ada: Minor tweaks for comparison operators
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob78249258f55c0a655524cfecdae850660142cae6
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Accessibility; use Accessibility;
27 with Aspects; use Aspects;
28 with Atree; use Atree;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Einfo.Utils; use Einfo.Utils;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Exp_Util; use Exp_Util;
36 with Itypes; use Itypes;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Output; use Output;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Case; use Sem_Case;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Dim; use Sem_Dim;
56 with Sem_Disp; use Sem_Disp;
57 with Sem_Dist; use Sem_Dist;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Res; use Sem_Res;
60 with Sem_Type; use Sem_Type;
61 with Sem_Util; use Sem_Util;
62 with Sem_Warn; use Sem_Warn;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Sinfo.Nodes; use Sinfo.Nodes;
66 with Sinfo.Utils; use Sinfo.Utils;
67 with Snames; use Snames;
68 with Style; use Style;
69 with Tbuild; use Tbuild;
70 with Uintp; use Uintp;
71 with Warnsw; use Warnsw;
73 package body Sem_Ch4 is
75 -- Tables which speed up the identification of dangerous calls to Ada 2012
76 -- functions with writable actuals (AI05-0144).
78 -- The following table enumerates the Ada constructs which may evaluate in
79 -- arbitrary order. It does not cover all the language constructs which can
80 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
82 Has_Arbitrary_Evaluation_Order : constant array (Node_Kind) of Boolean :=
83 (N_Aggregate => True,
84 N_Assignment_Statement => True,
85 N_Entry_Call_Statement => True,
86 N_Extension_Aggregate => True,
87 N_Full_Type_Declaration => True,
88 N_Indexed_Component => True,
89 N_Object_Declaration => True,
90 N_Pragma => True,
91 N_Range => True,
92 N_Slice => True,
93 N_Array_Type_Definition => True,
94 N_Membership_Test => True,
95 N_Binary_Op => True,
96 N_Subprogram_Call => True,
97 others => False);
99 -- The following table enumerates the nodes on which we stop climbing when
100 -- locating the outermost Ada construct that can be evaluated in arbitrary
101 -- order.
103 Stop_Subtree_Climbing : constant array (Node_Kind) of Boolean :=
104 (N_Aggregate => True,
105 N_Assignment_Statement => True,
106 N_Entry_Call_Statement => True,
107 N_Extended_Return_Statement => True,
108 N_Extension_Aggregate => True,
109 N_Full_Type_Declaration => True,
110 N_Object_Declaration => True,
111 N_Object_Renaming_Declaration => True,
112 N_Package_Specification => True,
113 N_Pragma => True,
114 N_Procedure_Call_Statement => True,
115 N_Simple_Return_Statement => True,
116 N_Has_Condition => True,
117 others => False);
119 -----------------------
120 -- Local Subprograms --
121 -----------------------
123 procedure Analyze_Concatenation_Rest (N : Node_Id);
124 -- Does the "rest" of the work of Analyze_Concatenation, after the left
125 -- operand has been analyzed. See Analyze_Concatenation for details.
127 procedure Analyze_Expression (N : Node_Id);
128 -- For expressions that are not names, this is just a call to analyze. If
129 -- the expression is a name, it may be a call to a parameterless function,
130 -- and if so must be converted into an explicit call node and analyzed as
131 -- such. This deproceduring must be done during the first pass of overload
132 -- resolution, because otherwise a procedure call with overloaded actuals
133 -- may fail to resolve.
135 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
136 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
137 -- operator name or an expanded name whose selector is an operator name,
138 -- and one possible interpretation is as a predefined operator.
140 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
141 -- If the prefix of a selected_component is overloaded, the proper
142 -- interpretation that yields a record type with the proper selector
143 -- name must be selected.
145 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
146 -- Procedure to analyze a user defined binary operator, which is resolved
147 -- like a function, but instead of a list of actuals it is presented
148 -- with the left and right operands of an operator node.
150 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
151 -- Procedure to analyze a user defined unary operator, which is resolved
152 -- like a function, but instead of a list of actuals, it is presented with
153 -- the operand of the operator node.
155 procedure Analyze_One_Call
156 (N : Node_Id;
157 Nam : Entity_Id;
158 Report : Boolean;
159 Success : out Boolean;
160 Skip_First : Boolean := False);
161 -- Check one interpretation of an overloaded subprogram name for
162 -- compatibility with the types of the actuals in a call. If there is a
163 -- single interpretation which does not match, post error if Report is
164 -- set to True.
166 -- Nam is the entity that provides the formals against which the actuals
167 -- are checked. Nam is either the name of a subprogram, or the internal
168 -- subprogram type constructed for an access_to_subprogram. If the actuals
169 -- are compatible with Nam, then Nam is added to the list of candidate
170 -- interpretations for N, and Success is set to True.
172 -- The flag Skip_First is used when analyzing a call that was rewritten
173 -- from object notation. In this case the first actual may have to receive
174 -- an explicit dereference, depending on the first formal of the operation
175 -- being called. The caller will have verified that the object is legal
176 -- for the call. If the remaining parameters match, the first parameter
177 -- will rewritten as a dereference if needed, prior to completing analysis.
179 procedure Check_Misspelled_Selector
180 (Prefix : Entity_Id;
181 Sel : Node_Id);
182 -- Give possible misspelling message if Sel seems likely to be a mis-
183 -- spelling of one of the selectors of the Prefix. This is called by
184 -- Analyze_Selected_Component after producing an invalid selector error
185 -- message.
187 procedure Find_Arithmetic_Types
188 (L, R : Node_Id;
189 Op_Id : Entity_Id;
190 N : Node_Id);
191 -- L and R are the operands of an arithmetic operator. Find consistent
192 -- pairs of interpretations for L and R that have a numeric type consistent
193 -- with the semantics of the operator.
195 procedure Find_Comparison_Equality_Types
196 (L, R : Node_Id;
197 Op_Id : Entity_Id;
198 N : Node_Id);
199 -- L and R are operands of a comparison or equality operator. Find valid
200 -- pairs of interpretations for L and R.
202 procedure Find_Concatenation_Types
203 (L, R : Node_Id;
204 Op_Id : Entity_Id;
205 N : Node_Id);
206 -- For the four varieties of concatenation
208 procedure Find_Boolean_Types
209 (L, R : Node_Id;
210 Op_Id : Entity_Id;
211 N : Node_Id);
212 -- Ditto for binary logical operations
214 procedure Find_Negation_Types
215 (R : Node_Id;
216 Op_Id : Entity_Id;
217 N : Node_Id);
218 -- Find consistent interpretation for operand of negation operator
220 function Find_Primitive_Operation (N : Node_Id) return Boolean;
221 -- Find candidate interpretations for the name Obj.Proc when it appears in
222 -- a subprogram renaming declaration.
224 procedure Find_Unary_Types
225 (R : Node_Id;
226 Op_Id : Entity_Id;
227 N : Node_Id);
228 -- Unary arithmetic types: plus, minus, abs
230 procedure Check_Arithmetic_Pair
231 (T1, T2 : Entity_Id;
232 Op_Id : Entity_Id;
233 N : Node_Id);
234 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
235 -- for left and right operand. Determine whether they constitute a valid
236 -- pair for the given operator, and record the corresponding interpretation
237 -- of the operator node. The node N may be an operator node (the usual
238 -- case) or a function call whose prefix is an operator designator. In
239 -- both cases Op_Id is the operator name itself.
241 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
242 -- Give detailed information on overloaded call where none of the
243 -- interpretations match. N is the call node, Nam the designator for
244 -- the overloaded entity being called.
246 function Junk_Operand (N : Node_Id) return Boolean;
247 -- Test for an operand that is an inappropriate entity (e.g. a package
248 -- name or a label). If so, issue an error message and return True. If
249 -- the operand is not an inappropriate entity kind, return False.
251 procedure Operator_Check (N : Node_Id);
252 -- Verify that an operator has received some valid interpretation. If none
253 -- was found, determine whether a use clause would make the operation
254 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
255 -- every type compatible with the operator, even if the operator for the
256 -- type is not directly visible. The routine uses this type to emit a more
257 -- informative message.
259 function Has_Possible_User_Defined_Literal (N : Node_Id) return Boolean;
260 -- Ada 2022: if an operand is a literal, it may be subject to an
261 -- implicit conversion to a type for which a user-defined literal
262 -- function exists. During the first pass of type resolution we do
263 -- not know the context imposed on the literal, so we assume that
264 -- the literal type is a valid candidate and rely on the second pass
265 -- of resolution to find the type with the proper aspect. We only
266 -- add this interpretation if no other one was found, which may be
267 -- too restrictive but seems sufficient to handle most proper uses
268 -- of the new aspect. It is unclear whether a full implementation of
269 -- these aspects can be achieved without larger modifications to the
270 -- two-pass resolution algorithm.
272 function Possible_Type_For_Conditional_Expression
273 (T1, T2 : Entity_Id) return Entity_Id;
274 -- Given two types T1 and T2 that are _not_ compatible, return a type that
275 -- may still be used as the possible type of a conditional expression whose
276 -- dependent expressions, or part thereof, have type T1 and T2 respectively
277 -- during the first phase of type resolution, or Empty if such a type does
278 -- not exist.
280 -- The typical example is an if_expression whose then_expression is of a
281 -- tagged type and whose else_expresssion is of an extension of this type:
282 -- the types are not compatible but such an if_expression can be legal if
283 -- its expected type is the 'Class of the tagged type, so the function will
284 -- return the tagged type in this case. If the expected type turns out to
285 -- be something else, including the tagged type itself, then an error will
286 -- be given during the second phase of type resolution.
288 procedure Remove_Abstract_Operations (N : Node_Id);
289 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
290 -- operation is not a candidate interpretation.
292 function Try_Container_Indexing
293 (N : Node_Id;
294 Prefix : Node_Id;
295 Exprs : List_Id) return Boolean;
296 -- AI05-0139: Generalized indexing to support iterators over containers
297 -- ??? Need to provide a more detailed spec of what this function does
299 function Try_Indexed_Call
300 (N : Node_Id;
301 Nam : Entity_Id;
302 Typ : Entity_Id;
303 Skip_First : Boolean) return Boolean;
304 -- If a function has defaults for all its actuals, a call to it may in fact
305 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
306 -- interpretation as an indexing, prior to analysis as a call. If both are
307 -- possible, the node is overloaded with both interpretations (same symbol
308 -- but two different types). If the call is written in prefix form, the
309 -- prefix becomes the first parameter in the call, and only the remaining
310 -- actuals must be checked for the presence of defaults.
312 function Try_Indirect_Call
313 (N : Node_Id;
314 Nam : Entity_Id;
315 Typ : Entity_Id) return Boolean;
316 -- Similarly, a function F that needs no actuals can return an access to a
317 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
318 -- the call may be overloaded with both interpretations.
320 procedure wpo (T : Entity_Id);
321 pragma Warnings (Off, wpo);
322 -- Used for debugging: obtain list of primitive operations even if
323 -- type is not frozen and dispatch table is not built yet.
325 ------------------------
326 -- Ambiguous_Operands --
327 ------------------------
329 procedure Ambiguous_Operands (N : Node_Id) is
330 procedure List_Operand_Interps (Opnd : Node_Id);
332 --------------------------
333 -- List_Operand_Interps --
334 --------------------------
336 procedure List_Operand_Interps (Opnd : Node_Id) is
337 Nam : Node_Id := Empty;
338 Err : Node_Id := N;
340 begin
341 if Is_Overloaded (Opnd) then
342 if Nkind (Opnd) in N_Op then
343 Nam := Opnd;
345 elsif Nkind (Opnd) = N_Function_Call then
346 Nam := Name (Opnd);
348 elsif Ada_Version >= Ada_2012 then
349 declare
350 It : Interp;
351 I : Interp_Index;
353 begin
354 Get_First_Interp (Opnd, I, It);
355 while Present (It.Nam) loop
356 if Has_Implicit_Dereference (It.Typ) then
357 Error_Msg_N
358 ("can be interpreted as implicit dereference", Opnd);
359 return;
360 end if;
362 Get_Next_Interp (I, It);
363 end loop;
364 end;
366 return;
367 end if;
369 else
370 return;
371 end if;
373 if Opnd = Left_Opnd (N) then
374 Error_Msg_N
375 ("\left operand has the following interpretations", N);
376 else
377 Error_Msg_N
378 ("\right operand has the following interpretations", N);
379 Err := Opnd;
380 end if;
382 List_Interps (Nam, Err);
383 end List_Operand_Interps;
385 -- Start of processing for Ambiguous_Operands
387 begin
388 if Nkind (N) in N_Membership_Test then
389 Error_Msg_N ("ambiguous operands for membership", N);
391 elsif Nkind (N) in N_Op_Eq | N_Op_Ne then
392 Error_Msg_N ("ambiguous operands for equality", N);
394 else
395 Error_Msg_N ("ambiguous operands for comparison", N);
396 end if;
398 if All_Errors_Mode then
399 List_Operand_Interps (Left_Opnd (N));
400 List_Operand_Interps (Right_Opnd (N));
401 else
402 Error_Msg_N ("\use -gnatf switch for details", N);
403 end if;
404 end Ambiguous_Operands;
406 -----------------------
407 -- Analyze_Aggregate --
408 -----------------------
410 -- Most of the analysis of Aggregates requires that the type be known, and
411 -- is therefore put off until resolution of the context. Delta aggregates
412 -- have a base component that determines the enclosing aggregate type so
413 -- its type can be ascertained earlier. This also allows delta aggregates
414 -- to appear in the context of a record type with a private extension, as
415 -- per the latest update of AI12-0127.
417 procedure Analyze_Aggregate (N : Node_Id) is
418 begin
419 if No (Etype (N)) then
420 if Nkind (N) = N_Delta_Aggregate then
421 declare
422 Base : constant Node_Id := Expression (N);
424 I : Interp_Index;
425 It : Interp;
427 begin
428 Analyze (Base);
430 -- If the base is overloaded, propagate interpretations to the
431 -- enclosing aggregate.
433 if Is_Overloaded (Base) then
434 Get_First_Interp (Base, I, It);
435 Set_Etype (N, Any_Type);
437 while Present (It.Nam) loop
438 Add_One_Interp (N, It.Typ, It.Typ);
439 Get_Next_Interp (I, It);
440 end loop;
442 else
443 Set_Etype (N, Etype (Base));
444 end if;
445 end;
447 else
448 Set_Etype (N, Any_Composite);
449 end if;
450 end if;
451 end Analyze_Aggregate;
453 -----------------------
454 -- Analyze_Allocator --
455 -----------------------
457 procedure Analyze_Allocator (N : Node_Id) is
458 Loc : constant Source_Ptr := Sloc (N);
459 Sav_Errs : constant Nat := Serious_Errors_Detected;
460 E : Node_Id := Expression (N);
461 Acc_Type : Entity_Id;
462 Type_Id : Entity_Id;
463 P : Node_Id;
464 C : Node_Id;
465 Onode : Node_Id;
467 begin
468 -- Deal with allocator restrictions
470 -- In accordance with H.4(7), the No_Allocators restriction only applies
471 -- to user-written allocators. The same consideration applies to the
472 -- No_Standard_Allocators_Before_Elaboration restriction.
474 if Comes_From_Source (N) then
475 Check_Restriction (No_Allocators, N);
477 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
478 -- look at enclosing context, checking task/main subprogram case.
480 C := N;
481 P := Parent (C);
482 while Present (P) loop
484 -- For the task case we need a handled sequence of statements,
485 -- where the occurrence of the allocator is within the statements
486 -- and the parent is a task body
488 if Nkind (P) = N_Handled_Sequence_Of_Statements
489 and then Is_List_Member (C)
490 and then List_Containing (C) = Statements (P)
491 then
492 Onode := Original_Node (Parent (P));
494 -- Check for allocator within task body, this is a definite
495 -- violation of No_Allocators_After_Elaboration we can detect
496 -- at compile time.
498 if Nkind (Onode) = N_Task_Body then
499 Check_Restriction
500 (No_Standard_Allocators_After_Elaboration, N);
501 exit;
502 end if;
503 end if;
505 -- The other case is appearance in a subprogram body. This is
506 -- a violation if this is a library level subprogram with no
507 -- parameters. Note that this is now a static error even if the
508 -- subprogram is not the main program (this is a change, in an
509 -- earlier version only the main program was affected, and the
510 -- check had to be done in the binder).
512 if Nkind (P) = N_Subprogram_Body
513 and then Nkind (Parent (P)) = N_Compilation_Unit
514 and then No (Parameter_Specifications (Specification (P)))
515 then
516 Check_Restriction
517 (No_Standard_Allocators_After_Elaboration, N);
518 end if;
520 C := P;
521 P := Parent (C);
522 end loop;
523 end if;
525 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
526 -- any. The expected type for the name is any type. A non-overloading
527 -- rule then requires it to be of a type descended from
528 -- System.Storage_Pools.Subpools.Subpool_Handle.
530 -- This isn't exactly what the AI says, but it seems to be the right
531 -- rule. The AI should be fixed.???
533 declare
534 Subpool : constant Node_Id := Subpool_Handle_Name (N);
536 begin
537 if Present (Subpool) then
538 Analyze (Subpool);
540 if Is_Overloaded (Subpool) then
541 Error_Msg_N ("ambiguous subpool handle", Subpool);
542 end if;
544 -- Check that Etype (Subpool) is descended from Subpool_Handle
546 Resolve (Subpool);
547 end if;
548 end;
550 -- Analyze the qualified expression or subtype indication
552 if Nkind (E) = N_Qualified_Expression then
553 Acc_Type := Create_Itype (E_Allocator_Type, N);
554 Set_Etype (Acc_Type, Acc_Type);
555 Find_Type (Subtype_Mark (E));
557 -- Analyze the qualified expression, and apply the name resolution
558 -- rule given in 4.7(3).
560 Analyze (E);
561 Type_Id := Etype (E);
562 Set_Directly_Designated_Type (Acc_Type, Type_Id);
564 -- A qualified expression requires an exact match of the type,
565 -- class-wide matching is not allowed.
567 -- if Is_Class_Wide_Type (Type_Id)
568 -- and then Base_Type
569 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
570 -- then
571 -- Wrong_Type (Expression (E), Type_Id);
572 -- end if;
574 -- We don't analyze the qualified expression itself because it's
575 -- part of the allocator. It is fully analyzed and resolved when
576 -- the allocator is resolved with the context type.
578 Set_Etype (E, Type_Id);
580 -- Case where allocator has a subtype indication
582 else
583 -- If the allocator includes a N_Subtype_Indication then a
584 -- constraint is present, otherwise the node is a subtype mark.
585 -- Introduce an explicit subtype declaration into the tree
586 -- defining some anonymous subtype and rewrite the allocator to
587 -- use this subtype rather than the subtype indication.
589 -- It is important to introduce the explicit subtype declaration
590 -- so that the bounds of the subtype indication are attached to
591 -- the tree in case the allocator is inside a generic unit.
593 -- Finally, if there is no subtype indication and the type is
594 -- a tagged unconstrained type with discriminants, the designated
595 -- object is constrained by their default values, and it is
596 -- simplest to introduce an explicit constraint now. In some cases
597 -- this is done during expansion, but freeze actions are certain
598 -- to be emitted in the proper order if constraint is explicit.
600 if Is_Entity_Name (E) and then Expander_Active then
601 Find_Type (E);
602 Type_Id := Entity (E);
604 if Is_Tagged_Type (Type_Id)
605 and then Has_Defaulted_Discriminants (Type_Id)
606 and then not Is_Constrained (Type_Id)
607 then
608 declare
609 Constr : constant List_Id := New_List;
610 Loc : constant Source_Ptr := Sloc (E);
611 Discr : Entity_Id := First_Discriminant (Type_Id);
613 begin
614 while Present (Discr) loop
615 Append (Discriminant_Default_Value (Discr), Constr);
616 Next_Discriminant (Discr);
617 end loop;
619 Rewrite (E,
620 Make_Subtype_Indication (Loc,
621 Subtype_Mark => New_Occurrence_Of (Type_Id, Loc),
622 Constraint =>
623 Make_Index_Or_Discriminant_Constraint (Loc,
624 Constraints => Constr)));
625 end;
626 end if;
627 end if;
629 if Nkind (E) = N_Subtype_Indication then
630 declare
631 Def_Id : Entity_Id;
632 Base_Typ : Entity_Id;
634 begin
635 -- A constraint is only allowed for a composite type in Ada
636 -- 95. In Ada 83, a constraint is also allowed for an
637 -- access-to-composite type, but the constraint is ignored.
639 Find_Type (Subtype_Mark (E));
640 Base_Typ := Entity (Subtype_Mark (E));
642 if Is_Elementary_Type (Base_Typ) then
643 if not (Ada_Version = Ada_83
644 and then Is_Access_Type (Base_Typ))
645 then
646 Error_Msg_N ("constraint not allowed here", E);
648 if Nkind (Constraint (E)) =
649 N_Index_Or_Discriminant_Constraint
650 then
651 Error_Msg_N -- CODEFIX
652 ("\if qualified expression was meant, " &
653 "use apostrophe", Constraint (E));
654 end if;
655 end if;
657 -- Get rid of the bogus constraint:
659 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
660 Analyze_Allocator (N);
661 return;
662 end if;
664 -- In GNATprove mode we need to preserve the link between
665 -- the original subtype indication and the anonymous subtype,
666 -- to extend proofs to constrained access types. We only do
667 -- that outside of spec expressions, otherwise the declaration
668 -- cannot be inserted and analyzed. In such a case, GNATprove
669 -- later rejects the allocator as it is not used here in
670 -- a non-interfering context (SPARK 4.8(2) and 7.1.3(10)).
672 if Expander_Active
673 or else (GNATprove_Mode and then not In_Spec_Expression)
674 then
675 Def_Id := Make_Temporary (Loc, 'S');
677 declare
678 Subtype_Decl : constant Node_Id :=
679 Make_Subtype_Declaration (Loc,
680 Defining_Identifier => Def_Id,
681 Subtype_Indication => Relocate_Node (E));
682 begin
683 Insert_Action (E, Subtype_Decl);
685 -- Handle unusual case where Insert_Action does not
686 -- analyze the declaration. Subtype_Decl must be
687 -- preanalyzed before call to Process_Subtype below.
688 Preanalyze (Subtype_Decl);
689 end;
691 if Sav_Errs /= Serious_Errors_Detected
692 and then Nkind (Constraint (E)) =
693 N_Index_Or_Discriminant_Constraint
694 then
695 Error_Msg_N -- CODEFIX
696 ("if qualified expression was meant, use apostrophe!",
697 Constraint (E));
698 end if;
700 E := New_Occurrence_Of (Def_Id, Loc);
701 Rewrite (Expression (N), E);
702 end if;
703 end;
704 end if;
706 Type_Id := Process_Subtype (E, N);
707 Acc_Type := Create_Itype (E_Allocator_Type, N);
708 Set_Etype (Acc_Type, Acc_Type);
709 Set_Directly_Designated_Type (Acc_Type, Type_Id);
710 Check_Fully_Declared (Type_Id, N);
712 -- Ada 2005 (AI-231): If the designated type is itself an access
713 -- type that excludes null, its default initialization will
714 -- be a null object, and we can insert an unconditional raise
715 -- before the allocator.
717 -- Ada 2012 (AI-104): A not null indication here is altogether
718 -- illegal.
720 if Can_Never_Be_Null (Type_Id) then
721 declare
722 Not_Null_Check : constant Node_Id :=
723 Make_Raise_Constraint_Error (Sloc (E),
724 Reason => CE_Null_Not_Allowed);
726 begin
727 if Expander_Active then
728 Insert_Action (N, Not_Null_Check);
729 Analyze (Not_Null_Check);
731 elsif Warn_On_Ada_2012_Compatibility then
732 Error_Msg_N
733 ("null value not allowed here in Ada 2012?y?", E);
734 end if;
735 end;
736 end if;
738 -- Check for missing initialization. Skip this check if the allocator
739 -- is made for a special return object or if we already had errors on
740 -- analyzing the allocator since, in that case, these are very likely
741 -- cascaded errors.
743 if not Is_Definite_Subtype (Type_Id)
744 and then not For_Special_Return_Object (N)
745 and then Serious_Errors_Detected = Sav_Errs
746 then
747 if Is_Class_Wide_Type (Type_Id) then
748 Error_Msg_N
749 ("initialization required in class-wide allocation", N);
751 else
752 if Ada_Version < Ada_2005
753 and then Is_Limited_Type (Type_Id)
754 then
755 Error_Msg_N ("unconstrained allocation not allowed", N);
757 if Is_Array_Type (Type_Id) then
758 Error_Msg_N
759 ("\constraint with array bounds required", N);
761 elsif Has_Unknown_Discriminants (Type_Id) then
762 null;
764 else pragma Assert (Has_Discriminants (Type_Id));
765 Error_Msg_N
766 ("\constraint with discriminant values required", N);
767 end if;
769 -- Limited Ada 2005 and general nonlimited case.
770 -- This is an error, except in the case of an
771 -- uninitialized allocator that is generated
772 -- for a build-in-place function return of a
773 -- discriminated but compile-time-known-size
774 -- type.
776 else
777 if Is_Rewrite_Substitution (N)
778 and then Nkind (Original_Node (N)) = N_Allocator
779 then
780 declare
781 Qual : constant Node_Id :=
782 Expression (Original_Node (N));
783 pragma Assert
784 (Nkind (Qual) = N_Qualified_Expression);
785 Call : constant Node_Id := Expression (Qual);
786 pragma Assert
787 (Is_Expanded_Build_In_Place_Call (Call));
788 begin
789 null;
790 end;
792 else
793 Error_Msg_N
794 ("uninitialized unconstrained allocation not "
795 & "allowed", N);
797 if Is_Array_Type (Type_Id) then
798 Error_Msg_N
799 ("\qualified expression or constraint with "
800 & "array bounds required", N);
802 elsif Has_Unknown_Discriminants (Type_Id) then
803 Error_Msg_N ("\qualified expression required", N);
805 else pragma Assert (Has_Discriminants (Type_Id));
806 Error_Msg_N
807 ("\qualified expression or constraint with "
808 & "discriminant values required", N);
809 end if;
810 end if;
811 end if;
812 end if;
813 end if;
814 end if;
816 if Is_Abstract_Type (Type_Id) then
817 Error_Msg_N ("cannot allocate abstract object", E);
818 end if;
820 Set_Etype (N, Acc_Type);
822 -- If this is an allocator for the return stack, then no restriction may
823 -- be violated since it's just a low-level access to the primary stack.
825 if Nkind (Parent (N)) = N_Object_Declaration
826 and then Is_Entity_Name (Object_Definition (Parent (N)))
827 and then Is_Access_Type (Entity (Object_Definition (Parent (N))))
828 then
829 declare
830 Pool : constant Entity_Id :=
831 Associated_Storage_Pool
832 (Root_Type (Entity (Object_Definition (Parent (N)))));
834 begin
835 if Present (Pool) and then Is_RTE (Pool, RE_RS_Pool) then
836 goto Leave;
837 end if;
838 end;
839 end if;
841 if Has_Task (Designated_Type (Acc_Type)) then
842 Check_Restriction (No_Tasking, N);
843 Check_Restriction (Max_Tasks, N);
844 Check_Restriction (No_Task_Allocators, N);
845 end if;
847 -- Check restriction against dynamically allocated protected objects
849 if Has_Protected (Designated_Type (Acc_Type)) then
850 Check_Restriction (No_Protected_Type_Allocators, N);
851 end if;
853 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
854 -- type is nested, and the designated type needs finalization. The rule
855 -- is conservative in that class-wide types need finalization.
857 if Needs_Finalization (Designated_Type (Acc_Type))
858 and then not Is_Library_Level_Entity (Acc_Type)
859 then
860 Check_Restriction (No_Nested_Finalization, N);
861 end if;
863 -- Check that an allocator of a nested access type doesn't create a
864 -- protected object when restriction No_Local_Protected_Objects applies.
866 if Has_Protected (Designated_Type (Acc_Type))
867 and then not Is_Library_Level_Entity (Acc_Type)
868 then
869 Check_Restriction (No_Local_Protected_Objects, N);
870 end if;
872 -- Likewise for No_Local_Timing_Events
874 if Has_Timing_Event (Designated_Type (Acc_Type))
875 and then not Is_Library_Level_Entity (Acc_Type)
876 then
877 Check_Restriction (No_Local_Timing_Events, N);
878 end if;
880 -- If the No_Streams restriction is set, check that the type of the
881 -- object is not, and does not contain, any subtype derived from
882 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
883 -- Has_Stream just for efficiency reasons. There is no point in
884 -- spending time on a Has_Stream check if the restriction is not set.
886 if Restriction_Check_Required (No_Streams) then
887 if Has_Stream (Designated_Type (Acc_Type)) then
888 Check_Restriction (No_Streams, N);
889 end if;
890 end if;
892 if not Is_Library_Level_Entity (Acc_Type) then
893 Check_Restriction (No_Local_Allocators, N);
894 end if;
896 <<Leave>>
897 if Serious_Errors_Detected > Sav_Errs then
898 Set_Error_Posted (N);
899 Set_Etype (N, Any_Type);
900 end if;
901 end Analyze_Allocator;
903 ---------------------------
904 -- Analyze_Arithmetic_Op --
905 ---------------------------
907 procedure Analyze_Arithmetic_Op (N : Node_Id) is
908 L : constant Node_Id := Left_Opnd (N);
909 R : constant Node_Id := Right_Opnd (N);
911 Op_Id : Entity_Id;
913 begin
914 Set_Etype (N, Any_Type);
915 Candidate_Type := Empty;
917 Analyze_Expression (L);
918 Analyze_Expression (R);
920 -- If the entity is already set, the node is the instantiation of a
921 -- generic node with a non-local reference, or was manufactured by a
922 -- call to Make_Op_xxx. In either case the entity is known to be valid,
923 -- and we do not need to collect interpretations, instead we just get
924 -- the single possible interpretation.
926 if Present (Entity (N)) then
927 Op_Id := Entity (N);
929 if Ekind (Op_Id) = E_Operator then
930 Find_Arithmetic_Types (L, R, Op_Id, N);
931 else
932 Add_One_Interp (N, Op_Id, Etype (Op_Id));
933 end if;
935 -- Entity is not already set, so we do need to collect interpretations
937 else
938 Op_Id := Get_Name_Entity_Id (Chars (N));
939 while Present (Op_Id) loop
940 if Ekind (Op_Id) = E_Operator
941 and then Present (Next_Entity (First_Entity (Op_Id)))
942 then
943 Find_Arithmetic_Types (L, R, Op_Id, N);
945 -- The following may seem superfluous, because an operator cannot
946 -- be generic, but this ignores the cleverness of the author of
947 -- ACVC bc1013a.
949 elsif Is_Overloadable (Op_Id) then
950 Analyze_User_Defined_Binary_Op (N, Op_Id);
951 end if;
953 Op_Id := Homonym (Op_Id);
954 end loop;
955 end if;
957 Operator_Check (N);
958 Check_Function_Writable_Actuals (N);
959 end Analyze_Arithmetic_Op;
961 ------------------
962 -- Analyze_Call --
963 ------------------
965 -- Function, procedure, and entry calls are checked here. The Name in
966 -- the call may be overloaded. The actuals have been analyzed and may
967 -- themselves be overloaded. On exit from this procedure, the node N
968 -- may have zero, one or more interpretations. In the first case an
969 -- error message is produced. In the last case, the node is flagged
970 -- as overloaded and the interpretations are collected in All_Interp.
972 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
973 -- the type-checking is similar to that of other calls.
975 procedure Analyze_Call (N : Node_Id) is
976 Actuals : constant List_Id := Parameter_Associations (N);
977 Loc : constant Source_Ptr := Sloc (N);
978 Nam : Node_Id;
979 X : Interp_Index;
980 It : Interp;
981 Nam_Ent : Entity_Id := Empty;
982 Success : Boolean := False;
984 Deref : Boolean := False;
985 -- Flag indicates whether an interpretation of the prefix is a
986 -- parameterless call that returns an access_to_subprogram.
988 procedure Check_Writable_Actuals (N : Node_Id);
989 -- If the call has out or in-out parameters then mark its outermost
990 -- enclosing construct as a node on which the writable actuals check
991 -- must be performed.
993 function Name_Denotes_Function return Boolean;
994 -- If the type of the name is an access to subprogram, this may be the
995 -- type of a name, or the return type of the function being called. If
996 -- the name is not an entity then it can denote a protected function.
997 -- Until we distinguish Etype from Return_Type, we must use this routine
998 -- to resolve the meaning of the name in the call.
1000 procedure No_Interpretation;
1001 -- Output error message when no valid interpretation exists
1003 ----------------------------
1004 -- Check_Writable_Actuals --
1005 ----------------------------
1007 -- The identification of conflicts in calls to functions with writable
1008 -- actuals is performed in the analysis phase of the front end to ensure
1009 -- that it reports exactly the same errors compiling with and without
1010 -- expansion enabled. It is performed in two stages:
1012 -- 1) When a call to a function with out-mode parameters is found,
1013 -- we climb to the outermost enclosing construct that can be
1014 -- evaluated in arbitrary order and we mark it with the flag
1015 -- Check_Actuals.
1017 -- 2) When the analysis of the marked node is complete, we traverse
1018 -- its decorated subtree searching for conflicts (see function
1019 -- Sem_Util.Check_Function_Writable_Actuals).
1021 -- The unique exception to this general rule is for aggregates, since
1022 -- their analysis is performed by the front end in the resolution
1023 -- phase. For aggregates we do not climb to their enclosing construct:
1024 -- we restrict the analysis to the subexpressions initializing the
1025 -- aggregate components.
1027 -- This implies that the analysis of expressions containing aggregates
1028 -- is not complete, since there may be conflicts on writable actuals
1029 -- involving subexpressions of the enclosing logical or arithmetic
1030 -- expressions. However, we cannot wait and perform the analysis when
1031 -- the whole subtree is resolved, since the subtrees may be transformed,
1032 -- thus adding extra complexity and computation cost to identify and
1033 -- report exactly the same errors compiling with and without expansion
1034 -- enabled.
1036 procedure Check_Writable_Actuals (N : Node_Id) is
1037 begin
1038 if Comes_From_Source (N)
1039 and then Present (Get_Subprogram_Entity (N))
1040 and then Has_Out_Or_In_Out_Parameter (Get_Subprogram_Entity (N))
1041 then
1042 -- For procedures and entries there is no need to climb since
1043 -- we only need to check if the actuals of this call invoke
1044 -- functions whose out-mode parameters overlap.
1046 if Nkind (N) /= N_Function_Call then
1047 Set_Check_Actuals (N);
1049 -- For calls to functions we climb to the outermost enclosing
1050 -- construct where the out-mode actuals of this function may
1051 -- introduce conflicts.
1053 else
1054 declare
1055 Outermost : Node_Id := Empty; -- init to avoid warning
1056 P : Node_Id := N;
1058 begin
1059 while Present (P) loop
1060 -- For object declarations we can climb to the node from
1061 -- its object definition branch or from its initializing
1062 -- expression. We prefer to mark the child node as the
1063 -- outermost construct to avoid adding further complexity
1064 -- to the routine that will later take care of
1065 -- performing the writable actuals check.
1067 if Has_Arbitrary_Evaluation_Order (Nkind (P))
1068 and then Nkind (P) not in
1069 N_Assignment_Statement | N_Object_Declaration
1070 then
1071 Outermost := P;
1072 end if;
1074 -- Avoid climbing more than needed
1076 exit when Stop_Subtree_Climbing (Nkind (P))
1077 or else (Nkind (P) = N_Range
1078 and then
1079 Nkind (Parent (P)) not in N_In | N_Not_In);
1081 P := Parent (P);
1082 end loop;
1084 Set_Check_Actuals (Outermost);
1085 end;
1086 end if;
1087 end if;
1088 end Check_Writable_Actuals;
1090 ---------------------------
1091 -- Name_Denotes_Function --
1092 ---------------------------
1094 function Name_Denotes_Function return Boolean is
1095 begin
1096 if Is_Entity_Name (Nam) then
1097 return Ekind (Entity (Nam)) = E_Function;
1098 elsif Nkind (Nam) = N_Selected_Component then
1099 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
1100 else
1101 return False;
1102 end if;
1103 end Name_Denotes_Function;
1105 -----------------------
1106 -- No_Interpretation --
1107 -----------------------
1109 procedure No_Interpretation is
1110 L : constant Boolean := Is_List_Member (N);
1111 K : constant Node_Kind := Nkind (Parent (N));
1113 begin
1114 -- If the node is in a list whose parent is not an expression then it
1115 -- must be an attempted procedure call.
1117 if L and then K not in N_Subexpr then
1118 if Ekind (Entity (Nam)) = E_Generic_Procedure then
1119 Error_Msg_NE
1120 ("must instantiate generic procedure& before call",
1121 Nam, Entity (Nam));
1122 else
1123 Error_Msg_N ("procedure or entry name expected", Nam);
1124 end if;
1126 -- Check for tasking cases where only an entry call will do
1128 elsif not L
1129 and then K in N_Entry_Call_Alternative | N_Triggering_Alternative
1130 then
1131 Error_Msg_N ("entry name expected", Nam);
1133 -- Otherwise give general error message
1135 else
1136 Error_Msg_N ("invalid prefix in call", Nam);
1137 end if;
1138 end No_Interpretation;
1140 -- Start of processing for Analyze_Call
1142 begin
1143 -- Initialize the type of the result of the call to the error type,
1144 -- which will be reset if the type is successfully resolved.
1146 Set_Etype (N, Any_Type);
1148 Nam := Name (N);
1150 if not Is_Overloaded (Nam) then
1152 -- Only one interpretation to check
1154 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1155 Nam_Ent := Etype (Nam);
1157 -- If the prefix is an access_to_subprogram, this may be an indirect
1158 -- call. This is the case if the name in the call is not an entity
1159 -- name, or if it is a function name in the context of a procedure
1160 -- call. In this latter case, we have a call to a parameterless
1161 -- function that returns a pointer_to_procedure which is the entity
1162 -- being called. Finally, F (X) may be a call to a parameterless
1163 -- function that returns a pointer to a function with parameters.
1164 -- Note that if F returns an access-to-subprogram whose designated
1165 -- type is an array, F (X) cannot be interpreted as an indirect call
1166 -- through the result of the call to F.
1168 elsif Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
1169 and then
1170 (not Name_Denotes_Function
1171 or else Nkind (N) = N_Procedure_Call_Statement
1172 or else
1173 (Nkind (Parent (N)) /= N_Explicit_Dereference
1174 and then Is_Entity_Name (Nam)
1175 and then No (First_Formal (Entity (Nam)))
1176 and then not
1177 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1178 and then Present (Actuals)))
1179 then
1180 Nam_Ent := Designated_Type (Etype (Nam));
1181 Insert_Explicit_Dereference (Nam);
1183 -- Selected component case. Simple entry or protected operation,
1184 -- where the entry name is given by the selector name.
1186 elsif Nkind (Nam) = N_Selected_Component then
1187 Nam_Ent := Entity (Selector_Name (Nam));
1189 if Ekind (Nam_Ent) not in E_Entry
1190 | E_Entry_Family
1191 | E_Function
1192 | E_Procedure
1193 then
1194 Error_Msg_N ("name in call is not a callable entity", Nam);
1195 Set_Etype (N, Any_Type);
1196 return;
1197 end if;
1199 -- If the name is an Indexed component, it can be a call to a member
1200 -- of an entry family. The prefix must be a selected component whose
1201 -- selector is the entry. Analyze_Procedure_Call normalizes several
1202 -- kinds of call into this form.
1204 elsif Nkind (Nam) = N_Indexed_Component then
1205 if Nkind (Prefix (Nam)) = N_Selected_Component then
1206 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1207 else
1208 Error_Msg_N ("name in call is not a callable entity", Nam);
1209 Set_Etype (N, Any_Type);
1210 return;
1211 end if;
1213 elsif not Is_Entity_Name (Nam) then
1214 Error_Msg_N ("name in call is not a callable entity", Nam);
1215 Set_Etype (N, Any_Type);
1216 return;
1218 else
1219 Nam_Ent := Entity (Nam);
1221 -- If not overloadable, this may be a generalized indexing
1222 -- operation with named associations. Rewrite again as an
1223 -- indexed component and analyze as container indexing.
1225 if not Is_Overloadable (Nam_Ent) then
1226 if Present
1227 (Find_Value_Of_Aspect
1228 (Etype (Nam_Ent), Aspect_Constant_Indexing))
1229 then
1230 Replace (N,
1231 Make_Indexed_Component (Sloc (N),
1232 Prefix => Nam,
1233 Expressions => Parameter_Associations (N)));
1235 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1236 return;
1237 else
1238 No_Interpretation;
1239 end if;
1241 else
1242 No_Interpretation;
1243 end if;
1245 return;
1246 end if;
1247 end if;
1249 -- Operations generated for RACW stub types are called only through
1250 -- dispatching, and can never be the static interpretation of a call.
1252 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1253 No_Interpretation;
1254 return;
1255 end if;
1257 Analyze_One_Call (N, Nam_Ent, True, Success);
1259 -- If the nonoverloaded interpretation is a call to an abstract
1260 -- nondispatching operation, then flag an error and return.
1262 if Is_Overloadable (Nam_Ent)
1263 and then Is_Abstract_Subprogram (Nam_Ent)
1264 and then not Is_Dispatching_Operation (Nam_Ent)
1265 then
1266 Nondispatching_Call_To_Abstract_Operation (N, Nam_Ent);
1267 return;
1268 end if;
1270 -- If this is an indirect call, the return type of the access_to
1271 -- subprogram may be an incomplete type. At the point of the call,
1272 -- use the full type if available, and at the same time update the
1273 -- return type of the access_to_subprogram.
1275 if Success
1276 and then Nkind (Nam) = N_Explicit_Dereference
1277 and then Ekind (Etype (N)) = E_Incomplete_Type
1278 and then Present (Full_View (Etype (N)))
1279 then
1280 Set_Etype (N, Full_View (Etype (N)));
1281 Set_Etype (Nam_Ent, Etype (N));
1282 end if;
1284 -- Overloaded call
1286 else
1287 -- An overloaded selected component must denote overloaded operations
1288 -- of a concurrent type. The interpretations are attached to the
1289 -- simple name of those operations.
1291 if Nkind (Nam) = N_Selected_Component then
1292 Nam := Selector_Name (Nam);
1293 end if;
1295 Get_First_Interp (Nam, X, It);
1296 while Present (It.Nam) loop
1297 Nam_Ent := It.Nam;
1298 Deref := False;
1300 -- Name may be call that returns an access to subprogram, or more
1301 -- generally an overloaded expression one of whose interpretations
1302 -- yields an access to subprogram. If the name is an entity, we do
1303 -- not dereference, because the node is a call that returns the
1304 -- access type: note difference between f(x), where the call may
1305 -- return an access subprogram type, and f(x)(y), where the type
1306 -- returned by the call to f is implicitly dereferenced to analyze
1307 -- the outer call.
1309 if Is_Access_Type (Nam_Ent) then
1310 Nam_Ent := Designated_Type (Nam_Ent);
1312 elsif Is_Access_Type (Etype (Nam_Ent))
1313 and then
1314 (not Is_Entity_Name (Nam)
1315 or else Nkind (N) = N_Procedure_Call_Statement)
1316 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1317 = E_Subprogram_Type
1318 then
1319 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1321 if Is_Entity_Name (Nam) then
1322 Deref := True;
1323 end if;
1324 end if;
1326 -- If the call has been rewritten from a prefixed call, the first
1327 -- parameter has been analyzed, but may need a subsequent
1328 -- dereference, so skip its analysis now.
1330 if Is_Rewrite_Substitution (N)
1331 and then Nkind (Original_Node (N)) = Nkind (N)
1332 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1333 and then Present (Parameter_Associations (N))
1334 and then Present (Etype (First (Parameter_Associations (N))))
1335 then
1336 Analyze_One_Call
1337 (N, Nam_Ent, False, Success, Skip_First => True);
1338 else
1339 Analyze_One_Call (N, Nam_Ent, False, Success);
1340 end if;
1342 -- If the interpretation succeeds, mark the proper type of the
1343 -- prefix (any valid candidate will do). If not, remove the
1344 -- candidate interpretation. If this is a parameterless call
1345 -- on an anonymous access to subprogram, X is a variable with
1346 -- an access discriminant D, the entity in the interpretation is
1347 -- D, so rewrite X as X.D.all.
1349 if Success then
1350 if Deref
1351 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1352 then
1353 if Ekind (It.Nam) = E_Discriminant
1354 and then Has_Implicit_Dereference (It.Nam)
1355 then
1356 Rewrite (Name (N),
1357 Make_Explicit_Dereference (Loc,
1358 Prefix =>
1359 Make_Selected_Component (Loc,
1360 Prefix =>
1361 New_Occurrence_Of (Entity (Nam), Loc),
1362 Selector_Name =>
1363 New_Occurrence_Of (It.Nam, Loc))));
1365 Analyze (N);
1366 return;
1368 else
1369 Set_Entity (Nam, It.Nam);
1370 Insert_Explicit_Dereference (Nam);
1371 Set_Etype (Nam, Nam_Ent);
1372 end if;
1374 else
1375 Set_Etype (Nam, It.Typ);
1376 end if;
1378 elsif Nkind (Name (N)) in N_Function_Call | N_Selected_Component
1379 then
1380 Remove_Interp (X);
1381 end if;
1383 Get_Next_Interp (X, It);
1384 end loop;
1386 -- If the name is the result of a function call, it can only be a
1387 -- call to a function returning an access to subprogram. Insert
1388 -- explicit dereference.
1390 if Nkind (Nam) = N_Function_Call then
1391 Insert_Explicit_Dereference (Nam);
1392 end if;
1394 if Etype (N) = Any_Type then
1396 -- None of the interpretations is compatible with the actuals
1398 Diagnose_Call (N, Nam);
1400 -- Special checks for uninstantiated put routines
1402 if Nkind (N) = N_Procedure_Call_Statement
1403 and then Is_Entity_Name (Nam)
1404 and then Chars (Nam) = Name_Put
1405 and then List_Length (Actuals) = 1
1406 then
1407 declare
1408 Arg : constant Node_Id := First (Actuals);
1409 Typ : Entity_Id;
1411 begin
1412 if Nkind (Arg) = N_Parameter_Association then
1413 Typ := Etype (Explicit_Actual_Parameter (Arg));
1414 else
1415 Typ := Etype (Arg);
1416 end if;
1418 if Is_Signed_Integer_Type (Typ) then
1419 Error_Msg_N
1420 ("possible missing instantiation of "
1421 & "'Text_'I'O.'Integer_'I'O!", Nam);
1423 elsif Is_Modular_Integer_Type (Typ) then
1424 Error_Msg_N
1425 ("possible missing instantiation of "
1426 & "'Text_'I'O.'Modular_'I'O!", Nam);
1428 elsif Is_Floating_Point_Type (Typ) then
1429 Error_Msg_N
1430 ("possible missing instantiation of "
1431 & "'Text_'I'O.'Float_'I'O!", Nam);
1433 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1434 Error_Msg_N
1435 ("possible missing instantiation of "
1436 & "'Text_'I'O.'Fixed_'I'O!", Nam);
1438 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1439 Error_Msg_N
1440 ("possible missing instantiation of "
1441 & "'Text_'I'O.'Decimal_'I'O!", Nam);
1443 elsif Is_Enumeration_Type (Typ) then
1444 Error_Msg_N
1445 ("possible missing instantiation of "
1446 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1447 end if;
1448 end;
1449 end if;
1451 elsif not Is_Overloaded (N)
1452 and then Is_Entity_Name (Nam)
1453 then
1454 -- Resolution yields a single interpretation. Verify that the
1455 -- reference has capitalization consistent with the declaration.
1457 Set_Entity_With_Checks (Nam, Entity (Nam));
1458 Generate_Reference (Entity (Nam), Nam);
1460 Set_Etype (Nam, Etype (Entity (Nam)));
1461 else
1462 Remove_Abstract_Operations (N);
1463 end if;
1464 end if;
1466 -- Check the accessibility level for actuals for explicitly aliased
1467 -- formals when a function call appears within a return statement.
1468 -- This is only checked if the enclosing subprogram Comes_From_Source,
1469 -- to avoid issuing errors on calls occurring in wrapper subprograms
1470 -- (for example, where the call is part of an expression of an aspect
1471 -- associated with a wrapper, such as Pre'Class).
1473 if Nkind (N) = N_Function_Call
1474 and then Comes_From_Source (N)
1475 and then Present (Nam_Ent)
1476 and then In_Return_Value (N)
1477 and then Comes_From_Source (Current_Subprogram)
1478 then
1479 declare
1480 Form : Node_Id;
1481 Act : Node_Id;
1482 begin
1483 Act := First_Actual (N);
1484 Form := First_Formal (Nam_Ent);
1486 while Present (Form) and then Present (Act) loop
1487 -- Check whether the formal is aliased and if the accessibility
1488 -- level of the actual is deeper than the accessibility level
1489 -- of the enclosing subprogram to which the current return
1490 -- statement applies.
1492 -- Should we be checking Is_Entity_Name on Act? Won't this miss
1493 -- other cases ???
1495 if Is_Explicitly_Aliased (Form)
1496 and then Is_Entity_Name (Act)
1497 and then Static_Accessibility_Level
1498 (Act, Zero_On_Dynamic_Level)
1499 > Subprogram_Access_Level (Current_Subprogram)
1500 then
1501 Error_Msg_N ("actual for explicitly aliased formal is too"
1502 & " short lived", Act);
1503 end if;
1505 Next_Formal (Form);
1506 Next_Actual (Act);
1507 end loop;
1508 end;
1509 end if;
1511 if Ada_Version >= Ada_2012 then
1513 -- Check if the call contains a function with writable actuals
1515 Check_Writable_Actuals (N);
1517 -- If found and the outermost construct that can be evaluated in
1518 -- an arbitrary order is precisely this call, then check all its
1519 -- actuals.
1521 Check_Function_Writable_Actuals (N);
1523 -- The return type of the function may be incomplete. This can be
1524 -- the case if the type is a generic formal, or a limited view. It
1525 -- can also happen when the function declaration appears before the
1526 -- full view of the type (which is legal in Ada 2012) and the call
1527 -- appears in a different unit, in which case the incomplete view
1528 -- must be replaced with the full view (or the nonlimited view)
1529 -- to prevent subsequent type errors. Note that the usual install/
1530 -- removal of limited_with clauses is not sufficient to handle this
1531 -- case, because the limited view may have been captured in another
1532 -- compilation unit that defines the current function.
1534 if Is_Incomplete_Type (Etype (N)) then
1535 if Present (Full_View (Etype (N))) then
1536 if Is_Entity_Name (Nam) then
1537 Set_Etype (Nam, Full_View (Etype (N)));
1538 Set_Etype (Entity (Nam), Full_View (Etype (N)));
1539 end if;
1541 Set_Etype (N, Full_View (Etype (N)));
1543 -- If the call is within a thunk, the nonlimited view should be
1544 -- analyzed eventually (see also Analyze_Return_Type).
1546 elsif From_Limited_With (Etype (N))
1547 and then Present (Non_Limited_View (Etype (N)))
1548 and then
1549 (Ekind (Non_Limited_View (Etype (N))) /= E_Incomplete_Type
1550 or else Is_Thunk (Current_Scope))
1551 then
1552 Set_Etype (N, Non_Limited_View (Etype (N)));
1554 -- If there is no completion for the type, this may be because
1555 -- there is only a limited view of it and there is nothing in
1556 -- the context of the current unit that has required a regular
1557 -- compilation of the unit containing the type. We recognize
1558 -- this unusual case by the fact that unit is not analyzed.
1559 -- Note that the call being analyzed is in a different unit from
1560 -- the function declaration, and nothing indicates that the type
1561 -- is a limited view.
1563 elsif Ekind (Scope (Etype (N))) = E_Package
1564 and then Present (Limited_View (Scope (Etype (N))))
1565 and then not Analyzed (Unit_Declaration_Node (Scope (Etype (N))))
1566 then
1567 Error_Msg_NE
1568 ("cannot call function that returns limited view of}",
1569 N, Etype (N));
1571 Error_Msg_NE
1572 ("\there must be a regular with_clause for package & in the "
1573 & "current unit, or in some unit in its context",
1574 N, Scope (Etype (N)));
1576 Set_Etype (N, Any_Type);
1577 end if;
1578 end if;
1579 end if;
1580 end Analyze_Call;
1582 -----------------------------
1583 -- Analyze_Case_Expression --
1584 -----------------------------
1586 procedure Analyze_Case_Expression (N : Node_Id) is
1587 Expr : constant Node_Id := Expression (N);
1588 First_Alt : constant Node_Id := First (Alternatives (N));
1590 First_Expr : Node_Id := Empty;
1591 -- First expression in the case where there is some type information
1592 -- available, i.e. there is not Any_Type everywhere, which can happen
1593 -- because of some error.
1595 Second_Expr : Node_Id := Empty;
1596 -- Second expression as above
1598 Wrong_Alt : Node_Id := Empty;
1599 -- For error reporting
1601 procedure Non_Static_Choice_Error (Choice : Node_Id);
1602 -- Error routine invoked by the generic instantiation below when
1603 -- the case expression has a non static choice.
1605 procedure Check_Next_Expression (T : Entity_Id; Alt : Node_Id);
1606 -- Check one interpretation of the next expression with type T
1608 procedure Check_Expression_Pair (T1, T2 : Entity_Id; Alt : Node_Id);
1609 -- Check first expression with type T1 and next expression with type T2
1611 package Case_Choices_Analysis is new
1612 Generic_Analyze_Choices
1613 (Process_Associated_Node => No_OP);
1614 use Case_Choices_Analysis;
1616 package Case_Choices_Checking is new
1617 Generic_Check_Choices
1618 (Process_Empty_Choice => No_OP,
1619 Process_Non_Static_Choice => Non_Static_Choice_Error,
1620 Process_Associated_Node => No_OP);
1621 use Case_Choices_Checking;
1623 -----------------------------
1624 -- Non_Static_Choice_Error --
1625 -----------------------------
1627 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1628 begin
1629 Flag_Non_Static_Expr
1630 ("choice given in case expression is not static!", Choice);
1631 end Non_Static_Choice_Error;
1633 ---------------------------
1634 -- Check_Next_Expression --
1635 ---------------------------
1637 procedure Check_Next_Expression (T : Entity_Id; Alt : Node_Id) is
1638 Next_Expr : constant Node_Id := Expression (Alt);
1640 I : Interp_Index;
1641 It : Interp;
1643 begin
1644 if Next_Expr = First_Expr then
1645 Check_Next_Expression (T, Next (Alt));
1646 return;
1647 end if;
1649 -- Loop through the interpretations of the next expression
1651 if not Is_Overloaded (Next_Expr) then
1652 Check_Expression_Pair (T, Etype (Next_Expr), Alt);
1654 else
1655 Get_First_Interp (Next_Expr, I, It);
1656 while Present (It.Typ) loop
1657 Check_Expression_Pair (T, It.Typ, Alt);
1658 Get_Next_Interp (I, It);
1659 end loop;
1660 end if;
1661 end Check_Next_Expression;
1663 ---------------------------
1664 -- Check_Expression_Pair --
1665 ---------------------------
1667 procedure Check_Expression_Pair (T1, T2 : Entity_Id; Alt : Node_Id) is
1668 Next_Expr : constant Node_Id := Expression (Alt);
1670 T : Entity_Id;
1672 begin
1673 if Covers (T1 => T1, T2 => T2)
1674 or else Covers (T1 => T2, T2 => T1)
1675 then
1676 T := Specific_Type (T1, T2);
1678 elsif Is_User_Defined_Literal (First_Expr, T2) then
1679 T := T2;
1681 elsif Is_User_Defined_Literal (Next_Expr, T1) then
1682 T := T1;
1684 else
1685 T := Possible_Type_For_Conditional_Expression (T1, T2);
1687 if No (T) then
1688 Wrong_Alt := Alt;
1689 return;
1690 end if;
1691 end if;
1693 if Present (Next (Alt)) then
1694 Check_Next_Expression (T, Next (Alt));
1695 else
1696 Add_One_Interp (N, T, T);
1697 end if;
1698 end Check_Expression_Pair;
1700 -- Local variables
1702 Alt : Node_Id;
1703 Exp_Type : Entity_Id;
1704 Exp_Btype : Entity_Id;
1705 I : Interp_Index;
1706 It : Interp;
1707 Others_Present : Boolean;
1709 -- Start of processing for Analyze_Case_Expression
1711 begin
1712 Analyze_And_Resolve (Expr, Any_Discrete);
1713 Check_Unset_Reference (Expr);
1714 Exp_Type := Etype (Expr);
1715 Exp_Btype := Base_Type (Exp_Type);
1717 Set_Etype (N, Any_Type);
1719 Alt := First_Alt;
1720 while Present (Alt) loop
1721 if Error_Posted (Expression (Alt)) then
1722 return;
1723 end if;
1725 Analyze_Expression (Expression (Alt));
1727 if Etype (Expression (Alt)) /= Any_Type then
1728 if No (First_Expr) then
1729 First_Expr := Expression (Alt);
1731 elsif No (Second_Expr) then
1732 Second_Expr := Expression (Alt);
1733 end if;
1734 end if;
1736 Next (Alt);
1737 end loop;
1739 -- Get our initial type from the first expression for which we got some
1740 -- useful type information from the expression.
1742 if No (First_Expr) then
1743 return;
1744 end if;
1746 -- The expression must be of a discrete type which must be determinable
1747 -- independently of the context in which the expression occurs, but
1748 -- using the fact that the expression must be of a discrete type.
1749 -- Moreover, the type this expression must not be a character literal
1750 -- (which is always ambiguous).
1752 -- If error already reported by Resolve, nothing more to do
1754 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1755 return;
1757 -- Special case message for character literal
1759 elsif Exp_Btype = Any_Character then
1760 Error_Msg_N
1761 ("character literal as case expression is ambiguous", Expr);
1762 return;
1763 end if;
1765 -- If the case expression is a formal object of mode in out, then
1766 -- treat it as having a nonstatic subtype by forcing use of the base
1767 -- type (which has to get passed to Check_Case_Choices below). Also
1768 -- use base type when the case expression is parenthesized.
1770 if Paren_Count (Expr) > 0
1771 or else (Is_Entity_Name (Expr)
1772 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1773 then
1774 Exp_Type := Exp_Btype;
1775 end if;
1777 -- The case expression alternatives cover the range of a static subtype
1778 -- subject to aspect Static_Predicate. Do not check the choices when the
1779 -- case expression has not been fully analyzed yet because this may lead
1780 -- to bogus errors.
1782 if Is_OK_Static_Subtype (Exp_Type)
1783 and then Has_Static_Predicate_Aspect (Exp_Type)
1784 and then In_Spec_Expression
1785 then
1786 null;
1788 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1790 else
1791 Analyze_Choices (Alternatives (N), Exp_Type);
1792 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1794 if Exp_Type = Universal_Integer and then not Others_Present then
1795 Error_Msg_N
1796 ("case on universal integer requires OTHERS choice", Expr);
1797 return;
1798 end if;
1799 end if;
1801 -- RM 4.5.7(10/3): If the case_expression is the operand of a type
1802 -- conversion, the type of the case_expression is the target type
1803 -- of the conversion.
1805 if Nkind (Parent (N)) = N_Type_Conversion then
1806 Set_Etype (N, Etype (Parent (N)));
1807 return;
1808 end if;
1810 -- Loop through the interpretations of the first expression and check
1811 -- the other expressions if present.
1813 if not Is_Overloaded (First_Expr) then
1814 if Present (Second_Expr) then
1815 Check_Next_Expression (Etype (First_Expr), First_Alt);
1816 else
1817 Set_Etype (N, Etype (First_Expr));
1818 end if;
1820 else
1821 Get_First_Interp (First_Expr, I, It);
1822 while Present (It.Typ) loop
1823 if Present (Second_Expr) then
1824 Check_Next_Expression (It.Typ, First_Alt);
1825 else
1826 Add_One_Interp (N, It.Typ, It.Typ);
1827 end if;
1829 Get_Next_Interp (I, It);
1830 end loop;
1831 end if;
1833 -- If no possible interpretation has been found, the type of the wrong
1834 -- alternative doesn't match any interpretation of the FIRST expression.
1836 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
1837 Second_Expr := Expression (Wrong_Alt);
1839 if Is_Overloaded (First_Expr) then
1840 if Is_Overloaded (Second_Expr) then
1841 Error_Msg_N
1842 ("no interpretation compatible with those of previous "
1843 & "alternative",
1844 Second_Expr);
1845 else
1846 Error_Msg_N
1847 ("type incompatible with interpretations of previous "
1848 & "alternative",
1849 Second_Expr);
1850 Error_Msg_NE
1851 ("\this alternative has}!",
1852 Second_Expr,
1853 Etype (Second_Expr));
1854 end if;
1856 else
1857 if Is_Overloaded (Second_Expr) then
1858 Error_Msg_N
1859 ("no interpretation compatible with type of previous "
1860 & "alternative",
1861 Second_Expr);
1862 Error_Msg_NE
1863 ("\previous alternative has}!",
1864 Second_Expr,
1865 Etype (First_Expr));
1866 else
1867 Error_Msg_N
1868 ("type incompatible with that of previous alternative",
1869 Second_Expr);
1870 Error_Msg_NE
1871 ("\previous alternative has}!",
1872 Second_Expr,
1873 Etype (First_Expr));
1874 Error_Msg_NE
1875 ("\this alternative has}!",
1876 Second_Expr,
1877 Etype (Second_Expr));
1878 end if;
1879 end if;
1880 end if;
1881 end Analyze_Case_Expression;
1883 ---------------------------
1884 -- Analyze_Concatenation --
1885 ---------------------------
1887 procedure Analyze_Concatenation (N : Node_Id) is
1889 -- We wish to avoid deep recursion, because concatenations are often
1890 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1891 -- operands nonrecursively until we find something that is not a
1892 -- concatenation (A in this case), or has already been analyzed. We
1893 -- analyze that, and then walk back up the tree following Parent
1894 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1895 -- work at each level. The Parent pointers allow us to avoid recursion,
1896 -- and thus avoid running out of memory.
1898 NN : Node_Id := N;
1899 L : Node_Id;
1901 begin
1902 Candidate_Type := Empty;
1904 -- The following code is equivalent to:
1906 -- Set_Etype (N, Any_Type);
1907 -- Analyze_Expression (Left_Opnd (N));
1908 -- Analyze_Concatenation_Rest (N);
1910 -- where the Analyze_Expression call recurses back here if the left
1911 -- operand is a concatenation.
1913 -- Walk down left operands
1915 loop
1916 Set_Etype (NN, Any_Type);
1917 L := Left_Opnd (NN);
1918 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1919 NN := L;
1920 end loop;
1922 -- Now (given the above example) NN is A&B and L is A
1924 -- First analyze L ...
1926 Analyze_Expression (L);
1928 -- ... then walk NN back up until we reach N (where we started), calling
1929 -- Analyze_Concatenation_Rest along the way.
1931 loop
1932 Analyze_Concatenation_Rest (NN);
1933 exit when NN = N;
1934 NN := Parent (NN);
1935 end loop;
1936 end Analyze_Concatenation;
1938 --------------------------------
1939 -- Analyze_Concatenation_Rest --
1940 --------------------------------
1942 -- If the only one-dimensional array type in scope is String,
1943 -- this is the resulting type of the operation. Otherwise there
1944 -- will be a concatenation operation defined for each user-defined
1945 -- one-dimensional array.
1947 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1948 L : constant Node_Id := Left_Opnd (N);
1949 R : constant Node_Id := Right_Opnd (N);
1950 Op_Id : Entity_Id := Entity (N);
1951 LT : Entity_Id;
1952 RT : Entity_Id;
1954 begin
1955 Analyze_Expression (R);
1957 -- If the entity is present, the node appears in an instance, and
1958 -- denotes a predefined concatenation operation. The resulting type is
1959 -- obtained from the arguments when possible. If the arguments are
1960 -- aggregates, the array type and the concatenation type must be
1961 -- visible.
1963 if Present (Op_Id) then
1964 if Ekind (Op_Id) = E_Operator then
1965 LT := Base_Type (Etype (L));
1966 RT := Base_Type (Etype (R));
1968 if Is_Array_Type (LT)
1969 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1970 then
1971 Add_One_Interp (N, Op_Id, LT);
1973 elsif Is_Array_Type (RT)
1974 and then LT = Base_Type (Component_Type (RT))
1975 then
1976 Add_One_Interp (N, Op_Id, RT);
1978 -- If one operand is a string type or a user-defined array type,
1979 -- and the other is a literal, result is of the specific type.
1981 elsif
1982 (Root_Type (LT) = Standard_String
1983 or else Scope (LT) /= Standard_Standard)
1984 and then Etype (R) = Any_String
1985 then
1986 Add_One_Interp (N, Op_Id, LT);
1988 elsif
1989 (Root_Type (RT) = Standard_String
1990 or else Scope (RT) /= Standard_Standard)
1991 and then Etype (L) = Any_String
1992 then
1993 Add_One_Interp (N, Op_Id, RT);
1995 elsif not Is_Generic_Type (Etype (Op_Id)) then
1996 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1998 else
1999 -- Type and its operations must be visible
2001 Set_Entity (N, Empty);
2002 Analyze_Concatenation (N);
2003 end if;
2005 else
2006 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2007 end if;
2009 else
2010 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
2011 while Present (Op_Id) loop
2012 if Ekind (Op_Id) = E_Operator then
2014 -- Do not consider operators declared in dead code, they
2015 -- cannot be part of the resolution.
2017 if Is_Eliminated (Op_Id) then
2018 null;
2019 else
2020 Find_Concatenation_Types (L, R, Op_Id, N);
2021 end if;
2023 else
2024 Analyze_User_Defined_Binary_Op (N, Op_Id);
2025 end if;
2027 Op_Id := Homonym (Op_Id);
2028 end loop;
2029 end if;
2031 Operator_Check (N);
2032 end Analyze_Concatenation_Rest;
2034 ------------------------------------
2035 -- Analyze_Comparison_Equality_Op --
2036 ------------------------------------
2038 procedure Analyze_Comparison_Equality_Op (N : Node_Id) is
2039 Loc : constant Source_Ptr := Sloc (N);
2040 L : constant Node_Id := Left_Opnd (N);
2041 R : constant Node_Id := Right_Opnd (N);
2043 Op_Id : Entity_Id;
2045 begin
2046 Set_Etype (N, Any_Type);
2047 Candidate_Type := Empty;
2049 Analyze_Expression (L);
2050 Analyze_Expression (R);
2052 -- If the entity is set, the node is a generic instance with a non-local
2053 -- reference to the predefined operator or to a user-defined function.
2054 -- It can also be an inequality that is expanded into the negation of a
2055 -- call to a user-defined equality operator.
2057 -- For the predefined case, the result is Boolean, regardless of the
2058 -- type of the operands. The operands may even be limited, if they are
2059 -- generic actuals. If they are overloaded, label the operands with the
2060 -- common type that must be present, or with the type of the formal of
2061 -- the user-defined function.
2063 if Present (Entity (N)) then
2064 Op_Id := Entity (N);
2066 if Ekind (Op_Id) = E_Operator then
2067 Add_One_Interp (N, Op_Id, Standard_Boolean);
2068 else
2069 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2070 end if;
2072 if Is_Overloaded (L) then
2073 if Ekind (Op_Id) = E_Operator then
2074 Set_Etype (L, Intersect_Types (L, R));
2075 else
2076 Set_Etype (L, Etype (First_Formal (Op_Id)));
2077 end if;
2078 end if;
2080 if Is_Overloaded (R) then
2081 if Ekind (Op_Id) = E_Operator then
2082 Set_Etype (R, Intersect_Types (L, R));
2083 else
2084 Set_Etype (R, Etype (Next_Formal (First_Formal (Op_Id))));
2085 end if;
2086 end if;
2088 else
2089 Op_Id := Get_Name_Entity_Id (Chars (N));
2091 while Present (Op_Id) loop
2092 if Ekind (Op_Id) = E_Operator then
2093 Find_Comparison_Equality_Types (L, R, Op_Id, N);
2094 else
2095 Analyze_User_Defined_Binary_Op (N, Op_Id);
2096 end if;
2098 Op_Id := Homonym (Op_Id);
2099 end loop;
2100 end if;
2102 -- If there was no match and the operator is inequality, this may be
2103 -- a case where inequality has not been made explicit, as for tagged
2104 -- types. Analyze the node as the negation of an equality operation.
2105 -- This cannot be done earlier because, before analysis, we cannot rule
2106 -- out the presence of an explicit inequality.
2108 if Etype (N) = Any_Type and then Nkind (N) = N_Op_Ne then
2109 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
2111 while Present (Op_Id) loop
2112 if Ekind (Op_Id) = E_Operator then
2113 Find_Comparison_Equality_Types (L, R, Op_Id, N);
2114 else
2115 Analyze_User_Defined_Binary_Op (N, Op_Id);
2116 end if;
2118 Op_Id := Homonym (Op_Id);
2119 end loop;
2121 if Etype (N) /= Any_Type then
2122 Op_Id := Entity (N);
2124 Rewrite (N,
2125 Make_Op_Not (Loc,
2126 Right_Opnd =>
2127 Make_Op_Eq (Loc,
2128 Left_Opnd => Left_Opnd (N),
2129 Right_Opnd => Right_Opnd (N))));
2131 Set_Entity (Right_Opnd (N), Op_Id);
2132 Analyze (N);
2133 end if;
2134 end if;
2136 Operator_Check (N);
2137 Check_Function_Writable_Actuals (N);
2138 end Analyze_Comparison_Equality_Op;
2140 ----------------------------------
2141 -- Analyze_Explicit_Dereference --
2142 ----------------------------------
2144 procedure Analyze_Explicit_Dereference (N : Node_Id) is
2145 Loc : constant Source_Ptr := Sloc (N);
2146 P : constant Node_Id := Prefix (N);
2147 T : Entity_Id;
2148 I : Interp_Index;
2149 It : Interp;
2150 New_N : Node_Id;
2152 function Is_Function_Type return Boolean;
2153 -- Check whether node may be interpreted as an implicit function call
2155 ----------------------
2156 -- Is_Function_Type --
2157 ----------------------
2159 function Is_Function_Type return Boolean is
2160 I : Interp_Index;
2161 It : Interp;
2163 begin
2164 if not Is_Overloaded (N) then
2165 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
2166 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
2168 else
2169 Get_First_Interp (N, I, It);
2170 while Present (It.Nam) loop
2171 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
2172 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
2173 then
2174 return False;
2175 end if;
2177 Get_Next_Interp (I, It);
2178 end loop;
2180 return True;
2181 end if;
2182 end Is_Function_Type;
2184 -- Start of processing for Analyze_Explicit_Dereference
2186 begin
2187 -- In formal verification mode, keep track of all reads and writes
2188 -- through explicit dereferences.
2190 if GNATprove_Mode then
2191 SPARK_Specific.Generate_Dereference (N);
2192 end if;
2194 Analyze (P);
2195 Set_Etype (N, Any_Type);
2197 -- Test for remote access to subprogram type, and if so return
2198 -- after rewriting the original tree.
2200 if Remote_AST_E_Dereference (P) then
2201 return;
2202 end if;
2204 -- Normal processing for other than remote access to subprogram type
2206 if not Is_Overloaded (P) then
2207 if Is_Access_Type (Etype (P)) then
2209 -- Set the Etype
2211 declare
2212 DT : constant Entity_Id := Designated_Type (Etype (P));
2214 begin
2215 -- An explicit dereference is a legal occurrence of an
2216 -- incomplete type imported through a limited_with clause, if
2217 -- the full view is visible, or if we are within an instance
2218 -- body, where the enclosing body has a regular with_clause
2219 -- on the unit.
2221 if From_Limited_With (DT)
2222 and then not From_Limited_With (Scope (DT))
2223 and then
2224 (Is_Immediately_Visible (Scope (DT))
2225 or else
2226 (Is_Child_Unit (Scope (DT))
2227 and then Is_Visible_Lib_Unit (Scope (DT)))
2228 or else In_Instance_Body)
2229 then
2230 Set_Etype (N, Available_View (DT));
2232 else
2233 Set_Etype (N, DT);
2234 end if;
2235 end;
2237 elsif Etype (P) /= Any_Type then
2238 Error_Msg_N ("prefix of dereference must be an access type", N);
2239 return;
2240 end if;
2242 else
2243 Get_First_Interp (P, I, It);
2244 while Present (It.Nam) loop
2245 T := It.Typ;
2247 if Is_Access_Type (T) then
2248 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
2249 end if;
2251 Get_Next_Interp (I, It);
2252 end loop;
2254 -- Error if no interpretation of the prefix has an access type
2256 if Etype (N) = Any_Type then
2257 Error_Msg_N
2258 ("access type required in prefix of explicit dereference", P);
2259 Set_Etype (N, Any_Type);
2260 return;
2261 end if;
2262 end if;
2264 if Is_Function_Type
2265 and then Nkind (Parent (N)) /= N_Indexed_Component
2267 and then (Nkind (Parent (N)) /= N_Function_Call
2268 or else N /= Name (Parent (N)))
2270 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
2271 or else N /= Name (Parent (N)))
2273 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2274 and then (Nkind (Parent (N)) /= N_Attribute_Reference
2275 or else
2276 (Attribute_Name (Parent (N)) /= Name_Address
2277 and then
2278 Attribute_Name (Parent (N)) /= Name_Access))
2279 then
2280 -- Name is a function call with no actuals, in a context that
2281 -- requires deproceduring (including as an actual in an enclosing
2282 -- function or procedure call). There are some pathological cases
2283 -- where the prefix might include functions that return access to
2284 -- subprograms and others that return a regular type. Disambiguation
2285 -- of those has to take place in Resolve.
2287 New_N :=
2288 Make_Function_Call (Loc,
2289 Name => Make_Explicit_Dereference (Loc, P),
2290 Parameter_Associations => New_List);
2292 -- If the prefix is overloaded, remove operations that have formals,
2293 -- we know that this is a parameterless call.
2295 if Is_Overloaded (P) then
2296 Get_First_Interp (P, I, It);
2297 while Present (It.Nam) loop
2298 T := It.Typ;
2300 if No (First_Formal (Base_Type (Designated_Type (T)))) then
2301 Set_Etype (P, T);
2302 else
2303 Remove_Interp (I);
2304 end if;
2306 Get_Next_Interp (I, It);
2307 end loop;
2308 end if;
2310 Rewrite (N, New_N);
2311 Analyze (N);
2313 elsif not Is_Function_Type
2314 and then Is_Overloaded (N)
2315 then
2316 -- The prefix may include access to subprograms and other access
2317 -- types. If the context selects the interpretation that is a
2318 -- function call (not a procedure call) we cannot rewrite the node
2319 -- yet, but we include the result of the call interpretation.
2321 Get_First_Interp (N, I, It);
2322 while Present (It.Nam) loop
2323 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2324 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
2325 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2326 then
2327 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2328 end if;
2330 Get_Next_Interp (I, It);
2331 end loop;
2332 end if;
2334 -- A value of remote access-to-class-wide must not be dereferenced
2335 -- (RM E.2.2(16)).
2337 Validate_Remote_Access_To_Class_Wide_Type (N);
2338 end Analyze_Explicit_Dereference;
2340 ------------------------
2341 -- Analyze_Expression --
2342 ------------------------
2344 procedure Analyze_Expression (N : Node_Id) is
2345 begin
2346 -- If the expression is an indexed component that will be rewritten
2347 -- as a container indexing, it has already been analyzed.
2349 if Nkind (N) = N_Indexed_Component
2350 and then Present (Generalized_Indexing (N))
2351 then
2352 null;
2354 else
2355 Analyze (N);
2356 Check_Parameterless_Call (N);
2357 end if;
2358 end Analyze_Expression;
2360 -------------------------------------
2361 -- Analyze_Expression_With_Actions --
2362 -------------------------------------
2364 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2366 procedure Check_Action_OK (A : Node_Id);
2367 -- Check that the action A is allowed as a declare_item of a declare
2368 -- expression if N and A come from source.
2370 ---------------------
2371 -- Check_Action_OK --
2372 ---------------------
2374 procedure Check_Action_OK (A : Node_Id) is
2375 begin
2376 if not Comes_From_Source (N) or else not Comes_From_Source (A) then
2378 -- If, for example, an (illegal) expression function is
2379 -- transformed into a "vanilla" function then we don't want to
2380 -- allow it just because Comes_From_Source is now False. So look
2381 -- at the Original_Node.
2383 if Is_Rewrite_Substitution (A) then
2384 Check_Action_OK (Original_Node (A));
2385 end if;
2387 return; -- Allow anything in generated code
2388 end if;
2390 case Nkind (A) is
2391 when N_Object_Declaration =>
2392 if Nkind (Object_Definition (A)) = N_Access_Definition then
2393 Error_Msg_N
2394 ("anonymous access type not allowed in declare_expression",
2395 Object_Definition (A));
2396 end if;
2398 if Aliased_Present (A) then
2399 Error_Msg_N ("ALIASED not allowed in declare_expression", A);
2400 end if;
2402 if Constant_Present (A)
2403 and then not Is_Limited_Type (Etype (Defining_Identifier (A)))
2404 then
2405 return; -- nonlimited constants are OK
2406 end if;
2408 when N_Object_Renaming_Declaration =>
2409 if Present (Access_Definition (A)) then
2410 Error_Msg_N
2411 ("anonymous access type not allowed in declare_expression",
2412 Access_Definition (A));
2413 end if;
2415 if not Is_Limited_Type (Etype (Defining_Identifier (A))) then
2416 return; -- ???For now; the RM rule is a bit more complicated
2417 end if;
2419 when N_Pragma =>
2420 declare
2421 -- See AI22-0045 pragma categorization.
2422 subtype Executable_Pragma_Id is Pragma_Id
2423 with Predicate => Executable_Pragma_Id in
2424 -- language-defined executable pragmas
2425 Pragma_Assert | Pragma_Inspection_Point
2427 -- GNAT-defined executable pragmas
2428 | Pragma_Assume | Pragma_Debug;
2429 begin
2430 if Get_Pragma_Id (A) in Executable_Pragma_Id then
2431 return;
2432 end if;
2433 end;
2435 when others =>
2436 null; -- Nothing else allowed
2437 end case;
2439 -- We could mention pragmas in the message text; let's not.
2440 Error_Msg_N ("object renaming or constant declaration expected", A);
2441 end Check_Action_OK;
2443 A : Node_Id;
2444 EWA_Scop : Entity_Id;
2446 -- Start of processing for Analyze_Expression_With_Actions
2448 begin
2449 -- Create a scope, which is needed to provide proper visibility of the
2450 -- declare_items.
2452 EWA_Scop := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
2453 Set_Etype (EWA_Scop, Standard_Void_Type);
2454 Set_Scope (EWA_Scop, Current_Scope);
2455 Set_Parent (EWA_Scop, N);
2456 Push_Scope (EWA_Scop);
2458 -- If this Expression_With_Actions node comes from source, then it
2459 -- represents a declare_expression; increment the counter to take note
2460 -- of that.
2462 if Comes_From_Source (N) then
2463 In_Declare_Expr := In_Declare_Expr + 1;
2464 end if;
2466 A := First (Actions (N));
2467 while Present (A) loop
2468 Analyze (A);
2469 Check_Action_OK (A);
2470 Next (A);
2471 end loop;
2473 Analyze_Expression (Expression (N));
2474 Set_Etype (N, Etype (Expression (N)));
2475 End_Scope;
2477 if Comes_From_Source (N) then
2478 In_Declare_Expr := In_Declare_Expr - 1;
2479 end if;
2480 end Analyze_Expression_With_Actions;
2482 ---------------------------
2483 -- Analyze_If_Expression --
2484 ---------------------------
2486 procedure Analyze_If_Expression (N : Node_Id) is
2487 Condition : constant Node_Id := First (Expressions (N));
2489 Then_Expr : Node_Id;
2490 Else_Expr : Node_Id;
2492 procedure Check_Else_Expression (T : Entity_Id);
2493 -- Check one interpretation of the THEN expression with type T
2495 procedure Check_Expression_Pair (T1, T2 : Entity_Id);
2496 -- Check THEN expression with type T1 and ELSE expression with type T2
2498 ---------------------------
2499 -- Check_Else_Expression --
2500 ---------------------------
2502 procedure Check_Else_Expression (T : Entity_Id) is
2503 I : Interp_Index;
2504 It : Interp;
2506 begin
2507 -- Loop through the interpretations of the ELSE expression
2509 if not Is_Overloaded (Else_Expr) then
2510 Check_Expression_Pair (T, Etype (Else_Expr));
2512 else
2513 Get_First_Interp (Else_Expr, I, It);
2514 while Present (It.Typ) loop
2515 Check_Expression_Pair (T, It.Typ);
2516 Get_Next_Interp (I, It);
2517 end loop;
2518 end if;
2519 end Check_Else_Expression;
2521 ---------------------------
2522 -- Check_Expression_Pair --
2523 ---------------------------
2525 procedure Check_Expression_Pair (T1, T2 : Entity_Id) is
2526 T : Entity_Id;
2528 begin
2529 if Covers (T1 => T1, T2 => T2)
2530 or else Covers (T1 => T2, T2 => T1)
2531 then
2532 T := Specific_Type (T1, T2);
2534 elsif Is_User_Defined_Literal (Then_Expr, T2) then
2535 T := T2;
2537 elsif Is_User_Defined_Literal (Else_Expr, T1) then
2538 T := T1;
2540 else
2541 T := Possible_Type_For_Conditional_Expression (T1, T2);
2543 if No (T) then
2544 return;
2545 end if;
2546 end if;
2548 Add_One_Interp (N, T, T);
2549 end Check_Expression_Pair;
2551 -- Local variables
2553 I : Interp_Index;
2554 It : Interp;
2556 -- Start of processing for Analyze_If_Expression
2558 begin
2559 -- Defend against error of missing expressions from previous error
2561 if No (Condition) then
2562 Check_Error_Detected;
2563 return;
2564 end if;
2566 Set_Etype (N, Any_Type);
2568 Then_Expr := Next (Condition);
2570 if No (Then_Expr) then
2571 Check_Error_Detected;
2572 return;
2573 end if;
2575 Else_Expr := Next (Then_Expr);
2577 -- Analyze and resolve the condition. We need to resolve this now so
2578 -- that it gets folded to True/False if possible, before we analyze
2579 -- the THEN/ELSE branches, because when analyzing these branches, we
2580 -- may call Is_Statically_Unevaluated, which expects the condition of
2581 -- an enclosing IF to have been analyze/resolved/evaluated.
2583 Analyze_Expression (Condition);
2584 Resolve (Condition, Any_Boolean);
2586 -- Analyze the THEN expression and (if present) the ELSE expression. For
2587 -- them we delay resolution in the normal manner because of overloading.
2589 Analyze_Expression (Then_Expr);
2591 if Present (Else_Expr) then
2592 Analyze_Expression (Else_Expr);
2593 end if;
2595 -- RM 4.5.7(10/3): If the if_expression is the operand of a type
2596 -- conversion, the type of the if_expression is the target type
2597 -- of the conversion.
2599 if Nkind (Parent (N)) = N_Type_Conversion then
2600 Set_Etype (N, Etype (Parent (N)));
2601 return;
2602 end if;
2604 -- Loop through the interpretations of the THEN expression and check the
2605 -- ELSE expression if present.
2607 if not Is_Overloaded (Then_Expr) then
2608 if Present (Else_Expr) then
2609 Check_Else_Expression (Etype (Then_Expr));
2610 else
2611 Set_Etype (N, Etype (Then_Expr));
2612 end if;
2614 else
2615 Get_First_Interp (Then_Expr, I, It);
2616 while Present (It.Typ) loop
2617 if Present (Else_Expr) then
2618 Check_Else_Expression (It.Typ);
2619 else
2620 Add_One_Interp (N, It.Typ, It.Typ);
2621 end if;
2623 Get_Next_Interp (I, It);
2624 end loop;
2625 end if;
2627 -- If no possible interpretation has been found, the type of the
2628 -- ELSE expression does not match any interpretation of the THEN
2629 -- expression.
2631 if Etype (N) = Any_Type then
2632 if Is_Overloaded (Then_Expr) then
2633 if Is_Overloaded (Else_Expr) then
2634 Error_Msg_N
2635 ("no interpretation compatible with those of THEN expression",
2636 Else_Expr);
2637 else
2638 Error_Msg_N
2639 ("type of ELSE incompatible with interpretations of THEN "
2640 & "expression",
2641 Else_Expr);
2642 Error_Msg_NE
2643 ("\ELSE expression has}!", Else_Expr, Etype (Else_Expr));
2644 end if;
2646 else
2647 if Is_Overloaded (Else_Expr) then
2648 Error_Msg_N
2649 ("no interpretation compatible with type of THEN expression",
2650 Else_Expr);
2651 Error_Msg_NE
2652 ("\THEN expression has}!", Else_Expr, Etype (Then_Expr));
2653 else
2654 Error_Msg_N
2655 ("type of ELSE incompatible with that of THEN expression",
2656 Else_Expr);
2657 Error_Msg_NE
2658 ("\THEN expression has}!", Else_Expr, Etype (Then_Expr));
2659 Error_Msg_NE
2660 ("\ELSE expression has}!", Else_Expr, Etype (Else_Expr));
2661 end if;
2662 end if;
2663 end if;
2664 end Analyze_If_Expression;
2666 ------------------------------------
2667 -- Analyze_Indexed_Component_Form --
2668 ------------------------------------
2670 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2671 P : constant Node_Id := Prefix (N);
2672 Exprs : constant List_Id := Expressions (N);
2673 Exp : Node_Id;
2674 P_T : Entity_Id;
2675 E : Node_Id;
2676 U_N : Entity_Id;
2678 procedure Process_Function_Call;
2679 -- Prefix in indexed component form is an overloadable entity, so the
2680 -- node is very likely a function call; reformat it as such. The only
2681 -- exception is a call to a parameterless function that returns an
2682 -- array type, or an access type thereof, in which case this will be
2683 -- undone later by Resolve_Call or Resolve_Entry_Call.
2685 procedure Process_Indexed_Component;
2686 -- Prefix in indexed component form is actually an indexed component.
2687 -- This routine processes it, knowing that the prefix is already
2688 -- resolved.
2690 procedure Process_Indexed_Component_Or_Slice;
2691 -- An indexed component with a single index may designate a slice if
2692 -- the index is a subtype mark. This routine disambiguates these two
2693 -- cases by resolving the prefix to see if it is a subtype mark.
2695 procedure Process_Overloaded_Indexed_Component;
2696 -- If the prefix of an indexed component is overloaded, the proper
2697 -- interpretation is selected by the index types and the context.
2699 ---------------------------
2700 -- Process_Function_Call --
2701 ---------------------------
2703 procedure Process_Function_Call is
2704 Loc : constant Source_Ptr := Sloc (N);
2705 Actual : Node_Id;
2707 begin
2708 Change_Node (N, N_Function_Call);
2709 Set_Name (N, P);
2710 Set_Parameter_Associations (N, Exprs);
2712 -- Analyze actuals prior to analyzing the call itself
2714 Actual := First (Parameter_Associations (N));
2715 while Present (Actual) loop
2716 Analyze (Actual);
2717 Check_Parameterless_Call (Actual);
2719 -- Move to next actual. Note that we use Next, not Next_Actual
2720 -- here. The reason for this is a bit subtle. If a function call
2721 -- includes named associations, the parser recognizes the node
2722 -- as a call, and it is analyzed as such. If all associations are
2723 -- positional, the parser builds an indexed_component node, and
2724 -- it is only after analysis of the prefix that the construct
2725 -- is recognized as a call, in which case Process_Function_Call
2726 -- rewrites the node and analyzes the actuals. If the list of
2727 -- actuals is malformed, the parser may leave the node as an
2728 -- indexed component (despite the presence of named associations).
2729 -- The iterator Next_Actual is equivalent to Next if the list is
2730 -- positional, but follows the normalized chain of actuals when
2731 -- named associations are present. In this case normalization has
2732 -- not taken place, and actuals remain unanalyzed, which leads to
2733 -- subsequent crashes or loops if there is an attempt to continue
2734 -- analysis of the program.
2736 -- IF there is a single actual and it is a type name, the node
2737 -- can only be interpreted as a slice of a parameterless call.
2738 -- Rebuild the node as such and analyze.
2740 if No (Next (Actual))
2741 and then Is_Entity_Name (Actual)
2742 and then Is_Type (Entity (Actual))
2743 and then Is_Discrete_Type (Entity (Actual))
2744 and then not Is_Current_Instance (Actual)
2745 then
2746 Replace (N,
2747 Make_Slice (Loc,
2748 Prefix => P,
2749 Discrete_Range =>
2750 New_Occurrence_Of (Entity (Actual), Loc)));
2751 Analyze (N);
2752 return;
2754 else
2755 Next (Actual);
2756 end if;
2757 end loop;
2759 Analyze_Call (N);
2760 end Process_Function_Call;
2762 -------------------------------
2763 -- Process_Indexed_Component --
2764 -------------------------------
2766 procedure Process_Indexed_Component is
2767 Exp : Node_Id;
2768 Array_Type : Entity_Id;
2769 Index : Node_Id;
2770 Pent : Entity_Id := Empty;
2772 begin
2773 Exp := First (Exprs);
2775 if Is_Overloaded (P) then
2776 Process_Overloaded_Indexed_Component;
2778 else
2779 Array_Type := Etype (P);
2781 if Is_Entity_Name (P) then
2782 Pent := Entity (P);
2783 elsif Nkind (P) = N_Selected_Component
2784 and then Is_Entity_Name (Selector_Name (P))
2785 then
2786 Pent := Entity (Selector_Name (P));
2787 end if;
2789 -- Prefix must be appropriate for an array type, taking into
2790 -- account a possible implicit dereference.
2792 if Is_Access_Type (Array_Type) then
2793 Error_Msg_NW
2794 (Warn_On_Dereference, "?d?implicit dereference", N);
2795 Array_Type := Implicitly_Designated_Type (Array_Type);
2796 end if;
2798 if Is_Array_Type (Array_Type) then
2800 -- In order to correctly access First_Index component later,
2801 -- replace string literal subtype by its parent type.
2803 if Ekind (Array_Type) = E_String_Literal_Subtype then
2804 Array_Type := Etype (Array_Type);
2805 end if;
2807 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2808 Analyze (Exp);
2809 Set_Etype (N, Any_Type);
2811 if not Has_Compatible_Type (Exp, Entry_Index_Type (Pent)) then
2812 Error_Msg_N ("invalid index type in entry name", N);
2814 elsif Present (Next (Exp)) then
2815 Error_Msg_N ("too many subscripts in entry reference", N);
2817 else
2818 Set_Etype (N, Etype (P));
2819 end if;
2821 return;
2823 elsif Is_Record_Type (Array_Type)
2824 and then Remote_AST_I_Dereference (P)
2825 then
2826 return;
2828 elsif Try_Container_Indexing (N, P, Exprs) then
2829 return;
2831 elsif Array_Type = Any_Type then
2832 Set_Etype (N, Any_Type);
2834 -- In most cases the analysis of the prefix will have emitted
2835 -- an error already, but if the prefix may be interpreted as a
2836 -- call in prefixed notation, the report is left to the caller.
2837 -- To prevent cascaded errors, report only if no previous ones.
2839 if Serious_Errors_Detected = 0 then
2840 Error_Msg_N ("invalid prefix in indexed component", P);
2842 if Nkind (P) = N_Expanded_Name then
2843 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2844 end if;
2845 end if;
2847 return;
2849 -- Here we definitely have a bad indexing
2851 else
2852 if Nkind (Parent (N)) = N_Requeue_Statement
2853 and then Present (Pent) and then Ekind (Pent) = E_Entry
2854 then
2855 Error_Msg_N
2856 ("REQUEUE does not permit parameters", First (Exprs));
2858 elsif Is_Entity_Name (P)
2859 and then Etype (P) = Standard_Void_Type
2860 then
2861 Error_Msg_NE ("incorrect use of &", P, Entity (P));
2863 else
2864 Error_Msg_N ("array type required in indexed component", P);
2865 end if;
2867 Set_Etype (N, Any_Type);
2868 return;
2869 end if;
2871 Index := First_Index (Array_Type);
2872 while Present (Index) and then Present (Exp) loop
2873 if not Has_Compatible_Type (Exp, Etype (Index)) then
2874 Wrong_Type (Exp, Etype (Index));
2875 Set_Etype (N, Any_Type);
2876 return;
2877 end if;
2879 Next_Index (Index);
2880 Next (Exp);
2881 end loop;
2883 Set_Etype (N, Component_Type (Array_Type));
2884 Check_Implicit_Dereference (N, Etype (N));
2886 if Present (Index) then
2887 Error_Msg_N
2888 ("too few subscripts in array reference", First (Exprs));
2890 elsif Present (Exp) then
2891 Error_Msg_N ("too many subscripts in array reference", Exp);
2892 end if;
2893 end if;
2894 end Process_Indexed_Component;
2896 ----------------------------------------
2897 -- Process_Indexed_Component_Or_Slice --
2898 ----------------------------------------
2900 procedure Process_Indexed_Component_Or_Slice is
2901 begin
2902 Exp := First (Exprs);
2903 while Present (Exp) loop
2904 Analyze_Expression (Exp);
2905 Next (Exp);
2906 end loop;
2908 Exp := First (Exprs);
2910 -- If one index is present, and it is a subtype name, then the node
2911 -- denotes a slice (note that the case of an explicit range for a
2912 -- slice was already built as an N_Slice node in the first place,
2913 -- so that case is not handled here).
2915 -- We use a replace rather than a rewrite here because this is one
2916 -- of the cases in which the tree built by the parser is plain wrong.
2918 if No (Next (Exp))
2919 and then Is_Entity_Name (Exp)
2920 and then Is_Type (Entity (Exp))
2921 then
2922 Replace (N,
2923 Make_Slice (Sloc (N),
2924 Prefix => P,
2925 Discrete_Range => New_Copy (Exp)));
2926 Analyze (N);
2928 -- Otherwise (more than one index present, or single index is not
2929 -- a subtype name), then we have the indexed component case.
2931 else
2932 Process_Indexed_Component;
2933 end if;
2934 end Process_Indexed_Component_Or_Slice;
2936 ------------------------------------------
2937 -- Process_Overloaded_Indexed_Component --
2938 ------------------------------------------
2940 procedure Process_Overloaded_Indexed_Component is
2941 Exp : Node_Id;
2942 I : Interp_Index;
2943 It : Interp;
2944 Typ : Entity_Id;
2945 Index : Node_Id;
2946 Found : Boolean;
2948 begin
2949 Set_Etype (N, Any_Type);
2951 Get_First_Interp (P, I, It);
2952 while Present (It.Nam) loop
2953 Typ := It.Typ;
2955 if Is_Access_Type (Typ) then
2956 Typ := Designated_Type (Typ);
2957 Error_Msg_NW
2958 (Warn_On_Dereference, "?d?implicit dereference", N);
2959 end if;
2961 if Is_Array_Type (Typ) then
2963 -- Got a candidate: verify that index types are compatible
2965 Index := First_Index (Typ);
2966 Found := True;
2967 Exp := First (Exprs);
2968 while Present (Index) and then Present (Exp) loop
2969 if Has_Compatible_Type (Exp, Etype (Index)) then
2970 null;
2971 else
2972 Found := False;
2973 Remove_Interp (I);
2974 exit;
2975 end if;
2977 Next_Index (Index);
2978 Next (Exp);
2979 end loop;
2981 if Found and then No (Index) and then No (Exp) then
2982 declare
2983 CT : constant Entity_Id :=
2984 Base_Type (Component_Type (Typ));
2985 begin
2986 Add_One_Interp (N, CT, CT);
2987 Check_Implicit_Dereference (N, CT);
2988 end;
2989 end if;
2991 elsif Try_Container_Indexing (N, P, Exprs) then
2992 return;
2994 end if;
2996 Get_Next_Interp (I, It);
2997 end loop;
2999 if Etype (N) = Any_Type then
3000 Error_Msg_N ("no legal interpretation for indexed component", N);
3001 Set_Is_Overloaded (N, False);
3002 end if;
3003 end Process_Overloaded_Indexed_Component;
3005 -- Start of processing for Analyze_Indexed_Component_Form
3007 begin
3008 -- Get name of array, function or type
3010 Analyze (P);
3012 -- If P is an explicit dereference whose prefix is of a remote access-
3013 -- to-subprogram type, then N has already been rewritten as a subprogram
3014 -- call and analyzed.
3016 if Nkind (N) in N_Subprogram_Call then
3017 return;
3019 -- When the prefix is attribute 'Loop_Entry and the sole expression of
3020 -- the indexed component denotes a loop name, the indexed form is turned
3021 -- into an attribute reference.
3023 elsif Nkind (N) = N_Attribute_Reference
3024 and then Attribute_Name (N) = Name_Loop_Entry
3025 then
3026 return;
3027 end if;
3029 pragma Assert (Nkind (N) = N_Indexed_Component);
3031 P_T := Base_Type (Etype (P));
3033 if Is_Entity_Name (P) and then Present (Entity (P)) then
3034 U_N := Entity (P);
3036 if Is_Type (U_N) then
3038 -- Reformat node as a type conversion
3040 E := Remove_Head (Exprs);
3042 if Present (First (Exprs)) then
3043 Error_Msg_N
3044 ("argument of type conversion must be single expression", N);
3045 end if;
3047 Change_Node (N, N_Type_Conversion);
3048 Set_Subtype_Mark (N, P);
3049 Set_Etype (N, U_N);
3050 Set_Expression (N, E);
3052 -- After changing the node, call for the specific Analysis
3053 -- routine directly, to avoid a double call to the expander.
3055 Analyze_Type_Conversion (N);
3056 return;
3057 end if;
3059 if Is_Overloadable (U_N) then
3060 Process_Function_Call;
3062 elsif Ekind (Etype (P)) = E_Subprogram_Type
3063 or else (Is_Access_Type (Etype (P))
3064 and then
3065 Ekind (Designated_Type (Etype (P))) =
3066 E_Subprogram_Type)
3067 then
3068 -- Call to access_to-subprogram with possible implicit dereference
3070 Process_Function_Call;
3072 elsif Is_Generic_Subprogram (U_N) then
3074 -- A common beginner's (or C++ templates fan) error
3076 Error_Msg_N ("generic subprogram cannot be called", N);
3077 Set_Etype (N, Any_Type);
3078 return;
3080 else
3081 Process_Indexed_Component_Or_Slice;
3082 end if;
3084 -- If not an entity name, prefix is an expression that may denote
3085 -- an array or an access-to-subprogram.
3087 else
3088 if Ekind (P_T) = E_Subprogram_Type
3089 or else (Is_Access_Type (P_T)
3090 and then
3091 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
3092 then
3093 Process_Function_Call;
3095 elsif Nkind (P) = N_Selected_Component
3096 and then Present (Entity (Selector_Name (P)))
3097 and then Is_Overloadable (Entity (Selector_Name (P)))
3098 then
3099 Process_Function_Call;
3100 else
3101 -- Indexed component, slice, or a call to a member of a family
3102 -- entry, which will be converted to an entry call later.
3104 Process_Indexed_Component_Or_Slice;
3105 end if;
3106 end if;
3108 Analyze_Dimension (N);
3109 end Analyze_Indexed_Component_Form;
3111 ------------------------
3112 -- Analyze_Logical_Op --
3113 ------------------------
3115 procedure Analyze_Logical_Op (N : Node_Id) is
3116 L : constant Node_Id := Left_Opnd (N);
3117 R : constant Node_Id := Right_Opnd (N);
3119 Op_Id : Entity_Id;
3121 begin
3122 Set_Etype (N, Any_Type);
3123 Candidate_Type := Empty;
3125 Analyze_Expression (L);
3126 Analyze_Expression (R);
3128 -- If the entity is already set, the node is the instantiation of a
3129 -- generic node with a non-local reference, or was manufactured by a
3130 -- call to Make_Op_xxx. In either case the entity is known to be valid,
3131 -- and we do not need to collect interpretations, instead we just get
3132 -- the single possible interpretation.
3134 if Present (Entity (N)) then
3135 Op_Id := Entity (N);
3137 if Ekind (Op_Id) = E_Operator then
3138 Find_Boolean_Types (L, R, Op_Id, N);
3139 else
3140 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3141 end if;
3143 -- Entity is not already set, so we do need to collect interpretations
3145 else
3146 Op_Id := Get_Name_Entity_Id (Chars (N));
3147 while Present (Op_Id) loop
3148 if Ekind (Op_Id) = E_Operator then
3149 Find_Boolean_Types (L, R, Op_Id, N);
3150 else
3151 Analyze_User_Defined_Binary_Op (N, Op_Id);
3152 end if;
3154 Op_Id := Homonym (Op_Id);
3155 end loop;
3156 end if;
3158 Operator_Check (N);
3159 Check_Function_Writable_Actuals (N);
3161 if Style_Check then
3162 if Nkind (L) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
3163 and then Is_Boolean_Type (Etype (L))
3164 then
3165 Check_Xtra_Parens_Precedence (L);
3166 end if;
3168 if Nkind (R) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
3169 and then Is_Boolean_Type (Etype (R))
3170 then
3171 Check_Xtra_Parens_Precedence (R);
3172 end if;
3173 end if;
3174 end Analyze_Logical_Op;
3176 ---------------------------
3177 -- Analyze_Membership_Op --
3178 ---------------------------
3180 procedure Analyze_Membership_Op (N : Node_Id) is
3181 Loc : constant Source_Ptr := Sloc (N);
3182 L : constant Node_Id := Left_Opnd (N);
3183 R : constant Node_Id := Right_Opnd (N);
3185 procedure Analyze_Set_Membership;
3186 -- If a set of alternatives is present, analyze each and find the
3187 -- common type to which they must all resolve.
3189 function Find_Interp return Boolean;
3190 -- Find a valid interpretation of the test. Note that the context of the
3191 -- operation plays no role in resolving the operands, so that if there
3192 -- is more than one interpretation of the operands that is compatible
3193 -- with the test, the operation is ambiguous.
3195 function Try_Left_Interp (T : Entity_Id) return Boolean;
3196 -- Try an interpretation of the left operand with type T. Return true if
3197 -- one interpretation (at least) of the right operand making up a valid
3198 -- operand pair exists, otherwise false if no such pair exists.
3200 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean;
3201 -- Return true if T1 and T2 constitute a valid pair of operand types for
3202 -- L and R respectively.
3204 ----------------------------
3205 -- Analyze_Set_Membership --
3206 ----------------------------
3208 procedure Analyze_Set_Membership is
3209 Alt : Node_Id;
3210 Index : Interp_Index;
3211 It : Interp;
3212 Candidate_Interps : Node_Id;
3213 Common_Type : Entity_Id := Empty;
3215 begin
3216 Analyze (L);
3217 Candidate_Interps := L;
3219 if not Is_Overloaded (L) then
3220 Common_Type := Etype (L);
3222 Alt := First (Alternatives (N));
3223 while Present (Alt) loop
3224 Analyze (Alt);
3226 if not Has_Compatible_Type (Alt, Common_Type) then
3227 Wrong_Type (Alt, Common_Type);
3228 end if;
3230 Next (Alt);
3231 end loop;
3233 else
3234 Alt := First (Alternatives (N));
3235 while Present (Alt) loop
3236 Analyze (Alt);
3237 if not Is_Overloaded (Alt) then
3238 Common_Type := Etype (Alt);
3240 else
3241 Get_First_Interp (Alt, Index, It);
3242 while Present (It.Typ) loop
3243 if not
3244 Has_Compatible_Type (Candidate_Interps, It.Typ)
3245 then
3246 Remove_Interp (Index);
3247 end if;
3249 Get_Next_Interp (Index, It);
3250 end loop;
3252 Get_First_Interp (Alt, Index, It);
3254 if No (It.Typ) then
3255 Error_Msg_N ("alternative has no legal type", Alt);
3256 return;
3257 end if;
3259 -- If alternative is not overloaded, we have a unique type
3260 -- for all of them.
3262 Set_Etype (Alt, It.Typ);
3264 -- If the alternative is an enumeration literal, use the one
3265 -- for this interpretation.
3267 if Is_Entity_Name (Alt) then
3268 Set_Entity (Alt, It.Nam);
3269 end if;
3271 Get_Next_Interp (Index, It);
3273 if No (It.Typ) then
3274 Set_Is_Overloaded (Alt, False);
3275 Common_Type := Etype (Alt);
3276 end if;
3278 Candidate_Interps := Alt;
3279 end if;
3281 Next (Alt);
3282 end loop;
3283 end if;
3285 if Present (Common_Type) then
3286 Set_Etype (L, Common_Type);
3288 -- The left operand may still be overloaded, to be resolved using
3289 -- the Common_Type.
3291 else
3292 Error_Msg_N ("cannot resolve membership operation", N);
3293 end if;
3294 end Analyze_Set_Membership;
3296 -----------------
3297 -- Find_Interp --
3298 -----------------
3300 function Find_Interp return Boolean is
3301 Found : Boolean;
3302 I : Interp_Index;
3303 It : Interp;
3304 L_Typ : Entity_Id;
3305 Valid_I : Interp_Index;
3307 begin
3308 -- Loop through the interpretations of the left operand
3310 if not Is_Overloaded (L) then
3311 Found := Try_Left_Interp (Etype (L));
3313 else
3314 Found := False;
3315 L_Typ := Empty;
3316 Valid_I := 0;
3318 Get_First_Interp (L, I, It);
3319 while Present (It.Typ) loop
3320 if Try_Left_Interp (It.Typ) then
3321 -- If several interpretations are possible, disambiguate
3323 if Present (L_Typ)
3324 and then Base_Type (It.Typ) /= Base_Type (L_Typ)
3325 then
3326 It := Disambiguate (L, Valid_I, I, Any_Type);
3328 if It = No_Interp then
3329 Ambiguous_Operands (N);
3330 Set_Etype (L, Any_Type);
3331 return True;
3332 end if;
3334 else
3335 Valid_I := I;
3336 end if;
3338 L_Typ := It.Typ;
3339 Set_Etype (L, L_Typ);
3340 Found := True;
3341 end if;
3343 Get_Next_Interp (I, It);
3344 end loop;
3345 end if;
3347 return Found;
3348 end Find_Interp;
3350 ---------------------
3351 -- Try_Left_Interp --
3352 ---------------------
3354 function Try_Left_Interp (T : Entity_Id) return Boolean is
3355 Found : Boolean;
3356 I : Interp_Index;
3357 It : Interp;
3358 R_Typ : Entity_Id;
3359 Valid_I : Interp_Index;
3361 begin
3362 -- Defend against previous error
3364 if Nkind (R) = N_Error then
3365 Found := False;
3367 -- Loop through the interpretations of the right operand
3369 elsif not Is_Overloaded (R) then
3370 Found := Is_Valid_Pair (T, Etype (R));
3372 else
3373 Found := False;
3374 R_Typ := Empty;
3375 Valid_I := 0;
3377 Get_First_Interp (R, I, It);
3378 while Present (It.Typ) loop
3379 if Is_Valid_Pair (T, It.Typ) then
3380 -- If several interpretations are possible, disambiguate
3382 if Present (R_Typ)
3383 and then Base_Type (It.Typ) /= Base_Type (R_Typ)
3384 then
3385 It := Disambiguate (R, Valid_I, I, Any_Type);
3387 if It = No_Interp then
3388 Ambiguous_Operands (N);
3389 Set_Etype (R, Any_Type);
3390 return True;
3391 end if;
3393 else
3394 Valid_I := I;
3395 end if;
3397 R_Typ := It.Typ;
3398 Found := True;
3399 end if;
3401 Get_Next_Interp (I, It);
3402 end loop;
3403 end if;
3405 return Found;
3406 end Try_Left_Interp;
3408 -------------------
3409 -- Is_Valid_Pair --
3410 -------------------
3412 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean is
3413 begin
3414 return Covers (T1 => T1, T2 => T2)
3415 or else Covers (T1 => T2, T2 => T1)
3416 or else Is_User_Defined_Literal (L, T2)
3417 or else Is_User_Defined_Literal (R, T1);
3418 end Is_Valid_Pair;
3420 -- Local variables
3422 Dummy : Boolean;
3423 Op : Node_Id;
3425 -- Start of processing for Analyze_Membership_Op
3427 begin
3428 Analyze_Expression (L);
3430 if No (R) then
3431 pragma Assert (Ada_Version >= Ada_2012);
3433 Analyze_Set_Membership;
3435 declare
3436 Alt : Node_Id;
3437 begin
3438 Alt := First (Alternatives (N));
3439 while Present (Alt) loop
3440 if Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)) then
3441 Check_Fully_Declared (Entity (Alt), Alt);
3443 if Has_Ghost_Predicate_Aspect (Entity (Alt)) then
3444 Error_Msg_NE
3445 ("subtype& has ghost predicate, "
3446 & "not allowed in membership test",
3447 Alt, Entity (Alt));
3448 end if;
3449 end if;
3451 Next (Alt);
3452 end loop;
3453 end;
3455 elsif Nkind (R) = N_Range
3456 or else (Nkind (R) = N_Attribute_Reference
3457 and then Attribute_Name (R) = Name_Range)
3458 then
3459 Analyze_Expression (R);
3461 Dummy := Find_Interp;
3463 -- If not a range, it can be a subtype mark, or else it is a degenerate
3464 -- membership test with a singleton value, i.e. a test for equality,
3465 -- if the types are compatible.
3467 else
3468 Analyze_Expression (R);
3470 if Is_Entity_Name (R) and then Is_Type (Entity (R)) then
3471 Find_Type (R);
3472 Check_Fully_Declared (Entity (R), R);
3474 if Has_Ghost_Predicate_Aspect (Entity (R)) then
3475 Error_Msg_NE
3476 ("subtype& has ghost predicate, "
3477 & "not allowed in membership test",
3478 R, Entity (R));
3479 end if;
3481 elsif Ada_Version >= Ada_2012 and then Find_Interp then
3482 Op := Make_Op_Eq (Loc, Left_Opnd => L, Right_Opnd => R);
3483 Resolve_Membership_Equality (Op, Etype (L));
3485 if Nkind (N) = N_Not_In then
3486 Op := Make_Op_Not (Loc, Op);
3487 end if;
3489 Rewrite (N, Op);
3490 Analyze (N);
3491 return;
3493 else
3494 -- In all versions of the language, if we reach this point there
3495 -- is a previous error that will be diagnosed below.
3497 Find_Type (R);
3498 end if;
3499 end if;
3501 -- Compatibility between expression and subtype mark or range is
3502 -- checked during resolution. The result of the operation is Boolean
3503 -- in any case.
3505 Set_Etype (N, Standard_Boolean);
3507 if Comes_From_Source (N)
3508 and then Present (Right_Opnd (N))
3509 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
3510 then
3511 Error_Msg_N ("membership test not applicable to cpp-class types", N);
3512 end if;
3514 Check_Function_Writable_Actuals (N);
3515 end Analyze_Membership_Op;
3517 -----------------
3518 -- Analyze_Mod --
3519 -----------------
3521 procedure Analyze_Mod (N : Node_Id) is
3522 begin
3523 -- A special warning check, if we have an expression of the form:
3524 -- expr mod 2 * literal
3525 -- where literal is 128 or less, then probably what was meant was
3526 -- expr mod 2 ** literal
3527 -- so issue an appropriate warning.
3529 if Warn_On_Suspicious_Modulus_Value
3530 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
3531 and then Intval (Right_Opnd (N)) = Uint_2
3532 and then Nkind (Parent (N)) = N_Op_Multiply
3533 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
3534 and then Intval (Right_Opnd (Parent (N))) <= Uint_128
3535 then
3536 Error_Msg_N
3537 ("suspicious MOD value, was '*'* intended'??.m?", Parent (N));
3538 end if;
3540 -- Remaining processing is same as for other arithmetic operators
3542 Analyze_Arithmetic_Op (N);
3543 end Analyze_Mod;
3545 ----------------------
3546 -- Analyze_Negation --
3547 ----------------------
3549 procedure Analyze_Negation (N : Node_Id) is
3550 R : constant Node_Id := Right_Opnd (N);
3552 Op_Id : Entity_Id;
3554 begin
3555 Set_Etype (N, Any_Type);
3556 Candidate_Type := Empty;
3558 Analyze_Expression (R);
3560 -- If the entity is already set, the node is the instantiation of a
3561 -- generic node with a non-local reference, or was manufactured by a
3562 -- call to Make_Op_xxx. In either case the entity is known to be valid,
3563 -- and we do not need to collect interpretations, instead we just get
3564 -- the single possible interpretation.
3566 if Present (Entity (N)) then
3567 Op_Id := Entity (N);
3569 if Ekind (Op_Id) = E_Operator then
3570 Find_Negation_Types (R, Op_Id, N);
3571 else
3572 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3573 end if;
3575 else
3576 Op_Id := Get_Name_Entity_Id (Chars (N));
3577 while Present (Op_Id) loop
3578 if Ekind (Op_Id) = E_Operator then
3579 Find_Negation_Types (R, Op_Id, N);
3580 else
3581 Analyze_User_Defined_Unary_Op (N, Op_Id);
3582 end if;
3584 Op_Id := Homonym (Op_Id);
3585 end loop;
3586 end if;
3588 Operator_Check (N);
3589 end Analyze_Negation;
3591 ------------------
3592 -- Analyze_Null --
3593 ------------------
3595 procedure Analyze_Null (N : Node_Id) is
3596 begin
3597 Set_Etype (N, Universal_Access);
3598 end Analyze_Null;
3600 ----------------------
3601 -- Analyze_One_Call --
3602 ----------------------
3604 procedure Analyze_One_Call
3605 (N : Node_Id;
3606 Nam : Entity_Id;
3607 Report : Boolean;
3608 Success : out Boolean;
3609 Skip_First : Boolean := False)
3611 Actuals : constant List_Id := Parameter_Associations (N);
3612 Prev_T : constant Entity_Id := Etype (N);
3614 -- Recognize cases of prefixed calls that have been rewritten in
3615 -- various ways. The simplest case is a rewritten selected component,
3616 -- but it can also be an already-examined indexed component, or a
3617 -- prefix that is itself a rewritten prefixed call that is in turn
3618 -- an indexed call (the syntactic ambiguity involving the indexing of
3619 -- a function with defaulted parameters that returns an array).
3620 -- A flag Maybe_Indexed_Call might be useful here ???
3622 Must_Skip : constant Boolean := Skip_First
3623 or else Nkind (Original_Node (N)) = N_Selected_Component
3624 or else
3625 (Nkind (Original_Node (N)) = N_Indexed_Component
3626 and then Nkind (Prefix (Original_Node (N))) =
3627 N_Selected_Component)
3628 or else
3629 (Nkind (Parent (N)) = N_Function_Call
3630 and then Is_Array_Type (Etype (Name (N)))
3631 and then Etype (Original_Node (N)) =
3632 Component_Type (Etype (Name (N)))
3633 and then Nkind (Original_Node (Parent (N))) =
3634 N_Selected_Component);
3636 -- The first formal must be omitted from the match when trying to find
3637 -- a primitive operation that is a possible interpretation, and also
3638 -- after the call has been rewritten, because the corresponding actual
3639 -- is already known to be compatible, and because this may be an
3640 -- indexing of a call with default parameters.
3642 First_Form : Entity_Id;
3643 Formal : Entity_Id;
3644 Actual : Node_Id;
3645 Is_Indexed : Boolean := False;
3646 Is_Indirect : Boolean := False;
3647 Subp_Type : constant Entity_Id := Etype (Nam);
3648 Norm_OK : Boolean;
3650 function Compatible_Types_In_Predicate
3651 (T1 : Entity_Id;
3652 T2 : Entity_Id) return Boolean;
3653 -- For an Ada 2012 predicate or invariant, a call may mention an
3654 -- incomplete type, while resolution of the corresponding predicate
3655 -- function may see the full view, as a consequence of the delayed
3656 -- resolution of the corresponding expressions. This may occur in
3657 -- the body of a predicate function, or in a call to such. Anomalies
3658 -- involving private and full views can also happen. In each case,
3659 -- rewrite node or add conversions to remove spurious type errors.
3661 procedure Indicate_Name_And_Type;
3662 -- If candidate interpretation matches, indicate name and type of result
3663 -- on call node.
3665 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
3666 -- There may be a user-defined operator that hides the current
3667 -- interpretation. We must check for this independently of the
3668 -- analysis of the call with the user-defined operation, because
3669 -- the parameter names may be wrong and yet the hiding takes place.
3670 -- This fixes a problem with ACATS test B34014O.
3672 -- When the type Address is a visible integer type, and the DEC
3673 -- system extension is visible, the predefined operator may be
3674 -- hidden as well, by one of the address operations in auxdec.
3675 -- Finally, the abstract operations on address do not hide the
3676 -- predefined operator (this is the purpose of making them abstract).
3678 -----------------------------------
3679 -- Compatible_Types_In_Predicate --
3680 -----------------------------------
3682 function Compatible_Types_In_Predicate
3683 (T1 : Entity_Id;
3684 T2 : Entity_Id) return Boolean
3686 function Common_Type (T : Entity_Id) return Entity_Id;
3687 -- Find non-private underlying full view if any, without going to
3688 -- ancestor type (as opposed to Underlying_Type).
3690 -----------------
3691 -- Common_Type --
3692 -----------------
3694 function Common_Type (T : Entity_Id) return Entity_Id is
3695 CT : Entity_Id;
3697 begin
3698 CT := T;
3700 if Is_Private_Type (CT) and then Present (Full_View (CT)) then
3701 CT := Full_View (CT);
3702 end if;
3704 if Is_Private_Type (CT)
3705 and then Present (Underlying_Full_View (CT))
3706 then
3707 CT := Underlying_Full_View (CT);
3708 end if;
3710 return Base_Type (CT);
3711 end Common_Type;
3713 -- Start of processing for Compatible_Types_In_Predicate
3715 begin
3716 if (Ekind (Current_Scope) = E_Function
3717 and then Is_Predicate_Function (Current_Scope))
3718 or else
3719 (Ekind (Nam) = E_Function
3720 and then Is_Predicate_Function (Nam))
3721 then
3722 if Is_Incomplete_Type (T1)
3723 and then Present (Full_View (T1))
3724 and then Full_View (T1) = T2
3725 then
3726 Set_Etype (Formal, Etype (Actual));
3727 return True;
3729 elsif Common_Type (T1) = Common_Type (T2) then
3730 Rewrite (Actual, Unchecked_Convert_To (Etype (Formal), Actual));
3731 return True;
3733 else
3734 return False;
3735 end if;
3737 else
3738 return False;
3739 end if;
3740 end Compatible_Types_In_Predicate;
3742 ----------------------------
3743 -- Indicate_Name_And_Type --
3744 ----------------------------
3746 procedure Indicate_Name_And_Type is
3747 begin
3748 Add_One_Interp (N, Nam, Etype (Nam));
3749 Check_Implicit_Dereference (N, Etype (Nam));
3750 Success := True;
3752 -- If the prefix of the call is a name, indicate the entity
3753 -- being called. If it is not a name, it is an expression that
3754 -- denotes an access to subprogram or else an entry or family. In
3755 -- the latter case, the name is a selected component, and the entity
3756 -- being called is noted on the selector.
3758 if not Is_Type (Nam) then
3759 if Is_Entity_Name (Name (N)) then
3760 Set_Entity (Name (N), Nam);
3761 Set_Etype (Name (N), Etype (Nam));
3763 elsif Nkind (Name (N)) = N_Selected_Component then
3764 Set_Entity (Selector_Name (Name (N)), Nam);
3765 end if;
3766 end if;
3768 if Debug_Flag_E and not Report then
3769 Write_Str (" Overloaded call ");
3770 Write_Int (Int (N));
3771 Write_Str (" compatible with ");
3772 Write_Int (Int (Nam));
3773 Write_Eol;
3774 end if;
3775 end Indicate_Name_And_Type;
3777 ------------------------
3778 -- Operator_Hidden_By --
3779 ------------------------
3781 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3782 Act1 : constant Node_Id := First_Actual (N);
3783 Act2 : constant Node_Id := Next_Actual (Act1);
3784 Form1 : constant Entity_Id := First_Formal (Fun);
3785 Form2 : constant Entity_Id := Next_Formal (Form1);
3787 begin
3788 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
3789 return False;
3791 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3792 return False;
3794 elsif Present (Form2) then
3795 if No (Act2)
3796 or else not Has_Compatible_Type (Act2, Etype (Form2))
3797 then
3798 return False;
3799 end if;
3801 elsif Present (Act2) then
3802 return False;
3803 end if;
3805 -- Now we know that the arity of the operator matches the function,
3806 -- and the function call is a valid interpretation. The function
3807 -- hides the operator if it has the right signature, or if one of
3808 -- its operands is a non-abstract operation on Address when this is
3809 -- a visible integer type.
3811 return Hides_Op (Fun, Nam)
3812 or else Is_Descendant_Of_Address (Etype (Form1))
3813 or else
3814 (Present (Form2)
3815 and then Is_Descendant_Of_Address (Etype (Form2)));
3816 end Operator_Hidden_By;
3818 -- Start of processing for Analyze_One_Call
3820 begin
3821 Success := False;
3823 -- If the subprogram has no formals or if all the formals have defaults,
3824 -- and the return type is an array type, the node may denote an indexing
3825 -- of the result of a parameterless call. In Ada 2005, the subprogram
3826 -- may have one non-defaulted formal, and the call may have been written
3827 -- in prefix notation, so that the rebuilt parameter list has more than
3828 -- one actual.
3830 if not Is_Overloadable (Nam)
3831 and then Ekind (Nam) /= E_Subprogram_Type
3832 and then Ekind (Nam) /= E_Entry_Family
3833 then
3834 return;
3835 end if;
3837 -- An indexing requires at least one actual. The name of the call cannot
3838 -- be an implicit indirect call, so it cannot be a generated explicit
3839 -- dereference.
3841 if not Is_Empty_List (Actuals)
3842 and then
3843 (Needs_No_Actuals (Nam)
3844 or else
3845 (Needs_One_Actual (Nam)
3846 and then Present (Next_Actual (First (Actuals)))))
3847 then
3848 if Is_Array_Type (Subp_Type)
3849 and then
3850 (Nkind (Name (N)) /= N_Explicit_Dereference
3851 or else Comes_From_Source (Name (N)))
3852 then
3853 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3855 elsif Is_Access_Type (Subp_Type)
3856 and then Is_Array_Type (Designated_Type (Subp_Type))
3857 then
3858 Is_Indexed :=
3859 Try_Indexed_Call
3860 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3862 -- The prefix can also be a parameterless function that returns an
3863 -- access to subprogram, in which case this is an indirect call.
3864 -- If this succeeds, an explicit dereference is added later on,
3865 -- in Analyze_Call or Resolve_Call.
3867 elsif Is_Access_Type (Subp_Type)
3868 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3869 then
3870 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3871 end if;
3873 end if;
3875 -- If the call has been transformed into a slice, it is of the form
3876 -- F (Subtype) where F is parameterless. The node has been rewritten in
3877 -- Try_Indexed_Call and there is nothing else to do.
3879 if Is_Indexed
3880 and then Nkind (N) = N_Slice
3881 then
3882 return;
3883 end if;
3885 Normalize_Actuals
3886 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3888 if not Norm_OK then
3890 -- If an indirect call is a possible interpretation, indicate
3891 -- success to the caller. This may be an indexing of an explicit
3892 -- dereference of a call that returns an access type (see above).
3894 if Is_Indirect
3895 or else (Is_Indexed
3896 and then Nkind (Name (N)) = N_Explicit_Dereference
3897 and then Comes_From_Source (Name (N)))
3898 then
3899 Success := True;
3900 return;
3902 -- Mismatch in number or names of parameters
3904 elsif Debug_Flag_E then
3905 Write_Str (" normalization fails in call ");
3906 Write_Int (Int (N));
3907 Write_Str (" with subprogram ");
3908 Write_Int (Int (Nam));
3909 Write_Eol;
3910 end if;
3912 -- If the context expects a function call, discard any interpretation
3913 -- that is a procedure. If the node is not overloaded, leave as is for
3914 -- better error reporting when type mismatch is found.
3916 elsif Nkind (N) = N_Function_Call
3917 and then Is_Overloaded (Name (N))
3918 and then Ekind (Nam) = E_Procedure
3919 then
3920 return;
3922 -- Ditto for function calls in a procedure context
3924 elsif Nkind (N) = N_Procedure_Call_Statement
3925 and then Is_Overloaded (Name (N))
3926 and then Etype (Nam) /= Standard_Void_Type
3927 then
3928 return;
3930 elsif No (Actuals) then
3932 -- If Normalize succeeds, then there are default parameters for
3933 -- all formals.
3935 Indicate_Name_And_Type;
3937 elsif Ekind (Nam) = E_Operator then
3938 if Nkind (N) = N_Procedure_Call_Statement then
3939 return;
3940 end if;
3942 -- This occurs when the prefix of the call is an operator name
3943 -- or an expanded name whose selector is an operator name.
3945 Analyze_Operator_Call (N, Nam);
3947 if Etype (N) /= Prev_T then
3949 -- Check that operator is not hidden by a function interpretation
3951 if Is_Overloaded (Name (N)) then
3952 declare
3953 I : Interp_Index;
3954 It : Interp;
3956 begin
3957 Get_First_Interp (Name (N), I, It);
3958 while Present (It.Nam) loop
3959 if Operator_Hidden_By (It.Nam) then
3960 Set_Etype (N, Prev_T);
3961 return;
3962 end if;
3964 Get_Next_Interp (I, It);
3965 end loop;
3966 end;
3967 end if;
3969 -- If operator matches formals, record its name on the call.
3970 -- If the operator is overloaded, Resolve will select the
3971 -- correct one from the list of interpretations. The call
3972 -- node itself carries the first candidate.
3974 Set_Entity (Name (N), Nam);
3975 Success := True;
3977 elsif Report and then Etype (N) = Any_Type then
3978 Error_Msg_N ("incompatible arguments for operator", N);
3979 end if;
3981 else
3982 -- Normalize_Actuals has chained the named associations in the
3983 -- correct order of the formals.
3985 Actual := First_Actual (N);
3986 Formal := First_Formal (Nam);
3987 First_Form := Formal;
3989 -- If we are analyzing a call rewritten from object notation, skip
3990 -- first actual, which may be rewritten later as an explicit
3991 -- dereference.
3993 if Must_Skip then
3994 Next_Actual (Actual);
3995 Next_Formal (Formal);
3996 end if;
3998 while Present (Actual) and then Present (Formal) loop
3999 if Nkind (Parent (Actual)) /= N_Parameter_Association
4000 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
4001 then
4002 -- The actual can be compatible with the formal, but we must
4003 -- also check that the context is not an address type that is
4004 -- visibly an integer type. In this case the use of literals is
4005 -- illegal, except in the body of descendants of system, where
4006 -- arithmetic operations on address are of course used.
4008 if Has_Compatible_Type (Actual, Etype (Formal))
4009 and then
4010 (Etype (Actual) /= Universal_Integer
4011 or else not Is_Descendant_Of_Address (Etype (Formal))
4012 or else In_Predefined_Unit (N))
4013 then
4014 Next_Actual (Actual);
4015 Next_Formal (Formal);
4017 -- In Allow_Integer_Address mode, we allow an actual integer to
4018 -- match a formal address type and vice versa. We only do this
4019 -- if we are certain that an error will otherwise be issued
4021 elsif Address_Integer_Convert_OK
4022 (Etype (Actual), Etype (Formal))
4023 and then (Report and not Is_Indexed and not Is_Indirect)
4024 then
4025 -- Handle this case by introducing an unchecked conversion
4027 Rewrite (Actual,
4028 Unchecked_Convert_To (Etype (Formal),
4029 Relocate_Node (Actual)));
4030 Analyze_And_Resolve (Actual, Etype (Formal));
4031 Next_Actual (Actual);
4032 Next_Formal (Formal);
4034 -- Under relaxed RM semantics silently replace occurrences of
4035 -- null by System.Address_Null. We only do this if we know that
4036 -- an error will otherwise be issued.
4038 elsif Null_To_Null_Address_Convert_OK (Actual, Etype (Formal))
4039 and then (Report and not Is_Indexed and not Is_Indirect)
4040 then
4041 Replace_Null_By_Null_Address (Actual);
4042 Analyze_And_Resolve (Actual, Etype (Formal));
4043 Next_Actual (Actual);
4044 Next_Formal (Formal);
4046 elsif Compatible_Types_In_Predicate
4047 (Etype (Formal), Etype (Actual))
4048 then
4049 Next_Actual (Actual);
4050 Next_Formal (Formal);
4052 -- A current instance used as an actual of a function,
4053 -- whose body has not been seen, may include a formal
4054 -- whose type is an incomplete view of an enclosing
4055 -- type declaration containing the current call (e.g.
4056 -- in the Expression for a component declaration).
4058 -- In this case, update the signature of the subprogram
4059 -- so the formal has the type of the full view.
4061 elsif Inside_Init_Proc
4062 and then Nkind (Actual) = N_Identifier
4063 and then Ekind (Etype (Formal)) = E_Incomplete_Type
4064 and then Etype (Actual) = Full_View (Etype (Formal))
4065 then
4066 Set_Etype (Formal, Etype (Actual));
4067 Next_Actual (Actual);
4068 Next_Formal (Formal);
4070 -- Handle failed type check
4072 else
4073 if Debug_Flag_E then
4074 Write_Str (" type checking fails in call ");
4075 Write_Int (Int (N));
4076 Write_Str (" with formal ");
4077 Write_Int (Int (Formal));
4078 Write_Str (" in subprogram ");
4079 Write_Int (Int (Nam));
4080 Write_Eol;
4081 end if;
4083 -- Comment needed on the following test???
4085 if Report and not Is_Indexed and not Is_Indirect then
4087 -- Ada 2005 (AI-251): Complete the error notification
4088 -- to help new Ada 2005 users.
4090 if Is_Class_Wide_Type (Etype (Formal))
4091 and then Is_Interface (Etype (Etype (Formal)))
4092 and then not Interface_Present_In_Ancestor
4093 (Typ => Etype (Actual),
4094 Iface => Etype (Etype (Formal)))
4095 then
4096 Error_Msg_NE
4097 ("(Ada 2005) does not implement interface }",
4098 Actual, Etype (Etype (Formal)));
4099 end if;
4101 -- If we are going to output a secondary error message
4102 -- below, we need to have Wrong_Type output the main one.
4104 Wrong_Type
4105 (Actual, Etype (Formal), Multiple => All_Errors_Mode);
4107 if Nkind (Actual) = N_Op_Eq
4108 and then Nkind (Left_Opnd (Actual)) = N_Identifier
4109 then
4110 Formal := First_Formal (Nam);
4111 while Present (Formal) loop
4112 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4113 Error_Msg_N -- CODEFIX
4114 ("possible misspelling of `='>`!", Actual);
4115 exit;
4116 end if;
4118 Next_Formal (Formal);
4119 end loop;
4120 end if;
4122 if All_Errors_Mode then
4123 Error_Msg_Sloc := Sloc (Nam);
4125 if Etype (Formal) = Any_Type then
4126 Error_Msg_N
4127 ("there is no legal actual parameter", Actual);
4128 end if;
4130 if Is_Overloadable (Nam)
4131 and then Present (Alias (Nam))
4132 and then not Comes_From_Source (Nam)
4133 then
4134 Error_Msg_NE
4135 ("\\ =='> in call to inherited operation & #!",
4136 Actual, Nam);
4138 elsif Ekind (Nam) = E_Subprogram_Type then
4139 declare
4140 Access_To_Subprogram_Typ :
4141 constant Entity_Id :=
4142 Defining_Identifier
4143 (Associated_Node_For_Itype (Nam));
4144 begin
4145 Error_Msg_NE
4146 ("\\ =='> in call to dereference of &#!",
4147 Actual, Access_To_Subprogram_Typ);
4148 end;
4150 else
4151 Error_Msg_NE
4152 ("\\ =='> in call to &#!", Actual, Nam);
4154 end if;
4155 end if;
4156 end if;
4158 return;
4159 end if;
4161 else
4162 -- Normalize_Actuals has verified that a default value exists
4163 -- for this formal. Current actual names a subsequent formal.
4165 Next_Formal (Formal);
4166 end if;
4167 end loop;
4169 -- Due to our current model of controlled type expansion we may
4170 -- have resolved a user call to a non-visible controlled primitive
4171 -- since these inherited subprograms may be generated in the current
4172 -- scope. This is a side effect of the need for the expander to be
4173 -- able to resolve internally generated calls.
4175 -- Specifically, the issue appears when predefined controlled
4176 -- operations get called on a type extension whose parent is a
4177 -- private extension completed with a controlled extension - see
4178 -- below:
4180 -- package X is
4181 -- type Par_Typ is tagged private;
4182 -- private
4183 -- type Par_Typ is new Controlled with null record;
4184 -- end;
4185 -- ...
4186 -- procedure Main is
4187 -- type Ext_Typ is new Par_Typ with null record;
4188 -- Obj : Ext_Typ;
4189 -- begin
4190 -- Finalize (Obj); -- Will improperly resolve
4191 -- end;
4193 -- To avoid breaking privacy, Is_Hidden gets set elsewhere on such
4194 -- primitives, but we still need to verify that Nam is indeed a
4195 -- non-visible controlled subprogram. So, we do that here and issue
4196 -- the appropriate error.
4198 if Is_Hidden (Nam)
4199 and then not In_Instance
4200 and then not Comes_From_Source (Nam)
4201 and then Comes_From_Source (N)
4203 -- Verify Nam is a non-visible controlled primitive
4205 and then Chars (Nam) in Name_Adjust
4206 | Name_Finalize
4207 | Name_Initialize
4208 and then Ekind (Nam) = E_Procedure
4209 and then Is_Controlled (Etype (First_Form))
4210 and then No (Next_Formal (First_Form))
4211 and then not Is_Visibly_Controlled (Etype (First_Form))
4212 then
4213 Error_Msg_Node_2 := Etype (First_Form);
4214 Error_Msg_NE ("call to non-visible controlled primitive & on type"
4215 & " &", N, Nam);
4216 end if;
4218 -- On exit, all actuals match
4220 Indicate_Name_And_Type;
4221 end if;
4222 end Analyze_One_Call;
4224 ---------------------------
4225 -- Analyze_Operator_Call --
4226 ---------------------------
4228 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
4229 Op_Name : constant Name_Id := Chars (Op_Id);
4230 Act1 : constant Node_Id := First_Actual (N);
4231 Act2 : constant Node_Id := Next_Actual (Act1);
4233 begin
4234 -- Binary operator case
4236 if Present (Act2) then
4238 -- If more than two operands, then not binary operator after all
4240 if Present (Next_Actual (Act2)) then
4241 return;
4242 end if;
4244 -- Otherwise action depends on operator
4246 case Op_Name is
4247 when Name_Op_Add
4248 | Name_Op_Divide
4249 | Name_Op_Expon
4250 | Name_Op_Mod
4251 | Name_Op_Multiply
4252 | Name_Op_Rem
4253 | Name_Op_Subtract
4255 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
4257 when Name_Op_And
4258 | Name_Op_Or
4259 | Name_Op_Xor
4261 Find_Boolean_Types (Act1, Act2, Op_Id, N);
4263 when Name_Op_Eq
4264 | Name_Op_Ge
4265 | Name_Op_Gt
4266 | Name_Op_Le
4267 | Name_Op_Lt
4268 | Name_Op_Ne
4270 Find_Comparison_Equality_Types (Act1, Act2, Op_Id, N);
4272 when Name_Op_Concat =>
4273 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
4275 -- Is this when others, or should it be an abort???
4277 when others =>
4278 null;
4279 end case;
4281 -- Unary operator case
4283 else
4284 case Op_Name is
4285 when Name_Op_Abs
4286 | Name_Op_Add
4287 | Name_Op_Subtract
4289 Find_Unary_Types (Act1, Op_Id, N);
4291 when Name_Op_Not =>
4292 Find_Negation_Types (Act1, Op_Id, N);
4294 -- Is this when others correct, or should it be an abort???
4296 when others =>
4297 null;
4298 end case;
4299 end if;
4300 end Analyze_Operator_Call;
4302 -------------------------------------------
4303 -- Analyze_Overloaded_Selected_Component --
4304 -------------------------------------------
4306 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
4307 Nam : constant Node_Id := Prefix (N);
4308 Sel : constant Node_Id := Selector_Name (N);
4309 Comp : Entity_Id;
4310 I : Interp_Index;
4311 It : Interp;
4312 T : Entity_Id;
4314 begin
4315 Set_Etype (Sel, Any_Type);
4317 Get_First_Interp (Nam, I, It);
4318 while Present (It.Typ) loop
4319 if Is_Access_Type (It.Typ) then
4320 T := Designated_Type (It.Typ);
4321 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4322 else
4323 T := It.Typ;
4324 end if;
4326 -- Locate the component. For a private prefix the selector can denote
4327 -- a discriminant.
4329 if Is_Record_Type (T) or else Is_Private_Type (T) then
4331 -- If the prefix is a class-wide type, the visible components are
4332 -- those of the base type.
4334 if Is_Class_Wide_Type (T) then
4335 T := Etype (T);
4336 end if;
4338 Comp := First_Entity (T);
4339 while Present (Comp) loop
4340 if Chars (Comp) = Chars (Sel)
4341 and then Is_Visible_Component (Comp, Sel)
4342 then
4344 -- AI05-105: if the context is an object renaming with
4345 -- an anonymous access type, the expected type of the
4346 -- object must be anonymous. This is a name resolution rule.
4348 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
4349 or else No (Access_Definition (Parent (N)))
4350 or else Is_Anonymous_Access_Type (Etype (Comp))
4351 then
4352 Set_Entity (Sel, Comp);
4353 Set_Etype (Sel, Etype (Comp));
4354 Add_One_Interp (N, Etype (Comp), Etype (Comp));
4355 Check_Implicit_Dereference (N, Etype (Comp));
4357 -- This also specifies a candidate to resolve the name.
4358 -- Further overloading will be resolved from context.
4359 -- The selector name itself does not carry overloading
4360 -- information.
4362 Set_Etype (Nam, It.Typ);
4364 else
4365 -- Named access type in the context of a renaming
4366 -- declaration with an access definition. Remove
4367 -- inapplicable candidate.
4369 Remove_Interp (I);
4370 end if;
4371 end if;
4373 Next_Entity (Comp);
4374 end loop;
4376 elsif Is_Concurrent_Type (T) then
4377 Comp := First_Entity (T);
4378 while Present (Comp)
4379 and then Comp /= First_Private_Entity (T)
4380 loop
4381 if Chars (Comp) = Chars (Sel) then
4382 if Is_Overloadable (Comp) then
4383 Add_One_Interp (Sel, Comp, Etype (Comp));
4384 else
4385 Set_Entity_With_Checks (Sel, Comp);
4386 Generate_Reference (Comp, Sel);
4387 end if;
4389 Set_Etype (Sel, Etype (Comp));
4390 Set_Etype (N, Etype (Comp));
4391 Set_Etype (Nam, It.Typ);
4392 end if;
4394 Next_Entity (Comp);
4395 end loop;
4397 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4398 end if;
4400 Get_Next_Interp (I, It);
4401 end loop;
4403 if Etype (N) = Any_Type
4404 and then not Try_Object_Operation (N)
4405 then
4406 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
4407 Set_Entity (Sel, Any_Id);
4408 Set_Etype (Sel, Any_Type);
4409 end if;
4410 end Analyze_Overloaded_Selected_Component;
4412 ----------------------------------
4413 -- Analyze_Qualified_Expression --
4414 ----------------------------------
4416 procedure Analyze_Qualified_Expression (N : Node_Id) is
4417 Expr : constant Node_Id := Expression (N);
4418 Mark : constant Entity_Id := Subtype_Mark (N);
4420 I : Interp_Index;
4421 It : Interp;
4422 T : Entity_Id;
4424 begin
4425 Find_Type (Mark);
4426 T := Entity (Mark);
4428 if Nkind (Enclosing_Declaration (N)) in
4429 N_Formal_Type_Declaration |
4430 N_Full_Type_Declaration |
4431 N_Incomplete_Type_Declaration |
4432 N_Protected_Type_Declaration |
4433 N_Private_Extension_Declaration |
4434 N_Private_Type_Declaration |
4435 N_Subtype_Declaration |
4436 N_Task_Type_Declaration
4437 and then T = Defining_Identifier (Enclosing_Declaration (N))
4438 then
4439 Error_Msg_N ("current instance not allowed", Mark);
4440 T := Any_Type;
4441 end if;
4443 Set_Etype (N, T);
4445 Analyze_Expression (Expr);
4447 if T = Any_Type then
4448 return;
4449 end if;
4451 Check_Fully_Declared (T, N);
4453 -- If expected type is class-wide, check for exact match before
4454 -- expansion, because if the expression is a dispatching call it
4455 -- may be rewritten as explicit dereference with class-wide result.
4456 -- If expression is overloaded, retain only interpretations that
4457 -- will yield exact matches.
4459 if Is_Class_Wide_Type (T) then
4460 if not Is_Overloaded (Expr) then
4461 if Base_Type (Etype (Expr)) /= Base_Type (T)
4462 and then Etype (Expr) /= Raise_Type
4463 then
4464 if Nkind (Expr) = N_Aggregate then
4465 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
4466 else
4467 Wrong_Type (Expr, T);
4468 end if;
4469 end if;
4471 else
4472 Get_First_Interp (Expr, I, It);
4474 while Present (It.Nam) loop
4475 if Base_Type (It.Typ) /= Base_Type (T) then
4476 Remove_Interp (I);
4477 end if;
4479 Get_Next_Interp (I, It);
4480 end loop;
4481 end if;
4482 end if;
4483 end Analyze_Qualified_Expression;
4485 -----------------------------------
4486 -- Analyze_Quantified_Expression --
4487 -----------------------------------
4489 procedure Analyze_Quantified_Expression (N : Node_Id) is
4490 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
4491 -- Return True if the iterator is part of a quantified expression and
4492 -- the range is known to be statically empty.
4494 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
4495 -- Determine whether if expression If_Expr lacks an else part or if it
4496 -- has one, it evaluates to True.
4498 --------------------
4499 -- Is_Empty_Range --
4500 --------------------
4502 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
4503 begin
4504 return Is_Array_Type (Typ)
4505 and then Compile_Time_Known_Bounds (Typ)
4506 and then
4507 Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
4508 Expr_Value (Type_High_Bound (Etype (First_Index (Typ))));
4509 end Is_Empty_Range;
4511 -----------------------------
4512 -- No_Else_Or_Trivial_True --
4513 -----------------------------
4515 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
4516 Else_Expr : constant Node_Id :=
4517 Next (Next (First (Expressions (If_Expr))));
4518 begin
4519 return
4520 No (Else_Expr)
4521 or else (Compile_Time_Known_Value (Else_Expr)
4522 and then Is_True (Expr_Value (Else_Expr)));
4523 end No_Else_Or_Trivial_True;
4525 -- Local variables
4527 Cond : constant Node_Id := Condition (N);
4528 Loc : constant Source_Ptr := Sloc (N);
4529 Loop_Id : Entity_Id;
4530 QE_Scop : Entity_Id;
4532 -- Start of processing for Analyze_Quantified_Expression
4534 begin
4535 -- Create a scope to emulate the loop-like behavior of the quantified
4536 -- expression. The scope is needed to provide proper visibility of the
4537 -- loop variable.
4539 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
4540 Set_Etype (QE_Scop, Standard_Void_Type);
4541 Set_Scope (QE_Scop, Current_Scope);
4542 Set_Parent (QE_Scop, N);
4544 Push_Scope (QE_Scop);
4546 -- All constituents are preanalyzed and resolved to avoid untimely
4547 -- generation of various temporaries and types. Full analysis and
4548 -- expansion is carried out when the quantified expression is
4549 -- transformed into an expression with actions.
4551 if Present (Iterator_Specification (N)) then
4552 Preanalyze (Iterator_Specification (N));
4554 -- Do not proceed with the analysis when the range of iteration is
4555 -- empty.
4557 if Is_Entity_Name (Name (Iterator_Specification (N)))
4558 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
4559 then
4560 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
4561 End_Scope;
4563 -- Emit a warning and replace expression with its static value
4565 if All_Present (N) then
4566 Error_Msg_N
4567 ("??quantified expression with ALL "
4568 & "over a null range has value True", N);
4569 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4571 else
4572 Error_Msg_N
4573 ("??quantified expression with SOME "
4574 & "over a null range has value False", N);
4575 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4576 end if;
4578 Analyze (N);
4579 return;
4580 end if;
4582 else pragma Assert (Present (Loop_Parameter_Specification (N)));
4583 declare
4584 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
4586 begin
4587 Preanalyze (Loop_Par);
4589 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
4590 and then Parent (Loop_Par) /= N
4591 then
4592 -- The parser cannot distinguish between a loop specification
4593 -- and an iterator specification. If after preanalysis the
4594 -- proper form has been recognized, rewrite the expression to
4595 -- reflect the right kind. This is needed for proper ASIS
4596 -- navigation. If expansion is enabled, the transformation is
4597 -- performed when the expression is rewritten as a loop.
4598 -- Is this still needed???
4600 Set_Iterator_Specification (N,
4601 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
4603 Set_Defining_Identifier (Iterator_Specification (N),
4604 Relocate_Node (Defining_Identifier (Loop_Par)));
4605 Set_Name (Iterator_Specification (N),
4606 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
4607 Set_Comes_From_Source (Iterator_Specification (N),
4608 Comes_From_Source (Loop_Parameter_Specification (N)));
4609 Set_Loop_Parameter_Specification (N, Empty);
4610 end if;
4611 end;
4612 end if;
4614 Preanalyze_And_Resolve (Cond, Standard_Boolean);
4616 End_Scope;
4617 Set_Etype (N, Standard_Boolean);
4619 -- Verify that the loop variable is used within the condition of the
4620 -- quantified expression.
4622 if Present (Iterator_Specification (N)) then
4623 Loop_Id := Defining_Identifier (Iterator_Specification (N));
4624 else
4625 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
4626 end if;
4628 declare
4629 type Subexpr_Kind is (Full, Conjunct, Disjunct);
4631 procedure Check_Subexpr (Expr : Node_Id; Kind : Subexpr_Kind);
4632 -- Check that the quantified variable appears in every sub-expression
4633 -- of the quantified expression. If Kind is Full, Expr is the full
4634 -- expression. If Kind is Conjunct (resp. Disjunct), Expr is a
4635 -- conjunct (resp. disjunct) of the full expression.
4637 -------------------
4638 -- Check_Subexpr --
4639 -------------------
4641 procedure Check_Subexpr (Expr : Node_Id; Kind : Subexpr_Kind) is
4642 begin
4643 if Nkind (Expr) in N_Op_And | N_And_Then
4644 and then Kind /= Disjunct
4645 then
4646 Check_Subexpr (Left_Opnd (Expr), Conjunct);
4647 Check_Subexpr (Right_Opnd (Expr), Conjunct);
4649 elsif Nkind (Expr) in N_Op_Or | N_Or_Else
4650 and then Kind /= Conjunct
4651 then
4652 Check_Subexpr (Left_Opnd (Expr), Disjunct);
4653 Check_Subexpr (Right_Opnd (Expr), Disjunct);
4655 elsif Kind /= Full
4656 and then not Referenced (Loop_Id, Expr)
4657 then
4658 declare
4659 Sub : constant String :=
4660 (if Kind = Conjunct then "conjunct" else "disjunct");
4661 begin
4662 Error_Msg_NE
4663 ("?.t?unused variable & in " & Sub, Expr, Loop_Id);
4664 Error_Msg_NE
4665 ("\consider extracting " & Sub & " from quantified "
4666 & "expression", Expr, Loop_Id);
4667 end;
4668 end if;
4669 end Check_Subexpr;
4671 begin
4672 if Warn_On_Suspicious_Contract
4673 and then not Is_Internal_Name (Chars (Loop_Id))
4675 -- Generating C, this check causes spurious warnings on inlined
4676 -- postconditions; we can safely disable it because this check
4677 -- was previously performed when analyzing the internally built
4678 -- postconditions procedure.
4680 and then not (Modify_Tree_For_C and In_Inlined_Body)
4681 then
4682 if not Referenced (Loop_Id, Cond) then
4683 Error_Msg_N ("?.t?unused variable &", Loop_Id);
4684 else
4685 Check_Subexpr (Cond, Kind => Full);
4686 end if;
4687 end if;
4688 end;
4690 -- Diagnose a possible misuse of the SOME existential quantifier. When
4691 -- we have a quantified expression of the form:
4693 -- for some X => (if P then Q [else True])
4695 -- any value for X that makes P False results in the if expression being
4696 -- trivially True, and so also results in the quantified expression
4697 -- being trivially True.
4699 if Warn_On_Suspicious_Contract
4700 and then not All_Present (N)
4701 and then Nkind (Cond) = N_If_Expression
4702 and then No_Else_Or_Trivial_True (Cond)
4703 then
4704 Error_Msg_N ("?.t?suspicious expression", N);
4705 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
4706 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
4707 end if;
4708 end Analyze_Quantified_Expression;
4710 -------------------
4711 -- Analyze_Range --
4712 -------------------
4714 procedure Analyze_Range (N : Node_Id) is
4715 L : constant Node_Id := Low_Bound (N);
4716 H : constant Node_Id := High_Bound (N);
4717 I1, I2 : Interp_Index;
4718 It1, It2 : Interp;
4720 procedure Check_Common_Type (T1, T2 : Entity_Id);
4721 -- Verify the compatibility of two types, and choose the
4722 -- non universal one if the other is universal.
4724 procedure Check_High_Bound (T : Entity_Id);
4725 -- Test one interpretation of the low bound against all those
4726 -- of the high bound.
4728 procedure Check_Universal_Expression (N : Node_Id);
4729 -- In Ada 83, reject bounds of a universal range that are not literals
4730 -- or entity names.
4732 -----------------------
4733 -- Check_Common_Type --
4734 -----------------------
4736 procedure Check_Common_Type (T1, T2 : Entity_Id) is
4737 begin
4738 if Covers (T1 => T1, T2 => T2)
4739 or else
4740 Covers (T1 => T2, T2 => T1)
4741 then
4742 if Is_Universal_Numeric_Type (T1)
4743 or else T1 = Any_Character
4744 then
4745 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
4747 elsif T1 = T2 then
4748 Add_One_Interp (N, T1, T1);
4750 else
4751 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
4752 end if;
4753 end if;
4754 end Check_Common_Type;
4756 ----------------------
4757 -- Check_High_Bound --
4758 ----------------------
4760 procedure Check_High_Bound (T : Entity_Id) is
4761 begin
4762 if not Is_Overloaded (H) then
4763 Check_Common_Type (T, Etype (H));
4764 else
4765 Get_First_Interp (H, I2, It2);
4766 while Present (It2.Typ) loop
4767 Check_Common_Type (T, It2.Typ);
4768 Get_Next_Interp (I2, It2);
4769 end loop;
4770 end if;
4771 end Check_High_Bound;
4773 --------------------------------
4774 -- Check_Universal_Expression --
4775 --------------------------------
4777 procedure Check_Universal_Expression (N : Node_Id) is
4778 begin
4779 if Etype (N) = Universal_Integer
4780 and then Nkind (N) /= N_Integer_Literal
4781 and then not Is_Entity_Name (N)
4782 and then Nkind (N) /= N_Attribute_Reference
4783 then
4784 Error_Msg_N ("illegal bound in discrete range", N);
4785 end if;
4786 end Check_Universal_Expression;
4788 -- Start of processing for Analyze_Range
4790 begin
4791 Set_Etype (N, Any_Type);
4792 Analyze_Expression (L);
4793 Analyze_Expression (H);
4795 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
4796 return;
4798 else
4799 if not Is_Overloaded (L) then
4800 Check_High_Bound (Etype (L));
4801 else
4802 Get_First_Interp (L, I1, It1);
4803 while Present (It1.Typ) loop
4804 Check_High_Bound (It1.Typ);
4805 Get_Next_Interp (I1, It1);
4806 end loop;
4807 end if;
4809 -- If result is Any_Type, then we did not find a compatible pair
4811 if Etype (N) = Any_Type then
4812 Error_Msg_N ("incompatible types in range", N);
4813 end if;
4814 end if;
4816 if Ada_Version = Ada_83
4817 and then
4818 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4819 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
4820 then
4821 Check_Universal_Expression (L);
4822 Check_Universal_Expression (H);
4823 end if;
4825 Check_Function_Writable_Actuals (N);
4826 end Analyze_Range;
4828 -----------------------
4829 -- Analyze_Reference --
4830 -----------------------
4832 procedure Analyze_Reference (N : Node_Id) is
4833 P : constant Node_Id := Prefix (N);
4834 E : Entity_Id;
4835 T : Entity_Id;
4836 Acc_Type : Entity_Id;
4838 begin
4839 Analyze (P);
4841 -- An interesting error check, if we take the 'Ref of an object for
4842 -- which a pragma Atomic or Volatile has been given, and the type of the
4843 -- object is not Atomic or Volatile, then we are in trouble. The problem
4844 -- is that no trace of the atomic/volatile status will remain for the
4845 -- backend to respect when it deals with the resulting pointer, since
4846 -- the pointer type will not be marked atomic (it is a pointer to the
4847 -- base type of the object).
4849 -- It is not clear if that can ever occur, but in case it does, we will
4850 -- generate an error message. Not clear if this message can ever be
4851 -- generated, and pretty clear that it represents a bug if it is, still
4852 -- seems worth checking, except in CodePeer mode where we do not really
4853 -- care and don't want to bother the user.
4855 T := Etype (P);
4857 if Is_Entity_Name (P)
4858 and then Is_Object_Reference (P)
4859 and then not CodePeer_Mode
4860 then
4861 E := Entity (P);
4862 T := Etype (P);
4864 if (Has_Atomic_Components (E)
4865 and then not Has_Atomic_Components (T))
4866 or else
4867 (Has_Volatile_Components (E)
4868 and then not Has_Volatile_Components (T))
4869 or else (Is_Atomic (E) and then not Is_Atomic (T))
4870 or else (Is_Volatile (E) and then not Is_Volatile (T))
4871 then
4872 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
4873 end if;
4874 end if;
4876 -- Carry on with normal processing
4878 Acc_Type := Create_Itype (E_Allocator_Type, N);
4879 Set_Etype (Acc_Type, Acc_Type);
4880 Set_Directly_Designated_Type (Acc_Type, Etype (P));
4881 Set_Etype (N, Acc_Type);
4882 end Analyze_Reference;
4884 --------------------------------
4885 -- Analyze_Selected_Component --
4886 --------------------------------
4888 -- Prefix is a record type or a task or protected type. In the latter case,
4889 -- the selector must denote a visible entry.
4891 procedure Analyze_Selected_Component (N : Node_Id) is
4892 Name : constant Node_Id := Prefix (N);
4893 Sel : constant Node_Id := Selector_Name (N);
4894 Act_Decl : Node_Id;
4895 Comp : Entity_Id := Empty;
4896 Has_Candidate : Boolean := False;
4897 Hidden_Comp : Entity_Id;
4898 In_Scope : Boolean;
4899 Is_Private_Op : Boolean;
4900 Parent_N : Node_Id;
4901 Prefix_Type : Entity_Id;
4903 Type_To_Use : Entity_Id;
4904 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4905 -- a class-wide type, we use its root type, whose components are
4906 -- present in the class-wide type.
4908 Is_Single_Concurrent_Object : Boolean;
4909 -- Set True if the prefix is a single task or a single protected object
4911 function Constraint_Has_Unprefixed_Discriminant_Reference
4912 (Typ : Entity_Id) return Boolean;
4913 -- Given a subtype that is subject to a discriminant-dependent
4914 -- constraint, returns True if any of the values of the constraint
4915 -- (i.e., any of the index values for an index constraint, any of
4916 -- the discriminant values for a discriminant constraint)
4917 -- are unprefixed discriminant names.
4919 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
4920 -- It is known that the parent of N denotes a subprogram call. Comp
4921 -- is an overloadable component of the concurrent type of the prefix.
4922 -- Determine whether all formals of the parent of N and Comp are mode
4923 -- conformant. If the parent node is not analyzed yet it may be an
4924 -- indexed component rather than a function call.
4926 function Has_Dereference (Nod : Node_Id) return Boolean;
4927 -- Check whether prefix includes a dereference, explicit or implicit,
4928 -- at any recursive level.
4930 function Try_By_Protected_Procedure_Prefixed_View return Boolean;
4931 -- Return True if N is an access attribute whose prefix is a prefixed
4932 -- class-wide (synchronized or protected) interface view for which some
4933 -- interpretation is a procedure with synchronization kind By_Protected
4934 -- _Procedure, and collect all its interpretations (since it may be an
4935 -- overloaded interface primitive); otherwise return False.
4937 function Try_Selected_Component_In_Instance
4938 (Typ : Entity_Id) return Boolean;
4939 -- If Typ is the actual for a formal derived type, or a derived type
4940 -- thereof, the component inherited from the generic parent may not
4941 -- be visible in the actual, but the selected component is legal. Climb
4942 -- up the derivation chain of the generic parent type and return True if
4943 -- we find the proper ancestor type; otherwise return False.
4945 ------------------------------------------------------
4946 -- Constraint_Has_Unprefixed_Discriminant_Reference --
4947 ------------------------------------------------------
4949 function Constraint_Has_Unprefixed_Discriminant_Reference
4950 (Typ : Entity_Id) return Boolean
4952 function Is_Discriminant_Name (N : Node_Id) return Boolean is
4953 (Nkind (N) = N_Identifier
4954 and then Ekind (Entity (N)) = E_Discriminant);
4955 begin
4956 if Is_Array_Type (Typ) then
4957 declare
4958 Index : Node_Id := First_Index (Typ);
4959 Rng : Node_Id;
4960 begin
4961 while Present (Index) loop
4962 Rng := Index;
4963 if Nkind (Rng) = N_Subtype_Indication then
4964 Rng := Range_Expression (Constraint (Rng));
4965 end if;
4967 if Nkind (Rng) = N_Range then
4968 if Is_Discriminant_Name (Low_Bound (Rng))
4969 or else Is_Discriminant_Name (High_Bound (Rng))
4970 then
4971 return True;
4972 end if;
4973 end if;
4975 Next_Index (Index);
4976 end loop;
4977 end;
4978 else
4979 declare
4980 Elmt : Elmt_Id := First_Elmt (Discriminant_Constraint (Typ));
4981 begin
4982 while Present (Elmt) loop
4983 if Is_Discriminant_Name (Node (Elmt)) then
4984 return True;
4985 end if;
4986 Next_Elmt (Elmt);
4987 end loop;
4988 end;
4989 end if;
4991 return False;
4992 end Constraint_Has_Unprefixed_Discriminant_Reference;
4994 ------------------------------
4995 -- Has_Mode_Conformant_Spec --
4996 ------------------------------
4998 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4999 Comp_Param : Entity_Id;
5000 Param : Node_Id;
5001 Param_Typ : Entity_Id;
5003 begin
5004 Comp_Param := First_Formal (Comp);
5006 if Nkind (Parent (N)) = N_Indexed_Component then
5007 Param := First (Expressions (Parent (N)));
5008 else
5009 Param := First (Parameter_Associations (Parent (N)));
5010 end if;
5012 while Present (Comp_Param)
5013 and then Present (Param)
5014 loop
5015 Param_Typ := Find_Parameter_Type (Param);
5017 if Present (Param_Typ)
5018 and then
5019 not Conforming_Types
5020 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
5021 then
5022 return False;
5023 end if;
5025 Next_Formal (Comp_Param);
5026 Next (Param);
5027 end loop;
5029 -- One of the specs has additional formals; there is no match, unless
5030 -- this may be an indexing of a parameterless call.
5032 -- Note that when expansion is disabled, the corresponding record
5033 -- type of synchronized types is not constructed, so that there is
5034 -- no point is attempting an interpretation as a prefixed call, as
5035 -- this is bound to fail because the primitive operations will not
5036 -- be properly located.
5038 if Present (Comp_Param) or else Present (Param) then
5039 if Needs_No_Actuals (Comp)
5040 and then Is_Array_Type (Etype (Comp))
5041 and then not Expander_Active
5042 then
5043 return True;
5044 else
5045 return False;
5046 end if;
5047 end if;
5049 return True;
5050 end Has_Mode_Conformant_Spec;
5052 ---------------------
5053 -- Has_Dereference --
5054 ---------------------
5056 function Has_Dereference (Nod : Node_Id) return Boolean is
5057 begin
5058 if Nkind (Nod) = N_Explicit_Dereference then
5059 return True;
5061 elsif Is_Access_Type (Etype (Nod)) then
5062 return True;
5064 elsif Nkind (Nod) in N_Indexed_Component | N_Selected_Component then
5065 return Has_Dereference (Prefix (Nod));
5067 else
5068 return False;
5069 end if;
5070 end Has_Dereference;
5072 ----------------------------------------------
5073 -- Try_By_Protected_Procedure_Prefixed_View --
5074 ----------------------------------------------
5076 function Try_By_Protected_Procedure_Prefixed_View return Boolean is
5077 Candidate : Node_Id := Empty;
5078 Elmt : Elmt_Id;
5079 Prim : Node_Id;
5081 begin
5082 if Nkind (Parent (N)) = N_Attribute_Reference
5083 and then Attribute_Name (Parent (N)) in
5084 Name_Access
5085 | Name_Unchecked_Access
5086 | Name_Unrestricted_Access
5087 and then Is_Class_Wide_Type (Prefix_Type)
5088 and then (Is_Synchronized_Interface (Prefix_Type)
5089 or else Is_Protected_Interface (Prefix_Type))
5090 then
5091 -- If we have not found yet any interpretation then mark this
5092 -- one as the first interpretation (cf. Add_One_Interp).
5094 if No (Etype (Sel)) then
5095 Set_Etype (Sel, Any_Type);
5096 end if;
5098 Elmt := First_Elmt (Primitive_Operations (Etype (Prefix_Type)));
5099 while Present (Elmt) loop
5100 Prim := Node (Elmt);
5102 if Chars (Prim) = Chars (Sel)
5103 and then Is_By_Protected_Procedure (Prim)
5104 then
5105 Candidate := New_Copy (Prim);
5107 -- Skip the controlling formal; required to check type
5108 -- conformance of the target access to protected type
5109 -- (see Conforming_Types).
5111 Set_First_Entity (Candidate,
5112 Next_Entity (First_Entity (Prim)));
5114 Add_One_Interp (Sel, Candidate, Etype (Prim));
5115 Set_Etype (N, Etype (Prim));
5116 end if;
5118 Next_Elmt (Elmt);
5119 end loop;
5120 end if;
5122 -- Propagate overloaded attribute
5124 if Present (Candidate) and then Is_Overloaded (Sel) then
5125 Set_Is_Overloaded (N);
5126 end if;
5128 return Present (Candidate);
5129 end Try_By_Protected_Procedure_Prefixed_View;
5131 ----------------------------------------
5132 -- Try_Selected_Component_In_Instance --
5133 ----------------------------------------
5135 function Try_Selected_Component_In_Instance
5136 (Typ : Entity_Id) return Boolean
5138 procedure Find_Component_In_Instance (Rec : Entity_Id);
5139 -- In an instance, a component of a private extension may not be
5140 -- visible while it was visible in the generic. Search candidate
5141 -- scope for a component with the proper identifier. If a match is
5142 -- found, the Etype of both N and Sel are set from this component,
5143 -- and the entity of Sel is set to reference this component. If no
5144 -- match is found, Entity (Sel) remains unset. For a derived type
5145 -- that is an actual of the instance, the desired component may be
5146 -- found in any ancestor.
5148 --------------------------------
5149 -- Find_Component_In_Instance --
5150 --------------------------------
5152 procedure Find_Component_In_Instance (Rec : Entity_Id) is
5153 Comp : Entity_Id;
5154 Typ : Entity_Id;
5156 begin
5157 Typ := Rec;
5158 while Present (Typ) loop
5159 Comp := First_Component (Typ);
5160 while Present (Comp) loop
5161 if Chars (Comp) = Chars (Sel) then
5162 Set_Entity_With_Checks (Sel, Comp);
5163 Set_Etype (Sel, Etype (Comp));
5164 Set_Etype (N, Etype (Comp));
5165 return;
5166 end if;
5168 Next_Component (Comp);
5169 end loop;
5171 -- If not found, the component may be declared in the parent
5172 -- type or its full view, if any.
5174 if Is_Derived_Type (Typ) then
5175 Typ := Etype (Typ);
5177 if Is_Private_Type (Typ) then
5178 Typ := Full_View (Typ);
5179 end if;
5181 else
5182 return;
5183 end if;
5184 end loop;
5186 -- If we fall through, no match, so no changes made
5188 return;
5189 end Find_Component_In_Instance;
5191 -- Local variables
5193 Par : Entity_Id;
5195 -- Start of processing for Try_Selected_Component_In_Instance
5197 begin
5198 pragma Assert (In_Instance and then Is_Tagged_Type (Typ));
5199 pragma Assert (Etype (N) = Any_Type);
5201 -- Climb up derivation chain to generic actual subtype
5203 Par := Typ;
5204 while not Is_Generic_Actual_Type (Par) loop
5205 if Ekind (Par) = E_Record_Type then
5206 Par := Parent_Subtype (Par);
5207 exit when No (Par);
5208 else
5209 exit when Par = Etype (Par);
5210 Par := Etype (Par);
5211 end if;
5212 end loop;
5214 -- If Par is a generic actual, look for component in ancestor types.
5215 -- Skip this if we have no Declaration_Node, as is the case for
5216 -- itypes.
5218 if Present (Par)
5219 and then Is_Generic_Actual_Type (Par)
5220 and then Present (Declaration_Node (Par))
5221 then
5222 Par := Generic_Parent_Type (Declaration_Node (Par));
5223 loop
5224 Find_Component_In_Instance (Par);
5225 exit when Present (Entity (Sel))
5226 or else Par = Etype (Par);
5227 Par := Etype (Par);
5228 end loop;
5230 -- Another special case: the type is an extension of a private
5231 -- type T, either is an actual in an instance or is immediately
5232 -- visible, and we are in the body of the instance, which means
5233 -- the generic body had a full view of the type declaration for
5234 -- T or some ancestor that defines the component in question.
5235 -- This happens because Is_Visible_Component returned False on
5236 -- this component, as T or the ancestor is still private since
5237 -- the Has_Private_View mechanism is bypassed because T or the
5238 -- ancestor is not directly referenced in the generic body.
5240 elsif Is_Derived_Type (Typ)
5241 and then (Used_As_Generic_Actual (Typ)
5242 or else Is_Immediately_Visible (Typ))
5243 and then In_Instance_Body
5244 then
5245 Find_Component_In_Instance (Parent_Subtype (Typ));
5246 end if;
5248 return Etype (N) /= Any_Type;
5249 end Try_Selected_Component_In_Instance;
5251 -- Start of processing for Analyze_Selected_Component
5253 begin
5254 Set_Etype (N, Any_Type);
5256 if Is_Overloaded (Name) then
5257 Analyze_Overloaded_Selected_Component (N);
5258 return;
5260 elsif Etype (Name) = Any_Type then
5261 Set_Entity (Sel, Any_Id);
5262 Set_Etype (Sel, Any_Type);
5263 return;
5265 else
5266 Prefix_Type := Etype (Name);
5267 end if;
5269 if Is_Access_Type (Prefix_Type) then
5271 -- A RACW object can never be used as prefix of a selected component
5272 -- since that means it is dereferenced without being a controlling
5273 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
5274 -- reporting an error, we must check whether this is actually a
5275 -- dispatching call in prefix form.
5277 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
5278 and then Comes_From_Source (N)
5279 then
5280 if Try_Object_Operation (N) then
5281 return;
5282 else
5283 Error_Msg_N
5284 ("invalid dereference of a remote access-to-class-wide value",
5286 end if;
5288 -- Normal case of selected component applied to access type
5290 else
5291 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
5292 Prefix_Type := Implicitly_Designated_Type (Prefix_Type);
5293 end if;
5295 -- If we have an explicit dereference of a remote access-to-class-wide
5296 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
5297 -- have to check for the case of a prefix that is a controlling operand
5298 -- of a prefixed dispatching call, as the dereference is legal in that
5299 -- case. Normally this condition is checked in Validate_Remote_Access_
5300 -- To_Class_Wide_Type, but we have to defer the checking for selected
5301 -- component prefixes because of the prefixed dispatching call case.
5302 -- Note that implicit dereferences are checked for this just above.
5304 elsif Nkind (Name) = N_Explicit_Dereference
5305 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
5306 and then Comes_From_Source (N)
5307 then
5308 if Try_Object_Operation (N) then
5309 return;
5310 else
5311 Error_Msg_N
5312 ("invalid dereference of a remote access-to-class-wide value",
5314 end if;
5315 end if;
5317 -- (Ada 2005): if the prefix is the limited view of a type, and
5318 -- the context already includes the full view, use the full view
5319 -- in what follows, either to retrieve a component of to find
5320 -- a primitive operation. If the prefix is an explicit dereference,
5321 -- set the type of the prefix to reflect this transformation.
5322 -- If the nonlimited view is itself an incomplete type, get the
5323 -- full view if available.
5325 if From_Limited_With (Prefix_Type)
5326 and then Has_Non_Limited_View (Prefix_Type)
5327 then
5328 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
5330 if Nkind (N) = N_Explicit_Dereference then
5331 Set_Etype (Prefix (N), Prefix_Type);
5332 end if;
5333 end if;
5335 if Ekind (Prefix_Type) = E_Private_Subtype then
5336 Prefix_Type := Base_Type (Prefix_Type);
5337 end if;
5339 Type_To_Use := Prefix_Type;
5341 -- For class-wide types, use the entity list of the root type. This
5342 -- indirection is specially important for private extensions because
5343 -- only the root type get switched (not the class-wide type).
5345 if Is_Class_Wide_Type (Prefix_Type) then
5346 Type_To_Use := Root_Type (Prefix_Type);
5347 end if;
5349 -- If the prefix is a single concurrent object, use its name in error
5350 -- messages, rather than that of its anonymous type.
5352 Is_Single_Concurrent_Object :=
5353 Is_Concurrent_Type (Prefix_Type)
5354 and then Is_Internal_Name (Chars (Prefix_Type))
5355 and then not Is_Derived_Type (Prefix_Type)
5356 and then Is_Entity_Name (Name);
5358 -- Avoid initializing Comp if that initialization is not needed
5359 -- (and, more importantly, if the call to First_Entity could fail).
5361 if Has_Discriminants (Type_To_Use)
5362 or else Is_Record_Type (Type_To_Use)
5363 or else Is_Private_Type (Type_To_Use)
5364 or else Is_Concurrent_Type (Type_To_Use)
5365 then
5366 Comp := First_Entity (Type_To_Use);
5367 end if;
5369 -- If the selector has an original discriminant, the node appears in
5370 -- an instance. Replace the discriminant with the corresponding one
5371 -- in the current discriminated type. For nested generics, this must
5372 -- be done transitively, so note the new original discriminant.
5374 if Nkind (Sel) = N_Identifier
5375 and then In_Instance
5376 and then Present (Original_Discriminant (Sel))
5377 then
5378 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
5380 -- Mark entity before rewriting, for completeness and because
5381 -- subsequent semantic checks might examine the original node.
5383 Set_Entity (Sel, Comp);
5384 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
5385 Set_Original_Discriminant (Selector_Name (N), Comp);
5386 Set_Etype (N, Etype (Comp));
5387 Check_Implicit_Dereference (N, Etype (Comp));
5389 elsif Is_Record_Type (Prefix_Type) then
5391 -- Find a component with the given name. If the node is a prefixed
5392 -- call, do not examine components whose visibility may be
5393 -- accidental.
5395 while Present (Comp)
5396 and then not Is_Prefixed_Call (N)
5398 -- When the selector has been resolved to a function then we may be
5399 -- looking at a prefixed call which has been preanalyzed already as
5400 -- part of a class condition. In such cases it is possible for a
5401 -- derived type to declare a component which has the same name as
5402 -- a primitive used in a parent's class condition.
5404 -- Avoid seeing components as possible interpretations of the
5405 -- selected component when this is true.
5407 and then not (Inside_Class_Condition_Preanalysis
5408 and then Present (Entity (Sel))
5409 and then Ekind (Entity (Sel)) = E_Function)
5410 loop
5411 if Chars (Comp) = Chars (Sel)
5412 and then Is_Visible_Component (Comp, N)
5413 then
5414 Set_Entity_With_Checks (Sel, Comp);
5415 Set_Etype (Sel, Etype (Comp));
5417 if Ekind (Comp) = E_Discriminant then
5418 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
5419 Error_Msg_N
5420 ("cannot reference discriminant of unchecked union",
5421 Sel);
5422 end if;
5424 if Is_Generic_Type (Prefix_Type)
5425 or else
5426 Is_Generic_Type (Root_Type (Prefix_Type))
5427 then
5428 Set_Original_Discriminant (Sel, Comp);
5429 end if;
5430 end if;
5432 -- Resolve the prefix early otherwise it is not possible to
5433 -- build the actual subtype of the component: it may need
5434 -- to duplicate this prefix and duplication is only allowed
5435 -- on fully resolved expressions.
5437 Resolve (Name);
5439 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
5440 -- subtypes in a package specification.
5441 -- Example:
5443 -- limited with Pkg;
5444 -- package Pkg is
5445 -- type Acc_Inc is access Pkg.T;
5446 -- X : Acc_Inc;
5447 -- N : Natural := X.all.Comp; -- ERROR, limited view
5448 -- end Pkg; -- Comp is not visible
5450 if Nkind (Name) = N_Explicit_Dereference
5451 and then From_Limited_With (Etype (Prefix (Name)))
5452 and then not Is_Potentially_Use_Visible (Etype (Name))
5453 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
5454 N_Package_Specification
5455 then
5456 Error_Msg_NE
5457 ("premature usage of incomplete}", Prefix (Name),
5458 Etype (Prefix (Name)));
5459 end if;
5461 -- We never need an actual subtype for the case of a selection
5462 -- for a indexed component of a non-packed array, since in
5463 -- this case gigi generates all the checks and can find the
5464 -- necessary bounds information.
5466 -- We also do not need an actual subtype for the case of a
5467 -- first, last, length, or range attribute applied to a
5468 -- non-packed array, since gigi can again get the bounds in
5469 -- these cases (gigi cannot handle the packed case, since it
5470 -- has the bounds of the packed array type, not the original
5471 -- bounds of the type). However, if the prefix is itself a
5472 -- selected component, as in a.b.c (i), gigi may regard a.b.c
5473 -- as a dynamic-sized temporary, so we do generate an actual
5474 -- subtype for this case.
5476 Parent_N := Parent (N);
5478 if not Is_Packed (Etype (Comp))
5479 and then
5480 ((Nkind (Parent_N) = N_Indexed_Component
5481 and then Nkind (Name) /= N_Selected_Component)
5482 or else
5483 (Nkind (Parent_N) = N_Attribute_Reference
5484 and then
5485 Attribute_Name (Parent_N) in Name_First
5486 | Name_Last
5487 | Name_Length
5488 | Name_Range))
5489 then
5490 Set_Etype (N, Etype (Comp));
5492 -- If full analysis is not enabled, we do not generate an
5493 -- actual subtype, because in the absence of expansion
5494 -- reference to a formal of a protected type, for example,
5495 -- will not be properly transformed, and will lead to
5496 -- out-of-scope references in gigi.
5498 -- In all other cases, we currently build an actual subtype.
5499 -- It seems likely that many of these cases can be avoided,
5500 -- but right now, the front end makes direct references to the
5501 -- bounds (e.g. in generating a length check), and if we do
5502 -- not make an actual subtype, we end up getting a direct
5503 -- reference to a discriminant, which will not do.
5505 elsif Full_Analysis then
5506 Act_Decl :=
5507 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
5508 Insert_Action (N, Act_Decl);
5510 if No (Act_Decl) then
5511 Set_Etype (N, Etype (Comp));
5513 else
5514 -- If discriminants were present in the component
5515 -- declaration, they have been replaced by the
5516 -- actual values in the prefix object.
5518 declare
5519 Subt : constant Entity_Id :=
5520 Defining_Identifier (Act_Decl);
5521 begin
5522 Set_Etype (Subt, Base_Type (Etype (Comp)));
5523 Set_Etype (N, Subt);
5524 end;
5525 end if;
5527 -- If Etype (Comp) is an access type whose designated subtype
5528 -- is constrained by an unprefixed discriminant value,
5529 -- then ideally we would build a new subtype with an
5530 -- appropriately prefixed discriminant value and use that
5531 -- instead, as is done in Build_Actual_Subtype_Of_Component.
5532 -- That turns out to be difficult in this context (with
5533 -- Full_Analysis = False, we could be processing a selected
5534 -- component that occurs in a Postcondition pragma;
5535 -- PPC pragmas are odd because they can contain references
5536 -- to formal parameters that occur outside the subprogram).
5537 -- So instead we punt on building a new subtype and we
5538 -- use the base type instead. This might introduce
5539 -- correctness problems if N were the target of an
5540 -- assignment (because a required check might be omitted);
5541 -- fortunately, that's impossible because a reference to the
5542 -- current instance of a type does not denote a variable view
5543 -- when the reference occurs within an aspect_specification.
5544 -- GNAT's Precondition and Postcondition pragmas follow the
5545 -- same rules as a Pre or Post aspect_specification.
5547 elsif Has_Discriminant_Dependent_Constraint (Comp)
5548 and then Ekind (Etype (Comp)) = E_Access_Subtype
5549 and then Constraint_Has_Unprefixed_Discriminant_Reference
5550 (Designated_Type (Etype (Comp)))
5551 then
5552 Set_Etype (N, Base_Type (Etype (Comp)));
5554 -- If Full_Analysis not enabled, just set the Etype
5556 else
5557 Set_Etype (N, Etype (Comp));
5558 end if;
5560 Check_Implicit_Dereference (N, Etype (N));
5561 return;
5562 end if;
5564 -- If the prefix is a private extension, check only the visible
5565 -- components of the partial view. This must include the tag,
5566 -- which can appear in expanded code in a tag check.
5568 if Ekind (Type_To_Use) = E_Record_Type_With_Private
5569 and then Chars (Selector_Name (N)) /= Name_uTag
5570 then
5571 exit when Comp = Last_Entity (Type_To_Use);
5572 end if;
5574 Next_Entity (Comp);
5575 end loop;
5577 -- Ada 2005 (AI-252): The selected component can be interpreted as
5578 -- a prefixed view of a subprogram. Depending on the context, this is
5579 -- either a name that can appear in a renaming declaration, or part
5580 -- of an enclosing call given in prefix form.
5582 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
5583 -- selected component should resolve to a name.
5585 -- Extension feature: Also support calls with prefixed views for
5586 -- untagged record types.
5588 if Ada_Version >= Ada_2005
5589 and then (Is_Tagged_Type (Prefix_Type)
5590 or else Core_Extensions_Allowed)
5591 and then not Is_Concurrent_Type (Prefix_Type)
5592 then
5593 if Nkind (Parent (N)) = N_Generic_Association
5594 or else Nkind (Parent (N)) = N_Requeue_Statement
5595 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
5596 then
5597 if Find_Primitive_Operation (N) then
5598 return;
5599 end if;
5601 elsif Try_By_Protected_Procedure_Prefixed_View then
5602 return;
5604 -- If the prefix type is the actual for a formal derived type,
5605 -- or a derived type thereof, the component inherited from the
5606 -- generic parent may not be visible in the actual, but the
5607 -- selected component is legal. This case must be handled before
5608 -- trying the object.operation notation to avoid reporting
5609 -- spurious errors, but must be skipped when Is_Prefixed_Call has
5610 -- been set (because that means that this node was resolved to an
5611 -- Object.Operation call when the generic unit was analyzed).
5613 elsif In_Instance
5614 and then not Is_Prefixed_Call (N)
5615 and then Is_Tagged_Type (Prefix_Type)
5616 and then Try_Selected_Component_In_Instance (Type_To_Use)
5617 then
5618 return;
5620 elsif Try_Object_Operation (N) then
5621 return;
5622 end if;
5624 -- If the transformation fails, it will be necessary to redo the
5625 -- analysis with all errors enabled, to indicate candidate
5626 -- interpretations and reasons for each failure ???
5628 end if;
5630 elsif Is_Private_Type (Prefix_Type) then
5632 -- Allow access only to discriminants of the type. If the type has
5633 -- no full view, gigi uses the parent type for the components, so we
5634 -- do the same here.
5636 if No (Full_View (Prefix_Type)) then
5637 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
5638 Comp := First_Entity (Type_To_Use);
5639 end if;
5641 while Present (Comp) loop
5642 if Chars (Comp) = Chars (Sel) then
5643 if Ekind (Comp) = E_Discriminant then
5644 Set_Entity_With_Checks (Sel, Comp);
5645 Generate_Reference (Comp, Sel);
5647 Set_Etype (Sel, Etype (Comp));
5648 Set_Etype (N, Etype (Comp));
5649 Check_Implicit_Dereference (N, Etype (N));
5651 if Is_Generic_Type (Prefix_Type)
5652 or else Is_Generic_Type (Root_Type (Prefix_Type))
5653 then
5654 Set_Original_Discriminant (Sel, Comp);
5655 end if;
5657 -- Before declaring an error, check whether this is tagged
5658 -- private type and a call to a primitive operation.
5660 elsif Ada_Version >= Ada_2005
5661 and then Is_Tagged_Type (Prefix_Type)
5662 and then Try_Object_Operation (N)
5663 then
5664 return;
5666 else
5667 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5668 Error_Msg_NE ("invisible selector& for }", N, Sel);
5669 Set_Entity (Sel, Any_Id);
5670 Set_Etype (N, Any_Type);
5671 end if;
5673 return;
5674 end if;
5676 Next_Entity (Comp);
5677 end loop;
5679 -- Extension feature: Also support calls with prefixed views for
5680 -- untagged private types.
5682 if Core_Extensions_Allowed then
5683 if Try_Object_Operation (N) then
5684 return;
5685 end if;
5686 end if;
5688 elsif Is_Concurrent_Type (Prefix_Type) then
5690 -- Find visible operation with given name. For a protected type,
5691 -- the possible candidates are discriminants, entries or protected
5692 -- subprograms. For a task type, the set can only include entries or
5693 -- discriminants if the task type is not an enclosing scope. If it
5694 -- is an enclosing scope (e.g. in an inner task) then all entities
5695 -- are visible, but the prefix must denote the enclosing scope, i.e.
5696 -- can only be a direct name or an expanded name.
5698 Set_Etype (Sel, Any_Type);
5699 Hidden_Comp := Empty;
5700 In_Scope := In_Open_Scopes (Prefix_Type);
5701 Is_Private_Op := False;
5703 while Present (Comp) loop
5705 -- Do not examine private operations of the type if not within
5706 -- its scope.
5708 if Chars (Comp) = Chars (Sel) then
5709 if Is_Overloadable (Comp)
5710 and then (In_Scope
5711 or else Comp /= First_Private_Entity (Type_To_Use))
5712 then
5713 Add_One_Interp (Sel, Comp, Etype (Comp));
5714 if Comp = First_Private_Entity (Type_To_Use) then
5715 Is_Private_Op := True;
5716 end if;
5718 -- If the prefix is tagged, the correct interpretation may
5719 -- lie in the primitive or class-wide operations of the
5720 -- type. Perform a simple conformance check to determine
5721 -- whether Try_Object_Operation should be invoked even if
5722 -- a visible entity is found.
5724 if Is_Tagged_Type (Prefix_Type)
5725 and then Nkind (Parent (N)) in N_Function_Call
5726 | N_Indexed_Component
5727 | N_Procedure_Call_Statement
5728 and then Has_Mode_Conformant_Spec (Comp)
5729 then
5730 Has_Candidate := True;
5731 end if;
5733 -- Note: a selected component may not denote a component of a
5734 -- protected type (4.1.3(7)).
5736 elsif Ekind (Comp) in E_Discriminant | E_Entry_Family
5737 or else (In_Scope
5738 and then not Is_Protected_Type (Prefix_Type)
5739 and then Is_Entity_Name (Name))
5740 then
5741 Set_Entity_With_Checks (Sel, Comp);
5742 Generate_Reference (Comp, Sel);
5744 -- The selector is not overloadable, so we have a candidate
5745 -- interpretation.
5747 Has_Candidate := True;
5749 else
5750 if Ekind (Comp) = E_Component then
5751 Hidden_Comp := Comp;
5752 end if;
5754 goto Next_Comp;
5755 end if;
5757 Set_Etype (Sel, Etype (Comp));
5758 Set_Etype (N, Etype (Comp));
5760 if Ekind (Comp) = E_Discriminant then
5761 Set_Original_Discriminant (Sel, Comp);
5762 end if;
5763 end if;
5765 <<Next_Comp>>
5766 if Comp = First_Private_Entity (Type_To_Use) then
5767 if Etype (Sel) /= Any_Type then
5769 -- If the first private entity's name matches, then treat
5770 -- it as a private op: needed for the error check for
5771 -- illegal selection of private entities further below.
5773 if Chars (Comp) = Chars (Sel) then
5774 Is_Private_Op := True;
5775 end if;
5777 -- We have a candidate, so exit the loop
5779 exit;
5781 else
5782 -- Indicate that subsequent operations are private,
5783 -- for better error reporting.
5785 Is_Private_Op := True;
5786 end if;
5787 end if;
5789 -- Do not examine private operations if not within scope of
5790 -- the synchronized type.
5792 exit when not In_Scope
5793 and then
5794 Comp = First_Private_Entity (Base_Type (Prefix_Type));
5795 Next_Entity (Comp);
5796 end loop;
5798 -- If the scope is a current instance, the prefix cannot be an
5799 -- expression of the same type, unless the selector designates a
5800 -- public operation (otherwise that would represent an attempt to
5801 -- reach an internal entity of another synchronized object).
5803 -- This is legal if prefix is an access to such type and there is
5804 -- a dereference, or is a component with a dereferenced prefix.
5805 -- It is also legal if the prefix is a component of a task type,
5806 -- and the selector is one of the task operations.
5808 if In_Scope
5809 and then not Is_Entity_Name (Name)
5810 and then not Has_Dereference (Name)
5811 then
5812 if Is_Task_Type (Prefix_Type)
5813 and then Present (Entity (Sel))
5814 and then Is_Entry (Entity (Sel))
5815 then
5816 null;
5818 elsif Is_Protected_Type (Prefix_Type)
5819 and then Is_Overloadable (Entity (Sel))
5820 and then not Is_Private_Op
5821 then
5822 null;
5824 else
5825 Error_Msg_NE
5826 ("invalid reference to internal operation of some object of "
5827 & "type &", N, Type_To_Use);
5828 Set_Entity (Sel, Any_Id);
5829 Set_Etype (Sel, Any_Type);
5830 return;
5831 end if;
5833 -- Another special case: the prefix may denote an object of the type
5834 -- (but not a type) in which case this is an external call and the
5835 -- operation must be public.
5837 elsif In_Scope
5838 and then Is_Object_Reference (Original_Node (Prefix (N)))
5839 and then Comes_From_Source (N)
5840 and then Is_Private_Op
5841 then
5842 if Present (Hidden_Comp) then
5843 Error_Msg_NE
5844 ("invalid reference to private component of object of type "
5845 & "&", N, Type_To_Use);
5847 else
5848 Error_Msg_NE
5849 ("invalid reference to private operation of some object of "
5850 & "type &", N, Type_To_Use);
5851 end if;
5853 Set_Entity (Sel, Any_Id);
5854 Set_Etype (Sel, Any_Type);
5855 return;
5856 end if;
5858 -- If there is no visible entity with the given name or none of the
5859 -- visible entities are plausible interpretations, check whether
5860 -- there is some other primitive operation with that name.
5862 if Ada_Version >= Ada_2005 and then Is_Tagged_Type (Prefix_Type) then
5863 if (Etype (N) = Any_Type
5864 or else not Has_Candidate)
5865 and then Try_Object_Operation (N)
5866 then
5867 return;
5869 -- If the context is not syntactically a procedure call, it
5870 -- may be a call to a primitive function declared outside of
5871 -- the synchronized type.
5873 -- If the context is a procedure call, there might still be
5874 -- an overloading between an entry and a primitive procedure
5875 -- declared outside of the synchronized type, called in prefix
5876 -- notation. This is harder to disambiguate because in one case
5877 -- the controlling formal is implicit ???
5879 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
5880 and then Nkind (Parent (N)) /= N_Indexed_Component
5881 and then Try_Object_Operation (N)
5882 then
5883 return;
5884 end if;
5886 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
5887 -- entry or procedure of a tagged concurrent type we must check
5888 -- if there are class-wide subprograms covering the primitive. If
5889 -- true then Try_Object_Operation reports the error.
5891 if Has_Candidate
5892 and then Is_Concurrent_Type (Prefix_Type)
5893 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
5894 then
5895 -- Duplicate the call. This is required to avoid problems with
5896 -- the tree transformations performed by Try_Object_Operation.
5897 -- Set properly the parent of the copied call, because it is
5898 -- about to be reanalyzed.
5900 declare
5901 Par : constant Node_Id := New_Copy_Tree (Parent (N));
5903 begin
5904 Set_Parent (Par, Parent (Parent (N)));
5906 if Try_Object_Operation
5907 (Sinfo.Nodes.Name (Par), CW_Test_Only => True)
5908 then
5909 return;
5910 end if;
5911 end;
5912 end if;
5913 end if;
5915 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
5917 -- Case of a prefix of a protected type: selector might denote
5918 -- an invisible private component.
5920 Comp := First_Private_Entity (Base_Type (Prefix_Type));
5921 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
5922 Next_Entity (Comp);
5923 end loop;
5925 if Present (Comp) then
5926 if Is_Single_Concurrent_Object then
5927 Error_Msg_Node_2 := Entity (Name);
5928 Error_Msg_NE ("invisible selector& for &", N, Sel);
5930 else
5931 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5932 Error_Msg_NE ("invisible selector& for }", N, Sel);
5933 end if;
5934 return;
5935 end if;
5936 end if;
5938 Set_Is_Overloaded (N, Is_Overloaded (Sel));
5940 -- Extension feature: Also support calls with prefixed views for
5941 -- untagged types.
5943 elsif Core_Extensions_Allowed
5944 and then Try_Object_Operation (N)
5945 then
5946 return;
5948 else
5949 -- Invalid prefix
5951 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
5952 end if;
5954 -- If N still has no type, the component is not defined in the prefix
5956 if Etype (N) = Any_Type then
5958 if Is_Single_Concurrent_Object then
5959 Error_Msg_Node_2 := Entity (Name);
5960 Error_Msg_NE ("no selector& for&", N, Sel);
5962 Check_Misspelled_Selector (Type_To_Use, Sel);
5964 -- If this is a derived formal type, the parent may have different
5965 -- visibility at this point. Try for an inherited component before
5966 -- reporting an error.
5968 elsif Is_Generic_Type (Prefix_Type)
5969 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
5970 and then Prefix_Type /= Etype (Prefix_Type)
5971 and then Is_Record_Type (Etype (Prefix_Type))
5972 then
5973 Set_Etype (Prefix (N), Etype (Prefix_Type));
5974 Analyze_Selected_Component (N);
5975 return;
5977 -- Similarly, if this is the actual for a formal derived type, or
5978 -- a derived type thereof, the component inherited from the generic
5979 -- parent may not be visible in the actual, but the selected
5980 -- component is legal.
5982 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
5984 -- Climb up the derivation chain of the generic parent type until
5985 -- we find the proper ancestor type.
5987 if Try_Selected_Component_In_Instance (Type_To_Use) then
5988 return;
5990 -- The search above must have eventually succeeded, since the
5991 -- selected component was legal in the generic.
5993 else
5994 raise Program_Error;
5995 end if;
5997 -- Component not found, specialize error message when appropriate
5999 else
6000 if Ekind (Prefix_Type) = E_Record_Subtype then
6002 -- Check whether this is a component of the base type which
6003 -- is absent from a statically constrained subtype. This will
6004 -- raise constraint error at run time, but is not a compile-
6005 -- time error. When the selector is illegal for base type as
6006 -- well fall through and generate a compilation error anyway.
6008 Comp := First_Component (Base_Type (Prefix_Type));
6009 while Present (Comp) loop
6010 if Chars (Comp) = Chars (Sel)
6011 and then Is_Visible_Component (Comp, Sel)
6012 then
6013 Set_Entity_With_Checks (Sel, Comp);
6014 Generate_Reference (Comp, Sel);
6015 Set_Etype (Sel, Etype (Comp));
6016 Set_Etype (N, Etype (Comp));
6018 -- Emit appropriate message. The node will be replaced
6019 -- by an appropriate raise statement.
6021 -- Note that in SPARK mode, as with all calls to apply a
6022 -- compile time constraint error, this will be made into
6023 -- an error to simplify the processing of the formal
6024 -- verification backend.
6026 Apply_Compile_Time_Constraint_Error
6027 (N, "component not present in }??",
6028 CE_Discriminant_Check_Failed,
6029 Ent => Prefix_Type,
6030 Emit_Message =>
6031 SPARK_Mode = On or not In_Instance_Not_Visible);
6032 return;
6033 end if;
6035 Next_Component (Comp);
6036 end loop;
6038 end if;
6040 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
6041 Error_Msg_NE ("no selector& for}", N, Sel);
6043 -- Add information in the case of an incomplete prefix
6045 if Is_Incomplete_Type (Type_To_Use) then
6046 declare
6047 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
6049 begin
6050 if From_Limited_With (Scope (Type_To_Use)) then
6051 Error_Msg_NE
6052 ("\limited view of& has no components", N, Inc);
6054 else
6055 Error_Msg_NE
6056 ("\premature usage of incomplete type&", N, Inc);
6058 if Nkind (Parent (Inc)) =
6059 N_Incomplete_Type_Declaration
6060 then
6061 -- Record location of premature use in entity so that
6062 -- a continuation message is generated when the
6063 -- completion is seen.
6065 Set_Premature_Use (Parent (Inc), N);
6066 end if;
6067 end if;
6068 end;
6069 end if;
6071 Check_Misspelled_Selector (Type_To_Use, Sel);
6072 end if;
6074 Set_Entity (Sel, Any_Id);
6075 Set_Etype (Sel, Any_Type);
6076 end if;
6077 end Analyze_Selected_Component;
6079 ---------------------------
6080 -- Analyze_Short_Circuit --
6081 ---------------------------
6083 procedure Analyze_Short_Circuit (N : Node_Id) is
6084 L : constant Node_Id := Left_Opnd (N);
6085 R : constant Node_Id := Right_Opnd (N);
6086 Ind : Interp_Index;
6087 It : Interp;
6089 begin
6090 Set_Etype (N, Any_Type);
6091 Analyze_Expression (L);
6092 Analyze_Expression (R);
6094 if not Is_Overloaded (L) then
6095 if Root_Type (Etype (L)) = Standard_Boolean
6096 and then Has_Compatible_Type (R, Etype (L))
6097 then
6098 Add_One_Interp (N, Etype (L), Etype (L));
6099 end if;
6101 else
6102 Get_First_Interp (L, Ind, It);
6103 while Present (It.Typ) loop
6104 if Root_Type (It.Typ) = Standard_Boolean
6105 and then Has_Compatible_Type (R, It.Typ)
6106 then
6107 Add_One_Interp (N, It.Typ, It.Typ);
6108 end if;
6110 Get_Next_Interp (Ind, It);
6111 end loop;
6112 end if;
6114 -- Here we have failed to find an interpretation. Clearly we know that
6115 -- it is not the case that both operands can have an interpretation of
6116 -- Boolean, but this is by far the most likely intended interpretation.
6117 -- So we simply resolve both operands as Booleans, and at least one of
6118 -- these resolutions will generate an error message, and we do not need
6119 -- to give another error message on the short circuit operation itself.
6121 if Etype (N) = Any_Type then
6122 Resolve (L, Standard_Boolean);
6123 Resolve (R, Standard_Boolean);
6124 Set_Etype (N, Standard_Boolean);
6125 end if;
6127 if Style_Check then
6128 if Nkind (L) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
6129 then
6130 Check_Xtra_Parens_Precedence (L);
6131 end if;
6133 if Nkind (R) not in N_Short_Circuit | N_Op_And | N_Op_Or | N_Op_Xor
6134 then
6135 Check_Xtra_Parens_Precedence (R);
6136 end if;
6137 end if;
6138 end Analyze_Short_Circuit;
6140 -------------------
6141 -- Analyze_Slice --
6142 -------------------
6144 procedure Analyze_Slice (N : Node_Id) is
6145 D : constant Node_Id := Discrete_Range (N);
6146 P : constant Node_Id := Prefix (N);
6147 Array_Type : Entity_Id;
6148 Index_Type : Entity_Id;
6150 procedure Analyze_Overloaded_Slice;
6151 -- If the prefix is overloaded, select those interpretations that
6152 -- yield a one-dimensional array type.
6154 ------------------------------
6155 -- Analyze_Overloaded_Slice --
6156 ------------------------------
6158 procedure Analyze_Overloaded_Slice is
6159 I : Interp_Index;
6160 It : Interp;
6161 Typ : Entity_Id;
6163 begin
6164 Set_Etype (N, Any_Type);
6166 Get_First_Interp (P, I, It);
6167 while Present (It.Nam) loop
6168 Typ := It.Typ;
6170 if Is_Access_Type (Typ) then
6171 Typ := Designated_Type (Typ);
6172 Error_Msg_NW
6173 (Warn_On_Dereference, "?d?implicit dereference", N);
6174 end if;
6176 if Is_Array_Type (Typ)
6177 and then Number_Dimensions (Typ) = 1
6178 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
6179 then
6180 Add_One_Interp (N, Typ, Typ);
6181 end if;
6183 Get_Next_Interp (I, It);
6184 end loop;
6186 if Etype (N) = Any_Type then
6187 Error_Msg_N ("expect array type in prefix of slice", N);
6188 end if;
6189 end Analyze_Overloaded_Slice;
6191 -- Start of processing for Analyze_Slice
6193 begin
6194 Analyze (P);
6195 Analyze (D);
6197 if Is_Overloaded (P) then
6198 Analyze_Overloaded_Slice;
6200 else
6201 Array_Type := Etype (P);
6202 Set_Etype (N, Any_Type);
6204 if Is_Access_Type (Array_Type) then
6205 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
6206 Array_Type := Implicitly_Designated_Type (Array_Type);
6207 end if;
6209 if not Is_Array_Type (Array_Type) then
6210 Wrong_Type (P, Any_Array);
6212 elsif Number_Dimensions (Array_Type) > 1 then
6213 Error_Msg_N
6214 ("type is not one-dimensional array in slice prefix", N);
6216 else
6217 if Ekind (Array_Type) = E_String_Literal_Subtype then
6218 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
6219 else
6220 Index_Type := Etype (First_Index (Array_Type));
6221 end if;
6223 if not Has_Compatible_Type (D, Index_Type) then
6224 Wrong_Type (D, Index_Type);
6225 else
6226 Set_Etype (N, Array_Type);
6227 end if;
6228 end if;
6229 end if;
6230 end Analyze_Slice;
6232 -----------------------------
6233 -- Analyze_Type_Conversion --
6234 -----------------------------
6236 procedure Analyze_Type_Conversion (N : Node_Id) is
6237 Expr : constant Node_Id := Expression (N);
6238 Mark : constant Entity_Id := Subtype_Mark (N);
6240 Typ : Entity_Id;
6242 begin
6243 -- If Conversion_OK is set, then the Etype is already set, and the only
6244 -- processing required is to analyze the expression. This is used to
6245 -- construct certain "illegal" conversions which are not allowed by Ada
6246 -- semantics, but can be handled by Gigi, see Sinfo for further details.
6248 if Conversion_OK (N) then
6249 Analyze (Expr);
6250 return;
6251 end if;
6253 -- Otherwise full type analysis is required, as well as some semantic
6254 -- checks to make sure the argument of the conversion is appropriate.
6256 Find_Type (Mark);
6257 Typ := Entity (Mark);
6258 Set_Etype (N, Typ);
6260 Analyze_Expression (Expr);
6262 Check_Fully_Declared (Typ, N);
6263 Validate_Remote_Type_Type_Conversion (N);
6265 -- Only remaining step is validity checks on the argument. These
6266 -- are skipped if the conversion does not come from the source.
6268 if not Comes_From_Source (N) then
6269 return;
6271 -- If there was an error in a generic unit, no need to replicate the
6272 -- error message. Conversely, constant-folding in the generic may
6273 -- transform the argument of a conversion into a string literal, which
6274 -- is legal. Therefore the following tests are not performed in an
6275 -- instance. The same applies to an inlined body.
6277 elsif In_Instance or In_Inlined_Body then
6278 return;
6280 elsif Nkind (Expr) = N_Null then
6281 Error_Msg_N ("argument of conversion cannot be null", N);
6282 Error_Msg_N ("\use qualified expression instead", N);
6283 Set_Etype (N, Any_Type);
6285 elsif Nkind (Expr) = N_Aggregate then
6286 Error_Msg_N ("argument of conversion cannot be aggregate", N);
6287 Error_Msg_N ("\use qualified expression instead", N);
6289 elsif Nkind (Expr) = N_Allocator then
6290 Error_Msg_N ("argument of conversion cannot be allocator", N);
6291 Error_Msg_N ("\use qualified expression instead", N);
6293 elsif Nkind (Expr) = N_String_Literal then
6294 Error_Msg_N ("argument of conversion cannot be string literal", N);
6295 Error_Msg_N ("\use qualified expression instead", N);
6297 elsif Nkind (Expr) = N_Character_Literal then
6298 if Ada_Version = Ada_83 then
6299 Resolve (Expr, Typ);
6300 else
6301 Error_Msg_N
6302 ("argument of conversion cannot be character literal", N);
6303 Error_Msg_N ("\use qualified expression instead", N);
6304 end if;
6306 elsif Nkind (Expr) = N_Attribute_Reference
6307 and then Attribute_Name (Expr) in Name_Access
6308 | Name_Unchecked_Access
6309 | Name_Unrestricted_Access
6310 then
6311 Error_Msg_N
6312 ("argument of conversion cannot be access attribute", N);
6313 Error_Msg_N ("\use qualified expression instead", N);
6314 end if;
6316 -- A formal parameter of a specific tagged type whose related subprogram
6317 -- is subject to pragma Extensions_Visible with value "False" cannot
6318 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)). Do not check
6319 -- internally generated expressions.
6321 if Is_Class_Wide_Type (Typ)
6322 and then Comes_From_Source (Expr)
6323 and then Is_EVF_Expression (Expr)
6324 then
6325 Error_Msg_N
6326 ("formal parameter cannot be converted to class-wide type when "
6327 & "Extensions_Visible is False", Expr);
6328 end if;
6329 end Analyze_Type_Conversion;
6331 ----------------------
6332 -- Analyze_Unary_Op --
6333 ----------------------
6335 procedure Analyze_Unary_Op (N : Node_Id) is
6336 R : constant Node_Id := Right_Opnd (N);
6338 Op_Id : Entity_Id;
6340 begin
6341 Set_Etype (N, Any_Type);
6342 Candidate_Type := Empty;
6344 Analyze_Expression (R);
6346 -- If the entity is already set, the node is the instantiation of a
6347 -- generic node with a non-local reference, or was manufactured by a
6348 -- call to Make_Op_xxx. In either case the entity is known to be valid,
6349 -- and we do not need to collect interpretations, instead we just get
6350 -- the single possible interpretation.
6352 if Present (Entity (N)) then
6353 Op_Id := Entity (N);
6355 if Ekind (Op_Id) = E_Operator then
6356 Find_Unary_Types (R, Op_Id, N);
6357 else
6358 Add_One_Interp (N, Op_Id, Etype (Op_Id));
6359 end if;
6361 else
6362 Op_Id := Get_Name_Entity_Id (Chars (N));
6363 while Present (Op_Id) loop
6364 if Ekind (Op_Id) = E_Operator then
6365 if No (Next_Entity (First_Entity (Op_Id))) then
6366 Find_Unary_Types (R, Op_Id, N);
6367 end if;
6369 elsif Is_Overloadable (Op_Id) then
6370 Analyze_User_Defined_Unary_Op (N, Op_Id);
6371 end if;
6373 Op_Id := Homonym (Op_Id);
6374 end loop;
6375 end if;
6377 Operator_Check (N);
6378 end Analyze_Unary_Op;
6380 ----------------------------------
6381 -- Analyze_Unchecked_Expression --
6382 ----------------------------------
6384 procedure Analyze_Unchecked_Expression (N : Node_Id) is
6385 Expr : constant Node_Id := Expression (N);
6387 begin
6388 Analyze (Expr, Suppress => All_Checks);
6389 Set_Etype (N, Etype (Expr));
6390 Save_Interps (Expr, N);
6391 end Analyze_Unchecked_Expression;
6393 ---------------------------------------
6394 -- Analyze_Unchecked_Type_Conversion --
6395 ---------------------------------------
6397 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
6398 Expr : constant Node_Id := Expression (N);
6399 Mark : constant Entity_Id := Subtype_Mark (N);
6401 begin
6402 Find_Type (Mark);
6403 Set_Etype (N, Entity (Mark));
6404 Analyze_Expression (Expr);
6405 end Analyze_Unchecked_Type_Conversion;
6407 ------------------------------------
6408 -- Analyze_User_Defined_Binary_Op --
6409 ------------------------------------
6411 procedure Analyze_User_Defined_Binary_Op
6412 (N : Node_Id;
6413 Op_Id : Entity_Id) is
6414 begin
6415 declare
6416 F1 : constant Entity_Id := First_Formal (Op_Id);
6417 F2 : constant Entity_Id := Next_Formal (F1);
6419 begin
6420 -- Verify that Op_Id is a visible binary function. Note that since
6421 -- we know Op_Id is overloaded, potentially use visible means use
6422 -- visible for sure (RM 9.4(11)). Be prepared for previous errors.
6424 if Ekind (Op_Id) = E_Function
6425 and then Present (F2)
6426 and then (Is_Immediately_Visible (Op_Id)
6427 or else Is_Potentially_Use_Visible (Op_Id))
6428 and then (Has_Compatible_Type (Left_Opnd (N), Etype (F1))
6429 or else Etype (F1) = Any_Type)
6430 and then (Has_Compatible_Type (Right_Opnd (N), Etype (F2))
6431 or else Etype (F2) = Any_Type)
6432 then
6433 Add_One_Interp (N, Op_Id, Base_Type (Etype (Op_Id)));
6435 -- If the operands are overloaded, indicate that the current
6436 -- type is a viable candidate. This is redundant in most cases,
6437 -- but for equality and comparison operators where the context
6438 -- does not impose a type on the operands, setting the proper
6439 -- type is necessary to avoid subsequent ambiguities during
6440 -- resolution, when both user-defined and predefined operators
6441 -- may be candidates.
6443 if Is_Overloaded (Left_Opnd (N)) then
6444 Set_Etype (Left_Opnd (N), Etype (F1));
6445 end if;
6447 if Is_Overloaded (Right_Opnd (N)) then
6448 Set_Etype (Right_Opnd (N), Etype (F2));
6449 end if;
6451 if Debug_Flag_E then
6452 Write_Str ("user defined operator ");
6453 Write_Name (Chars (Op_Id));
6454 Write_Str (" on node ");
6455 Write_Int (Int (N));
6456 Write_Eol;
6457 end if;
6458 end if;
6459 end;
6460 end Analyze_User_Defined_Binary_Op;
6462 -----------------------------------
6463 -- Analyze_User_Defined_Unary_Op --
6464 -----------------------------------
6466 procedure Analyze_User_Defined_Unary_Op
6467 (N : Node_Id;
6468 Op_Id : Entity_Id)
6470 begin
6471 -- Only do analysis if the operator Comes_From_Source, since otherwise
6472 -- the operator was generated by the expander, and all such operators
6473 -- always refer to the operators in package Standard.
6475 if Comes_From_Source (N) then
6476 declare
6477 F : constant Entity_Id := First_Formal (Op_Id);
6479 begin
6480 -- Verify that Op_Id is a visible unary function. Note that since
6481 -- we know Op_Id is overloaded, potentially use visible means use
6482 -- visible for sure (RM 9.4(11)).
6484 if Ekind (Op_Id) = E_Function
6485 and then No (Next_Formal (F))
6486 and then (Is_Immediately_Visible (Op_Id)
6487 or else Is_Potentially_Use_Visible (Op_Id))
6488 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
6489 then
6490 Add_One_Interp (N, Op_Id, Etype (Op_Id));
6491 end if;
6492 end;
6493 end if;
6494 end Analyze_User_Defined_Unary_Op;
6496 ---------------------------
6497 -- Check_Arithmetic_Pair --
6498 ---------------------------
6500 procedure Check_Arithmetic_Pair
6501 (T1, T2 : Entity_Id;
6502 Op_Id : Entity_Id;
6503 N : Node_Id)
6505 Op_Name : constant Name_Id := Chars (Op_Id);
6507 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
6508 -- Check whether the fixed-point type Typ has a user-defined operator
6509 -- (multiplication or division) that should hide the corresponding
6510 -- predefined operator. Used to implement Ada 2005 AI-264, to make
6511 -- such operators more visible and therefore useful.
6513 -- If the name of the operation is an expanded name with prefix
6514 -- Standard, the predefined universal fixed operator is available,
6515 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
6517 ------------------
6518 -- Has_Fixed_Op --
6519 ------------------
6521 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
6522 Bas : constant Entity_Id := Base_Type (Typ);
6523 Ent : Entity_Id;
6524 F1 : Entity_Id;
6525 F2 : Entity_Id;
6527 begin
6528 -- If the universal_fixed operation is given explicitly the rule
6529 -- concerning primitive operations of the type do not apply.
6531 if Nkind (N) = N_Function_Call
6532 and then Nkind (Name (N)) = N_Expanded_Name
6533 and then Entity (Prefix (Name (N))) = Standard_Standard
6534 then
6535 return False;
6536 end if;
6538 -- The operation is treated as primitive if it is declared in the
6539 -- same scope as the type, and therefore on the same entity chain.
6541 Ent := Next_Entity (Typ);
6542 while Present (Ent) loop
6543 if Chars (Ent) = Chars (Op) then
6544 F1 := First_Formal (Ent);
6545 F2 := Next_Formal (F1);
6547 -- The operation counts as primitive if either operand or
6548 -- result are of the given base type, and both operands are
6549 -- fixed point types.
6551 if (Base_Type (Etype (F1)) = Bas
6552 and then Is_Fixed_Point_Type (Etype (F2)))
6554 or else
6555 (Base_Type (Etype (F2)) = Bas
6556 and then Is_Fixed_Point_Type (Etype (F1)))
6558 or else
6559 (Base_Type (Etype (Ent)) = Bas
6560 and then Is_Fixed_Point_Type (Etype (F1))
6561 and then Is_Fixed_Point_Type (Etype (F2)))
6562 then
6563 return True;
6564 end if;
6565 end if;
6567 Next_Entity (Ent);
6568 end loop;
6570 return False;
6571 end Has_Fixed_Op;
6573 -- Start of processing for Check_Arithmetic_Pair
6575 begin
6576 if Op_Name in Name_Op_Add | Name_Op_Subtract then
6577 if Is_Numeric_Type (T1)
6578 and then Is_Numeric_Type (T2)
6579 and then (Covers (T1 => T1, T2 => T2)
6580 or else
6581 Covers (T1 => T2, T2 => T1))
6582 then
6583 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
6584 end if;
6586 elsif Op_Name in Name_Op_Multiply | Name_Op_Divide then
6587 if Is_Fixed_Point_Type (T1)
6588 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
6589 then
6590 -- Add one interpretation with universal fixed result
6592 if not Has_Fixed_Op (T1, Op_Id)
6593 or else Nkind (Parent (N)) = N_Type_Conversion
6594 then
6595 Add_One_Interp (N, Op_Id, Universal_Fixed);
6596 end if;
6598 elsif Is_Fixed_Point_Type (T2)
6599 and then T1 = Universal_Real
6600 and then
6601 (not Has_Fixed_Op (T1, Op_Id)
6602 or else Nkind (Parent (N)) = N_Type_Conversion)
6603 then
6604 Add_One_Interp (N, Op_Id, Universal_Fixed);
6606 elsif Is_Numeric_Type (T1)
6607 and then Is_Numeric_Type (T2)
6608 and then (Covers (T1 => T1, T2 => T2)
6609 or else
6610 Covers (T1 => T2, T2 => T1))
6611 then
6612 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
6614 elsif Is_Fixed_Point_Type (T1)
6615 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6616 or else T2 = Universal_Integer)
6617 then
6618 Add_One_Interp (N, Op_Id, T1);
6620 elsif T2 = Universal_Real
6621 and then Base_Type (T1) = Base_Type (Standard_Integer)
6622 and then Op_Name = Name_Op_Multiply
6623 then
6624 Add_One_Interp (N, Op_Id, Any_Fixed);
6626 elsif T1 = Universal_Real
6627 and then Base_Type (T2) = Base_Type (Standard_Integer)
6628 then
6629 Add_One_Interp (N, Op_Id, Any_Fixed);
6631 elsif Is_Fixed_Point_Type (T2)
6632 and then (Base_Type (T1) = Base_Type (Standard_Integer)
6633 or else T1 = Universal_Integer)
6634 and then Op_Name = Name_Op_Multiply
6635 then
6636 Add_One_Interp (N, Op_Id, T2);
6638 elsif T1 = Universal_Real and then T2 = Universal_Integer then
6639 Add_One_Interp (N, Op_Id, T1);
6641 elsif T2 = Universal_Real
6642 and then T1 = Universal_Integer
6643 and then Op_Name = Name_Op_Multiply
6644 then
6645 Add_One_Interp (N, Op_Id, T2);
6646 end if;
6648 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
6650 if Is_Integer_Type (T1)
6651 and then (Covers (T1 => T1, T2 => T2)
6652 or else
6653 Covers (T1 => T2, T2 => T1))
6654 then
6655 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
6656 end if;
6658 elsif Op_Name = Name_Op_Expon then
6659 if Is_Numeric_Type (T1)
6660 and then not Is_Fixed_Point_Type (T1)
6661 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6662 or else T2 = Universal_Integer)
6663 then
6664 Add_One_Interp (N, Op_Id, Base_Type (T1));
6665 end if;
6667 else pragma Assert (Nkind (N) in N_Op_Shift);
6669 -- If not one of the predefined operators, the node may be one
6670 -- of the intrinsic functions. Its kind is always specific, and
6671 -- we can use it directly, rather than the name of the operation.
6673 if Is_Integer_Type (T1)
6674 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6675 or else T2 = Universal_Integer)
6676 then
6677 Add_One_Interp (N, Op_Id, Base_Type (T1));
6678 end if;
6679 end if;
6680 end Check_Arithmetic_Pair;
6682 -------------------------------
6683 -- Check_Misspelled_Selector --
6684 -------------------------------
6686 procedure Check_Misspelled_Selector
6687 (Prefix : Entity_Id;
6688 Sel : Node_Id)
6690 Max_Suggestions : constant := 2;
6691 Nr_Of_Suggestions : Natural := 0;
6693 Suggestion_1 : Entity_Id := Empty;
6694 Suggestion_2 : Entity_Id := Empty;
6696 Comp : Entity_Id;
6698 begin
6699 -- All the components of the prefix of selector Sel are matched against
6700 -- Sel and a count is maintained of possible misspellings. When at
6701 -- the end of the analysis there are one or two (not more) possible
6702 -- misspellings, these misspellings will be suggested as possible
6703 -- correction.
6705 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
6707 -- Concurrent types should be handled as well ???
6709 return;
6710 end if;
6712 Comp := First_Entity (Prefix);
6713 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
6714 if Is_Visible_Component (Comp, Sel) then
6715 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
6716 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
6718 case Nr_Of_Suggestions is
6719 when 1 => Suggestion_1 := Comp;
6720 when 2 => Suggestion_2 := Comp;
6721 when others => null;
6722 end case;
6723 end if;
6724 end if;
6726 Next_Entity (Comp);
6727 end loop;
6729 -- Report at most two suggestions
6731 if Nr_Of_Suggestions = 1 then
6732 Error_Msg_NE -- CODEFIX
6733 ("\possible misspelling of&", Sel, Suggestion_1);
6735 elsif Nr_Of_Suggestions = 2 then
6736 Error_Msg_Node_2 := Suggestion_2;
6737 Error_Msg_NE -- CODEFIX
6738 ("\possible misspelling of& or&", Sel, Suggestion_1);
6739 end if;
6740 end Check_Misspelled_Selector;
6742 -------------------
6743 -- Diagnose_Call --
6744 -------------------
6746 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
6747 Actual : Node_Id;
6748 X : Interp_Index;
6749 It : Interp;
6750 Err_Mode : Boolean;
6751 New_Nam : Node_Id;
6752 Num_Actuals : Natural;
6753 Num_Interps : Natural;
6754 Void_Interp_Seen : Boolean := False;
6756 Success : Boolean;
6757 pragma Warnings (Off, Boolean);
6759 begin
6760 Num_Actuals := 0;
6761 Actual := First_Actual (N);
6763 while Present (Actual) loop
6764 -- Ada 2005 (AI-50217): Post an error in case of premature
6765 -- usage of an entity from the limited view.
6767 if not Analyzed (Etype (Actual))
6768 and then From_Limited_With (Etype (Actual))
6769 and then Ada_Version >= Ada_2005
6770 then
6771 Error_Msg_Qual_Level := 1;
6772 Error_Msg_NE
6773 ("missing with_clause for scope of imported type&",
6774 Actual, Etype (Actual));
6775 Error_Msg_Qual_Level := 0;
6776 end if;
6778 Num_Actuals := Num_Actuals + 1;
6779 Next_Actual (Actual);
6780 end loop;
6782 -- Before listing the possible candidates, check whether this is
6783 -- a prefix of a selected component that has been rewritten as a
6784 -- parameterless function call because there is a callable candidate
6785 -- interpretation. If there is a hidden package in the list of homonyms
6786 -- of the function name (bad programming style in any case) suggest that
6787 -- this is the intended entity.
6789 if No (Parameter_Associations (N))
6790 and then Nkind (Parent (N)) = N_Selected_Component
6791 and then Nkind (Parent (Parent (N))) in N_Declaration
6792 and then Is_Overloaded (Nam)
6793 then
6794 declare
6795 Ent : Entity_Id;
6797 begin
6798 Ent := Current_Entity (Nam);
6799 while Present (Ent) loop
6800 if Ekind (Ent) = E_Package then
6801 Error_Msg_N
6802 ("no legal interpretations as function call,!", Nam);
6803 Error_Msg_NE ("\package& is not visible", N, Ent);
6805 Rewrite (Parent (N),
6806 New_Occurrence_Of (Any_Type, Sloc (N)));
6807 return;
6808 end if;
6810 Ent := Homonym (Ent);
6811 end loop;
6812 end;
6813 end if;
6815 -- If this is a call to an operation of a concurrent type, the failed
6816 -- interpretations have been removed from the name. Recover them now
6817 -- in order to provide full diagnostics.
6819 if Nkind (Parent (Nam)) = N_Selected_Component then
6820 Set_Entity (Nam, Empty);
6821 New_Nam := New_Copy_Tree (Parent (Nam));
6822 Set_Is_Overloaded (New_Nam, False);
6823 Set_Is_Overloaded (Selector_Name (New_Nam), False);
6824 Set_Parent (New_Nam, Parent (Parent (Nam)));
6825 Analyze_Selected_Component (New_Nam);
6826 Get_First_Interp (Selector_Name (New_Nam), X, It);
6827 else
6828 Get_First_Interp (Nam, X, It);
6829 end if;
6831 -- If the number of actuals is 2, then remove interpretations involving
6832 -- a unary "+" operator as they might yield confusing errors downstream.
6834 if Num_Actuals = 2
6835 and then Nkind (Parent (Nam)) /= N_Selected_Component
6836 then
6837 Num_Interps := 0;
6839 while Present (It.Nam) loop
6840 if Ekind (It.Nam) = E_Operator
6841 and then Chars (It.Nam) = Name_Op_Add
6842 and then (No (First_Formal (It.Nam))
6843 or else No (Next_Formal (First_Formal (It.Nam))))
6844 then
6845 Remove_Interp (X);
6846 else
6847 Num_Interps := Num_Interps + 1;
6848 end if;
6850 Get_Next_Interp (X, It);
6851 end loop;
6853 if Num_Interps = 0 then
6854 Error_Msg_N ("!too many arguments in call to&", Nam);
6855 return;
6856 end if;
6858 Get_First_Interp (Nam, X, It);
6860 else
6861 Num_Interps := 2; -- at least
6862 end if;
6864 -- Analyze each candidate call again with full error reporting for each
6866 if Num_Interps > 1 then
6867 Error_Msg_N ("!no candidate interpretations match the actuals:", Nam);
6868 end if;
6870 Err_Mode := All_Errors_Mode;
6871 All_Errors_Mode := True;
6873 while Present (It.Nam) loop
6874 if Etype (It.Nam) = Standard_Void_Type then
6875 Void_Interp_Seen := True;
6876 end if;
6878 Analyze_One_Call (N, It.Nam, True, Success);
6879 Get_Next_Interp (X, It);
6880 end loop;
6882 if Nkind (N) = N_Function_Call then
6883 Get_First_Interp (Nam, X, It);
6885 if No (It.Typ)
6886 and then Ekind (Entity (Name (N))) = E_Function
6887 and then Present (Homonym (Entity (Name (N))))
6888 then
6889 -- A name may appear overloaded if it has a homonym, even if that
6890 -- homonym is non-overloadable, in which case the overload list is
6891 -- in fact empty. This specialized case deserves a special message
6892 -- if the homonym is a child package.
6894 declare
6895 Nam : constant Node_Id := Name (N);
6896 H : constant Entity_Id := Homonym (Entity (Nam));
6898 begin
6899 if Ekind (H) = E_Package and then Is_Child_Unit (H) then
6900 Error_Msg_Qual_Level := 2;
6901 Error_Msg_NE ("if an entity in package& is meant, ", Nam, H);
6902 Error_Msg_NE ("\use a fully qualified name", Nam, H);
6903 Error_Msg_Qual_Level := 0;
6904 end if;
6905 end;
6907 else
6908 while Present (It.Nam) loop
6909 if Ekind (It.Nam) in E_Function | E_Operator then
6910 return;
6911 else
6912 Get_Next_Interp (X, It);
6913 end if;
6914 end loop;
6916 -- If all interpretations are procedures, this deserves a more
6917 -- precise message. Ditto if this appears as the prefix of a
6918 -- selected component, which may be a lexical error.
6920 Error_Msg_N
6921 ("\context requires function call, found procedure name", Nam);
6923 if Nkind (Parent (N)) = N_Selected_Component
6924 and then N = Prefix (Parent (N))
6925 then
6926 Error_Msg_N -- CODEFIX
6927 ("\period should probably be semicolon", Parent (N));
6928 end if;
6929 end if;
6931 elsif Nkind (N) = N_Procedure_Call_Statement
6932 and then not Void_Interp_Seen
6933 then
6934 Error_Msg_N ("\function name found in procedure call", Nam);
6935 end if;
6937 All_Errors_Mode := Err_Mode;
6938 end Diagnose_Call;
6940 ---------------------------
6941 -- Find_Arithmetic_Types --
6942 ---------------------------
6944 procedure Find_Arithmetic_Types
6945 (L, R : Node_Id;
6946 Op_Id : Entity_Id;
6947 N : Node_Id)
6949 procedure Check_Right_Argument (T : Entity_Id);
6950 -- Check right operand of operator
6952 --------------------------
6953 -- Check_Right_Argument --
6954 --------------------------
6956 procedure Check_Right_Argument (T : Entity_Id) is
6957 I : Interp_Index;
6958 It : Interp;
6960 begin
6961 if not Is_Overloaded (R) then
6962 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
6964 else
6965 Get_First_Interp (R, I, It);
6966 while Present (It.Typ) loop
6967 Check_Arithmetic_Pair (T, It.Typ, Op_Id, N);
6968 Get_Next_Interp (I, It);
6969 end loop;
6970 end if;
6971 end Check_Right_Argument;
6973 -- Local variables
6975 I : Interp_Index;
6976 It : Interp;
6978 -- Start of processing for Find_Arithmetic_Types
6980 begin
6981 if not Is_Overloaded (L) then
6982 Check_Right_Argument (Etype (L));
6984 else
6985 Get_First_Interp (L, I, It);
6986 while Present (It.Typ) loop
6987 Check_Right_Argument (It.Typ);
6988 Get_Next_Interp (I, It);
6989 end loop;
6990 end if;
6991 end Find_Arithmetic_Types;
6993 ------------------------
6994 -- Find_Boolean_Types --
6995 ------------------------
6997 procedure Find_Boolean_Types
6998 (L, R : Node_Id;
6999 Op_Id : Entity_Id;
7000 N : Node_Id)
7002 procedure Check_Boolean_Pair (T1, T2 : Entity_Id);
7003 -- Check operand pair of operator
7005 procedure Check_Right_Argument (T : Entity_Id);
7006 -- Check right operand of operator
7008 ------------------------
7009 -- Check_Boolean_Pair --
7010 ------------------------
7012 procedure Check_Boolean_Pair (T1, T2 : Entity_Id) is
7013 T : Entity_Id;
7015 begin
7016 if Valid_Boolean_Arg (T1)
7017 and then Valid_Boolean_Arg (T2)
7018 and then (Covers (T1 => T1, T2 => T2)
7019 or else Covers (T1 => T2, T2 => T1))
7020 then
7021 T := Specific_Type (T1, T2);
7023 if T = Universal_Integer then
7024 T := Any_Modular;
7025 end if;
7027 Add_One_Interp (N, Op_Id, T);
7028 end if;
7029 end Check_Boolean_Pair;
7031 --------------------------
7032 -- Check_Right_Argument --
7033 --------------------------
7035 procedure Check_Right_Argument (T : Entity_Id) is
7036 I : Interp_Index;
7037 It : Interp;
7039 begin
7040 -- Defend against previous error
7042 if Nkind (R) = N_Error then
7043 null;
7045 elsif not Is_Overloaded (R) then
7046 Check_Boolean_Pair (T, Etype (R));
7048 else
7049 Get_First_Interp (R, I, It);
7050 while Present (It.Typ) loop
7051 Check_Boolean_Pair (T, It.Typ);
7052 Get_Next_Interp (I, It);
7053 end loop;
7054 end if;
7055 end Check_Right_Argument;
7057 -- Local variables
7059 I : Interp_Index;
7060 It : Interp;
7062 -- Start of processing for Find_Boolean_Types
7064 begin
7065 if not Is_Overloaded (L) then
7066 Check_Right_Argument (Etype (L));
7068 else
7069 Get_First_Interp (L, I, It);
7070 while Present (It.Typ) loop
7071 Check_Right_Argument (It.Typ);
7072 Get_Next_Interp (I, It);
7073 end loop;
7074 end if;
7075 end Find_Boolean_Types;
7077 ------------------------------------
7078 -- Find_Comparison_Equality_Types --
7079 ------------------------------------
7081 -- The context of the operator plays no role in resolving the operands,
7082 -- so that if there is more than one interpretation of the operands that
7083 -- is compatible with the comparison or equality, then the operation is
7084 -- ambiguous, but this cannot be reported at this point because there is
7085 -- no guarantee that the operation will be resolved to this operator yet.
7087 procedure Find_Comparison_Equality_Types
7088 (L, R : Node_Id;
7089 Op_Id : Entity_Id;
7090 N : Node_Id)
7092 Op_Name : constant Name_Id := Chars (Op_Id);
7093 Op_Typ : Entity_Id renames Standard_Boolean;
7095 function Try_Left_Interp (T : Entity_Id) return Entity_Id;
7096 -- Try an interpretation of the left operand with type T. Return the
7097 -- type of the interpretation of the right operand making up a valid
7098 -- operand pair, or else Any_Type if the right operand is ambiguous,
7099 -- otherwise Empty if no such pair exists.
7101 function Is_Valid_Comparison_Type (T : Entity_Id) return Boolean;
7102 -- Return true if T is a valid comparison type
7104 function Is_Valid_Equality_Type
7105 (T : Entity_Id;
7106 Anon_Access : Boolean) return Boolean;
7107 -- Return true if T is a valid equality type
7109 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean;
7110 -- Return true if T1 and T2 constitute a valid pair of operand types for
7111 -- L and R respectively.
7113 ---------------------
7114 -- Try_Left_Interp --
7115 ---------------------
7117 function Try_Left_Interp (T : Entity_Id) return Entity_Id is
7118 I : Interp_Index;
7119 It : Interp;
7120 R_Typ : Entity_Id;
7121 Valid_I : Interp_Index;
7123 begin
7124 -- Defend against previous error
7126 if Nkind (R) = N_Error then
7127 null;
7129 -- Loop through the interpretations of the right operand
7131 elsif not Is_Overloaded (R) then
7132 if Is_Valid_Pair (T, Etype (R)) then
7133 return Etype (R);
7134 end if;
7136 else
7137 R_Typ := Empty;
7138 Valid_I := 0;
7140 Get_First_Interp (R, I, It);
7141 while Present (It.Typ) loop
7142 if Is_Valid_Pair (T, It.Typ) then
7143 -- If several interpretations are possible, disambiguate
7145 if Present (R_Typ)
7146 and then Base_Type (It.Typ) /= Base_Type (R_Typ)
7147 then
7148 It := Disambiguate (R, Valid_I, I, Any_Type);
7150 if It = No_Interp then
7151 R_Typ := Any_Type;
7152 exit;
7153 end if;
7155 else
7156 Valid_I := I;
7157 end if;
7159 R_Typ := It.Typ;
7160 end if;
7162 Get_Next_Interp (I, It);
7163 end loop;
7165 if Present (R_Typ) then
7166 return R_Typ;
7167 end if;
7168 end if;
7170 return Empty;
7171 end Try_Left_Interp;
7173 ------------------------------
7174 -- Is_Valid_Comparison_Type --
7175 ------------------------------
7177 function Is_Valid_Comparison_Type (T : Entity_Id) return Boolean is
7178 begin
7179 -- The operation must be performed in a context where the operators
7180 -- of the base type are visible.
7182 if Is_Visible_Operator (N, Base_Type (T)) then
7183 null;
7185 -- Save candidate type for subsequent error message, if any
7187 else
7188 if Valid_Comparison_Arg (T) then
7189 Candidate_Type := T;
7190 end if;
7192 return False;
7193 end if;
7195 -- Defer to the common implementation for the rest
7197 return Valid_Comparison_Arg (T);
7198 end Is_Valid_Comparison_Type;
7200 ----------------------------
7201 -- Is_Valid_Equality_Type --
7202 ----------------------------
7204 function Is_Valid_Equality_Type
7205 (T : Entity_Id;
7206 Anon_Access : Boolean) return Boolean
7208 begin
7209 -- The operation must be performed in a context where the operators
7210 -- of the base type are visible. Deal with special types used with
7211 -- access types before type resolution is done.
7213 if Ekind (T) = E_Access_Attribute_Type
7214 or else (Ekind (T) in E_Access_Subprogram_Type
7215 | E_Access_Protected_Subprogram_Type
7216 and then
7217 Ekind (Designated_Type (T)) /= E_Subprogram_Type)
7218 or else Is_Visible_Operator (N, Base_Type (T))
7219 then
7220 null;
7222 -- AI95-0230: Keep restriction imposed by Ada 83 and 95, do not allow
7223 -- anonymous access types in universal_access equality operators.
7225 elsif Anon_Access then
7226 if Ada_Version < Ada_2005 then
7227 return False;
7228 end if;
7230 -- Save candidate type for subsequent error message, if any
7232 else
7233 if Valid_Equality_Arg (T) then
7234 Candidate_Type := T;
7235 end if;
7237 return False;
7238 end if;
7240 -- For the use of a "/=" operator on a tagged type, several possible
7241 -- interpretations of equality need to be considered, we don't want
7242 -- the default inequality declared in Standard to be chosen, and the
7243 -- "/=" operator will be rewritten as a negation of "=" (see the end
7244 -- of Analyze_Comparison_Equality_Op). This ensures the rewriting
7245 -- occurs during analysis rather than being delayed until expansion.
7246 -- Note that, if the node is N_Op_Ne but Op_Id is Name_Op_Eq, then we
7247 -- still proceed with the interpretation, because this indicates
7248 -- the aforementioned rewriting case where the interpretation to be
7249 -- considered is actually that of the "=" operator.
7251 if Nkind (N) = N_Op_Ne
7252 and then Op_Name /= Name_Op_Eq
7253 and then Is_Tagged_Type (T)
7254 then
7255 return False;
7257 -- Defer to the common implementation for the rest
7259 else
7260 return Valid_Equality_Arg (T);
7261 end if;
7262 end Is_Valid_Equality_Type;
7264 -------------------
7265 -- Is_Valid_Pair --
7266 -------------------
7268 function Is_Valid_Pair (T1, T2 : Entity_Id) return Boolean is
7269 begin
7270 if Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne then
7271 declare
7272 Anon_Access : constant Boolean :=
7273 Is_Anonymous_Access_Type (T1)
7274 or else Is_Anonymous_Access_Type (T2);
7275 -- RM 4.5.2(9.1/2): At least one of the operands of an equality
7276 -- operator for universal_access shall be of specific anonymous
7277 -- access type.
7279 begin
7280 if not Is_Valid_Equality_Type (T1, Anon_Access)
7281 or else not Is_Valid_Equality_Type (T2, Anon_Access)
7282 then
7283 return False;
7284 end if;
7285 end;
7287 else
7288 if not Is_Valid_Comparison_Type (T1)
7289 or else not Is_Valid_Comparison_Type (T2)
7290 then
7291 return False;
7292 end if;
7293 end if;
7295 return Covers (T1 => T1, T2 => T2)
7296 or else Covers (T1 => T2, T2 => T1)
7297 or else Is_User_Defined_Literal (L, T2)
7298 or else Is_User_Defined_Literal (R, T1);
7299 end Is_Valid_Pair;
7301 -- Local variables
7303 I : Interp_Index;
7304 It : Interp;
7305 L_Typ : Entity_Id;
7306 R_Typ : Entity_Id;
7307 T : Entity_Id;
7308 Valid_I : Interp_Index;
7310 -- Start of processing for Find_Comparison_Equality_Types
7312 begin
7313 -- Loop through the interpretations of the left operand
7315 if not Is_Overloaded (L) then
7316 T := Try_Left_Interp (Etype (L));
7318 if Present (T) then
7319 Set_Etype (R, T);
7320 Add_One_Interp (N, Op_Id, Op_Typ, Find_Unique_Type (L, R));
7321 end if;
7323 else
7324 L_Typ := Empty;
7325 R_Typ := Empty;
7326 Valid_I := 0;
7328 Get_First_Interp (L, I, It);
7329 while Present (It.Typ) loop
7330 T := Try_Left_Interp (It.Typ);
7332 if Present (T) then
7333 -- If several interpretations are possible, disambiguate
7335 if Present (L_Typ)
7336 and then Base_Type (It.Typ) /= Base_Type (L_Typ)
7337 then
7338 It := Disambiguate (L, Valid_I, I, Any_Type);
7340 if It = No_Interp then
7341 L_Typ := Any_Type;
7342 R_Typ := T;
7343 exit;
7344 end if;
7346 else
7347 Valid_I := I;
7348 end if;
7350 L_Typ := It.Typ;
7351 R_Typ := T;
7352 end if;
7354 Get_Next_Interp (I, It);
7355 end loop;
7357 if Present (L_Typ) then
7358 Set_Etype (L, L_Typ);
7359 Set_Etype (R, R_Typ);
7360 Add_One_Interp (N, Op_Id, Op_Typ, Find_Unique_Type (L, R));
7361 end if;
7362 end if;
7363 end Find_Comparison_Equality_Types;
7365 ------------------------------
7366 -- Find_Concatenation_Types --
7367 ------------------------------
7369 procedure Find_Concatenation_Types
7370 (L, R : Node_Id;
7371 Op_Id : Entity_Id;
7372 N : Node_Id)
7374 Is_String : constant Boolean := Nkind (L) = N_String_Literal
7375 or else
7376 Nkind (R) = N_String_Literal;
7377 Op_Type : constant Entity_Id := Etype (Op_Id);
7379 begin
7380 if Is_Array_Type (Op_Type)
7382 -- Small but very effective optimization: if at least one operand is a
7383 -- string literal, then the type of the operator must be either array
7384 -- of characters or array of strings.
7386 and then (not Is_String
7387 or else
7388 Is_Character_Type (Component_Type (Op_Type))
7389 or else
7390 Is_String_Type (Component_Type (Op_Type)))
7392 and then not Is_Limited_Type (Op_Type)
7394 and then (Has_Compatible_Type (L, Op_Type)
7395 or else
7396 Has_Compatible_Type (L, Component_Type (Op_Type)))
7398 and then (Has_Compatible_Type (R, Op_Type)
7399 or else
7400 Has_Compatible_Type (R, Component_Type (Op_Type)))
7401 then
7402 Add_One_Interp (N, Op_Id, Op_Type);
7403 end if;
7404 end Find_Concatenation_Types;
7406 -------------------------
7407 -- Find_Negation_Types --
7408 -------------------------
7410 procedure Find_Negation_Types
7411 (R : Node_Id;
7412 Op_Id : Entity_Id;
7413 N : Node_Id)
7415 Index : Interp_Index;
7416 It : Interp;
7418 begin
7419 if not Is_Overloaded (R) then
7420 if Etype (R) = Universal_Integer then
7421 Add_One_Interp (N, Op_Id, Any_Modular);
7422 elsif Valid_Boolean_Arg (Etype (R)) then
7423 Add_One_Interp (N, Op_Id, Etype (R));
7424 end if;
7426 else
7427 Get_First_Interp (R, Index, It);
7428 while Present (It.Typ) loop
7429 if Valid_Boolean_Arg (It.Typ) then
7430 Add_One_Interp (N, Op_Id, It.Typ);
7431 end if;
7433 Get_Next_Interp (Index, It);
7434 end loop;
7435 end if;
7436 end Find_Negation_Types;
7438 ------------------------------
7439 -- Find_Primitive_Operation --
7440 ------------------------------
7442 function Find_Primitive_Operation (N : Node_Id) return Boolean is
7443 Obj : constant Node_Id := Prefix (N);
7444 Op : constant Node_Id := Selector_Name (N);
7446 Prim : Elmt_Id;
7447 Prims : Elist_Id;
7448 Typ : Entity_Id;
7450 begin
7451 Set_Etype (Op, Any_Type);
7453 if Is_Access_Type (Etype (Obj)) then
7454 Typ := Designated_Type (Etype (Obj));
7455 else
7456 Typ := Etype (Obj);
7457 end if;
7459 if Is_Class_Wide_Type (Typ) then
7460 Typ := Root_Type (Typ);
7461 end if;
7463 Prims := Primitive_Operations (Typ);
7465 Prim := First_Elmt (Prims);
7466 while Present (Prim) loop
7467 if Chars (Node (Prim)) = Chars (Op) then
7468 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
7469 Set_Etype (N, Etype (Node (Prim)));
7470 end if;
7472 Next_Elmt (Prim);
7473 end loop;
7475 -- Now look for class-wide operations of the type or any of its
7476 -- ancestors by iterating over the homonyms of the selector.
7478 declare
7479 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
7480 Hom : Entity_Id;
7482 begin
7483 Hom := Current_Entity (Op);
7484 while Present (Hom) loop
7485 if (Ekind (Hom) = E_Procedure
7486 or else
7487 Ekind (Hom) = E_Function)
7488 and then Scope (Hom) = Scope (Typ)
7489 and then Present (First_Formal (Hom))
7490 and then
7491 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
7492 or else
7493 (Is_Access_Type (Etype (First_Formal (Hom)))
7494 and then
7495 Ekind (Etype (First_Formal (Hom))) =
7496 E_Anonymous_Access_Type
7497 and then
7498 Base_Type
7499 (Designated_Type (Etype (First_Formal (Hom)))) =
7500 Cls_Type))
7501 then
7502 Add_One_Interp (Op, Hom, Etype (Hom));
7503 Set_Etype (N, Etype (Hom));
7504 end if;
7506 Hom := Homonym (Hom);
7507 end loop;
7508 end;
7510 return Etype (Op) /= Any_Type;
7511 end Find_Primitive_Operation;
7513 ----------------------
7514 -- Find_Unary_Types --
7515 ----------------------
7517 procedure Find_Unary_Types
7518 (R : Node_Id;
7519 Op_Id : Entity_Id;
7520 N : Node_Id)
7522 Index : Interp_Index;
7523 It : Interp;
7525 begin
7526 if not Is_Overloaded (R) then
7527 if Is_Numeric_Type (Etype (R)) then
7529 -- In an instance a generic actual may be a numeric type even if
7530 -- the formal in the generic unit was not. In that case, the
7531 -- predefined operator was not a possible interpretation in the
7532 -- generic, and cannot be one in the instance, unless the operator
7533 -- is an actual of an instance.
7535 if In_Instance
7536 and then
7537 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
7538 then
7539 null;
7540 else
7541 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
7542 end if;
7543 end if;
7545 else
7546 Get_First_Interp (R, Index, It);
7547 while Present (It.Typ) loop
7548 if Is_Numeric_Type (It.Typ) then
7549 if In_Instance
7550 and then
7551 not Is_Numeric_Type
7552 (Corresponding_Generic_Type (Etype (It.Typ)))
7553 then
7554 null;
7556 else
7557 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
7558 end if;
7559 end if;
7561 Get_Next_Interp (Index, It);
7562 end loop;
7563 end if;
7564 end Find_Unary_Types;
7566 ------------------
7567 -- Junk_Operand --
7568 ------------------
7570 function Junk_Operand (N : Node_Id) return Boolean is
7571 Enode : Node_Id;
7573 begin
7574 if Error_Posted (N) then
7575 return False;
7576 end if;
7578 -- Get entity to be tested
7580 if Is_Entity_Name (N)
7581 and then Present (Entity (N))
7582 then
7583 Enode := N;
7585 -- An odd case, a procedure name gets converted to a very peculiar
7586 -- function call, and here is where we detect this happening.
7588 elsif Nkind (N) = N_Function_Call
7589 and then Is_Entity_Name (Name (N))
7590 and then Present (Entity (Name (N)))
7591 then
7592 Enode := Name (N);
7594 -- Another odd case, there are at least some cases of selected
7595 -- components where the selected component is not marked as having
7596 -- an entity, even though the selector does have an entity
7598 elsif Nkind (N) = N_Selected_Component
7599 and then Present (Entity (Selector_Name (N)))
7600 then
7601 Enode := Selector_Name (N);
7603 else
7604 return False;
7605 end if;
7607 -- Now test the entity we got to see if it is a bad case
7609 case Ekind (Entity (Enode)) is
7610 when E_Package =>
7611 Error_Msg_N
7612 ("package name cannot be used as operand", Enode);
7614 when Generic_Unit_Kind =>
7615 Error_Msg_N
7616 ("generic unit name cannot be used as operand", Enode);
7618 when Type_Kind =>
7619 Error_Msg_N
7620 ("subtype name cannot be used as operand", Enode);
7622 when Entry_Kind =>
7623 Error_Msg_N
7624 ("entry name cannot be used as operand", Enode);
7626 when E_Procedure =>
7627 Error_Msg_N
7628 ("procedure name cannot be used as operand", Enode);
7630 when E_Exception =>
7631 Error_Msg_N
7632 ("exception name cannot be used as operand", Enode);
7634 when E_Block
7635 | E_Label
7636 | E_Loop
7638 Error_Msg_N
7639 ("label name cannot be used as operand", Enode);
7641 when others =>
7642 return False;
7643 end case;
7645 return True;
7646 end Junk_Operand;
7648 --------------------
7649 -- Operator_Check --
7650 --------------------
7652 procedure Operator_Check (N : Node_Id) is
7653 begin
7654 Remove_Abstract_Operations (N);
7656 -- Test for case of no interpretation found for operator
7658 if Etype (N) = Any_Type then
7659 declare
7660 L : constant Node_Id :=
7661 (if Nkind (N) in N_Binary_Op then Left_Opnd (N) else Empty);
7662 R : constant Node_Id := Right_Opnd (N);
7664 begin
7665 -- If either operand has no type, then don't complain further,
7666 -- since this simply means that we have a propagated error.
7668 if R = Error
7669 or else Etype (R) = Any_Type
7670 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
7671 then
7672 -- For the rather unusual case where one of the operands is
7673 -- a Raise_Expression, whose initial type is Any_Type, use
7674 -- the type of the other operand.
7676 if Nkind (L) = N_Raise_Expression then
7677 Set_Etype (L, Etype (R));
7678 Set_Etype (N, Etype (R));
7680 elsif Nkind (R) = N_Raise_Expression then
7681 Set_Etype (R, Etype (L));
7682 Set_Etype (N, Etype (L));
7683 end if;
7685 return;
7687 -- We explicitly check for the case of concatenation of component
7688 -- with component to avoid reporting spurious matching array types
7689 -- that might happen to be lurking in distant packages (such as
7690 -- run-time packages). This also prevents inconsistencies in the
7691 -- messages for certain ACVC B tests, which can vary depending on
7692 -- types declared in run-time interfaces. Another improvement when
7693 -- aggregates are present is to look for a well-typed operand.
7695 elsif Present (Candidate_Type)
7696 and then (Nkind (N) /= N_Op_Concat
7697 or else Is_Array_Type (Etype (L))
7698 or else Is_Array_Type (Etype (R)))
7699 then
7700 if Nkind (N) = N_Op_Concat then
7701 if Etype (L) /= Any_Composite
7702 and then Is_Array_Type (Etype (L))
7703 then
7704 Candidate_Type := Etype (L);
7706 elsif Etype (R) /= Any_Composite
7707 and then Is_Array_Type (Etype (R))
7708 then
7709 Candidate_Type := Etype (R);
7710 end if;
7711 end if;
7713 Error_Msg_NE -- CODEFIX
7714 ("operator for} is not directly visible!",
7715 N, First_Subtype (Candidate_Type));
7717 declare
7718 U : constant Node_Id :=
7719 Cunit (Get_Source_Unit (Candidate_Type));
7720 begin
7721 if Unit_Is_Visible (U) then
7722 Error_Msg_N -- CODEFIX
7723 ("use clause would make operation legal!", N);
7724 else
7725 Error_Msg_NE -- CODEFIX
7726 ("add with_clause and use_clause for&!",
7727 N, Defining_Entity (Unit (U)));
7728 end if;
7729 end;
7730 return;
7732 -- If either operand is a junk operand (e.g. package name), then
7733 -- post appropriate error messages, but do not complain further.
7735 -- Note that the use of OR in this test instead of OR ELSE is
7736 -- quite deliberate, we may as well check both operands in the
7737 -- binary operator case.
7739 elsif Junk_Operand (R)
7740 or -- really mean OR here and not OR ELSE, see above
7741 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
7742 then
7743 return;
7745 -- The handling of user-defined literals is deferred to the second
7746 -- pass of resolution.
7748 elsif Has_Possible_User_Defined_Literal (N) then
7749 return;
7751 -- If we have a logical operator, one of whose operands is
7752 -- Boolean, then we know that the other operand cannot resolve to
7753 -- Boolean (since we got no interpretations), but in that case we
7754 -- pretty much know that the other operand should be Boolean, so
7755 -- resolve it that way (generating an error).
7757 elsif Nkind (N) in N_Op_And | N_Op_Or | N_Op_Xor then
7758 if Etype (L) = Standard_Boolean then
7759 Resolve (R, Standard_Boolean);
7760 return;
7761 elsif Etype (R) = Standard_Boolean then
7762 Resolve (L, Standard_Boolean);
7763 return;
7764 end if;
7766 -- For an arithmetic operator or comparison operator, if one
7767 -- of the operands is numeric, then we know the other operand
7768 -- is not the same numeric type. If it is a non-numeric type,
7769 -- then probably it is intended to match the other operand.
7771 elsif Nkind (N) in N_Op_Add
7772 | N_Op_Divide
7773 | N_Op_Ge
7774 | N_Op_Gt
7775 | N_Op_Le
7776 | N_Op_Lt
7777 | N_Op_Mod
7778 | N_Op_Multiply
7779 | N_Op_Rem
7780 | N_Op_Subtract
7781 then
7782 -- If Allow_Integer_Address is active, check whether the
7783 -- operation becomes legal after converting an operand.
7785 if Is_Numeric_Type (Etype (L))
7786 and then not Is_Numeric_Type (Etype (R))
7787 then
7788 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7789 Rewrite (L,
7790 Unchecked_Convert_To (
7791 Standard_Address, Relocate_Node (L)));
7792 Rewrite (R,
7793 Unchecked_Convert_To (
7794 Standard_Address, Relocate_Node (R)));
7796 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7797 Analyze_Comparison_Equality_Op (N);
7798 else
7799 Analyze_Arithmetic_Op (N);
7800 end if;
7801 else
7802 Resolve (R, Etype (L));
7803 end if;
7805 return;
7807 elsif Is_Numeric_Type (Etype (R))
7808 and then not Is_Numeric_Type (Etype (L))
7809 then
7810 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
7811 Rewrite (L,
7812 Unchecked_Convert_To (
7813 Standard_Address, Relocate_Node (L)));
7814 Rewrite (R,
7815 Unchecked_Convert_To (
7816 Standard_Address, Relocate_Node (R)));
7818 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7819 Analyze_Comparison_Equality_Op (N);
7820 else
7821 Analyze_Arithmetic_Op (N);
7822 end if;
7824 return;
7826 else
7827 Resolve (L, Etype (R));
7828 end if;
7830 return;
7832 elsif Allow_Integer_Address
7833 and then Is_Descendant_Of_Address (Etype (L))
7834 and then Is_Descendant_Of_Address (Etype (R))
7835 and then not Error_Posted (N)
7836 then
7837 declare
7838 Addr_Type : constant Entity_Id := Etype (L);
7840 begin
7841 Rewrite (L,
7842 Unchecked_Convert_To (
7843 Standard_Address, Relocate_Node (L)));
7844 Rewrite (R,
7845 Unchecked_Convert_To (
7846 Standard_Address, Relocate_Node (R)));
7848 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7849 Analyze_Comparison_Equality_Op (N);
7850 else
7851 Analyze_Arithmetic_Op (N);
7852 end if;
7854 -- If this is an operand in an enclosing arithmetic
7855 -- operation, Convert the result as an address so that
7856 -- arithmetic folding of address can continue.
7858 if Nkind (Parent (N)) in N_Op then
7859 Rewrite (N,
7860 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
7861 end if;
7863 return;
7864 end;
7866 -- Under relaxed RM semantics silently replace occurrences of
7867 -- null by System.Address_Null.
7869 elsif Null_To_Null_Address_Convert_OK (N) then
7870 Replace_Null_By_Null_Address (N);
7872 if Nkind (N) in N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt then
7873 Analyze_Comparison_Equality_Op (N);
7874 else
7875 Analyze_Arithmetic_Op (N);
7876 end if;
7878 return;
7879 end if;
7881 -- Comparisons on A'Access are common enough to deserve a
7882 -- special message.
7884 elsif Nkind (N) in N_Op_Eq | N_Op_Ne
7885 and then Ekind (Etype (L)) = E_Access_Attribute_Type
7886 and then Ekind (Etype (R)) = E_Access_Attribute_Type
7887 then
7888 Error_Msg_N
7889 ("two access attributes cannot be compared directly", N);
7890 Error_Msg_N
7891 ("\use qualified expression for one of the operands",
7893 return;
7895 -- Another one for C programmers
7897 elsif Nkind (N) = N_Op_Concat
7898 and then Valid_Boolean_Arg (Etype (L))
7899 and then Valid_Boolean_Arg (Etype (R))
7900 then
7901 Error_Msg_N ("invalid operands for concatenation", N);
7902 Error_Msg_N -- CODEFIX
7903 ("\maybe AND was meant", N);
7904 return;
7906 -- A special case for comparison of access parameter with null
7908 elsif Nkind (N) = N_Op_Eq
7909 and then Is_Entity_Name (L)
7910 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
7911 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
7912 N_Access_Definition
7913 and then Nkind (R) = N_Null
7914 then
7915 Error_Msg_N ("access parameter is not allowed to be null", L);
7916 Error_Msg_N ("\(call would raise Constraint_Error)", L);
7917 return;
7919 -- Another special case for exponentiation, where the right
7920 -- operand must be Natural, independently of the base.
7922 elsif Nkind (N) = N_Op_Expon
7923 and then Is_Numeric_Type (Etype (L))
7924 and then not Is_Overloaded (R)
7925 and then
7926 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
7927 and then Base_Type (Etype (R)) /= Universal_Integer
7928 then
7929 if Ada_Version >= Ada_2012
7930 and then Has_Dimension_System (Etype (L))
7931 then
7932 Error_Msg_NE
7933 ("exponent for dimensioned type must be a rational" &
7934 ", found}", R, Etype (R));
7935 else
7936 Error_Msg_NE
7937 ("exponent must be of type Natural, found}", R, Etype (R));
7938 end if;
7940 return;
7942 elsif Nkind (N) in N_Op_Eq | N_Op_Ne then
7943 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7944 Rewrite (L,
7945 Unchecked_Convert_To (
7946 Standard_Address, Relocate_Node (L)));
7947 Rewrite (R,
7948 Unchecked_Convert_To (
7949 Standard_Address, Relocate_Node (R)));
7950 Analyze_Comparison_Equality_Op (N);
7951 return;
7953 -- Under relaxed RM semantics silently replace occurrences of
7954 -- null by System.Address_Null.
7956 elsif Null_To_Null_Address_Convert_OK (N) then
7957 Replace_Null_By_Null_Address (N);
7958 Analyze_Comparison_Equality_Op (N);
7959 return;
7960 end if;
7961 end if;
7963 -- If we fall through then just give general message
7965 Unresolved_Operator (N);
7966 end;
7967 end if;
7968 end Operator_Check;
7970 ---------------------------------------
7971 -- Has_Possible_User_Defined_Literal --
7972 ---------------------------------------
7974 function Has_Possible_User_Defined_Literal (N : Node_Id) return Boolean is
7975 R : constant Node_Id := Right_Opnd (N);
7977 procedure Check_Literal_Opnd (Opnd : Node_Id);
7978 -- If an operand is a literal to which an aspect may apply,
7979 -- add the corresponding type to operator node.
7981 ------------------------
7982 -- Check_Literal_Opnd --
7983 ------------------------
7985 procedure Check_Literal_Opnd (Opnd : Node_Id) is
7986 begin
7987 if Nkind (Opnd) in N_Numeric_Or_String_Literal
7988 or else (Is_Entity_Name (Opnd)
7989 and then Present (Entity (Opnd))
7990 and then Is_Named_Number (Entity (Opnd)))
7991 then
7992 Add_One_Interp (N, Etype (Opnd), Etype (Opnd));
7993 end if;
7994 end Check_Literal_Opnd;
7996 -- Start of processing for Has_Possible_User_Defined_Literal
7998 begin
7999 if Ada_Version < Ada_2022 then
8000 return False;
8001 end if;
8003 Check_Literal_Opnd (R);
8005 -- Check left operand only if right one did not provide a
8006 -- possible interpretation. Note that literal types are not
8007 -- overloadable, in the sense that there is no overloadable
8008 -- entity name whose several interpretations can be used to
8009 -- indicate possible resulting types, so there is no way to
8010 -- provide more than one interpretation to the operator node.
8011 -- The choice of one operand over the other is arbitrary at
8012 -- this point, and may lead to spurious resolution when both
8013 -- operands are literals of different kinds, but the second
8014 -- pass of resolution will examine anew both operands to
8015 -- determine whether a user-defined literal may apply to
8016 -- either or both.
8018 if Nkind (N) in N_Binary_Op and then Etype (N) = Any_Type then
8019 Check_Literal_Opnd (Left_Opnd (N));
8020 end if;
8022 return Etype (N) /= Any_Type;
8023 end Has_Possible_User_Defined_Literal;
8025 -----------------------------------------------
8026 -- Nondispatching_Call_To_Abstract_Operation --
8027 -----------------------------------------------
8029 procedure Nondispatching_Call_To_Abstract_Operation
8030 (N : Node_Id;
8031 Abstract_Op : Entity_Id)
8033 Typ : constant Entity_Id := Etype (N);
8035 begin
8036 -- In an instance body, this is a runtime check, but one we know will
8037 -- fail, so give an appropriate warning. As usual this kind of warning
8038 -- is an error in SPARK mode.
8040 Error_Msg_Sloc := Sloc (Abstract_Op);
8042 if In_Instance_Body and then SPARK_Mode /= On then
8043 Error_Msg_NE
8044 ("??cannot call abstract operation& declared#",
8045 N, Abstract_Op);
8046 Error_Msg_N ("\Program_Error [??", N);
8047 Rewrite (N,
8048 Make_Raise_Program_Error (Sloc (N),
8049 Reason => PE_Explicit_Raise));
8050 Analyze (N);
8051 Set_Etype (N, Typ);
8053 else
8054 Error_Msg_NE
8055 ("cannot call abstract operation& declared#",
8056 N, Abstract_Op);
8057 Set_Etype (N, Any_Type);
8058 end if;
8059 end Nondispatching_Call_To_Abstract_Operation;
8061 ----------------------------------------------
8062 -- Possible_Type_For_Conditional_Expression --
8063 ----------------------------------------------
8065 function Possible_Type_For_Conditional_Expression
8066 (T1, T2 : Entity_Id) return Entity_Id
8068 function Is_Access_Protected_Subprogram_Attribute
8069 (T : Entity_Id) return Boolean;
8070 -- Return true if T is the type of an access-to-protected-subprogram
8071 -- attribute.
8073 function Is_Access_Subprogram_Attribute (T : Entity_Id) return Boolean;
8074 -- Return true if T is the type of an access-to-subprogram attribute
8076 ----------------------------------------------
8077 -- Is_Access_Protected_Subprogram_Attribute --
8078 ----------------------------------------------
8080 function Is_Access_Protected_Subprogram_Attribute
8081 (T : Entity_Id) return Boolean
8083 begin
8084 return Ekind (T) = E_Access_Protected_Subprogram_Type
8085 and then Ekind (Designated_Type (T)) /= E_Subprogram_Type;
8086 end Is_Access_Protected_Subprogram_Attribute;
8088 ------------------------------------
8089 -- Is_Access_Subprogram_Attribute --
8090 ------------------------------------
8092 function Is_Access_Subprogram_Attribute (T : Entity_Id) return Boolean is
8093 begin
8094 return Ekind (T) = E_Access_Subprogram_Type
8095 and then Ekind (Designated_Type (T)) /= E_Subprogram_Type;
8096 end Is_Access_Subprogram_Attribute;
8098 -- Start of processing for Possible_Type_For_Conditional_Expression
8100 begin
8101 -- If both types are those of similar access attributes or allocators,
8102 -- pick one of them, for example the first.
8104 if Ekind (T1) in E_Access_Attribute_Type | E_Allocator_Type
8105 and then Ekind (T2) in E_Access_Attribute_Type | E_Allocator_Type
8106 then
8107 return T1;
8109 elsif Is_Access_Subprogram_Attribute (T1)
8110 and then Is_Access_Subprogram_Attribute (T2)
8111 and then
8112 Subtype_Conformant (Designated_Type (T1), Designated_Type (T2))
8113 then
8114 return T1;
8116 elsif Is_Access_Protected_Subprogram_Attribute (T1)
8117 and then Is_Access_Protected_Subprogram_Attribute (T2)
8118 and then
8119 Subtype_Conformant (Designated_Type (T1), Designated_Type (T2))
8120 then
8121 return T1;
8123 -- The other case to be considered is a pair of tagged types
8125 elsif Is_Tagged_Type (T1) and then Is_Tagged_Type (T2) then
8126 -- Covers performs the same checks when T1 or T2 are a CW type, so
8127 -- we don't need to do them again here.
8129 if not Is_Class_Wide_Type (T1) and then Is_Ancestor (T1, T2) then
8130 return T1;
8132 elsif not Is_Class_Wide_Type (T2) and then Is_Ancestor (T2, T1) then
8133 return T2;
8135 -- Neither type is an ancestor of the other, but they may have one in
8136 -- common, so we pick the first type as above. We could perform here
8137 -- the computation of the nearest common ancestors of T1 and T2, but
8138 -- this would require a significant amount of work and the practical
8139 -- benefit would very likely be negligible.
8141 else
8142 return T1;
8143 end if;
8145 -- Otherwise no type is possible
8147 else
8148 return Empty;
8149 end if;
8150 end Possible_Type_For_Conditional_Expression;
8152 --------------------------------
8153 -- Remove_Abstract_Operations --
8154 --------------------------------
8156 procedure Remove_Abstract_Operations (N : Node_Id) is
8157 Abstract_Op : Entity_Id := Empty;
8158 Address_Descendant : Boolean := False;
8159 I : Interp_Index;
8160 It : Interp;
8162 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
8163 -- activate this if either extensions are enabled, or if the abstract
8164 -- operation in question comes from a predefined file. This latter test
8165 -- allows us to use abstract to make operations invisible to users. In
8166 -- particular, if type Address is non-private and abstract subprograms
8167 -- are used to hide its operators, they will be truly hidden.
8169 type Operand_Position is (First_Op, Second_Op);
8170 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
8172 procedure Remove_Address_Interpretations (Op : Operand_Position);
8173 -- Ambiguities may arise when the operands are literal and the address
8174 -- operations in s-auxdec are visible. In that case, remove the
8175 -- interpretation of a literal as Address, to retain the semantics
8176 -- of Address as a private type.
8178 ------------------------------------
8179 -- Remove_Address_Interpretations --
8180 ------------------------------------
8182 procedure Remove_Address_Interpretations (Op : Operand_Position) is
8183 Formal : Entity_Id;
8185 begin
8186 if Is_Overloaded (N) then
8187 Get_First_Interp (N, I, It);
8188 while Present (It.Nam) loop
8189 Formal := First_Entity (It.Nam);
8191 if Op = Second_Op then
8192 Next_Entity (Formal);
8193 end if;
8195 if Is_Descendant_Of_Address (Etype (Formal)) then
8196 Address_Descendant := True;
8197 Remove_Interp (I);
8198 end if;
8200 Get_Next_Interp (I, It);
8201 end loop;
8202 end if;
8203 end Remove_Address_Interpretations;
8205 -- Start of processing for Remove_Abstract_Operations
8207 begin
8208 if Is_Overloaded (N) then
8209 if Debug_Flag_V then
8210 Write_Line ("Remove_Abstract_Operations: ");
8211 Write_Overloads (N);
8212 end if;
8214 Get_First_Interp (N, I, It);
8216 while Present (It.Nam) loop
8217 if Is_Overloadable (It.Nam)
8218 and then Is_Abstract_Subprogram (It.Nam)
8219 and then not Is_Dispatching_Operation (It.Nam)
8220 then
8221 Abstract_Op := It.Nam;
8223 if Is_Descendant_Of_Address (It.Typ) then
8224 Address_Descendant := True;
8225 Remove_Interp (I);
8226 exit;
8228 -- In Ada 2005, this operation does not participate in overload
8229 -- resolution. If the operation is defined in a predefined
8230 -- unit, it is one of the operations declared abstract in some
8231 -- variants of System, and it must be removed as well.
8233 elsif Ada_Version >= Ada_2005
8234 or else In_Predefined_Unit (It.Nam)
8235 then
8236 Remove_Interp (I);
8237 exit;
8238 end if;
8239 end if;
8241 Get_Next_Interp (I, It);
8242 end loop;
8244 if No (Abstract_Op) then
8246 -- If some interpretation yields an integer type, it is still
8247 -- possible that there are address interpretations. Remove them
8248 -- if one operand is a literal, to avoid spurious ambiguities
8249 -- on systems where Address is a visible integer type.
8251 if Is_Overloaded (N)
8252 and then Nkind (N) in N_Op
8253 and then Is_Integer_Type (Etype (N))
8254 then
8255 if Nkind (N) in N_Binary_Op then
8256 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
8257 Remove_Address_Interpretations (Second_Op);
8259 elsif Nkind (Left_Opnd (N)) = N_Integer_Literal then
8260 Remove_Address_Interpretations (First_Op);
8261 end if;
8262 end if;
8263 end if;
8265 elsif Nkind (N) in N_Op then
8267 -- Remove interpretations that treat literals as addresses. This
8268 -- is never appropriate, even when Address is defined as a visible
8269 -- Integer type. The reason is that we would really prefer Address
8270 -- to behave as a private type, even in this case. If Address is a
8271 -- visible integer type, we get lots of overload ambiguities.
8273 if Nkind (N) in N_Binary_Op then
8274 declare
8275 U1 : constant Boolean :=
8276 Present (Universal_Interpretation (Right_Opnd (N)));
8277 U2 : constant Boolean :=
8278 Present (Universal_Interpretation (Left_Opnd (N)));
8280 begin
8281 if U1 then
8282 Remove_Address_Interpretations (Second_Op);
8283 end if;
8285 if U2 then
8286 Remove_Address_Interpretations (First_Op);
8287 end if;
8289 if not (U1 and U2) then
8291 -- Remove corresponding predefined operator, which is
8292 -- always added to the overload set.
8294 Get_First_Interp (N, I, It);
8295 while Present (It.Nam) loop
8296 if Scope (It.Nam) = Standard_Standard
8297 and then Base_Type (It.Typ) =
8298 Base_Type (Etype (Abstract_Op))
8299 then
8300 Remove_Interp (I);
8301 end if;
8303 Get_Next_Interp (I, It);
8304 end loop;
8306 elsif Is_Overloaded (N)
8307 and then Present (Univ_Type)
8308 then
8309 -- If both operands have a universal interpretation,
8310 -- it is still necessary to remove interpretations that
8311 -- yield Address. Any remaining ambiguities will be
8312 -- removed in Disambiguate.
8314 Get_First_Interp (N, I, It);
8315 while Present (It.Nam) loop
8316 if Is_Descendant_Of_Address (It.Typ) then
8317 Remove_Interp (I);
8319 elsif not Is_Type (It.Nam) then
8320 Set_Entity (N, It.Nam);
8321 end if;
8323 Get_Next_Interp (I, It);
8324 end loop;
8325 end if;
8326 end;
8327 end if;
8329 elsif Nkind (N) = N_Function_Call
8330 and then
8331 (Nkind (Name (N)) = N_Operator_Symbol
8332 or else
8333 (Nkind (Name (N)) = N_Expanded_Name
8334 and then
8335 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
8336 then
8338 declare
8339 Arg1 : constant Node_Id := First (Parameter_Associations (N));
8340 U1 : constant Boolean :=
8341 Present (Universal_Interpretation (Arg1));
8342 U2 : constant Boolean :=
8343 Present (Next (Arg1)) and then
8344 Present (Universal_Interpretation (Next (Arg1)));
8346 begin
8347 if U1 then
8348 Remove_Address_Interpretations (First_Op);
8349 end if;
8351 if U2 then
8352 Remove_Address_Interpretations (Second_Op);
8353 end if;
8355 if not (U1 and U2) then
8356 Get_First_Interp (N, I, It);
8357 while Present (It.Nam) loop
8358 if Scope (It.Nam) = Standard_Standard
8359 and then It.Typ = Base_Type (Etype (Abstract_Op))
8360 then
8361 Remove_Interp (I);
8362 end if;
8364 Get_Next_Interp (I, It);
8365 end loop;
8366 end if;
8367 end;
8368 end if;
8370 -- If the removal has left no valid interpretations, emit an error
8371 -- message now and label node as illegal.
8373 if Present (Abstract_Op) then
8374 Get_First_Interp (N, I, It);
8376 if No (It.Nam) then
8378 -- Removal of abstract operation left no viable candidate
8380 Nondispatching_Call_To_Abstract_Operation (N, Abstract_Op);
8382 -- In Ada 2005, an abstract operation may disable predefined
8383 -- operators. Since the context is not yet known, we mark the
8384 -- predefined operators as potentially hidden. Do not include
8385 -- predefined operators when addresses are involved since this
8386 -- case is handled separately.
8388 elsif Ada_Version >= Ada_2005 and then not Address_Descendant then
8389 while Present (It.Nam) loop
8390 if Is_Numeric_Type (It.Typ)
8391 and then Scope (It.Typ) = Standard_Standard
8392 and then Ekind (It.Nam) = E_Operator
8393 then
8394 Set_Abstract_Op (I, Abstract_Op);
8395 end if;
8397 Get_Next_Interp (I, It);
8398 end loop;
8399 end if;
8400 end if;
8402 if Debug_Flag_V then
8403 Write_Line ("Remove_Abstract_Operations done: ");
8404 Write_Overloads (N);
8405 end if;
8406 end if;
8407 end Remove_Abstract_Operations;
8409 ----------------------------
8410 -- Try_Container_Indexing --
8411 ----------------------------
8413 function Try_Container_Indexing
8414 (N : Node_Id;
8415 Prefix : Node_Id;
8416 Exprs : List_Id) return Boolean
8418 Pref_Typ : Entity_Id := Etype (Prefix);
8420 function Constant_Indexing_OK return Boolean;
8421 -- Constant_Indexing is legal if there is no Variable_Indexing defined
8422 -- for the type, or else node not a target of assignment, or an actual
8423 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
8425 function Expr_Matches_In_Formal
8426 (Subp : Entity_Id;
8427 Par : Node_Id) return Boolean;
8428 -- Find formal corresponding to given indexed component that is an
8429 -- actual in a call. Note that the enclosing subprogram call has not
8430 -- been analyzed yet, and the parameter list is not normalized, so
8431 -- that if the argument is a parameter association we must match it
8432 -- by name and not by position.
8434 function Find_Indexing_Operations
8435 (T : Entity_Id;
8436 Nam : Name_Id;
8437 Is_Constant : Boolean) return Node_Id;
8438 -- Return a reference to the primitive operation of type T denoted by
8439 -- name Nam. If the operation is overloaded, the reference carries all
8440 -- interpretations. Flag Is_Constant should be set when the context is
8441 -- constant indexing.
8443 --------------------------
8444 -- Constant_Indexing_OK --
8445 --------------------------
8447 function Constant_Indexing_OK return Boolean is
8448 Par : Node_Id;
8450 begin
8451 if No (Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing)) then
8452 return True;
8454 elsif not Is_Variable (Prefix) then
8455 return True;
8456 end if;
8458 Par := N;
8459 while Present (Par) loop
8460 if Nkind (Parent (Par)) = N_Assignment_Statement
8461 and then Par = Name (Parent (Par))
8462 then
8463 return False;
8465 -- The call may be overloaded, in which case we assume that its
8466 -- resolution does not depend on the type of the parameter that
8467 -- includes the indexing operation.
8469 elsif Nkind (Parent (Par)) in N_Subprogram_Call
8470 and then Is_Entity_Name (Name (Parent (Par)))
8471 then
8472 declare
8473 Proc : Entity_Id;
8475 begin
8476 -- We should look for an interpretation with the proper
8477 -- number of formals, and determine whether it is an
8478 -- In_Parameter, but for now we examine the formal that
8479 -- corresponds to the indexing, and assume that variable
8480 -- indexing is required if some interpretation has an
8481 -- assignable formal at that position. Still does not
8482 -- cover the most complex cases ???
8484 if Is_Overloaded (Name (Parent (Par))) then
8485 declare
8486 Proc : constant Node_Id := Name (Parent (Par));
8487 I : Interp_Index;
8488 It : Interp;
8490 begin
8491 Get_First_Interp (Proc, I, It);
8492 while Present (It.Nam) loop
8493 if not Expr_Matches_In_Formal (It.Nam, Par) then
8494 return False;
8495 end if;
8497 Get_Next_Interp (I, It);
8498 end loop;
8499 end;
8501 -- All interpretations have a matching in-mode formal
8503 return True;
8505 else
8506 Proc := Entity (Name (Parent (Par)));
8508 -- If this is an indirect call, get formals from
8509 -- designated type.
8511 if Is_Access_Subprogram_Type (Etype (Proc)) then
8512 Proc := Designated_Type (Etype (Proc));
8513 end if;
8514 end if;
8516 return Expr_Matches_In_Formal (Proc, Par);
8517 end;
8519 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
8520 return False;
8522 -- If the indexed component is a prefix it may be the first actual
8523 -- of a prefixed call. Retrieve the called entity, if any, and
8524 -- check its first formal. Determine if the context is a procedure
8525 -- or function call.
8527 elsif Nkind (Parent (Par)) = N_Selected_Component then
8528 declare
8529 Sel : constant Node_Id := Selector_Name (Parent (Par));
8530 Nam : constant Entity_Id := Current_Entity (Sel);
8532 begin
8533 if Present (Nam) and then Is_Overloadable (Nam) then
8534 if Nkind (Parent (Parent (Par))) =
8535 N_Procedure_Call_Statement
8536 then
8537 return False;
8539 elsif Ekind (Nam) = E_Function
8540 and then Present (First_Formal (Nam))
8541 then
8542 return Ekind (First_Formal (Nam)) = E_In_Parameter;
8543 end if;
8544 end if;
8545 end;
8547 elsif Nkind (Par) in N_Op then
8548 return True;
8549 end if;
8551 Par := Parent (Par);
8552 end loop;
8554 -- In all other cases, constant indexing is legal
8556 return True;
8557 end Constant_Indexing_OK;
8559 ----------------------------
8560 -- Expr_Matches_In_Formal --
8561 ----------------------------
8563 function Expr_Matches_In_Formal
8564 (Subp : Entity_Id;
8565 Par : Node_Id) return Boolean
8567 Actual : Node_Id;
8568 Formal : Node_Id;
8570 begin
8571 Formal := First_Formal (Subp);
8572 Actual := First (Parameter_Associations ((Parent (Par))));
8574 if Nkind (Par) /= N_Parameter_Association then
8576 -- Match by position
8578 while Present (Actual) and then Present (Formal) loop
8579 exit when Actual = Par;
8580 Next (Actual);
8582 if Present (Formal) then
8583 Next_Formal (Formal);
8585 -- Otherwise this is a parameter mismatch, the error is
8586 -- reported elsewhere, or else variable indexing is implied.
8588 else
8589 return False;
8590 end if;
8591 end loop;
8593 else
8594 -- Match by name
8596 while Present (Formal) loop
8597 exit when Chars (Formal) = Chars (Selector_Name (Par));
8598 Next_Formal (Formal);
8600 if No (Formal) then
8601 return False;
8602 end if;
8603 end loop;
8604 end if;
8606 return Present (Formal) and then Ekind (Formal) = E_In_Parameter;
8607 end Expr_Matches_In_Formal;
8609 ------------------------------
8610 -- Find_Indexing_Operations --
8611 ------------------------------
8613 function Find_Indexing_Operations
8614 (T : Entity_Id;
8615 Nam : Name_Id;
8616 Is_Constant : Boolean) return Node_Id
8618 procedure Inspect_Declarations
8619 (Typ : Entity_Id;
8620 Ref : in out Node_Id);
8621 -- Traverse the declarative list where type Typ resides and collect
8622 -- all suitable interpretations in node Ref.
8624 procedure Inspect_Primitives
8625 (Typ : Entity_Id;
8626 Ref : in out Node_Id);
8627 -- Traverse the list of primitive operations of type Typ and collect
8628 -- all suitable interpretations in node Ref.
8630 function Is_OK_Candidate
8631 (Subp_Id : Entity_Id;
8632 Typ : Entity_Id) return Boolean;
8633 -- Determine whether subprogram Subp_Id is a suitable indexing
8634 -- operation for type Typ. To qualify as such, the subprogram must
8635 -- be a function, have at least two parameters, and the type of the
8636 -- first parameter must be either Typ, or Typ'Class, or access [to
8637 -- constant] with designated type Typ or Typ'Class.
8639 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id);
8640 -- Store subprogram Subp_Id as an interpretation in node Ref
8642 --------------------------
8643 -- Inspect_Declarations --
8644 --------------------------
8646 procedure Inspect_Declarations
8647 (Typ : Entity_Id;
8648 Ref : in out Node_Id)
8650 Typ_Decl : constant Node_Id := Declaration_Node (Typ);
8651 Decl : Node_Id;
8652 Subp_Id : Entity_Id;
8654 begin
8655 -- Ensure that the routine is not called with itypes, which lack a
8656 -- declarative node.
8658 pragma Assert (Present (Typ_Decl));
8659 pragma Assert (Is_List_Member (Typ_Decl));
8661 Decl := First (List_Containing (Typ_Decl));
8662 while Present (Decl) loop
8663 if Nkind (Decl) = N_Subprogram_Declaration then
8664 Subp_Id := Defining_Entity (Decl);
8666 if Is_OK_Candidate (Subp_Id, Typ) then
8667 Record_Interp (Subp_Id, Ref);
8668 end if;
8669 end if;
8671 Next (Decl);
8672 end loop;
8673 end Inspect_Declarations;
8675 ------------------------
8676 -- Inspect_Primitives --
8677 ------------------------
8679 procedure Inspect_Primitives
8680 (Typ : Entity_Id;
8681 Ref : in out Node_Id)
8683 Prim_Elmt : Elmt_Id;
8684 Prim_Id : Entity_Id;
8686 begin
8687 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
8688 while Present (Prim_Elmt) loop
8689 Prim_Id := Node (Prim_Elmt);
8691 if Is_OK_Candidate (Prim_Id, Typ) then
8692 Record_Interp (Prim_Id, Ref);
8693 end if;
8695 Next_Elmt (Prim_Elmt);
8696 end loop;
8697 end Inspect_Primitives;
8699 ---------------------
8700 -- Is_OK_Candidate --
8701 ---------------------
8703 function Is_OK_Candidate
8704 (Subp_Id : Entity_Id;
8705 Typ : Entity_Id) return Boolean
8707 Formal : Entity_Id;
8708 Formal_Typ : Entity_Id;
8709 Param_Typ : Node_Id;
8711 begin
8712 -- To classify as a suitable candidate, the subprogram must be a
8713 -- function whose name matches the argument of aspect Constant or
8714 -- Variable_Indexing.
8716 if Ekind (Subp_Id) = E_Function and then Chars (Subp_Id) = Nam then
8717 Formal := First_Formal (Subp_Id);
8719 -- The candidate requires at least two parameters
8721 if Present (Formal) and then Present (Next_Formal (Formal)) then
8722 Formal_Typ := Empty;
8723 Param_Typ := Parameter_Type (Parent (Formal));
8725 -- Use the designated type when the first parameter is of an
8726 -- access type.
8728 if Nkind (Param_Typ) = N_Access_Definition
8729 and then Present (Subtype_Mark (Param_Typ))
8730 then
8731 -- When the context is a constant indexing, the access
8732 -- definition must be access-to-constant. This does not
8733 -- apply to variable indexing.
8735 if not Is_Constant
8736 or else Constant_Present (Param_Typ)
8737 then
8738 Formal_Typ := Etype (Subtype_Mark (Param_Typ));
8739 end if;
8741 -- Otherwise use the parameter type
8743 else
8744 Formal_Typ := Etype (Param_Typ);
8745 end if;
8747 if Present (Formal_Typ) then
8749 -- Use the specific type when the parameter type is
8750 -- class-wide.
8752 if Is_Class_Wide_Type (Formal_Typ) then
8753 Formal_Typ := Etype (Base_Type (Formal_Typ));
8754 end if;
8756 -- Use the full view when the parameter type is private
8757 -- or incomplete.
8759 if Is_Incomplete_Or_Private_Type (Formal_Typ)
8760 and then Present (Full_View (Formal_Typ))
8761 then
8762 Formal_Typ := Full_View (Formal_Typ);
8763 end if;
8765 -- The type of the first parameter must denote the type
8766 -- of the container or acts as its ancestor type.
8768 return
8769 Formal_Typ = Typ
8770 or else Is_Ancestor (Formal_Typ, Typ);
8771 end if;
8772 end if;
8773 end if;
8775 return False;
8776 end Is_OK_Candidate;
8778 -------------------
8779 -- Record_Interp --
8780 -------------------
8782 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id) is
8783 begin
8784 if Present (Ref) then
8785 Add_One_Interp (Ref, Subp_Id, Etype (Subp_Id));
8787 -- Otherwise this is the first interpretation. Create a reference
8788 -- where all remaining interpretations will be collected.
8790 else
8791 Ref := New_Occurrence_Of (Subp_Id, Sloc (T));
8792 end if;
8793 end Record_Interp;
8795 -- Local variables
8797 Ref : Node_Id;
8798 Typ : Entity_Id;
8800 -- Start of processing for Find_Indexing_Operations
8802 begin
8803 Typ := T;
8805 -- Use the specific type when the parameter type is class-wide
8807 if Is_Class_Wide_Type (Typ) then
8808 Typ := Root_Type (Typ);
8809 end if;
8811 Ref := Empty;
8812 Typ := Underlying_Type (Base_Type (Typ));
8814 Inspect_Primitives (Typ, Ref);
8816 -- Now look for explicit declarations of an indexing operation.
8817 -- If the type is private the operation may be declared in the
8818 -- visible part that contains the partial view.
8820 if Is_Private_Type (T) then
8821 Inspect_Declarations (T, Ref);
8822 end if;
8824 Inspect_Declarations (Typ, Ref);
8826 return Ref;
8827 end Find_Indexing_Operations;
8829 -- Local variables
8831 Loc : constant Source_Ptr := Sloc (N);
8832 Assoc : List_Id;
8833 C_Type : Entity_Id;
8834 Func : Entity_Id;
8835 Func_Name : Node_Id;
8836 Indexing : Node_Id;
8838 Is_Constant_Indexing : Boolean := False;
8839 -- This flag reflects the nature of the container indexing. Note that
8840 -- the context may be suited for constant indexing, but the type may
8841 -- lack a Constant_Indexing annotation.
8843 -- Start of processing for Try_Container_Indexing
8845 begin
8846 -- Node may have been analyzed already when testing for a prefixed
8847 -- call, in which case do not redo analysis.
8849 if Present (Generalized_Indexing (N)) then
8850 return True;
8851 end if;
8853 -- An explicit dereference needs to be created in the case of a prefix
8854 -- that's an access.
8856 -- It seems that this should be done elsewhere, but not clear where that
8857 -- should happen. Normally Insert_Explicit_Dereference is called via
8858 -- Resolve_Implicit_Dereference, called from Resolve_Indexed_Component,
8859 -- but that won't be called in this case because we transform the
8860 -- indexing to a call. Resolve_Call.Check_Prefixed_Call takes care of
8861 -- implicit dereferencing and referencing on prefixed calls, but that
8862 -- would be too late, even if we expanded to a prefix call, because
8863 -- Process_Indexed_Component will flag an error before the resolution
8864 -- happens. ???
8866 if Is_Access_Type (Pref_Typ) then
8867 Pref_Typ := Implicitly_Designated_Type (Pref_Typ);
8868 Insert_Explicit_Dereference (Prefix);
8869 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
8870 end if;
8872 C_Type := Pref_Typ;
8874 -- If indexing a class-wide container, obtain indexing primitive from
8875 -- specific type.
8877 if Is_Class_Wide_Type (C_Type) then
8878 C_Type := Etype (Base_Type (C_Type));
8879 end if;
8881 -- Check whether the type has a specified indexing aspect
8883 Func_Name := Empty;
8885 -- The context is suitable for constant indexing, so obtain the name of
8886 -- the indexing function from aspect Constant_Indexing.
8888 if Constant_Indexing_OK then
8889 Func_Name :=
8890 Find_Value_Of_Aspect (Pref_Typ, Aspect_Constant_Indexing);
8891 end if;
8893 if Present (Func_Name) then
8894 Is_Constant_Indexing := True;
8896 -- Otherwise attempt variable indexing
8898 else
8899 Func_Name :=
8900 Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing);
8901 end if;
8903 -- The type is not subject to either form of indexing, therefore the
8904 -- indexed component does not denote container indexing. If this is a
8905 -- true error, it is diagnosed by the caller.
8907 if No (Func_Name) then
8909 -- The prefix itself may be an indexing of a container. Rewrite it
8910 -- as such and retry.
8912 if Has_Implicit_Dereference (Pref_Typ) then
8913 Build_Explicit_Dereference
8914 (Prefix, Get_Reference_Discriminant (Pref_Typ));
8915 return Try_Container_Indexing (N, Prefix, Exprs);
8917 -- Otherwise this is definitely not container indexing
8919 else
8920 return False;
8921 end if;
8923 -- If the container type is derived from another container type, the
8924 -- value of the inherited aspect is the Reference operation declared
8925 -- for the parent type.
8927 -- However, Reference is also a primitive operation of the type, and the
8928 -- inherited operation has a different signature. We retrieve the right
8929 -- ones (the function may be overloaded) from the list of primitive
8930 -- operations of the derived type.
8932 -- Note that predefined containers are typically all derived from one of
8933 -- the Controlled types. The code below is motivated by containers that
8934 -- are derived from other types with a Reference aspect.
8935 -- Note as well that we need to examine the base type, given that
8936 -- the container object may be a constrained subtype or itype that
8937 -- does not have an explicit declaration.
8939 elsif Is_Derived_Type (C_Type)
8940 and then Etype (First_Formal (Entity (Func_Name))) /= Pref_Typ
8941 then
8942 Func_Name :=
8943 Find_Indexing_Operations
8944 (T => Base_Type (C_Type),
8945 Nam => Chars (Func_Name),
8946 Is_Constant => Is_Constant_Indexing);
8947 end if;
8949 Assoc := New_List (Relocate_Node (Prefix));
8951 -- A generalized indexing may have nore than one index expression, so
8952 -- transfer all of them to the argument list to be used in the call.
8953 -- Note that there may be named associations, in which case the node
8954 -- was rewritten earlier as a call, and has been transformed back into
8955 -- an indexed expression to share the following processing.
8957 -- The generalized indexing node is the one on which analysis and
8958 -- resolution take place. Before expansion the original node is replaced
8959 -- with the generalized indexing node, which is a call, possibly with a
8960 -- dereference operation.
8962 -- Create argument list for function call that represents generalized
8963 -- indexing. Note that indices (i.e. actuals) may themselves be
8964 -- overloaded.
8966 declare
8967 Arg : Node_Id;
8968 New_Arg : Node_Id;
8970 begin
8971 Arg := First (Exprs);
8972 while Present (Arg) loop
8973 New_Arg := Relocate_Node (Arg);
8975 -- The arguments can be parameter associations, in which case the
8976 -- explicit actual parameter carries the overloadings.
8978 if Nkind (New_Arg) /= N_Parameter_Association then
8979 Save_Interps (Arg, New_Arg);
8980 end if;
8982 Append (New_Arg, Assoc);
8983 Next (Arg);
8984 end loop;
8985 end;
8987 if not Is_Overloaded (Func_Name) then
8988 Func := Entity (Func_Name);
8990 -- Can happen in case of e.g. cascaded errors
8992 if No (Func) then
8993 return False;
8994 end if;
8996 Indexing :=
8997 Make_Function_Call (Loc,
8998 Name => New_Occurrence_Of (Func, Loc),
8999 Parameter_Associations => Assoc);
9001 Set_Parent (Indexing, Parent (N));
9002 Set_Generalized_Indexing (N, Indexing);
9003 Analyze (Indexing);
9004 Set_Etype (N, Etype (Indexing));
9006 -- If the return type of the indexing function is a reference type,
9007 -- add the dereference as a possible interpretation. Note that the
9008 -- indexing aspect may be a function that returns the element type
9009 -- with no intervening implicit dereference, and that the reference
9010 -- discriminant is not the first discriminant.
9012 if Has_Discriminants (Etype (Func)) then
9013 Check_Implicit_Dereference (N, Etype (Func));
9014 end if;
9016 else
9017 -- If there are multiple indexing functions, build a function call
9018 -- and analyze it for each of the possible interpretations.
9020 Indexing :=
9021 Make_Function_Call (Loc,
9022 Name =>
9023 Make_Identifier (Loc, Chars (Func_Name)),
9024 Parameter_Associations => Assoc);
9025 Set_Parent (Indexing, Parent (N));
9026 Set_Generalized_Indexing (N, Indexing);
9027 Set_Etype (N, Any_Type);
9028 Set_Etype (Name (Indexing), Any_Type);
9030 declare
9031 I : Interp_Index;
9032 It : Interp;
9033 Success : Boolean;
9035 begin
9036 Get_First_Interp (Func_Name, I, It);
9037 Set_Etype (Indexing, Any_Type);
9039 -- Analyze each candidate function with the given actuals
9041 while Present (It.Nam) loop
9042 Analyze_One_Call (Indexing, It.Nam, False, Success);
9043 Get_Next_Interp (I, It);
9044 end loop;
9046 -- If there are several successful candidates, resolution will
9047 -- be by result. Mark the interpretations of the function name
9048 -- itself.
9050 if Is_Overloaded (Indexing) then
9051 Get_First_Interp (Indexing, I, It);
9053 while Present (It.Nam) loop
9054 Add_One_Interp (Name (Indexing), It.Nam, It.Typ);
9055 Get_Next_Interp (I, It);
9056 end loop;
9058 else
9059 Set_Etype (Name (Indexing), Etype (Indexing));
9060 end if;
9062 -- Now add the candidate interpretations to the indexing node
9063 -- itself, to be replaced later by the function call.
9065 if Is_Overloaded (Name (Indexing)) then
9066 Get_First_Interp (Name (Indexing), I, It);
9068 while Present (It.Nam) loop
9069 Add_One_Interp (N, It.Nam, It.Typ);
9071 -- Add dereference interpretation if the result type has
9072 -- implicit reference discriminants.
9074 if Has_Discriminants (Etype (It.Nam)) then
9075 Check_Implicit_Dereference (N, Etype (It.Nam));
9076 end if;
9078 Get_Next_Interp (I, It);
9079 end loop;
9081 else
9082 Set_Etype (N, Etype (Name (Indexing)));
9083 if Has_Discriminants (Etype (N)) then
9084 Check_Implicit_Dereference (N, Etype (N));
9085 end if;
9086 end if;
9087 end;
9088 end if;
9090 if Etype (Indexing) = Any_Type then
9091 Error_Msg_NE
9092 ("container cannot be indexed with&", N, Etype (First (Exprs)));
9093 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
9094 end if;
9096 return True;
9097 end Try_Container_Indexing;
9099 -----------------------
9100 -- Try_Indirect_Call --
9101 -----------------------
9103 function Try_Indirect_Call
9104 (N : Node_Id;
9105 Nam : Entity_Id;
9106 Typ : Entity_Id) return Boolean
9108 Actual : Node_Id;
9109 Formal : Entity_Id;
9111 Call_OK : Boolean;
9112 pragma Warnings (Off, Call_OK);
9114 begin
9115 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9117 Actual := First_Actual (N);
9118 Formal := First_Formal (Designated_Type (Typ));
9119 while Present (Actual) and then Present (Formal) loop
9120 if not Has_Compatible_Type (Actual, Etype (Formal)) then
9121 return False;
9122 end if;
9124 Next (Actual);
9125 Next_Formal (Formal);
9126 end loop;
9128 if No (Actual) and then No (Formal) then
9129 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
9131 -- Nam is a candidate interpretation for the name in the call,
9132 -- if it is not an indirect call.
9134 if not Is_Type (Nam)
9135 and then Is_Entity_Name (Name (N))
9136 then
9137 Set_Entity (Name (N), Nam);
9138 end if;
9140 return True;
9142 else
9143 return False;
9144 end if;
9145 end Try_Indirect_Call;
9147 ----------------------
9148 -- Try_Indexed_Call --
9149 ----------------------
9151 function Try_Indexed_Call
9152 (N : Node_Id;
9153 Nam : Entity_Id;
9154 Typ : Entity_Id;
9155 Skip_First : Boolean) return Boolean
9157 Loc : constant Source_Ptr := Sloc (N);
9158 Actuals : constant List_Id := Parameter_Associations (N);
9159 Actual : Node_Id;
9160 Index : Entity_Id;
9162 begin
9163 Actual := First (Actuals);
9165 -- If the call was originally written in prefix form, skip the first
9166 -- actual, which is obviously not defaulted.
9168 if Skip_First then
9169 Next (Actual);
9170 end if;
9172 Index := First_Index (Typ);
9173 while Present (Actual) and then Present (Index) loop
9175 -- If the parameter list has a named association, the expression
9176 -- is definitely a call and not an indexed component.
9178 if Nkind (Actual) = N_Parameter_Association then
9179 return False;
9180 end if;
9182 if Is_Entity_Name (Actual)
9183 and then Is_Type (Entity (Actual))
9184 and then No (Next (Actual))
9185 then
9186 -- A single actual that is a type name indicates a slice if the
9187 -- type is discrete, and an error otherwise.
9189 if Is_Discrete_Type (Entity (Actual)) then
9190 Rewrite (N,
9191 Make_Slice (Loc,
9192 Prefix =>
9193 Make_Function_Call (Loc,
9194 Name => Relocate_Node (Name (N))),
9195 Discrete_Range =>
9196 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
9198 Analyze (N);
9200 else
9201 Error_Msg_N ("invalid use of type in expression", Actual);
9202 Set_Etype (N, Any_Type);
9203 end if;
9205 return True;
9207 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
9208 return False;
9209 end if;
9211 Next (Actual);
9212 Next_Index (Index);
9213 end loop;
9215 if No (Actual) and then No (Index) then
9216 Add_One_Interp (N, Nam, Component_Type (Typ));
9218 -- Nam is a candidate interpretation for the name in the call,
9219 -- if it is not an indirect call.
9221 if not Is_Type (Nam)
9222 and then Is_Entity_Name (Name (N))
9223 then
9224 Set_Entity (Name (N), Nam);
9225 end if;
9227 return True;
9228 else
9229 return False;
9230 end if;
9231 end Try_Indexed_Call;
9233 --------------------------
9234 -- Try_Object_Operation --
9235 --------------------------
9237 function Try_Object_Operation
9238 (N : Node_Id;
9239 CW_Test_Only : Boolean := False;
9240 Allow_Extensions : Boolean := False) return Boolean
9242 K : constant Node_Kind := Nkind (Parent (N));
9243 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
9244 Loc : constant Source_Ptr := Sloc (N);
9245 Obj : constant Node_Id := Prefix (N);
9247 Subprog : constant Node_Id :=
9248 Make_Identifier (Sloc (Selector_Name (N)),
9249 Chars => Chars (Selector_Name (N)));
9250 -- Identifier on which possible interpretations will be collected
9252 Report_Error : Boolean := False;
9253 -- If no candidate interpretation matches the context, redo analysis
9254 -- with Report_Error True to provide additional information.
9256 Actual : Node_Id;
9257 Candidate : Entity_Id := Empty;
9258 New_Call_Node : Node_Id := Empty;
9259 Node_To_Replace : Node_Id;
9260 Obj_Type : Entity_Id := Etype (Obj);
9261 Success : Boolean := False;
9263 procedure Complete_Object_Operation
9264 (Call_Node : Node_Id;
9265 Node_To_Replace : Node_Id);
9266 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
9267 -- Call_Node, insert the object (or its dereference) as the first actual
9268 -- in the call, and complete the analysis of the call.
9270 procedure Report_Ambiguity (Op : Entity_Id);
9271 -- If a prefixed procedure call is ambiguous, indicate whether the call
9272 -- includes an implicit dereference or an implicit 'Access.
9274 procedure Transform_Object_Operation
9275 (Call_Node : out Node_Id;
9276 Node_To_Replace : out Node_Id);
9277 -- Transform Obj.Operation (X, Y, ...) into Operation (Obj, X, Y ...).
9278 -- Call_Node is the resulting subprogram call, Node_To_Replace is
9279 -- either N or the parent of N, and Subprog is a reference to the
9280 -- subprogram we are trying to match. Note that the transformation
9281 -- may be partially destructive for the parent of N, so it needs to
9282 -- be undone in the case where Try_Object_Operation returns false.
9284 function Try_Class_Wide_Operation
9285 (Call_Node : Node_Id;
9286 Node_To_Replace : Node_Id) return Boolean;
9287 -- Traverse all ancestor types looking for a class-wide subprogram for
9288 -- which the current operation is a valid non-dispatching call.
9290 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
9291 -- If prefix is overloaded, its interpretation may include different
9292 -- tagged types, and we must examine the primitive operations and the
9293 -- class-wide operations of each in order to find candidate
9294 -- interpretations for the call as a whole.
9296 function Try_Primitive_Operation
9297 (Call_Node : Node_Id;
9298 Node_To_Replace : Node_Id) return Boolean;
9299 -- Traverse the list of primitive subprograms looking for a dispatching
9300 -- operation for which the current node is a valid call.
9302 function Valid_Candidate
9303 (Success : Boolean;
9304 Call : Node_Id;
9305 Subp : Entity_Id) return Entity_Id;
9306 -- If the subprogram is a valid interpretation, record it, and add to
9307 -- the list of interpretations of Subprog. Otherwise return Empty.
9309 -------------------------------
9310 -- Complete_Object_Operation --
9311 -------------------------------
9313 procedure Complete_Object_Operation
9314 (Call_Node : Node_Id;
9315 Node_To_Replace : Node_Id)
9317 Control : constant Entity_Id := First_Formal (Entity (Subprog));
9318 Formal_Type : constant Entity_Id := Etype (Control);
9319 First_Actual : Node_Id;
9321 begin
9322 -- Place the name of the operation, with its interpretations,
9323 -- on the rewritten call.
9325 Set_Name (Call_Node, Subprog);
9327 First_Actual := First (Parameter_Associations (Call_Node));
9329 -- For cross-reference purposes, treat the new node as being in the
9330 -- source if the original one is. Set entity and type, even though
9331 -- they may be overwritten during resolution if overloaded.
9333 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
9334 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
9336 if Nkind (N) = N_Selected_Component
9337 and then not Inside_A_Generic
9338 then
9339 Set_Entity (Selector_Name (N), Entity (Subprog));
9340 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
9341 end if;
9343 -- If need be, rewrite first actual as an explicit dereference. If
9344 -- the call is overloaded, the rewriting can only be done once the
9345 -- primitive operation is identified.
9347 if Is_Overloaded (Subprog) then
9349 -- The prefix itself may be overloaded, and its interpretations
9350 -- must be propagated to the new actual in the call.
9352 if Is_Overloaded (Obj) then
9353 Save_Interps (Obj, First_Actual);
9354 end if;
9356 Rewrite (First_Actual, Obj);
9358 elsif not Is_Access_Type (Formal_Type)
9359 and then Is_Access_Type (Etype (Obj))
9360 then
9361 Rewrite (First_Actual,
9362 Make_Explicit_Dereference (Sloc (Obj), Obj));
9363 Analyze (First_Actual);
9365 -- If we need to introduce an explicit dereference, verify that
9366 -- the resulting actual is compatible with the mode of the formal.
9368 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
9369 and then Is_Access_Constant (Etype (Obj))
9370 then
9371 Error_Msg_NE
9372 ("expect variable in call to&", Prefix (N), Entity (Subprog));
9373 end if;
9375 -- Conversely, if the formal is an access parameter and the object is
9376 -- not an access type or a reference type (i.e. a type with the
9377 -- Implicit_Dereference aspect specified), replace the actual with a
9378 -- 'Access reference. Its analysis will check that the object is
9379 -- aliased.
9381 elsif Is_Access_Type (Formal_Type)
9382 and then not Is_Access_Type (Etype (Obj))
9383 and then
9384 (not Has_Implicit_Dereference (Etype (Obj))
9385 or else
9386 not Is_Access_Type (Designated_Type (Etype
9387 (Get_Reference_Discriminant (Etype (Obj))))))
9388 then
9389 -- A special case: A.all'Access is illegal if A is an access to a
9390 -- constant and the context requires an access to a variable.
9392 if not Is_Access_Constant (Formal_Type) then
9393 if (Nkind (Obj) = N_Explicit_Dereference
9394 and then Is_Access_Constant (Etype (Prefix (Obj))))
9395 or else not Is_Variable (Obj)
9396 then
9397 Error_Msg_NE
9398 ("actual for & must be a variable", Obj, Control);
9399 end if;
9400 end if;
9402 Rewrite (First_Actual,
9403 Make_Attribute_Reference (Loc,
9404 Attribute_Name => Name_Access,
9405 Prefix => Relocate_Node (Obj)));
9407 -- If the object is not overloaded verify that taking access of
9408 -- it is legal. Otherwise check is made during resolution.
9410 if not Is_Overloaded (Obj)
9411 and then not Is_Aliased_View (Obj)
9412 then
9413 Error_Msg_NE
9414 ("object in prefixed call to & must be aliased "
9415 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
9416 end if;
9418 Analyze (First_Actual);
9420 else
9421 if Is_Overloaded (Obj) then
9422 Save_Interps (Obj, First_Actual);
9423 end if;
9425 Rewrite (First_Actual, Obj);
9426 end if;
9428 if In_Extended_Main_Source_Unit (Current_Scope) then
9429 -- The operation is obtained from the dispatch table and not by
9430 -- visibility, and may be declared in a unit that is not
9431 -- explicitly referenced in the source, but is nevertheless
9432 -- required in the context of the current unit. Indicate that
9433 -- operation and its scope are referenced, to prevent spurious and
9434 -- misleading warnings. If the operation is overloaded, all
9435 -- primitives are in the same scope and we can use any of them.
9436 -- Don't do that outside the main unit since otherwise this will
9437 -- e.g. prevent the detection of some unused with clauses.
9439 Set_Referenced (Entity (Subprog), True);
9440 Set_Referenced (Scope (Entity (Subprog)), True);
9441 end if;
9443 Rewrite (Node_To_Replace, Call_Node);
9445 -- Propagate the interpretations collected in subprog to the new
9446 -- function call node, to be resolved from context.
9448 if Is_Overloaded (Subprog) then
9449 Save_Interps (Subprog, Node_To_Replace);
9451 else
9452 Analyze (Node_To_Replace);
9454 -- If the operation has been rewritten into a call, which may get
9455 -- subsequently an explicit dereference, preserve the type on the
9456 -- original node (selected component or indexed component) for
9457 -- subsequent legality tests, e.g. Is_Variable. which examines
9458 -- the original node.
9460 if Nkind (Node_To_Replace) = N_Function_Call then
9461 Set_Etype
9462 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
9463 end if;
9464 end if;
9465 end Complete_Object_Operation;
9467 ----------------------
9468 -- Report_Ambiguity --
9469 ----------------------
9471 procedure Report_Ambiguity (Op : Entity_Id) is
9472 Access_Actual : constant Boolean :=
9473 Is_Access_Type (Etype (Prefix (N)));
9474 Access_Formal : Boolean := False;
9476 begin
9477 Error_Msg_Sloc := Sloc (Op);
9479 if Present (First_Formal (Op)) then
9480 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
9481 end if;
9483 if Access_Formal and then not Access_Actual then
9484 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
9485 Error_Msg_N
9486 ("\possible interpretation "
9487 & "(inherited, with implicit 'Access) #", N);
9488 else
9489 Error_Msg_N
9490 ("\possible interpretation (with implicit 'Access) #", N);
9491 end if;
9493 elsif not Access_Formal and then Access_Actual then
9494 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
9495 Error_Msg_N
9496 ("\possible interpretation "
9497 & "(inherited, with implicit dereference) #", N);
9498 else
9499 Error_Msg_N
9500 ("\possible interpretation (with implicit dereference) #", N);
9501 end if;
9503 else
9504 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
9505 Error_Msg_N ("\possible interpretation (inherited)#", N);
9506 else
9507 Error_Msg_N -- CODEFIX
9508 ("\possible interpretation#", N);
9509 end if;
9510 end if;
9511 end Report_Ambiguity;
9513 --------------------------------
9514 -- Transform_Object_Operation --
9515 --------------------------------
9517 procedure Transform_Object_Operation
9518 (Call_Node : out Node_Id;
9519 Node_To_Replace : out Node_Id)
9521 Dummy : constant Node_Id := New_Copy (Obj);
9522 -- Placeholder used as a first parameter in the call, replaced
9523 -- eventually by the proper object.
9525 Parent_Node : constant Node_Id := Parent (N);
9527 Actual : Node_Id;
9528 Actuals : List_Id;
9530 begin
9531 -- Common case covering 1) Call to a procedure and 2) Call to a
9532 -- function that has some additional actuals.
9534 if Nkind (Parent_Node) in N_Subprogram_Call
9536 -- N is a selected component node containing the name of the
9537 -- subprogram. If N is not the name of the parent node we must
9538 -- not replace the parent node by the new construct. This case
9539 -- occurs when N is a parameterless call to a subprogram that
9540 -- is an actual parameter of a call to another subprogram. For
9541 -- example:
9542 -- Some_Subprogram (..., Obj.Operation, ...)
9544 and then N = Name (Parent_Node)
9545 then
9546 Node_To_Replace := Parent_Node;
9548 Actuals := Parameter_Associations (Parent_Node);
9550 if Present (Actuals) then
9551 Prepend (Dummy, Actuals);
9552 else
9553 Actuals := New_List (Dummy);
9554 end if;
9556 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
9557 Call_Node :=
9558 Make_Procedure_Call_Statement (Loc,
9559 Name => New_Copy (Subprog),
9560 Parameter_Associations => Actuals);
9562 else
9563 Call_Node :=
9564 Make_Function_Call (Loc,
9565 Name => New_Copy (Subprog),
9566 Parameter_Associations => Actuals);
9567 end if;
9569 -- Before analysis, a function call appears as an indexed component
9570 -- if there are no named associations.
9572 elsif Nkind (Parent_Node) = N_Indexed_Component
9573 and then N = Prefix (Parent_Node)
9574 then
9575 Node_To_Replace := Parent_Node;
9576 Actuals := Expressions (Parent_Node);
9578 Actual := First (Actuals);
9579 while Present (Actual) loop
9580 Analyze (Actual);
9581 Next (Actual);
9582 end loop;
9584 Prepend (Dummy, Actuals);
9586 Call_Node :=
9587 Make_Function_Call (Loc,
9588 Name => New_Copy (Subprog),
9589 Parameter_Associations => Actuals);
9591 -- Parameterless call: Obj.F is rewritten as F (Obj)
9593 else
9594 Node_To_Replace := N;
9596 Call_Node :=
9597 Make_Function_Call (Loc,
9598 Name => New_Copy (Subprog),
9599 Parameter_Associations => New_List (Dummy));
9600 end if;
9601 end Transform_Object_Operation;
9603 ------------------------------
9604 -- Try_Class_Wide_Operation --
9605 ------------------------------
9607 function Try_Class_Wide_Operation
9608 (Call_Node : Node_Id;
9609 Node_To_Replace : Node_Id) return Boolean
9611 Anc_Type : Entity_Id;
9612 Matching_Op : Entity_Id := Empty;
9613 Error : Boolean;
9615 procedure Traverse_Homonyms
9616 (Anc_Type : Entity_Id;
9617 Error : out Boolean);
9618 -- Traverse the homonym chain of the subprogram searching for those
9619 -- homonyms whose first formal has the Anc_Type's class-wide type,
9620 -- or an anonymous access type designating the class-wide type. If
9621 -- an ambiguity is detected, then Error is set to True.
9623 procedure Traverse_Interfaces
9624 (Anc_Type : Entity_Id;
9625 Error : out Boolean);
9626 -- Traverse the list of interfaces, if any, associated with Anc_Type
9627 -- and search for acceptable class-wide homonyms associated with each
9628 -- interface. If an ambiguity is detected, then Error is set to True.
9630 -----------------------
9631 -- Traverse_Homonyms --
9632 -----------------------
9634 procedure Traverse_Homonyms
9635 (Anc_Type : Entity_Id;
9636 Error : out Boolean)
9638 function First_Formal_Match
9639 (Subp_Id : Entity_Id;
9640 Typ : Entity_Id) return Boolean;
9641 -- Predicate to verify that the first foramal of class-wide
9642 -- subprogram Subp_Id matches type Typ of the prefix.
9644 ------------------------
9645 -- First_Formal_Match --
9646 ------------------------
9648 function First_Formal_Match
9649 (Subp_Id : Entity_Id;
9650 Typ : Entity_Id) return Boolean
9652 Ctrl : constant Entity_Id := First_Formal (Subp_Id);
9654 begin
9655 return
9656 Present (Ctrl)
9657 and then
9658 (Base_Type (Etype (Ctrl)) = Typ
9659 or else
9660 (Ekind (Etype (Ctrl)) = E_Anonymous_Access_Type
9661 and then
9662 Base_Type (Designated_Type (Etype (Ctrl))) =
9663 Typ));
9664 end First_Formal_Match;
9666 -- Local variables
9668 CW_Typ : constant Entity_Id := Class_Wide_Type (Anc_Type);
9670 Candidate : Entity_Id;
9671 -- If homonym is a renaming, examine the renamed program
9673 Hom : Entity_Id;
9674 Hom_Ref : Node_Id;
9675 Success : Boolean;
9677 -- Start of processing for Traverse_Homonyms
9679 begin
9680 Error := False;
9682 -- Find a non-hidden operation whose first parameter is of the
9683 -- class-wide type, a subtype thereof, or an anonymous access
9684 -- to same. If in an instance, the operation can be considered
9685 -- even if hidden (it may be hidden because the instantiation
9686 -- is expanded after the containing package has been analyzed).
9687 -- If the subprogram is a generic actual in an enclosing instance,
9688 -- it appears as a renaming that is a candidate interpretation as
9689 -- well.
9691 Hom := Current_Entity (Subprog);
9692 while Present (Hom) loop
9693 if Ekind (Hom) in E_Procedure | E_Function
9694 and then Present (Renamed_Entity (Hom))
9695 and then Is_Generic_Actual_Subprogram (Hom)
9696 and then In_Open_Scopes (Scope (Hom))
9697 then
9698 Candidate := Renamed_Entity (Hom);
9699 else
9700 Candidate := Hom;
9701 end if;
9703 if Ekind (Candidate) in E_Function | E_Procedure
9704 and then (not Is_Hidden (Candidate) or else In_Instance)
9705 and then Scope (Candidate) = Scope (Base_Type (Anc_Type))
9706 and then First_Formal_Match (Candidate, CW_Typ)
9707 then
9708 -- If the context is a procedure call, ignore functions
9709 -- in the name of the call.
9711 if Ekind (Candidate) = E_Function
9712 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
9713 and then N = Name (Parent (N))
9714 then
9715 goto Next_Hom;
9717 -- If the context is a function call, ignore procedures
9718 -- in the name of the call.
9720 elsif Ekind (Candidate) = E_Procedure
9721 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
9722 then
9723 goto Next_Hom;
9724 end if;
9726 Set_Etype (Call_Node, Any_Type);
9727 Set_Is_Overloaded (Call_Node, False);
9728 Success := False;
9730 if No (Matching_Op) then
9731 Hom_Ref := New_Occurrence_Of (Candidate, Sloc (Subprog));
9733 Set_Etype (Call_Node, Any_Type);
9734 Set_Name (Call_Node, Hom_Ref);
9735 Set_Parent (Call_Node, Parent (Node_To_Replace));
9737 Analyze_One_Call
9738 (N => Call_Node,
9739 Nam => Candidate,
9740 Report => Report_Error,
9741 Success => Success,
9742 Skip_First => True);
9744 Matching_Op :=
9745 Valid_Candidate (Success, Call_Node, Candidate);
9747 else
9748 Analyze_One_Call
9749 (N => Call_Node,
9750 Nam => Candidate,
9751 Report => Report_Error,
9752 Success => Success,
9753 Skip_First => True);
9755 -- The same operation may be encountered on two homonym
9756 -- traversals, before and after looking at interfaces.
9757 -- Check for this case before reporting a real ambiguity.
9759 if Present
9760 (Valid_Candidate (Success, Call_Node, Candidate))
9761 and then Nkind (Call_Node) /= N_Function_Call
9762 and then Candidate /= Matching_Op
9763 then
9764 Error_Msg_NE ("ambiguous call to&", N, Hom);
9765 Report_Ambiguity (Matching_Op);
9766 Report_Ambiguity (Hom);
9767 Check_Ambiguous_Aggregate (New_Call_Node);
9768 Error := True;
9769 return;
9770 end if;
9771 end if;
9772 end if;
9774 <<Next_Hom>>
9775 Hom := Homonym (Hom);
9776 end loop;
9777 end Traverse_Homonyms;
9779 -------------------------
9780 -- Traverse_Interfaces --
9781 -------------------------
9783 procedure Traverse_Interfaces
9784 (Anc_Type : Entity_Id;
9785 Error : out Boolean)
9787 Intface_List : constant List_Id :=
9788 Abstract_Interface_List (Anc_Type);
9789 Intface : Node_Id;
9791 begin
9792 Error := False;
9794 Intface := First (Intface_List);
9795 while Present (Intface) loop
9797 -- Look for acceptable class-wide homonyms associated with the
9798 -- interface.
9800 Traverse_Homonyms (Etype (Intface), Error);
9802 if Error then
9803 return;
9804 end if;
9806 -- Continue the search by looking at each of the interface's
9807 -- associated interface ancestors.
9809 Traverse_Interfaces (Etype (Intface), Error);
9811 if Error then
9812 return;
9813 end if;
9815 Next (Intface);
9816 end loop;
9817 end Traverse_Interfaces;
9819 -- Start of processing for Try_Class_Wide_Operation
9821 begin
9822 -- If we are searching only for conflicting class-wide subprograms
9823 -- then initialize directly Matching_Op with the target entity.
9825 if CW_Test_Only then
9826 Matching_Op := Entity (Selector_Name (N));
9827 end if;
9829 -- Loop through ancestor types (including interfaces), traversing
9830 -- the homonym chain of the subprogram, trying out those homonyms
9831 -- whose first formal has the class-wide type of the ancestor, or
9832 -- an anonymous access type designating the class-wide type.
9834 Anc_Type := Obj_Type;
9835 loop
9836 -- Look for a match among homonyms associated with the ancestor
9838 Traverse_Homonyms (Anc_Type, Error);
9840 if Error then
9841 return True;
9842 end if;
9844 -- Continue the search for matches among homonyms associated with
9845 -- any interfaces implemented by the ancestor.
9847 Traverse_Interfaces (Anc_Type, Error);
9849 if Error then
9850 return True;
9851 end if;
9853 exit when Etype (Anc_Type) = Anc_Type;
9854 Anc_Type := Etype (Anc_Type);
9855 end loop;
9857 if Present (Matching_Op) then
9858 Set_Etype (Call_Node, Etype (Matching_Op));
9859 end if;
9861 return Present (Matching_Op);
9862 end Try_Class_Wide_Operation;
9864 -----------------------------------
9865 -- Try_One_Prefix_Interpretation --
9866 -----------------------------------
9868 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
9869 Prev_Obj_Type : constant Entity_Id := Obj_Type;
9870 -- If the interpretation does not have a valid candidate type,
9871 -- preserve current value of Obj_Type for subsequent errors.
9873 begin
9874 Obj_Type := T;
9876 if Is_Access_Type (Obj_Type) then
9877 Obj_Type := Designated_Type (Obj_Type);
9878 end if;
9880 if Ekind (Obj_Type)
9881 in E_Private_Subtype | E_Record_Subtype_With_Private
9882 then
9883 Obj_Type := Base_Type (Obj_Type);
9884 end if;
9886 if Is_Class_Wide_Type (Obj_Type) then
9887 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
9888 end if;
9890 -- The type may have be obtained through a limited_with clause,
9891 -- in which case the primitive operations are available on its
9892 -- nonlimited view. If still incomplete, retrieve full view.
9894 if Ekind (Obj_Type) = E_Incomplete_Type
9895 and then From_Limited_With (Obj_Type)
9896 and then Has_Non_Limited_View (Obj_Type)
9897 then
9898 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
9899 end if;
9901 -- If the object is not tagged, or the type is still an incomplete
9902 -- type, this is not a prefixed call. Restore the previous type as
9903 -- the current one is not a legal candidate.
9905 -- Extension feature: Calls with prefixed views are also supported
9906 -- for untagged types, so skip the early return when extensions are
9907 -- enabled, unless the type doesn't have a primitive operations list
9908 -- (such as in the case of predefined types).
9910 if (not Is_Tagged_Type (Obj_Type)
9911 and then
9912 (not (Core_Extensions_Allowed or Allow_Extensions)
9913 or else No (Primitive_Operations (Obj_Type))))
9914 or else Is_Incomplete_Type (Obj_Type)
9915 then
9916 Obj_Type := Prev_Obj_Type;
9917 return;
9918 end if;
9920 declare
9921 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
9922 Ignore : Boolean;
9923 Prim_Result : Boolean := False;
9925 begin
9926 if not CW_Test_Only then
9927 Prim_Result :=
9928 Try_Primitive_Operation
9929 (Call_Node => New_Call_Node,
9930 Node_To_Replace => Node_To_Replace);
9932 -- Extension feature: In the case where the prefix is of an
9933 -- access type, and a primitive wasn't found for the designated
9934 -- type, then if the access type has primitives we attempt a
9935 -- prefixed call using one of its primitives. (It seems that
9936 -- this isn't quite right to give preference to the designated
9937 -- type in the case where both the access and designated types
9938 -- have homographic prefixed-view operations that could result
9939 -- in an ambiguity, but handling properly may be tricky. ???)
9941 if (Core_Extensions_Allowed or Allow_Extensions)
9942 and then not Prim_Result
9943 and then Is_Named_Access_Type (Prev_Obj_Type)
9944 and then Present (Direct_Primitive_Operations (Prev_Obj_Type))
9945 then
9946 -- Temporarily reset Obj_Type to the original access type
9948 Obj_Type := Prev_Obj_Type;
9950 Prim_Result :=
9951 Try_Primitive_Operation
9952 (Call_Node => New_Call_Node,
9953 Node_To_Replace => Node_To_Replace);
9955 -- Restore Obj_Type to the designated type (is this really
9956 -- necessary, or should it only be done when Prim_Result is
9957 -- still False?).
9959 Obj_Type := Designated_Type (Obj_Type);
9960 end if;
9961 end if;
9963 -- Check if there is a class-wide subprogram covering the
9964 -- primitive. This check must be done even if a candidate
9965 -- was found in order to report ambiguous calls.
9967 if not Prim_Result then
9968 Ignore :=
9969 Try_Class_Wide_Operation
9970 (Call_Node => New_Call_Node,
9971 Node_To_Replace => Node_To_Replace);
9973 -- If we found a primitive we search for class-wide subprograms
9974 -- using a duplicate of the call node (done to avoid missing its
9975 -- decoration if there is no ambiguity).
9977 else
9978 Ignore :=
9979 Try_Class_Wide_Operation
9980 (Call_Node => Dup_Call_Node,
9981 Node_To_Replace => Node_To_Replace);
9982 end if;
9983 end;
9984 end Try_One_Prefix_Interpretation;
9986 -----------------------------
9987 -- Try_Primitive_Operation --
9988 -----------------------------
9990 function Try_Primitive_Operation
9991 (Call_Node : Node_Id;
9992 Node_To_Replace : Node_Id) return Boolean
9994 Elmt : Elmt_Id;
9995 Prim_Op : Entity_Id;
9996 Matching_Op : Entity_Id := Empty;
9997 Prim_Op_Ref : Node_Id := Empty;
9999 Corr_Type : Entity_Id := Empty;
10000 -- If the prefix is a synchronized type, the controlling type of
10001 -- the primitive operation is the corresponding record type, else
10002 -- this is the object type itself.
10004 Success : Boolean := False;
10006 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
10007 -- For tagged types the candidate interpretations are found in
10008 -- the list of primitive operations of the type and its ancestors.
10009 -- For formal tagged types we have to find the operations declared
10010 -- in the same scope as the type (including in the generic formal
10011 -- part) because the type itself carries no primitive operations,
10012 -- except for formal derived types that inherit the operations of
10013 -- the parent and progenitors.
10015 -- If the context is a generic subprogram body, the generic formals
10016 -- are visible by name, but are not in the entity list of the
10017 -- subprogram because that list starts with the subprogram formals.
10018 -- We retrieve the candidate operations from the generic declaration.
10020 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
10021 -- Prefix notation can also be used on operations that are not
10022 -- primitives of the type, but are declared in the same immediate
10023 -- declarative part, which can only mean the corresponding package
10024 -- body (see RM 4.1.3 (9.2/3)). If we are in that body we extend the
10025 -- list of primitives with body operations with the same name that
10026 -- may be candidates, so that Try_Primitive_Operations can examine
10027 -- them if no real primitive is found.
10029 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
10030 -- An operation that overrides an inherited operation in the private
10031 -- part of its package may be hidden, but if the inherited operation
10032 -- is visible a direct call to it will dispatch to the private one,
10033 -- which is therefore a valid candidate.
10035 function Names_Match
10036 (Obj_Type : Entity_Id;
10037 Prim_Op : Entity_Id;
10038 Subprog : Entity_Id) return Boolean;
10039 -- Return True if the names of Prim_Op and Subprog match. If Obj_Type
10040 -- is a protected type then compare also the original name of Prim_Op
10041 -- with the name of Subprog (since the expander may have added a
10042 -- prefix to its original name --see Exp_Ch9.Build_Selected_Name).
10044 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
10045 -- Verify that the prefix, dereferenced if need be, is a valid
10046 -- controlling argument in a call to Op. The remaining actuals
10047 -- are checked in the subsequent call to Analyze_One_Call.
10049 ------------------------------
10050 -- Collect_Generic_Type_Ops --
10051 ------------------------------
10053 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
10054 Bas : constant Entity_Id := Base_Type (T);
10055 Candidates : constant Elist_Id := New_Elmt_List;
10056 Subp : Entity_Id;
10057 Formal : Entity_Id;
10059 procedure Check_Candidate;
10060 -- The operation is a candidate if its first parameter is a
10061 -- controlling operand of the desired type.
10063 -----------------------
10064 -- Check_Candidate; --
10065 -----------------------
10067 procedure Check_Candidate is
10068 begin
10069 Formal := First_Formal (Subp);
10071 if Present (Formal)
10072 and then Is_Controlling_Formal (Formal)
10073 and then
10074 (Base_Type (Etype (Formal)) = Bas
10075 or else
10076 (Is_Access_Type (Etype (Formal))
10077 and then Designated_Type (Etype (Formal)) = Bas))
10078 then
10079 Append_Elmt (Subp, Candidates);
10080 end if;
10081 end Check_Candidate;
10083 -- Start of processing for Collect_Generic_Type_Ops
10085 begin
10086 if Is_Derived_Type (T) then
10087 return Primitive_Operations (T);
10089 elsif Ekind (Scope (T)) in E_Procedure | E_Function then
10091 -- Scan the list of generic formals to find subprograms
10092 -- that may have a first controlling formal of the type.
10094 if Nkind (Unit_Declaration_Node (Scope (T))) =
10095 N_Generic_Subprogram_Declaration
10096 then
10097 declare
10098 Decl : Node_Id;
10100 begin
10101 Decl :=
10102 First (Generic_Formal_Declarations
10103 (Unit_Declaration_Node (Scope (T))));
10104 while Present (Decl) loop
10105 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
10106 Subp := Defining_Entity (Decl);
10107 Check_Candidate;
10108 end if;
10110 Next (Decl);
10111 end loop;
10112 end;
10113 end if;
10114 return Candidates;
10116 else
10117 -- Scan the list of entities declared in the same scope as
10118 -- the type. In general this will be an open scope, given that
10119 -- the call we are analyzing can only appear within a generic
10120 -- declaration or body (either the one that declares T, or a
10121 -- child unit).
10123 -- For a subtype representing a generic actual type, go to the
10124 -- base type.
10126 if Is_Generic_Actual_Type (T) then
10127 Subp := First_Entity (Scope (Base_Type (T)));
10128 else
10129 Subp := First_Entity (Scope (T));
10130 end if;
10132 while Present (Subp) loop
10133 if Is_Overloadable (Subp) then
10134 Check_Candidate;
10135 end if;
10137 Next_Entity (Subp);
10138 end loop;
10140 return Candidates;
10141 end if;
10142 end Collect_Generic_Type_Ops;
10144 ----------------------------
10145 -- Extended_Primitive_Ops --
10146 ----------------------------
10148 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
10149 Type_Scope : constant Entity_Id := Scope (T);
10150 Op_List : Elist_Id := Primitive_Operations (T);
10151 begin
10152 if Is_Package_Or_Generic_Package (Type_Scope)
10153 and then ((In_Package_Body (Type_Scope)
10154 and then In_Open_Scopes (Type_Scope)) or else In_Instance_Body)
10155 then
10156 -- Retrieve list of declarations of package body if possible
10158 declare
10159 The_Body : constant Node_Id :=
10160 Corresponding_Body (Unit_Declaration_Node (Type_Scope));
10161 begin
10162 if Present (The_Body) then
10163 declare
10164 Body_Decls : constant List_Id :=
10165 Declarations (Unit_Declaration_Node (The_Body));
10166 Op_Found : Boolean := False;
10167 Op : Entity_Id := Current_Entity (Subprog);
10168 begin
10169 while Present (Op) loop
10170 if Comes_From_Source (Op)
10171 and then Is_Overloadable (Op)
10173 -- Exclude overriding primitive operations of a
10174 -- type extension declared in the package body,
10175 -- to prevent duplicates in extended list.
10177 and then not Is_Primitive (Op)
10178 and then Is_List_Member
10179 (Unit_Declaration_Node (Op))
10180 and then List_Containing
10181 (Unit_Declaration_Node (Op)) = Body_Decls
10182 then
10183 if not Op_Found then
10184 -- Copy list of primitives so it is not
10185 -- affected for other uses.
10187 Op_List := New_Copy_Elist (Op_List);
10188 Op_Found := True;
10189 end if;
10191 Append_Elmt (Op, Op_List);
10192 end if;
10194 Op := Homonym (Op);
10195 end loop;
10196 end;
10197 end if;
10198 end;
10199 end if;
10201 return Op_List;
10202 end Extended_Primitive_Ops;
10204 ---------------------------
10205 -- Is_Private_Overriding --
10206 ---------------------------
10208 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
10209 Visible_Op : Entity_Id;
10211 begin
10212 -- The subprogram may be overloaded with both visible and private
10213 -- entities with the same name. We have to scan the chain of
10214 -- homonyms to determine whether there is a previous implicit
10215 -- declaration in the same scope that is overridden by the
10216 -- private candidate.
10218 Visible_Op := Homonym (Op);
10219 while Present (Visible_Op) loop
10220 if Scope (Op) /= Scope (Visible_Op) then
10221 return False;
10223 elsif not Comes_From_Source (Visible_Op)
10224 and then Alias (Visible_Op) = Op
10225 then
10226 -- If Visible_Op or what it overrides is not hidden, then we
10227 -- have found what we're looking for.
10229 if not Is_Hidden (Visible_Op)
10230 or else not Is_Hidden (Overridden_Operation (Op))
10231 then
10232 return True;
10233 end if;
10234 end if;
10236 Visible_Op := Homonym (Visible_Op);
10237 end loop;
10239 return False;
10240 end Is_Private_Overriding;
10242 -----------------
10243 -- Names_Match --
10244 -----------------
10246 function Names_Match
10247 (Obj_Type : Entity_Id;
10248 Prim_Op : Entity_Id;
10249 Subprog : Entity_Id) return Boolean is
10250 begin
10251 -- Common case: exact match
10253 if Chars (Prim_Op) = Chars (Subprog) then
10254 return True;
10256 -- For protected type primitives the expander may have built the
10257 -- name of the dispatching primitive prepending the type name to
10258 -- avoid conflicts with the name of the protected subprogram (see
10259 -- Exp_Ch9.Build_Selected_Name).
10261 elsif Is_Protected_Type (Obj_Type) then
10262 return
10263 Present (Original_Protected_Subprogram (Prim_Op))
10264 and then Chars (Original_Protected_Subprogram (Prim_Op)) =
10265 Chars (Subprog);
10267 -- In an instance, the selector name may be a generic actual that
10268 -- renames a primitive operation of the type of the prefix.
10270 elsif In_Instance and then Present (Current_Entity (Subprog)) then
10271 declare
10272 Subp : constant Entity_Id := Current_Entity (Subprog);
10273 begin
10274 if Present (Subp)
10275 and then Is_Subprogram (Subp)
10276 and then Present (Renamed_Entity (Subp))
10277 and then Is_Generic_Actual_Subprogram (Subp)
10278 and then Chars (Renamed_Entity (Subp)) = Chars (Prim_Op)
10279 then
10280 return True;
10281 end if;
10282 end;
10283 end if;
10285 return False;
10286 end Names_Match;
10288 -----------------------------
10289 -- Valid_First_Argument_Of --
10290 -----------------------------
10292 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
10293 Typ : Entity_Id := Etype (First_Formal (Op));
10295 begin
10296 if Is_Concurrent_Type (Typ)
10297 and then Present (Corresponding_Record_Type (Typ))
10298 then
10299 Typ := Corresponding_Record_Type (Typ);
10300 end if;
10302 -- Simple case. Object may be a subtype of the tagged type or may
10303 -- be the corresponding record of a synchronized type.
10305 return Obj_Type = Typ
10306 or else Base_Type (Obj_Type) = Base_Type (Typ)
10307 or else Corr_Type = Typ
10309 -- Object may be of a derived type whose parent has unknown
10310 -- discriminants, in which case the type matches the underlying
10311 -- record view of its base.
10313 or else
10314 (Has_Unknown_Discriminants (Typ)
10315 and then Typ = Underlying_Record_View (Base_Type (Obj_Type)))
10317 -- Prefix can be dereferenced
10319 or else
10320 (Is_Access_Type (Corr_Type)
10321 and then Designated_Type (Corr_Type) = Typ)
10323 -- Formal is an access parameter, for which the object can
10324 -- provide an access.
10326 or else
10327 (Ekind (Typ) = E_Anonymous_Access_Type
10328 and then
10329 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
10330 end Valid_First_Argument_Of;
10332 -- Start of processing for Try_Primitive_Operation
10334 begin
10335 -- Look for subprograms in the list of primitive operations. The name
10336 -- must be identical, and the kind of call indicates the expected
10337 -- kind of operation (function or procedure). If the type is a
10338 -- (tagged) synchronized type, the primitive ops are attached to the
10339 -- corresponding record (base) type.
10341 if Is_Concurrent_Type (Obj_Type) then
10342 if Present (Corresponding_Record_Type (Obj_Type)) then
10343 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
10344 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
10345 else
10346 Corr_Type := Obj_Type;
10347 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
10348 end if;
10350 elsif not Is_Generic_Type (Obj_Type) then
10351 Corr_Type := Obj_Type;
10352 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
10354 else
10355 Corr_Type := Obj_Type;
10356 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
10357 end if;
10359 while Present (Elmt) loop
10360 Prim_Op := Node (Elmt);
10362 if Names_Match (Obj_Type, Prim_Op, Subprog)
10363 and then Present (First_Formal (Prim_Op))
10364 and then Valid_First_Argument_Of (Prim_Op)
10365 and then
10366 (Nkind (Call_Node) = N_Function_Call)
10368 (Ekind (Prim_Op) = E_Function)
10369 then
10370 -- Ada 2005 (AI-251): If this primitive operation corresponds
10371 -- to an immediate ancestor interface there is no need to add
10372 -- it to the list of interpretations; the corresponding aliased
10373 -- primitive is also in this list of primitive operations and
10374 -- will be used instead.
10376 if (Present (Interface_Alias (Prim_Op))
10377 and then Is_Ancestor (Find_Dispatching_Type
10378 (Alias (Prim_Op)), Corr_Type))
10380 -- Do not consider hidden primitives unless the type is in an
10381 -- open scope or we are within an instance, where visibility
10382 -- is known to be correct, or else if this is an overriding
10383 -- operation in the private part for an inherited operation.
10385 or else (Is_Hidden (Prim_Op)
10386 and then not Is_Immediately_Visible (Obj_Type)
10387 and then not In_Instance
10388 and then not Is_Private_Overriding (Prim_Op))
10389 then
10390 goto Continue;
10391 end if;
10393 Set_Etype (Call_Node, Any_Type);
10394 Set_Is_Overloaded (Call_Node, False);
10396 if No (Matching_Op) then
10397 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
10398 Candidate := Prim_Op;
10400 Set_Parent (Call_Node, Parent (Node_To_Replace));
10402 Set_Name (Call_Node, Prim_Op_Ref);
10403 Success := False;
10405 Analyze_One_Call
10406 (N => Call_Node,
10407 Nam => Prim_Op,
10408 Report => Report_Error,
10409 Success => Success,
10410 Skip_First => True);
10412 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
10414 -- More than one interpretation, collect for subsequent
10415 -- disambiguation. If this is a procedure call and there
10416 -- is another match, report ambiguity now.
10418 else
10419 Analyze_One_Call
10420 (N => Call_Node,
10421 Nam => Prim_Op,
10422 Report => Report_Error,
10423 Success => Success,
10424 Skip_First => True);
10426 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
10427 and then Nkind (Call_Node) /= N_Function_Call
10428 then
10429 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
10430 Report_Ambiguity (Matching_Op);
10431 Report_Ambiguity (Prim_Op);
10432 Check_Ambiguous_Aggregate (Call_Node);
10433 return True;
10434 end if;
10435 end if;
10436 end if;
10438 <<Continue>>
10439 Next_Elmt (Elmt);
10440 end loop;
10442 if Present (Matching_Op) then
10443 Set_Etype (Call_Node, Etype (Matching_Op));
10444 end if;
10446 return Present (Matching_Op);
10447 end Try_Primitive_Operation;
10449 ---------------------
10450 -- Valid_Candidate --
10451 ---------------------
10453 function Valid_Candidate
10454 (Success : Boolean;
10455 Call : Node_Id;
10456 Subp : Entity_Id) return Entity_Id
10458 Arr_Type : Entity_Id;
10459 Comp_Type : Entity_Id;
10461 begin
10462 -- If the subprogram is a valid interpretation, record it in global
10463 -- variable Subprog, to collect all possible overloadings.
10465 if Success then
10466 if Subp /= Entity (Subprog) then
10467 Add_One_Interp (Subprog, Subp, Etype (Subp));
10468 end if;
10469 end if;
10471 -- If the call may be an indexed call, retrieve component type of
10472 -- resulting expression, and add possible interpretation.
10474 Arr_Type := Empty;
10475 Comp_Type := Empty;
10477 if Nkind (Call) = N_Function_Call
10478 and then Nkind (Parent (N)) = N_Indexed_Component
10479 and then Needs_One_Actual (Subp)
10480 then
10481 if Is_Array_Type (Etype (Subp)) then
10482 Arr_Type := Etype (Subp);
10484 elsif Is_Access_Type (Etype (Subp))
10485 and then Is_Array_Type (Designated_Type (Etype (Subp)))
10486 then
10487 Arr_Type := Designated_Type (Etype (Subp));
10488 end if;
10489 end if;
10491 if Present (Arr_Type) then
10493 -- Verify that the actuals (excluding the object) match the types
10494 -- of the indexes.
10496 declare
10497 Actual : Node_Id;
10498 Index : Node_Id;
10500 begin
10501 Actual := Next (First_Actual (Call));
10502 Index := First_Index (Arr_Type);
10503 while Present (Actual) and then Present (Index) loop
10504 if not Has_Compatible_Type (Actual, Etype (Index)) then
10505 Arr_Type := Empty;
10506 exit;
10507 end if;
10509 Next_Actual (Actual);
10510 Next_Index (Index);
10511 end loop;
10513 if No (Actual)
10514 and then No (Index)
10515 and then Present (Arr_Type)
10516 then
10517 Comp_Type := Component_Type (Arr_Type);
10518 end if;
10519 end;
10521 if Present (Comp_Type)
10522 and then Etype (Subprog) /= Comp_Type
10523 then
10524 Add_One_Interp (Subprog, Subp, Comp_Type);
10525 end if;
10526 end if;
10528 if Etype (Call) /= Any_Type then
10529 return Subp;
10530 else
10531 return Empty;
10532 end if;
10533 end Valid_Candidate;
10535 -- Start of processing for Try_Object_Operation
10537 begin
10538 Analyze_Expression (Obj);
10540 -- Analyze the actuals if node is known to be a subprogram call
10542 if Is_Subprg_Call and then N = Name (Parent (N)) then
10543 Actual := First (Parameter_Associations (Parent (N)));
10544 while Present (Actual) loop
10545 Analyze_Expression (Actual);
10546 Next (Actual);
10547 end loop;
10548 end if;
10550 -- Build a subprogram call node, using a copy of Obj as its first
10551 -- actual. This is a placeholder, to be replaced by an explicit
10552 -- dereference when needed.
10554 Transform_Object_Operation
10555 (Call_Node => New_Call_Node,
10556 Node_To_Replace => Node_To_Replace);
10558 Set_Etype (New_Call_Node, Any_Type);
10559 Set_Etype (Subprog, Any_Type);
10560 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
10562 if not Is_Overloaded (Obj) then
10563 Try_One_Prefix_Interpretation (Obj_Type);
10565 else
10566 declare
10567 I : Interp_Index;
10568 It : Interp;
10569 begin
10570 Get_First_Interp (Obj, I, It);
10571 while Present (It.Nam) loop
10572 Try_One_Prefix_Interpretation (It.Typ);
10573 Get_Next_Interp (I, It);
10574 end loop;
10575 end;
10576 end if;
10578 if Etype (New_Call_Node) /= Any_Type then
10580 -- No need to complete the tree transformations if we are only
10581 -- searching for conflicting class-wide subprograms
10583 if CW_Test_Only then
10584 return False;
10585 else
10586 Complete_Object_Operation
10587 (Call_Node => New_Call_Node,
10588 Node_To_Replace => Node_To_Replace);
10589 return True;
10590 end if;
10592 elsif Present (Candidate) then
10594 -- The argument list is not type correct. Re-analyze with error
10595 -- reporting enabled, and use one of the possible candidates.
10596 -- In All_Errors_Mode, re-analyze all failed interpretations.
10598 if All_Errors_Mode then
10599 Report_Error := True;
10600 if Try_Primitive_Operation
10601 (Call_Node => New_Call_Node,
10602 Node_To_Replace => Node_To_Replace)
10604 or else
10605 Try_Class_Wide_Operation
10606 (Call_Node => New_Call_Node,
10607 Node_To_Replace => Node_To_Replace)
10608 then
10609 null;
10610 end if;
10612 else
10613 Analyze_One_Call
10614 (N => New_Call_Node,
10615 Nam => Candidate,
10616 Report => True,
10617 Success => Success,
10618 Skip_First => True);
10620 -- The error may hot have been reported yet for overloaded
10621 -- prefixed calls, depending on the non-matching candidate,
10622 -- in which case provide a concise error now.
10624 if Serious_Errors_Detected = 0 then
10625 Error_Msg_NE
10626 ("cannot resolve prefixed call to primitive operation of&",
10627 N, Entity (Obj));
10628 end if;
10629 end if;
10631 -- No need for further errors
10633 return True;
10635 else
10636 -- There was no candidate operation, but Analyze_Selected_Component
10637 -- may continue the analysis so we need to undo the change possibly
10638 -- made to the Parent of N earlier by Transform_Object_Operation.
10640 declare
10641 Parent_Node : constant Node_Id := Parent (N);
10643 begin
10644 if Node_To_Replace = Parent_Node then
10645 Remove (First (Parameter_Associations (New_Call_Node)));
10646 Set_Parent
10647 (Parameter_Associations (New_Call_Node), Parent_Node);
10648 end if;
10649 end;
10651 return False;
10652 end if;
10653 end Try_Object_Operation;
10655 -------------------------
10656 -- Unresolved_Operator --
10657 -------------------------
10659 procedure Unresolved_Operator (N : Node_Id) is
10660 L : constant Node_Id :=
10661 (if Nkind (N) in N_Binary_Op then Left_Opnd (N) else Empty);
10662 R : constant Node_Id := Right_Opnd (N);
10664 Op_Id : Entity_Id;
10666 begin
10667 -- Note that in the following messages, if the operand is overloaded we
10668 -- choose an arbitrary type to complain about, but that is probably more
10669 -- useful than not giving a type at all.
10671 if Nkind (N) in N_Unary_Op then
10672 Error_Msg_Node_2 := Etype (R);
10673 Error_Msg_N ("operator& not defined for}", N);
10675 elsif Nkind (N) in N_Binary_Op then
10676 if not Is_Overloaded (L)
10677 and then not Is_Overloaded (R)
10678 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
10679 then
10680 Error_Msg_Node_2 := First_Subtype (Etype (R));
10681 Error_Msg_N ("there is no applicable operator& for}", N);
10683 else
10684 -- Another attempt to find a fix: one of the candidate
10685 -- interpretations may not be use-visible. This has
10686 -- already been checked for predefined operators, so
10687 -- we examine only user-defined functions.
10689 Op_Id := Get_Name_Entity_Id (Chars (N));
10691 while Present (Op_Id) loop
10692 if Ekind (Op_Id) /= E_Operator
10693 and then Is_Overloadable (Op_Id)
10694 and then not Is_Immediately_Visible (Op_Id)
10695 and then not In_Use (Scope (Op_Id))
10696 and then not Is_Abstract_Subprogram (Op_Id)
10697 and then not Is_Hidden (Op_Id)
10698 and then Ekind (Scope (Op_Id)) = E_Package
10699 and then Has_Compatible_Type (L, Etype (First_Formal (Op_Id)))
10700 and then Present (Next_Formal (First_Formal (Op_Id)))
10701 and then
10702 Has_Compatible_Type
10703 (R, Etype (Next_Formal (First_Formal (Op_Id))))
10704 then
10705 Error_Msg_N ("no legal interpretation for operator&", N);
10706 Error_Msg_NE ("\use clause on& would make operation legal",
10707 N, Scope (Op_Id));
10708 exit;
10709 end if;
10711 Op_Id := Homonym (Op_Id);
10712 end loop;
10714 if No (Op_Id) then
10715 Error_Msg_N ("invalid operand types for operator&", N);
10717 if Nkind (N) /= N_Op_Concat then
10718 Error_Msg_NE ("\left operand has}!", N, Etype (L));
10719 Error_Msg_NE ("\right operand has}!", N, Etype (R));
10721 -- For multiplication and division operators with
10722 -- a fixed-point operand and an integer operand,
10723 -- indicate that the integer operand should be of
10724 -- type Integer.
10726 if Nkind (N) in N_Op_Multiply | N_Op_Divide
10727 and then Is_Fixed_Point_Type (Etype (L))
10728 and then Is_Integer_Type (Etype (R))
10729 then
10730 Error_Msg_N ("\convert right operand to `Integer`", N);
10732 elsif Nkind (N) = N_Op_Multiply
10733 and then Is_Fixed_Point_Type (Etype (R))
10734 and then Is_Integer_Type (Etype (L))
10735 then
10736 Error_Msg_N ("\convert left operand to `Integer`", N);
10737 end if;
10739 -- For concatenation operators it is more difficult to
10740 -- determine which is the wrong operand. It is worth
10741 -- flagging explicitly an access type, for those who
10742 -- might think that a dereference happens here.
10744 elsif Is_Access_Type (Etype (L)) then
10745 Error_Msg_N ("\left operand is access type", N);
10747 elsif Is_Access_Type (Etype (R)) then
10748 Error_Msg_N ("\right operand is access type", N);
10749 end if;
10750 end if;
10751 end if;
10752 end if;
10753 end Unresolved_Operator;
10755 ---------
10756 -- wpo --
10757 ---------
10759 procedure wpo (T : Entity_Id) is
10760 Op : Entity_Id;
10761 E : Elmt_Id;
10763 begin
10764 if not Is_Tagged_Type (T) then
10765 return;
10766 end if;
10768 E := First_Elmt (Primitive_Operations (Base_Type (T)));
10769 while Present (E) loop
10770 Op := Node (E);
10771 Write_Int (Int (Op));
10772 Write_Str (" === ");
10773 Write_Name (Chars (Op));
10774 Write_Str (" in ");
10775 Write_Name (Chars (Scope (Op)));
10776 Next_Elmt (E);
10777 Write_Eol;
10778 end loop;
10779 end wpo;
10781 end Sem_Ch4;