re PR rtl-optimization/35838 (FAIL: 22_locale/num_get/get/char/16.cc execution test...
[official-gcc.git] / gcc / basic-block.h
blob4955b5e3ad3dd3df59a9e14fe22a8740d952bf89
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_BASIC_BLOCK_H
22 #define GCC_BASIC_BLOCK_H
24 #include "bitmap.h"
25 #include "sbitmap.h"
26 #include "varray.h"
27 #include "partition.h"
28 #include "hard-reg-set.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "function.h"
33 /* Head of register set linked list. */
34 typedef bitmap_head regset_head;
36 /* A pointer to a regset_head. */
37 typedef bitmap regset;
39 /* Allocate a register set with oballoc. */
40 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
42 /* Do any cleanup needed on a regset when it is no longer used. */
43 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
45 /* Initialize a new regset. */
46 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
48 /* Clear a register set by freeing up the linked list. */
49 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
51 /* Copy a register set to another register set. */
52 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
54 /* Compare two register sets. */
55 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
57 /* `and' a register set with a second register set. */
58 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
60 /* `and' the complement of a register set with a register set. */
61 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
63 /* Inclusive or a register set with a second register set. */
64 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
66 /* Exclusive or a register set with a second register set. */
67 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
69 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
70 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
73 /* Clear a single register in a register set. */
74 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
76 /* Set a single register in a register set. */
77 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
79 /* Return true if a register is set in a register set. */
80 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
82 /* Copy the hard registers in a register set to the hard register set. */
83 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, const_bitmap);
84 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
85 do { \
86 CLEAR_HARD_REG_SET (TO); \
87 reg_set_to_hard_reg_set (&TO, FROM); \
88 } while (0)
90 typedef bitmap_iterator reg_set_iterator;
92 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93 register number and executing CODE for all registers that are set. */
94 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
95 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
97 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98 REGNUM to the register number and executing CODE for all registers that are
99 set in the first regset and not set in the second. */
100 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
103 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104 REGNUM to the register number and executing CODE for all registers that are
105 set in both regsets. */
106 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
109 /* Type we use to hold basic block counters. Should be at least
110 64bit. Although a counter cannot be negative, we use a signed
111 type, because erroneous negative counts can be generated when the
112 flow graph is manipulated by various optimizations. A signed type
113 makes those easy to detect. */
114 typedef HOST_WIDEST_INT gcov_type;
116 /* Control flow edge information. */
117 struct edge_def GTY(())
119 /* The two blocks at the ends of the edge. */
120 struct basic_block_def *src;
121 struct basic_block_def *dest;
123 /* Instructions queued on the edge. */
124 union edge_def_insns {
125 tree GTY ((tag ("true"))) t;
126 rtx GTY ((tag ("false"))) r;
127 } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
129 /* Auxiliary info specific to a pass. */
130 PTR GTY ((skip (""))) aux;
132 /* Location of any goto implicit in the edge, during tree-ssa. */
133 location_t goto_locus;
135 /* The index number corresponding to this edge in the edge vector
136 dest->preds. */
137 unsigned int dest_idx;
139 int flags; /* see EDGE_* below */
140 int probability; /* biased by REG_BR_PROB_BASE */
141 gcov_type count; /* Expected number of executions calculated
142 in profile.c */
145 typedef struct edge_def *edge;
146 typedef const struct edge_def *const_edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
149 DEF_VEC_ALLOC_P(edge,heap);
151 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
152 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
153 label, or eh */
154 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
155 like an exception, or sibcall */
156 #define EDGE_EH 8 /* Exception throw */
157 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
158 #define EDGE_DFS_BACK 32 /* A backwards edge */
159 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
160 flow. */
161 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
162 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
163 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
164 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
165 predicate is nonzero. */
166 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
167 predicate is zero. */
168 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
169 valid during SSA-CCP. */
170 #define EDGE_CROSSING 8192 /* Edge crosses between hot
171 and cold sections, when we
172 do partitioning. */
173 #define EDGE_ALL_FLAGS 16383
175 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
177 /* Counter summary from the last set of coverage counts read by
178 profile.c. */
179 extern const struct gcov_ctr_summary *profile_info;
181 /* Declared in cfgloop.h. */
182 struct loop;
184 /* Declared in tree-flow.h. */
185 struct edge_prediction;
186 struct rtl_bb_info;
188 /* A basic block is a sequence of instructions with only entry and
189 only one exit. If any one of the instructions are executed, they
190 will all be executed, and in sequence from first to last.
192 There may be COND_EXEC instructions in the basic block. The
193 COND_EXEC *instructions* will be executed -- but if the condition
194 is false the conditionally executed *expressions* will of course
195 not be executed. We don't consider the conditionally executed
196 expression (which might have side-effects) to be in a separate
197 basic block because the program counter will always be at the same
198 location after the COND_EXEC instruction, regardless of whether the
199 condition is true or not.
201 Basic blocks need not start with a label nor end with a jump insn.
202 For example, a previous basic block may just "conditionally fall"
203 into the succeeding basic block, and the last basic block need not
204 end with a jump insn. Block 0 is a descendant of the entry block.
206 A basic block beginning with two labels cannot have notes between
207 the labels.
209 Data for jump tables are stored in jump_insns that occur in no
210 basic block even though these insns can follow or precede insns in
211 basic blocks. */
213 /* Basic block information indexed by block number. */
214 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
216 /* The edges into and out of the block. */
217 VEC(edge,gc) *preds;
218 VEC(edge,gc) *succs;
220 /* Auxiliary info specific to a pass. */
221 PTR GTY ((skip (""))) aux;
223 /* Innermost loop containing the block. */
224 struct loop *loop_father;
226 /* The dominance and postdominance information node. */
227 struct et_node * GTY ((skip (""))) dom[2];
229 /* Previous and next blocks in the chain. */
230 struct basic_block_def *prev_bb;
231 struct basic_block_def *next_bb;
233 union basic_block_il_dependent {
234 struct tree_bb_info * GTY ((tag ("0"))) tree;
235 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
236 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
238 /* Expected number of executions: calculated in profile.c. */
239 gcov_type count;
241 /* The index of this block. */
242 int index;
244 /* The loop depth of this block. */
245 int loop_depth;
247 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
248 int frequency;
250 /* Various flags. See BB_* below. */
251 int flags;
254 struct rtl_bb_info GTY(())
256 /* The first and last insns of the block. */
257 rtx head_;
258 rtx end_;
260 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
261 and after the block. */
262 rtx header;
263 rtx footer;
265 /* This field is used by the bb-reorder and tracer passes. */
266 int visited;
269 struct tree_bb_info GTY(())
271 /* Pointers to the first and last trees of the block. */
272 tree stmt_list;
274 /* Chain of PHI nodes for this block. */
275 tree phi_nodes;
278 typedef struct basic_block_def *basic_block;
279 typedef const struct basic_block_def *const_basic_block;
281 DEF_VEC_P(basic_block);
282 DEF_VEC_ALLOC_P(basic_block,gc);
283 DEF_VEC_ALLOC_P(basic_block,heap);
285 #define BB_FREQ_MAX 10000
287 /* Masks for basic_block.flags.
289 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
290 the compilation, so they are never cleared.
292 All other flags may be cleared by clear_bb_flags(). It is generally
293 a bad idea to rely on any flags being up-to-date. */
295 enum bb_flags
297 /* Only set on blocks that have just been created by create_bb. */
298 BB_NEW = 1 << 0,
300 /* Set by find_unreachable_blocks. Do not rely on this being set in any
301 pass. */
302 BB_REACHABLE = 1 << 1,
304 /* Set for blocks in an irreducible loop by loop analysis. */
305 BB_IRREDUCIBLE_LOOP = 1 << 2,
307 /* Set on blocks that may actually not be single-entry single-exit block. */
308 BB_SUPERBLOCK = 1 << 3,
310 /* Set on basic blocks that the scheduler should not touch. This is used
311 by SMS to prevent other schedulers from messing with the loop schedule. */
312 BB_DISABLE_SCHEDULE = 1 << 4,
314 /* Set on blocks that should be put in a hot section. */
315 BB_HOT_PARTITION = 1 << 5,
317 /* Set on blocks that should be put in a cold section. */
318 BB_COLD_PARTITION = 1 << 6,
320 /* Set on block that was duplicated. */
321 BB_DUPLICATED = 1 << 7,
323 /* Set if the label at the top of this block is the target of a non-local goto. */
324 BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
326 /* Set on blocks that are in RTL format. */
327 BB_RTL = 1 << 9 ,
329 /* Set on blocks that are forwarder blocks.
330 Only used in cfgcleanup.c. */
331 BB_FORWARDER_BLOCK = 1 << 10,
333 /* Set on blocks that cannot be threaded through.
334 Only used in cfgcleanup.c. */
335 BB_NONTHREADABLE_BLOCK = 1 << 11
338 /* Dummy flag for convenience in the hot/cold partitioning code. */
339 #define BB_UNPARTITIONED 0
341 /* Partitions, to be used when partitioning hot and cold basic blocks into
342 separate sections. */
343 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
344 #define BB_SET_PARTITION(bb, part) do { \
345 basic_block bb_ = (bb); \
346 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
347 | (part)); \
348 } while (0)
350 #define BB_COPY_PARTITION(dstbb, srcbb) \
351 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
353 /* State of dominance information. */
355 enum dom_state
357 DOM_NONE, /* Not computed at all. */
358 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
359 DOM_OK /* Everything is ok. */
362 /* A structure to group all the per-function control flow graph data.
363 The x_* prefixing is necessary because otherwise references to the
364 fields of this struct are interpreted as the defines for backward
365 source compatibility following the definition of this struct. */
366 struct control_flow_graph GTY(())
368 /* Block pointers for the exit and entry of a function.
369 These are always the head and tail of the basic block list. */
370 basic_block x_entry_block_ptr;
371 basic_block x_exit_block_ptr;
373 /* Index by basic block number, get basic block struct info. */
374 VEC(basic_block,gc) *x_basic_block_info;
376 /* Number of basic blocks in this flow graph. */
377 int x_n_basic_blocks;
379 /* Number of edges in this flow graph. */
380 int x_n_edges;
382 /* The first free basic block number. */
383 int x_last_basic_block;
385 /* Mapping of labels to their associated blocks. At present
386 only used for the tree CFG. */
387 VEC(basic_block,gc) *x_label_to_block_map;
389 enum profile_status {
390 PROFILE_ABSENT,
391 PROFILE_GUESSED,
392 PROFILE_READ
393 } x_profile_status;
395 /* Whether the dominators and the postdominators are available. */
396 enum dom_state x_dom_computed[2];
398 /* Number of basic blocks in the dominance tree. */
399 unsigned x_n_bbs_in_dom_tree[2];
402 /* Defines for accessing the fields of the CFG structure for function FN. */
403 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
404 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
405 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
406 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
407 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
408 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
409 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
411 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
412 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
414 /* Defines for textual backward source compatibility. */
415 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
416 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
417 #define basic_block_info (cfun->cfg->x_basic_block_info)
418 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
419 #define n_edges (cfun->cfg->x_n_edges)
420 #define last_basic_block (cfun->cfg->x_last_basic_block)
421 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
422 #define profile_status (cfun->cfg->x_profile_status)
424 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
425 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
427 /* For iterating over basic blocks. */
428 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
429 for (BB = FROM; BB != TO; BB = BB->DIR)
431 #define FOR_EACH_BB_FN(BB, FN) \
432 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
434 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
436 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
437 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
439 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
441 /* For iterating over insns in basic block. */
442 #define FOR_BB_INSNS(BB, INSN) \
443 for ((INSN) = BB_HEAD (BB); \
444 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
445 (INSN) = NEXT_INSN (INSN))
447 /* For iterating over insns in basic block when we might remove the
448 current insn. */
449 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
450 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
451 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
452 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
454 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
455 for ((INSN) = BB_END (BB); \
456 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
457 (INSN) = PREV_INSN (INSN))
459 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
460 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
461 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
462 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
464 /* Cycles through _all_ basic blocks, even the fake ones (entry and
465 exit block). */
467 #define FOR_ALL_BB(BB) \
468 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
470 #define FOR_ALL_BB_FN(BB, FN) \
471 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
473 extern bitmap_obstack reg_obstack;
476 /* Stuff for recording basic block info. */
478 #define BB_HEAD(B) (B)->il.rtl->head_
479 #define BB_END(B) (B)->il.rtl->end_
481 /* Special block numbers [markers] for entry and exit. */
482 #define ENTRY_BLOCK (0)
483 #define EXIT_BLOCK (1)
485 /* The two blocks that are always in the cfg. */
486 #define NUM_FIXED_BLOCKS (2)
489 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
490 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
492 extern void compute_bb_for_insn (void);
493 extern unsigned int free_bb_for_insn (void);
494 extern void update_bb_for_insn (basic_block);
496 extern void insert_insn_on_edge (rtx, edge);
497 basic_block split_edge_and_insert (edge, rtx);
499 extern void commit_edge_insertions (void);
501 extern void remove_fake_edges (void);
502 extern void remove_fake_exit_edges (void);
503 extern void add_noreturn_fake_exit_edges (void);
504 extern void connect_infinite_loops_to_exit (void);
505 extern edge unchecked_make_edge (basic_block, basic_block, int);
506 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
507 extern edge make_edge (basic_block, basic_block, int);
508 extern edge make_single_succ_edge (basic_block, basic_block, int);
509 extern void remove_edge_raw (edge);
510 extern void redirect_edge_succ (edge, basic_block);
511 extern edge redirect_edge_succ_nodup (edge, basic_block);
512 extern void redirect_edge_pred (edge, basic_block);
513 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
514 extern void clear_bb_flags (void);
515 extern int post_order_compute (int *, bool, bool);
516 extern int inverted_post_order_compute (int *);
517 extern int pre_and_rev_post_order_compute (int *, int *, bool);
518 extern int dfs_enumerate_from (basic_block, int,
519 bool (*)(const_basic_block, const void *),
520 basic_block *, int, const void *);
521 extern void compute_dominance_frontiers (bitmap *);
522 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
523 extern void dump_edge_info (FILE *, edge, int);
524 extern void brief_dump_cfg (FILE *);
525 extern void clear_edges (void);
526 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
527 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
528 gcov_type);
530 /* Structure to group all of the information to process IF-THEN and
531 IF-THEN-ELSE blocks for the conditional execution support. This
532 needs to be in a public file in case the IFCVT macros call
533 functions passing the ce_if_block data structure. */
535 typedef struct ce_if_block
537 basic_block test_bb; /* First test block. */
538 basic_block then_bb; /* THEN block. */
539 basic_block else_bb; /* ELSE block or NULL. */
540 basic_block join_bb; /* Join THEN/ELSE blocks. */
541 basic_block last_test_bb; /* Last bb to hold && or || tests. */
542 int num_multiple_test_blocks; /* # of && and || basic blocks. */
543 int num_and_and_blocks; /* # of && blocks. */
544 int num_or_or_blocks; /* # of || blocks. */
545 int num_multiple_test_insns; /* # of insns in && and || blocks. */
546 int and_and_p; /* Complex test is &&. */
547 int num_then_insns; /* # of insns in THEN block. */
548 int num_else_insns; /* # of insns in ELSE block. */
549 int pass; /* Pass number. */
551 #ifdef IFCVT_EXTRA_FIELDS
552 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
553 #endif
555 } ce_if_block_t;
557 /* This structure maintains an edge list vector. */
558 struct edge_list
560 int num_blocks;
561 int num_edges;
562 edge *index_to_edge;
565 /* The base value for branch probability notes and edge probabilities. */
566 #define REG_BR_PROB_BASE 10000
568 /* This is the value which indicates no edge is present. */
569 #define EDGE_INDEX_NO_EDGE -1
571 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
572 if there is no edge between the 2 basic blocks. */
573 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
575 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
576 block which is either the pred or succ end of the indexed edge. */
577 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
578 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
580 /* INDEX_EDGE returns a pointer to the edge. */
581 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
583 /* Number of edges in the compressed edge list. */
584 #define NUM_EDGES(el) ((el)->num_edges)
586 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
587 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
588 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
590 /* BB is assumed to contain conditional jump. Return the branch edge. */
591 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
592 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
594 /* Return expected execution frequency of the edge E. */
595 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
596 * (e)->probability \
597 + REG_BR_PROB_BASE / 2) \
598 / REG_BR_PROB_BASE)
600 /* Return nonzero if edge is critical. */
601 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
602 && EDGE_COUNT ((e)->dest->preds) >= 2)
604 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
605 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
606 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
607 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
609 /* Returns true if BB has precisely one successor. */
611 static inline bool
612 single_succ_p (const_basic_block bb)
614 return EDGE_COUNT (bb->succs) == 1;
617 /* Returns true if BB has precisely one predecessor. */
619 static inline bool
620 single_pred_p (const_basic_block bb)
622 return EDGE_COUNT (bb->preds) == 1;
625 /* Returns the single successor edge of basic block BB. Aborts if
626 BB does not have exactly one successor. */
628 static inline edge
629 single_succ_edge (const_basic_block bb)
631 gcc_assert (single_succ_p (bb));
632 return EDGE_SUCC (bb, 0);
635 /* Returns the single predecessor edge of basic block BB. Aborts
636 if BB does not have exactly one predecessor. */
638 static inline edge
639 single_pred_edge (const_basic_block bb)
641 gcc_assert (single_pred_p (bb));
642 return EDGE_PRED (bb, 0);
645 /* Returns the single successor block of basic block BB. Aborts
646 if BB does not have exactly one successor. */
648 static inline basic_block
649 single_succ (const_basic_block bb)
651 return single_succ_edge (bb)->dest;
654 /* Returns the single predecessor block of basic block BB. Aborts
655 if BB does not have exactly one predecessor.*/
657 static inline basic_block
658 single_pred (const_basic_block bb)
660 return single_pred_edge (bb)->src;
663 /* Iterator object for edges. */
665 typedef struct {
666 unsigned index;
667 VEC(edge,gc) **container;
668 } edge_iterator;
670 static inline VEC(edge,gc) *
671 ei_container (edge_iterator i)
673 gcc_assert (i.container);
674 return *i.container;
677 #define ei_start(iter) ei_start_1 (&(iter))
678 #define ei_last(iter) ei_last_1 (&(iter))
680 /* Return an iterator pointing to the start of an edge vector. */
681 static inline edge_iterator
682 ei_start_1 (VEC(edge,gc) **ev)
684 edge_iterator i;
686 i.index = 0;
687 i.container = ev;
689 return i;
692 /* Return an iterator pointing to the last element of an edge
693 vector. */
694 static inline edge_iterator
695 ei_last_1 (VEC(edge,gc) **ev)
697 edge_iterator i;
699 i.index = EDGE_COUNT (*ev) - 1;
700 i.container = ev;
702 return i;
705 /* Is the iterator `i' at the end of the sequence? */
706 static inline bool
707 ei_end_p (edge_iterator i)
709 return (i.index == EDGE_COUNT (ei_container (i)));
712 /* Is the iterator `i' at one position before the end of the
713 sequence? */
714 static inline bool
715 ei_one_before_end_p (edge_iterator i)
717 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
720 /* Advance the iterator to the next element. */
721 static inline void
722 ei_next (edge_iterator *i)
724 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
725 i->index++;
728 /* Move the iterator to the previous element. */
729 static inline void
730 ei_prev (edge_iterator *i)
732 gcc_assert (i->index > 0);
733 i->index--;
736 /* Return the edge pointed to by the iterator `i'. */
737 static inline edge
738 ei_edge (edge_iterator i)
740 return EDGE_I (ei_container (i), i.index);
743 /* Return an edge pointed to by the iterator. Do it safely so that
744 NULL is returned when the iterator is pointing at the end of the
745 sequence. */
746 static inline edge
747 ei_safe_edge (edge_iterator i)
749 return !ei_end_p (i) ? ei_edge (i) : NULL;
752 /* Return 1 if we should continue to iterate. Return 0 otherwise.
753 *Edge P is set to the next edge if we are to continue to iterate
754 and NULL otherwise. */
756 static inline bool
757 ei_cond (edge_iterator ei, edge *p)
759 if (!ei_end_p (ei))
761 *p = ei_edge (ei);
762 return 1;
764 else
766 *p = NULL;
767 return 0;
771 /* This macro serves as a convenient way to iterate each edge in a
772 vector of predecessor or successor edges. It must not be used when
773 an element might be removed during the traversal, otherwise
774 elements will be missed. Instead, use a for-loop like that shown
775 in the following pseudo-code:
777 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
779 IF (e != taken_edge)
780 remove_edge (e);
781 ELSE
782 ei_next (&ei);
786 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
787 for ((ITER) = ei_start ((EDGE_VEC)); \
788 ei_cond ((ITER), &(EDGE)); \
789 ei_next (&(ITER)))
791 struct edge_list * create_edge_list (void);
792 void free_edge_list (struct edge_list *);
793 void print_edge_list (FILE *, struct edge_list *);
794 void verify_edge_list (FILE *, struct edge_list *);
795 int find_edge_index (struct edge_list *, basic_block, basic_block);
796 edge find_edge (basic_block, basic_block);
798 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
799 except for edge forwarding */
800 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
801 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
802 to care REG_DEAD notes. */
803 #define CLEANUP_THREADING 8 /* Do jump threading. */
804 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
805 insns. */
806 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
808 /* In lcm.c */
809 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
810 sbitmap *, sbitmap *, sbitmap **,
811 sbitmap **);
812 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
813 sbitmap *, sbitmap *,
814 sbitmap *, sbitmap **,
815 sbitmap **);
816 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
818 /* In predict.c */
819 extern bool maybe_hot_bb_p (const_basic_block);
820 extern bool probably_cold_bb_p (const_basic_block);
821 extern bool probably_never_executed_bb_p (const_basic_block);
822 extern bool tree_predicted_by_p (const_basic_block, enum br_predictor);
823 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
824 extern void tree_predict_edge (edge, enum br_predictor, int);
825 extern void rtl_predict_edge (edge, enum br_predictor, int);
826 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
827 extern void guess_outgoing_edge_probabilities (basic_block);
828 extern void remove_predictions_associated_with_edge (edge);
829 extern bool edge_probability_reliable_p (const_edge);
830 extern bool br_prob_note_reliable_p (const_rtx);
832 /* In cfg.c */
833 extern void dump_regset (regset, FILE *);
834 extern void debug_regset (regset);
835 extern void init_flow (void);
836 extern void debug_bb (basic_block);
837 extern basic_block debug_bb_n (int);
838 extern void dump_regset (regset, FILE *);
839 extern void debug_regset (regset);
840 extern void expunge_block (basic_block);
841 extern void link_block (basic_block, basic_block);
842 extern void unlink_block (basic_block);
843 extern void compact_blocks (void);
844 extern basic_block alloc_block (void);
845 extern void alloc_aux_for_block (basic_block, int);
846 extern void alloc_aux_for_blocks (int);
847 extern void clear_aux_for_blocks (void);
848 extern void free_aux_for_blocks (void);
849 extern void alloc_aux_for_edge (edge, int);
850 extern void alloc_aux_for_edges (int);
851 extern void clear_aux_for_edges (void);
852 extern void free_aux_for_edges (void);
854 /* In cfganal.c */
855 extern void find_unreachable_blocks (void);
856 extern bool forwarder_block_p (const_basic_block);
857 extern bool can_fallthru (basic_block, basic_block);
858 extern bool could_fall_through (basic_block, basic_block);
859 extern void flow_nodes_print (const char *, const_sbitmap, FILE *);
860 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
862 /* In cfgrtl.c */
863 extern basic_block force_nonfallthru (edge);
864 extern rtx block_label (basic_block);
865 extern bool purge_all_dead_edges (void);
866 extern bool purge_dead_edges (basic_block);
868 /* In cfgbuild.c. */
869 extern void find_many_sub_basic_blocks (sbitmap);
870 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
871 extern void find_basic_blocks (rtx);
873 /* In cfgcleanup.c. */
874 extern bool cleanup_cfg (int);
875 extern bool delete_unreachable_blocks (void);
877 extern bool mark_dfs_back_edges (void);
878 extern void set_edge_can_fallthru_flag (void);
879 extern void update_br_prob_note (basic_block);
880 extern void fixup_abnormal_edges (void);
881 extern bool inside_basic_block_p (const_rtx);
882 extern bool control_flow_insn_p (const_rtx);
883 extern rtx get_last_bb_insn (basic_block);
885 /* In bb-reorder.c */
886 extern void reorder_basic_blocks (void);
888 /* In dominance.c */
890 enum cdi_direction
892 CDI_DOMINATORS = 1,
893 CDI_POST_DOMINATORS = 2
896 extern enum dom_state dom_info_state (enum cdi_direction);
897 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
898 extern bool dom_info_available_p (enum cdi_direction);
899 extern void calculate_dominance_info (enum cdi_direction);
900 extern void free_dominance_info (enum cdi_direction);
901 extern basic_block nearest_common_dominator (enum cdi_direction,
902 basic_block, basic_block);
903 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
904 bitmap);
905 extern void set_immediate_dominator (enum cdi_direction, basic_block,
906 basic_block);
907 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
908 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
909 extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
910 extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
911 basic_block *,
912 unsigned);
913 extern void add_to_dominance_info (enum cdi_direction, basic_block);
914 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
915 basic_block recompute_dominator (enum cdi_direction, basic_block);
916 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
917 basic_block);
918 extern void iterate_fix_dominators (enum cdi_direction,
919 VEC (basic_block, heap) *, bool);
920 extern void verify_dominators (enum cdi_direction);
921 extern basic_block first_dom_son (enum cdi_direction, basic_block);
922 extern basic_block next_dom_son (enum cdi_direction, basic_block);
923 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
924 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
926 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
927 extern void break_superblocks (void);
928 extern void relink_block_chain (bool);
929 extern void check_bb_profile (basic_block, FILE *);
930 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
931 extern void init_rtl_bb_info (basic_block);
933 extern void initialize_original_copy_tables (void);
934 extern void free_original_copy_tables (void);
935 extern void set_bb_original (basic_block, basic_block);
936 extern basic_block get_bb_original (basic_block);
937 extern void set_bb_copy (basic_block, basic_block);
938 extern basic_block get_bb_copy (basic_block);
939 void set_loop_copy (struct loop *, struct loop *);
940 struct loop *get_loop_copy (struct loop *);
943 extern rtx insert_insn_end_bb_new (rtx, basic_block);
945 #include "cfghooks.h"
947 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
948 static inline bool
949 bb_has_eh_pred (basic_block bb)
951 edge e;
952 edge_iterator ei;
954 FOR_EACH_EDGE (e, ei, bb->preds)
956 if (e->flags & EDGE_EH)
957 return true;
959 return false;
962 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
963 static inline bool
964 bb_has_abnormal_pred (basic_block bb)
966 edge e;
967 edge_iterator ei;
969 FOR_EACH_EDGE (e, ei, bb->preds)
971 if (e->flags & EDGE_ABNORMAL)
972 return true;
974 return false;
977 /* In cfgloopmanip.c. */
978 extern edge mfb_kj_edge;
979 bool mfb_keep_just (edge);
981 #endif /* GCC_BASIC_BLOCK_H */