libgcc/
[official-gcc.git] / gcc / combine.c
blobd23ecfcbccd7aeead245594ca65de5440941f4c9
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105 #include "df.h"
106 #include "cgraph.h"
107 #include "obstack.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as struct insn_link pointers. */
315 struct insn_link {
316 rtx insn;
317 struct insn_link *next;
320 static struct insn_link **uid_log_links;
322 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
323 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
325 #define FOR_EACH_LOG_LINK(L, INSN) \
326 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
328 /* Links for LOG_LINKS are allocated from this obstack. */
330 static struct obstack insn_link_obstack;
332 /* Allocate a link. */
334 static inline struct insn_link *
335 alloc_insn_link (rtx insn, struct insn_link *next)
337 struct insn_link *l
338 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
339 sizeof (struct insn_link));
340 l->insn = insn;
341 l->next = next;
342 return l;
345 /* Incremented for each basic block. */
347 static int label_tick;
349 /* Reset to label_tick for each extended basic block in scanning order. */
351 static int label_tick_ebb_start;
353 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
354 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
356 static enum machine_mode nonzero_bits_mode;
358 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
359 be safely used. It is zero while computing them and after combine has
360 completed. This former test prevents propagating values based on
361 previously set values, which can be incorrect if a variable is modified
362 in a loop. */
364 static int nonzero_sign_valid;
367 /* Record one modification to rtl structure
368 to be undone by storing old_contents into *where. */
370 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
372 struct undo
374 struct undo *next;
375 enum undo_kind kind;
376 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
377 union { rtx *r; int *i; struct insn_link **l; } where;
380 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
381 num_undo says how many are currently recorded.
383 other_insn is nonzero if we have modified some other insn in the process
384 of working on subst_insn. It must be verified too. */
386 struct undobuf
388 struct undo *undos;
389 struct undo *frees;
390 rtx other_insn;
393 static struct undobuf undobuf;
395 /* Number of times the pseudo being substituted for
396 was found and replaced. */
398 static int n_occurrences;
400 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned HOST_WIDE_INT,
403 unsigned HOST_WIDE_INT *);
404 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
405 enum machine_mode,
406 unsigned int, unsigned int *);
407 static void do_SUBST (rtx *, rtx);
408 static void do_SUBST_INT (int *, int);
409 static void init_reg_last (void);
410 static void setup_incoming_promotions (rtx);
411 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
412 static int cant_combine_insn_p (rtx);
413 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
414 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
415 static int contains_muldiv (rtx);
416 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
417 static void undo_all (void);
418 static void undo_commit (void);
419 static rtx *find_split_point (rtx *, rtx, bool);
420 static rtx subst (rtx, rtx, rtx, int, int, int);
421 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
422 static rtx simplify_if_then_else (rtx);
423 static rtx simplify_set (rtx);
424 static rtx simplify_logical (rtx);
425 static rtx expand_compound_operation (rtx);
426 static const_rtx expand_field_assignment (const_rtx);
427 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
428 rtx, unsigned HOST_WIDE_INT, int, int, int);
429 static rtx extract_left_shift (rtx, int);
430 static rtx make_compound_operation (rtx, enum rtx_code);
431 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
432 unsigned HOST_WIDE_INT *);
433 static rtx canon_reg_for_combine (rtx, rtx);
434 static rtx force_to_mode (rtx, enum machine_mode,
435 unsigned HOST_WIDE_INT, int);
436 static rtx if_then_else_cond (rtx, rtx *, rtx *);
437 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
438 static int rtx_equal_for_field_assignment_p (rtx, rtx);
439 static rtx make_field_assignment (rtx);
440 static rtx apply_distributive_law (rtx);
441 static rtx distribute_and_simplify_rtx (rtx, int);
442 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
443 unsigned HOST_WIDE_INT);
444 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
445 unsigned HOST_WIDE_INT);
446 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
447 HOST_WIDE_INT, enum machine_mode, int *);
448 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
449 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
450 int);
451 static int recog_for_combine (rtx *, rtx, rtx *);
452 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
453 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
454 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
455 static void update_table_tick (rtx);
456 static void record_value_for_reg (rtx, rtx, rtx);
457 static void check_promoted_subreg (rtx, rtx);
458 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
459 static void record_dead_and_set_regs (rtx);
460 static int get_last_value_validate (rtx *, rtx, int, int);
461 static rtx get_last_value (const_rtx);
462 static int use_crosses_set_p (const_rtx, int);
463 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
464 static int reg_dead_at_p (rtx, rtx);
465 static void move_deaths (rtx, rtx, int, rtx, rtx *);
466 static int reg_bitfield_target_p (rtx, rtx);
467 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
468 static void distribute_links (struct insn_link *);
469 static void mark_used_regs_combine (rtx);
470 static void record_promoted_value (rtx, rtx);
471 static int unmentioned_reg_p_1 (rtx *, void *);
472 static bool unmentioned_reg_p (rtx, rtx);
473 static int record_truncated_value (rtx *, void *);
474 static void record_truncated_values (rtx *, void *);
475 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
476 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
479 /* It is not safe to use ordinary gen_lowpart in combine.
480 See comments in gen_lowpart_for_combine. */
481 #undef RTL_HOOKS_GEN_LOWPART
482 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
484 /* Our implementation of gen_lowpart never emits a new pseudo. */
485 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
486 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
488 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
489 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
491 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
492 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
494 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
495 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
497 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
500 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
501 PATTERN can not be split. Otherwise, it returns an insn sequence.
502 This is a wrapper around split_insns which ensures that the
503 reg_stat vector is made larger if the splitter creates a new
504 register. */
506 static rtx
507 combine_split_insns (rtx pattern, rtx insn)
509 rtx ret;
510 unsigned int nregs;
512 ret = split_insns (pattern, insn);
513 nregs = max_reg_num ();
514 if (nregs > VEC_length (reg_stat_type, reg_stat))
515 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
516 return ret;
519 /* This is used by find_single_use to locate an rtx in LOC that
520 contains exactly one use of DEST, which is typically either a REG
521 or CC0. It returns a pointer to the innermost rtx expression
522 containing DEST. Appearances of DEST that are being used to
523 totally replace it are not counted. */
525 static rtx *
526 find_single_use_1 (rtx dest, rtx *loc)
528 rtx x = *loc;
529 enum rtx_code code = GET_CODE (x);
530 rtx *result = NULL;
531 rtx *this_result;
532 int i;
533 const char *fmt;
535 switch (code)
537 case CONST_INT:
538 case CONST:
539 case LABEL_REF:
540 case SYMBOL_REF:
541 case CONST_DOUBLE:
542 case CONST_VECTOR:
543 case CLOBBER:
544 return 0;
546 case SET:
547 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
548 of a REG that occupies all of the REG, the insn uses DEST if
549 it is mentioned in the destination or the source. Otherwise, we
550 need just check the source. */
551 if (GET_CODE (SET_DEST (x)) != CC0
552 && GET_CODE (SET_DEST (x)) != PC
553 && !REG_P (SET_DEST (x))
554 && ! (GET_CODE (SET_DEST (x)) == SUBREG
555 && REG_P (SUBREG_REG (SET_DEST (x)))
556 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
557 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
558 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
559 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
560 break;
562 return find_single_use_1 (dest, &SET_SRC (x));
564 case MEM:
565 case SUBREG:
566 return find_single_use_1 (dest, &XEXP (x, 0));
568 default:
569 break;
572 /* If it wasn't one of the common cases above, check each expression and
573 vector of this code. Look for a unique usage of DEST. */
575 fmt = GET_RTX_FORMAT (code);
576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
578 if (fmt[i] == 'e')
580 if (dest == XEXP (x, i)
581 || (REG_P (dest) && REG_P (XEXP (x, i))
582 && REGNO (dest) == REGNO (XEXP (x, i))))
583 this_result = loc;
584 else
585 this_result = find_single_use_1 (dest, &XEXP (x, i));
587 if (result == NULL)
588 result = this_result;
589 else if (this_result)
590 /* Duplicate usage. */
591 return NULL;
593 else if (fmt[i] == 'E')
595 int j;
597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
599 if (XVECEXP (x, i, j) == dest
600 || (REG_P (dest)
601 && REG_P (XVECEXP (x, i, j))
602 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 return NULL;
615 return result;
619 /* See if DEST, produced in INSN, is used only a single time in the
620 sequel. If so, return a pointer to the innermost rtx expression in which
621 it is used.
623 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
625 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
626 care about REG_DEAD notes or LOG_LINKS.
628 Otherwise, we find the single use by finding an insn that has a
629 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
630 only referenced once in that insn, we know that it must be the first
631 and last insn referencing DEST. */
633 static rtx *
634 find_single_use (rtx dest, rtx insn, rtx *ploc)
636 basic_block bb;
637 rtx next;
638 rtx *result;
639 struct insn_link *link;
641 #ifdef HAVE_cc0
642 if (dest == cc0_rtx)
644 next = NEXT_INSN (insn);
645 if (next == 0
646 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
647 return 0;
649 result = find_single_use_1 (dest, &PATTERN (next));
650 if (result && ploc)
651 *ploc = next;
652 return result;
654 #endif
656 if (!REG_P (dest))
657 return 0;
659 bb = BLOCK_FOR_INSN (insn);
660 for (next = NEXT_INSN (insn);
661 next && BLOCK_FOR_INSN (next) == bb;
662 next = NEXT_INSN (next))
663 if (INSN_P (next) && dead_or_set_p (next, dest))
665 FOR_EACH_LOG_LINK (link, next)
666 if (link->insn == insn)
667 break;
669 if (link)
671 result = find_single_use_1 (dest, &PATTERN (next));
672 if (ploc)
673 *ploc = next;
674 return result;
678 return 0;
681 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
682 insn. The substitution can be undone by undo_all. If INTO is already
683 set to NEWVAL, do not record this change. Because computing NEWVAL might
684 also call SUBST, we have to compute it before we put anything into
685 the undo table. */
687 static void
688 do_SUBST (rtx *into, rtx newval)
690 struct undo *buf;
691 rtx oldval = *into;
693 if (oldval == newval)
694 return;
696 /* We'd like to catch as many invalid transformations here as
697 possible. Unfortunately, there are way too many mode changes
698 that are perfectly valid, so we'd waste too much effort for
699 little gain doing the checks here. Focus on catching invalid
700 transformations involving integer constants. */
701 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
702 && CONST_INT_P (newval))
704 /* Sanity check that we're replacing oldval with a CONST_INT
705 that is a valid sign-extension for the original mode. */
706 gcc_assert (INTVAL (newval)
707 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
709 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
710 CONST_INT is not valid, because after the replacement, the
711 original mode would be gone. Unfortunately, we can't tell
712 when do_SUBST is called to replace the operand thereof, so we
713 perform this test on oldval instead, checking whether an
714 invalid replacement took place before we got here. */
715 gcc_assert (!(GET_CODE (oldval) == SUBREG
716 && CONST_INT_P (SUBREG_REG (oldval))));
717 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
718 && CONST_INT_P (XEXP (oldval, 0))));
721 if (undobuf.frees)
722 buf = undobuf.frees, undobuf.frees = buf->next;
723 else
724 buf = XNEW (struct undo);
726 buf->kind = UNDO_RTX;
727 buf->where.r = into;
728 buf->old_contents.r = oldval;
729 *into = newval;
731 buf->next = undobuf.undos, undobuf.undos = buf;
734 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
736 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
737 for the value of a HOST_WIDE_INT value (including CONST_INT) is
738 not safe. */
740 static void
741 do_SUBST_INT (int *into, int newval)
743 struct undo *buf;
744 int oldval = *into;
746 if (oldval == newval)
747 return;
749 if (undobuf.frees)
750 buf = undobuf.frees, undobuf.frees = buf->next;
751 else
752 buf = XNEW (struct undo);
754 buf->kind = UNDO_INT;
755 buf->where.i = into;
756 buf->old_contents.i = oldval;
757 *into = newval;
759 buf->next = undobuf.undos, undobuf.undos = buf;
762 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
764 /* Similar to SUBST, but just substitute the mode. This is used when
765 changing the mode of a pseudo-register, so that any other
766 references to the entry in the regno_reg_rtx array will change as
767 well. */
769 static void
770 do_SUBST_MODE (rtx *into, enum machine_mode newval)
772 struct undo *buf;
773 enum machine_mode oldval = GET_MODE (*into);
775 if (oldval == newval)
776 return;
778 if (undobuf.frees)
779 buf = undobuf.frees, undobuf.frees = buf->next;
780 else
781 buf = XNEW (struct undo);
783 buf->kind = UNDO_MODE;
784 buf->where.r = into;
785 buf->old_contents.m = oldval;
786 adjust_reg_mode (*into, newval);
788 buf->next = undobuf.undos, undobuf.undos = buf;
791 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
793 #ifndef HAVE_cc0
794 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
796 static void
797 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
799 struct undo *buf;
800 struct insn_link * oldval = *into;
802 if (oldval == newval)
803 return;
805 if (undobuf.frees)
806 buf = undobuf.frees, undobuf.frees = buf->next;
807 else
808 buf = XNEW (struct undo);
810 buf->kind = UNDO_LINKS;
811 buf->where.l = into;
812 buf->old_contents.l = oldval;
813 *into = newval;
815 buf->next = undobuf.undos, undobuf.undos = buf;
818 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
819 #endif
821 /* Subroutine of try_combine. Determine whether the replacement patterns
822 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
823 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
824 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
825 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
826 of all the instructions can be estimated and the replacements are more
827 expensive than the original sequence. */
829 static bool
830 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
831 rtx newi2pat, rtx newotherpat)
833 int i0_cost, i1_cost, i2_cost, i3_cost;
834 int new_i2_cost, new_i3_cost;
835 int old_cost, new_cost;
837 /* Lookup the original insn_rtx_costs. */
838 i2_cost = INSN_COST (i2);
839 i3_cost = INSN_COST (i3);
841 if (i1)
843 i1_cost = INSN_COST (i1);
844 if (i0)
846 i0_cost = INSN_COST (i0);
847 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
848 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
850 else
852 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
853 ? i1_cost + i2_cost + i3_cost : 0);
854 i0_cost = 0;
857 else
859 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
860 i1_cost = i0_cost = 0;
863 /* Calculate the replacement insn_rtx_costs. */
864 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
865 if (newi2pat)
867 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
868 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
869 ? new_i2_cost + new_i3_cost : 0;
871 else
873 new_cost = new_i3_cost;
874 new_i2_cost = 0;
877 if (undobuf.other_insn)
879 int old_other_cost, new_other_cost;
881 old_other_cost = INSN_COST (undobuf.other_insn);
882 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
883 if (old_other_cost > 0 && new_other_cost > 0)
885 old_cost += old_other_cost;
886 new_cost += new_other_cost;
888 else
889 old_cost = 0;
892 /* Disallow this combination if both new_cost and old_cost are greater than
893 zero, and new_cost is greater than old cost. */
894 if (old_cost > 0 && new_cost > old_cost)
896 if (dump_file)
898 if (i0)
900 fprintf (dump_file,
901 "rejecting combination of insns %d, %d, %d and %d\n",
902 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
903 INSN_UID (i3));
904 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
905 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
907 else if (i1)
909 fprintf (dump_file,
910 "rejecting combination of insns %d, %d and %d\n",
911 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
912 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
913 i1_cost, i2_cost, i3_cost, old_cost);
915 else
917 fprintf (dump_file,
918 "rejecting combination of insns %d and %d\n",
919 INSN_UID (i2), INSN_UID (i3));
920 fprintf (dump_file, "original costs %d + %d = %d\n",
921 i2_cost, i3_cost, old_cost);
924 if (newi2pat)
926 fprintf (dump_file, "replacement costs %d + %d = %d\n",
927 new_i2_cost, new_i3_cost, new_cost);
929 else
930 fprintf (dump_file, "replacement cost %d\n", new_cost);
933 return false;
936 /* Update the uid_insn_cost array with the replacement costs. */
937 INSN_COST (i2) = new_i2_cost;
938 INSN_COST (i3) = new_i3_cost;
939 if (i1)
941 INSN_COST (i1) = 0;
942 if (i0)
943 INSN_COST (i0) = 0;
946 return true;
950 /* Delete any insns that copy a register to itself. */
952 static void
953 delete_noop_moves (void)
955 rtx insn, next;
956 basic_block bb;
958 FOR_EACH_BB (bb)
960 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
962 next = NEXT_INSN (insn);
963 if (INSN_P (insn) && noop_move_p (insn))
965 if (dump_file)
966 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
968 delete_insn_and_edges (insn);
975 /* Fill in log links field for all insns. */
977 static void
978 create_log_links (void)
980 basic_block bb;
981 rtx *next_use, insn;
982 df_ref *def_vec, *use_vec;
984 next_use = XCNEWVEC (rtx, max_reg_num ());
986 /* Pass through each block from the end, recording the uses of each
987 register and establishing log links when def is encountered.
988 Note that we do not clear next_use array in order to save time,
989 so we have to test whether the use is in the same basic block as def.
991 There are a few cases below when we do not consider the definition or
992 usage -- these are taken from original flow.c did. Don't ask me why it is
993 done this way; I don't know and if it works, I don't want to know. */
995 FOR_EACH_BB (bb)
997 FOR_BB_INSNS_REVERSE (bb, insn)
999 if (!NONDEBUG_INSN_P (insn))
1000 continue;
1002 /* Log links are created only once. */
1003 gcc_assert (!LOG_LINKS (insn));
1005 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1007 df_ref def = *def_vec;
1008 int regno = DF_REF_REGNO (def);
1009 rtx use_insn;
1011 if (!next_use[regno])
1012 continue;
1014 /* Do not consider if it is pre/post modification in MEM. */
1015 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1016 continue;
1018 /* Do not make the log link for frame pointer. */
1019 if ((regno == FRAME_POINTER_REGNUM
1020 && (! reload_completed || frame_pointer_needed))
1021 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1022 || (regno == HARD_FRAME_POINTER_REGNUM
1023 && (! reload_completed || frame_pointer_needed))
1024 #endif
1025 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1027 #endif
1029 continue;
1031 use_insn = next_use[regno];
1032 if (BLOCK_FOR_INSN (use_insn) == bb)
1034 /* flow.c claimed:
1036 We don't build a LOG_LINK for hard registers contained
1037 in ASM_OPERANDs. If these registers get replaced,
1038 we might wind up changing the semantics of the insn,
1039 even if reload can make what appear to be valid
1040 assignments later. */
1041 if (regno >= FIRST_PSEUDO_REGISTER
1042 || asm_noperands (PATTERN (use_insn)) < 0)
1044 /* Don't add duplicate links between instructions. */
1045 struct insn_link *links;
1046 FOR_EACH_LOG_LINK (links, use_insn)
1047 if (insn == links->insn)
1048 break;
1050 if (!links)
1051 LOG_LINKS (use_insn)
1052 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1055 next_use[regno] = NULL_RTX;
1058 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1060 df_ref use = *use_vec;
1061 int regno = DF_REF_REGNO (use);
1063 /* Do not consider the usage of the stack pointer
1064 by function call. */
1065 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1066 continue;
1068 next_use[regno] = insn;
1073 free (next_use);
1076 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1077 true if we found a LOG_LINK that proves that A feeds B. This only works
1078 if there are no instructions between A and B which could have a link
1079 depending on A, since in that case we would not record a link for B.
1080 We also check the implicit dependency created by a cc0 setter/user
1081 pair. */
1083 static bool
1084 insn_a_feeds_b (rtx a, rtx b)
1086 struct insn_link *links;
1087 FOR_EACH_LOG_LINK (links, b)
1088 if (links->insn == a)
1089 return true;
1090 #ifdef HAVE_cc0
1091 if (sets_cc0_p (a))
1092 return true;
1093 #endif
1094 return false;
1097 /* Main entry point for combiner. F is the first insn of the function.
1098 NREGS is the first unused pseudo-reg number.
1100 Return nonzero if the combiner has turned an indirect jump
1101 instruction into a direct jump. */
1102 static int
1103 combine_instructions (rtx f, unsigned int nregs)
1105 rtx insn, next;
1106 #ifdef HAVE_cc0
1107 rtx prev;
1108 #endif
1109 struct insn_link *links, *nextlinks;
1110 rtx first;
1111 basic_block last_bb;
1113 int new_direct_jump_p = 0;
1115 for (first = f; first && !INSN_P (first); )
1116 first = NEXT_INSN (first);
1117 if (!first)
1118 return 0;
1120 combine_attempts = 0;
1121 combine_merges = 0;
1122 combine_extras = 0;
1123 combine_successes = 0;
1125 rtl_hooks = combine_rtl_hooks;
1127 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1129 init_recog_no_volatile ();
1131 /* Allocate array for insn info. */
1132 max_uid_known = get_max_uid ();
1133 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1134 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1135 gcc_obstack_init (&insn_link_obstack);
1137 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1139 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1140 problems when, for example, we have j <<= 1 in a loop. */
1142 nonzero_sign_valid = 0;
1143 label_tick = label_tick_ebb_start = 1;
1145 /* Scan all SETs and see if we can deduce anything about what
1146 bits are known to be zero for some registers and how many copies
1147 of the sign bit are known to exist for those registers.
1149 Also set any known values so that we can use it while searching
1150 for what bits are known to be set. */
1152 setup_incoming_promotions (first);
1153 /* Allow the entry block and the first block to fall into the same EBB.
1154 Conceptually the incoming promotions are assigned to the entry block. */
1155 last_bb = ENTRY_BLOCK_PTR;
1157 create_log_links ();
1158 FOR_EACH_BB (this_basic_block)
1160 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1161 last_call_luid = 0;
1162 mem_last_set = -1;
1164 label_tick++;
1165 if (!single_pred_p (this_basic_block)
1166 || single_pred (this_basic_block) != last_bb)
1167 label_tick_ebb_start = label_tick;
1168 last_bb = this_basic_block;
1170 FOR_BB_INSNS (this_basic_block, insn)
1171 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1173 #ifdef AUTO_INC_DEC
1174 rtx links;
1175 #endif
1177 subst_low_luid = DF_INSN_LUID (insn);
1178 subst_insn = insn;
1180 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1181 insn);
1182 record_dead_and_set_regs (insn);
1184 #ifdef AUTO_INC_DEC
1185 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1186 if (REG_NOTE_KIND (links) == REG_INC)
1187 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1188 insn);
1189 #endif
1191 /* Record the current insn_rtx_cost of this instruction. */
1192 if (NONJUMP_INSN_P (insn))
1193 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1194 optimize_this_for_speed_p);
1195 if (dump_file)
1196 fprintf(dump_file, "insn_cost %d: %d\n",
1197 INSN_UID (insn), INSN_COST (insn));
1201 nonzero_sign_valid = 1;
1203 /* Now scan all the insns in forward order. */
1204 label_tick = label_tick_ebb_start = 1;
1205 init_reg_last ();
1206 setup_incoming_promotions (first);
1207 last_bb = ENTRY_BLOCK_PTR;
1209 FOR_EACH_BB (this_basic_block)
1211 rtx last_combined_insn = NULL_RTX;
1212 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1213 last_call_luid = 0;
1214 mem_last_set = -1;
1216 label_tick++;
1217 if (!single_pred_p (this_basic_block)
1218 || single_pred (this_basic_block) != last_bb)
1219 label_tick_ebb_start = label_tick;
1220 last_bb = this_basic_block;
1222 rtl_profile_for_bb (this_basic_block);
1223 for (insn = BB_HEAD (this_basic_block);
1224 insn != NEXT_INSN (BB_END (this_basic_block));
1225 insn = next ? next : NEXT_INSN (insn))
1227 next = 0;
1228 if (NONDEBUG_INSN_P (insn))
1230 while (last_combined_insn
1231 && INSN_DELETED_P (last_combined_insn))
1232 last_combined_insn = PREV_INSN (last_combined_insn);
1233 if (last_combined_insn == NULL_RTX
1234 || BARRIER_P (last_combined_insn)
1235 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1236 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1237 last_combined_insn = insn;
1239 /* See if we know about function return values before this
1240 insn based upon SUBREG flags. */
1241 check_promoted_subreg (insn, PATTERN (insn));
1243 /* See if we can find hardregs and subreg of pseudos in
1244 narrower modes. This could help turning TRUNCATEs
1245 into SUBREGs. */
1246 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1248 /* Try this insn with each insn it links back to. */
1250 FOR_EACH_LOG_LINK (links, insn)
1251 if ((next = try_combine (insn, links->insn, NULL_RTX,
1252 NULL_RTX, &new_direct_jump_p,
1253 last_combined_insn)) != 0)
1254 goto retry;
1256 /* Try each sequence of three linked insns ending with this one. */
1258 FOR_EACH_LOG_LINK (links, insn)
1260 rtx link = links->insn;
1262 /* If the linked insn has been replaced by a note, then there
1263 is no point in pursuing this chain any further. */
1264 if (NOTE_P (link))
1265 continue;
1267 FOR_EACH_LOG_LINK (nextlinks, link)
1268 if ((next = try_combine (insn, link, nextlinks->insn,
1269 NULL_RTX, &new_direct_jump_p,
1270 last_combined_insn)) != 0)
1271 goto retry;
1274 #ifdef HAVE_cc0
1275 /* Try to combine a jump insn that uses CC0
1276 with a preceding insn that sets CC0, and maybe with its
1277 logical predecessor as well.
1278 This is how we make decrement-and-branch insns.
1279 We need this special code because data flow connections
1280 via CC0 do not get entered in LOG_LINKS. */
1282 if (JUMP_P (insn)
1283 && (prev = prev_nonnote_insn (insn)) != 0
1284 && NONJUMP_INSN_P (prev)
1285 && sets_cc0_p (PATTERN (prev)))
1287 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1288 &new_direct_jump_p,
1289 last_combined_insn)) != 0)
1290 goto retry;
1292 FOR_EACH_LOG_LINK (nextlinks, prev)
1293 if ((next = try_combine (insn, prev, nextlinks->insn,
1294 NULL_RTX, &new_direct_jump_p,
1295 last_combined_insn)) != 0)
1296 goto retry;
1299 /* Do the same for an insn that explicitly references CC0. */
1300 if (NONJUMP_INSN_P (insn)
1301 && (prev = prev_nonnote_insn (insn)) != 0
1302 && NONJUMP_INSN_P (prev)
1303 && sets_cc0_p (PATTERN (prev))
1304 && GET_CODE (PATTERN (insn)) == SET
1305 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1307 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1308 &new_direct_jump_p,
1309 last_combined_insn)) != 0)
1310 goto retry;
1312 FOR_EACH_LOG_LINK (nextlinks, prev)
1313 if ((next = try_combine (insn, prev, nextlinks->insn,
1314 NULL_RTX, &new_direct_jump_p,
1315 last_combined_insn)) != 0)
1316 goto retry;
1319 /* Finally, see if any of the insns that this insn links to
1320 explicitly references CC0. If so, try this insn, that insn,
1321 and its predecessor if it sets CC0. */
1322 FOR_EACH_LOG_LINK (links, insn)
1323 if (NONJUMP_INSN_P (links->insn)
1324 && GET_CODE (PATTERN (links->insn)) == SET
1325 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1326 && (prev = prev_nonnote_insn (links->insn)) != 0
1327 && NONJUMP_INSN_P (prev)
1328 && sets_cc0_p (PATTERN (prev))
1329 && (next = try_combine (insn, links->insn,
1330 prev, NULL_RTX, &new_direct_jump_p,
1331 last_combined_insn)) != 0)
1332 goto retry;
1333 #endif
1335 /* Try combining an insn with two different insns whose results it
1336 uses. */
1337 FOR_EACH_LOG_LINK (links, insn)
1338 for (nextlinks = links->next; nextlinks;
1339 nextlinks = nextlinks->next)
1340 if ((next = try_combine (insn, links->insn,
1341 nextlinks->insn, NULL_RTX,
1342 &new_direct_jump_p,
1343 last_combined_insn)) != 0)
1344 goto retry;
1346 /* Try four-instruction combinations. */
1347 FOR_EACH_LOG_LINK (links, insn)
1349 struct insn_link *next1;
1350 rtx link = links->insn;
1352 /* If the linked insn has been replaced by a note, then there
1353 is no point in pursuing this chain any further. */
1354 if (NOTE_P (link))
1355 continue;
1357 FOR_EACH_LOG_LINK (next1, link)
1359 rtx link1 = next1->insn;
1360 if (NOTE_P (link1))
1361 continue;
1362 /* I0 -> I1 -> I2 -> I3. */
1363 FOR_EACH_LOG_LINK (nextlinks, link1)
1364 if ((next = try_combine (insn, link, link1,
1365 nextlinks->insn,
1366 &new_direct_jump_p,
1367 last_combined_insn)) != 0)
1368 goto retry;
1369 /* I0, I1 -> I2, I2 -> I3. */
1370 for (nextlinks = next1->next; nextlinks;
1371 nextlinks = nextlinks->next)
1372 if ((next = try_combine (insn, link, link1,
1373 nextlinks->insn,
1374 &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1376 goto retry;
1379 for (next1 = links->next; next1; next1 = next1->next)
1381 rtx link1 = next1->insn;
1382 if (NOTE_P (link1))
1383 continue;
1384 /* I0 -> I2; I1, I2 -> I3. */
1385 FOR_EACH_LOG_LINK (nextlinks, link)
1386 if ((next = try_combine (insn, link, link1,
1387 nextlinks->insn,
1388 &new_direct_jump_p,
1389 last_combined_insn)) != 0)
1390 goto retry;
1391 /* I0 -> I1; I1, I2 -> I3. */
1392 FOR_EACH_LOG_LINK (nextlinks, link1)
1393 if ((next = try_combine (insn, link, link1,
1394 nextlinks->insn,
1395 &new_direct_jump_p,
1396 last_combined_insn)) != 0)
1397 goto retry;
1401 /* Try this insn with each REG_EQUAL note it links back to. */
1402 FOR_EACH_LOG_LINK (links, insn)
1404 rtx set, note;
1405 rtx temp = links->insn;
1406 if ((set = single_set (temp)) != 0
1407 && (note = find_reg_equal_equiv_note (temp)) != 0
1408 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1409 /* Avoid using a register that may already been marked
1410 dead by an earlier instruction. */
1411 && ! unmentioned_reg_p (note, SET_SRC (set))
1412 && (GET_MODE (note) == VOIDmode
1413 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1414 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1416 /* Temporarily replace the set's source with the
1417 contents of the REG_EQUAL note. The insn will
1418 be deleted or recognized by try_combine. */
1419 rtx orig = SET_SRC (set);
1420 SET_SRC (set) = note;
1421 i2mod = temp;
1422 i2mod_old_rhs = copy_rtx (orig);
1423 i2mod_new_rhs = copy_rtx (note);
1424 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1425 &new_direct_jump_p,
1426 last_combined_insn);
1427 i2mod = NULL_RTX;
1428 if (next)
1429 goto retry;
1430 SET_SRC (set) = orig;
1434 if (!NOTE_P (insn))
1435 record_dead_and_set_regs (insn);
1437 retry:
1443 default_rtl_profile ();
1444 clear_bb_flags ();
1445 new_direct_jump_p |= purge_all_dead_edges ();
1446 delete_noop_moves ();
1448 /* Clean up. */
1449 obstack_free (&insn_link_obstack, NULL);
1450 free (uid_log_links);
1451 free (uid_insn_cost);
1452 VEC_free (reg_stat_type, heap, reg_stat);
1455 struct undo *undo, *next;
1456 for (undo = undobuf.frees; undo; undo = next)
1458 next = undo->next;
1459 free (undo);
1461 undobuf.frees = 0;
1464 total_attempts += combine_attempts;
1465 total_merges += combine_merges;
1466 total_extras += combine_extras;
1467 total_successes += combine_successes;
1469 nonzero_sign_valid = 0;
1470 rtl_hooks = general_rtl_hooks;
1472 /* Make recognizer allow volatile MEMs again. */
1473 init_recog ();
1475 return new_direct_jump_p;
1478 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1480 static void
1481 init_reg_last (void)
1483 unsigned int i;
1484 reg_stat_type *p;
1486 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1487 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1490 /* Set up any promoted values for incoming argument registers. */
1492 static void
1493 setup_incoming_promotions (rtx first)
1495 tree arg;
1496 bool strictly_local = false;
1498 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1499 arg = DECL_CHAIN (arg))
1501 rtx x, reg = DECL_INCOMING_RTL (arg);
1502 int uns1, uns3;
1503 enum machine_mode mode1, mode2, mode3, mode4;
1505 /* Only continue if the incoming argument is in a register. */
1506 if (!REG_P (reg))
1507 continue;
1509 /* Determine, if possible, whether all call sites of the current
1510 function lie within the current compilation unit. (This does
1511 take into account the exporting of a function via taking its
1512 address, and so forth.) */
1513 strictly_local = cgraph_local_info (current_function_decl)->local;
1515 /* The mode and signedness of the argument before any promotions happen
1516 (equal to the mode of the pseudo holding it at that stage). */
1517 mode1 = TYPE_MODE (TREE_TYPE (arg));
1518 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1520 /* The mode and signedness of the argument after any source language and
1521 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1522 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1523 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1525 /* The mode and signedness of the argument as it is actually passed,
1526 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1527 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1528 TREE_TYPE (cfun->decl), 0);
1530 /* The mode of the register in which the argument is being passed. */
1531 mode4 = GET_MODE (reg);
1533 /* Eliminate sign extensions in the callee when:
1534 (a) A mode promotion has occurred; */
1535 if (mode1 == mode3)
1536 continue;
1537 /* (b) The mode of the register is the same as the mode of
1538 the argument as it is passed; */
1539 if (mode3 != mode4)
1540 continue;
1541 /* (c) There's no language level extension; */
1542 if (mode1 == mode2)
1544 /* (c.1) All callers are from the current compilation unit. If that's
1545 the case we don't have to rely on an ABI, we only have to know
1546 what we're generating right now, and we know that we will do the
1547 mode1 to mode2 promotion with the given sign. */
1548 else if (!strictly_local)
1549 continue;
1550 /* (c.2) The combination of the two promotions is useful. This is
1551 true when the signs match, or if the first promotion is unsigned.
1552 In the later case, (sign_extend (zero_extend x)) is the same as
1553 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1554 else if (uns1)
1555 uns3 = true;
1556 else if (uns3)
1557 continue;
1559 /* Record that the value was promoted from mode1 to mode3,
1560 so that any sign extension at the head of the current
1561 function may be eliminated. */
1562 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1563 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1564 record_value_for_reg (reg, first, x);
1568 /* Called via note_stores. If X is a pseudo that is narrower than
1569 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1571 If we are setting only a portion of X and we can't figure out what
1572 portion, assume all bits will be used since we don't know what will
1573 be happening.
1575 Similarly, set how many bits of X are known to be copies of the sign bit
1576 at all locations in the function. This is the smallest number implied
1577 by any set of X. */
1579 static void
1580 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1582 rtx insn = (rtx) data;
1583 unsigned int num;
1585 if (REG_P (x)
1586 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1587 /* If this register is undefined at the start of the file, we can't
1588 say what its contents were. */
1589 && ! REGNO_REG_SET_P
1590 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1591 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1593 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1595 if (set == 0 || GET_CODE (set) == CLOBBER)
1597 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1598 rsp->sign_bit_copies = 1;
1599 return;
1602 /* If this register is being initialized using itself, and the
1603 register is uninitialized in this basic block, and there are
1604 no LOG_LINKS which set the register, then part of the
1605 register is uninitialized. In that case we can't assume
1606 anything about the number of nonzero bits.
1608 ??? We could do better if we checked this in
1609 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1610 could avoid making assumptions about the insn which initially
1611 sets the register, while still using the information in other
1612 insns. We would have to be careful to check every insn
1613 involved in the combination. */
1615 if (insn
1616 && reg_referenced_p (x, PATTERN (insn))
1617 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1618 REGNO (x)))
1620 struct insn_link *link;
1622 FOR_EACH_LOG_LINK (link, insn)
1623 if (dead_or_set_p (link->insn, x))
1624 break;
1625 if (!link)
1627 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1628 rsp->sign_bit_copies = 1;
1629 return;
1633 /* If this is a complex assignment, see if we can convert it into a
1634 simple assignment. */
1635 set = expand_field_assignment (set);
1637 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1638 set what we know about X. */
1640 if (SET_DEST (set) == x
1641 || (paradoxical_subreg_p (SET_DEST (set))
1642 && SUBREG_REG (SET_DEST (set)) == x))
1644 rtx src = SET_SRC (set);
1646 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1647 /* If X is narrower than a word and SRC is a non-negative
1648 constant that would appear negative in the mode of X,
1649 sign-extend it for use in reg_stat[].nonzero_bits because some
1650 machines (maybe most) will actually do the sign-extension
1651 and this is the conservative approach.
1653 ??? For 2.5, try to tighten up the MD files in this regard
1654 instead of this kludge. */
1656 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1657 && CONST_INT_P (src)
1658 && INTVAL (src) > 0
1659 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1660 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1661 #endif
1663 /* Don't call nonzero_bits if it cannot change anything. */
1664 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1665 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1666 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1667 if (rsp->sign_bit_copies == 0
1668 || rsp->sign_bit_copies > num)
1669 rsp->sign_bit_copies = num;
1671 else
1673 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1674 rsp->sign_bit_copies = 1;
1679 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1680 optionally insns that were previously combined into I3 or that will be
1681 combined into the merger of INSN and I3. The order is PRED, PRED2,
1682 INSN, SUCC, SUCC2, I3.
1684 Return 0 if the combination is not allowed for any reason.
1686 If the combination is allowed, *PDEST will be set to the single
1687 destination of INSN and *PSRC to the single source, and this function
1688 will return 1. */
1690 static int
1691 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1692 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1693 rtx *pdest, rtx *psrc)
1695 int i;
1696 const_rtx set = 0;
1697 rtx src, dest;
1698 rtx p;
1699 #ifdef AUTO_INC_DEC
1700 rtx link;
1701 #endif
1702 bool all_adjacent = true;
1703 int (*is_volatile_p) (const_rtx);
1705 if (succ)
1707 if (succ2)
1709 if (next_active_insn (succ2) != i3)
1710 all_adjacent = false;
1711 if (next_active_insn (succ) != succ2)
1712 all_adjacent = false;
1714 else if (next_active_insn (succ) != i3)
1715 all_adjacent = false;
1716 if (next_active_insn (insn) != succ)
1717 all_adjacent = false;
1719 else if (next_active_insn (insn) != i3)
1720 all_adjacent = false;
1722 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1723 or a PARALLEL consisting of such a SET and CLOBBERs.
1725 If INSN has CLOBBER parallel parts, ignore them for our processing.
1726 By definition, these happen during the execution of the insn. When it
1727 is merged with another insn, all bets are off. If they are, in fact,
1728 needed and aren't also supplied in I3, they may be added by
1729 recog_for_combine. Otherwise, it won't match.
1731 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1732 note.
1734 Get the source and destination of INSN. If more than one, can't
1735 combine. */
1737 if (GET_CODE (PATTERN (insn)) == SET)
1738 set = PATTERN (insn);
1739 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1740 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1742 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1744 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1746 switch (GET_CODE (elt))
1748 /* This is important to combine floating point insns
1749 for the SH4 port. */
1750 case USE:
1751 /* Combining an isolated USE doesn't make sense.
1752 We depend here on combinable_i3pat to reject them. */
1753 /* The code below this loop only verifies that the inputs of
1754 the SET in INSN do not change. We call reg_set_between_p
1755 to verify that the REG in the USE does not change between
1756 I3 and INSN.
1757 If the USE in INSN was for a pseudo register, the matching
1758 insn pattern will likely match any register; combining this
1759 with any other USE would only be safe if we knew that the
1760 used registers have identical values, or if there was
1761 something to tell them apart, e.g. different modes. For
1762 now, we forgo such complicated tests and simply disallow
1763 combining of USES of pseudo registers with any other USE. */
1764 if (REG_P (XEXP (elt, 0))
1765 && GET_CODE (PATTERN (i3)) == PARALLEL)
1767 rtx i3pat = PATTERN (i3);
1768 int i = XVECLEN (i3pat, 0) - 1;
1769 unsigned int regno = REGNO (XEXP (elt, 0));
1773 rtx i3elt = XVECEXP (i3pat, 0, i);
1775 if (GET_CODE (i3elt) == USE
1776 && REG_P (XEXP (i3elt, 0))
1777 && (REGNO (XEXP (i3elt, 0)) == regno
1778 ? reg_set_between_p (XEXP (elt, 0),
1779 PREV_INSN (insn), i3)
1780 : regno >= FIRST_PSEUDO_REGISTER))
1781 return 0;
1783 while (--i >= 0);
1785 break;
1787 /* We can ignore CLOBBERs. */
1788 case CLOBBER:
1789 break;
1791 case SET:
1792 /* Ignore SETs whose result isn't used but not those that
1793 have side-effects. */
1794 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1795 && insn_nothrow_p (insn)
1796 && !side_effects_p (elt))
1797 break;
1799 /* If we have already found a SET, this is a second one and
1800 so we cannot combine with this insn. */
1801 if (set)
1802 return 0;
1804 set = elt;
1805 break;
1807 default:
1808 /* Anything else means we can't combine. */
1809 return 0;
1813 if (set == 0
1814 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1815 so don't do anything with it. */
1816 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1817 return 0;
1819 else
1820 return 0;
1822 if (set == 0)
1823 return 0;
1825 /* The simplification in expand_field_assignment may call back to
1826 get_last_value, so set safe guard here. */
1827 subst_low_luid = DF_INSN_LUID (insn);
1829 set = expand_field_assignment (set);
1830 src = SET_SRC (set), dest = SET_DEST (set);
1832 /* Don't eliminate a store in the stack pointer. */
1833 if (dest == stack_pointer_rtx
1834 /* Don't combine with an insn that sets a register to itself if it has
1835 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1836 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1837 /* Can't merge an ASM_OPERANDS. */
1838 || GET_CODE (src) == ASM_OPERANDS
1839 /* Can't merge a function call. */
1840 || GET_CODE (src) == CALL
1841 /* Don't eliminate a function call argument. */
1842 || (CALL_P (i3)
1843 && (find_reg_fusage (i3, USE, dest)
1844 || (REG_P (dest)
1845 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1846 && global_regs[REGNO (dest)])))
1847 /* Don't substitute into an incremented register. */
1848 || FIND_REG_INC_NOTE (i3, dest)
1849 || (succ && FIND_REG_INC_NOTE (succ, dest))
1850 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1851 /* Don't substitute into a non-local goto, this confuses CFG. */
1852 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1853 /* Make sure that DEST is not used after SUCC but before I3. */
1854 || (!all_adjacent
1855 && ((succ2
1856 && (reg_used_between_p (dest, succ2, i3)
1857 || reg_used_between_p (dest, succ, succ2)))
1858 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1859 /* Make sure that the value that is to be substituted for the register
1860 does not use any registers whose values alter in between. However,
1861 If the insns are adjacent, a use can't cross a set even though we
1862 think it might (this can happen for a sequence of insns each setting
1863 the same destination; last_set of that register might point to
1864 a NOTE). If INSN has a REG_EQUIV note, the register is always
1865 equivalent to the memory so the substitution is valid even if there
1866 are intervening stores. Also, don't move a volatile asm or
1867 UNSPEC_VOLATILE across any other insns. */
1868 || (! all_adjacent
1869 && (((!MEM_P (src)
1870 || ! find_reg_note (insn, REG_EQUIV, src))
1871 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1872 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1873 || GET_CODE (src) == UNSPEC_VOLATILE))
1874 /* Don't combine across a CALL_INSN, because that would possibly
1875 change whether the life span of some REGs crosses calls or not,
1876 and it is a pain to update that information.
1877 Exception: if source is a constant, moving it later can't hurt.
1878 Accept that as a special case. */
1879 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1880 return 0;
1882 /* DEST must either be a REG or CC0. */
1883 if (REG_P (dest))
1885 /* If register alignment is being enforced for multi-word items in all
1886 cases except for parameters, it is possible to have a register copy
1887 insn referencing a hard register that is not allowed to contain the
1888 mode being copied and which would not be valid as an operand of most
1889 insns. Eliminate this problem by not combining with such an insn.
1891 Also, on some machines we don't want to extend the life of a hard
1892 register. */
1894 if (REG_P (src)
1895 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1896 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1897 /* Don't extend the life of a hard register unless it is
1898 user variable (if we have few registers) or it can't
1899 fit into the desired register (meaning something special
1900 is going on).
1901 Also avoid substituting a return register into I3, because
1902 reload can't handle a conflict with constraints of other
1903 inputs. */
1904 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1905 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1906 return 0;
1908 else if (GET_CODE (dest) != CC0)
1909 return 0;
1912 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1913 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1914 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1916 /* Don't substitute for a register intended as a clobberable
1917 operand. */
1918 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1919 if (rtx_equal_p (reg, dest))
1920 return 0;
1922 /* If the clobber represents an earlyclobber operand, we must not
1923 substitute an expression containing the clobbered register.
1924 As we do not analyze the constraint strings here, we have to
1925 make the conservative assumption. However, if the register is
1926 a fixed hard reg, the clobber cannot represent any operand;
1927 we leave it up to the machine description to either accept or
1928 reject use-and-clobber patterns. */
1929 if (!REG_P (reg)
1930 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1931 || !fixed_regs[REGNO (reg)])
1932 if (reg_overlap_mentioned_p (reg, src))
1933 return 0;
1936 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1937 or not), reject, unless nothing volatile comes between it and I3 */
1939 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1941 /* Make sure neither succ nor succ2 contains a volatile reference. */
1942 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1943 return 0;
1944 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1945 return 0;
1946 /* We'll check insns between INSN and I3 below. */
1949 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1950 to be an explicit register variable, and was chosen for a reason. */
1952 if (GET_CODE (src) == ASM_OPERANDS
1953 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1954 return 0;
1956 /* If INSN contains volatile references (specifically volatile MEMs),
1957 we cannot combine across any other volatile references.
1958 Even if INSN doesn't contain volatile references, any intervening
1959 volatile insn might affect machine state. */
1961 is_volatile_p = volatile_refs_p (PATTERN (insn))
1962 ? volatile_refs_p
1963 : volatile_insn_p;
1965 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1966 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1967 return 0;
1969 /* If INSN contains an autoincrement or autodecrement, make sure that
1970 register is not used between there and I3, and not already used in
1971 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1972 Also insist that I3 not be a jump; if it were one
1973 and the incremented register were spilled, we would lose. */
1975 #ifdef AUTO_INC_DEC
1976 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1977 if (REG_NOTE_KIND (link) == REG_INC
1978 && (JUMP_P (i3)
1979 || reg_used_between_p (XEXP (link, 0), insn, i3)
1980 || (pred != NULL_RTX
1981 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1982 || (pred2 != NULL_RTX
1983 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1984 || (succ != NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1986 || (succ2 != NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1988 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1989 return 0;
1990 #endif
1992 #ifdef HAVE_cc0
1993 /* Don't combine an insn that follows a CC0-setting insn.
1994 An insn that uses CC0 must not be separated from the one that sets it.
1995 We do, however, allow I2 to follow a CC0-setting insn if that insn
1996 is passed as I1; in that case it will be deleted also.
1997 We also allow combining in this case if all the insns are adjacent
1998 because that would leave the two CC0 insns adjacent as well.
1999 It would be more logical to test whether CC0 occurs inside I1 or I2,
2000 but that would be much slower, and this ought to be equivalent. */
2002 p = prev_nonnote_insn (insn);
2003 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2004 && ! all_adjacent)
2005 return 0;
2006 #endif
2008 /* If we get here, we have passed all the tests and the combination is
2009 to be allowed. */
2011 *pdest = dest;
2012 *psrc = src;
2014 return 1;
2017 /* LOC is the location within I3 that contains its pattern or the component
2018 of a PARALLEL of the pattern. We validate that it is valid for combining.
2020 One problem is if I3 modifies its output, as opposed to replacing it
2021 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2022 doing so would produce an insn that is not equivalent to the original insns.
2024 Consider:
2026 (set (reg:DI 101) (reg:DI 100))
2027 (set (subreg:SI (reg:DI 101) 0) <foo>)
2029 This is NOT equivalent to:
2031 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2032 (set (reg:DI 101) (reg:DI 100))])
2034 Not only does this modify 100 (in which case it might still be valid
2035 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2037 We can also run into a problem if I2 sets a register that I1
2038 uses and I1 gets directly substituted into I3 (not via I2). In that
2039 case, we would be getting the wrong value of I2DEST into I3, so we
2040 must reject the combination. This case occurs when I2 and I1 both
2041 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2042 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2043 of a SET must prevent combination from occurring. The same situation
2044 can occur for I0, in which case I0_NOT_IN_SRC is set.
2046 Before doing the above check, we first try to expand a field assignment
2047 into a set of logical operations.
2049 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2050 we place a register that is both set and used within I3. If more than one
2051 such register is detected, we fail.
2053 Return 1 if the combination is valid, zero otherwise. */
2055 static int
2056 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2057 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2059 rtx x = *loc;
2061 if (GET_CODE (x) == SET)
2063 rtx set = x ;
2064 rtx dest = SET_DEST (set);
2065 rtx src = SET_SRC (set);
2066 rtx inner_dest = dest;
2067 rtx subdest;
2069 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2070 || GET_CODE (inner_dest) == SUBREG
2071 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2072 inner_dest = XEXP (inner_dest, 0);
2074 /* Check for the case where I3 modifies its output, as discussed
2075 above. We don't want to prevent pseudos from being combined
2076 into the address of a MEM, so only prevent the combination if
2077 i1 or i2 set the same MEM. */
2078 if ((inner_dest != dest &&
2079 (!MEM_P (inner_dest)
2080 || rtx_equal_p (i2dest, inner_dest)
2081 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2082 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2083 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2084 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2085 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2087 /* This is the same test done in can_combine_p except we can't test
2088 all_adjacent; we don't have to, since this instruction will stay
2089 in place, thus we are not considering increasing the lifetime of
2090 INNER_DEST.
2092 Also, if this insn sets a function argument, combining it with
2093 something that might need a spill could clobber a previous
2094 function argument; the all_adjacent test in can_combine_p also
2095 checks this; here, we do a more specific test for this case. */
2097 || (REG_P (inner_dest)
2098 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2099 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2100 GET_MODE (inner_dest))))
2101 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2102 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2103 return 0;
2105 /* If DEST is used in I3, it is being killed in this insn, so
2106 record that for later. We have to consider paradoxical
2107 subregs here, since they kill the whole register, but we
2108 ignore partial subregs, STRICT_LOW_PART, etc.
2109 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2110 STACK_POINTER_REGNUM, since these are always considered to be
2111 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2112 subdest = dest;
2113 if (GET_CODE (subdest) == SUBREG
2114 && (GET_MODE_SIZE (GET_MODE (subdest))
2115 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2116 subdest = SUBREG_REG (subdest);
2117 if (pi3dest_killed
2118 && REG_P (subdest)
2119 && reg_referenced_p (subdest, PATTERN (i3))
2120 && REGNO (subdest) != FRAME_POINTER_REGNUM
2121 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2122 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2123 #endif
2124 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2125 && (REGNO (subdest) != ARG_POINTER_REGNUM
2126 || ! fixed_regs [REGNO (subdest)])
2127 #endif
2128 && REGNO (subdest) != STACK_POINTER_REGNUM)
2130 if (*pi3dest_killed)
2131 return 0;
2133 *pi3dest_killed = subdest;
2137 else if (GET_CODE (x) == PARALLEL)
2139 int i;
2141 for (i = 0; i < XVECLEN (x, 0); i++)
2142 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2143 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2144 return 0;
2147 return 1;
2150 /* Return 1 if X is an arithmetic expression that contains a multiplication
2151 and division. We don't count multiplications by powers of two here. */
2153 static int
2154 contains_muldiv (rtx x)
2156 switch (GET_CODE (x))
2158 case MOD: case DIV: case UMOD: case UDIV:
2159 return 1;
2161 case MULT:
2162 return ! (CONST_INT_P (XEXP (x, 1))
2163 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2164 default:
2165 if (BINARY_P (x))
2166 return contains_muldiv (XEXP (x, 0))
2167 || contains_muldiv (XEXP (x, 1));
2169 if (UNARY_P (x))
2170 return contains_muldiv (XEXP (x, 0));
2172 return 0;
2176 /* Determine whether INSN can be used in a combination. Return nonzero if
2177 not. This is used in try_combine to detect early some cases where we
2178 can't perform combinations. */
2180 static int
2181 cant_combine_insn_p (rtx insn)
2183 rtx set;
2184 rtx src, dest;
2186 /* If this isn't really an insn, we can't do anything.
2187 This can occur when flow deletes an insn that it has merged into an
2188 auto-increment address. */
2189 if (! INSN_P (insn))
2190 return 1;
2192 /* Never combine loads and stores involving hard regs that are likely
2193 to be spilled. The register allocator can usually handle such
2194 reg-reg moves by tying. If we allow the combiner to make
2195 substitutions of likely-spilled regs, reload might die.
2196 As an exception, we allow combinations involving fixed regs; these are
2197 not available to the register allocator so there's no risk involved. */
2199 set = single_set (insn);
2200 if (! set)
2201 return 0;
2202 src = SET_SRC (set);
2203 dest = SET_DEST (set);
2204 if (GET_CODE (src) == SUBREG)
2205 src = SUBREG_REG (src);
2206 if (GET_CODE (dest) == SUBREG)
2207 dest = SUBREG_REG (dest);
2208 if (REG_P (src) && REG_P (dest)
2209 && ((HARD_REGISTER_P (src)
2210 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2211 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2212 || (HARD_REGISTER_P (dest)
2213 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2214 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2215 return 1;
2217 return 0;
2220 struct likely_spilled_retval_info
2222 unsigned regno, nregs;
2223 unsigned mask;
2226 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2227 hard registers that are known to be written to / clobbered in full. */
2228 static void
2229 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2231 struct likely_spilled_retval_info *const info =
2232 (struct likely_spilled_retval_info *) data;
2233 unsigned regno, nregs;
2234 unsigned new_mask;
2236 if (!REG_P (XEXP (set, 0)))
2237 return;
2238 regno = REGNO (x);
2239 if (regno >= info->regno + info->nregs)
2240 return;
2241 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2242 if (regno + nregs <= info->regno)
2243 return;
2244 new_mask = (2U << (nregs - 1)) - 1;
2245 if (regno < info->regno)
2246 new_mask >>= info->regno - regno;
2247 else
2248 new_mask <<= regno - info->regno;
2249 info->mask &= ~new_mask;
2252 /* Return nonzero iff part of the return value is live during INSN, and
2253 it is likely spilled. This can happen when more than one insn is needed
2254 to copy the return value, e.g. when we consider to combine into the
2255 second copy insn for a complex value. */
2257 static int
2258 likely_spilled_retval_p (rtx insn)
2260 rtx use = BB_END (this_basic_block);
2261 rtx reg, p;
2262 unsigned regno, nregs;
2263 /* We assume here that no machine mode needs more than
2264 32 hard registers when the value overlaps with a register
2265 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2266 unsigned mask;
2267 struct likely_spilled_retval_info info;
2269 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2270 return 0;
2271 reg = XEXP (PATTERN (use), 0);
2272 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2273 return 0;
2274 regno = REGNO (reg);
2275 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2276 if (nregs == 1)
2277 return 0;
2278 mask = (2U << (nregs - 1)) - 1;
2280 /* Disregard parts of the return value that are set later. */
2281 info.regno = regno;
2282 info.nregs = nregs;
2283 info.mask = mask;
2284 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2285 if (INSN_P (p))
2286 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2287 mask = info.mask;
2289 /* Check if any of the (probably) live return value registers is
2290 likely spilled. */
2291 nregs --;
2294 if ((mask & 1 << nregs)
2295 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2296 return 1;
2297 } while (nregs--);
2298 return 0;
2301 /* Adjust INSN after we made a change to its destination.
2303 Changing the destination can invalidate notes that say something about
2304 the results of the insn and a LOG_LINK pointing to the insn. */
2306 static void
2307 adjust_for_new_dest (rtx insn)
2309 /* For notes, be conservative and simply remove them. */
2310 remove_reg_equal_equiv_notes (insn);
2312 /* The new insn will have a destination that was previously the destination
2313 of an insn just above it. Call distribute_links to make a LOG_LINK from
2314 the next use of that destination. */
2315 distribute_links (alloc_insn_link (insn, NULL));
2317 df_insn_rescan (insn);
2320 /* Return TRUE if combine can reuse reg X in mode MODE.
2321 ADDED_SETS is nonzero if the original set is still required. */
2322 static bool
2323 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2325 unsigned int regno;
2327 if (!REG_P(x))
2328 return false;
2330 regno = REGNO (x);
2331 /* Allow hard registers if the new mode is legal, and occupies no more
2332 registers than the old mode. */
2333 if (regno < FIRST_PSEUDO_REGISTER)
2334 return (HARD_REGNO_MODE_OK (regno, mode)
2335 && (hard_regno_nregs[regno][GET_MODE (x)]
2336 >= hard_regno_nregs[regno][mode]));
2338 /* Or a pseudo that is only used once. */
2339 return (REG_N_SETS (regno) == 1 && !added_sets
2340 && !REG_USERVAR_P (x));
2344 /* Check whether X, the destination of a set, refers to part of
2345 the register specified by REG. */
2347 static bool
2348 reg_subword_p (rtx x, rtx reg)
2350 /* Check that reg is an integer mode register. */
2351 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2352 return false;
2354 if (GET_CODE (x) == STRICT_LOW_PART
2355 || GET_CODE (x) == ZERO_EXTRACT)
2356 x = XEXP (x, 0);
2358 return GET_CODE (x) == SUBREG
2359 && SUBREG_REG (x) == reg
2360 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2363 #ifdef AUTO_INC_DEC
2364 /* Replace auto-increment addressing modes with explicit operations to access
2365 the same addresses without modifying the corresponding registers. */
2367 static rtx
2368 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2370 rtx x = src;
2371 const RTX_CODE code = GET_CODE (x);
2372 int i;
2373 const char *fmt;
2375 switch (code)
2377 case REG:
2378 case CONST_INT:
2379 case CONST_DOUBLE:
2380 case CONST_FIXED:
2381 case CONST_VECTOR:
2382 case SYMBOL_REF:
2383 case CODE_LABEL:
2384 case PC:
2385 case CC0:
2386 case SCRATCH:
2387 /* SCRATCH must be shared because they represent distinct values. */
2388 return x;
2389 case CLOBBER:
2390 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2391 return x;
2392 break;
2394 case CONST:
2395 if (shared_const_p (x))
2396 return x;
2397 break;
2399 case MEM:
2400 mem_mode = GET_MODE (x);
2401 break;
2403 case PRE_INC:
2404 case PRE_DEC:
2405 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2406 return gen_rtx_PLUS (GET_MODE (x),
2407 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2408 GEN_INT (code == PRE_INC
2409 ? GET_MODE_SIZE (mem_mode)
2410 : -GET_MODE_SIZE (mem_mode)));
2412 case POST_INC:
2413 case POST_DEC:
2414 case PRE_MODIFY:
2415 case POST_MODIFY:
2416 return cleanup_auto_inc_dec (code == PRE_MODIFY
2417 ? XEXP (x, 1) : XEXP (x, 0),
2418 mem_mode);
2420 default:
2421 break;
2424 /* Copy the various flags, fields, and other information. We assume
2425 that all fields need copying, and then clear the fields that should
2426 not be copied. That is the sensible default behavior, and forces
2427 us to explicitly document why we are *not* copying a flag. */
2428 x = shallow_copy_rtx (x);
2430 /* We do not copy the USED flag, which is used as a mark bit during
2431 walks over the RTL. */
2432 RTX_FLAG (x, used) = 0;
2434 /* We do not copy FRAME_RELATED for INSNs. */
2435 if (INSN_P (x))
2436 RTX_FLAG (x, frame_related) = 0;
2438 fmt = GET_RTX_FORMAT (code);
2439 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2440 if (fmt[i] == 'e')
2441 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2442 else if (fmt[i] == 'E' || fmt[i] == 'V')
2444 int j;
2445 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2446 for (j = 0; j < XVECLEN (x, i); j++)
2447 XVECEXP (x, i, j)
2448 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2451 return x;
2453 #endif
2455 /* Auxiliary data structure for propagate_for_debug_stmt. */
2457 struct rtx_subst_pair
2459 rtx to;
2460 bool adjusted;
2463 /* DATA points to an rtx_subst_pair. Return the value that should be
2464 substituted. */
2466 static rtx
2467 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2469 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2471 if (!rtx_equal_p (from, old_rtx))
2472 return NULL_RTX;
2473 if (!pair->adjusted)
2475 pair->adjusted = true;
2476 #ifdef AUTO_INC_DEC
2477 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2478 #else
2479 pair->to = copy_rtx (pair->to);
2480 #endif
2481 pair->to = make_compound_operation (pair->to, SET);
2482 return pair->to;
2484 return copy_rtx (pair->to);
2487 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2488 and LAST, not including INSN, but including LAST. Also stop at the end
2489 of THIS_BASIC_BLOCK. */
2491 static void
2492 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2494 rtx next, loc, end = NEXT_INSN (BB_END (this_basic_block));
2496 struct rtx_subst_pair p;
2497 p.to = src;
2498 p.adjusted = false;
2500 next = NEXT_INSN (insn);
2501 last = NEXT_INSN (last);
2502 while (next != last && next != end)
2504 insn = next;
2505 next = NEXT_INSN (insn);
2506 if (DEBUG_INSN_P (insn))
2508 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2509 dest, propagate_for_debug_subst, &p);
2510 if (loc == INSN_VAR_LOCATION_LOC (insn))
2511 continue;
2512 INSN_VAR_LOCATION_LOC (insn) = loc;
2513 df_insn_rescan (insn);
2518 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2519 Note that the INSN should be deleted *after* removing dead edges, so
2520 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2521 but not for a (set (pc) (label_ref FOO)). */
2523 static void
2524 update_cfg_for_uncondjump (rtx insn)
2526 basic_block bb = BLOCK_FOR_INSN (insn);
2527 gcc_assert (BB_END (bb) == insn);
2529 purge_dead_edges (bb);
2531 delete_insn (insn);
2532 if (EDGE_COUNT (bb->succs) == 1)
2534 rtx insn;
2536 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2538 /* Remove barriers from the footer if there are any. */
2539 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2540 if (BARRIER_P (insn))
2542 if (PREV_INSN (insn))
2543 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2544 else
2545 BB_FOOTER (bb) = NEXT_INSN (insn);
2546 if (NEXT_INSN (insn))
2547 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2549 else if (LABEL_P (insn))
2550 break;
2554 /* Try to combine the insns I0, I1 and I2 into I3.
2555 Here I0, I1 and I2 appear earlier than I3.
2556 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2559 If we are combining more than two insns and the resulting insn is not
2560 recognized, try splitting it into two insns. If that happens, I2 and I3
2561 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2562 Otherwise, I0, I1 and I2 are pseudo-deleted.
2564 Return 0 if the combination does not work. Then nothing is changed.
2565 If we did the combination, return the insn at which combine should
2566 resume scanning.
2568 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2569 new direct jump instruction.
2571 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2572 been I3 passed to an earlier try_combine within the same basic
2573 block. */
2575 static rtx
2576 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2577 rtx last_combined_insn)
2579 /* New patterns for I3 and I2, respectively. */
2580 rtx newpat, newi2pat = 0;
2581 rtvec newpat_vec_with_clobbers = 0;
2582 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2583 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2584 dead. */
2585 int added_sets_0, added_sets_1, added_sets_2;
2586 /* Total number of SETs to put into I3. */
2587 int total_sets;
2588 /* Nonzero if I2's or I1's body now appears in I3. */
2589 int i2_is_used = 0, i1_is_used = 0;
2590 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2591 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2592 /* Contains I3 if the destination of I3 is used in its source, which means
2593 that the old life of I3 is being killed. If that usage is placed into
2594 I2 and not in I3, a REG_DEAD note must be made. */
2595 rtx i3dest_killed = 0;
2596 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2597 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2598 /* Copy of SET_SRC of I1 and I0, if needed. */
2599 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2600 /* Set if I2DEST was reused as a scratch register. */
2601 bool i2scratch = false;
2602 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2603 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2604 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2605 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2606 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2607 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2608 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2609 /* Notes that must be added to REG_NOTES in I3 and I2. */
2610 rtx new_i3_notes, new_i2_notes;
2611 /* Notes that we substituted I3 into I2 instead of the normal case. */
2612 int i3_subst_into_i2 = 0;
2613 /* Notes that I1, I2 or I3 is a MULT operation. */
2614 int have_mult = 0;
2615 int swap_i2i3 = 0;
2616 int changed_i3_dest = 0;
2618 int maxreg;
2619 rtx temp;
2620 struct insn_link *link;
2621 rtx other_pat = 0;
2622 rtx new_other_notes;
2623 int i;
2625 /* Only try four-insn combinations when there's high likelihood of
2626 success. Look for simple insns, such as loads of constants or
2627 binary operations involving a constant. */
2628 if (i0)
2630 int i;
2631 int ngood = 0;
2632 int nshift = 0;
2634 if (!flag_expensive_optimizations)
2635 return 0;
2637 for (i = 0; i < 4; i++)
2639 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2640 rtx set = single_set (insn);
2641 rtx src;
2642 if (!set)
2643 continue;
2644 src = SET_SRC (set);
2645 if (CONSTANT_P (src))
2647 ngood += 2;
2648 break;
2650 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2651 ngood++;
2652 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2653 || GET_CODE (src) == LSHIFTRT)
2654 nshift++;
2656 if (ngood < 2 && nshift < 2)
2657 return 0;
2660 /* Exit early if one of the insns involved can't be used for
2661 combinations. */
2662 if (cant_combine_insn_p (i3)
2663 || cant_combine_insn_p (i2)
2664 || (i1 && cant_combine_insn_p (i1))
2665 || (i0 && cant_combine_insn_p (i0))
2666 || likely_spilled_retval_p (i3))
2667 return 0;
2669 combine_attempts++;
2670 undobuf.other_insn = 0;
2672 /* Reset the hard register usage information. */
2673 CLEAR_HARD_REG_SET (newpat_used_regs);
2675 if (dump_file && (dump_flags & TDF_DETAILS))
2677 if (i0)
2678 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2679 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2680 else if (i1)
2681 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2682 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2683 else
2684 fprintf (dump_file, "\nTrying %d -> %d:\n",
2685 INSN_UID (i2), INSN_UID (i3));
2688 /* If multiple insns feed into one of I2 or I3, they can be in any
2689 order. To simplify the code below, reorder them in sequence. */
2690 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2691 temp = i2, i2 = i0, i0 = temp;
2692 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2693 temp = i1, i1 = i0, i0 = temp;
2694 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2695 temp = i1, i1 = i2, i2 = temp;
2697 added_links_insn = 0;
2699 /* First check for one important special case that the code below will
2700 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2701 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2702 we may be able to replace that destination with the destination of I3.
2703 This occurs in the common code where we compute both a quotient and
2704 remainder into a structure, in which case we want to do the computation
2705 directly into the structure to avoid register-register copies.
2707 Note that this case handles both multiple sets in I2 and also cases
2708 where I2 has a number of CLOBBERs inside the PARALLEL.
2710 We make very conservative checks below and only try to handle the
2711 most common cases of this. For example, we only handle the case
2712 where I2 and I3 are adjacent to avoid making difficult register
2713 usage tests. */
2715 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2716 && REG_P (SET_SRC (PATTERN (i3)))
2717 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2718 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2719 && GET_CODE (PATTERN (i2)) == PARALLEL
2720 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2721 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2722 below would need to check what is inside (and reg_overlap_mentioned_p
2723 doesn't support those codes anyway). Don't allow those destinations;
2724 the resulting insn isn't likely to be recognized anyway. */
2725 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2726 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2727 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2728 SET_DEST (PATTERN (i3)))
2729 && next_active_insn (i2) == i3)
2731 rtx p2 = PATTERN (i2);
2733 /* Make sure that the destination of I3,
2734 which we are going to substitute into one output of I2,
2735 is not used within another output of I2. We must avoid making this:
2736 (parallel [(set (mem (reg 69)) ...)
2737 (set (reg 69) ...)])
2738 which is not well-defined as to order of actions.
2739 (Besides, reload can't handle output reloads for this.)
2741 The problem can also happen if the dest of I3 is a memory ref,
2742 if another dest in I2 is an indirect memory ref. */
2743 for (i = 0; i < XVECLEN (p2, 0); i++)
2744 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2745 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2746 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2747 SET_DEST (XVECEXP (p2, 0, i))))
2748 break;
2750 if (i == XVECLEN (p2, 0))
2751 for (i = 0; i < XVECLEN (p2, 0); i++)
2752 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2753 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2755 combine_merges++;
2757 subst_insn = i3;
2758 subst_low_luid = DF_INSN_LUID (i2);
2760 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2761 i2src = SET_SRC (XVECEXP (p2, 0, i));
2762 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2763 i2dest_killed = dead_or_set_p (i2, i2dest);
2765 /* Replace the dest in I2 with our dest and make the resulting
2766 insn the new pattern for I3. Then skip to where we validate
2767 the pattern. Everything was set up above. */
2768 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2769 newpat = p2;
2770 i3_subst_into_i2 = 1;
2771 goto validate_replacement;
2775 /* If I2 is setting a pseudo to a constant and I3 is setting some
2776 sub-part of it to another constant, merge them by making a new
2777 constant. */
2778 if (i1 == 0
2779 && (temp = single_set (i2)) != 0
2780 && (CONST_INT_P (SET_SRC (temp))
2781 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2782 && GET_CODE (PATTERN (i3)) == SET
2783 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2784 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2785 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2787 rtx dest = SET_DEST (PATTERN (i3));
2788 int offset = -1;
2789 int width = 0;
2791 if (GET_CODE (dest) == ZERO_EXTRACT)
2793 if (CONST_INT_P (XEXP (dest, 1))
2794 && CONST_INT_P (XEXP (dest, 2)))
2796 width = INTVAL (XEXP (dest, 1));
2797 offset = INTVAL (XEXP (dest, 2));
2798 dest = XEXP (dest, 0);
2799 if (BITS_BIG_ENDIAN)
2800 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2803 else
2805 if (GET_CODE (dest) == STRICT_LOW_PART)
2806 dest = XEXP (dest, 0);
2807 width = GET_MODE_PRECISION (GET_MODE (dest));
2808 offset = 0;
2811 if (offset >= 0)
2813 /* If this is the low part, we're done. */
2814 if (subreg_lowpart_p (dest))
2816 /* Handle the case where inner is twice the size of outer. */
2817 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2818 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2819 offset += GET_MODE_PRECISION (GET_MODE (dest));
2820 /* Otherwise give up for now. */
2821 else
2822 offset = -1;
2825 if (offset >= 0
2826 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2827 <= HOST_BITS_PER_DOUBLE_INT))
2829 double_int m, o, i;
2830 rtx inner = SET_SRC (PATTERN (i3));
2831 rtx outer = SET_SRC (temp);
2833 o = rtx_to_double_int (outer);
2834 i = rtx_to_double_int (inner);
2836 m = double_int_mask (width);
2837 i = double_int_and (i, m);
2838 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2839 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2840 o = double_int_ior (double_int_and_not (o, m), i);
2842 combine_merges++;
2843 subst_insn = i3;
2844 subst_low_luid = DF_INSN_LUID (i2);
2845 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2846 i2dest = SET_DEST (temp);
2847 i2dest_killed = dead_or_set_p (i2, i2dest);
2849 /* Replace the source in I2 with the new constant and make the
2850 resulting insn the new pattern for I3. Then skip to where we
2851 validate the pattern. Everything was set up above. */
2852 SUBST (SET_SRC (temp),
2853 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2855 newpat = PATTERN (i2);
2857 /* The dest of I3 has been replaced with the dest of I2. */
2858 changed_i3_dest = 1;
2859 goto validate_replacement;
2863 #ifndef HAVE_cc0
2864 /* If we have no I1 and I2 looks like:
2865 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2866 (set Y OP)])
2867 make up a dummy I1 that is
2868 (set Y OP)
2869 and change I2 to be
2870 (set (reg:CC X) (compare:CC Y (const_int 0)))
2872 (We can ignore any trailing CLOBBERs.)
2874 This undoes a previous combination and allows us to match a branch-and-
2875 decrement insn. */
2877 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2878 && XVECLEN (PATTERN (i2), 0) >= 2
2879 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2880 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2881 == MODE_CC)
2882 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2883 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2884 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2885 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2886 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2887 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2889 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2890 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2891 break;
2893 if (i == 1)
2895 /* We make I1 with the same INSN_UID as I2. This gives it
2896 the same DF_INSN_LUID for value tracking. Our fake I1 will
2897 never appear in the insn stream so giving it the same INSN_UID
2898 as I2 will not cause a problem. */
2900 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2901 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2902 INSN_LOCATOR (i2), -1, NULL_RTX);
2904 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2905 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2906 SET_DEST (PATTERN (i1)));
2907 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2910 #endif
2912 /* Verify that I2 and I1 are valid for combining. */
2913 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2914 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2915 &i1dest, &i1src))
2916 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2917 &i0dest, &i0src)))
2919 undo_all ();
2920 return 0;
2923 /* Record whether I2DEST is used in I2SRC and similarly for the other
2924 cases. Knowing this will help in register status updating below. */
2925 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2926 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2927 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2928 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2929 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2930 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2931 i2dest_killed = dead_or_set_p (i2, i2dest);
2932 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2933 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2935 /* For the earlier insns, determine which of the subsequent ones they
2936 feed. */
2937 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2938 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2939 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2940 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2941 && reg_overlap_mentioned_p (i0dest, i2src))));
2943 /* Ensure that I3's pattern can be the destination of combines. */
2944 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2945 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2946 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2947 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2948 &i3dest_killed))
2950 undo_all ();
2951 return 0;
2954 /* See if any of the insns is a MULT operation. Unless one is, we will
2955 reject a combination that is, since it must be slower. Be conservative
2956 here. */
2957 if (GET_CODE (i2src) == MULT
2958 || (i1 != 0 && GET_CODE (i1src) == MULT)
2959 || (i0 != 0 && GET_CODE (i0src) == MULT)
2960 || (GET_CODE (PATTERN (i3)) == SET
2961 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2962 have_mult = 1;
2964 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2965 We used to do this EXCEPT in one case: I3 has a post-inc in an
2966 output operand. However, that exception can give rise to insns like
2967 mov r3,(r3)+
2968 which is a famous insn on the PDP-11 where the value of r3 used as the
2969 source was model-dependent. Avoid this sort of thing. */
2971 #if 0
2972 if (!(GET_CODE (PATTERN (i3)) == SET
2973 && REG_P (SET_SRC (PATTERN (i3)))
2974 && MEM_P (SET_DEST (PATTERN (i3)))
2975 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2976 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2977 /* It's not the exception. */
2978 #endif
2979 #ifdef AUTO_INC_DEC
2981 rtx link;
2982 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2983 if (REG_NOTE_KIND (link) == REG_INC
2984 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2985 || (i1 != 0
2986 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2988 undo_all ();
2989 return 0;
2992 #endif
2994 /* See if the SETs in I1 or I2 need to be kept around in the merged
2995 instruction: whenever the value set there is still needed past I3.
2996 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2998 For the SET in I1, we have two cases: If I1 and I2 independently
2999 feed into I3, the set in I1 needs to be kept around if I1DEST dies
3000 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3001 in I1 needs to be kept around unless I1DEST dies or is set in either
3002 I2 or I3. The same consideration applies to I0. */
3004 added_sets_2 = !dead_or_set_p (i3, i2dest);
3006 if (i1)
3007 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3008 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3009 else
3010 added_sets_1 = 0;
3012 if (i0)
3013 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3014 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3015 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
3016 else
3017 added_sets_0 = 0;
3019 /* We are about to copy insns for the case where they need to be kept
3020 around. Check that they can be copied in the merged instruction. */
3022 if (targetm.cannot_copy_insn_p
3023 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3024 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3025 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3027 undo_all ();
3028 return 0;
3031 /* If the set in I2 needs to be kept around, we must make a copy of
3032 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3033 PATTERN (I2), we are only substituting for the original I1DEST, not into
3034 an already-substituted copy. This also prevents making self-referential
3035 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3036 I2DEST. */
3038 if (added_sets_2)
3040 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3041 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
3042 else
3043 i2pat = copy_rtx (PATTERN (i2));
3046 if (added_sets_1)
3048 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3049 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
3050 else
3051 i1pat = copy_rtx (PATTERN (i1));
3054 if (added_sets_0)
3056 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3057 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
3058 else
3059 i0pat = copy_rtx (PATTERN (i0));
3062 combine_merges++;
3064 /* Substitute in the latest insn for the regs set by the earlier ones. */
3066 maxreg = max_reg_num ();
3068 subst_insn = i3;
3070 #ifndef HAVE_cc0
3071 /* Many machines that don't use CC0 have insns that can both perform an
3072 arithmetic operation and set the condition code. These operations will
3073 be represented as a PARALLEL with the first element of the vector
3074 being a COMPARE of an arithmetic operation with the constant zero.
3075 The second element of the vector will set some pseudo to the result
3076 of the same arithmetic operation. If we simplify the COMPARE, we won't
3077 match such a pattern and so will generate an extra insn. Here we test
3078 for this case, where both the comparison and the operation result are
3079 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3080 I2SRC. Later we will make the PARALLEL that contains I2. */
3082 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3083 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3084 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3085 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3087 rtx newpat_dest;
3088 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
3089 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3090 enum machine_mode compare_mode, orig_compare_mode;
3091 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3093 newpat = PATTERN (i3);
3094 newpat_dest = SET_DEST (newpat);
3095 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3097 if (undobuf.other_insn == 0
3098 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3099 &cc_use_insn)))
3101 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3102 compare_code = simplify_compare_const (compare_code,
3103 op0, &op1);
3104 #ifdef CANONICALIZE_COMPARISON
3105 CANONICALIZE_COMPARISON (compare_code, op0, op1);
3106 #endif
3109 /* Do the rest only if op1 is const0_rtx, which may be the
3110 result of simplification. */
3111 if (op1 == const0_rtx)
3113 /* If a single use of the CC is found, prepare to modify it
3114 when SELECT_CC_MODE returns a new CC-class mode, or when
3115 the above simplify_compare_const() returned a new comparison
3116 operator. undobuf.other_insn is assigned the CC use insn
3117 when modifying it. */
3118 if (cc_use_loc)
3120 #ifdef SELECT_CC_MODE
3121 enum machine_mode new_mode
3122 = SELECT_CC_MODE (compare_code, op0, op1);
3123 if (new_mode != orig_compare_mode
3124 && can_change_dest_mode (SET_DEST (newpat),
3125 added_sets_2, new_mode))
3127 unsigned int regno = REGNO (newpat_dest);
3128 compare_mode = new_mode;
3129 if (regno < FIRST_PSEUDO_REGISTER)
3130 newpat_dest = gen_rtx_REG (compare_mode, regno);
3131 else
3133 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3134 newpat_dest = regno_reg_rtx[regno];
3137 #endif
3138 /* Cases for modifying the CC-using comparison. */
3139 if (compare_code != orig_compare_code
3140 /* ??? Do we need to verify the zero rtx? */
3141 && XEXP (*cc_use_loc, 1) == const0_rtx)
3143 /* Replace cc_use_loc with entire new RTX. */
3144 SUBST (*cc_use_loc,
3145 gen_rtx_fmt_ee (compare_code, compare_mode,
3146 newpat_dest, const0_rtx));
3147 undobuf.other_insn = cc_use_insn;
3149 else if (compare_mode != orig_compare_mode)
3151 /* Just replace the CC reg with a new mode. */
3152 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3153 undobuf.other_insn = cc_use_insn;
3157 /* Now we modify the current newpat:
3158 First, SET_DEST(newpat) is updated if the CC mode has been
3159 altered. For targets without SELECT_CC_MODE, this should be
3160 optimized away. */
3161 if (compare_mode != orig_compare_mode)
3162 SUBST (SET_DEST (newpat), newpat_dest);
3163 /* This is always done to propagate i2src into newpat. */
3164 SUBST (SET_SRC (newpat),
3165 gen_rtx_COMPARE (compare_mode, op0, op1));
3166 /* Create new version of i2pat if needed; the below PARALLEL
3167 creation needs this to work correctly. */
3168 if (! rtx_equal_p (i2src, op0))
3169 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3170 i2_is_used = 1;
3173 #endif
3175 if (i2_is_used == 0)
3177 /* It is possible that the source of I2 or I1 may be performing
3178 an unneeded operation, such as a ZERO_EXTEND of something
3179 that is known to have the high part zero. Handle that case
3180 by letting subst look at the inner insns.
3182 Another way to do this would be to have a function that tries
3183 to simplify a single insn instead of merging two or more
3184 insns. We don't do this because of the potential of infinite
3185 loops and because of the potential extra memory required.
3186 However, doing it the way we are is a bit of a kludge and
3187 doesn't catch all cases.
3189 But only do this if -fexpensive-optimizations since it slows
3190 things down and doesn't usually win.
3192 This is not done in the COMPARE case above because the
3193 unmodified I2PAT is used in the PARALLEL and so a pattern
3194 with a modified I2SRC would not match. */
3196 if (flag_expensive_optimizations)
3198 /* Pass pc_rtx so no substitutions are done, just
3199 simplifications. */
3200 if (i1)
3202 subst_low_luid = DF_INSN_LUID (i1);
3203 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3206 subst_low_luid = DF_INSN_LUID (i2);
3207 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3210 n_occurrences = 0; /* `subst' counts here */
3211 subst_low_luid = DF_INSN_LUID (i2);
3213 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3214 copy of I2SRC each time we substitute it, in order to avoid creating
3215 self-referential RTL when we will be substituting I1SRC for I1DEST
3216 later. Likewise if I0 feeds into I2, either directly or indirectly
3217 through I1, and I0DEST is in I0SRC. */
3218 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3219 (i1_feeds_i2_n && i1dest_in_i1src)
3220 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3221 && i0dest_in_i0src));
3222 substed_i2 = 1;
3224 /* Record whether I2's body now appears within I3's body. */
3225 i2_is_used = n_occurrences;
3228 /* If we already got a failure, don't try to do more. Otherwise, try to
3229 substitute I1 if we have it. */
3231 if (i1 && GET_CODE (newpat) != CLOBBER)
3233 /* Check that an autoincrement side-effect on I1 has not been lost.
3234 This happens if I1DEST is mentioned in I2 and dies there, and
3235 has disappeared from the new pattern. */
3236 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3237 && i1_feeds_i2_n
3238 && dead_or_set_p (i2, i1dest)
3239 && !reg_overlap_mentioned_p (i1dest, newpat))
3240 /* Before we can do this substitution, we must redo the test done
3241 above (see detailed comments there) that ensures I1DEST isn't
3242 mentioned in any SETs in NEWPAT that are field assignments. */
3243 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3244 0, 0, 0))
3246 undo_all ();
3247 return 0;
3250 n_occurrences = 0;
3251 subst_low_luid = DF_INSN_LUID (i1);
3253 /* If the following substitution will modify I1SRC, make a copy of it
3254 for the case where it is substituted for I1DEST in I2PAT later. */
3255 if (added_sets_2 && i1_feeds_i2_n)
3256 i1src_copy = copy_rtx (i1src);
3258 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3259 copy of I1SRC each time we substitute it, in order to avoid creating
3260 self-referential RTL when we will be substituting I0SRC for I0DEST
3261 later. */
3262 newpat = subst (newpat, i1dest, i1src, 0, 0,
3263 i0_feeds_i1_n && i0dest_in_i0src);
3264 substed_i1 = 1;
3266 /* Record whether I1's body now appears within I3's body. */
3267 i1_is_used = n_occurrences;
3270 /* Likewise for I0 if we have it. */
3272 if (i0 && GET_CODE (newpat) != CLOBBER)
3274 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3275 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3276 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3277 && !reg_overlap_mentioned_p (i0dest, newpat))
3278 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3279 0, 0, 0))
3281 undo_all ();
3282 return 0;
3285 /* If the following substitution will modify I0SRC, make a copy of it
3286 for the case where it is substituted for I0DEST in I1PAT later. */
3287 if (added_sets_1 && i0_feeds_i1_n)
3288 i0src_copy = copy_rtx (i0src);
3289 /* And a copy for I0DEST in I2PAT substitution. */
3290 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3291 || (i0_feeds_i2_n)))
3292 i0src_copy2 = copy_rtx (i0src);
3294 n_occurrences = 0;
3295 subst_low_luid = DF_INSN_LUID (i0);
3296 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3297 substed_i0 = 1;
3300 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3301 to count all the ways that I2SRC and I1SRC can be used. */
3302 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3303 && i2_is_used + added_sets_2 > 1)
3304 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3305 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3306 > 1))
3307 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3308 && (n_occurrences + added_sets_0
3309 + (added_sets_1 && i0_feeds_i1_n)
3310 + (added_sets_2 && i0_feeds_i2_n)
3311 > 1))
3312 /* Fail if we tried to make a new register. */
3313 || max_reg_num () != maxreg
3314 /* Fail if we couldn't do something and have a CLOBBER. */
3315 || GET_CODE (newpat) == CLOBBER
3316 /* Fail if this new pattern is a MULT and we didn't have one before
3317 at the outer level. */
3318 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3319 && ! have_mult))
3321 undo_all ();
3322 return 0;
3325 /* If the actions of the earlier insns must be kept
3326 in addition to substituting them into the latest one,
3327 we must make a new PARALLEL for the latest insn
3328 to hold additional the SETs. */
3330 if (added_sets_0 || added_sets_1 || added_sets_2)
3332 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3333 combine_extras++;
3335 if (GET_CODE (newpat) == PARALLEL)
3337 rtvec old = XVEC (newpat, 0);
3338 total_sets = XVECLEN (newpat, 0) + extra_sets;
3339 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3340 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3341 sizeof (old->elem[0]) * old->num_elem);
3343 else
3345 rtx old = newpat;
3346 total_sets = 1 + extra_sets;
3347 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3348 XVECEXP (newpat, 0, 0) = old;
3351 if (added_sets_0)
3352 XVECEXP (newpat, 0, --total_sets) = i0pat;
3354 if (added_sets_1)
3356 rtx t = i1pat;
3357 if (i0_feeds_i1_n)
3358 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3360 XVECEXP (newpat, 0, --total_sets) = t;
3362 if (added_sets_2)
3364 rtx t = i2pat;
3365 if (i1_feeds_i2_n)
3366 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3367 i0_feeds_i1_n && i0dest_in_i0src);
3368 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3369 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3371 XVECEXP (newpat, 0, --total_sets) = t;
3375 validate_replacement:
3377 /* Note which hard regs this insn has as inputs. */
3378 mark_used_regs_combine (newpat);
3380 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3381 consider splitting this pattern, we might need these clobbers. */
3382 if (i1 && GET_CODE (newpat) == PARALLEL
3383 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3385 int len = XVECLEN (newpat, 0);
3387 newpat_vec_with_clobbers = rtvec_alloc (len);
3388 for (i = 0; i < len; i++)
3389 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3392 /* Is the result of combination a valid instruction? */
3393 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3395 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3396 the second SET's destination is a register that is unused and isn't
3397 marked as an instruction that might trap in an EH region. In that case,
3398 we just need the first SET. This can occur when simplifying a divmod
3399 insn. We *must* test for this case here because the code below that
3400 splits two independent SETs doesn't handle this case correctly when it
3401 updates the register status.
3403 It's pointless doing this if we originally had two sets, one from
3404 i3, and one from i2. Combining then splitting the parallel results
3405 in the original i2 again plus an invalid insn (which we delete).
3406 The net effect is only to move instructions around, which makes
3407 debug info less accurate.
3409 Also check the case where the first SET's destination is unused.
3410 That would not cause incorrect code, but does cause an unneeded
3411 insn to remain. */
3413 if (insn_code_number < 0
3414 && !(added_sets_2 && i1 == 0)
3415 && GET_CODE (newpat) == PARALLEL
3416 && XVECLEN (newpat, 0) == 2
3417 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3418 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3419 && asm_noperands (newpat) < 0)
3421 rtx set0 = XVECEXP (newpat, 0, 0);
3422 rtx set1 = XVECEXP (newpat, 0, 1);
3424 if (((REG_P (SET_DEST (set1))
3425 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3426 || (GET_CODE (SET_DEST (set1)) == SUBREG
3427 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3428 && insn_nothrow_p (i3)
3429 && !side_effects_p (SET_SRC (set1)))
3431 newpat = set0;
3432 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3435 else if (((REG_P (SET_DEST (set0))
3436 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3437 || (GET_CODE (SET_DEST (set0)) == SUBREG
3438 && find_reg_note (i3, REG_UNUSED,
3439 SUBREG_REG (SET_DEST (set0)))))
3440 && insn_nothrow_p (i3)
3441 && !side_effects_p (SET_SRC (set0)))
3443 newpat = set1;
3444 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3446 if (insn_code_number >= 0)
3447 changed_i3_dest = 1;
3451 /* If we were combining three insns and the result is a simple SET
3452 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3453 insns. There are two ways to do this. It can be split using a
3454 machine-specific method (like when you have an addition of a large
3455 constant) or by combine in the function find_split_point. */
3457 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3458 && asm_noperands (newpat) < 0)
3460 rtx parallel, m_split, *split;
3462 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3463 use I2DEST as a scratch register will help. In the latter case,
3464 convert I2DEST to the mode of the source of NEWPAT if we can. */
3466 m_split = combine_split_insns (newpat, i3);
3468 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3469 inputs of NEWPAT. */
3471 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3472 possible to try that as a scratch reg. This would require adding
3473 more code to make it work though. */
3475 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3477 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3479 /* First try to split using the original register as a
3480 scratch register. */
3481 parallel = gen_rtx_PARALLEL (VOIDmode,
3482 gen_rtvec (2, newpat,
3483 gen_rtx_CLOBBER (VOIDmode,
3484 i2dest)));
3485 m_split = combine_split_insns (parallel, i3);
3487 /* If that didn't work, try changing the mode of I2DEST if
3488 we can. */
3489 if (m_split == 0
3490 && new_mode != GET_MODE (i2dest)
3491 && new_mode != VOIDmode
3492 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3494 enum machine_mode old_mode = GET_MODE (i2dest);
3495 rtx ni2dest;
3497 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3498 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3499 else
3501 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3502 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3505 parallel = (gen_rtx_PARALLEL
3506 (VOIDmode,
3507 gen_rtvec (2, newpat,
3508 gen_rtx_CLOBBER (VOIDmode,
3509 ni2dest))));
3510 m_split = combine_split_insns (parallel, i3);
3512 if (m_split == 0
3513 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3515 struct undo *buf;
3517 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3518 buf = undobuf.undos;
3519 undobuf.undos = buf->next;
3520 buf->next = undobuf.frees;
3521 undobuf.frees = buf;
3525 i2scratch = m_split != 0;
3528 /* If recog_for_combine has discarded clobbers, try to use them
3529 again for the split. */
3530 if (m_split == 0 && newpat_vec_with_clobbers)
3532 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3533 m_split = combine_split_insns (parallel, i3);
3536 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3538 m_split = PATTERN (m_split);
3539 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3540 if (insn_code_number >= 0)
3541 newpat = m_split;
3543 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3544 && (next_nonnote_nondebug_insn (i2) == i3
3545 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3547 rtx i2set, i3set;
3548 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3549 newi2pat = PATTERN (m_split);
3551 i3set = single_set (NEXT_INSN (m_split));
3552 i2set = single_set (m_split);
3554 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3556 /* If I2 or I3 has multiple SETs, we won't know how to track
3557 register status, so don't use these insns. If I2's destination
3558 is used between I2 and I3, we also can't use these insns. */
3560 if (i2_code_number >= 0 && i2set && i3set
3561 && (next_nonnote_nondebug_insn (i2) == i3
3562 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3563 insn_code_number = recog_for_combine (&newi3pat, i3,
3564 &new_i3_notes);
3565 if (insn_code_number >= 0)
3566 newpat = newi3pat;
3568 /* It is possible that both insns now set the destination of I3.
3569 If so, we must show an extra use of it. */
3571 if (insn_code_number >= 0)
3573 rtx new_i3_dest = SET_DEST (i3set);
3574 rtx new_i2_dest = SET_DEST (i2set);
3576 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3577 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3578 || GET_CODE (new_i3_dest) == SUBREG)
3579 new_i3_dest = XEXP (new_i3_dest, 0);
3581 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3582 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3583 || GET_CODE (new_i2_dest) == SUBREG)
3584 new_i2_dest = XEXP (new_i2_dest, 0);
3586 if (REG_P (new_i3_dest)
3587 && REG_P (new_i2_dest)
3588 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3589 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3593 /* If we can split it and use I2DEST, go ahead and see if that
3594 helps things be recognized. Verify that none of the registers
3595 are set between I2 and I3. */
3596 if (insn_code_number < 0
3597 && (split = find_split_point (&newpat, i3, false)) != 0
3598 #ifdef HAVE_cc0
3599 && REG_P (i2dest)
3600 #endif
3601 /* We need I2DEST in the proper mode. If it is a hard register
3602 or the only use of a pseudo, we can change its mode.
3603 Make sure we don't change a hard register to have a mode that
3604 isn't valid for it, or change the number of registers. */
3605 && (GET_MODE (*split) == GET_MODE (i2dest)
3606 || GET_MODE (*split) == VOIDmode
3607 || can_change_dest_mode (i2dest, added_sets_2,
3608 GET_MODE (*split)))
3609 && (next_nonnote_nondebug_insn (i2) == i3
3610 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3611 /* We can't overwrite I2DEST if its value is still used by
3612 NEWPAT. */
3613 && ! reg_referenced_p (i2dest, newpat))
3615 rtx newdest = i2dest;
3616 enum rtx_code split_code = GET_CODE (*split);
3617 enum machine_mode split_mode = GET_MODE (*split);
3618 bool subst_done = false;
3619 newi2pat = NULL_RTX;
3621 i2scratch = true;
3623 /* *SPLIT may be part of I2SRC, so make sure we have the
3624 original expression around for later debug processing.
3625 We should not need I2SRC any more in other cases. */
3626 if (MAY_HAVE_DEBUG_INSNS)
3627 i2src = copy_rtx (i2src);
3628 else
3629 i2src = NULL;
3631 /* Get NEWDEST as a register in the proper mode. We have already
3632 validated that we can do this. */
3633 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3635 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3636 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3637 else
3639 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3640 newdest = regno_reg_rtx[REGNO (i2dest)];
3644 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3645 an ASHIFT. This can occur if it was inside a PLUS and hence
3646 appeared to be a memory address. This is a kludge. */
3647 if (split_code == MULT
3648 && CONST_INT_P (XEXP (*split, 1))
3649 && INTVAL (XEXP (*split, 1)) > 0
3650 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3652 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3653 XEXP (*split, 0), GEN_INT (i)));
3654 /* Update split_code because we may not have a multiply
3655 anymore. */
3656 split_code = GET_CODE (*split);
3659 #ifdef INSN_SCHEDULING
3660 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3661 be written as a ZERO_EXTEND. */
3662 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3664 #ifdef LOAD_EXTEND_OP
3665 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3666 what it really is. */
3667 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3668 == SIGN_EXTEND)
3669 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3670 SUBREG_REG (*split)));
3671 else
3672 #endif
3673 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3674 SUBREG_REG (*split)));
3676 #endif
3678 /* Attempt to split binary operators using arithmetic identities. */
3679 if (BINARY_P (SET_SRC (newpat))
3680 && split_mode == GET_MODE (SET_SRC (newpat))
3681 && ! side_effects_p (SET_SRC (newpat)))
3683 rtx setsrc = SET_SRC (newpat);
3684 enum machine_mode mode = GET_MODE (setsrc);
3685 enum rtx_code code = GET_CODE (setsrc);
3686 rtx src_op0 = XEXP (setsrc, 0);
3687 rtx src_op1 = XEXP (setsrc, 1);
3689 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3690 if (rtx_equal_p (src_op0, src_op1))
3692 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3693 SUBST (XEXP (setsrc, 0), newdest);
3694 SUBST (XEXP (setsrc, 1), newdest);
3695 subst_done = true;
3697 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3698 else if ((code == PLUS || code == MULT)
3699 && GET_CODE (src_op0) == code
3700 && GET_CODE (XEXP (src_op0, 0)) == code
3701 && (INTEGRAL_MODE_P (mode)
3702 || (FLOAT_MODE_P (mode)
3703 && flag_unsafe_math_optimizations)))
3705 rtx p = XEXP (XEXP (src_op0, 0), 0);
3706 rtx q = XEXP (XEXP (src_op0, 0), 1);
3707 rtx r = XEXP (src_op0, 1);
3708 rtx s = src_op1;
3710 /* Split both "((X op Y) op X) op Y" and
3711 "((X op Y) op Y) op X" as "T op T" where T is
3712 "X op Y". */
3713 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3714 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3716 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3717 XEXP (src_op0, 0));
3718 SUBST (XEXP (setsrc, 0), newdest);
3719 SUBST (XEXP (setsrc, 1), newdest);
3720 subst_done = true;
3722 /* Split "((X op X) op Y) op Y)" as "T op T" where
3723 T is "X op Y". */
3724 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3726 rtx tmp = simplify_gen_binary (code, mode, p, r);
3727 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3728 SUBST (XEXP (setsrc, 0), newdest);
3729 SUBST (XEXP (setsrc, 1), newdest);
3730 subst_done = true;
3735 if (!subst_done)
3737 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3738 SUBST (*split, newdest);
3741 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3743 /* recog_for_combine might have added CLOBBERs to newi2pat.
3744 Make sure NEWPAT does not depend on the clobbered regs. */
3745 if (GET_CODE (newi2pat) == PARALLEL)
3746 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3747 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3749 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3750 if (reg_overlap_mentioned_p (reg, newpat))
3752 undo_all ();
3753 return 0;
3757 /* If the split point was a MULT and we didn't have one before,
3758 don't use one now. */
3759 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3760 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3764 /* Check for a case where we loaded from memory in a narrow mode and
3765 then sign extended it, but we need both registers. In that case,
3766 we have a PARALLEL with both loads from the same memory location.
3767 We can split this into a load from memory followed by a register-register
3768 copy. This saves at least one insn, more if register allocation can
3769 eliminate the copy.
3771 We cannot do this if the destination of the first assignment is a
3772 condition code register or cc0. We eliminate this case by making sure
3773 the SET_DEST and SET_SRC have the same mode.
3775 We cannot do this if the destination of the second assignment is
3776 a register that we have already assumed is zero-extended. Similarly
3777 for a SUBREG of such a register. */
3779 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3780 && GET_CODE (newpat) == PARALLEL
3781 && XVECLEN (newpat, 0) == 2
3782 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3783 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3784 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3785 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3786 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3787 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3788 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3789 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3790 DF_INSN_LUID (i2))
3791 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3792 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3793 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3794 (REG_P (temp)
3795 && VEC_index (reg_stat_type, reg_stat,
3796 REGNO (temp))->nonzero_bits != 0
3797 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3798 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3799 && (VEC_index (reg_stat_type, reg_stat,
3800 REGNO (temp))->nonzero_bits
3801 != GET_MODE_MASK (word_mode))))
3802 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3803 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3804 (REG_P (temp)
3805 && VEC_index (reg_stat_type, reg_stat,
3806 REGNO (temp))->nonzero_bits != 0
3807 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3808 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3809 && (VEC_index (reg_stat_type, reg_stat,
3810 REGNO (temp))->nonzero_bits
3811 != GET_MODE_MASK (word_mode)))))
3812 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3813 SET_SRC (XVECEXP (newpat, 0, 1)))
3814 && ! find_reg_note (i3, REG_UNUSED,
3815 SET_DEST (XVECEXP (newpat, 0, 0))))
3817 rtx ni2dest;
3819 newi2pat = XVECEXP (newpat, 0, 0);
3820 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3821 newpat = XVECEXP (newpat, 0, 1);
3822 SUBST (SET_SRC (newpat),
3823 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3824 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3826 if (i2_code_number >= 0)
3827 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3829 if (insn_code_number >= 0)
3830 swap_i2i3 = 1;
3833 /* Similarly, check for a case where we have a PARALLEL of two independent
3834 SETs but we started with three insns. In this case, we can do the sets
3835 as two separate insns. This case occurs when some SET allows two
3836 other insns to combine, but the destination of that SET is still live. */
3838 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3839 && GET_CODE (newpat) == PARALLEL
3840 && XVECLEN (newpat, 0) == 2
3841 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3842 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3843 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3844 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3845 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3846 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3847 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3848 XVECEXP (newpat, 0, 0))
3849 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3850 XVECEXP (newpat, 0, 1))
3851 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3852 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3854 /* Normally, it doesn't matter which of the two is done first,
3855 but the one that references cc0 can't be the second, and
3856 one which uses any regs/memory set in between i2 and i3 can't
3857 be first. */
3858 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3859 DF_INSN_LUID (i2))
3860 #ifdef HAVE_cc0
3861 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3862 #endif
3865 newi2pat = XVECEXP (newpat, 0, 1);
3866 newpat = XVECEXP (newpat, 0, 0);
3868 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3869 DF_INSN_LUID (i2))
3870 #ifdef HAVE_cc0
3871 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3872 #endif
3875 newi2pat = XVECEXP (newpat, 0, 0);
3876 newpat = XVECEXP (newpat, 0, 1);
3878 else
3880 undo_all ();
3881 return 0;
3884 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3886 if (i2_code_number >= 0)
3888 /* recog_for_combine might have added CLOBBERs to newi2pat.
3889 Make sure NEWPAT does not depend on the clobbered regs. */
3890 if (GET_CODE (newi2pat) == PARALLEL)
3892 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3893 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3895 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3896 if (reg_overlap_mentioned_p (reg, newpat))
3898 undo_all ();
3899 return 0;
3904 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3908 /* If it still isn't recognized, fail and change things back the way they
3909 were. */
3910 if ((insn_code_number < 0
3911 /* Is the result a reasonable ASM_OPERANDS? */
3912 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3914 undo_all ();
3915 return 0;
3918 /* If we had to change another insn, make sure it is valid also. */
3919 if (undobuf.other_insn)
3921 CLEAR_HARD_REG_SET (newpat_used_regs);
3923 other_pat = PATTERN (undobuf.other_insn);
3924 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3925 &new_other_notes);
3927 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3929 undo_all ();
3930 return 0;
3934 #ifdef HAVE_cc0
3935 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3936 they are adjacent to each other or not. */
3938 rtx p = prev_nonnote_insn (i3);
3939 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3940 && sets_cc0_p (newi2pat))
3942 undo_all ();
3943 return 0;
3946 #endif
3948 /* Only allow this combination if insn_rtx_costs reports that the
3949 replacement instructions are cheaper than the originals. */
3950 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3952 undo_all ();
3953 return 0;
3956 if (MAY_HAVE_DEBUG_INSNS)
3958 struct undo *undo;
3960 for (undo = undobuf.undos; undo; undo = undo->next)
3961 if (undo->kind == UNDO_MODE)
3963 rtx reg = *undo->where.r;
3964 enum machine_mode new_mode = GET_MODE (reg);
3965 enum machine_mode old_mode = undo->old_contents.m;
3967 /* Temporarily revert mode back. */
3968 adjust_reg_mode (reg, old_mode);
3970 if (reg == i2dest && i2scratch)
3972 /* If we used i2dest as a scratch register with a
3973 different mode, substitute it for the original
3974 i2src while its original mode is temporarily
3975 restored, and then clear i2scratch so that we don't
3976 do it again later. */
3977 propagate_for_debug (i2, last_combined_insn, reg, i2src);
3978 i2scratch = false;
3979 /* Put back the new mode. */
3980 adjust_reg_mode (reg, new_mode);
3982 else
3984 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3985 rtx first, last;
3987 if (reg == i2dest)
3989 first = i2;
3990 last = last_combined_insn;
3992 else
3994 first = i3;
3995 last = undobuf.other_insn;
3996 gcc_assert (last);
3997 if (DF_INSN_LUID (last)
3998 < DF_INSN_LUID (last_combined_insn))
3999 last = last_combined_insn;
4002 /* We're dealing with a reg that changed mode but not
4003 meaning, so we want to turn it into a subreg for
4004 the new mode. However, because of REG sharing and
4005 because its mode had already changed, we have to do
4006 it in two steps. First, replace any debug uses of
4007 reg, with its original mode temporarily restored,
4008 with this copy we have created; then, replace the
4009 copy with the SUBREG of the original shared reg,
4010 once again changed to the new mode. */
4011 propagate_for_debug (first, last, reg, tempreg);
4012 adjust_reg_mode (reg, new_mode);
4013 propagate_for_debug (first, last, tempreg,
4014 lowpart_subreg (old_mode, reg, new_mode));
4019 /* If we will be able to accept this, we have made a
4020 change to the destination of I3. This requires us to
4021 do a few adjustments. */
4023 if (changed_i3_dest)
4025 PATTERN (i3) = newpat;
4026 adjust_for_new_dest (i3);
4029 /* We now know that we can do this combination. Merge the insns and
4030 update the status of registers and LOG_LINKS. */
4032 if (undobuf.other_insn)
4034 rtx note, next;
4036 PATTERN (undobuf.other_insn) = other_pat;
4038 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
4039 are still valid. Then add any non-duplicate notes added by
4040 recog_for_combine. */
4041 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4043 next = XEXP (note, 1);
4045 if (REG_NOTE_KIND (note) == REG_UNUSED
4046 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
4047 remove_note (undobuf.other_insn, note);
4050 distribute_notes (new_other_notes, undobuf.other_insn,
4051 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
4052 NULL_RTX);
4055 if (swap_i2i3)
4057 rtx insn;
4058 struct insn_link *link;
4059 rtx ni2dest;
4061 /* I3 now uses what used to be its destination and which is now
4062 I2's destination. This requires us to do a few adjustments. */
4063 PATTERN (i3) = newpat;
4064 adjust_for_new_dest (i3);
4066 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4067 so we still will.
4069 However, some later insn might be using I2's dest and have
4070 a LOG_LINK pointing at I3. We must remove this link.
4071 The simplest way to remove the link is to point it at I1,
4072 which we know will be a NOTE. */
4074 /* newi2pat is usually a SET here; however, recog_for_combine might
4075 have added some clobbers. */
4076 if (GET_CODE (newi2pat) == PARALLEL)
4077 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4078 else
4079 ni2dest = SET_DEST (newi2pat);
4081 for (insn = NEXT_INSN (i3);
4082 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4083 || insn != BB_HEAD (this_basic_block->next_bb));
4084 insn = NEXT_INSN (insn))
4086 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4088 FOR_EACH_LOG_LINK (link, insn)
4089 if (link->insn == i3)
4090 link->insn = i1;
4092 break;
4098 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4099 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4100 rtx midnotes = 0;
4101 int from_luid;
4102 /* Compute which registers we expect to eliminate. newi2pat may be setting
4103 either i3dest or i2dest, so we must check it. Also, i1dest may be the
4104 same as i3dest, in which case newi2pat may be setting i1dest. */
4105 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4106 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4107 || !i2dest_killed
4108 ? 0 : i2dest);
4109 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4110 || (newi2pat && reg_set_p (i1dest, newi2pat))
4111 || !i1dest_killed
4112 ? 0 : i1dest);
4113 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
4114 || (newi2pat && reg_set_p (i0dest, newi2pat))
4115 || !i0dest_killed
4116 ? 0 : i0dest);
4118 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4119 clear them. */
4120 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4121 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4122 if (i1)
4123 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4124 if (i0)
4125 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4127 /* Ensure that we do not have something that should not be shared but
4128 occurs multiple times in the new insns. Check this by first
4129 resetting all the `used' flags and then copying anything is shared. */
4131 reset_used_flags (i3notes);
4132 reset_used_flags (i2notes);
4133 reset_used_flags (i1notes);
4134 reset_used_flags (i0notes);
4135 reset_used_flags (newpat);
4136 reset_used_flags (newi2pat);
4137 if (undobuf.other_insn)
4138 reset_used_flags (PATTERN (undobuf.other_insn));
4140 i3notes = copy_rtx_if_shared (i3notes);
4141 i2notes = copy_rtx_if_shared (i2notes);
4142 i1notes = copy_rtx_if_shared (i1notes);
4143 i0notes = copy_rtx_if_shared (i0notes);
4144 newpat = copy_rtx_if_shared (newpat);
4145 newi2pat = copy_rtx_if_shared (newi2pat);
4146 if (undobuf.other_insn)
4147 reset_used_flags (PATTERN (undobuf.other_insn));
4149 INSN_CODE (i3) = insn_code_number;
4150 PATTERN (i3) = newpat;
4152 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4154 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4156 reset_used_flags (call_usage);
4157 call_usage = copy_rtx (call_usage);
4159 if (substed_i2)
4161 /* I2SRC must still be meaningful at this point. Some splitting
4162 operations can invalidate I2SRC, but those operations do not
4163 apply to calls. */
4164 gcc_assert (i2src);
4165 replace_rtx (call_usage, i2dest, i2src);
4168 if (substed_i1)
4169 replace_rtx (call_usage, i1dest, i1src);
4170 if (substed_i0)
4171 replace_rtx (call_usage, i0dest, i0src);
4173 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4176 if (undobuf.other_insn)
4177 INSN_CODE (undobuf.other_insn) = other_code_number;
4179 /* We had one special case above where I2 had more than one set and
4180 we replaced a destination of one of those sets with the destination
4181 of I3. In that case, we have to update LOG_LINKS of insns later
4182 in this basic block. Note that this (expensive) case is rare.
4184 Also, in this case, we must pretend that all REG_NOTEs for I2
4185 actually came from I3, so that REG_UNUSED notes from I2 will be
4186 properly handled. */
4188 if (i3_subst_into_i2)
4190 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4191 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4192 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4193 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4194 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4195 && ! find_reg_note (i2, REG_UNUSED,
4196 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4197 for (temp = NEXT_INSN (i2);
4198 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4199 || BB_HEAD (this_basic_block) != temp);
4200 temp = NEXT_INSN (temp))
4201 if (temp != i3 && INSN_P (temp))
4202 FOR_EACH_LOG_LINK (link, temp)
4203 if (link->insn == i2)
4204 link->insn = i3;
4206 if (i3notes)
4208 rtx link = i3notes;
4209 while (XEXP (link, 1))
4210 link = XEXP (link, 1);
4211 XEXP (link, 1) = i2notes;
4213 else
4214 i3notes = i2notes;
4215 i2notes = 0;
4218 LOG_LINKS (i3) = NULL;
4219 REG_NOTES (i3) = 0;
4220 LOG_LINKS (i2) = NULL;
4221 REG_NOTES (i2) = 0;
4223 if (newi2pat)
4225 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4226 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4227 INSN_CODE (i2) = i2_code_number;
4228 PATTERN (i2) = newi2pat;
4230 else
4232 if (MAY_HAVE_DEBUG_INSNS && i2src)
4233 propagate_for_debug (i2, last_combined_insn, i2dest, i2src);
4234 SET_INSN_DELETED (i2);
4237 if (i1)
4239 LOG_LINKS (i1) = NULL;
4240 REG_NOTES (i1) = 0;
4241 if (MAY_HAVE_DEBUG_INSNS)
4242 propagate_for_debug (i1, last_combined_insn, i1dest, i1src);
4243 SET_INSN_DELETED (i1);
4246 if (i0)
4248 LOG_LINKS (i0) = NULL;
4249 REG_NOTES (i0) = 0;
4250 if (MAY_HAVE_DEBUG_INSNS)
4251 propagate_for_debug (i0, last_combined_insn, i0dest, i0src);
4252 SET_INSN_DELETED (i0);
4255 /* Get death notes for everything that is now used in either I3 or
4256 I2 and used to die in a previous insn. If we built two new
4257 patterns, move from I1 to I2 then I2 to I3 so that we get the
4258 proper movement on registers that I2 modifies. */
4260 if (i0)
4261 from_luid = DF_INSN_LUID (i0);
4262 else if (i1)
4263 from_luid = DF_INSN_LUID (i1);
4264 else
4265 from_luid = DF_INSN_LUID (i2);
4266 if (newi2pat)
4267 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4268 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4270 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4271 if (i3notes)
4272 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4273 elim_i2, elim_i1, elim_i0);
4274 if (i2notes)
4275 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4276 elim_i2, elim_i1, elim_i0);
4277 if (i1notes)
4278 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4279 elim_i2, elim_i1, elim_i0);
4280 if (i0notes)
4281 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4282 elim_i2, elim_i1, elim_i0);
4283 if (midnotes)
4284 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4285 elim_i2, elim_i1, elim_i0);
4287 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4288 know these are REG_UNUSED and want them to go to the desired insn,
4289 so we always pass it as i3. */
4291 if (newi2pat && new_i2_notes)
4292 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4293 NULL_RTX);
4295 if (new_i3_notes)
4296 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4297 NULL_RTX);
4299 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4300 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4301 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4302 in that case, it might delete I2. Similarly for I2 and I1.
4303 Show an additional death due to the REG_DEAD note we make here. If
4304 we discard it in distribute_notes, we will decrement it again. */
4306 if (i3dest_killed)
4308 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4309 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4310 NULL_RTX),
4311 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4312 else
4313 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4314 NULL_RTX),
4315 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4316 elim_i2, elim_i1, elim_i0);
4319 if (i2dest_in_i2src)
4321 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4322 if (newi2pat && reg_set_p (i2dest, newi2pat))
4323 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4324 NULL_RTX, NULL_RTX);
4325 else
4326 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4327 NULL_RTX, NULL_RTX, NULL_RTX);
4330 if (i1dest_in_i1src)
4332 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4333 if (newi2pat && reg_set_p (i1dest, newi2pat))
4334 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4335 NULL_RTX, NULL_RTX);
4336 else
4337 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4338 NULL_RTX, NULL_RTX, NULL_RTX);
4341 if (i0dest_in_i0src)
4343 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4344 if (newi2pat && reg_set_p (i0dest, newi2pat))
4345 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4346 NULL_RTX, NULL_RTX);
4347 else
4348 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4349 NULL_RTX, NULL_RTX, NULL_RTX);
4352 distribute_links (i3links);
4353 distribute_links (i2links);
4354 distribute_links (i1links);
4355 distribute_links (i0links);
4357 if (REG_P (i2dest))
4359 struct insn_link *link;
4360 rtx i2_insn = 0, i2_val = 0, set;
4362 /* The insn that used to set this register doesn't exist, and
4363 this life of the register may not exist either. See if one of
4364 I3's links points to an insn that sets I2DEST. If it does,
4365 that is now the last known value for I2DEST. If we don't update
4366 this and I2 set the register to a value that depended on its old
4367 contents, we will get confused. If this insn is used, thing
4368 will be set correctly in combine_instructions. */
4369 FOR_EACH_LOG_LINK (link, i3)
4370 if ((set = single_set (link->insn)) != 0
4371 && rtx_equal_p (i2dest, SET_DEST (set)))
4372 i2_insn = link->insn, i2_val = SET_SRC (set);
4374 record_value_for_reg (i2dest, i2_insn, i2_val);
4376 /* If the reg formerly set in I2 died only once and that was in I3,
4377 zero its use count so it won't make `reload' do any work. */
4378 if (! added_sets_2
4379 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4380 && ! i2dest_in_i2src)
4381 INC_REG_N_SETS (REGNO (i2dest), -1);
4384 if (i1 && REG_P (i1dest))
4386 struct insn_link *link;
4387 rtx i1_insn = 0, i1_val = 0, set;
4389 FOR_EACH_LOG_LINK (link, i3)
4390 if ((set = single_set (link->insn)) != 0
4391 && rtx_equal_p (i1dest, SET_DEST (set)))
4392 i1_insn = link->insn, i1_val = SET_SRC (set);
4394 record_value_for_reg (i1dest, i1_insn, i1_val);
4396 if (! added_sets_1 && ! i1dest_in_i1src)
4397 INC_REG_N_SETS (REGNO (i1dest), -1);
4400 if (i0 && REG_P (i0dest))
4402 struct insn_link *link;
4403 rtx i0_insn = 0, i0_val = 0, set;
4405 FOR_EACH_LOG_LINK (link, i3)
4406 if ((set = single_set (link->insn)) != 0
4407 && rtx_equal_p (i0dest, SET_DEST (set)))
4408 i0_insn = link->insn, i0_val = SET_SRC (set);
4410 record_value_for_reg (i0dest, i0_insn, i0_val);
4412 if (! added_sets_0 && ! i0dest_in_i0src)
4413 INC_REG_N_SETS (REGNO (i0dest), -1);
4416 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4417 been made to this insn. The order of
4418 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4419 can affect nonzero_bits of newpat */
4420 if (newi2pat)
4421 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4422 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4425 if (undobuf.other_insn != NULL_RTX)
4427 if (dump_file)
4429 fprintf (dump_file, "modifying other_insn ");
4430 dump_insn_slim (dump_file, undobuf.other_insn);
4432 df_insn_rescan (undobuf.other_insn);
4435 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4437 if (dump_file)
4439 fprintf (dump_file, "modifying insn i1 ");
4440 dump_insn_slim (dump_file, i0);
4442 df_insn_rescan (i0);
4445 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4447 if (dump_file)
4449 fprintf (dump_file, "modifying insn i1 ");
4450 dump_insn_slim (dump_file, i1);
4452 df_insn_rescan (i1);
4455 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4457 if (dump_file)
4459 fprintf (dump_file, "modifying insn i2 ");
4460 dump_insn_slim (dump_file, i2);
4462 df_insn_rescan (i2);
4465 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4467 if (dump_file)
4469 fprintf (dump_file, "modifying insn i3 ");
4470 dump_insn_slim (dump_file, i3);
4472 df_insn_rescan (i3);
4475 /* Set new_direct_jump_p if a new return or simple jump instruction
4476 has been created. Adjust the CFG accordingly. */
4478 if (returnjump_p (i3) || any_uncondjump_p (i3))
4480 *new_direct_jump_p = 1;
4481 mark_jump_label (PATTERN (i3), i3, 0);
4482 update_cfg_for_uncondjump (i3);
4485 if (undobuf.other_insn != NULL_RTX
4486 && (returnjump_p (undobuf.other_insn)
4487 || any_uncondjump_p (undobuf.other_insn)))
4489 *new_direct_jump_p = 1;
4490 update_cfg_for_uncondjump (undobuf.other_insn);
4493 /* A noop might also need cleaning up of CFG, if it comes from the
4494 simplification of a jump. */
4495 if (JUMP_P (i3)
4496 && GET_CODE (newpat) == SET
4497 && SET_SRC (newpat) == pc_rtx
4498 && SET_DEST (newpat) == pc_rtx)
4500 *new_direct_jump_p = 1;
4501 update_cfg_for_uncondjump (i3);
4504 if (undobuf.other_insn != NULL_RTX
4505 && JUMP_P (undobuf.other_insn)
4506 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4507 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4508 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4510 *new_direct_jump_p = 1;
4511 update_cfg_for_uncondjump (undobuf.other_insn);
4514 combine_successes++;
4515 undo_commit ();
4517 if (added_links_insn
4518 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4519 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4520 return added_links_insn;
4521 else
4522 return newi2pat ? i2 : i3;
4525 /* Undo all the modifications recorded in undobuf. */
4527 static void
4528 undo_all (void)
4530 struct undo *undo, *next;
4532 for (undo = undobuf.undos; undo; undo = next)
4534 next = undo->next;
4535 switch (undo->kind)
4537 case UNDO_RTX:
4538 *undo->where.r = undo->old_contents.r;
4539 break;
4540 case UNDO_INT:
4541 *undo->where.i = undo->old_contents.i;
4542 break;
4543 case UNDO_MODE:
4544 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4545 break;
4546 case UNDO_LINKS:
4547 *undo->where.l = undo->old_contents.l;
4548 break;
4549 default:
4550 gcc_unreachable ();
4553 undo->next = undobuf.frees;
4554 undobuf.frees = undo;
4557 undobuf.undos = 0;
4560 /* We've committed to accepting the changes we made. Move all
4561 of the undos to the free list. */
4563 static void
4564 undo_commit (void)
4566 struct undo *undo, *next;
4568 for (undo = undobuf.undos; undo; undo = next)
4570 next = undo->next;
4571 undo->next = undobuf.frees;
4572 undobuf.frees = undo;
4574 undobuf.undos = 0;
4577 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4578 where we have an arithmetic expression and return that point. LOC will
4579 be inside INSN.
4581 try_combine will call this function to see if an insn can be split into
4582 two insns. */
4584 static rtx *
4585 find_split_point (rtx *loc, rtx insn, bool set_src)
4587 rtx x = *loc;
4588 enum rtx_code code = GET_CODE (x);
4589 rtx *split;
4590 unsigned HOST_WIDE_INT len = 0;
4591 HOST_WIDE_INT pos = 0;
4592 int unsignedp = 0;
4593 rtx inner = NULL_RTX;
4595 /* First special-case some codes. */
4596 switch (code)
4598 case SUBREG:
4599 #ifdef INSN_SCHEDULING
4600 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4601 point. */
4602 if (MEM_P (SUBREG_REG (x)))
4603 return loc;
4604 #endif
4605 return find_split_point (&SUBREG_REG (x), insn, false);
4607 case MEM:
4608 #ifdef HAVE_lo_sum
4609 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4610 using LO_SUM and HIGH. */
4611 if (GET_CODE (XEXP (x, 0)) == CONST
4612 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4614 enum machine_mode address_mode = get_address_mode (x);
4616 SUBST (XEXP (x, 0),
4617 gen_rtx_LO_SUM (address_mode,
4618 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4619 XEXP (x, 0)));
4620 return &XEXP (XEXP (x, 0), 0);
4622 #endif
4624 /* If we have a PLUS whose second operand is a constant and the
4625 address is not valid, perhaps will can split it up using
4626 the machine-specific way to split large constants. We use
4627 the first pseudo-reg (one of the virtual regs) as a placeholder;
4628 it will not remain in the result. */
4629 if (GET_CODE (XEXP (x, 0)) == PLUS
4630 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4631 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4632 MEM_ADDR_SPACE (x)))
4634 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4635 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4636 XEXP (x, 0)),
4637 subst_insn);
4639 /* This should have produced two insns, each of which sets our
4640 placeholder. If the source of the second is a valid address,
4641 we can make put both sources together and make a split point
4642 in the middle. */
4644 if (seq
4645 && NEXT_INSN (seq) != NULL_RTX
4646 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4647 && NONJUMP_INSN_P (seq)
4648 && GET_CODE (PATTERN (seq)) == SET
4649 && SET_DEST (PATTERN (seq)) == reg
4650 && ! reg_mentioned_p (reg,
4651 SET_SRC (PATTERN (seq)))
4652 && NONJUMP_INSN_P (NEXT_INSN (seq))
4653 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4654 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4655 && memory_address_addr_space_p
4656 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4657 MEM_ADDR_SPACE (x)))
4659 rtx src1 = SET_SRC (PATTERN (seq));
4660 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4662 /* Replace the placeholder in SRC2 with SRC1. If we can
4663 find where in SRC2 it was placed, that can become our
4664 split point and we can replace this address with SRC2.
4665 Just try two obvious places. */
4667 src2 = replace_rtx (src2, reg, src1);
4668 split = 0;
4669 if (XEXP (src2, 0) == src1)
4670 split = &XEXP (src2, 0);
4671 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4672 && XEXP (XEXP (src2, 0), 0) == src1)
4673 split = &XEXP (XEXP (src2, 0), 0);
4675 if (split)
4677 SUBST (XEXP (x, 0), src2);
4678 return split;
4682 /* If that didn't work, perhaps the first operand is complex and
4683 needs to be computed separately, so make a split point there.
4684 This will occur on machines that just support REG + CONST
4685 and have a constant moved through some previous computation. */
4687 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4688 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4689 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4690 return &XEXP (XEXP (x, 0), 0);
4693 /* If we have a PLUS whose first operand is complex, try computing it
4694 separately by making a split there. */
4695 if (GET_CODE (XEXP (x, 0)) == PLUS
4696 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4697 MEM_ADDR_SPACE (x))
4698 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4699 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4700 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4701 return &XEXP (XEXP (x, 0), 0);
4702 break;
4704 case SET:
4705 #ifdef HAVE_cc0
4706 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4707 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4708 we need to put the operand into a register. So split at that
4709 point. */
4711 if (SET_DEST (x) == cc0_rtx
4712 && GET_CODE (SET_SRC (x)) != COMPARE
4713 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4714 && !OBJECT_P (SET_SRC (x))
4715 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4716 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4717 return &SET_SRC (x);
4718 #endif
4720 /* See if we can split SET_SRC as it stands. */
4721 split = find_split_point (&SET_SRC (x), insn, true);
4722 if (split && split != &SET_SRC (x))
4723 return split;
4725 /* See if we can split SET_DEST as it stands. */
4726 split = find_split_point (&SET_DEST (x), insn, false);
4727 if (split && split != &SET_DEST (x))
4728 return split;
4730 /* See if this is a bitfield assignment with everything constant. If
4731 so, this is an IOR of an AND, so split it into that. */
4732 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4733 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4734 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4735 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4736 && CONST_INT_P (SET_SRC (x))
4737 && ((INTVAL (XEXP (SET_DEST (x), 1))
4738 + INTVAL (XEXP (SET_DEST (x), 2)))
4739 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4740 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4742 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4743 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4744 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4745 rtx dest = XEXP (SET_DEST (x), 0);
4746 enum machine_mode mode = GET_MODE (dest);
4747 unsigned HOST_WIDE_INT mask
4748 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4749 rtx or_mask;
4751 if (BITS_BIG_ENDIAN)
4752 pos = GET_MODE_PRECISION (mode) - len - pos;
4754 or_mask = gen_int_mode (src << pos, mode);
4755 if (src == mask)
4756 SUBST (SET_SRC (x),
4757 simplify_gen_binary (IOR, mode, dest, or_mask));
4758 else
4760 rtx negmask = gen_int_mode (~(mask << pos), mode);
4761 SUBST (SET_SRC (x),
4762 simplify_gen_binary (IOR, mode,
4763 simplify_gen_binary (AND, mode,
4764 dest, negmask),
4765 or_mask));
4768 SUBST (SET_DEST (x), dest);
4770 split = find_split_point (&SET_SRC (x), insn, true);
4771 if (split && split != &SET_SRC (x))
4772 return split;
4775 /* Otherwise, see if this is an operation that we can split into two.
4776 If so, try to split that. */
4777 code = GET_CODE (SET_SRC (x));
4779 switch (code)
4781 case AND:
4782 /* If we are AND'ing with a large constant that is only a single
4783 bit and the result is only being used in a context where we
4784 need to know if it is zero or nonzero, replace it with a bit
4785 extraction. This will avoid the large constant, which might
4786 have taken more than one insn to make. If the constant were
4787 not a valid argument to the AND but took only one insn to make,
4788 this is no worse, but if it took more than one insn, it will
4789 be better. */
4791 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4792 && REG_P (XEXP (SET_SRC (x), 0))
4793 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4794 && REG_P (SET_DEST (x))
4795 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4796 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4797 && XEXP (*split, 0) == SET_DEST (x)
4798 && XEXP (*split, 1) == const0_rtx)
4800 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4801 XEXP (SET_SRC (x), 0),
4802 pos, NULL_RTX, 1, 1, 0, 0);
4803 if (extraction != 0)
4805 SUBST (SET_SRC (x), extraction);
4806 return find_split_point (loc, insn, false);
4809 break;
4811 case NE:
4812 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4813 is known to be on, this can be converted into a NEG of a shift. */
4814 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4815 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4816 && 1 <= (pos = exact_log2
4817 (nonzero_bits (XEXP (SET_SRC (x), 0),
4818 GET_MODE (XEXP (SET_SRC (x), 0))))))
4820 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4822 SUBST (SET_SRC (x),
4823 gen_rtx_NEG (mode,
4824 gen_rtx_LSHIFTRT (mode,
4825 XEXP (SET_SRC (x), 0),
4826 GEN_INT (pos))));
4828 split = find_split_point (&SET_SRC (x), insn, true);
4829 if (split && split != &SET_SRC (x))
4830 return split;
4832 break;
4834 case SIGN_EXTEND:
4835 inner = XEXP (SET_SRC (x), 0);
4837 /* We can't optimize if either mode is a partial integer
4838 mode as we don't know how many bits are significant
4839 in those modes. */
4840 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4841 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4842 break;
4844 pos = 0;
4845 len = GET_MODE_PRECISION (GET_MODE (inner));
4846 unsignedp = 0;
4847 break;
4849 case SIGN_EXTRACT:
4850 case ZERO_EXTRACT:
4851 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4852 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4854 inner = XEXP (SET_SRC (x), 0);
4855 len = INTVAL (XEXP (SET_SRC (x), 1));
4856 pos = INTVAL (XEXP (SET_SRC (x), 2));
4858 if (BITS_BIG_ENDIAN)
4859 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4860 unsignedp = (code == ZERO_EXTRACT);
4862 break;
4864 default:
4865 break;
4868 if (len && pos >= 0
4869 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4871 enum machine_mode mode = GET_MODE (SET_SRC (x));
4873 /* For unsigned, we have a choice of a shift followed by an
4874 AND or two shifts. Use two shifts for field sizes where the
4875 constant might be too large. We assume here that we can
4876 always at least get 8-bit constants in an AND insn, which is
4877 true for every current RISC. */
4879 if (unsignedp && len <= 8)
4881 SUBST (SET_SRC (x),
4882 gen_rtx_AND (mode,
4883 gen_rtx_LSHIFTRT
4884 (mode, gen_lowpart (mode, inner),
4885 GEN_INT (pos)),
4886 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4887 - 1)));
4889 split = find_split_point (&SET_SRC (x), insn, true);
4890 if (split && split != &SET_SRC (x))
4891 return split;
4893 else
4895 SUBST (SET_SRC (x),
4896 gen_rtx_fmt_ee
4897 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4898 gen_rtx_ASHIFT (mode,
4899 gen_lowpart (mode, inner),
4900 GEN_INT (GET_MODE_PRECISION (mode)
4901 - len - pos)),
4902 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4904 split = find_split_point (&SET_SRC (x), insn, true);
4905 if (split && split != &SET_SRC (x))
4906 return split;
4910 /* See if this is a simple operation with a constant as the second
4911 operand. It might be that this constant is out of range and hence
4912 could be used as a split point. */
4913 if (BINARY_P (SET_SRC (x))
4914 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4915 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4916 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4917 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4918 return &XEXP (SET_SRC (x), 1);
4920 /* Finally, see if this is a simple operation with its first operand
4921 not in a register. The operation might require this operand in a
4922 register, so return it as a split point. We can always do this
4923 because if the first operand were another operation, we would have
4924 already found it as a split point. */
4925 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4926 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4927 return &XEXP (SET_SRC (x), 0);
4929 return 0;
4931 case AND:
4932 case IOR:
4933 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4934 it is better to write this as (not (ior A B)) so we can split it.
4935 Similarly for IOR. */
4936 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4938 SUBST (*loc,
4939 gen_rtx_NOT (GET_MODE (x),
4940 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4941 GET_MODE (x),
4942 XEXP (XEXP (x, 0), 0),
4943 XEXP (XEXP (x, 1), 0))));
4944 return find_split_point (loc, insn, set_src);
4947 /* Many RISC machines have a large set of logical insns. If the
4948 second operand is a NOT, put it first so we will try to split the
4949 other operand first. */
4950 if (GET_CODE (XEXP (x, 1)) == NOT)
4952 rtx tem = XEXP (x, 0);
4953 SUBST (XEXP (x, 0), XEXP (x, 1));
4954 SUBST (XEXP (x, 1), tem);
4956 break;
4958 case PLUS:
4959 case MINUS:
4960 /* Canonicalization can produce (minus A (mult B C)), where C is a
4961 constant. It may be better to try splitting (plus (mult B -C) A)
4962 instead if this isn't a multiply by a power of two. */
4963 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4964 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4965 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4967 enum machine_mode mode = GET_MODE (x);
4968 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4969 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4970 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4971 XEXP (XEXP (x, 1), 0),
4972 GEN_INT (other_int)),
4973 XEXP (x, 0)));
4974 return find_split_point (loc, insn, set_src);
4977 /* Split at a multiply-accumulate instruction. However if this is
4978 the SET_SRC, we likely do not have such an instruction and it's
4979 worthless to try this split. */
4980 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4981 return loc;
4983 default:
4984 break;
4987 /* Otherwise, select our actions depending on our rtx class. */
4988 switch (GET_RTX_CLASS (code))
4990 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4991 case RTX_TERNARY:
4992 split = find_split_point (&XEXP (x, 2), insn, false);
4993 if (split)
4994 return split;
4995 /* ... fall through ... */
4996 case RTX_BIN_ARITH:
4997 case RTX_COMM_ARITH:
4998 case RTX_COMPARE:
4999 case RTX_COMM_COMPARE:
5000 split = find_split_point (&XEXP (x, 1), insn, false);
5001 if (split)
5002 return split;
5003 /* ... fall through ... */
5004 case RTX_UNARY:
5005 /* Some machines have (and (shift ...) ...) insns. If X is not
5006 an AND, but XEXP (X, 0) is, use it as our split point. */
5007 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5008 return &XEXP (x, 0);
5010 split = find_split_point (&XEXP (x, 0), insn, false);
5011 if (split)
5012 return split;
5013 return loc;
5015 default:
5016 /* Otherwise, we don't have a split point. */
5017 return 0;
5021 /* Throughout X, replace FROM with TO, and return the result.
5022 The result is TO if X is FROM;
5023 otherwise the result is X, but its contents may have been modified.
5024 If they were modified, a record was made in undobuf so that
5025 undo_all will (among other things) return X to its original state.
5027 If the number of changes necessary is too much to record to undo,
5028 the excess changes are not made, so the result is invalid.
5029 The changes already made can still be undone.
5030 undobuf.num_undo is incremented for such changes, so by testing that
5031 the caller can tell whether the result is valid.
5033 `n_occurrences' is incremented each time FROM is replaced.
5035 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5037 IN_COND is nonzero if we are at the top level of a condition.
5039 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5040 by copying if `n_occurrences' is nonzero. */
5042 static rtx
5043 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5045 enum rtx_code code = GET_CODE (x);
5046 enum machine_mode op0_mode = VOIDmode;
5047 const char *fmt;
5048 int len, i;
5049 rtx new_rtx;
5051 /* Two expressions are equal if they are identical copies of a shared
5052 RTX or if they are both registers with the same register number
5053 and mode. */
5055 #define COMBINE_RTX_EQUAL_P(X,Y) \
5056 ((X) == (Y) \
5057 || (REG_P (X) && REG_P (Y) \
5058 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5060 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5062 n_occurrences++;
5063 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5066 /* If X and FROM are the same register but different modes, they
5067 will not have been seen as equal above. However, the log links code
5068 will make a LOG_LINKS entry for that case. If we do nothing, we
5069 will try to rerecognize our original insn and, when it succeeds,
5070 we will delete the feeding insn, which is incorrect.
5072 So force this insn not to match in this (rare) case. */
5073 if (! in_dest && code == REG && REG_P (from)
5074 && reg_overlap_mentioned_p (x, from))
5075 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5077 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5078 of which may contain things that can be combined. */
5079 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5080 return x;
5082 /* It is possible to have a subexpression appear twice in the insn.
5083 Suppose that FROM is a register that appears within TO.
5084 Then, after that subexpression has been scanned once by `subst',
5085 the second time it is scanned, TO may be found. If we were
5086 to scan TO here, we would find FROM within it and create a
5087 self-referent rtl structure which is completely wrong. */
5088 if (COMBINE_RTX_EQUAL_P (x, to))
5089 return to;
5091 /* Parallel asm_operands need special attention because all of the
5092 inputs are shared across the arms. Furthermore, unsharing the
5093 rtl results in recognition failures. Failure to handle this case
5094 specially can result in circular rtl.
5096 Solve this by doing a normal pass across the first entry of the
5097 parallel, and only processing the SET_DESTs of the subsequent
5098 entries. Ug. */
5100 if (code == PARALLEL
5101 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5102 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5104 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5106 /* If this substitution failed, this whole thing fails. */
5107 if (GET_CODE (new_rtx) == CLOBBER
5108 && XEXP (new_rtx, 0) == const0_rtx)
5109 return new_rtx;
5111 SUBST (XVECEXP (x, 0, 0), new_rtx);
5113 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5115 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5117 if (!REG_P (dest)
5118 && GET_CODE (dest) != CC0
5119 && GET_CODE (dest) != PC)
5121 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5123 /* If this substitution failed, this whole thing fails. */
5124 if (GET_CODE (new_rtx) == CLOBBER
5125 && XEXP (new_rtx, 0) == const0_rtx)
5126 return new_rtx;
5128 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5132 else
5134 len = GET_RTX_LENGTH (code);
5135 fmt = GET_RTX_FORMAT (code);
5137 /* We don't need to process a SET_DEST that is a register, CC0,
5138 or PC, so set up to skip this common case. All other cases
5139 where we want to suppress replacing something inside a
5140 SET_SRC are handled via the IN_DEST operand. */
5141 if (code == SET
5142 && (REG_P (SET_DEST (x))
5143 || GET_CODE (SET_DEST (x)) == CC0
5144 || GET_CODE (SET_DEST (x)) == PC))
5145 fmt = "ie";
5147 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5148 constant. */
5149 if (fmt[0] == 'e')
5150 op0_mode = GET_MODE (XEXP (x, 0));
5152 for (i = 0; i < len; i++)
5154 if (fmt[i] == 'E')
5156 int j;
5157 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5159 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5161 new_rtx = (unique_copy && n_occurrences
5162 ? copy_rtx (to) : to);
5163 n_occurrences++;
5165 else
5167 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5168 unique_copy);
5170 /* If this substitution failed, this whole thing
5171 fails. */
5172 if (GET_CODE (new_rtx) == CLOBBER
5173 && XEXP (new_rtx, 0) == const0_rtx)
5174 return new_rtx;
5177 SUBST (XVECEXP (x, i, j), new_rtx);
5180 else if (fmt[i] == 'e')
5182 /* If this is a register being set, ignore it. */
5183 new_rtx = XEXP (x, i);
5184 if (in_dest
5185 && i == 0
5186 && (((code == SUBREG || code == ZERO_EXTRACT)
5187 && REG_P (new_rtx))
5188 || code == STRICT_LOW_PART))
5191 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5193 /* In general, don't install a subreg involving two
5194 modes not tieable. It can worsen register
5195 allocation, and can even make invalid reload
5196 insns, since the reg inside may need to be copied
5197 from in the outside mode, and that may be invalid
5198 if it is an fp reg copied in integer mode.
5200 We allow two exceptions to this: It is valid if
5201 it is inside another SUBREG and the mode of that
5202 SUBREG and the mode of the inside of TO is
5203 tieable and it is valid if X is a SET that copies
5204 FROM to CC0. */
5206 if (GET_CODE (to) == SUBREG
5207 && ! MODES_TIEABLE_P (GET_MODE (to),
5208 GET_MODE (SUBREG_REG (to)))
5209 && ! (code == SUBREG
5210 && MODES_TIEABLE_P (GET_MODE (x),
5211 GET_MODE (SUBREG_REG (to))))
5212 #ifdef HAVE_cc0
5213 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5214 #endif
5216 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5218 #ifdef CANNOT_CHANGE_MODE_CLASS
5219 if (code == SUBREG
5220 && REG_P (to)
5221 && REGNO (to) < FIRST_PSEUDO_REGISTER
5222 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5223 GET_MODE (to),
5224 GET_MODE (x)))
5225 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5226 #endif
5228 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5229 n_occurrences++;
5231 else
5232 /* If we are in a SET_DEST, suppress most cases unless we
5233 have gone inside a MEM, in which case we want to
5234 simplify the address. We assume here that things that
5235 are actually part of the destination have their inner
5236 parts in the first expression. This is true for SUBREG,
5237 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5238 things aside from REG and MEM that should appear in a
5239 SET_DEST. */
5240 new_rtx = subst (XEXP (x, i), from, to,
5241 (((in_dest
5242 && (code == SUBREG || code == STRICT_LOW_PART
5243 || code == ZERO_EXTRACT))
5244 || code == SET)
5245 && i == 0),
5246 code == IF_THEN_ELSE && i == 0,
5247 unique_copy);
5249 /* If we found that we will have to reject this combination,
5250 indicate that by returning the CLOBBER ourselves, rather than
5251 an expression containing it. This will speed things up as
5252 well as prevent accidents where two CLOBBERs are considered
5253 to be equal, thus producing an incorrect simplification. */
5255 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5256 return new_rtx;
5258 if (GET_CODE (x) == SUBREG
5259 && (CONST_INT_P (new_rtx)
5260 || GET_CODE (new_rtx) == CONST_DOUBLE))
5262 enum machine_mode mode = GET_MODE (x);
5264 x = simplify_subreg (GET_MODE (x), new_rtx,
5265 GET_MODE (SUBREG_REG (x)),
5266 SUBREG_BYTE (x));
5267 if (! x)
5268 x = gen_rtx_CLOBBER (mode, const0_rtx);
5270 else if (CONST_INT_P (new_rtx)
5271 && GET_CODE (x) == ZERO_EXTEND)
5273 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5274 new_rtx, GET_MODE (XEXP (x, 0)));
5275 gcc_assert (x);
5277 else
5278 SUBST (XEXP (x, i), new_rtx);
5283 /* Check if we are loading something from the constant pool via float
5284 extension; in this case we would undo compress_float_constant
5285 optimization and degenerate constant load to an immediate value. */
5286 if (GET_CODE (x) == FLOAT_EXTEND
5287 && MEM_P (XEXP (x, 0))
5288 && MEM_READONLY_P (XEXP (x, 0)))
5290 rtx tmp = avoid_constant_pool_reference (x);
5291 if (x != tmp)
5292 return x;
5295 /* Try to simplify X. If the simplification changed the code, it is likely
5296 that further simplification will help, so loop, but limit the number
5297 of repetitions that will be performed. */
5299 for (i = 0; i < 4; i++)
5301 /* If X is sufficiently simple, don't bother trying to do anything
5302 with it. */
5303 if (code != CONST_INT && code != REG && code != CLOBBER)
5304 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5306 if (GET_CODE (x) == code)
5307 break;
5309 code = GET_CODE (x);
5311 /* We no longer know the original mode of operand 0 since we
5312 have changed the form of X) */
5313 op0_mode = VOIDmode;
5316 return x;
5319 /* Simplify X, a piece of RTL. We just operate on the expression at the
5320 outer level; call `subst' to simplify recursively. Return the new
5321 expression.
5323 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5324 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5325 of a condition. */
5327 static rtx
5328 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5329 int in_cond)
5331 enum rtx_code code = GET_CODE (x);
5332 enum machine_mode mode = GET_MODE (x);
5333 rtx temp;
5334 int i;
5336 /* If this is a commutative operation, put a constant last and a complex
5337 expression first. We don't need to do this for comparisons here. */
5338 if (COMMUTATIVE_ARITH_P (x)
5339 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5341 temp = XEXP (x, 0);
5342 SUBST (XEXP (x, 0), XEXP (x, 1));
5343 SUBST (XEXP (x, 1), temp);
5346 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5347 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5348 things. Check for cases where both arms are testing the same
5349 condition.
5351 Don't do anything if all operands are very simple. */
5353 if ((BINARY_P (x)
5354 && ((!OBJECT_P (XEXP (x, 0))
5355 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5356 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5357 || (!OBJECT_P (XEXP (x, 1))
5358 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5359 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5360 || (UNARY_P (x)
5361 && (!OBJECT_P (XEXP (x, 0))
5362 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5363 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5365 rtx cond, true_rtx, false_rtx;
5367 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5368 if (cond != 0
5369 /* If everything is a comparison, what we have is highly unlikely
5370 to be simpler, so don't use it. */
5371 && ! (COMPARISON_P (x)
5372 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5374 rtx cop1 = const0_rtx;
5375 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5377 if (cond_code == NE && COMPARISON_P (cond))
5378 return x;
5380 /* Simplify the alternative arms; this may collapse the true and
5381 false arms to store-flag values. Be careful to use copy_rtx
5382 here since true_rtx or false_rtx might share RTL with x as a
5383 result of the if_then_else_cond call above. */
5384 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5385 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5387 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5388 is unlikely to be simpler. */
5389 if (general_operand (true_rtx, VOIDmode)
5390 && general_operand (false_rtx, VOIDmode))
5392 enum rtx_code reversed;
5394 /* Restarting if we generate a store-flag expression will cause
5395 us to loop. Just drop through in this case. */
5397 /* If the result values are STORE_FLAG_VALUE and zero, we can
5398 just make the comparison operation. */
5399 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5400 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5401 cond, cop1);
5402 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5403 && ((reversed = reversed_comparison_code_parts
5404 (cond_code, cond, cop1, NULL))
5405 != UNKNOWN))
5406 x = simplify_gen_relational (reversed, mode, VOIDmode,
5407 cond, cop1);
5409 /* Likewise, we can make the negate of a comparison operation
5410 if the result values are - STORE_FLAG_VALUE and zero. */
5411 else if (CONST_INT_P (true_rtx)
5412 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5413 && false_rtx == const0_rtx)
5414 x = simplify_gen_unary (NEG, mode,
5415 simplify_gen_relational (cond_code,
5416 mode, VOIDmode,
5417 cond, cop1),
5418 mode);
5419 else if (CONST_INT_P (false_rtx)
5420 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5421 && true_rtx == const0_rtx
5422 && ((reversed = reversed_comparison_code_parts
5423 (cond_code, cond, cop1, NULL))
5424 != UNKNOWN))
5425 x = simplify_gen_unary (NEG, mode,
5426 simplify_gen_relational (reversed,
5427 mode, VOIDmode,
5428 cond, cop1),
5429 mode);
5430 else
5431 return gen_rtx_IF_THEN_ELSE (mode,
5432 simplify_gen_relational (cond_code,
5433 mode,
5434 VOIDmode,
5435 cond,
5436 cop1),
5437 true_rtx, false_rtx);
5439 code = GET_CODE (x);
5440 op0_mode = VOIDmode;
5445 /* Try to fold this expression in case we have constants that weren't
5446 present before. */
5447 temp = 0;
5448 switch (GET_RTX_CLASS (code))
5450 case RTX_UNARY:
5451 if (op0_mode == VOIDmode)
5452 op0_mode = GET_MODE (XEXP (x, 0));
5453 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5454 break;
5455 case RTX_COMPARE:
5456 case RTX_COMM_COMPARE:
5458 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5459 if (cmp_mode == VOIDmode)
5461 cmp_mode = GET_MODE (XEXP (x, 1));
5462 if (cmp_mode == VOIDmode)
5463 cmp_mode = op0_mode;
5465 temp = simplify_relational_operation (code, mode, cmp_mode,
5466 XEXP (x, 0), XEXP (x, 1));
5468 break;
5469 case RTX_COMM_ARITH:
5470 case RTX_BIN_ARITH:
5471 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5472 break;
5473 case RTX_BITFIELD_OPS:
5474 case RTX_TERNARY:
5475 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5476 XEXP (x, 1), XEXP (x, 2));
5477 break;
5478 default:
5479 break;
5482 if (temp)
5484 x = temp;
5485 code = GET_CODE (temp);
5486 op0_mode = VOIDmode;
5487 mode = GET_MODE (temp);
5490 /* First see if we can apply the inverse distributive law. */
5491 if (code == PLUS || code == MINUS
5492 || code == AND || code == IOR || code == XOR)
5494 x = apply_distributive_law (x);
5495 code = GET_CODE (x);
5496 op0_mode = VOIDmode;
5499 /* If CODE is an associative operation not otherwise handled, see if we
5500 can associate some operands. This can win if they are constants or
5501 if they are logically related (i.e. (a & b) & a). */
5502 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5503 || code == AND || code == IOR || code == XOR
5504 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5505 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5506 || (flag_associative_math && FLOAT_MODE_P (mode))))
5508 if (GET_CODE (XEXP (x, 0)) == code)
5510 rtx other = XEXP (XEXP (x, 0), 0);
5511 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5512 rtx inner_op1 = XEXP (x, 1);
5513 rtx inner;
5515 /* Make sure we pass the constant operand if any as the second
5516 one if this is a commutative operation. */
5517 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5519 rtx tem = inner_op0;
5520 inner_op0 = inner_op1;
5521 inner_op1 = tem;
5523 inner = simplify_binary_operation (code == MINUS ? PLUS
5524 : code == DIV ? MULT
5525 : code,
5526 mode, inner_op0, inner_op1);
5528 /* For commutative operations, try the other pair if that one
5529 didn't simplify. */
5530 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5532 other = XEXP (XEXP (x, 0), 1);
5533 inner = simplify_binary_operation (code, mode,
5534 XEXP (XEXP (x, 0), 0),
5535 XEXP (x, 1));
5538 if (inner)
5539 return simplify_gen_binary (code, mode, other, inner);
5543 /* A little bit of algebraic simplification here. */
5544 switch (code)
5546 case MEM:
5547 /* Ensure that our address has any ASHIFTs converted to MULT in case
5548 address-recognizing predicates are called later. */
5549 temp = make_compound_operation (XEXP (x, 0), MEM);
5550 SUBST (XEXP (x, 0), temp);
5551 break;
5553 case SUBREG:
5554 if (op0_mode == VOIDmode)
5555 op0_mode = GET_MODE (SUBREG_REG (x));
5557 /* See if this can be moved to simplify_subreg. */
5558 if (CONSTANT_P (SUBREG_REG (x))
5559 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5560 /* Don't call gen_lowpart if the inner mode
5561 is VOIDmode and we cannot simplify it, as SUBREG without
5562 inner mode is invalid. */
5563 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5564 || gen_lowpart_common (mode, SUBREG_REG (x))))
5565 return gen_lowpart (mode, SUBREG_REG (x));
5567 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5568 break;
5570 rtx temp;
5571 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5572 SUBREG_BYTE (x));
5573 if (temp)
5574 return temp;
5577 /* Don't change the mode of the MEM if that would change the meaning
5578 of the address. */
5579 if (MEM_P (SUBREG_REG (x))
5580 && (MEM_VOLATILE_P (SUBREG_REG (x))
5581 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5582 return gen_rtx_CLOBBER (mode, const0_rtx);
5584 /* Note that we cannot do any narrowing for non-constants since
5585 we might have been counting on using the fact that some bits were
5586 zero. We now do this in the SET. */
5588 break;
5590 case NEG:
5591 temp = expand_compound_operation (XEXP (x, 0));
5593 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5594 replaced by (lshiftrt X C). This will convert
5595 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5597 if (GET_CODE (temp) == ASHIFTRT
5598 && CONST_INT_P (XEXP (temp, 1))
5599 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5600 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5601 INTVAL (XEXP (temp, 1)));
5603 /* If X has only a single bit that might be nonzero, say, bit I, convert
5604 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5605 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5606 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5607 or a SUBREG of one since we'd be making the expression more
5608 complex if it was just a register. */
5610 if (!REG_P (temp)
5611 && ! (GET_CODE (temp) == SUBREG
5612 && REG_P (SUBREG_REG (temp)))
5613 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5615 rtx temp1 = simplify_shift_const
5616 (NULL_RTX, ASHIFTRT, mode,
5617 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5618 GET_MODE_PRECISION (mode) - 1 - i),
5619 GET_MODE_PRECISION (mode) - 1 - i);
5621 /* If all we did was surround TEMP with the two shifts, we
5622 haven't improved anything, so don't use it. Otherwise,
5623 we are better off with TEMP1. */
5624 if (GET_CODE (temp1) != ASHIFTRT
5625 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5626 || XEXP (XEXP (temp1, 0), 0) != temp)
5627 return temp1;
5629 break;
5631 case TRUNCATE:
5632 /* We can't handle truncation to a partial integer mode here
5633 because we don't know the real bitsize of the partial
5634 integer mode. */
5635 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5636 break;
5638 if (HWI_COMPUTABLE_MODE_P (mode))
5639 SUBST (XEXP (x, 0),
5640 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5641 GET_MODE_MASK (mode), 0));
5643 /* We can truncate a constant value and return it. */
5644 if (CONST_INT_P (XEXP (x, 0)))
5645 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5647 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5648 whose value is a comparison can be replaced with a subreg if
5649 STORE_FLAG_VALUE permits. */
5650 if (HWI_COMPUTABLE_MODE_P (mode)
5651 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5652 && (temp = get_last_value (XEXP (x, 0)))
5653 && COMPARISON_P (temp))
5654 return gen_lowpart (mode, XEXP (x, 0));
5655 break;
5657 case CONST:
5658 /* (const (const X)) can become (const X). Do it this way rather than
5659 returning the inner CONST since CONST can be shared with a
5660 REG_EQUAL note. */
5661 if (GET_CODE (XEXP (x, 0)) == CONST)
5662 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5663 break;
5665 #ifdef HAVE_lo_sum
5666 case LO_SUM:
5667 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5668 can add in an offset. find_split_point will split this address up
5669 again if it doesn't match. */
5670 if (GET_CODE (XEXP (x, 0)) == HIGH
5671 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5672 return XEXP (x, 1);
5673 break;
5674 #endif
5676 case PLUS:
5677 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5678 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5679 bit-field and can be replaced by either a sign_extend or a
5680 sign_extract. The `and' may be a zero_extend and the two
5681 <c>, -<c> constants may be reversed. */
5682 if (GET_CODE (XEXP (x, 0)) == XOR
5683 && CONST_INT_P (XEXP (x, 1))
5684 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5685 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5686 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5687 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5688 && HWI_COMPUTABLE_MODE_P (mode)
5689 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5690 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5691 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5692 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5693 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5694 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5695 == (unsigned int) i + 1))))
5696 return simplify_shift_const
5697 (NULL_RTX, ASHIFTRT, mode,
5698 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5699 XEXP (XEXP (XEXP (x, 0), 0), 0),
5700 GET_MODE_PRECISION (mode) - (i + 1)),
5701 GET_MODE_PRECISION (mode) - (i + 1));
5703 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5704 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5705 the bitsize of the mode - 1. This allows simplification of
5706 "a = (b & 8) == 0;" */
5707 if (XEXP (x, 1) == constm1_rtx
5708 && !REG_P (XEXP (x, 0))
5709 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5710 && REG_P (SUBREG_REG (XEXP (x, 0))))
5711 && nonzero_bits (XEXP (x, 0), mode) == 1)
5712 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5713 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5714 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5715 GET_MODE_PRECISION (mode) - 1),
5716 GET_MODE_PRECISION (mode) - 1);
5718 /* If we are adding two things that have no bits in common, convert
5719 the addition into an IOR. This will often be further simplified,
5720 for example in cases like ((a & 1) + (a & 2)), which can
5721 become a & 3. */
5723 if (HWI_COMPUTABLE_MODE_P (mode)
5724 && (nonzero_bits (XEXP (x, 0), mode)
5725 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5727 /* Try to simplify the expression further. */
5728 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5729 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5731 /* If we could, great. If not, do not go ahead with the IOR
5732 replacement, since PLUS appears in many special purpose
5733 address arithmetic instructions. */
5734 if (GET_CODE (temp) != CLOBBER
5735 && (GET_CODE (temp) != IOR
5736 || ((XEXP (temp, 0) != XEXP (x, 0)
5737 || XEXP (temp, 1) != XEXP (x, 1))
5738 && (XEXP (temp, 0) != XEXP (x, 1)
5739 || XEXP (temp, 1) != XEXP (x, 0)))))
5740 return temp;
5742 break;
5744 case MINUS:
5745 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5746 (and <foo> (const_int pow2-1)) */
5747 if (GET_CODE (XEXP (x, 1)) == AND
5748 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5749 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5750 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5751 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5752 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5753 break;
5755 case MULT:
5756 /* If we have (mult (plus A B) C), apply the distributive law and then
5757 the inverse distributive law to see if things simplify. This
5758 occurs mostly in addresses, often when unrolling loops. */
5760 if (GET_CODE (XEXP (x, 0)) == PLUS)
5762 rtx result = distribute_and_simplify_rtx (x, 0);
5763 if (result)
5764 return result;
5767 /* Try simplify a*(b/c) as (a*b)/c. */
5768 if (FLOAT_MODE_P (mode) && flag_associative_math
5769 && GET_CODE (XEXP (x, 0)) == DIV)
5771 rtx tem = simplify_binary_operation (MULT, mode,
5772 XEXP (XEXP (x, 0), 0),
5773 XEXP (x, 1));
5774 if (tem)
5775 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5777 break;
5779 case UDIV:
5780 /* If this is a divide by a power of two, treat it as a shift if
5781 its first operand is a shift. */
5782 if (CONST_INT_P (XEXP (x, 1))
5783 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5784 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5785 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5786 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5787 || GET_CODE (XEXP (x, 0)) == ROTATE
5788 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5789 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5790 break;
5792 case EQ: case NE:
5793 case GT: case GTU: case GE: case GEU:
5794 case LT: case LTU: case LE: case LEU:
5795 case UNEQ: case LTGT:
5796 case UNGT: case UNGE:
5797 case UNLT: case UNLE:
5798 case UNORDERED: case ORDERED:
5799 /* If the first operand is a condition code, we can't do anything
5800 with it. */
5801 if (GET_CODE (XEXP (x, 0)) == COMPARE
5802 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5803 && ! CC0_P (XEXP (x, 0))))
5805 rtx op0 = XEXP (x, 0);
5806 rtx op1 = XEXP (x, 1);
5807 enum rtx_code new_code;
5809 if (GET_CODE (op0) == COMPARE)
5810 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5812 /* Simplify our comparison, if possible. */
5813 new_code = simplify_comparison (code, &op0, &op1);
5815 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5816 if only the low-order bit is possibly nonzero in X (such as when
5817 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5818 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5819 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5820 (plus X 1).
5822 Remove any ZERO_EXTRACT we made when thinking this was a
5823 comparison. It may now be simpler to use, e.g., an AND. If a
5824 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5825 the call to make_compound_operation in the SET case.
5827 Don't apply these optimizations if the caller would
5828 prefer a comparison rather than a value.
5829 E.g., for the condition in an IF_THEN_ELSE most targets need
5830 an explicit comparison. */
5832 if (in_cond)
5835 else if (STORE_FLAG_VALUE == 1
5836 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5837 && op1 == const0_rtx
5838 && mode == GET_MODE (op0)
5839 && nonzero_bits (op0, mode) == 1)
5840 return gen_lowpart (mode,
5841 expand_compound_operation (op0));
5843 else if (STORE_FLAG_VALUE == 1
5844 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5845 && op1 == const0_rtx
5846 && mode == GET_MODE (op0)
5847 && (num_sign_bit_copies (op0, mode)
5848 == GET_MODE_PRECISION (mode)))
5850 op0 = expand_compound_operation (op0);
5851 return simplify_gen_unary (NEG, mode,
5852 gen_lowpart (mode, op0),
5853 mode);
5856 else if (STORE_FLAG_VALUE == 1
5857 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5858 && op1 == const0_rtx
5859 && mode == GET_MODE (op0)
5860 && nonzero_bits (op0, mode) == 1)
5862 op0 = expand_compound_operation (op0);
5863 return simplify_gen_binary (XOR, mode,
5864 gen_lowpart (mode, op0),
5865 const1_rtx);
5868 else if (STORE_FLAG_VALUE == 1
5869 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5870 && op1 == const0_rtx
5871 && mode == GET_MODE (op0)
5872 && (num_sign_bit_copies (op0, mode)
5873 == GET_MODE_PRECISION (mode)))
5875 op0 = expand_compound_operation (op0);
5876 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5879 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5880 those above. */
5881 if (in_cond)
5884 else if (STORE_FLAG_VALUE == -1
5885 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5886 && op1 == const0_rtx
5887 && (num_sign_bit_copies (op0, mode)
5888 == GET_MODE_PRECISION (mode)))
5889 return gen_lowpart (mode,
5890 expand_compound_operation (op0));
5892 else if (STORE_FLAG_VALUE == -1
5893 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5894 && op1 == const0_rtx
5895 && mode == GET_MODE (op0)
5896 && nonzero_bits (op0, mode) == 1)
5898 op0 = expand_compound_operation (op0);
5899 return simplify_gen_unary (NEG, mode,
5900 gen_lowpart (mode, op0),
5901 mode);
5904 else if (STORE_FLAG_VALUE == -1
5905 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5906 && op1 == const0_rtx
5907 && mode == GET_MODE (op0)
5908 && (num_sign_bit_copies (op0, mode)
5909 == GET_MODE_PRECISION (mode)))
5911 op0 = expand_compound_operation (op0);
5912 return simplify_gen_unary (NOT, mode,
5913 gen_lowpart (mode, op0),
5914 mode);
5917 /* If X is 0/1, (eq X 0) is X-1. */
5918 else if (STORE_FLAG_VALUE == -1
5919 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5920 && op1 == const0_rtx
5921 && mode == GET_MODE (op0)
5922 && nonzero_bits (op0, mode) == 1)
5924 op0 = expand_compound_operation (op0);
5925 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5928 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5929 one bit that might be nonzero, we can convert (ne x 0) to
5930 (ashift x c) where C puts the bit in the sign bit. Remove any
5931 AND with STORE_FLAG_VALUE when we are done, since we are only
5932 going to test the sign bit. */
5933 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5934 && HWI_COMPUTABLE_MODE_P (mode)
5935 && val_signbit_p (mode, STORE_FLAG_VALUE)
5936 && op1 == const0_rtx
5937 && mode == GET_MODE (op0)
5938 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5940 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5941 expand_compound_operation (op0),
5942 GET_MODE_PRECISION (mode) - 1 - i);
5943 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5944 return XEXP (x, 0);
5945 else
5946 return x;
5949 /* If the code changed, return a whole new comparison. */
5950 if (new_code != code)
5951 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5953 /* Otherwise, keep this operation, but maybe change its operands.
5954 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5955 SUBST (XEXP (x, 0), op0);
5956 SUBST (XEXP (x, 1), op1);
5958 break;
5960 case IF_THEN_ELSE:
5961 return simplify_if_then_else (x);
5963 case ZERO_EXTRACT:
5964 case SIGN_EXTRACT:
5965 case ZERO_EXTEND:
5966 case SIGN_EXTEND:
5967 /* If we are processing SET_DEST, we are done. */
5968 if (in_dest)
5969 return x;
5971 return expand_compound_operation (x);
5973 case SET:
5974 return simplify_set (x);
5976 case AND:
5977 case IOR:
5978 return simplify_logical (x);
5980 case ASHIFT:
5981 case LSHIFTRT:
5982 case ASHIFTRT:
5983 case ROTATE:
5984 case ROTATERT:
5985 /* If this is a shift by a constant amount, simplify it. */
5986 if (CONST_INT_P (XEXP (x, 1)))
5987 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5988 INTVAL (XEXP (x, 1)));
5990 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5991 SUBST (XEXP (x, 1),
5992 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5993 ((unsigned HOST_WIDE_INT) 1
5994 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5995 - 1,
5996 0));
5997 break;
5999 default:
6000 break;
6003 return x;
6006 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6008 static rtx
6009 simplify_if_then_else (rtx x)
6011 enum machine_mode mode = GET_MODE (x);
6012 rtx cond = XEXP (x, 0);
6013 rtx true_rtx = XEXP (x, 1);
6014 rtx false_rtx = XEXP (x, 2);
6015 enum rtx_code true_code = GET_CODE (cond);
6016 int comparison_p = COMPARISON_P (cond);
6017 rtx temp;
6018 int i;
6019 enum rtx_code false_code;
6020 rtx reversed;
6022 /* Simplify storing of the truth value. */
6023 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6024 return simplify_gen_relational (true_code, mode, VOIDmode,
6025 XEXP (cond, 0), XEXP (cond, 1));
6027 /* Also when the truth value has to be reversed. */
6028 if (comparison_p
6029 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6030 && (reversed = reversed_comparison (cond, mode)))
6031 return reversed;
6033 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6034 in it is being compared against certain values. Get the true and false
6035 comparisons and see if that says anything about the value of each arm. */
6037 if (comparison_p
6038 && ((false_code = reversed_comparison_code (cond, NULL))
6039 != UNKNOWN)
6040 && REG_P (XEXP (cond, 0)))
6042 HOST_WIDE_INT nzb;
6043 rtx from = XEXP (cond, 0);
6044 rtx true_val = XEXP (cond, 1);
6045 rtx false_val = true_val;
6046 int swapped = 0;
6048 /* If FALSE_CODE is EQ, swap the codes and arms. */
6050 if (false_code == EQ)
6052 swapped = 1, true_code = EQ, false_code = NE;
6053 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6056 /* If we are comparing against zero and the expression being tested has
6057 only a single bit that might be nonzero, that is its value when it is
6058 not equal to zero. Similarly if it is known to be -1 or 0. */
6060 if (true_code == EQ && true_val == const0_rtx
6061 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6063 false_code = EQ;
6064 false_val = gen_int_mode (nzb, GET_MODE (from));
6066 else if (true_code == EQ && true_val == const0_rtx
6067 && (num_sign_bit_copies (from, GET_MODE (from))
6068 == GET_MODE_PRECISION (GET_MODE (from))))
6070 false_code = EQ;
6071 false_val = constm1_rtx;
6074 /* Now simplify an arm if we know the value of the register in the
6075 branch and it is used in the arm. Be careful due to the potential
6076 of locally-shared RTL. */
6078 if (reg_mentioned_p (from, true_rtx))
6079 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6080 from, true_val),
6081 pc_rtx, pc_rtx, 0, 0, 0);
6082 if (reg_mentioned_p (from, false_rtx))
6083 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6084 from, false_val),
6085 pc_rtx, pc_rtx, 0, 0, 0);
6087 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6088 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6090 true_rtx = XEXP (x, 1);
6091 false_rtx = XEXP (x, 2);
6092 true_code = GET_CODE (cond);
6095 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6096 reversed, do so to avoid needing two sets of patterns for
6097 subtract-and-branch insns. Similarly if we have a constant in the true
6098 arm, the false arm is the same as the first operand of the comparison, or
6099 the false arm is more complicated than the true arm. */
6101 if (comparison_p
6102 && reversed_comparison_code (cond, NULL) != UNKNOWN
6103 && (true_rtx == pc_rtx
6104 || (CONSTANT_P (true_rtx)
6105 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6106 || true_rtx == const0_rtx
6107 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6108 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6109 && !OBJECT_P (false_rtx))
6110 || reg_mentioned_p (true_rtx, false_rtx)
6111 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6113 true_code = reversed_comparison_code (cond, NULL);
6114 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6115 SUBST (XEXP (x, 1), false_rtx);
6116 SUBST (XEXP (x, 2), true_rtx);
6118 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6119 cond = XEXP (x, 0);
6121 /* It is possible that the conditional has been simplified out. */
6122 true_code = GET_CODE (cond);
6123 comparison_p = COMPARISON_P (cond);
6126 /* If the two arms are identical, we don't need the comparison. */
6128 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6129 return true_rtx;
6131 /* Convert a == b ? b : a to "a". */
6132 if (true_code == EQ && ! side_effects_p (cond)
6133 && !HONOR_NANS (mode)
6134 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6135 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6136 return false_rtx;
6137 else if (true_code == NE && ! side_effects_p (cond)
6138 && !HONOR_NANS (mode)
6139 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6140 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6141 return true_rtx;
6143 /* Look for cases where we have (abs x) or (neg (abs X)). */
6145 if (GET_MODE_CLASS (mode) == MODE_INT
6146 && comparison_p
6147 && XEXP (cond, 1) == const0_rtx
6148 && GET_CODE (false_rtx) == NEG
6149 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6150 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6151 && ! side_effects_p (true_rtx))
6152 switch (true_code)
6154 case GT:
6155 case GE:
6156 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6157 case LT:
6158 case LE:
6159 return
6160 simplify_gen_unary (NEG, mode,
6161 simplify_gen_unary (ABS, mode, true_rtx, mode),
6162 mode);
6163 default:
6164 break;
6167 /* Look for MIN or MAX. */
6169 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6170 && comparison_p
6171 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6172 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6173 && ! side_effects_p (cond))
6174 switch (true_code)
6176 case GE:
6177 case GT:
6178 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6179 case LE:
6180 case LT:
6181 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6182 case GEU:
6183 case GTU:
6184 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6185 case LEU:
6186 case LTU:
6187 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6188 default:
6189 break;
6192 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6193 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6194 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6195 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6196 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6197 neither 1 or -1, but it isn't worth checking for. */
6199 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6200 && comparison_p
6201 && GET_MODE_CLASS (mode) == MODE_INT
6202 && ! side_effects_p (x))
6204 rtx t = make_compound_operation (true_rtx, SET);
6205 rtx f = make_compound_operation (false_rtx, SET);
6206 rtx cond_op0 = XEXP (cond, 0);
6207 rtx cond_op1 = XEXP (cond, 1);
6208 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6209 enum machine_mode m = mode;
6210 rtx z = 0, c1 = NULL_RTX;
6212 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6213 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6214 || GET_CODE (t) == ASHIFT
6215 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6216 && rtx_equal_p (XEXP (t, 0), f))
6217 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6219 /* If an identity-zero op is commutative, check whether there
6220 would be a match if we swapped the operands. */
6221 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6222 || GET_CODE (t) == XOR)
6223 && rtx_equal_p (XEXP (t, 1), f))
6224 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6225 else if (GET_CODE (t) == SIGN_EXTEND
6226 && (GET_CODE (XEXP (t, 0)) == PLUS
6227 || GET_CODE (XEXP (t, 0)) == MINUS
6228 || GET_CODE (XEXP (t, 0)) == IOR
6229 || GET_CODE (XEXP (t, 0)) == XOR
6230 || GET_CODE (XEXP (t, 0)) == ASHIFT
6231 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6232 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6233 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6234 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6235 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6236 && (num_sign_bit_copies (f, GET_MODE (f))
6237 > (unsigned int)
6238 (GET_MODE_PRECISION (mode)
6239 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6241 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6242 extend_op = SIGN_EXTEND;
6243 m = GET_MODE (XEXP (t, 0));
6245 else if (GET_CODE (t) == SIGN_EXTEND
6246 && (GET_CODE (XEXP (t, 0)) == PLUS
6247 || GET_CODE (XEXP (t, 0)) == IOR
6248 || GET_CODE (XEXP (t, 0)) == XOR)
6249 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6250 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6251 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6252 && (num_sign_bit_copies (f, GET_MODE (f))
6253 > (unsigned int)
6254 (GET_MODE_PRECISION (mode)
6255 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6257 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6258 extend_op = SIGN_EXTEND;
6259 m = GET_MODE (XEXP (t, 0));
6261 else if (GET_CODE (t) == ZERO_EXTEND
6262 && (GET_CODE (XEXP (t, 0)) == PLUS
6263 || GET_CODE (XEXP (t, 0)) == MINUS
6264 || GET_CODE (XEXP (t, 0)) == IOR
6265 || GET_CODE (XEXP (t, 0)) == XOR
6266 || GET_CODE (XEXP (t, 0)) == ASHIFT
6267 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6268 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6269 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6270 && HWI_COMPUTABLE_MODE_P (mode)
6271 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6272 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6273 && ((nonzero_bits (f, GET_MODE (f))
6274 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6275 == 0))
6277 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6278 extend_op = ZERO_EXTEND;
6279 m = GET_MODE (XEXP (t, 0));
6281 else if (GET_CODE (t) == ZERO_EXTEND
6282 && (GET_CODE (XEXP (t, 0)) == PLUS
6283 || GET_CODE (XEXP (t, 0)) == IOR
6284 || GET_CODE (XEXP (t, 0)) == XOR)
6285 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6286 && HWI_COMPUTABLE_MODE_P (mode)
6287 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6288 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6289 && ((nonzero_bits (f, GET_MODE (f))
6290 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6291 == 0))
6293 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6294 extend_op = ZERO_EXTEND;
6295 m = GET_MODE (XEXP (t, 0));
6298 if (z)
6300 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6301 cond_op0, cond_op1),
6302 pc_rtx, pc_rtx, 0, 0, 0);
6303 temp = simplify_gen_binary (MULT, m, temp,
6304 simplify_gen_binary (MULT, m, c1,
6305 const_true_rtx));
6306 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6307 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6309 if (extend_op != UNKNOWN)
6310 temp = simplify_gen_unary (extend_op, mode, temp, m);
6312 return temp;
6316 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6317 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6318 negation of a single bit, we can convert this operation to a shift. We
6319 can actually do this more generally, but it doesn't seem worth it. */
6321 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6322 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6323 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6324 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6325 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6326 == GET_MODE_PRECISION (mode))
6327 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6328 return
6329 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6330 gen_lowpart (mode, XEXP (cond, 0)), i);
6332 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6333 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6334 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6335 && GET_MODE (XEXP (cond, 0)) == mode
6336 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6337 == nonzero_bits (XEXP (cond, 0), mode)
6338 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6339 return XEXP (cond, 0);
6341 return x;
6344 /* Simplify X, a SET expression. Return the new expression. */
6346 static rtx
6347 simplify_set (rtx x)
6349 rtx src = SET_SRC (x);
6350 rtx dest = SET_DEST (x);
6351 enum machine_mode mode
6352 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6353 rtx other_insn;
6354 rtx *cc_use;
6356 /* (set (pc) (return)) gets written as (return). */
6357 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6358 return src;
6360 /* Now that we know for sure which bits of SRC we are using, see if we can
6361 simplify the expression for the object knowing that we only need the
6362 low-order bits. */
6364 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6366 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6367 SUBST (SET_SRC (x), src);
6370 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6371 the comparison result and try to simplify it unless we already have used
6372 undobuf.other_insn. */
6373 if ((GET_MODE_CLASS (mode) == MODE_CC
6374 || GET_CODE (src) == COMPARE
6375 || CC0_P (dest))
6376 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6377 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6378 && COMPARISON_P (*cc_use)
6379 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6381 enum rtx_code old_code = GET_CODE (*cc_use);
6382 enum rtx_code new_code;
6383 rtx op0, op1, tmp;
6384 int other_changed = 0;
6385 rtx inner_compare = NULL_RTX;
6386 enum machine_mode compare_mode = GET_MODE (dest);
6388 if (GET_CODE (src) == COMPARE)
6390 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6391 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6393 inner_compare = op0;
6394 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6397 else
6398 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6400 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6401 op0, op1);
6402 if (!tmp)
6403 new_code = old_code;
6404 else if (!CONSTANT_P (tmp))
6406 new_code = GET_CODE (tmp);
6407 op0 = XEXP (tmp, 0);
6408 op1 = XEXP (tmp, 1);
6410 else
6412 rtx pat = PATTERN (other_insn);
6413 undobuf.other_insn = other_insn;
6414 SUBST (*cc_use, tmp);
6416 /* Attempt to simplify CC user. */
6417 if (GET_CODE (pat) == SET)
6419 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6420 if (new_rtx != NULL_RTX)
6421 SUBST (SET_SRC (pat), new_rtx);
6424 /* Convert X into a no-op move. */
6425 SUBST (SET_DEST (x), pc_rtx);
6426 SUBST (SET_SRC (x), pc_rtx);
6427 return x;
6430 /* Simplify our comparison, if possible. */
6431 new_code = simplify_comparison (new_code, &op0, &op1);
6433 #ifdef SELECT_CC_MODE
6434 /* If this machine has CC modes other than CCmode, check to see if we
6435 need to use a different CC mode here. */
6436 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6437 compare_mode = GET_MODE (op0);
6438 else if (inner_compare
6439 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6440 && new_code == old_code
6441 && op0 == XEXP (inner_compare, 0)
6442 && op1 == XEXP (inner_compare, 1))
6443 compare_mode = GET_MODE (inner_compare);
6444 else
6445 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6447 #ifndef HAVE_cc0
6448 /* If the mode changed, we have to change SET_DEST, the mode in the
6449 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6450 a hard register, just build new versions with the proper mode. If it
6451 is a pseudo, we lose unless it is only time we set the pseudo, in
6452 which case we can safely change its mode. */
6453 if (compare_mode != GET_MODE (dest))
6455 if (can_change_dest_mode (dest, 0, compare_mode))
6457 unsigned int regno = REGNO (dest);
6458 rtx new_dest;
6460 if (regno < FIRST_PSEUDO_REGISTER)
6461 new_dest = gen_rtx_REG (compare_mode, regno);
6462 else
6464 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6465 new_dest = regno_reg_rtx[regno];
6468 SUBST (SET_DEST (x), new_dest);
6469 SUBST (XEXP (*cc_use, 0), new_dest);
6470 other_changed = 1;
6472 dest = new_dest;
6475 #endif /* cc0 */
6476 #endif /* SELECT_CC_MODE */
6478 /* If the code changed, we have to build a new comparison in
6479 undobuf.other_insn. */
6480 if (new_code != old_code)
6482 int other_changed_previously = other_changed;
6483 unsigned HOST_WIDE_INT mask;
6484 rtx old_cc_use = *cc_use;
6486 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6487 dest, const0_rtx));
6488 other_changed = 1;
6490 /* If the only change we made was to change an EQ into an NE or
6491 vice versa, OP0 has only one bit that might be nonzero, and OP1
6492 is zero, check if changing the user of the condition code will
6493 produce a valid insn. If it won't, we can keep the original code
6494 in that insn by surrounding our operation with an XOR. */
6496 if (((old_code == NE && new_code == EQ)
6497 || (old_code == EQ && new_code == NE))
6498 && ! other_changed_previously && op1 == const0_rtx
6499 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6500 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6502 rtx pat = PATTERN (other_insn), note = 0;
6504 if ((recog_for_combine (&pat, other_insn, &note) < 0
6505 && ! check_asm_operands (pat)))
6507 *cc_use = old_cc_use;
6508 other_changed = 0;
6510 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6511 op0, GEN_INT (mask));
6516 if (other_changed)
6517 undobuf.other_insn = other_insn;
6519 /* Otherwise, if we didn't previously have a COMPARE in the
6520 correct mode, we need one. */
6521 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6523 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6524 src = SET_SRC (x);
6526 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6528 SUBST (SET_SRC (x), op0);
6529 src = SET_SRC (x);
6531 /* Otherwise, update the COMPARE if needed. */
6532 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6534 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6535 src = SET_SRC (x);
6538 else
6540 /* Get SET_SRC in a form where we have placed back any
6541 compound expressions. Then do the checks below. */
6542 src = make_compound_operation (src, SET);
6543 SUBST (SET_SRC (x), src);
6546 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6547 and X being a REG or (subreg (reg)), we may be able to convert this to
6548 (set (subreg:m2 x) (op)).
6550 We can always do this if M1 is narrower than M2 because that means that
6551 we only care about the low bits of the result.
6553 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6554 perform a narrower operation than requested since the high-order bits will
6555 be undefined. On machine where it is defined, this transformation is safe
6556 as long as M1 and M2 have the same number of words. */
6558 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6559 && !OBJECT_P (SUBREG_REG (src))
6560 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6561 / UNITS_PER_WORD)
6562 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6563 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6564 #ifndef WORD_REGISTER_OPERATIONS
6565 && (GET_MODE_SIZE (GET_MODE (src))
6566 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6567 #endif
6568 #ifdef CANNOT_CHANGE_MODE_CLASS
6569 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6570 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6571 GET_MODE (SUBREG_REG (src)),
6572 GET_MODE (src)))
6573 #endif
6574 && (REG_P (dest)
6575 || (GET_CODE (dest) == SUBREG
6576 && REG_P (SUBREG_REG (dest)))))
6578 SUBST (SET_DEST (x),
6579 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6580 dest));
6581 SUBST (SET_SRC (x), SUBREG_REG (src));
6583 src = SET_SRC (x), dest = SET_DEST (x);
6586 #ifdef HAVE_cc0
6587 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6588 in SRC. */
6589 if (dest == cc0_rtx
6590 && GET_CODE (src) == SUBREG
6591 && subreg_lowpart_p (src)
6592 && (GET_MODE_PRECISION (GET_MODE (src))
6593 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6595 rtx inner = SUBREG_REG (src);
6596 enum machine_mode inner_mode = GET_MODE (inner);
6598 /* Here we make sure that we don't have a sign bit on. */
6599 if (val_signbit_known_clear_p (GET_MODE (src),
6600 nonzero_bits (inner, inner_mode)))
6602 SUBST (SET_SRC (x), inner);
6603 src = SET_SRC (x);
6606 #endif
6608 #ifdef LOAD_EXTEND_OP
6609 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6610 would require a paradoxical subreg. Replace the subreg with a
6611 zero_extend to avoid the reload that would otherwise be required. */
6613 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6614 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6615 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6616 && SUBREG_BYTE (src) == 0
6617 && paradoxical_subreg_p (src)
6618 && MEM_P (SUBREG_REG (src)))
6620 SUBST (SET_SRC (x),
6621 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6622 GET_MODE (src), SUBREG_REG (src)));
6624 src = SET_SRC (x);
6626 #endif
6628 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6629 are comparing an item known to be 0 or -1 against 0, use a logical
6630 operation instead. Check for one of the arms being an IOR of the other
6631 arm with some value. We compute three terms to be IOR'ed together. In
6632 practice, at most two will be nonzero. Then we do the IOR's. */
6634 if (GET_CODE (dest) != PC
6635 && GET_CODE (src) == IF_THEN_ELSE
6636 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6637 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6638 && XEXP (XEXP (src, 0), 1) == const0_rtx
6639 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6640 #ifdef HAVE_conditional_move
6641 && ! can_conditionally_move_p (GET_MODE (src))
6642 #endif
6643 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6644 GET_MODE (XEXP (XEXP (src, 0), 0)))
6645 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6646 && ! side_effects_p (src))
6648 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6649 ? XEXP (src, 1) : XEXP (src, 2));
6650 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6651 ? XEXP (src, 2) : XEXP (src, 1));
6652 rtx term1 = const0_rtx, term2, term3;
6654 if (GET_CODE (true_rtx) == IOR
6655 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6656 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6657 else if (GET_CODE (true_rtx) == IOR
6658 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6659 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6660 else if (GET_CODE (false_rtx) == IOR
6661 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6662 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6663 else if (GET_CODE (false_rtx) == IOR
6664 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6665 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6667 term2 = simplify_gen_binary (AND, GET_MODE (src),
6668 XEXP (XEXP (src, 0), 0), true_rtx);
6669 term3 = simplify_gen_binary (AND, GET_MODE (src),
6670 simplify_gen_unary (NOT, GET_MODE (src),
6671 XEXP (XEXP (src, 0), 0),
6672 GET_MODE (src)),
6673 false_rtx);
6675 SUBST (SET_SRC (x),
6676 simplify_gen_binary (IOR, GET_MODE (src),
6677 simplify_gen_binary (IOR, GET_MODE (src),
6678 term1, term2),
6679 term3));
6681 src = SET_SRC (x);
6684 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6685 whole thing fail. */
6686 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6687 return src;
6688 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6689 return dest;
6690 else
6691 /* Convert this into a field assignment operation, if possible. */
6692 return make_field_assignment (x);
6695 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6696 result. */
6698 static rtx
6699 simplify_logical (rtx x)
6701 enum machine_mode mode = GET_MODE (x);
6702 rtx op0 = XEXP (x, 0);
6703 rtx op1 = XEXP (x, 1);
6705 switch (GET_CODE (x))
6707 case AND:
6708 /* We can call simplify_and_const_int only if we don't lose
6709 any (sign) bits when converting INTVAL (op1) to
6710 "unsigned HOST_WIDE_INT". */
6711 if (CONST_INT_P (op1)
6712 && (HWI_COMPUTABLE_MODE_P (mode)
6713 || INTVAL (op1) > 0))
6715 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6716 if (GET_CODE (x) != AND)
6717 return x;
6719 op0 = XEXP (x, 0);
6720 op1 = XEXP (x, 1);
6723 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6724 apply the distributive law and then the inverse distributive
6725 law to see if things simplify. */
6726 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6728 rtx result = distribute_and_simplify_rtx (x, 0);
6729 if (result)
6730 return result;
6732 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6734 rtx result = distribute_and_simplify_rtx (x, 1);
6735 if (result)
6736 return result;
6738 break;
6740 case IOR:
6741 /* If we have (ior (and A B) C), apply the distributive law and then
6742 the inverse distributive law to see if things simplify. */
6744 if (GET_CODE (op0) == AND)
6746 rtx result = distribute_and_simplify_rtx (x, 0);
6747 if (result)
6748 return result;
6751 if (GET_CODE (op1) == AND)
6753 rtx result = distribute_and_simplify_rtx (x, 1);
6754 if (result)
6755 return result;
6757 break;
6759 default:
6760 gcc_unreachable ();
6763 return x;
6766 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6767 operations" because they can be replaced with two more basic operations.
6768 ZERO_EXTEND is also considered "compound" because it can be replaced with
6769 an AND operation, which is simpler, though only one operation.
6771 The function expand_compound_operation is called with an rtx expression
6772 and will convert it to the appropriate shifts and AND operations,
6773 simplifying at each stage.
6775 The function make_compound_operation is called to convert an expression
6776 consisting of shifts and ANDs into the equivalent compound expression.
6777 It is the inverse of this function, loosely speaking. */
6779 static rtx
6780 expand_compound_operation (rtx x)
6782 unsigned HOST_WIDE_INT pos = 0, len;
6783 int unsignedp = 0;
6784 unsigned int modewidth;
6785 rtx tem;
6787 switch (GET_CODE (x))
6789 case ZERO_EXTEND:
6790 unsignedp = 1;
6791 case SIGN_EXTEND:
6792 /* We can't necessarily use a const_int for a multiword mode;
6793 it depends on implicitly extending the value.
6794 Since we don't know the right way to extend it,
6795 we can't tell whether the implicit way is right.
6797 Even for a mode that is no wider than a const_int,
6798 we can't win, because we need to sign extend one of its bits through
6799 the rest of it, and we don't know which bit. */
6800 if (CONST_INT_P (XEXP (x, 0)))
6801 return x;
6803 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6804 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6805 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6806 reloaded. If not for that, MEM's would very rarely be safe.
6808 Reject MODEs bigger than a word, because we might not be able
6809 to reference a two-register group starting with an arbitrary register
6810 (and currently gen_lowpart might crash for a SUBREG). */
6812 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6813 return x;
6815 /* Reject MODEs that aren't scalar integers because turning vector
6816 or complex modes into shifts causes problems. */
6818 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6819 return x;
6821 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6822 /* If the inner object has VOIDmode (the only way this can happen
6823 is if it is an ASM_OPERANDS), we can't do anything since we don't
6824 know how much masking to do. */
6825 if (len == 0)
6826 return x;
6828 break;
6830 case ZERO_EXTRACT:
6831 unsignedp = 1;
6833 /* ... fall through ... */
6835 case SIGN_EXTRACT:
6836 /* If the operand is a CLOBBER, just return it. */
6837 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6838 return XEXP (x, 0);
6840 if (!CONST_INT_P (XEXP (x, 1))
6841 || !CONST_INT_P (XEXP (x, 2))
6842 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6843 return x;
6845 /* Reject MODEs that aren't scalar integers because turning vector
6846 or complex modes into shifts causes problems. */
6848 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6849 return x;
6851 len = INTVAL (XEXP (x, 1));
6852 pos = INTVAL (XEXP (x, 2));
6854 /* This should stay within the object being extracted, fail otherwise. */
6855 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6856 return x;
6858 if (BITS_BIG_ENDIAN)
6859 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6861 break;
6863 default:
6864 return x;
6866 /* Convert sign extension to zero extension, if we know that the high
6867 bit is not set, as this is easier to optimize. It will be converted
6868 back to cheaper alternative in make_extraction. */
6869 if (GET_CODE (x) == SIGN_EXTEND
6870 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6871 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6872 & ~(((unsigned HOST_WIDE_INT)
6873 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6874 >> 1))
6875 == 0)))
6877 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6878 rtx temp2 = expand_compound_operation (temp);
6880 /* Make sure this is a profitable operation. */
6881 if (set_src_cost (x, optimize_this_for_speed_p)
6882 > set_src_cost (temp2, optimize_this_for_speed_p))
6883 return temp2;
6884 else if (set_src_cost (x, optimize_this_for_speed_p)
6885 > set_src_cost (temp, optimize_this_for_speed_p))
6886 return temp;
6887 else
6888 return x;
6891 /* We can optimize some special cases of ZERO_EXTEND. */
6892 if (GET_CODE (x) == ZERO_EXTEND)
6894 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6895 know that the last value didn't have any inappropriate bits
6896 set. */
6897 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6898 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6899 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6900 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6901 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6902 return XEXP (XEXP (x, 0), 0);
6904 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6905 if (GET_CODE (XEXP (x, 0)) == SUBREG
6906 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6907 && subreg_lowpart_p (XEXP (x, 0))
6908 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6909 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6910 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6911 return SUBREG_REG (XEXP (x, 0));
6913 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6914 is a comparison and STORE_FLAG_VALUE permits. This is like
6915 the first case, but it works even when GET_MODE (x) is larger
6916 than HOST_WIDE_INT. */
6917 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6918 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6919 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6920 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6921 <= HOST_BITS_PER_WIDE_INT)
6922 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6923 return XEXP (XEXP (x, 0), 0);
6925 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6926 if (GET_CODE (XEXP (x, 0)) == SUBREG
6927 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6928 && subreg_lowpart_p (XEXP (x, 0))
6929 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6930 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6931 <= HOST_BITS_PER_WIDE_INT)
6932 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6933 return SUBREG_REG (XEXP (x, 0));
6937 /* If we reach here, we want to return a pair of shifts. The inner
6938 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6939 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6940 logical depending on the value of UNSIGNEDP.
6942 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6943 converted into an AND of a shift.
6945 We must check for the case where the left shift would have a negative
6946 count. This can happen in a case like (x >> 31) & 255 on machines
6947 that can't shift by a constant. On those machines, we would first
6948 combine the shift with the AND to produce a variable-position
6949 extraction. Then the constant of 31 would be substituted in
6950 to produce such a position. */
6952 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6953 if (modewidth >= pos + len)
6955 enum machine_mode mode = GET_MODE (x);
6956 tem = gen_lowpart (mode, XEXP (x, 0));
6957 if (!tem || GET_CODE (tem) == CLOBBER)
6958 return x;
6959 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6960 tem, modewidth - pos - len);
6961 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6962 mode, tem, modewidth - len);
6964 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6965 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6966 simplify_shift_const (NULL_RTX, LSHIFTRT,
6967 GET_MODE (x),
6968 XEXP (x, 0), pos),
6969 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6970 else
6971 /* Any other cases we can't handle. */
6972 return x;
6974 /* If we couldn't do this for some reason, return the original
6975 expression. */
6976 if (GET_CODE (tem) == CLOBBER)
6977 return x;
6979 return tem;
6982 /* X is a SET which contains an assignment of one object into
6983 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6984 or certain SUBREGS). If possible, convert it into a series of
6985 logical operations.
6987 We half-heartedly support variable positions, but do not at all
6988 support variable lengths. */
6990 static const_rtx
6991 expand_field_assignment (const_rtx x)
6993 rtx inner;
6994 rtx pos; /* Always counts from low bit. */
6995 int len;
6996 rtx mask, cleared, masked;
6997 enum machine_mode compute_mode;
6999 /* Loop until we find something we can't simplify. */
7000 while (1)
7002 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7003 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7005 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7006 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7007 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7009 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7010 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7012 inner = XEXP (SET_DEST (x), 0);
7013 len = INTVAL (XEXP (SET_DEST (x), 1));
7014 pos = XEXP (SET_DEST (x), 2);
7016 /* A constant position should stay within the width of INNER. */
7017 if (CONST_INT_P (pos)
7018 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7019 break;
7021 if (BITS_BIG_ENDIAN)
7023 if (CONST_INT_P (pos))
7024 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7025 - INTVAL (pos));
7026 else if (GET_CODE (pos) == MINUS
7027 && CONST_INT_P (XEXP (pos, 1))
7028 && (INTVAL (XEXP (pos, 1))
7029 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7030 /* If position is ADJUST - X, new position is X. */
7031 pos = XEXP (pos, 0);
7032 else
7033 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7034 GEN_INT (GET_MODE_PRECISION (
7035 GET_MODE (inner))
7036 - len),
7037 pos);
7041 /* A SUBREG between two modes that occupy the same numbers of words
7042 can be done by moving the SUBREG to the source. */
7043 else if (GET_CODE (SET_DEST (x)) == SUBREG
7044 /* We need SUBREGs to compute nonzero_bits properly. */
7045 && nonzero_sign_valid
7046 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7047 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7048 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7049 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7051 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
7052 gen_lowpart
7053 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7054 SET_SRC (x)));
7055 continue;
7057 else
7058 break;
7060 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7061 inner = SUBREG_REG (inner);
7063 compute_mode = GET_MODE (inner);
7065 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7066 if (! SCALAR_INT_MODE_P (compute_mode))
7068 enum machine_mode imode;
7070 /* Don't do anything for vector or complex integral types. */
7071 if (! FLOAT_MODE_P (compute_mode))
7072 break;
7074 /* Try to find an integral mode to pun with. */
7075 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7076 if (imode == BLKmode)
7077 break;
7079 compute_mode = imode;
7080 inner = gen_lowpart (imode, inner);
7083 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7084 if (len >= HOST_BITS_PER_WIDE_INT)
7085 break;
7087 /* Now compute the equivalent expression. Make a copy of INNER
7088 for the SET_DEST in case it is a MEM into which we will substitute;
7089 we don't want shared RTL in that case. */
7090 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
7091 cleared = simplify_gen_binary (AND, compute_mode,
7092 simplify_gen_unary (NOT, compute_mode,
7093 simplify_gen_binary (ASHIFT,
7094 compute_mode,
7095 mask, pos),
7096 compute_mode),
7097 inner);
7098 masked = simplify_gen_binary (ASHIFT, compute_mode,
7099 simplify_gen_binary (
7100 AND, compute_mode,
7101 gen_lowpart (compute_mode, SET_SRC (x)),
7102 mask),
7103 pos);
7105 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7106 simplify_gen_binary (IOR, compute_mode,
7107 cleared, masked));
7110 return x;
7113 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7114 it is an RTX that represents a variable starting position; otherwise,
7115 POS is the (constant) starting bit position (counted from the LSB).
7117 UNSIGNEDP is nonzero for an unsigned reference and zero for a
7118 signed reference.
7120 IN_DEST is nonzero if this is a reference in the destination of a
7121 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7122 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7123 be used.
7125 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7126 ZERO_EXTRACT should be built even for bits starting at bit 0.
7128 MODE is the desired mode of the result (if IN_DEST == 0).
7130 The result is an RTX for the extraction or NULL_RTX if the target
7131 can't handle it. */
7133 static rtx
7134 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7135 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7136 int in_dest, int in_compare)
7138 /* This mode describes the size of the storage area
7139 to fetch the overall value from. Within that, we
7140 ignore the POS lowest bits, etc. */
7141 enum machine_mode is_mode = GET_MODE (inner);
7142 enum machine_mode inner_mode;
7143 enum machine_mode wanted_inner_mode;
7144 enum machine_mode wanted_inner_reg_mode = word_mode;
7145 enum machine_mode pos_mode = word_mode;
7146 enum machine_mode extraction_mode = word_mode;
7147 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7148 rtx new_rtx = 0;
7149 rtx orig_pos_rtx = pos_rtx;
7150 HOST_WIDE_INT orig_pos;
7152 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7154 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7155 consider just the QI as the memory to extract from.
7156 The subreg adds or removes high bits; its mode is
7157 irrelevant to the meaning of this extraction,
7158 since POS and LEN count from the lsb. */
7159 if (MEM_P (SUBREG_REG (inner)))
7160 is_mode = GET_MODE (SUBREG_REG (inner));
7161 inner = SUBREG_REG (inner);
7163 else if (GET_CODE (inner) == ASHIFT
7164 && CONST_INT_P (XEXP (inner, 1))
7165 && pos_rtx == 0 && pos == 0
7166 && len > UINTVAL (XEXP (inner, 1)))
7168 /* We're extracting the least significant bits of an rtx
7169 (ashift X (const_int C)), where LEN > C. Extract the
7170 least significant (LEN - C) bits of X, giving an rtx
7171 whose mode is MODE, then shift it left C times. */
7172 new_rtx = make_extraction (mode, XEXP (inner, 0),
7173 0, 0, len - INTVAL (XEXP (inner, 1)),
7174 unsignedp, in_dest, in_compare);
7175 if (new_rtx != 0)
7176 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7179 inner_mode = GET_MODE (inner);
7181 if (pos_rtx && CONST_INT_P (pos_rtx))
7182 pos = INTVAL (pos_rtx), pos_rtx = 0;
7184 /* See if this can be done without an extraction. We never can if the
7185 width of the field is not the same as that of some integer mode. For
7186 registers, we can only avoid the extraction if the position is at the
7187 low-order bit and this is either not in the destination or we have the
7188 appropriate STRICT_LOW_PART operation available.
7190 For MEM, we can avoid an extract if the field starts on an appropriate
7191 boundary and we can change the mode of the memory reference. */
7193 if (tmode != BLKmode
7194 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7195 && !MEM_P (inner)
7196 && (inner_mode == tmode
7197 || !REG_P (inner)
7198 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7199 || reg_truncated_to_mode (tmode, inner))
7200 && (! in_dest
7201 || (REG_P (inner)
7202 && have_insn_for (STRICT_LOW_PART, tmode))))
7203 || (MEM_P (inner) && pos_rtx == 0
7204 && (pos
7205 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7206 : BITS_PER_UNIT)) == 0
7207 /* We can't do this if we are widening INNER_MODE (it
7208 may not be aligned, for one thing). */
7209 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7210 && (inner_mode == tmode
7211 || (! mode_dependent_address_p (XEXP (inner, 0))
7212 && ! MEM_VOLATILE_P (inner))))))
7214 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7215 field. If the original and current mode are the same, we need not
7216 adjust the offset. Otherwise, we do if bytes big endian.
7218 If INNER is not a MEM, get a piece consisting of just the field
7219 of interest (in this case POS % BITS_PER_WORD must be 0). */
7221 if (MEM_P (inner))
7223 HOST_WIDE_INT offset;
7225 /* POS counts from lsb, but make OFFSET count in memory order. */
7226 if (BYTES_BIG_ENDIAN)
7227 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7228 else
7229 offset = pos / BITS_PER_UNIT;
7231 new_rtx = adjust_address_nv (inner, tmode, offset);
7233 else if (REG_P (inner))
7235 if (tmode != inner_mode)
7237 /* We can't call gen_lowpart in a DEST since we
7238 always want a SUBREG (see below) and it would sometimes
7239 return a new hard register. */
7240 if (pos || in_dest)
7242 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7244 if (WORDS_BIG_ENDIAN
7245 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7246 final_word = ((GET_MODE_SIZE (inner_mode)
7247 - GET_MODE_SIZE (tmode))
7248 / UNITS_PER_WORD) - final_word;
7250 final_word *= UNITS_PER_WORD;
7251 if (BYTES_BIG_ENDIAN &&
7252 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7253 final_word += (GET_MODE_SIZE (inner_mode)
7254 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7256 /* Avoid creating invalid subregs, for example when
7257 simplifying (x>>32)&255. */
7258 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7259 return NULL_RTX;
7261 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7263 else
7264 new_rtx = gen_lowpart (tmode, inner);
7266 else
7267 new_rtx = inner;
7269 else
7270 new_rtx = force_to_mode (inner, tmode,
7271 len >= HOST_BITS_PER_WIDE_INT
7272 ? ~(unsigned HOST_WIDE_INT) 0
7273 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7276 /* If this extraction is going into the destination of a SET,
7277 make a STRICT_LOW_PART unless we made a MEM. */
7279 if (in_dest)
7280 return (MEM_P (new_rtx) ? new_rtx
7281 : (GET_CODE (new_rtx) != SUBREG
7282 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7283 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7285 if (mode == tmode)
7286 return new_rtx;
7288 if (CONST_INT_P (new_rtx)
7289 || GET_CODE (new_rtx) == CONST_DOUBLE)
7290 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7291 mode, new_rtx, tmode);
7293 /* If we know that no extraneous bits are set, and that the high
7294 bit is not set, convert the extraction to the cheaper of
7295 sign and zero extension, that are equivalent in these cases. */
7296 if (flag_expensive_optimizations
7297 && (HWI_COMPUTABLE_MODE_P (tmode)
7298 && ((nonzero_bits (new_rtx, tmode)
7299 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7300 == 0)))
7302 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7303 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7305 /* Prefer ZERO_EXTENSION, since it gives more information to
7306 backends. */
7307 if (set_src_cost (temp, optimize_this_for_speed_p)
7308 <= set_src_cost (temp1, optimize_this_for_speed_p))
7309 return temp;
7310 return temp1;
7313 /* Otherwise, sign- or zero-extend unless we already are in the
7314 proper mode. */
7316 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7317 mode, new_rtx));
7320 /* Unless this is a COMPARE or we have a funny memory reference,
7321 don't do anything with zero-extending field extracts starting at
7322 the low-order bit since they are simple AND operations. */
7323 if (pos_rtx == 0 && pos == 0 && ! in_dest
7324 && ! in_compare && unsignedp)
7325 return 0;
7327 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7328 if the position is not a constant and the length is not 1. In all
7329 other cases, we would only be going outside our object in cases when
7330 an original shift would have been undefined. */
7331 if (MEM_P (inner)
7332 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7333 || (pos_rtx != 0 && len != 1)))
7334 return 0;
7336 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7337 and the mode for the result. */
7338 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7340 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7341 pos_mode = mode_for_extraction (EP_insv, 2);
7342 extraction_mode = mode_for_extraction (EP_insv, 3);
7345 if (! in_dest && unsignedp
7346 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7348 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7349 pos_mode = mode_for_extraction (EP_extzv, 3);
7350 extraction_mode = mode_for_extraction (EP_extzv, 0);
7353 if (! in_dest && ! unsignedp
7354 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7356 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7357 pos_mode = mode_for_extraction (EP_extv, 3);
7358 extraction_mode = mode_for_extraction (EP_extv, 0);
7361 /* Never narrow an object, since that might not be safe. */
7363 if (mode != VOIDmode
7364 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7365 extraction_mode = mode;
7367 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7368 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7369 pos_mode = GET_MODE (pos_rtx);
7371 /* If this is not from memory, the desired mode is the preferred mode
7372 for an extraction pattern's first input operand, or word_mode if there
7373 is none. */
7374 if (!MEM_P (inner))
7375 wanted_inner_mode = wanted_inner_reg_mode;
7376 else
7378 /* Be careful not to go beyond the extracted object and maintain the
7379 natural alignment of the memory. */
7380 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7381 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7382 > GET_MODE_BITSIZE (wanted_inner_mode))
7384 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7385 gcc_assert (wanted_inner_mode != VOIDmode);
7388 /* If we have to change the mode of memory and cannot, the desired mode
7389 is EXTRACTION_MODE. */
7390 if (inner_mode != wanted_inner_mode
7391 && (mode_dependent_address_p (XEXP (inner, 0))
7392 || MEM_VOLATILE_P (inner)
7393 || pos_rtx))
7394 wanted_inner_mode = extraction_mode;
7397 orig_pos = pos;
7399 if (BITS_BIG_ENDIAN)
7401 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7402 BITS_BIG_ENDIAN style. If position is constant, compute new
7403 position. Otherwise, build subtraction.
7404 Note that POS is relative to the mode of the original argument.
7405 If it's a MEM we need to recompute POS relative to that.
7406 However, if we're extracting from (or inserting into) a register,
7407 we want to recompute POS relative to wanted_inner_mode. */
7408 int width = (MEM_P (inner)
7409 ? GET_MODE_BITSIZE (is_mode)
7410 : GET_MODE_BITSIZE (wanted_inner_mode));
7412 if (pos_rtx == 0)
7413 pos = width - len - pos;
7414 else
7415 pos_rtx
7416 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7417 /* POS may be less than 0 now, but we check for that below.
7418 Note that it can only be less than 0 if !MEM_P (inner). */
7421 /* If INNER has a wider mode, and this is a constant extraction, try to
7422 make it smaller and adjust the byte to point to the byte containing
7423 the value. */
7424 if (wanted_inner_mode != VOIDmode
7425 && inner_mode != wanted_inner_mode
7426 && ! pos_rtx
7427 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7428 && MEM_P (inner)
7429 && ! mode_dependent_address_p (XEXP (inner, 0))
7430 && ! MEM_VOLATILE_P (inner))
7432 int offset = 0;
7434 /* The computations below will be correct if the machine is big
7435 endian in both bits and bytes or little endian in bits and bytes.
7436 If it is mixed, we must adjust. */
7438 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7439 adjust OFFSET to compensate. */
7440 if (BYTES_BIG_ENDIAN
7441 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7442 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7444 /* We can now move to the desired byte. */
7445 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7446 * GET_MODE_SIZE (wanted_inner_mode);
7447 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7449 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7450 && is_mode != wanted_inner_mode)
7451 offset = (GET_MODE_SIZE (is_mode)
7452 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7454 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7457 /* If INNER is not memory, get it into the proper mode. If we are changing
7458 its mode, POS must be a constant and smaller than the size of the new
7459 mode. */
7460 else if (!MEM_P (inner))
7462 /* On the LHS, don't create paradoxical subregs implicitely truncating
7463 the register unless TRULY_NOOP_TRUNCATION. */
7464 if (in_dest
7465 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7466 wanted_inner_mode))
7467 return NULL_RTX;
7469 if (GET_MODE (inner) != wanted_inner_mode
7470 && (pos_rtx != 0
7471 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7472 return NULL_RTX;
7474 if (orig_pos < 0)
7475 return NULL_RTX;
7477 inner = force_to_mode (inner, wanted_inner_mode,
7478 pos_rtx
7479 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7480 ? ~(unsigned HOST_WIDE_INT) 0
7481 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7482 << orig_pos),
7486 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7487 have to zero extend. Otherwise, we can just use a SUBREG. */
7488 if (pos_rtx != 0
7489 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7491 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7493 /* If we know that no extraneous bits are set, and that the high
7494 bit is not set, convert extraction to cheaper one - either
7495 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7496 cases. */
7497 if (flag_expensive_optimizations
7498 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7499 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7500 & ~(((unsigned HOST_WIDE_INT)
7501 GET_MODE_MASK (GET_MODE (pos_rtx)))
7502 >> 1))
7503 == 0)))
7505 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7507 /* Prefer ZERO_EXTENSION, since it gives more information to
7508 backends. */
7509 if (set_src_cost (temp1, optimize_this_for_speed_p)
7510 < set_src_cost (temp, optimize_this_for_speed_p))
7511 temp = temp1;
7513 pos_rtx = temp;
7515 else if (pos_rtx != 0
7516 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7517 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7519 /* Make POS_RTX unless we already have it and it is correct. If we don't
7520 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7521 be a CONST_INT. */
7522 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7523 pos_rtx = orig_pos_rtx;
7525 else if (pos_rtx == 0)
7526 pos_rtx = GEN_INT (pos);
7528 /* Make the required operation. See if we can use existing rtx. */
7529 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7530 extraction_mode, inner, GEN_INT (len), pos_rtx);
7531 if (! in_dest)
7532 new_rtx = gen_lowpart (mode, new_rtx);
7534 return new_rtx;
7537 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7538 with any other operations in X. Return X without that shift if so. */
7540 static rtx
7541 extract_left_shift (rtx x, int count)
7543 enum rtx_code code = GET_CODE (x);
7544 enum machine_mode mode = GET_MODE (x);
7545 rtx tem;
7547 switch (code)
7549 case ASHIFT:
7550 /* This is the shift itself. If it is wide enough, we will return
7551 either the value being shifted if the shift count is equal to
7552 COUNT or a shift for the difference. */
7553 if (CONST_INT_P (XEXP (x, 1))
7554 && INTVAL (XEXP (x, 1)) >= count)
7555 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7556 INTVAL (XEXP (x, 1)) - count);
7557 break;
7559 case NEG: case NOT:
7560 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7561 return simplify_gen_unary (code, mode, tem, mode);
7563 break;
7565 case PLUS: case IOR: case XOR: case AND:
7566 /* If we can safely shift this constant and we find the inner shift,
7567 make a new operation. */
7568 if (CONST_INT_P (XEXP (x, 1))
7569 && (UINTVAL (XEXP (x, 1))
7570 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7571 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7572 return simplify_gen_binary (code, mode, tem,
7573 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7575 break;
7577 default:
7578 break;
7581 return 0;
7584 /* Look at the expression rooted at X. Look for expressions
7585 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7586 Form these expressions.
7588 Return the new rtx, usually just X.
7590 Also, for machines like the VAX that don't have logical shift insns,
7591 try to convert logical to arithmetic shift operations in cases where
7592 they are equivalent. This undoes the canonicalizations to logical
7593 shifts done elsewhere.
7595 We try, as much as possible, to re-use rtl expressions to save memory.
7597 IN_CODE says what kind of expression we are processing. Normally, it is
7598 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7599 being kludges), it is MEM. When processing the arguments of a comparison
7600 or a COMPARE against zero, it is COMPARE. */
7602 static rtx
7603 make_compound_operation (rtx x, enum rtx_code in_code)
7605 enum rtx_code code = GET_CODE (x);
7606 enum machine_mode mode = GET_MODE (x);
7607 int mode_width = GET_MODE_PRECISION (mode);
7608 rtx rhs, lhs;
7609 enum rtx_code next_code;
7610 int i, j;
7611 rtx new_rtx = 0;
7612 rtx tem;
7613 const char *fmt;
7615 /* Select the code to be used in recursive calls. Once we are inside an
7616 address, we stay there. If we have a comparison, set to COMPARE,
7617 but once inside, go back to our default of SET. */
7619 next_code = (code == MEM ? MEM
7620 : ((code == PLUS || code == MINUS)
7621 && SCALAR_INT_MODE_P (mode)) ? MEM
7622 : ((code == COMPARE || COMPARISON_P (x))
7623 && XEXP (x, 1) == const0_rtx) ? COMPARE
7624 : in_code == COMPARE ? SET : in_code);
7626 /* Process depending on the code of this operation. If NEW is set
7627 nonzero, it will be returned. */
7629 switch (code)
7631 case ASHIFT:
7632 /* Convert shifts by constants into multiplications if inside
7633 an address. */
7634 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7635 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7636 && INTVAL (XEXP (x, 1)) >= 0
7637 && SCALAR_INT_MODE_P (mode))
7639 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7640 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7642 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7643 if (GET_CODE (new_rtx) == NEG)
7645 new_rtx = XEXP (new_rtx, 0);
7646 multval = -multval;
7648 multval = trunc_int_for_mode (multval, mode);
7649 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7651 break;
7653 case PLUS:
7654 lhs = XEXP (x, 0);
7655 rhs = XEXP (x, 1);
7656 lhs = make_compound_operation (lhs, next_code);
7657 rhs = make_compound_operation (rhs, next_code);
7658 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7659 && SCALAR_INT_MODE_P (mode))
7661 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7662 XEXP (lhs, 1));
7663 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7665 else if (GET_CODE (lhs) == MULT
7666 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7668 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7669 simplify_gen_unary (NEG, mode,
7670 XEXP (lhs, 1),
7671 mode));
7672 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7674 else
7676 SUBST (XEXP (x, 0), lhs);
7677 SUBST (XEXP (x, 1), rhs);
7678 goto maybe_swap;
7680 x = gen_lowpart (mode, new_rtx);
7681 goto maybe_swap;
7683 case MINUS:
7684 lhs = XEXP (x, 0);
7685 rhs = XEXP (x, 1);
7686 lhs = make_compound_operation (lhs, next_code);
7687 rhs = make_compound_operation (rhs, next_code);
7688 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7689 && SCALAR_INT_MODE_P (mode))
7691 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7692 XEXP (rhs, 1));
7693 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7695 else if (GET_CODE (rhs) == MULT
7696 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7698 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7699 simplify_gen_unary (NEG, mode,
7700 XEXP (rhs, 1),
7701 mode));
7702 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7704 else
7706 SUBST (XEXP (x, 0), lhs);
7707 SUBST (XEXP (x, 1), rhs);
7708 return x;
7710 return gen_lowpart (mode, new_rtx);
7712 case AND:
7713 /* If the second operand is not a constant, we can't do anything
7714 with it. */
7715 if (!CONST_INT_P (XEXP (x, 1)))
7716 break;
7718 /* If the constant is a power of two minus one and the first operand
7719 is a logical right shift, make an extraction. */
7720 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7721 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7723 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7724 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7725 0, in_code == COMPARE);
7728 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7729 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7730 && subreg_lowpart_p (XEXP (x, 0))
7731 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7732 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7734 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7735 next_code);
7736 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7737 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7738 0, in_code == COMPARE);
7740 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7741 else if ((GET_CODE (XEXP (x, 0)) == XOR
7742 || GET_CODE (XEXP (x, 0)) == IOR)
7743 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7744 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7745 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7747 /* Apply the distributive law, and then try to make extractions. */
7748 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7749 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7750 XEXP (x, 1)),
7751 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7752 XEXP (x, 1)));
7753 new_rtx = make_compound_operation (new_rtx, in_code);
7756 /* If we are have (and (rotate X C) M) and C is larger than the number
7757 of bits in M, this is an extraction. */
7759 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7760 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7761 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7762 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7764 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7765 new_rtx = make_extraction (mode, new_rtx,
7766 (GET_MODE_PRECISION (mode)
7767 - INTVAL (XEXP (XEXP (x, 0), 1))),
7768 NULL_RTX, i, 1, 0, in_code == COMPARE);
7771 /* On machines without logical shifts, if the operand of the AND is
7772 a logical shift and our mask turns off all the propagated sign
7773 bits, we can replace the logical shift with an arithmetic shift. */
7774 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7775 && !have_insn_for (LSHIFTRT, mode)
7776 && have_insn_for (ASHIFTRT, mode)
7777 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7778 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7779 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7780 && mode_width <= HOST_BITS_PER_WIDE_INT)
7782 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7784 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7785 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7786 SUBST (XEXP (x, 0),
7787 gen_rtx_ASHIFTRT (mode,
7788 make_compound_operation
7789 (XEXP (XEXP (x, 0), 0), next_code),
7790 XEXP (XEXP (x, 0), 1)));
7793 /* If the constant is one less than a power of two, this might be
7794 representable by an extraction even if no shift is present.
7795 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7796 we are in a COMPARE. */
7797 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7798 new_rtx = make_extraction (mode,
7799 make_compound_operation (XEXP (x, 0),
7800 next_code),
7801 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7803 /* If we are in a comparison and this is an AND with a power of two,
7804 convert this into the appropriate bit extract. */
7805 else if (in_code == COMPARE
7806 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7807 new_rtx = make_extraction (mode,
7808 make_compound_operation (XEXP (x, 0),
7809 next_code),
7810 i, NULL_RTX, 1, 1, 0, 1);
7812 break;
7814 case LSHIFTRT:
7815 /* If the sign bit is known to be zero, replace this with an
7816 arithmetic shift. */
7817 if (have_insn_for (ASHIFTRT, mode)
7818 && ! have_insn_for (LSHIFTRT, mode)
7819 && mode_width <= HOST_BITS_PER_WIDE_INT
7820 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7822 new_rtx = gen_rtx_ASHIFTRT (mode,
7823 make_compound_operation (XEXP (x, 0),
7824 next_code),
7825 XEXP (x, 1));
7826 break;
7829 /* ... fall through ... */
7831 case ASHIFTRT:
7832 lhs = XEXP (x, 0);
7833 rhs = XEXP (x, 1);
7835 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7836 this is a SIGN_EXTRACT. */
7837 if (CONST_INT_P (rhs)
7838 && GET_CODE (lhs) == ASHIFT
7839 && CONST_INT_P (XEXP (lhs, 1))
7840 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7841 && INTVAL (XEXP (lhs, 1)) >= 0
7842 && INTVAL (rhs) < mode_width)
7844 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7845 new_rtx = make_extraction (mode, new_rtx,
7846 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7847 NULL_RTX, mode_width - INTVAL (rhs),
7848 code == LSHIFTRT, 0, in_code == COMPARE);
7849 break;
7852 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7853 If so, try to merge the shifts into a SIGN_EXTEND. We could
7854 also do this for some cases of SIGN_EXTRACT, but it doesn't
7855 seem worth the effort; the case checked for occurs on Alpha. */
7857 if (!OBJECT_P (lhs)
7858 && ! (GET_CODE (lhs) == SUBREG
7859 && (OBJECT_P (SUBREG_REG (lhs))))
7860 && CONST_INT_P (rhs)
7861 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7862 && INTVAL (rhs) < mode_width
7863 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7864 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7865 0, NULL_RTX, mode_width - INTVAL (rhs),
7866 code == LSHIFTRT, 0, in_code == COMPARE);
7868 break;
7870 case SUBREG:
7871 /* Call ourselves recursively on the inner expression. If we are
7872 narrowing the object and it has a different RTL code from
7873 what it originally did, do this SUBREG as a force_to_mode. */
7875 rtx inner = SUBREG_REG (x), simplified;
7877 tem = make_compound_operation (inner, in_code);
7879 simplified
7880 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7881 if (simplified)
7882 tem = simplified;
7884 if (GET_CODE (tem) != GET_CODE (inner)
7885 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7886 && subreg_lowpart_p (x))
7888 rtx newer
7889 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7891 /* If we have something other than a SUBREG, we might have
7892 done an expansion, so rerun ourselves. */
7893 if (GET_CODE (newer) != SUBREG)
7894 newer = make_compound_operation (newer, in_code);
7896 /* force_to_mode can expand compounds. If it just re-expanded the
7897 compound, use gen_lowpart to convert to the desired mode. */
7898 if (rtx_equal_p (newer, x)
7899 /* Likewise if it re-expanded the compound only partially.
7900 This happens for SUBREG of ZERO_EXTRACT if they extract
7901 the same number of bits. */
7902 || (GET_CODE (newer) == SUBREG
7903 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7904 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7905 && GET_CODE (inner) == AND
7906 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7907 return gen_lowpart (GET_MODE (x), tem);
7909 return newer;
7912 if (simplified)
7913 return tem;
7915 break;
7917 default:
7918 break;
7921 if (new_rtx)
7923 x = gen_lowpart (mode, new_rtx);
7924 code = GET_CODE (x);
7927 /* Now recursively process each operand of this operation. We need to
7928 handle ZERO_EXTEND specially so that we don't lose track of the
7929 inner mode. */
7930 if (GET_CODE (x) == ZERO_EXTEND)
7932 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7933 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7934 new_rtx, GET_MODE (XEXP (x, 0)));
7935 if (tem)
7936 return tem;
7937 SUBST (XEXP (x, 0), new_rtx);
7938 return x;
7941 fmt = GET_RTX_FORMAT (code);
7942 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7943 if (fmt[i] == 'e')
7945 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7946 SUBST (XEXP (x, i), new_rtx);
7948 else if (fmt[i] == 'E')
7949 for (j = 0; j < XVECLEN (x, i); j++)
7951 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7952 SUBST (XVECEXP (x, i, j), new_rtx);
7955 maybe_swap:
7956 /* If this is a commutative operation, the changes to the operands
7957 may have made it noncanonical. */
7958 if (COMMUTATIVE_ARITH_P (x)
7959 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7961 tem = XEXP (x, 0);
7962 SUBST (XEXP (x, 0), XEXP (x, 1));
7963 SUBST (XEXP (x, 1), tem);
7966 return x;
7969 /* Given M see if it is a value that would select a field of bits
7970 within an item, but not the entire word. Return -1 if not.
7971 Otherwise, return the starting position of the field, where 0 is the
7972 low-order bit.
7974 *PLEN is set to the length of the field. */
7976 static int
7977 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7979 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7980 int pos = m ? ctz_hwi (m) : -1;
7981 int len = 0;
7983 if (pos >= 0)
7984 /* Now shift off the low-order zero bits and see if we have a
7985 power of two minus 1. */
7986 len = exact_log2 ((m >> pos) + 1);
7988 if (len <= 0)
7989 pos = -1;
7991 *plen = len;
7992 return pos;
7995 /* If X refers to a register that equals REG in value, replace these
7996 references with REG. */
7997 static rtx
7998 canon_reg_for_combine (rtx x, rtx reg)
8000 rtx op0, op1, op2;
8001 const char *fmt;
8002 int i;
8003 bool copied;
8005 enum rtx_code code = GET_CODE (x);
8006 switch (GET_RTX_CLASS (code))
8008 case RTX_UNARY:
8009 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8010 if (op0 != XEXP (x, 0))
8011 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8012 GET_MODE (reg));
8013 break;
8015 case RTX_BIN_ARITH:
8016 case RTX_COMM_ARITH:
8017 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8018 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8019 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8020 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8021 break;
8023 case RTX_COMPARE:
8024 case RTX_COMM_COMPARE:
8025 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8026 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8027 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8028 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8029 GET_MODE (op0), op0, op1);
8030 break;
8032 case RTX_TERNARY:
8033 case RTX_BITFIELD_OPS:
8034 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8035 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8036 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8037 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8038 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8039 GET_MODE (op0), op0, op1, op2);
8041 case RTX_OBJ:
8042 if (REG_P (x))
8044 if (rtx_equal_p (get_last_value (reg), x)
8045 || rtx_equal_p (reg, get_last_value (x)))
8046 return reg;
8047 else
8048 break;
8051 /* fall through */
8053 default:
8054 fmt = GET_RTX_FORMAT (code);
8055 copied = false;
8056 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8057 if (fmt[i] == 'e')
8059 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8060 if (op != XEXP (x, i))
8062 if (!copied)
8064 copied = true;
8065 x = copy_rtx (x);
8067 XEXP (x, i) = op;
8070 else if (fmt[i] == 'E')
8072 int j;
8073 for (j = 0; j < XVECLEN (x, i); j++)
8075 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8076 if (op != XVECEXP (x, i, j))
8078 if (!copied)
8080 copied = true;
8081 x = copy_rtx (x);
8083 XVECEXP (x, i, j) = op;
8088 break;
8091 return x;
8094 /* Return X converted to MODE. If the value is already truncated to
8095 MODE we can just return a subreg even though in the general case we
8096 would need an explicit truncation. */
8098 static rtx
8099 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
8101 if (!CONST_INT_P (x)
8102 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8103 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8104 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8106 /* Bit-cast X into an integer mode. */
8107 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8108 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8109 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8110 x, GET_MODE (x));
8113 return gen_lowpart (mode, x);
8116 /* See if X can be simplified knowing that we will only refer to it in
8117 MODE and will only refer to those bits that are nonzero in MASK.
8118 If other bits are being computed or if masking operations are done
8119 that select a superset of the bits in MASK, they can sometimes be
8120 ignored.
8122 Return a possibly simplified expression, but always convert X to
8123 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8125 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8126 are all off in X. This is used when X will be complemented, by either
8127 NOT, NEG, or XOR. */
8129 static rtx
8130 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8131 int just_select)
8133 enum rtx_code code = GET_CODE (x);
8134 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8135 enum machine_mode op_mode;
8136 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8137 rtx op0, op1, temp;
8139 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8140 code below will do the wrong thing since the mode of such an
8141 expression is VOIDmode.
8143 Also do nothing if X is a CLOBBER; this can happen if X was
8144 the return value from a call to gen_lowpart. */
8145 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8146 return x;
8148 /* We want to perform the operation is its present mode unless we know
8149 that the operation is valid in MODE, in which case we do the operation
8150 in MODE. */
8151 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8152 && have_insn_for (code, mode))
8153 ? mode : GET_MODE (x));
8155 /* It is not valid to do a right-shift in a narrower mode
8156 than the one it came in with. */
8157 if ((code == LSHIFTRT || code == ASHIFTRT)
8158 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8159 op_mode = GET_MODE (x);
8161 /* Truncate MASK to fit OP_MODE. */
8162 if (op_mode)
8163 mask &= GET_MODE_MASK (op_mode);
8165 /* When we have an arithmetic operation, or a shift whose count we
8166 do not know, we need to assume that all bits up to the highest-order
8167 bit in MASK will be needed. This is how we form such a mask. */
8168 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8169 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8170 else
8171 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8172 - 1);
8174 /* Determine what bits of X are guaranteed to be (non)zero. */
8175 nonzero = nonzero_bits (x, mode);
8177 /* If none of the bits in X are needed, return a zero. */
8178 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8179 x = const0_rtx;
8181 /* If X is a CONST_INT, return a new one. Do this here since the
8182 test below will fail. */
8183 if (CONST_INT_P (x))
8185 if (SCALAR_INT_MODE_P (mode))
8186 return gen_int_mode (INTVAL (x) & mask, mode);
8187 else
8189 x = GEN_INT (INTVAL (x) & mask);
8190 return gen_lowpart_common (mode, x);
8194 /* If X is narrower than MODE and we want all the bits in X's mode, just
8195 get X in the proper mode. */
8196 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8197 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8198 return gen_lowpart (mode, x);
8200 /* We can ignore the effect of a SUBREG if it narrows the mode or
8201 if the constant masks to zero all the bits the mode doesn't have. */
8202 if (GET_CODE (x) == SUBREG
8203 && subreg_lowpart_p (x)
8204 && ((GET_MODE_SIZE (GET_MODE (x))
8205 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8206 || (0 == (mask
8207 & GET_MODE_MASK (GET_MODE (x))
8208 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8209 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8211 /* The arithmetic simplifications here only work for scalar integer modes. */
8212 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8213 return gen_lowpart_or_truncate (mode, x);
8215 switch (code)
8217 case CLOBBER:
8218 /* If X is a (clobber (const_int)), return it since we know we are
8219 generating something that won't match. */
8220 return x;
8222 case SIGN_EXTEND:
8223 case ZERO_EXTEND:
8224 case ZERO_EXTRACT:
8225 case SIGN_EXTRACT:
8226 x = expand_compound_operation (x);
8227 if (GET_CODE (x) != code)
8228 return force_to_mode (x, mode, mask, next_select);
8229 break;
8231 case TRUNCATE:
8232 /* Similarly for a truncate. */
8233 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8235 case AND:
8236 /* If this is an AND with a constant, convert it into an AND
8237 whose constant is the AND of that constant with MASK. If it
8238 remains an AND of MASK, delete it since it is redundant. */
8240 if (CONST_INT_P (XEXP (x, 1)))
8242 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8243 mask & INTVAL (XEXP (x, 1)));
8245 /* If X is still an AND, see if it is an AND with a mask that
8246 is just some low-order bits. If so, and it is MASK, we don't
8247 need it. */
8249 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8250 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8251 == mask))
8252 x = XEXP (x, 0);
8254 /* If it remains an AND, try making another AND with the bits
8255 in the mode mask that aren't in MASK turned on. If the
8256 constant in the AND is wide enough, this might make a
8257 cheaper constant. */
8259 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8260 && GET_MODE_MASK (GET_MODE (x)) != mask
8261 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8263 unsigned HOST_WIDE_INT cval
8264 = UINTVAL (XEXP (x, 1))
8265 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8266 int width = GET_MODE_PRECISION (GET_MODE (x));
8267 rtx y;
8269 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8270 number, sign extend it. */
8271 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8272 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8273 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8275 y = simplify_gen_binary (AND, GET_MODE (x),
8276 XEXP (x, 0), GEN_INT (cval));
8277 if (set_src_cost (y, optimize_this_for_speed_p)
8278 < set_src_cost (x, optimize_this_for_speed_p))
8279 x = y;
8282 break;
8285 goto binop;
8287 case PLUS:
8288 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8289 low-order bits (as in an alignment operation) and FOO is already
8290 aligned to that boundary, mask C1 to that boundary as well.
8291 This may eliminate that PLUS and, later, the AND. */
8294 unsigned int width = GET_MODE_PRECISION (mode);
8295 unsigned HOST_WIDE_INT smask = mask;
8297 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8298 number, sign extend it. */
8300 if (width < HOST_BITS_PER_WIDE_INT
8301 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8302 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8304 if (CONST_INT_P (XEXP (x, 1))
8305 && exact_log2 (- smask) >= 0
8306 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8307 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8308 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8309 (INTVAL (XEXP (x, 1)) & smask)),
8310 mode, smask, next_select);
8313 /* ... fall through ... */
8315 case MULT:
8316 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8317 most significant bit in MASK since carries from those bits will
8318 affect the bits we are interested in. */
8319 mask = fuller_mask;
8320 goto binop;
8322 case MINUS:
8323 /* If X is (minus C Y) where C's least set bit is larger than any bit
8324 in the mask, then we may replace with (neg Y). */
8325 if (CONST_INT_P (XEXP (x, 0))
8326 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8327 & -INTVAL (XEXP (x, 0))))
8328 > mask))
8330 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8331 GET_MODE (x));
8332 return force_to_mode (x, mode, mask, next_select);
8335 /* Similarly, if C contains every bit in the fuller_mask, then we may
8336 replace with (not Y). */
8337 if (CONST_INT_P (XEXP (x, 0))
8338 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8340 x = simplify_gen_unary (NOT, GET_MODE (x),
8341 XEXP (x, 1), GET_MODE (x));
8342 return force_to_mode (x, mode, mask, next_select);
8345 mask = fuller_mask;
8346 goto binop;
8348 case IOR:
8349 case XOR:
8350 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8351 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8352 operation which may be a bitfield extraction. Ensure that the
8353 constant we form is not wider than the mode of X. */
8355 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8356 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8357 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8358 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8359 && CONST_INT_P (XEXP (x, 1))
8360 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8361 + floor_log2 (INTVAL (XEXP (x, 1))))
8362 < GET_MODE_PRECISION (GET_MODE (x)))
8363 && (UINTVAL (XEXP (x, 1))
8364 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8366 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8367 << INTVAL (XEXP (XEXP (x, 0), 1)));
8368 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8369 XEXP (XEXP (x, 0), 0), temp);
8370 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8371 XEXP (XEXP (x, 0), 1));
8372 return force_to_mode (x, mode, mask, next_select);
8375 binop:
8376 /* For most binary operations, just propagate into the operation and
8377 change the mode if we have an operation of that mode. */
8379 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8380 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8382 /* If we ended up truncating both operands, truncate the result of the
8383 operation instead. */
8384 if (GET_CODE (op0) == TRUNCATE
8385 && GET_CODE (op1) == TRUNCATE)
8387 op0 = XEXP (op0, 0);
8388 op1 = XEXP (op1, 0);
8391 op0 = gen_lowpart_or_truncate (op_mode, op0);
8392 op1 = gen_lowpart_or_truncate (op_mode, op1);
8394 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8395 x = simplify_gen_binary (code, op_mode, op0, op1);
8396 break;
8398 case ASHIFT:
8399 /* For left shifts, do the same, but just for the first operand.
8400 However, we cannot do anything with shifts where we cannot
8401 guarantee that the counts are smaller than the size of the mode
8402 because such a count will have a different meaning in a
8403 wider mode. */
8405 if (! (CONST_INT_P (XEXP (x, 1))
8406 && INTVAL (XEXP (x, 1)) >= 0
8407 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8408 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8409 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8410 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8411 break;
8413 /* If the shift count is a constant and we can do arithmetic in
8414 the mode of the shift, refine which bits we need. Otherwise, use the
8415 conservative form of the mask. */
8416 if (CONST_INT_P (XEXP (x, 1))
8417 && INTVAL (XEXP (x, 1)) >= 0
8418 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8419 && HWI_COMPUTABLE_MODE_P (op_mode))
8420 mask >>= INTVAL (XEXP (x, 1));
8421 else
8422 mask = fuller_mask;
8424 op0 = gen_lowpart_or_truncate (op_mode,
8425 force_to_mode (XEXP (x, 0), op_mode,
8426 mask, next_select));
8428 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8429 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8430 break;
8432 case LSHIFTRT:
8433 /* Here we can only do something if the shift count is a constant,
8434 this shift constant is valid for the host, and we can do arithmetic
8435 in OP_MODE. */
8437 if (CONST_INT_P (XEXP (x, 1))
8438 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8439 && HWI_COMPUTABLE_MODE_P (op_mode))
8441 rtx inner = XEXP (x, 0);
8442 unsigned HOST_WIDE_INT inner_mask;
8444 /* Select the mask of the bits we need for the shift operand. */
8445 inner_mask = mask << INTVAL (XEXP (x, 1));
8447 /* We can only change the mode of the shift if we can do arithmetic
8448 in the mode of the shift and INNER_MASK is no wider than the
8449 width of X's mode. */
8450 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8451 op_mode = GET_MODE (x);
8453 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8455 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8456 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8459 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8460 shift and AND produces only copies of the sign bit (C2 is one less
8461 than a power of two), we can do this with just a shift. */
8463 if (GET_CODE (x) == LSHIFTRT
8464 && CONST_INT_P (XEXP (x, 1))
8465 /* The shift puts one of the sign bit copies in the least significant
8466 bit. */
8467 && ((INTVAL (XEXP (x, 1))
8468 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8469 >= GET_MODE_PRECISION (GET_MODE (x)))
8470 && exact_log2 (mask + 1) >= 0
8471 /* Number of bits left after the shift must be more than the mask
8472 needs. */
8473 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8474 <= GET_MODE_PRECISION (GET_MODE (x)))
8475 /* Must be more sign bit copies than the mask needs. */
8476 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8477 >= exact_log2 (mask + 1)))
8478 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8479 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8480 - exact_log2 (mask + 1)));
8482 goto shiftrt;
8484 case ASHIFTRT:
8485 /* If we are just looking for the sign bit, we don't need this shift at
8486 all, even if it has a variable count. */
8487 if (val_signbit_p (GET_MODE (x), mask))
8488 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8490 /* If this is a shift by a constant, get a mask that contains those bits
8491 that are not copies of the sign bit. We then have two cases: If
8492 MASK only includes those bits, this can be a logical shift, which may
8493 allow simplifications. If MASK is a single-bit field not within
8494 those bits, we are requesting a copy of the sign bit and hence can
8495 shift the sign bit to the appropriate location. */
8497 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8498 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8500 int i;
8502 /* If the considered data is wider than HOST_WIDE_INT, we can't
8503 represent a mask for all its bits in a single scalar.
8504 But we only care about the lower bits, so calculate these. */
8506 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8508 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8510 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8511 is the number of bits a full-width mask would have set.
8512 We need only shift if these are fewer than nonzero can
8513 hold. If not, we must keep all bits set in nonzero. */
8515 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8516 < HOST_BITS_PER_WIDE_INT)
8517 nonzero >>= INTVAL (XEXP (x, 1))
8518 + HOST_BITS_PER_WIDE_INT
8519 - GET_MODE_PRECISION (GET_MODE (x)) ;
8521 else
8523 nonzero = GET_MODE_MASK (GET_MODE (x));
8524 nonzero >>= INTVAL (XEXP (x, 1));
8527 if ((mask & ~nonzero) == 0)
8529 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8530 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8531 if (GET_CODE (x) != ASHIFTRT)
8532 return force_to_mode (x, mode, mask, next_select);
8535 else if ((i = exact_log2 (mask)) >= 0)
8537 x = simplify_shift_const
8538 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8539 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8541 if (GET_CODE (x) != ASHIFTRT)
8542 return force_to_mode (x, mode, mask, next_select);
8546 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8547 even if the shift count isn't a constant. */
8548 if (mask == 1)
8549 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8550 XEXP (x, 0), XEXP (x, 1));
8552 shiftrt:
8554 /* If this is a zero- or sign-extension operation that just affects bits
8555 we don't care about, remove it. Be sure the call above returned
8556 something that is still a shift. */
8558 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8559 && CONST_INT_P (XEXP (x, 1))
8560 && INTVAL (XEXP (x, 1)) >= 0
8561 && (INTVAL (XEXP (x, 1))
8562 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8563 && GET_CODE (XEXP (x, 0)) == ASHIFT
8564 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8565 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8566 next_select);
8568 break;
8570 case ROTATE:
8571 case ROTATERT:
8572 /* If the shift count is constant and we can do computations
8573 in the mode of X, compute where the bits we care about are.
8574 Otherwise, we can't do anything. Don't change the mode of
8575 the shift or propagate MODE into the shift, though. */
8576 if (CONST_INT_P (XEXP (x, 1))
8577 && INTVAL (XEXP (x, 1)) >= 0)
8579 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8580 GET_MODE (x), GEN_INT (mask),
8581 XEXP (x, 1));
8582 if (temp && CONST_INT_P (temp))
8583 SUBST (XEXP (x, 0),
8584 force_to_mode (XEXP (x, 0), GET_MODE (x),
8585 INTVAL (temp), next_select));
8587 break;
8589 case NEG:
8590 /* If we just want the low-order bit, the NEG isn't needed since it
8591 won't change the low-order bit. */
8592 if (mask == 1)
8593 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8595 /* We need any bits less significant than the most significant bit in
8596 MASK since carries from those bits will affect the bits we are
8597 interested in. */
8598 mask = fuller_mask;
8599 goto unop;
8601 case NOT:
8602 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8603 same as the XOR case above. Ensure that the constant we form is not
8604 wider than the mode of X. */
8606 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8607 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8608 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8609 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8610 < GET_MODE_PRECISION (GET_MODE (x)))
8611 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8613 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8614 GET_MODE (x));
8615 temp = simplify_gen_binary (XOR, GET_MODE (x),
8616 XEXP (XEXP (x, 0), 0), temp);
8617 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8618 temp, XEXP (XEXP (x, 0), 1));
8620 return force_to_mode (x, mode, mask, next_select);
8623 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8624 use the full mask inside the NOT. */
8625 mask = fuller_mask;
8627 unop:
8628 op0 = gen_lowpart_or_truncate (op_mode,
8629 force_to_mode (XEXP (x, 0), mode, mask,
8630 next_select));
8631 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8632 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8633 break;
8635 case NE:
8636 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8637 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8638 which is equal to STORE_FLAG_VALUE. */
8639 if ((mask & ~STORE_FLAG_VALUE) == 0
8640 && XEXP (x, 1) == const0_rtx
8641 && GET_MODE (XEXP (x, 0)) == mode
8642 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8643 && (nonzero_bits (XEXP (x, 0), mode)
8644 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8645 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8647 break;
8649 case IF_THEN_ELSE:
8650 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8651 written in a narrower mode. We play it safe and do not do so. */
8653 SUBST (XEXP (x, 1),
8654 gen_lowpart_or_truncate (GET_MODE (x),
8655 force_to_mode (XEXP (x, 1), mode,
8656 mask, next_select)));
8657 SUBST (XEXP (x, 2),
8658 gen_lowpart_or_truncate (GET_MODE (x),
8659 force_to_mode (XEXP (x, 2), mode,
8660 mask, next_select)));
8661 break;
8663 default:
8664 break;
8667 /* Ensure we return a value of the proper mode. */
8668 return gen_lowpart_or_truncate (mode, x);
8671 /* Return nonzero if X is an expression that has one of two values depending on
8672 whether some other value is zero or nonzero. In that case, we return the
8673 value that is being tested, *PTRUE is set to the value if the rtx being
8674 returned has a nonzero value, and *PFALSE is set to the other alternative.
8676 If we return zero, we set *PTRUE and *PFALSE to X. */
8678 static rtx
8679 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8681 enum machine_mode mode = GET_MODE (x);
8682 enum rtx_code code = GET_CODE (x);
8683 rtx cond0, cond1, true0, true1, false0, false1;
8684 unsigned HOST_WIDE_INT nz;
8686 /* If we are comparing a value against zero, we are done. */
8687 if ((code == NE || code == EQ)
8688 && XEXP (x, 1) == const0_rtx)
8690 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8691 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8692 return XEXP (x, 0);
8695 /* If this is a unary operation whose operand has one of two values, apply
8696 our opcode to compute those values. */
8697 else if (UNARY_P (x)
8698 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8700 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8701 *pfalse = simplify_gen_unary (code, mode, false0,
8702 GET_MODE (XEXP (x, 0)));
8703 return cond0;
8706 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8707 make can't possibly match and would suppress other optimizations. */
8708 else if (code == COMPARE)
8711 /* If this is a binary operation, see if either side has only one of two
8712 values. If either one does or if both do and they are conditional on
8713 the same value, compute the new true and false values. */
8714 else if (BINARY_P (x))
8716 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8717 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8719 if ((cond0 != 0 || cond1 != 0)
8720 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8722 /* If if_then_else_cond returned zero, then true/false are the
8723 same rtl. We must copy one of them to prevent invalid rtl
8724 sharing. */
8725 if (cond0 == 0)
8726 true0 = copy_rtx (true0);
8727 else if (cond1 == 0)
8728 true1 = copy_rtx (true1);
8730 if (COMPARISON_P (x))
8732 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8733 true0, true1);
8734 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8735 false0, false1);
8737 else
8739 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8740 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8743 return cond0 ? cond0 : cond1;
8746 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8747 operands is zero when the other is nonzero, and vice-versa,
8748 and STORE_FLAG_VALUE is 1 or -1. */
8750 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8751 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8752 || code == UMAX)
8753 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8755 rtx op0 = XEXP (XEXP (x, 0), 1);
8756 rtx op1 = XEXP (XEXP (x, 1), 1);
8758 cond0 = XEXP (XEXP (x, 0), 0);
8759 cond1 = XEXP (XEXP (x, 1), 0);
8761 if (COMPARISON_P (cond0)
8762 && COMPARISON_P (cond1)
8763 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8764 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8765 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8766 || ((swap_condition (GET_CODE (cond0))
8767 == reversed_comparison_code (cond1, NULL))
8768 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8769 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8770 && ! side_effects_p (x))
8772 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8773 *pfalse = simplify_gen_binary (MULT, mode,
8774 (code == MINUS
8775 ? simplify_gen_unary (NEG, mode,
8776 op1, mode)
8777 : op1),
8778 const_true_rtx);
8779 return cond0;
8783 /* Similarly for MULT, AND and UMIN, except that for these the result
8784 is always zero. */
8785 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8786 && (code == MULT || code == AND || code == UMIN)
8787 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8789 cond0 = XEXP (XEXP (x, 0), 0);
8790 cond1 = XEXP (XEXP (x, 1), 0);
8792 if (COMPARISON_P (cond0)
8793 && COMPARISON_P (cond1)
8794 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8795 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8796 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8797 || ((swap_condition (GET_CODE (cond0))
8798 == reversed_comparison_code (cond1, NULL))
8799 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8800 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8801 && ! side_effects_p (x))
8803 *ptrue = *pfalse = const0_rtx;
8804 return cond0;
8809 else if (code == IF_THEN_ELSE)
8811 /* If we have IF_THEN_ELSE already, extract the condition and
8812 canonicalize it if it is NE or EQ. */
8813 cond0 = XEXP (x, 0);
8814 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8815 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8816 return XEXP (cond0, 0);
8817 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8819 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8820 return XEXP (cond0, 0);
8822 else
8823 return cond0;
8826 /* If X is a SUBREG, we can narrow both the true and false values
8827 if the inner expression, if there is a condition. */
8828 else if (code == SUBREG
8829 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8830 &true0, &false0)))
8832 true0 = simplify_gen_subreg (mode, true0,
8833 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8834 false0 = simplify_gen_subreg (mode, false0,
8835 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8836 if (true0 && false0)
8838 *ptrue = true0;
8839 *pfalse = false0;
8840 return cond0;
8844 /* If X is a constant, this isn't special and will cause confusions
8845 if we treat it as such. Likewise if it is equivalent to a constant. */
8846 else if (CONSTANT_P (x)
8847 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8850 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8851 will be least confusing to the rest of the compiler. */
8852 else if (mode == BImode)
8854 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8855 return x;
8858 /* If X is known to be either 0 or -1, those are the true and
8859 false values when testing X. */
8860 else if (x == constm1_rtx || x == const0_rtx
8861 || (mode != VOIDmode
8862 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8864 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8865 return x;
8868 /* Likewise for 0 or a single bit. */
8869 else if (HWI_COMPUTABLE_MODE_P (mode)
8870 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8872 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8873 return x;
8876 /* Otherwise fail; show no condition with true and false values the same. */
8877 *ptrue = *pfalse = x;
8878 return 0;
8881 /* Return the value of expression X given the fact that condition COND
8882 is known to be true when applied to REG as its first operand and VAL
8883 as its second. X is known to not be shared and so can be modified in
8884 place.
8886 We only handle the simplest cases, and specifically those cases that
8887 arise with IF_THEN_ELSE expressions. */
8889 static rtx
8890 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8892 enum rtx_code code = GET_CODE (x);
8893 rtx temp;
8894 const char *fmt;
8895 int i, j;
8897 if (side_effects_p (x))
8898 return x;
8900 /* If either operand of the condition is a floating point value,
8901 then we have to avoid collapsing an EQ comparison. */
8902 if (cond == EQ
8903 && rtx_equal_p (x, reg)
8904 && ! FLOAT_MODE_P (GET_MODE (x))
8905 && ! FLOAT_MODE_P (GET_MODE (val)))
8906 return val;
8908 if (cond == UNEQ && rtx_equal_p (x, reg))
8909 return val;
8911 /* If X is (abs REG) and we know something about REG's relationship
8912 with zero, we may be able to simplify this. */
8914 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8915 switch (cond)
8917 case GE: case GT: case EQ:
8918 return XEXP (x, 0);
8919 case LT: case LE:
8920 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8921 XEXP (x, 0),
8922 GET_MODE (XEXP (x, 0)));
8923 default:
8924 break;
8927 /* The only other cases we handle are MIN, MAX, and comparisons if the
8928 operands are the same as REG and VAL. */
8930 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8932 if (rtx_equal_p (XEXP (x, 0), val))
8933 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8935 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8937 if (COMPARISON_P (x))
8939 if (comparison_dominates_p (cond, code))
8940 return const_true_rtx;
8942 code = reversed_comparison_code (x, NULL);
8943 if (code != UNKNOWN
8944 && comparison_dominates_p (cond, code))
8945 return const0_rtx;
8946 else
8947 return x;
8949 else if (code == SMAX || code == SMIN
8950 || code == UMIN || code == UMAX)
8952 int unsignedp = (code == UMIN || code == UMAX);
8954 /* Do not reverse the condition when it is NE or EQ.
8955 This is because we cannot conclude anything about
8956 the value of 'SMAX (x, y)' when x is not equal to y,
8957 but we can when x equals y. */
8958 if ((code == SMAX || code == UMAX)
8959 && ! (cond == EQ || cond == NE))
8960 cond = reverse_condition (cond);
8962 switch (cond)
8964 case GE: case GT:
8965 return unsignedp ? x : XEXP (x, 1);
8966 case LE: case LT:
8967 return unsignedp ? x : XEXP (x, 0);
8968 case GEU: case GTU:
8969 return unsignedp ? XEXP (x, 1) : x;
8970 case LEU: case LTU:
8971 return unsignedp ? XEXP (x, 0) : x;
8972 default:
8973 break;
8978 else if (code == SUBREG)
8980 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8981 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8983 if (SUBREG_REG (x) != r)
8985 /* We must simplify subreg here, before we lose track of the
8986 original inner_mode. */
8987 new_rtx = simplify_subreg (GET_MODE (x), r,
8988 inner_mode, SUBREG_BYTE (x));
8989 if (new_rtx)
8990 return new_rtx;
8991 else
8992 SUBST (SUBREG_REG (x), r);
8995 return x;
8997 /* We don't have to handle SIGN_EXTEND here, because even in the
8998 case of replacing something with a modeless CONST_INT, a
8999 CONST_INT is already (supposed to be) a valid sign extension for
9000 its narrower mode, which implies it's already properly
9001 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9002 story is different. */
9003 else if (code == ZERO_EXTEND)
9005 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9006 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9008 if (XEXP (x, 0) != r)
9010 /* We must simplify the zero_extend here, before we lose
9011 track of the original inner_mode. */
9012 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9013 r, inner_mode);
9014 if (new_rtx)
9015 return new_rtx;
9016 else
9017 SUBST (XEXP (x, 0), r);
9020 return x;
9023 fmt = GET_RTX_FORMAT (code);
9024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9026 if (fmt[i] == 'e')
9027 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9028 else if (fmt[i] == 'E')
9029 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9030 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9031 cond, reg, val));
9034 return x;
9037 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9038 assignment as a field assignment. */
9040 static int
9041 rtx_equal_for_field_assignment_p (rtx x, rtx y)
9043 if (x == y || rtx_equal_p (x, y))
9044 return 1;
9046 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9047 return 0;
9049 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9050 Note that all SUBREGs of MEM are paradoxical; otherwise they
9051 would have been rewritten. */
9052 if (MEM_P (x) && GET_CODE (y) == SUBREG
9053 && MEM_P (SUBREG_REG (y))
9054 && rtx_equal_p (SUBREG_REG (y),
9055 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9056 return 1;
9058 if (MEM_P (y) && GET_CODE (x) == SUBREG
9059 && MEM_P (SUBREG_REG (x))
9060 && rtx_equal_p (SUBREG_REG (x),
9061 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9062 return 1;
9064 /* We used to see if get_last_value of X and Y were the same but that's
9065 not correct. In one direction, we'll cause the assignment to have
9066 the wrong destination and in the case, we'll import a register into this
9067 insn that might have already have been dead. So fail if none of the
9068 above cases are true. */
9069 return 0;
9072 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9073 Return that assignment if so.
9075 We only handle the most common cases. */
9077 static rtx
9078 make_field_assignment (rtx x)
9080 rtx dest = SET_DEST (x);
9081 rtx src = SET_SRC (x);
9082 rtx assign;
9083 rtx rhs, lhs;
9084 HOST_WIDE_INT c1;
9085 HOST_WIDE_INT pos;
9086 unsigned HOST_WIDE_INT len;
9087 rtx other;
9088 enum machine_mode mode;
9090 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9091 a clear of a one-bit field. We will have changed it to
9092 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9093 for a SUBREG. */
9095 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9096 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9097 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9098 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9100 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9101 1, 1, 1, 0);
9102 if (assign != 0)
9103 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9104 return x;
9107 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9108 && subreg_lowpart_p (XEXP (src, 0))
9109 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9110 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9111 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9112 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9113 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9114 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9116 assign = make_extraction (VOIDmode, dest, 0,
9117 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9118 1, 1, 1, 0);
9119 if (assign != 0)
9120 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9121 return x;
9124 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9125 one-bit field. */
9126 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9127 && XEXP (XEXP (src, 0), 0) == const1_rtx
9128 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9130 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9131 1, 1, 1, 0);
9132 if (assign != 0)
9133 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9134 return x;
9137 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9138 SRC is an AND with all bits of that field set, then we can discard
9139 the AND. */
9140 if (GET_CODE (dest) == ZERO_EXTRACT
9141 && CONST_INT_P (XEXP (dest, 1))
9142 && GET_CODE (src) == AND
9143 && CONST_INT_P (XEXP (src, 1)))
9145 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9146 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9147 unsigned HOST_WIDE_INT ze_mask;
9149 if (width >= HOST_BITS_PER_WIDE_INT)
9150 ze_mask = -1;
9151 else
9152 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9154 /* Complete overlap. We can remove the source AND. */
9155 if ((and_mask & ze_mask) == ze_mask)
9156 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9158 /* Partial overlap. We can reduce the source AND. */
9159 if ((and_mask & ze_mask) != and_mask)
9161 mode = GET_MODE (src);
9162 src = gen_rtx_AND (mode, XEXP (src, 0),
9163 gen_int_mode (and_mask & ze_mask, mode));
9164 return gen_rtx_SET (VOIDmode, dest, src);
9168 /* The other case we handle is assignments into a constant-position
9169 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9170 a mask that has all one bits except for a group of zero bits and
9171 OTHER is known to have zeros where C1 has ones, this is such an
9172 assignment. Compute the position and length from C1. Shift OTHER
9173 to the appropriate position, force it to the required mode, and
9174 make the extraction. Check for the AND in both operands. */
9176 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9177 return x;
9179 rhs = expand_compound_operation (XEXP (src, 0));
9180 lhs = expand_compound_operation (XEXP (src, 1));
9182 if (GET_CODE (rhs) == AND
9183 && CONST_INT_P (XEXP (rhs, 1))
9184 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9185 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9186 else if (GET_CODE (lhs) == AND
9187 && CONST_INT_P (XEXP (lhs, 1))
9188 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9189 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9190 else
9191 return x;
9193 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9194 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9195 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9196 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9197 return x;
9199 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9200 if (assign == 0)
9201 return x;
9203 /* The mode to use for the source is the mode of the assignment, or of
9204 what is inside a possible STRICT_LOW_PART. */
9205 mode = (GET_CODE (assign) == STRICT_LOW_PART
9206 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9208 /* Shift OTHER right POS places and make it the source, restricting it
9209 to the proper length and mode. */
9211 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9212 GET_MODE (src),
9213 other, pos),
9214 dest);
9215 src = force_to_mode (src, mode,
9216 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9217 ? ~(unsigned HOST_WIDE_INT) 0
9218 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9221 /* If SRC is masked by an AND that does not make a difference in
9222 the value being stored, strip it. */
9223 if (GET_CODE (assign) == ZERO_EXTRACT
9224 && CONST_INT_P (XEXP (assign, 1))
9225 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9226 && GET_CODE (src) == AND
9227 && CONST_INT_P (XEXP (src, 1))
9228 && UINTVAL (XEXP (src, 1))
9229 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9230 src = XEXP (src, 0);
9232 return gen_rtx_SET (VOIDmode, assign, src);
9235 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9236 if so. */
9238 static rtx
9239 apply_distributive_law (rtx x)
9241 enum rtx_code code = GET_CODE (x);
9242 enum rtx_code inner_code;
9243 rtx lhs, rhs, other;
9244 rtx tem;
9246 /* Distributivity is not true for floating point as it can change the
9247 value. So we don't do it unless -funsafe-math-optimizations. */
9248 if (FLOAT_MODE_P (GET_MODE (x))
9249 && ! flag_unsafe_math_optimizations)
9250 return x;
9252 /* The outer operation can only be one of the following: */
9253 if (code != IOR && code != AND && code != XOR
9254 && code != PLUS && code != MINUS)
9255 return x;
9257 lhs = XEXP (x, 0);
9258 rhs = XEXP (x, 1);
9260 /* If either operand is a primitive we can't do anything, so get out
9261 fast. */
9262 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9263 return x;
9265 lhs = expand_compound_operation (lhs);
9266 rhs = expand_compound_operation (rhs);
9267 inner_code = GET_CODE (lhs);
9268 if (inner_code != GET_CODE (rhs))
9269 return x;
9271 /* See if the inner and outer operations distribute. */
9272 switch (inner_code)
9274 case LSHIFTRT:
9275 case ASHIFTRT:
9276 case AND:
9277 case IOR:
9278 /* These all distribute except over PLUS. */
9279 if (code == PLUS || code == MINUS)
9280 return x;
9281 break;
9283 case MULT:
9284 if (code != PLUS && code != MINUS)
9285 return x;
9286 break;
9288 case ASHIFT:
9289 /* This is also a multiply, so it distributes over everything. */
9290 break;
9292 /* This used to handle SUBREG, but this turned out to be counter-
9293 productive, since (subreg (op ...)) usually is not handled by
9294 insn patterns, and this "optimization" therefore transformed
9295 recognizable patterns into unrecognizable ones. Therefore the
9296 SUBREG case was removed from here.
9298 It is possible that distributing SUBREG over arithmetic operations
9299 leads to an intermediate result than can then be optimized further,
9300 e.g. by moving the outer SUBREG to the other side of a SET as done
9301 in simplify_set. This seems to have been the original intent of
9302 handling SUBREGs here.
9304 However, with current GCC this does not appear to actually happen,
9305 at least on major platforms. If some case is found where removing
9306 the SUBREG case here prevents follow-on optimizations, distributing
9307 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9309 default:
9310 return x;
9313 /* Set LHS and RHS to the inner operands (A and B in the example
9314 above) and set OTHER to the common operand (C in the example).
9315 There is only one way to do this unless the inner operation is
9316 commutative. */
9317 if (COMMUTATIVE_ARITH_P (lhs)
9318 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9319 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9320 else if (COMMUTATIVE_ARITH_P (lhs)
9321 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9322 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9323 else if (COMMUTATIVE_ARITH_P (lhs)
9324 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9325 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9326 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9327 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9328 else
9329 return x;
9331 /* Form the new inner operation, seeing if it simplifies first. */
9332 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9334 /* There is one exception to the general way of distributing:
9335 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9336 if (code == XOR && inner_code == IOR)
9338 inner_code = AND;
9339 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9342 /* We may be able to continuing distributing the result, so call
9343 ourselves recursively on the inner operation before forming the
9344 outer operation, which we return. */
9345 return simplify_gen_binary (inner_code, GET_MODE (x),
9346 apply_distributive_law (tem), other);
9349 /* See if X is of the form (* (+ A B) C), and if so convert to
9350 (+ (* A C) (* B C)) and try to simplify.
9352 Most of the time, this results in no change. However, if some of
9353 the operands are the same or inverses of each other, simplifications
9354 will result.
9356 For example, (and (ior A B) (not B)) can occur as the result of
9357 expanding a bit field assignment. When we apply the distributive
9358 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9359 which then simplifies to (and (A (not B))).
9361 Note that no checks happen on the validity of applying the inverse
9362 distributive law. This is pointless since we can do it in the
9363 few places where this routine is called.
9365 N is the index of the term that is decomposed (the arithmetic operation,
9366 i.e. (+ A B) in the first example above). !N is the index of the term that
9367 is distributed, i.e. of C in the first example above. */
9368 static rtx
9369 distribute_and_simplify_rtx (rtx x, int n)
9371 enum machine_mode mode;
9372 enum rtx_code outer_code, inner_code;
9373 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9375 /* Distributivity is not true for floating point as it can change the
9376 value. So we don't do it unless -funsafe-math-optimizations. */
9377 if (FLOAT_MODE_P (GET_MODE (x))
9378 && ! flag_unsafe_math_optimizations)
9379 return NULL_RTX;
9381 decomposed = XEXP (x, n);
9382 if (!ARITHMETIC_P (decomposed))
9383 return NULL_RTX;
9385 mode = GET_MODE (x);
9386 outer_code = GET_CODE (x);
9387 distributed = XEXP (x, !n);
9389 inner_code = GET_CODE (decomposed);
9390 inner_op0 = XEXP (decomposed, 0);
9391 inner_op1 = XEXP (decomposed, 1);
9393 /* Special case (and (xor B C) (not A)), which is equivalent to
9394 (xor (ior A B) (ior A C)) */
9395 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9397 distributed = XEXP (distributed, 0);
9398 outer_code = IOR;
9401 if (n == 0)
9403 /* Distribute the second term. */
9404 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9405 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9407 else
9409 /* Distribute the first term. */
9410 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9411 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9414 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9415 new_op0, new_op1));
9416 if (GET_CODE (tmp) != outer_code
9417 && (set_src_cost (tmp, optimize_this_for_speed_p)
9418 < set_src_cost (x, optimize_this_for_speed_p)))
9419 return tmp;
9421 return NULL_RTX;
9424 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9425 in MODE. Return an equivalent form, if different from (and VAROP
9426 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9428 static rtx
9429 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9430 unsigned HOST_WIDE_INT constop)
9432 unsigned HOST_WIDE_INT nonzero;
9433 unsigned HOST_WIDE_INT orig_constop;
9434 rtx orig_varop;
9435 int i;
9437 orig_varop = varop;
9438 orig_constop = constop;
9439 if (GET_CODE (varop) == CLOBBER)
9440 return NULL_RTX;
9442 /* Simplify VAROP knowing that we will be only looking at some of the
9443 bits in it.
9445 Note by passing in CONSTOP, we guarantee that the bits not set in
9446 CONSTOP are not significant and will never be examined. We must
9447 ensure that is the case by explicitly masking out those bits
9448 before returning. */
9449 varop = force_to_mode (varop, mode, constop, 0);
9451 /* If VAROP is a CLOBBER, we will fail so return it. */
9452 if (GET_CODE (varop) == CLOBBER)
9453 return varop;
9455 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9456 to VAROP and return the new constant. */
9457 if (CONST_INT_P (varop))
9458 return gen_int_mode (INTVAL (varop) & constop, mode);
9460 /* See what bits may be nonzero in VAROP. Unlike the general case of
9461 a call to nonzero_bits, here we don't care about bits outside
9462 MODE. */
9464 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9466 /* Turn off all bits in the constant that are known to already be zero.
9467 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9468 which is tested below. */
9470 constop &= nonzero;
9472 /* If we don't have any bits left, return zero. */
9473 if (constop == 0)
9474 return const0_rtx;
9476 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9477 a power of two, we can replace this with an ASHIFT. */
9478 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9479 && (i = exact_log2 (constop)) >= 0)
9480 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9482 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9483 or XOR, then try to apply the distributive law. This may eliminate
9484 operations if either branch can be simplified because of the AND.
9485 It may also make some cases more complex, but those cases probably
9486 won't match a pattern either with or without this. */
9488 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9489 return
9490 gen_lowpart
9491 (mode,
9492 apply_distributive_law
9493 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9494 simplify_and_const_int (NULL_RTX,
9495 GET_MODE (varop),
9496 XEXP (varop, 0),
9497 constop),
9498 simplify_and_const_int (NULL_RTX,
9499 GET_MODE (varop),
9500 XEXP (varop, 1),
9501 constop))));
9503 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9504 the AND and see if one of the operands simplifies to zero. If so, we
9505 may eliminate it. */
9507 if (GET_CODE (varop) == PLUS
9508 && exact_log2 (constop + 1) >= 0)
9510 rtx o0, o1;
9512 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9513 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9514 if (o0 == const0_rtx)
9515 return o1;
9516 if (o1 == const0_rtx)
9517 return o0;
9520 /* Make a SUBREG if necessary. If we can't make it, fail. */
9521 varop = gen_lowpart (mode, varop);
9522 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9523 return NULL_RTX;
9525 /* If we are only masking insignificant bits, return VAROP. */
9526 if (constop == nonzero)
9527 return varop;
9529 if (varop == orig_varop && constop == orig_constop)
9530 return NULL_RTX;
9532 /* Otherwise, return an AND. */
9533 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9537 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9538 in MODE.
9540 Return an equivalent form, if different from X. Otherwise, return X. If
9541 X is zero, we are to always construct the equivalent form. */
9543 static rtx
9544 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9545 unsigned HOST_WIDE_INT constop)
9547 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9548 if (tem)
9549 return tem;
9551 if (!x)
9552 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9553 gen_int_mode (constop, mode));
9554 if (GET_MODE (x) != mode)
9555 x = gen_lowpart (mode, x);
9556 return x;
9559 /* Given a REG, X, compute which bits in X can be nonzero.
9560 We don't care about bits outside of those defined in MODE.
9562 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9563 a shift, AND, or zero_extract, we can do better. */
9565 static rtx
9566 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9567 const_rtx known_x ATTRIBUTE_UNUSED,
9568 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9569 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9570 unsigned HOST_WIDE_INT *nonzero)
9572 rtx tem;
9573 reg_stat_type *rsp;
9575 /* If X is a register whose nonzero bits value is current, use it.
9576 Otherwise, if X is a register whose value we can find, use that
9577 value. Otherwise, use the previously-computed global nonzero bits
9578 for this register. */
9580 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9581 if (rsp->last_set_value != 0
9582 && (rsp->last_set_mode == mode
9583 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9584 && GET_MODE_CLASS (mode) == MODE_INT))
9585 && ((rsp->last_set_label >= label_tick_ebb_start
9586 && rsp->last_set_label < label_tick)
9587 || (rsp->last_set_label == label_tick
9588 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9589 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9590 && REG_N_SETS (REGNO (x)) == 1
9591 && !REGNO_REG_SET_P
9592 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9594 *nonzero &= rsp->last_set_nonzero_bits;
9595 return NULL;
9598 tem = get_last_value (x);
9600 if (tem)
9602 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9603 /* If X is narrower than MODE and TEM is a non-negative
9604 constant that would appear negative in the mode of X,
9605 sign-extend it for use in reg_nonzero_bits because some
9606 machines (maybe most) will actually do the sign-extension
9607 and this is the conservative approach.
9609 ??? For 2.5, try to tighten up the MD files in this regard
9610 instead of this kludge. */
9612 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9613 && CONST_INT_P (tem)
9614 && INTVAL (tem) > 0
9615 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9616 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9617 #endif
9618 return tem;
9620 else if (nonzero_sign_valid && rsp->nonzero_bits)
9622 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9624 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9625 /* We don't know anything about the upper bits. */
9626 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9627 *nonzero &= mask;
9630 return NULL;
9633 /* Return the number of bits at the high-order end of X that are known to
9634 be equal to the sign bit. X will be used in mode MODE; if MODE is
9635 VOIDmode, X will be used in its own mode. The returned value will always
9636 be between 1 and the number of bits in MODE. */
9638 static rtx
9639 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9640 const_rtx known_x ATTRIBUTE_UNUSED,
9641 enum machine_mode known_mode
9642 ATTRIBUTE_UNUSED,
9643 unsigned int known_ret ATTRIBUTE_UNUSED,
9644 unsigned int *result)
9646 rtx tem;
9647 reg_stat_type *rsp;
9649 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9650 if (rsp->last_set_value != 0
9651 && rsp->last_set_mode == mode
9652 && ((rsp->last_set_label >= label_tick_ebb_start
9653 && rsp->last_set_label < label_tick)
9654 || (rsp->last_set_label == label_tick
9655 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9656 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9657 && REG_N_SETS (REGNO (x)) == 1
9658 && !REGNO_REG_SET_P
9659 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9661 *result = rsp->last_set_sign_bit_copies;
9662 return NULL;
9665 tem = get_last_value (x);
9666 if (tem != 0)
9667 return tem;
9669 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9670 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9671 *result = rsp->sign_bit_copies;
9673 return NULL;
9676 /* Return the number of "extended" bits there are in X, when interpreted
9677 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9678 unsigned quantities, this is the number of high-order zero bits.
9679 For signed quantities, this is the number of copies of the sign bit
9680 minus 1. In both case, this function returns the number of "spare"
9681 bits. For example, if two quantities for which this function returns
9682 at least 1 are added, the addition is known not to overflow.
9684 This function will always return 0 unless called during combine, which
9685 implies that it must be called from a define_split. */
9687 unsigned int
9688 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9690 if (nonzero_sign_valid == 0)
9691 return 0;
9693 return (unsignedp
9694 ? (HWI_COMPUTABLE_MODE_P (mode)
9695 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9696 - floor_log2 (nonzero_bits (x, mode)))
9697 : 0)
9698 : num_sign_bit_copies (x, mode) - 1);
9701 /* This function is called from `simplify_shift_const' to merge two
9702 outer operations. Specifically, we have already found that we need
9703 to perform operation *POP0 with constant *PCONST0 at the outermost
9704 position. We would now like to also perform OP1 with constant CONST1
9705 (with *POP0 being done last).
9707 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9708 the resulting operation. *PCOMP_P is set to 1 if we would need to
9709 complement the innermost operand, otherwise it is unchanged.
9711 MODE is the mode in which the operation will be done. No bits outside
9712 the width of this mode matter. It is assumed that the width of this mode
9713 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9715 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9716 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9717 result is simply *PCONST0.
9719 If the resulting operation cannot be expressed as one operation, we
9720 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9722 static int
9723 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9725 enum rtx_code op0 = *pop0;
9726 HOST_WIDE_INT const0 = *pconst0;
9728 const0 &= GET_MODE_MASK (mode);
9729 const1 &= GET_MODE_MASK (mode);
9731 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9732 if (op0 == AND)
9733 const1 &= const0;
9735 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9736 if OP0 is SET. */
9738 if (op1 == UNKNOWN || op0 == SET)
9739 return 1;
9741 else if (op0 == UNKNOWN)
9742 op0 = op1, const0 = const1;
9744 else if (op0 == op1)
9746 switch (op0)
9748 case AND:
9749 const0 &= const1;
9750 break;
9751 case IOR:
9752 const0 |= const1;
9753 break;
9754 case XOR:
9755 const0 ^= const1;
9756 break;
9757 case PLUS:
9758 const0 += const1;
9759 break;
9760 case NEG:
9761 op0 = UNKNOWN;
9762 break;
9763 default:
9764 break;
9768 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9769 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9770 return 0;
9772 /* If the two constants aren't the same, we can't do anything. The
9773 remaining six cases can all be done. */
9774 else if (const0 != const1)
9775 return 0;
9777 else
9778 switch (op0)
9780 case IOR:
9781 if (op1 == AND)
9782 /* (a & b) | b == b */
9783 op0 = SET;
9784 else /* op1 == XOR */
9785 /* (a ^ b) | b == a | b */
9787 break;
9789 case XOR:
9790 if (op1 == AND)
9791 /* (a & b) ^ b == (~a) & b */
9792 op0 = AND, *pcomp_p = 1;
9793 else /* op1 == IOR */
9794 /* (a | b) ^ b == a & ~b */
9795 op0 = AND, const0 = ~const0;
9796 break;
9798 case AND:
9799 if (op1 == IOR)
9800 /* (a | b) & b == b */
9801 op0 = SET;
9802 else /* op1 == XOR */
9803 /* (a ^ b) & b) == (~a) & b */
9804 *pcomp_p = 1;
9805 break;
9806 default:
9807 break;
9810 /* Check for NO-OP cases. */
9811 const0 &= GET_MODE_MASK (mode);
9812 if (const0 == 0
9813 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9814 op0 = UNKNOWN;
9815 else if (const0 == 0 && op0 == AND)
9816 op0 = SET;
9817 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9818 && op0 == AND)
9819 op0 = UNKNOWN;
9821 *pop0 = op0;
9823 /* ??? Slightly redundant with the above mask, but not entirely.
9824 Moving this above means we'd have to sign-extend the mode mask
9825 for the final test. */
9826 if (op0 != UNKNOWN && op0 != NEG)
9827 *pconst0 = trunc_int_for_mode (const0, mode);
9829 return 1;
9832 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9833 the shift in. The original shift operation CODE is performed on OP in
9834 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9835 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9836 result of the shift is subject to operation OUTER_CODE with operand
9837 OUTER_CONST. */
9839 static enum machine_mode
9840 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9841 enum machine_mode orig_mode, enum machine_mode mode,
9842 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9844 if (orig_mode == mode)
9845 return mode;
9846 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9848 /* In general we can't perform in wider mode for right shift and rotate. */
9849 switch (code)
9851 case ASHIFTRT:
9852 /* We can still widen if the bits brought in from the left are identical
9853 to the sign bit of ORIG_MODE. */
9854 if (num_sign_bit_copies (op, mode)
9855 > (unsigned) (GET_MODE_PRECISION (mode)
9856 - GET_MODE_PRECISION (orig_mode)))
9857 return mode;
9858 return orig_mode;
9860 case LSHIFTRT:
9861 /* Similarly here but with zero bits. */
9862 if (HWI_COMPUTABLE_MODE_P (mode)
9863 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9864 return mode;
9866 /* We can also widen if the bits brought in will be masked off. This
9867 operation is performed in ORIG_MODE. */
9868 if (outer_code == AND)
9870 int care_bits = low_bitmask_len (orig_mode, outer_const);
9872 if (care_bits >= 0
9873 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9874 return mode;
9876 /* fall through */
9878 case ROTATE:
9879 return orig_mode;
9881 case ROTATERT:
9882 gcc_unreachable ();
9884 default:
9885 return mode;
9889 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9890 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9891 if we cannot simplify it. Otherwise, return a simplified value.
9893 The shift is normally computed in the widest mode we find in VAROP, as
9894 long as it isn't a different number of words than RESULT_MODE. Exceptions
9895 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9897 static rtx
9898 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9899 rtx varop, int orig_count)
9901 enum rtx_code orig_code = code;
9902 rtx orig_varop = varop;
9903 int count;
9904 enum machine_mode mode = result_mode;
9905 enum machine_mode shift_mode, tmode;
9906 unsigned int mode_words
9907 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9908 /* We form (outer_op (code varop count) (outer_const)). */
9909 enum rtx_code outer_op = UNKNOWN;
9910 HOST_WIDE_INT outer_const = 0;
9911 int complement_p = 0;
9912 rtx new_rtx, x;
9914 /* Make sure and truncate the "natural" shift on the way in. We don't
9915 want to do this inside the loop as it makes it more difficult to
9916 combine shifts. */
9917 if (SHIFT_COUNT_TRUNCATED)
9918 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9920 /* If we were given an invalid count, don't do anything except exactly
9921 what was requested. */
9923 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9924 return NULL_RTX;
9926 count = orig_count;
9928 /* Unless one of the branches of the `if' in this loop does a `continue',
9929 we will `break' the loop after the `if'. */
9931 while (count != 0)
9933 /* If we have an operand of (clobber (const_int 0)), fail. */
9934 if (GET_CODE (varop) == CLOBBER)
9935 return NULL_RTX;
9937 /* Convert ROTATERT to ROTATE. */
9938 if (code == ROTATERT)
9940 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9941 code = ROTATE;
9942 if (VECTOR_MODE_P (result_mode))
9943 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9944 else
9945 count = bitsize - count;
9948 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9949 mode, outer_op, outer_const);
9951 /* Handle cases where the count is greater than the size of the mode
9952 minus 1. For ASHIFT, use the size minus one as the count (this can
9953 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9954 take the count modulo the size. For other shifts, the result is
9955 zero.
9957 Since these shifts are being produced by the compiler by combining
9958 multiple operations, each of which are defined, we know what the
9959 result is supposed to be. */
9961 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9963 if (code == ASHIFTRT)
9964 count = GET_MODE_PRECISION (shift_mode) - 1;
9965 else if (code == ROTATE || code == ROTATERT)
9966 count %= GET_MODE_PRECISION (shift_mode);
9967 else
9969 /* We can't simply return zero because there may be an
9970 outer op. */
9971 varop = const0_rtx;
9972 count = 0;
9973 break;
9977 /* If we discovered we had to complement VAROP, leave. Making a NOT
9978 here would cause an infinite loop. */
9979 if (complement_p)
9980 break;
9982 /* An arithmetic right shift of a quantity known to be -1 or 0
9983 is a no-op. */
9984 if (code == ASHIFTRT
9985 && (num_sign_bit_copies (varop, shift_mode)
9986 == GET_MODE_PRECISION (shift_mode)))
9988 count = 0;
9989 break;
9992 /* If we are doing an arithmetic right shift and discarding all but
9993 the sign bit copies, this is equivalent to doing a shift by the
9994 bitsize minus one. Convert it into that shift because it will often
9995 allow other simplifications. */
9997 if (code == ASHIFTRT
9998 && (count + num_sign_bit_copies (varop, shift_mode)
9999 >= GET_MODE_PRECISION (shift_mode)))
10000 count = GET_MODE_PRECISION (shift_mode) - 1;
10002 /* We simplify the tests below and elsewhere by converting
10003 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10004 `make_compound_operation' will convert it to an ASHIFTRT for
10005 those machines (such as VAX) that don't have an LSHIFTRT. */
10006 if (code == ASHIFTRT
10007 && val_signbit_known_clear_p (shift_mode,
10008 nonzero_bits (varop, shift_mode)))
10009 code = LSHIFTRT;
10011 if (((code == LSHIFTRT
10012 && HWI_COMPUTABLE_MODE_P (shift_mode)
10013 && !(nonzero_bits (varop, shift_mode) >> count))
10014 || (code == ASHIFT
10015 && HWI_COMPUTABLE_MODE_P (shift_mode)
10016 && !((nonzero_bits (varop, shift_mode) << count)
10017 & GET_MODE_MASK (shift_mode))))
10018 && !side_effects_p (varop))
10019 varop = const0_rtx;
10021 switch (GET_CODE (varop))
10023 case SIGN_EXTEND:
10024 case ZERO_EXTEND:
10025 case SIGN_EXTRACT:
10026 case ZERO_EXTRACT:
10027 new_rtx = expand_compound_operation (varop);
10028 if (new_rtx != varop)
10030 varop = new_rtx;
10031 continue;
10033 break;
10035 case MEM:
10036 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10037 minus the width of a smaller mode, we can do this with a
10038 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10039 if ((code == ASHIFTRT || code == LSHIFTRT)
10040 && ! mode_dependent_address_p (XEXP (varop, 0))
10041 && ! MEM_VOLATILE_P (varop)
10042 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10043 MODE_INT, 1)) != BLKmode)
10045 new_rtx = adjust_address_nv (varop, tmode,
10046 BYTES_BIG_ENDIAN ? 0
10047 : count / BITS_PER_UNIT);
10049 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10050 : ZERO_EXTEND, mode, new_rtx);
10051 count = 0;
10052 continue;
10054 break;
10056 case SUBREG:
10057 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10058 the same number of words as what we've seen so far. Then store
10059 the widest mode in MODE. */
10060 if (subreg_lowpart_p (varop)
10061 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10062 > GET_MODE_SIZE (GET_MODE (varop)))
10063 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10064 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10065 == mode_words
10066 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10067 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10069 varop = SUBREG_REG (varop);
10070 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10071 mode = GET_MODE (varop);
10072 continue;
10074 break;
10076 case MULT:
10077 /* Some machines use MULT instead of ASHIFT because MULT
10078 is cheaper. But it is still better on those machines to
10079 merge two shifts into one. */
10080 if (CONST_INT_P (XEXP (varop, 1))
10081 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10083 varop
10084 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10085 XEXP (varop, 0),
10086 GEN_INT (exact_log2 (
10087 UINTVAL (XEXP (varop, 1)))));
10088 continue;
10090 break;
10092 case UDIV:
10093 /* Similar, for when divides are cheaper. */
10094 if (CONST_INT_P (XEXP (varop, 1))
10095 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10097 varop
10098 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10099 XEXP (varop, 0),
10100 GEN_INT (exact_log2 (
10101 UINTVAL (XEXP (varop, 1)))));
10102 continue;
10104 break;
10106 case ASHIFTRT:
10107 /* If we are extracting just the sign bit of an arithmetic
10108 right shift, that shift is not needed. However, the sign
10109 bit of a wider mode may be different from what would be
10110 interpreted as the sign bit in a narrower mode, so, if
10111 the result is narrower, don't discard the shift. */
10112 if (code == LSHIFTRT
10113 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10114 && (GET_MODE_BITSIZE (result_mode)
10115 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10117 varop = XEXP (varop, 0);
10118 continue;
10121 /* ... fall through ... */
10123 case LSHIFTRT:
10124 case ASHIFT:
10125 case ROTATE:
10126 /* Here we have two nested shifts. The result is usually the
10127 AND of a new shift with a mask. We compute the result below. */
10128 if (CONST_INT_P (XEXP (varop, 1))
10129 && INTVAL (XEXP (varop, 1)) >= 0
10130 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10131 && HWI_COMPUTABLE_MODE_P (result_mode)
10132 && HWI_COMPUTABLE_MODE_P (mode)
10133 && !VECTOR_MODE_P (result_mode))
10135 enum rtx_code first_code = GET_CODE (varop);
10136 unsigned int first_count = INTVAL (XEXP (varop, 1));
10137 unsigned HOST_WIDE_INT mask;
10138 rtx mask_rtx;
10140 /* We have one common special case. We can't do any merging if
10141 the inner code is an ASHIFTRT of a smaller mode. However, if
10142 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10143 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10144 we can convert it to
10145 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10146 This simplifies certain SIGN_EXTEND operations. */
10147 if (code == ASHIFT && first_code == ASHIFTRT
10148 && count == (GET_MODE_PRECISION (result_mode)
10149 - GET_MODE_PRECISION (GET_MODE (varop))))
10151 /* C3 has the low-order C1 bits zero. */
10153 mask = GET_MODE_MASK (mode)
10154 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10156 varop = simplify_and_const_int (NULL_RTX, result_mode,
10157 XEXP (varop, 0), mask);
10158 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10159 varop, count);
10160 count = first_count;
10161 code = ASHIFTRT;
10162 continue;
10165 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10166 than C1 high-order bits equal to the sign bit, we can convert
10167 this to either an ASHIFT or an ASHIFTRT depending on the
10168 two counts.
10170 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10172 if (code == ASHIFTRT && first_code == ASHIFT
10173 && GET_MODE (varop) == shift_mode
10174 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10175 > first_count))
10177 varop = XEXP (varop, 0);
10178 count -= first_count;
10179 if (count < 0)
10181 count = -count;
10182 code = ASHIFT;
10185 continue;
10188 /* There are some cases we can't do. If CODE is ASHIFTRT,
10189 we can only do this if FIRST_CODE is also ASHIFTRT.
10191 We can't do the case when CODE is ROTATE and FIRST_CODE is
10192 ASHIFTRT.
10194 If the mode of this shift is not the mode of the outer shift,
10195 we can't do this if either shift is a right shift or ROTATE.
10197 Finally, we can't do any of these if the mode is too wide
10198 unless the codes are the same.
10200 Handle the case where the shift codes are the same
10201 first. */
10203 if (code == first_code)
10205 if (GET_MODE (varop) != result_mode
10206 && (code == ASHIFTRT || code == LSHIFTRT
10207 || code == ROTATE))
10208 break;
10210 count += first_count;
10211 varop = XEXP (varop, 0);
10212 continue;
10215 if (code == ASHIFTRT
10216 || (code == ROTATE && first_code == ASHIFTRT)
10217 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10218 || (GET_MODE (varop) != result_mode
10219 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10220 || first_code == ROTATE
10221 || code == ROTATE)))
10222 break;
10224 /* To compute the mask to apply after the shift, shift the
10225 nonzero bits of the inner shift the same way the
10226 outer shift will. */
10228 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10230 mask_rtx
10231 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10232 GEN_INT (count));
10234 /* Give up if we can't compute an outer operation to use. */
10235 if (mask_rtx == 0
10236 || !CONST_INT_P (mask_rtx)
10237 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10238 INTVAL (mask_rtx),
10239 result_mode, &complement_p))
10240 break;
10242 /* If the shifts are in the same direction, we add the
10243 counts. Otherwise, we subtract them. */
10244 if ((code == ASHIFTRT || code == LSHIFTRT)
10245 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10246 count += first_count;
10247 else
10248 count -= first_count;
10250 /* If COUNT is positive, the new shift is usually CODE,
10251 except for the two exceptions below, in which case it is
10252 FIRST_CODE. If the count is negative, FIRST_CODE should
10253 always be used */
10254 if (count > 0
10255 && ((first_code == ROTATE && code == ASHIFT)
10256 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10257 code = first_code;
10258 else if (count < 0)
10259 code = first_code, count = -count;
10261 varop = XEXP (varop, 0);
10262 continue;
10265 /* If we have (A << B << C) for any shift, we can convert this to
10266 (A << C << B). This wins if A is a constant. Only try this if
10267 B is not a constant. */
10269 else if (GET_CODE (varop) == code
10270 && CONST_INT_P (XEXP (varop, 0))
10271 && !CONST_INT_P (XEXP (varop, 1)))
10273 rtx new_rtx = simplify_const_binary_operation (code, mode,
10274 XEXP (varop, 0),
10275 GEN_INT (count));
10276 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10277 count = 0;
10278 continue;
10280 break;
10282 case NOT:
10283 if (VECTOR_MODE_P (mode))
10284 break;
10286 /* Make this fit the case below. */
10287 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10288 GEN_INT (GET_MODE_MASK (mode)));
10289 continue;
10291 case IOR:
10292 case AND:
10293 case XOR:
10294 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10295 with C the size of VAROP - 1 and the shift is logical if
10296 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10297 we have an (le X 0) operation. If we have an arithmetic shift
10298 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10299 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10301 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10302 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10303 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10304 && (code == LSHIFTRT || code == ASHIFTRT)
10305 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10306 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10308 count = 0;
10309 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10310 const0_rtx);
10312 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10313 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10315 continue;
10318 /* If we have (shift (logical)), move the logical to the outside
10319 to allow it to possibly combine with another logical and the
10320 shift to combine with another shift. This also canonicalizes to
10321 what a ZERO_EXTRACT looks like. Also, some machines have
10322 (and (shift)) insns. */
10324 if (CONST_INT_P (XEXP (varop, 1))
10325 /* We can't do this if we have (ashiftrt (xor)) and the
10326 constant has its sign bit set in shift_mode. */
10327 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10328 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10329 shift_mode))
10330 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10331 XEXP (varop, 1),
10332 GEN_INT (count))) != 0
10333 && CONST_INT_P (new_rtx)
10334 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10335 INTVAL (new_rtx), result_mode, &complement_p))
10337 varop = XEXP (varop, 0);
10338 continue;
10341 /* If we can't do that, try to simplify the shift in each arm of the
10342 logical expression, make a new logical expression, and apply
10343 the inverse distributive law. This also can't be done
10344 for some (ashiftrt (xor)). */
10345 if (CONST_INT_P (XEXP (varop, 1))
10346 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10347 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10348 shift_mode)))
10350 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10351 XEXP (varop, 0), count);
10352 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10353 XEXP (varop, 1), count);
10355 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10356 lhs, rhs);
10357 varop = apply_distributive_law (varop);
10359 count = 0;
10360 continue;
10362 break;
10364 case EQ:
10365 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10366 says that the sign bit can be tested, FOO has mode MODE, C is
10367 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10368 that may be nonzero. */
10369 if (code == LSHIFTRT
10370 && XEXP (varop, 1) == const0_rtx
10371 && GET_MODE (XEXP (varop, 0)) == result_mode
10372 && count == (GET_MODE_PRECISION (result_mode) - 1)
10373 && HWI_COMPUTABLE_MODE_P (result_mode)
10374 && STORE_FLAG_VALUE == -1
10375 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10376 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10377 &complement_p))
10379 varop = XEXP (varop, 0);
10380 count = 0;
10381 continue;
10383 break;
10385 case NEG:
10386 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10387 than the number of bits in the mode is equivalent to A. */
10388 if (code == LSHIFTRT
10389 && count == (GET_MODE_PRECISION (result_mode) - 1)
10390 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10392 varop = XEXP (varop, 0);
10393 count = 0;
10394 continue;
10397 /* NEG commutes with ASHIFT since it is multiplication. Move the
10398 NEG outside to allow shifts to combine. */
10399 if (code == ASHIFT
10400 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10401 &complement_p))
10403 varop = XEXP (varop, 0);
10404 continue;
10406 break;
10408 case PLUS:
10409 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10410 is one less than the number of bits in the mode is
10411 equivalent to (xor A 1). */
10412 if (code == LSHIFTRT
10413 && count == (GET_MODE_PRECISION (result_mode) - 1)
10414 && XEXP (varop, 1) == constm1_rtx
10415 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10416 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10417 &complement_p))
10419 count = 0;
10420 varop = XEXP (varop, 0);
10421 continue;
10424 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10425 that might be nonzero in BAR are those being shifted out and those
10426 bits are known zero in FOO, we can replace the PLUS with FOO.
10427 Similarly in the other operand order. This code occurs when
10428 we are computing the size of a variable-size array. */
10430 if ((code == ASHIFTRT || code == LSHIFTRT)
10431 && count < HOST_BITS_PER_WIDE_INT
10432 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10433 && (nonzero_bits (XEXP (varop, 1), result_mode)
10434 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10436 varop = XEXP (varop, 0);
10437 continue;
10439 else if ((code == ASHIFTRT || code == LSHIFTRT)
10440 && count < HOST_BITS_PER_WIDE_INT
10441 && HWI_COMPUTABLE_MODE_P (result_mode)
10442 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10443 >> count)
10444 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10445 & nonzero_bits (XEXP (varop, 1),
10446 result_mode)))
10448 varop = XEXP (varop, 1);
10449 continue;
10452 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10453 if (code == ASHIFT
10454 && CONST_INT_P (XEXP (varop, 1))
10455 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10456 XEXP (varop, 1),
10457 GEN_INT (count))) != 0
10458 && CONST_INT_P (new_rtx)
10459 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10460 INTVAL (new_rtx), result_mode, &complement_p))
10462 varop = XEXP (varop, 0);
10463 continue;
10466 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10467 signbit', and attempt to change the PLUS to an XOR and move it to
10468 the outer operation as is done above in the AND/IOR/XOR case
10469 leg for shift(logical). See details in logical handling above
10470 for reasoning in doing so. */
10471 if (code == LSHIFTRT
10472 && CONST_INT_P (XEXP (varop, 1))
10473 && mode_signbit_p (result_mode, XEXP (varop, 1))
10474 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10475 XEXP (varop, 1),
10476 GEN_INT (count))) != 0
10477 && CONST_INT_P (new_rtx)
10478 && merge_outer_ops (&outer_op, &outer_const, XOR,
10479 INTVAL (new_rtx), result_mode, &complement_p))
10481 varop = XEXP (varop, 0);
10482 continue;
10485 break;
10487 case MINUS:
10488 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10489 with C the size of VAROP - 1 and the shift is logical if
10490 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10491 we have a (gt X 0) operation. If the shift is arithmetic with
10492 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10493 we have a (neg (gt X 0)) operation. */
10495 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10496 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10497 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10498 && (code == LSHIFTRT || code == ASHIFTRT)
10499 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10500 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10501 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10503 count = 0;
10504 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10505 const0_rtx);
10507 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10508 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10510 continue;
10512 break;
10514 case TRUNCATE:
10515 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10516 if the truncate does not affect the value. */
10517 if (code == LSHIFTRT
10518 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10519 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10520 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10521 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10522 - GET_MODE_PRECISION (GET_MODE (varop)))))
10524 rtx varop_inner = XEXP (varop, 0);
10526 varop_inner
10527 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10528 XEXP (varop_inner, 0),
10529 GEN_INT
10530 (count + INTVAL (XEXP (varop_inner, 1))));
10531 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10532 count = 0;
10533 continue;
10535 break;
10537 default:
10538 break;
10541 break;
10544 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10545 outer_op, outer_const);
10547 /* We have now finished analyzing the shift. The result should be
10548 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10549 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10550 to the result of the shift. OUTER_CONST is the relevant constant,
10551 but we must turn off all bits turned off in the shift. */
10553 if (outer_op == UNKNOWN
10554 && orig_code == code && orig_count == count
10555 && varop == orig_varop
10556 && shift_mode == GET_MODE (varop))
10557 return NULL_RTX;
10559 /* Make a SUBREG if necessary. If we can't make it, fail. */
10560 varop = gen_lowpart (shift_mode, varop);
10561 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10562 return NULL_RTX;
10564 /* If we have an outer operation and we just made a shift, it is
10565 possible that we could have simplified the shift were it not
10566 for the outer operation. So try to do the simplification
10567 recursively. */
10569 if (outer_op != UNKNOWN)
10570 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10571 else
10572 x = NULL_RTX;
10574 if (x == NULL_RTX)
10575 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10577 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10578 turn off all the bits that the shift would have turned off. */
10579 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10580 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10581 GET_MODE_MASK (result_mode) >> orig_count);
10583 /* Do the remainder of the processing in RESULT_MODE. */
10584 x = gen_lowpart_or_truncate (result_mode, x);
10586 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10587 operation. */
10588 if (complement_p)
10589 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10591 if (outer_op != UNKNOWN)
10593 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10594 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10595 outer_const = trunc_int_for_mode (outer_const, result_mode);
10597 if (outer_op == AND)
10598 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10599 else if (outer_op == SET)
10601 /* This means that we have determined that the result is
10602 equivalent to a constant. This should be rare. */
10603 if (!side_effects_p (x))
10604 x = GEN_INT (outer_const);
10606 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10607 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10608 else
10609 x = simplify_gen_binary (outer_op, result_mode, x,
10610 GEN_INT (outer_const));
10613 return x;
10616 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10617 The result of the shift is RESULT_MODE. If we cannot simplify it,
10618 return X or, if it is NULL, synthesize the expression with
10619 simplify_gen_binary. Otherwise, return a simplified value.
10621 The shift is normally computed in the widest mode we find in VAROP, as
10622 long as it isn't a different number of words than RESULT_MODE. Exceptions
10623 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10625 static rtx
10626 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10627 rtx varop, int count)
10629 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10630 if (tem)
10631 return tem;
10633 if (!x)
10634 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10635 if (GET_MODE (x) != result_mode)
10636 x = gen_lowpart (result_mode, x);
10637 return x;
10641 /* Like recog, but we receive the address of a pointer to a new pattern.
10642 We try to match the rtx that the pointer points to.
10643 If that fails, we may try to modify or replace the pattern,
10644 storing the replacement into the same pointer object.
10646 Modifications include deletion or addition of CLOBBERs.
10648 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10649 the CLOBBERs are placed.
10651 The value is the final insn code from the pattern ultimately matched,
10652 or -1. */
10654 static int
10655 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10657 rtx pat = *pnewpat;
10658 int insn_code_number;
10659 int num_clobbers_to_add = 0;
10660 int i;
10661 rtx notes = 0;
10662 rtx old_notes, old_pat;
10664 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10665 we use to indicate that something didn't match. If we find such a
10666 thing, force rejection. */
10667 if (GET_CODE (pat) == PARALLEL)
10668 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10669 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10670 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10671 return -1;
10673 old_pat = PATTERN (insn);
10674 old_notes = REG_NOTES (insn);
10675 PATTERN (insn) = pat;
10676 REG_NOTES (insn) = 0;
10678 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10679 if (dump_file && (dump_flags & TDF_DETAILS))
10681 if (insn_code_number < 0)
10682 fputs ("Failed to match this instruction:\n", dump_file);
10683 else
10684 fputs ("Successfully matched this instruction:\n", dump_file);
10685 print_rtl_single (dump_file, pat);
10688 /* If it isn't, there is the possibility that we previously had an insn
10689 that clobbered some register as a side effect, but the combined
10690 insn doesn't need to do that. So try once more without the clobbers
10691 unless this represents an ASM insn. */
10693 if (insn_code_number < 0 && ! check_asm_operands (pat)
10694 && GET_CODE (pat) == PARALLEL)
10696 int pos;
10698 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10699 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10701 if (i != pos)
10702 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10703 pos++;
10706 SUBST_INT (XVECLEN (pat, 0), pos);
10708 if (pos == 1)
10709 pat = XVECEXP (pat, 0, 0);
10711 PATTERN (insn) = pat;
10712 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10713 if (dump_file && (dump_flags & TDF_DETAILS))
10715 if (insn_code_number < 0)
10716 fputs ("Failed to match this instruction:\n", dump_file);
10717 else
10718 fputs ("Successfully matched this instruction:\n", dump_file);
10719 print_rtl_single (dump_file, pat);
10722 PATTERN (insn) = old_pat;
10723 REG_NOTES (insn) = old_notes;
10725 /* Recognize all noop sets, these will be killed by followup pass. */
10726 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10727 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10729 /* If we had any clobbers to add, make a new pattern than contains
10730 them. Then check to make sure that all of them are dead. */
10731 if (num_clobbers_to_add)
10733 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10734 rtvec_alloc (GET_CODE (pat) == PARALLEL
10735 ? (XVECLEN (pat, 0)
10736 + num_clobbers_to_add)
10737 : num_clobbers_to_add + 1));
10739 if (GET_CODE (pat) == PARALLEL)
10740 for (i = 0; i < XVECLEN (pat, 0); i++)
10741 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10742 else
10743 XVECEXP (newpat, 0, 0) = pat;
10745 add_clobbers (newpat, insn_code_number);
10747 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10748 i < XVECLEN (newpat, 0); i++)
10750 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10751 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10752 return -1;
10753 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10755 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10756 notes = alloc_reg_note (REG_UNUSED,
10757 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10760 pat = newpat;
10763 *pnewpat = pat;
10764 *pnotes = notes;
10766 return insn_code_number;
10769 /* Like gen_lowpart_general but for use by combine. In combine it
10770 is not possible to create any new pseudoregs. However, it is
10771 safe to create invalid memory addresses, because combine will
10772 try to recognize them and all they will do is make the combine
10773 attempt fail.
10775 If for some reason this cannot do its job, an rtx
10776 (clobber (const_int 0)) is returned.
10777 An insn containing that will not be recognized. */
10779 static rtx
10780 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10782 enum machine_mode imode = GET_MODE (x);
10783 unsigned int osize = GET_MODE_SIZE (omode);
10784 unsigned int isize = GET_MODE_SIZE (imode);
10785 rtx result;
10787 if (omode == imode)
10788 return x;
10790 /* Return identity if this is a CONST or symbolic reference. */
10791 if (omode == Pmode
10792 && (GET_CODE (x) == CONST
10793 || GET_CODE (x) == SYMBOL_REF
10794 || GET_CODE (x) == LABEL_REF))
10795 return x;
10797 /* We can only support MODE being wider than a word if X is a
10798 constant integer or has a mode the same size. */
10799 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10800 && ! ((imode == VOIDmode
10801 && (CONST_INT_P (x)
10802 || GET_CODE (x) == CONST_DOUBLE))
10803 || isize == osize))
10804 goto fail;
10806 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10807 won't know what to do. So we will strip off the SUBREG here and
10808 process normally. */
10809 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10811 x = SUBREG_REG (x);
10813 /* For use in case we fall down into the address adjustments
10814 further below, we need to adjust the known mode and size of
10815 x; imode and isize, since we just adjusted x. */
10816 imode = GET_MODE (x);
10818 if (imode == omode)
10819 return x;
10821 isize = GET_MODE_SIZE (imode);
10824 result = gen_lowpart_common (omode, x);
10826 if (result)
10827 return result;
10829 if (MEM_P (x))
10831 int offset = 0;
10833 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10834 address. */
10835 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10836 goto fail;
10838 /* If we want to refer to something bigger than the original memref,
10839 generate a paradoxical subreg instead. That will force a reload
10840 of the original memref X. */
10841 if (isize < osize)
10842 return gen_rtx_SUBREG (omode, x, 0);
10844 if (WORDS_BIG_ENDIAN)
10845 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10847 /* Adjust the address so that the address-after-the-data is
10848 unchanged. */
10849 if (BYTES_BIG_ENDIAN)
10850 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10852 return adjust_address_nv (x, omode, offset);
10855 /* If X is a comparison operator, rewrite it in a new mode. This
10856 probably won't match, but may allow further simplifications. */
10857 else if (COMPARISON_P (x))
10858 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10860 /* If we couldn't simplify X any other way, just enclose it in a
10861 SUBREG. Normally, this SUBREG won't match, but some patterns may
10862 include an explicit SUBREG or we may simplify it further in combine. */
10863 else
10865 int offset = 0;
10866 rtx res;
10868 offset = subreg_lowpart_offset (omode, imode);
10869 if (imode == VOIDmode)
10871 imode = int_mode_for_mode (omode);
10872 x = gen_lowpart_common (imode, x);
10873 if (x == NULL)
10874 goto fail;
10876 res = simplify_gen_subreg (omode, x, imode, offset);
10877 if (res)
10878 return res;
10881 fail:
10882 return gen_rtx_CLOBBER (omode, const0_rtx);
10885 /* Try to simplify a comparison between OP0 and a constant OP1,
10886 where CODE is the comparison code that will be tested, into a
10887 (CODE OP0 const0_rtx) form.
10889 The result is a possibly different comparison code to use.
10890 *POP1 may be updated. */
10892 static enum rtx_code
10893 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10895 enum machine_mode mode = GET_MODE (op0);
10896 unsigned int mode_width = GET_MODE_PRECISION (mode);
10897 HOST_WIDE_INT const_op = INTVAL (*pop1);
10899 /* Get the constant we are comparing against and turn off all bits
10900 not on in our mode. */
10901 if (mode != VOIDmode)
10902 const_op = trunc_int_for_mode (const_op, mode);
10904 /* If we are comparing against a constant power of two and the value
10905 being compared can only have that single bit nonzero (e.g., it was
10906 `and'ed with that bit), we can replace this with a comparison
10907 with zero. */
10908 if (const_op
10909 && (code == EQ || code == NE || code == GE || code == GEU
10910 || code == LT || code == LTU)
10911 && mode_width <= HOST_BITS_PER_WIDE_INT
10912 && exact_log2 (const_op) >= 0
10913 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10915 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10916 const_op = 0;
10919 /* Similarly, if we are comparing a value known to be either -1 or
10920 0 with -1, change it to the opposite comparison against zero. */
10921 if (const_op == -1
10922 && (code == EQ || code == NE || code == GT || code == LE
10923 || code == GEU || code == LTU)
10924 && num_sign_bit_copies (op0, mode) == mode_width)
10926 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10927 const_op = 0;
10930 /* Do some canonicalizations based on the comparison code. We prefer
10931 comparisons against zero and then prefer equality comparisons.
10932 If we can reduce the size of a constant, we will do that too. */
10933 switch (code)
10935 case LT:
10936 /* < C is equivalent to <= (C - 1) */
10937 if (const_op > 0)
10939 const_op -= 1;
10940 code = LE;
10941 /* ... fall through to LE case below. */
10943 else
10944 break;
10946 case LE:
10947 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10948 if (const_op < 0)
10950 const_op += 1;
10951 code = LT;
10954 /* If we are doing a <= 0 comparison on a value known to have
10955 a zero sign bit, we can replace this with == 0. */
10956 else if (const_op == 0
10957 && mode_width <= HOST_BITS_PER_WIDE_INT
10958 && (nonzero_bits (op0, mode)
10959 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10960 == 0)
10961 code = EQ;
10962 break;
10964 case GE:
10965 /* >= C is equivalent to > (C - 1). */
10966 if (const_op > 0)
10968 const_op -= 1;
10969 code = GT;
10970 /* ... fall through to GT below. */
10972 else
10973 break;
10975 case GT:
10976 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10977 if (const_op < 0)
10979 const_op += 1;
10980 code = GE;
10983 /* If we are doing a > 0 comparison on a value known to have
10984 a zero sign bit, we can replace this with != 0. */
10985 else if (const_op == 0
10986 && mode_width <= HOST_BITS_PER_WIDE_INT
10987 && (nonzero_bits (op0, mode)
10988 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10989 == 0)
10990 code = NE;
10991 break;
10993 case LTU:
10994 /* < C is equivalent to <= (C - 1). */
10995 if (const_op > 0)
10997 const_op -= 1;
10998 code = LEU;
10999 /* ... fall through ... */
11001 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11002 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11003 && (unsigned HOST_WIDE_INT) const_op
11004 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11006 const_op = 0;
11007 code = GE;
11008 break;
11010 else
11011 break;
11013 case LEU:
11014 /* unsigned <= 0 is equivalent to == 0 */
11015 if (const_op == 0)
11016 code = EQ;
11017 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11018 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11019 && (unsigned HOST_WIDE_INT) const_op
11020 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11022 const_op = 0;
11023 code = GE;
11025 break;
11027 case GEU:
11028 /* >= C is equivalent to > (C - 1). */
11029 if (const_op > 1)
11031 const_op -= 1;
11032 code = GTU;
11033 /* ... fall through ... */
11036 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11037 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11038 && (unsigned HOST_WIDE_INT) const_op
11039 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11041 const_op = 0;
11042 code = LT;
11043 break;
11045 else
11046 break;
11048 case GTU:
11049 /* unsigned > 0 is equivalent to != 0 */
11050 if (const_op == 0)
11051 code = NE;
11052 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11053 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11054 && (unsigned HOST_WIDE_INT) const_op
11055 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11057 const_op = 0;
11058 code = LT;
11060 break;
11062 default:
11063 break;
11066 *pop1 = GEN_INT (const_op);
11067 return code;
11070 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11071 comparison code that will be tested.
11073 The result is a possibly different comparison code to use. *POP0 and
11074 *POP1 may be updated.
11076 It is possible that we might detect that a comparison is either always
11077 true or always false. However, we do not perform general constant
11078 folding in combine, so this knowledge isn't useful. Such tautologies
11079 should have been detected earlier. Hence we ignore all such cases. */
11081 static enum rtx_code
11082 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11084 rtx op0 = *pop0;
11085 rtx op1 = *pop1;
11086 rtx tem, tem1;
11087 int i;
11088 enum machine_mode mode, tmode;
11090 /* Try a few ways of applying the same transformation to both operands. */
11091 while (1)
11093 #ifndef WORD_REGISTER_OPERATIONS
11094 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11095 so check specially. */
11096 if (code != GTU && code != GEU && code != LTU && code != LEU
11097 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11098 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11099 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11100 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11101 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11102 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11103 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11104 && CONST_INT_P (XEXP (op0, 1))
11105 && XEXP (op0, 1) == XEXP (op1, 1)
11106 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11107 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11108 && (INTVAL (XEXP (op0, 1))
11109 == (GET_MODE_PRECISION (GET_MODE (op0))
11110 - (GET_MODE_PRECISION
11111 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11113 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11114 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11116 #endif
11118 /* If both operands are the same constant shift, see if we can ignore the
11119 shift. We can if the shift is a rotate or if the bits shifted out of
11120 this shift are known to be zero for both inputs and if the type of
11121 comparison is compatible with the shift. */
11122 if (GET_CODE (op0) == GET_CODE (op1)
11123 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
11124 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11125 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11126 && (code != GT && code != LT && code != GE && code != LE))
11127 || (GET_CODE (op0) == ASHIFTRT
11128 && (code != GTU && code != LTU
11129 && code != GEU && code != LEU)))
11130 && CONST_INT_P (XEXP (op0, 1))
11131 && INTVAL (XEXP (op0, 1)) >= 0
11132 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11133 && XEXP (op0, 1) == XEXP (op1, 1))
11135 enum machine_mode mode = GET_MODE (op0);
11136 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11137 int shift_count = INTVAL (XEXP (op0, 1));
11139 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11140 mask &= (mask >> shift_count) << shift_count;
11141 else if (GET_CODE (op0) == ASHIFT)
11142 mask = (mask & (mask << shift_count)) >> shift_count;
11144 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11145 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11146 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11147 else
11148 break;
11151 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11152 SUBREGs are of the same mode, and, in both cases, the AND would
11153 be redundant if the comparison was done in the narrower mode,
11154 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11155 and the operand's possibly nonzero bits are 0xffffff01; in that case
11156 if we only care about QImode, we don't need the AND). This case
11157 occurs if the output mode of an scc insn is not SImode and
11158 STORE_FLAG_VALUE == 1 (e.g., the 386).
11160 Similarly, check for a case where the AND's are ZERO_EXTEND
11161 operations from some narrower mode even though a SUBREG is not
11162 present. */
11164 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11165 && CONST_INT_P (XEXP (op0, 1))
11166 && CONST_INT_P (XEXP (op1, 1)))
11168 rtx inner_op0 = XEXP (op0, 0);
11169 rtx inner_op1 = XEXP (op1, 0);
11170 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11171 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11172 int changed = 0;
11174 if (paradoxical_subreg_p (inner_op0)
11175 && GET_CODE (inner_op1) == SUBREG
11176 && (GET_MODE (SUBREG_REG (inner_op0))
11177 == GET_MODE (SUBREG_REG (inner_op1)))
11178 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11179 <= HOST_BITS_PER_WIDE_INT)
11180 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11181 GET_MODE (SUBREG_REG (inner_op0)))))
11182 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11183 GET_MODE (SUBREG_REG (inner_op1))))))
11185 op0 = SUBREG_REG (inner_op0);
11186 op1 = SUBREG_REG (inner_op1);
11188 /* The resulting comparison is always unsigned since we masked
11189 off the original sign bit. */
11190 code = unsigned_condition (code);
11192 changed = 1;
11195 else if (c0 == c1)
11196 for (tmode = GET_CLASS_NARROWEST_MODE
11197 (GET_MODE_CLASS (GET_MODE (op0)));
11198 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11199 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11201 op0 = gen_lowpart (tmode, inner_op0);
11202 op1 = gen_lowpart (tmode, inner_op1);
11203 code = unsigned_condition (code);
11204 changed = 1;
11205 break;
11208 if (! changed)
11209 break;
11212 /* If both operands are NOT, we can strip off the outer operation
11213 and adjust the comparison code for swapped operands; similarly for
11214 NEG, except that this must be an equality comparison. */
11215 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11216 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11217 && (code == EQ || code == NE)))
11218 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11220 else
11221 break;
11224 /* If the first operand is a constant, swap the operands and adjust the
11225 comparison code appropriately, but don't do this if the second operand
11226 is already a constant integer. */
11227 if (swap_commutative_operands_p (op0, op1))
11229 tem = op0, op0 = op1, op1 = tem;
11230 code = swap_condition (code);
11233 /* We now enter a loop during which we will try to simplify the comparison.
11234 For the most part, we only are concerned with comparisons with zero,
11235 but some things may really be comparisons with zero but not start
11236 out looking that way. */
11238 while (CONST_INT_P (op1))
11240 enum machine_mode mode = GET_MODE (op0);
11241 unsigned int mode_width = GET_MODE_PRECISION (mode);
11242 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11243 int equality_comparison_p;
11244 int sign_bit_comparison_p;
11245 int unsigned_comparison_p;
11246 HOST_WIDE_INT const_op;
11248 /* We only want to handle integral modes. This catches VOIDmode,
11249 CCmode, and the floating-point modes. An exception is that we
11250 can handle VOIDmode if OP0 is a COMPARE or a comparison
11251 operation. */
11253 if (GET_MODE_CLASS (mode) != MODE_INT
11254 && ! (mode == VOIDmode
11255 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11256 break;
11258 /* Try to simplify the compare to constant, possibly changing the
11259 comparison op, and/or changing op1 to zero. */
11260 code = simplify_compare_const (code, op0, &op1);
11261 const_op = INTVAL (op1);
11263 /* Compute some predicates to simplify code below. */
11265 equality_comparison_p = (code == EQ || code == NE);
11266 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11267 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11268 || code == GEU);
11270 /* If this is a sign bit comparison and we can do arithmetic in
11271 MODE, say that we will only be needing the sign bit of OP0. */
11272 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11273 op0 = force_to_mode (op0, mode,
11274 (unsigned HOST_WIDE_INT) 1
11275 << (GET_MODE_PRECISION (mode) - 1),
11278 /* Now try cases based on the opcode of OP0. If none of the cases
11279 does a "continue", we exit this loop immediately after the
11280 switch. */
11282 switch (GET_CODE (op0))
11284 case ZERO_EXTRACT:
11285 /* If we are extracting a single bit from a variable position in
11286 a constant that has only a single bit set and are comparing it
11287 with zero, we can convert this into an equality comparison
11288 between the position and the location of the single bit. */
11289 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11290 have already reduced the shift count modulo the word size. */
11291 if (!SHIFT_COUNT_TRUNCATED
11292 && CONST_INT_P (XEXP (op0, 0))
11293 && XEXP (op0, 1) == const1_rtx
11294 && equality_comparison_p && const_op == 0
11295 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11297 if (BITS_BIG_ENDIAN)
11299 enum machine_mode new_mode
11300 = mode_for_extraction (EP_extzv, 1);
11301 if (new_mode == MAX_MACHINE_MODE)
11302 i = BITS_PER_WORD - 1 - i;
11303 else
11305 mode = new_mode;
11306 i = (GET_MODE_PRECISION (mode) - 1 - i);
11310 op0 = XEXP (op0, 2);
11311 op1 = GEN_INT (i);
11312 const_op = i;
11314 /* Result is nonzero iff shift count is equal to I. */
11315 code = reverse_condition (code);
11316 continue;
11319 /* ... fall through ... */
11321 case SIGN_EXTRACT:
11322 tem = expand_compound_operation (op0);
11323 if (tem != op0)
11325 op0 = tem;
11326 continue;
11328 break;
11330 case NOT:
11331 /* If testing for equality, we can take the NOT of the constant. */
11332 if (equality_comparison_p
11333 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11335 op0 = XEXP (op0, 0);
11336 op1 = tem;
11337 continue;
11340 /* If just looking at the sign bit, reverse the sense of the
11341 comparison. */
11342 if (sign_bit_comparison_p)
11344 op0 = XEXP (op0, 0);
11345 code = (code == GE ? LT : GE);
11346 continue;
11348 break;
11350 case NEG:
11351 /* If testing for equality, we can take the NEG of the constant. */
11352 if (equality_comparison_p
11353 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11355 op0 = XEXP (op0, 0);
11356 op1 = tem;
11357 continue;
11360 /* The remaining cases only apply to comparisons with zero. */
11361 if (const_op != 0)
11362 break;
11364 /* When X is ABS or is known positive,
11365 (neg X) is < 0 if and only if X != 0. */
11367 if (sign_bit_comparison_p
11368 && (GET_CODE (XEXP (op0, 0)) == ABS
11369 || (mode_width <= HOST_BITS_PER_WIDE_INT
11370 && (nonzero_bits (XEXP (op0, 0), mode)
11371 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11372 == 0)))
11374 op0 = XEXP (op0, 0);
11375 code = (code == LT ? NE : EQ);
11376 continue;
11379 /* If we have NEG of something whose two high-order bits are the
11380 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11381 if (num_sign_bit_copies (op0, mode) >= 2)
11383 op0 = XEXP (op0, 0);
11384 code = swap_condition (code);
11385 continue;
11387 break;
11389 case ROTATE:
11390 /* If we are testing equality and our count is a constant, we
11391 can perform the inverse operation on our RHS. */
11392 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11393 && (tem = simplify_binary_operation (ROTATERT, mode,
11394 op1, XEXP (op0, 1))) != 0)
11396 op0 = XEXP (op0, 0);
11397 op1 = tem;
11398 continue;
11401 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11402 a particular bit. Convert it to an AND of a constant of that
11403 bit. This will be converted into a ZERO_EXTRACT. */
11404 if (const_op == 0 && sign_bit_comparison_p
11405 && CONST_INT_P (XEXP (op0, 1))
11406 && mode_width <= HOST_BITS_PER_WIDE_INT)
11408 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11409 ((unsigned HOST_WIDE_INT) 1
11410 << (mode_width - 1
11411 - INTVAL (XEXP (op0, 1)))));
11412 code = (code == LT ? NE : EQ);
11413 continue;
11416 /* Fall through. */
11418 case ABS:
11419 /* ABS is ignorable inside an equality comparison with zero. */
11420 if (const_op == 0 && equality_comparison_p)
11422 op0 = XEXP (op0, 0);
11423 continue;
11425 break;
11427 case SIGN_EXTEND:
11428 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11429 (compare FOO CONST) if CONST fits in FOO's mode and we
11430 are either testing inequality or have an unsigned
11431 comparison with ZERO_EXTEND or a signed comparison with
11432 SIGN_EXTEND. But don't do it if we don't have a compare
11433 insn of the given mode, since we'd have to revert it
11434 later on, and then we wouldn't know whether to sign- or
11435 zero-extend. */
11436 mode = GET_MODE (XEXP (op0, 0));
11437 if (GET_MODE_CLASS (mode) == MODE_INT
11438 && ! unsigned_comparison_p
11439 && HWI_COMPUTABLE_MODE_P (mode)
11440 && trunc_int_for_mode (const_op, mode) == const_op
11441 && have_insn_for (COMPARE, mode))
11443 op0 = XEXP (op0, 0);
11444 continue;
11446 break;
11448 case SUBREG:
11449 /* Check for the case where we are comparing A - C1 with C2, that is
11451 (subreg:MODE (plus (A) (-C1))) op (C2)
11453 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11454 comparison in the wider mode. One of the following two conditions
11455 must be true in order for this to be valid:
11457 1. The mode extension results in the same bit pattern being added
11458 on both sides and the comparison is equality or unsigned. As
11459 C2 has been truncated to fit in MODE, the pattern can only be
11460 all 0s or all 1s.
11462 2. The mode extension results in the sign bit being copied on
11463 each side.
11465 The difficulty here is that we have predicates for A but not for
11466 (A - C1) so we need to check that C1 is within proper bounds so
11467 as to perturbate A as little as possible. */
11469 if (mode_width <= HOST_BITS_PER_WIDE_INT
11470 && subreg_lowpart_p (op0)
11471 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11472 && GET_CODE (SUBREG_REG (op0)) == PLUS
11473 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11475 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11476 rtx a = XEXP (SUBREG_REG (op0), 0);
11477 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11479 if ((c1 > 0
11480 && (unsigned HOST_WIDE_INT) c1
11481 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11482 && (equality_comparison_p || unsigned_comparison_p)
11483 /* (A - C1) zero-extends if it is positive and sign-extends
11484 if it is negative, C2 both zero- and sign-extends. */
11485 && ((0 == (nonzero_bits (a, inner_mode)
11486 & ~GET_MODE_MASK (mode))
11487 && const_op >= 0)
11488 /* (A - C1) sign-extends if it is positive and 1-extends
11489 if it is negative, C2 both sign- and 1-extends. */
11490 || (num_sign_bit_copies (a, inner_mode)
11491 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11492 - mode_width)
11493 && const_op < 0)))
11494 || ((unsigned HOST_WIDE_INT) c1
11495 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11496 /* (A - C1) always sign-extends, like C2. */
11497 && num_sign_bit_copies (a, inner_mode)
11498 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11499 - (mode_width - 1))))
11501 op0 = SUBREG_REG (op0);
11502 continue;
11506 /* If the inner mode is narrower and we are extracting the low part,
11507 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11508 if (subreg_lowpart_p (op0)
11509 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11510 /* Fall through */ ;
11511 else
11512 break;
11514 /* ... fall through ... */
11516 case ZERO_EXTEND:
11517 mode = GET_MODE (XEXP (op0, 0));
11518 if (GET_MODE_CLASS (mode) == MODE_INT
11519 && (unsigned_comparison_p || equality_comparison_p)
11520 && HWI_COMPUTABLE_MODE_P (mode)
11521 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11522 && const_op >= 0
11523 && have_insn_for (COMPARE, mode))
11525 op0 = XEXP (op0, 0);
11526 continue;
11528 break;
11530 case PLUS:
11531 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11532 this for equality comparisons due to pathological cases involving
11533 overflows. */
11534 if (equality_comparison_p
11535 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11536 op1, XEXP (op0, 1))))
11538 op0 = XEXP (op0, 0);
11539 op1 = tem;
11540 continue;
11543 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11544 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11545 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11547 op0 = XEXP (XEXP (op0, 0), 0);
11548 code = (code == LT ? EQ : NE);
11549 continue;
11551 break;
11553 case MINUS:
11554 /* We used to optimize signed comparisons against zero, but that
11555 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11556 arrive here as equality comparisons, or (GEU, LTU) are
11557 optimized away. No need to special-case them. */
11559 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11560 (eq B (minus A C)), whichever simplifies. We can only do
11561 this for equality comparisons due to pathological cases involving
11562 overflows. */
11563 if (equality_comparison_p
11564 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11565 XEXP (op0, 1), op1)))
11567 op0 = XEXP (op0, 0);
11568 op1 = tem;
11569 continue;
11572 if (equality_comparison_p
11573 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11574 XEXP (op0, 0), op1)))
11576 op0 = XEXP (op0, 1);
11577 op1 = tem;
11578 continue;
11581 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11582 of bits in X minus 1, is one iff X > 0. */
11583 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11584 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11585 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11586 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11588 op0 = XEXP (op0, 1);
11589 code = (code == GE ? LE : GT);
11590 continue;
11592 break;
11594 case XOR:
11595 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11596 if C is zero or B is a constant. */
11597 if (equality_comparison_p
11598 && 0 != (tem = simplify_binary_operation (XOR, mode,
11599 XEXP (op0, 1), op1)))
11601 op0 = XEXP (op0, 0);
11602 op1 = tem;
11603 continue;
11605 break;
11607 case EQ: case NE:
11608 case UNEQ: case LTGT:
11609 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11610 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11611 case UNORDERED: case ORDERED:
11612 /* We can't do anything if OP0 is a condition code value, rather
11613 than an actual data value. */
11614 if (const_op != 0
11615 || CC0_P (XEXP (op0, 0))
11616 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11617 break;
11619 /* Get the two operands being compared. */
11620 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11621 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11622 else
11623 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11625 /* Check for the cases where we simply want the result of the
11626 earlier test or the opposite of that result. */
11627 if (code == NE || code == EQ
11628 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11629 && (code == LT || code == GE)))
11631 enum rtx_code new_code;
11632 if (code == LT || code == NE)
11633 new_code = GET_CODE (op0);
11634 else
11635 new_code = reversed_comparison_code (op0, NULL);
11637 if (new_code != UNKNOWN)
11639 code = new_code;
11640 op0 = tem;
11641 op1 = tem1;
11642 continue;
11645 break;
11647 case IOR:
11648 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11649 iff X <= 0. */
11650 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11651 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11652 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11654 op0 = XEXP (op0, 1);
11655 code = (code == GE ? GT : LE);
11656 continue;
11658 break;
11660 case AND:
11661 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11662 will be converted to a ZERO_EXTRACT later. */
11663 if (const_op == 0 && equality_comparison_p
11664 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11665 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11667 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11668 XEXP (XEXP (op0, 0), 1));
11669 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11670 continue;
11673 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11674 zero and X is a comparison and C1 and C2 describe only bits set
11675 in STORE_FLAG_VALUE, we can compare with X. */
11676 if (const_op == 0 && equality_comparison_p
11677 && mode_width <= HOST_BITS_PER_WIDE_INT
11678 && CONST_INT_P (XEXP (op0, 1))
11679 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11680 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11681 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11682 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11684 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11685 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11686 if ((~STORE_FLAG_VALUE & mask) == 0
11687 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11688 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11689 && COMPARISON_P (tem))))
11691 op0 = XEXP (XEXP (op0, 0), 0);
11692 continue;
11696 /* If we are doing an equality comparison of an AND of a bit equal
11697 to the sign bit, replace this with a LT or GE comparison of
11698 the underlying value. */
11699 if (equality_comparison_p
11700 && const_op == 0
11701 && CONST_INT_P (XEXP (op0, 1))
11702 && mode_width <= HOST_BITS_PER_WIDE_INT
11703 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11704 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11706 op0 = XEXP (op0, 0);
11707 code = (code == EQ ? GE : LT);
11708 continue;
11711 /* If this AND operation is really a ZERO_EXTEND from a narrower
11712 mode, the constant fits within that mode, and this is either an
11713 equality or unsigned comparison, try to do this comparison in
11714 the narrower mode.
11716 Note that in:
11718 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11719 -> (ne:DI (reg:SI 4) (const_int 0))
11721 unless TRULY_NOOP_TRUNCATION allows it or the register is
11722 known to hold a value of the required mode the
11723 transformation is invalid. */
11724 if ((equality_comparison_p || unsigned_comparison_p)
11725 && CONST_INT_P (XEXP (op0, 1))
11726 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11727 & GET_MODE_MASK (mode))
11728 + 1)) >= 0
11729 && const_op >> i == 0
11730 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11731 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11732 || (REG_P (XEXP (op0, 0))
11733 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11735 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11736 continue;
11739 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11740 fits in both M1 and M2 and the SUBREG is either paradoxical
11741 or represents the low part, permute the SUBREG and the AND
11742 and try again. */
11743 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11745 unsigned HOST_WIDE_INT c1;
11746 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11747 /* Require an integral mode, to avoid creating something like
11748 (AND:SF ...). */
11749 if (SCALAR_INT_MODE_P (tmode)
11750 /* It is unsafe to commute the AND into the SUBREG if the
11751 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11752 not defined. As originally written the upper bits
11753 have a defined value due to the AND operation.
11754 However, if we commute the AND inside the SUBREG then
11755 they no longer have defined values and the meaning of
11756 the code has been changed. */
11757 && (0
11758 #ifdef WORD_REGISTER_OPERATIONS
11759 || (mode_width > GET_MODE_PRECISION (tmode)
11760 && mode_width <= BITS_PER_WORD)
11761 #endif
11762 || (mode_width <= GET_MODE_PRECISION (tmode)
11763 && subreg_lowpart_p (XEXP (op0, 0))))
11764 && CONST_INT_P (XEXP (op0, 1))
11765 && mode_width <= HOST_BITS_PER_WIDE_INT
11766 && HWI_COMPUTABLE_MODE_P (tmode)
11767 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11768 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11769 && c1 != mask
11770 && c1 != GET_MODE_MASK (tmode))
11772 op0 = simplify_gen_binary (AND, tmode,
11773 SUBREG_REG (XEXP (op0, 0)),
11774 gen_int_mode (c1, tmode));
11775 op0 = gen_lowpart (mode, op0);
11776 continue;
11780 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11781 if (const_op == 0 && equality_comparison_p
11782 && XEXP (op0, 1) == const1_rtx
11783 && GET_CODE (XEXP (op0, 0)) == NOT)
11785 op0 = simplify_and_const_int (NULL_RTX, mode,
11786 XEXP (XEXP (op0, 0), 0), 1);
11787 code = (code == NE ? EQ : NE);
11788 continue;
11791 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11792 (eq (and (lshiftrt X) 1) 0).
11793 Also handle the case where (not X) is expressed using xor. */
11794 if (const_op == 0 && equality_comparison_p
11795 && XEXP (op0, 1) == const1_rtx
11796 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11798 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11799 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11801 if (GET_CODE (shift_op) == NOT
11802 || (GET_CODE (shift_op) == XOR
11803 && CONST_INT_P (XEXP (shift_op, 1))
11804 && CONST_INT_P (shift_count)
11805 && HWI_COMPUTABLE_MODE_P (mode)
11806 && (UINTVAL (XEXP (shift_op, 1))
11807 == (unsigned HOST_WIDE_INT) 1
11808 << INTVAL (shift_count))))
11811 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11812 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11813 code = (code == NE ? EQ : NE);
11814 continue;
11817 break;
11819 case ASHIFT:
11820 /* If we have (compare (ashift FOO N) (const_int C)) and
11821 the high order N bits of FOO (N+1 if an inequality comparison)
11822 are known to be zero, we can do this by comparing FOO with C
11823 shifted right N bits so long as the low-order N bits of C are
11824 zero. */
11825 if (CONST_INT_P (XEXP (op0, 1))
11826 && INTVAL (XEXP (op0, 1)) >= 0
11827 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11828 < HOST_BITS_PER_WIDE_INT)
11829 && (((unsigned HOST_WIDE_INT) const_op
11830 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11831 - 1)) == 0)
11832 && mode_width <= HOST_BITS_PER_WIDE_INT
11833 && (nonzero_bits (XEXP (op0, 0), mode)
11834 & ~(mask >> (INTVAL (XEXP (op0, 1))
11835 + ! equality_comparison_p))) == 0)
11837 /* We must perform a logical shift, not an arithmetic one,
11838 as we want the top N bits of C to be zero. */
11839 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11841 temp >>= INTVAL (XEXP (op0, 1));
11842 op1 = gen_int_mode (temp, mode);
11843 op0 = XEXP (op0, 0);
11844 continue;
11847 /* If we are doing a sign bit comparison, it means we are testing
11848 a particular bit. Convert it to the appropriate AND. */
11849 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11850 && mode_width <= HOST_BITS_PER_WIDE_INT)
11852 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11853 ((unsigned HOST_WIDE_INT) 1
11854 << (mode_width - 1
11855 - INTVAL (XEXP (op0, 1)))));
11856 code = (code == LT ? NE : EQ);
11857 continue;
11860 /* If this an equality comparison with zero and we are shifting
11861 the low bit to the sign bit, we can convert this to an AND of the
11862 low-order bit. */
11863 if (const_op == 0 && equality_comparison_p
11864 && CONST_INT_P (XEXP (op0, 1))
11865 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11867 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11868 continue;
11870 break;
11872 case ASHIFTRT:
11873 /* If this is an equality comparison with zero, we can do this
11874 as a logical shift, which might be much simpler. */
11875 if (equality_comparison_p && const_op == 0
11876 && CONST_INT_P (XEXP (op0, 1)))
11878 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11879 XEXP (op0, 0),
11880 INTVAL (XEXP (op0, 1)));
11881 continue;
11884 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11885 do the comparison in a narrower mode. */
11886 if (! unsigned_comparison_p
11887 && CONST_INT_P (XEXP (op0, 1))
11888 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11889 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11890 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11891 MODE_INT, 1)) != BLKmode
11892 && (((unsigned HOST_WIDE_INT) const_op
11893 + (GET_MODE_MASK (tmode) >> 1) + 1)
11894 <= GET_MODE_MASK (tmode)))
11896 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11897 continue;
11900 /* Likewise if OP0 is a PLUS of a sign extension with a
11901 constant, which is usually represented with the PLUS
11902 between the shifts. */
11903 if (! unsigned_comparison_p
11904 && CONST_INT_P (XEXP (op0, 1))
11905 && GET_CODE (XEXP (op0, 0)) == PLUS
11906 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11907 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11908 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11909 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11910 MODE_INT, 1)) != BLKmode
11911 && (((unsigned HOST_WIDE_INT) const_op
11912 + (GET_MODE_MASK (tmode) >> 1) + 1)
11913 <= GET_MODE_MASK (tmode)))
11915 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11916 rtx add_const = XEXP (XEXP (op0, 0), 1);
11917 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11918 add_const, XEXP (op0, 1));
11920 op0 = simplify_gen_binary (PLUS, tmode,
11921 gen_lowpart (tmode, inner),
11922 new_const);
11923 continue;
11926 /* ... fall through ... */
11927 case LSHIFTRT:
11928 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11929 the low order N bits of FOO are known to be zero, we can do this
11930 by comparing FOO with C shifted left N bits so long as no
11931 overflow occurs. Even if the low order N bits of FOO aren't known
11932 to be zero, if the comparison is >= or < we can use the same
11933 optimization and for > or <= by setting all the low
11934 order N bits in the comparison constant. */
11935 if (CONST_INT_P (XEXP (op0, 1))
11936 && INTVAL (XEXP (op0, 1)) > 0
11937 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11938 && mode_width <= HOST_BITS_PER_WIDE_INT
11939 && (((unsigned HOST_WIDE_INT) const_op
11940 + (GET_CODE (op0) != LSHIFTRT
11941 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11942 + 1)
11943 : 0))
11944 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11946 unsigned HOST_WIDE_INT low_bits
11947 = (nonzero_bits (XEXP (op0, 0), mode)
11948 & (((unsigned HOST_WIDE_INT) 1
11949 << INTVAL (XEXP (op0, 1))) - 1));
11950 if (low_bits == 0 || !equality_comparison_p)
11952 /* If the shift was logical, then we must make the condition
11953 unsigned. */
11954 if (GET_CODE (op0) == LSHIFTRT)
11955 code = unsigned_condition (code);
11957 const_op <<= INTVAL (XEXP (op0, 1));
11958 if (low_bits != 0
11959 && (code == GT || code == GTU
11960 || code == LE || code == LEU))
11961 const_op
11962 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11963 op1 = GEN_INT (const_op);
11964 op0 = XEXP (op0, 0);
11965 continue;
11969 /* If we are using this shift to extract just the sign bit, we
11970 can replace this with an LT or GE comparison. */
11971 if (const_op == 0
11972 && (equality_comparison_p || sign_bit_comparison_p)
11973 && CONST_INT_P (XEXP (op0, 1))
11974 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11976 op0 = XEXP (op0, 0);
11977 code = (code == NE || code == GT ? LT : GE);
11978 continue;
11980 break;
11982 default:
11983 break;
11986 break;
11989 /* Now make any compound operations involved in this comparison. Then,
11990 check for an outmost SUBREG on OP0 that is not doing anything or is
11991 paradoxical. The latter transformation must only be performed when
11992 it is known that the "extra" bits will be the same in op0 and op1 or
11993 that they don't matter. There are three cases to consider:
11995 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11996 care bits and we can assume they have any convenient value. So
11997 making the transformation is safe.
11999 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12000 In this case the upper bits of op0 are undefined. We should not make
12001 the simplification in that case as we do not know the contents of
12002 those bits.
12004 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12005 UNKNOWN. In that case we know those bits are zeros or ones. We must
12006 also be sure that they are the same as the upper bits of op1.
12008 We can never remove a SUBREG for a non-equality comparison because
12009 the sign bit is in a different place in the underlying object. */
12011 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12012 op1 = make_compound_operation (op1, SET);
12014 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12015 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12016 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12017 && (code == NE || code == EQ))
12019 if (paradoxical_subreg_p (op0))
12021 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12022 implemented. */
12023 if (REG_P (SUBREG_REG (op0)))
12025 op0 = SUBREG_REG (op0);
12026 op1 = gen_lowpart (GET_MODE (op0), op1);
12029 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12030 <= HOST_BITS_PER_WIDE_INT)
12031 && (nonzero_bits (SUBREG_REG (op0),
12032 GET_MODE (SUBREG_REG (op0)))
12033 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12035 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12037 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12038 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12039 op0 = SUBREG_REG (op0), op1 = tem;
12043 /* We now do the opposite procedure: Some machines don't have compare
12044 insns in all modes. If OP0's mode is an integer mode smaller than a
12045 word and we can't do a compare in that mode, see if there is a larger
12046 mode for which we can do the compare. There are a number of cases in
12047 which we can use the wider mode. */
12049 mode = GET_MODE (op0);
12050 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12051 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12052 && ! have_insn_for (COMPARE, mode))
12053 for (tmode = GET_MODE_WIDER_MODE (mode);
12054 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12055 tmode = GET_MODE_WIDER_MODE (tmode))
12056 if (have_insn_for (COMPARE, tmode))
12058 int zero_extended;
12060 /* If this is a test for negative, we can make an explicit
12061 test of the sign bit. Test this first so we can use
12062 a paradoxical subreg to extend OP0. */
12064 if (op1 == const0_rtx && (code == LT || code == GE)
12065 && HWI_COMPUTABLE_MODE_P (mode))
12067 op0 = simplify_gen_binary (AND, tmode,
12068 gen_lowpart (tmode, op0),
12069 GEN_INT ((unsigned HOST_WIDE_INT) 1
12070 << (GET_MODE_BITSIZE (mode)
12071 - 1)));
12072 code = (code == LT) ? NE : EQ;
12073 break;
12076 /* If the only nonzero bits in OP0 and OP1 are those in the
12077 narrower mode and this is an equality or unsigned comparison,
12078 we can use the wider mode. Similarly for sign-extended
12079 values, in which case it is true for all comparisons. */
12080 zero_extended = ((code == EQ || code == NE
12081 || code == GEU || code == GTU
12082 || code == LEU || code == LTU)
12083 && (nonzero_bits (op0, tmode)
12084 & ~GET_MODE_MASK (mode)) == 0
12085 && ((CONST_INT_P (op1)
12086 || (nonzero_bits (op1, tmode)
12087 & ~GET_MODE_MASK (mode)) == 0)));
12089 if (zero_extended
12090 || ((num_sign_bit_copies (op0, tmode)
12091 > (unsigned int) (GET_MODE_PRECISION (tmode)
12092 - GET_MODE_PRECISION (mode)))
12093 && (num_sign_bit_copies (op1, tmode)
12094 > (unsigned int) (GET_MODE_PRECISION (tmode)
12095 - GET_MODE_PRECISION (mode)))))
12097 /* If OP0 is an AND and we don't have an AND in MODE either,
12098 make a new AND in the proper mode. */
12099 if (GET_CODE (op0) == AND
12100 && !have_insn_for (AND, mode))
12101 op0 = simplify_gen_binary (AND, tmode,
12102 gen_lowpart (tmode,
12103 XEXP (op0, 0)),
12104 gen_lowpart (tmode,
12105 XEXP (op0, 1)));
12106 else
12108 if (zero_extended)
12110 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12111 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12113 else
12115 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12116 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12118 break;
12123 #ifdef CANONICALIZE_COMPARISON
12124 /* If this machine only supports a subset of valid comparisons, see if we
12125 can convert an unsupported one into a supported one. */
12126 CANONICALIZE_COMPARISON (code, op0, op1);
12127 #endif
12129 *pop0 = op0;
12130 *pop1 = op1;
12132 return code;
12135 /* Utility function for record_value_for_reg. Count number of
12136 rtxs in X. */
12137 static int
12138 count_rtxs (rtx x)
12140 enum rtx_code code = GET_CODE (x);
12141 const char *fmt;
12142 int i, j, ret = 1;
12144 if (GET_RTX_CLASS (code) == '2'
12145 || GET_RTX_CLASS (code) == 'c')
12147 rtx x0 = XEXP (x, 0);
12148 rtx x1 = XEXP (x, 1);
12150 if (x0 == x1)
12151 return 1 + 2 * count_rtxs (x0);
12153 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12154 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12155 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12156 return 2 + 2 * count_rtxs (x0)
12157 + count_rtxs (x == XEXP (x1, 0)
12158 ? XEXP (x1, 1) : XEXP (x1, 0));
12160 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12161 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12162 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12163 return 2 + 2 * count_rtxs (x1)
12164 + count_rtxs (x == XEXP (x0, 0)
12165 ? XEXP (x0, 1) : XEXP (x0, 0));
12168 fmt = GET_RTX_FORMAT (code);
12169 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12170 if (fmt[i] == 'e')
12171 ret += count_rtxs (XEXP (x, i));
12172 else if (fmt[i] == 'E')
12173 for (j = 0; j < XVECLEN (x, i); j++)
12174 ret += count_rtxs (XVECEXP (x, i, j));
12176 return ret;
12179 /* Utility function for following routine. Called when X is part of a value
12180 being stored into last_set_value. Sets last_set_table_tick
12181 for each register mentioned. Similar to mention_regs in cse.c */
12183 static void
12184 update_table_tick (rtx x)
12186 enum rtx_code code = GET_CODE (x);
12187 const char *fmt = GET_RTX_FORMAT (code);
12188 int i, j;
12190 if (code == REG)
12192 unsigned int regno = REGNO (x);
12193 unsigned int endregno = END_REGNO (x);
12194 unsigned int r;
12196 for (r = regno; r < endregno; r++)
12198 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12199 rsp->last_set_table_tick = label_tick;
12202 return;
12205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12206 if (fmt[i] == 'e')
12208 /* Check for identical subexpressions. If x contains
12209 identical subexpression we only have to traverse one of
12210 them. */
12211 if (i == 0 && ARITHMETIC_P (x))
12213 /* Note that at this point x1 has already been
12214 processed. */
12215 rtx x0 = XEXP (x, 0);
12216 rtx x1 = XEXP (x, 1);
12218 /* If x0 and x1 are identical then there is no need to
12219 process x0. */
12220 if (x0 == x1)
12221 break;
12223 /* If x0 is identical to a subexpression of x1 then while
12224 processing x1, x0 has already been processed. Thus we
12225 are done with x. */
12226 if (ARITHMETIC_P (x1)
12227 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12228 break;
12230 /* If x1 is identical to a subexpression of x0 then we
12231 still have to process the rest of x0. */
12232 if (ARITHMETIC_P (x0)
12233 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12235 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12236 break;
12240 update_table_tick (XEXP (x, i));
12242 else if (fmt[i] == 'E')
12243 for (j = 0; j < XVECLEN (x, i); j++)
12244 update_table_tick (XVECEXP (x, i, j));
12247 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12248 are saying that the register is clobbered and we no longer know its
12249 value. If INSN is zero, don't update reg_stat[].last_set; this is
12250 only permitted with VALUE also zero and is used to invalidate the
12251 register. */
12253 static void
12254 record_value_for_reg (rtx reg, rtx insn, rtx value)
12256 unsigned int regno = REGNO (reg);
12257 unsigned int endregno = END_REGNO (reg);
12258 unsigned int i;
12259 reg_stat_type *rsp;
12261 /* If VALUE contains REG and we have a previous value for REG, substitute
12262 the previous value. */
12263 if (value && insn && reg_overlap_mentioned_p (reg, value))
12265 rtx tem;
12267 /* Set things up so get_last_value is allowed to see anything set up to
12268 our insn. */
12269 subst_low_luid = DF_INSN_LUID (insn);
12270 tem = get_last_value (reg);
12272 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12273 it isn't going to be useful and will take a lot of time to process,
12274 so just use the CLOBBER. */
12276 if (tem)
12278 if (ARITHMETIC_P (tem)
12279 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12280 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12281 tem = XEXP (tem, 0);
12282 else if (count_occurrences (value, reg, 1) >= 2)
12284 /* If there are two or more occurrences of REG in VALUE,
12285 prevent the value from growing too much. */
12286 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12287 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12290 value = replace_rtx (copy_rtx (value), reg, tem);
12294 /* For each register modified, show we don't know its value, that
12295 we don't know about its bitwise content, that its value has been
12296 updated, and that we don't know the location of the death of the
12297 register. */
12298 for (i = regno; i < endregno; i++)
12300 rsp = VEC_index (reg_stat_type, reg_stat, i);
12302 if (insn)
12303 rsp->last_set = insn;
12305 rsp->last_set_value = 0;
12306 rsp->last_set_mode = VOIDmode;
12307 rsp->last_set_nonzero_bits = 0;
12308 rsp->last_set_sign_bit_copies = 0;
12309 rsp->last_death = 0;
12310 rsp->truncated_to_mode = VOIDmode;
12313 /* Mark registers that are being referenced in this value. */
12314 if (value)
12315 update_table_tick (value);
12317 /* Now update the status of each register being set.
12318 If someone is using this register in this block, set this register
12319 to invalid since we will get confused between the two lives in this
12320 basic block. This makes using this register always invalid. In cse, we
12321 scan the table to invalidate all entries using this register, but this
12322 is too much work for us. */
12324 for (i = regno; i < endregno; i++)
12326 rsp = VEC_index (reg_stat_type, reg_stat, i);
12327 rsp->last_set_label = label_tick;
12328 if (!insn
12329 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12330 rsp->last_set_invalid = 1;
12331 else
12332 rsp->last_set_invalid = 0;
12335 /* The value being assigned might refer to X (like in "x++;"). In that
12336 case, we must replace it with (clobber (const_int 0)) to prevent
12337 infinite loops. */
12338 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12339 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12341 value = copy_rtx (value);
12342 if (!get_last_value_validate (&value, insn, label_tick, 1))
12343 value = 0;
12346 /* For the main register being modified, update the value, the mode, the
12347 nonzero bits, and the number of sign bit copies. */
12349 rsp->last_set_value = value;
12351 if (value)
12353 enum machine_mode mode = GET_MODE (reg);
12354 subst_low_luid = DF_INSN_LUID (insn);
12355 rsp->last_set_mode = mode;
12356 if (GET_MODE_CLASS (mode) == MODE_INT
12357 && HWI_COMPUTABLE_MODE_P (mode))
12358 mode = nonzero_bits_mode;
12359 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12360 rsp->last_set_sign_bit_copies
12361 = num_sign_bit_copies (value, GET_MODE (reg));
12365 /* Called via note_stores from record_dead_and_set_regs to handle one
12366 SET or CLOBBER in an insn. DATA is the instruction in which the
12367 set is occurring. */
12369 static void
12370 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12372 rtx record_dead_insn = (rtx) data;
12374 if (GET_CODE (dest) == SUBREG)
12375 dest = SUBREG_REG (dest);
12377 if (!record_dead_insn)
12379 if (REG_P (dest))
12380 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12381 return;
12384 if (REG_P (dest))
12386 /* If we are setting the whole register, we know its value. Otherwise
12387 show that we don't know the value. We can handle SUBREG in
12388 some cases. */
12389 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12390 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12391 else if (GET_CODE (setter) == SET
12392 && GET_CODE (SET_DEST (setter)) == SUBREG
12393 && SUBREG_REG (SET_DEST (setter)) == dest
12394 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12395 && subreg_lowpart_p (SET_DEST (setter)))
12396 record_value_for_reg (dest, record_dead_insn,
12397 gen_lowpart (GET_MODE (dest),
12398 SET_SRC (setter)));
12399 else
12400 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12402 else if (MEM_P (dest)
12403 /* Ignore pushes, they clobber nothing. */
12404 && ! push_operand (dest, GET_MODE (dest)))
12405 mem_last_set = DF_INSN_LUID (record_dead_insn);
12408 /* Update the records of when each REG was most recently set or killed
12409 for the things done by INSN. This is the last thing done in processing
12410 INSN in the combiner loop.
12412 We update reg_stat[], in particular fields last_set, last_set_value,
12413 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12414 last_death, and also the similar information mem_last_set (which insn
12415 most recently modified memory) and last_call_luid (which insn was the
12416 most recent subroutine call). */
12418 static void
12419 record_dead_and_set_regs (rtx insn)
12421 rtx link;
12422 unsigned int i;
12424 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12426 if (REG_NOTE_KIND (link) == REG_DEAD
12427 && REG_P (XEXP (link, 0)))
12429 unsigned int regno = REGNO (XEXP (link, 0));
12430 unsigned int endregno = END_REGNO (XEXP (link, 0));
12432 for (i = regno; i < endregno; i++)
12434 reg_stat_type *rsp;
12436 rsp = VEC_index (reg_stat_type, reg_stat, i);
12437 rsp->last_death = insn;
12440 else if (REG_NOTE_KIND (link) == REG_INC)
12441 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12444 if (CALL_P (insn))
12446 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12447 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12449 reg_stat_type *rsp;
12451 rsp = VEC_index (reg_stat_type, reg_stat, i);
12452 rsp->last_set_invalid = 1;
12453 rsp->last_set = insn;
12454 rsp->last_set_value = 0;
12455 rsp->last_set_mode = VOIDmode;
12456 rsp->last_set_nonzero_bits = 0;
12457 rsp->last_set_sign_bit_copies = 0;
12458 rsp->last_death = 0;
12459 rsp->truncated_to_mode = VOIDmode;
12462 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12464 /* We can't combine into a call pattern. Remember, though, that
12465 the return value register is set at this LUID. We could
12466 still replace a register with the return value from the
12467 wrong subroutine call! */
12468 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12470 else
12471 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12474 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12475 register present in the SUBREG, so for each such SUBREG go back and
12476 adjust nonzero and sign bit information of the registers that are
12477 known to have some zero/sign bits set.
12479 This is needed because when combine blows the SUBREGs away, the
12480 information on zero/sign bits is lost and further combines can be
12481 missed because of that. */
12483 static void
12484 record_promoted_value (rtx insn, rtx subreg)
12486 struct insn_link *links;
12487 rtx set;
12488 unsigned int regno = REGNO (SUBREG_REG (subreg));
12489 enum machine_mode mode = GET_MODE (subreg);
12491 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12492 return;
12494 for (links = LOG_LINKS (insn); links;)
12496 reg_stat_type *rsp;
12498 insn = links->insn;
12499 set = single_set (insn);
12501 if (! set || !REG_P (SET_DEST (set))
12502 || REGNO (SET_DEST (set)) != regno
12503 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12505 links = links->next;
12506 continue;
12509 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12510 if (rsp->last_set == insn)
12512 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12513 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12516 if (REG_P (SET_SRC (set)))
12518 regno = REGNO (SET_SRC (set));
12519 links = LOG_LINKS (insn);
12521 else
12522 break;
12526 /* Check if X, a register, is known to contain a value already
12527 truncated to MODE. In this case we can use a subreg to refer to
12528 the truncated value even though in the generic case we would need
12529 an explicit truncation. */
12531 static bool
12532 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12534 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12535 enum machine_mode truncated = rsp->truncated_to_mode;
12537 if (truncated == 0
12538 || rsp->truncation_label < label_tick_ebb_start)
12539 return false;
12540 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12541 return true;
12542 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12543 return true;
12544 return false;
12547 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12548 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12549 might be able to turn a truncate into a subreg using this information.
12550 Return -1 if traversing *P is complete or 0 otherwise. */
12552 static int
12553 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12555 rtx x = *p;
12556 enum machine_mode truncated_mode;
12557 reg_stat_type *rsp;
12559 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12561 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12562 truncated_mode = GET_MODE (x);
12564 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12565 return -1;
12567 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12568 return -1;
12570 x = SUBREG_REG (x);
12572 /* ??? For hard-regs we now record everything. We might be able to
12573 optimize this using last_set_mode. */
12574 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12575 truncated_mode = GET_MODE (x);
12576 else
12577 return 0;
12579 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12580 if (rsp->truncated_to_mode == 0
12581 || rsp->truncation_label < label_tick_ebb_start
12582 || (GET_MODE_SIZE (truncated_mode)
12583 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12585 rsp->truncated_to_mode = truncated_mode;
12586 rsp->truncation_label = label_tick;
12589 return -1;
12592 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12593 the modes they are used in. This can help truning TRUNCATEs into
12594 SUBREGs. */
12596 static void
12597 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12599 for_each_rtx (x, record_truncated_value, NULL);
12602 /* Scan X for promoted SUBREGs. For each one found,
12603 note what it implies to the registers used in it. */
12605 static void
12606 check_promoted_subreg (rtx insn, rtx x)
12608 if (GET_CODE (x) == SUBREG
12609 && SUBREG_PROMOTED_VAR_P (x)
12610 && REG_P (SUBREG_REG (x)))
12611 record_promoted_value (insn, x);
12612 else
12614 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12615 int i, j;
12617 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12618 switch (format[i])
12620 case 'e':
12621 check_promoted_subreg (insn, XEXP (x, i));
12622 break;
12623 case 'V':
12624 case 'E':
12625 if (XVEC (x, i) != 0)
12626 for (j = 0; j < XVECLEN (x, i); j++)
12627 check_promoted_subreg (insn, XVECEXP (x, i, j));
12628 break;
12633 /* Verify that all the registers and memory references mentioned in *LOC are
12634 still valid. *LOC was part of a value set in INSN when label_tick was
12635 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12636 the invalid references with (clobber (const_int 0)) and return 1. This
12637 replacement is useful because we often can get useful information about
12638 the form of a value (e.g., if it was produced by a shift that always
12639 produces -1 or 0) even though we don't know exactly what registers it
12640 was produced from. */
12642 static int
12643 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12645 rtx x = *loc;
12646 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12647 int len = GET_RTX_LENGTH (GET_CODE (x));
12648 int i, j;
12650 if (REG_P (x))
12652 unsigned int regno = REGNO (x);
12653 unsigned int endregno = END_REGNO (x);
12654 unsigned int j;
12656 for (j = regno; j < endregno; j++)
12658 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12659 if (rsp->last_set_invalid
12660 /* If this is a pseudo-register that was only set once and not
12661 live at the beginning of the function, it is always valid. */
12662 || (! (regno >= FIRST_PSEUDO_REGISTER
12663 && REG_N_SETS (regno) == 1
12664 && (!REGNO_REG_SET_P
12665 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12666 && rsp->last_set_label > tick))
12668 if (replace)
12669 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12670 return replace;
12674 return 1;
12676 /* If this is a memory reference, make sure that there were no stores after
12677 it that might have clobbered the value. We don't have alias info, so we
12678 assume any store invalidates it. Moreover, we only have local UIDs, so
12679 we also assume that there were stores in the intervening basic blocks. */
12680 else if (MEM_P (x) && !MEM_READONLY_P (x)
12681 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12683 if (replace)
12684 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12685 return replace;
12688 for (i = 0; i < len; i++)
12690 if (fmt[i] == 'e')
12692 /* Check for identical subexpressions. If x contains
12693 identical subexpression we only have to traverse one of
12694 them. */
12695 if (i == 1 && ARITHMETIC_P (x))
12697 /* Note that at this point x0 has already been checked
12698 and found valid. */
12699 rtx x0 = XEXP (x, 0);
12700 rtx x1 = XEXP (x, 1);
12702 /* If x0 and x1 are identical then x is also valid. */
12703 if (x0 == x1)
12704 return 1;
12706 /* If x1 is identical to a subexpression of x0 then
12707 while checking x0, x1 has already been checked. Thus
12708 it is valid and so as x. */
12709 if (ARITHMETIC_P (x0)
12710 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12711 return 1;
12713 /* If x0 is identical to a subexpression of x1 then x is
12714 valid iff the rest of x1 is valid. */
12715 if (ARITHMETIC_P (x1)
12716 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12717 return
12718 get_last_value_validate (&XEXP (x1,
12719 x0 == XEXP (x1, 0) ? 1 : 0),
12720 insn, tick, replace);
12723 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12724 replace) == 0)
12725 return 0;
12727 else if (fmt[i] == 'E')
12728 for (j = 0; j < XVECLEN (x, i); j++)
12729 if (get_last_value_validate (&XVECEXP (x, i, j),
12730 insn, tick, replace) == 0)
12731 return 0;
12734 /* If we haven't found a reason for it to be invalid, it is valid. */
12735 return 1;
12738 /* Get the last value assigned to X, if known. Some registers
12739 in the value may be replaced with (clobber (const_int 0)) if their value
12740 is known longer known reliably. */
12742 static rtx
12743 get_last_value (const_rtx x)
12745 unsigned int regno;
12746 rtx value;
12747 reg_stat_type *rsp;
12749 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12750 then convert it to the desired mode. If this is a paradoxical SUBREG,
12751 we cannot predict what values the "extra" bits might have. */
12752 if (GET_CODE (x) == SUBREG
12753 && subreg_lowpart_p (x)
12754 && !paradoxical_subreg_p (x)
12755 && (value = get_last_value (SUBREG_REG (x))) != 0)
12756 return gen_lowpart (GET_MODE (x), value);
12758 if (!REG_P (x))
12759 return 0;
12761 regno = REGNO (x);
12762 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12763 value = rsp->last_set_value;
12765 /* If we don't have a value, or if it isn't for this basic block and
12766 it's either a hard register, set more than once, or it's a live
12767 at the beginning of the function, return 0.
12769 Because if it's not live at the beginning of the function then the reg
12770 is always set before being used (is never used without being set).
12771 And, if it's set only once, and it's always set before use, then all
12772 uses must have the same last value, even if it's not from this basic
12773 block. */
12775 if (value == 0
12776 || (rsp->last_set_label < label_tick_ebb_start
12777 && (regno < FIRST_PSEUDO_REGISTER
12778 || REG_N_SETS (regno) != 1
12779 || REGNO_REG_SET_P
12780 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12781 return 0;
12783 /* If the value was set in a later insn than the ones we are processing,
12784 we can't use it even if the register was only set once. */
12785 if (rsp->last_set_label == label_tick
12786 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12787 return 0;
12789 /* If the value has all its registers valid, return it. */
12790 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12791 return value;
12793 /* Otherwise, make a copy and replace any invalid register with
12794 (clobber (const_int 0)). If that fails for some reason, return 0. */
12796 value = copy_rtx (value);
12797 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12798 return value;
12800 return 0;
12803 /* Return nonzero if expression X refers to a REG or to memory
12804 that is set in an instruction more recent than FROM_LUID. */
12806 static int
12807 use_crosses_set_p (const_rtx x, int from_luid)
12809 const char *fmt;
12810 int i;
12811 enum rtx_code code = GET_CODE (x);
12813 if (code == REG)
12815 unsigned int regno = REGNO (x);
12816 unsigned endreg = END_REGNO (x);
12818 #ifdef PUSH_ROUNDING
12819 /* Don't allow uses of the stack pointer to be moved,
12820 because we don't know whether the move crosses a push insn. */
12821 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12822 return 1;
12823 #endif
12824 for (; regno < endreg; regno++)
12826 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12827 if (rsp->last_set
12828 && rsp->last_set_label == label_tick
12829 && DF_INSN_LUID (rsp->last_set) > from_luid)
12830 return 1;
12832 return 0;
12835 if (code == MEM && mem_last_set > from_luid)
12836 return 1;
12838 fmt = GET_RTX_FORMAT (code);
12840 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12842 if (fmt[i] == 'E')
12844 int j;
12845 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12846 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12847 return 1;
12849 else if (fmt[i] == 'e'
12850 && use_crosses_set_p (XEXP (x, i), from_luid))
12851 return 1;
12853 return 0;
12856 /* Define three variables used for communication between the following
12857 routines. */
12859 static unsigned int reg_dead_regno, reg_dead_endregno;
12860 static int reg_dead_flag;
12862 /* Function called via note_stores from reg_dead_at_p.
12864 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12865 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12867 static void
12868 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12870 unsigned int regno, endregno;
12872 if (!REG_P (dest))
12873 return;
12875 regno = REGNO (dest);
12876 endregno = END_REGNO (dest);
12877 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12878 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12881 /* Return nonzero if REG is known to be dead at INSN.
12883 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12884 referencing REG, it is dead. If we hit a SET referencing REG, it is
12885 live. Otherwise, see if it is live or dead at the start of the basic
12886 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12887 must be assumed to be always live. */
12889 static int
12890 reg_dead_at_p (rtx reg, rtx insn)
12892 basic_block block;
12893 unsigned int i;
12895 /* Set variables for reg_dead_at_p_1. */
12896 reg_dead_regno = REGNO (reg);
12897 reg_dead_endregno = END_REGNO (reg);
12899 reg_dead_flag = 0;
12901 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12902 we allow the machine description to decide whether use-and-clobber
12903 patterns are OK. */
12904 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12906 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12907 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12908 return 0;
12911 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12912 beginning of basic block. */
12913 block = BLOCK_FOR_INSN (insn);
12914 for (;;)
12916 if (INSN_P (insn))
12918 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12919 if (reg_dead_flag)
12920 return reg_dead_flag == 1 ? 1 : 0;
12922 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12923 return 1;
12926 if (insn == BB_HEAD (block))
12927 break;
12929 insn = PREV_INSN (insn);
12932 /* Look at live-in sets for the basic block that we were in. */
12933 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12934 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12935 return 0;
12937 return 1;
12940 /* Note hard registers in X that are used. */
12942 static void
12943 mark_used_regs_combine (rtx x)
12945 RTX_CODE code = GET_CODE (x);
12946 unsigned int regno;
12947 int i;
12949 switch (code)
12951 case LABEL_REF:
12952 case SYMBOL_REF:
12953 case CONST_INT:
12954 case CONST:
12955 case CONST_DOUBLE:
12956 case CONST_VECTOR:
12957 case PC:
12958 case ADDR_VEC:
12959 case ADDR_DIFF_VEC:
12960 case ASM_INPUT:
12961 #ifdef HAVE_cc0
12962 /* CC0 must die in the insn after it is set, so we don't need to take
12963 special note of it here. */
12964 case CC0:
12965 #endif
12966 return;
12968 case CLOBBER:
12969 /* If we are clobbering a MEM, mark any hard registers inside the
12970 address as used. */
12971 if (MEM_P (XEXP (x, 0)))
12972 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12973 return;
12975 case REG:
12976 regno = REGNO (x);
12977 /* A hard reg in a wide mode may really be multiple registers.
12978 If so, mark all of them just like the first. */
12979 if (regno < FIRST_PSEUDO_REGISTER)
12981 /* None of this applies to the stack, frame or arg pointers. */
12982 if (regno == STACK_POINTER_REGNUM
12983 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12984 || regno == HARD_FRAME_POINTER_REGNUM
12985 #endif
12986 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12987 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12988 #endif
12989 || regno == FRAME_POINTER_REGNUM)
12990 return;
12992 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12994 return;
12996 case SET:
12998 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12999 the address. */
13000 rtx testreg = SET_DEST (x);
13002 while (GET_CODE (testreg) == SUBREG
13003 || GET_CODE (testreg) == ZERO_EXTRACT
13004 || GET_CODE (testreg) == STRICT_LOW_PART)
13005 testreg = XEXP (testreg, 0);
13007 if (MEM_P (testreg))
13008 mark_used_regs_combine (XEXP (testreg, 0));
13010 mark_used_regs_combine (SET_SRC (x));
13012 return;
13014 default:
13015 break;
13018 /* Recursively scan the operands of this expression. */
13021 const char *fmt = GET_RTX_FORMAT (code);
13023 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13025 if (fmt[i] == 'e')
13026 mark_used_regs_combine (XEXP (x, i));
13027 else if (fmt[i] == 'E')
13029 int j;
13031 for (j = 0; j < XVECLEN (x, i); j++)
13032 mark_used_regs_combine (XVECEXP (x, i, j));
13038 /* Remove register number REGNO from the dead registers list of INSN.
13040 Return the note used to record the death, if there was one. */
13043 remove_death (unsigned int regno, rtx insn)
13045 rtx note = find_regno_note (insn, REG_DEAD, regno);
13047 if (note)
13048 remove_note (insn, note);
13050 return note;
13053 /* For each register (hardware or pseudo) used within expression X, if its
13054 death is in an instruction with luid between FROM_LUID (inclusive) and
13055 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13056 list headed by PNOTES.
13058 That said, don't move registers killed by maybe_kill_insn.
13060 This is done when X is being merged by combination into TO_INSN. These
13061 notes will then be distributed as needed. */
13063 static void
13064 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
13065 rtx *pnotes)
13067 const char *fmt;
13068 int len, i;
13069 enum rtx_code code = GET_CODE (x);
13071 if (code == REG)
13073 unsigned int regno = REGNO (x);
13074 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
13076 /* Don't move the register if it gets killed in between from and to. */
13077 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13078 && ! reg_referenced_p (x, maybe_kill_insn))
13079 return;
13081 if (where_dead
13082 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13083 && DF_INSN_LUID (where_dead) >= from_luid
13084 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13086 rtx note = remove_death (regno, where_dead);
13088 /* It is possible for the call above to return 0. This can occur
13089 when last_death points to I2 or I1 that we combined with.
13090 In that case make a new note.
13092 We must also check for the case where X is a hard register
13093 and NOTE is a death note for a range of hard registers
13094 including X. In that case, we must put REG_DEAD notes for
13095 the remaining registers in place of NOTE. */
13097 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13098 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13099 > GET_MODE_SIZE (GET_MODE (x))))
13101 unsigned int deadregno = REGNO (XEXP (note, 0));
13102 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13103 unsigned int ourend = END_HARD_REGNO (x);
13104 unsigned int i;
13106 for (i = deadregno; i < deadend; i++)
13107 if (i < regno || i >= ourend)
13108 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13111 /* If we didn't find any note, or if we found a REG_DEAD note that
13112 covers only part of the given reg, and we have a multi-reg hard
13113 register, then to be safe we must check for REG_DEAD notes
13114 for each register other than the first. They could have
13115 their own REG_DEAD notes lying around. */
13116 else if ((note == 0
13117 || (note != 0
13118 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13119 < GET_MODE_SIZE (GET_MODE (x)))))
13120 && regno < FIRST_PSEUDO_REGISTER
13121 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13123 unsigned int ourend = END_HARD_REGNO (x);
13124 unsigned int i, offset;
13125 rtx oldnotes = 0;
13127 if (note)
13128 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13129 else
13130 offset = 1;
13132 for (i = regno + offset; i < ourend; i++)
13133 move_deaths (regno_reg_rtx[i],
13134 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13137 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13139 XEXP (note, 1) = *pnotes;
13140 *pnotes = note;
13142 else
13143 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13146 return;
13149 else if (GET_CODE (x) == SET)
13151 rtx dest = SET_DEST (x);
13153 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13155 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13156 that accesses one word of a multi-word item, some
13157 piece of everything register in the expression is used by
13158 this insn, so remove any old death. */
13159 /* ??? So why do we test for equality of the sizes? */
13161 if (GET_CODE (dest) == ZERO_EXTRACT
13162 || GET_CODE (dest) == STRICT_LOW_PART
13163 || (GET_CODE (dest) == SUBREG
13164 && (((GET_MODE_SIZE (GET_MODE (dest))
13165 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13166 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13167 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13169 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13170 return;
13173 /* If this is some other SUBREG, we know it replaces the entire
13174 value, so use that as the destination. */
13175 if (GET_CODE (dest) == SUBREG)
13176 dest = SUBREG_REG (dest);
13178 /* If this is a MEM, adjust deaths of anything used in the address.
13179 For a REG (the only other possibility), the entire value is
13180 being replaced so the old value is not used in this insn. */
13182 if (MEM_P (dest))
13183 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13184 to_insn, pnotes);
13185 return;
13188 else if (GET_CODE (x) == CLOBBER)
13189 return;
13191 len = GET_RTX_LENGTH (code);
13192 fmt = GET_RTX_FORMAT (code);
13194 for (i = 0; i < len; i++)
13196 if (fmt[i] == 'E')
13198 int j;
13199 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13200 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13201 to_insn, pnotes);
13203 else if (fmt[i] == 'e')
13204 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13208 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13209 pattern of an insn. X must be a REG. */
13211 static int
13212 reg_bitfield_target_p (rtx x, rtx body)
13214 int i;
13216 if (GET_CODE (body) == SET)
13218 rtx dest = SET_DEST (body);
13219 rtx target;
13220 unsigned int regno, tregno, endregno, endtregno;
13222 if (GET_CODE (dest) == ZERO_EXTRACT)
13223 target = XEXP (dest, 0);
13224 else if (GET_CODE (dest) == STRICT_LOW_PART)
13225 target = SUBREG_REG (XEXP (dest, 0));
13226 else
13227 return 0;
13229 if (GET_CODE (target) == SUBREG)
13230 target = SUBREG_REG (target);
13232 if (!REG_P (target))
13233 return 0;
13235 tregno = REGNO (target), regno = REGNO (x);
13236 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13237 return target == x;
13239 endtregno = end_hard_regno (GET_MODE (target), tregno);
13240 endregno = end_hard_regno (GET_MODE (x), regno);
13242 return endregno > tregno && regno < endtregno;
13245 else if (GET_CODE (body) == PARALLEL)
13246 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13247 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13248 return 1;
13250 return 0;
13253 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13254 as appropriate. I3 and I2 are the insns resulting from the combination
13255 insns including FROM (I2 may be zero).
13257 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13258 not need REG_DEAD notes because they are being substituted for. This
13259 saves searching in the most common cases.
13261 Each note in the list is either ignored or placed on some insns, depending
13262 on the type of note. */
13264 static void
13265 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13266 rtx elim_i1, rtx elim_i0)
13268 rtx note, next_note;
13269 rtx tem;
13271 for (note = notes; note; note = next_note)
13273 rtx place = 0, place2 = 0;
13275 next_note = XEXP (note, 1);
13276 switch (REG_NOTE_KIND (note))
13278 case REG_BR_PROB:
13279 case REG_BR_PRED:
13280 /* Doesn't matter much where we put this, as long as it's somewhere.
13281 It is preferable to keep these notes on branches, which is most
13282 likely to be i3. */
13283 place = i3;
13284 break;
13286 case REG_NON_LOCAL_GOTO:
13287 if (JUMP_P (i3))
13288 place = i3;
13289 else
13291 gcc_assert (i2 && JUMP_P (i2));
13292 place = i2;
13294 break;
13296 case REG_EH_REGION:
13297 /* These notes must remain with the call or trapping instruction. */
13298 if (CALL_P (i3))
13299 place = i3;
13300 else if (i2 && CALL_P (i2))
13301 place = i2;
13302 else
13304 gcc_assert (cfun->can_throw_non_call_exceptions);
13305 if (may_trap_p (i3))
13306 place = i3;
13307 else if (i2 && may_trap_p (i2))
13308 place = i2;
13309 /* ??? Otherwise assume we've combined things such that we
13310 can now prove that the instructions can't trap. Drop the
13311 note in this case. */
13313 break;
13315 case REG_ARGS_SIZE:
13316 /* ??? How to distribute between i3-i1. Assume i3 contains the
13317 entire adjustment. Assert i3 contains at least some adjust. */
13318 if (!noop_move_p (i3))
13320 int old_size, args_size = INTVAL (XEXP (note, 0));
13321 /* fixup_args_size_notes looks at REG_NORETURN note,
13322 so ensure the note is placed there first. */
13323 if (CALL_P (i3))
13325 rtx *np;
13326 for (np = &next_note; *np; np = &XEXP (*np, 1))
13327 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13329 rtx n = *np;
13330 *np = XEXP (n, 1);
13331 XEXP (n, 1) = REG_NOTES (i3);
13332 REG_NOTES (i3) = n;
13333 break;
13336 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13337 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13338 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13339 gcc_assert (old_size != args_size
13340 || (CALL_P (i3)
13341 && !ACCUMULATE_OUTGOING_ARGS
13342 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13344 break;
13346 case REG_NORETURN:
13347 case REG_SETJMP:
13348 case REG_TM:
13349 /* These notes must remain with the call. It should not be
13350 possible for both I2 and I3 to be a call. */
13351 if (CALL_P (i3))
13352 place = i3;
13353 else
13355 gcc_assert (i2 && CALL_P (i2));
13356 place = i2;
13358 break;
13360 case REG_UNUSED:
13361 /* Any clobbers for i3 may still exist, and so we must process
13362 REG_UNUSED notes from that insn.
13364 Any clobbers from i2 or i1 can only exist if they were added by
13365 recog_for_combine. In that case, recog_for_combine created the
13366 necessary REG_UNUSED notes. Trying to keep any original
13367 REG_UNUSED notes from these insns can cause incorrect output
13368 if it is for the same register as the original i3 dest.
13369 In that case, we will notice that the register is set in i3,
13370 and then add a REG_UNUSED note for the destination of i3, which
13371 is wrong. However, it is possible to have REG_UNUSED notes from
13372 i2 or i1 for register which were both used and clobbered, so
13373 we keep notes from i2 or i1 if they will turn into REG_DEAD
13374 notes. */
13376 /* If this register is set or clobbered in I3, put the note there
13377 unless there is one already. */
13378 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13380 if (from_insn != i3)
13381 break;
13383 if (! (REG_P (XEXP (note, 0))
13384 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13385 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13386 place = i3;
13388 /* Otherwise, if this register is used by I3, then this register
13389 now dies here, so we must put a REG_DEAD note here unless there
13390 is one already. */
13391 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13392 && ! (REG_P (XEXP (note, 0))
13393 ? find_regno_note (i3, REG_DEAD,
13394 REGNO (XEXP (note, 0)))
13395 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13397 PUT_REG_NOTE_KIND (note, REG_DEAD);
13398 place = i3;
13400 break;
13402 case REG_EQUAL:
13403 case REG_EQUIV:
13404 case REG_NOALIAS:
13405 /* These notes say something about results of an insn. We can
13406 only support them if they used to be on I3 in which case they
13407 remain on I3. Otherwise they are ignored.
13409 If the note refers to an expression that is not a constant, we
13410 must also ignore the note since we cannot tell whether the
13411 equivalence is still true. It might be possible to do
13412 slightly better than this (we only have a problem if I2DEST
13413 or I1DEST is present in the expression), but it doesn't
13414 seem worth the trouble. */
13416 if (from_insn == i3
13417 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13418 place = i3;
13419 break;
13421 case REG_INC:
13422 /* These notes say something about how a register is used. They must
13423 be present on any use of the register in I2 or I3. */
13424 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13425 place = i3;
13427 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13429 if (place)
13430 place2 = i2;
13431 else
13432 place = i2;
13434 break;
13436 case REG_LABEL_TARGET:
13437 case REG_LABEL_OPERAND:
13438 /* This can show up in several ways -- either directly in the
13439 pattern, or hidden off in the constant pool with (or without?)
13440 a REG_EQUAL note. */
13441 /* ??? Ignore the without-reg_equal-note problem for now. */
13442 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13443 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13444 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13445 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13446 place = i3;
13448 if (i2
13449 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13450 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13451 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13452 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13454 if (place)
13455 place2 = i2;
13456 else
13457 place = i2;
13460 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13461 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13462 there. */
13463 if (place && JUMP_P (place)
13464 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13465 && (JUMP_LABEL (place) == NULL
13466 || JUMP_LABEL (place) == XEXP (note, 0)))
13468 rtx label = JUMP_LABEL (place);
13470 if (!label)
13471 JUMP_LABEL (place) = XEXP (note, 0);
13472 else if (LABEL_P (label))
13473 LABEL_NUSES (label)--;
13476 if (place2 && JUMP_P (place2)
13477 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13478 && (JUMP_LABEL (place2) == NULL
13479 || JUMP_LABEL (place2) == XEXP (note, 0)))
13481 rtx label = JUMP_LABEL (place2);
13483 if (!label)
13484 JUMP_LABEL (place2) = XEXP (note, 0);
13485 else if (LABEL_P (label))
13486 LABEL_NUSES (label)--;
13487 place2 = 0;
13489 break;
13491 case REG_NONNEG:
13492 /* This note says something about the value of a register prior
13493 to the execution of an insn. It is too much trouble to see
13494 if the note is still correct in all situations. It is better
13495 to simply delete it. */
13496 break;
13498 case REG_DEAD:
13499 /* If we replaced the right hand side of FROM_INSN with a
13500 REG_EQUAL note, the original use of the dying register
13501 will not have been combined into I3 and I2. In such cases,
13502 FROM_INSN is guaranteed to be the first of the combined
13503 instructions, so we simply need to search back before
13504 FROM_INSN for the previous use or set of this register,
13505 then alter the notes there appropriately.
13507 If the register is used as an input in I3, it dies there.
13508 Similarly for I2, if it is nonzero and adjacent to I3.
13510 If the register is not used as an input in either I3 or I2
13511 and it is not one of the registers we were supposed to eliminate,
13512 there are two possibilities. We might have a non-adjacent I2
13513 or we might have somehow eliminated an additional register
13514 from a computation. For example, we might have had A & B where
13515 we discover that B will always be zero. In this case we will
13516 eliminate the reference to A.
13518 In both cases, we must search to see if we can find a previous
13519 use of A and put the death note there. */
13521 if (from_insn
13522 && from_insn == i2mod
13523 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13524 tem = from_insn;
13525 else
13527 if (from_insn
13528 && CALL_P (from_insn)
13529 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13530 place = from_insn;
13531 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13532 place = i3;
13533 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13534 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13535 place = i2;
13536 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13537 && !(i2mod
13538 && reg_overlap_mentioned_p (XEXP (note, 0),
13539 i2mod_old_rhs)))
13540 || rtx_equal_p (XEXP (note, 0), elim_i1)
13541 || rtx_equal_p (XEXP (note, 0), elim_i0))
13542 break;
13543 tem = i3;
13546 if (place == 0)
13548 basic_block bb = this_basic_block;
13550 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13552 if (!NONDEBUG_INSN_P (tem))
13554 if (tem == BB_HEAD (bb))
13555 break;
13556 continue;
13559 /* If the register is being set at TEM, see if that is all
13560 TEM is doing. If so, delete TEM. Otherwise, make this
13561 into a REG_UNUSED note instead. Don't delete sets to
13562 global register vars. */
13563 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13564 || !global_regs[REGNO (XEXP (note, 0))])
13565 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13567 rtx set = single_set (tem);
13568 rtx inner_dest = 0;
13569 #ifdef HAVE_cc0
13570 rtx cc0_setter = NULL_RTX;
13571 #endif
13573 if (set != 0)
13574 for (inner_dest = SET_DEST (set);
13575 (GET_CODE (inner_dest) == STRICT_LOW_PART
13576 || GET_CODE (inner_dest) == SUBREG
13577 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13578 inner_dest = XEXP (inner_dest, 0))
13581 /* Verify that it was the set, and not a clobber that
13582 modified the register.
13584 CC0 targets must be careful to maintain setter/user
13585 pairs. If we cannot delete the setter due to side
13586 effects, mark the user with an UNUSED note instead
13587 of deleting it. */
13589 if (set != 0 && ! side_effects_p (SET_SRC (set))
13590 && rtx_equal_p (XEXP (note, 0), inner_dest)
13591 #ifdef HAVE_cc0
13592 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13593 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13594 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13595 #endif
13598 /* Move the notes and links of TEM elsewhere.
13599 This might delete other dead insns recursively.
13600 First set the pattern to something that won't use
13601 any register. */
13602 rtx old_notes = REG_NOTES (tem);
13604 PATTERN (tem) = pc_rtx;
13605 REG_NOTES (tem) = NULL;
13607 distribute_notes (old_notes, tem, tem, NULL_RTX,
13608 NULL_RTX, NULL_RTX, NULL_RTX);
13609 distribute_links (LOG_LINKS (tem));
13611 SET_INSN_DELETED (tem);
13612 if (tem == i2)
13613 i2 = NULL_RTX;
13615 #ifdef HAVE_cc0
13616 /* Delete the setter too. */
13617 if (cc0_setter)
13619 PATTERN (cc0_setter) = pc_rtx;
13620 old_notes = REG_NOTES (cc0_setter);
13621 REG_NOTES (cc0_setter) = NULL;
13623 distribute_notes (old_notes, cc0_setter,
13624 cc0_setter, NULL_RTX,
13625 NULL_RTX, NULL_RTX, NULL_RTX);
13626 distribute_links (LOG_LINKS (cc0_setter));
13628 SET_INSN_DELETED (cc0_setter);
13629 if (cc0_setter == i2)
13630 i2 = NULL_RTX;
13632 #endif
13634 else
13636 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13638 /* If there isn't already a REG_UNUSED note, put one
13639 here. Do not place a REG_DEAD note, even if
13640 the register is also used here; that would not
13641 match the algorithm used in lifetime analysis
13642 and can cause the consistency check in the
13643 scheduler to fail. */
13644 if (! find_regno_note (tem, REG_UNUSED,
13645 REGNO (XEXP (note, 0))))
13646 place = tem;
13647 break;
13650 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13651 || (CALL_P (tem)
13652 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13654 place = tem;
13656 /* If we are doing a 3->2 combination, and we have a
13657 register which formerly died in i3 and was not used
13658 by i2, which now no longer dies in i3 and is used in
13659 i2 but does not die in i2, and place is between i2
13660 and i3, then we may need to move a link from place to
13661 i2. */
13662 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13663 && from_insn
13664 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13665 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13667 struct insn_link *links = LOG_LINKS (place);
13668 LOG_LINKS (place) = NULL;
13669 distribute_links (links);
13671 break;
13674 if (tem == BB_HEAD (bb))
13675 break;
13680 /* If the register is set or already dead at PLACE, we needn't do
13681 anything with this note if it is still a REG_DEAD note.
13682 We check here if it is set at all, not if is it totally replaced,
13683 which is what `dead_or_set_p' checks, so also check for it being
13684 set partially. */
13686 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13688 unsigned int regno = REGNO (XEXP (note, 0));
13689 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13691 if (dead_or_set_p (place, XEXP (note, 0))
13692 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13694 /* Unless the register previously died in PLACE, clear
13695 last_death. [I no longer understand why this is
13696 being done.] */
13697 if (rsp->last_death != place)
13698 rsp->last_death = 0;
13699 place = 0;
13701 else
13702 rsp->last_death = place;
13704 /* If this is a death note for a hard reg that is occupying
13705 multiple registers, ensure that we are still using all
13706 parts of the object. If we find a piece of the object
13707 that is unused, we must arrange for an appropriate REG_DEAD
13708 note to be added for it. However, we can't just emit a USE
13709 and tag the note to it, since the register might actually
13710 be dead; so we recourse, and the recursive call then finds
13711 the previous insn that used this register. */
13713 if (place && regno < FIRST_PSEUDO_REGISTER
13714 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13716 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13717 int all_used = 1;
13718 unsigned int i;
13720 for (i = regno; i < endregno; i++)
13721 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13722 && ! find_regno_fusage (place, USE, i))
13723 || dead_or_set_regno_p (place, i))
13724 all_used = 0;
13726 if (! all_used)
13728 /* Put only REG_DEAD notes for pieces that are
13729 not already dead or set. */
13731 for (i = regno; i < endregno;
13732 i += hard_regno_nregs[i][reg_raw_mode[i]])
13734 rtx piece = regno_reg_rtx[i];
13735 basic_block bb = this_basic_block;
13737 if (! dead_or_set_p (place, piece)
13738 && ! reg_bitfield_target_p (piece,
13739 PATTERN (place)))
13741 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13742 NULL_RTX);
13744 distribute_notes (new_note, place, place,
13745 NULL_RTX, NULL_RTX, NULL_RTX,
13746 NULL_RTX);
13748 else if (! refers_to_regno_p (i, i + 1,
13749 PATTERN (place), 0)
13750 && ! find_regno_fusage (place, USE, i))
13751 for (tem = PREV_INSN (place); ;
13752 tem = PREV_INSN (tem))
13754 if (!NONDEBUG_INSN_P (tem))
13756 if (tem == BB_HEAD (bb))
13757 break;
13758 continue;
13760 if (dead_or_set_p (tem, piece)
13761 || reg_bitfield_target_p (piece,
13762 PATTERN (tem)))
13764 add_reg_note (tem, REG_UNUSED, piece);
13765 break;
13771 place = 0;
13775 break;
13777 default:
13778 /* Any other notes should not be present at this point in the
13779 compilation. */
13780 gcc_unreachable ();
13783 if (place)
13785 XEXP (note, 1) = REG_NOTES (place);
13786 REG_NOTES (place) = note;
13789 if (place2)
13790 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13794 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13795 I3, I2, and I1 to new locations. This is also called to add a link
13796 pointing at I3 when I3's destination is changed. */
13798 static void
13799 distribute_links (struct insn_link *links)
13801 struct insn_link *link, *next_link;
13803 for (link = links; link; link = next_link)
13805 rtx place = 0;
13806 rtx insn;
13807 rtx set, reg;
13809 next_link = link->next;
13811 /* If the insn that this link points to is a NOTE or isn't a single
13812 set, ignore it. In the latter case, it isn't clear what we
13813 can do other than ignore the link, since we can't tell which
13814 register it was for. Such links wouldn't be used by combine
13815 anyway.
13817 It is not possible for the destination of the target of the link to
13818 have been changed by combine. The only potential of this is if we
13819 replace I3, I2, and I1 by I3 and I2. But in that case the
13820 destination of I2 also remains unchanged. */
13822 if (NOTE_P (link->insn)
13823 || (set = single_set (link->insn)) == 0)
13824 continue;
13826 reg = SET_DEST (set);
13827 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13828 || GET_CODE (reg) == STRICT_LOW_PART)
13829 reg = XEXP (reg, 0);
13831 /* A LOG_LINK is defined as being placed on the first insn that uses
13832 a register and points to the insn that sets the register. Start
13833 searching at the next insn after the target of the link and stop
13834 when we reach a set of the register or the end of the basic block.
13836 Note that this correctly handles the link that used to point from
13837 I3 to I2. Also note that not much searching is typically done here
13838 since most links don't point very far away. */
13840 for (insn = NEXT_INSN (link->insn);
13841 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13842 || BB_HEAD (this_basic_block->next_bb) != insn));
13843 insn = NEXT_INSN (insn))
13844 if (DEBUG_INSN_P (insn))
13845 continue;
13846 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13848 if (reg_referenced_p (reg, PATTERN (insn)))
13849 place = insn;
13850 break;
13852 else if (CALL_P (insn)
13853 && find_reg_fusage (insn, USE, reg))
13855 place = insn;
13856 break;
13858 else if (INSN_P (insn) && reg_set_p (reg, insn))
13859 break;
13861 /* If we found a place to put the link, place it there unless there
13862 is already a link to the same insn as LINK at that point. */
13864 if (place)
13866 struct insn_link *link2;
13868 FOR_EACH_LOG_LINK (link2, place)
13869 if (link2->insn == link->insn)
13870 break;
13872 if (link2 == NULL)
13874 link->next = LOG_LINKS (place);
13875 LOG_LINKS (place) = link;
13877 /* Set added_links_insn to the earliest insn we added a
13878 link to. */
13879 if (added_links_insn == 0
13880 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13881 added_links_insn = place;
13887 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13888 Check whether the expression pointer to by LOC is a register or
13889 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13890 Otherwise return zero. */
13892 static int
13893 unmentioned_reg_p_1 (rtx *loc, void *expr)
13895 rtx x = *loc;
13897 if (x != NULL_RTX
13898 && (REG_P (x) || MEM_P (x))
13899 && ! reg_mentioned_p (x, (rtx) expr))
13900 return 1;
13901 return 0;
13904 /* Check for any register or memory mentioned in EQUIV that is not
13905 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13906 of EXPR where some registers may have been replaced by constants. */
13908 static bool
13909 unmentioned_reg_p (rtx equiv, rtx expr)
13911 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13914 DEBUG_FUNCTION void
13915 dump_combine_stats (FILE *file)
13917 fprintf
13918 (file,
13919 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13920 combine_attempts, combine_merges, combine_extras, combine_successes);
13923 void
13924 dump_combine_total_stats (FILE *file)
13926 fprintf
13927 (file,
13928 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13929 total_attempts, total_merges, total_extras, total_successes);
13932 static bool
13933 gate_handle_combine (void)
13935 return (optimize > 0);
13938 /* Try combining insns through substitution. */
13939 static unsigned int
13940 rest_of_handle_combine (void)
13942 int rebuild_jump_labels_after_combine;
13944 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13945 df_note_add_problem ();
13946 df_analyze ();
13948 regstat_init_n_sets_and_refs ();
13950 rebuild_jump_labels_after_combine
13951 = combine_instructions (get_insns (), max_reg_num ());
13953 /* Combining insns may have turned an indirect jump into a
13954 direct jump. Rebuild the JUMP_LABEL fields of jumping
13955 instructions. */
13956 if (rebuild_jump_labels_after_combine)
13958 timevar_push (TV_JUMP);
13959 rebuild_jump_labels (get_insns ());
13960 cleanup_cfg (0);
13961 timevar_pop (TV_JUMP);
13964 regstat_free_n_sets_and_refs ();
13965 return 0;
13968 struct rtl_opt_pass pass_combine =
13971 RTL_PASS,
13972 "combine", /* name */
13973 gate_handle_combine, /* gate */
13974 rest_of_handle_combine, /* execute */
13975 NULL, /* sub */
13976 NULL, /* next */
13977 0, /* static_pass_number */
13978 TV_COMBINE, /* tv_id */
13979 PROP_cfglayout, /* properties_required */
13980 0, /* properties_provided */
13981 0, /* properties_destroyed */
13982 0, /* todo_flags_start */
13983 TODO_df_finish | TODO_verify_rtl_sharing |
13984 TODO_ggc_collect, /* todo_flags_finish */