2005-06-22 Kelley Cook <kcook@gcc.gnu.org>
[official-gcc.git] / gcc / convert.c
blobdc9f41f648af5f2d3ec9f73d5c55a512731f8896
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
41 tree
42 convert_to_pointer (tree type, tree expr)
44 if (integer_zerop (expr))
45 return build_int_cst (type, 0);
47 switch (TREE_CODE (TREE_TYPE (expr)))
49 case POINTER_TYPE:
50 case REFERENCE_TYPE:
51 return build1 (NOP_EXPR, type, expr);
53 case INTEGER_TYPE:
54 case ENUMERAL_TYPE:
55 case BOOLEAN_TYPE:
56 case CHAR_TYPE:
57 if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
58 expr = fold_build1 (NOP_EXPR,
59 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
60 expr);
61 return fold_build1 (CONVERT_EXPR, type, expr);
64 default:
65 error ("cannot convert to a pointer type");
66 return convert_to_pointer (type, integer_zero_node);
70 /* Avoid any floating point extensions from EXP. */
71 tree
72 strip_float_extensions (tree exp)
74 tree sub, expt, subt;
76 /* For floating point constant look up the narrowest type that can hold
77 it properly and handle it like (type)(narrowest_type)constant.
78 This way we can optimize for instance a=a*2.0 where "a" is float
79 but 2.0 is double constant. */
80 if (TREE_CODE (exp) == REAL_CST)
82 REAL_VALUE_TYPE orig;
83 tree type = NULL;
85 orig = TREE_REAL_CST (exp);
86 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
87 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
88 type = float_type_node;
89 else if (TYPE_PRECISION (TREE_TYPE (exp))
90 > TYPE_PRECISION (double_type_node)
91 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
92 type = double_type_node;
93 if (type)
94 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
97 if (TREE_CODE (exp) != NOP_EXPR
98 && TREE_CODE (exp) != CONVERT_EXPR)
99 return exp;
101 sub = TREE_OPERAND (exp, 0);
102 subt = TREE_TYPE (sub);
103 expt = TREE_TYPE (exp);
105 if (!FLOAT_TYPE_P (subt))
106 return exp;
108 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
109 return exp;
111 return strip_float_extensions (sub);
115 /* Convert EXPR to some floating-point type TYPE.
117 EXPR must be float, integer, or enumeral;
118 in other cases error is called. */
120 tree
121 convert_to_real (tree type, tree expr)
123 enum built_in_function fcode = builtin_mathfn_code (expr);
124 tree itype = TREE_TYPE (expr);
126 /* Disable until we figure out how to decide whether the functions are
127 present in runtime. */
128 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
129 if (optimize
130 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
131 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
133 switch (fcode)
135 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
136 CASE_MATHFN (ACOS)
137 CASE_MATHFN (ACOSH)
138 CASE_MATHFN (ASIN)
139 CASE_MATHFN (ASINH)
140 CASE_MATHFN (ATAN)
141 CASE_MATHFN (ATANH)
142 CASE_MATHFN (CBRT)
143 CASE_MATHFN (COS)
144 CASE_MATHFN (COSH)
145 CASE_MATHFN (ERF)
146 CASE_MATHFN (ERFC)
147 CASE_MATHFN (EXP)
148 CASE_MATHFN (EXP10)
149 CASE_MATHFN (EXP2)
150 CASE_MATHFN (EXPM1)
151 CASE_MATHFN (FABS)
152 CASE_MATHFN (GAMMA)
153 CASE_MATHFN (J0)
154 CASE_MATHFN (J1)
155 CASE_MATHFN (LGAMMA)
156 CASE_MATHFN (LOG)
157 CASE_MATHFN (LOG10)
158 CASE_MATHFN (LOG1P)
159 CASE_MATHFN (LOG2)
160 CASE_MATHFN (LOGB)
161 CASE_MATHFN (POW10)
162 CASE_MATHFN (SIN)
163 CASE_MATHFN (SINH)
164 CASE_MATHFN (SQRT)
165 CASE_MATHFN (TAN)
166 CASE_MATHFN (TANH)
167 CASE_MATHFN (TGAMMA)
168 CASE_MATHFN (Y0)
169 CASE_MATHFN (Y1)
170 #undef CASE_MATHFN
172 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
173 tree newtype = type;
175 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
176 the both as the safe type for operation. */
177 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
178 newtype = TREE_TYPE (arg0);
180 /* Be careful about integer to fp conversions.
181 These may overflow still. */
182 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
183 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
184 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
185 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
187 tree arglist;
188 tree fn = mathfn_built_in (newtype, fcode);
190 if (fn)
192 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
193 expr = build_function_call_expr (fn, arglist);
194 if (newtype == type)
195 return expr;
199 default:
200 break;
203 if (optimize
204 && (((fcode == BUILT_IN_FLOORL
205 || fcode == BUILT_IN_CEILL
206 || fcode == BUILT_IN_ROUNDL
207 || fcode == BUILT_IN_RINTL
208 || fcode == BUILT_IN_TRUNCL
209 || fcode == BUILT_IN_NEARBYINTL)
210 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
211 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
212 || ((fcode == BUILT_IN_FLOOR
213 || fcode == BUILT_IN_CEIL
214 || fcode == BUILT_IN_ROUND
215 || fcode == BUILT_IN_RINT
216 || fcode == BUILT_IN_TRUNC
217 || fcode == BUILT_IN_NEARBYINT)
218 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
220 tree fn = mathfn_built_in (type, fcode);
222 if (fn)
224 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
225 1)));
226 tree arglist = build_tree_list (NULL_TREE,
227 fold (convert_to_real (type, arg0)));
229 return build_function_call_expr (fn, arglist);
233 /* Propagate the cast into the operation. */
234 if (itype != type && FLOAT_TYPE_P (type))
235 switch (TREE_CODE (expr))
237 /* Convert (float)-x into -(float)x. This is always safe. */
238 case ABS_EXPR:
239 case NEGATE_EXPR:
240 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
241 return build1 (TREE_CODE (expr), type,
242 fold (convert_to_real (type,
243 TREE_OPERAND (expr, 0))));
244 break;
245 /* Convert (outertype)((innertype0)a+(innertype1)b)
246 into ((newtype)a+(newtype)b) where newtype
247 is the widest mode from all of these. */
248 case PLUS_EXPR:
249 case MINUS_EXPR:
250 case MULT_EXPR:
251 case RDIV_EXPR:
253 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
254 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
256 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
257 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
259 tree newtype = type;
260 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
261 newtype = TREE_TYPE (arg0);
262 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
263 newtype = TREE_TYPE (arg1);
264 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
266 expr = build2 (TREE_CODE (expr), newtype,
267 fold (convert_to_real (newtype, arg0)),
268 fold (convert_to_real (newtype, arg1)));
269 if (newtype == type)
270 return expr;
274 break;
275 default:
276 break;
279 switch (TREE_CODE (TREE_TYPE (expr)))
281 case REAL_TYPE:
282 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
283 type, expr);
285 case INTEGER_TYPE:
286 case ENUMERAL_TYPE:
287 case BOOLEAN_TYPE:
288 case CHAR_TYPE:
289 return build1 (FLOAT_EXPR, type, expr);
291 case COMPLEX_TYPE:
292 return convert (type,
293 fold (build1 (REALPART_EXPR,
294 TREE_TYPE (TREE_TYPE (expr)), expr)));
296 case POINTER_TYPE:
297 case REFERENCE_TYPE:
298 error ("pointer value used where a floating point value was expected");
299 return convert_to_real (type, integer_zero_node);
301 default:
302 error ("aggregate value used where a float was expected");
303 return convert_to_real (type, integer_zero_node);
307 /* Convert EXPR to some integer (or enum) type TYPE.
309 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
310 vector; in other cases error is called.
312 The result of this is always supposed to be a newly created tree node
313 not in use in any existing structure. */
315 tree
316 convert_to_integer (tree type, tree expr)
318 enum tree_code ex_form = TREE_CODE (expr);
319 tree intype = TREE_TYPE (expr);
320 unsigned int inprec = TYPE_PRECISION (intype);
321 unsigned int outprec = TYPE_PRECISION (type);
323 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
324 be. Consider `enum E = { a, b = (enum E) 3 };'. */
325 if (!COMPLETE_TYPE_P (type))
327 error ("conversion to incomplete type");
328 return error_mark_node;
331 /* Convert e.g. (long)round(d) -> lround(d). */
332 /* If we're converting to char, we may encounter differing behavior
333 between converting from double->char vs double->long->char.
334 We're in "undefined" territory but we prefer to be conservative,
335 so only proceed in "unsafe" math mode. */
336 if (optimize
337 && (flag_unsafe_math_optimizations
338 || (long_integer_type_node
339 && outprec >= TYPE_PRECISION (long_integer_type_node))))
341 tree s_expr = strip_float_extensions (expr);
342 tree s_intype = TREE_TYPE (s_expr);
343 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
344 tree fn = 0;
346 switch (fcode)
348 case BUILT_IN_CEIL: case BUILT_IN_CEILF: case BUILT_IN_CEILL:
349 /* Only convert in ISO C99 mode. */
350 if (!TARGET_C99_FUNCTIONS)
351 break;
352 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
353 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
354 else
355 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
356 break;
358 case BUILT_IN_FLOOR: case BUILT_IN_FLOORF: case BUILT_IN_FLOORL:
359 /* Only convert in ISO C99 mode. */
360 if (!TARGET_C99_FUNCTIONS)
361 break;
362 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
363 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
364 else
365 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
366 break;
368 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
369 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
370 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
371 else
372 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
373 break;
375 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
376 /* Only convert rint* if we can ignore math exceptions. */
377 if (flag_trapping_math)
378 break;
379 /* ... Fall through ... */
380 case BUILT_IN_NEARBYINT: case BUILT_IN_NEARBYINTF: case BUILT_IN_NEARBYINTL:
381 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
382 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
383 else
384 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
385 break;
387 case BUILT_IN_TRUNC: case BUILT_IN_TRUNCF: case BUILT_IN_TRUNCL:
389 tree arglist = TREE_OPERAND (s_expr, 1);
390 return convert_to_integer (type, TREE_VALUE (arglist));
393 default:
394 break;
397 if (fn)
399 tree arglist = TREE_OPERAND (s_expr, 1);
400 tree newexpr = build_function_call_expr (fn, arglist);
401 return convert_to_integer (type, newexpr);
405 switch (TREE_CODE (intype))
407 case POINTER_TYPE:
408 case REFERENCE_TYPE:
409 if (integer_zerop (expr))
410 return build_int_cst (type, 0);
412 /* Convert to an unsigned integer of the correct width first,
413 and from there widen/truncate to the required type. */
414 expr = fold_build1 (CONVERT_EXPR,
415 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
416 expr);
417 return fold_build1 (NOP_EXPR, type, expr);
419 case INTEGER_TYPE:
420 case ENUMERAL_TYPE:
421 case BOOLEAN_TYPE:
422 case CHAR_TYPE:
423 /* If this is a logical operation, which just returns 0 or 1, we can
424 change the type of the expression. */
426 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
428 expr = copy_node (expr);
429 TREE_TYPE (expr) = type;
430 return expr;
433 /* If we are widening the type, put in an explicit conversion.
434 Similarly if we are not changing the width. After this, we know
435 we are truncating EXPR. */
437 else if (outprec >= inprec)
439 enum tree_code code;
441 /* If the precision of the EXPR's type is K bits and the
442 destination mode has more bits, and the sign is changing,
443 it is not safe to use a NOP_EXPR. For example, suppose
444 that EXPR's type is a 3-bit unsigned integer type, the
445 TYPE is a 3-bit signed integer type, and the machine mode
446 for the types is 8-bit QImode. In that case, the
447 conversion necessitates an explicit sign-extension. In
448 the signed-to-unsigned case the high-order bits have to
449 be cleared. */
450 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
451 && (TYPE_PRECISION (TREE_TYPE (expr))
452 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
453 code = CONVERT_EXPR;
454 else
455 code = NOP_EXPR;
457 return build1 (code, type, expr);
460 /* If TYPE is an enumeral type or a type with a precision less
461 than the number of bits in its mode, do the conversion to the
462 type corresponding to its mode, then do a nop conversion
463 to TYPE. */
464 else if (TREE_CODE (type) == ENUMERAL_TYPE
465 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
466 return build1 (NOP_EXPR, type,
467 convert (lang_hooks.types.type_for_mode
468 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
469 expr));
471 /* Here detect when we can distribute the truncation down past some
472 arithmetic. For example, if adding two longs and converting to an
473 int, we can equally well convert both to ints and then add.
474 For the operations handled here, such truncation distribution
475 is always safe.
476 It is desirable in these cases:
477 1) when truncating down to full-word from a larger size
478 2) when truncating takes no work.
479 3) when at least one operand of the arithmetic has been extended
480 (as by C's default conversions). In this case we need two conversions
481 if we do the arithmetic as already requested, so we might as well
482 truncate both and then combine. Perhaps that way we need only one.
484 Note that in general we cannot do the arithmetic in a type
485 shorter than the desired result of conversion, even if the operands
486 are both extended from a shorter type, because they might overflow
487 if combined in that type. The exceptions to this--the times when
488 two narrow values can be combined in their narrow type even to
489 make a wider result--are handled by "shorten" in build_binary_op. */
491 switch (ex_form)
493 case RSHIFT_EXPR:
494 /* We can pass truncation down through right shifting
495 when the shift count is a nonpositive constant. */
496 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
497 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
498 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
499 integer_one_node)))
500 goto trunc1;
501 break;
503 case LSHIFT_EXPR:
504 /* We can pass truncation down through left shifting
505 when the shift count is a nonnegative constant and
506 the target type is unsigned. */
507 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
508 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
509 && TYPE_UNSIGNED (type)
510 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
512 /* If shift count is less than the width of the truncated type,
513 really shift. */
514 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
515 /* In this case, shifting is like multiplication. */
516 goto trunc1;
517 else
519 /* If it is >= that width, result is zero.
520 Handling this with trunc1 would give the wrong result:
521 (int) ((long long) a << 32) is well defined (as 0)
522 but (int) a << 32 is undefined and would get a
523 warning. */
525 tree t = convert_to_integer (type, integer_zero_node);
527 /* If the original expression had side-effects, we must
528 preserve it. */
529 if (TREE_SIDE_EFFECTS (expr))
530 return build2 (COMPOUND_EXPR, type, expr, t);
531 else
532 return t;
535 break;
537 case MAX_EXPR:
538 case MIN_EXPR:
539 case MULT_EXPR:
541 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
542 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
544 /* Don't distribute unless the output precision is at least as big
545 as the actual inputs. Otherwise, the comparison of the
546 truncated values will be wrong. */
547 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
548 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
549 /* If signedness of arg0 and arg1 don't match,
550 we can't necessarily find a type to compare them in. */
551 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
552 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
553 goto trunc1;
554 break;
557 case PLUS_EXPR:
558 case MINUS_EXPR:
559 case BIT_AND_EXPR:
560 case BIT_IOR_EXPR:
561 case BIT_XOR_EXPR:
562 trunc1:
564 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
565 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
567 if (outprec >= BITS_PER_WORD
568 || TRULY_NOOP_TRUNCATION (outprec, inprec)
569 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
570 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
572 /* Do the arithmetic in type TYPEX,
573 then convert result to TYPE. */
574 tree typex = type;
576 /* Can't do arithmetic in enumeral types
577 so use an integer type that will hold the values. */
578 if (TREE_CODE (typex) == ENUMERAL_TYPE)
579 typex = lang_hooks.types.type_for_size
580 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
582 /* But now perhaps TYPEX is as wide as INPREC.
583 In that case, do nothing special here.
584 (Otherwise would recurse infinitely in convert. */
585 if (TYPE_PRECISION (typex) != inprec)
587 /* Don't do unsigned arithmetic where signed was wanted,
588 or vice versa.
589 Exception: if both of the original operands were
590 unsigned then we can safely do the work as unsigned.
591 Exception: shift operations take their type solely
592 from the first argument.
593 Exception: the LSHIFT_EXPR case above requires that
594 we perform this operation unsigned lest we produce
595 signed-overflow undefinedness.
596 And we may need to do it as unsigned
597 if we truncate to the original size. */
598 if (TYPE_UNSIGNED (TREE_TYPE (expr))
599 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
600 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
601 || ex_form == LSHIFT_EXPR
602 || ex_form == RSHIFT_EXPR
603 || ex_form == LROTATE_EXPR
604 || ex_form == RROTATE_EXPR))
605 || ex_form == LSHIFT_EXPR)
606 typex = lang_hooks.types.unsigned_type (typex);
607 else
608 typex = lang_hooks.types.signed_type (typex);
609 return convert (type,
610 fold (build2 (ex_form, typex,
611 convert (typex, arg0),
612 convert (typex, arg1))));
616 break;
618 case NEGATE_EXPR:
619 case BIT_NOT_EXPR:
620 /* This is not correct for ABS_EXPR,
621 since we must test the sign before truncation. */
623 tree typex = type;
625 /* Can't do arithmetic in enumeral types
626 so use an integer type that will hold the values. */
627 if (TREE_CODE (typex) == ENUMERAL_TYPE)
628 typex = lang_hooks.types.type_for_size
629 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
631 /* But now perhaps TYPEX is as wide as INPREC.
632 In that case, do nothing special here.
633 (Otherwise would recurse infinitely in convert. */
634 if (TYPE_PRECISION (typex) != inprec)
636 /* Don't do unsigned arithmetic where signed was wanted,
637 or vice versa. */
638 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
639 typex = lang_hooks.types.unsigned_type (typex);
640 else
641 typex = lang_hooks.types.signed_type (typex);
642 return convert (type,
643 fold (build1 (ex_form, typex,
644 convert (typex,
645 TREE_OPERAND (expr, 0)))));
649 case NOP_EXPR:
650 /* Don't introduce a
651 "can't convert between vector values of different size" error. */
652 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
653 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
654 != GET_MODE_SIZE (TYPE_MODE (type))))
655 break;
656 /* If truncating after truncating, might as well do all at once.
657 If truncating after extending, we may get rid of wasted work. */
658 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
660 case COND_EXPR:
661 /* It is sometimes worthwhile to push the narrowing down through
662 the conditional and never loses. */
663 return fold (build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
664 convert (type, TREE_OPERAND (expr, 1)),
665 convert (type, TREE_OPERAND (expr, 2))));
667 default:
668 break;
671 return build1 (CONVERT_EXPR, type, expr);
673 case REAL_TYPE:
674 return build1 (FIX_TRUNC_EXPR, type, expr);
676 case COMPLEX_TYPE:
677 return convert (type,
678 fold (build1 (REALPART_EXPR,
679 TREE_TYPE (TREE_TYPE (expr)), expr)));
681 case VECTOR_TYPE:
682 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
684 error ("can't convert between vector values of different size");
685 return error_mark_node;
687 return build1 (NOP_EXPR, type, expr);
689 default:
690 error ("aggregate value used where an integer was expected");
691 return convert (type, integer_zero_node);
695 /* Convert EXPR to the complex type TYPE in the usual ways. */
697 tree
698 convert_to_complex (tree type, tree expr)
700 tree subtype = TREE_TYPE (type);
702 switch (TREE_CODE (TREE_TYPE (expr)))
704 case REAL_TYPE:
705 case INTEGER_TYPE:
706 case ENUMERAL_TYPE:
707 case BOOLEAN_TYPE:
708 case CHAR_TYPE:
709 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
710 convert (subtype, integer_zero_node));
712 case COMPLEX_TYPE:
714 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
716 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
717 return expr;
718 else if (TREE_CODE (expr) == COMPLEX_EXPR)
719 return fold (build2 (COMPLEX_EXPR, type,
720 convert (subtype, TREE_OPERAND (expr, 0)),
721 convert (subtype, TREE_OPERAND (expr, 1))));
722 else
724 expr = save_expr (expr);
725 return
726 fold (build2 (COMPLEX_EXPR, type,
727 convert (subtype,
728 fold (build1 (REALPART_EXPR,
729 TREE_TYPE (TREE_TYPE (expr)),
730 expr))),
731 convert (subtype,
732 fold (build1 (IMAGPART_EXPR,
733 TREE_TYPE (TREE_TYPE (expr)),
734 expr)))));
738 case POINTER_TYPE:
739 case REFERENCE_TYPE:
740 error ("pointer value used where a complex was expected");
741 return convert_to_complex (type, integer_zero_node);
743 default:
744 error ("aggregate value used where a complex was expected");
745 return convert_to_complex (type, integer_zero_node);
749 /* Convert EXPR to the vector type TYPE in the usual ways. */
751 tree
752 convert_to_vector (tree type, tree expr)
754 switch (TREE_CODE (TREE_TYPE (expr)))
756 case INTEGER_TYPE:
757 case VECTOR_TYPE:
758 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
760 error ("can't convert between vector values of different size");
761 return error_mark_node;
763 return build1 (NOP_EXPR, type, expr);
765 default:
766 error ("can't convert value to a vector");
767 return error_mark_node;