Merge trunk version 214779 into gupc branch.
[official-gcc.git] / gcc / function.c
blob4a5a170ef021af83e7576c1bef14913fd409807f
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
66 #include "shrink-wrap.h"
67 #include "toplev.h"
68 #include "rtl-iter.h"
70 /* So we can assign to cfun in this file. */
71 #undef cfun
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
77 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
79 /* Round a value to the lowest integer less than it that is a multiple of
80 the required alignment. Avoid using division in case the value is
81 negative. Assume the alignment is a power of two. */
82 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
84 /* Similar, but round to the next highest integer that meets the
85 alignment. */
86 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
88 /* Nonzero once virtual register instantiation has been done.
89 assign_stack_local uses frame_pointer_rtx when this is nonzero.
90 calls.c:emit_library_call_value_1 uses it to set up
91 post-instantiation libcalls. */
92 int virtuals_instantiated;
94 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
95 static GTY(()) int funcdef_no;
97 /* These variables hold pointers to functions to create and destroy
98 target specific, per-function data structures. */
99 struct machine_function * (*init_machine_status) (void);
101 /* The currently compiled function. */
102 struct function *cfun = 0;
104 /* These hashes record the prologue and epilogue insns. */
105 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
106 htab_t prologue_insn_hash;
107 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
108 htab_t epilogue_insn_hash;
111 htab_t types_used_by_vars_hash = NULL;
112 vec<tree, va_gc> *types_used_by_cur_var_decl;
114 /* Forward declarations. */
116 static struct temp_slot *find_temp_slot_from_address (rtx);
117 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
118 static void pad_below (struct args_size *, enum machine_mode, tree);
119 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
120 static int all_blocks (tree, tree *);
121 static tree *get_block_vector (tree, int *);
122 extern tree debug_find_var_in_block_tree (tree, tree);
123 /* We always define `record_insns' even if it's not used so that we
124 can always export `prologue_epilogue_contains'. */
125 static void record_insns (rtx_insn *, rtx, htab_t *) ATTRIBUTE_UNUSED;
126 static bool contains (const_rtx, htab_t);
127 static void prepare_function_start (void);
128 static void do_clobber_return_reg (rtx, void *);
129 static void do_use_return_reg (rtx, void *);
131 /* Stack of nested functions. */
132 /* Keep track of the cfun stack. */
134 typedef struct function *function_p;
136 static vec<function_p> function_context_stack;
138 /* Save the current context for compilation of a nested function.
139 This is called from language-specific code. */
141 void
142 push_function_context (void)
144 if (cfun == 0)
145 allocate_struct_function (NULL, false);
147 function_context_stack.safe_push (cfun);
148 set_cfun (NULL);
151 /* Restore the last saved context, at the end of a nested function.
152 This function is called from language-specific code. */
154 void
155 pop_function_context (void)
157 struct function *p = function_context_stack.pop ();
158 set_cfun (p);
159 current_function_decl = p->decl;
161 /* Reset variables that have known state during rtx generation. */
162 virtuals_instantiated = 0;
163 generating_concat_p = 1;
166 /* Clear out all parts of the state in F that can safely be discarded
167 after the function has been parsed, but not compiled, to let
168 garbage collection reclaim the memory. */
170 void
171 free_after_parsing (struct function *f)
173 f->language = 0;
176 /* Clear out all parts of the state in F that can safely be discarded
177 after the function has been compiled, to let garbage collection
178 reclaim the memory. */
180 void
181 free_after_compilation (struct function *f)
183 prologue_insn_hash = NULL;
184 epilogue_insn_hash = NULL;
186 free (crtl->emit.regno_pointer_align);
188 memset (crtl, 0, sizeof (struct rtl_data));
189 f->eh = NULL;
190 f->machine = NULL;
191 f->cfg = NULL;
193 regno_reg_rtx = NULL;
196 /* Return size needed for stack frame based on slots so far allocated.
197 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
198 the caller may have to do that. */
200 HOST_WIDE_INT
201 get_frame_size (void)
203 if (FRAME_GROWS_DOWNWARD)
204 return -frame_offset;
205 else
206 return frame_offset;
209 /* Issue an error message and return TRUE if frame OFFSET overflows in
210 the signed target pointer arithmetics for function FUNC. Otherwise
211 return FALSE. */
213 bool
214 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
216 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
218 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
219 /* Leave room for the fixed part of the frame. */
220 - 64 * UNITS_PER_WORD)
222 error_at (DECL_SOURCE_LOCATION (func),
223 "total size of local objects too large");
224 return TRUE;
227 return FALSE;
230 /* Return stack slot alignment in bits for TYPE and MODE. */
232 static unsigned int
233 get_stack_local_alignment (tree type, enum machine_mode mode)
235 unsigned int alignment;
237 if (mode == BLKmode)
238 alignment = BIGGEST_ALIGNMENT;
239 else
240 alignment = GET_MODE_ALIGNMENT (mode);
242 /* Allow the frond-end to (possibly) increase the alignment of this
243 stack slot. */
244 if (! type)
245 type = lang_hooks.types.type_for_mode (mode, 0);
247 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
250 /* Determine whether it is possible to fit a stack slot of size SIZE and
251 alignment ALIGNMENT into an area in the stack frame that starts at
252 frame offset START and has a length of LENGTH. If so, store the frame
253 offset to be used for the stack slot in *POFFSET and return true;
254 return false otherwise. This function will extend the frame size when
255 given a start/length pair that lies at the end of the frame. */
257 static bool
258 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
259 HOST_WIDE_INT size, unsigned int alignment,
260 HOST_WIDE_INT *poffset)
262 HOST_WIDE_INT this_frame_offset;
263 int frame_off, frame_alignment, frame_phase;
265 /* Calculate how many bytes the start of local variables is off from
266 stack alignment. */
267 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
268 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
269 frame_phase = frame_off ? frame_alignment - frame_off : 0;
271 /* Round the frame offset to the specified alignment. */
273 /* We must be careful here, since FRAME_OFFSET might be negative and
274 division with a negative dividend isn't as well defined as we might
275 like. So we instead assume that ALIGNMENT is a power of two and
276 use logical operations which are unambiguous. */
277 if (FRAME_GROWS_DOWNWARD)
278 this_frame_offset
279 = (FLOOR_ROUND (start + length - size - frame_phase,
280 (unsigned HOST_WIDE_INT) alignment)
281 + frame_phase);
282 else
283 this_frame_offset
284 = (CEIL_ROUND (start - frame_phase,
285 (unsigned HOST_WIDE_INT) alignment)
286 + frame_phase);
288 /* See if it fits. If this space is at the edge of the frame,
289 consider extending the frame to make it fit. Our caller relies on
290 this when allocating a new slot. */
291 if (frame_offset == start && this_frame_offset < frame_offset)
292 frame_offset = this_frame_offset;
293 else if (this_frame_offset < start)
294 return false;
295 else if (start + length == frame_offset
296 && this_frame_offset + size > start + length)
297 frame_offset = this_frame_offset + size;
298 else if (this_frame_offset + size > start + length)
299 return false;
301 *poffset = this_frame_offset;
302 return true;
305 /* Create a new frame_space structure describing free space in the stack
306 frame beginning at START and ending at END, and chain it into the
307 function's frame_space_list. */
309 static void
310 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
312 struct frame_space *space = ggc_alloc<frame_space> ();
313 space->next = crtl->frame_space_list;
314 crtl->frame_space_list = space;
315 space->start = start;
316 space->length = end - start;
319 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
320 with machine mode MODE.
322 ALIGN controls the amount of alignment for the address of the slot:
323 0 means according to MODE,
324 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
325 -2 means use BITS_PER_UNIT,
326 positive specifies alignment boundary in bits.
328 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
329 alignment and ASLK_RECORD_PAD bit set if we should remember
330 extra space we allocated for alignment purposes. When we are
331 called from assign_stack_temp_for_type, it is not set so we don't
332 track the same stack slot in two independent lists.
334 We do not round to stack_boundary here. */
337 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
338 int align, int kind)
340 rtx x, addr;
341 int bigend_correction = 0;
342 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
343 unsigned int alignment, alignment_in_bits;
345 if (align == 0)
347 alignment = get_stack_local_alignment (NULL, mode);
348 alignment /= BITS_PER_UNIT;
350 else if (align == -1)
352 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
353 size = CEIL_ROUND (size, alignment);
355 else if (align == -2)
356 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
357 else
358 alignment = align / BITS_PER_UNIT;
360 alignment_in_bits = alignment * BITS_PER_UNIT;
362 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
363 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
365 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
366 alignment = alignment_in_bits / BITS_PER_UNIT;
369 if (SUPPORTS_STACK_ALIGNMENT)
371 if (crtl->stack_alignment_estimated < alignment_in_bits)
373 if (!crtl->stack_realign_processed)
374 crtl->stack_alignment_estimated = alignment_in_bits;
375 else
377 /* If stack is realigned and stack alignment value
378 hasn't been finalized, it is OK not to increase
379 stack_alignment_estimated. The bigger alignment
380 requirement is recorded in stack_alignment_needed
381 below. */
382 gcc_assert (!crtl->stack_realign_finalized);
383 if (!crtl->stack_realign_needed)
385 /* It is OK to reduce the alignment as long as the
386 requested size is 0 or the estimated stack
387 alignment >= mode alignment. */
388 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
389 || size == 0
390 || (crtl->stack_alignment_estimated
391 >= GET_MODE_ALIGNMENT (mode)));
392 alignment_in_bits = crtl->stack_alignment_estimated;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
399 if (crtl->stack_alignment_needed < alignment_in_bits)
400 crtl->stack_alignment_needed = alignment_in_bits;
401 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
402 crtl->max_used_stack_slot_alignment = alignment_in_bits;
404 if (mode != BLKmode || size != 0)
406 if (kind & ASLK_RECORD_PAD)
408 struct frame_space **psp;
410 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
412 struct frame_space *space = *psp;
413 if (!try_fit_stack_local (space->start, space->length, size,
414 alignment, &slot_offset))
415 continue;
416 *psp = space->next;
417 if (slot_offset > space->start)
418 add_frame_space (space->start, slot_offset);
419 if (slot_offset + size < space->start + space->length)
420 add_frame_space (slot_offset + size,
421 space->start + space->length);
422 goto found_space;
426 else if (!STACK_ALIGNMENT_NEEDED)
428 slot_offset = frame_offset;
429 goto found_space;
432 old_frame_offset = frame_offset;
434 if (FRAME_GROWS_DOWNWARD)
436 frame_offset -= size;
437 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
439 if (kind & ASLK_RECORD_PAD)
441 if (slot_offset > frame_offset)
442 add_frame_space (frame_offset, slot_offset);
443 if (slot_offset + size < old_frame_offset)
444 add_frame_space (slot_offset + size, old_frame_offset);
447 else
449 frame_offset += size;
450 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
452 if (kind & ASLK_RECORD_PAD)
454 if (slot_offset > old_frame_offset)
455 add_frame_space (old_frame_offset, slot_offset);
456 if (slot_offset + size < frame_offset)
457 add_frame_space (slot_offset + size, frame_offset);
461 found_space:
462 /* On a big-endian machine, if we are allocating more space than we will use,
463 use the least significant bytes of those that are allocated. */
464 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
465 bigend_correction = size - GET_MODE_SIZE (mode);
467 /* If we have already instantiated virtual registers, return the actual
468 address relative to the frame pointer. */
469 if (virtuals_instantiated)
470 addr = plus_constant (Pmode, frame_pointer_rtx,
471 trunc_int_for_mode
472 (slot_offset + bigend_correction
473 + STARTING_FRAME_OFFSET, Pmode));
474 else
475 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
476 trunc_int_for_mode
477 (slot_offset + bigend_correction,
478 Pmode));
480 x = gen_rtx_MEM (mode, addr);
481 set_mem_align (x, alignment_in_bits);
482 MEM_NOTRAP_P (x) = 1;
484 stack_slot_list
485 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
487 if (frame_offset_overflow (frame_offset, current_function_decl))
488 frame_offset = 0;
490 return x;
493 /* Wrap up assign_stack_local_1 with last parameter as false. */
496 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
498 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
501 /* In order to evaluate some expressions, such as function calls returning
502 structures in memory, we need to temporarily allocate stack locations.
503 We record each allocated temporary in the following structure.
505 Associated with each temporary slot is a nesting level. When we pop up
506 one level, all temporaries associated with the previous level are freed.
507 Normally, all temporaries are freed after the execution of the statement
508 in which they were created. However, if we are inside a ({...}) grouping,
509 the result may be in a temporary and hence must be preserved. If the
510 result could be in a temporary, we preserve it if we can determine which
511 one it is in. If we cannot determine which temporary may contain the
512 result, all temporaries are preserved. A temporary is preserved by
513 pretending it was allocated at the previous nesting level. */
515 struct GTY(()) temp_slot {
516 /* Points to next temporary slot. */
517 struct temp_slot *next;
518 /* Points to previous temporary slot. */
519 struct temp_slot *prev;
520 /* The rtx to used to reference the slot. */
521 rtx slot;
522 /* The size, in units, of the slot. */
523 HOST_WIDE_INT size;
524 /* The type of the object in the slot, or zero if it doesn't correspond
525 to a type. We use this to determine whether a slot can be reused.
526 It can be reused if objects of the type of the new slot will always
527 conflict with objects of the type of the old slot. */
528 tree type;
529 /* The alignment (in bits) of the slot. */
530 unsigned int align;
531 /* Nonzero if this temporary is currently in use. */
532 char in_use;
533 /* Nesting level at which this slot is being used. */
534 int level;
535 /* The offset of the slot from the frame_pointer, including extra space
536 for alignment. This info is for combine_temp_slots. */
537 HOST_WIDE_INT base_offset;
538 /* The size of the slot, including extra space for alignment. This
539 info is for combine_temp_slots. */
540 HOST_WIDE_INT full_size;
543 /* A table of addresses that represent a stack slot. The table is a mapping
544 from address RTXen to a temp slot. */
545 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
546 static size_t n_temp_slots_in_use;
548 /* Entry for the above hash table. */
549 struct GTY(()) temp_slot_address_entry {
550 hashval_t hash;
551 rtx address;
552 struct temp_slot *temp_slot;
555 /* Removes temporary slot TEMP from LIST. */
557 static void
558 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
560 if (temp->next)
561 temp->next->prev = temp->prev;
562 if (temp->prev)
563 temp->prev->next = temp->next;
564 else
565 *list = temp->next;
567 temp->prev = temp->next = NULL;
570 /* Inserts temporary slot TEMP to LIST. */
572 static void
573 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
575 temp->next = *list;
576 if (*list)
577 (*list)->prev = temp;
578 temp->prev = NULL;
579 *list = temp;
582 /* Returns the list of used temp slots at LEVEL. */
584 static struct temp_slot **
585 temp_slots_at_level (int level)
587 if (level >= (int) vec_safe_length (used_temp_slots))
588 vec_safe_grow_cleared (used_temp_slots, level + 1);
590 return &(*used_temp_slots)[level];
593 /* Returns the maximal temporary slot level. */
595 static int
596 max_slot_level (void)
598 if (!used_temp_slots)
599 return -1;
601 return used_temp_slots->length () - 1;
604 /* Moves temporary slot TEMP to LEVEL. */
606 static void
607 move_slot_to_level (struct temp_slot *temp, int level)
609 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
610 insert_slot_to_list (temp, temp_slots_at_level (level));
611 temp->level = level;
614 /* Make temporary slot TEMP available. */
616 static void
617 make_slot_available (struct temp_slot *temp)
619 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
620 insert_slot_to_list (temp, &avail_temp_slots);
621 temp->in_use = 0;
622 temp->level = -1;
623 n_temp_slots_in_use--;
626 /* Compute the hash value for an address -> temp slot mapping.
627 The value is cached on the mapping entry. */
628 static hashval_t
629 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
631 int do_not_record = 0;
632 return hash_rtx (t->address, GET_MODE (t->address),
633 &do_not_record, NULL, false);
636 /* Return the hash value for an address -> temp slot mapping. */
637 static hashval_t
638 temp_slot_address_hash (const void *p)
640 const struct temp_slot_address_entry *t;
641 t = (const struct temp_slot_address_entry *) p;
642 return t->hash;
645 /* Compare two address -> temp slot mapping entries. */
646 static int
647 temp_slot_address_eq (const void *p1, const void *p2)
649 const struct temp_slot_address_entry *t1, *t2;
650 t1 = (const struct temp_slot_address_entry *) p1;
651 t2 = (const struct temp_slot_address_entry *) p2;
652 return exp_equiv_p (t1->address, t2->address, 0, true);
655 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
656 static void
657 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
659 void **slot;
660 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
661 t->address = address;
662 t->temp_slot = temp_slot;
663 t->hash = temp_slot_address_compute_hash (t);
664 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
665 *slot = t;
668 /* Remove an address -> temp slot mapping entry if the temp slot is
669 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
670 static int
671 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
673 const struct temp_slot_address_entry *t;
674 t = (const struct temp_slot_address_entry *) *slot;
675 if (! t->temp_slot->in_use)
676 htab_clear_slot (temp_slot_address_table, slot);
677 return 1;
680 /* Remove all mappings of addresses to unused temp slots. */
681 static void
682 remove_unused_temp_slot_addresses (void)
684 /* Use quicker clearing if there aren't any active temp slots. */
685 if (n_temp_slots_in_use)
686 htab_traverse (temp_slot_address_table,
687 remove_unused_temp_slot_addresses_1,
688 NULL);
689 else
690 htab_empty (temp_slot_address_table);
693 /* Find the temp slot corresponding to the object at address X. */
695 static struct temp_slot *
696 find_temp_slot_from_address (rtx x)
698 struct temp_slot *p;
699 struct temp_slot_address_entry tmp, *t;
701 /* First try the easy way:
702 See if X exists in the address -> temp slot mapping. */
703 tmp.address = x;
704 tmp.temp_slot = NULL;
705 tmp.hash = temp_slot_address_compute_hash (&tmp);
706 t = (struct temp_slot_address_entry *)
707 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
708 if (t)
709 return t->temp_slot;
711 /* If we have a sum involving a register, see if it points to a temp
712 slot. */
713 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
714 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
715 return p;
716 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
717 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
718 return p;
720 /* Last resort: Address is a virtual stack var address. */
721 if (GET_CODE (x) == PLUS
722 && XEXP (x, 0) == virtual_stack_vars_rtx
723 && CONST_INT_P (XEXP (x, 1)))
725 int i;
726 for (i = max_slot_level (); i >= 0; i--)
727 for (p = *temp_slots_at_level (i); p; p = p->next)
729 if (INTVAL (XEXP (x, 1)) >= p->base_offset
730 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
731 return p;
735 return NULL;
738 /* Allocate a temporary stack slot and record it for possible later
739 reuse.
741 MODE is the machine mode to be given to the returned rtx.
743 SIZE is the size in units of the space required. We do no rounding here
744 since assign_stack_local will do any required rounding.
746 TYPE is the type that will be used for the stack slot. */
749 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
750 tree type)
752 unsigned int align;
753 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
754 rtx slot;
756 /* If SIZE is -1 it means that somebody tried to allocate a temporary
757 of a variable size. */
758 gcc_assert (size != -1);
760 align = get_stack_local_alignment (type, mode);
762 /* Try to find an available, already-allocated temporary of the proper
763 mode which meets the size and alignment requirements. Choose the
764 smallest one with the closest alignment.
766 If assign_stack_temp is called outside of the tree->rtl expansion,
767 we cannot reuse the stack slots (that may still refer to
768 VIRTUAL_STACK_VARS_REGNUM). */
769 if (!virtuals_instantiated)
771 for (p = avail_temp_slots; p; p = p->next)
773 if (p->align >= align && p->size >= size
774 && GET_MODE (p->slot) == mode
775 && objects_must_conflict_p (p->type, type)
776 && (best_p == 0 || best_p->size > p->size
777 || (best_p->size == p->size && best_p->align > p->align)))
779 if (p->align == align && p->size == size)
781 selected = p;
782 cut_slot_from_list (selected, &avail_temp_slots);
783 best_p = 0;
784 break;
786 best_p = p;
791 /* Make our best, if any, the one to use. */
792 if (best_p)
794 selected = best_p;
795 cut_slot_from_list (selected, &avail_temp_slots);
797 /* If there are enough aligned bytes left over, make them into a new
798 temp_slot so that the extra bytes don't get wasted. Do this only
799 for BLKmode slots, so that we can be sure of the alignment. */
800 if (GET_MODE (best_p->slot) == BLKmode)
802 int alignment = best_p->align / BITS_PER_UNIT;
803 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
805 if (best_p->size - rounded_size >= alignment)
807 p = ggc_alloc<temp_slot> ();
808 p->in_use = 0;
809 p->size = best_p->size - rounded_size;
810 p->base_offset = best_p->base_offset + rounded_size;
811 p->full_size = best_p->full_size - rounded_size;
812 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
813 p->align = best_p->align;
814 p->type = best_p->type;
815 insert_slot_to_list (p, &avail_temp_slots);
817 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
818 stack_slot_list);
820 best_p->size = rounded_size;
821 best_p->full_size = rounded_size;
826 /* If we still didn't find one, make a new temporary. */
827 if (selected == 0)
829 HOST_WIDE_INT frame_offset_old = frame_offset;
831 p = ggc_alloc<temp_slot> ();
833 /* We are passing an explicit alignment request to assign_stack_local.
834 One side effect of that is assign_stack_local will not round SIZE
835 to ensure the frame offset remains suitably aligned.
837 So for requests which depended on the rounding of SIZE, we go ahead
838 and round it now. We also make sure ALIGNMENT is at least
839 BIGGEST_ALIGNMENT. */
840 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
841 p->slot = assign_stack_local_1 (mode,
842 (mode == BLKmode
843 ? CEIL_ROUND (size,
844 (int) align
845 / BITS_PER_UNIT)
846 : size),
847 align, 0);
849 p->align = align;
851 /* The following slot size computation is necessary because we don't
852 know the actual size of the temporary slot until assign_stack_local
853 has performed all the frame alignment and size rounding for the
854 requested temporary. Note that extra space added for alignment
855 can be either above or below this stack slot depending on which
856 way the frame grows. We include the extra space if and only if it
857 is above this slot. */
858 if (FRAME_GROWS_DOWNWARD)
859 p->size = frame_offset_old - frame_offset;
860 else
861 p->size = size;
863 /* Now define the fields used by combine_temp_slots. */
864 if (FRAME_GROWS_DOWNWARD)
866 p->base_offset = frame_offset;
867 p->full_size = frame_offset_old - frame_offset;
869 else
871 p->base_offset = frame_offset_old;
872 p->full_size = frame_offset - frame_offset_old;
875 selected = p;
878 p = selected;
879 p->in_use = 1;
880 p->type = type;
881 p->level = temp_slot_level;
882 n_temp_slots_in_use++;
884 pp = temp_slots_at_level (p->level);
885 insert_slot_to_list (p, pp);
886 insert_temp_slot_address (XEXP (p->slot, 0), p);
888 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
889 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
890 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
892 /* If we know the alias set for the memory that will be used, use
893 it. If there's no TYPE, then we don't know anything about the
894 alias set for the memory. */
895 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
896 set_mem_align (slot, align);
898 /* If a type is specified, set the relevant flags. */
899 if (type != 0)
900 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
901 MEM_NOTRAP_P (slot) = 1;
903 return slot;
906 /* Allocate a temporary stack slot and record it for possible later
907 reuse. First two arguments are same as in preceding function. */
910 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
912 return assign_stack_temp_for_type (mode, size, NULL_TREE);
915 /* Assign a temporary.
916 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
917 and so that should be used in error messages. In either case, we
918 allocate of the given type.
919 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
920 it is 0 if a register is OK.
921 DONT_PROMOTE is 1 if we should not promote values in register
922 to wider modes. */
925 assign_temp (tree type_or_decl, int memory_required,
926 int dont_promote ATTRIBUTE_UNUSED)
928 tree type, decl;
929 enum machine_mode mode;
930 #ifdef PROMOTE_MODE
931 int unsignedp;
932 #endif
934 if (DECL_P (type_or_decl))
935 decl = type_or_decl, type = TREE_TYPE (decl);
936 else
937 decl = NULL, type = type_or_decl;
939 mode = TYPE_MODE (type);
940 #ifdef PROMOTE_MODE
941 unsignedp = TYPE_UNSIGNED (type);
942 #endif
944 if (mode == BLKmode || memory_required)
946 HOST_WIDE_INT size = int_size_in_bytes (type);
947 rtx tmp;
949 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
950 problems with allocating the stack space. */
951 if (size == 0)
952 size = 1;
954 /* Unfortunately, we don't yet know how to allocate variable-sized
955 temporaries. However, sometimes we can find a fixed upper limit on
956 the size, so try that instead. */
957 else if (size == -1)
958 size = max_int_size_in_bytes (type);
960 /* The size of the temporary may be too large to fit into an integer. */
961 /* ??? Not sure this should happen except for user silliness, so limit
962 this to things that aren't compiler-generated temporaries. The
963 rest of the time we'll die in assign_stack_temp_for_type. */
964 if (decl && size == -1
965 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
967 error ("size of variable %q+D is too large", decl);
968 size = 1;
971 tmp = assign_stack_temp_for_type (mode, size, type);
972 return tmp;
975 #ifdef PROMOTE_MODE
976 if (! dont_promote)
977 mode = promote_mode (type, mode, &unsignedp);
978 #endif
980 return gen_reg_rtx (mode);
983 /* Combine temporary stack slots which are adjacent on the stack.
985 This allows for better use of already allocated stack space. This is only
986 done for BLKmode slots because we can be sure that we won't have alignment
987 problems in this case. */
989 static void
990 combine_temp_slots (void)
992 struct temp_slot *p, *q, *next, *next_q;
993 int num_slots;
995 /* We can't combine slots, because the information about which slot
996 is in which alias set will be lost. */
997 if (flag_strict_aliasing)
998 return;
1000 /* If there are a lot of temp slots, don't do anything unless
1001 high levels of optimization. */
1002 if (! flag_expensive_optimizations)
1003 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1004 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1005 return;
1007 for (p = avail_temp_slots; p; p = next)
1009 int delete_p = 0;
1011 next = p->next;
1013 if (GET_MODE (p->slot) != BLKmode)
1014 continue;
1016 for (q = p->next; q; q = next_q)
1018 int delete_q = 0;
1020 next_q = q->next;
1022 if (GET_MODE (q->slot) != BLKmode)
1023 continue;
1025 if (p->base_offset + p->full_size == q->base_offset)
1027 /* Q comes after P; combine Q into P. */
1028 p->size += q->size;
1029 p->full_size += q->full_size;
1030 delete_q = 1;
1032 else if (q->base_offset + q->full_size == p->base_offset)
1034 /* P comes after Q; combine P into Q. */
1035 q->size += p->size;
1036 q->full_size += p->full_size;
1037 delete_p = 1;
1038 break;
1040 if (delete_q)
1041 cut_slot_from_list (q, &avail_temp_slots);
1044 /* Either delete P or advance past it. */
1045 if (delete_p)
1046 cut_slot_from_list (p, &avail_temp_slots);
1050 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1051 slot that previously was known by OLD_RTX. */
1053 void
1054 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1056 struct temp_slot *p;
1058 if (rtx_equal_p (old_rtx, new_rtx))
1059 return;
1061 p = find_temp_slot_from_address (old_rtx);
1063 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1064 NEW_RTX is a register, see if one operand of the PLUS is a
1065 temporary location. If so, NEW_RTX points into it. Otherwise,
1066 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1067 in common between them. If so, try a recursive call on those
1068 values. */
1069 if (p == 0)
1071 if (GET_CODE (old_rtx) != PLUS)
1072 return;
1074 if (REG_P (new_rtx))
1076 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1077 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1078 return;
1080 else if (GET_CODE (new_rtx) != PLUS)
1081 return;
1083 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1084 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1085 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1086 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1087 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1092 return;
1095 /* Otherwise add an alias for the temp's address. */
1096 insert_temp_slot_address (new_rtx, p);
1099 /* If X could be a reference to a temporary slot, mark that slot as
1100 belonging to the to one level higher than the current level. If X
1101 matched one of our slots, just mark that one. Otherwise, we can't
1102 easily predict which it is, so upgrade all of them.
1104 This is called when an ({...}) construct occurs and a statement
1105 returns a value in memory. */
1107 void
1108 preserve_temp_slots (rtx x)
1110 struct temp_slot *p = 0, *next;
1112 if (x == 0)
1113 return;
1115 /* If X is a register that is being used as a pointer, see if we have
1116 a temporary slot we know it points to. */
1117 if (REG_P (x) && REG_POINTER (x))
1118 p = find_temp_slot_from_address (x);
1120 /* If X is not in memory or is at a constant address, it cannot be in
1121 a temporary slot. */
1122 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1123 return;
1125 /* First see if we can find a match. */
1126 if (p == 0)
1127 p = find_temp_slot_from_address (XEXP (x, 0));
1129 if (p != 0)
1131 if (p->level == temp_slot_level)
1132 move_slot_to_level (p, temp_slot_level - 1);
1133 return;
1136 /* Otherwise, preserve all non-kept slots at this level. */
1137 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1139 next = p->next;
1140 move_slot_to_level (p, temp_slot_level - 1);
1144 /* Free all temporaries used so far. This is normally called at the
1145 end of generating code for a statement. */
1147 void
1148 free_temp_slots (void)
1150 struct temp_slot *p, *next;
1151 bool some_available = false;
1153 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1155 next = p->next;
1156 make_slot_available (p);
1157 some_available = true;
1160 if (some_available)
1162 remove_unused_temp_slot_addresses ();
1163 combine_temp_slots ();
1167 /* Push deeper into the nesting level for stack temporaries. */
1169 void
1170 push_temp_slots (void)
1172 temp_slot_level++;
1175 /* Pop a temporary nesting level. All slots in use in the current level
1176 are freed. */
1178 void
1179 pop_temp_slots (void)
1181 free_temp_slots ();
1182 temp_slot_level--;
1185 /* Initialize temporary slots. */
1187 void
1188 init_temp_slots (void)
1190 /* We have not allocated any temporaries yet. */
1191 avail_temp_slots = 0;
1192 vec_alloc (used_temp_slots, 0);
1193 temp_slot_level = 0;
1194 n_temp_slots_in_use = 0;
1196 /* Set up the table to map addresses to temp slots. */
1197 if (! temp_slot_address_table)
1198 temp_slot_address_table = htab_create_ggc (32,
1199 temp_slot_address_hash,
1200 temp_slot_address_eq,
1201 NULL);
1202 else
1203 htab_empty (temp_slot_address_table);
1206 /* Functions and data structures to keep track of the values hard regs
1207 had at the start of the function. */
1209 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1210 and has_hard_reg_initial_val.. */
1211 typedef struct GTY(()) initial_value_pair {
1212 rtx hard_reg;
1213 rtx pseudo;
1214 } initial_value_pair;
1215 /* ??? This could be a VEC but there is currently no way to define an
1216 opaque VEC type. This could be worked around by defining struct
1217 initial_value_pair in function.h. */
1218 typedef struct GTY(()) initial_value_struct {
1219 int num_entries;
1220 int max_entries;
1221 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1222 } initial_value_struct;
1224 /* If a pseudo represents an initial hard reg (or expression), return
1225 it, else return NULL_RTX. */
1228 get_hard_reg_initial_reg (rtx reg)
1230 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1231 int i;
1233 if (ivs == 0)
1234 return NULL_RTX;
1236 for (i = 0; i < ivs->num_entries; i++)
1237 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1238 return ivs->entries[i].hard_reg;
1240 return NULL_RTX;
1243 /* Make sure that there's a pseudo register of mode MODE that stores the
1244 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1247 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1249 struct initial_value_struct *ivs;
1250 rtx rv;
1252 rv = has_hard_reg_initial_val (mode, regno);
1253 if (rv)
1254 return rv;
1256 ivs = crtl->hard_reg_initial_vals;
1257 if (ivs == 0)
1259 ivs = ggc_alloc<initial_value_struct> ();
1260 ivs->num_entries = 0;
1261 ivs->max_entries = 5;
1262 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1263 crtl->hard_reg_initial_vals = ivs;
1266 if (ivs->num_entries >= ivs->max_entries)
1268 ivs->max_entries += 5;
1269 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1270 ivs->max_entries);
1273 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1274 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1276 return ivs->entries[ivs->num_entries++].pseudo;
1279 /* See if get_hard_reg_initial_val has been used to create a pseudo
1280 for the initial value of hard register REGNO in mode MODE. Return
1281 the associated pseudo if so, otherwise return NULL. */
1284 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1286 struct initial_value_struct *ivs;
1287 int i;
1289 ivs = crtl->hard_reg_initial_vals;
1290 if (ivs != 0)
1291 for (i = 0; i < ivs->num_entries; i++)
1292 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1293 && REGNO (ivs->entries[i].hard_reg) == regno)
1294 return ivs->entries[i].pseudo;
1296 return NULL_RTX;
1299 unsigned int
1300 emit_initial_value_sets (void)
1302 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1303 int i;
1304 rtx_insn *seq;
1306 if (ivs == 0)
1307 return 0;
1309 start_sequence ();
1310 for (i = 0; i < ivs->num_entries; i++)
1311 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1312 seq = get_insns ();
1313 end_sequence ();
1315 emit_insn_at_entry (seq);
1316 return 0;
1319 /* Return the hardreg-pseudoreg initial values pair entry I and
1320 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1321 bool
1322 initial_value_entry (int i, rtx *hreg, rtx *preg)
1324 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1325 if (!ivs || i >= ivs->num_entries)
1326 return false;
1328 *hreg = ivs->entries[i].hard_reg;
1329 *preg = ivs->entries[i].pseudo;
1330 return true;
1333 /* These routines are responsible for converting virtual register references
1334 to the actual hard register references once RTL generation is complete.
1336 The following four variables are used for communication between the
1337 routines. They contain the offsets of the virtual registers from their
1338 respective hard registers. */
1340 static int in_arg_offset;
1341 static int var_offset;
1342 static int dynamic_offset;
1343 static int out_arg_offset;
1344 static int cfa_offset;
1346 /* In most machines, the stack pointer register is equivalent to the bottom
1347 of the stack. */
1349 #ifndef STACK_POINTER_OFFSET
1350 #define STACK_POINTER_OFFSET 0
1351 #endif
1353 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1354 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1355 #endif
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1361 #ifndef STACK_DYNAMIC_OFFSET
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1371 #ifdef INCOMING_REG_PARM_STACK_SPACE
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1396 if (x == virtual_incoming_args_rtx)
1398 if (stack_realign_drap)
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1428 else
1429 return NULL_RTX;
1431 *poffset = offset;
1432 return new_rtx;
1435 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1436 registers present inside of *LOC. The expression is simplified,
1437 as much as possible, but is not to be considered "valid" in any sense
1438 implied by the target. Return true if any change is made. */
1440 static bool
1441 instantiate_virtual_regs_in_rtx (rtx *loc)
1443 if (!*loc)
1444 return false;
1445 bool changed = false;
1446 subrtx_ptr_iterator::array_type array;
1447 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1449 rtx *loc = *iter;
1450 if (rtx x = *loc)
1452 rtx new_rtx;
1453 HOST_WIDE_INT offset;
1454 switch (GET_CODE (x))
1456 case REG:
1457 new_rtx = instantiate_new_reg (x, &offset);
1458 if (new_rtx)
1460 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1461 changed = true;
1463 iter.skip_subrtxes ();
1464 break;
1466 case PLUS:
1467 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1468 if (new_rtx)
1470 XEXP (x, 0) = new_rtx;
1471 *loc = plus_constant (GET_MODE (x), x, offset, true);
1472 changed = true;
1473 iter.skip_subrtxes ();
1474 break;
1477 /* FIXME -- from old code */
1478 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1479 we can commute the PLUS and SUBREG because pointers into the
1480 frame are well-behaved. */
1481 break;
1483 default:
1484 break;
1488 return changed;
1491 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1492 matches the predicate for insn CODE operand OPERAND. */
1494 static int
1495 safe_insn_predicate (int code, int operand, rtx x)
1497 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1500 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1501 registers present inside of insn. The result will be a valid insn. */
1503 static void
1504 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1506 HOST_WIDE_INT offset;
1507 int insn_code, i;
1508 bool any_change = false;
1509 rtx set, new_rtx, x;
1510 rtx_insn *seq;
1512 /* There are some special cases to be handled first. */
1513 set = single_set (insn);
1514 if (set)
1516 /* We're allowed to assign to a virtual register. This is interpreted
1517 to mean that the underlying register gets assigned the inverse
1518 transformation. This is used, for example, in the handling of
1519 non-local gotos. */
1520 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1521 if (new_rtx)
1523 start_sequence ();
1525 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1526 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1527 gen_int_mode (-offset, GET_MODE (new_rtx)));
1528 x = force_operand (x, new_rtx);
1529 if (x != new_rtx)
1530 emit_move_insn (new_rtx, x);
1532 seq = get_insns ();
1533 end_sequence ();
1535 emit_insn_before (seq, insn);
1536 delete_insn (insn);
1537 return;
1540 /* Handle a straight copy from a virtual register by generating a
1541 new add insn. The difference between this and falling through
1542 to the generic case is avoiding a new pseudo and eliminating a
1543 move insn in the initial rtl stream. */
1544 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1545 if (new_rtx && offset != 0
1546 && REG_P (SET_DEST (set))
1547 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1549 start_sequence ();
1551 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1552 gen_int_mode (offset,
1553 GET_MODE (SET_DEST (set))),
1554 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1555 if (x != SET_DEST (set))
1556 emit_move_insn (SET_DEST (set), x);
1558 seq = get_insns ();
1559 end_sequence ();
1561 emit_insn_before (seq, insn);
1562 delete_insn (insn);
1563 return;
1566 extract_insn (insn);
1567 insn_code = INSN_CODE (insn);
1569 /* Handle a plus involving a virtual register by determining if the
1570 operands remain valid if they're modified in place. */
1571 if (GET_CODE (SET_SRC (set)) == PLUS
1572 && recog_data.n_operands >= 3
1573 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1574 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1575 && CONST_INT_P (recog_data.operand[2])
1576 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1578 offset += INTVAL (recog_data.operand[2]);
1580 /* If the sum is zero, then replace with a plain move. */
1581 if (offset == 0
1582 && REG_P (SET_DEST (set))
1583 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1585 start_sequence ();
1586 emit_move_insn (SET_DEST (set), new_rtx);
1587 seq = get_insns ();
1588 end_sequence ();
1590 emit_insn_before (seq, insn);
1591 delete_insn (insn);
1592 return;
1595 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1597 /* Using validate_change and apply_change_group here leaves
1598 recog_data in an invalid state. Since we know exactly what
1599 we want to check, do those two by hand. */
1600 if (safe_insn_predicate (insn_code, 1, new_rtx)
1601 && safe_insn_predicate (insn_code, 2, x))
1603 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1604 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1605 any_change = true;
1607 /* Fall through into the regular operand fixup loop in
1608 order to take care of operands other than 1 and 2. */
1612 else
1614 extract_insn (insn);
1615 insn_code = INSN_CODE (insn);
1618 /* In the general case, we expect virtual registers to appear only in
1619 operands, and then only as either bare registers or inside memories. */
1620 for (i = 0; i < recog_data.n_operands; ++i)
1622 x = recog_data.operand[i];
1623 switch (GET_CODE (x))
1625 case MEM:
1627 rtx addr = XEXP (x, 0);
1629 if (!instantiate_virtual_regs_in_rtx (&addr))
1630 continue;
1632 start_sequence ();
1633 x = replace_equiv_address (x, addr, true);
1634 /* It may happen that the address with the virtual reg
1635 was valid (e.g. based on the virtual stack reg, which might
1636 be acceptable to the predicates with all offsets), whereas
1637 the address now isn't anymore, for instance when the address
1638 is still offsetted, but the base reg isn't virtual-stack-reg
1639 anymore. Below we would do a force_reg on the whole operand,
1640 but this insn might actually only accept memory. Hence,
1641 before doing that last resort, try to reload the address into
1642 a register, so this operand stays a MEM. */
1643 if (!safe_insn_predicate (insn_code, i, x))
1645 addr = force_reg (GET_MODE (addr), addr);
1646 x = replace_equiv_address (x, addr, true);
1648 seq = get_insns ();
1649 end_sequence ();
1650 if (seq)
1651 emit_insn_before (seq, insn);
1653 break;
1655 case REG:
1656 new_rtx = instantiate_new_reg (x, &offset);
1657 if (new_rtx == NULL)
1658 continue;
1659 if (offset == 0)
1660 x = new_rtx;
1661 else
1663 start_sequence ();
1665 /* Careful, special mode predicates may have stuff in
1666 insn_data[insn_code].operand[i].mode that isn't useful
1667 to us for computing a new value. */
1668 /* ??? Recognize address_operand and/or "p" constraints
1669 to see if (plus new offset) is a valid before we put
1670 this through expand_simple_binop. */
1671 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1672 gen_int_mode (offset, GET_MODE (x)),
1673 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1674 seq = get_insns ();
1675 end_sequence ();
1676 emit_insn_before (seq, insn);
1678 break;
1680 case SUBREG:
1681 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1682 if (new_rtx == NULL)
1683 continue;
1684 if (offset != 0)
1686 start_sequence ();
1687 new_rtx = expand_simple_binop
1688 (GET_MODE (new_rtx), PLUS, new_rtx,
1689 gen_int_mode (offset, GET_MODE (new_rtx)),
1690 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1691 seq = get_insns ();
1692 end_sequence ();
1693 emit_insn_before (seq, insn);
1695 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1696 GET_MODE (new_rtx), SUBREG_BYTE (x));
1697 gcc_assert (x);
1698 break;
1700 default:
1701 continue;
1704 /* At this point, X contains the new value for the operand.
1705 Validate the new value vs the insn predicate. Note that
1706 asm insns will have insn_code -1 here. */
1707 if (!safe_insn_predicate (insn_code, i, x))
1709 start_sequence ();
1710 if (REG_P (x))
1712 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1713 x = copy_to_reg (x);
1715 else
1716 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1717 seq = get_insns ();
1718 end_sequence ();
1719 if (seq)
1720 emit_insn_before (seq, insn);
1723 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1724 any_change = true;
1727 if (any_change)
1729 /* Propagate operand changes into the duplicates. */
1730 for (i = 0; i < recog_data.n_dups; ++i)
1731 *recog_data.dup_loc[i]
1732 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1734 /* Force re-recognition of the instruction for validation. */
1735 INSN_CODE (insn) = -1;
1738 if (asm_noperands (PATTERN (insn)) >= 0)
1740 if (!check_asm_operands (PATTERN (insn)))
1742 error_for_asm (insn, "impossible constraint in %<asm%>");
1743 /* For asm goto, instead of fixing up all the edges
1744 just clear the template and clear input operands
1745 (asm goto doesn't have any output operands). */
1746 if (JUMP_P (insn))
1748 rtx asm_op = extract_asm_operands (PATTERN (insn));
1749 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1750 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1751 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1753 else
1754 delete_insn (insn);
1757 else
1759 if (recog_memoized (insn) < 0)
1760 fatal_insn_not_found (insn);
1764 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1765 do any instantiation required. */
1767 void
1768 instantiate_decl_rtl (rtx x)
1770 rtx addr;
1772 if (x == 0)
1773 return;
1775 /* If this is a CONCAT, recurse for the pieces. */
1776 if (GET_CODE (x) == CONCAT)
1778 instantiate_decl_rtl (XEXP (x, 0));
1779 instantiate_decl_rtl (XEXP (x, 1));
1780 return;
1783 /* If this is not a MEM, no need to do anything. Similarly if the
1784 address is a constant or a register that is not a virtual register. */
1785 if (!MEM_P (x))
1786 return;
1788 addr = XEXP (x, 0);
1789 if (CONSTANT_P (addr)
1790 || (REG_P (addr)
1791 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1792 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1793 return;
1795 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1798 /* Helper for instantiate_decls called via walk_tree: Process all decls
1799 in the given DECL_VALUE_EXPR. */
1801 static tree
1802 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1804 tree t = *tp;
1805 if (! EXPR_P (t))
1807 *walk_subtrees = 0;
1808 if (DECL_P (t))
1810 if (DECL_RTL_SET_P (t))
1811 instantiate_decl_rtl (DECL_RTL (t));
1812 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1813 && DECL_INCOMING_RTL (t))
1814 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1815 if ((TREE_CODE (t) == VAR_DECL
1816 || TREE_CODE (t) == RESULT_DECL)
1817 && DECL_HAS_VALUE_EXPR_P (t))
1819 tree v = DECL_VALUE_EXPR (t);
1820 walk_tree (&v, instantiate_expr, NULL, NULL);
1824 return NULL;
1827 /* Subroutine of instantiate_decls: Process all decls in the given
1828 BLOCK node and all its subblocks. */
1830 static void
1831 instantiate_decls_1 (tree let)
1833 tree t;
1835 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1837 if (DECL_RTL_SET_P (t))
1838 instantiate_decl_rtl (DECL_RTL (t));
1839 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1841 tree v = DECL_VALUE_EXPR (t);
1842 walk_tree (&v, instantiate_expr, NULL, NULL);
1846 /* Process all subblocks. */
1847 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1848 instantiate_decls_1 (t);
1851 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1852 all virtual registers in their DECL_RTL's. */
1854 static void
1855 instantiate_decls (tree fndecl)
1857 tree decl;
1858 unsigned ix;
1860 /* Process all parameters of the function. */
1861 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1863 instantiate_decl_rtl (DECL_RTL (decl));
1864 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1865 if (DECL_HAS_VALUE_EXPR_P (decl))
1867 tree v = DECL_VALUE_EXPR (decl);
1868 walk_tree (&v, instantiate_expr, NULL, NULL);
1872 if ((decl = DECL_RESULT (fndecl))
1873 && TREE_CODE (decl) == RESULT_DECL)
1875 if (DECL_RTL_SET_P (decl))
1876 instantiate_decl_rtl (DECL_RTL (decl));
1877 if (DECL_HAS_VALUE_EXPR_P (decl))
1879 tree v = DECL_VALUE_EXPR (decl);
1880 walk_tree (&v, instantiate_expr, NULL, NULL);
1884 /* Process the saved static chain if it exists. */
1885 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1886 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1887 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1889 /* Now process all variables defined in the function or its subblocks. */
1890 instantiate_decls_1 (DECL_INITIAL (fndecl));
1892 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1893 if (DECL_RTL_SET_P (decl))
1894 instantiate_decl_rtl (DECL_RTL (decl));
1895 vec_free (cfun->local_decls);
1898 /* Pass through the INSNS of function FNDECL and convert virtual register
1899 references to hard register references. */
1901 static unsigned int
1902 instantiate_virtual_regs (void)
1904 rtx_insn *insn;
1906 /* Compute the offsets to use for this function. */
1907 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1908 var_offset = STARTING_FRAME_OFFSET;
1909 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1910 out_arg_offset = STACK_POINTER_OFFSET;
1911 #ifdef FRAME_POINTER_CFA_OFFSET
1912 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1913 #else
1914 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1915 #endif
1917 /* Initialize recognition, indicating that volatile is OK. */
1918 init_recog ();
1920 /* Scan through all the insns, instantiating every virtual register still
1921 present. */
1922 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1923 if (INSN_P (insn))
1925 /* These patterns in the instruction stream can never be recognized.
1926 Fortunately, they shouldn't contain virtual registers either. */
1927 if (GET_CODE (PATTERN (insn)) == USE
1928 || GET_CODE (PATTERN (insn)) == CLOBBER
1929 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1930 continue;
1931 else if (DEBUG_INSN_P (insn))
1932 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1933 else
1934 instantiate_virtual_regs_in_insn (insn);
1936 if (INSN_DELETED_P (insn))
1937 continue;
1939 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1941 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1942 if (CALL_P (insn))
1943 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1946 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1947 instantiate_decls (current_function_decl);
1949 targetm.instantiate_decls ();
1951 /* Indicate that, from now on, assign_stack_local should use
1952 frame_pointer_rtx. */
1953 virtuals_instantiated = 1;
1955 return 0;
1958 namespace {
1960 const pass_data pass_data_instantiate_virtual_regs =
1962 RTL_PASS, /* type */
1963 "vregs", /* name */
1964 OPTGROUP_NONE, /* optinfo_flags */
1965 TV_NONE, /* tv_id */
1966 0, /* properties_required */
1967 0, /* properties_provided */
1968 0, /* properties_destroyed */
1969 0, /* todo_flags_start */
1970 0, /* todo_flags_finish */
1973 class pass_instantiate_virtual_regs : public rtl_opt_pass
1975 public:
1976 pass_instantiate_virtual_regs (gcc::context *ctxt)
1977 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1980 /* opt_pass methods: */
1981 virtual unsigned int execute (function *)
1983 return instantiate_virtual_regs ();
1986 }; // class pass_instantiate_virtual_regs
1988 } // anon namespace
1990 rtl_opt_pass *
1991 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1993 return new pass_instantiate_virtual_regs (ctxt);
1997 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1998 This means a type for which function calls must pass an address to the
1999 function or get an address back from the function.
2000 EXP may be a type node or an expression (whose type is tested). */
2003 aggregate_value_p (const_tree exp, const_tree fntype)
2005 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2006 int i, regno, nregs;
2007 rtx reg;
2009 if (fntype)
2010 switch (TREE_CODE (fntype))
2012 case CALL_EXPR:
2014 tree fndecl = get_callee_fndecl (fntype);
2015 fntype = (fndecl
2016 ? TREE_TYPE (fndecl)
2017 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2019 break;
2020 case FUNCTION_DECL:
2021 fntype = TREE_TYPE (fntype);
2022 break;
2023 case FUNCTION_TYPE:
2024 case METHOD_TYPE:
2025 break;
2026 case IDENTIFIER_NODE:
2027 fntype = NULL_TREE;
2028 break;
2029 default:
2030 /* We don't expect other tree types here. */
2031 gcc_unreachable ();
2034 if (VOID_TYPE_P (type))
2035 return 0;
2037 /* If a record should be passed the same as its first (and only) member
2038 don't pass it as an aggregate. */
2039 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2040 return aggregate_value_p (first_field (type), fntype);
2042 /* If the front end has decided that this needs to be passed by
2043 reference, do so. */
2044 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2045 && DECL_BY_REFERENCE (exp))
2046 return 1;
2048 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2049 if (fntype && TREE_ADDRESSABLE (fntype))
2050 return 1;
2052 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2053 and thus can't be returned in registers. */
2054 if (TREE_ADDRESSABLE (type))
2055 return 1;
2057 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2058 return 1;
2060 /* Pointers-to-shared must be considered as aggregates for
2061 the purpose of passing them as return values, but only
2062 when the underlying mode of the representation would
2063 require that its value be passed on the stack.
2064 This occurs when using the 'struct' representation
2065 of a shared pointer. */
2066 if (flag_pcc_struct_return && POINTER_TYPE_P (type)
2067 && upc_shared_type_p (TREE_TYPE (type))
2068 && AGGREGATE_TYPE_P (upc_pts_rep_type_node))
2069 return 1;
2071 if (targetm.calls.return_in_memory (type, fntype))
2072 return 1;
2074 /* Make sure we have suitable call-clobbered regs to return
2075 the value in; if not, we must return it in memory. */
2076 reg = hard_function_value (type, 0, fntype, 0);
2078 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2079 it is OK. */
2080 if (!REG_P (reg))
2081 return 0;
2083 regno = REGNO (reg);
2084 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2085 for (i = 0; i < nregs; i++)
2086 if (! call_used_regs[regno + i])
2087 return 1;
2089 return 0;
2092 /* Return true if we should assign DECL a pseudo register; false if it
2093 should live on the local stack. */
2095 bool
2096 use_register_for_decl (const_tree decl)
2098 if (!targetm.calls.allocate_stack_slots_for_args ())
2099 return true;
2101 /* Honor volatile. */
2102 if (TREE_SIDE_EFFECTS (decl))
2103 return false;
2105 /* Honor addressability. */
2106 if (TREE_ADDRESSABLE (decl))
2107 return false;
2109 /* Only register-like things go in registers. */
2110 if (DECL_MODE (decl) == BLKmode)
2111 return false;
2113 /* If -ffloat-store specified, don't put explicit float variables
2114 into registers. */
2115 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2116 propagates values across these stores, and it probably shouldn't. */
2117 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2118 return false;
2120 /* If we're not interested in tracking debugging information for
2121 this decl, then we can certainly put it in a register. */
2122 if (DECL_IGNORED_P (decl))
2123 return true;
2125 if (optimize)
2126 return true;
2128 if (!DECL_REGISTER (decl))
2129 return false;
2131 switch (TREE_CODE (TREE_TYPE (decl)))
2133 case RECORD_TYPE:
2134 case UNION_TYPE:
2135 case QUAL_UNION_TYPE:
2136 /* When not optimizing, disregard register keyword for variables with
2137 types containing methods, otherwise the methods won't be callable
2138 from the debugger. */
2139 if (TYPE_METHODS (TREE_TYPE (decl)))
2140 return false;
2141 break;
2142 default:
2143 break;
2146 return true;
2149 /* Return true if TYPE should be passed by invisible reference. */
2151 bool
2152 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2153 tree type, bool named_arg)
2155 if (type)
2157 /* If this type contains non-trivial constructors, then it is
2158 forbidden for the middle-end to create any new copies. */
2159 if (TREE_ADDRESSABLE (type))
2160 return true;
2162 /* GCC post 3.4 passes *all* variable sized types by reference. */
2163 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2164 return true;
2166 /* If a record type should be passed the same as its first (and only)
2167 member, use the type and mode of that member. */
2168 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2170 type = TREE_TYPE (first_field (type));
2171 mode = TYPE_MODE (type);
2175 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2176 type, named_arg);
2179 /* Return true if TYPE, which is passed by reference, should be callee
2180 copied instead of caller copied. */
2182 bool
2183 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2184 tree type, bool named_arg)
2186 if (type && TREE_ADDRESSABLE (type))
2187 return false;
2188 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2189 named_arg);
2192 /* Structures to communicate between the subroutines of assign_parms.
2193 The first holds data persistent across all parameters, the second
2194 is cleared out for each parameter. */
2196 struct assign_parm_data_all
2198 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2199 should become a job of the target or otherwise encapsulated. */
2200 CUMULATIVE_ARGS args_so_far_v;
2201 cumulative_args_t args_so_far;
2202 struct args_size stack_args_size;
2203 tree function_result_decl;
2204 tree orig_fnargs;
2205 rtx_insn *first_conversion_insn;
2206 rtx_insn *last_conversion_insn;
2207 HOST_WIDE_INT pretend_args_size;
2208 HOST_WIDE_INT extra_pretend_bytes;
2209 int reg_parm_stack_space;
2212 struct assign_parm_data_one
2214 tree nominal_type;
2215 tree passed_type;
2216 rtx entry_parm;
2217 rtx stack_parm;
2218 enum machine_mode nominal_mode;
2219 enum machine_mode passed_mode;
2220 enum machine_mode promoted_mode;
2221 struct locate_and_pad_arg_data locate;
2222 int partial;
2223 BOOL_BITFIELD named_arg : 1;
2224 BOOL_BITFIELD passed_pointer : 1;
2225 BOOL_BITFIELD on_stack : 1;
2226 BOOL_BITFIELD loaded_in_reg : 1;
2229 /* A subroutine of assign_parms. Initialize ALL. */
2231 static void
2232 assign_parms_initialize_all (struct assign_parm_data_all *all)
2234 tree fntype ATTRIBUTE_UNUSED;
2236 memset (all, 0, sizeof (*all));
2238 fntype = TREE_TYPE (current_function_decl);
2240 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2241 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2242 #else
2243 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2244 current_function_decl, -1);
2245 #endif
2246 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2248 #ifdef INCOMING_REG_PARM_STACK_SPACE
2249 all->reg_parm_stack_space
2250 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2251 #endif
2254 /* If ARGS contains entries with complex types, split the entry into two
2255 entries of the component type. Return a new list of substitutions are
2256 needed, else the old list. */
2258 static void
2259 split_complex_args (vec<tree> *args)
2261 unsigned i;
2262 tree p;
2264 FOR_EACH_VEC_ELT (*args, i, p)
2266 tree type = TREE_TYPE (p);
2267 if (TREE_CODE (type) == COMPLEX_TYPE
2268 && targetm.calls.split_complex_arg (type))
2270 tree decl;
2271 tree subtype = TREE_TYPE (type);
2272 bool addressable = TREE_ADDRESSABLE (p);
2274 /* Rewrite the PARM_DECL's type with its component. */
2275 p = copy_node (p);
2276 TREE_TYPE (p) = subtype;
2277 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2278 DECL_MODE (p) = VOIDmode;
2279 DECL_SIZE (p) = NULL;
2280 DECL_SIZE_UNIT (p) = NULL;
2281 /* If this arg must go in memory, put it in a pseudo here.
2282 We can't allow it to go in memory as per normal parms,
2283 because the usual place might not have the imag part
2284 adjacent to the real part. */
2285 DECL_ARTIFICIAL (p) = addressable;
2286 DECL_IGNORED_P (p) = addressable;
2287 TREE_ADDRESSABLE (p) = 0;
2288 layout_decl (p, 0);
2289 (*args)[i] = p;
2291 /* Build a second synthetic decl. */
2292 decl = build_decl (EXPR_LOCATION (p),
2293 PARM_DECL, NULL_TREE, subtype);
2294 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2295 DECL_ARTIFICIAL (decl) = addressable;
2296 DECL_IGNORED_P (decl) = addressable;
2297 layout_decl (decl, 0);
2298 args->safe_insert (++i, decl);
2303 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2304 the hidden struct return argument, and (abi willing) complex args.
2305 Return the new parameter list. */
2307 static vec<tree>
2308 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2310 tree fndecl = current_function_decl;
2311 tree fntype = TREE_TYPE (fndecl);
2312 vec<tree> fnargs = vNULL;
2313 tree arg;
2315 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2316 fnargs.safe_push (arg);
2318 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2320 /* If struct value address is treated as the first argument, make it so. */
2321 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2322 && ! cfun->returns_pcc_struct
2323 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2325 tree type = build_pointer_type (TREE_TYPE (fntype));
2326 tree decl;
2328 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2329 PARM_DECL, get_identifier (".result_ptr"), type);
2330 DECL_ARG_TYPE (decl) = type;
2331 DECL_ARTIFICIAL (decl) = 1;
2332 DECL_NAMELESS (decl) = 1;
2333 TREE_CONSTANT (decl) = 1;
2335 DECL_CHAIN (decl) = all->orig_fnargs;
2336 all->orig_fnargs = decl;
2337 fnargs.safe_insert (0, decl);
2339 all->function_result_decl = decl;
2342 /* If the target wants to split complex arguments into scalars, do so. */
2343 if (targetm.calls.split_complex_arg)
2344 split_complex_args (&fnargs);
2346 return fnargs;
2349 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2350 data for the parameter. Incorporate ABI specifics such as pass-by-
2351 reference and type promotion. */
2353 static void
2354 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2355 struct assign_parm_data_one *data)
2357 tree nominal_type, passed_type;
2358 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2359 int unsignedp;
2361 memset (data, 0, sizeof (*data));
2363 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2364 if (!cfun->stdarg)
2365 data->named_arg = 1; /* No variadic parms. */
2366 else if (DECL_CHAIN (parm))
2367 data->named_arg = 1; /* Not the last non-variadic parm. */
2368 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2369 data->named_arg = 1; /* Only variadic ones are unnamed. */
2370 else
2371 data->named_arg = 0; /* Treat as variadic. */
2373 nominal_type = TREE_TYPE (parm);
2374 passed_type = DECL_ARG_TYPE (parm);
2376 /* Look out for errors propagating this far. Also, if the parameter's
2377 type is void then its value doesn't matter. */
2378 if (TREE_TYPE (parm) == error_mark_node
2379 /* This can happen after weird syntax errors
2380 or if an enum type is defined among the parms. */
2381 || TREE_CODE (parm) != PARM_DECL
2382 || passed_type == NULL
2383 || VOID_TYPE_P (nominal_type))
2385 nominal_type = passed_type = void_type_node;
2386 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2387 goto egress;
2390 /* Find mode of arg as it is passed, and mode of arg as it should be
2391 during execution of this function. */
2392 passed_mode = TYPE_MODE (passed_type);
2393 nominal_mode = TYPE_MODE (nominal_type);
2395 /* If the parm is to be passed as a transparent union or record, use the
2396 type of the first field for the tests below. We have already verified
2397 that the modes are the same. */
2398 if ((TREE_CODE (passed_type) == UNION_TYPE
2399 || TREE_CODE (passed_type) == RECORD_TYPE)
2400 && TYPE_TRANSPARENT_AGGR (passed_type))
2401 passed_type = TREE_TYPE (first_field (passed_type));
2403 /* See if this arg was passed by invisible reference. */
2404 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2405 passed_type, data->named_arg))
2407 passed_type = nominal_type = build_pointer_type (passed_type);
2408 data->passed_pointer = true;
2409 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2412 /* Find mode as it is passed by the ABI. */
2413 unsignedp = TYPE_UNSIGNED (passed_type);
2414 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2415 TREE_TYPE (current_function_decl), 0);
2417 egress:
2418 data->nominal_type = nominal_type;
2419 data->passed_type = passed_type;
2420 data->nominal_mode = nominal_mode;
2421 data->passed_mode = passed_mode;
2422 data->promoted_mode = promoted_mode;
2425 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2427 static void
2428 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2429 struct assign_parm_data_one *data, bool no_rtl)
2431 int varargs_pretend_bytes = 0;
2433 targetm.calls.setup_incoming_varargs (all->args_so_far,
2434 data->promoted_mode,
2435 data->passed_type,
2436 &varargs_pretend_bytes, no_rtl);
2438 /* If the back-end has requested extra stack space, record how much is
2439 needed. Do not change pretend_args_size otherwise since it may be
2440 nonzero from an earlier partial argument. */
2441 if (varargs_pretend_bytes > 0)
2442 all->pretend_args_size = varargs_pretend_bytes;
2445 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2446 the incoming location of the current parameter. */
2448 static void
2449 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2450 struct assign_parm_data_one *data)
2452 HOST_WIDE_INT pretend_bytes = 0;
2453 rtx entry_parm;
2454 bool in_regs;
2456 if (data->promoted_mode == VOIDmode)
2458 data->entry_parm = data->stack_parm = const0_rtx;
2459 return;
2462 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2463 data->promoted_mode,
2464 data->passed_type,
2465 data->named_arg);
2467 if (entry_parm == 0)
2468 data->promoted_mode = data->passed_mode;
2470 /* Determine parm's home in the stack, in case it arrives in the stack
2471 or we should pretend it did. Compute the stack position and rtx where
2472 the argument arrives and its size.
2474 There is one complexity here: If this was a parameter that would
2475 have been passed in registers, but wasn't only because it is
2476 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2477 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2478 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2479 as it was the previous time. */
2480 in_regs = entry_parm != 0;
2481 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2482 in_regs = true;
2483 #endif
2484 if (!in_regs && !data->named_arg)
2486 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2488 rtx tem;
2489 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2490 data->promoted_mode,
2491 data->passed_type, true);
2492 in_regs = tem != NULL;
2496 /* If this parameter was passed both in registers and in the stack, use
2497 the copy on the stack. */
2498 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2499 data->passed_type))
2500 entry_parm = 0;
2502 if (entry_parm)
2504 int partial;
2506 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2507 data->promoted_mode,
2508 data->passed_type,
2509 data->named_arg);
2510 data->partial = partial;
2512 /* The caller might already have allocated stack space for the
2513 register parameters. */
2514 if (partial != 0 && all->reg_parm_stack_space == 0)
2516 /* Part of this argument is passed in registers and part
2517 is passed on the stack. Ask the prologue code to extend
2518 the stack part so that we can recreate the full value.
2520 PRETEND_BYTES is the size of the registers we need to store.
2521 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2522 stack space that the prologue should allocate.
2524 Internally, gcc assumes that the argument pointer is aligned
2525 to STACK_BOUNDARY bits. This is used both for alignment
2526 optimizations (see init_emit) and to locate arguments that are
2527 aligned to more than PARM_BOUNDARY bits. We must preserve this
2528 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2529 a stack boundary. */
2531 /* We assume at most one partial arg, and it must be the first
2532 argument on the stack. */
2533 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2535 pretend_bytes = partial;
2536 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2538 /* We want to align relative to the actual stack pointer, so
2539 don't include this in the stack size until later. */
2540 all->extra_pretend_bytes = all->pretend_args_size;
2544 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2545 all->reg_parm_stack_space,
2546 entry_parm ? data->partial : 0, current_function_decl,
2547 &all->stack_args_size, &data->locate);
2549 /* Update parm_stack_boundary if this parameter is passed in the
2550 stack. */
2551 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2552 crtl->parm_stack_boundary = data->locate.boundary;
2554 /* Adjust offsets to include the pretend args. */
2555 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2556 data->locate.slot_offset.constant += pretend_bytes;
2557 data->locate.offset.constant += pretend_bytes;
2559 data->entry_parm = entry_parm;
2562 /* A subroutine of assign_parms. If there is actually space on the stack
2563 for this parm, count it in stack_args_size and return true. */
2565 static bool
2566 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2567 struct assign_parm_data_one *data)
2569 /* Trivially true if we've no incoming register. */
2570 if (data->entry_parm == NULL)
2572 /* Also true if we're partially in registers and partially not,
2573 since we've arranged to drop the entire argument on the stack. */
2574 else if (data->partial != 0)
2576 /* Also true if the target says that it's passed in both registers
2577 and on the stack. */
2578 else if (GET_CODE (data->entry_parm) == PARALLEL
2579 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2581 /* Also true if the target says that there's stack allocated for
2582 all register parameters. */
2583 else if (all->reg_parm_stack_space > 0)
2585 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2586 else
2587 return false;
2589 all->stack_args_size.constant += data->locate.size.constant;
2590 if (data->locate.size.var)
2591 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2593 return true;
2596 /* A subroutine of assign_parms. Given that this parameter is allocated
2597 stack space by the ABI, find it. */
2599 static void
2600 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2602 rtx offset_rtx, stack_parm;
2603 unsigned int align, boundary;
2605 /* If we're passing this arg using a reg, make its stack home the
2606 aligned stack slot. */
2607 if (data->entry_parm)
2608 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2609 else
2610 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2612 stack_parm = crtl->args.internal_arg_pointer;
2613 if (offset_rtx != const0_rtx)
2614 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2615 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2617 if (!data->passed_pointer)
2619 set_mem_attributes (stack_parm, parm, 1);
2620 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2621 while promoted mode's size is needed. */
2622 if (data->promoted_mode != BLKmode
2623 && data->promoted_mode != DECL_MODE (parm))
2625 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2626 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2628 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2629 data->promoted_mode);
2630 if (offset)
2631 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2636 boundary = data->locate.boundary;
2637 align = BITS_PER_UNIT;
2639 /* If we're padding upward, we know that the alignment of the slot
2640 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2641 intentionally forcing upward padding. Otherwise we have to come
2642 up with a guess at the alignment based on OFFSET_RTX. */
2643 if (data->locate.where_pad != downward || data->entry_parm)
2644 align = boundary;
2645 else if (CONST_INT_P (offset_rtx))
2647 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2648 align = align & -align;
2650 set_mem_align (stack_parm, align);
2652 if (data->entry_parm)
2653 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2655 data->stack_parm = stack_parm;
2658 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2659 always valid and contiguous. */
2661 static void
2662 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2664 rtx entry_parm = data->entry_parm;
2665 rtx stack_parm = data->stack_parm;
2667 /* If this parm was passed part in regs and part in memory, pretend it
2668 arrived entirely in memory by pushing the register-part onto the stack.
2669 In the special case of a DImode or DFmode that is split, we could put
2670 it together in a pseudoreg directly, but for now that's not worth
2671 bothering with. */
2672 if (data->partial != 0)
2674 /* Handle calls that pass values in multiple non-contiguous
2675 locations. The Irix 6 ABI has examples of this. */
2676 if (GET_CODE (entry_parm) == PARALLEL)
2677 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2678 data->passed_type,
2679 int_size_in_bytes (data->passed_type));
2680 else
2682 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2683 move_block_from_reg (REGNO (entry_parm),
2684 validize_mem (copy_rtx (stack_parm)),
2685 data->partial / UNITS_PER_WORD);
2688 entry_parm = stack_parm;
2691 /* If we didn't decide this parm came in a register, by default it came
2692 on the stack. */
2693 else if (entry_parm == NULL)
2694 entry_parm = stack_parm;
2696 /* When an argument is passed in multiple locations, we can't make use
2697 of this information, but we can save some copying if the whole argument
2698 is passed in a single register. */
2699 else if (GET_CODE (entry_parm) == PARALLEL
2700 && data->nominal_mode != BLKmode
2701 && data->passed_mode != BLKmode)
2703 size_t i, len = XVECLEN (entry_parm, 0);
2705 for (i = 0; i < len; i++)
2706 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2707 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2708 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2709 == data->passed_mode)
2710 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2712 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2713 break;
2717 data->entry_parm = entry_parm;
2720 /* A subroutine of assign_parms. Reconstitute any values which were
2721 passed in multiple registers and would fit in a single register. */
2723 static void
2724 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2726 rtx entry_parm = data->entry_parm;
2728 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2729 This can be done with register operations rather than on the
2730 stack, even if we will store the reconstituted parameter on the
2731 stack later. */
2732 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2734 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2735 emit_group_store (parmreg, entry_parm, data->passed_type,
2736 GET_MODE_SIZE (GET_MODE (entry_parm)));
2737 entry_parm = parmreg;
2740 data->entry_parm = entry_parm;
2743 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2744 always valid and properly aligned. */
2746 static void
2747 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2749 rtx stack_parm = data->stack_parm;
2751 /* If we can't trust the parm stack slot to be aligned enough for its
2752 ultimate type, don't use that slot after entry. We'll make another
2753 stack slot, if we need one. */
2754 if (stack_parm
2755 && ((STRICT_ALIGNMENT
2756 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2757 || (data->nominal_type
2758 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2759 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2760 stack_parm = NULL;
2762 /* If parm was passed in memory, and we need to convert it on entry,
2763 don't store it back in that same slot. */
2764 else if (data->entry_parm == stack_parm
2765 && data->nominal_mode != BLKmode
2766 && data->nominal_mode != data->passed_mode)
2767 stack_parm = NULL;
2769 /* If stack protection is in effect for this function, don't leave any
2770 pointers in their passed stack slots. */
2771 else if (crtl->stack_protect_guard
2772 && (flag_stack_protect == 2
2773 || data->passed_pointer
2774 || POINTER_TYPE_P (data->nominal_type)))
2775 stack_parm = NULL;
2777 data->stack_parm = stack_parm;
2780 /* A subroutine of assign_parms. Return true if the current parameter
2781 should be stored as a BLKmode in the current frame. */
2783 static bool
2784 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2786 if (data->nominal_mode == BLKmode)
2787 return true;
2788 if (GET_MODE (data->entry_parm) == BLKmode)
2789 return true;
2791 #ifdef BLOCK_REG_PADDING
2792 /* Only assign_parm_setup_block knows how to deal with register arguments
2793 that are padded at the least significant end. */
2794 if (REG_P (data->entry_parm)
2795 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2796 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2797 == (BYTES_BIG_ENDIAN ? upward : downward)))
2798 return true;
2799 #endif
2801 return false;
2804 /* A subroutine of assign_parms. Arrange for the parameter to be
2805 present and valid in DATA->STACK_RTL. */
2807 static void
2808 assign_parm_setup_block (struct assign_parm_data_all *all,
2809 tree parm, struct assign_parm_data_one *data)
2811 rtx entry_parm = data->entry_parm;
2812 rtx stack_parm = data->stack_parm;
2813 HOST_WIDE_INT size;
2814 HOST_WIDE_INT size_stored;
2816 if (GET_CODE (entry_parm) == PARALLEL)
2817 entry_parm = emit_group_move_into_temps (entry_parm);
2819 size = int_size_in_bytes (data->passed_type);
2820 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2821 if (stack_parm == 0)
2823 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2824 stack_parm = assign_stack_local (BLKmode, size_stored,
2825 DECL_ALIGN (parm));
2826 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2827 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2828 set_mem_attributes (stack_parm, parm, 1);
2831 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2832 calls that pass values in multiple non-contiguous locations. */
2833 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2835 rtx mem;
2837 /* Note that we will be storing an integral number of words.
2838 So we have to be careful to ensure that we allocate an
2839 integral number of words. We do this above when we call
2840 assign_stack_local if space was not allocated in the argument
2841 list. If it was, this will not work if PARM_BOUNDARY is not
2842 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2843 if it becomes a problem. Exception is when BLKmode arrives
2844 with arguments not conforming to word_mode. */
2846 if (data->stack_parm == 0)
2848 else if (GET_CODE (entry_parm) == PARALLEL)
2850 else
2851 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2853 mem = validize_mem (copy_rtx (stack_parm));
2855 /* Handle values in multiple non-contiguous locations. */
2856 if (GET_CODE (entry_parm) == PARALLEL)
2858 push_to_sequence2 (all->first_conversion_insn,
2859 all->last_conversion_insn);
2860 emit_group_store (mem, entry_parm, data->passed_type, size);
2861 all->first_conversion_insn = get_insns ();
2862 all->last_conversion_insn = get_last_insn ();
2863 end_sequence ();
2866 else if (size == 0)
2869 /* If SIZE is that of a mode no bigger than a word, just use
2870 that mode's store operation. */
2871 else if (size <= UNITS_PER_WORD)
2873 enum machine_mode mode
2874 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2876 if (mode != BLKmode
2877 #ifdef BLOCK_REG_PADDING
2878 && (size == UNITS_PER_WORD
2879 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2880 != (BYTES_BIG_ENDIAN ? upward : downward)))
2881 #endif
2884 rtx reg;
2886 /* We are really truncating a word_mode value containing
2887 SIZE bytes into a value of mode MODE. If such an
2888 operation requires no actual instructions, we can refer
2889 to the value directly in mode MODE, otherwise we must
2890 start with the register in word_mode and explicitly
2891 convert it. */
2892 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2893 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2894 else
2896 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2897 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2899 emit_move_insn (change_address (mem, mode, 0), reg);
2902 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2903 machine must be aligned to the left before storing
2904 to memory. Note that the previous test doesn't
2905 handle all cases (e.g. SIZE == 3). */
2906 else if (size != UNITS_PER_WORD
2907 #ifdef BLOCK_REG_PADDING
2908 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2909 == downward)
2910 #else
2911 && BYTES_BIG_ENDIAN
2912 #endif
2915 rtx tem, x;
2916 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2917 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2919 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2920 tem = change_address (mem, word_mode, 0);
2921 emit_move_insn (tem, x);
2923 else
2924 move_block_from_reg (REGNO (entry_parm), mem,
2925 size_stored / UNITS_PER_WORD);
2927 else
2928 move_block_from_reg (REGNO (entry_parm), mem,
2929 size_stored / UNITS_PER_WORD);
2931 else if (data->stack_parm == 0)
2933 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2934 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2935 BLOCK_OP_NORMAL);
2936 all->first_conversion_insn = get_insns ();
2937 all->last_conversion_insn = get_last_insn ();
2938 end_sequence ();
2941 data->stack_parm = stack_parm;
2942 SET_DECL_RTL (parm, stack_parm);
2945 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2946 parameter. Get it there. Perform all ABI specified conversions. */
2948 static void
2949 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2950 struct assign_parm_data_one *data)
2952 rtx parmreg, validated_mem;
2953 rtx equiv_stack_parm;
2954 enum machine_mode promoted_nominal_mode;
2955 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2956 bool did_conversion = false;
2957 bool need_conversion, moved;
2959 /* Store the parm in a pseudoregister during the function, but we may
2960 need to do it in a wider mode. Using 2 here makes the result
2961 consistent with promote_decl_mode and thus expand_expr_real_1. */
2962 promoted_nominal_mode
2963 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2964 TREE_TYPE (current_function_decl), 2);
2966 parmreg = gen_reg_rtx (promoted_nominal_mode);
2968 if (!DECL_ARTIFICIAL (parm))
2969 mark_user_reg (parmreg);
2971 /* If this was an item that we received a pointer to,
2972 set DECL_RTL appropriately. */
2973 if (data->passed_pointer)
2975 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2976 set_mem_attributes (x, parm, 1);
2977 SET_DECL_RTL (parm, x);
2979 else
2980 SET_DECL_RTL (parm, parmreg);
2982 assign_parm_remove_parallels (data);
2984 /* Copy the value into the register, thus bridging between
2985 assign_parm_find_data_types and expand_expr_real_1. */
2987 equiv_stack_parm = data->stack_parm;
2988 validated_mem = validize_mem (copy_rtx (data->entry_parm));
2990 need_conversion = (data->nominal_mode != data->passed_mode
2991 || promoted_nominal_mode != data->promoted_mode);
2992 moved = false;
2994 if (need_conversion
2995 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2996 && data->nominal_mode == data->passed_mode
2997 && data->nominal_mode == GET_MODE (data->entry_parm))
2999 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3000 mode, by the caller. We now have to convert it to
3001 NOMINAL_MODE, if different. However, PARMREG may be in
3002 a different mode than NOMINAL_MODE if it is being stored
3003 promoted.
3005 If ENTRY_PARM is a hard register, it might be in a register
3006 not valid for operating in its mode (e.g., an odd-numbered
3007 register for a DFmode). In that case, moves are the only
3008 thing valid, so we can't do a convert from there. This
3009 occurs when the calling sequence allow such misaligned
3010 usages.
3012 In addition, the conversion may involve a call, which could
3013 clobber parameters which haven't been copied to pseudo
3014 registers yet.
3016 First, we try to emit an insn which performs the necessary
3017 conversion. We verify that this insn does not clobber any
3018 hard registers. */
3020 enum insn_code icode;
3021 rtx op0, op1;
3023 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3024 unsignedp);
3026 op0 = parmreg;
3027 op1 = validated_mem;
3028 if (icode != CODE_FOR_nothing
3029 && insn_operand_matches (icode, 0, op0)
3030 && insn_operand_matches (icode, 1, op1))
3032 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3033 rtx_insn *insn, *insns;
3034 rtx t = op1;
3035 HARD_REG_SET hardregs;
3037 start_sequence ();
3038 /* If op1 is a hard register that is likely spilled, first
3039 force it into a pseudo, otherwise combiner might extend
3040 its lifetime too much. */
3041 if (GET_CODE (t) == SUBREG)
3042 t = SUBREG_REG (t);
3043 if (REG_P (t)
3044 && HARD_REGISTER_P (t)
3045 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3046 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3048 t = gen_reg_rtx (GET_MODE (op1));
3049 emit_move_insn (t, op1);
3051 else
3052 t = op1;
3053 rtx pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3054 data->passed_mode, unsignedp);
3055 emit_insn (pat);
3056 insns = get_insns ();
3058 moved = true;
3059 CLEAR_HARD_REG_SET (hardregs);
3060 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3062 if (INSN_P (insn))
3063 note_stores (PATTERN (insn), record_hard_reg_sets,
3064 &hardregs);
3065 if (!hard_reg_set_empty_p (hardregs))
3066 moved = false;
3069 end_sequence ();
3071 if (moved)
3073 emit_insn (insns);
3074 if (equiv_stack_parm != NULL_RTX)
3075 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3076 equiv_stack_parm);
3081 if (moved)
3082 /* Nothing to do. */
3084 else if (need_conversion)
3086 /* We did not have an insn to convert directly, or the sequence
3087 generated appeared unsafe. We must first copy the parm to a
3088 pseudo reg, and save the conversion until after all
3089 parameters have been moved. */
3091 int save_tree_used;
3092 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3094 emit_move_insn (tempreg, validated_mem);
3096 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3097 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3099 if (GET_CODE (tempreg) == SUBREG
3100 && GET_MODE (tempreg) == data->nominal_mode
3101 && REG_P (SUBREG_REG (tempreg))
3102 && data->nominal_mode == data->passed_mode
3103 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3104 && GET_MODE_SIZE (GET_MODE (tempreg))
3105 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3107 /* The argument is already sign/zero extended, so note it
3108 into the subreg. */
3109 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3110 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3113 /* TREE_USED gets set erroneously during expand_assignment. */
3114 save_tree_used = TREE_USED (parm);
3115 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3116 TREE_USED (parm) = save_tree_used;
3117 all->first_conversion_insn = get_insns ();
3118 all->last_conversion_insn = get_last_insn ();
3119 end_sequence ();
3121 did_conversion = true;
3123 else
3124 emit_move_insn (parmreg, validated_mem);
3126 /* If we were passed a pointer but the actual value can safely live
3127 in a register, retrieve it and use it directly. */
3128 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3130 /* We can't use nominal_mode, because it will have been set to
3131 Pmode above. We must use the actual mode of the parm. */
3132 if (use_register_for_decl (parm))
3134 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3135 mark_user_reg (parmreg);
3137 else
3139 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3140 TYPE_MODE (TREE_TYPE (parm)),
3141 TYPE_ALIGN (TREE_TYPE (parm)));
3142 parmreg
3143 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3144 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3145 align);
3146 set_mem_attributes (parmreg, parm, 1);
3149 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3151 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3152 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3154 push_to_sequence2 (all->first_conversion_insn,
3155 all->last_conversion_insn);
3156 emit_move_insn (tempreg, DECL_RTL (parm));
3157 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3158 emit_move_insn (parmreg, tempreg);
3159 all->first_conversion_insn = get_insns ();
3160 all->last_conversion_insn = get_last_insn ();
3161 end_sequence ();
3163 did_conversion = true;
3165 else
3166 emit_move_insn (parmreg, DECL_RTL (parm));
3168 SET_DECL_RTL (parm, parmreg);
3170 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3171 now the parm. */
3172 data->stack_parm = NULL;
3175 /* Mark the register as eliminable if we did no conversion and it was
3176 copied from memory at a fixed offset, and the arg pointer was not
3177 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3178 offset formed an invalid address, such memory-equivalences as we
3179 make here would screw up life analysis for it. */
3180 if (data->nominal_mode == data->passed_mode
3181 && !did_conversion
3182 && data->stack_parm != 0
3183 && MEM_P (data->stack_parm)
3184 && data->locate.offset.var == 0
3185 && reg_mentioned_p (virtual_incoming_args_rtx,
3186 XEXP (data->stack_parm, 0)))
3188 rtx_insn *linsn = get_last_insn ();
3189 rtx_insn *sinsn;
3190 rtx set;
3192 /* Mark complex types separately. */
3193 if (GET_CODE (parmreg) == CONCAT)
3195 enum machine_mode submode
3196 = GET_MODE_INNER (GET_MODE (parmreg));
3197 int regnor = REGNO (XEXP (parmreg, 0));
3198 int regnoi = REGNO (XEXP (parmreg, 1));
3199 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3200 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3201 GET_MODE_SIZE (submode));
3203 /* Scan backwards for the set of the real and
3204 imaginary parts. */
3205 for (sinsn = linsn; sinsn != 0;
3206 sinsn = prev_nonnote_insn (sinsn))
3208 set = single_set (sinsn);
3209 if (set == 0)
3210 continue;
3212 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3213 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3214 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3215 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3218 else
3219 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3222 /* For pointer data type, suggest pointer register. */
3223 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3224 mark_reg_pointer (parmreg,
3225 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3228 /* A subroutine of assign_parms. Allocate stack space to hold the current
3229 parameter. Get it there. Perform all ABI specified conversions. */
3231 static void
3232 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3233 struct assign_parm_data_one *data)
3235 /* Value must be stored in the stack slot STACK_PARM during function
3236 execution. */
3237 bool to_conversion = false;
3239 assign_parm_remove_parallels (data);
3241 if (data->promoted_mode != data->nominal_mode)
3243 /* Conversion is required. */
3244 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3246 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3248 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3249 to_conversion = true;
3251 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3252 TYPE_UNSIGNED (TREE_TYPE (parm)));
3254 if (data->stack_parm)
3256 int offset = subreg_lowpart_offset (data->nominal_mode,
3257 GET_MODE (data->stack_parm));
3258 /* ??? This may need a big-endian conversion on sparc64. */
3259 data->stack_parm
3260 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3261 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3262 set_mem_offset (data->stack_parm,
3263 MEM_OFFSET (data->stack_parm) + offset);
3267 if (data->entry_parm != data->stack_parm)
3269 rtx src, dest;
3271 if (data->stack_parm == 0)
3273 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3274 GET_MODE (data->entry_parm),
3275 TYPE_ALIGN (data->passed_type));
3276 data->stack_parm
3277 = assign_stack_local (GET_MODE (data->entry_parm),
3278 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3279 align);
3280 set_mem_attributes (data->stack_parm, parm, 1);
3283 dest = validize_mem (copy_rtx (data->stack_parm));
3284 src = validize_mem (copy_rtx (data->entry_parm));
3286 if (MEM_P (src))
3288 /* Use a block move to handle potentially misaligned entry_parm. */
3289 if (!to_conversion)
3290 push_to_sequence2 (all->first_conversion_insn,
3291 all->last_conversion_insn);
3292 to_conversion = true;
3294 emit_block_move (dest, src,
3295 GEN_INT (int_size_in_bytes (data->passed_type)),
3296 BLOCK_OP_NORMAL);
3298 else
3299 emit_move_insn (dest, src);
3302 if (to_conversion)
3304 all->first_conversion_insn = get_insns ();
3305 all->last_conversion_insn = get_last_insn ();
3306 end_sequence ();
3309 SET_DECL_RTL (parm, data->stack_parm);
3312 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3313 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3315 static void
3316 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3317 vec<tree> fnargs)
3319 tree parm;
3320 tree orig_fnargs = all->orig_fnargs;
3321 unsigned i = 0;
3323 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3325 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3326 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3328 rtx tmp, real, imag;
3329 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3331 real = DECL_RTL (fnargs[i]);
3332 imag = DECL_RTL (fnargs[i + 1]);
3333 if (inner != GET_MODE (real))
3335 real = gen_lowpart_SUBREG (inner, real);
3336 imag = gen_lowpart_SUBREG (inner, imag);
3339 if (TREE_ADDRESSABLE (parm))
3341 rtx rmem, imem;
3342 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3343 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3344 DECL_MODE (parm),
3345 TYPE_ALIGN (TREE_TYPE (parm)));
3347 /* split_complex_arg put the real and imag parts in
3348 pseudos. Move them to memory. */
3349 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3350 set_mem_attributes (tmp, parm, 1);
3351 rmem = adjust_address_nv (tmp, inner, 0);
3352 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3353 push_to_sequence2 (all->first_conversion_insn,
3354 all->last_conversion_insn);
3355 emit_move_insn (rmem, real);
3356 emit_move_insn (imem, imag);
3357 all->first_conversion_insn = get_insns ();
3358 all->last_conversion_insn = get_last_insn ();
3359 end_sequence ();
3361 else
3362 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3363 SET_DECL_RTL (parm, tmp);
3365 real = DECL_INCOMING_RTL (fnargs[i]);
3366 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3367 if (inner != GET_MODE (real))
3369 real = gen_lowpart_SUBREG (inner, real);
3370 imag = gen_lowpart_SUBREG (inner, imag);
3372 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3373 set_decl_incoming_rtl (parm, tmp, false);
3374 i++;
3379 /* Assign RTL expressions to the function's parameters. This may involve
3380 copying them into registers and using those registers as the DECL_RTL. */
3382 static void
3383 assign_parms (tree fndecl)
3385 struct assign_parm_data_all all;
3386 tree parm;
3387 vec<tree> fnargs;
3388 unsigned i;
3390 crtl->args.internal_arg_pointer
3391 = targetm.calls.internal_arg_pointer ();
3393 assign_parms_initialize_all (&all);
3394 fnargs = assign_parms_augmented_arg_list (&all);
3396 FOR_EACH_VEC_ELT (fnargs, i, parm)
3398 struct assign_parm_data_one data;
3400 /* Extract the type of PARM; adjust it according to ABI. */
3401 assign_parm_find_data_types (&all, parm, &data);
3403 /* Early out for errors and void parameters. */
3404 if (data.passed_mode == VOIDmode)
3406 SET_DECL_RTL (parm, const0_rtx);
3407 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3408 continue;
3411 /* Estimate stack alignment from parameter alignment. */
3412 if (SUPPORTS_STACK_ALIGNMENT)
3414 unsigned int align
3415 = targetm.calls.function_arg_boundary (data.promoted_mode,
3416 data.passed_type);
3417 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3418 align);
3419 if (TYPE_ALIGN (data.nominal_type) > align)
3420 align = MINIMUM_ALIGNMENT (data.nominal_type,
3421 TYPE_MODE (data.nominal_type),
3422 TYPE_ALIGN (data.nominal_type));
3423 if (crtl->stack_alignment_estimated < align)
3425 gcc_assert (!crtl->stack_realign_processed);
3426 crtl->stack_alignment_estimated = align;
3430 if (cfun->stdarg && !DECL_CHAIN (parm))
3431 assign_parms_setup_varargs (&all, &data, false);
3433 /* Find out where the parameter arrives in this function. */
3434 assign_parm_find_entry_rtl (&all, &data);
3436 /* Find out where stack space for this parameter might be. */
3437 if (assign_parm_is_stack_parm (&all, &data))
3439 assign_parm_find_stack_rtl (parm, &data);
3440 assign_parm_adjust_entry_rtl (&data);
3443 /* Record permanently how this parm was passed. */
3444 if (data.passed_pointer)
3446 rtx incoming_rtl
3447 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3448 data.entry_parm);
3449 set_decl_incoming_rtl (parm, incoming_rtl, true);
3451 else
3452 set_decl_incoming_rtl (parm, data.entry_parm, false);
3454 /* Update info on where next arg arrives in registers. */
3455 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3456 data.passed_type, data.named_arg);
3458 assign_parm_adjust_stack_rtl (&data);
3460 if (assign_parm_setup_block_p (&data))
3461 assign_parm_setup_block (&all, parm, &data);
3462 else if (data.passed_pointer || use_register_for_decl (parm))
3463 assign_parm_setup_reg (&all, parm, &data);
3464 else
3465 assign_parm_setup_stack (&all, parm, &data);
3468 if (targetm.calls.split_complex_arg)
3469 assign_parms_unsplit_complex (&all, fnargs);
3471 fnargs.release ();
3473 /* Output all parameter conversion instructions (possibly including calls)
3474 now that all parameters have been copied out of hard registers. */
3475 emit_insn (all.first_conversion_insn);
3477 /* Estimate reload stack alignment from scalar return mode. */
3478 if (SUPPORTS_STACK_ALIGNMENT)
3480 if (DECL_RESULT (fndecl))
3482 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3483 enum machine_mode mode = TYPE_MODE (type);
3485 if (mode != BLKmode
3486 && mode != VOIDmode
3487 && !AGGREGATE_TYPE_P (type))
3489 unsigned int align = GET_MODE_ALIGNMENT (mode);
3490 if (crtl->stack_alignment_estimated < align)
3492 gcc_assert (!crtl->stack_realign_processed);
3493 crtl->stack_alignment_estimated = align;
3499 /* If we are receiving a struct value address as the first argument, set up
3500 the RTL for the function result. As this might require code to convert
3501 the transmitted address to Pmode, we do this here to ensure that possible
3502 preliminary conversions of the address have been emitted already. */
3503 if (all.function_result_decl)
3505 tree result = DECL_RESULT (current_function_decl);
3506 rtx addr = DECL_RTL (all.function_result_decl);
3507 rtx x;
3509 if (DECL_BY_REFERENCE (result))
3511 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3512 x = addr;
3514 else
3516 SET_DECL_VALUE_EXPR (result,
3517 build1 (INDIRECT_REF, TREE_TYPE (result),
3518 all.function_result_decl));
3519 addr = convert_memory_address (Pmode, addr);
3520 x = gen_rtx_MEM (DECL_MODE (result), addr);
3521 set_mem_attributes (x, result, 1);
3524 DECL_HAS_VALUE_EXPR_P (result) = 1;
3526 SET_DECL_RTL (result, x);
3529 /* We have aligned all the args, so add space for the pretend args. */
3530 crtl->args.pretend_args_size = all.pretend_args_size;
3531 all.stack_args_size.constant += all.extra_pretend_bytes;
3532 crtl->args.size = all.stack_args_size.constant;
3534 /* Adjust function incoming argument size for alignment and
3535 minimum length. */
3537 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3538 crtl->args.size = CEIL_ROUND (crtl->args.size,
3539 PARM_BOUNDARY / BITS_PER_UNIT);
3541 #ifdef ARGS_GROW_DOWNWARD
3542 crtl->args.arg_offset_rtx
3543 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3544 : expand_expr (size_diffop (all.stack_args_size.var,
3545 size_int (-all.stack_args_size.constant)),
3546 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3547 #else
3548 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3549 #endif
3551 /* See how many bytes, if any, of its args a function should try to pop
3552 on return. */
3554 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3555 TREE_TYPE (fndecl),
3556 crtl->args.size);
3558 /* For stdarg.h function, save info about
3559 regs and stack space used by the named args. */
3561 crtl->args.info = all.args_so_far_v;
3563 /* Set the rtx used for the function return value. Put this in its
3564 own variable so any optimizers that need this information don't have
3565 to include tree.h. Do this here so it gets done when an inlined
3566 function gets output. */
3568 crtl->return_rtx
3569 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3570 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3572 /* If scalar return value was computed in a pseudo-reg, or was a named
3573 return value that got dumped to the stack, copy that to the hard
3574 return register. */
3575 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3577 tree decl_result = DECL_RESULT (fndecl);
3578 rtx decl_rtl = DECL_RTL (decl_result);
3580 if (REG_P (decl_rtl)
3581 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3582 : DECL_REGISTER (decl_result))
3584 rtx real_decl_rtl;
3586 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3587 fndecl, true);
3588 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3589 /* The delay slot scheduler assumes that crtl->return_rtx
3590 holds the hard register containing the return value, not a
3591 temporary pseudo. */
3592 crtl->return_rtx = real_decl_rtl;
3597 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3598 For all seen types, gimplify their sizes. */
3600 static tree
3601 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3603 tree t = *tp;
3605 *walk_subtrees = 0;
3606 if (TYPE_P (t))
3608 if (POINTER_TYPE_P (t))
3609 *walk_subtrees = 1;
3610 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3611 && !TYPE_SIZES_GIMPLIFIED (t))
3613 gimplify_type_sizes (t, (gimple_seq *) data);
3614 *walk_subtrees = 1;
3618 return NULL;
3621 /* Gimplify the parameter list for current_function_decl. This involves
3622 evaluating SAVE_EXPRs of variable sized parameters and generating code
3623 to implement callee-copies reference parameters. Returns a sequence of
3624 statements to add to the beginning of the function. */
3626 gimple_seq
3627 gimplify_parameters (void)
3629 struct assign_parm_data_all all;
3630 tree parm;
3631 gimple_seq stmts = NULL;
3632 vec<tree> fnargs;
3633 unsigned i;
3635 assign_parms_initialize_all (&all);
3636 fnargs = assign_parms_augmented_arg_list (&all);
3638 FOR_EACH_VEC_ELT (fnargs, i, parm)
3640 struct assign_parm_data_one data;
3642 /* Extract the type of PARM; adjust it according to ABI. */
3643 assign_parm_find_data_types (&all, parm, &data);
3645 /* Early out for errors and void parameters. */
3646 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3647 continue;
3649 /* Update info on where next arg arrives in registers. */
3650 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3651 data.passed_type, data.named_arg);
3653 /* ??? Once upon a time variable_size stuffed parameter list
3654 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3655 turned out to be less than manageable in the gimple world.
3656 Now we have to hunt them down ourselves. */
3657 walk_tree_without_duplicates (&data.passed_type,
3658 gimplify_parm_type, &stmts);
3660 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3662 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3663 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3666 if (data.passed_pointer)
3668 tree type = TREE_TYPE (data.passed_type);
3669 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3670 type, data.named_arg))
3672 tree local, t;
3674 /* For constant-sized objects, this is trivial; for
3675 variable-sized objects, we have to play games. */
3676 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3677 && !(flag_stack_check == GENERIC_STACK_CHECK
3678 && compare_tree_int (DECL_SIZE_UNIT (parm),
3679 STACK_CHECK_MAX_VAR_SIZE) > 0))
3681 local = create_tmp_var (type, get_name (parm));
3682 DECL_IGNORED_P (local) = 0;
3683 /* If PARM was addressable, move that flag over
3684 to the local copy, as its address will be taken,
3685 not the PARMs. Keep the parms address taken
3686 as we'll query that flag during gimplification. */
3687 if (TREE_ADDRESSABLE (parm))
3688 TREE_ADDRESSABLE (local) = 1;
3689 else if (TREE_CODE (type) == COMPLEX_TYPE
3690 || TREE_CODE (type) == VECTOR_TYPE)
3691 DECL_GIMPLE_REG_P (local) = 1;
3693 else
3695 tree ptr_type, addr;
3697 ptr_type = build_pointer_type (type);
3698 addr = create_tmp_reg (ptr_type, get_name (parm));
3699 DECL_IGNORED_P (addr) = 0;
3700 local = build_fold_indirect_ref (addr);
3702 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3703 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3704 size_int (DECL_ALIGN (parm)));
3706 /* The call has been built for a variable-sized object. */
3707 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3708 t = fold_convert (ptr_type, t);
3709 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3710 gimplify_and_add (t, &stmts);
3713 gimplify_assign (local, parm, &stmts);
3715 SET_DECL_VALUE_EXPR (parm, local);
3716 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3721 fnargs.release ();
3723 return stmts;
3726 /* Compute the size and offset from the start of the stacked arguments for a
3727 parm passed in mode PASSED_MODE and with type TYPE.
3729 INITIAL_OFFSET_PTR points to the current offset into the stacked
3730 arguments.
3732 The starting offset and size for this parm are returned in
3733 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3734 nonzero, the offset is that of stack slot, which is returned in
3735 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3736 padding required from the initial offset ptr to the stack slot.
3738 IN_REGS is nonzero if the argument will be passed in registers. It will
3739 never be set if REG_PARM_STACK_SPACE is not defined.
3741 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3742 for arguments which are passed in registers.
3744 FNDECL is the function in which the argument was defined.
3746 There are two types of rounding that are done. The first, controlled by
3747 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3748 argument list to be aligned to the specific boundary (in bits). This
3749 rounding affects the initial and starting offsets, but not the argument
3750 size.
3752 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3753 optionally rounds the size of the parm to PARM_BOUNDARY. The
3754 initial offset is not affected by this rounding, while the size always
3755 is and the starting offset may be. */
3757 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3758 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3759 callers pass in the total size of args so far as
3760 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3762 void
3763 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3764 int reg_parm_stack_space, int partial,
3765 tree fndecl ATTRIBUTE_UNUSED,
3766 struct args_size *initial_offset_ptr,
3767 struct locate_and_pad_arg_data *locate)
3769 tree sizetree;
3770 enum direction where_pad;
3771 unsigned int boundary, round_boundary;
3772 int part_size_in_regs;
3774 /* If we have found a stack parm before we reach the end of the
3775 area reserved for registers, skip that area. */
3776 if (! in_regs)
3778 if (reg_parm_stack_space > 0)
3780 if (initial_offset_ptr->var)
3782 initial_offset_ptr->var
3783 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3784 ssize_int (reg_parm_stack_space));
3785 initial_offset_ptr->constant = 0;
3787 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3788 initial_offset_ptr->constant = reg_parm_stack_space;
3792 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3794 sizetree
3795 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3796 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3797 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3798 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3799 type);
3800 locate->where_pad = where_pad;
3802 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3803 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3804 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3806 locate->boundary = boundary;
3808 if (SUPPORTS_STACK_ALIGNMENT)
3810 /* stack_alignment_estimated can't change after stack has been
3811 realigned. */
3812 if (crtl->stack_alignment_estimated < boundary)
3814 if (!crtl->stack_realign_processed)
3815 crtl->stack_alignment_estimated = boundary;
3816 else
3818 /* If stack is realigned and stack alignment value
3819 hasn't been finalized, it is OK not to increase
3820 stack_alignment_estimated. The bigger alignment
3821 requirement is recorded in stack_alignment_needed
3822 below. */
3823 gcc_assert (!crtl->stack_realign_finalized
3824 && crtl->stack_realign_needed);
3829 /* Remember if the outgoing parameter requires extra alignment on the
3830 calling function side. */
3831 if (crtl->stack_alignment_needed < boundary)
3832 crtl->stack_alignment_needed = boundary;
3833 if (crtl->preferred_stack_boundary < boundary)
3834 crtl->preferred_stack_boundary = boundary;
3836 #ifdef ARGS_GROW_DOWNWARD
3837 locate->slot_offset.constant = -initial_offset_ptr->constant;
3838 if (initial_offset_ptr->var)
3839 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3840 initial_offset_ptr->var);
3843 tree s2 = sizetree;
3844 if (where_pad != none
3845 && (!tree_fits_uhwi_p (sizetree)
3846 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3847 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3848 SUB_PARM_SIZE (locate->slot_offset, s2);
3851 locate->slot_offset.constant += part_size_in_regs;
3853 if (!in_regs || reg_parm_stack_space > 0)
3854 pad_to_arg_alignment (&locate->slot_offset, boundary,
3855 &locate->alignment_pad);
3857 locate->size.constant = (-initial_offset_ptr->constant
3858 - locate->slot_offset.constant);
3859 if (initial_offset_ptr->var)
3860 locate->size.var = size_binop (MINUS_EXPR,
3861 size_binop (MINUS_EXPR,
3862 ssize_int (0),
3863 initial_offset_ptr->var),
3864 locate->slot_offset.var);
3866 /* Pad_below needs the pre-rounded size to know how much to pad
3867 below. */
3868 locate->offset = locate->slot_offset;
3869 if (where_pad == downward)
3870 pad_below (&locate->offset, passed_mode, sizetree);
3872 #else /* !ARGS_GROW_DOWNWARD */
3873 if (!in_regs || reg_parm_stack_space > 0)
3874 pad_to_arg_alignment (initial_offset_ptr, boundary,
3875 &locate->alignment_pad);
3876 locate->slot_offset = *initial_offset_ptr;
3878 #ifdef PUSH_ROUNDING
3879 if (passed_mode != BLKmode)
3880 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3881 #endif
3883 /* Pad_below needs the pre-rounded size to know how much to pad below
3884 so this must be done before rounding up. */
3885 locate->offset = locate->slot_offset;
3886 if (where_pad == downward)
3887 pad_below (&locate->offset, passed_mode, sizetree);
3889 if (where_pad != none
3890 && (!tree_fits_uhwi_p (sizetree)
3891 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3892 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3894 ADD_PARM_SIZE (locate->size, sizetree);
3896 locate->size.constant -= part_size_in_regs;
3897 #endif /* ARGS_GROW_DOWNWARD */
3899 #ifdef FUNCTION_ARG_OFFSET
3900 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3901 #endif
3904 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3905 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3907 static void
3908 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3909 struct args_size *alignment_pad)
3911 tree save_var = NULL_TREE;
3912 HOST_WIDE_INT save_constant = 0;
3913 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3914 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3916 #ifdef SPARC_STACK_BOUNDARY_HACK
3917 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3918 the real alignment of %sp. However, when it does this, the
3919 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3920 if (SPARC_STACK_BOUNDARY_HACK)
3921 sp_offset = 0;
3922 #endif
3924 if (boundary > PARM_BOUNDARY)
3926 save_var = offset_ptr->var;
3927 save_constant = offset_ptr->constant;
3930 alignment_pad->var = NULL_TREE;
3931 alignment_pad->constant = 0;
3933 if (boundary > BITS_PER_UNIT)
3935 if (offset_ptr->var)
3937 tree sp_offset_tree = ssize_int (sp_offset);
3938 tree offset = size_binop (PLUS_EXPR,
3939 ARGS_SIZE_TREE (*offset_ptr),
3940 sp_offset_tree);
3941 #ifdef ARGS_GROW_DOWNWARD
3942 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3943 #else
3944 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3945 #endif
3947 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3948 /* ARGS_SIZE_TREE includes constant term. */
3949 offset_ptr->constant = 0;
3950 if (boundary > PARM_BOUNDARY)
3951 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3952 save_var);
3954 else
3956 offset_ptr->constant = -sp_offset +
3957 #ifdef ARGS_GROW_DOWNWARD
3958 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3959 #else
3960 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3961 #endif
3962 if (boundary > PARM_BOUNDARY)
3963 alignment_pad->constant = offset_ptr->constant - save_constant;
3968 static void
3969 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3971 if (passed_mode != BLKmode)
3973 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3974 offset_ptr->constant
3975 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3976 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3977 - GET_MODE_SIZE (passed_mode));
3979 else
3981 if (TREE_CODE (sizetree) != INTEGER_CST
3982 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3984 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3985 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3986 /* Add it in. */
3987 ADD_PARM_SIZE (*offset_ptr, s2);
3988 SUB_PARM_SIZE (*offset_ptr, sizetree);
3994 /* True if register REGNO was alive at a place where `setjmp' was
3995 called and was set more than once or is an argument. Such regs may
3996 be clobbered by `longjmp'. */
3998 static bool
3999 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4001 /* There appear to be cases where some local vars never reach the
4002 backend but have bogus regnos. */
4003 if (regno >= max_reg_num ())
4004 return false;
4006 return ((REG_N_SETS (regno) > 1
4007 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4008 regno))
4009 && REGNO_REG_SET_P (setjmp_crosses, regno));
4012 /* Walk the tree of blocks describing the binding levels within a
4013 function and warn about variables the might be killed by setjmp or
4014 vfork. This is done after calling flow_analysis before register
4015 allocation since that will clobber the pseudo-regs to hard
4016 regs. */
4018 static void
4019 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4021 tree decl, sub;
4023 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4025 if (TREE_CODE (decl) == VAR_DECL
4026 && DECL_RTL_SET_P (decl)
4027 && REG_P (DECL_RTL (decl))
4028 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4029 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4030 " %<longjmp%> or %<vfork%>", decl);
4033 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4034 setjmp_vars_warning (setjmp_crosses, sub);
4037 /* Do the appropriate part of setjmp_vars_warning
4038 but for arguments instead of local variables. */
4040 static void
4041 setjmp_args_warning (bitmap setjmp_crosses)
4043 tree decl;
4044 for (decl = DECL_ARGUMENTS (current_function_decl);
4045 decl; decl = DECL_CHAIN (decl))
4046 if (DECL_RTL (decl) != 0
4047 && REG_P (DECL_RTL (decl))
4048 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4049 warning (OPT_Wclobbered,
4050 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4051 decl);
4054 /* Generate warning messages for variables live across setjmp. */
4056 void
4057 generate_setjmp_warnings (void)
4059 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4061 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4062 || bitmap_empty_p (setjmp_crosses))
4063 return;
4065 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4066 setjmp_args_warning (setjmp_crosses);
4070 /* Reverse the order of elements in the fragment chain T of blocks,
4071 and return the new head of the chain (old last element).
4072 In addition to that clear BLOCK_SAME_RANGE flags when needed
4073 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4074 its super fragment origin. */
4076 static tree
4077 block_fragments_nreverse (tree t)
4079 tree prev = 0, block, next, prev_super = 0;
4080 tree super = BLOCK_SUPERCONTEXT (t);
4081 if (BLOCK_FRAGMENT_ORIGIN (super))
4082 super = BLOCK_FRAGMENT_ORIGIN (super);
4083 for (block = t; block; block = next)
4085 next = BLOCK_FRAGMENT_CHAIN (block);
4086 BLOCK_FRAGMENT_CHAIN (block) = prev;
4087 if ((prev && !BLOCK_SAME_RANGE (prev))
4088 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4089 != prev_super))
4090 BLOCK_SAME_RANGE (block) = 0;
4091 prev_super = BLOCK_SUPERCONTEXT (block);
4092 BLOCK_SUPERCONTEXT (block) = super;
4093 prev = block;
4095 t = BLOCK_FRAGMENT_ORIGIN (t);
4096 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4097 != prev_super)
4098 BLOCK_SAME_RANGE (t) = 0;
4099 BLOCK_SUPERCONTEXT (t) = super;
4100 return prev;
4103 /* Reverse the order of elements in the chain T of blocks,
4104 and return the new head of the chain (old last element).
4105 Also do the same on subblocks and reverse the order of elements
4106 in BLOCK_FRAGMENT_CHAIN as well. */
4108 static tree
4109 blocks_nreverse_all (tree t)
4111 tree prev = 0, block, next;
4112 for (block = t; block; block = next)
4114 next = BLOCK_CHAIN (block);
4115 BLOCK_CHAIN (block) = prev;
4116 if (BLOCK_FRAGMENT_CHAIN (block)
4117 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4119 BLOCK_FRAGMENT_CHAIN (block)
4120 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4121 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4122 BLOCK_SAME_RANGE (block) = 0;
4124 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4125 prev = block;
4127 return prev;
4131 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4132 and create duplicate blocks. */
4133 /* ??? Need an option to either create block fragments or to create
4134 abstract origin duplicates of a source block. It really depends
4135 on what optimization has been performed. */
4137 void
4138 reorder_blocks (void)
4140 tree block = DECL_INITIAL (current_function_decl);
4142 if (block == NULL_TREE)
4143 return;
4145 auto_vec<tree, 10> block_stack;
4147 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4148 clear_block_marks (block);
4150 /* Prune the old trees away, so that they don't get in the way. */
4151 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4152 BLOCK_CHAIN (block) = NULL_TREE;
4154 /* Recreate the block tree from the note nesting. */
4155 reorder_blocks_1 (get_insns (), block, &block_stack);
4156 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4159 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4161 void
4162 clear_block_marks (tree block)
4164 while (block)
4166 TREE_ASM_WRITTEN (block) = 0;
4167 clear_block_marks (BLOCK_SUBBLOCKS (block));
4168 block = BLOCK_CHAIN (block);
4172 static void
4173 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4174 vec<tree> *p_block_stack)
4176 rtx_insn *insn;
4177 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4179 for (insn = insns; insn; insn = NEXT_INSN (insn))
4181 if (NOTE_P (insn))
4183 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4185 tree block = NOTE_BLOCK (insn);
4186 tree origin;
4188 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4189 origin = block;
4191 if (prev_end)
4192 BLOCK_SAME_RANGE (prev_end) = 0;
4193 prev_end = NULL_TREE;
4195 /* If we have seen this block before, that means it now
4196 spans multiple address regions. Create a new fragment. */
4197 if (TREE_ASM_WRITTEN (block))
4199 tree new_block = copy_node (block);
4201 BLOCK_SAME_RANGE (new_block) = 0;
4202 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4203 BLOCK_FRAGMENT_CHAIN (new_block)
4204 = BLOCK_FRAGMENT_CHAIN (origin);
4205 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4207 NOTE_BLOCK (insn) = new_block;
4208 block = new_block;
4211 if (prev_beg == current_block && prev_beg)
4212 BLOCK_SAME_RANGE (block) = 1;
4214 prev_beg = origin;
4216 BLOCK_SUBBLOCKS (block) = 0;
4217 TREE_ASM_WRITTEN (block) = 1;
4218 /* When there's only one block for the entire function,
4219 current_block == block and we mustn't do this, it
4220 will cause infinite recursion. */
4221 if (block != current_block)
4223 tree super;
4224 if (block != origin)
4225 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4226 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4227 (origin))
4228 == current_block);
4229 if (p_block_stack->is_empty ())
4230 super = current_block;
4231 else
4233 super = p_block_stack->last ();
4234 gcc_assert (super == current_block
4235 || BLOCK_FRAGMENT_ORIGIN (super)
4236 == current_block);
4238 BLOCK_SUPERCONTEXT (block) = super;
4239 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4240 BLOCK_SUBBLOCKS (current_block) = block;
4241 current_block = origin;
4243 p_block_stack->safe_push (block);
4245 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4247 NOTE_BLOCK (insn) = p_block_stack->pop ();
4248 current_block = BLOCK_SUPERCONTEXT (current_block);
4249 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4250 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4251 prev_beg = NULL_TREE;
4252 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4253 ? NOTE_BLOCK (insn) : NULL_TREE;
4256 else
4258 prev_beg = NULL_TREE;
4259 if (prev_end)
4260 BLOCK_SAME_RANGE (prev_end) = 0;
4261 prev_end = NULL_TREE;
4266 /* Reverse the order of elements in the chain T of blocks,
4267 and return the new head of the chain (old last element). */
4269 tree
4270 blocks_nreverse (tree t)
4272 tree prev = 0, block, next;
4273 for (block = t; block; block = next)
4275 next = BLOCK_CHAIN (block);
4276 BLOCK_CHAIN (block) = prev;
4277 prev = block;
4279 return prev;
4282 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4283 by modifying the last node in chain 1 to point to chain 2. */
4285 tree
4286 block_chainon (tree op1, tree op2)
4288 tree t1;
4290 if (!op1)
4291 return op2;
4292 if (!op2)
4293 return op1;
4295 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4296 continue;
4297 BLOCK_CHAIN (t1) = op2;
4299 #ifdef ENABLE_TREE_CHECKING
4301 tree t2;
4302 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4303 gcc_assert (t2 != t1);
4305 #endif
4307 return op1;
4310 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4311 non-NULL, list them all into VECTOR, in a depth-first preorder
4312 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4313 blocks. */
4315 static int
4316 all_blocks (tree block, tree *vector)
4318 int n_blocks = 0;
4320 while (block)
4322 TREE_ASM_WRITTEN (block) = 0;
4324 /* Record this block. */
4325 if (vector)
4326 vector[n_blocks] = block;
4328 ++n_blocks;
4330 /* Record the subblocks, and their subblocks... */
4331 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4332 vector ? vector + n_blocks : 0);
4333 block = BLOCK_CHAIN (block);
4336 return n_blocks;
4339 /* Return a vector containing all the blocks rooted at BLOCK. The
4340 number of elements in the vector is stored in N_BLOCKS_P. The
4341 vector is dynamically allocated; it is the caller's responsibility
4342 to call `free' on the pointer returned. */
4344 static tree *
4345 get_block_vector (tree block, int *n_blocks_p)
4347 tree *block_vector;
4349 *n_blocks_p = all_blocks (block, NULL);
4350 block_vector = XNEWVEC (tree, *n_blocks_p);
4351 all_blocks (block, block_vector);
4353 return block_vector;
4356 static GTY(()) int next_block_index = 2;
4358 /* Set BLOCK_NUMBER for all the blocks in FN. */
4360 void
4361 number_blocks (tree fn)
4363 int i;
4364 int n_blocks;
4365 tree *block_vector;
4367 /* For SDB and XCOFF debugging output, we start numbering the blocks
4368 from 1 within each function, rather than keeping a running
4369 count. */
4370 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4371 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4372 next_block_index = 1;
4373 #endif
4375 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4377 /* The top-level BLOCK isn't numbered at all. */
4378 for (i = 1; i < n_blocks; ++i)
4379 /* We number the blocks from two. */
4380 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4382 free (block_vector);
4384 return;
4387 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4389 DEBUG_FUNCTION tree
4390 debug_find_var_in_block_tree (tree var, tree block)
4392 tree t;
4394 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4395 if (t == var)
4396 return block;
4398 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4400 tree ret = debug_find_var_in_block_tree (var, t);
4401 if (ret)
4402 return ret;
4405 return NULL_TREE;
4408 /* Keep track of whether we're in a dummy function context. If we are,
4409 we don't want to invoke the set_current_function hook, because we'll
4410 get into trouble if the hook calls target_reinit () recursively or
4411 when the initial initialization is not yet complete. */
4413 static bool in_dummy_function;
4415 /* Invoke the target hook when setting cfun. Update the optimization options
4416 if the function uses different options than the default. */
4418 static void
4419 invoke_set_current_function_hook (tree fndecl)
4421 if (!in_dummy_function)
4423 tree opts = ((fndecl)
4424 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4425 : optimization_default_node);
4427 if (!opts)
4428 opts = optimization_default_node;
4430 /* Change optimization options if needed. */
4431 if (optimization_current_node != opts)
4433 optimization_current_node = opts;
4434 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4437 targetm.set_current_function (fndecl);
4438 this_fn_optabs = this_target_optabs;
4440 if (opts != optimization_default_node)
4442 init_tree_optimization_optabs (opts);
4443 if (TREE_OPTIMIZATION_OPTABS (opts))
4444 this_fn_optabs = (struct target_optabs *)
4445 TREE_OPTIMIZATION_OPTABS (opts);
4450 /* cfun should never be set directly; use this function. */
4452 void
4453 set_cfun (struct function *new_cfun)
4455 if (cfun != new_cfun)
4457 cfun = new_cfun;
4458 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4462 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4464 static vec<function_p> cfun_stack;
4466 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4467 current_function_decl accordingly. */
4469 void
4470 push_cfun (struct function *new_cfun)
4472 gcc_assert ((!cfun && !current_function_decl)
4473 || (cfun && current_function_decl == cfun->decl));
4474 cfun_stack.safe_push (cfun);
4475 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4476 set_cfun (new_cfun);
4479 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4481 void
4482 pop_cfun (void)
4484 struct function *new_cfun = cfun_stack.pop ();
4485 /* When in_dummy_function, we do have a cfun but current_function_decl is
4486 NULL. We also allow pushing NULL cfun and subsequently changing
4487 current_function_decl to something else and have both restored by
4488 pop_cfun. */
4489 gcc_checking_assert (in_dummy_function
4490 || !cfun
4491 || current_function_decl == cfun->decl);
4492 set_cfun (new_cfun);
4493 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4496 /* Return value of funcdef and increase it. */
4498 get_next_funcdef_no (void)
4500 return funcdef_no++;
4503 /* Return value of funcdef. */
4505 get_last_funcdef_no (void)
4507 return funcdef_no;
4510 /* Allocate a function structure for FNDECL and set its contents
4511 to the defaults. Set cfun to the newly-allocated object.
4512 Some of the helper functions invoked during initialization assume
4513 that cfun has already been set. Therefore, assign the new object
4514 directly into cfun and invoke the back end hook explicitly at the
4515 very end, rather than initializing a temporary and calling set_cfun
4516 on it.
4518 ABSTRACT_P is true if this is a function that will never be seen by
4519 the middle-end. Such functions are front-end concepts (like C++
4520 function templates) that do not correspond directly to functions
4521 placed in object files. */
4523 void
4524 allocate_struct_function (tree fndecl, bool abstract_p)
4526 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4528 cfun = ggc_cleared_alloc<function> ();
4530 init_eh_for_function ();
4532 if (init_machine_status)
4533 cfun->machine = (*init_machine_status) ();
4535 #ifdef OVERRIDE_ABI_FORMAT
4536 OVERRIDE_ABI_FORMAT (fndecl);
4537 #endif
4539 if (fndecl != NULL_TREE)
4541 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4542 cfun->decl = fndecl;
4543 current_function_funcdef_no = get_next_funcdef_no ();
4546 invoke_set_current_function_hook (fndecl);
4548 if (fndecl != NULL_TREE)
4550 tree result = DECL_RESULT (fndecl);
4551 if (!abstract_p && aggregate_value_p (result, fndecl))
4553 #ifdef PCC_STATIC_STRUCT_RETURN
4554 cfun->returns_pcc_struct = 1;
4555 #endif
4556 cfun->returns_struct = 1;
4559 cfun->stdarg = stdarg_p (fntype);
4561 /* Assume all registers in stdarg functions need to be saved. */
4562 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4563 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4565 /* ??? This could be set on a per-function basis by the front-end
4566 but is this worth the hassle? */
4567 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4568 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4572 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4573 instead of just setting it. */
4575 void
4576 push_struct_function (tree fndecl)
4578 /* When in_dummy_function we might be in the middle of a pop_cfun and
4579 current_function_decl and cfun may not match. */
4580 gcc_assert (in_dummy_function
4581 || (!cfun && !current_function_decl)
4582 || (cfun && current_function_decl == cfun->decl));
4583 cfun_stack.safe_push (cfun);
4584 current_function_decl = fndecl;
4585 allocate_struct_function (fndecl, false);
4588 /* Reset crtl and other non-struct-function variables to defaults as
4589 appropriate for emitting rtl at the start of a function. */
4591 static void
4592 prepare_function_start (void)
4594 gcc_assert (!crtl->emit.x_last_insn);
4595 init_temp_slots ();
4596 init_emit ();
4597 init_varasm_status ();
4598 init_expr ();
4599 default_rtl_profile ();
4601 if (flag_stack_usage_info)
4603 cfun->su = ggc_cleared_alloc<stack_usage> ();
4604 cfun->su->static_stack_size = -1;
4607 cse_not_expected = ! optimize;
4609 /* Caller save not needed yet. */
4610 caller_save_needed = 0;
4612 /* We haven't done register allocation yet. */
4613 reg_renumber = 0;
4615 /* Indicate that we have not instantiated virtual registers yet. */
4616 virtuals_instantiated = 0;
4618 /* Indicate that we want CONCATs now. */
4619 generating_concat_p = 1;
4621 /* Indicate we have no need of a frame pointer yet. */
4622 frame_pointer_needed = 0;
4625 /* Initialize the rtl expansion mechanism so that we can do simple things
4626 like generate sequences. This is used to provide a context during global
4627 initialization of some passes. You must call expand_dummy_function_end
4628 to exit this context. */
4630 void
4631 init_dummy_function_start (void)
4633 gcc_assert (!in_dummy_function);
4634 in_dummy_function = true;
4635 push_struct_function (NULL_TREE);
4636 prepare_function_start ();
4639 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4640 and initialize static variables for generating RTL for the statements
4641 of the function. */
4643 void
4644 init_function_start (tree subr)
4646 if (subr && DECL_STRUCT_FUNCTION (subr))
4647 set_cfun (DECL_STRUCT_FUNCTION (subr));
4648 else
4649 allocate_struct_function (subr, false);
4651 /* Initialize backend, if needed. */
4652 initialize_rtl ();
4654 prepare_function_start ();
4655 decide_function_section (subr);
4657 /* Warn if this value is an aggregate type,
4658 regardless of which calling convention we are using for it. */
4659 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4660 warning (OPT_Waggregate_return, "function returns an aggregate");
4663 /* Expand code to verify the stack_protect_guard. This is invoked at
4664 the end of a function to be protected. */
4666 #ifndef HAVE_stack_protect_test
4667 # define HAVE_stack_protect_test 0
4668 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4669 #endif
4671 void
4672 stack_protect_epilogue (void)
4674 tree guard_decl = targetm.stack_protect_guard ();
4675 rtx label = gen_label_rtx ();
4676 rtx x, y, tmp;
4678 x = expand_normal (crtl->stack_protect_guard);
4679 y = expand_normal (guard_decl);
4681 /* Allow the target to compare Y with X without leaking either into
4682 a register. */
4683 switch ((int) (HAVE_stack_protect_test != 0))
4685 case 1:
4686 tmp = gen_stack_protect_test (x, y, label);
4687 if (tmp)
4689 emit_insn (tmp);
4690 break;
4692 /* FALLTHRU */
4694 default:
4695 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4696 break;
4699 /* The noreturn predictor has been moved to the tree level. The rtl-level
4700 predictors estimate this branch about 20%, which isn't enough to get
4701 things moved out of line. Since this is the only extant case of adding
4702 a noreturn function at the rtl level, it doesn't seem worth doing ought
4703 except adding the prediction by hand. */
4704 tmp = get_last_insn ();
4705 if (JUMP_P (tmp))
4706 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4708 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4709 free_temp_slots ();
4710 emit_label (label);
4713 /* Start the RTL for a new function, and set variables used for
4714 emitting RTL.
4715 SUBR is the FUNCTION_DECL node.
4716 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4717 the function's parameters, which must be run at any return statement. */
4719 void
4720 expand_function_start (tree subr)
4722 /* Make sure volatile mem refs aren't considered
4723 valid operands of arithmetic insns. */
4724 init_recog_no_volatile ();
4726 crtl->profile
4727 = (profile_flag
4728 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4730 crtl->limit_stack
4731 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4733 /* Make the label for return statements to jump to. Do not special
4734 case machines with special return instructions -- they will be
4735 handled later during jump, ifcvt, or epilogue creation. */
4736 return_label = gen_label_rtx ();
4738 /* Initialize rtx used to return the value. */
4739 /* Do this before assign_parms so that we copy the struct value address
4740 before any library calls that assign parms might generate. */
4742 /* Decide whether to return the value in memory or in a register. */
4743 if (aggregate_value_p (DECL_RESULT (subr), subr))
4745 /* Returning something that won't go in a register. */
4746 rtx value_address = 0;
4748 #ifdef PCC_STATIC_STRUCT_RETURN
4749 if (cfun->returns_pcc_struct)
4751 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4752 value_address = assemble_static_space (size);
4754 else
4755 #endif
4757 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4758 /* Expect to be passed the address of a place to store the value.
4759 If it is passed as an argument, assign_parms will take care of
4760 it. */
4761 if (sv)
4763 value_address = gen_reg_rtx (Pmode);
4764 emit_move_insn (value_address, sv);
4767 if (value_address)
4769 rtx x = value_address;
4770 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4772 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4773 set_mem_attributes (x, DECL_RESULT (subr), 1);
4775 SET_DECL_RTL (DECL_RESULT (subr), x);
4778 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4779 /* If return mode is void, this decl rtl should not be used. */
4780 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4781 else
4783 /* Compute the return values into a pseudo reg, which we will copy
4784 into the true return register after the cleanups are done. */
4785 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4786 if (TYPE_MODE (return_type) != BLKmode
4787 && targetm.calls.return_in_msb (return_type))
4788 /* expand_function_end will insert the appropriate padding in
4789 this case. Use the return value's natural (unpadded) mode
4790 within the function proper. */
4791 SET_DECL_RTL (DECL_RESULT (subr),
4792 gen_reg_rtx (TYPE_MODE (return_type)));
4793 else
4795 /* In order to figure out what mode to use for the pseudo, we
4796 figure out what the mode of the eventual return register will
4797 actually be, and use that. */
4798 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4800 /* Structures that are returned in registers are not
4801 aggregate_value_p, so we may see a PARALLEL or a REG. */
4802 if (REG_P (hard_reg))
4803 SET_DECL_RTL (DECL_RESULT (subr),
4804 gen_reg_rtx (GET_MODE (hard_reg)));
4805 else
4807 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4808 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4812 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4813 result to the real return register(s). */
4814 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4817 /* Initialize rtx for parameters and local variables.
4818 In some cases this requires emitting insns. */
4819 assign_parms (subr);
4821 /* If function gets a static chain arg, store it. */
4822 if (cfun->static_chain_decl)
4824 tree parm = cfun->static_chain_decl;
4825 rtx local, chain, insn;
4827 local = gen_reg_rtx (Pmode);
4828 chain = targetm.calls.static_chain (current_function_decl, true);
4830 set_decl_incoming_rtl (parm, chain, false);
4831 SET_DECL_RTL (parm, local);
4832 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4834 insn = emit_move_insn (local, chain);
4836 /* Mark the register as eliminable, similar to parameters. */
4837 if (MEM_P (chain)
4838 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4839 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4841 /* If we aren't optimizing, save the static chain onto the stack. */
4842 if (!optimize)
4844 tree saved_static_chain_decl
4845 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
4846 DECL_NAME (parm), TREE_TYPE (parm));
4847 rtx saved_static_chain_rtx
4848 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4849 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
4850 emit_move_insn (saved_static_chain_rtx, chain);
4851 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
4852 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4856 /* If the function receives a non-local goto, then store the
4857 bits we need to restore the frame pointer. */
4858 if (cfun->nonlocal_goto_save_area)
4860 tree t_save;
4861 rtx r_save;
4863 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4864 gcc_assert (DECL_RTL_SET_P (var));
4866 t_save = build4 (ARRAY_REF,
4867 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4868 cfun->nonlocal_goto_save_area,
4869 integer_zero_node, NULL_TREE, NULL_TREE);
4870 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4871 gcc_assert (GET_MODE (r_save) == Pmode);
4873 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4874 update_nonlocal_goto_save_area ();
4877 /* The following was moved from init_function_start.
4878 The move is supposed to make sdb output more accurate. */
4879 /* Indicate the beginning of the function body,
4880 as opposed to parm setup. */
4881 emit_note (NOTE_INSN_FUNCTION_BEG);
4883 gcc_assert (NOTE_P (get_last_insn ()));
4885 parm_birth_insn = get_last_insn ();
4887 if (crtl->profile)
4889 #ifdef PROFILE_HOOK
4890 PROFILE_HOOK (current_function_funcdef_no);
4891 #endif
4894 /* If we are doing generic stack checking, the probe should go here. */
4895 if (flag_stack_check == GENERIC_STACK_CHECK)
4896 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4899 /* Undo the effects of init_dummy_function_start. */
4900 void
4901 expand_dummy_function_end (void)
4903 gcc_assert (in_dummy_function);
4905 /* End any sequences that failed to be closed due to syntax errors. */
4906 while (in_sequence_p ())
4907 end_sequence ();
4909 /* Outside function body, can't compute type's actual size
4910 until next function's body starts. */
4912 free_after_parsing (cfun);
4913 free_after_compilation (cfun);
4914 pop_cfun ();
4915 in_dummy_function = false;
4918 /* Call DOIT for each hard register used as a return value from
4919 the current function. */
4921 void
4922 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4924 rtx outgoing = crtl->return_rtx;
4926 if (! outgoing)
4927 return;
4929 if (REG_P (outgoing))
4930 (*doit) (outgoing, arg);
4931 else if (GET_CODE (outgoing) == PARALLEL)
4933 int i;
4935 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4937 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4939 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4940 (*doit) (x, arg);
4945 static void
4946 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4948 emit_clobber (reg);
4951 void
4952 clobber_return_register (void)
4954 diddle_return_value (do_clobber_return_reg, NULL);
4956 /* In case we do use pseudo to return value, clobber it too. */
4957 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4959 tree decl_result = DECL_RESULT (current_function_decl);
4960 rtx decl_rtl = DECL_RTL (decl_result);
4961 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4963 do_clobber_return_reg (decl_rtl, NULL);
4968 static void
4969 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4971 emit_use (reg);
4974 static void
4975 use_return_register (void)
4977 diddle_return_value (do_use_return_reg, NULL);
4980 /* Possibly warn about unused parameters. */
4981 void
4982 do_warn_unused_parameter (tree fn)
4984 tree decl;
4986 for (decl = DECL_ARGUMENTS (fn);
4987 decl; decl = DECL_CHAIN (decl))
4988 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4989 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4990 && !TREE_NO_WARNING (decl))
4991 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4994 /* Set the location of the insn chain starting at INSN to LOC. */
4996 static void
4997 set_insn_locations (rtx_insn *insn, int loc)
4999 while (insn != NULL)
5001 if (INSN_P (insn))
5002 INSN_LOCATION (insn) = loc;
5003 insn = NEXT_INSN (insn);
5007 /* Generate RTL for the end of the current function. */
5009 void
5010 expand_function_end (void)
5012 rtx clobber_after;
5014 /* If arg_pointer_save_area was referenced only from a nested
5015 function, we will not have initialized it yet. Do that now. */
5016 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5017 get_arg_pointer_save_area ();
5019 /* If we are doing generic stack checking and this function makes calls,
5020 do a stack probe at the start of the function to ensure we have enough
5021 space for another stack frame. */
5022 if (flag_stack_check == GENERIC_STACK_CHECK)
5024 rtx_insn *insn, *seq;
5026 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5027 if (CALL_P (insn))
5029 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5030 start_sequence ();
5031 if (STACK_CHECK_MOVING_SP)
5032 anti_adjust_stack_and_probe (max_frame_size, true);
5033 else
5034 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5035 seq = get_insns ();
5036 end_sequence ();
5037 set_insn_locations (seq, prologue_location);
5038 emit_insn_before (seq, stack_check_probe_note);
5039 break;
5043 /* End any sequences that failed to be closed due to syntax errors. */
5044 while (in_sequence_p ())
5045 end_sequence ();
5047 clear_pending_stack_adjust ();
5048 do_pending_stack_adjust ();
5050 /* Output a linenumber for the end of the function.
5051 SDB depends on this. */
5052 set_curr_insn_location (input_location);
5054 /* Before the return label (if any), clobber the return
5055 registers so that they are not propagated live to the rest of
5056 the function. This can only happen with functions that drop
5057 through; if there had been a return statement, there would
5058 have either been a return rtx, or a jump to the return label.
5060 We delay actual code generation after the current_function_value_rtx
5061 is computed. */
5062 clobber_after = get_last_insn ();
5064 /* Output the label for the actual return from the function. */
5065 emit_label (return_label);
5067 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5069 /* Let except.c know where it should emit the call to unregister
5070 the function context for sjlj exceptions. */
5071 if (flag_exceptions)
5072 sjlj_emit_function_exit_after (get_last_insn ());
5074 else
5076 /* We want to ensure that instructions that may trap are not
5077 moved into the epilogue by scheduling, because we don't
5078 always emit unwind information for the epilogue. */
5079 if (cfun->can_throw_non_call_exceptions)
5080 emit_insn (gen_blockage ());
5083 /* If this is an implementation of throw, do what's necessary to
5084 communicate between __builtin_eh_return and the epilogue. */
5085 expand_eh_return ();
5087 /* If scalar return value was computed in a pseudo-reg, or was a named
5088 return value that got dumped to the stack, copy that to the hard
5089 return register. */
5090 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5092 tree decl_result = DECL_RESULT (current_function_decl);
5093 rtx decl_rtl = DECL_RTL (decl_result);
5095 if (REG_P (decl_rtl)
5096 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5097 : DECL_REGISTER (decl_result))
5099 rtx real_decl_rtl = crtl->return_rtx;
5101 /* This should be set in assign_parms. */
5102 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5104 /* If this is a BLKmode structure being returned in registers,
5105 then use the mode computed in expand_return. Note that if
5106 decl_rtl is memory, then its mode may have been changed,
5107 but that crtl->return_rtx has not. */
5108 if (GET_MODE (real_decl_rtl) == BLKmode)
5109 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5111 /* If a non-BLKmode return value should be padded at the least
5112 significant end of the register, shift it left by the appropriate
5113 amount. BLKmode results are handled using the group load/store
5114 machinery. */
5115 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5116 && REG_P (real_decl_rtl)
5117 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5119 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5120 REGNO (real_decl_rtl)),
5121 decl_rtl);
5122 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5124 /* If a named return value dumped decl_return to memory, then
5125 we may need to re-do the PROMOTE_MODE signed/unsigned
5126 extension. */
5127 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5129 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5130 promote_function_mode (TREE_TYPE (decl_result),
5131 GET_MODE (decl_rtl), &unsignedp,
5132 TREE_TYPE (current_function_decl), 1);
5134 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5136 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5138 /* If expand_function_start has created a PARALLEL for decl_rtl,
5139 move the result to the real return registers. Otherwise, do
5140 a group load from decl_rtl for a named return. */
5141 if (GET_CODE (decl_rtl) == PARALLEL)
5142 emit_group_move (real_decl_rtl, decl_rtl);
5143 else
5144 emit_group_load (real_decl_rtl, decl_rtl,
5145 TREE_TYPE (decl_result),
5146 int_size_in_bytes (TREE_TYPE (decl_result)));
5148 /* In the case of complex integer modes smaller than a word, we'll
5149 need to generate some non-trivial bitfield insertions. Do that
5150 on a pseudo and not the hard register. */
5151 else if (GET_CODE (decl_rtl) == CONCAT
5152 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5153 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5155 int old_generating_concat_p;
5156 rtx tmp;
5158 old_generating_concat_p = generating_concat_p;
5159 generating_concat_p = 0;
5160 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5161 generating_concat_p = old_generating_concat_p;
5163 emit_move_insn (tmp, decl_rtl);
5164 emit_move_insn (real_decl_rtl, tmp);
5166 else
5167 emit_move_insn (real_decl_rtl, decl_rtl);
5171 /* If returning a structure, arrange to return the address of the value
5172 in a place where debuggers expect to find it.
5174 If returning a structure PCC style,
5175 the caller also depends on this value.
5176 And cfun->returns_pcc_struct is not necessarily set. */
5177 if (cfun->returns_struct
5178 || cfun->returns_pcc_struct)
5180 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5181 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5182 rtx outgoing;
5184 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5185 type = TREE_TYPE (type);
5186 else
5187 value_address = XEXP (value_address, 0);
5189 outgoing = targetm.calls.function_value (build_pointer_type (type),
5190 current_function_decl, true);
5192 /* Mark this as a function return value so integrate will delete the
5193 assignment and USE below when inlining this function. */
5194 REG_FUNCTION_VALUE_P (outgoing) = 1;
5196 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5197 value_address = convert_memory_address (GET_MODE (outgoing),
5198 value_address);
5200 emit_move_insn (outgoing, value_address);
5202 /* Show return register used to hold result (in this case the address
5203 of the result. */
5204 crtl->return_rtx = outgoing;
5207 /* Emit the actual code to clobber return register. Don't emit
5208 it if clobber_after is a barrier, then the previous basic block
5209 certainly doesn't fall thru into the exit block. */
5210 if (!BARRIER_P (clobber_after))
5212 rtx seq;
5214 start_sequence ();
5215 clobber_return_register ();
5216 seq = get_insns ();
5217 end_sequence ();
5219 emit_insn_after (seq, clobber_after);
5222 /* Output the label for the naked return from the function. */
5223 if (naked_return_label)
5224 emit_label (naked_return_label);
5226 /* @@@ This is a kludge. We want to ensure that instructions that
5227 may trap are not moved into the epilogue by scheduling, because
5228 we don't always emit unwind information for the epilogue. */
5229 if (cfun->can_throw_non_call_exceptions
5230 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5231 emit_insn (gen_blockage ());
5233 /* If stack protection is enabled for this function, check the guard. */
5234 if (crtl->stack_protect_guard)
5235 stack_protect_epilogue ();
5237 /* If we had calls to alloca, and this machine needs
5238 an accurate stack pointer to exit the function,
5239 insert some code to save and restore the stack pointer. */
5240 if (! EXIT_IGNORE_STACK
5241 && cfun->calls_alloca)
5243 rtx tem = 0, seq;
5245 start_sequence ();
5246 emit_stack_save (SAVE_FUNCTION, &tem);
5247 seq = get_insns ();
5248 end_sequence ();
5249 emit_insn_before (seq, parm_birth_insn);
5251 emit_stack_restore (SAVE_FUNCTION, tem);
5254 /* ??? This should no longer be necessary since stupid is no longer with
5255 us, but there are some parts of the compiler (eg reload_combine, and
5256 sh mach_dep_reorg) that still try and compute their own lifetime info
5257 instead of using the general framework. */
5258 use_return_register ();
5262 get_arg_pointer_save_area (void)
5264 rtx ret = arg_pointer_save_area;
5266 if (! ret)
5268 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5269 arg_pointer_save_area = ret;
5272 if (! crtl->arg_pointer_save_area_init)
5274 rtx seq;
5276 /* Save the arg pointer at the beginning of the function. The
5277 generated stack slot may not be a valid memory address, so we
5278 have to check it and fix it if necessary. */
5279 start_sequence ();
5280 emit_move_insn (validize_mem (copy_rtx (ret)),
5281 crtl->args.internal_arg_pointer);
5282 seq = get_insns ();
5283 end_sequence ();
5285 push_topmost_sequence ();
5286 emit_insn_after (seq, entry_of_function ());
5287 pop_topmost_sequence ();
5289 crtl->arg_pointer_save_area_init = true;
5292 return ret;
5295 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5296 for the first time. */
5298 static void
5299 record_insns (rtx_insn *insns, rtx end, htab_t *hashp)
5301 rtx_insn *tmp;
5302 htab_t hash = *hashp;
5304 if (hash == NULL)
5305 *hashp = hash
5306 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5308 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5310 void **slot = htab_find_slot (hash, tmp, INSERT);
5311 gcc_assert (*slot == NULL);
5312 *slot = tmp;
5316 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5317 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5318 insn, then record COPY as well. */
5320 void
5321 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5323 htab_t hash;
5324 void **slot;
5326 hash = epilogue_insn_hash;
5327 if (!hash || !htab_find (hash, insn))
5329 hash = prologue_insn_hash;
5330 if (!hash || !htab_find (hash, insn))
5331 return;
5334 slot = htab_find_slot (hash, copy, INSERT);
5335 gcc_assert (*slot == NULL);
5336 *slot = copy;
5339 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5340 we can be running after reorg, SEQUENCE rtl is possible. */
5342 static bool
5343 contains (const_rtx insn, htab_t hash)
5345 if (hash == NULL)
5346 return false;
5348 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5350 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5351 int i;
5352 for (i = seq->len () - 1; i >= 0; i--)
5353 if (htab_find (hash, seq->element (i)))
5354 return true;
5355 return false;
5358 return htab_find (hash, insn) != NULL;
5362 prologue_epilogue_contains (const_rtx insn)
5364 if (contains (insn, prologue_insn_hash))
5365 return 1;
5366 if (contains (insn, epilogue_insn_hash))
5367 return 1;
5368 return 0;
5371 #ifdef HAVE_return
5372 /* Insert use of return register before the end of BB. */
5374 static void
5375 emit_use_return_register_into_block (basic_block bb)
5377 rtx seq, insn;
5378 start_sequence ();
5379 use_return_register ();
5380 seq = get_insns ();
5381 end_sequence ();
5382 insn = BB_END (bb);
5383 #ifdef HAVE_cc0
5384 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5385 insn = prev_cc0_setter (insn);
5386 #endif
5387 emit_insn_before (seq, insn);
5391 /* Create a return pattern, either simple_return or return, depending on
5392 simple_p. */
5394 static rtx
5395 gen_return_pattern (bool simple_p)
5397 #ifdef HAVE_simple_return
5398 return simple_p ? gen_simple_return () : gen_return ();
5399 #else
5400 gcc_assert (!simple_p);
5401 return gen_return ();
5402 #endif
5405 /* Insert an appropriate return pattern at the end of block BB. This
5406 also means updating block_for_insn appropriately. SIMPLE_P is
5407 the same as in gen_return_pattern and passed to it. */
5409 void
5410 emit_return_into_block (bool simple_p, basic_block bb)
5412 rtx jump, pat;
5413 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5414 pat = PATTERN (jump);
5415 if (GET_CODE (pat) == PARALLEL)
5416 pat = XVECEXP (pat, 0, 0);
5417 gcc_assert (ANY_RETURN_P (pat));
5418 JUMP_LABEL (jump) = pat;
5420 #endif
5422 /* Set JUMP_LABEL for a return insn. */
5424 void
5425 set_return_jump_label (rtx returnjump)
5427 rtx pat = PATTERN (returnjump);
5428 if (GET_CODE (pat) == PARALLEL)
5429 pat = XVECEXP (pat, 0, 0);
5430 if (ANY_RETURN_P (pat))
5431 JUMP_LABEL (returnjump) = pat;
5432 else
5433 JUMP_LABEL (returnjump) = ret_rtx;
5436 #if defined (HAVE_return) || defined (HAVE_simple_return)
5437 /* Return true if there are any active insns between HEAD and TAIL. */
5438 bool
5439 active_insn_between (rtx_insn *head, rtx_insn *tail)
5441 while (tail)
5443 if (active_insn_p (tail))
5444 return true;
5445 if (tail == head)
5446 return false;
5447 tail = PREV_INSN (tail);
5449 return false;
5452 /* LAST_BB is a block that exits, and empty of active instructions.
5453 Examine its predecessors for jumps that can be converted to
5454 (conditional) returns. */
5455 vec<edge>
5456 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5457 vec<edge> unconverted ATTRIBUTE_UNUSED)
5459 int i;
5460 basic_block bb;
5461 rtx label;
5462 edge_iterator ei;
5463 edge e;
5464 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5466 FOR_EACH_EDGE (e, ei, last_bb->preds)
5467 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5468 src_bbs.quick_push (e->src);
5470 label = BB_HEAD (last_bb);
5472 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5474 rtx jump = BB_END (bb);
5476 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5477 continue;
5479 e = find_edge (bb, last_bb);
5481 /* If we have an unconditional jump, we can replace that
5482 with a simple return instruction. */
5483 if (simplejump_p (jump))
5485 /* The use of the return register might be present in the exit
5486 fallthru block. Either:
5487 - removing the use is safe, and we should remove the use in
5488 the exit fallthru block, or
5489 - removing the use is not safe, and we should add it here.
5490 For now, we conservatively choose the latter. Either of the
5491 2 helps in crossjumping. */
5492 emit_use_return_register_into_block (bb);
5494 emit_return_into_block (simple_p, bb);
5495 delete_insn (jump);
5498 /* If we have a conditional jump branching to the last
5499 block, we can try to replace that with a conditional
5500 return instruction. */
5501 else if (condjump_p (jump))
5503 rtx dest;
5505 if (simple_p)
5506 dest = simple_return_rtx;
5507 else
5508 dest = ret_rtx;
5509 if (!redirect_jump (jump, dest, 0))
5511 #ifdef HAVE_simple_return
5512 if (simple_p)
5514 if (dump_file)
5515 fprintf (dump_file,
5516 "Failed to redirect bb %d branch.\n", bb->index);
5517 unconverted.safe_push (e);
5519 #endif
5520 continue;
5523 /* See comment in simplejump_p case above. */
5524 emit_use_return_register_into_block (bb);
5526 /* If this block has only one successor, it both jumps
5527 and falls through to the fallthru block, so we can't
5528 delete the edge. */
5529 if (single_succ_p (bb))
5530 continue;
5532 else
5534 #ifdef HAVE_simple_return
5535 if (simple_p)
5537 if (dump_file)
5538 fprintf (dump_file,
5539 "Failed to redirect bb %d branch.\n", bb->index);
5540 unconverted.safe_push (e);
5542 #endif
5543 continue;
5546 /* Fix up the CFG for the successful change we just made. */
5547 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5548 e->flags &= ~EDGE_CROSSING;
5550 src_bbs.release ();
5551 return unconverted;
5554 /* Emit a return insn for the exit fallthru block. */
5555 basic_block
5556 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5558 basic_block last_bb = exit_fallthru_edge->src;
5560 if (JUMP_P (BB_END (last_bb)))
5562 last_bb = split_edge (exit_fallthru_edge);
5563 exit_fallthru_edge = single_succ_edge (last_bb);
5565 emit_barrier_after (BB_END (last_bb));
5566 emit_return_into_block (simple_p, last_bb);
5567 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5568 return last_bb;
5570 #endif
5573 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5574 this into place with notes indicating where the prologue ends and where
5575 the epilogue begins. Update the basic block information when possible.
5577 Notes on epilogue placement:
5578 There are several kinds of edges to the exit block:
5579 * a single fallthru edge from LAST_BB
5580 * possibly, edges from blocks containing sibcalls
5581 * possibly, fake edges from infinite loops
5583 The epilogue is always emitted on the fallthru edge from the last basic
5584 block in the function, LAST_BB, into the exit block.
5586 If LAST_BB is empty except for a label, it is the target of every
5587 other basic block in the function that ends in a return. If a
5588 target has a return or simple_return pattern (possibly with
5589 conditional variants), these basic blocks can be changed so that a
5590 return insn is emitted into them, and their target is adjusted to
5591 the real exit block.
5593 Notes on shrink wrapping: We implement a fairly conservative
5594 version of shrink-wrapping rather than the textbook one. We only
5595 generate a single prologue and a single epilogue. This is
5596 sufficient to catch a number of interesting cases involving early
5597 exits.
5599 First, we identify the blocks that require the prologue to occur before
5600 them. These are the ones that modify a call-saved register, or reference
5601 any of the stack or frame pointer registers. To simplify things, we then
5602 mark everything reachable from these blocks as also requiring a prologue.
5603 This takes care of loops automatically, and avoids the need to examine
5604 whether MEMs reference the frame, since it is sufficient to check for
5605 occurrences of the stack or frame pointer.
5607 We then compute the set of blocks for which the need for a prologue
5608 is anticipatable (borrowing terminology from the shrink-wrapping
5609 description in Muchnick's book). These are the blocks which either
5610 require a prologue themselves, or those that have only successors
5611 where the prologue is anticipatable. The prologue needs to be
5612 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5613 is not. For the moment, we ensure that only one such edge exists.
5615 The epilogue is placed as described above, but we make a
5616 distinction between inserting return and simple_return patterns
5617 when modifying other blocks that end in a return. Blocks that end
5618 in a sibcall omit the sibcall_epilogue if the block is not in
5619 ANTIC. */
5621 static void
5622 thread_prologue_and_epilogue_insns (void)
5624 bool inserted;
5625 #ifdef HAVE_simple_return
5626 vec<edge> unconverted_simple_returns = vNULL;
5627 bitmap_head bb_flags;
5628 #endif
5629 rtx_insn *returnjump;
5630 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5631 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5632 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5633 edge_iterator ei;
5635 df_analyze ();
5637 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5639 inserted = false;
5640 epilogue_end = NULL;
5641 returnjump = NULL;
5643 /* Can't deal with multiple successors of the entry block at the
5644 moment. Function should always have at least one entry
5645 point. */
5646 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5647 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5648 orig_entry_edge = entry_edge;
5650 split_prologue_seq = NULL;
5651 if (flag_split_stack
5652 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5653 == NULL))
5655 #ifndef HAVE_split_stack_prologue
5656 gcc_unreachable ();
5657 #else
5658 gcc_assert (HAVE_split_stack_prologue);
5660 start_sequence ();
5661 emit_insn (gen_split_stack_prologue ());
5662 split_prologue_seq = get_insns ();
5663 end_sequence ();
5665 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5666 set_insn_locations (split_prologue_seq, prologue_location);
5667 #endif
5670 prologue_seq = NULL;
5671 #ifdef HAVE_prologue
5672 if (HAVE_prologue)
5674 start_sequence ();
5675 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5676 emit_insn (seq);
5678 /* Insert an explicit USE for the frame pointer
5679 if the profiling is on and the frame pointer is required. */
5680 if (crtl->profile && frame_pointer_needed)
5681 emit_use (hard_frame_pointer_rtx);
5683 /* Retain a map of the prologue insns. */
5684 record_insns (seq, NULL, &prologue_insn_hash);
5685 emit_note (NOTE_INSN_PROLOGUE_END);
5687 /* Ensure that instructions are not moved into the prologue when
5688 profiling is on. The call to the profiling routine can be
5689 emitted within the live range of a call-clobbered register. */
5690 if (!targetm.profile_before_prologue () && crtl->profile)
5691 emit_insn (gen_blockage ());
5693 prologue_seq = get_insns ();
5694 end_sequence ();
5695 set_insn_locations (prologue_seq, prologue_location);
5697 #endif
5699 #ifdef HAVE_simple_return
5700 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5702 /* Try to perform a kind of shrink-wrapping, making sure the
5703 prologue/epilogue is emitted only around those parts of the
5704 function that require it. */
5706 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5707 #endif
5709 if (split_prologue_seq != NULL_RTX)
5711 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5712 inserted = true;
5714 if (prologue_seq != NULL_RTX)
5716 insert_insn_on_edge (prologue_seq, entry_edge);
5717 inserted = true;
5720 /* If the exit block has no non-fake predecessors, we don't need
5721 an epilogue. */
5722 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5723 if ((e->flags & EDGE_FAKE) == 0)
5724 break;
5725 if (e == NULL)
5726 goto epilogue_done;
5728 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5730 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5732 #ifdef HAVE_simple_return
5733 if (entry_edge != orig_entry_edge)
5734 exit_fallthru_edge
5735 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5736 &unconverted_simple_returns,
5737 &returnjump);
5738 #endif
5739 #ifdef HAVE_return
5740 if (HAVE_return)
5742 if (exit_fallthru_edge == NULL)
5743 goto epilogue_done;
5745 if (optimize)
5747 basic_block last_bb = exit_fallthru_edge->src;
5749 if (LABEL_P (BB_HEAD (last_bb))
5750 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5751 convert_jumps_to_returns (last_bb, false, vNULL);
5753 if (EDGE_COUNT (last_bb->preds) != 0
5754 && single_succ_p (last_bb))
5756 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5757 epilogue_end = returnjump = BB_END (last_bb);
5758 #ifdef HAVE_simple_return
5759 /* Emitting the return may add a basic block.
5760 Fix bb_flags for the added block. */
5761 if (last_bb != exit_fallthru_edge->src)
5762 bitmap_set_bit (&bb_flags, last_bb->index);
5763 #endif
5764 goto epilogue_done;
5768 #endif
5770 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5771 this marker for the splits of EH_RETURN patterns, and nothing else
5772 uses the flag in the meantime. */
5773 epilogue_completed = 1;
5775 #ifdef HAVE_eh_return
5776 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5777 some targets, these get split to a special version of the epilogue
5778 code. In order to be able to properly annotate these with unwind
5779 info, try to split them now. If we get a valid split, drop an
5780 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5781 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5783 rtx_insn *prev, *last, *trial;
5785 if (e->flags & EDGE_FALLTHRU)
5786 continue;
5787 last = BB_END (e->src);
5788 if (!eh_returnjump_p (last))
5789 continue;
5791 prev = PREV_INSN (last);
5792 trial = try_split (PATTERN (last), last, 1);
5793 if (trial == last)
5794 continue;
5796 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5797 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5799 #endif
5801 /* If nothing falls through into the exit block, we don't need an
5802 epilogue. */
5804 if (exit_fallthru_edge == NULL)
5805 goto epilogue_done;
5807 #ifdef HAVE_epilogue
5808 if (HAVE_epilogue)
5810 start_sequence ();
5811 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5812 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
5813 if (seq)
5814 emit_jump_insn (seq);
5816 /* Retain a map of the epilogue insns. */
5817 record_insns (seq, NULL, &epilogue_insn_hash);
5818 set_insn_locations (seq, epilogue_location);
5820 seq = get_insns ();
5821 returnjump = get_last_insn ();
5822 end_sequence ();
5824 insert_insn_on_edge (seq, exit_fallthru_edge);
5825 inserted = true;
5827 if (JUMP_P (returnjump))
5828 set_return_jump_label (returnjump);
5830 else
5831 #endif
5833 basic_block cur_bb;
5835 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
5836 goto epilogue_done;
5837 /* We have a fall-through edge to the exit block, the source is not
5838 at the end of the function, and there will be an assembler epilogue
5839 at the end of the function.
5840 We can't use force_nonfallthru here, because that would try to
5841 use return. Inserting a jump 'by hand' is extremely messy, so
5842 we take advantage of cfg_layout_finalize using
5843 fixup_fallthru_exit_predecessor. */
5844 cfg_layout_initialize (0);
5845 FOR_EACH_BB_FN (cur_bb, cfun)
5846 if (cur_bb->index >= NUM_FIXED_BLOCKS
5847 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5848 cur_bb->aux = cur_bb->next_bb;
5849 cfg_layout_finalize ();
5852 epilogue_done:
5854 default_rtl_profile ();
5856 if (inserted)
5858 sbitmap blocks;
5860 commit_edge_insertions ();
5862 /* Look for basic blocks within the prologue insns. */
5863 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
5864 bitmap_clear (blocks);
5865 bitmap_set_bit (blocks, entry_edge->dest->index);
5866 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
5867 find_many_sub_basic_blocks (blocks);
5868 sbitmap_free (blocks);
5870 /* The epilogue insns we inserted may cause the exit edge to no longer
5871 be fallthru. */
5872 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5874 if (((e->flags & EDGE_FALLTHRU) != 0)
5875 && returnjump_p (BB_END (e->src)))
5876 e->flags &= ~EDGE_FALLTHRU;
5880 #ifdef HAVE_simple_return
5881 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
5882 unconverted_simple_returns);
5883 #endif
5885 #ifdef HAVE_sibcall_epilogue
5886 /* Emit sibling epilogues before any sibling call sites. */
5887 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
5888 ei_safe_edge (ei));
5891 basic_block bb = e->src;
5892 rtx_insn *insn = BB_END (bb);
5893 rtx ep_seq;
5895 if (!CALL_P (insn)
5896 || ! SIBLING_CALL_P (insn)
5897 #ifdef HAVE_simple_return
5898 || (entry_edge != orig_entry_edge
5899 && !bitmap_bit_p (&bb_flags, bb->index))
5900 #endif
5903 ei_next (&ei);
5904 continue;
5907 ep_seq = gen_sibcall_epilogue ();
5908 if (ep_seq)
5910 start_sequence ();
5911 emit_note (NOTE_INSN_EPILOGUE_BEG);
5912 emit_insn (ep_seq);
5913 rtx_insn *seq = get_insns ();
5914 end_sequence ();
5916 /* Retain a map of the epilogue insns. Used in life analysis to
5917 avoid getting rid of sibcall epilogue insns. Do this before we
5918 actually emit the sequence. */
5919 record_insns (seq, NULL, &epilogue_insn_hash);
5920 set_insn_locations (seq, epilogue_location);
5922 emit_insn_before (seq, insn);
5924 ei_next (&ei);
5926 #endif
5928 #ifdef HAVE_epilogue
5929 if (epilogue_end)
5931 rtx_insn *insn, *next;
5933 /* Similarly, move any line notes that appear after the epilogue.
5934 There is no need, however, to be quite so anal about the existence
5935 of such a note. Also possibly move
5936 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5937 info generation. */
5938 for (insn = epilogue_end; insn; insn = next)
5940 next = NEXT_INSN (insn);
5941 if (NOTE_P (insn)
5942 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5943 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5946 #endif
5948 #ifdef HAVE_simple_return
5949 bitmap_clear (&bb_flags);
5950 #endif
5952 /* Threading the prologue and epilogue changes the artificial refs
5953 in the entry and exit blocks. */
5954 epilogue_completed = 1;
5955 df_update_entry_exit_and_calls ();
5958 /* Reposition the prologue-end and epilogue-begin notes after
5959 instruction scheduling. */
5961 void
5962 reposition_prologue_and_epilogue_notes (void)
5964 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5965 || defined (HAVE_sibcall_epilogue)
5966 /* Since the hash table is created on demand, the fact that it is
5967 non-null is a signal that it is non-empty. */
5968 if (prologue_insn_hash != NULL)
5970 size_t len = htab_elements (prologue_insn_hash);
5971 rtx_insn *insn, *last = NULL, *note = NULL;
5973 /* Scan from the beginning until we reach the last prologue insn. */
5974 /* ??? While we do have the CFG intact, there are two problems:
5975 (1) The prologue can contain loops (typically probing the stack),
5976 which means that the end of the prologue isn't in the first bb.
5977 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5978 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5980 if (NOTE_P (insn))
5982 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5983 note = insn;
5985 else if (contains (insn, prologue_insn_hash))
5987 last = insn;
5988 if (--len == 0)
5989 break;
5993 if (last)
5995 if (note == NULL)
5997 /* Scan forward looking for the PROLOGUE_END note. It should
5998 be right at the beginning of the block, possibly with other
5999 insn notes that got moved there. */
6000 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6002 if (NOTE_P (note)
6003 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6004 break;
6008 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6009 if (LABEL_P (last))
6010 last = NEXT_INSN (last);
6011 reorder_insns (note, note, last);
6015 if (epilogue_insn_hash != NULL)
6017 edge_iterator ei;
6018 edge e;
6020 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6022 rtx_insn *insn, *first = NULL, *note = NULL;
6023 basic_block bb = e->src;
6025 /* Scan from the beginning until we reach the first epilogue insn. */
6026 FOR_BB_INSNS (bb, insn)
6028 if (NOTE_P (insn))
6030 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6032 note = insn;
6033 if (first != NULL)
6034 break;
6037 else if (first == NULL && contains (insn, epilogue_insn_hash))
6039 first = insn;
6040 if (note != NULL)
6041 break;
6045 if (note)
6047 /* If the function has a single basic block, and no real
6048 epilogue insns (e.g. sibcall with no cleanup), the
6049 epilogue note can get scheduled before the prologue
6050 note. If we have frame related prologue insns, having
6051 them scanned during the epilogue will result in a crash.
6052 In this case re-order the epilogue note to just before
6053 the last insn in the block. */
6054 if (first == NULL)
6055 first = BB_END (bb);
6057 if (PREV_INSN (first) != note)
6058 reorder_insns (note, note, PREV_INSN (first));
6062 #endif /* HAVE_prologue or HAVE_epilogue */
6065 /* Returns the name of function declared by FNDECL. */
6066 const char *
6067 fndecl_name (tree fndecl)
6069 if (fndecl == NULL)
6070 return "(nofn)";
6071 return lang_hooks.decl_printable_name (fndecl, 2);
6074 /* Returns the name of function FN. */
6075 const char *
6076 function_name (struct function *fn)
6078 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6079 return fndecl_name (fndecl);
6082 /* Returns the name of the current function. */
6083 const char *
6084 current_function_name (void)
6086 return function_name (cfun);
6090 static unsigned int
6091 rest_of_handle_check_leaf_regs (void)
6093 #ifdef LEAF_REGISTERS
6094 crtl->uses_only_leaf_regs
6095 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6096 #endif
6097 return 0;
6100 /* Insert a TYPE into the used types hash table of CFUN. */
6102 static void
6103 used_types_insert_helper (tree type, struct function *func)
6105 if (type != NULL && func != NULL)
6107 void **slot;
6109 if (func->used_types_hash == NULL)
6110 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6111 htab_eq_pointer, NULL);
6112 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6113 if (*slot == NULL)
6114 *slot = type;
6118 /* Given a type, insert it into the used hash table in cfun. */
6119 void
6120 used_types_insert (tree t)
6122 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6123 if (TYPE_NAME (t))
6124 break;
6125 else
6126 t = TREE_TYPE (t);
6127 if (TREE_CODE (t) == ERROR_MARK)
6128 return;
6129 if (TYPE_NAME (t) == NULL_TREE
6130 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6131 t = TYPE_MAIN_VARIANT (t);
6132 if (debug_info_level > DINFO_LEVEL_NONE)
6134 if (cfun)
6135 used_types_insert_helper (t, cfun);
6136 else
6138 /* So this might be a type referenced by a global variable.
6139 Record that type so that we can later decide to emit its
6140 debug information. */
6141 vec_safe_push (types_used_by_cur_var_decl, t);
6146 /* Helper to Hash a struct types_used_by_vars_entry. */
6148 static hashval_t
6149 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6151 gcc_assert (entry && entry->var_decl && entry->type);
6153 return iterative_hash_object (entry->type,
6154 iterative_hash_object (entry->var_decl, 0));
6157 /* Hash function of the types_used_by_vars_entry hash table. */
6159 hashval_t
6160 types_used_by_vars_do_hash (const void *x)
6162 const struct types_used_by_vars_entry *entry =
6163 (const struct types_used_by_vars_entry *) x;
6165 return hash_types_used_by_vars_entry (entry);
6168 /*Equality function of the types_used_by_vars_entry hash table. */
6171 types_used_by_vars_eq (const void *x1, const void *x2)
6173 const struct types_used_by_vars_entry *e1 =
6174 (const struct types_used_by_vars_entry *) x1;
6175 const struct types_used_by_vars_entry *e2 =
6176 (const struct types_used_by_vars_entry *)x2;
6178 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6181 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6183 void
6184 types_used_by_var_decl_insert (tree type, tree var_decl)
6186 if (type != NULL && var_decl != NULL)
6188 void **slot;
6189 struct types_used_by_vars_entry e;
6190 e.var_decl = var_decl;
6191 e.type = type;
6192 if (types_used_by_vars_hash == NULL)
6193 types_used_by_vars_hash =
6194 htab_create_ggc (37, types_used_by_vars_do_hash,
6195 types_used_by_vars_eq, NULL);
6196 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6197 hash_types_used_by_vars_entry (&e), INSERT);
6198 if (*slot == NULL)
6200 struct types_used_by_vars_entry *entry;
6201 entry = ggc_alloc<types_used_by_vars_entry> ();
6202 entry->type = type;
6203 entry->var_decl = var_decl;
6204 *slot = entry;
6209 namespace {
6211 const pass_data pass_data_leaf_regs =
6213 RTL_PASS, /* type */
6214 "*leaf_regs", /* name */
6215 OPTGROUP_NONE, /* optinfo_flags */
6216 TV_NONE, /* tv_id */
6217 0, /* properties_required */
6218 0, /* properties_provided */
6219 0, /* properties_destroyed */
6220 0, /* todo_flags_start */
6221 0, /* todo_flags_finish */
6224 class pass_leaf_regs : public rtl_opt_pass
6226 public:
6227 pass_leaf_regs (gcc::context *ctxt)
6228 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6231 /* opt_pass methods: */
6232 virtual unsigned int execute (function *)
6234 return rest_of_handle_check_leaf_regs ();
6237 }; // class pass_leaf_regs
6239 } // anon namespace
6241 rtl_opt_pass *
6242 make_pass_leaf_regs (gcc::context *ctxt)
6244 return new pass_leaf_regs (ctxt);
6247 static unsigned int
6248 rest_of_handle_thread_prologue_and_epilogue (void)
6250 if (optimize)
6251 cleanup_cfg (CLEANUP_EXPENSIVE);
6253 /* On some machines, the prologue and epilogue code, or parts thereof,
6254 can be represented as RTL. Doing so lets us schedule insns between
6255 it and the rest of the code and also allows delayed branch
6256 scheduling to operate in the epilogue. */
6257 thread_prologue_and_epilogue_insns ();
6259 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6260 see PR57320. */
6261 cleanup_cfg (0);
6263 /* The stack usage info is finalized during prologue expansion. */
6264 if (flag_stack_usage_info)
6265 output_stack_usage ();
6267 return 0;
6270 namespace {
6272 const pass_data pass_data_thread_prologue_and_epilogue =
6274 RTL_PASS, /* type */
6275 "pro_and_epilogue", /* name */
6276 OPTGROUP_NONE, /* optinfo_flags */
6277 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6278 0, /* properties_required */
6279 0, /* properties_provided */
6280 0, /* properties_destroyed */
6281 0, /* todo_flags_start */
6282 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6285 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6287 public:
6288 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6289 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6292 /* opt_pass methods: */
6293 virtual unsigned int execute (function *)
6295 return rest_of_handle_thread_prologue_and_epilogue ();
6298 }; // class pass_thread_prologue_and_epilogue
6300 } // anon namespace
6302 rtl_opt_pass *
6303 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6305 return new pass_thread_prologue_and_epilogue (ctxt);
6309 /* This mini-pass fixes fall-out from SSA in asm statements that have
6310 in-out constraints. Say you start with
6312 orig = inout;
6313 asm ("": "+mr" (inout));
6314 use (orig);
6316 which is transformed very early to use explicit output and match operands:
6318 orig = inout;
6319 asm ("": "=mr" (inout) : "0" (inout));
6320 use (orig);
6322 Or, after SSA and copyprop,
6324 asm ("": "=mr" (inout_2) : "0" (inout_1));
6325 use (inout_1);
6327 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6328 they represent two separate values, so they will get different pseudo
6329 registers during expansion. Then, since the two operands need to match
6330 per the constraints, but use different pseudo registers, reload can
6331 only register a reload for these operands. But reloads can only be
6332 satisfied by hardregs, not by memory, so we need a register for this
6333 reload, just because we are presented with non-matching operands.
6334 So, even though we allow memory for this operand, no memory can be
6335 used for it, just because the two operands don't match. This can
6336 cause reload failures on register-starved targets.
6338 So it's a symptom of reload not being able to use memory for reloads
6339 or, alternatively it's also a symptom of both operands not coming into
6340 reload as matching (in which case the pseudo could go to memory just
6341 fine, as the alternative allows it, and no reload would be necessary).
6342 We fix the latter problem here, by transforming
6344 asm ("": "=mr" (inout_2) : "0" (inout_1));
6346 back to
6348 inout_2 = inout_1;
6349 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6351 static void
6352 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6354 int i;
6355 bool changed = false;
6356 rtx op = SET_SRC (p_sets[0]);
6357 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6358 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6359 bool *output_matched = XALLOCAVEC (bool, noutputs);
6361 memset (output_matched, 0, noutputs * sizeof (bool));
6362 for (i = 0; i < ninputs; i++)
6364 rtx input, output;
6365 rtx_insn *insns;
6366 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6367 char *end;
6368 int match, j;
6370 if (*constraint == '%')
6371 constraint++;
6373 match = strtoul (constraint, &end, 10);
6374 if (end == constraint)
6375 continue;
6377 gcc_assert (match < noutputs);
6378 output = SET_DEST (p_sets[match]);
6379 input = RTVEC_ELT (inputs, i);
6380 /* Only do the transformation for pseudos. */
6381 if (! REG_P (output)
6382 || rtx_equal_p (output, input)
6383 || (GET_MODE (input) != VOIDmode
6384 && GET_MODE (input) != GET_MODE (output)))
6385 continue;
6387 /* We can't do anything if the output is also used as input,
6388 as we're going to overwrite it. */
6389 for (j = 0; j < ninputs; j++)
6390 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6391 break;
6392 if (j != ninputs)
6393 continue;
6395 /* Avoid changing the same input several times. For
6396 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6397 only change in once (to out1), rather than changing it
6398 first to out1 and afterwards to out2. */
6399 if (i > 0)
6401 for (j = 0; j < noutputs; j++)
6402 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6403 break;
6404 if (j != noutputs)
6405 continue;
6407 output_matched[match] = true;
6409 start_sequence ();
6410 emit_move_insn (output, input);
6411 insns = get_insns ();
6412 end_sequence ();
6413 emit_insn_before (insns, insn);
6415 /* Now replace all mentions of the input with output. We can't
6416 just replace the occurrence in inputs[i], as the register might
6417 also be used in some other input (or even in an address of an
6418 output), which would mean possibly increasing the number of
6419 inputs by one (namely 'output' in addition), which might pose
6420 a too complicated problem for reload to solve. E.g. this situation:
6422 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6424 Here 'input' is used in two occurrences as input (once for the
6425 input operand, once for the address in the second output operand).
6426 If we would replace only the occurrence of the input operand (to
6427 make the matching) we would be left with this:
6429 output = input
6430 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6432 Now we suddenly have two different input values (containing the same
6433 value, but different pseudos) where we formerly had only one.
6434 With more complicated asms this might lead to reload failures
6435 which wouldn't have happen without this pass. So, iterate over
6436 all operands and replace all occurrences of the register used. */
6437 for (j = 0; j < noutputs; j++)
6438 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6439 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6440 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6441 input, output);
6442 for (j = 0; j < ninputs; j++)
6443 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6444 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6445 input, output);
6447 changed = true;
6450 if (changed)
6451 df_insn_rescan (insn);
6454 namespace {
6456 const pass_data pass_data_match_asm_constraints =
6458 RTL_PASS, /* type */
6459 "asmcons", /* name */
6460 OPTGROUP_NONE, /* optinfo_flags */
6461 TV_NONE, /* tv_id */
6462 0, /* properties_required */
6463 0, /* properties_provided */
6464 0, /* properties_destroyed */
6465 0, /* todo_flags_start */
6466 0, /* todo_flags_finish */
6469 class pass_match_asm_constraints : public rtl_opt_pass
6471 public:
6472 pass_match_asm_constraints (gcc::context *ctxt)
6473 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6476 /* opt_pass methods: */
6477 virtual unsigned int execute (function *);
6479 }; // class pass_match_asm_constraints
6481 unsigned
6482 pass_match_asm_constraints::execute (function *fun)
6484 basic_block bb;
6485 rtx_insn *insn;
6486 rtx pat, *p_sets;
6487 int noutputs;
6489 if (!crtl->has_asm_statement)
6490 return 0;
6492 df_set_flags (DF_DEFER_INSN_RESCAN);
6493 FOR_EACH_BB_FN (bb, fun)
6495 FOR_BB_INSNS (bb, insn)
6497 if (!INSN_P (insn))
6498 continue;
6500 pat = PATTERN (insn);
6501 if (GET_CODE (pat) == PARALLEL)
6502 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6503 else if (GET_CODE (pat) == SET)
6504 p_sets = &PATTERN (insn), noutputs = 1;
6505 else
6506 continue;
6508 if (GET_CODE (*p_sets) == SET
6509 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6510 match_asm_constraints_1 (insn, p_sets, noutputs);
6514 return TODO_df_finish;
6517 } // anon namespace
6519 rtl_opt_pass *
6520 make_pass_match_asm_constraints (gcc::context *ctxt)
6522 return new pass_match_asm_constraints (ctxt);
6526 #include "gt-function.h"