1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* These routines are somewhat language-independent utility function
22 intended to be called by the language-specific convert () functions. */
26 #include "coretypes.h"
29 #include "diagnostic-core.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
33 #include "langhooks.h"
36 #include "stringpool.h"
40 #define maybe_fold_build1_loc(FOLD_P, LOC, CODE, TYPE, EXPR) \
41 ((FOLD_P) ? fold_build1_loc (LOC, CODE, TYPE, EXPR) \
42 : build1_loc (LOC, CODE, TYPE, EXPR))
43 #define maybe_fold_build2_loc(FOLD_P, LOC, CODE, TYPE, EXPR1, EXPR2) \
44 ((FOLD_P) ? fold_build2_loc (LOC, CODE, TYPE, EXPR1, EXPR2) \
45 : build2_loc (LOC, CODE, TYPE, EXPR1, EXPR2))
47 /* Convert EXPR to some pointer or reference type TYPE.
48 EXPR must be pointer, reference, integer, enumeral, or literal zero;
49 in other cases error is called. If FOLD_P is true, try to fold the
53 convert_to_pointer_1 (tree type
, tree expr
, bool fold_p
)
55 location_t loc
= EXPR_LOCATION (expr
);
56 if (TREE_TYPE (expr
) == type
)
59 switch (TREE_CODE (TREE_TYPE (expr
)))
64 /* If the pointers point to different address spaces, conversion needs
65 to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */
66 addr_space_t to_as
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
67 addr_space_t from_as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr
)));
70 return maybe_fold_build1_loc (fold_p
, loc
, NOP_EXPR
, type
, expr
);
72 return maybe_fold_build1_loc (fold_p
, loc
, ADDR_SPACE_CONVERT_EXPR
,
80 /* If the input precision differs from the target pointer type
81 precision, first convert the input expression to an integer type of
82 the target precision. Some targets, e.g. VMS, need several pointer
83 sizes to coexist so the latter isn't necessarily POINTER_SIZE. */
84 unsigned int pprec
= TYPE_PRECISION (type
);
85 unsigned int eprec
= TYPE_PRECISION (TREE_TYPE (expr
));
89 = maybe_fold_build1_loc (fold_p
, loc
, NOP_EXPR
,
90 lang_hooks
.types
.type_for_size (pprec
, 0),
93 return maybe_fold_build1_loc (fold_p
, loc
, CONVERT_EXPR
, type
, expr
);
96 error ("cannot convert to a pointer type");
97 return convert_to_pointer_1 (type
, integer_zero_node
, fold_p
);
101 /* A wrapper around convert_to_pointer_1 that always folds the
105 convert_to_pointer (tree type
, tree expr
)
107 return convert_to_pointer_1 (type
, expr
, true);
110 /* A wrapper around convert_to_pointer_1 that only folds the
111 expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
114 convert_to_pointer_maybe_fold (tree type
, tree expr
, bool dofold
)
116 return convert_to_pointer_1 (type
, expr
, dofold
|| CONSTANT_CLASS_P (expr
));
119 /* Convert EXPR to some floating-point type TYPE.
121 EXPR must be float, fixed-point, integer, or enumeral;
122 in other cases error is called. If FOLD_P is true, try to fold
126 convert_to_real_1 (tree type
, tree expr
, bool fold_p
)
128 enum built_in_function fcode
= builtin_mathfn_code (expr
);
129 tree itype
= TREE_TYPE (expr
);
130 location_t loc
= EXPR_LOCATION (expr
);
132 if (TREE_CODE (expr
) == COMPOUND_EXPR
)
134 tree t
= convert_to_real_1 (type
, TREE_OPERAND (expr
, 1), fold_p
);
135 if (t
== TREE_OPERAND (expr
, 1))
137 return build2_loc (EXPR_LOCATION (expr
), COMPOUND_EXPR
, TREE_TYPE (t
),
138 TREE_OPERAND (expr
, 0), t
);
141 /* Disable until we figure out how to decide whether the functions are
142 present in runtime. */
143 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
145 && (TYPE_MODE (type
) == TYPE_MODE (double_type_node
)
146 || TYPE_MODE (type
) == TYPE_MODE (float_type_node
)))
150 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
165 /* The above functions may set errno differently with float
166 input or output so this transformation is not safe with
188 /* The above functions are not safe to do this conversion. */
189 if (!flag_unsafe_math_optimizations
)
197 tree arg0
= strip_float_extensions (CALL_EXPR_ARG (expr
, 0));
200 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
201 the both as the safe type for operation. */
202 if (TYPE_PRECISION (TREE_TYPE (arg0
)) > TYPE_PRECISION (type
))
203 newtype
= TREE_TYPE (arg0
);
205 /* We consider to convert
207 (T1) sqrtT2 ((T2) exprT3)
209 (T1) sqrtT4 ((T4) exprT3)
211 , where T1 is TYPE, T2 is ITYPE, T3 is TREE_TYPE (ARG0),
212 and T4 is NEWTYPE. All those types are of floating point types.
213 T4 (NEWTYPE) should be narrower than T2 (ITYPE). This conversion
214 is safe only if P1 >= P2*2+2, where P1 and P2 are precisions of
215 T2 and T4. See the following URL for a reference:
216 http://stackoverflow.com/questions/9235456/determining-
217 floating-point-square-root
219 if ((fcode
== BUILT_IN_SQRT
|| fcode
== BUILT_IN_SQRTL
)
220 && !flag_unsafe_math_optimizations
)
222 /* The following conversion is unsafe even the precision condition
225 (float) sqrtl ((long double) double_val) -> (float) sqrt (double_val)
227 if (TYPE_MODE (type
) != TYPE_MODE (newtype
))
230 int p1
= REAL_MODE_FORMAT (TYPE_MODE (itype
))->p
;
231 int p2
= REAL_MODE_FORMAT (TYPE_MODE (newtype
))->p
;
236 /* Be careful about integer to fp conversions.
237 These may overflow still. */
238 if (FLOAT_TYPE_P (TREE_TYPE (arg0
))
239 && TYPE_PRECISION (newtype
) < TYPE_PRECISION (itype
)
240 && (TYPE_MODE (newtype
) == TYPE_MODE (double_type_node
)
241 || TYPE_MODE (newtype
) == TYPE_MODE (float_type_node
)))
243 tree fn
= mathfn_built_in (newtype
, fcode
);
246 tree arg
= convert_to_real_1 (newtype
, arg0
, fold_p
);
247 expr
= build_call_expr (fn
, 1, arg
);
258 /* Propagate the cast into the operation. */
259 if (itype
!= type
&& FLOAT_TYPE_P (type
))
260 switch (TREE_CODE (expr
))
262 /* Convert (float)-x into -(float)x. This is safe for
263 round-to-nearest rounding mode when the inner type is float. */
266 if (!flag_rounding_math
267 && FLOAT_TYPE_P (itype
)
268 && TYPE_PRECISION (type
) < TYPE_PRECISION (itype
))
270 tree arg
= convert_to_real_1 (type
, TREE_OPERAND (expr
, 0),
272 return build1 (TREE_CODE (expr
), type
, arg
);
275 /* Convert (outertype)((innertype0)a+(innertype1)b)
276 into ((newtype)a+(newtype)b) where newtype
277 is the widest mode from all of these. */
283 tree arg0
= strip_float_extensions (TREE_OPERAND (expr
, 0));
284 tree arg1
= strip_float_extensions (TREE_OPERAND (expr
, 1));
286 if (FLOAT_TYPE_P (TREE_TYPE (arg0
))
287 && FLOAT_TYPE_P (TREE_TYPE (arg1
))
288 && DECIMAL_FLOAT_TYPE_P (itype
) == DECIMAL_FLOAT_TYPE_P (type
))
292 if (TYPE_MODE (TREE_TYPE (arg0
)) == SDmode
293 || TYPE_MODE (TREE_TYPE (arg1
)) == SDmode
294 || TYPE_MODE (type
) == SDmode
)
295 newtype
= dfloat32_type_node
;
296 if (TYPE_MODE (TREE_TYPE (arg0
)) == DDmode
297 || TYPE_MODE (TREE_TYPE (arg1
)) == DDmode
298 || TYPE_MODE (type
) == DDmode
)
299 newtype
= dfloat64_type_node
;
300 if (TYPE_MODE (TREE_TYPE (arg0
)) == TDmode
301 || TYPE_MODE (TREE_TYPE (arg1
)) == TDmode
302 || TYPE_MODE (type
) == TDmode
)
303 newtype
= dfloat128_type_node
;
304 if (newtype
== dfloat32_type_node
305 || newtype
== dfloat64_type_node
306 || newtype
== dfloat128_type_node
)
308 expr
= build2 (TREE_CODE (expr
), newtype
,
309 convert_to_real_1 (newtype
, arg0
,
311 convert_to_real_1 (newtype
, arg1
,
318 if (TYPE_PRECISION (TREE_TYPE (arg0
)) > TYPE_PRECISION (newtype
))
319 newtype
= TREE_TYPE (arg0
);
320 if (TYPE_PRECISION (TREE_TYPE (arg1
)) > TYPE_PRECISION (newtype
))
321 newtype
= TREE_TYPE (arg1
);
322 /* Sometimes this transformation is safe (cannot
323 change results through affecting double rounding
324 cases) and sometimes it is not. If NEWTYPE is
325 wider than TYPE, e.g. (float)((long double)double
326 + (long double)double) converted to
327 (float)(double + double), the transformation is
328 unsafe regardless of the details of the types
329 involved; double rounding can arise if the result
330 of NEWTYPE arithmetic is a NEWTYPE value half way
331 between two representable TYPE values but the
332 exact value is sufficiently different (in the
333 right direction) for this difference to be
334 visible in ITYPE arithmetic. If NEWTYPE is the
335 same as TYPE, however, the transformation may be
336 safe depending on the types involved: it is safe
337 if the ITYPE has strictly more than twice as many
338 mantissa bits as TYPE, can represent infinities
339 and NaNs if the TYPE can, and has sufficient
340 exponent range for the product or ratio of two
341 values representable in the TYPE to be within the
342 range of normal values of ITYPE. */
343 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (itype
)
344 && (flag_unsafe_math_optimizations
345 || (TYPE_PRECISION (newtype
) == TYPE_PRECISION (type
)
346 && real_can_shorten_arithmetic (TYPE_MODE (itype
),
348 && !excess_precision_type (newtype
))))
350 expr
= build2 (TREE_CODE (expr
), newtype
,
351 convert_to_real_1 (newtype
, arg0
,
353 convert_to_real_1 (newtype
, arg1
,
365 switch (TREE_CODE (TREE_TYPE (expr
)))
368 /* Ignore the conversion if we don't need to store intermediate
369 results and neither type is a decimal float. */
370 return build1_loc (loc
,
372 || DECIMAL_FLOAT_TYPE_P (type
)
373 || DECIMAL_FLOAT_TYPE_P (itype
))
374 ? CONVERT_EXPR
: NOP_EXPR
, type
, expr
);
379 return build1 (FLOAT_EXPR
, type
, expr
);
381 case FIXED_POINT_TYPE
:
382 return build1 (FIXED_CONVERT_EXPR
, type
, expr
);
385 return convert (type
,
386 maybe_fold_build1_loc (fold_p
, loc
, REALPART_EXPR
,
387 TREE_TYPE (TREE_TYPE (expr
)),
392 error ("pointer value used where a floating point value was expected");
393 return convert_to_real_1 (type
, integer_zero_node
, fold_p
);
396 error ("aggregate value used where a float was expected");
397 return convert_to_real_1 (type
, integer_zero_node
, fold_p
);
401 /* A wrapper around convert_to_real_1 that always folds the
405 convert_to_real (tree type
, tree expr
)
407 return convert_to_real_1 (type
, expr
, true);
410 /* A wrapper around convert_to_real_1 that only folds the
411 expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
414 convert_to_real_maybe_fold (tree type
, tree expr
, bool dofold
)
416 return convert_to_real_1 (type
, expr
, dofold
|| CONSTANT_CLASS_P (expr
));
419 /* Try to narrow EX_FORM ARG0 ARG1 in narrowed arg types producing a
423 do_narrow (location_t loc
,
424 enum tree_code ex_form
, tree type
, tree arg0
, tree arg1
,
425 tree expr
, unsigned inprec
, unsigned outprec
, bool dofold
)
427 /* Do the arithmetic in type TYPEX,
428 then convert result to TYPE. */
431 /* Can't do arithmetic in enumeral types
432 so use an integer type that will hold the values. */
433 if (TREE_CODE (typex
) == ENUMERAL_TYPE
)
434 typex
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (typex
),
435 TYPE_UNSIGNED (typex
));
437 /* The type demotion below might cause doing unsigned arithmetic
438 instead of signed, and thus hide overflow bugs. */
439 if ((ex_form
== PLUS_EXPR
|| ex_form
== MINUS_EXPR
)
440 && !TYPE_UNSIGNED (typex
)
441 && sanitize_flags_p (SANITIZE_SI_OVERFLOW
))
444 /* But now perhaps TYPEX is as wide as INPREC.
445 In that case, do nothing special here.
446 (Otherwise would recurse infinitely in convert. */
447 if (TYPE_PRECISION (typex
) != inprec
)
449 /* Don't do unsigned arithmetic where signed was wanted,
451 Exception: if both of the original operands were
452 unsigned then we can safely do the work as unsigned.
453 Exception: shift operations take their type solely
454 from the first argument.
455 Exception: the LSHIFT_EXPR case above requires that
456 we perform this operation unsigned lest we produce
457 signed-overflow undefinedness.
458 And we may need to do it as unsigned
459 if we truncate to the original size. */
460 if (TYPE_UNSIGNED (TREE_TYPE (expr
))
461 || (TYPE_UNSIGNED (TREE_TYPE (arg0
))
462 && (TYPE_UNSIGNED (TREE_TYPE (arg1
))
463 || ex_form
== LSHIFT_EXPR
464 || ex_form
== RSHIFT_EXPR
465 || ex_form
== LROTATE_EXPR
466 || ex_form
== RROTATE_EXPR
))
467 || ex_form
== LSHIFT_EXPR
468 /* If we have !flag_wrapv, and either ARG0 or
469 ARG1 is of a signed type, we have to do
470 PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned
471 type in case the operation in outprec precision
472 could overflow. Otherwise, we would introduce
473 signed-overflow undefinedness. */
474 || ((!(INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
475 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
476 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
477 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
))))
478 && ((TYPE_PRECISION (TREE_TYPE (arg0
)) * 2u
480 || (TYPE_PRECISION (TREE_TYPE (arg1
)) * 2u
482 && (ex_form
== PLUS_EXPR
483 || ex_form
== MINUS_EXPR
484 || ex_form
== MULT_EXPR
)))
486 if (!TYPE_UNSIGNED (typex
))
487 typex
= unsigned_type_for (typex
);
491 if (TYPE_UNSIGNED (typex
))
492 typex
= signed_type_for (typex
);
494 /* We should do away with all this once we have a proper
495 type promotion/demotion pass, see PR45397. */
496 expr
= maybe_fold_build2_loc (dofold
, loc
, ex_form
, typex
,
497 convert (typex
, arg0
),
498 convert (typex
, arg1
));
499 return convert (type
, expr
);
505 /* Convert EXPR to some integer (or enum) type TYPE.
507 EXPR must be pointer, integer, discrete (enum, char, or bool), float,
508 fixed-point or vector; in other cases error is called.
510 If DOFOLD is TRUE, we try to simplify newly-created patterns by folding.
512 The result of this is always supposed to be a newly created tree node
513 not in use in any existing structure. */
516 convert_to_integer_1 (tree type
, tree expr
, bool dofold
)
518 enum tree_code ex_form
= TREE_CODE (expr
);
519 tree intype
= TREE_TYPE (expr
);
520 unsigned int inprec
= element_precision (intype
);
521 unsigned int outprec
= element_precision (type
);
522 location_t loc
= EXPR_LOCATION (expr
);
524 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
525 be. Consider `enum E = { a, b = (enum E) 3 };'. */
526 if (!COMPLETE_TYPE_P (type
))
528 error ("conversion to incomplete type");
529 return error_mark_node
;
532 if (ex_form
== COMPOUND_EXPR
)
534 tree t
= convert_to_integer_1 (type
, TREE_OPERAND (expr
, 1), dofold
);
535 if (t
== TREE_OPERAND (expr
, 1))
537 return build2_loc (EXPR_LOCATION (expr
), COMPOUND_EXPR
, TREE_TYPE (t
),
538 TREE_OPERAND (expr
, 0), t
);
541 /* Convert e.g. (long)round(d) -> lround(d). */
542 /* If we're converting to char, we may encounter differing behavior
543 between converting from double->char vs double->long->char.
544 We're in "undefined" territory but we prefer to be conservative,
545 so only proceed in "unsafe" math mode. */
547 && (flag_unsafe_math_optimizations
548 || (long_integer_type_node
549 && outprec
>= TYPE_PRECISION (long_integer_type_node
))))
551 tree s_expr
= strip_float_extensions (expr
);
552 tree s_intype
= TREE_TYPE (s_expr
);
553 const enum built_in_function fcode
= builtin_mathfn_code (s_expr
);
558 CASE_FLT_FN (BUILT_IN_CEIL
):
559 CASE_FLT_FN_FLOATN_NX (BUILT_IN_CEIL
):
560 /* Only convert in ISO C99 mode. */
561 if (!targetm
.libc_has_function (function_c99_misc
))
563 if (outprec
< TYPE_PRECISION (integer_type_node
)
564 || (outprec
== TYPE_PRECISION (integer_type_node
)
565 && !TYPE_UNSIGNED (type
)))
566 fn
= mathfn_built_in (s_intype
, BUILT_IN_ICEIL
);
567 else if (outprec
== TYPE_PRECISION (long_integer_type_node
)
568 && !TYPE_UNSIGNED (type
))
569 fn
= mathfn_built_in (s_intype
, BUILT_IN_LCEIL
);
570 else if (outprec
== TYPE_PRECISION (long_long_integer_type_node
)
571 && !TYPE_UNSIGNED (type
))
572 fn
= mathfn_built_in (s_intype
, BUILT_IN_LLCEIL
);
575 CASE_FLT_FN (BUILT_IN_FLOOR
):
576 CASE_FLT_FN_FLOATN_NX (BUILT_IN_FLOOR
):
577 /* Only convert in ISO C99 mode. */
578 if (!targetm
.libc_has_function (function_c99_misc
))
580 if (outprec
< TYPE_PRECISION (integer_type_node
)
581 || (outprec
== TYPE_PRECISION (integer_type_node
)
582 && !TYPE_UNSIGNED (type
)))
583 fn
= mathfn_built_in (s_intype
, BUILT_IN_IFLOOR
);
584 else if (outprec
== TYPE_PRECISION (long_integer_type_node
)
585 && !TYPE_UNSIGNED (type
))
586 fn
= mathfn_built_in (s_intype
, BUILT_IN_LFLOOR
);
587 else if (outprec
== TYPE_PRECISION (long_long_integer_type_node
)
588 && !TYPE_UNSIGNED (type
))
589 fn
= mathfn_built_in (s_intype
, BUILT_IN_LLFLOOR
);
592 CASE_FLT_FN (BUILT_IN_ROUND
):
593 CASE_FLT_FN_FLOATN_NX (BUILT_IN_ROUND
):
594 /* Only convert in ISO C99 mode and with -fno-math-errno. */
595 if (!targetm
.libc_has_function (function_c99_misc
) || flag_errno_math
)
597 if (outprec
< TYPE_PRECISION (integer_type_node
)
598 || (outprec
== TYPE_PRECISION (integer_type_node
)
599 && !TYPE_UNSIGNED (type
)))
600 fn
= mathfn_built_in (s_intype
, BUILT_IN_IROUND
);
601 else if (outprec
== TYPE_PRECISION (long_integer_type_node
)
602 && !TYPE_UNSIGNED (type
))
603 fn
= mathfn_built_in (s_intype
, BUILT_IN_LROUND
);
604 else if (outprec
== TYPE_PRECISION (long_long_integer_type_node
)
605 && !TYPE_UNSIGNED (type
))
606 fn
= mathfn_built_in (s_intype
, BUILT_IN_LLROUND
);
609 CASE_FLT_FN (BUILT_IN_NEARBYINT
):
610 CASE_FLT_FN_FLOATN_NX (BUILT_IN_NEARBYINT
):
611 /* Only convert nearbyint* if we can ignore math exceptions. */
612 if (flag_trapping_math
)
615 CASE_FLT_FN (BUILT_IN_RINT
):
616 CASE_FLT_FN_FLOATN_NX (BUILT_IN_RINT
):
617 /* Only convert in ISO C99 mode and with -fno-math-errno. */
618 if (!targetm
.libc_has_function (function_c99_misc
) || flag_errno_math
)
620 if (outprec
< TYPE_PRECISION (integer_type_node
)
621 || (outprec
== TYPE_PRECISION (integer_type_node
)
622 && !TYPE_UNSIGNED (type
)))
623 fn
= mathfn_built_in (s_intype
, BUILT_IN_IRINT
);
624 else if (outprec
== TYPE_PRECISION (long_integer_type_node
)
625 && !TYPE_UNSIGNED (type
))
626 fn
= mathfn_built_in (s_intype
, BUILT_IN_LRINT
);
627 else if (outprec
== TYPE_PRECISION (long_long_integer_type_node
)
628 && !TYPE_UNSIGNED (type
))
629 fn
= mathfn_built_in (s_intype
, BUILT_IN_LLRINT
);
632 CASE_FLT_FN (BUILT_IN_TRUNC
):
633 CASE_FLT_FN_FLOATN_NX (BUILT_IN_TRUNC
):
634 return convert_to_integer_1 (type
, CALL_EXPR_ARG (s_expr
, 0), dofold
);
642 tree newexpr
= build_call_expr (fn
, 1, CALL_EXPR_ARG (s_expr
, 0));
643 return convert_to_integer_1 (type
, newexpr
, dofold
);
647 /* Convert (int)logb(d) -> ilogb(d). */
649 && flag_unsafe_math_optimizations
650 && !flag_trapping_math
&& !flag_errno_math
&& flag_finite_math_only
652 && (outprec
> TYPE_PRECISION (integer_type_node
)
653 || (outprec
== TYPE_PRECISION (integer_type_node
)
654 && !TYPE_UNSIGNED (type
))))
656 tree s_expr
= strip_float_extensions (expr
);
657 tree s_intype
= TREE_TYPE (s_expr
);
658 const enum built_in_function fcode
= builtin_mathfn_code (s_expr
);
663 CASE_FLT_FN (BUILT_IN_LOGB
):
664 fn
= mathfn_built_in (s_intype
, BUILT_IN_ILOGB
);
673 tree newexpr
= build_call_expr (fn
, 1, CALL_EXPR_ARG (s_expr
, 0));
674 return convert_to_integer_1 (type
, newexpr
, dofold
);
678 switch (TREE_CODE (intype
))
682 if (integer_zerop (expr
) && !TREE_OVERFLOW (expr
))
683 return build_int_cst (type
, 0);
685 /* Convert to an unsigned integer of the correct width first, and from
686 there widen/truncate to the required type. Some targets support the
687 coexistence of multiple valid pointer sizes, so fetch the one we need
690 return build1 (CONVERT_EXPR
, type
, expr
);
691 expr
= fold_build1 (CONVERT_EXPR
,
692 lang_hooks
.types
.type_for_size
693 (TYPE_PRECISION (intype
), 0),
695 return fold_convert (type
, expr
);
701 /* If this is a logical operation, which just returns 0 or 1, we can
702 change the type of the expression. */
704 if (TREE_CODE_CLASS (ex_form
) == tcc_comparison
)
706 expr
= copy_node (expr
);
707 TREE_TYPE (expr
) = type
;
711 /* If we are widening the type, put in an explicit conversion.
712 Similarly if we are not changing the width. After this, we know
713 we are truncating EXPR. */
715 else if (outprec
>= inprec
)
719 /* If the precision of the EXPR's type is K bits and the
720 destination mode has more bits, and the sign is changing,
721 it is not safe to use a NOP_EXPR. For example, suppose
722 that EXPR's type is a 3-bit unsigned integer type, the
723 TYPE is a 3-bit signed integer type, and the machine mode
724 for the types is 8-bit QImode. In that case, the
725 conversion necessitates an explicit sign-extension. In
726 the signed-to-unsigned case the high-order bits have to
728 if (TYPE_UNSIGNED (type
) != TYPE_UNSIGNED (TREE_TYPE (expr
))
729 && !type_has_mode_precision_p (TREE_TYPE (expr
)))
734 return maybe_fold_build1_loc (dofold
, loc
, code
, type
, expr
);
737 /* If TYPE is an enumeral type or a type with a precision less
738 than the number of bits in its mode, do the conversion to the
739 type corresponding to its mode, then do a nop conversion
741 else if (TREE_CODE (type
) == ENUMERAL_TYPE
742 || maybe_ne (outprec
, GET_MODE_PRECISION (TYPE_MODE (type
))))
744 expr
= convert (lang_hooks
.types
.type_for_mode
745 (TYPE_MODE (type
), TYPE_UNSIGNED (type
)), expr
);
746 return maybe_fold_build1_loc (dofold
, loc
, NOP_EXPR
, type
, expr
);
749 /* Here detect when we can distribute the truncation down past some
750 arithmetic. For example, if adding two longs and converting to an
751 int, we can equally well convert both to ints and then add.
752 For the operations handled here, such truncation distribution
754 It is desirable in these cases:
755 1) when truncating down to full-word from a larger size
756 2) when truncating takes no work.
757 3) when at least one operand of the arithmetic has been extended
758 (as by C's default conversions). In this case we need two conversions
759 if we do the arithmetic as already requested, so we might as well
760 truncate both and then combine. Perhaps that way we need only one.
762 Note that in general we cannot do the arithmetic in a type
763 shorter than the desired result of conversion, even if the operands
764 are both extended from a shorter type, because they might overflow
765 if combined in that type. The exceptions to this--the times when
766 two narrow values can be combined in their narrow type even to
767 make a wider result--are handled by "shorten" in build_binary_op. */
773 /* We can pass truncation down through right shifting
774 when the shift count is a nonpositive constant. */
775 if (TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
776 && tree_int_cst_sgn (TREE_OPERAND (expr
, 1)) <= 0)
781 /* We can pass truncation down through left shifting
782 when the shift count is a nonnegative constant and
783 the target type is unsigned. */
784 if (TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
785 && tree_int_cst_sgn (TREE_OPERAND (expr
, 1)) >= 0
786 && TYPE_UNSIGNED (type
)
787 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
)
789 /* If shift count is less than the width of the truncated type,
791 if (tree_int_cst_lt (TREE_OPERAND (expr
, 1), TYPE_SIZE (type
)))
792 /* In this case, shifting is like multiplication. */
796 /* If it is >= that width, result is zero.
797 Handling this with trunc1 would give the wrong result:
798 (int) ((long long) a << 32) is well defined (as 0)
799 but (int) a << 32 is undefined and would get a
802 tree t
= build_int_cst (type
, 0);
804 /* If the original expression had side-effects, we must
806 if (TREE_SIDE_EFFECTS (expr
))
807 return build2 (COMPOUND_EXPR
, type
, expr
, t
);
816 tree arg0
= get_unwidened (TREE_OPERAND (expr
, 0), NULL_TREE
);
817 tree arg1
= get_unwidened (TREE_OPERAND (expr
, 1), NULL_TREE
);
819 /* Don't distribute unless the output precision is at least as
820 big as the actual inputs and it has the same signedness. */
821 if (outprec
>= TYPE_PRECISION (TREE_TYPE (arg0
))
822 && outprec
>= TYPE_PRECISION (TREE_TYPE (arg1
))
823 /* If signedness of arg0 and arg1 don't match,
824 we can't necessarily find a type to compare them in. */
825 && (TYPE_UNSIGNED (TREE_TYPE (arg0
))
826 == TYPE_UNSIGNED (TREE_TYPE (arg1
)))
827 /* Do not change the sign of the division. */
828 && (TYPE_UNSIGNED (TREE_TYPE (expr
))
829 == TYPE_UNSIGNED (TREE_TYPE (arg0
)))
830 /* Either require unsigned division or a division by
831 a constant that is not -1. */
832 && (TYPE_UNSIGNED (TREE_TYPE (arg0
))
833 || (TREE_CODE (arg1
) == INTEGER_CST
834 && !integer_all_onesp (arg1
))))
836 tree tem
= do_narrow (loc
, ex_form
, type
, arg0
, arg1
,
837 expr
, inprec
, outprec
, dofold
);
848 tree arg0
= get_unwidened (TREE_OPERAND (expr
, 0), type
);
849 tree arg1
= get_unwidened (TREE_OPERAND (expr
, 1), type
);
851 /* Don't distribute unless the output precision is at least as
852 big as the actual inputs. Otherwise, the comparison of the
853 truncated values will be wrong. */
854 if (outprec
>= TYPE_PRECISION (TREE_TYPE (arg0
))
855 && outprec
>= TYPE_PRECISION (TREE_TYPE (arg1
))
856 /* If signedness of arg0 and arg1 don't match,
857 we can't necessarily find a type to compare them in. */
858 && (TYPE_UNSIGNED (TREE_TYPE (arg0
))
859 == TYPE_UNSIGNED (TREE_TYPE (arg1
))))
871 tree arg0
= get_unwidened (TREE_OPERAND (expr
, 0), type
);
872 tree arg1
= get_unwidened (TREE_OPERAND (expr
, 1), type
);
874 /* Do not try to narrow operands of pointer subtraction;
875 that will interfere with other folding. */
876 if (ex_form
== MINUS_EXPR
877 && CONVERT_EXPR_P (arg0
)
878 && CONVERT_EXPR_P (arg1
)
879 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0
, 0)))
880 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
883 if (outprec
>= BITS_PER_WORD
884 || targetm
.truly_noop_truncation (outprec
, inprec
)
885 || inprec
> TYPE_PRECISION (TREE_TYPE (arg0
))
886 || inprec
> TYPE_PRECISION (TREE_TYPE (arg1
)))
888 tree tem
= do_narrow (loc
, ex_form
, type
, arg0
, arg1
,
889 expr
, inprec
, outprec
, dofold
);
897 /* Using unsigned arithmetic for signed types may hide overflow
899 if (!TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (expr
, 0)))
900 && sanitize_flags_p (SANITIZE_SI_OVERFLOW
))
904 /* This is not correct for ABS_EXPR,
905 since we must test the sign before truncation. */
907 /* Do the arithmetic in type TYPEX,
908 then convert result to TYPE. */
911 /* Can't do arithmetic in enumeral types
912 so use an integer type that will hold the values. */
913 if (TREE_CODE (typex
) == ENUMERAL_TYPE
)
915 = lang_hooks
.types
.type_for_size (TYPE_PRECISION (typex
),
916 TYPE_UNSIGNED (typex
));
918 if (!TYPE_UNSIGNED (typex
))
919 typex
= unsigned_type_for (typex
);
920 return convert (type
,
921 fold_build1 (ex_form
, typex
,
923 TREE_OPERAND (expr
, 0))));
928 tree argtype
= TREE_TYPE (TREE_OPERAND (expr
, 0));
929 /* Don't introduce a "can't convert between vector values
930 of different size" error. */
931 if (TREE_CODE (argtype
) == VECTOR_TYPE
932 && maybe_ne (GET_MODE_SIZE (TYPE_MODE (argtype
)),
933 GET_MODE_SIZE (TYPE_MODE (type
))))
936 /* If truncating after truncating, might as well do all at once.
937 If truncating after extending, we may get rid of wasted work. */
938 return convert (type
, get_unwidened (TREE_OPERAND (expr
, 0), type
));
941 /* It is sometimes worthwhile to push the narrowing down through
942 the conditional and never loses. A COND_EXPR may have a throw
943 as one operand, which then has void type. Just leave void
944 operands as they are. */
946 fold_build3 (COND_EXPR
, type
, TREE_OPERAND (expr
, 0),
947 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1)))
948 ? TREE_OPERAND (expr
, 1)
949 : convert (type
, TREE_OPERAND (expr
, 1)),
950 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 2)))
951 ? TREE_OPERAND (expr
, 2)
952 : convert (type
, TREE_OPERAND (expr
, 2)));
958 /* When parsing long initializers, we might end up with a lot of casts.
960 if (TREE_CODE (expr
) == INTEGER_CST
)
961 return fold_convert (type
, expr
);
962 return build1 (CONVERT_EXPR
, type
, expr
);
965 if (sanitize_flags_p (SANITIZE_FLOAT_CAST
)
966 && current_function_decl
!= NULL_TREE
)
968 expr
= save_expr (expr
);
969 tree check
= ubsan_instrument_float_cast (loc
, type
, expr
);
970 expr
= build1 (FIX_TRUNC_EXPR
, type
, expr
);
971 if (check
== NULL_TREE
)
973 return maybe_fold_build2_loc (dofold
, loc
, COMPOUND_EXPR
,
974 TREE_TYPE (expr
), check
, expr
);
977 return build1 (FIX_TRUNC_EXPR
, type
, expr
);
979 case FIXED_POINT_TYPE
:
980 return build1 (FIXED_CONVERT_EXPR
, type
, expr
);
983 expr
= maybe_fold_build1_loc (dofold
, loc
, REALPART_EXPR
,
984 TREE_TYPE (TREE_TYPE (expr
)), expr
);
985 return convert (type
, expr
);
988 if (!tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (TREE_TYPE (expr
))))
990 error ("can%'t convert a vector of type %qT"
991 " to type %qT which has different size",
992 TREE_TYPE (expr
), type
);
993 return error_mark_node
;
995 return build1 (VIEW_CONVERT_EXPR
, type
, expr
);
998 error ("aggregate value used where an integer was expected");
999 return convert (type
, integer_zero_node
);
1003 /* Convert EXPR to some integer (or enum) type TYPE.
1005 EXPR must be pointer, integer, discrete (enum, char, or bool), float,
1006 fixed-point or vector; in other cases error is called.
1008 The result of this is always supposed to be a newly created tree node
1009 not in use in any existing structure. */
1012 convert_to_integer (tree type
, tree expr
)
1014 return convert_to_integer_1 (type
, expr
, true);
1017 /* A wrapper around convert_to_complex_1 that only folds the
1018 expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
1021 convert_to_integer_maybe_fold (tree type
, tree expr
, bool dofold
)
1023 return convert_to_integer_1 (type
, expr
, dofold
|| CONSTANT_CLASS_P (expr
));
1026 /* Convert EXPR to the complex type TYPE in the usual ways. If FOLD_P is
1027 true, try to fold the expression. */
1030 convert_to_complex_1 (tree type
, tree expr
, bool fold_p
)
1032 location_t loc
= EXPR_LOCATION (expr
);
1033 tree subtype
= TREE_TYPE (type
);
1035 switch (TREE_CODE (TREE_TYPE (expr
)))
1038 case FIXED_POINT_TYPE
:
1042 return build2 (COMPLEX_EXPR
, type
, convert (subtype
, expr
),
1043 convert (subtype
, integer_zero_node
));
1047 tree elt_type
= TREE_TYPE (TREE_TYPE (expr
));
1049 if (TYPE_MAIN_VARIANT (elt_type
) == TYPE_MAIN_VARIANT (subtype
))
1051 else if (TREE_CODE (expr
) == COMPOUND_EXPR
)
1053 tree t
= convert_to_complex_1 (type
, TREE_OPERAND (expr
, 1),
1055 if (t
== TREE_OPERAND (expr
, 1))
1057 return build2_loc (EXPR_LOCATION (expr
), COMPOUND_EXPR
,
1058 TREE_TYPE (t
), TREE_OPERAND (expr
, 0), t
);
1060 else if (TREE_CODE (expr
) == COMPLEX_EXPR
)
1061 return maybe_fold_build2_loc (fold_p
, loc
, COMPLEX_EXPR
, type
,
1063 TREE_OPERAND (expr
, 0)),
1065 TREE_OPERAND (expr
, 1)));
1068 expr
= save_expr (expr
);
1069 tree realp
= maybe_fold_build1_loc (fold_p
, loc
, REALPART_EXPR
,
1070 TREE_TYPE (TREE_TYPE (expr
)),
1072 tree imagp
= maybe_fold_build1_loc (fold_p
, loc
, IMAGPART_EXPR
,
1073 TREE_TYPE (TREE_TYPE (expr
)),
1075 return maybe_fold_build2_loc (fold_p
, loc
, COMPLEX_EXPR
, type
,
1076 convert (subtype
, realp
),
1077 convert (subtype
, imagp
));
1082 case REFERENCE_TYPE
:
1083 error ("pointer value used where a complex was expected");
1084 return convert_to_complex_1 (type
, integer_zero_node
, fold_p
);
1087 error ("aggregate value used where a complex was expected");
1088 return convert_to_complex_1 (type
, integer_zero_node
, fold_p
);
1092 /* A wrapper around convert_to_complex_1 that always folds the
1096 convert_to_complex (tree type
, tree expr
)
1098 return convert_to_complex_1 (type
, expr
, true);
1101 /* A wrapper around convert_to_complex_1 that only folds the
1102 expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
1105 convert_to_complex_maybe_fold (tree type
, tree expr
, bool dofold
)
1107 return convert_to_complex_1 (type
, expr
, dofold
|| CONSTANT_CLASS_P (expr
));
1110 /* Convert EXPR to the vector type TYPE in the usual ways. */
1113 convert_to_vector (tree type
, tree expr
)
1115 switch (TREE_CODE (TREE_TYPE (expr
)))
1119 if (!tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (TREE_TYPE (expr
))))
1121 error ("can%'t convert a value of type %qT"
1122 " to vector type %qT which has different size",
1123 TREE_TYPE (expr
), type
);
1124 return error_mark_node
;
1126 return build1 (VIEW_CONVERT_EXPR
, type
, expr
);
1129 error ("can%'t convert value to a vector");
1130 return error_mark_node
;
1134 /* Convert EXPR to some fixed-point type TYPE.
1136 EXPR must be fixed-point, float, integer, or enumeral;
1137 in other cases error is called. */
1140 convert_to_fixed (tree type
, tree expr
)
1142 if (integer_zerop (expr
))
1144 tree fixed_zero_node
= build_fixed (type
, FCONST0 (TYPE_MODE (type
)));
1145 return fixed_zero_node
;
1147 else if (integer_onep (expr
) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type
)))
1149 tree fixed_one_node
= build_fixed (type
, FCONST1 (TYPE_MODE (type
)));
1150 return fixed_one_node
;
1153 switch (TREE_CODE (TREE_TYPE (expr
)))
1155 case FIXED_POINT_TYPE
:
1160 return build1 (FIXED_CONVERT_EXPR
, type
, expr
);
1163 return convert (type
,
1164 fold_build1 (REALPART_EXPR
,
1165 TREE_TYPE (TREE_TYPE (expr
)), expr
));
1168 error ("aggregate value used where a fixed-point was expected");
1169 return error_mark_node
;