* dwarf2out.c (switch_to_frame_table_section): Move
[official-gcc.git] / boehm-gc / os_dep.c
blob3f0f20e834cedda24483ba09fb3d93222b2497af
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "private/gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49 && !defined(MSWINCE)
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
52 # include <unistd.h>
53 # endif
54 # endif
56 # include <stdio.h>
57 # if defined(MSWINCE)
58 # define SIGSEGV 0 /* value is irrelevant */
59 # else
60 # include <signal.h>
61 # endif
63 #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
64 # include <ctype.h>
65 #endif
67 /* Blatantly OS dependent routines, except for those that are related */
68 /* to dynamic loading. */
70 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71 # define NEED_FIND_LIMIT
72 # endif
74 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75 # define NEED_FIND_LIMIT
76 # endif
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 # define NEED_FIND_LIMIT
80 # endif
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 # define NEED_FIND_LIMIT
85 # endif
87 #if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__))
88 # include <machine/trap.h>
89 # if !defined(PCR)
90 # define NEED_FIND_LIMIT
91 # endif
92 #endif
94 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95 && !defined(NEED_FIND_LIMIT)
96 /* Used by GC_init_netbsd_elf() below. */
97 # define NEED_FIND_LIMIT
98 #endif
100 #ifdef NEED_FIND_LIMIT
101 # include <setjmp.h>
102 #endif
104 #ifdef AMIGA
105 # define GC_AMIGA_DEF
106 # include "AmigaOS.c"
107 # undef GC_AMIGA_DEF
108 #endif
110 #if defined(MSWIN32) || defined(MSWINCE)
111 # define WIN32_LEAN_AND_MEAN
112 # define NOSERVICE
113 # include <windows.h>
114 #endif
116 #ifdef MACOS
117 # include <Processes.h>
118 #endif
120 #ifdef IRIX5
121 # include <sys/uio.h>
122 # include <malloc.h> /* for locking */
123 #endif
124 #if defined(USE_MMAP) || defined(USE_MUNMAP)
125 # ifndef USE_MMAP
126 --> USE_MUNMAP requires USE_MMAP
127 # endif
128 # include <sys/types.h>
129 # include <sys/mman.h>
130 # include <sys/stat.h>
131 # include <errno.h>
132 #endif
134 #ifdef UNIX_LIKE
135 # include <fcntl.h>
136 # if defined(SUNOS5SIGS) && !defined(FREEBSD)
137 # include <sys/siginfo.h>
138 # endif
139 /* Define SETJMP and friends to be the version that restores */
140 /* the signal mask. */
141 # define SETJMP(env) sigsetjmp(env, 1)
142 # define LONGJMP(env, val) siglongjmp(env, val)
143 # define JMP_BUF sigjmp_buf
144 #else
145 # define SETJMP(env) setjmp(env)
146 # define LONGJMP(env, val) longjmp(env, val)
147 # define JMP_BUF jmp_buf
148 #endif
150 #ifdef DARWIN
151 /* for get_etext and friends */
152 #include <mach-o/getsect.h>
153 #endif
155 #ifdef DJGPP
156 /* Apparently necessary for djgpp 2.01. May cause problems with */
157 /* other versions. */
158 typedef long unsigned int caddr_t;
159 #endif
161 #ifdef PCR
162 # include "il/PCR_IL.h"
163 # include "th/PCR_ThCtl.h"
164 # include "mm/PCR_MM.h"
165 #endif
167 #if !defined(NO_EXECUTE_PERMISSION)
168 # define OPT_PROT_EXEC PROT_EXEC
169 #else
170 # define OPT_PROT_EXEC 0
171 #endif
173 #if defined(LINUX) && \
174 (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
176 /* We need to parse /proc/self/maps, either to find dynamic libraries, */
177 /* and/or to find the register backing store base (IA64). Do it once */
178 /* here. */
180 #define READ read
182 /* Repeatedly perform a read call until the buffer is filled or */
183 /* we encounter EOF. */
184 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
186 ssize_t num_read = 0;
187 ssize_t result;
189 while (num_read < count) {
190 result = READ(fd, buf + num_read, count - num_read);
191 if (result < 0) return result;
192 if (result == 0) break;
193 num_read += result;
195 return num_read;
199 * Apply fn to a buffer containing the contents of /proc/self/maps.
200 * Return the result of fn or, if we failed, 0.
201 * We currently do nothing to /proc/self/maps other than simply read
202 * it. This code could be simplified if we could determine its size
203 * ahead of time.
206 word GC_apply_to_maps(word (*fn)(char *))
208 int f;
209 int result;
210 size_t maps_size = 4000; /* Initial guess. */
211 static char init_buf[1];
212 static char *maps_buf = init_buf;
213 static size_t maps_buf_sz = 1;
215 /* Read /proc/self/maps, growing maps_buf as necessary. */
216 /* Note that we may not allocate conventionally, and */
217 /* thus can't use stdio. */
218 do {
219 if (maps_size >= maps_buf_sz) {
220 /* Grow only by powers of 2, since we leak "too small" buffers. */
221 while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
222 maps_buf = GC_scratch_alloc(maps_buf_sz);
223 if (maps_buf == 0) return 0;
225 f = open("/proc/self/maps", O_RDONLY);
226 if (-1 == f) return 0;
227 maps_size = 0;
228 do {
229 result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
230 if (result <= 0) return 0;
231 maps_size += result;
232 } while (result == maps_buf_sz-1);
233 close(f);
234 } while (maps_size >= maps_buf_sz);
235 maps_buf[maps_size] = '\0';
237 /* Apply fn to result. */
238 return fn(maps_buf);
241 #endif /* Need GC_apply_to_maps */
243 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
245 // GC_parse_map_entry parses an entry from /proc/self/maps so we can
246 // locate all writable data segments that belong to shared libraries.
247 // The format of one of these entries and the fields we care about
248 // is as follows:
249 // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
250 // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
251 // start end prot maj_dev
253 // Note that since about auguat 2003 kernels, the columns no longer have
254 // fixed offsets on 64-bit kernels. Hence we no longer rely on fixed offsets
255 // anywhere, which is safer anyway.
259 * Assign various fields of the first line in buf_ptr to *start, *end,
260 * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
262 char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
263 char *prot_buf, unsigned int *maj_dev)
265 char *start_start, *end_start, *prot_start, *maj_dev_start;
266 char *p;
267 char *endp;
269 if (buf_ptr == NULL || *buf_ptr == '\0') {
270 return NULL;
273 p = buf_ptr;
274 while (isspace(*p)) ++p;
275 start_start = p;
276 GC_ASSERT(isxdigit(*start_start));
277 *start = strtoul(start_start, &endp, 16); p = endp;
278 GC_ASSERT(*p=='-');
280 ++p;
281 end_start = p;
282 GC_ASSERT(isxdigit(*end_start));
283 *end = strtoul(end_start, &endp, 16); p = endp;
284 GC_ASSERT(isspace(*p));
286 while (isspace(*p)) ++p;
287 prot_start = p;
288 GC_ASSERT(*prot_start == 'r' || *prot_start == '-');
289 memcpy(prot_buf, prot_start, 4);
290 prot_buf[4] = '\0';
291 if (prot_buf[1] == 'w') {/* we can skip the rest if it's not writable. */
292 /* Skip past protection field to offset field */
293 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
294 GC_ASSERT(isxdigit(*p));
295 /* Skip past offset field, which we ignore */
296 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
297 maj_dev_start = p;
298 GC_ASSERT(isxdigit(*maj_dev_start));
299 *maj_dev = strtoul(maj_dev_start, NULL, 16);
302 while (*p && *p++ != '\n');
304 return p;
307 #endif /* Need to parse /proc/self/maps. */
309 #if defined(SEARCH_FOR_DATA_START)
310 /* The I386 case can be handled without a search. The Alpha case */
311 /* used to be handled differently as well, but the rules changed */
312 /* for recent Linux versions. This seems to be the easiest way to */
313 /* cover all versions. */
315 # ifdef LINUX
316 /* Some Linux distributions arrange to define __data_start. Some */
317 /* define data_start as a weak symbol. The latter is technically */
318 /* broken, since the user program may define data_start, in which */
319 /* case we lose. Nonetheless, we try both, prefering __data_start. */
320 /* We assume gcc-compatible pragmas. */
321 # pragma weak __data_start
322 extern int __data_start[];
323 # pragma weak data_start
324 extern int data_start[];
325 # endif /* LINUX */
326 extern int _end[];
328 ptr_t GC_data_start;
330 void GC_init_linux_data_start()
332 extern ptr_t GC_find_limit();
334 # ifdef LINUX
335 /* Try the easy approaches first: */
336 if ((ptr_t)__data_start != 0) {
337 GC_data_start = (ptr_t)(__data_start);
338 return;
340 if ((ptr_t)data_start != 0) {
341 GC_data_start = (ptr_t)(data_start);
342 return;
344 # endif /* LINUX */
345 GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
347 #endif
349 # ifdef ECOS
351 # ifndef ECOS_GC_MEMORY_SIZE
352 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
353 # endif /* ECOS_GC_MEMORY_SIZE */
355 // setjmp() function, as described in ANSI para 7.6.1.1
356 #undef SETJMP
357 #define SETJMP( __env__ ) hal_setjmp( __env__ )
359 // FIXME: This is a simple way of allocating memory which is
360 // compatible with ECOS early releases. Later releases use a more
361 // sophisticated means of allocating memory than this simple static
362 // allocator, but this method is at least bound to work.
363 static char memory[ECOS_GC_MEMORY_SIZE];
364 static char *brk = memory;
366 static void *tiny_sbrk(ptrdiff_t increment)
368 void *p = brk;
370 brk += increment;
372 if (brk > memory + sizeof memory)
374 brk -= increment;
375 return NULL;
378 return p;
380 #define sbrk tiny_sbrk
381 # endif /* ECOS */
383 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
384 ptr_t GC_data_start;
386 void GC_init_netbsd_elf()
388 extern ptr_t GC_find_limit();
389 extern char **environ;
390 /* This may need to be environ, without the underscore, for */
391 /* some versions. */
392 GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
394 #endif
396 # ifdef OS2
398 # include <stddef.h>
400 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
402 struct exe_hdr {
403 unsigned short magic_number;
404 unsigned short padding[29];
405 long new_exe_offset;
408 #define E_MAGIC(x) (x).magic_number
409 #define EMAGIC 0x5A4D
410 #define E_LFANEW(x) (x).new_exe_offset
412 struct e32_exe {
413 unsigned char magic_number[2];
414 unsigned char byte_order;
415 unsigned char word_order;
416 unsigned long exe_format_level;
417 unsigned short cpu;
418 unsigned short os;
419 unsigned long padding1[13];
420 unsigned long object_table_offset;
421 unsigned long object_count;
422 unsigned long padding2[31];
425 #define E32_MAGIC1(x) (x).magic_number[0]
426 #define E32MAGIC1 'L'
427 #define E32_MAGIC2(x) (x).magic_number[1]
428 #define E32MAGIC2 'X'
429 #define E32_BORDER(x) (x).byte_order
430 #define E32LEBO 0
431 #define E32_WORDER(x) (x).word_order
432 #define E32LEWO 0
433 #define E32_CPU(x) (x).cpu
434 #define E32CPU286 1
435 #define E32_OBJTAB(x) (x).object_table_offset
436 #define E32_OBJCNT(x) (x).object_count
438 struct o32_obj {
439 unsigned long size;
440 unsigned long base;
441 unsigned long flags;
442 unsigned long pagemap;
443 unsigned long mapsize;
444 unsigned long reserved;
447 #define O32_FLAGS(x) (x).flags
448 #define OBJREAD 0x0001L
449 #define OBJWRITE 0x0002L
450 #define OBJINVALID 0x0080L
451 #define O32_SIZE(x) (x).size
452 #define O32_BASE(x) (x).base
454 # else /* IBM's compiler */
456 /* A kludge to get around what appears to be a header file bug */
457 # ifndef WORD
458 # define WORD unsigned short
459 # endif
460 # ifndef DWORD
461 # define DWORD unsigned long
462 # endif
464 # define EXE386 1
465 # include <newexe.h>
466 # include <exe386.h>
468 # endif /* __IBMC__ */
470 # define INCL_DOSEXCEPTIONS
471 # define INCL_DOSPROCESS
472 # define INCL_DOSERRORS
473 # define INCL_DOSMODULEMGR
474 # define INCL_DOSMEMMGR
475 # include <os2.h>
478 /* Disable and enable signals during nontrivial allocations */
480 void GC_disable_signals(void)
482 ULONG nest;
484 DosEnterMustComplete(&nest);
485 if (nest != 1) ABORT("nested GC_disable_signals");
488 void GC_enable_signals(void)
490 ULONG nest;
492 DosExitMustComplete(&nest);
493 if (nest != 0) ABORT("GC_enable_signals");
497 # else
499 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
500 && !defined(MSWINCE) \
501 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
502 && !defined(NOSYS) && !defined(ECOS)
504 # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
505 /* Use the traditional BSD interface */
506 # define SIGSET_T int
507 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
508 # define SIG_FILL(set) (set) = 0x7fffffff
509 /* Setting the leading bit appears to provoke a bug in some */
510 /* longjmp implementations. Most systems appear not to have */
511 /* a signal 32. */
512 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
513 # else
514 /* Use POSIX/SYSV interface */
515 # define SIGSET_T sigset_t
516 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
517 # define SIG_FILL(set) sigfillset(&set)
518 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
519 # endif
521 static GC_bool mask_initialized = FALSE;
523 static SIGSET_T new_mask;
525 static SIGSET_T old_mask;
527 static SIGSET_T dummy;
529 #if defined(PRINTSTATS) && !defined(THREADS)
530 # define CHECK_SIGNALS
531 int GC_sig_disabled = 0;
532 #endif
534 void GC_disable_signals()
536 if (!mask_initialized) {
537 SIG_FILL(new_mask);
539 SIG_DEL(new_mask, SIGSEGV);
540 SIG_DEL(new_mask, SIGILL);
541 SIG_DEL(new_mask, SIGQUIT);
542 # ifdef SIGBUS
543 SIG_DEL(new_mask, SIGBUS);
544 # endif
545 # ifdef SIGIOT
546 SIG_DEL(new_mask, SIGIOT);
547 # endif
548 # ifdef SIGEMT
549 SIG_DEL(new_mask, SIGEMT);
550 # endif
551 # ifdef SIGTRAP
552 SIG_DEL(new_mask, SIGTRAP);
553 # endif
554 mask_initialized = TRUE;
556 # ifdef CHECK_SIGNALS
557 if (GC_sig_disabled != 0) ABORT("Nested disables");
558 GC_sig_disabled++;
559 # endif
560 SIGSETMASK(old_mask,new_mask);
563 void GC_enable_signals()
565 # ifdef CHECK_SIGNALS
566 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
567 GC_sig_disabled--;
568 # endif
569 SIGSETMASK(dummy,old_mask);
572 # endif /* !PCR */
574 # endif /*!OS/2 */
576 /* Ivan Demakov: simplest way (to me) */
577 #if defined (DOS4GW)
578 void GC_disable_signals() { }
579 void GC_enable_signals() { }
580 #endif
582 /* Find the page size */
583 word GC_page_size;
585 # if defined(MSWIN32) || defined(MSWINCE)
586 void GC_setpagesize()
588 GetSystemInfo(&GC_sysinfo);
589 GC_page_size = GC_sysinfo.dwPageSize;
592 # else
593 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
594 || defined(USE_MUNMAP)
595 void GC_setpagesize()
597 GC_page_size = GETPAGESIZE();
599 # else
600 /* It's acceptable to fake it. */
601 void GC_setpagesize()
603 GC_page_size = HBLKSIZE;
605 # endif
606 # endif
609 * Find the base of the stack.
610 * Used only in single-threaded environment.
611 * With threads, GC_mark_roots needs to know how to do this.
612 * Called with allocator lock held.
614 # if defined(MSWIN32) || defined(MSWINCE)
615 # define is_writable(prot) ((prot) == PAGE_READWRITE \
616 || (prot) == PAGE_WRITECOPY \
617 || (prot) == PAGE_EXECUTE_READWRITE \
618 || (prot) == PAGE_EXECUTE_WRITECOPY)
619 /* Return the number of bytes that are writable starting at p. */
620 /* The pointer p is assumed to be page aligned. */
621 /* If base is not 0, *base becomes the beginning of the */
622 /* allocation region containing p. */
623 word GC_get_writable_length(ptr_t p, ptr_t *base)
625 MEMORY_BASIC_INFORMATION buf;
626 word result;
627 word protect;
629 result = VirtualQuery(p, &buf, sizeof(buf));
630 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
631 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
632 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
633 if (!is_writable(protect)) {
634 return(0);
636 if (buf.State != MEM_COMMIT) return(0);
637 return(buf.RegionSize);
640 ptr_t GC_get_stack_base()
642 int dummy;
643 ptr_t sp = (ptr_t)(&dummy);
644 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
645 word size = GC_get_writable_length(trunc_sp, 0);
647 return(trunc_sp + size);
651 # endif /* MS Windows */
653 # ifdef BEOS
654 # include <kernel/OS.h>
655 ptr_t GC_get_stack_base(){
656 thread_info th;
657 get_thread_info(find_thread(NULL),&th);
658 return th.stack_end;
660 # endif /* BEOS */
663 # ifdef OS2
665 ptr_t GC_get_stack_base()
667 PTIB ptib;
668 PPIB ppib;
670 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
671 GC_err_printf0("DosGetInfoBlocks failed\n");
672 ABORT("DosGetInfoBlocks failed\n");
674 return((ptr_t)(ptib -> tib_pstacklimit));
677 # endif /* OS2 */
679 # ifdef AMIGA
680 # define GC_AMIGA_SB
681 # include "AmigaOS.c"
682 # undef GC_AMIGA_SB
683 # endif /* AMIGA */
685 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
687 # ifdef __STDC__
688 typedef void (*handler)(int);
689 # else
690 typedef void (*handler)();
691 # endif
693 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
694 || defined(HURD) || defined(NETBSD)
695 static struct sigaction old_segv_act;
696 # if defined(IRIX5) || defined(HPUX) \
697 || defined(HURD) || defined(NETBSD)
698 static struct sigaction old_bus_act;
699 # endif
700 # else
701 static handler old_segv_handler, old_bus_handler;
702 # endif
704 # ifdef __STDC__
705 void GC_set_and_save_fault_handler(handler h)
706 # else
707 void GC_set_and_save_fault_handler(h)
708 handler h;
709 # endif
711 # if defined(SUNOS5SIGS) || defined(IRIX5) \
712 || defined(OSF1) || defined(HURD) || defined(NETBSD)
713 struct sigaction act;
715 act.sa_handler = h;
716 # if 0 /* Was necessary for Solaris 2.3 and very temporary */
717 /* NetBSD bugs. */
718 act.sa_flags = SA_RESTART | SA_NODEFER;
719 # else
720 act.sa_flags = SA_RESTART;
721 # endif
723 (void) sigemptyset(&act.sa_mask);
724 # ifdef GC_IRIX_THREADS
725 /* Older versions have a bug related to retrieving and */
726 /* and setting a handler at the same time. */
727 (void) sigaction(SIGSEGV, 0, &old_segv_act);
728 (void) sigaction(SIGSEGV, &act, 0);
729 (void) sigaction(SIGBUS, 0, &old_bus_act);
730 (void) sigaction(SIGBUS, &act, 0);
731 # else
732 (void) sigaction(SIGSEGV, &act, &old_segv_act);
733 # if defined(IRIX5) \
734 || defined(HPUX) || defined(HURD) || defined(NETBSD)
735 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
736 /* Pthreads doesn't exist under Irix 5.x, so we */
737 /* don't have to worry in the threads case. */
738 (void) sigaction(SIGBUS, &act, &old_bus_act);
739 # endif
740 # endif /* GC_IRIX_THREADS */
741 # else
742 old_segv_handler = signal(SIGSEGV, h);
743 # ifdef SIGBUS
744 old_bus_handler = signal(SIGBUS, h);
745 # endif
746 # endif
748 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
750 # ifdef NEED_FIND_LIMIT
751 /* Some tools to implement HEURISTIC2 */
752 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
753 /* static */ JMP_BUF GC_jmp_buf;
755 /*ARGSUSED*/
756 void GC_fault_handler(sig)
757 int sig;
759 LONGJMP(GC_jmp_buf, 1);
762 void GC_setup_temporary_fault_handler()
764 GC_set_and_save_fault_handler(GC_fault_handler);
767 void GC_reset_fault_handler()
769 # if defined(SUNOS5SIGS) || defined(IRIX5) \
770 || defined(OSF1) || defined(HURD) || defined(NETBSD)
771 (void) sigaction(SIGSEGV, &old_segv_act, 0);
772 # if defined(IRIX5) \
773 || defined(HPUX) || defined(HURD) || defined(NETBSD)
774 (void) sigaction(SIGBUS, &old_bus_act, 0);
775 # endif
776 # else
777 (void) signal(SIGSEGV, old_segv_handler);
778 # ifdef SIGBUS
779 (void) signal(SIGBUS, old_bus_handler);
780 # endif
781 # endif
784 /* Return the first nonaddressible location > p (up) or */
785 /* the smallest location q s.t. [q,p) is addressable (!up). */
786 /* We assume that p (up) or p-1 (!up) is addressable. */
787 ptr_t GC_find_limit(p, up)
788 ptr_t p;
789 GC_bool up;
791 static VOLATILE ptr_t result;
792 /* Needs to be static, since otherwise it may not be */
793 /* preserved across the longjmp. Can safely be */
794 /* static since it's only called once, with the */
795 /* allocation lock held. */
798 GC_setup_temporary_fault_handler();
799 if (SETJMP(GC_jmp_buf) == 0) {
800 result = (ptr_t)(((word)(p))
801 & ~(MIN_PAGE_SIZE-1));
802 for (;;) {
803 if (up) {
804 result += MIN_PAGE_SIZE;
805 } else {
806 result -= MIN_PAGE_SIZE;
808 GC_noop1((word)(*result));
811 GC_reset_fault_handler();
812 if (!up) {
813 result += MIN_PAGE_SIZE;
815 return(result);
817 # endif
819 #if defined(ECOS) || defined(NOSYS)
820 ptr_t GC_get_stack_base()
822 return STACKBOTTOM;
824 #endif
826 #ifdef HPUX_STACKBOTTOM
828 #include <sys/param.h>
829 #include <sys/pstat.h>
831 ptr_t GC_get_register_stack_base(void)
833 struct pst_vm_status vm_status;
835 int i = 0;
836 while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
837 if (vm_status.pst_type == PS_RSESTACK) {
838 return (ptr_t) vm_status.pst_vaddr;
842 /* old way to get the register stackbottom */
843 return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
844 & ~(BACKING_STORE_ALIGNMENT - 1));
847 #endif /* HPUX_STACK_BOTTOM */
849 #ifdef LINUX_STACKBOTTOM
851 #include <sys/types.h>
852 #include <sys/stat.h>
854 # define STAT_SKIP 27 /* Number of fields preceding startstack */
855 /* field in /proc/self/stat */
857 #ifdef USE_LIBC_PRIVATES
858 # pragma weak __libc_stack_end
859 extern ptr_t __libc_stack_end;
860 #endif
862 # ifdef IA64
863 /* Try to read the backing store base from /proc/self/maps. */
864 /* We look for the writable mapping with a 0 major device, */
865 /* which is as close to our frame as possible, but below it.*/
866 static word backing_store_base_from_maps(char *maps)
868 char prot_buf[5];
869 char *buf_ptr = maps;
870 word start, end;
871 unsigned int maj_dev;
872 word current_best = 0;
873 word dummy;
875 for (;;) {
876 buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
877 if (buf_ptr == NULL) return current_best;
878 if (prot_buf[1] == 'w' && maj_dev == 0) {
879 if (end < (word)(&dummy) && start > current_best) current_best = start;
882 return current_best;
885 static word backing_store_base_from_proc(void)
887 return GC_apply_to_maps(backing_store_base_from_maps);
890 # ifdef USE_LIBC_PRIVATES
891 # pragma weak __libc_ia64_register_backing_store_base
892 extern ptr_t __libc_ia64_register_backing_store_base;
893 # endif
895 ptr_t GC_get_register_stack_base(void)
897 # ifdef USE_LIBC_PRIVATES
898 if (0 != &__libc_ia64_register_backing_store_base
899 && 0 != __libc_ia64_register_backing_store_base) {
900 /* Glibc 2.2.4 has a bug such that for dynamically linked */
901 /* executables __libc_ia64_register_backing_store_base is */
902 /* defined but uninitialized during constructor calls. */
903 /* Hence we check for both nonzero address and value. */
904 return __libc_ia64_register_backing_store_base;
906 # endif
907 word result = backing_store_base_from_proc();
908 if (0 == result) {
909 /* Use dumb heuristics. Works only for default configuration. */
910 result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
911 result += BACKING_STORE_ALIGNMENT - 1;
912 result &= ~(BACKING_STORE_ALIGNMENT - 1);
913 /* Verify that it's at least readable. If not, we goofed. */
914 GC_noop1(*(word *)result);
916 return (ptr_t)result;
918 # endif
920 ptr_t GC_linux_stack_base(void)
922 /* We read the stack base value from /proc/self/stat. We do this */
923 /* using direct I/O system calls in order to avoid calling malloc */
924 /* in case REDIRECT_MALLOC is defined. */
925 # define STAT_BUF_SIZE 4096
926 # define STAT_READ read
927 /* Should probably call the real read, if read is wrapped. */
928 char stat_buf[STAT_BUF_SIZE];
929 int f;
930 char c;
931 word result = 0;
932 size_t i, buf_offset = 0;
934 /* First try the easy way. This should work for glibc 2.2 */
935 /* This fails in a prelinked ("prelink" command) executable */
936 /* since the correct value of __libc_stack_end never */
937 /* becomes visible to us. The second test works around */
938 /* this. */
939 # ifdef USE_LIBC_PRIVATES
940 if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
941 # ifdef IA64
942 /* Some versions of glibc set the address 16 bytes too */
943 /* low while the initialization code is running. */
944 if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
945 return __libc_stack_end + 0x10;
946 } /* Otherwise it's not safe to add 16 bytes and we fall */
947 /* back to using /proc. */
948 # else
949 # ifdef SPARC
950 /* Older versions of glibc for 64-bit Sparc do not set
951 * this variable correctly, it gets set to either zero
952 * or one.
954 if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
955 return __libc_stack_end;
956 # else
957 return __libc_stack_end;
958 # endif
959 # endif
961 # endif
962 f = open("/proc/self/stat", O_RDONLY);
963 if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
964 ABORT("Couldn't read /proc/self/stat");
966 c = stat_buf[buf_offset++];
967 /* Skip the required number of fields. This number is hopefully */
968 /* constant across all Linux implementations. */
969 for (i = 0; i < STAT_SKIP; ++i) {
970 while (isspace(c)) c = stat_buf[buf_offset++];
971 while (!isspace(c)) c = stat_buf[buf_offset++];
973 while (isspace(c)) c = stat_buf[buf_offset++];
974 while (isdigit(c)) {
975 result *= 10;
976 result += c - '0';
977 c = stat_buf[buf_offset++];
979 close(f);
980 if (result < 0x10000000) ABORT("Absurd stack bottom value");
981 return (ptr_t)result;
984 #endif /* LINUX_STACKBOTTOM */
986 #ifdef FREEBSD_STACKBOTTOM
988 /* This uses an undocumented sysctl call, but at least one expert */
989 /* believes it will stay. */
991 #include <unistd.h>
992 #include <sys/types.h>
993 #include <sys/sysctl.h>
995 ptr_t GC_freebsd_stack_base(void)
997 int nm[2] = {CTL_KERN, KERN_USRSTACK};
998 ptr_t base;
999 size_t len = sizeof(ptr_t);
1000 int r = sysctl(nm, 2, &base, &len, NULL, 0);
1002 if (r) ABORT("Error getting stack base");
1004 return base;
1007 #endif /* FREEBSD_STACKBOTTOM */
1009 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1010 && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1012 ptr_t GC_get_stack_base()
1014 # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1015 defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1016 word dummy;
1017 ptr_t result;
1018 # endif
1020 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1022 # ifdef STACKBOTTOM
1023 return(STACKBOTTOM);
1024 # else
1025 # ifdef HEURISTIC1
1026 # ifdef STACK_GROWS_DOWN
1027 result = (ptr_t)((((word)(&dummy))
1028 + STACKBOTTOM_ALIGNMENT_M1)
1029 & ~STACKBOTTOM_ALIGNMENT_M1);
1030 # else
1031 result = (ptr_t)(((word)(&dummy))
1032 & ~STACKBOTTOM_ALIGNMENT_M1);
1033 # endif
1034 # endif /* HEURISTIC1 */
1035 # ifdef LINUX_STACKBOTTOM
1036 result = GC_linux_stack_base();
1037 # endif
1038 # ifdef FREEBSD_STACKBOTTOM
1039 result = GC_freebsd_stack_base();
1040 # endif
1041 # ifdef HEURISTIC2
1042 # ifdef STACK_GROWS_DOWN
1043 result = GC_find_limit((ptr_t)(&dummy), TRUE);
1044 # ifdef HEURISTIC2_LIMIT
1045 if (result > HEURISTIC2_LIMIT
1046 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1047 result = HEURISTIC2_LIMIT;
1049 # endif
1050 # else
1051 result = GC_find_limit((ptr_t)(&dummy), FALSE);
1052 # ifdef HEURISTIC2_LIMIT
1053 if (result < HEURISTIC2_LIMIT
1054 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1055 result = HEURISTIC2_LIMIT;
1057 # endif
1058 # endif
1060 # endif /* HEURISTIC2 */
1061 # ifdef STACK_GROWS_DOWN
1062 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1063 # endif
1064 return(result);
1065 # endif /* STACKBOTTOM */
1068 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1071 * Register static data segment(s) as roots.
1072 * If more data segments are added later then they need to be registered
1073 * add that point (as we do with SunOS dynamic loading),
1074 * or GC_mark_roots needs to check for them (as we do with PCR).
1075 * Called with allocator lock held.
1078 # ifdef OS2
1080 void GC_register_data_segments()
1082 PTIB ptib;
1083 PPIB ppib;
1084 HMODULE module_handle;
1085 # define PBUFSIZ 512
1086 UCHAR path[PBUFSIZ];
1087 FILE * myexefile;
1088 struct exe_hdr hdrdos; /* MSDOS header. */
1089 struct e32_exe hdr386; /* Real header for my executable */
1090 struct o32_obj seg; /* Currrent segment */
1091 int nsegs;
1094 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1095 GC_err_printf0("DosGetInfoBlocks failed\n");
1096 ABORT("DosGetInfoBlocks failed\n");
1098 module_handle = ppib -> pib_hmte;
1099 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1100 GC_err_printf0("DosQueryModuleName failed\n");
1101 ABORT("DosGetInfoBlocks failed\n");
1103 myexefile = fopen(path, "rb");
1104 if (myexefile == 0) {
1105 GC_err_puts("Couldn't open executable ");
1106 GC_err_puts(path); GC_err_puts("\n");
1107 ABORT("Failed to open executable\n");
1109 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1110 GC_err_puts("Couldn't read MSDOS header from ");
1111 GC_err_puts(path); GC_err_puts("\n");
1112 ABORT("Couldn't read MSDOS header");
1114 if (E_MAGIC(hdrdos) != EMAGIC) {
1115 GC_err_puts("Executable has wrong DOS magic number: ");
1116 GC_err_puts(path); GC_err_puts("\n");
1117 ABORT("Bad DOS magic number");
1119 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1120 GC_err_puts("Seek to new header failed in ");
1121 GC_err_puts(path); GC_err_puts("\n");
1122 ABORT("Bad DOS magic number");
1124 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1125 GC_err_puts("Couldn't read MSDOS header from ");
1126 GC_err_puts(path); GC_err_puts("\n");
1127 ABORT("Couldn't read OS/2 header");
1129 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1130 GC_err_puts("Executable has wrong OS/2 magic number:");
1131 GC_err_puts(path); GC_err_puts("\n");
1132 ABORT("Bad OS/2 magic number");
1134 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1135 GC_err_puts("Executable %s has wrong byte order: ");
1136 GC_err_puts(path); GC_err_puts("\n");
1137 ABORT("Bad byte order");
1139 if ( E32_CPU(hdr386) == E32CPU286) {
1140 GC_err_puts("GC can't handle 80286 executables: ");
1141 GC_err_puts(path); GC_err_puts("\n");
1142 EXIT();
1144 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1145 SEEK_SET) != 0) {
1146 GC_err_puts("Seek to object table failed: ");
1147 GC_err_puts(path); GC_err_puts("\n");
1148 ABORT("Seek to object table failed");
1150 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1151 int flags;
1152 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1153 GC_err_puts("Couldn't read obj table entry from ");
1154 GC_err_puts(path); GC_err_puts("\n");
1155 ABORT("Couldn't read obj table entry");
1157 flags = O32_FLAGS(seg);
1158 if (!(flags & OBJWRITE)) continue;
1159 if (!(flags & OBJREAD)) continue;
1160 if (flags & OBJINVALID) {
1161 GC_err_printf0("Object with invalid pages?\n");
1162 continue;
1164 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1168 # else /* !OS2 */
1170 # if defined(MSWIN32) || defined(MSWINCE)
1172 # ifdef MSWIN32
1173 /* Unfortunately, we have to handle win32s very differently from NT, */
1174 /* Since VirtualQuery has very different semantics. In particular, */
1175 /* under win32s a VirtualQuery call on an unmapped page returns an */
1176 /* invalid result. Under NT, GC_register_data_segments is a noop and */
1177 /* all real work is done by GC_register_dynamic_libraries. Under */
1178 /* win32s, we cannot find the data segments associated with dll's. */
1179 /* We register the main data segment here. */
1180 GC_bool GC_no_win32_dlls = FALSE;
1181 /* This used to be set for gcc, to avoid dealing with */
1182 /* the structured exception handling issues. But we now have */
1183 /* assembly code to do that right. */
1184 GC_bool GC_wnt = FALSE;
1185 /* This is a Windows NT derivative, i.e. NT, W2K, XP or later. */
1187 void GC_init_win32()
1189 /* if we're running under win32s, assume that no DLLs will be loaded */
1190 DWORD v = GetVersion();
1191 GC_wnt = !(v & 0x80000000);
1192 GC_no_win32_dlls |= ((!GC_wnt) && (v & 0xff) <= 3);
1195 /* Return the smallest address a such that VirtualQuery */
1196 /* returns correct results for all addresses between a and start. */
1197 /* Assumes VirtualQuery returns correct information for start. */
1198 ptr_t GC_least_described_address(ptr_t start)
1200 MEMORY_BASIC_INFORMATION buf;
1201 DWORD result;
1202 LPVOID limit;
1203 ptr_t p;
1204 LPVOID q;
1206 limit = GC_sysinfo.lpMinimumApplicationAddress;
1207 p = (ptr_t)((word)start & ~(GC_page_size - 1));
1208 for (;;) {
1209 q = (LPVOID)(p - GC_page_size);
1210 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1211 result = VirtualQuery(q, &buf, sizeof(buf));
1212 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1213 p = (ptr_t)(buf.AllocationBase);
1215 return(p);
1217 # endif
1219 # ifndef REDIRECT_MALLOC
1220 /* We maintain a linked list of AllocationBase values that we know */
1221 /* correspond to malloc heap sections. Currently this is only called */
1222 /* during a GC. But there is some hope that for long running */
1223 /* programs we will eventually see most heap sections. */
1225 /* In the long run, it would be more reliable to occasionally walk */
1226 /* the malloc heap with HeapWalk on the default heap. But that */
1227 /* apparently works only for NT-based Windows. */
1229 /* In the long run, a better data structure would also be nice ... */
1230 struct GC_malloc_heap_list {
1231 void * allocation_base;
1232 struct GC_malloc_heap_list *next;
1233 } *GC_malloc_heap_l = 0;
1235 /* Is p the base of one of the malloc heap sections we already know */
1236 /* about? */
1237 GC_bool GC_is_malloc_heap_base(ptr_t p)
1239 struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1241 while (0 != q) {
1242 if (q -> allocation_base == p) return TRUE;
1243 q = q -> next;
1245 return FALSE;
1248 void *GC_get_allocation_base(void *p)
1250 MEMORY_BASIC_INFORMATION buf;
1251 DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1252 if (result != sizeof(buf)) {
1253 ABORT("Weird VirtualQuery result");
1255 return buf.AllocationBase;
1258 size_t GC_max_root_size = 100000; /* Appr. largest root size. */
1260 void GC_add_current_malloc_heap()
1262 struct GC_malloc_heap_list *new_l =
1263 malloc(sizeof(struct GC_malloc_heap_list));
1264 void * candidate = GC_get_allocation_base(new_l);
1266 if (new_l == 0) return;
1267 if (GC_is_malloc_heap_base(candidate)) {
1268 /* Try a little harder to find malloc heap. */
1269 size_t req_size = 10000;
1270 do {
1271 void *p = malloc(req_size);
1272 if (0 == p) { free(new_l); return; }
1273 candidate = GC_get_allocation_base(p);
1274 free(p);
1275 req_size *= 2;
1276 } while (GC_is_malloc_heap_base(candidate)
1277 && req_size < GC_max_root_size/10 && req_size < 500000);
1278 if (GC_is_malloc_heap_base(candidate)) {
1279 free(new_l); return;
1282 # ifdef CONDPRINT
1283 if (GC_print_stats)
1284 GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1285 candidate);
1286 # endif
1287 new_l -> allocation_base = candidate;
1288 new_l -> next = GC_malloc_heap_l;
1289 GC_malloc_heap_l = new_l;
1291 # endif /* REDIRECT_MALLOC */
1293 /* Is p the start of either the malloc heap, or of one of our */
1294 /* heap sections? */
1295 GC_bool GC_is_heap_base (ptr_t p)
1298 unsigned i;
1300 # ifndef REDIRECT_MALLOC
1301 static word last_gc_no = -1;
1303 if (last_gc_no != GC_gc_no) {
1304 GC_add_current_malloc_heap();
1305 last_gc_no = GC_gc_no;
1307 if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1308 if (GC_is_malloc_heap_base(p)) return TRUE;
1309 # endif
1310 for (i = 0; i < GC_n_heap_bases; i++) {
1311 if (GC_heap_bases[i] == p) return TRUE;
1313 return FALSE ;
1316 # ifdef MSWIN32
1317 void GC_register_root_section(ptr_t static_root)
1319 MEMORY_BASIC_INFORMATION buf;
1320 DWORD result;
1321 DWORD protect;
1322 LPVOID p;
1323 char * base;
1324 char * limit, * new_limit;
1326 if (!GC_no_win32_dlls) return;
1327 p = base = limit = GC_least_described_address(static_root);
1328 while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1329 result = VirtualQuery(p, &buf, sizeof(buf));
1330 if (result != sizeof(buf) || buf.AllocationBase == 0
1331 || GC_is_heap_base(buf.AllocationBase)) break;
1332 new_limit = (char *)p + buf.RegionSize;
1333 protect = buf.Protect;
1334 if (buf.State == MEM_COMMIT
1335 && is_writable(protect)) {
1336 if ((char *)p == limit) {
1337 limit = new_limit;
1338 } else {
1339 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1340 base = p;
1341 limit = new_limit;
1344 if (p > (LPVOID)new_limit /* overflow */) break;
1345 p = (LPVOID)new_limit;
1347 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1349 #endif
1351 void GC_register_data_segments()
1353 # ifdef MSWIN32
1354 static char dummy;
1355 GC_register_root_section((ptr_t)(&dummy));
1356 # endif
1359 # else /* !OS2 && !Windows */
1361 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1362 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1363 ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1364 int max_page_size;
1365 int * etext_addr;
1367 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1368 & ~(sizeof(word) - 1);
1369 /* etext rounded to word boundary */
1370 word next_page = ((text_end + (word)max_page_size - 1)
1371 & ~((word)max_page_size - 1));
1372 word page_offset = (text_end & ((word)max_page_size - 1));
1373 VOLATILE char * result = (char *)(next_page + page_offset);
1374 /* Note that this isnt equivalent to just adding */
1375 /* max_page_size to &etext if &etext is at a page boundary */
1377 GC_setup_temporary_fault_handler();
1378 if (SETJMP(GC_jmp_buf) == 0) {
1379 /* Try writing to the address. */
1380 *result = *result;
1381 GC_reset_fault_handler();
1382 } else {
1383 GC_reset_fault_handler();
1384 /* We got here via a longjmp. The address is not readable. */
1385 /* This is known to happen under Solaris 2.4 + gcc, which place */
1386 /* string constants in the text segment, but after etext. */
1387 /* Use plan B. Note that we now know there is a gap between */
1388 /* text and data segments, so plan A bought us something. */
1389 result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1391 return((ptr_t)result);
1393 # endif
1395 # if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__)) && !defined(PCR)
1396 /* Its unclear whether this should be identical to the above, or */
1397 /* whether it should apply to non-X86 architectures. */
1398 /* For now we don't assume that there is always an empty page after */
1399 /* etext. But in some cases there actually seems to be slightly more. */
1400 /* This also deals with holes between read-only data and writable data. */
1401 ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1402 int max_page_size;
1403 int * etext_addr;
1405 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1406 & ~(sizeof(word) - 1);
1407 /* etext rounded to word boundary */
1408 VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1409 & ~((word)max_page_size - 1);
1410 VOLATILE ptr_t result = (ptr_t)text_end;
1411 GC_setup_temporary_fault_handler();
1412 if (SETJMP(GC_jmp_buf) == 0) {
1413 /* Try reading at the address. */
1414 /* This should happen before there is another thread. */
1415 for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1416 *(VOLATILE char *)next_page;
1417 GC_reset_fault_handler();
1418 } else {
1419 GC_reset_fault_handler();
1420 /* As above, we go to plan B */
1421 result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1423 return(result);
1426 # endif
1429 #ifdef AMIGA
1431 # define GC_AMIGA_DS
1432 # include "AmigaOS.c"
1433 # undef GC_AMIGA_DS
1435 #else /* !OS2 && !Windows && !AMIGA */
1437 void GC_register_data_segments()
1439 # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1440 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1441 /* As of Solaris 2.3, the Solaris threads implementation */
1442 /* allocates the data structure for the initial thread with */
1443 /* sbrk at process startup. It needs to be scanned, so that */
1444 /* we don't lose some malloc allocated data structures */
1445 /* hanging from it. We're on thin ice here ... */
1446 extern caddr_t sbrk();
1448 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1449 # else
1450 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1451 # if defined(DATASTART2)
1452 GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1453 # endif
1454 # endif
1455 # endif
1456 # if defined(MACOS)
1458 # if defined(THINK_C)
1459 extern void* GC_MacGetDataStart(void);
1460 /* globals begin above stack and end at a5. */
1461 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1462 (ptr_t)LMGetCurrentA5(), FALSE);
1463 # else
1464 # if defined(__MWERKS__)
1465 # if !__POWERPC__
1466 extern void* GC_MacGetDataStart(void);
1467 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1468 # if __option(far_data)
1469 extern void* GC_MacGetDataEnd(void);
1470 # endif
1471 /* globals begin above stack and end at a5. */
1472 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1473 (ptr_t)LMGetCurrentA5(), FALSE);
1474 /* MATTHEW: Handle Far Globals */
1475 # if __option(far_data)
1476 /* Far globals follow he QD globals: */
1477 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1478 (ptr_t)GC_MacGetDataEnd(), FALSE);
1479 # endif
1480 # else
1481 extern char __data_start__[], __data_end__[];
1482 GC_add_roots_inner((ptr_t)&__data_start__,
1483 (ptr_t)&__data_end__, FALSE);
1484 # endif /* __POWERPC__ */
1485 # endif /* __MWERKS__ */
1486 # endif /* !THINK_C */
1488 # endif /* MACOS */
1490 /* Dynamic libraries are added at every collection, since they may */
1491 /* change. */
1494 # endif /* ! AMIGA */
1495 # endif /* ! MSWIN32 && ! MSWINCE*/
1496 # endif /* ! OS2 */
1499 * Auxiliary routines for obtaining memory from OS.
1502 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1503 && !defined(MSWIN32) && !defined(MSWINCE) \
1504 && !defined(MACOS) && !defined(DOS4GW)
1506 # ifdef SUNOS4
1507 extern caddr_t sbrk();
1508 # endif
1509 # ifdef __STDC__
1510 # define SBRK_ARG_T ptrdiff_t
1511 # else
1512 # define SBRK_ARG_T int
1513 # endif
1516 # if 0 && defined(RS6000) /* We now use mmap */
1517 /* The compiler seems to generate speculative reads one past the end of */
1518 /* an allocated object. Hence we need to make sure that the page */
1519 /* following the last heap page is also mapped. */
1520 ptr_t GC_unix_get_mem(bytes)
1521 word bytes;
1523 caddr_t cur_brk = (caddr_t)sbrk(0);
1524 caddr_t result;
1525 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1526 static caddr_t my_brk_val = 0;
1528 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1529 if (lsbs != 0) {
1530 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1532 if (cur_brk == my_brk_val) {
1533 /* Use the extra block we allocated last time. */
1534 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1535 if (result == (caddr_t)(-1)) return(0);
1536 result -= GC_page_size;
1537 } else {
1538 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1539 if (result == (caddr_t)(-1)) return(0);
1541 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1542 return((ptr_t)result);
1545 #else /* Not RS6000 */
1547 #if defined(USE_MMAP) || defined(USE_MUNMAP)
1549 #ifdef USE_MMAP_FIXED
1550 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1551 /* Seems to yield better performance on Solaris 2, but can */
1552 /* be unreliable if something is already mapped at the address. */
1553 #else
1554 # define GC_MMAP_FLAGS MAP_PRIVATE
1555 #endif
1557 #ifdef USE_MMAP_ANON
1558 # define zero_fd -1
1559 # if defined(MAP_ANONYMOUS)
1560 # define OPT_MAP_ANON MAP_ANONYMOUS
1561 # else
1562 # define OPT_MAP_ANON MAP_ANON
1563 # endif
1564 #else
1565 static int zero_fd;
1566 # define OPT_MAP_ANON 0
1567 #endif
1569 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1571 #if defined(USE_MMAP)
1572 /* Tested only under Linux, IRIX5 and Solaris 2 */
1574 #ifndef HEAP_START
1575 # define HEAP_START 0
1576 #endif
1578 ptr_t GC_unix_get_mem(bytes)
1579 word bytes;
1581 void *result;
1582 static ptr_t last_addr = HEAP_START;
1584 # ifndef USE_MMAP_ANON
1585 static GC_bool initialized = FALSE;
1587 if (!initialized) {
1588 zero_fd = open("/dev/zero", O_RDONLY);
1589 fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1590 initialized = TRUE;
1592 # endif
1594 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1595 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1596 GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1597 if (result == MAP_FAILED) return(0);
1598 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1599 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1600 # if !defined(LINUX)
1601 if (last_addr == 0) {
1602 /* Oops. We got the end of the address space. This isn't */
1603 /* usable by arbitrary C code, since one-past-end pointers */
1604 /* don't work, so we discard it and try again. */
1605 munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1606 /* Leave last page mapped, so we can't repeat. */
1607 return GC_unix_get_mem(bytes);
1609 # else
1610 GC_ASSERT(last_addr != 0);
1611 # endif
1612 return((ptr_t)result);
1615 #else /* Not RS6000, not USE_MMAP */
1616 ptr_t GC_unix_get_mem(bytes)
1617 word bytes;
1619 ptr_t result;
1620 # ifdef IRIX5
1621 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1622 /* The equivalent may be needed on other systems as well. */
1623 __LOCK_MALLOC();
1624 # endif
1626 ptr_t cur_brk = (ptr_t)sbrk(0);
1627 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1629 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1630 if (lsbs != 0) {
1631 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1633 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1634 if (result == (ptr_t)(-1)) result = 0;
1636 # ifdef IRIX5
1637 __UNLOCK_MALLOC();
1638 # endif
1639 return(result);
1642 #endif /* Not USE_MMAP */
1643 #endif /* Not RS6000 */
1645 # endif /* UN*X */
1647 # ifdef OS2
1649 void * os2_alloc(size_t bytes)
1651 void * result;
1653 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1654 PAG_WRITE | PAG_COMMIT)
1655 != NO_ERROR) {
1656 return(0);
1658 if (result == 0) return(os2_alloc(bytes));
1659 return(result);
1662 # endif /* OS2 */
1665 # if defined(MSWIN32) || defined(MSWINCE)
1666 SYSTEM_INFO GC_sysinfo;
1667 # endif
1669 # ifdef MSWIN32
1671 # ifdef USE_GLOBAL_ALLOC
1672 # define GLOBAL_ALLOC_TEST 1
1673 # else
1674 # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1675 # endif
1677 word GC_n_heap_bases = 0;
1679 ptr_t GC_win32_get_mem(bytes)
1680 word bytes;
1682 ptr_t result;
1684 if (GLOBAL_ALLOC_TEST) {
1685 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1686 /* There are also unconfirmed rumors of other */
1687 /* problems, so we dodge the issue. */
1688 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1689 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1690 } else {
1691 /* VirtualProtect only works on regions returned by a */
1692 /* single VirtualAlloc call. Thus we allocate one */
1693 /* extra page, which will prevent merging of blocks */
1694 /* in separate regions, and eliminate any temptation */
1695 /* to call VirtualProtect on a range spanning regions. */
1696 /* This wastes a small amount of memory, and risks */
1697 /* increased fragmentation. But better alternatives */
1698 /* would require effort. */
1699 result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1700 MEM_COMMIT | MEM_RESERVE,
1701 PAGE_EXECUTE_READWRITE);
1703 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1704 /* If I read the documentation correctly, this can */
1705 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1706 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1707 GC_heap_bases[GC_n_heap_bases++] = result;
1708 return(result);
1711 void GC_win32_free_heap ()
1713 if (GC_no_win32_dlls) {
1714 while (GC_n_heap_bases > 0) {
1715 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1716 GC_heap_bases[GC_n_heap_bases] = 0;
1720 # endif
1722 #ifdef AMIGA
1723 # define GC_AMIGA_AM
1724 # include "AmigaOS.c"
1725 # undef GC_AMIGA_AM
1726 #endif
1729 # ifdef MSWINCE
1730 word GC_n_heap_bases = 0;
1732 ptr_t GC_wince_get_mem(bytes)
1733 word bytes;
1735 ptr_t result;
1736 word i;
1738 /* Round up allocation size to multiple of page size */
1739 bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1741 /* Try to find reserved, uncommitted pages */
1742 for (i = 0; i < GC_n_heap_bases; i++) {
1743 if (((word)(-(signed_word)GC_heap_lengths[i])
1744 & (GC_sysinfo.dwAllocationGranularity-1))
1745 >= bytes) {
1746 result = GC_heap_bases[i] + GC_heap_lengths[i];
1747 break;
1751 if (i == GC_n_heap_bases) {
1752 /* Reserve more pages */
1753 word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1754 & ~(GC_sysinfo.dwAllocationGranularity-1);
1755 /* If we ever support MPROTECT_VDB here, we will probably need to */
1756 /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1757 /* never spans regions. It seems to be OK for a VirtualFree argument */
1758 /* to span regions, so we should be OK for now. */
1759 result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1760 MEM_RESERVE | MEM_TOP_DOWN,
1761 PAGE_EXECUTE_READWRITE);
1762 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1763 /* If I read the documentation correctly, this can */
1764 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1765 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1766 GC_heap_bases[GC_n_heap_bases] = result;
1767 GC_heap_lengths[GC_n_heap_bases] = 0;
1768 GC_n_heap_bases++;
1771 /* Commit pages */
1772 result = (ptr_t) VirtualAlloc(result, bytes,
1773 MEM_COMMIT,
1774 PAGE_EXECUTE_READWRITE);
1775 if (result != NULL) {
1776 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1777 GC_heap_lengths[i] += bytes;
1780 return(result);
1782 # endif
1784 #ifdef USE_MUNMAP
1786 /* For now, this only works on Win32/WinCE and some Unix-like */
1787 /* systems. If you have something else, don't define */
1788 /* USE_MUNMAP. */
1789 /* We assume ANSI C to support this feature. */
1791 #if !defined(MSWIN32) && !defined(MSWINCE)
1793 #include <unistd.h>
1794 #include <sys/mman.h>
1795 #include <sys/stat.h>
1796 #include <sys/types.h>
1798 #endif
1800 /* Compute a page aligned starting address for the unmap */
1801 /* operation on a block of size bytes starting at start. */
1802 /* Return 0 if the block is too small to make this feasible. */
1803 ptr_t GC_unmap_start(ptr_t start, word bytes)
1805 ptr_t result = start;
1806 /* Round start to next page boundary. */
1807 result += GC_page_size - 1;
1808 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1809 if (result + GC_page_size > start + bytes) return 0;
1810 return result;
1813 /* Compute end address for an unmap operation on the indicated */
1814 /* block. */
1815 ptr_t GC_unmap_end(ptr_t start, word bytes)
1817 ptr_t end_addr = start + bytes;
1818 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1819 return end_addr;
1822 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1823 /* memory using VirtualAlloc and VirtualFree. These functions */
1824 /* work on individual allocations of virtual memory, made */
1825 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1826 /* The ranges we need to (de)commit may span several of these */
1827 /* allocations; therefore we use VirtualQuery to check */
1828 /* allocation lengths, and split up the range as necessary. */
1830 /* We assume that GC_remap is called on exactly the same range */
1831 /* as a previous call to GC_unmap. It is safe to consistently */
1832 /* round the endpoints in both places. */
1833 void GC_unmap(ptr_t start, word bytes)
1835 ptr_t start_addr = GC_unmap_start(start, bytes);
1836 ptr_t end_addr = GC_unmap_end(start, bytes);
1837 word len = end_addr - start_addr;
1838 if (0 == start_addr) return;
1839 # if defined(MSWIN32) || defined(MSWINCE)
1840 while (len != 0) {
1841 MEMORY_BASIC_INFORMATION mem_info;
1842 GC_word free_len;
1843 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1844 != sizeof(mem_info))
1845 ABORT("Weird VirtualQuery result");
1846 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1847 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1848 ABORT("VirtualFree failed");
1849 GC_unmapped_bytes += free_len;
1850 start_addr += free_len;
1851 len -= free_len;
1853 # else
1854 /* We immediately remap it to prevent an intervening mmap from */
1855 /* accidentally grabbing the same address space. */
1857 void * result;
1858 result = mmap(start_addr, len, PROT_NONE,
1859 MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
1860 zero_fd, 0/* offset */);
1861 if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
1863 GC_unmapped_bytes += len;
1864 # endif
1868 void GC_remap(ptr_t start, word bytes)
1870 ptr_t start_addr = GC_unmap_start(start, bytes);
1871 ptr_t end_addr = GC_unmap_end(start, bytes);
1872 word len = end_addr - start_addr;
1874 # if defined(MSWIN32) || defined(MSWINCE)
1875 ptr_t result;
1877 if (0 == start_addr) return;
1878 while (len != 0) {
1879 MEMORY_BASIC_INFORMATION mem_info;
1880 GC_word alloc_len;
1881 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1882 != sizeof(mem_info))
1883 ABORT("Weird VirtualQuery result");
1884 alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1885 result = VirtualAlloc(start_addr, alloc_len,
1886 MEM_COMMIT,
1887 PAGE_EXECUTE_READWRITE);
1888 if (result != start_addr) {
1889 ABORT("VirtualAlloc remapping failed");
1891 GC_unmapped_bytes -= alloc_len;
1892 start_addr += alloc_len;
1893 len -= alloc_len;
1895 # else
1896 /* It was already remapped with PROT_NONE. */
1897 int result;
1899 if (0 == start_addr) return;
1900 result = mprotect(start_addr, len,
1901 PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
1902 if (result != 0) {
1903 GC_err_printf3(
1904 "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1905 start_addr, len, errno);
1906 ABORT("Mprotect remapping failed");
1908 GC_unmapped_bytes -= len;
1909 # endif
1912 /* Two adjacent blocks have already been unmapped and are about to */
1913 /* be merged. Unmap the whole block. This typically requires */
1914 /* that we unmap a small section in the middle that was not previously */
1915 /* unmapped due to alignment constraints. */
1916 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1918 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1919 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1920 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1921 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1922 ptr_t start_addr = end1_addr;
1923 ptr_t end_addr = start2_addr;
1924 word len;
1925 GC_ASSERT(start1 + bytes1 == start2);
1926 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1927 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1928 if (0 == start_addr) return;
1929 len = end_addr - start_addr;
1930 # if defined(MSWIN32) || defined(MSWINCE)
1931 while (len != 0) {
1932 MEMORY_BASIC_INFORMATION mem_info;
1933 GC_word free_len;
1934 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1935 != sizeof(mem_info))
1936 ABORT("Weird VirtualQuery result");
1937 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1938 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1939 ABORT("VirtualFree failed");
1940 GC_unmapped_bytes += free_len;
1941 start_addr += free_len;
1942 len -= free_len;
1944 # else
1945 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1946 GC_unmapped_bytes += len;
1947 # endif
1950 #endif /* USE_MUNMAP */
1952 /* Routine for pushing any additional roots. In THREADS */
1953 /* environment, this is also responsible for marking from */
1954 /* thread stacks. */
1955 #ifndef THREADS
1956 void (*GC_push_other_roots)() = 0;
1957 #else /* THREADS */
1959 # ifdef PCR
1960 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1962 struct PCR_ThCtl_TInfoRep info;
1963 PCR_ERes result;
1965 info.ti_stkLow = info.ti_stkHi = 0;
1966 result = PCR_ThCtl_GetInfo(t, &info);
1967 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1968 return(result);
1971 /* Push the contents of an old object. We treat this as stack */
1972 /* data only becasue that makes it robust against mark stack */
1973 /* overflow. */
1974 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1976 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1977 return(PCR_ERes_okay);
1981 void GC_default_push_other_roots GC_PROTO((void))
1983 /* Traverse data allocated by previous memory managers. */
1985 extern struct PCR_MM_ProcsRep * GC_old_allocator;
1987 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1988 GC_push_old_obj, 0)
1989 != PCR_ERes_okay) {
1990 ABORT("Old object enumeration failed");
1993 /* Traverse all thread stacks. */
1994 if (PCR_ERes_IsErr(
1995 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1996 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1997 ABORT("Thread stack marking failed\n");
2001 # endif /* PCR */
2003 # ifdef SRC_M3
2005 # ifdef ALL_INTERIOR_POINTERS
2006 --> misconfigured
2007 # endif
2009 void GC_push_thread_structures GC_PROTO((void))
2011 /* Not our responsibibility. */
2014 extern void ThreadF__ProcessStacks();
2016 void GC_push_thread_stack(start, stop)
2017 word start, stop;
2019 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2022 /* Push routine with M3 specific calling convention. */
2023 GC_m3_push_root(dummy1, p, dummy2, dummy3)
2024 word *p;
2025 ptr_t dummy1, dummy2;
2026 int dummy3;
2028 word q = *p;
2030 GC_PUSH_ONE_STACK(q, p);
2033 /* M3 set equivalent to RTHeap.TracedRefTypes */
2034 typedef struct { int elts[1]; } RefTypeSet;
2035 RefTypeSet GC_TracedRefTypes = {{0x1}};
2037 void GC_default_push_other_roots GC_PROTO((void))
2039 /* Use the M3 provided routine for finding static roots. */
2040 /* This is a bit dubious, since it presumes no C roots. */
2041 /* We handle the collector roots explicitly in GC_push_roots */
2042 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2043 if (GC_words_allocd > 0) {
2044 ThreadF__ProcessStacks(GC_push_thread_stack);
2046 /* Otherwise this isn't absolutely necessary, and we have */
2047 /* startup ordering problems. */
2050 # endif /* SRC_M3 */
2052 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2053 defined(GC_WIN32_THREADS)
2055 extern void GC_push_all_stacks();
2057 void GC_default_push_other_roots GC_PROTO((void))
2059 GC_push_all_stacks();
2062 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2064 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2066 #endif /* THREADS */
2069 * Routines for accessing dirty bits on virtual pages.
2070 * We plan to eventually implement four strategies for doing so:
2071 * DEFAULT_VDB: A simple dummy implementation that treats every page
2072 * as possibly dirty. This makes incremental collection
2073 * useless, but the implementation is still correct.
2074 * PCR_VDB: Use PPCRs virtual dirty bit facility.
2075 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2076 * works under some SVR4 variants. Even then, it may be
2077 * too slow to be entirely satisfactory. Requires reading
2078 * dirty bits for entire address space. Implementations tend
2079 * to assume that the client is a (slow) debugger.
2080 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2081 * dirtied pages. The implementation (and implementability)
2082 * is highly system dependent. This usually fails when system
2083 * calls write to a protected page. We prevent the read system
2084 * call from doing so. It is the clients responsibility to
2085 * make sure that other system calls are similarly protected
2086 * or write only to the stack.
2088 GC_bool GC_dirty_maintained = FALSE;
2090 # ifdef DEFAULT_VDB
2092 /* All of the following assume the allocation lock is held, and */
2093 /* signals are disabled. */
2095 /* The client asserts that unallocated pages in the heap are never */
2096 /* written. */
2098 /* Initialize virtual dirty bit implementation. */
2099 void GC_dirty_init()
2101 # ifdef PRINTSTATS
2102 GC_printf0("Initializing DEFAULT_VDB...\n");
2103 # endif
2104 GC_dirty_maintained = TRUE;
2107 /* Retrieve system dirty bits for heap to a local buffer. */
2108 /* Restore the systems notion of which pages are dirty. */
2109 void GC_read_dirty()
2112 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2113 /* If the actual page size is different, this returns TRUE if any */
2114 /* of the pages overlapping h are dirty. This routine may err on the */
2115 /* side of labelling pages as dirty (and this implementation does). */
2116 /*ARGSUSED*/
2117 GC_bool GC_page_was_dirty(h)
2118 struct hblk *h;
2120 return(TRUE);
2124 * The following two routines are typically less crucial. They matter
2125 * most with large dynamic libraries, or if we can't accurately identify
2126 * stacks, e.g. under Solaris 2.X. Otherwise the following default
2127 * versions are adequate.
2130 /* Could any valid GC heap pointer ever have been written to this page? */
2131 /*ARGSUSED*/
2132 GC_bool GC_page_was_ever_dirty(h)
2133 struct hblk *h;
2135 return(TRUE);
2138 /* Reset the n pages starting at h to "was never dirty" status. */
2139 void GC_is_fresh(h, n)
2140 struct hblk *h;
2141 word n;
2145 /* A call that: */
2146 /* I) hints that [h, h+nblocks) is about to be written. */
2147 /* II) guarantees that protection is removed. */
2148 /* (I) may speed up some dirty bit implementations. */
2149 /* (II) may be essential if we need to ensure that */
2150 /* pointer-free system call buffers in the heap are */
2151 /* not protected. */
2152 /*ARGSUSED*/
2153 void GC_remove_protection(h, nblocks, is_ptrfree)
2154 struct hblk *h;
2155 word nblocks;
2156 GC_bool is_ptrfree;
2160 # endif /* DEFAULT_VDB */
2163 # ifdef MPROTECT_VDB
2166 * See DEFAULT_VDB for interface descriptions.
2170 * This implementation maintains dirty bits itself by catching write
2171 * faults and keeping track of them. We assume nobody else catches
2172 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2173 * This means that clients must ensure that system calls don't write
2174 * to the write-protected heap. Probably the best way to do this is to
2175 * ensure that system calls write at most to POINTERFREE objects in the
2176 * heap, and do even that only if we are on a platform on which those
2177 * are not protected. Another alternative is to wrap system calls
2178 * (see example for read below), but the current implementation holds
2179 * a lock across blocking calls, making it problematic for multithreaded
2180 * applications.
2181 * We assume the page size is a multiple of HBLKSIZE.
2182 * We prefer them to be the same. We avoid protecting POINTERFREE
2183 * objects only if they are the same.
2186 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2188 # include <sys/mman.h>
2189 # include <signal.h>
2190 # include <sys/syscall.h>
2192 # define PROTECT(addr, len) \
2193 if (mprotect((caddr_t)(addr), (size_t)(len), \
2194 PROT_READ | OPT_PROT_EXEC) < 0) { \
2195 ABORT("mprotect failed"); \
2197 # define UNPROTECT(addr, len) \
2198 if (mprotect((caddr_t)(addr), (size_t)(len), \
2199 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2200 ABORT("un-mprotect failed"); \
2203 # else
2205 # ifdef DARWIN
2206 /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2207 decrease the likelihood of some of the problems described below. */
2208 #include <mach/vm_map.h>
2209 static mach_port_t GC_task_self;
2210 #define PROTECT(addr,len) \
2211 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2212 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2213 ABORT("vm_portect failed"); \
2215 #define UNPROTECT(addr,len) \
2216 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2217 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2218 ABORT("vm_portect failed"); \
2220 # else
2222 # ifndef MSWINCE
2223 # include <signal.h>
2224 # endif
2226 static DWORD protect_junk;
2227 # define PROTECT(addr, len) \
2228 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2229 &protect_junk)) { \
2230 DWORD last_error = GetLastError(); \
2231 GC_printf1("Last error code: %lx\n", last_error); \
2232 ABORT("VirtualProtect failed"); \
2234 # define UNPROTECT(addr, len) \
2235 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2236 &protect_junk)) { \
2237 ABORT("un-VirtualProtect failed"); \
2239 # endif /* !DARWIN */
2240 # endif /* MSWIN32 || MSWINCE || DARWIN */
2242 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2243 typedef void (* SIG_PF)();
2244 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2246 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2247 || defined(HURD)
2248 # ifdef __STDC__
2249 typedef void (* SIG_PF)(int);
2250 # else
2251 typedef void (* SIG_PF)();
2252 # endif
2253 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2255 #if defined(MSWIN32)
2256 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2257 # undef SIG_DFL
2258 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2259 #endif
2260 #if defined(MSWINCE)
2261 typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2262 # undef SIG_DFL
2263 # define SIG_DFL (SIG_PF) (-1)
2264 #endif
2266 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2267 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2268 #endif /* IRIX5 || OSF1 || HURD */
2270 #if defined(SUNOS5SIGS)
2271 # if defined(HPUX) || defined(FREEBSD)
2272 # define SIGINFO_T siginfo_t
2273 # else
2274 # define SIGINFO_T struct siginfo
2275 # endif
2276 # ifdef __STDC__
2277 typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2278 # else
2279 typedef void (* REAL_SIG_PF)();
2280 # endif
2281 #endif /* SUNOS5SIGS */
2283 #if defined(LINUX)
2284 # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2285 typedef struct sigcontext s_c;
2286 # else /* glibc < 2.2 */
2287 # include <linux/version.h>
2288 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2289 typedef struct sigcontext s_c;
2290 # else
2291 typedef struct sigcontext_struct s_c;
2292 # endif
2293 # endif /* glibc < 2.2 */
2294 # if defined(ALPHA) || defined(M68K)
2295 typedef void (* REAL_SIG_PF)(int, int, s_c *);
2296 # else
2297 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2298 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2299 /* FIXME: */
2300 /* According to SUSV3, the last argument should have type */
2301 /* void * or ucontext_t * */
2302 # else
2303 typedef void (* REAL_SIG_PF)(int, s_c);
2304 # endif
2305 # endif
2306 # ifdef ALPHA
2307 /* Retrieve fault address from sigcontext structure by decoding */
2308 /* instruction. */
2309 char * get_fault_addr(s_c *sc) {
2310 unsigned instr;
2311 word faultaddr;
2313 instr = *((unsigned *)(sc->sc_pc));
2314 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2315 faultaddr += (word) (((int)instr << 16) >> 16);
2316 return (char *)faultaddr;
2318 # endif /* !ALPHA */
2319 # endif /* LINUX */
2321 #ifndef DARWIN
2322 SIG_PF GC_old_bus_handler;
2323 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2324 #endif /* !DARWIN */
2326 #if defined(THREADS)
2327 /* We need to lock around the bitmap update in the write fault handler */
2328 /* in order to avoid the risk of losing a bit. We do this with a */
2329 /* test-and-set spin lock if we know how to do that. Otherwise we */
2330 /* check whether we are already in the handler and use the dumb but */
2331 /* safe fallback algorithm of setting all bits in the word. */
2332 /* Contention should be very rare, so we do the minimum to handle it */
2333 /* correctly. */
2334 #ifdef GC_TEST_AND_SET_DEFINED
2335 static VOLATILE unsigned int fault_handler_lock = 0;
2336 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2337 while (GC_test_and_set(&fault_handler_lock)) {}
2338 /* Could also revert to set_pht_entry_from_index_safe if initial */
2339 /* GC_test_and_set fails. */
2340 set_pht_entry_from_index(db, index);
2341 GC_clear(&fault_handler_lock);
2343 #else /* !GC_TEST_AND_SET_DEFINED */
2344 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2345 /* just before we notice the conflict and correct it. We may end up */
2346 /* looking at it while it's wrong. But this requires contention */
2347 /* exactly when a GC is triggered, which seems far less likely to */
2348 /* fail than the old code, which had no reported failures. Thus we */
2349 /* leave it this way while we think of something better, or support */
2350 /* GC_test_and_set on the remaining platforms. */
2351 static VOLATILE word currently_updating = 0;
2352 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2353 unsigned int update_dummy;
2354 currently_updating = (word)(&update_dummy);
2355 set_pht_entry_from_index(db, index);
2356 /* If we get contention in the 10 or so instruction window here, */
2357 /* and we get stopped by a GC between the two updates, we lose! */
2358 if (currently_updating != (word)(&update_dummy)) {
2359 set_pht_entry_from_index_safe(db, index);
2360 /* We claim that if two threads concurrently try to update the */
2361 /* dirty bit vector, the first one to execute UPDATE_START */
2362 /* will see it changed when UPDATE_END is executed. (Note that */
2363 /* &update_dummy must differ in two distinct threads.) It */
2364 /* will then execute set_pht_entry_from_index_safe, thus */
2365 /* returning us to a safe state, though not soon enough. */
2368 #endif /* !GC_TEST_AND_SET_DEFINED */
2369 #else /* !THREADS */
2370 # define async_set_pht_entry_from_index(db, index) \
2371 set_pht_entry_from_index(db, index)
2372 #endif /* !THREADS */
2374 /*ARGSUSED*/
2375 #if !defined(DARWIN)
2376 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2377 void GC_write_fault_handler(sig, code, scp, addr)
2378 int sig, code;
2379 struct sigcontext *scp;
2380 char * addr;
2381 # ifdef SUNOS4
2382 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2383 # define CODE_OK (FC_CODE(code) == FC_PROT \
2384 || (FC_CODE(code) == FC_OBJERR \
2385 && FC_ERRNO(code) == FC_PROT))
2386 # endif
2387 # ifdef FREEBSD
2388 # define SIG_OK (sig == SIGBUS)
2389 # define CODE_OK TRUE
2390 # endif
2391 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2393 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2394 # include <errno.h>
2395 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2396 # ifdef OSF1
2397 # define SIG_OK (sig == SIGSEGV)
2398 # define CODE_OK (code == 2 /* experimentally determined */)
2399 # endif
2400 # ifdef IRIX5
2401 # define SIG_OK (sig == SIGSEGV)
2402 # define CODE_OK (code == EACCES)
2403 # endif
2404 # ifdef HURD
2405 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2406 # define CODE_OK TRUE
2407 # endif
2408 # endif /* IRIX5 || OSF1 || HURD */
2410 # if defined(LINUX)
2411 # if defined(ALPHA) || defined(M68K)
2412 void GC_write_fault_handler(int sig, int code, s_c * sc)
2413 # else
2414 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2415 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2416 # else
2417 # if defined(ARM32)
2418 void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2419 # else
2420 void GC_write_fault_handler(int sig, s_c sc)
2421 # endif
2422 # endif
2423 # endif
2424 # define SIG_OK (sig == SIGSEGV)
2425 # define CODE_OK TRUE
2426 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2427 /* Should probably consider alignment issues on other */
2428 /* architectures. */
2429 # endif /* LINUX */
2431 # if defined(SUNOS5SIGS)
2432 # ifdef __STDC__
2433 void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2434 # else
2435 void GC_write_fault_handler(sig, scp, context)
2436 int sig;
2437 SIGINFO_T *scp;
2438 void * context;
2439 # endif
2440 # ifdef HPUX
2441 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2442 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2443 || (scp -> si_code == BUS_ADRERR) \
2444 || (scp -> si_code == BUS_UNKNOWN) \
2445 || (scp -> si_code == SEGV_UNKNOWN) \
2446 || (scp -> si_code == BUS_OBJERR)
2447 # else
2448 # ifdef FREEBSD
2449 # define SIG_OK (sig == SIGBUS)
2450 # define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2451 # else
2452 # define SIG_OK (sig == SIGSEGV)
2453 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2454 # endif
2455 # endif
2456 # endif /* SUNOS5SIGS */
2458 # if defined(MSWIN32) || defined(MSWINCE)
2459 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2460 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2461 STATUS_ACCESS_VIOLATION)
2462 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2463 /* Write fault */
2464 # endif /* MSWIN32 || MSWINCE */
2466 register unsigned i;
2467 # if defined(HURD)
2468 char *addr = (char *) code;
2469 # endif
2470 # ifdef IRIX5
2471 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2472 # endif
2473 # if defined(OSF1) && defined(ALPHA)
2474 char * addr = (char *) (scp -> sc_traparg_a0);
2475 # endif
2476 # ifdef SUNOS5SIGS
2477 char * addr = (char *) (scp -> si_addr);
2478 # endif
2479 # ifdef LINUX
2480 # if defined(I386)
2481 char * addr = (char *) (sc.cr2);
2482 # else
2483 # if defined(M68K)
2484 char * addr = NULL;
2486 struct sigcontext *scp = (struct sigcontext *)(sc);
2488 int format = (scp->sc_formatvec >> 12) & 0xf;
2489 unsigned long *framedata = (unsigned long *)(scp + 1);
2490 unsigned long ea;
2492 if (format == 0xa || format == 0xb) {
2493 /* 68020/030 */
2494 ea = framedata[2];
2495 } else if (format == 7) {
2496 /* 68040 */
2497 ea = framedata[3];
2498 if (framedata[1] & 0x08000000) {
2499 /* correct addr on misaligned access */
2500 ea = (ea+4095)&(~4095);
2502 } else if (format == 4) {
2503 /* 68060 */
2504 ea = framedata[0];
2505 if (framedata[1] & 0x08000000) {
2506 /* correct addr on misaligned access */
2507 ea = (ea+4095)&(~4095);
2510 addr = (char *)ea;
2511 # else
2512 # ifdef ALPHA
2513 char * addr = get_fault_addr(sc);
2514 # else
2515 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2516 char * addr = si -> si_addr;
2517 /* I believe this is claimed to work on all platforms for */
2518 /* Linux 2.3.47 and later. Hopefully we don't have to */
2519 /* worry about earlier kernels on IA64. */
2520 # else
2521 # if defined(POWERPC)
2522 char * addr = (char *) (sc.regs->dar);
2523 # else
2524 # if defined(ARM32)
2525 char * addr = (char *)sc.fault_address;
2526 # else
2527 # if defined(CRIS)
2528 char * addr = (char *)sc.regs.csraddr;
2529 # else
2530 --> architecture not supported
2531 # endif
2532 # endif
2533 # endif
2534 # endif
2535 # endif
2536 # endif
2537 # endif
2538 # endif
2539 # if defined(MSWIN32) || defined(MSWINCE)
2540 char * addr = (char *) (exc_info -> ExceptionRecord
2541 -> ExceptionInformation[1]);
2542 # define sig SIGSEGV
2543 # endif
2545 if (SIG_OK && CODE_OK) {
2546 register struct hblk * h =
2547 (struct hblk *)((word)addr & ~(GC_page_size-1));
2548 GC_bool in_allocd_block;
2550 # ifdef SUNOS5SIGS
2551 /* Address is only within the correct physical page. */
2552 in_allocd_block = FALSE;
2553 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2554 if (HDR(h+i) != 0) {
2555 in_allocd_block = TRUE;
2558 # else
2559 in_allocd_block = (HDR(addr) != 0);
2560 # endif
2561 if (!in_allocd_block) {
2562 /* FIXME - We should make sure that we invoke the */
2563 /* old handler with the appropriate calling */
2564 /* sequence, which often depends on SA_SIGINFO. */
2566 /* Heap blocks now begin and end on page boundaries */
2567 SIG_PF old_handler;
2569 if (sig == SIGSEGV) {
2570 old_handler = GC_old_segv_handler;
2571 } else {
2572 old_handler = GC_old_bus_handler;
2574 if (old_handler == SIG_DFL) {
2575 # if !defined(MSWIN32) && !defined(MSWINCE)
2576 GC_err_printf1("Segfault at 0x%lx\n", addr);
2577 ABORT("Unexpected bus error or segmentation fault");
2578 # else
2579 return(EXCEPTION_CONTINUE_SEARCH);
2580 # endif
2581 } else {
2582 # if defined (SUNOS4) \
2583 || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2584 (*old_handler) (sig, code, scp, addr);
2585 return;
2586 # endif
2587 # if defined (SUNOS5SIGS)
2589 * FIXME: For FreeBSD, this code should check if the
2590 * old signal handler used the traditional BSD style and
2591 * if so call it using that style.
2593 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2594 return;
2595 # endif
2596 # if defined (LINUX)
2597 # if defined(ALPHA) || defined(M68K)
2598 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2599 # else
2600 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2601 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2602 # else
2603 (*(REAL_SIG_PF)old_handler) (sig, sc);
2604 # endif
2605 # endif
2606 return;
2607 # endif
2608 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2609 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2610 return;
2611 # endif
2612 # ifdef MSWIN32
2613 return((*old_handler)(exc_info));
2614 # endif
2617 UNPROTECT(h, GC_page_size);
2618 /* We need to make sure that no collection occurs between */
2619 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2620 /* a write by a third thread might go unnoticed. Reversing */
2621 /* the order is just as bad, since we would end up unprotecting */
2622 /* a page in a GC cycle during which it's not marked. */
2623 /* Currently we do this by disabling the thread stopping */
2624 /* signals while this handler is running. An alternative might */
2625 /* be to record the fact that we're about to unprotect, or */
2626 /* have just unprotected a page in the GC's thread structure, */
2627 /* and then to have the thread stopping code set the dirty */
2628 /* flag, if necessary. */
2629 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2630 register int index = PHT_HASH(h+i);
2632 async_set_pht_entry_from_index(GC_dirty_pages, index);
2634 # if defined(OSF1)
2635 /* These reset the signal handler each time by default. */
2636 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2637 # endif
2638 /* The write may not take place before dirty bits are read. */
2639 /* But then we'll fault again ... */
2640 # if defined(MSWIN32) || defined(MSWINCE)
2641 return(EXCEPTION_CONTINUE_EXECUTION);
2642 # else
2643 return;
2644 # endif
2646 #if defined(MSWIN32) || defined(MSWINCE)
2647 return EXCEPTION_CONTINUE_SEARCH;
2648 #else
2649 GC_err_printf1("Segfault at 0x%lx\n", addr);
2650 ABORT("Unexpected bus error or segmentation fault");
2651 #endif
2653 #endif /* !DARWIN */
2656 * We hold the allocation lock. We expect block h to be written
2657 * shortly. Ensure that all pages containing any part of the n hblks
2658 * starting at h are no longer protected. If is_ptrfree is false,
2659 * also ensure that they will subsequently appear to be dirty.
2661 void GC_remove_protection(h, nblocks, is_ptrfree)
2662 struct hblk *h;
2663 word nblocks;
2664 GC_bool is_ptrfree;
2666 struct hblk * h_trunc; /* Truncated to page boundary */
2667 struct hblk * h_end; /* Page boundary following block end */
2668 struct hblk * current;
2669 GC_bool found_clean;
2671 if (!GC_dirty_maintained) return;
2672 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2673 h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2674 & ~(GC_page_size-1));
2675 found_clean = FALSE;
2676 for (current = h_trunc; current < h_end; ++current) {
2677 int index = PHT_HASH(current);
2679 if (!is_ptrfree || current < h || current >= h + nblocks) {
2680 async_set_pht_entry_from_index(GC_dirty_pages, index);
2683 UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2686 #if !defined(DARWIN)
2687 void GC_dirty_init()
2689 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2690 defined(OSF1) || defined(HURD)
2691 struct sigaction act, oldact;
2692 /* We should probably specify SA_SIGINFO for Linux, and handle */
2693 /* the different architectures more uniformly. */
2694 # if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2695 || defined(OSF1) || defined(HURD)
2696 act.sa_flags = SA_RESTART;
2697 act.sa_handler = (SIG_PF)GC_write_fault_handler;
2698 # else
2699 act.sa_flags = SA_RESTART | SA_SIGINFO;
2700 act.sa_sigaction = GC_write_fault_handler;
2701 # endif
2702 (void)sigemptyset(&act.sa_mask);
2703 # ifdef SIG_SUSPEND
2704 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2705 /* handler. This effectively makes the handler atomic w.r.t. */
2706 /* stopping the world for GC. */
2707 (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2708 # endif /* SIG_SUSPEND */
2709 # endif
2710 # ifdef PRINTSTATS
2711 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2712 # endif
2713 GC_dirty_maintained = TRUE;
2714 if (GC_page_size % HBLKSIZE != 0) {
2715 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2716 ABORT("Page size not multiple of HBLKSIZE");
2718 # if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2719 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2720 if (GC_old_bus_handler == SIG_IGN) {
2721 GC_err_printf0("Previously ignored bus error!?");
2722 GC_old_bus_handler = SIG_DFL;
2724 if (GC_old_bus_handler != SIG_DFL) {
2725 # ifdef PRINTSTATS
2726 GC_err_printf0("Replaced other SIGBUS handler\n");
2727 # endif
2729 # endif
2730 # if defined(SUNOS4)
2731 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2732 if (GC_old_segv_handler == SIG_IGN) {
2733 GC_err_printf0("Previously ignored segmentation violation!?");
2734 GC_old_segv_handler = SIG_DFL;
2736 if (GC_old_segv_handler != SIG_DFL) {
2737 # ifdef PRINTSTATS
2738 GC_err_printf0("Replaced other SIGSEGV handler\n");
2739 # endif
2741 # endif
2742 # if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2743 || defined(LINUX) || defined(OSF1) || defined(HURD)
2744 /* SUNOS5SIGS includes HPUX */
2745 # if defined(GC_IRIX_THREADS)
2746 sigaction(SIGSEGV, 0, &oldact);
2747 sigaction(SIGSEGV, &act, 0);
2748 # else
2750 int res = sigaction(SIGSEGV, &act, &oldact);
2751 if (res != 0) ABORT("Sigaction failed");
2753 # endif
2754 # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2755 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2756 /* sa_sigaction. */
2757 GC_old_segv_handler = oldact.sa_handler;
2758 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2759 if (oldact.sa_flags & SA_SIGINFO) {
2760 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2761 } else {
2762 GC_old_segv_handler = oldact.sa_handler;
2764 # endif
2765 if (GC_old_segv_handler == SIG_IGN) {
2766 GC_err_printf0("Previously ignored segmentation violation!?");
2767 GC_old_segv_handler = SIG_DFL;
2769 if (GC_old_segv_handler != SIG_DFL) {
2770 # ifdef PRINTSTATS
2771 GC_err_printf0("Replaced other SIGSEGV handler\n");
2772 # endif
2774 # endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2775 # if defined(HPUX) || defined(LINUX) || defined(HURD) \
2776 || (defined(FREEBSD) && defined(SUNOS5SIGS))
2777 sigaction(SIGBUS, &act, &oldact);
2778 GC_old_bus_handler = oldact.sa_handler;
2779 if (GC_old_bus_handler == SIG_IGN) {
2780 GC_err_printf0("Previously ignored bus error!?");
2781 GC_old_bus_handler = SIG_DFL;
2783 if (GC_old_bus_handler != SIG_DFL) {
2784 # ifdef PRINTSTATS
2785 GC_err_printf0("Replaced other SIGBUS handler\n");
2786 # endif
2788 # endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2789 # if defined(MSWIN32)
2790 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2791 if (GC_old_segv_handler != NULL) {
2792 # ifdef PRINTSTATS
2793 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2794 # endif
2795 } else {
2796 GC_old_segv_handler = SIG_DFL;
2798 # endif
2800 #endif /* !DARWIN */
2802 int GC_incremental_protection_needs()
2804 if (GC_page_size == HBLKSIZE) {
2805 return GC_PROTECTS_POINTER_HEAP;
2806 } else {
2807 return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2811 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2813 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2815 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2816 void GC_protect_heap()
2818 ptr_t start;
2819 word len;
2820 struct hblk * current;
2821 struct hblk * current_start; /* Start of block to be protected. */
2822 struct hblk * limit;
2823 unsigned i;
2824 GC_bool protect_all =
2825 (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2826 for (i = 0; i < GC_n_heap_sects; i++) {
2827 start = GC_heap_sects[i].hs_start;
2828 len = GC_heap_sects[i].hs_bytes;
2829 if (protect_all) {
2830 PROTECT(start, len);
2831 } else {
2832 GC_ASSERT(PAGE_ALIGNED(len))
2833 GC_ASSERT(PAGE_ALIGNED(start))
2834 current_start = current = (struct hblk *)start;
2835 limit = (struct hblk *)(start + len);
2836 while (current < limit) {
2837 hdr * hhdr;
2838 word nhblks;
2839 GC_bool is_ptrfree;
2841 GC_ASSERT(PAGE_ALIGNED(current));
2842 GET_HDR(current, hhdr);
2843 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2844 /* This can happen only if we're at the beginning of a */
2845 /* heap segment, and a block spans heap segments. */
2846 /* We will handle that block as part of the preceding */
2847 /* segment. */
2848 GC_ASSERT(current_start == current);
2849 current_start = ++current;
2850 continue;
2852 if (HBLK_IS_FREE(hhdr)) {
2853 GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2854 nhblks = divHBLKSZ(hhdr -> hb_sz);
2855 is_ptrfree = TRUE; /* dirty on alloc */
2856 } else {
2857 nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2858 is_ptrfree = IS_PTRFREE(hhdr);
2860 if (is_ptrfree) {
2861 if (current_start < current) {
2862 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2864 current_start = (current += nhblks);
2865 } else {
2866 current += nhblks;
2869 if (current_start < current) {
2870 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2876 /* We assume that either the world is stopped or its OK to lose dirty */
2877 /* bits while this is happenning (as in GC_enable_incremental). */
2878 void GC_read_dirty()
2880 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2881 (sizeof GC_dirty_pages));
2882 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2883 GC_protect_heap();
2886 GC_bool GC_page_was_dirty(h)
2887 struct hblk * h;
2889 register word index = PHT_HASH(h);
2891 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2895 * Acquiring the allocation lock here is dangerous, since this
2896 * can be called from within GC_call_with_alloc_lock, and the cord
2897 * package does so. On systems that allow nested lock acquisition, this
2898 * happens to work.
2899 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2902 static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
2904 void GC_begin_syscall()
2906 if (!I_HOLD_LOCK()) {
2907 LOCK();
2908 syscall_acquired_lock = TRUE;
2912 void GC_end_syscall()
2914 if (syscall_acquired_lock) {
2915 syscall_acquired_lock = FALSE;
2916 UNLOCK();
2920 void GC_unprotect_range(addr, len)
2921 ptr_t addr;
2922 word len;
2924 struct hblk * start_block;
2925 struct hblk * end_block;
2926 register struct hblk *h;
2927 ptr_t obj_start;
2929 if (!GC_dirty_maintained) return;
2930 obj_start = GC_base(addr);
2931 if (obj_start == 0) return;
2932 if (GC_base(addr + len - 1) != obj_start) {
2933 ABORT("GC_unprotect_range(range bigger than object)");
2935 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2936 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2937 end_block += GC_page_size/HBLKSIZE - 1;
2938 for (h = start_block; h <= end_block; h++) {
2939 register word index = PHT_HASH(h);
2941 async_set_pht_entry_from_index(GC_dirty_pages, index);
2943 UNPROTECT(start_block,
2944 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2947 #if 0
2949 /* We no longer wrap read by default, since that was causing too many */
2950 /* problems. It is preferred that the client instead avoids writing */
2951 /* to the write-protected heap with a system call. */
2952 /* This still serves as sample code if you do want to wrap system calls.*/
2954 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2955 /* Replacement for UNIX system call. */
2956 /* Other calls that write to the heap should be handled similarly. */
2957 /* Note that this doesn't work well for blocking reads: It will hold */
2958 /* the allocation lock for the entire duration of the call. Multithreaded */
2959 /* clients should really ensure that it won't block, either by setting */
2960 /* the descriptor nonblocking, or by calling select or poll first, to */
2961 /* make sure that input is available. */
2962 /* Another, preferred alternative is to ensure that system calls never */
2963 /* write to the protected heap (see above). */
2964 # if defined(__STDC__) && !defined(SUNOS4)
2965 # include <unistd.h>
2966 # include <sys/uio.h>
2967 ssize_t read(int fd, void *buf, size_t nbyte)
2968 # else
2969 # ifndef LINT
2970 int read(fd, buf, nbyte)
2971 # else
2972 int GC_read(fd, buf, nbyte)
2973 # endif
2974 int fd;
2975 char *buf;
2976 int nbyte;
2977 # endif
2979 int result;
2981 GC_begin_syscall();
2982 GC_unprotect_range(buf, (word)nbyte);
2983 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
2984 /* Indirect system call may not always be easily available. */
2985 /* We could call _read, but that would interfere with the */
2986 /* libpthread interception of read. */
2987 /* On Linux, we have to be careful with the linuxthreads */
2988 /* read interception. */
2990 struct iovec iov;
2992 iov.iov_base = buf;
2993 iov.iov_len = nbyte;
2994 result = readv(fd, &iov, 1);
2996 # else
2997 # if defined(HURD)
2998 result = __read(fd, buf, nbyte);
2999 # else
3000 /* The two zero args at the end of this list are because one
3001 IA-64 syscall() implementation actually requires six args
3002 to be passed, even though they aren't always used. */
3003 result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
3004 # endif /* !HURD */
3005 # endif
3006 GC_end_syscall();
3007 return(result);
3009 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3011 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3012 /* We use the GNU ld call wrapping facility. */
3013 /* This requires that the linker be invoked with "--wrap read". */
3014 /* This can be done by passing -Wl,"--wrap read" to gcc. */
3015 /* I'm not sure that this actually wraps whatever version of read */
3016 /* is called by stdio. That code also mentions __read. */
3017 # include <unistd.h>
3018 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3020 int result;
3022 GC_begin_syscall();
3023 GC_unprotect_range(buf, (word)nbyte);
3024 result = __real_read(fd, buf, nbyte);
3025 GC_end_syscall();
3026 return(result);
3029 /* We should probably also do this for __read, or whatever stdio */
3030 /* actually calls. */
3031 #endif
3033 #endif /* 0 */
3035 /*ARGSUSED*/
3036 GC_bool GC_page_was_ever_dirty(h)
3037 struct hblk *h;
3039 return(TRUE);
3042 /* Reset the n pages starting at h to "was never dirty" status. */
3043 /*ARGSUSED*/
3044 void GC_is_fresh(h, n)
3045 struct hblk *h;
3046 word n;
3050 # endif /* MPROTECT_VDB */
3052 # ifdef PROC_VDB
3055 * See DEFAULT_VDB for interface descriptions.
3059 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3060 * from which we can read page modified bits. This facility is far from
3061 * optimal (e.g. we would like to get the info for only some of the
3062 * address space), but it avoids intercepting system calls.
3065 #include <errno.h>
3066 #include <sys/types.h>
3067 #include <sys/signal.h>
3068 #include <sys/fault.h>
3069 #include <sys/syscall.h>
3070 #include <sys/procfs.h>
3071 #include <sys/stat.h>
3073 #define INITIAL_BUF_SZ 16384
3074 word GC_proc_buf_size = INITIAL_BUF_SZ;
3075 char *GC_proc_buf;
3077 #ifdef GC_SOLARIS_THREADS
3078 /* We don't have exact sp values for threads. So we count on */
3079 /* occasionally declaring stack pages to be fresh. Thus we */
3080 /* need a real implementation of GC_is_fresh. We can't clear */
3081 /* entries in GC_written_pages, since that would declare all */
3082 /* pages with the given hash address to be fresh. */
3083 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
3084 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
3085 /* Collisions are dropped. */
3087 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3088 # define ADD_FRESH_PAGE(h) \
3089 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3090 # define PAGE_IS_FRESH(h) \
3091 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3092 #endif
3094 /* Add all pages in pht2 to pht1 */
3095 void GC_or_pages(pht1, pht2)
3096 page_hash_table pht1, pht2;
3098 register int i;
3100 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3103 int GC_proc_fd;
3105 void GC_dirty_init()
3107 int fd;
3108 char buf[30];
3110 GC_dirty_maintained = TRUE;
3111 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3112 register int i;
3114 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3115 # ifdef PRINTSTATS
3116 GC_printf1("Allocated words:%lu:all pages may have been written\n",
3117 (unsigned long)
3118 (GC_words_allocd + GC_words_allocd_before_gc));
3119 # endif
3121 sprintf(buf, "/proc/%d", getpid());
3122 fd = open(buf, O_RDONLY);
3123 if (fd < 0) {
3124 ABORT("/proc open failed");
3126 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3127 close(fd);
3128 syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3129 if (GC_proc_fd < 0) {
3130 ABORT("/proc ioctl failed");
3132 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3133 # ifdef GC_SOLARIS_THREADS
3134 GC_fresh_pages = (struct hblk **)
3135 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3136 if (GC_fresh_pages == 0) {
3137 GC_err_printf0("No space for fresh pages\n");
3138 EXIT();
3140 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3141 # endif
3144 /* Ignore write hints. They don't help us here. */
3145 /*ARGSUSED*/
3146 void GC_remove_protection(h, nblocks, is_ptrfree)
3147 struct hblk *h;
3148 word nblocks;
3149 GC_bool is_ptrfree;
3153 #ifdef GC_SOLARIS_THREADS
3154 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3155 #else
3156 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3157 #endif
3159 void GC_read_dirty()
3161 unsigned long ps, np;
3162 int nmaps;
3163 ptr_t vaddr;
3164 struct prasmap * map;
3165 char * bufp;
3166 ptr_t current_addr, limit;
3167 int i;
3168 int dummy;
3170 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3172 bufp = GC_proc_buf;
3173 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3174 # ifdef PRINTSTATS
3175 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3176 GC_proc_buf_size);
3177 # endif
3179 /* Retry with larger buffer. */
3180 word new_size = 2 * GC_proc_buf_size;
3181 char * new_buf = GC_scratch_alloc(new_size);
3183 if (new_buf != 0) {
3184 GC_proc_buf = bufp = new_buf;
3185 GC_proc_buf_size = new_size;
3187 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3188 WARN("Insufficient space for /proc read\n", 0);
3189 /* Punt: */
3190 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3191 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3192 # ifdef GC_SOLARIS_THREADS
3193 BZERO(GC_fresh_pages,
3194 MAX_FRESH_PAGES * sizeof (struct hblk *));
3195 # endif
3196 return;
3200 /* Copy dirty bits into GC_grungy_pages */
3201 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3202 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3203 nmaps, PG_REFERENCED, PG_MODIFIED); */
3204 bufp = bufp + sizeof(struct prpageheader);
3205 for (i = 0; i < nmaps; i++) {
3206 map = (struct prasmap *)bufp;
3207 vaddr = (ptr_t)(map -> pr_vaddr);
3208 ps = map -> pr_pagesize;
3209 np = map -> pr_npage;
3210 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3211 limit = vaddr + ps * np;
3212 bufp += sizeof (struct prasmap);
3213 for (current_addr = vaddr;
3214 current_addr < limit; current_addr += ps){
3215 if ((*bufp++) & PG_MODIFIED) {
3216 register struct hblk * h = (struct hblk *) current_addr;
3218 while ((ptr_t)h < current_addr + ps) {
3219 register word index = PHT_HASH(h);
3221 set_pht_entry_from_index(GC_grungy_pages, index);
3222 # ifdef GC_SOLARIS_THREADS
3224 register int slot = FRESH_PAGE_SLOT(h);
3226 if (GC_fresh_pages[slot] == h) {
3227 GC_fresh_pages[slot] = 0;
3230 # endif
3231 h++;
3235 bufp += sizeof(long) - 1;
3236 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3238 /* Update GC_written_pages. */
3239 GC_or_pages(GC_written_pages, GC_grungy_pages);
3240 # ifdef GC_SOLARIS_THREADS
3241 /* Make sure that old stacks are considered completely clean */
3242 /* unless written again. */
3243 GC_old_stacks_are_fresh();
3244 # endif
3247 #undef READ
3249 GC_bool GC_page_was_dirty(h)
3250 struct hblk *h;
3252 register word index = PHT_HASH(h);
3253 register GC_bool result;
3255 result = get_pht_entry_from_index(GC_grungy_pages, index);
3256 # ifdef GC_SOLARIS_THREADS
3257 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3258 /* This happens only if page was declared fresh since */
3259 /* the read_dirty call, e.g. because it's in an unused */
3260 /* thread stack. It's OK to treat it as clean, in */
3261 /* that case. And it's consistent with */
3262 /* GC_page_was_ever_dirty. */
3263 # endif
3264 return(result);
3267 GC_bool GC_page_was_ever_dirty(h)
3268 struct hblk *h;
3270 register word index = PHT_HASH(h);
3271 register GC_bool result;
3273 result = get_pht_entry_from_index(GC_written_pages, index);
3274 # ifdef GC_SOLARIS_THREADS
3275 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3276 # endif
3277 return(result);
3280 /* Caller holds allocation lock. */
3281 void GC_is_fresh(h, n)
3282 struct hblk *h;
3283 word n;
3286 register word index;
3288 # ifdef GC_SOLARIS_THREADS
3289 register word i;
3291 if (GC_fresh_pages != 0) {
3292 for (i = 0; i < n; i++) {
3293 ADD_FRESH_PAGE(h + i);
3296 # endif
3299 # endif /* PROC_VDB */
3302 # ifdef PCR_VDB
3304 # include "vd/PCR_VD.h"
3306 # define NPAGES (32*1024) /* 128 MB */
3308 PCR_VD_DB GC_grungy_bits[NPAGES];
3310 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
3311 /* HBLKSIZE aligned. */
3313 void GC_dirty_init()
3315 GC_dirty_maintained = TRUE;
3316 /* For the time being, we assume the heap generally grows up */
3317 GC_vd_base = GC_heap_sects[0].hs_start;
3318 if (GC_vd_base == 0) {
3319 ABORT("Bad initial heap segment");
3321 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3322 != PCR_ERes_okay) {
3323 ABORT("dirty bit initialization failed");
3327 void GC_read_dirty()
3329 /* lazily enable dirty bits on newly added heap sects */
3331 static int onhs = 0;
3332 int nhs = GC_n_heap_sects;
3333 for( ; onhs < nhs; onhs++ ) {
3334 PCR_VD_WriteProtectEnable(
3335 GC_heap_sects[onhs].hs_start,
3336 GC_heap_sects[onhs].hs_bytes );
3341 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3342 != PCR_ERes_okay) {
3343 ABORT("dirty bit read failed");
3347 GC_bool GC_page_was_dirty(h)
3348 struct hblk *h;
3350 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3351 return(TRUE);
3353 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3356 /*ARGSUSED*/
3357 void GC_remove_protection(h, nblocks, is_ptrfree)
3358 struct hblk *h;
3359 word nblocks;
3360 GC_bool is_ptrfree;
3362 PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3363 PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3366 # endif /* PCR_VDB */
3368 #if defined(MPROTECT_VDB) && defined(DARWIN)
3369 /* The following sources were used as a *reference* for this exception handling
3370 code:
3371 1. Apple's mach/xnu documentation
3372 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3373 omnigroup's macosx-dev list.
3374 www.omnigroup.com/mailman/archive/macosx-dev/2000-June/014178.html
3375 3. macosx-nat.c from Apple's GDB source code.
3378 /* The bug that caused all this trouble should now be fixed. This should
3379 eventually be removed if all goes well. */
3380 /* define BROKEN_EXCEPTION_HANDLING */
3382 #include <mach/mach.h>
3383 #include <mach/mach_error.h>
3384 #include <mach/thread_status.h>
3385 #include <mach/exception.h>
3386 #include <mach/task.h>
3387 #include <pthread.h>
3389 /* These are not defined in any header, although they are documented */
3390 extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3391 extern kern_return_t exception_raise(
3392 mach_port_t,mach_port_t,mach_port_t,
3393 exception_type_t,exception_data_t,mach_msg_type_number_t);
3394 extern kern_return_t exception_raise_state(
3395 mach_port_t,mach_port_t,mach_port_t,
3396 exception_type_t,exception_data_t,mach_msg_type_number_t,
3397 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3398 thread_state_t,mach_msg_type_number_t*);
3399 extern kern_return_t exception_raise_state_identity(
3400 mach_port_t,mach_port_t,mach_port_t,
3401 exception_type_t,exception_data_t,mach_msg_type_number_t,
3402 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3403 thread_state_t,mach_msg_type_number_t*);
3406 #define MAX_EXCEPTION_PORTS 16
3408 static struct {
3409 mach_msg_type_number_t count;
3410 exception_mask_t masks[MAX_EXCEPTION_PORTS];
3411 exception_handler_t ports[MAX_EXCEPTION_PORTS];
3412 exception_behavior_t behaviors[MAX_EXCEPTION_PORTS];
3413 thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3414 } GC_old_exc_ports;
3416 static struct {
3417 mach_port_t exception;
3418 #if defined(THREADS)
3419 mach_port_t reply;
3420 #endif
3421 } GC_ports;
3423 typedef struct {
3424 mach_msg_header_t head;
3425 } GC_msg_t;
3427 typedef enum {
3428 GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3429 } GC_mprotect_state_t;
3431 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3432 but it isn't documented. Use the source and see if they
3433 should be ok. */
3434 #define ID_STOP 1
3435 #define ID_RESUME 2
3437 /* These values are only used on the reply port */
3438 #define ID_ACK 3
3440 #if defined(THREADS)
3442 GC_mprotect_state_t GC_mprotect_state;
3444 /* The following should ONLY be called when the world is stopped */
3445 static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3446 struct {
3447 GC_msg_t msg;
3448 mach_msg_trailer_t trailer;
3449 } buf;
3450 mach_msg_return_t r;
3451 /* remote, local */
3452 buf.msg.head.msgh_bits =
3453 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3454 buf.msg.head.msgh_size = sizeof(buf.msg);
3455 buf.msg.head.msgh_remote_port = GC_ports.exception;
3456 buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3457 buf.msg.head.msgh_id = id;
3459 r = mach_msg(
3460 &buf.msg.head,
3461 MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3462 sizeof(buf.msg),
3463 sizeof(buf),
3464 GC_ports.reply,
3465 MACH_MSG_TIMEOUT_NONE,
3466 MACH_PORT_NULL);
3467 if(r != MACH_MSG_SUCCESS)
3468 ABORT("mach_msg failed in GC_mprotect_thread_notify");
3469 if(buf.msg.head.msgh_id != ID_ACK)
3470 ABORT("invalid ack in GC_mprotect_thread_notify");
3473 /* Should only be called by the mprotect thread */
3474 static void GC_mprotect_thread_reply() {
3475 GC_msg_t msg;
3476 mach_msg_return_t r;
3477 /* remote, local */
3478 msg.head.msgh_bits =
3479 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3480 msg.head.msgh_size = sizeof(msg);
3481 msg.head.msgh_remote_port = GC_ports.reply;
3482 msg.head.msgh_local_port = MACH_PORT_NULL;
3483 msg.head.msgh_id = ID_ACK;
3485 r = mach_msg(
3486 &msg.head,
3487 MACH_SEND_MSG,
3488 sizeof(msg),
3490 MACH_PORT_NULL,
3491 MACH_MSG_TIMEOUT_NONE,
3492 MACH_PORT_NULL);
3493 if(r != MACH_MSG_SUCCESS)
3494 ABORT("mach_msg failed in GC_mprotect_thread_reply");
3497 void GC_mprotect_stop() {
3498 GC_mprotect_thread_notify(ID_STOP);
3500 void GC_mprotect_resume() {
3501 GC_mprotect_thread_notify(ID_RESUME);
3504 #else /* !THREADS */
3505 /* The compiler should optimize away any GC_mprotect_state computations */
3506 #define GC_mprotect_state GC_MP_NORMAL
3507 #endif
3509 static void *GC_mprotect_thread(void *arg) {
3510 mach_msg_return_t r;
3511 /* These two structures contain some private kernel data. We don't need to
3512 access any of it so we don't bother defining a proper struct. The
3513 correct definitions are in the xnu source code. */
3514 struct {
3515 mach_msg_header_t head;
3516 char data[256];
3517 } reply;
3518 struct {
3519 mach_msg_header_t head;
3520 mach_msg_body_t msgh_body;
3521 char data[1024];
3522 } msg;
3524 mach_msg_id_t id;
3526 GC_darwin_register_mach_handler_thread(mach_thread_self());
3528 for(;;) {
3529 r = mach_msg(
3530 &msg.head,
3531 MACH_RCV_MSG|MACH_RCV_LARGE|
3532 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3534 sizeof(msg),
3535 GC_ports.exception,
3536 GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3537 MACH_PORT_NULL);
3539 id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3541 #if defined(THREADS)
3542 if(GC_mprotect_state == GC_MP_DISCARDING) {
3543 if(r == MACH_RCV_TIMED_OUT) {
3544 GC_mprotect_state = GC_MP_STOPPED;
3545 GC_mprotect_thread_reply();
3546 continue;
3548 if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3549 ABORT("out of order mprotect thread request");
3551 #endif
3553 if(r != MACH_MSG_SUCCESS) {
3554 GC_err_printf2("mach_msg failed with %d %s\n",
3555 (int)r,mach_error_string(r));
3556 ABORT("mach_msg failed");
3559 switch(id) {
3560 #if defined(THREADS)
3561 case ID_STOP:
3562 if(GC_mprotect_state != GC_MP_NORMAL)
3563 ABORT("Called mprotect_stop when state wasn't normal");
3564 GC_mprotect_state = GC_MP_DISCARDING;
3565 break;
3566 case ID_RESUME:
3567 if(GC_mprotect_state != GC_MP_STOPPED)
3568 ABORT("Called mprotect_resume when state wasn't stopped");
3569 GC_mprotect_state = GC_MP_NORMAL;
3570 GC_mprotect_thread_reply();
3571 break;
3572 #endif /* THREADS */
3573 default:
3574 /* Handle the message (calls catch_exception_raise) */
3575 if(!exc_server(&msg.head,&reply.head))
3576 ABORT("exc_server failed");
3577 /* Send the reply */
3578 r = mach_msg(
3579 &reply.head,
3580 MACH_SEND_MSG,
3581 reply.head.msgh_size,
3583 MACH_PORT_NULL,
3584 MACH_MSG_TIMEOUT_NONE,
3585 MACH_PORT_NULL);
3586 if(r != MACH_MSG_SUCCESS) {
3587 /* This will fail if the thread dies, but the thread shouldn't
3588 die... */
3589 #ifdef BROKEN_EXCEPTION_HANDLING
3590 GC_err_printf2(
3591 "mach_msg failed with %d %s while sending exc reply\n",
3592 (int)r,mach_error_string(r));
3593 #else
3594 ABORT("mach_msg failed while sending exception reply");
3595 #endif
3597 } /* switch */
3598 } /* for(;;) */
3599 /* NOT REACHED */
3600 return NULL;
3603 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3604 be going throught the mach exception handler. However, it seems a SIGBUS is
3605 occasionally sent for some unknown reason. Even more odd, it seems to be
3606 meaningless and safe to ignore. */
3607 #ifdef BROKEN_EXCEPTION_HANDLING
3609 typedef void (* SIG_PF)();
3610 static SIG_PF GC_old_bus_handler;
3612 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3613 Even if this doesn't get updated property, it isn't really a problem */
3614 static int GC_sigbus_count;
3616 static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3617 if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3619 /* Ugh... some seem safe to ignore, but too many in a row probably means
3620 trouble. GC_sigbus_count is reset for each mach exception that is
3621 handled */
3622 if(GC_sigbus_count >= 8) {
3623 ABORT("Got more than 8 SIGBUSs in a row!");
3624 } else {
3625 GC_sigbus_count++;
3626 GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3629 #endif /* BROKEN_EXCEPTION_HANDLING */
3631 void GC_dirty_init() {
3632 kern_return_t r;
3633 mach_port_t me;
3634 pthread_t thread;
3635 pthread_attr_t attr;
3636 exception_mask_t mask;
3638 # ifdef PRINTSTATS
3639 GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3640 "implementation\n");
3641 # endif
3642 # ifdef BROKEN_EXCEPTION_HANDLING
3643 GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3644 "exception handling bugs.\n");
3645 # endif
3646 GC_dirty_maintained = TRUE;
3647 if (GC_page_size % HBLKSIZE != 0) {
3648 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3649 ABORT("Page size not multiple of HBLKSIZE");
3652 GC_task_self = me = mach_task_self();
3654 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3655 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3657 r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3658 MACH_MSG_TYPE_MAKE_SEND);
3659 if(r != KERN_SUCCESS)
3660 ABORT("mach_port_insert_right failed (exception port)");
3662 #if defined(THREADS)
3663 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3664 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3665 #endif
3667 /* The exceptions we want to catch */
3668 mask = EXC_MASK_BAD_ACCESS;
3670 r = task_get_exception_ports(
3672 mask,
3673 GC_old_exc_ports.masks,
3674 &GC_old_exc_ports.count,
3675 GC_old_exc_ports.ports,
3676 GC_old_exc_ports.behaviors,
3677 GC_old_exc_ports.flavors
3679 if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3681 r = task_set_exception_ports(
3683 mask,
3684 GC_ports.exception,
3685 EXCEPTION_DEFAULT,
3686 GC_MACH_THREAD_STATE
3688 if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3690 if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3691 if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3692 ABORT("pthread_attr_setdetachedstate failed");
3694 # undef pthread_create
3695 /* This will call the real pthread function, not our wrapper */
3696 if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3697 ABORT("pthread_create failed");
3698 pthread_attr_destroy(&attr);
3700 /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3701 #ifdef BROKEN_EXCEPTION_HANDLING
3703 struct sigaction sa, oldsa;
3704 sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3705 sigemptyset(&sa.sa_mask);
3706 sa.sa_flags = SA_RESTART|SA_SIGINFO;
3707 if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3708 GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3709 if (GC_old_bus_handler != SIG_DFL) {
3710 # ifdef PRINTSTATS
3711 GC_err_printf0("Replaced other SIGBUS handler\n");
3712 # endif
3715 #endif /* BROKEN_EXCEPTION_HANDLING */
3718 /* The source code for Apple's GDB was used as a reference for the exception
3719 forwarding code. This code is similar to be GDB code only because there is
3720 only one way to do it. */
3721 static kern_return_t GC_forward_exception(
3722 mach_port_t thread,
3723 mach_port_t task,
3724 exception_type_t exception,
3725 exception_data_t data,
3726 mach_msg_type_number_t data_count
3728 int i;
3729 kern_return_t r;
3730 mach_port_t port;
3731 exception_behavior_t behavior;
3732 thread_state_flavor_t flavor;
3734 thread_state_t thread_state;
3735 mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3737 for(i=0;i<GC_old_exc_ports.count;i++)
3738 if(GC_old_exc_ports.masks[i] & (1 << exception))
3739 break;
3740 if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3742 port = GC_old_exc_ports.ports[i];
3743 behavior = GC_old_exc_ports.behaviors[i];
3744 flavor = GC_old_exc_ports.flavors[i];
3746 if(behavior != EXCEPTION_DEFAULT) {
3747 r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3748 if(r != KERN_SUCCESS)
3749 ABORT("thread_get_state failed in forward_exception");
3752 switch(behavior) {
3753 case EXCEPTION_DEFAULT:
3754 r = exception_raise(port,thread,task,exception,data,data_count);
3755 break;
3756 case EXCEPTION_STATE:
3757 r = exception_raise_state(port,thread,task,exception,data,
3758 data_count,&flavor,thread_state,thread_state_count,
3759 thread_state,&thread_state_count);
3760 break;
3761 case EXCEPTION_STATE_IDENTITY:
3762 r = exception_raise_state_identity(port,thread,task,exception,data,
3763 data_count,&flavor,thread_state,thread_state_count,
3764 thread_state,&thread_state_count);
3765 break;
3766 default:
3767 r = KERN_FAILURE; /* make gcc happy */
3768 ABORT("forward_exception: unknown behavior");
3769 break;
3772 if(behavior != EXCEPTION_DEFAULT) {
3773 r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3774 if(r != KERN_SUCCESS)
3775 ABORT("thread_set_state failed in forward_exception");
3778 return r;
3781 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3783 /* This violates the namespace rules but there isn't anything that can be done
3784 about it. The exception handling stuff is hard coded to call this */
3785 kern_return_t
3786 catch_exception_raise(
3787 mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3788 exception_type_t exception,exception_data_t code,
3789 mach_msg_type_number_t code_count
3791 kern_return_t r;
3792 char *addr;
3793 struct hblk *h;
3794 int i;
3795 # if defined(POWERPC)
3796 # if CPP_WORDSZ == 32
3797 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3798 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3799 ppc_exception_state_t exc_state;
3800 # else
3801 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64;
3802 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT;
3803 ppc_exception_state64_t exc_state;
3804 # endif
3805 # elif defined(I386) || defined(X86_64)
3806 # if CPP_WORDSZ == 32
3807 thread_state_flavor_t flavor = x86_EXCEPTION_STATE32;
3808 mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE32_COUNT;
3809 x86_exception_state32_t exc_state;
3810 # else
3811 thread_state_flavor_t flavor = x86_EXCEPTION_STATE64;
3812 mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE64_COUNT;
3813 x86_exception_state64_t exc_state;
3814 # endif
3815 # else
3816 # error FIXME for non-ppc darwin
3817 # endif
3820 if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3821 #ifdef DEBUG_EXCEPTION_HANDLING
3822 /* We aren't interested, pass it on to the old handler */
3823 GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3824 exception,
3825 code_count > 0 ? code[0] : -1,
3826 code_count > 1 ? code[1] : -1);
3827 #endif
3828 return FWD();
3831 r = thread_get_state(thread,flavor,
3832 (natural_t*)&exc_state,&exc_state_count);
3833 if(r != KERN_SUCCESS) {
3834 /* The thread is supposed to be suspended while the exception handler
3835 is called. This shouldn't fail. */
3836 #ifdef BROKEN_EXCEPTION_HANDLING
3837 GC_err_printf0("thread_get_state failed in "
3838 "catch_exception_raise\n");
3839 return KERN_SUCCESS;
3840 #else
3841 ABORT("thread_get_state failed in catch_exception_raise");
3842 #endif
3845 /* This is the address that caused the fault */
3846 #if defined(POWERPC)
3847 addr = (char*) exc_state. THREAD_FLD(dar);
3848 #elif defined (I386) || defined (X86_64)
3849 addr = (char*) exc_state. THREAD_FLD(faultvaddr);
3850 #else
3851 # error FIXME for non POWERPC/I386
3852 #endif
3854 if((HDR(addr)) == 0) {
3855 /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3856 KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3857 a bunch in a row before doing anything about it. If a "real" fault
3858 ever occurres it'll just keep faulting over and over and we'll hit
3859 the limit pretty quickly. */
3860 #ifdef BROKEN_EXCEPTION_HANDLING
3861 static char *last_fault;
3862 static int last_fault_count;
3864 if(addr != last_fault) {
3865 last_fault = addr;
3866 last_fault_count = 0;
3868 if(++last_fault_count < 32) {
3869 if(last_fault_count == 1)
3870 GC_err_printf1(
3871 "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3872 addr);
3873 return KERN_SUCCESS;
3876 GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3877 /* Can't pass it along to the signal handler because that is
3878 ignoring SIGBUS signals. We also shouldn't call ABORT here as
3879 signals don't always work too well from the exception handler. */
3880 GC_err_printf0("Aborting\n");
3881 exit(EXIT_FAILURE);
3882 #else /* BROKEN_EXCEPTION_HANDLING */
3883 /* Pass it along to the next exception handler
3884 (which should call SIGBUS/SIGSEGV) */
3885 return FWD();
3886 #endif /* !BROKEN_EXCEPTION_HANDLING */
3889 #ifdef BROKEN_EXCEPTION_HANDLING
3890 /* Reset the number of consecutive SIGBUSs */
3891 GC_sigbus_count = 0;
3892 #endif
3894 if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3895 h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3896 UNPROTECT(h, GC_page_size);
3897 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3898 register int index = PHT_HASH(h+i);
3899 async_set_pht_entry_from_index(GC_dirty_pages, index);
3901 } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3902 /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3903 when we're just going to PROTECT() it again later. The thread
3904 will just fault again once it resumes */
3905 } else {
3906 /* Shouldn't happen, i don't think */
3907 GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3908 return FWD();
3910 return KERN_SUCCESS;
3912 #undef FWD
3914 /* These should never be called, but just in case... */
3915 kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3916 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3917 int flavor, thread_state_t old_state, int old_stateCnt,
3918 thread_state_t new_state, int new_stateCnt)
3920 ABORT("catch_exception_raise_state");
3921 return(KERN_INVALID_ARGUMENT);
3923 kern_return_t catch_exception_raise_state_identity(
3924 mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3925 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3926 int flavor, thread_state_t old_state, int old_stateCnt,
3927 thread_state_t new_state, int new_stateCnt)
3929 ABORT("catch_exception_raise_state_identity");
3930 return(KERN_INVALID_ARGUMENT);
3934 #endif /* DARWIN && MPROTECT_VDB */
3936 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3937 int GC_incremental_protection_needs()
3939 return GC_PROTECTS_NONE;
3941 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3944 * Call stack save code for debugging.
3945 * Should probably be in mach_dep.c, but that requires reorganization.
3948 /* I suspect the following works for most X86 *nix variants, so */
3949 /* long as the frame pointer is explicitly stored. In the case of gcc, */
3950 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3951 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3952 # include <features.h>
3954 struct frame {
3955 struct frame *fr_savfp;
3956 long fr_savpc;
3957 long fr_arg[NARGS]; /* All the arguments go here. */
3959 #endif
3961 #if defined(SPARC)
3962 # if defined(LINUX)
3963 # include <features.h>
3965 struct frame {
3966 long fr_local[8];
3967 long fr_arg[6];
3968 struct frame *fr_savfp;
3969 long fr_savpc;
3970 # ifndef __arch64__
3971 char *fr_stret;
3972 # endif
3973 long fr_argd[6];
3974 long fr_argx[0];
3976 # else
3977 # if defined(SUNOS4)
3978 # include <machine/frame.h>
3979 # else
3980 # if defined (DRSNX)
3981 # include <sys/sparc/frame.h>
3982 # else
3983 # if defined(OPENBSD)
3984 # include <frame.h>
3985 # else
3986 # if defined(FREEBSD) || defined(NETBSD)
3987 # include <machine/frame.h>
3988 # else
3989 # include <sys/frame.h>
3990 # endif
3991 # endif
3992 # endif
3993 # endif
3994 # endif
3995 # if NARGS > 6
3996 --> We only know how to to get the first 6 arguments
3997 # endif
3998 #endif /* SPARC */
4000 #ifdef NEED_CALLINFO
4001 /* Fill in the pc and argument information for up to NFRAMES of my */
4002 /* callers. Ignore my frame and my callers frame. */
4004 #ifdef LINUX
4005 # include <unistd.h>
4006 #endif
4008 #endif /* NEED_CALLINFO */
4010 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
4011 # include <execinfo.h>
4012 #endif
4014 #ifdef SAVE_CALL_CHAIN
4016 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
4017 && defined(GC_HAVE_BUILTIN_BACKTRACE)
4019 #ifdef REDIRECT_MALLOC
4020 /* Deal with possible malloc calls in backtrace by omitting */
4021 /* the infinitely recursing backtrace. */
4022 # ifdef THREADS
4023 __thread /* If your compiler doesn't understand this */
4024 /* you could use something like pthread_getspecific. */
4025 # endif
4026 GC_in_save_callers = FALSE;
4027 #endif
4029 void GC_save_callers (info)
4030 struct callinfo info[NFRAMES];
4032 void * tmp_info[NFRAMES + 1];
4033 int npcs, i;
4034 # define IGNORE_FRAMES 1
4036 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
4037 /* points to our own frame. */
4038 # ifdef REDIRECT_MALLOC
4039 if (GC_in_save_callers) {
4040 info[0].ci_pc = (word)(&GC_save_callers);
4041 for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0;
4042 return;
4044 GC_in_save_callers = TRUE;
4045 # endif
4046 GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
4047 npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
4048 BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
4049 for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
4050 # ifdef REDIRECT_MALLOC
4051 GC_in_save_callers = FALSE;
4052 # endif
4055 #else /* No builtin backtrace; do it ourselves */
4057 #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4058 # define FR_SAVFP fr_fp
4059 # define FR_SAVPC fr_pc
4060 #else
4061 # define FR_SAVFP fr_savfp
4062 # define FR_SAVPC fr_savpc
4063 #endif
4065 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4066 # define BIAS 2047
4067 #else
4068 # define BIAS 0
4069 #endif
4071 void GC_save_callers (info)
4072 struct callinfo info[NFRAMES];
4074 struct frame *frame;
4075 struct frame *fp;
4076 int nframes = 0;
4077 # ifdef I386
4078 /* We assume this is turned on only with gcc as the compiler. */
4079 asm("movl %%ebp,%0" : "=r"(frame));
4080 fp = frame;
4081 # else
4082 frame = (struct frame *) GC_save_regs_in_stack ();
4083 fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4084 #endif
4086 for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4087 && (nframes < NFRAMES));
4088 fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4089 register int i;
4091 info[nframes].ci_pc = fp->FR_SAVPC;
4092 # if NARGS > 0
4093 for (i = 0; i < NARGS; i++) {
4094 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4096 # endif /* NARGS > 0 */
4098 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4101 #endif /* No builtin backtrace */
4103 #endif /* SAVE_CALL_CHAIN */
4105 #ifdef NEED_CALLINFO
4107 /* Print info to stderr. We do NOT hold the allocation lock */
4108 void GC_print_callers (info)
4109 struct callinfo info[NFRAMES];
4111 register int i;
4112 static int reentry_count = 0;
4113 GC_bool stop = FALSE;
4115 /* FIXME: This should probably use a different lock, so that we */
4116 /* become callable with or without the allocation lock. */
4117 LOCK();
4118 ++reentry_count;
4119 UNLOCK();
4121 # if NFRAMES == 1
4122 GC_err_printf0("\tCaller at allocation:\n");
4123 # else
4124 GC_err_printf0("\tCall chain at allocation:\n");
4125 # endif
4126 for (i = 0; i < NFRAMES && !stop ; i++) {
4127 if (info[i].ci_pc == 0) break;
4128 # if NARGS > 0
4130 int j;
4132 GC_err_printf0("\t\targs: ");
4133 for (j = 0; j < NARGS; j++) {
4134 if (j != 0) GC_err_printf0(", ");
4135 GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4136 ~(info[i].ci_arg[j]));
4138 GC_err_printf0("\n");
4140 # endif
4141 if (reentry_count > 1) {
4142 /* We were called during an allocation during */
4143 /* a previous GC_print_callers call; punt. */
4144 GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4145 continue;
4148 # ifdef LINUX
4149 FILE *pipe;
4150 # endif
4151 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4152 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4153 char **sym_name =
4154 backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4155 char *name = sym_name[0];
4156 # else
4157 char buf[40];
4158 char *name = buf;
4159 sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4160 # endif
4161 # if defined(LINUX) && !defined(SMALL_CONFIG)
4162 /* Try for a line number. */
4164 # define EXE_SZ 100
4165 static char exe_name[EXE_SZ];
4166 # define CMD_SZ 200
4167 char cmd_buf[CMD_SZ];
4168 # define RESULT_SZ 200
4169 static char result_buf[RESULT_SZ];
4170 size_t result_len;
4171 char *old_preload;
4172 # define PRELOAD_SZ 200
4173 char preload_buf[PRELOAD_SZ];
4174 static GC_bool found_exe_name = FALSE;
4175 static GC_bool will_fail = FALSE;
4176 int ret_code;
4177 /* Try to get it via a hairy and expensive scheme. */
4178 /* First we get the name of the executable: */
4179 if (will_fail) goto out;
4180 if (!found_exe_name) {
4181 ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4182 if (ret_code < 0 || ret_code >= EXE_SZ
4183 || exe_name[0] != '/') {
4184 will_fail = TRUE; /* Dont try again. */
4185 goto out;
4187 exe_name[ret_code] = '\0';
4188 found_exe_name = TRUE;
4190 /* Then we use popen to start addr2line -e <exe> <addr> */
4191 /* There are faster ways to do this, but hopefully this */
4192 /* isn't time critical. */
4193 sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4194 (unsigned long)info[i].ci_pc);
4195 old_preload = getenv ("LD_PRELOAD");
4196 if (0 != old_preload) {
4197 if (strlen (old_preload) >= PRELOAD_SZ) {
4198 will_fail = TRUE;
4199 goto out;
4201 strcpy (preload_buf, old_preload);
4202 unsetenv ("LD_PRELOAD");
4204 pipe = popen(cmd_buf, "r");
4205 if (0 != old_preload
4206 && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4207 WARN("Failed to reset LD_PRELOAD\n", 0);
4209 if (pipe == NULL
4210 || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4211 == 0) {
4212 if (pipe != NULL) pclose(pipe);
4213 will_fail = TRUE;
4214 goto out;
4216 if (result_buf[result_len - 1] == '\n') --result_len;
4217 result_buf[result_len] = 0;
4218 if (result_buf[0] == '?'
4219 || result_buf[result_len-2] == ':'
4220 && result_buf[result_len-1] == '0') {
4221 pclose(pipe);
4222 goto out;
4224 /* Get rid of embedded newline, if any. Test for "main" */
4226 char * nl = strchr(result_buf, '\n');
4227 if (nl != NULL && nl < result_buf + result_len) {
4228 *nl = ':';
4230 if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4231 stop = TRUE;
4234 if (result_len < RESULT_SZ - 25) {
4235 /* Add in hex address */
4236 sprintf(result_buf + result_len, " [0x%lx]",
4237 (unsigned long)info[i].ci_pc);
4239 name = result_buf;
4240 pclose(pipe);
4241 out:;
4243 # endif /* LINUX */
4244 GC_err_printf1("\t\t%s\n", name);
4245 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4246 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4247 free(sym_name); /* May call GC_free; that's OK */
4248 # endif
4251 LOCK();
4252 --reentry_count;
4253 UNLOCK();
4256 #endif /* NEED_CALLINFO */
4260 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4262 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4263 addresses in FIND_LEAK output. */
4265 static word dump_maps(char *maps)
4267 GC_err_write(maps, strlen(maps));
4268 return 1;
4271 void GC_print_address_map()
4273 GC_err_printf0("---------- Begin address map ----------\n");
4274 GC_apply_to_maps(dump_maps);
4275 GC_err_printf0("---------- End address map ----------\n");
4278 #endif