1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
28 #include "fixed-value.h"
29 #include "statistics.h"
31 #include "hash-table.h"
35 #endif /* GENERATOR_FILE */
37 #include "hard-reg-set.h"
39 /* Value used by some passes to "recognize" noop moves as valid
41 #define NOOP_MOVE_INSN_CODE INT_MAX
43 /* Register Transfer Language EXPRESSIONS CODES */
45 #define RTX_CODE enum rtx_code
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
52 LAST_AND_UNUSED_RTX_CODE
}; /* A convenient way to get a value for
54 Assumes default enum value assignment. */
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
59 /* Similar, but since generator files get more entries... */
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
76 /* Must follow the four preceding values. */
83 /* Bit 0 = 1 if constant. */
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
104 extern const unsigned char rtx_length
[NUM_RTX_CODE
];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
107 extern const char * const rtx_name
[NUM_RTX_CODE
];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
110 extern const char * const rtx_format
[NUM_RTX_CODE
];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
113 extern const enum rtx_class rtx_class
[NUM_RTX_CODE
];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
120 extern const unsigned char rtx_code_size
[NUM_RTX_CODE
];
121 extern const unsigned char rtx_next
[NUM_RTX_CODE
];
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align
: 8;
130 unsigned base_after_vec
: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec
: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec
: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base
: 1; /* minimum address target label is
137 unsigned max_after_base
: 1; /* maximum address target label is
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned
: 1; /* offsets have to be treated as unsigned. */
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
152 /* The expression that the MEM accesses, or null if not known.
153 This expression might be larger than the memory reference itself.
154 (In other words, the MEM might access only part of the object.) */
157 /* The offset of the memory reference from the start of EXPR.
158 Only valid if OFFSET_KNOWN_P. */
161 /* The size of the memory reference in bytes. Only valid if
165 /* The alias set of the memory reference. */
166 alias_set_type alias
;
168 /* The alignment of the reference in bits. Always a multiple of
169 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
170 than the memory reference itself. */
173 /* The address space that the memory reference uses. */
174 unsigned char addrspace
;
176 /* True if OFFSET is known. */
179 /* True if SIZE is known. */
183 /* Structure used to describe the attributes of a REG in similar way as
184 mem_attrs does for MEM above. Note that the OFFSET field is calculated
185 in the same way as for mem_attrs, rather than in the same way as a
186 SUBREG_BYTE. For example, if a big-endian target stores a byte
187 object in the low part of a 4-byte register, the OFFSET field
188 will be -3 rather than 0. */
190 struct GTY((for_user
)) reg_attrs
{
191 tree decl
; /* decl corresponding to REG. */
192 poly_int64 offset
; /* Offset from start of DECL. */
195 /* Common union for an element of an rtx. */
200 unsigned int rt_uint
;
201 poly_uint16_pod rt_subreg
;
205 machine_mode rt_type
;
206 addr_diff_vec_flags rt_addr_diff_vec_flags
;
207 struct cselib_val
*rt_cselib
;
211 struct constant_descriptor_rtx
*rt_constant
;
212 struct dw_cfi_node
*rt_cfi
;
215 /* Describes the properties of a REG. */
216 struct GTY(()) reg_info
{
217 /* The value of REGNO. */
220 /* The value of REG_NREGS. */
221 unsigned int nregs
: 8;
222 unsigned int unused
: 24;
224 /* The value of REG_ATTRS. */
228 /* This structure remembers the position of a SYMBOL_REF within an
229 object_block structure. A SYMBOL_REF only provides this information
230 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
231 struct GTY(()) block_symbol
{
232 /* The usual SYMBOL_REF fields. */
233 rtunion
GTY ((skip
)) fld
[2];
235 /* The block that contains this object. */
236 struct object_block
*block
;
238 /* The offset of this object from the start of its block. It is negative
239 if the symbol has not yet been assigned an offset. */
240 HOST_WIDE_INT offset
;
243 /* Describes a group of objects that are to be placed together in such
244 a way that their relative positions are known. */
245 struct GTY((for_user
)) object_block
{
246 /* The section in which these objects should be placed. */
249 /* The alignment of the first object, measured in bits. */
250 unsigned int alignment
;
252 /* The total size of the objects, measured in bytes. */
255 /* The SYMBOL_REFs for each object. The vector is sorted in
256 order of increasing offset and the following conditions will
257 hold for each element X:
259 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
260 !SYMBOL_REF_ANCHOR_P (X)
261 SYMBOL_REF_BLOCK (X) == [address of this structure]
262 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
263 vec
<rtx
, va_gc
> *objects
;
265 /* All the anchor SYMBOL_REFs used to address these objects, sorted
266 in order of increasing offset, and then increasing TLS model.
267 The following conditions will hold for each element X in this vector:
269 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
270 SYMBOL_REF_ANCHOR_P (X)
271 SYMBOL_REF_BLOCK (X) == [address of this structure]
272 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
273 vec
<rtx
, va_gc
> *anchors
;
276 struct GTY((variable_size
)) hwivec_def
{
277 HOST_WIDE_INT elem
[1];
280 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
281 #define CWI_GET_NUM_ELEM(RTX) \
282 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
283 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
284 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
286 struct GTY((variable_size
)) const_poly_int_def
{
287 trailing_wide_ints
<NUM_POLY_INT_COEFFS
> coeffs
;
290 /* RTL expression ("rtx"). */
292 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
293 field for gengtype to recognize that inheritance is occurring,
294 so that all subclasses are redirected to the traversal hook for the
296 However, all of the fields are in the base class, and special-casing
297 is at work. Hence we use desc and tag of 0, generating a switch
298 statement of the form:
301 case 0: // all the work happens here
303 in order to work with the existing special-casing in gengtype. */
305 struct GTY((desc("0"), tag("0"),
306 chain_next ("RTX_NEXT (&%h)"),
307 chain_prev ("RTX_PREV (&%h)"))) rtx_def
{
308 /* The kind of expression this is. */
309 ENUM_BITFIELD(rtx_code
) code
: 16;
311 /* The kind of value the expression has. */
312 ENUM_BITFIELD(machine_mode
) mode
: 8;
314 /* 1 in a MEM if we should keep the alias set for this mem unchanged
315 when we access a component.
316 1 in a JUMP_INSN if it is a crossing jump.
317 1 in a CALL_INSN if it is a sibling call.
318 1 in a SET that is for a return.
319 In a CODE_LABEL, part of the two-bit alternate entry field.
320 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
321 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
322 1 in a SUBREG generated by LRA for reload insns.
323 1 in a REG if this is a static chain register.
324 1 in a CALL for calls instrumented by Pointer Bounds Checker.
325 Dumped as "/j" in RTL dumps. */
326 unsigned int jump
: 1;
327 /* In a CODE_LABEL, part of the two-bit alternate entry field.
328 1 in a MEM if it cannot trap.
329 1 in a CALL_INSN logically equivalent to
330 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
331 Dumped as "/c" in RTL dumps. */
332 unsigned int call
: 1;
333 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
334 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
335 1 in a SYMBOL_REF if it addresses something in the per-function
337 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
338 1 in a NOTE, or EXPR_LIST for a const call.
339 1 in a JUMP_INSN of an annulling branch.
340 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
341 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
342 1 in a clobber temporarily created for LRA.
343 Dumped as "/u" in RTL dumps. */
344 unsigned int unchanging
: 1;
345 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
346 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
347 if it has been deleted.
348 1 in a REG expression if corresponds to a variable declared by the user,
349 0 for an internally generated temporary.
350 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
351 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
353 In a SYMBOL_REF, this flag is used for machine-specific purposes.
354 In a PREFETCH, this flag indicates that it should be considered a
356 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
357 Dumped as "/v" in RTL dumps. */
358 unsigned int volatil
: 1;
359 /* 1 in a REG if the register is used only in exit code a loop.
360 1 in a SUBREG expression if was generated from a variable with a
362 1 in a CODE_LABEL if the label is used for nonlocal gotos
363 and must not be deleted even if its count is zero.
364 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
365 together with the preceding insn. Valid only within sched.
366 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
367 from the target of a branch. Valid from reorg until end of compilation;
370 The name of the field is historical. It used to be used in MEMs
371 to record whether the MEM accessed part of a structure.
372 Dumped as "/s" in RTL dumps. */
373 unsigned int in_struct
: 1;
374 /* At the end of RTL generation, 1 if this rtx is used. This is used for
375 copying shared structure. See `unshare_all_rtl'.
376 In a REG, this is not needed for that purpose, and used instead
377 in `leaf_renumber_regs_insn'.
378 1 in a SYMBOL_REF, means that emit_library_call
379 has used it as the function.
380 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
381 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
382 unsigned int used
: 1;
383 /* 1 in an INSN or a SET if this rtx is related to the call frame,
384 either changing how we compute the frame address or saving and
385 restoring registers in the prologue and epilogue.
386 1 in a REG or MEM if it is a pointer.
387 1 in a SYMBOL_REF if it addresses something in the per-function
388 constant string pool.
389 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
390 Dumped as "/f" in RTL dumps. */
391 unsigned frame_related
: 1;
392 /* 1 in a REG or PARALLEL that is the current function's return value.
393 1 in a SYMBOL_REF for a weak symbol.
394 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
395 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
396 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
397 Dumped as "/i" in RTL dumps. */
398 unsigned return_val
: 1;
401 /* The final union field is aligned to 64 bits on LP64 hosts,
402 giving a 32-bit gap after the fields above. We optimize the
403 layout for that case and use the gap for extra code-specific
406 /* The ORIGINAL_REGNO of a REG. */
407 unsigned int original_regno
;
409 /* The INSN_UID of an RTX_INSN-class code. */
412 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
413 unsigned int symbol_ref_flags
;
415 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
416 enum var_init_status var_location_status
;
418 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
419 HOST_WIDE_INTs in the hwivec_def. */
420 unsigned int num_elem
;
422 /* Information about a CONST_VECTOR. */
425 /* The value of CONST_VECTOR_NPATTERNS. */
426 unsigned int npatterns
: 16;
428 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
429 unsigned int nelts_per_pattern
: 8;
431 /* For future expansion. */
432 unsigned int unused
: 8;
436 /* The first element of the operands of this rtx.
437 The number of operands and their types are controlled
438 by the `code' field, according to rtl.def. */
441 HOST_WIDE_INT hwint
[1];
443 struct block_symbol block_sym
;
444 struct real_value rv
;
445 struct fixed_value fv
;
446 struct hwivec_def hwiv
;
447 struct const_poly_int_def cpi
;
448 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u
;
451 /* A node for constructing singly-linked lists of rtx. */
453 class GTY(()) rtx_expr_list
: public rtx_def
455 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
458 /* Get next in list. */
459 rtx_expr_list
*next () const;
461 /* Get at the underlying rtx. */
462 rtx
element () const;
468 is_a_helper
<rtx_expr_list
*>::test (rtx rt
)
470 return rt
->code
== EXPR_LIST
;
473 class GTY(()) rtx_insn_list
: public rtx_def
475 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
477 This is an instance of:
479 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
481 i.e. a node for constructing singly-linked lists of rtx_insn *, where
482 the list is "external" to the insn (as opposed to the doubly-linked
483 list embedded within rtx_insn itself). */
486 /* Get next in list. */
487 rtx_insn_list
*next () const;
489 /* Get at the underlying instruction. */
490 rtx_insn
*insn () const;
497 is_a_helper
<rtx_insn_list
*>::test (rtx rt
)
499 return rt
->code
== INSN_LIST
;
502 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
503 typically (but not always) of rtx_insn *, used in the late passes. */
505 class GTY(()) rtx_sequence
: public rtx_def
507 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
510 /* Get number of elements in sequence. */
513 /* Get i-th element of the sequence. */
514 rtx
element (int index
) const;
516 /* Get i-th element of the sequence, with a checked cast to
518 rtx_insn
*insn (int index
) const;
524 is_a_helper
<rtx_sequence
*>::test (rtx rt
)
526 return rt
->code
== SEQUENCE
;
532 is_a_helper
<const rtx_sequence
*>::test (const_rtx rt
)
534 return rt
->code
== SEQUENCE
;
537 class GTY(()) rtx_insn
: public rtx_def
540 /* No extra fields, but adds the invariant:
544 || JUMP_TABLE_DATA_P (X)
548 i.e. that we must be able to use the following:
552 i.e. we have an rtx that has an INSN_UID field and can be part of
553 a linked list of insns.
556 /* Returns true if this insn has been deleted. */
558 bool deleted () const { return volatil
; }
560 /* Mark this insn as deleted. */
562 void set_deleted () { volatil
= true; }
564 /* Mark this insn as not deleted. */
566 void set_undeleted () { volatil
= false; }
569 /* Subclasses of rtx_insn. */
571 class GTY(()) rtx_debug_insn
: public rtx_insn
573 /* No extra fields, but adds the invariant:
574 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
575 i.e. an annotation for tracking variable assignments.
577 This is an instance of:
578 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
582 class GTY(()) rtx_nonjump_insn
: public rtx_insn
584 /* No extra fields, but adds the invariant:
585 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
586 i.e an instruction that cannot jump.
588 This is an instance of:
589 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
593 class GTY(()) rtx_jump_insn
: public rtx_insn
596 /* No extra fields, but adds the invariant:
597 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
598 i.e. an instruction that can possibly jump.
600 This is an instance of:
601 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
604 /* Returns jump target of this instruction. The returned value is not
605 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
606 expression. Also, when the code label is marked "deleted", it is
607 replaced by a NOTE. In some cases the value is NULL_RTX. */
609 inline rtx
jump_label () const;
611 /* Returns jump target cast to rtx_code_label *. */
613 inline rtx_code_label
*jump_target () const;
615 /* Set jump target. */
617 inline void set_jump_target (rtx_code_label
*);
620 class GTY(()) rtx_call_insn
: public rtx_insn
622 /* No extra fields, but adds the invariant:
623 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
624 i.e. an instruction that can possibly call a subroutine
625 but which will not change which instruction comes next
626 in the current function.
628 This is an instance of:
629 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
633 class GTY(()) rtx_jump_table_data
: public rtx_insn
635 /* No extra fields, but adds the invariant:
636 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
637 i.e. a data for a jump table, considered an instruction for
640 This is an instance of:
641 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
646 /* This can be either:
648 (a) a table of absolute jumps, in which case PATTERN (this) is an
649 ADDR_VEC with arg 0 a vector of labels, or
651 (b) a table of relative jumps (e.g. for -fPIC), in which case
652 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
653 arg 1 the vector of labels.
655 This method gets the underlying vec. */
657 inline rtvec
get_labels () const;
658 inline scalar_int_mode
get_data_mode () const;
661 class GTY(()) rtx_barrier
: public rtx_insn
663 /* No extra fields, but adds the invariant:
664 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
665 i.e. a marker that indicates that control will not flow through.
667 This is an instance of:
668 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
672 class GTY(()) rtx_code_label
: public rtx_insn
674 /* No extra fields, but adds the invariant:
675 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
676 i.e. a label in the assembler.
678 This is an instance of:
679 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
683 class GTY(()) rtx_note
: public rtx_insn
685 /* No extra fields, but adds the invariant:
686 NOTE_P(X) aka (GET_CODE (X) == NOTE)
687 i.e. a note about the corresponding source code.
689 This is an instance of:
690 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
694 /* The size in bytes of an rtx header (code, mode and flags). */
695 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
697 /* The size in bytes of an rtx with code CODE. */
698 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
700 #define NULL_RTX (rtx) 0
702 /* The "next" and "previous" RTX, relative to this one. */
704 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
705 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
707 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
709 #define RTX_PREV(X) ((INSN_P (X) \
711 || JUMP_TABLE_DATA_P (X) \
714 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
715 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
716 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
718 /* Define macros to access the `code' field of the rtx. */
720 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
721 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
723 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
724 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
726 /* RTL vector. These appear inside RTX's when there is a need
727 for a variable number of things. The principle use is inside
728 PARALLEL expressions. */
730 struct GTY(()) rtvec_def
{
731 int num_elem
; /* number of elements */
732 rtx
GTY ((length ("%h.num_elem"))) elem
[1];
735 #define NULL_RTVEC (rtvec) 0
737 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
738 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
740 /* Predicate yielding nonzero iff X is an rtx for a register. */
741 #define REG_P(X) (GET_CODE (X) == REG)
743 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
744 #define MEM_P(X) (GET_CODE (X) == MEM)
746 #if TARGET_SUPPORTS_WIDE_INT
748 /* Match CONST_*s that can represent compile-time constant integers. */
749 #define CASE_CONST_SCALAR_INT \
753 /* Match CONST_*s for which pointer equality corresponds to value
755 #define CASE_CONST_UNIQUE \
757 case CONST_WIDE_INT: \
758 case CONST_POLY_INT: \
762 /* Match all CONST_* rtxes. */
763 #define CASE_CONST_ANY \
765 case CONST_WIDE_INT: \
766 case CONST_POLY_INT: \
773 /* Match CONST_*s that can represent compile-time constant integers. */
774 #define CASE_CONST_SCALAR_INT \
778 /* Match CONST_*s for which pointer equality corresponds to value
780 #define CASE_CONST_UNIQUE \
785 /* Match all CONST_* rtxes. */
786 #define CASE_CONST_ANY \
793 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
794 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
796 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
797 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
799 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
801 #define CONST_POLY_INT_P(X) \
802 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
804 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
805 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
807 /* Predicate yielding true iff X is an rtx for a double-int
808 or floating point constant. */
809 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
811 /* Predicate yielding true iff X is an rtx for a double-int. */
812 #define CONST_DOUBLE_AS_INT_P(X) \
813 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
815 /* Predicate yielding true iff X is an rtx for a integer const. */
816 #if TARGET_SUPPORTS_WIDE_INT
817 #define CONST_SCALAR_INT_P(X) \
818 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
820 #define CONST_SCALAR_INT_P(X) \
821 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
824 /* Predicate yielding true iff X is an rtx for a double-int. */
825 #define CONST_DOUBLE_AS_FLOAT_P(X) \
826 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
828 /* Predicate yielding nonzero iff X is a label insn. */
829 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
831 /* Predicate yielding nonzero iff X is a jump insn. */
832 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
834 /* Predicate yielding nonzero iff X is a call insn. */
835 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
837 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
838 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
840 /* Predicate yielding nonzero iff X is a debug note/insn. */
841 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
843 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
844 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
846 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
847 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
848 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
849 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
850 /* Nonzero if DEBUG_INSN_P may possibly hold. */
851 #define MAY_HAVE_DEBUG_INSNS \
852 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
854 /* Predicate yielding nonzero iff X is a real insn. */
856 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
858 /* Predicate yielding nonzero iff X is a note insn. */
859 #define NOTE_P(X) (GET_CODE (X) == NOTE)
861 /* Predicate yielding nonzero iff X is a barrier insn. */
862 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
864 /* Predicate yielding nonzero iff X is a data for a jump table. */
865 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
867 /* Predicate yielding nonzero iff RTX is a subreg. */
868 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
870 /* Predicate yielding true iff RTX is a symbol ref. */
871 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
876 is_a_helper
<rtx_insn
*>::test (rtx rt
)
880 || JUMP_TABLE_DATA_P (rt
)
888 is_a_helper
<const rtx_insn
*>::test (const_rtx rt
)
892 || JUMP_TABLE_DATA_P (rt
)
900 is_a_helper
<rtx_debug_insn
*>::test (rtx rt
)
902 return DEBUG_INSN_P (rt
);
908 is_a_helper
<rtx_nonjump_insn
*>::test (rtx rt
)
910 return NONJUMP_INSN_P (rt
);
916 is_a_helper
<rtx_jump_insn
*>::test (rtx rt
)
924 is_a_helper
<rtx_jump_insn
*>::test (rtx_insn
*insn
)
926 return JUMP_P (insn
);
932 is_a_helper
<rtx_call_insn
*>::test (rtx rt
)
940 is_a_helper
<rtx_call_insn
*>::test (rtx_insn
*insn
)
942 return CALL_P (insn
);
948 is_a_helper
<rtx_jump_table_data
*>::test (rtx rt
)
950 return JUMP_TABLE_DATA_P (rt
);
956 is_a_helper
<rtx_jump_table_data
*>::test (rtx_insn
*insn
)
958 return JUMP_TABLE_DATA_P (insn
);
964 is_a_helper
<rtx_barrier
*>::test (rtx rt
)
966 return BARRIER_P (rt
);
972 is_a_helper
<rtx_code_label
*>::test (rtx rt
)
980 is_a_helper
<rtx_code_label
*>::test (rtx_insn
*insn
)
982 return LABEL_P (insn
);
988 is_a_helper
<rtx_note
*>::test (rtx rt
)
996 is_a_helper
<rtx_note
*>::test (rtx_insn
*insn
)
998 return NOTE_P (insn
);
1001 /* Predicate yielding nonzero iff X is a return or simple_return. */
1002 #define ANY_RETURN_P(X) \
1003 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1005 /* 1 if X is a unary operator. */
1007 #define UNARY_P(X) \
1008 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1010 /* 1 if X is a binary operator. */
1012 #define BINARY_P(X) \
1013 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1015 /* 1 if X is an arithmetic operator. */
1017 #define ARITHMETIC_P(X) \
1018 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1019 == RTX_ARITHMETIC_RESULT)
1021 /* 1 if X is an arithmetic operator. */
1023 #define COMMUTATIVE_ARITH_P(X) \
1024 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1026 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1027 These two are sometimes selected together because it is possible to
1028 swap the two operands. */
1030 #define SWAPPABLE_OPERANDS_P(X) \
1031 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1032 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1033 | (1 << RTX_COMPARE)))
1035 /* 1 if X is a non-commutative operator. */
1037 #define NON_COMMUTATIVE_P(X) \
1038 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1039 == RTX_NON_COMMUTATIVE_RESULT)
1041 /* 1 if X is a commutative operator on integers. */
1043 #define COMMUTATIVE_P(X) \
1044 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1045 == RTX_COMMUTATIVE_RESULT)
1047 /* 1 if X is a relational operator. */
1049 #define COMPARISON_P(X) \
1050 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1052 /* 1 if X is a constant value that is an integer. */
1054 #define CONSTANT_P(X) \
1055 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1057 /* 1 if X can be used to represent an object. */
1058 #define OBJECT_P(X) \
1059 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1061 /* General accessor macros for accessing the fields of an rtx. */
1063 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1064 /* The bit with a star outside the statement expr and an & inside is
1065 so that N can be evaluated only once. */
1066 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1067 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1068 const enum rtx_code _code = GET_CODE (_rtx); \
1069 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1070 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1072 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1073 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1075 &_rtx->u.fld[_n]; }))
1077 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1078 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1079 const enum rtx_code _code = GET_CODE (_rtx); \
1080 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1081 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1083 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1084 && GET_RTX_FORMAT (_code)[_n] != C2) \
1085 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1087 &_rtx->u.fld[_n]; }))
1089 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1090 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1091 if (GET_CODE (_rtx) != (C)) \
1092 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1094 &_rtx->u.fld[_n]; }))
1096 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1097 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1098 const enum rtx_code _code = GET_CODE (_rtx); \
1099 if (_code != (C1) && _code != (C2)) \
1100 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1102 &_rtx->u.fld[_n]; }))
1104 #define RTVEC_ELT(RTVEC, I) __extension__ \
1105 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1106 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1107 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1109 &_rtvec->elem[_i]; }))
1111 #define XWINT(RTX, N) __extension__ \
1112 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1113 const enum rtx_code _code = GET_CODE (_rtx); \
1114 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1115 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1117 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1118 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1120 &_rtx->u.hwint[_n]; }))
1122 #define CWI_ELT(RTX, I) __extension__ \
1123 (*({ __typeof (RTX) const _cwi = (RTX); \
1124 int _max = CWI_GET_NUM_ELEM (_cwi); \
1125 const int _i = (I); \
1126 if (_i < 0 || _i >= _max) \
1127 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1129 &_cwi->u.hwiv.elem[_i]; }))
1131 #define XCWINT(RTX, N, C) __extension__ \
1132 (*({ __typeof (RTX) const _rtx = (RTX); \
1133 if (GET_CODE (_rtx) != (C)) \
1134 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1136 &_rtx->u.hwint[N]; }))
1138 #define XCMWINT(RTX, N, C, M) __extension__ \
1139 (*({ __typeof (RTX) const _rtx = (RTX); \
1140 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1141 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1142 __LINE__, __FUNCTION__); \
1143 &_rtx->u.hwint[N]; }))
1145 #define XCNMPRV(RTX, C, M) __extension__ \
1146 ({ __typeof (RTX) const _rtx = (RTX); \
1147 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1148 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1149 __LINE__, __FUNCTION__); \
1152 #define XCNMPFV(RTX, C, M) __extension__ \
1153 ({ __typeof (RTX) const _rtx = (RTX); \
1154 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1155 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1156 __LINE__, __FUNCTION__); \
1159 #define REG_CHECK(RTX) __extension__ \
1160 ({ __typeof (RTX) const _rtx = (RTX); \
1161 if (GET_CODE (_rtx) != REG) \
1162 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1166 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1167 ({ __typeof (RTX) const _symbol = (RTX); \
1168 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1169 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1170 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1172 &_symbol->u.block_sym; })
1174 #define HWIVEC_CHECK(RTX,C) __extension__ \
1175 ({ __typeof (RTX) const _symbol = (RTX); \
1176 RTL_CHECKC1 (_symbol, 0, C); \
1177 &_symbol->u.hwiv; })
1179 extern void rtl_check_failed_bounds (const_rtx
, int, const char *, int,
1181 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1182 extern void rtl_check_failed_type1 (const_rtx
, int, int, const char *, int,
1184 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1185 extern void rtl_check_failed_type2 (const_rtx
, int, int, int, const char *,
1187 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1188 extern void rtl_check_failed_code1 (const_rtx
, enum rtx_code
, const char *,
1190 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1191 extern void rtl_check_failed_code2 (const_rtx
, enum rtx_code
, enum rtx_code
,
1192 const char *, int, const char *)
1193 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1194 extern void rtl_check_failed_code_mode (const_rtx
, enum rtx_code
, machine_mode
,
1195 bool, const char *, int, const char *)
1196 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1197 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1198 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1199 extern void cwi_check_failed_bounds (const_rtx
, int, const char *, int,
1201 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1202 extern void rtvec_check_failed_bounds (const_rtvec
, int, const char *, int,
1204 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
1206 #else /* not ENABLE_RTL_CHECKING */
1208 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1209 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1210 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1211 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1212 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1213 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1214 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1215 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1216 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1217 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1218 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1219 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1220 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1221 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1222 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1226 /* General accessor macros for accessing the flags of an rtx. */
1228 /* Access an individual rtx flag, with no checking of any kind. */
1229 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1231 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1232 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1233 ({ __typeof (RTX) const _rtx = (RTX); \
1234 if (GET_CODE (_rtx) != C1) \
1235 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1239 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1240 ({ __typeof (RTX) const _rtx = (RTX); \
1241 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1242 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1246 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1247 ({ __typeof (RTX) const _rtx = (RTX); \
1248 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1249 && GET_CODE (_rtx) != C3) \
1250 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1254 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1255 ({ __typeof (RTX) const _rtx = (RTX); \
1256 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1257 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1258 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1262 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1263 ({ __typeof (RTX) const _rtx = (RTX); \
1264 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1265 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1266 && GET_CODE (_rtx) != C5) \
1267 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1271 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1273 ({ __typeof (RTX) const _rtx = (RTX); \
1274 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1275 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1276 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1277 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1281 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1283 ({ __typeof (RTX) const _rtx = (RTX); \
1284 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1285 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1286 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1287 && GET_CODE (_rtx) != C7) \
1288 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1292 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1294 ({ __typeof (RTX) const _rtx = (RTX); \
1295 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1296 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1300 extern void rtl_check_failed_flag (const char *, const_rtx
, const char *,
1302 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1305 #else /* not ENABLE_RTL_FLAG_CHECKING */
1307 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1308 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1309 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1310 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1311 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1312 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1313 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1314 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1317 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1318 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1319 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1320 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1321 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1322 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1323 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1324 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1325 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1326 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1328 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1329 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1331 /* These are like XINT, etc. except that they expect a '0' field instead
1332 of the normal type code. */
1334 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1335 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1336 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1337 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1338 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1339 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1340 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1341 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1342 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1343 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1344 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1345 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1347 /* Access a '0' field with any type. */
1348 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1350 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1351 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1352 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1353 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1354 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1355 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1356 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1357 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1358 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1359 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1360 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1362 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1363 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1365 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1368 /* Methods of rtx_expr_list. */
1370 inline rtx_expr_list
*rtx_expr_list::next () const
1372 rtx tmp
= XEXP (this, 1);
1373 return safe_as_a
<rtx_expr_list
*> (tmp
);
1376 inline rtx
rtx_expr_list::element () const
1378 return XEXP (this, 0);
1381 /* Methods of rtx_insn_list. */
1383 inline rtx_insn_list
*rtx_insn_list::next () const
1385 rtx tmp
= XEXP (this, 1);
1386 return safe_as_a
<rtx_insn_list
*> (tmp
);
1389 inline rtx_insn
*rtx_insn_list::insn () const
1391 rtx tmp
= XEXP (this, 0);
1392 return safe_as_a
<rtx_insn
*> (tmp
);
1395 /* Methods of rtx_sequence. */
1397 inline int rtx_sequence::len () const
1399 return XVECLEN (this, 0);
1402 inline rtx
rtx_sequence::element (int index
) const
1404 return XVECEXP (this, 0, index
);
1407 inline rtx_insn
*rtx_sequence::insn (int index
) const
1409 return as_a
<rtx_insn
*> (XVECEXP (this, 0, index
));
1412 /* ACCESS MACROS for particular fields of insns. */
1414 /* Holds a unique number for each insn.
1415 These are not necessarily sequentially increasing. */
1416 inline int INSN_UID (const_rtx insn
)
1418 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1419 (insn
))->u2
.insn_uid
;
1421 inline int& INSN_UID (rtx insn
)
1423 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1424 (insn
))->u2
.insn_uid
;
1427 /* Chain insns together in sequence. */
1429 /* For now these are split in two: an rvalue form:
1432 SET_NEXT_INSN/SET_PREV_INSN. */
1434 inline rtx_insn
*PREV_INSN (const rtx_insn
*insn
)
1436 rtx prev
= XEXP (insn
, 0);
1437 return safe_as_a
<rtx_insn
*> (prev
);
1440 inline rtx
& SET_PREV_INSN (rtx_insn
*insn
)
1442 return XEXP (insn
, 0);
1445 inline rtx_insn
*NEXT_INSN (const rtx_insn
*insn
)
1447 rtx next
= XEXP (insn
, 1);
1448 return safe_as_a
<rtx_insn
*> (next
);
1451 inline rtx
& SET_NEXT_INSN (rtx_insn
*insn
)
1453 return XEXP (insn
, 1);
1456 inline basic_block
BLOCK_FOR_INSN (const_rtx insn
)
1458 return XBBDEF (insn
, 2);
1461 inline basic_block
& BLOCK_FOR_INSN (rtx insn
)
1463 return XBBDEF (insn
, 2);
1466 inline void set_block_for_insn (rtx_insn
*insn
, basic_block bb
)
1468 BLOCK_FOR_INSN (insn
) = bb
;
1471 /* The body of an insn. */
1472 inline rtx
PATTERN (const_rtx insn
)
1474 return XEXP (insn
, 3);
1477 inline rtx
& PATTERN (rtx insn
)
1479 return XEXP (insn
, 3);
1482 inline unsigned int INSN_LOCATION (const rtx_insn
*insn
)
1484 return XUINT (insn
, 4);
1487 inline unsigned int& INSN_LOCATION (rtx_insn
*insn
)
1489 return XUINT (insn
, 4);
1492 inline bool INSN_HAS_LOCATION (const rtx_insn
*insn
)
1494 return LOCATION_LOCUS (INSN_LOCATION (insn
)) != UNKNOWN_LOCATION
;
1497 /* LOCATION of an RTX if relevant. */
1498 #define RTL_LOCATION(X) (INSN_P (X) ? \
1499 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1502 /* Code number of instruction, from when it was recognized.
1503 -1 means this instruction has not been recognized yet. */
1504 #define INSN_CODE(INSN) XINT (INSN, 5)
1506 inline rtvec
rtx_jump_table_data::get_labels () const
1508 rtx pat
= PATTERN (this);
1509 if (GET_CODE (pat
) == ADDR_VEC
)
1510 return XVEC (pat
, 0);
1512 return XVEC (pat
, 1); /* presumably an ADDR_DIFF_VEC */
1515 /* Return the mode of the data in the table, which is always a scalar
1518 inline scalar_int_mode
1519 rtx_jump_table_data::get_data_mode () const
1521 return as_a
<scalar_int_mode
> (GET_MODE (PATTERN (this)));
1524 /* If LABEL is followed by a jump table, return the table, otherwise
1527 inline rtx_jump_table_data
*
1528 jump_table_for_label (const rtx_code_label
*label
)
1530 return safe_dyn_cast
<rtx_jump_table_data
*> (NEXT_INSN (label
));
1533 #define RTX_FRAME_RELATED_P(RTX) \
1534 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1535 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1537 /* 1 if JUMP RTX is a crossing jump. */
1538 #define CROSSING_JUMP_P(RTX) \
1539 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1541 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1543 #define RTL_CONST_CALL_P(RTX) \
1544 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1546 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1548 #define RTL_PURE_CALL_P(RTX) \
1549 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1551 /* 1 if RTX is a call to a const or pure function. */
1552 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1553 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1555 /* 1 if RTX is a call to a looping const or pure function. Built from
1556 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1557 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1558 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1560 /* 1 if RTX is a call_insn for a sibling call. */
1561 #define SIBLING_CALL_P(RTX) \
1562 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1564 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1565 #define INSN_ANNULLED_BRANCH_P(RTX) \
1566 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1568 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1569 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1570 executed if the branch is taken. For annulled branches with this bit
1571 clear, the insn should be executed only if the branch is not taken. */
1572 #define INSN_FROM_TARGET_P(RTX) \
1573 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1574 CALL_INSN)->in_struct)
1576 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1577 See the comments for ADDR_DIFF_VEC in rtl.def. */
1578 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1580 /* In a VALUE, the value cselib has assigned to RTX.
1581 This is a "struct cselib_val", see cselib.h. */
1582 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1584 /* Holds a list of notes on what this insn does to various REGs.
1585 It is a chain of EXPR_LIST rtx's, where the second operand is the
1586 chain pointer and the first operand is the REG being described.
1587 The mode field of the EXPR_LIST contains not a real machine mode
1588 but a value from enum reg_note. */
1589 #define REG_NOTES(INSN) XEXP(INSN, 6)
1591 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1593 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1597 #define DEF_REG_NOTE(NAME) NAME,
1598 #include "reg-notes.def"
1603 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1604 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1605 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1606 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1608 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1610 extern const char * const reg_note_name
[];
1611 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1613 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1614 USE and CLOBBER expressions.
1615 USE expressions list the registers filled with arguments that
1616 are passed to the function.
1617 CLOBBER expressions document the registers explicitly clobbered
1619 Pseudo registers can not be mentioned in this list. */
1620 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1622 /* The label-number of a code-label. The assembler label
1623 is made from `L' and the label-number printed in decimal.
1624 Label numbers are unique in a compilation. */
1625 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1627 /* In a NOTE that is a line number, this is a string for the file name that the
1628 line is in. We use the same field to record block numbers temporarily in
1629 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1630 between ints and pointers if we use a different macro for the block number.)
1634 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1635 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1636 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1637 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1638 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1639 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1640 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1641 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1642 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1643 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1645 /* In a NOTE that is a line number, this is the line number.
1646 Other kinds of NOTEs are identified by negative numbers here. */
1647 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1649 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1650 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1651 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1653 /* Nonzero if INSN is a debug nonbind marker note,
1654 for which NOTE_MARKER_LOCATION can be used. */
1655 #define NOTE_MARKER_P(INSN) \
1657 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT))
1659 /* Variable declaration and the location of a variable. */
1660 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1661 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1663 /* Initialization status of the variable in the location. Status
1664 can be unknown, uninitialized or initialized. See enumeration
1666 #define PAT_VAR_LOCATION_STATUS(PAT) \
1667 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1668 ->u2.var_location_status)
1670 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1671 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1672 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1673 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1674 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1675 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1676 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1678 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1679 location/value tracking annotation. */
1680 #define DEBUG_BIND_INSN_P(INSN) \
1681 (DEBUG_INSN_P (INSN) \
1682 && (GET_CODE (PATTERN (INSN)) \
1684 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1685 source location marker. */
1686 #define DEBUG_MARKER_INSN_P(INSN) \
1687 (DEBUG_INSN_P (INSN) \
1688 && (GET_CODE (PATTERN (INSN)) \
1690 /* Evaluate to the marker kind. */
1691 #define INSN_DEBUG_MARKER_KIND(INSN) \
1692 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1693 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1694 ? NOTE_INSN_BEGIN_STMT \
1695 : (enum insn_note)-1) \
1696 : (enum insn_note)-1)
1697 /* Create patterns for debug markers. These and the above abstract
1698 the representation, so that it's easier to get rid of the abuse of
1699 the mode to hold the marker kind. Other marker types are
1700 envisioned, so a single bit flag won't do; maybe separate RTL codes
1701 wouldn't be a problem. */
1702 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1703 gen_rtx_DEBUG_MARKER (VOIDmode)
1705 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1706 #define INSN_VAR_LOCATION(INSN) \
1707 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1708 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1709 #define INSN_VAR_LOCATION_PTR(INSN) \
1712 /* Accessors for a tree-expanded var location debug insn. */
1713 #define INSN_VAR_LOCATION_DECL(INSN) \
1714 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1715 #define INSN_VAR_LOCATION_LOC(INSN) \
1716 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1717 #define INSN_VAR_LOCATION_STATUS(INSN) \
1718 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1720 /* Expand to the RTL that denotes an unknown variable location in a
1722 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1724 /* Determine whether X is such an unknown location. */
1725 #define VAR_LOC_UNKNOWN_P(X) \
1726 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1728 /* 1 if RTX is emitted after a call, but it should take effect before
1729 the call returns. */
1730 #define NOTE_DURING_CALL_P(RTX) \
1731 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1733 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1734 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1736 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1737 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1739 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1740 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1742 /* Codes that appear in the NOTE_KIND field for kinds of notes
1743 that are not line numbers. These codes are all negative.
1745 Notice that we do not try to use zero here for any of
1746 the special note codes because sometimes the source line
1747 actually can be zero! This happens (for example) when we
1748 are generating code for the per-translation-unit constructor
1749 and destructor routines for some C++ translation unit. */
1753 #define DEF_INSN_NOTE(NAME) NAME,
1754 #include "insn-notes.def"
1755 #undef DEF_INSN_NOTE
1760 /* Names for NOTE insn's other than line numbers. */
1762 extern const char * const note_insn_name
[NOTE_INSN_MAX
];
1763 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1764 (note_insn_name[(NOTE_CODE)])
1766 /* The name of a label, in case it corresponds to an explicit label
1767 in the input source code. */
1768 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1770 /* In jump.c, each label contains a count of the number
1771 of LABEL_REFs that point at it, so unused labels can be deleted. */
1772 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1774 /* Labels carry a two-bit field composed of the ->jump and ->call
1775 bits. This field indicates whether the label is an alternate
1776 entry point, and if so, what kind. */
1779 LABEL_NORMAL
= 0, /* ordinary label */
1780 LABEL_STATIC_ENTRY
, /* alternate entry point, not exported */
1781 LABEL_GLOBAL_ENTRY
, /* alternate entry point, exported */
1782 LABEL_WEAK_ENTRY
/* alternate entry point, exported as weak symbol */
1785 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1787 /* Retrieve the kind of LABEL. */
1788 #define LABEL_KIND(LABEL) __extension__ \
1789 ({ __typeof (LABEL) const _label = (LABEL); \
1790 if (! LABEL_P (_label)) \
1791 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1793 (enum label_kind) ((_label->jump << 1) | _label->call); })
1795 /* Set the kind of LABEL. */
1796 #define SET_LABEL_KIND(LABEL, KIND) do { \
1797 __typeof (LABEL) const _label = (LABEL); \
1798 const unsigned int _kind = (KIND); \
1799 if (! LABEL_P (_label)) \
1800 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1802 _label->jump = ((_kind >> 1) & 1); \
1803 _label->call = (_kind & 1); \
1808 /* Retrieve the kind of LABEL. */
1809 #define LABEL_KIND(LABEL) \
1810 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1812 /* Set the kind of LABEL. */
1813 #define SET_LABEL_KIND(LABEL, KIND) do { \
1814 rtx const _label = (LABEL); \
1815 const unsigned int _kind = (KIND); \
1816 _label->jump = ((_kind >> 1) & 1); \
1817 _label->call = (_kind & 1); \
1820 #endif /* rtl flag checking */
1822 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1824 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1825 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1826 be decremented and possibly the label can be deleted. */
1827 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1829 inline rtx_insn
*JUMP_LABEL_AS_INSN (const rtx_insn
*insn
)
1831 return safe_as_a
<rtx_insn
*> (JUMP_LABEL (insn
));
1834 /* Methods of rtx_jump_insn. */
1836 inline rtx
rtx_jump_insn::jump_label () const
1838 return JUMP_LABEL (this);
1841 inline rtx_code_label
*rtx_jump_insn::jump_target () const
1843 return safe_as_a
<rtx_code_label
*> (JUMP_LABEL (this));
1846 inline void rtx_jump_insn::set_jump_target (rtx_code_label
*target
)
1848 JUMP_LABEL (this) = target
;
1851 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1852 goes through all the LABEL_REFs that jump to that label. The chain
1853 eventually winds up at the CODE_LABEL: it is circular. */
1854 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1856 /* Get the label that a LABEL_REF references. */
1857 static inline rtx_insn
*
1858 label_ref_label (const_rtx ref
)
1860 return as_a
<rtx_insn
*> (XCEXP (ref
, 0, LABEL_REF
));
1863 /* Set the label that LABEL_REF ref refers to. */
1866 set_label_ref_label (rtx ref
, rtx_insn
*label
)
1868 XCEXP (ref
, 0, LABEL_REF
) = label
;
1871 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1872 be used on RHS. Use SET_REGNO to change the value. */
1873 #define REGNO(RTX) (rhs_regno(RTX))
1874 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1876 /* Return the number of consecutive registers in a REG. This is always
1877 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1879 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1881 /* ORIGINAL_REGNO holds the number the register originally had; for a
1882 pseudo register turned into a hard reg this will hold the old pseudo
1884 #define ORIGINAL_REGNO(RTX) \
1885 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1887 /* Force the REGNO macro to only be used on the lhs. */
1888 static inline unsigned int
1889 rhs_regno (const_rtx x
)
1891 return REG_CHECK (x
)->regno
;
1894 /* Return the final register in REG X plus one. */
1895 static inline unsigned int
1896 END_REGNO (const_rtx x
)
1898 return REGNO (x
) + REG_NREGS (x
);
1901 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1902 bypassing the df machinery. */
1904 set_regno_raw (rtx x
, unsigned int regno
, unsigned int nregs
)
1906 reg_info
*reg
= REG_CHECK (x
);
1911 /* 1 if RTX is a reg or parallel that is the current function's return
1913 #define REG_FUNCTION_VALUE_P(RTX) \
1914 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1916 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1917 #define REG_USERVAR_P(RTX) \
1918 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1920 /* 1 if RTX is a reg that holds a pointer value. */
1921 #define REG_POINTER(RTX) \
1922 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1924 /* 1 if RTX is a mem that holds a pointer value. */
1925 #define MEM_POINTER(RTX) \
1926 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1928 /* 1 if the given register REG corresponds to a hard register. */
1929 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1931 /* 1 if the given register number REG_NO corresponds to a hard register. */
1932 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1934 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1935 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1936 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1938 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1939 elements actually needed to represent the constant.
1940 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1941 significant HOST_WIDE_INT. */
1942 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1943 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1944 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1946 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1947 individual coefficients, in the form of a trailing_wide_ints structure. */
1948 #define CONST_POLY_INT_COEFFS(RTX) \
1949 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1950 CONST_POLY_INT)->u.cpi.coeffs)
1952 /* For a CONST_DOUBLE:
1953 #if TARGET_SUPPORTS_WIDE_INT == 0
1954 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1955 low-order word and ..._HIGH the high-order.
1957 For a float, there is a REAL_VALUE_TYPE structure, and
1958 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1959 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1960 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1961 #define CONST_DOUBLE_REAL_VALUE(r) \
1962 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1964 #define CONST_FIXED_VALUE(r) \
1965 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1966 #define CONST_FIXED_VALUE_HIGH(r) \
1967 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1968 #define CONST_FIXED_VALUE_LOW(r) \
1969 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1971 /* For a CONST_VECTOR, return element #n. */
1972 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
1974 /* See rtl.texi for a description of these macros. */
1975 #define CONST_VECTOR_NPATTERNS(RTX) \
1976 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
1977 ->u2.const_vector.npatterns)
1979 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
1980 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
1981 ->u2.const_vector.nelts_per_pattern)
1983 #define CONST_VECTOR_DUPLICATE_P(RTX) \
1984 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
1986 #define CONST_VECTOR_STEPPED_P(RTX) \
1987 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
1989 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1991 /* Return the number of elements encoded directly in a CONST_VECTOR. */
1994 const_vector_encoded_nelts (const_rtx x
)
1996 return CONST_VECTOR_NPATTERNS (x
) * CONST_VECTOR_NELTS_PER_PATTERN (x
);
1999 /* For a CONST_VECTOR, return the number of elements in a vector. */
2000 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2002 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2003 SUBREG_BYTE extracts the byte-number. */
2005 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2006 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2009 /* Return the right cost to give to an operation
2010 to make the cost of the corresponding register-to-register instruction
2011 N times that of a fast register-to-register instruction. */
2012 #define COSTS_N_INSNS(N) ((N) * 4)
2014 /* Maximum cost of an rtl expression. This value has the special meaning
2015 not to use an rtx with this cost under any circumstances. */
2016 #define MAX_COST INT_MAX
2018 /* Return true if CODE always has VOIDmode. */
2021 always_void_p (enum rtx_code code
)
2026 /* A structure to hold all available cost information about an rtl
2028 struct full_rtx_costs
2034 /* Initialize a full_rtx_costs structure C to the maximum cost. */
2036 init_costs_to_max (struct full_rtx_costs
*c
)
2038 c
->speed
= MAX_COST
;
2042 /* Initialize a full_rtx_costs structure C to zero cost. */
2044 init_costs_to_zero (struct full_rtx_costs
*c
)
2050 /* Compare two full_rtx_costs structures A and B, returning true
2051 if A < B when optimizing for speed. */
2053 costs_lt_p (struct full_rtx_costs
*a
, struct full_rtx_costs
*b
,
2057 return (a
->speed
< b
->speed
2058 || (a
->speed
== b
->speed
&& a
->size
< b
->size
));
2060 return (a
->size
< b
->size
2061 || (a
->size
== b
->size
&& a
->speed
< b
->speed
));
2064 /* Increase both members of the full_rtx_costs structure C by the
2067 costs_add_n_insns (struct full_rtx_costs
*c
, int n
)
2069 c
->speed
+= COSTS_N_INSNS (n
);
2070 c
->size
+= COSTS_N_INSNS (n
);
2073 /* Describes the shape of a subreg:
2075 inner_mode == the mode of the SUBREG_REG
2076 offset == the SUBREG_BYTE
2077 outer_mode == the mode of the SUBREG itself. */
2078 struct subreg_shape
{
2079 subreg_shape (machine_mode
, poly_uint16
, machine_mode
);
2080 bool operator == (const subreg_shape
&) const;
2081 bool operator != (const subreg_shape
&) const;
2082 unsigned HOST_WIDE_INT
unique_id () const;
2084 machine_mode inner_mode
;
2086 machine_mode outer_mode
;
2090 subreg_shape::subreg_shape (machine_mode inner_mode_in
,
2091 poly_uint16 offset_in
,
2092 machine_mode outer_mode_in
)
2093 : inner_mode (inner_mode_in
), offset (offset_in
), outer_mode (outer_mode_in
)
2097 subreg_shape::operator == (const subreg_shape
&other
) const
2099 return (inner_mode
== other
.inner_mode
2100 && known_eq (offset
, other
.offset
)
2101 && outer_mode
== other
.outer_mode
);
2105 subreg_shape::operator != (const subreg_shape
&other
) const
2107 return !operator == (other
);
2110 /* Return an integer that uniquely identifies this shape. Structures
2111 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2112 current mode is anywhere near being 65536 bytes in size, so the
2113 id comfortably fits in an int. */
2115 inline unsigned HOST_WIDE_INT
2116 subreg_shape::unique_id () const
2118 { STATIC_ASSERT (MAX_MACHINE_MODE
<= 256); }
2119 { STATIC_ASSERT (NUM_POLY_INT_COEFFS
<= 3); }
2120 { STATIC_ASSERT (sizeof (offset
.coeffs
[0]) <= 2); }
2121 int res
= (int) inner_mode
+ ((int) outer_mode
<< 8);
2122 for (int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2123 res
+= (HOST_WIDE_INT
) offset
.coeffs
[i
] << ((1 + i
) * 16);
2127 /* Return the shape of a SUBREG rtx. */
2129 static inline subreg_shape
2130 shape_of_subreg (const_rtx x
)
2132 return subreg_shape (GET_MODE (SUBREG_REG (x
)),
2133 SUBREG_BYTE (x
), GET_MODE (x
));
2136 /* Information about an address. This structure is supposed to be able
2137 to represent all supported target addresses. Please extend it if it
2138 is not yet general enough. */
2139 struct address_info
{
2140 /* The mode of the value being addressed, or VOIDmode if this is
2141 a load-address operation with no known address mode. */
2144 /* The address space. */
2147 /* True if this is an RTX_AUTOINC address. */
2150 /* A pointer to the top-level address. */
2153 /* A pointer to the inner address, after all address mutations
2154 have been stripped from the top-level address. It can be one
2157 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2159 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2160 points to the step value, depending on whether the step is variable
2161 or constant respectively. SEGMENT is null.
2163 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2164 with null fields evaluating to 0. */
2167 /* Components that make up *INNER. Each one may be null or nonnull.
2168 When nonnull, their meanings are as follows:
2170 - *SEGMENT is the "segment" of memory to which the address refers.
2171 This value is entirely target-specific and is only called a "segment"
2172 because that's its most typical use. It contains exactly one UNSPEC,
2173 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2176 - *BASE is a variable expression representing a base address.
2177 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2179 - *INDEX is a variable expression representing an index value.
2180 It may be a scaled expression, such as a MULT. It has exactly
2181 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2183 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2184 unmutated RTX_CONST_OBJ. */
2195 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2196 of BASE_TERM, otherwise it is null. */
2199 /* ADDRESS if this structure describes an address operand, MEM if
2200 it describes a MEM address. */
2201 enum rtx_code addr_outer_code
;
2203 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2204 enum rtx_code base_outer_code
;
2207 /* This is used to bundle an rtx and a mode together so that the pair
2208 can be used with the wi:: routines. If we ever put modes into rtx
2209 integer constants, this should go away and then just pass an rtx in. */
2210 typedef std::pair
<rtx
, machine_mode
> rtx_mode_t
;
2215 struct int_traits
<rtx_mode_t
>
2217 static const enum precision_type precision_type
= VAR_PRECISION
;
2218 static const bool host_dependent_precision
= false;
2219 /* This ought to be true, except for the special case that BImode
2220 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2221 static const bool is_sign_extended
= false;
2222 static unsigned int get_precision (const rtx_mode_t
&);
2223 static wi::storage_ref
decompose (HOST_WIDE_INT
*, unsigned int,
2224 const rtx_mode_t
&);
2229 wi::int_traits
<rtx_mode_t
>::get_precision (const rtx_mode_t
&x
)
2231 return GET_MODE_PRECISION (as_a
<scalar_mode
> (x
.second
));
2234 inline wi::storage_ref
2235 wi::int_traits
<rtx_mode_t
>::decompose (HOST_WIDE_INT
*,
2236 unsigned int precision
,
2237 const rtx_mode_t
&x
)
2239 gcc_checking_assert (precision
== get_precision (x
));
2240 switch (GET_CODE (x
.first
))
2243 if (precision
< HOST_BITS_PER_WIDE_INT
)
2244 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2245 targets is 1 rather than -1. */
2246 gcc_checking_assert (INTVAL (x
.first
)
2247 == sext_hwi (INTVAL (x
.first
), precision
)
2248 || (x
.second
== BImode
&& INTVAL (x
.first
) == 1));
2250 return wi::storage_ref (&INTVAL (x
.first
), 1, precision
);
2252 case CONST_WIDE_INT
:
2253 return wi::storage_ref (&CONST_WIDE_INT_ELT (x
.first
, 0),
2254 CONST_WIDE_INT_NUNITS (x
.first
), precision
);
2256 #if TARGET_SUPPORTS_WIDE_INT == 0
2258 return wi::storage_ref (&CONST_DOUBLE_LOW (x
.first
), 2, precision
);
2268 hwi_with_prec
shwi (HOST_WIDE_INT
, machine_mode mode
);
2269 wide_int
min_value (machine_mode
, signop
);
2270 wide_int
max_value (machine_mode
, signop
);
2273 inline wi::hwi_with_prec
2274 wi::shwi (HOST_WIDE_INT val
, machine_mode mode
)
2276 return shwi (val
, GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
)));
2279 /* Produce the smallest number that is represented in MODE. The precision
2280 is taken from MODE and the sign from SGN. */
2282 wi::min_value (machine_mode mode
, signop sgn
)
2284 return min_value (GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
)), sgn
);
2287 /* Produce the largest number that is represented in MODE. The precision
2288 is taken from MODE and the sign from SGN. */
2290 wi::max_value (machine_mode mode
, signop sgn
)
2292 return max_value (GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
)), sgn
);
2297 typedef poly_int
<NUM_POLY_INT_COEFFS
,
2298 generic_wide_int
<wide_int_ref_storage
<false, false> > >
2299 rtx_to_poly_wide_ref
;
2300 rtx_to_poly_wide_ref
to_poly_wide (const_rtx
, machine_mode
);
2303 /* Return the value of a CONST_POLY_INT in its native precision. */
2305 inline wi::rtx_to_poly_wide_ref
2306 const_poly_int_value (const_rtx x
)
2308 poly_int
<NUM_POLY_INT_COEFFS
, WIDE_INT_REF_FOR (wide_int
)> res
;
2309 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2310 res
.coeffs
[i
] = CONST_POLY_INT_COEFFS (x
)[i
];
2314 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2315 can then be extracted using wi::to_poly_wide. */
2318 poly_int_rtx_p (const_rtx x
)
2320 return CONST_SCALAR_INT_P (x
) || CONST_POLY_INT_P (x
);
2323 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2324 MODE is the mode of X. */
2326 inline wi::rtx_to_poly_wide_ref
2327 wi::to_poly_wide (const_rtx x
, machine_mode mode
)
2329 if (CONST_POLY_INT_P (x
))
2330 return const_poly_int_value (x
);
2331 return rtx_mode_t (const_cast<rtx
> (x
), mode
);
2334 /* Return the value of X as a poly_int64. */
2337 rtx_to_poly_int64 (const_rtx x
)
2339 if (CONST_POLY_INT_P (x
))
2342 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2343 res
.coeffs
[i
] = CONST_POLY_INT_COEFFS (x
)[i
].to_shwi ();
2349 /* Return true if arbitrary value X is an integer constant that can
2350 be represented as a poly_int64. Store the value in *RES if so,
2351 otherwise leave it unmodified. */
2354 poly_int_rtx_p (const_rtx x
, poly_int64_pod
*res
)
2356 if (CONST_INT_P (x
))
2361 if (CONST_POLY_INT_P (x
))
2363 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2364 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x
)[i
]))
2366 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2367 res
->coeffs
[i
] = CONST_POLY_INT_COEFFS (x
)[i
].to_shwi ();
2373 extern void init_rtlanal (void);
2374 extern int rtx_cost (rtx
, machine_mode
, enum rtx_code
, int, bool);
2375 extern int address_cost (rtx
, machine_mode
, addr_space_t
, bool);
2376 extern void get_full_rtx_cost (rtx
, machine_mode
, enum rtx_code
, int,
2377 struct full_rtx_costs
*);
2378 extern poly_uint64
subreg_lsb (const_rtx
);
2379 extern poly_uint64
subreg_lsb_1 (machine_mode
, machine_mode
, poly_uint64
);
2380 extern poly_uint64
subreg_size_offset_from_lsb (poly_uint64
, poly_uint64
,
2382 extern bool read_modify_subreg_p (const_rtx
);
2384 /* Return the subreg byte offset for a subreg whose outer mode is
2385 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2386 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2387 the inner value. This is the inverse of subreg_lsb_1 (which converts
2388 byte offsets to bit shifts). */
2391 subreg_offset_from_lsb (machine_mode outer_mode
,
2392 machine_mode inner_mode
,
2393 poly_uint64 lsb_shift
)
2395 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode
),
2396 GET_MODE_SIZE (inner_mode
), lsb_shift
);
2399 extern unsigned int subreg_regno_offset (unsigned int, machine_mode
,
2400 poly_uint64
, machine_mode
);
2401 extern bool subreg_offset_representable_p (unsigned int, machine_mode
,
2402 poly_uint64
, machine_mode
);
2403 extern unsigned int subreg_regno (const_rtx
);
2404 extern int simplify_subreg_regno (unsigned int, machine_mode
,
2405 poly_uint64
, machine_mode
);
2406 extern unsigned int subreg_nregs (const_rtx
);
2407 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx
);
2408 extern unsigned HOST_WIDE_INT
nonzero_bits (const_rtx
, machine_mode
);
2409 extern unsigned int num_sign_bit_copies (const_rtx
, machine_mode
);
2410 extern bool constant_pool_constant_p (rtx
);
2411 extern bool truncated_to_mode (machine_mode
, const_rtx
);
2412 extern int low_bitmask_len (machine_mode
, unsigned HOST_WIDE_INT
);
2413 extern void split_double (rtx
, rtx
*, rtx
*);
2414 extern rtx
*strip_address_mutations (rtx
*, enum rtx_code
* = 0);
2415 extern void decompose_address (struct address_info
*, rtx
*,
2416 machine_mode
, addr_space_t
, enum rtx_code
);
2417 extern void decompose_lea_address (struct address_info
*, rtx
*);
2418 extern void decompose_mem_address (struct address_info
*, rtx
);
2419 extern void update_address (struct address_info
*);
2420 extern HOST_WIDE_INT
get_index_scale (const struct address_info
*);
2421 extern enum rtx_code
get_index_code (const struct address_info
*);
2423 /* 1 if RTX is a subreg containing a reg that is already known to be
2424 sign- or zero-extended from the mode of the subreg to the mode of
2425 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2428 When used as a LHS, is means that this extension must be done
2429 when assigning to SUBREG_REG. */
2431 #define SUBREG_PROMOTED_VAR_P(RTX) \
2432 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2434 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2435 this gives the necessary extensions:
2436 0 - signed (SPR_SIGNED)
2437 1 - normal unsigned (SPR_UNSIGNED)
2438 2 - value is both sign and unsign extended for mode
2439 (SPR_SIGNED_AND_UNSIGNED).
2440 -1 - pointer unsigned, which most often can be handled like unsigned
2441 extension, except for generating instructions where we need to
2442 emit special code (ptr_extend insns) on some architectures
2445 const int SRP_POINTER
= -1;
2446 const int SRP_SIGNED
= 0;
2447 const int SRP_UNSIGNED
= 1;
2448 const int SRP_SIGNED_AND_UNSIGNED
= 2;
2450 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2451 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2453 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2458 _rtx->volatil = 0; \
2459 _rtx->unchanging = 0; \
2462 _rtx->volatil = 0; \
2463 _rtx->unchanging = 1; \
2465 case SRP_UNSIGNED: \
2466 _rtx->volatil = 1; \
2467 _rtx->unchanging = 0; \
2469 case SRP_SIGNED_AND_UNSIGNED: \
2470 _rtx->volatil = 1; \
2471 _rtx->unchanging = 1; \
2476 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2477 including SRP_SIGNED_AND_UNSIGNED if promoted for
2478 both signed and unsigned. */
2479 #define SUBREG_PROMOTED_GET(RTX) \
2480 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2481 + (RTX)->unchanging - 1)
2483 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2484 #define SUBREG_PROMOTED_SIGN(RTX) \
2485 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2486 : (RTX)->unchanging - 1)
2488 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2490 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2491 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2493 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2494 for UNSIGNED type. */
2495 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2496 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2498 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2499 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2500 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2501 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2502 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2504 /* True if the REG is the static chain register for some CALL_INSN. */
2505 #define STATIC_CHAIN_REG_P(RTX) \
2506 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2508 /* True if the subreg was generated by LRA for reload insns. Such
2509 subregs are valid only during LRA. */
2510 #define LRA_SUBREG_P(RTX) \
2511 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2513 /* True if call is instrumented by Pointer Bounds Checker. */
2514 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2515 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2517 /* Access various components of an ASM_OPERANDS rtx. */
2519 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2520 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2521 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2522 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2523 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2524 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2525 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2526 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2527 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2528 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2529 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2530 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2531 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2532 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2533 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2534 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2535 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2536 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2538 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2539 #define MEM_READONLY_P(RTX) \
2540 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2542 /* 1 if RTX is a mem and we should keep the alias set for this mem
2543 unchanged when we access a component. Set to 1, or example, when we
2544 are already in a non-addressable component of an aggregate. */
2545 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2546 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2548 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2549 #define MEM_VOLATILE_P(RTX) \
2550 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2551 ASM_INPUT)->volatil)
2553 /* 1 if RTX is a mem that cannot trap. */
2554 #define MEM_NOTRAP_P(RTX) \
2555 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2557 /* The memory attribute block. We provide access macros for each value
2558 in the block and provide defaults if none specified. */
2559 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2561 /* The register attribute block. We provide access macros for each value
2562 in the block and provide defaults if none specified. */
2563 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2565 #ifndef GENERATOR_FILE
2566 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2567 set, and may alias anything. Otherwise, the MEM can only alias
2568 MEMs in a conflicting alias set. This value is set in a
2569 language-dependent manner in the front-end, and should not be
2570 altered in the back-end. These set numbers are tested with
2571 alias_sets_conflict_p. */
2572 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2574 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2575 refer to part of a DECL. It may also be a COMPONENT_REF. */
2576 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2578 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2579 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2581 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2582 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2584 /* For a MEM rtx, the address space. */
2585 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2587 /* For a MEM rtx, true if its MEM_SIZE is known. */
2588 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2590 /* For a MEM rtx, the size in bytes of the MEM. */
2591 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2593 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2594 mode as a default when STRICT_ALIGNMENT, but not if not. */
2595 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2597 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2600 /* For a REG rtx, the decl it is known to refer to, if it is known to
2601 refer to part of a DECL. */
2602 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2604 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2606 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2608 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2609 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2610 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2611 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2612 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2613 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2614 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2615 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2617 /* 1 if RTX is a label_ref for a nonlocal label. */
2618 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2619 REG_LABEL_TARGET note. */
2620 #define LABEL_REF_NONLOCAL_P(RTX) \
2621 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2623 /* 1 if RTX is a code_label that should always be considered to be needed. */
2624 #define LABEL_PRESERVE_P(RTX) \
2625 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2627 /* During sched, 1 if RTX is an insn that must be scheduled together
2628 with the preceding insn. */
2629 #define SCHED_GROUP_P(RTX) \
2630 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2631 JUMP_INSN, CALL_INSN)->in_struct)
2633 /* For a SET rtx, SET_DEST is the place that is set
2634 and SET_SRC is the value it is set to. */
2635 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2636 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2637 #define SET_IS_RETURN_P(RTX) \
2638 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2640 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2641 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2642 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2644 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2645 conditionally executing the code on, COND_EXEC_CODE is the code
2646 to execute if the condition is true. */
2647 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2648 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2650 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2652 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2653 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2655 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2656 tree constant pool. This information is private to varasm.c. */
2657 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2658 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2659 (RTX), SYMBOL_REF)->frame_related)
2661 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2662 #define SYMBOL_REF_FLAG(RTX) \
2663 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2665 /* 1 if RTX is a symbol_ref that has been the library function in
2666 emit_library_call. */
2667 #define SYMBOL_REF_USED(RTX) \
2668 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2670 /* 1 if RTX is a symbol_ref for a weak symbol. */
2671 #define SYMBOL_REF_WEAK(RTX) \
2672 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2674 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2675 SYMBOL_REF_CONSTANT. */
2676 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2678 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2680 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2681 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2683 /* The tree (decl or constant) associated with the symbol, or null. */
2684 #define SYMBOL_REF_DECL(RTX) \
2685 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2687 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2688 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2689 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2691 /* The rtx constant pool entry for a symbol, or null. */
2692 #define SYMBOL_REF_CONSTANT(RTX) \
2693 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2695 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2696 information derivable from the tree decl associated with this symbol.
2697 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2698 decl. In some cases this is a bug. But beyond that, it's nice to cache
2699 this information to avoid recomputing it. Finally, this allows space for
2700 the target to store more than one bit of information, as with
2702 #define SYMBOL_REF_FLAGS(RTX) \
2703 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2704 ->u2.symbol_ref_flags)
2706 /* These flags are common enough to be defined for all targets. They
2707 are computed by the default version of targetm.encode_section_info. */
2709 /* Set if this symbol is a function. */
2710 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2711 #define SYMBOL_REF_FUNCTION_P(RTX) \
2712 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2713 /* Set if targetm.binds_local_p is true. */
2714 #define SYMBOL_FLAG_LOCAL (1 << 1)
2715 #define SYMBOL_REF_LOCAL_P(RTX) \
2716 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2717 /* Set if targetm.in_small_data_p is true. */
2718 #define SYMBOL_FLAG_SMALL (1 << 2)
2719 #define SYMBOL_REF_SMALL_P(RTX) \
2720 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2721 /* The three-bit field at [5:3] is true for TLS variables; use
2722 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2723 #define SYMBOL_FLAG_TLS_SHIFT 3
2724 #define SYMBOL_REF_TLS_MODEL(RTX) \
2725 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2726 /* Set if this symbol is not defined in this translation unit. */
2727 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2728 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2729 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2730 /* Set if this symbol has a block_symbol structure associated with it. */
2731 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2732 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2733 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2734 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2735 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2736 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2737 #define SYMBOL_REF_ANCHOR_P(RTX) \
2738 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2740 /* Subsequent bits are available for the target to use. */
2741 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2742 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2744 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2745 structure to which the symbol belongs, or NULL if it has not been
2746 assigned a block. */
2747 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2749 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2750 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2751 RTX has not yet been assigned to a block, or it has not been given an
2752 offset within that block. */
2753 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2755 /* True if RTX is flagged to be a scheduling barrier. */
2756 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2757 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2759 /* Indicate whether the machine has any sort of auto increment addressing.
2760 If not, we can avoid checking for REG_INC notes. */
2762 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2763 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2764 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2765 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2766 #define AUTO_INC_DEC 1
2768 #define AUTO_INC_DEC 0
2771 /* Define a macro to look for REG_INC notes,
2772 but save time on machines where they never exist. */
2775 #define FIND_REG_INC_NOTE(INSN, REG) \
2776 ((REG) != NULL_RTX && REG_P ((REG)) \
2777 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2778 : find_reg_note ((INSN), REG_INC, (REG)))
2780 #define FIND_REG_INC_NOTE(INSN, REG) 0
2783 #ifndef HAVE_PRE_INCREMENT
2784 #define HAVE_PRE_INCREMENT 0
2787 #ifndef HAVE_PRE_DECREMENT
2788 #define HAVE_PRE_DECREMENT 0
2791 #ifndef HAVE_POST_INCREMENT
2792 #define HAVE_POST_INCREMENT 0
2795 #ifndef HAVE_POST_DECREMENT
2796 #define HAVE_POST_DECREMENT 0
2799 #ifndef HAVE_POST_MODIFY_DISP
2800 #define HAVE_POST_MODIFY_DISP 0
2803 #ifndef HAVE_POST_MODIFY_REG
2804 #define HAVE_POST_MODIFY_REG 0
2807 #ifndef HAVE_PRE_MODIFY_DISP
2808 #define HAVE_PRE_MODIFY_DISP 0
2811 #ifndef HAVE_PRE_MODIFY_REG
2812 #define HAVE_PRE_MODIFY_REG 0
2816 /* Some architectures do not have complete pre/post increment/decrement
2817 instruction sets, or only move some modes efficiently. These macros
2818 allow us to tune autoincrement generation. */
2820 #ifndef USE_LOAD_POST_INCREMENT
2821 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2824 #ifndef USE_LOAD_POST_DECREMENT
2825 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2828 #ifndef USE_LOAD_PRE_INCREMENT
2829 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2832 #ifndef USE_LOAD_PRE_DECREMENT
2833 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2836 #ifndef USE_STORE_POST_INCREMENT
2837 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2840 #ifndef USE_STORE_POST_DECREMENT
2841 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2844 #ifndef USE_STORE_PRE_INCREMENT
2845 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2848 #ifndef USE_STORE_PRE_DECREMENT
2849 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2852 /* Nonzero when we are generating CONCATs. */
2853 extern int generating_concat_p
;
2855 /* Nonzero when we are expanding trees to RTL. */
2856 extern int currently_expanding_to_rtl
;
2858 /* Generally useful functions. */
2860 #ifndef GENERATOR_FILE
2861 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2862 rather than size. */
2865 set_rtx_cost (rtx x
, bool speed_p
)
2867 return rtx_cost (x
, VOIDmode
, INSN
, 4, speed_p
);
2870 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2873 get_full_set_rtx_cost (rtx x
, struct full_rtx_costs
*c
)
2875 get_full_rtx_cost (x
, VOIDmode
, INSN
, 4, c
);
2878 /* Return the cost of moving X into a register, relative to the cost
2879 of a register move. SPEED_P is true if optimizing for speed rather
2883 set_src_cost (rtx x
, machine_mode mode
, bool speed_p
)
2885 return rtx_cost (x
, mode
, SET
, 1, speed_p
);
2888 /* Like set_src_cost, but return both the speed and size costs in C. */
2891 get_full_set_src_cost (rtx x
, machine_mode mode
, struct full_rtx_costs
*c
)
2893 get_full_rtx_cost (x
, mode
, SET
, 1, c
);
2897 /* A convenience macro to validate the arguments of a zero_extract
2898 expression. It determines whether SIZE lies inclusively within
2899 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2900 and the sum lies inclusively within [1, RANGE]. RANGE must be
2901 >= 1, but SIZE and POS may be negative. */
2902 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2903 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2904 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2905 - (unsigned HOST_WIDE_INT)(POS)))
2908 extern HOST_WIDE_INT
trunc_int_for_mode (HOST_WIDE_INT
, machine_mode
);
2909 extern poly_int64
trunc_int_for_mode (poly_int64
, machine_mode
);
2910 extern rtx
plus_constant (machine_mode
, rtx
, poly_int64
, bool = false);
2911 extern HOST_WIDE_INT
get_stack_check_protect (void);
2914 extern rtx
rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO
);
2915 extern rtx
rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL
, int);
2916 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2917 #define const_wide_int_alloc(NWORDS) \
2918 rtx_alloc_v (CONST_WIDE_INT, \
2919 (sizeof (struct hwivec_def) \
2920 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2922 extern rtvec rtvec_alloc (int);
2923 extern rtvec
shallow_copy_rtvec (rtvec
);
2924 extern bool shared_const_p (const_rtx
);
2925 extern rtx
copy_rtx (rtx
);
2926 extern enum rtx_code
classify_insn (rtx
);
2927 extern void dump_rtx_statistics (void);
2930 extern rtx
copy_rtx_if_shared (rtx
);
2933 extern unsigned int rtx_size (const_rtx
);
2934 extern rtx
shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO
);
2935 extern int rtx_equal_p (const_rtx
, const_rtx
);
2936 extern bool rtvec_all_equal_p (const_rtvec
);
2938 /* Return true if X is a vector constant with a duplicated element value. */
2941 const_vec_duplicate_p (const_rtx x
)
2943 return (GET_CODE (x
) == CONST_VECTOR
2944 && CONST_VECTOR_NPATTERNS (x
) == 1
2945 && CONST_VECTOR_DUPLICATE_P (x
));
2948 /* Return true if X is a vector constant with a duplicated element value.
2949 Store the duplicated element in *ELT if so. */
2951 template <typename T
>
2953 const_vec_duplicate_p (T x
, T
*elt
)
2955 if (const_vec_duplicate_p (x
))
2957 *elt
= CONST_VECTOR_ENCODED_ELT (x
, 0);
2963 /* Return true if X is a vector with a duplicated element value, either
2964 constant or nonconstant. Store the duplicated element in *ELT if so. */
2966 template <typename T
>
2968 vec_duplicate_p (T x
, T
*elt
)
2970 if (GET_CODE (x
) == VEC_DUPLICATE
2971 && !VECTOR_MODE_P (GET_MODE (XEXP (x
, 0))))
2976 return const_vec_duplicate_p (x
, elt
);
2979 /* If X is a vector constant with a duplicated element value, return that
2980 element value, otherwise return X. */
2982 template <typename T
>
2984 unwrap_const_vec_duplicate (T x
)
2986 if (const_vec_duplicate_p (x
))
2987 x
= CONST_VECTOR_ELT (x
, 0);
2991 /* In emit-rtl.c. */
2992 extern wide_int
const_vector_int_elt (const_rtx
, unsigned int);
2993 extern rtx
const_vector_elt (const_rtx
, unsigned int);
2994 extern bool const_vec_series_p_1 (const_rtx
, rtx
*, rtx
*);
2996 /* Return true if X is an integer constant vector that contains a linear
2999 { B, B + S, B + 2 * S, B + 3 * S, ... }
3001 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3004 const_vec_series_p (const_rtx x
, rtx
*base_out
, rtx
*step_out
)
3006 if (GET_CODE (x
) == CONST_VECTOR
3007 && CONST_VECTOR_NPATTERNS (x
) == 1
3008 && !CONST_VECTOR_DUPLICATE_P (x
))
3009 return const_vec_series_p_1 (x
, base_out
, step_out
);
3013 /* Return true if X is a vector that contains a linear series of the
3016 { B, B + S, B + 2 * S, B + 3 * S, ... }
3018 where B and S are constant or nonconstant. Store B and S in
3019 *BASE_OUT and *STEP_OUT on sucess. */
3022 vec_series_p (const_rtx x
, rtx
*base_out
, rtx
*step_out
)
3024 if (GET_CODE (x
) == VEC_SERIES
)
3026 *base_out
= XEXP (x
, 0);
3027 *step_out
= XEXP (x
, 1);
3030 return const_vec_series_p (x
, base_out
, step_out
);
3033 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3035 inline scalar_int_mode
3036 subreg_unpromoted_mode (rtx x
)
3038 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x
));
3039 return as_a
<scalar_int_mode
> (GET_MODE (x
));
3042 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3044 inline scalar_int_mode
3045 subreg_promoted_mode (rtx x
)
3047 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x
));
3048 return as_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (x
)));
3052 extern rtvec
gen_rtvec_v (int, rtx
*);
3053 extern rtvec
gen_rtvec_v (int, rtx_insn
**);
3054 extern rtx
gen_reg_rtx (machine_mode
);
3055 extern rtx
gen_rtx_REG_offset (rtx
, machine_mode
, unsigned int, poly_int64
);
3056 extern rtx
gen_reg_rtx_offset (rtx
, machine_mode
, int);
3057 extern rtx
gen_reg_rtx_and_attrs (rtx
);
3058 extern rtx_code_label
*gen_label_rtx (void);
3059 extern rtx
gen_lowpart_common (machine_mode
, rtx
);
3062 extern rtx
gen_lowpart_if_possible (machine_mode
, rtx
);
3065 extern rtx
gen_highpart (machine_mode
, rtx
);
3066 extern rtx
gen_highpart_mode (machine_mode
, machine_mode
, rtx
);
3067 extern rtx
operand_subword (rtx
, poly_uint64
, int, machine_mode
);
3070 extern rtx
operand_subword_force (rtx
, poly_uint64
, machine_mode
);
3071 extern int subreg_lowpart_p (const_rtx
);
3072 extern poly_uint64
subreg_size_lowpart_offset (poly_uint64
, poly_uint64
);
3074 /* Return true if a subreg of mode OUTERMODE would only access part of
3075 an inner register with mode INNERMODE. The other bits of the inner
3076 register would then be "don't care" on read. The behavior for writes
3077 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3078 chunk would be clobbered but other bits would be preserved. */
3081 partial_subreg_p (machine_mode outermode
, machine_mode innermode
)
3083 /* Modes involved in a subreg must be ordered. In particular, we must
3084 always know at compile time whether the subreg is paradoxical. */
3085 poly_int64 outer_prec
= GET_MODE_PRECISION (outermode
);
3086 poly_int64 inner_prec
= GET_MODE_PRECISION (innermode
);
3087 gcc_checking_assert (ordered_p (outer_prec
, inner_prec
));
3088 return maybe_lt (outer_prec
, inner_prec
);
3091 /* Likewise return true if X is a subreg that is smaller than the inner
3092 register. Use read_modify_subreg_p to test whether writing to such
3093 a subreg preserves any part of the inner register. */
3096 partial_subreg_p (const_rtx x
)
3098 if (GET_CODE (x
) != SUBREG
)
3100 return partial_subreg_p (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)));
3103 /* Return true if a subreg with the given outer and inner modes is
3107 paradoxical_subreg_p (machine_mode outermode
, machine_mode innermode
)
3109 /* Modes involved in a subreg must be ordered. In particular, we must
3110 always know at compile time whether the subreg is paradoxical. */
3111 poly_int64 outer_prec
= GET_MODE_PRECISION (outermode
);
3112 poly_int64 inner_prec
= GET_MODE_PRECISION (innermode
);
3113 gcc_checking_assert (ordered_p (outer_prec
, inner_prec
));
3114 return maybe_gt (outer_prec
, inner_prec
);
3117 /* Return true if X is a paradoxical subreg, false otherwise. */
3120 paradoxical_subreg_p (const_rtx x
)
3122 if (GET_CODE (x
) != SUBREG
)
3124 return paradoxical_subreg_p (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)));
3127 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3130 subreg_lowpart_offset (machine_mode outermode
, machine_mode innermode
)
3132 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode
),
3133 GET_MODE_SIZE (innermode
));
3136 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3137 return the smaller of the two modes if they are different sizes,
3138 otherwise return the outer mode. */
3141 narrower_subreg_mode (machine_mode outermode
, machine_mode innermode
)
3143 return paradoxical_subreg_p (outermode
, innermode
) ? innermode
: outermode
;
3146 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3147 return the mode that is big enough to hold both the outer and inner
3148 values. Prefer the outer mode in the event of a tie. */
3151 wider_subreg_mode (machine_mode outermode
, machine_mode innermode
)
3153 return partial_subreg_p (outermode
, innermode
) ? innermode
: outermode
;
3156 /* Likewise for subreg X. */
3159 wider_subreg_mode (const_rtx x
)
3161 return wider_subreg_mode (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)));
3164 extern poly_uint64
subreg_size_highpart_offset (poly_uint64
, poly_uint64
);
3166 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3169 subreg_highpart_offset (machine_mode outermode
, machine_mode innermode
)
3171 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode
),
3172 GET_MODE_SIZE (innermode
));
3175 extern poly_int64
byte_lowpart_offset (machine_mode
, machine_mode
);
3176 extern poly_int64
subreg_memory_offset (machine_mode
, machine_mode
,
3178 extern poly_int64
subreg_memory_offset (const_rtx
);
3179 extern rtx
make_safe_from (rtx
, rtx
);
3180 extern rtx
convert_memory_address_addr_space_1 (scalar_int_mode
, rtx
,
3181 addr_space_t
, bool, bool);
3182 extern rtx
convert_memory_address_addr_space (scalar_int_mode
, rtx
,
3184 #define convert_memory_address(to_mode,x) \
3185 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3186 extern const char *get_insn_name (int);
3187 extern rtx_insn
*get_last_insn_anywhere (void);
3188 extern rtx_insn
*get_first_nonnote_insn (void);
3189 extern rtx_insn
*get_last_nonnote_insn (void);
3190 extern void start_sequence (void);
3191 extern void push_to_sequence (rtx_insn
*);
3192 extern void push_to_sequence2 (rtx_insn
*, rtx_insn
*);
3193 extern void end_sequence (void);
3194 #if TARGET_SUPPORTS_WIDE_INT == 0
3195 extern double_int
rtx_to_double_int (const_rtx
);
3197 extern void cwi_output_hex (FILE *, const_rtx
);
3198 #if TARGET_SUPPORTS_WIDE_INT == 0
3199 extern rtx
immed_double_const (HOST_WIDE_INT
, HOST_WIDE_INT
,
3202 extern rtx
immed_wide_int_const (const poly_wide_int_ref
&, machine_mode
);
3205 extern rtx
force_const_mem (machine_mode
, rtx
);
3210 extern rtx
get_pool_constant (const_rtx
);
3211 extern rtx
get_pool_constant_mark (rtx
, bool *);
3212 extern fixed_size_mode
get_pool_mode (const_rtx
);
3213 extern rtx
simplify_subtraction (rtx
);
3214 extern void decide_function_section (tree
);
3217 extern rtx_insn
*emit_insn_before (rtx
, rtx
);
3218 extern rtx_insn
*emit_insn_before_noloc (rtx
, rtx_insn
*, basic_block
);
3219 extern rtx_insn
*emit_insn_before_setloc (rtx
, rtx_insn
*, int);
3220 extern rtx_jump_insn
*emit_jump_insn_before (rtx
, rtx
);
3221 extern rtx_jump_insn
*emit_jump_insn_before_noloc (rtx
, rtx_insn
*);
3222 extern rtx_jump_insn
*emit_jump_insn_before_setloc (rtx
, rtx_insn
*, int);
3223 extern rtx_insn
*emit_call_insn_before (rtx
, rtx_insn
*);
3224 extern rtx_insn
*emit_call_insn_before_noloc (rtx
, rtx_insn
*);
3225 extern rtx_insn
*emit_call_insn_before_setloc (rtx
, rtx_insn
*, int);
3226 extern rtx_insn
*emit_debug_insn_before (rtx
, rtx_insn
*);
3227 extern rtx_insn
*emit_debug_insn_before_noloc (rtx
, rtx
);
3228 extern rtx_insn
*emit_debug_insn_before_setloc (rtx
, rtx
, int);
3229 extern rtx_barrier
*emit_barrier_before (rtx
);
3230 extern rtx_code_label
*emit_label_before (rtx
, rtx_insn
*);
3231 extern rtx_note
*emit_note_before (enum insn_note
, rtx_insn
*);
3232 extern rtx_insn
*emit_insn_after (rtx
, rtx
);
3233 extern rtx_insn
*emit_insn_after_noloc (rtx
, rtx
, basic_block
);
3234 extern rtx_insn
*emit_insn_after_setloc (rtx
, rtx
, int);
3235 extern rtx_jump_insn
*emit_jump_insn_after (rtx
, rtx
);
3236 extern rtx_jump_insn
*emit_jump_insn_after_noloc (rtx
, rtx
);
3237 extern rtx_jump_insn
*emit_jump_insn_after_setloc (rtx
, rtx
, int);
3238 extern rtx_insn
*emit_call_insn_after (rtx
, rtx
);
3239 extern rtx_insn
*emit_call_insn_after_noloc (rtx
, rtx
);
3240 extern rtx_insn
*emit_call_insn_after_setloc (rtx
, rtx
, int);
3241 extern rtx_insn
*emit_debug_insn_after (rtx
, rtx
);
3242 extern rtx_insn
*emit_debug_insn_after_noloc (rtx
, rtx
);
3243 extern rtx_insn
*emit_debug_insn_after_setloc (rtx
, rtx
, int);
3244 extern rtx_barrier
*emit_barrier_after (rtx
);
3245 extern rtx_insn
*emit_label_after (rtx
, rtx_insn
*);
3246 extern rtx_note
*emit_note_after (enum insn_note
, rtx_insn
*);
3247 extern rtx_insn
*emit_insn (rtx
);
3248 extern rtx_insn
*emit_debug_insn (rtx
);
3249 extern rtx_insn
*emit_jump_insn (rtx
);
3250 extern rtx_insn
*emit_call_insn (rtx
);
3251 extern rtx_code_label
*emit_label (rtx
);
3252 extern rtx_jump_table_data
*emit_jump_table_data (rtx
);
3253 extern rtx_barrier
*emit_barrier (void);
3254 extern rtx_note
*emit_note (enum insn_note
);
3255 extern rtx_note
*emit_note_copy (rtx_note
*);
3256 extern rtx_insn
*gen_clobber (rtx
);
3257 extern rtx_insn
*emit_clobber (rtx
);
3258 extern rtx_insn
*gen_use (rtx
);
3259 extern rtx_insn
*emit_use (rtx
);
3260 extern rtx_insn
*make_insn_raw (rtx
);
3261 extern void add_function_usage_to (rtx
, rtx
);
3262 extern rtx_call_insn
*last_call_insn (void);
3263 extern rtx_insn
*previous_insn (rtx_insn
*);
3264 extern rtx_insn
*next_insn (rtx_insn
*);
3265 extern rtx_insn
*prev_nonnote_insn (rtx_insn
*);
3266 extern rtx_insn
*next_nonnote_insn (rtx_insn
*);
3267 extern rtx_insn
*prev_nondebug_insn (rtx_insn
*);
3268 extern rtx_insn
*next_nondebug_insn (rtx_insn
*);
3269 extern rtx_insn
*prev_nonnote_nondebug_insn (rtx_insn
*);
3270 extern rtx_insn
*prev_nonnote_nondebug_insn_bb (rtx_insn
*);
3271 extern rtx_insn
*next_nonnote_nondebug_insn (rtx_insn
*);
3272 extern rtx_insn
*next_nonnote_nondebug_insn_bb (rtx_insn
*);
3273 extern rtx_insn
*prev_real_insn (rtx_insn
*);
3274 extern rtx_insn
*next_real_insn (rtx
);
3275 extern rtx_insn
*prev_active_insn (rtx_insn
*);
3276 extern rtx_insn
*next_active_insn (rtx_insn
*);
3277 extern int active_insn_p (const rtx_insn
*);
3278 extern rtx_insn
*next_cc0_user (rtx_insn
*);
3279 extern rtx_insn
*prev_cc0_setter (rtx_insn
*);
3282 extern int insn_line (const rtx_insn
*);
3283 extern const char * insn_file (const rtx_insn
*);
3284 extern tree
insn_scope (const rtx_insn
*);
3285 extern expanded_location
insn_location (const rtx_insn
*);
3286 extern location_t prologue_location
, epilogue_location
;
3289 extern enum rtx_code
reverse_condition (enum rtx_code
);
3290 extern enum rtx_code
reverse_condition_maybe_unordered (enum rtx_code
);
3291 extern enum rtx_code
swap_condition (enum rtx_code
);
3292 extern enum rtx_code
unsigned_condition (enum rtx_code
);
3293 extern enum rtx_code
signed_condition (enum rtx_code
);
3294 extern void mark_jump_label (rtx
, rtx_insn
*, int);
3297 extern rtx_insn
*delete_related_insns (rtx
);
3300 extern rtx
*find_constant_term_loc (rtx
*);
3303 extern rtx_insn
*try_split (rtx
, rtx_insn
*, int);
3305 /* In insn-recog.c (generated by genrecog). */
3306 extern rtx_insn
*split_insns (rtx
, rtx_insn
*);
3308 /* In simplify-rtx.c */
3309 extern rtx
simplify_const_unary_operation (enum rtx_code
, machine_mode
,
3311 extern rtx
simplify_unary_operation (enum rtx_code
, machine_mode
, rtx
,
3313 extern rtx
simplify_const_binary_operation (enum rtx_code
, machine_mode
,
3315 extern rtx
simplify_binary_operation (enum rtx_code
, machine_mode
, rtx
,
3317 extern rtx
simplify_ternary_operation (enum rtx_code
, machine_mode
,
3318 machine_mode
, rtx
, rtx
, rtx
);
3319 extern rtx
simplify_const_relational_operation (enum rtx_code
,
3320 machine_mode
, rtx
, rtx
);
3321 extern rtx
simplify_relational_operation (enum rtx_code
, machine_mode
,
3322 machine_mode
, rtx
, rtx
);
3323 extern rtx
simplify_gen_binary (enum rtx_code
, machine_mode
, rtx
, rtx
);
3324 extern rtx
simplify_gen_unary (enum rtx_code
, machine_mode
, rtx
,
3326 extern rtx
simplify_gen_ternary (enum rtx_code
, machine_mode
,
3327 machine_mode
, rtx
, rtx
, rtx
);
3328 extern rtx
simplify_gen_relational (enum rtx_code
, machine_mode
,
3329 machine_mode
, rtx
, rtx
);
3330 extern rtx
simplify_subreg (machine_mode
, rtx
, machine_mode
, poly_uint64
);
3331 extern rtx
simplify_gen_subreg (machine_mode
, rtx
, machine_mode
, poly_uint64
);
3332 extern rtx
lowpart_subreg (machine_mode
, rtx
, machine_mode
);
3333 extern rtx
simplify_replace_fn_rtx (rtx
, const_rtx
,
3334 rtx (*fn
) (rtx
, const_rtx
, void *), void *);
3335 extern rtx
simplify_replace_rtx (rtx
, const_rtx
, rtx
);
3336 extern rtx
simplify_rtx (const_rtx
);
3337 extern rtx
avoid_constant_pool_reference (rtx
);
3338 extern rtx
delegitimize_mem_from_attrs (rtx
);
3339 extern bool mode_signbit_p (machine_mode
, const_rtx
);
3340 extern bool val_signbit_p (machine_mode
, unsigned HOST_WIDE_INT
);
3341 extern bool val_signbit_known_set_p (machine_mode
,
3342 unsigned HOST_WIDE_INT
);
3343 extern bool val_signbit_known_clear_p (machine_mode
,
3344 unsigned HOST_WIDE_INT
);
3347 extern machine_mode
choose_hard_reg_mode (unsigned int, unsigned int,
3349 extern const HARD_REG_SET
&simplifiable_subregs (const subreg_shape
&);
3352 extern rtx
set_for_reg_notes (rtx
);
3353 extern rtx
set_unique_reg_note (rtx
, enum reg_note
, rtx
);
3354 extern rtx
set_dst_reg_note (rtx
, enum reg_note
, rtx
, rtx
);
3355 extern void set_insn_deleted (rtx
);
3357 /* Functions in rtlanal.c */
3359 extern rtx
single_set_2 (const rtx_insn
*, const_rtx
);
3360 extern bool contains_symbol_ref_p (const_rtx
);
3361 extern bool contains_symbolic_reference_p (const_rtx
);
3363 /* Handle the cheap and common cases inline for performance. */
3365 inline rtx
single_set (const rtx_insn
*insn
)
3370 if (GET_CODE (PATTERN (insn
)) == SET
)
3371 return PATTERN (insn
);
3373 /* Defer to the more expensive case. */
3374 return single_set_2 (insn
, PATTERN (insn
));
3377 extern scalar_int_mode
get_address_mode (rtx mem
);
3378 extern int rtx_addr_can_trap_p (const_rtx
);
3379 extern bool nonzero_address_p (const_rtx
);
3380 extern int rtx_unstable_p (const_rtx
);
3381 extern bool rtx_varies_p (const_rtx
, bool);
3382 extern bool rtx_addr_varies_p (const_rtx
, bool);
3383 extern rtx
get_call_rtx_from (rtx
);
3384 extern HOST_WIDE_INT
get_integer_term (const_rtx
);
3385 extern rtx
get_related_value (const_rtx
);
3386 extern bool offset_within_block_p (const_rtx
, HOST_WIDE_INT
);
3387 extern void split_const (rtx
, rtx
*, rtx
*);
3388 extern rtx
strip_offset (rtx
, poly_int64_pod
*);
3389 extern poly_int64
get_args_size (const_rtx
);
3390 extern bool unsigned_reg_p (rtx
);
3391 extern int reg_mentioned_p (const_rtx
, const_rtx
);
3392 extern int count_occurrences (const_rtx
, const_rtx
, int);
3393 extern int reg_referenced_p (const_rtx
, const_rtx
);
3394 extern int reg_used_between_p (const_rtx
, const rtx_insn
*, const rtx_insn
*);
3395 extern int reg_set_between_p (const_rtx
, const rtx_insn
*, const rtx_insn
*);
3396 extern int commutative_operand_precedence (rtx
);
3397 extern bool swap_commutative_operands_p (rtx
, rtx
);
3398 extern int modified_between_p (const_rtx
, const rtx_insn
*, const rtx_insn
*);
3399 extern int no_labels_between_p (const rtx_insn
*, const rtx_insn
*);
3400 extern int modified_in_p (const_rtx
, const_rtx
);
3401 extern int reg_set_p (const_rtx
, const_rtx
);
3402 extern int multiple_sets (const_rtx
);
3403 extern int set_noop_p (const_rtx
);
3404 extern int noop_move_p (const rtx_insn
*);
3405 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx
, rtx
*);
3406 extern int reg_overlap_mentioned_p (const_rtx
, const_rtx
);
3407 extern const_rtx
set_of (const_rtx
, const_rtx
);
3408 extern void record_hard_reg_sets (rtx
, const_rtx
, void *);
3409 extern void record_hard_reg_uses (rtx
*, void *);
3410 extern void find_all_hard_regs (const_rtx
, HARD_REG_SET
*);
3411 extern void find_all_hard_reg_sets (const rtx_insn
*, HARD_REG_SET
*, bool);
3412 extern void note_stores (const_rtx
, void (*) (rtx
, const_rtx
, void *), void *);
3413 extern void note_uses (rtx
*, void (*) (rtx
*, void *), void *);
3414 extern int dead_or_set_p (const rtx_insn
*, const_rtx
);
3415 extern int dead_or_set_regno_p (const rtx_insn
*, unsigned int);
3416 extern rtx
find_reg_note (const_rtx
, enum reg_note
, const_rtx
);
3417 extern rtx
find_regno_note (const_rtx
, enum reg_note
, unsigned int);
3418 extern rtx
find_reg_equal_equiv_note (const_rtx
);
3419 extern rtx
find_constant_src (const rtx_insn
*);
3420 extern int find_reg_fusage (const_rtx
, enum rtx_code
, const_rtx
);
3421 extern int find_regno_fusage (const_rtx
, enum rtx_code
, unsigned int);
3422 extern rtx
alloc_reg_note (enum reg_note
, rtx
, rtx
);
3423 extern void add_reg_note (rtx
, enum reg_note
, rtx
);
3424 extern void add_int_reg_note (rtx_insn
*, enum reg_note
, int);
3425 extern void add_args_size_note (rtx_insn
*, poly_int64
);
3426 extern void add_shallow_copy_of_reg_note (rtx_insn
*, rtx
);
3427 extern rtx
duplicate_reg_note (rtx
);
3428 extern void remove_note (rtx_insn
*, const_rtx
);
3429 extern bool remove_reg_equal_equiv_notes (rtx_insn
*);
3430 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3431 extern int side_effects_p (const_rtx
);
3432 extern int volatile_refs_p (const_rtx
);
3433 extern int volatile_insn_p (const_rtx
);
3434 extern int may_trap_p_1 (const_rtx
, unsigned);
3435 extern int may_trap_p (const_rtx
);
3436 extern int may_trap_or_fault_p (const_rtx
);
3437 extern bool can_throw_internal (const_rtx
);
3438 extern bool can_throw_external (const_rtx
);
3439 extern bool insn_could_throw_p (const_rtx
);
3440 extern bool insn_nothrow_p (const_rtx
);
3441 extern bool can_nonlocal_goto (const rtx_insn
*);
3442 extern void copy_reg_eh_region_note_forward (rtx
, rtx_insn
*, rtx
);
3443 extern void copy_reg_eh_region_note_backward (rtx
, rtx_insn
*, rtx
);
3444 extern int inequality_comparisons_p (const_rtx
);
3445 extern rtx
replace_rtx (rtx
, rtx
, rtx
, bool = false);
3446 extern void replace_label (rtx
*, rtx
, rtx
, bool);
3447 extern void replace_label_in_insn (rtx_insn
*, rtx_insn
*, rtx_insn
*, bool);
3448 extern bool rtx_referenced_p (const_rtx
, const_rtx
);
3449 extern bool tablejump_p (const rtx_insn
*, rtx_insn
**, rtx_jump_table_data
**);
3450 extern int computed_jump_p (const rtx_insn
*);
3451 extern bool tls_referenced_p (const_rtx
);
3452 extern bool contains_mem_rtx_p (rtx x
);
3454 /* Overload for refers_to_regno_p for checking a single register. */
3456 refers_to_regno_p (unsigned int regnum
, const_rtx x
, rtx
* loc
= NULL
)
3458 return refers_to_regno_p (regnum
, regnum
+ 1, x
, loc
);
3461 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3462 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3463 NULL. The callback is passed the same opaque ARG passed to
3464 for_each_inc_dec. Return zero to continue looking for other
3465 autoinc operations or any other value to interrupt the traversal and
3466 return that value to the caller of for_each_inc_dec. */
3467 typedef int (*for_each_inc_dec_fn
) (rtx mem
, rtx op
, rtx dest
, rtx src
,
3468 rtx srcoff
, void *arg
);
3469 extern int for_each_inc_dec (rtx
, for_each_inc_dec_fn
, void *arg
);
3471 typedef int (*rtx_equal_p_callback_function
) (const_rtx
*, const_rtx
*,
3473 extern int rtx_equal_p_cb (const_rtx
, const_rtx
,
3474 rtx_equal_p_callback_function
);
3476 typedef int (*hash_rtx_callback_function
) (const_rtx
, machine_mode
, rtx
*,
3478 extern unsigned hash_rtx_cb (const_rtx
, machine_mode
, int *, int *,
3479 bool, hash_rtx_callback_function
);
3481 extern rtx
regno_use_in (unsigned int, rtx
);
3482 extern int auto_inc_p (const_rtx
);
3483 extern bool in_insn_list_p (const rtx_insn_list
*, const rtx_insn
*);
3484 extern void remove_node_from_expr_list (const_rtx
, rtx_expr_list
**);
3485 extern void remove_node_from_insn_list (const rtx_insn
*, rtx_insn_list
**);
3486 extern int loc_mentioned_in_p (rtx
*, const_rtx
);
3487 extern rtx_insn
*find_first_parameter_load (rtx_insn
*, rtx_insn
*);
3488 extern bool keep_with_call_p (const rtx_insn
*);
3489 extern bool label_is_jump_target_p (const_rtx
, const rtx_insn
*);
3490 extern int pattern_cost (rtx
, bool);
3491 extern int insn_cost (rtx_insn
*, bool);
3492 extern unsigned seq_cost (const rtx_insn
*, bool);
3494 /* Given an insn and condition, return a canonical description of
3495 the test being made. */
3496 extern rtx
canonicalize_condition (rtx_insn
*, rtx
, int, rtx_insn
**, rtx
,
3499 /* Given a JUMP_INSN, return a canonical description of the test
3501 extern rtx
get_condition (rtx_insn
*, rtx_insn
**, int, int);
3503 /* Information about a subreg of a hard register. */
3506 /* Offset of first hard register involved in the subreg. */
3508 /* Number of hard registers involved in the subreg. In the case of
3509 a paradoxical subreg, this is the number of registers that would
3510 be modified by writing to the subreg; some of them may be don't-care
3511 when reading from the subreg. */
3513 /* Whether this subreg can be represented as a hard reg with the new
3514 mode (by adding OFFSET to the original hard register). */
3515 bool representable_p
;
3518 extern void subreg_get_info (unsigned int, machine_mode
,
3519 poly_uint64
, machine_mode
,
3520 struct subreg_info
*);
3524 extern void free_EXPR_LIST_list (rtx_expr_list
**);
3525 extern void free_INSN_LIST_list (rtx_insn_list
**);
3526 extern void free_EXPR_LIST_node (rtx
);
3527 extern void free_INSN_LIST_node (rtx
);
3528 extern rtx_insn_list
*alloc_INSN_LIST (rtx
, rtx
);
3529 extern rtx_insn_list
*copy_INSN_LIST (rtx_insn_list
*);
3530 extern rtx_insn_list
*concat_INSN_LIST (rtx_insn_list
*, rtx_insn_list
*);
3531 extern rtx_expr_list
*alloc_EXPR_LIST (int, rtx
, rtx
);
3532 extern void remove_free_INSN_LIST_elem (rtx_insn
*, rtx_insn_list
**);
3533 extern rtx
remove_list_elem (rtx
, rtx
*);
3534 extern rtx_insn
*remove_free_INSN_LIST_node (rtx_insn_list
**);
3535 extern rtx
remove_free_EXPR_LIST_node (rtx_expr_list
**);
3540 /* Resize reg info. */
3541 extern bool resize_reg_info (void);
3542 /* Free up register info memory. */
3543 extern void free_reg_info (void);
3544 extern void init_subregs_of_mode (void);
3545 extern void finish_subregs_of_mode (void);
3548 extern rtx
extract_asm_operands (rtx
);
3549 extern int asm_noperands (const_rtx
);
3550 extern const char *decode_asm_operands (rtx
, rtx
*, rtx
**, const char **,
3551 machine_mode
*, location_t
*);
3552 extern void get_referenced_operands (const char *, bool *, unsigned int);
3554 extern enum reg_class
reg_preferred_class (int);
3555 extern enum reg_class
reg_alternate_class (int);
3556 extern enum reg_class
reg_allocno_class (int);
3557 extern void setup_reg_classes (int, enum reg_class
, enum reg_class
,
3560 extern void split_all_insns (void);
3561 extern unsigned int split_all_insns_noflow (void);
3563 #define MAX_SAVED_CONST_INT 64
3564 extern GTY(()) rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
3566 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3567 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3568 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3569 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3570 extern GTY(()) rtx const_true_rtx
;
3572 extern GTY(()) rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
3574 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3575 same as VOIDmode. */
3577 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3579 /* Likewise, for the constants 1 and 2 and -1. */
3581 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3582 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3583 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3585 extern GTY(()) rtx pc_rtx
;
3586 extern GTY(()) rtx cc0_rtx
;
3587 extern GTY(()) rtx ret_rtx
;
3588 extern GTY(()) rtx simple_return_rtx
;
3589 extern GTY(()) rtx_insn
*invalid_insn_rtx
;
3591 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3592 is used to represent the frame pointer. This is because the
3593 hard frame pointer and the automatic variables are separated by an amount
3594 that cannot be determined until after register allocation. We can assume
3595 that in this case ELIMINABLE_REGS will be defined, one action of which
3596 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3597 #ifndef HARD_FRAME_POINTER_REGNUM
3598 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3601 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3602 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3603 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3606 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3607 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3608 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3611 /* Index labels for global_rtl. */
3612 enum global_rtl_index
3616 /* For register elimination to work properly these hard_frame_pointer_rtx,
3617 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3618 the same register. */
3619 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3620 GR_ARG_POINTER
= GR_FRAME_POINTER
,
3622 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3623 GR_HARD_FRAME_POINTER
= GR_FRAME_POINTER
,
3625 GR_HARD_FRAME_POINTER
,
3627 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3628 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3629 GR_ARG_POINTER
= GR_HARD_FRAME_POINTER
,
3634 GR_VIRTUAL_INCOMING_ARGS
,
3635 GR_VIRTUAL_STACK_ARGS
,
3636 GR_VIRTUAL_STACK_DYNAMIC
,
3637 GR_VIRTUAL_OUTGOING_ARGS
,
3639 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY
,
3644 /* Target-dependent globals. */
3645 struct GTY(()) target_rtl
{
3646 /* All references to the hard registers in global_rtl_index go through
3647 these unique rtl objects. On machines where the frame-pointer and
3648 arg-pointer are the same register, they use the same unique object.
3650 After register allocation, other rtl objects which used to be pseudo-regs
3651 may be clobbered to refer to the frame-pointer register.
3652 But references that were originally to the frame-pointer can be
3653 distinguished from the others because they contain frame_pointer_rtx.
3655 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3656 tricky: until register elimination has taken place hard_frame_pointer_rtx
3657 should be used if it is being set, and frame_pointer_rtx otherwise. After
3658 register elimination hard_frame_pointer_rtx should always be used.
3659 On machines where the two registers are same (most) then these are the
3661 rtx x_global_rtl
[GR_MAX
];
3663 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3664 rtx x_pic_offset_table_rtx
;
3666 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3667 This is used to implement __builtin_return_address for some machines;
3668 see for instance the MIPS port. */
3669 rtx x_return_address_pointer_rtx
;
3671 /* Commonly used RTL for hard registers. These objects are not
3672 necessarily unique, so we allocate them separately from global_rtl.
3673 They are initialized once per compilation unit, then copied into
3674 regno_reg_rtx at the beginning of each function. */
3675 rtx x_initial_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
3677 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3678 rtx x_top_of_stack
[MAX_MACHINE_MODE
];
3680 /* Static hunks of RTL used by the aliasing code; these are treated
3681 as persistent to avoid unnecessary RTL allocations. */
3682 rtx x_static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
3684 /* The default memory attributes for each mode. */
3685 struct mem_attrs
*x_mode_mem_attrs
[(int) MAX_MACHINE_MODE
];
3687 /* Track if RTL has been initialized. */
3688 bool target_specific_initialized
;
3691 extern GTY(()) struct target_rtl default_target_rtl
;
3692 #if SWITCHABLE_TARGET
3693 extern struct target_rtl
*this_target_rtl
;
3695 #define this_target_rtl (&default_target_rtl)
3698 #define global_rtl \
3699 (this_target_rtl->x_global_rtl)
3700 #define pic_offset_table_rtx \
3701 (this_target_rtl->x_pic_offset_table_rtx)
3702 #define return_address_pointer_rtx \
3703 (this_target_rtl->x_return_address_pointer_rtx)
3704 #define top_of_stack \
3705 (this_target_rtl->x_top_of_stack)
3706 #define mode_mem_attrs \
3707 (this_target_rtl->x_mode_mem_attrs)
3709 /* All references to certain hard regs, except those created
3710 by allocating pseudo regs into them (when that's possible),
3711 go through these unique rtx objects. */
3712 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3713 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3714 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3715 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3717 #ifndef GENERATOR_FILE
3718 /* Return the attributes of a MEM rtx. */
3719 static inline const struct mem_attrs
*
3720 get_mem_attrs (const_rtx x
)
3722 struct mem_attrs
*attrs
;
3724 attrs
= MEM_ATTRS (x
);
3726 attrs
= mode_mem_attrs
[(int) GET_MODE (x
)];
3731 /* Include the RTL generation functions. */
3733 #ifndef GENERATOR_FILE
3735 #undef gen_rtx_ASM_INPUT
3736 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3737 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3738 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3739 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3742 /* There are some RTL codes that require special attention; the
3743 generation functions included above do the raw handling. If you
3744 add to this list, modify special_rtx in gengenrtl.c as well. */
3746 extern rtx_expr_list
*gen_rtx_EXPR_LIST (machine_mode
, rtx
, rtx
);
3747 extern rtx_insn_list
*gen_rtx_INSN_LIST (machine_mode
, rtx
, rtx
);
3749 gen_rtx_INSN (machine_mode mode
, rtx_insn
*prev_insn
, rtx_insn
*next_insn
,
3750 basic_block bb
, rtx pattern
, int location
, int code
,
3752 extern rtx
gen_rtx_CONST_INT (machine_mode
, HOST_WIDE_INT
);
3753 extern rtx
gen_rtx_CONST_VECTOR (machine_mode
, rtvec
);
3754 extern void set_mode_and_regno (rtx
, machine_mode
, unsigned int);
3755 extern rtx
gen_raw_REG (machine_mode
, unsigned int);
3756 extern rtx
gen_rtx_REG (machine_mode
, unsigned int);
3757 extern rtx
gen_rtx_SUBREG (machine_mode
, rtx
, poly_uint64
);
3758 extern rtx
gen_rtx_MEM (machine_mode
, rtx
);
3759 extern rtx
gen_rtx_VAR_LOCATION (machine_mode
, tree
, rtx
,
3760 enum var_init_status
);
3762 #ifdef GENERATOR_FILE
3763 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3766 PUT_MODE (rtx x
, machine_mode mode
)
3769 set_mode_and_regno (x
, mode
, REGNO (x
));
3771 PUT_MODE_RAW (x
, mode
);
3775 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3777 /* Virtual registers are used during RTL generation to refer to locations into
3778 the stack frame when the actual location isn't known until RTL generation
3779 is complete. The routine instantiate_virtual_regs replaces these with
3780 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3783 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3785 /* This points to the first word of the incoming arguments passed on the stack,
3786 either by the caller or by the callee when pretending it was passed by the
3789 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3791 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3793 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3794 variable on the stack. Otherwise, it points to the first variable on
3797 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3799 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3801 /* This points to the location of dynamically-allocated memory on the stack
3802 immediately after the stack pointer has been adjusted by the amount
3805 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3807 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3809 /* This points to the location in the stack at which outgoing arguments should
3810 be written when the stack is pre-pushed (arguments pushed using push
3811 insns always use sp). */
3813 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3815 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3817 /* This points to the Canonical Frame Address of the function. This
3818 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3819 but is calculated relative to the arg pointer for simplicity; the
3820 frame pointer nor stack pointer are necessarily fixed relative to
3821 the CFA until after reload. */
3823 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3825 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3827 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3829 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3832 #define virtual_preferred_stack_boundary_rtx \
3833 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3835 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3836 ((FIRST_VIRTUAL_REGISTER) + 5)
3838 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3840 /* Nonzero if REGNUM is a pointer into the stack frame. */
3841 #define REGNO_PTR_FRAME_P(REGNUM) \
3842 ((REGNUM) == STACK_POINTER_REGNUM \
3843 || (REGNUM) == FRAME_POINTER_REGNUM \
3844 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3845 || (REGNUM) == ARG_POINTER_REGNUM \
3846 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3847 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3849 /* REGNUM never really appearing in the INSN stream. */
3850 #define INVALID_REGNUM (~(unsigned int) 0)
3852 /* REGNUM for which no debug information can be generated. */
3853 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3855 extern rtx
output_constant_def (tree
, int);
3856 extern rtx
lookup_constant_def (tree
);
3858 /* Nonzero after end of reload pass.
3859 Set to 1 or 0 by reload1.c. */
3861 extern int reload_completed
;
3863 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3864 extern int epilogue_completed
;
3866 /* Set to 1 while reload_as_needed is operating.
3867 Required by some machines to handle any generated moves differently. */
3869 extern int reload_in_progress
;
3871 /* Set to 1 while in lra. */
3872 extern int lra_in_progress
;
3874 /* This macro indicates whether you may create a new
3877 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3880 /* Nonzero after end of regstack pass.
3881 Set to 1 or 0 by reg-stack.c. */
3882 extern int regstack_completed
;
3885 /* If this is nonzero, we do not bother generating VOLATILE
3886 around volatile memory references, and we are willing to
3887 output indirect addresses. If cse is to follow, we reject
3888 indirect addresses so a useful potential cse is generated;
3889 if it is used only once, instruction combination will produce
3890 the same indirect address eventually. */
3891 extern int cse_not_expected
;
3893 /* Translates rtx code to tree code, for those codes needed by
3894 real_arithmetic. The function returns an int because the caller may not
3895 know what `enum tree_code' means. */
3897 extern int rtx_to_tree_code (enum rtx_code
);
3900 extern int delete_trivially_dead_insns (rtx_insn
*, int);
3901 extern int exp_equiv_p (const_rtx
, const_rtx
, int, bool);
3902 extern unsigned hash_rtx (const_rtx x
, machine_mode
, int *, int *, bool);
3905 extern bool check_for_inc_dec (rtx_insn
*insn
);
3908 extern int comparison_dominates_p (enum rtx_code
, enum rtx_code
);
3909 extern bool jump_to_label_p (const rtx_insn
*);
3910 extern int condjump_p (const rtx_insn
*);
3911 extern int any_condjump_p (const rtx_insn
*);
3912 extern int any_uncondjump_p (const rtx_insn
*);
3913 extern rtx
pc_set (const rtx_insn
*);
3914 extern rtx
condjump_label (const rtx_insn
*);
3915 extern int simplejump_p (const rtx_insn
*);
3916 extern int returnjump_p (const rtx_insn
*);
3917 extern int eh_returnjump_p (rtx_insn
*);
3918 extern int onlyjump_p (const rtx_insn
*);
3919 extern int only_sets_cc0_p (const_rtx
);
3920 extern int sets_cc0_p (const_rtx
);
3921 extern int invert_jump_1 (rtx_jump_insn
*, rtx
);
3922 extern int invert_jump (rtx_jump_insn
*, rtx
, int);
3923 extern int rtx_renumbered_equal_p (const_rtx
, const_rtx
);
3924 extern int true_regnum (const_rtx
);
3925 extern unsigned int reg_or_subregno (const_rtx
);
3926 extern int redirect_jump_1 (rtx_insn
*, rtx
);
3927 extern void redirect_jump_2 (rtx_jump_insn
*, rtx
, rtx
, int, int);
3928 extern int redirect_jump (rtx_jump_insn
*, rtx
, int);
3929 extern void rebuild_jump_labels (rtx_insn
*);
3930 extern void rebuild_jump_labels_chain (rtx_insn
*);
3931 extern rtx
reversed_comparison (const_rtx
, machine_mode
);
3932 extern enum rtx_code
reversed_comparison_code (const_rtx
, const rtx_insn
*);
3933 extern enum rtx_code
reversed_comparison_code_parts (enum rtx_code
, const_rtx
,
3934 const_rtx
, const rtx_insn
*);
3935 extern void delete_for_peephole (rtx_insn
*, rtx_insn
*);
3936 extern int condjump_in_parallel_p (const rtx_insn
*);
3938 /* In emit-rtl.c. */
3939 extern int max_reg_num (void);
3940 extern int max_label_num (void);
3941 extern int get_first_label_num (void);
3942 extern void maybe_set_first_label_num (rtx_code_label
*);
3943 extern void delete_insns_since (rtx_insn
*);
3944 extern void mark_reg_pointer (rtx
, int);
3945 extern void mark_user_reg (rtx
);
3946 extern void reset_used_flags (rtx
);
3947 extern void set_used_flags (rtx
);
3948 extern void reorder_insns (rtx_insn
*, rtx_insn
*, rtx_insn
*);
3949 extern void reorder_insns_nobb (rtx_insn
*, rtx_insn
*, rtx_insn
*);
3950 extern int get_max_insn_count (void);
3951 extern int in_sequence_p (void);
3952 extern void init_emit (void);
3953 extern void init_emit_regs (void);
3954 extern void init_derived_machine_modes (void);
3955 extern void init_emit_once (void);
3956 extern void push_topmost_sequence (void);
3957 extern void pop_topmost_sequence (void);
3958 extern void set_new_first_and_last_insn (rtx_insn
*, rtx_insn
*);
3959 extern unsigned int unshare_all_rtl (void);
3960 extern void unshare_all_rtl_again (rtx_insn
*);
3961 extern void unshare_all_rtl_in_chain (rtx_insn
*);
3962 extern void verify_rtl_sharing (void);
3963 extern void add_insn (rtx_insn
*);
3964 extern void add_insn_before (rtx
, rtx
, basic_block
);
3965 extern void add_insn_after (rtx
, rtx
, basic_block
);
3966 extern void remove_insn (rtx
);
3967 extern rtx_insn
*emit (rtx
, bool = true);
3968 extern void emit_insn_at_entry (rtx
);
3969 extern rtx
gen_lowpart_SUBREG (machine_mode
, rtx
);
3970 extern rtx
gen_const_mem (machine_mode
, rtx
);
3971 extern rtx
gen_frame_mem (machine_mode
, rtx
);
3972 extern rtx
gen_tmp_stack_mem (machine_mode
, rtx
);
3973 extern bool validate_subreg (machine_mode
, machine_mode
,
3974 const_rtx
, poly_uint64
);
3977 extern unsigned int extended_count (const_rtx
, machine_mode
, int);
3978 extern rtx
remove_death (unsigned int, rtx_insn
*);
3979 extern void dump_combine_stats (FILE *);
3980 extern void dump_combine_total_stats (FILE *);
3981 extern rtx
make_compound_operation (rtx
, enum rtx_code
);
3983 /* In sched-rgn.c. */
3984 extern void schedule_insns (void);
3986 /* In sched-ebb.c. */
3987 extern void schedule_ebbs (void);
3989 /* In sel-sched-dump.c. */
3990 extern void sel_sched_fix_param (const char *param
, const char *val
);
3992 /* In print-rtl.c */
3993 extern const char *print_rtx_head
;
3994 extern void debug (const rtx_def
&ref
);
3995 extern void debug (const rtx_def
*ptr
);
3996 extern void debug_rtx (const_rtx
);
3997 extern void debug_rtx_list (const rtx_insn
*, int);
3998 extern void debug_rtx_range (const rtx_insn
*, const rtx_insn
*);
3999 extern const rtx_insn
*debug_rtx_find (const rtx_insn
*, int);
4000 extern void print_mem_expr (FILE *, const_tree
);
4001 extern void print_rtl (FILE *, const_rtx
);
4002 extern void print_simple_rtl (FILE *, const_rtx
);
4003 extern int print_rtl_single (FILE *, const_rtx
);
4004 extern int print_rtl_single_with_indent (FILE *, const_rtx
, int);
4005 extern void print_inline_rtx (FILE *, const_rtx
, int);
4008 extern void expand_null_return (void);
4009 extern void expand_naked_return (void);
4010 extern void emit_jump (rtx
);
4013 extern rtx
move_by_pieces (rtx
, rtx
, unsigned HOST_WIDE_INT
,
4015 extern poly_int64
find_args_size_adjust (rtx_insn
*);
4016 extern poly_int64
fixup_args_size_notes (rtx_insn
*, rtx_insn
*, poly_int64
);
4019 extern void init_expmed (void);
4020 extern void expand_inc (rtx
, rtx
);
4021 extern void expand_dec (rtx
, rtx
);
4023 /* In lower-subreg.c */
4024 extern void init_lower_subreg (void);
4027 extern bool can_copy_p (machine_mode
);
4028 extern bool can_assign_to_reg_without_clobbers_p (rtx
, machine_mode
);
4029 extern rtx
fis_get_condition (rtx_insn
*);
4032 extern HARD_REG_SET eliminable_regset
;
4033 extern void mark_elimination (int, int);
4036 extern int reg_classes_intersect_p (reg_class_t
, reg_class_t
);
4037 extern int reg_class_subset_p (reg_class_t
, reg_class_t
);
4038 extern void globalize_reg (tree
, int);
4039 extern void init_reg_modes_target (void);
4040 extern void init_regs (void);
4041 extern void reinit_regs (void);
4042 extern void init_fake_stack_mems (void);
4043 extern void save_register_info (void);
4044 extern void init_reg_sets (void);
4045 extern void regclass (rtx
, int);
4046 extern void reg_scan (rtx_insn
*, unsigned int);
4047 extern void fix_register (const char *, int, int);
4048 extern const HARD_REG_SET
*valid_mode_changes_for_regno (unsigned int);
4051 extern int function_invariant_p (const_rtx
);
4061 LCT_RETURNS_TWICE
= 5
4064 extern rtx
emit_library_call_value_1 (int, rtx
, rtx
, enum libcall_type
,
4065 machine_mode
, int, rtx_mode_t
*);
4067 /* Output a library call and discard the returned value. FUN is the
4068 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4069 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4070 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4071 another LCT_ value for other types of library calls.
4073 There are different overloads of this function for different numbers
4074 of arguments. In each case the argument value is followed by its mode. */
4077 emit_library_call (rtx fun
, libcall_type fn_type
, machine_mode outmode
)
4079 emit_library_call_value_1 (0, fun
, NULL_RTX
, fn_type
, outmode
, 0, NULL
);
4083 emit_library_call (rtx fun
, libcall_type fn_type
, machine_mode outmode
,
4084 rtx arg1
, machine_mode arg1_mode
)
4086 rtx_mode_t args
[] = { rtx_mode_t (arg1
, arg1_mode
) };
4087 emit_library_call_value_1 (0, fun
, NULL_RTX
, fn_type
, outmode
, 1, args
);
4091 emit_library_call (rtx fun
, libcall_type fn_type
, machine_mode outmode
,
4092 rtx arg1
, machine_mode arg1_mode
,
4093 rtx arg2
, machine_mode arg2_mode
)
4095 rtx_mode_t args
[] = {
4096 rtx_mode_t (arg1
, arg1_mode
),
4097 rtx_mode_t (arg2
, arg2_mode
)
4099 emit_library_call_value_1 (0, fun
, NULL_RTX
, fn_type
, outmode
, 2, args
);
4103 emit_library_call (rtx fun
, libcall_type fn_type
, machine_mode outmode
,
4104 rtx arg1
, machine_mode arg1_mode
,
4105 rtx arg2
, machine_mode arg2_mode
,
4106 rtx arg3
, machine_mode arg3_mode
)
4108 rtx_mode_t args
[] = {
4109 rtx_mode_t (arg1
, arg1_mode
),
4110 rtx_mode_t (arg2
, arg2_mode
),
4111 rtx_mode_t (arg3
, arg3_mode
)
4113 emit_library_call_value_1 (0, fun
, NULL_RTX
, fn_type
, outmode
, 3, args
);
4117 emit_library_call (rtx fun
, libcall_type fn_type
, machine_mode outmode
,
4118 rtx arg1
, machine_mode arg1_mode
,
4119 rtx arg2
, machine_mode arg2_mode
,
4120 rtx arg3
, machine_mode arg3_mode
,
4121 rtx arg4
, machine_mode arg4_mode
)
4123 rtx_mode_t args
[] = {
4124 rtx_mode_t (arg1
, arg1_mode
),
4125 rtx_mode_t (arg2
, arg2_mode
),
4126 rtx_mode_t (arg3
, arg3_mode
),
4127 rtx_mode_t (arg4
, arg4_mode
)
4129 emit_library_call_value_1 (0, fun
, NULL_RTX
, fn_type
, outmode
, 4, args
);
4132 /* Like emit_library_call, but return the value produced by the call.
4133 Use VALUE to store the result if it is nonnull, otherwise pick a
4134 convenient location. */
4137 emit_library_call_value (rtx fun
, rtx value
, libcall_type fn_type
,
4138 machine_mode outmode
)
4140 return emit_library_call_value_1 (1, fun
, value
, fn_type
, outmode
, 0, NULL
);
4144 emit_library_call_value (rtx fun
, rtx value
, libcall_type fn_type
,
4145 machine_mode outmode
,
4146 rtx arg1
, machine_mode arg1_mode
)
4148 rtx_mode_t args
[] = { rtx_mode_t (arg1
, arg1_mode
) };
4149 return emit_library_call_value_1 (1, fun
, value
, fn_type
, outmode
, 1, args
);
4153 emit_library_call_value (rtx fun
, rtx value
, libcall_type fn_type
,
4154 machine_mode outmode
,
4155 rtx arg1
, machine_mode arg1_mode
,
4156 rtx arg2
, machine_mode arg2_mode
)
4158 rtx_mode_t args
[] = {
4159 rtx_mode_t (arg1
, arg1_mode
),
4160 rtx_mode_t (arg2
, arg2_mode
)
4162 return emit_library_call_value_1 (1, fun
, value
, fn_type
, outmode
, 2, args
);
4166 emit_library_call_value (rtx fun
, rtx value
, libcall_type fn_type
,
4167 machine_mode outmode
,
4168 rtx arg1
, machine_mode arg1_mode
,
4169 rtx arg2
, machine_mode arg2_mode
,
4170 rtx arg3
, machine_mode arg3_mode
)
4172 rtx_mode_t args
[] = {
4173 rtx_mode_t (arg1
, arg1_mode
),
4174 rtx_mode_t (arg2
, arg2_mode
),
4175 rtx_mode_t (arg3
, arg3_mode
)
4177 return emit_library_call_value_1 (1, fun
, value
, fn_type
, outmode
, 3, args
);
4181 emit_library_call_value (rtx fun
, rtx value
, libcall_type fn_type
,
4182 machine_mode outmode
,
4183 rtx arg1
, machine_mode arg1_mode
,
4184 rtx arg2
, machine_mode arg2_mode
,
4185 rtx arg3
, machine_mode arg3_mode
,
4186 rtx arg4
, machine_mode arg4_mode
)
4188 rtx_mode_t args
[] = {
4189 rtx_mode_t (arg1
, arg1_mode
),
4190 rtx_mode_t (arg2
, arg2_mode
),
4191 rtx_mode_t (arg3
, arg3_mode
),
4192 rtx_mode_t (arg4
, arg4_mode
)
4194 return emit_library_call_value_1 (1, fun
, value
, fn_type
, outmode
, 4, args
);
4198 extern void init_varasm_once (void);
4200 extern rtx
make_debug_expr_from_rtl (const_rtx
);
4203 #ifdef GENERATOR_FILE
4204 extern bool read_rtx (const char *, vec
<rtx
> *);
4208 extern rtx
canon_rtx (rtx
);
4209 extern int true_dependence (const_rtx
, machine_mode
, const_rtx
);
4210 extern rtx
get_addr (rtx
);
4211 extern int canon_true_dependence (const_rtx
, machine_mode
, rtx
,
4213 extern int read_dependence (const_rtx
, const_rtx
);
4214 extern int anti_dependence (const_rtx
, const_rtx
);
4215 extern int canon_anti_dependence (const_rtx
, bool,
4216 const_rtx
, machine_mode
, rtx
);
4217 extern int output_dependence (const_rtx
, const_rtx
);
4218 extern int canon_output_dependence (const_rtx
, bool,
4219 const_rtx
, machine_mode
, rtx
);
4220 extern int may_alias_p (const_rtx
, const_rtx
);
4221 extern void init_alias_target (void);
4222 extern void init_alias_analysis (void);
4223 extern void end_alias_analysis (void);
4224 extern void vt_equate_reg_base_value (const_rtx
, const_rtx
);
4225 extern bool memory_modified_in_insn_p (const_rtx
, const_rtx
);
4226 extern bool may_be_sp_based_p (rtx
);
4227 extern rtx
gen_hard_reg_clobber (machine_mode
, unsigned int);
4228 extern rtx
get_reg_known_value (unsigned int);
4229 extern bool get_reg_known_equiv_p (unsigned int);
4230 extern rtx
get_reg_base_value (unsigned int);
4233 extern int stack_regs_mentioned (const_rtx insn
);
4237 extern GTY(()) rtx stack_limit_rtx
;
4239 /* In var-tracking.c */
4240 extern unsigned int variable_tracking_main (void);
4241 extern void delete_vta_debug_insns (bool);
4243 /* In stor-layout.c. */
4244 extern void get_mode_bounds (scalar_int_mode
, int,
4245 scalar_int_mode
, rtx
*, rtx
*);
4248 extern rtx
canon_condition (rtx
);
4249 extern void simplify_using_condition (rtx
, rtx
*, bitmap
);
4252 extern unsigned int compute_alignments (void);
4253 extern void update_alignments (vec
<rtx
> &);
4254 extern int asm_str_count (const char *templ
);
4258 rtx (*gen_lowpart
) (machine_mode
, rtx
);
4259 rtx (*gen_lowpart_no_emit
) (machine_mode
, rtx
);
4260 rtx (*reg_nonzero_bits
) (const_rtx
, scalar_int_mode
, scalar_int_mode
,
4261 unsigned HOST_WIDE_INT
*);
4262 rtx (*reg_num_sign_bit_copies
) (const_rtx
, scalar_int_mode
, scalar_int_mode
,
4264 bool (*reg_truncated_to_mode
) (machine_mode
, const_rtx
);
4266 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4269 /* Each pass can provide its own. */
4270 extern struct rtl_hooks rtl_hooks
;
4272 /* ... but then it has to restore these. */
4273 extern const struct rtl_hooks general_rtl_hooks
;
4275 /* Keep this for the nonce. */
4276 #define gen_lowpart rtl_hooks.gen_lowpart
4278 extern void insn_locations_init (void);
4279 extern void insn_locations_finalize (void);
4280 extern void set_curr_insn_location (location_t
);
4281 extern location_t
curr_insn_location (void);
4284 extern void _fatal_insn_not_found (const_rtx
, const char *, int, const char *)
4285 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
4286 extern void _fatal_insn (const char *, const_rtx
, const char *, int, const char *)
4287 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
;
4289 #define fatal_insn(msgid, insn) \
4290 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4291 #define fatal_insn_not_found(insn) \
4292 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4295 extern tree
GTY(()) global_regs_decl
[FIRST_PSEUDO_REGISTER
];
4297 /* Information about the function that is propagated by the RTL backend.
4298 Available only for functions that has been already assembled. */
4300 struct GTY(()) cgraph_rtl_info
{
4301 unsigned int preferred_incoming_stack_boundary
;
4303 /* Call unsaved hard registers really used by the corresponding
4304 function (including ones used by functions called by the
4306 HARD_REG_SET function_used_regs
;
4307 /* Set if function_used_regs is valid. */
4308 unsigned function_used_regs_valid
: 1;
4311 /* If loads from memories of mode MODE always sign or zero extend,
4312 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4316 load_extend_op (machine_mode mode
)
4318 scalar_int_mode int_mode
;
4319 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
4320 && GET_MODE_PRECISION (int_mode
) < BITS_PER_WORD
)
4321 return LOAD_EXTEND_OP (int_mode
);
4325 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4326 and return the base. Return X otherwise. */
4329 strip_offset_and_add (rtx x
, poly_int64_pod
*offset
)
4331 if (GET_CODE (x
) == PLUS
)
4333 poly_int64 suboffset
;
4334 x
= strip_offset (x
, &suboffset
);
4335 *offset
+= suboffset
;
4341 extern void gt_ggc_mx (rtx
&);
4342 extern void gt_pch_nx (rtx
&);
4343 extern void gt_pch_nx (rtx
&, gt_pointer_operator
, void *);
4345 #endif /* ! GCC_RTL_H */