504 rest_of_handle_cse2 (void)
7506 int tem;
7508 if (dump_file)
7509 dump_flow_info (dump_file, dump_flags);
7511 tem = cse_main (get_insns (), max_reg_num ());
7513 /* Run a pass to eliminate duplicated assignments to condition code
7514 registers. We have to run this after bypass_jumps, because it
7515 makes it harder for that pass to determine whether a jump can be
7516 bypassed safely. */
7517 cse_condition_code_reg ();
7519 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7521 if (tem == 2)
7523 timevar_push (TV_JUMP);
7524 rebuild_jump_labels (get_insns ());
7525 cleanup_cfg (CLEANUP_CFG_CHANGED);
7526 timevar_pop (TV_JUMP);
7528 else if (tem == 1)
7529 cleanup_cfg (0);
7531 cse_not_expected = 1;
7532 return 0;
7536 namespace {
7538 const pass_data pass_data_cse2 =
7540 RTL_PASS, /* type */
7541 "cse2", /* name */
7542 OPTGROUP_NONE, /* optinfo_flags */
7543 TV_CSE2, /* tv_id */
7544 0, /* properties_required */
7545 0, /* properties_provided */
7546 0, /* properties_destroyed */
7547 0, /* todo_flags_start */
7548 TODO_df_finish, /* todo_flags_finish */
7551 class pass_cse2 : public rtl_opt_pass
7553 public:
7554 pass_cse2 (gcc::context *ctxt)
7555 : rtl_opt_pass (pass_data_cse2, ctxt)
7558 /* opt_pass methods: */
7559 virtual bool gate (function *)
7561 return optimize > 0 && flag_rerun_cse_after_loop;
7564 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7566 }; // class pass_cse2
7568 } // anon namespace
7570 rtl_opt_pass *
7571 make_pass_cse2 (gcc::context *ctxt)
7573 return new pass_cse2 (ctxt);
7576 /* Run second CSE pass after loop optimizations. */
7577 static unsigned int
7578 rest_of_handle_cse_after_global_opts (void)
7580 int save_cfj;
7581 int tem;
7583 /* We only want to do local CSE, so don't follow jumps. */
7584 save_cfj = flag_cse_follow_jumps;
7585 flag_cse_follow_jumps = 0;
7587 rebuild_jump_labels (get_insns ());
7588 tem = cse_main (get_insns (), max_reg_num ());
7589 purge_all_dead_edges ();
7590 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7592 cse_not_expected = !flag_rerun_cse_after_loop;
7594 /* If cse altered any jumps, rerun jump opts to clean things up. */
7595 if (tem == 2)
7597 timevar_push (TV_JUMP);
7598 rebuild_jump_labels (get_insns ());
7599 cleanup_cfg (CLEANUP_CFG_CHANGED);
7600 timevar_pop (TV_JUMP);
7602 else if (tem == 1)
7603 cleanup_cfg (0);
7605 flag_cse_follow_jumps = save_cfj;
7606 return 0;
7609 namespace {
7611 const pass_data pass_data_cse_after_global_opts =
7613 RTL_PASS, /* type */
7614 "cse_local", /* name */
7615 OPTGROUP_NONE, /* optinfo_flags */
7616 TV_CSE, /* tv_id */
7617 0, /* properties_required */
7618 0, /* properties_provided */
7619 0, /* properties_destroyed */
7620 0, /* todo_flags_start */
7621 TODO_df_finish, /* todo_flags_finish */
7624 class pass_cse_after_global_opts : public rtl_opt_pass
7626 public:
7627 pass_cse_after_global_opts (gcc::context *ctxt)
7628 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7631 /* opt_pass methods: */
7632 virtual bool gate (function *)
7634 return optimize > 0 && flag_rerun_cse_after_global_opts;
7637 virtual unsigned int execute (function *)
7639 return rest_of_handle_cse_after_global_opts ();
7642 }; // class pass_cse_after_global_opts
7644 } // anon namespace
7646 rtl_opt_pass *
7647 make_pass_cse_after_global_opts (gcc::context *ctxt)
7649 return new pass_cse_after_global_opts (ctxt);