gcc/
[official-gcc.git] / gcc / ira.c
blob630df40ead673f4398b9ad6394979e9800710461
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "tm.h"
370 #include "regs.h"
371 #include "tree.h"
372 #include "rtl.h"
373 #include "tm_p.h"
374 #include "target.h"
375 #include "flags.h"
376 #include "obstack.h"
377 #include "bitmap.h"
378 #include "hard-reg-set.h"
379 #include "predict.h"
380 #include "vec.h"
381 #include "hashtab.h"
382 #include "hash-set.h"
383 #include "machmode.h"
384 #include "input.h"
385 #include "function.h"
386 #include "dominance.h"
387 #include "cfg.h"
388 #include "cfgrtl.h"
389 #include "cfgbuild.h"
390 #include "cfgcleanup.h"
391 #include "basic-block.h"
392 #include "df.h"
393 #include "expr.h"
394 #include "recog.h"
395 #include "params.h"
396 #include "tree-pass.h"
397 #include "output.h"
398 #include "except.h"
399 #include "reload.h"
400 #include "diagnostic-core.h"
401 #include "ggc.h"
402 #include "ira-int.h"
403 #include "lra.h"
404 #include "dce.h"
405 #include "dbgcnt.h"
406 #include "rtl-iter.h"
407 #include "shrink-wrap.h"
409 struct target_ira default_target_ira;
410 struct target_ira_int default_target_ira_int;
411 #if SWITCHABLE_TARGET
412 struct target_ira *this_target_ira = &default_target_ira;
413 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
414 #endif
416 /* A modified value of flag `-fira-verbose' used internally. */
417 int internal_flag_ira_verbose;
419 /* Dump file of the allocator if it is not NULL. */
420 FILE *ira_dump_file;
422 /* The number of elements in the following array. */
423 int ira_spilled_reg_stack_slots_num;
425 /* The following array contains info about spilled pseudo-registers
426 stack slots used in current function so far. */
427 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
429 /* Correspondingly overall cost of the allocation, overall cost before
430 reload, cost of the allocnos assigned to hard-registers, cost of
431 the allocnos assigned to memory, cost of loads, stores and register
432 move insns generated for pseudo-register live range splitting (see
433 ira-emit.c). */
434 int ira_overall_cost, overall_cost_before;
435 int ira_reg_cost, ira_mem_cost;
436 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
437 int ira_move_loops_num, ira_additional_jumps_num;
439 /* All registers that can be eliminated. */
441 HARD_REG_SET eliminable_regset;
443 /* Value of max_reg_num () before IRA work start. This value helps
444 us to recognize a situation when new pseudos were created during
445 IRA work. */
446 static int max_regno_before_ira;
448 /* Temporary hard reg set used for a different calculation. */
449 static HARD_REG_SET temp_hard_regset;
451 #define last_mode_for_init_move_cost \
452 (this_target_ira_int->x_last_mode_for_init_move_cost)
455 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
456 static void
457 setup_reg_mode_hard_regset (void)
459 int i, m, hard_regno;
461 for (m = 0; m < NUM_MACHINE_MODES; m++)
462 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
464 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
465 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
466 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
467 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
468 hard_regno + i);
473 #define no_unit_alloc_regs \
474 (this_target_ira_int->x_no_unit_alloc_regs)
476 /* The function sets up the three arrays declared above. */
477 static void
478 setup_class_hard_regs (void)
480 int cl, i, hard_regno, n;
481 HARD_REG_SET processed_hard_reg_set;
483 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
484 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
486 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
487 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
488 CLEAR_HARD_REG_SET (processed_hard_reg_set);
489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
491 ira_non_ordered_class_hard_regs[cl][i] = -1;
492 ira_class_hard_reg_index[cl][i] = -1;
494 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
496 #ifdef REG_ALLOC_ORDER
497 hard_regno = reg_alloc_order[i];
498 #else
499 hard_regno = i;
500 #endif
501 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
502 continue;
503 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
504 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
505 ira_class_hard_reg_index[cl][hard_regno] = -1;
506 else
508 ira_class_hard_reg_index[cl][hard_regno] = n;
509 ira_class_hard_regs[cl][n++] = hard_regno;
512 ira_class_hard_regs_num[cl] = n;
513 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
514 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
515 ira_non_ordered_class_hard_regs[cl][n++] = i;
516 ira_assert (ira_class_hard_regs_num[cl] == n);
520 /* Set up global variables defining info about hard registers for the
521 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
522 that we can use the hard frame pointer for the allocation. */
523 static void
524 setup_alloc_regs (bool use_hard_frame_p)
526 #ifdef ADJUST_REG_ALLOC_ORDER
527 ADJUST_REG_ALLOC_ORDER;
528 #endif
529 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
530 if (! use_hard_frame_p)
531 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
532 setup_class_hard_regs ();
537 #define alloc_reg_class_subclasses \
538 (this_target_ira_int->x_alloc_reg_class_subclasses)
540 /* Initialize the table of subclasses of each reg class. */
541 static void
542 setup_reg_subclasses (void)
544 int i, j;
545 HARD_REG_SET temp_hard_regset2;
547 for (i = 0; i < N_REG_CLASSES; i++)
548 for (j = 0; j < N_REG_CLASSES; j++)
549 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
551 for (i = 0; i < N_REG_CLASSES; i++)
553 if (i == (int) NO_REGS)
554 continue;
556 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
557 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
558 if (hard_reg_set_empty_p (temp_hard_regset))
559 continue;
560 for (j = 0; j < N_REG_CLASSES; j++)
561 if (i != j)
563 enum reg_class *p;
565 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
566 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
567 if (! hard_reg_set_subset_p (temp_hard_regset,
568 temp_hard_regset2))
569 continue;
570 p = &alloc_reg_class_subclasses[j][0];
571 while (*p != LIM_REG_CLASSES) p++;
572 *p = (enum reg_class) i;
579 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
580 static void
581 setup_class_subset_and_memory_move_costs (void)
583 int cl, cl2, mode, cost;
584 HARD_REG_SET temp_hard_regset2;
586 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
587 ira_memory_move_cost[mode][NO_REGS][0]
588 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
589 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
591 if (cl != (int) NO_REGS)
592 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
594 ira_max_memory_move_cost[mode][cl][0]
595 = ira_memory_move_cost[mode][cl][0]
596 = memory_move_cost ((machine_mode) mode,
597 (reg_class_t) cl, false);
598 ira_max_memory_move_cost[mode][cl][1]
599 = ira_memory_move_cost[mode][cl][1]
600 = memory_move_cost ((machine_mode) mode,
601 (reg_class_t) cl, true);
602 /* Costs for NO_REGS are used in cost calculation on the
603 1st pass when the preferred register classes are not
604 known yet. In this case we take the best scenario. */
605 if (ira_memory_move_cost[mode][NO_REGS][0]
606 > ira_memory_move_cost[mode][cl][0])
607 ira_max_memory_move_cost[mode][NO_REGS][0]
608 = ira_memory_move_cost[mode][NO_REGS][0]
609 = ira_memory_move_cost[mode][cl][0];
610 if (ira_memory_move_cost[mode][NO_REGS][1]
611 > ira_memory_move_cost[mode][cl][1])
612 ira_max_memory_move_cost[mode][NO_REGS][1]
613 = ira_memory_move_cost[mode][NO_REGS][1]
614 = ira_memory_move_cost[mode][cl][1];
617 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
618 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
620 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
621 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
622 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
623 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
624 ira_class_subset_p[cl][cl2]
625 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
626 if (! hard_reg_set_empty_p (temp_hard_regset2)
627 && hard_reg_set_subset_p (reg_class_contents[cl2],
628 reg_class_contents[cl]))
629 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
631 cost = ira_memory_move_cost[mode][cl2][0];
632 if (cost > ira_max_memory_move_cost[mode][cl][0])
633 ira_max_memory_move_cost[mode][cl][0] = cost;
634 cost = ira_memory_move_cost[mode][cl2][1];
635 if (cost > ira_max_memory_move_cost[mode][cl][1])
636 ira_max_memory_move_cost[mode][cl][1] = cost;
639 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
640 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
642 ira_memory_move_cost[mode][cl][0]
643 = ira_max_memory_move_cost[mode][cl][0];
644 ira_memory_move_cost[mode][cl][1]
645 = ira_max_memory_move_cost[mode][cl][1];
647 setup_reg_subclasses ();
652 /* Define the following macro if allocation through malloc if
653 preferable. */
654 #define IRA_NO_OBSTACK
656 #ifndef IRA_NO_OBSTACK
657 /* Obstack used for storing all dynamic data (except bitmaps) of the
658 IRA. */
659 static struct obstack ira_obstack;
660 #endif
662 /* Obstack used for storing all bitmaps of the IRA. */
663 static struct bitmap_obstack ira_bitmap_obstack;
665 /* Allocate memory of size LEN for IRA data. */
666 void *
667 ira_allocate (size_t len)
669 void *res;
671 #ifndef IRA_NO_OBSTACK
672 res = obstack_alloc (&ira_obstack, len);
673 #else
674 res = xmalloc (len);
675 #endif
676 return res;
679 /* Free memory ADDR allocated for IRA data. */
680 void
681 ira_free (void *addr ATTRIBUTE_UNUSED)
683 #ifndef IRA_NO_OBSTACK
684 /* do nothing */
685 #else
686 free (addr);
687 #endif
691 /* Allocate and returns bitmap for IRA. */
692 bitmap
693 ira_allocate_bitmap (void)
695 return BITMAP_ALLOC (&ira_bitmap_obstack);
698 /* Free bitmap B allocated for IRA. */
699 void
700 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
702 /* do nothing */
707 /* Output information about allocation of all allocnos (except for
708 caps) into file F. */
709 void
710 ira_print_disposition (FILE *f)
712 int i, n, max_regno;
713 ira_allocno_t a;
714 basic_block bb;
716 fprintf (f, "Disposition:");
717 max_regno = max_reg_num ();
718 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
719 for (a = ira_regno_allocno_map[i];
720 a != NULL;
721 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
723 if (n % 4 == 0)
724 fprintf (f, "\n");
725 n++;
726 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
727 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
728 fprintf (f, "b%-3d", bb->index);
729 else
730 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
731 if (ALLOCNO_HARD_REGNO (a) >= 0)
732 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
733 else
734 fprintf (f, " mem");
736 fprintf (f, "\n");
739 /* Outputs information about allocation of all allocnos into
740 stderr. */
741 void
742 ira_debug_disposition (void)
744 ira_print_disposition (stderr);
749 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
750 register class containing stack registers or NO_REGS if there are
751 no stack registers. To find this class, we iterate through all
752 register pressure classes and choose the first register pressure
753 class containing all the stack registers and having the biggest
754 size. */
755 static void
756 setup_stack_reg_pressure_class (void)
758 ira_stack_reg_pressure_class = NO_REGS;
759 #ifdef STACK_REGS
761 int i, best, size;
762 enum reg_class cl;
763 HARD_REG_SET temp_hard_regset2;
765 CLEAR_HARD_REG_SET (temp_hard_regset);
766 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
767 SET_HARD_REG_BIT (temp_hard_regset, i);
768 best = 0;
769 for (i = 0; i < ira_pressure_classes_num; i++)
771 cl = ira_pressure_classes[i];
772 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
773 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
774 size = hard_reg_set_size (temp_hard_regset2);
775 if (best < size)
777 best = size;
778 ira_stack_reg_pressure_class = cl;
782 #endif
785 /* Find pressure classes which are register classes for which we
786 calculate register pressure in IRA, register pressure sensitive
787 insn scheduling, and register pressure sensitive loop invariant
788 motion.
790 To make register pressure calculation easy, we always use
791 non-intersected register pressure classes. A move of hard
792 registers from one register pressure class is not more expensive
793 than load and store of the hard registers. Most likely an allocno
794 class will be a subset of a register pressure class and in many
795 cases a register pressure class. That makes usage of register
796 pressure classes a good approximation to find a high register
797 pressure. */
798 static void
799 setup_pressure_classes (void)
801 int cost, i, n, curr;
802 int cl, cl2;
803 enum reg_class pressure_classes[N_REG_CLASSES];
804 int m;
805 HARD_REG_SET temp_hard_regset2;
806 bool insert_p;
808 n = 0;
809 for (cl = 0; cl < N_REG_CLASSES; cl++)
811 if (ira_class_hard_regs_num[cl] == 0)
812 continue;
813 if (ira_class_hard_regs_num[cl] != 1
814 /* A register class without subclasses may contain a few
815 hard registers and movement between them is costly
816 (e.g. SPARC FPCC registers). We still should consider it
817 as a candidate for a pressure class. */
818 && alloc_reg_class_subclasses[cl][0] < cl)
820 /* Check that the moves between any hard registers of the
821 current class are not more expensive for a legal mode
822 than load/store of the hard registers of the current
823 class. Such class is a potential candidate to be a
824 register pressure class. */
825 for (m = 0; m < NUM_MACHINE_MODES; m++)
827 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
828 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
829 AND_COMPL_HARD_REG_SET (temp_hard_regset,
830 ira_prohibited_class_mode_regs[cl][m]);
831 if (hard_reg_set_empty_p (temp_hard_regset))
832 continue;
833 ira_init_register_move_cost_if_necessary ((machine_mode) m);
834 cost = ira_register_move_cost[m][cl][cl];
835 if (cost <= ira_max_memory_move_cost[m][cl][1]
836 || cost <= ira_max_memory_move_cost[m][cl][0])
837 break;
839 if (m >= NUM_MACHINE_MODES)
840 continue;
842 curr = 0;
843 insert_p = true;
844 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
845 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
846 /* Remove so far added pressure classes which are subset of the
847 current candidate class. Prefer GENERAL_REGS as a pressure
848 register class to another class containing the same
849 allocatable hard registers. We do this because machine
850 dependent cost hooks might give wrong costs for the latter
851 class but always give the right cost for the former class
852 (GENERAL_REGS). */
853 for (i = 0; i < n; i++)
855 cl2 = pressure_classes[i];
856 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
857 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
858 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
859 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
860 || cl2 == (int) GENERAL_REGS))
862 pressure_classes[curr++] = (enum reg_class) cl2;
863 insert_p = false;
864 continue;
866 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
867 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
868 || cl == (int) GENERAL_REGS))
869 continue;
870 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
871 insert_p = false;
872 pressure_classes[curr++] = (enum reg_class) cl2;
874 /* If the current candidate is a subset of a so far added
875 pressure class, don't add it to the list of the pressure
876 classes. */
877 if (insert_p)
878 pressure_classes[curr++] = (enum reg_class) cl;
879 n = curr;
881 #ifdef ENABLE_IRA_CHECKING
883 HARD_REG_SET ignore_hard_regs;
885 /* Check pressure classes correctness: here we check that hard
886 registers from all register pressure classes contains all hard
887 registers available for the allocation. */
888 CLEAR_HARD_REG_SET (temp_hard_regset);
889 CLEAR_HARD_REG_SET (temp_hard_regset2);
890 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
891 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
893 /* For some targets (like MIPS with MD_REGS), there are some
894 classes with hard registers available for allocation but
895 not able to hold value of any mode. */
896 for (m = 0; m < NUM_MACHINE_MODES; m++)
897 if (contains_reg_of_mode[cl][m])
898 break;
899 if (m >= NUM_MACHINE_MODES)
901 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
902 continue;
904 for (i = 0; i < n; i++)
905 if ((int) pressure_classes[i] == cl)
906 break;
907 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
908 if (i < n)
909 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
911 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
912 /* Some targets (like SPARC with ICC reg) have allocatable regs
913 for which no reg class is defined. */
914 if (REGNO_REG_CLASS (i) == NO_REGS)
915 SET_HARD_REG_BIT (ignore_hard_regs, i);
916 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
917 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
918 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
920 #endif
921 ira_pressure_classes_num = 0;
922 for (i = 0; i < n; i++)
924 cl = (int) pressure_classes[i];
925 ira_reg_pressure_class_p[cl] = true;
926 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
928 setup_stack_reg_pressure_class ();
931 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
932 whose register move cost between any registers of the class is the
933 same as for all its subclasses. We use the data to speed up the
934 2nd pass of calculations of allocno costs. */
935 static void
936 setup_uniform_class_p (void)
938 int i, cl, cl2, m;
940 for (cl = 0; cl < N_REG_CLASSES; cl++)
942 ira_uniform_class_p[cl] = false;
943 if (ira_class_hard_regs_num[cl] == 0)
944 continue;
945 /* We can not use alloc_reg_class_subclasses here because move
946 cost hooks does not take into account that some registers are
947 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
948 is element of alloc_reg_class_subclasses for GENERAL_REGS
949 because SSE regs are unavailable. */
950 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
952 if (ira_class_hard_regs_num[cl2] == 0)
953 continue;
954 for (m = 0; m < NUM_MACHINE_MODES; m++)
955 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
957 ira_init_register_move_cost_if_necessary ((machine_mode) m);
958 if (ira_register_move_cost[m][cl][cl]
959 != ira_register_move_cost[m][cl2][cl2])
960 break;
962 if (m < NUM_MACHINE_MODES)
963 break;
965 if (cl2 == LIM_REG_CLASSES)
966 ira_uniform_class_p[cl] = true;
970 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
971 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
973 Target may have many subtargets and not all target hard registers can
974 be used for allocation, e.g. x86 port in 32-bit mode can not use
975 hard registers introduced in x86-64 like r8-r15). Some classes
976 might have the same allocatable hard registers, e.g. INDEX_REGS
977 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
978 calculations efforts we introduce allocno classes which contain
979 unique non-empty sets of allocatable hard-registers.
981 Pseudo class cost calculation in ira-costs.c is very expensive.
982 Therefore we are trying to decrease number of classes involved in
983 such calculation. Register classes used in the cost calculation
984 are called important classes. They are allocno classes and other
985 non-empty classes whose allocatable hard register sets are inside
986 of an allocno class hard register set. From the first sight, it
987 looks like that they are just allocno classes. It is not true. In
988 example of x86-port in 32-bit mode, allocno classes will contain
989 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
990 registers are the same for the both classes). The important
991 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
992 because a machine description insn constraint may refers for
993 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
994 of the insn constraints. */
995 static void
996 setup_allocno_and_important_classes (void)
998 int i, j, n, cl;
999 bool set_p;
1000 HARD_REG_SET temp_hard_regset2;
1001 static enum reg_class classes[LIM_REG_CLASSES + 1];
1003 n = 0;
1004 /* Collect classes which contain unique sets of allocatable hard
1005 registers. Prefer GENERAL_REGS to other classes containing the
1006 same set of hard registers. */
1007 for (i = 0; i < LIM_REG_CLASSES; i++)
1009 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1010 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1011 for (j = 0; j < n; j++)
1013 cl = classes[j];
1014 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1015 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1016 no_unit_alloc_regs);
1017 if (hard_reg_set_equal_p (temp_hard_regset,
1018 temp_hard_regset2))
1019 break;
1021 if (j >= n)
1022 classes[n++] = (enum reg_class) i;
1023 else if (i == GENERAL_REGS)
1024 /* Prefer general regs. For i386 example, it means that
1025 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1026 (all of them consists of the same available hard
1027 registers). */
1028 classes[j] = (enum reg_class) i;
1030 classes[n] = LIM_REG_CLASSES;
1032 /* Set up classes which can be used for allocnos as classes
1033 containing non-empty unique sets of allocatable hard
1034 registers. */
1035 ira_allocno_classes_num = 0;
1036 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1037 if (ira_class_hard_regs_num[cl] > 0)
1038 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1039 ira_important_classes_num = 0;
1040 /* Add non-allocno classes containing to non-empty set of
1041 allocatable hard regs. */
1042 for (cl = 0; cl < N_REG_CLASSES; cl++)
1043 if (ira_class_hard_regs_num[cl] > 0)
1045 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1046 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1047 set_p = false;
1048 for (j = 0; j < ira_allocno_classes_num; j++)
1050 COPY_HARD_REG_SET (temp_hard_regset2,
1051 reg_class_contents[ira_allocno_classes[j]]);
1052 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1053 if ((enum reg_class) cl == ira_allocno_classes[j])
1054 break;
1055 else if (hard_reg_set_subset_p (temp_hard_regset,
1056 temp_hard_regset2))
1057 set_p = true;
1059 if (set_p && j >= ira_allocno_classes_num)
1060 ira_important_classes[ira_important_classes_num++]
1061 = (enum reg_class) cl;
1063 /* Now add allocno classes to the important classes. */
1064 for (j = 0; j < ira_allocno_classes_num; j++)
1065 ira_important_classes[ira_important_classes_num++]
1066 = ira_allocno_classes[j];
1067 for (cl = 0; cl < N_REG_CLASSES; cl++)
1069 ira_reg_allocno_class_p[cl] = false;
1070 ira_reg_pressure_class_p[cl] = false;
1072 for (j = 0; j < ira_allocno_classes_num; j++)
1073 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1074 setup_pressure_classes ();
1075 setup_uniform_class_p ();
1078 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1079 given by array CLASSES of length CLASSES_NUM. The function is used
1080 make translation any reg class to an allocno class or to an
1081 pressure class. This translation is necessary for some
1082 calculations when we can use only allocno or pressure classes and
1083 such translation represents an approximate representation of all
1084 classes.
1086 The translation in case when allocatable hard register set of a
1087 given class is subset of allocatable hard register set of a class
1088 in CLASSES is pretty simple. We use smallest classes from CLASSES
1089 containing a given class. If allocatable hard register set of a
1090 given class is not a subset of any corresponding set of a class
1091 from CLASSES, we use the cheapest (with load/store point of view)
1092 class from CLASSES whose set intersects with given class set. */
1093 static void
1094 setup_class_translate_array (enum reg_class *class_translate,
1095 int classes_num, enum reg_class *classes)
1097 int cl, mode;
1098 enum reg_class aclass, best_class, *cl_ptr;
1099 int i, cost, min_cost, best_cost;
1101 for (cl = 0; cl < N_REG_CLASSES; cl++)
1102 class_translate[cl] = NO_REGS;
1104 for (i = 0; i < classes_num; i++)
1106 aclass = classes[i];
1107 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1108 (cl = *cl_ptr) != LIM_REG_CLASSES;
1109 cl_ptr++)
1110 if (class_translate[cl] == NO_REGS)
1111 class_translate[cl] = aclass;
1112 class_translate[aclass] = aclass;
1114 /* For classes which are not fully covered by one of given classes
1115 (in other words covered by more one given class), use the
1116 cheapest class. */
1117 for (cl = 0; cl < N_REG_CLASSES; cl++)
1119 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1120 continue;
1121 best_class = NO_REGS;
1122 best_cost = INT_MAX;
1123 for (i = 0; i < classes_num; i++)
1125 aclass = classes[i];
1126 COPY_HARD_REG_SET (temp_hard_regset,
1127 reg_class_contents[aclass]);
1128 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1129 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1130 if (! hard_reg_set_empty_p (temp_hard_regset))
1132 min_cost = INT_MAX;
1133 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1135 cost = (ira_memory_move_cost[mode][aclass][0]
1136 + ira_memory_move_cost[mode][aclass][1]);
1137 if (min_cost > cost)
1138 min_cost = cost;
1140 if (best_class == NO_REGS || best_cost > min_cost)
1142 best_class = aclass;
1143 best_cost = min_cost;
1147 class_translate[cl] = best_class;
1151 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1152 IRA_PRESSURE_CLASS_TRANSLATE. */
1153 static void
1154 setup_class_translate (void)
1156 setup_class_translate_array (ira_allocno_class_translate,
1157 ira_allocno_classes_num, ira_allocno_classes);
1158 setup_class_translate_array (ira_pressure_class_translate,
1159 ira_pressure_classes_num, ira_pressure_classes);
1162 /* Order numbers of allocno classes in original target allocno class
1163 array, -1 for non-allocno classes. */
1164 static int allocno_class_order[N_REG_CLASSES];
1166 /* The function used to sort the important classes. */
1167 static int
1168 comp_reg_classes_func (const void *v1p, const void *v2p)
1170 enum reg_class cl1 = *(const enum reg_class *) v1p;
1171 enum reg_class cl2 = *(const enum reg_class *) v2p;
1172 enum reg_class tcl1, tcl2;
1173 int diff;
1175 tcl1 = ira_allocno_class_translate[cl1];
1176 tcl2 = ira_allocno_class_translate[cl2];
1177 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1178 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1179 return diff;
1180 return (int) cl1 - (int) cl2;
1183 /* For correct work of function setup_reg_class_relation we need to
1184 reorder important classes according to the order of their allocno
1185 classes. It places important classes containing the same
1186 allocatable hard register set adjacent to each other and allocno
1187 class with the allocatable hard register set right after the other
1188 important classes with the same set.
1190 In example from comments of function
1191 setup_allocno_and_important_classes, it places LEGACY_REGS and
1192 GENERAL_REGS close to each other and GENERAL_REGS is after
1193 LEGACY_REGS. */
1194 static void
1195 reorder_important_classes (void)
1197 int i;
1199 for (i = 0; i < N_REG_CLASSES; i++)
1200 allocno_class_order[i] = -1;
1201 for (i = 0; i < ira_allocno_classes_num; i++)
1202 allocno_class_order[ira_allocno_classes[i]] = i;
1203 qsort (ira_important_classes, ira_important_classes_num,
1204 sizeof (enum reg_class), comp_reg_classes_func);
1205 for (i = 0; i < ira_important_classes_num; i++)
1206 ira_important_class_nums[ira_important_classes[i]] = i;
1209 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1210 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1211 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1212 please see corresponding comments in ira-int.h. */
1213 static void
1214 setup_reg_class_relations (void)
1216 int i, cl1, cl2, cl3;
1217 HARD_REG_SET intersection_set, union_set, temp_set2;
1218 bool important_class_p[N_REG_CLASSES];
1220 memset (important_class_p, 0, sizeof (important_class_p));
1221 for (i = 0; i < ira_important_classes_num; i++)
1222 important_class_p[ira_important_classes[i]] = true;
1223 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1225 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1226 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1228 ira_reg_classes_intersect_p[cl1][cl2] = false;
1229 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1230 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1231 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1232 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1233 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1234 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1235 if (hard_reg_set_empty_p (temp_hard_regset)
1236 && hard_reg_set_empty_p (temp_set2))
1238 /* The both classes have no allocatable hard registers
1239 -- take all class hard registers into account and use
1240 reg_class_subunion and reg_class_superunion. */
1241 for (i = 0;; i++)
1243 cl3 = reg_class_subclasses[cl1][i];
1244 if (cl3 == LIM_REG_CLASSES)
1245 break;
1246 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1247 (enum reg_class) cl3))
1248 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1250 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1251 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1252 continue;
1254 ira_reg_classes_intersect_p[cl1][cl2]
1255 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1256 if (important_class_p[cl1] && important_class_p[cl2]
1257 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1259 /* CL1 and CL2 are important classes and CL1 allocatable
1260 hard register set is inside of CL2 allocatable hard
1261 registers -- make CL1 a superset of CL2. */
1262 enum reg_class *p;
1264 p = &ira_reg_class_super_classes[cl1][0];
1265 while (*p != LIM_REG_CLASSES)
1266 p++;
1267 *p++ = (enum reg_class) cl2;
1268 *p = LIM_REG_CLASSES;
1270 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1271 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1272 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1273 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1274 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1275 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1276 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1277 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1278 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1280 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1281 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1282 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1284 /* CL3 allocatable hard register set is inside of
1285 intersection of allocatable hard register sets
1286 of CL1 and CL2. */
1287 if (important_class_p[cl3])
1289 COPY_HARD_REG_SET
1290 (temp_set2,
1291 reg_class_contents
1292 [(int) ira_reg_class_intersect[cl1][cl2]]);
1293 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1294 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1295 /* If the allocatable hard register sets are
1296 the same, prefer GENERAL_REGS or the
1297 smallest class for debugging
1298 purposes. */
1299 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1300 && (cl3 == GENERAL_REGS
1301 || ((ira_reg_class_intersect[cl1][cl2]
1302 != GENERAL_REGS)
1303 && hard_reg_set_subset_p
1304 (reg_class_contents[cl3],
1305 reg_class_contents
1306 [(int)
1307 ira_reg_class_intersect[cl1][cl2]])))))
1308 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1310 COPY_HARD_REG_SET
1311 (temp_set2,
1312 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1313 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1314 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1315 /* Ignore unavailable hard registers and prefer
1316 smallest class for debugging purposes. */
1317 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1318 && hard_reg_set_subset_p
1319 (reg_class_contents[cl3],
1320 reg_class_contents
1321 [(int) ira_reg_class_subset[cl1][cl2]])))
1322 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1324 if (important_class_p[cl3]
1325 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1327 /* CL3 allocatable hard register set is inside of
1328 union of allocatable hard register sets of CL1
1329 and CL2. */
1330 COPY_HARD_REG_SET
1331 (temp_set2,
1332 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1333 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1334 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1335 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1337 && (! hard_reg_set_equal_p (temp_set2,
1338 temp_hard_regset)
1339 || cl3 == GENERAL_REGS
1340 /* If the allocatable hard register sets are the
1341 same, prefer GENERAL_REGS or the smallest
1342 class for debugging purposes. */
1343 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1344 && hard_reg_set_subset_p
1345 (reg_class_contents[cl3],
1346 reg_class_contents
1347 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1348 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1350 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1352 /* CL3 allocatable hard register set contains union
1353 of allocatable hard register sets of CL1 and
1354 CL2. */
1355 COPY_HARD_REG_SET
1356 (temp_set2,
1357 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1358 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1359 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1360 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1362 && (! hard_reg_set_equal_p (temp_set2,
1363 temp_hard_regset)
1364 || cl3 == GENERAL_REGS
1365 /* If the allocatable hard register sets are the
1366 same, prefer GENERAL_REGS or the smallest
1367 class for debugging purposes. */
1368 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1369 && hard_reg_set_subset_p
1370 (reg_class_contents[cl3],
1371 reg_class_contents
1372 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1373 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1380 /* Output all uniform and important classes into file F. */
1381 static void
1382 print_unform_and_important_classes (FILE *f)
1384 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1385 int i, cl;
1387 fprintf (f, "Uniform classes:\n");
1388 for (cl = 0; cl < N_REG_CLASSES; cl++)
1389 if (ira_uniform_class_p[cl])
1390 fprintf (f, " %s", reg_class_names[cl]);
1391 fprintf (f, "\nImportant classes:\n");
1392 for (i = 0; i < ira_important_classes_num; i++)
1393 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1394 fprintf (f, "\n");
1397 /* Output all possible allocno or pressure classes and their
1398 translation map into file F. */
1399 static void
1400 print_translated_classes (FILE *f, bool pressure_p)
1402 int classes_num = (pressure_p
1403 ? ira_pressure_classes_num : ira_allocno_classes_num);
1404 enum reg_class *classes = (pressure_p
1405 ? ira_pressure_classes : ira_allocno_classes);
1406 enum reg_class *class_translate = (pressure_p
1407 ? ira_pressure_class_translate
1408 : ira_allocno_class_translate);
1409 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1410 int i;
1412 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1413 for (i = 0; i < classes_num; i++)
1414 fprintf (f, " %s", reg_class_names[classes[i]]);
1415 fprintf (f, "\nClass translation:\n");
1416 for (i = 0; i < N_REG_CLASSES; i++)
1417 fprintf (f, " %s -> %s\n", reg_class_names[i],
1418 reg_class_names[class_translate[i]]);
1421 /* Output all possible allocno and translation classes and the
1422 translation maps into stderr. */
1423 void
1424 ira_debug_allocno_classes (void)
1426 print_unform_and_important_classes (stderr);
1427 print_translated_classes (stderr, false);
1428 print_translated_classes (stderr, true);
1431 /* Set up different arrays concerning class subsets, allocno and
1432 important classes. */
1433 static void
1434 find_reg_classes (void)
1436 setup_allocno_and_important_classes ();
1437 setup_class_translate ();
1438 reorder_important_classes ();
1439 setup_reg_class_relations ();
1444 /* Set up the array above. */
1445 static void
1446 setup_hard_regno_aclass (void)
1448 int i;
1450 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1452 #if 1
1453 ira_hard_regno_allocno_class[i]
1454 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1455 ? NO_REGS
1456 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1457 #else
1458 int j;
1459 enum reg_class cl;
1460 ira_hard_regno_allocno_class[i] = NO_REGS;
1461 for (j = 0; j < ira_allocno_classes_num; j++)
1463 cl = ira_allocno_classes[j];
1464 if (ira_class_hard_reg_index[cl][i] >= 0)
1466 ira_hard_regno_allocno_class[i] = cl;
1467 break;
1470 #endif
1476 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1477 static void
1478 setup_reg_class_nregs (void)
1480 int i, cl, cl2, m;
1482 for (m = 0; m < MAX_MACHINE_MODE; m++)
1484 for (cl = 0; cl < N_REG_CLASSES; cl++)
1485 ira_reg_class_max_nregs[cl][m]
1486 = ira_reg_class_min_nregs[cl][m]
1487 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1488 for (cl = 0; cl < N_REG_CLASSES; cl++)
1489 for (i = 0;
1490 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1491 i++)
1492 if (ira_reg_class_min_nregs[cl2][m]
1493 < ira_reg_class_min_nregs[cl][m])
1494 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1500 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1501 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1502 static void
1503 setup_prohibited_class_mode_regs (void)
1505 int j, k, hard_regno, cl, last_hard_regno, count;
1507 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1509 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1510 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1511 for (j = 0; j < NUM_MACHINE_MODES; j++)
1513 count = 0;
1514 last_hard_regno = -1;
1515 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1516 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1518 hard_regno = ira_class_hard_regs[cl][k];
1519 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1520 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1521 hard_regno);
1522 else if (in_hard_reg_set_p (temp_hard_regset,
1523 (machine_mode) j, hard_regno))
1525 last_hard_regno = hard_regno;
1526 count++;
1529 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1534 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1535 spanning from one register pressure class to another one. It is
1536 called after defining the pressure classes. */
1537 static void
1538 clarify_prohibited_class_mode_regs (void)
1540 int j, k, hard_regno, cl, pclass, nregs;
1542 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1543 for (j = 0; j < NUM_MACHINE_MODES; j++)
1545 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1546 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1548 hard_regno = ira_class_hard_regs[cl][k];
1549 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1550 continue;
1551 nregs = hard_regno_nregs[hard_regno][j];
1552 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1554 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1555 hard_regno);
1556 continue;
1558 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1559 for (nregs-- ;nregs >= 0; nregs--)
1560 if (((enum reg_class) pclass
1561 != ira_pressure_class_translate[REGNO_REG_CLASS
1562 (hard_regno + nregs)]))
1564 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1565 hard_regno);
1566 break;
1568 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1569 hard_regno))
1570 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1571 (machine_mode) j, hard_regno);
1576 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1577 and IRA_MAY_MOVE_OUT_COST for MODE. */
1578 void
1579 ira_init_register_move_cost (machine_mode mode)
1581 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1582 bool all_match = true;
1583 unsigned int cl1, cl2;
1585 ira_assert (ira_register_move_cost[mode] == NULL
1586 && ira_may_move_in_cost[mode] == NULL
1587 && ira_may_move_out_cost[mode] == NULL);
1588 ira_assert (have_regs_of_mode[mode]);
1589 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1590 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1592 int cost;
1593 if (!contains_reg_of_mode[cl1][mode]
1594 || !contains_reg_of_mode[cl2][mode])
1596 if ((ira_reg_class_max_nregs[cl1][mode]
1597 > ira_class_hard_regs_num[cl1])
1598 || (ira_reg_class_max_nregs[cl2][mode]
1599 > ira_class_hard_regs_num[cl2]))
1600 cost = 65535;
1601 else
1602 cost = (ira_memory_move_cost[mode][cl1][0]
1603 + ira_memory_move_cost[mode][cl2][1]) * 2;
1605 else
1607 cost = register_move_cost (mode, (enum reg_class) cl1,
1608 (enum reg_class) cl2);
1609 ira_assert (cost < 65535);
1611 all_match &= (last_move_cost[cl1][cl2] == cost);
1612 last_move_cost[cl1][cl2] = cost;
1614 if (all_match && last_mode_for_init_move_cost != -1)
1616 ira_register_move_cost[mode]
1617 = ira_register_move_cost[last_mode_for_init_move_cost];
1618 ira_may_move_in_cost[mode]
1619 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1620 ira_may_move_out_cost[mode]
1621 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1622 return;
1624 last_mode_for_init_move_cost = mode;
1625 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1626 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1627 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1628 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1629 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1631 int cost;
1632 enum reg_class *p1, *p2;
1634 if (last_move_cost[cl1][cl2] == 65535)
1636 ira_register_move_cost[mode][cl1][cl2] = 65535;
1637 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1638 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1640 else
1642 cost = last_move_cost[cl1][cl2];
1644 for (p2 = &reg_class_subclasses[cl2][0];
1645 *p2 != LIM_REG_CLASSES; p2++)
1646 if (ira_class_hard_regs_num[*p2] > 0
1647 && (ira_reg_class_max_nregs[*p2][mode]
1648 <= ira_class_hard_regs_num[*p2]))
1649 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1651 for (p1 = &reg_class_subclasses[cl1][0];
1652 *p1 != LIM_REG_CLASSES; p1++)
1653 if (ira_class_hard_regs_num[*p1] > 0
1654 && (ira_reg_class_max_nregs[*p1][mode]
1655 <= ira_class_hard_regs_num[*p1]))
1656 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1658 ira_assert (cost <= 65535);
1659 ira_register_move_cost[mode][cl1][cl2] = cost;
1661 if (ira_class_subset_p[cl1][cl2])
1662 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1663 else
1664 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1666 if (ira_class_subset_p[cl2][cl1])
1667 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1668 else
1669 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1676 /* This is called once during compiler work. It sets up
1677 different arrays whose values don't depend on the compiled
1678 function. */
1679 void
1680 ira_init_once (void)
1682 ira_init_costs_once ();
1683 lra_init_once ();
1686 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1687 ira_may_move_out_cost for each mode. */
1688 void
1689 target_ira_int::free_register_move_costs (void)
1691 int mode, i;
1693 /* Reset move_cost and friends, making sure we only free shared
1694 table entries once. */
1695 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1696 if (x_ira_register_move_cost[mode])
1698 for (i = 0;
1699 i < mode && (x_ira_register_move_cost[i]
1700 != x_ira_register_move_cost[mode]);
1701 i++)
1703 if (i == mode)
1705 free (x_ira_register_move_cost[mode]);
1706 free (x_ira_may_move_in_cost[mode]);
1707 free (x_ira_may_move_out_cost[mode]);
1710 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1711 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1712 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1713 last_mode_for_init_move_cost = -1;
1716 target_ira_int::~target_ira_int ()
1718 free_ira_costs ();
1719 free_register_move_costs ();
1722 /* This is called every time when register related information is
1723 changed. */
1724 void
1725 ira_init (void)
1727 this_target_ira_int->free_register_move_costs ();
1728 setup_reg_mode_hard_regset ();
1729 setup_alloc_regs (flag_omit_frame_pointer != 0);
1730 setup_class_subset_and_memory_move_costs ();
1731 setup_reg_class_nregs ();
1732 setup_prohibited_class_mode_regs ();
1733 find_reg_classes ();
1734 clarify_prohibited_class_mode_regs ();
1735 setup_hard_regno_aclass ();
1736 ira_init_costs ();
1740 #define ira_prohibited_mode_move_regs_initialized_p \
1741 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1743 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1744 static void
1745 setup_prohibited_mode_move_regs (void)
1747 int i, j;
1748 rtx test_reg1, test_reg2, move_pat;
1749 rtx_insn *move_insn;
1751 if (ira_prohibited_mode_move_regs_initialized_p)
1752 return;
1753 ira_prohibited_mode_move_regs_initialized_p = true;
1754 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1755 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1756 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1757 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1758 for (i = 0; i < NUM_MACHINE_MODES; i++)
1760 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1761 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1763 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1764 continue;
1765 SET_REGNO_RAW (test_reg1, j);
1766 PUT_MODE (test_reg1, (machine_mode) i);
1767 SET_REGNO_RAW (test_reg2, j);
1768 PUT_MODE (test_reg2, (machine_mode) i);
1769 INSN_CODE (move_insn) = -1;
1770 recog_memoized (move_insn);
1771 if (INSN_CODE (move_insn) < 0)
1772 continue;
1773 extract_insn (move_insn);
1774 /* We don't know whether the move will be in code that is optimized
1775 for size or speed, so consider all enabled alternatives. */
1776 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1777 continue;
1778 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1785 /* Setup possible alternatives in ALTS for INSN. */
1786 void
1787 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1789 /* MAP nalt * nop -> start of constraints for given operand and
1790 alternative. */
1791 static vec<const char *> insn_constraints;
1792 int nop, nalt;
1793 bool curr_swapped;
1794 const char *p;
1795 rtx op;
1796 int commutative = -1;
1798 extract_insn (insn);
1799 alternative_mask preferred = get_preferred_alternatives (insn);
1800 CLEAR_HARD_REG_SET (alts);
1801 insn_constraints.release ();
1802 insn_constraints.safe_grow_cleared (recog_data.n_operands
1803 * recog_data.n_alternatives + 1);
1804 /* Check that the hard reg set is enough for holding all
1805 alternatives. It is hard to imagine the situation when the
1806 assertion is wrong. */
1807 ira_assert (recog_data.n_alternatives
1808 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1809 FIRST_PSEUDO_REGISTER));
1810 for (curr_swapped = false;; curr_swapped = true)
1812 /* Calculate some data common for all alternatives to speed up the
1813 function. */
1814 for (nop = 0; nop < recog_data.n_operands; nop++)
1816 for (nalt = 0, p = recog_data.constraints[nop];
1817 nalt < recog_data.n_alternatives;
1818 nalt++)
1820 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1821 while (*p && *p != ',')
1822 p++;
1823 if (*p)
1824 p++;
1827 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1829 if (!TEST_BIT (preferred, nalt)
1830 || TEST_HARD_REG_BIT (alts, nalt))
1831 continue;
1833 for (nop = 0; nop < recog_data.n_operands; nop++)
1835 int c, len;
1837 op = recog_data.operand[nop];
1838 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1839 if (*p == 0 || *p == ',')
1840 continue;
1843 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1845 case '#':
1846 case ',':
1847 c = '\0';
1848 case '\0':
1849 len = 0;
1850 break;
1852 case '%':
1853 /* We only support one commutative marker, the
1854 first one. We already set commutative
1855 above. */
1856 if (commutative < 0)
1857 commutative = nop;
1858 break;
1860 case '0': case '1': case '2': case '3': case '4':
1861 case '5': case '6': case '7': case '8': case '9':
1862 goto op_success;
1863 break;
1865 case 'g':
1866 goto op_success;
1867 break;
1869 default:
1871 enum constraint_num cn = lookup_constraint (p);
1872 switch (get_constraint_type (cn))
1874 case CT_REGISTER:
1875 if (reg_class_for_constraint (cn) != NO_REGS)
1876 goto op_success;
1877 break;
1879 case CT_CONST_INT:
1880 if (CONST_INT_P (op)
1881 && (insn_const_int_ok_for_constraint
1882 (INTVAL (op), cn)))
1883 goto op_success;
1884 break;
1886 case CT_ADDRESS:
1887 case CT_MEMORY:
1888 goto op_success;
1890 case CT_FIXED_FORM:
1891 if (constraint_satisfied_p (op, cn))
1892 goto op_success;
1893 break;
1895 break;
1898 while (p += len, c);
1899 break;
1900 op_success:
1903 if (nop >= recog_data.n_operands)
1904 SET_HARD_REG_BIT (alts, nalt);
1906 if (commutative < 0)
1907 break;
1908 if (curr_swapped)
1909 break;
1910 op = recog_data.operand[commutative];
1911 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
1912 recog_data.operand[commutative + 1] = op;
1917 /* Return the number of the output non-early clobber operand which
1918 should be the same in any case as operand with number OP_NUM (or
1919 negative value if there is no such operand). The function takes
1920 only really possible alternatives into consideration. */
1922 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1924 int curr_alt, c, original, dup;
1925 bool ignore_p, use_commut_op_p;
1926 const char *str;
1928 if (op_num < 0 || recog_data.n_alternatives == 0)
1929 return -1;
1930 /* We should find duplications only for input operands. */
1931 if (recog_data.operand_type[op_num] != OP_IN)
1932 return -1;
1933 str = recog_data.constraints[op_num];
1934 use_commut_op_p = false;
1935 for (;;)
1937 rtx op = recog_data.operand[op_num];
1939 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1940 original = -1;;)
1942 c = *str;
1943 if (c == '\0')
1944 break;
1945 if (c == '#')
1946 ignore_p = true;
1947 else if (c == ',')
1949 curr_alt++;
1950 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1952 else if (! ignore_p)
1953 switch (c)
1955 case 'g':
1956 goto fail;
1957 default:
1959 enum constraint_num cn = lookup_constraint (str);
1960 enum reg_class cl = reg_class_for_constraint (cn);
1961 if (cl != NO_REGS
1962 && !targetm.class_likely_spilled_p (cl))
1963 goto fail;
1964 if (constraint_satisfied_p (op, cn))
1965 goto fail;
1966 break;
1969 case '0': case '1': case '2': case '3': case '4':
1970 case '5': case '6': case '7': case '8': case '9':
1971 if (original != -1 && original != c)
1972 goto fail;
1973 original = c;
1974 break;
1976 str += CONSTRAINT_LEN (c, str);
1978 if (original == -1)
1979 goto fail;
1980 dup = -1;
1981 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1982 *str != 0;
1983 str++)
1984 if (ignore_p)
1986 if (*str == ',')
1987 ignore_p = false;
1989 else if (*str == '#')
1990 ignore_p = true;
1991 else if (! ignore_p)
1993 if (*str == '=')
1994 dup = original - '0';
1995 /* It is better ignore an alternative with early clobber. */
1996 else if (*str == '&')
1997 goto fail;
1999 if (dup >= 0)
2000 return dup;
2001 fail:
2002 if (use_commut_op_p)
2003 break;
2004 use_commut_op_p = true;
2005 if (recog_data.constraints[op_num][0] == '%')
2006 str = recog_data.constraints[op_num + 1];
2007 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2008 str = recog_data.constraints[op_num - 1];
2009 else
2010 break;
2012 return -1;
2017 /* Search forward to see if the source register of a copy insn dies
2018 before either it or the destination register is modified, but don't
2019 scan past the end of the basic block. If so, we can replace the
2020 source with the destination and let the source die in the copy
2021 insn.
2023 This will reduce the number of registers live in that range and may
2024 enable the destination and the source coalescing, thus often saving
2025 one register in addition to a register-register copy. */
2027 static void
2028 decrease_live_ranges_number (void)
2030 basic_block bb;
2031 rtx_insn *insn;
2032 rtx set, src, dest, dest_death, q, note;
2033 rtx_insn *p;
2034 int sregno, dregno;
2036 if (! flag_expensive_optimizations)
2037 return;
2039 if (ira_dump_file)
2040 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2042 FOR_EACH_BB_FN (bb, cfun)
2043 FOR_BB_INSNS (bb, insn)
2045 set = single_set (insn);
2046 if (! set)
2047 continue;
2048 src = SET_SRC (set);
2049 dest = SET_DEST (set);
2050 if (! REG_P (src) || ! REG_P (dest)
2051 || find_reg_note (insn, REG_DEAD, src))
2052 continue;
2053 sregno = REGNO (src);
2054 dregno = REGNO (dest);
2056 /* We don't want to mess with hard regs if register classes
2057 are small. */
2058 if (sregno == dregno
2059 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2060 && (sregno < FIRST_PSEUDO_REGISTER
2061 || dregno < FIRST_PSEUDO_REGISTER))
2062 /* We don't see all updates to SP if they are in an
2063 auto-inc memory reference, so we must disallow this
2064 optimization on them. */
2065 || sregno == STACK_POINTER_REGNUM
2066 || dregno == STACK_POINTER_REGNUM)
2067 continue;
2069 dest_death = NULL_RTX;
2071 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2073 if (! INSN_P (p))
2074 continue;
2075 if (BLOCK_FOR_INSN (p) != bb)
2076 break;
2078 if (reg_set_p (src, p) || reg_set_p (dest, p)
2079 /* If SRC is an asm-declared register, it must not be
2080 replaced in any asm. Unfortunately, the REG_EXPR
2081 tree for the asm variable may be absent in the SRC
2082 rtx, so we can't check the actual register
2083 declaration easily (the asm operand will have it,
2084 though). To avoid complicating the test for a rare
2085 case, we just don't perform register replacement
2086 for a hard reg mentioned in an asm. */
2087 || (sregno < FIRST_PSEUDO_REGISTER
2088 && asm_noperands (PATTERN (p)) >= 0
2089 && reg_overlap_mentioned_p (src, PATTERN (p)))
2090 /* Don't change hard registers used by a call. */
2091 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2092 && find_reg_fusage (p, USE, src))
2093 /* Don't change a USE of a register. */
2094 || (GET_CODE (PATTERN (p)) == USE
2095 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2096 break;
2098 /* See if all of SRC dies in P. This test is slightly
2099 more conservative than it needs to be. */
2100 if ((note = find_regno_note (p, REG_DEAD, sregno))
2101 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2103 int failed = 0;
2105 /* We can do the optimization. Scan forward from INSN
2106 again, replacing regs as we go. Set FAILED if a
2107 replacement can't be done. In that case, we can't
2108 move the death note for SRC. This should be
2109 rare. */
2111 /* Set to stop at next insn. */
2112 for (q = next_real_insn (insn);
2113 q != next_real_insn (p);
2114 q = next_real_insn (q))
2116 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2118 /* If SRC is a hard register, we might miss
2119 some overlapping registers with
2120 validate_replace_rtx, so we would have to
2121 undo it. We can't if DEST is present in
2122 the insn, so fail in that combination of
2123 cases. */
2124 if (sregno < FIRST_PSEUDO_REGISTER
2125 && reg_mentioned_p (dest, PATTERN (q)))
2126 failed = 1;
2128 /* Attempt to replace all uses. */
2129 else if (!validate_replace_rtx (src, dest, q))
2130 failed = 1;
2132 /* If this succeeded, but some part of the
2133 register is still present, undo the
2134 replacement. */
2135 else if (sregno < FIRST_PSEUDO_REGISTER
2136 && reg_overlap_mentioned_p (src, PATTERN (q)))
2138 validate_replace_rtx (dest, src, q);
2139 failed = 1;
2143 /* If DEST dies here, remove the death note and
2144 save it for later. Make sure ALL of DEST dies
2145 here; again, this is overly conservative. */
2146 if (! dest_death
2147 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2149 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2150 remove_note (q, dest_death);
2151 else
2153 failed = 1;
2154 dest_death = 0;
2159 if (! failed)
2161 /* Move death note of SRC from P to INSN. */
2162 remove_note (p, note);
2163 XEXP (note, 1) = REG_NOTES (insn);
2164 REG_NOTES (insn) = note;
2167 /* DEST is also dead if INSN has a REG_UNUSED note for
2168 DEST. */
2169 if (! dest_death
2170 && (dest_death
2171 = find_regno_note (insn, REG_UNUSED, dregno)))
2173 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2174 remove_note (insn, dest_death);
2177 /* Put death note of DEST on P if we saw it die. */
2178 if (dest_death)
2180 XEXP (dest_death, 1) = REG_NOTES (p);
2181 REG_NOTES (p) = dest_death;
2183 break;
2186 /* If SRC is a hard register which is set or killed in
2187 some other way, we can't do this optimization. */
2188 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2189 break;
2196 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2197 static bool
2198 ira_bad_reload_regno_1 (int regno, rtx x)
2200 int x_regno, n, i;
2201 ira_allocno_t a;
2202 enum reg_class pref;
2204 /* We only deal with pseudo regs. */
2205 if (! x || GET_CODE (x) != REG)
2206 return false;
2208 x_regno = REGNO (x);
2209 if (x_regno < FIRST_PSEUDO_REGISTER)
2210 return false;
2212 /* If the pseudo prefers REGNO explicitly, then do not consider
2213 REGNO a bad spill choice. */
2214 pref = reg_preferred_class (x_regno);
2215 if (reg_class_size[pref] == 1)
2216 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2218 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2219 poor choice for a reload regno. */
2220 a = ira_regno_allocno_map[x_regno];
2221 n = ALLOCNO_NUM_OBJECTS (a);
2222 for (i = 0; i < n; i++)
2224 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2225 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2226 return true;
2228 return false;
2231 /* Return nonzero if REGNO is a particularly bad choice for reloading
2232 IN or OUT. */
2233 bool
2234 ira_bad_reload_regno (int regno, rtx in, rtx out)
2236 return (ira_bad_reload_regno_1 (regno, in)
2237 || ira_bad_reload_regno_1 (regno, out));
2240 /* Add register clobbers from asm statements. */
2241 static void
2242 compute_regs_asm_clobbered (void)
2244 basic_block bb;
2246 FOR_EACH_BB_FN (bb, cfun)
2248 rtx_insn *insn;
2249 FOR_BB_INSNS_REVERSE (bb, insn)
2251 df_ref def;
2253 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2254 FOR_EACH_INSN_DEF (def, insn)
2256 unsigned int dregno = DF_REF_REGNO (def);
2257 if (HARD_REGISTER_NUM_P (dregno))
2258 add_to_hard_reg_set (&crtl->asm_clobbers,
2259 GET_MODE (DF_REF_REAL_REG (def)),
2260 dregno);
2267 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2268 REGS_EVER_LIVE. */
2269 void
2270 ira_setup_eliminable_regset (void)
2272 #ifdef ELIMINABLE_REGS
2273 int i;
2274 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2275 #endif
2276 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2277 sp for alloca. So we can't eliminate the frame pointer in that
2278 case. At some point, we should improve this by emitting the
2279 sp-adjusting insns for this case. */
2280 frame_pointer_needed
2281 = (! flag_omit_frame_pointer
2282 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2283 /* We need the frame pointer to catch stack overflow exceptions
2284 if the stack pointer is moving. */
2285 || (flag_stack_check && STACK_CHECK_MOVING_SP)
2286 || crtl->accesses_prior_frames
2287 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2288 /* We need a frame pointer for all Cilk Plus functions that use
2289 Cilk keywords. */
2290 || (flag_cilkplus && cfun->is_cilk_function)
2291 || targetm.frame_pointer_required ());
2293 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2294 RTL is very small. So if we use frame pointer for RA and RTL
2295 actually prevents this, we will spill pseudos assigned to the
2296 frame pointer in LRA. */
2298 if (frame_pointer_needed)
2299 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2301 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2302 CLEAR_HARD_REG_SET (eliminable_regset);
2304 compute_regs_asm_clobbered ();
2306 /* Build the regset of all eliminable registers and show we can't
2307 use those that we already know won't be eliminated. */
2308 #ifdef ELIMINABLE_REGS
2309 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2311 bool cannot_elim
2312 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2313 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2315 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2317 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2319 if (cannot_elim)
2320 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2322 else if (cannot_elim)
2323 error ("%s cannot be used in asm here",
2324 reg_names[eliminables[i].from]);
2325 else
2326 df_set_regs_ever_live (eliminables[i].from, true);
2328 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2329 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2331 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2332 if (frame_pointer_needed)
2333 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2335 else if (frame_pointer_needed)
2336 error ("%s cannot be used in asm here",
2337 reg_names[HARD_FRAME_POINTER_REGNUM]);
2338 else
2339 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2340 #endif
2342 #else
2343 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2345 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2346 if (frame_pointer_needed)
2347 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2349 else if (frame_pointer_needed)
2350 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2351 else
2352 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2353 #endif
2358 /* Vector of substitutions of register numbers,
2359 used to map pseudo regs into hardware regs.
2360 This is set up as a result of register allocation.
2361 Element N is the hard reg assigned to pseudo reg N,
2362 or is -1 if no hard reg was assigned.
2363 If N is a hard reg number, element N is N. */
2364 short *reg_renumber;
2366 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2367 the allocation found by IRA. */
2368 static void
2369 setup_reg_renumber (void)
2371 int regno, hard_regno;
2372 ira_allocno_t a;
2373 ira_allocno_iterator ai;
2375 caller_save_needed = 0;
2376 FOR_EACH_ALLOCNO (a, ai)
2378 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2379 continue;
2380 /* There are no caps at this point. */
2381 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2382 if (! ALLOCNO_ASSIGNED_P (a))
2383 /* It can happen if A is not referenced but partially anticipated
2384 somewhere in a region. */
2385 ALLOCNO_ASSIGNED_P (a) = true;
2386 ira_free_allocno_updated_costs (a);
2387 hard_regno = ALLOCNO_HARD_REGNO (a);
2388 regno = ALLOCNO_REGNO (a);
2389 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2390 if (hard_regno >= 0)
2392 int i, nwords;
2393 enum reg_class pclass;
2394 ira_object_t obj;
2396 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2397 nwords = ALLOCNO_NUM_OBJECTS (a);
2398 for (i = 0; i < nwords; i++)
2400 obj = ALLOCNO_OBJECT (a, i);
2401 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2402 reg_class_contents[pclass]);
2404 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2405 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2406 call_used_reg_set))
2408 ira_assert (!optimize || flag_caller_saves
2409 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2410 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2411 || regno >= ira_reg_equiv_len
2412 || ira_equiv_no_lvalue_p (regno));
2413 caller_save_needed = 1;
2419 /* Set up allocno assignment flags for further allocation
2420 improvements. */
2421 static void
2422 setup_allocno_assignment_flags (void)
2424 int hard_regno;
2425 ira_allocno_t a;
2426 ira_allocno_iterator ai;
2428 FOR_EACH_ALLOCNO (a, ai)
2430 if (! ALLOCNO_ASSIGNED_P (a))
2431 /* It can happen if A is not referenced but partially anticipated
2432 somewhere in a region. */
2433 ira_free_allocno_updated_costs (a);
2434 hard_regno = ALLOCNO_HARD_REGNO (a);
2435 /* Don't assign hard registers to allocnos which are destination
2436 of removed store at the end of loop. It has no sense to keep
2437 the same value in different hard registers. It is also
2438 impossible to assign hard registers correctly to such
2439 allocnos because the cost info and info about intersected
2440 calls are incorrect for them. */
2441 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2442 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2443 || (ALLOCNO_MEMORY_COST (a)
2444 - ALLOCNO_CLASS_COST (a)) < 0);
2445 ira_assert
2446 (hard_regno < 0
2447 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2448 reg_class_contents[ALLOCNO_CLASS (a)]));
2452 /* Evaluate overall allocation cost and the costs for using hard
2453 registers and memory for allocnos. */
2454 static void
2455 calculate_allocation_cost (void)
2457 int hard_regno, cost;
2458 ira_allocno_t a;
2459 ira_allocno_iterator ai;
2461 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2462 FOR_EACH_ALLOCNO (a, ai)
2464 hard_regno = ALLOCNO_HARD_REGNO (a);
2465 ira_assert (hard_regno < 0
2466 || (ira_hard_reg_in_set_p
2467 (hard_regno, ALLOCNO_MODE (a),
2468 reg_class_contents[ALLOCNO_CLASS (a)])));
2469 if (hard_regno < 0)
2471 cost = ALLOCNO_MEMORY_COST (a);
2472 ira_mem_cost += cost;
2474 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2476 cost = (ALLOCNO_HARD_REG_COSTS (a)
2477 [ira_class_hard_reg_index
2478 [ALLOCNO_CLASS (a)][hard_regno]]);
2479 ira_reg_cost += cost;
2481 else
2483 cost = ALLOCNO_CLASS_COST (a);
2484 ira_reg_cost += cost;
2486 ira_overall_cost += cost;
2489 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2491 fprintf (ira_dump_file,
2492 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2493 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2494 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2495 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2496 ira_move_loops_num, ira_additional_jumps_num);
2501 #ifdef ENABLE_IRA_CHECKING
2502 /* Check the correctness of the allocation. We do need this because
2503 of complicated code to transform more one region internal
2504 representation into one region representation. */
2505 static void
2506 check_allocation (void)
2508 ira_allocno_t a;
2509 int hard_regno, nregs, conflict_nregs;
2510 ira_allocno_iterator ai;
2512 FOR_EACH_ALLOCNO (a, ai)
2514 int n = ALLOCNO_NUM_OBJECTS (a);
2515 int i;
2517 if (ALLOCNO_CAP_MEMBER (a) != NULL
2518 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2519 continue;
2520 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2521 if (nregs == 1)
2522 /* We allocated a single hard register. */
2523 n = 1;
2524 else if (n > 1)
2525 /* We allocated multiple hard registers, and we will test
2526 conflicts in a granularity of single hard regs. */
2527 nregs = 1;
2529 for (i = 0; i < n; i++)
2531 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2532 ira_object_t conflict_obj;
2533 ira_object_conflict_iterator oci;
2534 int this_regno = hard_regno;
2535 if (n > 1)
2537 if (REG_WORDS_BIG_ENDIAN)
2538 this_regno += n - i - 1;
2539 else
2540 this_regno += i;
2542 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2544 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2545 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2546 if (conflict_hard_regno < 0)
2547 continue;
2549 conflict_nregs
2550 = (hard_regno_nregs
2551 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2553 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2554 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2556 if (REG_WORDS_BIG_ENDIAN)
2557 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2558 - OBJECT_SUBWORD (conflict_obj) - 1);
2559 else
2560 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2561 conflict_nregs = 1;
2564 if ((conflict_hard_regno <= this_regno
2565 && this_regno < conflict_hard_regno + conflict_nregs)
2566 || (this_regno <= conflict_hard_regno
2567 && conflict_hard_regno < this_regno + nregs))
2569 fprintf (stderr, "bad allocation for %d and %d\n",
2570 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2571 gcc_unreachable ();
2577 #endif
2579 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2580 be already calculated. */
2581 static void
2582 setup_reg_equiv_init (void)
2584 int i;
2585 int max_regno = max_reg_num ();
2587 for (i = 0; i < max_regno; i++)
2588 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2591 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2592 are insns which were generated for such movement. It is assumed
2593 that FROM_REGNO and TO_REGNO always have the same value at the
2594 point of any move containing such registers. This function is used
2595 to update equiv info for register shuffles on the region borders
2596 and for caller save/restore insns. */
2597 void
2598 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2600 rtx_insn *insn;
2601 rtx x, note;
2603 if (! ira_reg_equiv[from_regno].defined_p
2604 && (! ira_reg_equiv[to_regno].defined_p
2605 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2606 && ! MEM_READONLY_P (x))))
2607 return;
2608 insn = insns;
2609 if (NEXT_INSN (insn) != NULL_RTX)
2611 if (! ira_reg_equiv[to_regno].defined_p)
2613 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2614 return;
2616 ira_reg_equiv[to_regno].defined_p = false;
2617 ira_reg_equiv[to_regno].memory
2618 = ira_reg_equiv[to_regno].constant
2619 = ira_reg_equiv[to_regno].invariant
2620 = ira_reg_equiv[to_regno].init_insns = NULL;
2621 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2622 fprintf (ira_dump_file,
2623 " Invalidating equiv info for reg %d\n", to_regno);
2624 return;
2626 /* It is possible that FROM_REGNO still has no equivalence because
2627 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2628 insn was not processed yet. */
2629 if (ira_reg_equiv[from_regno].defined_p)
2631 ira_reg_equiv[to_regno].defined_p = true;
2632 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2634 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2635 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2636 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2637 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2638 ira_reg_equiv[to_regno].memory = x;
2639 if (! MEM_READONLY_P (x))
2640 /* We don't add the insn to insn init list because memory
2641 equivalence is just to say what memory is better to use
2642 when the pseudo is spilled. */
2643 return;
2645 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2647 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2648 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2649 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2650 ira_reg_equiv[to_regno].constant = x;
2652 else
2654 x = ira_reg_equiv[from_regno].invariant;
2655 ira_assert (x != NULL_RTX);
2656 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2657 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2658 ira_reg_equiv[to_regno].invariant = x;
2660 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2662 note = set_unique_reg_note (insn, REG_EQUIV, x);
2663 gcc_assert (note != NULL_RTX);
2664 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2666 fprintf (ira_dump_file,
2667 " Adding equiv note to insn %u for reg %d ",
2668 INSN_UID (insn), to_regno);
2669 dump_value_slim (ira_dump_file, x, 1);
2670 fprintf (ira_dump_file, "\n");
2674 ira_reg_equiv[to_regno].init_insns
2675 = gen_rtx_INSN_LIST (VOIDmode, insn,
2676 ira_reg_equiv[to_regno].init_insns);
2677 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2678 fprintf (ira_dump_file,
2679 " Adding equiv init move insn %u to reg %d\n",
2680 INSN_UID (insn), to_regno);
2683 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2684 by IRA. */
2685 static void
2686 fix_reg_equiv_init (void)
2688 int max_regno = max_reg_num ();
2689 int i, new_regno, max;
2690 rtx x, prev, next, insn, set;
2692 if (max_regno_before_ira < max_regno)
2694 max = vec_safe_length (reg_equivs);
2695 grow_reg_equivs ();
2696 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2697 for (prev = NULL_RTX, x = reg_equiv_init (i);
2698 x != NULL_RTX;
2699 x = next)
2701 next = XEXP (x, 1);
2702 insn = XEXP (x, 0);
2703 set = single_set (as_a <rtx_insn *> (insn));
2704 ira_assert (set != NULL_RTX
2705 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2706 if (REG_P (SET_DEST (set))
2707 && ((int) REGNO (SET_DEST (set)) == i
2708 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2709 new_regno = REGNO (SET_DEST (set));
2710 else if (REG_P (SET_SRC (set))
2711 && ((int) REGNO (SET_SRC (set)) == i
2712 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2713 new_regno = REGNO (SET_SRC (set));
2714 else
2715 gcc_unreachable ();
2716 if (new_regno == i)
2717 prev = x;
2718 else
2720 /* Remove the wrong list element. */
2721 if (prev == NULL_RTX)
2722 reg_equiv_init (i) = next;
2723 else
2724 XEXP (prev, 1) = next;
2725 XEXP (x, 1) = reg_equiv_init (new_regno);
2726 reg_equiv_init (new_regno) = x;
2732 #ifdef ENABLE_IRA_CHECKING
2733 /* Print redundant memory-memory copies. */
2734 static void
2735 print_redundant_copies (void)
2737 int hard_regno;
2738 ira_allocno_t a;
2739 ira_copy_t cp, next_cp;
2740 ira_allocno_iterator ai;
2742 FOR_EACH_ALLOCNO (a, ai)
2744 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2745 /* It is a cap. */
2746 continue;
2747 hard_regno = ALLOCNO_HARD_REGNO (a);
2748 if (hard_regno >= 0)
2749 continue;
2750 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2751 if (cp->first == a)
2752 next_cp = cp->next_first_allocno_copy;
2753 else
2755 next_cp = cp->next_second_allocno_copy;
2756 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2757 && cp->insn != NULL_RTX
2758 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2759 fprintf (ira_dump_file,
2760 " Redundant move from %d(freq %d):%d\n",
2761 INSN_UID (cp->insn), cp->freq, hard_regno);
2765 #endif
2767 /* Setup preferred and alternative classes for new pseudo-registers
2768 created by IRA starting with START. */
2769 static void
2770 setup_preferred_alternate_classes_for_new_pseudos (int start)
2772 int i, old_regno;
2773 int max_regno = max_reg_num ();
2775 for (i = start; i < max_regno; i++)
2777 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2778 ira_assert (i != old_regno);
2779 setup_reg_classes (i, reg_preferred_class (old_regno),
2780 reg_alternate_class (old_regno),
2781 reg_allocno_class (old_regno));
2782 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2783 fprintf (ira_dump_file,
2784 " New r%d: setting preferred %s, alternative %s\n",
2785 i, reg_class_names[reg_preferred_class (old_regno)],
2786 reg_class_names[reg_alternate_class (old_regno)]);
2791 /* The number of entries allocated in reg_info. */
2792 static int allocated_reg_info_size;
2794 /* Regional allocation can create new pseudo-registers. This function
2795 expands some arrays for pseudo-registers. */
2796 static void
2797 expand_reg_info (void)
2799 int i;
2800 int size = max_reg_num ();
2802 resize_reg_info ();
2803 for (i = allocated_reg_info_size; i < size; i++)
2804 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2805 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2806 allocated_reg_info_size = size;
2809 /* Return TRUE if there is too high register pressure in the function.
2810 It is used to decide when stack slot sharing is worth to do. */
2811 static bool
2812 too_high_register_pressure_p (void)
2814 int i;
2815 enum reg_class pclass;
2817 for (i = 0; i < ira_pressure_classes_num; i++)
2819 pclass = ira_pressure_classes[i];
2820 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2821 return true;
2823 return false;
2828 /* Indicate that hard register number FROM was eliminated and replaced with
2829 an offset from hard register number TO. The status of hard registers live
2830 at the start of a basic block is updated by replacing a use of FROM with
2831 a use of TO. */
2833 void
2834 mark_elimination (int from, int to)
2836 basic_block bb;
2837 bitmap r;
2839 FOR_EACH_BB_FN (bb, cfun)
2841 r = DF_LR_IN (bb);
2842 if (bitmap_bit_p (r, from))
2844 bitmap_clear_bit (r, from);
2845 bitmap_set_bit (r, to);
2847 if (! df_live)
2848 continue;
2849 r = DF_LIVE_IN (bb);
2850 if (bitmap_bit_p (r, from))
2852 bitmap_clear_bit (r, from);
2853 bitmap_set_bit (r, to);
2860 /* The length of the following array. */
2861 int ira_reg_equiv_len;
2863 /* Info about equiv. info for each register. */
2864 struct ira_reg_equiv_s *ira_reg_equiv;
2866 /* Expand ira_reg_equiv if necessary. */
2867 void
2868 ira_expand_reg_equiv (void)
2870 int old = ira_reg_equiv_len;
2872 if (ira_reg_equiv_len > max_reg_num ())
2873 return;
2874 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2875 ira_reg_equiv
2876 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2877 ira_reg_equiv_len
2878 * sizeof (struct ira_reg_equiv_s));
2879 gcc_assert (old < ira_reg_equiv_len);
2880 memset (ira_reg_equiv + old, 0,
2881 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2884 static void
2885 init_reg_equiv (void)
2887 ira_reg_equiv_len = 0;
2888 ira_reg_equiv = NULL;
2889 ira_expand_reg_equiv ();
2892 static void
2893 finish_reg_equiv (void)
2895 free (ira_reg_equiv);
2900 struct equivalence
2902 /* Set when a REG_EQUIV note is found or created. Use to
2903 keep track of what memory accesses might be created later,
2904 e.g. by reload. */
2905 rtx replacement;
2906 rtx *src_p;
2908 /* The list of each instruction which initializes this register.
2910 NULL indicates we know nothing about this register's equivalence
2911 properties.
2913 An INSN_LIST with a NULL insn indicates this pseudo is already
2914 known to not have a valid equivalence. */
2915 rtx_insn_list *init_insns;
2917 /* Loop depth is used to recognize equivalences which appear
2918 to be present within the same loop (or in an inner loop). */
2919 short loop_depth;
2920 /* Nonzero if this had a preexisting REG_EQUIV note. */
2921 unsigned char is_arg_equivalence : 1;
2922 /* Set when an attempt should be made to replace a register
2923 with the associated src_p entry. */
2924 unsigned char replace : 1;
2925 /* Set if this register has no known equivalence. */
2926 unsigned char no_equiv : 1;
2929 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2930 structure for that register. */
2931 static struct equivalence *reg_equiv;
2933 /* Used for communication between the following two functions: contains
2934 a MEM that we wish to ensure remains unchanged. */
2935 static rtx equiv_mem;
2937 /* Set nonzero if EQUIV_MEM is modified. */
2938 static int equiv_mem_modified;
2940 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2941 Called via note_stores. */
2942 static void
2943 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2944 void *data ATTRIBUTE_UNUSED)
2946 if ((REG_P (dest)
2947 && reg_overlap_mentioned_p (dest, equiv_mem))
2948 || (MEM_P (dest)
2949 && anti_dependence (equiv_mem, dest)))
2950 equiv_mem_modified = 1;
2953 /* Verify that no store between START and the death of REG invalidates
2954 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2955 by storing into an overlapping memory location, or with a non-const
2956 CALL_INSN.
2958 Return 1 if MEMREF remains valid. */
2959 static int
2960 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2962 rtx_insn *insn;
2963 rtx note;
2965 equiv_mem = memref;
2966 equiv_mem_modified = 0;
2968 /* If the memory reference has side effects or is volatile, it isn't a
2969 valid equivalence. */
2970 if (side_effects_p (memref))
2971 return 0;
2973 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2975 if (! INSN_P (insn))
2976 continue;
2978 if (find_reg_note (insn, REG_DEAD, reg))
2979 return 1;
2981 /* This used to ignore readonly memory and const/pure calls. The problem
2982 is the equivalent form may reference a pseudo which gets assigned a
2983 call clobbered hard reg. When we later replace REG with its
2984 equivalent form, the value in the call-clobbered reg has been
2985 changed and all hell breaks loose. */
2986 if (CALL_P (insn))
2987 return 0;
2989 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2991 /* If a register mentioned in MEMREF is modified via an
2992 auto-increment, we lose the equivalence. Do the same if one
2993 dies; although we could extend the life, it doesn't seem worth
2994 the trouble. */
2996 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2997 if ((REG_NOTE_KIND (note) == REG_INC
2998 || REG_NOTE_KIND (note) == REG_DEAD)
2999 && REG_P (XEXP (note, 0))
3000 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3001 return 0;
3004 return 0;
3007 /* Returns zero if X is known to be invariant. */
3008 static int
3009 equiv_init_varies_p (rtx x)
3011 RTX_CODE code = GET_CODE (x);
3012 int i;
3013 const char *fmt;
3015 switch (code)
3017 case MEM:
3018 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3020 case CONST:
3021 CASE_CONST_ANY:
3022 case SYMBOL_REF:
3023 case LABEL_REF:
3024 return 0;
3026 case REG:
3027 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3029 case ASM_OPERANDS:
3030 if (MEM_VOLATILE_P (x))
3031 return 1;
3033 /* Fall through. */
3035 default:
3036 break;
3039 fmt = GET_RTX_FORMAT (code);
3040 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3041 if (fmt[i] == 'e')
3043 if (equiv_init_varies_p (XEXP (x, i)))
3044 return 1;
3046 else if (fmt[i] == 'E')
3048 int j;
3049 for (j = 0; j < XVECLEN (x, i); j++)
3050 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3051 return 1;
3054 return 0;
3057 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3058 X is only movable if the registers it uses have equivalent initializations
3059 which appear to be within the same loop (or in an inner loop) and movable
3060 or if they are not candidates for local_alloc and don't vary. */
3061 static int
3062 equiv_init_movable_p (rtx x, int regno)
3064 int i, j;
3065 const char *fmt;
3066 enum rtx_code code = GET_CODE (x);
3068 switch (code)
3070 case SET:
3071 return equiv_init_movable_p (SET_SRC (x), regno);
3073 case CC0:
3074 case CLOBBER:
3075 return 0;
3077 case PRE_INC:
3078 case PRE_DEC:
3079 case POST_INC:
3080 case POST_DEC:
3081 case PRE_MODIFY:
3082 case POST_MODIFY:
3083 return 0;
3085 case REG:
3086 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3087 && reg_equiv[REGNO (x)].replace)
3088 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3089 && ! rtx_varies_p (x, 0)));
3091 case UNSPEC_VOLATILE:
3092 return 0;
3094 case ASM_OPERANDS:
3095 if (MEM_VOLATILE_P (x))
3096 return 0;
3098 /* Fall through. */
3100 default:
3101 break;
3104 fmt = GET_RTX_FORMAT (code);
3105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3106 switch (fmt[i])
3108 case 'e':
3109 if (! equiv_init_movable_p (XEXP (x, i), regno))
3110 return 0;
3111 break;
3112 case 'E':
3113 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3114 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3115 return 0;
3116 break;
3119 return 1;
3122 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3123 true. */
3124 static int
3125 contains_replace_regs (rtx x)
3127 int i, j;
3128 const char *fmt;
3129 enum rtx_code code = GET_CODE (x);
3131 switch (code)
3133 case CONST:
3134 case LABEL_REF:
3135 case SYMBOL_REF:
3136 CASE_CONST_ANY:
3137 case PC:
3138 case CC0:
3139 case HIGH:
3140 return 0;
3142 case REG:
3143 return reg_equiv[REGNO (x)].replace;
3145 default:
3146 break;
3149 fmt = GET_RTX_FORMAT (code);
3150 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3151 switch (fmt[i])
3153 case 'e':
3154 if (contains_replace_regs (XEXP (x, i)))
3155 return 1;
3156 break;
3157 case 'E':
3158 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3159 if (contains_replace_regs (XVECEXP (x, i, j)))
3160 return 1;
3161 break;
3164 return 0;
3167 /* TRUE if X references a memory location that would be affected by a store
3168 to MEMREF. */
3169 static int
3170 memref_referenced_p (rtx memref, rtx x)
3172 int i, j;
3173 const char *fmt;
3174 enum rtx_code code = GET_CODE (x);
3176 switch (code)
3178 case CONST:
3179 case LABEL_REF:
3180 case SYMBOL_REF:
3181 CASE_CONST_ANY:
3182 case PC:
3183 case CC0:
3184 case HIGH:
3185 case LO_SUM:
3186 return 0;
3188 case REG:
3189 return (reg_equiv[REGNO (x)].replacement
3190 && memref_referenced_p (memref,
3191 reg_equiv[REGNO (x)].replacement));
3193 case MEM:
3194 if (true_dependence (memref, VOIDmode, x))
3195 return 1;
3196 break;
3198 case SET:
3199 /* If we are setting a MEM, it doesn't count (its address does), but any
3200 other SET_DEST that has a MEM in it is referencing the MEM. */
3201 if (MEM_P (SET_DEST (x)))
3203 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3204 return 1;
3206 else if (memref_referenced_p (memref, SET_DEST (x)))
3207 return 1;
3209 return memref_referenced_p (memref, SET_SRC (x));
3211 default:
3212 break;
3215 fmt = GET_RTX_FORMAT (code);
3216 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3217 switch (fmt[i])
3219 case 'e':
3220 if (memref_referenced_p (memref, XEXP (x, i)))
3221 return 1;
3222 break;
3223 case 'E':
3224 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3225 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3226 return 1;
3227 break;
3230 return 0;
3233 /* TRUE if some insn in the range (START, END] references a memory location
3234 that would be affected by a store to MEMREF. */
3235 static int
3236 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3238 rtx_insn *insn;
3240 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3241 insn = NEXT_INSN (insn))
3243 if (!NONDEBUG_INSN_P (insn))
3244 continue;
3246 if (memref_referenced_p (memref, PATTERN (insn)))
3247 return 1;
3249 /* Nonconst functions may access memory. */
3250 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3251 return 1;
3254 return 0;
3257 /* Mark REG as having no known equivalence.
3258 Some instructions might have been processed before and furnished
3259 with REG_EQUIV notes for this register; these notes will have to be
3260 removed.
3261 STORE is the piece of RTL that does the non-constant / conflicting
3262 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3263 but needs to be there because this function is called from note_stores. */
3264 static void
3265 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3266 void *data ATTRIBUTE_UNUSED)
3268 int regno;
3269 rtx_insn_list *list;
3271 if (!REG_P (reg))
3272 return;
3273 regno = REGNO (reg);
3274 reg_equiv[regno].no_equiv = 1;
3275 list = reg_equiv[regno].init_insns;
3276 if (list && list->insn () == NULL)
3277 return;
3278 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3279 reg_equiv[regno].replacement = NULL_RTX;
3280 /* This doesn't matter for equivalences made for argument registers, we
3281 should keep their initialization insns. */
3282 if (reg_equiv[regno].is_arg_equivalence)
3283 return;
3284 ira_reg_equiv[regno].defined_p = false;
3285 ira_reg_equiv[regno].init_insns = NULL;
3286 for (; list; list = list->next ())
3288 rtx_insn *insn = list->insn ();
3289 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3293 /* Check whether the SUBREG is a paradoxical subreg and set the result
3294 in PDX_SUBREGS. */
3296 static void
3297 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3299 subrtx_iterator::array_type array;
3300 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3302 const_rtx subreg = *iter;
3303 if (GET_CODE (subreg) == SUBREG)
3305 const_rtx reg = SUBREG_REG (subreg);
3306 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3307 pdx_subregs[REGNO (reg)] = true;
3312 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3313 equivalent replacement. */
3315 static rtx
3316 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3318 if (REG_P (loc))
3320 bitmap cleared_regs = (bitmap) data;
3321 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3322 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3323 NULL_RTX, adjust_cleared_regs, data);
3325 return NULL_RTX;
3328 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3329 static int recorded_label_ref;
3331 /* Find registers that are equivalent to a single value throughout the
3332 compilation (either because they can be referenced in memory or are
3333 set once from a single constant). Lower their priority for a
3334 register.
3336 If such a register is only referenced once, try substituting its
3337 value into the using insn. If it succeeds, we can eliminate the
3338 register completely.
3340 Initialize init_insns in ira_reg_equiv array.
3342 Return non-zero if jump label rebuilding should be done. */
3343 static int
3344 update_equiv_regs (void)
3346 rtx_insn *insn;
3347 basic_block bb;
3348 int loop_depth;
3349 bitmap cleared_regs;
3350 bool *pdx_subregs;
3352 /* We need to keep track of whether or not we recorded a LABEL_REF so
3353 that we know if the jump optimizer needs to be rerun. */
3354 recorded_label_ref = 0;
3356 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3357 subreg. */
3358 pdx_subregs = XCNEWVEC (bool, max_regno);
3360 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3361 grow_reg_equivs ();
3363 init_alias_analysis ();
3365 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3366 paradoxical subreg. Don't set such reg equivalent to a mem,
3367 because lra will not substitute such equiv memory in order to
3368 prevent access beyond allocated memory for paradoxical memory subreg. */
3369 FOR_EACH_BB_FN (bb, cfun)
3370 FOR_BB_INSNS (bb, insn)
3371 if (NONDEBUG_INSN_P (insn))
3372 set_paradoxical_subreg (insn, pdx_subregs);
3374 /* Scan the insns and find which registers have equivalences. Do this
3375 in a separate scan of the insns because (due to -fcse-follow-jumps)
3376 a register can be set below its use. */
3377 FOR_EACH_BB_FN (bb, cfun)
3379 loop_depth = bb_loop_depth (bb);
3381 for (insn = BB_HEAD (bb);
3382 insn != NEXT_INSN (BB_END (bb));
3383 insn = NEXT_INSN (insn))
3385 rtx note;
3386 rtx set;
3387 rtx dest, src;
3388 int regno;
3390 if (! INSN_P (insn))
3391 continue;
3393 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3394 if (REG_NOTE_KIND (note) == REG_INC)
3395 no_equiv (XEXP (note, 0), note, NULL);
3397 set = single_set (insn);
3399 /* If this insn contains more (or less) than a single SET,
3400 only mark all destinations as having no known equivalence. */
3401 if (set == NULL_RTX)
3403 note_stores (PATTERN (insn), no_equiv, NULL);
3404 continue;
3406 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3408 int i;
3410 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3412 rtx part = XVECEXP (PATTERN (insn), 0, i);
3413 if (part != set)
3414 note_stores (part, no_equiv, NULL);
3418 dest = SET_DEST (set);
3419 src = SET_SRC (set);
3421 /* See if this is setting up the equivalence between an argument
3422 register and its stack slot. */
3423 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3424 if (note)
3426 gcc_assert (REG_P (dest));
3427 regno = REGNO (dest);
3429 /* Note that we don't want to clear init_insns in
3430 ira_reg_equiv even if there are multiple sets of this
3431 register. */
3432 reg_equiv[regno].is_arg_equivalence = 1;
3434 /* The insn result can have equivalence memory although
3435 the equivalence is not set up by the insn. We add
3436 this insn to init insns as it is a flag for now that
3437 regno has an equivalence. We will remove the insn
3438 from init insn list later. */
3439 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3440 ira_reg_equiv[regno].init_insns
3441 = gen_rtx_INSN_LIST (VOIDmode, insn,
3442 ira_reg_equiv[regno].init_insns);
3444 /* Continue normally in case this is a candidate for
3445 replacements. */
3448 if (!optimize)
3449 continue;
3451 /* We only handle the case of a pseudo register being set
3452 once, or always to the same value. */
3453 /* ??? The mn10200 port breaks if we add equivalences for
3454 values that need an ADDRESS_REGS register and set them equivalent
3455 to a MEM of a pseudo. The actual problem is in the over-conservative
3456 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3457 calculate_needs, but we traditionally work around this problem
3458 here by rejecting equivalences when the destination is in a register
3459 that's likely spilled. This is fragile, of course, since the
3460 preferred class of a pseudo depends on all instructions that set
3461 or use it. */
3463 if (!REG_P (dest)
3464 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3465 || (reg_equiv[regno].init_insns
3466 && reg_equiv[regno].init_insns->insn () == NULL)
3467 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3468 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3470 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3471 also set somewhere else to a constant. */
3472 note_stores (set, no_equiv, NULL);
3473 continue;
3476 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3477 if (MEM_P (src) && pdx_subregs[regno])
3479 note_stores (set, no_equiv, NULL);
3480 continue;
3483 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3485 /* cse sometimes generates function invariants, but doesn't put a
3486 REG_EQUAL note on the insn. Since this note would be redundant,
3487 there's no point creating it earlier than here. */
3488 if (! note && ! rtx_varies_p (src, 0))
3489 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3491 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3492 since it represents a function call. */
3493 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3494 note = NULL_RTX;
3496 if (DF_REG_DEF_COUNT (regno) != 1)
3498 bool equal_p = true;
3499 rtx_insn_list *list;
3501 /* If we have already processed this pseudo and determined it
3502 can not have an equivalence, then honor that decision. */
3503 if (reg_equiv[regno].no_equiv)
3504 continue;
3506 if (! note
3507 || rtx_varies_p (XEXP (note, 0), 0)
3508 || (reg_equiv[regno].replacement
3509 && ! rtx_equal_p (XEXP (note, 0),
3510 reg_equiv[regno].replacement)))
3512 no_equiv (dest, set, NULL);
3513 continue;
3516 list = reg_equiv[regno].init_insns;
3517 for (; list; list = list->next ())
3519 rtx note_tmp;
3520 rtx_insn *insn_tmp;
3522 insn_tmp = list->insn ();
3523 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3524 gcc_assert (note_tmp);
3525 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3527 equal_p = false;
3528 break;
3532 if (! equal_p)
3534 no_equiv (dest, set, NULL);
3535 continue;
3539 /* Record this insn as initializing this register. */
3540 reg_equiv[regno].init_insns
3541 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3543 /* If this register is known to be equal to a constant, record that
3544 it is always equivalent to the constant. */
3545 if (DF_REG_DEF_COUNT (regno) == 1
3546 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3548 rtx note_value = XEXP (note, 0);
3549 remove_note (insn, note);
3550 set_unique_reg_note (insn, REG_EQUIV, note_value);
3553 /* If this insn introduces a "constant" register, decrease the priority
3554 of that register. Record this insn if the register is only used once
3555 more and the equivalence value is the same as our source.
3557 The latter condition is checked for two reasons: First, it is an
3558 indication that it may be more efficient to actually emit the insn
3559 as written (if no registers are available, reload will substitute
3560 the equivalence). Secondly, it avoids problems with any registers
3561 dying in this insn whose death notes would be missed.
3563 If we don't have a REG_EQUIV note, see if this insn is loading
3564 a register used only in one basic block from a MEM. If so, and the
3565 MEM remains unchanged for the life of the register, add a REG_EQUIV
3566 note. */
3567 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3569 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3570 && MEM_P (SET_SRC (set))
3571 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3572 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3574 if (note)
3576 int regno = REGNO (dest);
3577 rtx x = XEXP (note, 0);
3579 /* If we haven't done so, record for reload that this is an
3580 equivalencing insn. */
3581 if (!reg_equiv[regno].is_arg_equivalence)
3582 ira_reg_equiv[regno].init_insns
3583 = gen_rtx_INSN_LIST (VOIDmode, insn,
3584 ira_reg_equiv[regno].init_insns);
3586 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3587 We might end up substituting the LABEL_REF for uses of the
3588 pseudo here or later. That kind of transformation may turn an
3589 indirect jump into a direct jump, in which case we must rerun the
3590 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3591 if (GET_CODE (x) == LABEL_REF
3592 || (GET_CODE (x) == CONST
3593 && GET_CODE (XEXP (x, 0)) == PLUS
3594 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3595 recorded_label_ref = 1;
3597 reg_equiv[regno].replacement = x;
3598 reg_equiv[regno].src_p = &SET_SRC (set);
3599 reg_equiv[regno].loop_depth = (short) loop_depth;
3601 /* Don't mess with things live during setjmp. */
3602 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3604 /* Note that the statement below does not affect the priority
3605 in local-alloc! */
3606 REG_LIVE_LENGTH (regno) *= 2;
3608 /* If the register is referenced exactly twice, meaning it is
3609 set once and used once, indicate that the reference may be
3610 replaced by the equivalence we computed above. Do this
3611 even if the register is only used in one block so that
3612 dependencies can be handled where the last register is
3613 used in a different block (i.e. HIGH / LO_SUM sequences)
3614 and to reduce the number of registers alive across
3615 calls. */
3617 if (REG_N_REFS (regno) == 2
3618 && (rtx_equal_p (x, src)
3619 || ! equiv_init_varies_p (src))
3620 && NONJUMP_INSN_P (insn)
3621 && equiv_init_movable_p (PATTERN (insn), regno))
3622 reg_equiv[regno].replace = 1;
3628 if (!optimize)
3629 goto out;
3631 /* A second pass, to gather additional equivalences with memory. This needs
3632 to be done after we know which registers we are going to replace. */
3634 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3636 rtx set, src, dest;
3637 unsigned regno;
3639 if (! INSN_P (insn))
3640 continue;
3642 set = single_set (insn);
3643 if (! set)
3644 continue;
3646 dest = SET_DEST (set);
3647 src = SET_SRC (set);
3649 /* If this sets a MEM to the contents of a REG that is only used
3650 in a single basic block, see if the register is always equivalent
3651 to that memory location and if moving the store from INSN to the
3652 insn that set REG is safe. If so, put a REG_EQUIV note on the
3653 initializing insn.
3655 Don't add a REG_EQUIV note if the insn already has one. The existing
3656 REG_EQUIV is likely more useful than the one we are adding.
3658 If one of the regs in the address has reg_equiv[REGNO].replace set,
3659 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3660 optimization may move the set of this register immediately before
3661 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3662 the mention in the REG_EQUIV note would be to an uninitialized
3663 pseudo. */
3665 if (MEM_P (dest) && REG_P (src)
3666 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3667 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3668 && DF_REG_DEF_COUNT (regno) == 1
3669 && reg_equiv[regno].init_insns != NULL
3670 && reg_equiv[regno].init_insns->insn () != NULL
3671 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3672 REG_EQUIV, NULL_RTX)
3673 && ! contains_replace_regs (XEXP (dest, 0))
3674 && ! pdx_subregs[regno])
3676 rtx_insn *init_insn =
3677 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3678 if (validate_equiv_mem (init_insn, src, dest)
3679 && ! memref_used_between_p (dest, init_insn, insn)
3680 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3681 multiple sets. */
3682 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3684 /* This insn makes the equivalence, not the one initializing
3685 the register. */
3686 ira_reg_equiv[regno].init_insns
3687 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3688 df_notes_rescan (init_insn);
3693 cleared_regs = BITMAP_ALLOC (NULL);
3694 /* Now scan all regs killed in an insn to see if any of them are
3695 registers only used that once. If so, see if we can replace the
3696 reference with the equivalent form. If we can, delete the
3697 initializing reference and this register will go away. If we
3698 can't replace the reference, and the initializing reference is
3699 within the same loop (or in an inner loop), then move the register
3700 initialization just before the use, so that they are in the same
3701 basic block. */
3702 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3704 loop_depth = bb_loop_depth (bb);
3705 for (insn = BB_END (bb);
3706 insn != PREV_INSN (BB_HEAD (bb));
3707 insn = PREV_INSN (insn))
3709 rtx link;
3711 if (! INSN_P (insn))
3712 continue;
3714 /* Don't substitute into a non-local goto, this confuses CFG. */
3715 if (JUMP_P (insn)
3716 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3717 continue;
3719 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3721 if (REG_NOTE_KIND (link) == REG_DEAD
3722 /* Make sure this insn still refers to the register. */
3723 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3725 int regno = REGNO (XEXP (link, 0));
3726 rtx equiv_insn;
3728 if (! reg_equiv[regno].replace
3729 || reg_equiv[regno].loop_depth < (short) loop_depth
3730 /* There is no sense to move insns if live range
3731 shrinkage or register pressure-sensitive
3732 scheduling were done because it will not
3733 improve allocation but worsen insn schedule
3734 with a big probability. */
3735 || flag_live_range_shrinkage
3736 || (flag_sched_pressure && flag_schedule_insns))
3737 continue;
3739 /* reg_equiv[REGNO].replace gets set only when
3740 REG_N_REFS[REGNO] is 2, i.e. the register is set
3741 once and used once. (If it were only set, but
3742 not used, flow would have deleted the setting
3743 insns.) Hence there can only be one insn in
3744 reg_equiv[REGNO].init_insns. */
3745 gcc_assert (reg_equiv[regno].init_insns
3746 && !XEXP (reg_equiv[regno].init_insns, 1));
3747 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3749 /* We may not move instructions that can throw, since
3750 that changes basic block boundaries and we are not
3751 prepared to adjust the CFG to match. */
3752 if (can_throw_internal (equiv_insn))
3753 continue;
3755 if (asm_noperands (PATTERN (equiv_insn)) < 0
3756 && validate_replace_rtx (regno_reg_rtx[regno],
3757 *(reg_equiv[regno].src_p), insn))
3759 rtx equiv_link;
3760 rtx last_link;
3761 rtx note;
3763 /* Find the last note. */
3764 for (last_link = link; XEXP (last_link, 1);
3765 last_link = XEXP (last_link, 1))
3768 /* Append the REG_DEAD notes from equiv_insn. */
3769 equiv_link = REG_NOTES (equiv_insn);
3770 while (equiv_link)
3772 note = equiv_link;
3773 equiv_link = XEXP (equiv_link, 1);
3774 if (REG_NOTE_KIND (note) == REG_DEAD)
3776 remove_note (equiv_insn, note);
3777 XEXP (last_link, 1) = note;
3778 XEXP (note, 1) = NULL_RTX;
3779 last_link = note;
3783 remove_death (regno, insn);
3784 SET_REG_N_REFS (regno, 0);
3785 REG_FREQ (regno) = 0;
3786 delete_insn (equiv_insn);
3788 reg_equiv[regno].init_insns
3789 = reg_equiv[regno].init_insns->next ();
3791 ira_reg_equiv[regno].init_insns = NULL;
3792 bitmap_set_bit (cleared_regs, regno);
3794 /* Move the initialization of the register to just before
3795 INSN. Update the flow information. */
3796 else if (prev_nondebug_insn (insn) != equiv_insn)
3798 rtx_insn *new_insn;
3800 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3801 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3802 REG_NOTES (equiv_insn) = 0;
3803 /* Rescan it to process the notes. */
3804 df_insn_rescan (new_insn);
3806 /* Make sure this insn is recognized before
3807 reload begins, otherwise
3808 eliminate_regs_in_insn will die. */
3809 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3811 delete_insn (equiv_insn);
3813 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3815 REG_BASIC_BLOCK (regno) = bb->index;
3816 REG_N_CALLS_CROSSED (regno) = 0;
3817 REG_FREQ_CALLS_CROSSED (regno) = 0;
3818 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3819 REG_LIVE_LENGTH (regno) = 2;
3821 if (insn == BB_HEAD (bb))
3822 BB_HEAD (bb) = PREV_INSN (insn);
3824 ira_reg_equiv[regno].init_insns
3825 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3826 bitmap_set_bit (cleared_regs, regno);
3833 if (!bitmap_empty_p (cleared_regs))
3835 FOR_EACH_BB_FN (bb, cfun)
3837 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3838 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3839 if (! df_live)
3840 continue;
3841 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3842 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3845 /* Last pass - adjust debug insns referencing cleared regs. */
3846 if (MAY_HAVE_DEBUG_INSNS)
3847 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3848 if (DEBUG_INSN_P (insn))
3850 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3851 INSN_VAR_LOCATION_LOC (insn)
3852 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3853 adjust_cleared_regs,
3854 (void *) cleared_regs);
3855 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3856 df_insn_rescan (insn);
3860 BITMAP_FREE (cleared_regs);
3862 out:
3863 /* Clean up. */
3865 end_alias_analysis ();
3866 free (reg_equiv);
3867 free (pdx_subregs);
3868 return recorded_label_ref;
3873 /* Set up fields memory, constant, and invariant from init_insns in
3874 the structures of array ira_reg_equiv. */
3875 static void
3876 setup_reg_equiv (void)
3878 int i;
3879 rtx_insn_list *elem, *prev_elem, *next_elem;
3880 rtx_insn *insn;
3881 rtx set, x;
3883 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3884 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3885 elem;
3886 prev_elem = elem, elem = next_elem)
3888 next_elem = elem->next ();
3889 insn = elem->insn ();
3890 set = single_set (insn);
3892 /* Init insns can set up equivalence when the reg is a destination or
3893 a source (in this case the destination is memory). */
3894 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3896 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3898 x = XEXP (x, 0);
3899 if (REG_P (SET_DEST (set))
3900 && REGNO (SET_DEST (set)) == (unsigned int) i
3901 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3903 /* This insn reporting the equivalence but
3904 actually not setting it. Remove it from the
3905 list. */
3906 if (prev_elem == NULL)
3907 ira_reg_equiv[i].init_insns = next_elem;
3908 else
3909 XEXP (prev_elem, 1) = next_elem;
3910 elem = prev_elem;
3913 else if (REG_P (SET_DEST (set))
3914 && REGNO (SET_DEST (set)) == (unsigned int) i)
3915 x = SET_SRC (set);
3916 else
3918 gcc_assert (REG_P (SET_SRC (set))
3919 && REGNO (SET_SRC (set)) == (unsigned int) i);
3920 x = SET_DEST (set);
3922 if (! function_invariant_p (x)
3923 || ! flag_pic
3924 /* A function invariant is often CONSTANT_P but may
3925 include a register. We promise to only pass
3926 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3927 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3929 /* It can happen that a REG_EQUIV note contains a MEM
3930 that is not a legitimate memory operand. As later
3931 stages of reload assume that all addresses found in
3932 the lra_regno_equiv_* arrays were originally
3933 legitimate, we ignore such REG_EQUIV notes. */
3934 if (memory_operand (x, VOIDmode))
3936 ira_reg_equiv[i].defined_p = true;
3937 ira_reg_equiv[i].memory = x;
3938 continue;
3940 else if (function_invariant_p (x))
3942 machine_mode mode;
3944 mode = GET_MODE (SET_DEST (set));
3945 if (GET_CODE (x) == PLUS
3946 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3947 /* This is PLUS of frame pointer and a constant,
3948 or fp, or argp. */
3949 ira_reg_equiv[i].invariant = x;
3950 else if (targetm.legitimate_constant_p (mode, x))
3951 ira_reg_equiv[i].constant = x;
3952 else
3954 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3955 if (ira_reg_equiv[i].memory == NULL_RTX)
3957 ira_reg_equiv[i].defined_p = false;
3958 ira_reg_equiv[i].init_insns = NULL;
3959 break;
3962 ira_reg_equiv[i].defined_p = true;
3963 continue;
3967 ira_reg_equiv[i].defined_p = false;
3968 ira_reg_equiv[i].init_insns = NULL;
3969 break;
3975 /* Print chain C to FILE. */
3976 static void
3977 print_insn_chain (FILE *file, struct insn_chain *c)
3979 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3980 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3981 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3985 /* Print all reload_insn_chains to FILE. */
3986 static void
3987 print_insn_chains (FILE *file)
3989 struct insn_chain *c;
3990 for (c = reload_insn_chain; c ; c = c->next)
3991 print_insn_chain (file, c);
3994 /* Return true if pseudo REGNO should be added to set live_throughout
3995 or dead_or_set of the insn chains for reload consideration. */
3996 static bool
3997 pseudo_for_reload_consideration_p (int regno)
3999 /* Consider spilled pseudos too for IRA because they still have a
4000 chance to get hard-registers in the reload when IRA is used. */
4001 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4004 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4005 REG to the number of nregs, and INIT_VALUE to get the
4006 initialization. ALLOCNUM need not be the regno of REG. */
4007 static void
4008 init_live_subregs (bool init_value, sbitmap *live_subregs,
4009 bitmap live_subregs_used, int allocnum, rtx reg)
4011 unsigned int regno = REGNO (SUBREG_REG (reg));
4012 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4014 gcc_assert (size > 0);
4016 /* Been there, done that. */
4017 if (bitmap_bit_p (live_subregs_used, allocnum))
4018 return;
4020 /* Create a new one. */
4021 if (live_subregs[allocnum] == NULL)
4022 live_subregs[allocnum] = sbitmap_alloc (size);
4024 /* If the entire reg was live before blasting into subregs, we need
4025 to init all of the subregs to ones else init to 0. */
4026 if (init_value)
4027 bitmap_ones (live_subregs[allocnum]);
4028 else
4029 bitmap_clear (live_subregs[allocnum]);
4031 bitmap_set_bit (live_subregs_used, allocnum);
4034 /* Walk the insns of the current function and build reload_insn_chain,
4035 and record register life information. */
4036 static void
4037 build_insn_chain (void)
4039 unsigned int i;
4040 struct insn_chain **p = &reload_insn_chain;
4041 basic_block bb;
4042 struct insn_chain *c = NULL;
4043 struct insn_chain *next = NULL;
4044 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4045 bitmap elim_regset = BITMAP_ALLOC (NULL);
4046 /* live_subregs is a vector used to keep accurate information about
4047 which hardregs are live in multiword pseudos. live_subregs and
4048 live_subregs_used are indexed by pseudo number. The live_subreg
4049 entry for a particular pseudo is only used if the corresponding
4050 element is non zero in live_subregs_used. The sbitmap size of
4051 live_subreg[allocno] is number of bytes that the pseudo can
4052 occupy. */
4053 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4054 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4056 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4057 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4058 bitmap_set_bit (elim_regset, i);
4059 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4061 bitmap_iterator bi;
4062 rtx_insn *insn;
4064 CLEAR_REG_SET (live_relevant_regs);
4065 bitmap_clear (live_subregs_used);
4067 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4069 if (i >= FIRST_PSEUDO_REGISTER)
4070 break;
4071 bitmap_set_bit (live_relevant_regs, i);
4074 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4075 FIRST_PSEUDO_REGISTER, i, bi)
4077 if (pseudo_for_reload_consideration_p (i))
4078 bitmap_set_bit (live_relevant_regs, i);
4081 FOR_BB_INSNS_REVERSE (bb, insn)
4083 if (!NOTE_P (insn) && !BARRIER_P (insn))
4085 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4086 df_ref def, use;
4088 c = new_insn_chain ();
4089 c->next = next;
4090 next = c;
4091 *p = c;
4092 p = &c->prev;
4094 c->insn = insn;
4095 c->block = bb->index;
4097 if (NONDEBUG_INSN_P (insn))
4098 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4100 unsigned int regno = DF_REF_REGNO (def);
4102 /* Ignore may clobbers because these are generated
4103 from calls. However, every other kind of def is
4104 added to dead_or_set. */
4105 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4107 if (regno < FIRST_PSEUDO_REGISTER)
4109 if (!fixed_regs[regno])
4110 bitmap_set_bit (&c->dead_or_set, regno);
4112 else if (pseudo_for_reload_consideration_p (regno))
4113 bitmap_set_bit (&c->dead_or_set, regno);
4116 if ((regno < FIRST_PSEUDO_REGISTER
4117 || reg_renumber[regno] >= 0
4118 || ira_conflicts_p)
4119 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4121 rtx reg = DF_REF_REG (def);
4123 /* We can model subregs, but not if they are
4124 wrapped in ZERO_EXTRACTS. */
4125 if (GET_CODE (reg) == SUBREG
4126 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4128 unsigned int start = SUBREG_BYTE (reg);
4129 unsigned int last = start
4130 + GET_MODE_SIZE (GET_MODE (reg));
4132 init_live_subregs
4133 (bitmap_bit_p (live_relevant_regs, regno),
4134 live_subregs, live_subregs_used, regno, reg);
4136 if (!DF_REF_FLAGS_IS_SET
4137 (def, DF_REF_STRICT_LOW_PART))
4139 /* Expand the range to cover entire words.
4140 Bytes added here are "don't care". */
4141 start
4142 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4143 last = ((last + UNITS_PER_WORD - 1)
4144 / UNITS_PER_WORD * UNITS_PER_WORD);
4147 /* Ignore the paradoxical bits. */
4148 if (last > SBITMAP_SIZE (live_subregs[regno]))
4149 last = SBITMAP_SIZE (live_subregs[regno]);
4151 while (start < last)
4153 bitmap_clear_bit (live_subregs[regno], start);
4154 start++;
4157 if (bitmap_empty_p (live_subregs[regno]))
4159 bitmap_clear_bit (live_subregs_used, regno);
4160 bitmap_clear_bit (live_relevant_regs, regno);
4162 else
4163 /* Set live_relevant_regs here because
4164 that bit has to be true to get us to
4165 look at the live_subregs fields. */
4166 bitmap_set_bit (live_relevant_regs, regno);
4168 else
4170 /* DF_REF_PARTIAL is generated for
4171 subregs, STRICT_LOW_PART, and
4172 ZERO_EXTRACT. We handle the subreg
4173 case above so here we have to keep from
4174 modeling the def as a killing def. */
4175 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4177 bitmap_clear_bit (live_subregs_used, regno);
4178 bitmap_clear_bit (live_relevant_regs, regno);
4184 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4185 bitmap_copy (&c->live_throughout, live_relevant_regs);
4187 if (NONDEBUG_INSN_P (insn))
4188 FOR_EACH_INSN_INFO_USE (use, insn_info)
4190 unsigned int regno = DF_REF_REGNO (use);
4191 rtx reg = DF_REF_REG (use);
4193 /* DF_REF_READ_WRITE on a use means that this use
4194 is fabricated from a def that is a partial set
4195 to a multiword reg. Here, we only model the
4196 subreg case that is not wrapped in ZERO_EXTRACT
4197 precisely so we do not need to look at the
4198 fabricated use. */
4199 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4200 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4201 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4202 continue;
4204 /* Add the last use of each var to dead_or_set. */
4205 if (!bitmap_bit_p (live_relevant_regs, regno))
4207 if (regno < FIRST_PSEUDO_REGISTER)
4209 if (!fixed_regs[regno])
4210 bitmap_set_bit (&c->dead_or_set, regno);
4212 else if (pseudo_for_reload_consideration_p (regno))
4213 bitmap_set_bit (&c->dead_or_set, regno);
4216 if (regno < FIRST_PSEUDO_REGISTER
4217 || pseudo_for_reload_consideration_p (regno))
4219 if (GET_CODE (reg) == SUBREG
4220 && !DF_REF_FLAGS_IS_SET (use,
4221 DF_REF_SIGN_EXTRACT
4222 | DF_REF_ZERO_EXTRACT))
4224 unsigned int start = SUBREG_BYTE (reg);
4225 unsigned int last = start
4226 + GET_MODE_SIZE (GET_MODE (reg));
4228 init_live_subregs
4229 (bitmap_bit_p (live_relevant_regs, regno),
4230 live_subregs, live_subregs_used, regno, reg);
4232 /* Ignore the paradoxical bits. */
4233 if (last > SBITMAP_SIZE (live_subregs[regno]))
4234 last = SBITMAP_SIZE (live_subregs[regno]);
4236 while (start < last)
4238 bitmap_set_bit (live_subregs[regno], start);
4239 start++;
4242 else
4243 /* Resetting the live_subregs_used is
4244 effectively saying do not use the subregs
4245 because we are reading the whole
4246 pseudo. */
4247 bitmap_clear_bit (live_subregs_used, regno);
4248 bitmap_set_bit (live_relevant_regs, regno);
4254 /* FIXME!! The following code is a disaster. Reload needs to see the
4255 labels and jump tables that are just hanging out in between
4256 the basic blocks. See pr33676. */
4257 insn = BB_HEAD (bb);
4259 /* Skip over the barriers and cruft. */
4260 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4261 || BLOCK_FOR_INSN (insn) == bb))
4262 insn = PREV_INSN (insn);
4264 /* While we add anything except barriers and notes, the focus is
4265 to get the labels and jump tables into the
4266 reload_insn_chain. */
4267 while (insn)
4269 if (!NOTE_P (insn) && !BARRIER_P (insn))
4271 if (BLOCK_FOR_INSN (insn))
4272 break;
4274 c = new_insn_chain ();
4275 c->next = next;
4276 next = c;
4277 *p = c;
4278 p = &c->prev;
4280 /* The block makes no sense here, but it is what the old
4281 code did. */
4282 c->block = bb->index;
4283 c->insn = insn;
4284 bitmap_copy (&c->live_throughout, live_relevant_regs);
4286 insn = PREV_INSN (insn);
4290 reload_insn_chain = c;
4291 *p = NULL;
4293 for (i = 0; i < (unsigned int) max_regno; i++)
4294 if (live_subregs[i] != NULL)
4295 sbitmap_free (live_subregs[i]);
4296 free (live_subregs);
4297 BITMAP_FREE (live_subregs_used);
4298 BITMAP_FREE (live_relevant_regs);
4299 BITMAP_FREE (elim_regset);
4301 if (dump_file)
4302 print_insn_chains (dump_file);
4305 /* Examine the rtx found in *LOC, which is read or written to as determined
4306 by TYPE. Return false if we find a reason why an insn containing this
4307 rtx should not be moved (such as accesses to non-constant memory), true
4308 otherwise. */
4309 static bool
4310 rtx_moveable_p (rtx *loc, enum op_type type)
4312 const char *fmt;
4313 rtx x = *loc;
4314 enum rtx_code code = GET_CODE (x);
4315 int i, j;
4317 code = GET_CODE (x);
4318 switch (code)
4320 case CONST:
4321 CASE_CONST_ANY:
4322 case SYMBOL_REF:
4323 case LABEL_REF:
4324 return true;
4326 case PC:
4327 return type == OP_IN;
4329 case CC0:
4330 return false;
4332 case REG:
4333 if (x == frame_pointer_rtx)
4334 return true;
4335 if (HARD_REGISTER_P (x))
4336 return false;
4338 return true;
4340 case MEM:
4341 if (type == OP_IN && MEM_READONLY_P (x))
4342 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4343 return false;
4345 case SET:
4346 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4347 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4349 case STRICT_LOW_PART:
4350 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4352 case ZERO_EXTRACT:
4353 case SIGN_EXTRACT:
4354 return (rtx_moveable_p (&XEXP (x, 0), type)
4355 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4356 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4358 case CLOBBER:
4359 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4361 default:
4362 break;
4365 fmt = GET_RTX_FORMAT (code);
4366 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4368 if (fmt[i] == 'e')
4370 if (!rtx_moveable_p (&XEXP (x, i), type))
4371 return false;
4373 else if (fmt[i] == 'E')
4374 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4376 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4377 return false;
4380 return true;
4383 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4384 to give dominance relationships between two insns I1 and I2. */
4385 static bool
4386 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4388 basic_block bb1 = BLOCK_FOR_INSN (i1);
4389 basic_block bb2 = BLOCK_FOR_INSN (i2);
4391 if (bb1 == bb2)
4392 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4393 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4396 /* Record the range of register numbers added by find_moveable_pseudos. */
4397 int first_moveable_pseudo, last_moveable_pseudo;
4399 /* These two vectors hold data for every register added by
4400 find_movable_pseudos, with index 0 holding data for the
4401 first_moveable_pseudo. */
4402 /* The original home register. */
4403 static vec<rtx> pseudo_replaced_reg;
4405 /* Look for instances where we have an instruction that is known to increase
4406 register pressure, and whose result is not used immediately. If it is
4407 possible to move the instruction downwards to just before its first use,
4408 split its lifetime into two ranges. We create a new pseudo to compute the
4409 value, and emit a move instruction just before the first use. If, after
4410 register allocation, the new pseudo remains unallocated, the function
4411 move_unallocated_pseudos then deletes the move instruction and places
4412 the computation just before the first use.
4414 Such a move is safe and profitable if all the input registers remain live
4415 and unchanged between the original computation and its first use. In such
4416 a situation, the computation is known to increase register pressure, and
4417 moving it is known to at least not worsen it.
4419 We restrict moves to only those cases where a register remains unallocated,
4420 in order to avoid interfering too much with the instruction schedule. As
4421 an exception, we may move insns which only modify their input register
4422 (typically induction variables), as this increases the freedom for our
4423 intended transformation, and does not limit the second instruction
4424 scheduler pass. */
4426 static void
4427 find_moveable_pseudos (void)
4429 unsigned i;
4430 int max_regs = max_reg_num ();
4431 int max_uid = get_max_uid ();
4432 basic_block bb;
4433 int *uid_luid = XNEWVEC (int, max_uid);
4434 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4435 /* A set of registers which are live but not modified throughout a block. */
4436 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4437 last_basic_block_for_fn (cfun));
4438 /* A set of registers which only exist in a given basic block. */
4439 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4440 last_basic_block_for_fn (cfun));
4441 /* A set of registers which are set once, in an instruction that can be
4442 moved freely downwards, but are otherwise transparent to a block. */
4443 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4444 last_basic_block_for_fn (cfun));
4445 bitmap_head live, used, set, interesting, unusable_as_input;
4446 bitmap_iterator bi;
4447 bitmap_initialize (&interesting, 0);
4449 first_moveable_pseudo = max_regs;
4450 pseudo_replaced_reg.release ();
4451 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4453 df_analyze ();
4454 calculate_dominance_info (CDI_DOMINATORS);
4456 i = 0;
4457 bitmap_initialize (&live, 0);
4458 bitmap_initialize (&used, 0);
4459 bitmap_initialize (&set, 0);
4460 bitmap_initialize (&unusable_as_input, 0);
4461 FOR_EACH_BB_FN (bb, cfun)
4463 rtx_insn *insn;
4464 bitmap transp = bb_transp_live + bb->index;
4465 bitmap moveable = bb_moveable_reg_sets + bb->index;
4466 bitmap local = bb_local + bb->index;
4468 bitmap_initialize (local, 0);
4469 bitmap_initialize (transp, 0);
4470 bitmap_initialize (moveable, 0);
4471 bitmap_copy (&live, df_get_live_out (bb));
4472 bitmap_and_into (&live, df_get_live_in (bb));
4473 bitmap_copy (transp, &live);
4474 bitmap_clear (moveable);
4475 bitmap_clear (&live);
4476 bitmap_clear (&used);
4477 bitmap_clear (&set);
4478 FOR_BB_INSNS (bb, insn)
4479 if (NONDEBUG_INSN_P (insn))
4481 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4482 df_ref def, use;
4484 uid_luid[INSN_UID (insn)] = i++;
4486 def = df_single_def (insn_info);
4487 use = df_single_use (insn_info);
4488 if (use
4489 && def
4490 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4491 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4492 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4494 unsigned regno = DF_REF_REGNO (use);
4495 bitmap_set_bit (moveable, regno);
4496 bitmap_set_bit (&set, regno);
4497 bitmap_set_bit (&used, regno);
4498 bitmap_clear_bit (transp, regno);
4499 continue;
4501 FOR_EACH_INSN_INFO_USE (use, insn_info)
4503 unsigned regno = DF_REF_REGNO (use);
4504 bitmap_set_bit (&used, regno);
4505 if (bitmap_clear_bit (moveable, regno))
4506 bitmap_clear_bit (transp, regno);
4509 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4511 unsigned regno = DF_REF_REGNO (def);
4512 bitmap_set_bit (&set, regno);
4513 bitmap_clear_bit (transp, regno);
4514 bitmap_clear_bit (moveable, regno);
4519 bitmap_clear (&live);
4520 bitmap_clear (&used);
4521 bitmap_clear (&set);
4523 FOR_EACH_BB_FN (bb, cfun)
4525 bitmap local = bb_local + bb->index;
4526 rtx_insn *insn;
4528 FOR_BB_INSNS (bb, insn)
4529 if (NONDEBUG_INSN_P (insn))
4531 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4532 rtx_insn *def_insn;
4533 rtx closest_use, note;
4534 df_ref def, use;
4535 unsigned regno;
4536 bool all_dominated, all_local;
4537 machine_mode mode;
4539 def = df_single_def (insn_info);
4540 /* There must be exactly one def in this insn. */
4541 if (!def || !single_set (insn))
4542 continue;
4543 /* This must be the only definition of the reg. We also limit
4544 which modes we deal with so that we can assume we can generate
4545 move instructions. */
4546 regno = DF_REF_REGNO (def);
4547 mode = GET_MODE (DF_REF_REG (def));
4548 if (DF_REG_DEF_COUNT (regno) != 1
4549 || !DF_REF_INSN_INFO (def)
4550 || HARD_REGISTER_NUM_P (regno)
4551 || DF_REG_EQ_USE_COUNT (regno) > 0
4552 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4553 continue;
4554 def_insn = DF_REF_INSN (def);
4556 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4557 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4558 break;
4560 if (note)
4562 if (dump_file)
4563 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4564 regno);
4565 bitmap_set_bit (&unusable_as_input, regno);
4566 continue;
4569 use = DF_REG_USE_CHAIN (regno);
4570 all_dominated = true;
4571 all_local = true;
4572 closest_use = NULL_RTX;
4573 for (; use; use = DF_REF_NEXT_REG (use))
4575 rtx_insn *insn;
4576 if (!DF_REF_INSN_INFO (use))
4578 all_dominated = false;
4579 all_local = false;
4580 break;
4582 insn = DF_REF_INSN (use);
4583 if (DEBUG_INSN_P (insn))
4584 continue;
4585 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4586 all_local = false;
4587 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4588 all_dominated = false;
4589 if (closest_use != insn && closest_use != const0_rtx)
4591 if (closest_use == NULL_RTX)
4592 closest_use = insn;
4593 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4594 closest_use = insn;
4595 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4596 closest_use = const0_rtx;
4599 if (!all_dominated)
4601 if (dump_file)
4602 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4603 regno);
4604 continue;
4606 if (all_local)
4607 bitmap_set_bit (local, regno);
4608 if (closest_use == const0_rtx || closest_use == NULL
4609 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4611 if (dump_file)
4612 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4613 closest_use == const0_rtx || closest_use == NULL
4614 ? " (no unique first use)" : "");
4615 continue;
4617 #ifdef HAVE_cc0
4618 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4620 if (dump_file)
4621 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4622 regno);
4623 continue;
4625 #endif
4626 bitmap_set_bit (&interesting, regno);
4627 /* If we get here, we know closest_use is a non-NULL insn
4628 (as opposed to const_0_rtx). */
4629 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4631 if (dump_file && (all_local || all_dominated))
4633 fprintf (dump_file, "Reg %u:", regno);
4634 if (all_local)
4635 fprintf (dump_file, " local to bb %d", bb->index);
4636 if (all_dominated)
4637 fprintf (dump_file, " def dominates all uses");
4638 if (closest_use != const0_rtx)
4639 fprintf (dump_file, " has unique first use");
4640 fputs ("\n", dump_file);
4645 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4647 df_ref def = DF_REG_DEF_CHAIN (i);
4648 rtx_insn *def_insn = DF_REF_INSN (def);
4649 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4650 bitmap def_bb_local = bb_local + def_block->index;
4651 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4652 bitmap def_bb_transp = bb_transp_live + def_block->index;
4653 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4654 rtx_insn *use_insn = closest_uses[i];
4655 df_ref use;
4656 bool all_ok = true;
4657 bool all_transp = true;
4659 if (!REG_P (DF_REF_REG (def)))
4660 continue;
4662 if (!local_to_bb_p)
4664 if (dump_file)
4665 fprintf (dump_file, "Reg %u not local to one basic block\n",
4667 continue;
4669 if (reg_equiv_init (i) != NULL_RTX)
4671 if (dump_file)
4672 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4674 continue;
4676 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4678 if (dump_file)
4679 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4680 INSN_UID (def_insn), i);
4681 continue;
4683 if (dump_file)
4684 fprintf (dump_file, "Examining insn %d, def for %d\n",
4685 INSN_UID (def_insn), i);
4686 FOR_EACH_INSN_USE (use, def_insn)
4688 unsigned regno = DF_REF_REGNO (use);
4689 if (bitmap_bit_p (&unusable_as_input, regno))
4691 all_ok = false;
4692 if (dump_file)
4693 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4694 break;
4696 if (!bitmap_bit_p (def_bb_transp, regno))
4698 if (bitmap_bit_p (def_bb_moveable, regno)
4699 && !control_flow_insn_p (use_insn)
4700 #ifdef HAVE_cc0
4701 && !sets_cc0_p (use_insn)
4702 #endif
4705 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4707 rtx_insn *x = NEXT_INSN (def_insn);
4708 while (!modified_in_p (DF_REF_REG (use), x))
4710 gcc_assert (x != use_insn);
4711 x = NEXT_INSN (x);
4713 if (dump_file)
4714 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4715 regno, INSN_UID (x));
4716 emit_insn_after (PATTERN (x), use_insn);
4717 set_insn_deleted (x);
4719 else
4721 if (dump_file)
4722 fprintf (dump_file, " input reg %u modified between def and use\n",
4723 regno);
4724 all_transp = false;
4727 else
4728 all_transp = false;
4731 if (!all_ok)
4732 continue;
4733 if (!dbg_cnt (ira_move))
4734 break;
4735 if (dump_file)
4736 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4738 if (all_transp)
4740 rtx def_reg = DF_REF_REG (def);
4741 rtx newreg = ira_create_new_reg (def_reg);
4742 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4744 unsigned nregno = REGNO (newreg);
4745 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4746 nregno -= max_regs;
4747 pseudo_replaced_reg[nregno] = def_reg;
4752 FOR_EACH_BB_FN (bb, cfun)
4754 bitmap_clear (bb_local + bb->index);
4755 bitmap_clear (bb_transp_live + bb->index);
4756 bitmap_clear (bb_moveable_reg_sets + bb->index);
4758 bitmap_clear (&interesting);
4759 bitmap_clear (&unusable_as_input);
4760 free (uid_luid);
4761 free (closest_uses);
4762 free (bb_local);
4763 free (bb_transp_live);
4764 free (bb_moveable_reg_sets);
4766 last_moveable_pseudo = max_reg_num ();
4768 fix_reg_equiv_init ();
4769 expand_reg_info ();
4770 regstat_free_n_sets_and_refs ();
4771 regstat_free_ri ();
4772 regstat_init_n_sets_and_refs ();
4773 regstat_compute_ri ();
4774 free_dominance_info (CDI_DOMINATORS);
4777 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4778 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4779 the destination. Otherwise return NULL. */
4781 static rtx
4782 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4784 rtx src = SET_SRC (set);
4785 rtx dest = SET_DEST (set);
4786 if (!REG_P (src) || !HARD_REGISTER_P (src)
4787 || !REG_P (dest) || HARD_REGISTER_P (dest)
4788 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4789 return NULL;
4790 return dest;
4793 /* If insn is interesting for parameter range-splitting shrink-wrapping
4794 preparation, i.e. it is a single set from a hard register to a pseudo, which
4795 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4796 parallel statement with only one such statement, return the destination.
4797 Otherwise return NULL. */
4799 static rtx
4800 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4802 if (!INSN_P (insn))
4803 return NULL;
4804 rtx pat = PATTERN (insn);
4805 if (GET_CODE (pat) == SET)
4806 return interesting_dest_for_shprep_1 (pat, call_dom);
4808 if (GET_CODE (pat) != PARALLEL)
4809 return NULL;
4810 rtx ret = NULL;
4811 for (int i = 0; i < XVECLEN (pat, 0); i++)
4813 rtx sub = XVECEXP (pat, 0, i);
4814 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4815 continue;
4816 if (GET_CODE (sub) != SET
4817 || side_effects_p (sub))
4818 return NULL;
4819 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4820 if (dest && ret)
4821 return NULL;
4822 if (dest)
4823 ret = dest;
4825 return ret;
4828 /* Split live ranges of pseudos that are loaded from hard registers in the
4829 first BB in a BB that dominates all non-sibling call if such a BB can be
4830 found and is not in a loop. Return true if the function has made any
4831 changes. */
4833 static bool
4834 split_live_ranges_for_shrink_wrap (void)
4836 basic_block bb, call_dom = NULL;
4837 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4838 rtx_insn *insn, *last_interesting_insn = NULL;
4839 bitmap_head need_new, reachable;
4840 vec<basic_block> queue;
4842 if (!SHRINK_WRAPPING_ENABLED)
4843 return false;
4845 bitmap_initialize (&need_new, 0);
4846 bitmap_initialize (&reachable, 0);
4847 queue.create (n_basic_blocks_for_fn (cfun));
4849 FOR_EACH_BB_FN (bb, cfun)
4850 FOR_BB_INSNS (bb, insn)
4851 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4853 if (bb == first)
4855 bitmap_clear (&need_new);
4856 bitmap_clear (&reachable);
4857 queue.release ();
4858 return false;
4861 bitmap_set_bit (&need_new, bb->index);
4862 bitmap_set_bit (&reachable, bb->index);
4863 queue.quick_push (bb);
4864 break;
4867 if (queue.is_empty ())
4869 bitmap_clear (&need_new);
4870 bitmap_clear (&reachable);
4871 queue.release ();
4872 return false;
4875 while (!queue.is_empty ())
4877 edge e;
4878 edge_iterator ei;
4880 bb = queue.pop ();
4881 FOR_EACH_EDGE (e, ei, bb->succs)
4882 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4883 && bitmap_set_bit (&reachable, e->dest->index))
4884 queue.quick_push (e->dest);
4886 queue.release ();
4888 FOR_BB_INSNS (first, insn)
4890 rtx dest = interesting_dest_for_shprep (insn, NULL);
4891 if (!dest)
4892 continue;
4894 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4896 bitmap_clear (&need_new);
4897 bitmap_clear (&reachable);
4898 return false;
4901 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4902 use;
4903 use = DF_REF_NEXT_REG (use))
4905 int ubbi = DF_REF_BB (use)->index;
4906 if (bitmap_bit_p (&reachable, ubbi))
4907 bitmap_set_bit (&need_new, ubbi);
4909 last_interesting_insn = insn;
4912 bitmap_clear (&reachable);
4913 if (!last_interesting_insn)
4915 bitmap_clear (&need_new);
4916 return false;
4919 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4920 bitmap_clear (&need_new);
4921 if (call_dom == first)
4922 return false;
4924 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4925 while (bb_loop_depth (call_dom) > 0)
4926 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4927 loop_optimizer_finalize ();
4929 if (call_dom == first)
4930 return false;
4932 calculate_dominance_info (CDI_POST_DOMINATORS);
4933 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4935 free_dominance_info (CDI_POST_DOMINATORS);
4936 return false;
4938 free_dominance_info (CDI_POST_DOMINATORS);
4940 if (dump_file)
4941 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4942 call_dom->index);
4944 bool ret = false;
4945 FOR_BB_INSNS (first, insn)
4947 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4948 if (!dest || dest == pic_offset_table_rtx)
4949 continue;
4951 rtx newreg = NULL_RTX;
4952 df_ref use, next;
4953 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4955 rtx_insn *uin = DF_REF_INSN (use);
4956 next = DF_REF_NEXT_REG (use);
4958 basic_block ubb = BLOCK_FOR_INSN (uin);
4959 if (ubb == call_dom
4960 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4962 if (!newreg)
4963 newreg = ira_create_new_reg (dest);
4964 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4968 if (newreg)
4970 rtx new_move = gen_move_insn (newreg, dest);
4971 emit_insn_after (new_move, bb_note (call_dom));
4972 if (dump_file)
4974 fprintf (dump_file, "Split live-range of register ");
4975 print_rtl_single (dump_file, dest);
4977 ret = true;
4980 if (insn == last_interesting_insn)
4981 break;
4983 apply_change_group ();
4984 return ret;
4987 /* Perform the second half of the transformation started in
4988 find_moveable_pseudos. We look for instances where the newly introduced
4989 pseudo remains unallocated, and remove it by moving the definition to
4990 just before its use, replacing the move instruction generated by
4991 find_moveable_pseudos. */
4992 static void
4993 move_unallocated_pseudos (void)
4995 int i;
4996 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4997 if (reg_renumber[i] < 0)
4999 int idx = i - first_moveable_pseudo;
5000 rtx other_reg = pseudo_replaced_reg[idx];
5001 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5002 /* The use must follow all definitions of OTHER_REG, so we can
5003 insert the new definition immediately after any of them. */
5004 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5005 rtx_insn *move_insn = DF_REF_INSN (other_def);
5006 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5007 rtx set;
5008 int success;
5010 if (dump_file)
5011 fprintf (dump_file, "moving def of %d (insn %d now) ",
5012 REGNO (other_reg), INSN_UID (def_insn));
5014 delete_insn (move_insn);
5015 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5016 delete_insn (DF_REF_INSN (other_def));
5017 delete_insn (def_insn);
5019 set = single_set (newinsn);
5020 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5021 gcc_assert (success);
5022 if (dump_file)
5023 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5024 INSN_UID (newinsn), i);
5025 SET_REG_N_REFS (i, 0);
5029 /* If the backend knows where to allocate pseudos for hard
5030 register initial values, register these allocations now. */
5031 static void
5032 allocate_initial_values (void)
5034 if (targetm.allocate_initial_value)
5036 rtx hreg, preg, x;
5037 int i, regno;
5039 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5041 if (! initial_value_entry (i, &hreg, &preg))
5042 break;
5044 x = targetm.allocate_initial_value (hreg);
5045 regno = REGNO (preg);
5046 if (x && REG_N_SETS (regno) <= 1)
5048 if (MEM_P (x))
5049 reg_equiv_memory_loc (regno) = x;
5050 else
5052 basic_block bb;
5053 int new_regno;
5055 gcc_assert (REG_P (x));
5056 new_regno = REGNO (x);
5057 reg_renumber[regno] = new_regno;
5058 /* Poke the regno right into regno_reg_rtx so that even
5059 fixed regs are accepted. */
5060 SET_REGNO (preg, new_regno);
5061 /* Update global register liveness information. */
5062 FOR_EACH_BB_FN (bb, cfun)
5064 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5065 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5066 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5067 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5073 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5074 &hreg, &preg));
5079 /* True when we use LRA instead of reload pass for the current
5080 function. */
5081 bool ira_use_lra_p;
5083 /* True if we have allocno conflicts. It is false for non-optimized
5084 mode or when the conflict table is too big. */
5085 bool ira_conflicts_p;
5087 /* Saved between IRA and reload. */
5088 static int saved_flag_ira_share_spill_slots;
5090 /* This is the main entry of IRA. */
5091 static void
5092 ira (FILE *f)
5094 bool loops_p;
5095 int ira_max_point_before_emit;
5096 int rebuild_p;
5097 bool saved_flag_caller_saves = flag_caller_saves;
5098 enum ira_region saved_flag_ira_region = flag_ira_region;
5100 /* Perform target specific PIC register initialization. */
5101 targetm.init_pic_reg ();
5103 ira_conflicts_p = optimize > 0;
5105 ira_use_lra_p = targetm.lra_p ();
5106 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5107 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5108 use simplified and faster algorithms in LRA. */
5109 lra_simple_p
5110 = (ira_use_lra_p
5111 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5112 if (lra_simple_p)
5114 /* It permits to skip live range splitting in LRA. */
5115 flag_caller_saves = false;
5116 /* There is no sense to do regional allocation when we use
5117 simplified LRA. */
5118 flag_ira_region = IRA_REGION_ONE;
5119 ira_conflicts_p = false;
5122 #ifndef IRA_NO_OBSTACK
5123 gcc_obstack_init (&ira_obstack);
5124 #endif
5125 bitmap_obstack_initialize (&ira_bitmap_obstack);
5127 /* LRA uses its own infrastructure to handle caller save registers. */
5128 if (flag_caller_saves && !ira_use_lra_p)
5129 init_caller_save ();
5131 if (flag_ira_verbose < 10)
5133 internal_flag_ira_verbose = flag_ira_verbose;
5134 ira_dump_file = f;
5136 else
5138 internal_flag_ira_verbose = flag_ira_verbose - 10;
5139 ira_dump_file = stderr;
5142 setup_prohibited_mode_move_regs ();
5143 decrease_live_ranges_number ();
5144 df_note_add_problem ();
5146 /* DF_LIVE can't be used in the register allocator, too many other
5147 parts of the compiler depend on using the "classic" liveness
5148 interpretation of the DF_LR problem. See PR38711.
5149 Remove the problem, so that we don't spend time updating it in
5150 any of the df_analyze() calls during IRA/LRA. */
5151 if (optimize > 1)
5152 df_remove_problem (df_live);
5153 gcc_checking_assert (df_live == NULL);
5155 #ifdef ENABLE_CHECKING
5156 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5157 #endif
5158 df_analyze ();
5160 init_reg_equiv ();
5161 if (ira_conflicts_p)
5163 calculate_dominance_info (CDI_DOMINATORS);
5165 if (split_live_ranges_for_shrink_wrap ())
5166 df_analyze ();
5168 free_dominance_info (CDI_DOMINATORS);
5171 df_clear_flags (DF_NO_INSN_RESCAN);
5173 regstat_init_n_sets_and_refs ();
5174 regstat_compute_ri ();
5176 /* If we are not optimizing, then this is the only place before
5177 register allocation where dataflow is done. And that is needed
5178 to generate these warnings. */
5179 if (warn_clobbered)
5180 generate_setjmp_warnings ();
5182 /* Determine if the current function is a leaf before running IRA
5183 since this can impact optimizations done by the prologue and
5184 epilogue thus changing register elimination offsets. */
5185 crtl->is_leaf = leaf_function_p ();
5187 if (resize_reg_info () && flag_ira_loop_pressure)
5188 ira_set_pseudo_classes (true, ira_dump_file);
5190 rebuild_p = update_equiv_regs ();
5191 setup_reg_equiv ();
5192 setup_reg_equiv_init ();
5194 if (optimize && rebuild_p)
5196 timevar_push (TV_JUMP);
5197 rebuild_jump_labels (get_insns ());
5198 if (purge_all_dead_edges ())
5199 delete_unreachable_blocks ();
5200 timevar_pop (TV_JUMP);
5203 allocated_reg_info_size = max_reg_num ();
5205 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5206 df_analyze ();
5208 /* It is not worth to do such improvement when we use a simple
5209 allocation because of -O0 usage or because the function is too
5210 big. */
5211 if (ira_conflicts_p)
5212 find_moveable_pseudos ();
5214 max_regno_before_ira = max_reg_num ();
5215 ira_setup_eliminable_regset ();
5217 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5218 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5219 ira_move_loops_num = ira_additional_jumps_num = 0;
5221 ira_assert (current_loops == NULL);
5222 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5223 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5225 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5226 fprintf (ira_dump_file, "Building IRA IR\n");
5227 loops_p = ira_build ();
5229 ira_assert (ira_conflicts_p || !loops_p);
5231 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5232 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5233 /* It is just wasting compiler's time to pack spilled pseudos into
5234 stack slots in this case -- prohibit it. We also do this if
5235 there is setjmp call because a variable not modified between
5236 setjmp and longjmp the compiler is required to preserve its
5237 value and sharing slots does not guarantee it. */
5238 flag_ira_share_spill_slots = FALSE;
5240 ira_color ();
5242 ira_max_point_before_emit = ira_max_point;
5244 ira_initiate_emit_data ();
5246 ira_emit (loops_p);
5248 max_regno = max_reg_num ();
5249 if (ira_conflicts_p)
5251 if (! loops_p)
5253 if (! ira_use_lra_p)
5254 ira_initiate_assign ();
5256 else
5258 expand_reg_info ();
5260 if (ira_use_lra_p)
5262 ira_allocno_t a;
5263 ira_allocno_iterator ai;
5265 FOR_EACH_ALLOCNO (a, ai)
5266 ALLOCNO_REGNO (a) = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5268 else
5270 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5271 fprintf (ira_dump_file, "Flattening IR\n");
5272 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5274 /* New insns were generated: add notes and recalculate live
5275 info. */
5276 df_analyze ();
5278 /* ??? Rebuild the loop tree, but why? Does the loop tree
5279 change if new insns were generated? Can that be handled
5280 by updating the loop tree incrementally? */
5281 loop_optimizer_finalize ();
5282 free_dominance_info (CDI_DOMINATORS);
5283 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5284 | LOOPS_HAVE_RECORDED_EXITS);
5286 if (! ira_use_lra_p)
5288 setup_allocno_assignment_flags ();
5289 ira_initiate_assign ();
5290 ira_reassign_conflict_allocnos (max_regno);
5295 ira_finish_emit_data ();
5297 setup_reg_renumber ();
5299 calculate_allocation_cost ();
5301 #ifdef ENABLE_IRA_CHECKING
5302 if (ira_conflicts_p)
5303 check_allocation ();
5304 #endif
5306 if (max_regno != max_regno_before_ira)
5308 regstat_free_n_sets_and_refs ();
5309 regstat_free_ri ();
5310 regstat_init_n_sets_and_refs ();
5311 regstat_compute_ri ();
5314 overall_cost_before = ira_overall_cost;
5315 if (! ira_conflicts_p)
5316 grow_reg_equivs ();
5317 else
5319 fix_reg_equiv_init ();
5321 #ifdef ENABLE_IRA_CHECKING
5322 print_redundant_copies ();
5323 #endif
5324 if (! ira_use_lra_p)
5326 ira_spilled_reg_stack_slots_num = 0;
5327 ira_spilled_reg_stack_slots
5328 = ((struct ira_spilled_reg_stack_slot *)
5329 ira_allocate (max_regno
5330 * sizeof (struct ira_spilled_reg_stack_slot)));
5331 memset (ira_spilled_reg_stack_slots, 0,
5332 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5335 allocate_initial_values ();
5337 /* See comment for find_moveable_pseudos call. */
5338 if (ira_conflicts_p)
5339 move_unallocated_pseudos ();
5341 /* Restore original values. */
5342 if (lra_simple_p)
5344 flag_caller_saves = saved_flag_caller_saves;
5345 flag_ira_region = saved_flag_ira_region;
5349 static void
5350 do_reload (void)
5352 basic_block bb;
5353 bool need_dce;
5354 unsigned pic_offset_table_regno = INVALID_REGNUM;
5356 if (flag_ira_verbose < 10)
5357 ira_dump_file = dump_file;
5359 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5360 after reload to avoid possible wrong usages of hard reg assigned
5361 to it. */
5362 if (pic_offset_table_rtx
5363 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5364 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5366 timevar_push (TV_RELOAD);
5367 if (ira_use_lra_p)
5369 if (current_loops != NULL)
5371 loop_optimizer_finalize ();
5372 free_dominance_info (CDI_DOMINATORS);
5374 FOR_ALL_BB_FN (bb, cfun)
5375 bb->loop_father = NULL;
5376 current_loops = NULL;
5378 ira_destroy ();
5380 lra (ira_dump_file);
5381 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5382 LRA. */
5383 vec_free (reg_equivs);
5384 reg_equivs = NULL;
5385 need_dce = false;
5387 else
5389 df_set_flags (DF_NO_INSN_RESCAN);
5390 build_insn_chain ();
5392 need_dce = reload (get_insns (), ira_conflicts_p);
5396 timevar_pop (TV_RELOAD);
5398 timevar_push (TV_IRA);
5400 if (ira_conflicts_p && ! ira_use_lra_p)
5402 ira_free (ira_spilled_reg_stack_slots);
5403 ira_finish_assign ();
5406 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5407 && overall_cost_before != ira_overall_cost)
5408 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
5410 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5412 if (! ira_use_lra_p)
5414 ira_destroy ();
5415 if (current_loops != NULL)
5417 loop_optimizer_finalize ();
5418 free_dominance_info (CDI_DOMINATORS);
5420 FOR_ALL_BB_FN (bb, cfun)
5421 bb->loop_father = NULL;
5422 current_loops = NULL;
5424 regstat_free_ri ();
5425 regstat_free_n_sets_and_refs ();
5428 if (optimize)
5429 cleanup_cfg (CLEANUP_EXPENSIVE);
5431 finish_reg_equiv ();
5433 bitmap_obstack_release (&ira_bitmap_obstack);
5434 #ifndef IRA_NO_OBSTACK
5435 obstack_free (&ira_obstack, NULL);
5436 #endif
5438 /* The code after the reload has changed so much that at this point
5439 we might as well just rescan everything. Note that
5440 df_rescan_all_insns is not going to help here because it does not
5441 touch the artificial uses and defs. */
5442 df_finish_pass (true);
5443 df_scan_alloc (NULL);
5444 df_scan_blocks ();
5446 if (optimize > 1)
5448 df_live_add_problem ();
5449 df_live_set_all_dirty ();
5452 if (optimize)
5453 df_analyze ();
5455 if (need_dce && optimize)
5456 run_fast_dce ();
5458 /* Diagnose uses of the hard frame pointer when it is used as a global
5459 register. Often we can get away with letting the user appropriate
5460 the frame pointer, but we should let them know when code generation
5461 makes that impossible. */
5462 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5464 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5465 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5466 "frame pointer required, but reserved");
5467 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5470 if (pic_offset_table_regno != INVALID_REGNUM)
5471 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5473 timevar_pop (TV_IRA);
5476 /* Run the integrated register allocator. */
5478 namespace {
5480 const pass_data pass_data_ira =
5482 RTL_PASS, /* type */
5483 "ira", /* name */
5484 OPTGROUP_NONE, /* optinfo_flags */
5485 TV_IRA, /* tv_id */
5486 0, /* properties_required */
5487 0, /* properties_provided */
5488 0, /* properties_destroyed */
5489 0, /* todo_flags_start */
5490 TODO_do_not_ggc_collect, /* todo_flags_finish */
5493 class pass_ira : public rtl_opt_pass
5495 public:
5496 pass_ira (gcc::context *ctxt)
5497 : rtl_opt_pass (pass_data_ira, ctxt)
5500 /* opt_pass methods: */
5501 virtual unsigned int execute (function *)
5503 ira (dump_file);
5504 return 0;
5507 }; // class pass_ira
5509 } // anon namespace
5511 rtl_opt_pass *
5512 make_pass_ira (gcc::context *ctxt)
5514 return new pass_ira (ctxt);
5517 namespace {
5519 const pass_data pass_data_reload =
5521 RTL_PASS, /* type */
5522 "reload", /* name */
5523 OPTGROUP_NONE, /* optinfo_flags */
5524 TV_RELOAD, /* tv_id */
5525 0, /* properties_required */
5526 0, /* properties_provided */
5527 0, /* properties_destroyed */
5528 0, /* todo_flags_start */
5529 0, /* todo_flags_finish */
5532 class pass_reload : public rtl_opt_pass
5534 public:
5535 pass_reload (gcc::context *ctxt)
5536 : rtl_opt_pass (pass_data_reload, ctxt)
5539 /* opt_pass methods: */
5540 virtual unsigned int execute (function *)
5542 do_reload ();
5543 return 0;
5546 }; // class pass_reload
5548 } // anon namespace
5550 rtl_opt_pass *
5551 make_pass_reload (gcc::context *ctxt)
5553 return new pass_reload (ctxt);