1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
36 #include "coretypes.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
43 #include "insn-config.h"
52 #include "cfglayout.h"
55 /* cleanup_cfg maintains following flags for each basic block. */
59 /* Set if BB is the forwarder block to avoid too many
60 forwarder_block_p calls. */
61 BB_FORWARDER_BLOCK
= 1,
62 BB_NONTHREADABLE_BLOCK
= 2
65 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
66 #define BB_SET_FLAG(BB, FLAG) \
67 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
68 #define BB_CLEAR_FLAG(BB, FLAG) \
69 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
71 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
73 /* Set to true when we are running first pass of try_optimize_cfg loop. */
74 static bool first_pass
;
75 static bool try_crossjump_to_edge (int, edge
, edge
);
76 static bool try_crossjump_bb (int, basic_block
);
77 static bool outgoing_edges_match (int, basic_block
, basic_block
);
78 static int flow_find_cross_jump (int, basic_block
, basic_block
, rtx
*, rtx
*);
79 static bool insns_match_p (int, rtx
, rtx
);
81 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
82 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
83 static bool try_optimize_cfg (int);
84 static bool try_simplify_condjump (basic_block
);
85 static bool try_forward_edges (int, basic_block
);
86 static edge
thread_jump (int, edge
, basic_block
);
87 static bool mark_effect (rtx
, bitmap
);
88 static void notice_new_block (basic_block
);
89 static void update_forwarder_flag (basic_block
);
90 static int mentions_nonequal_regs (rtx
*, void *);
91 static void merge_memattrs (rtx
, rtx
);
93 /* Set flags for newly created block. */
96 notice_new_block (basic_block bb
)
101 if (forwarder_block_p (bb
))
102 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
105 /* Recompute forwarder flag after block has been modified. */
108 update_forwarder_flag (basic_block bb
)
110 if (forwarder_block_p (bb
))
111 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
113 BB_CLEAR_FLAG (bb
, BB_FORWARDER_BLOCK
);
116 /* Simplify a conditional jump around an unconditional jump.
117 Return true if something changed. */
120 try_simplify_condjump (basic_block cbranch_block
)
122 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
123 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
126 /* Verify that there are exactly two successors. */
127 if (!cbranch_block
->succ
128 || !cbranch_block
->succ
->succ_next
129 || cbranch_block
->succ
->succ_next
->succ_next
)
132 /* Verify that we've got a normal conditional branch at the end
134 cbranch_insn
= BB_END (cbranch_block
);
135 if (!any_condjump_p (cbranch_insn
))
138 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
139 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
141 /* The next block must not have multiple predecessors, must not
142 be the last block in the function, and must contain just the
143 unconditional jump. */
144 jump_block
= cbranch_fallthru_edge
->dest
;
145 if (jump_block
->pred
->pred_next
146 || jump_block
->next_bb
== EXIT_BLOCK_PTR
147 || !FORWARDER_BLOCK_P (jump_block
))
149 jump_dest_block
= jump_block
->succ
->dest
;
151 /* If we are partitioning hot/cold basic blocks, we don't want to
152 mess up unconditional or indirect jumps that cross between hot
153 and cold sections. */
155 if (flag_reorder_blocks_and_partition
156 && (jump_block
->partition
!= jump_dest_block
->partition
157 || cbranch_jump_edge
->crossing_edge
))
160 /* The conditional branch must target the block after the
161 unconditional branch. */
162 cbranch_dest_block
= cbranch_jump_edge
->dest
;
164 if (cbranch_dest_block
== EXIT_BLOCK_PTR
165 || !can_fallthru (jump_block
, cbranch_dest_block
))
168 /* Invert the conditional branch. */
169 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
173 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
174 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
176 /* Success. Update the CFG to match. Note that after this point
177 the edge variable names appear backwards; the redirection is done
178 this way to preserve edge profile data. */
179 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
181 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
183 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
184 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
185 update_br_prob_note (cbranch_block
);
187 /* Delete the block with the unconditional jump, and clean up the mess. */
188 delete_basic_block (jump_block
);
189 tidy_fallthru_edge (cbranch_jump_edge
);
194 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
195 on register. Used by jump threading. */
198 mark_effect (rtx exp
, regset nonequal
)
202 switch (GET_CODE (exp
))
204 /* In case we do clobber the register, mark it as equal, as we know the
205 value is dead so it don't have to match. */
207 if (REG_P (XEXP (exp
, 0)))
209 dest
= XEXP (exp
, 0);
210 regno
= REGNO (dest
);
211 CLEAR_REGNO_REG_SET (nonequal
, regno
);
212 if (regno
< FIRST_PSEUDO_REGISTER
)
214 int n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
216 CLEAR_REGNO_REG_SET (nonequal
, regno
+ n
);
222 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
224 dest
= SET_DEST (exp
);
229 regno
= REGNO (dest
);
230 SET_REGNO_REG_SET (nonequal
, regno
);
231 if (regno
< FIRST_PSEUDO_REGISTER
)
233 int n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
235 SET_REGNO_REG_SET (nonequal
, regno
+ n
);
244 /* Return nonzero if X is a register set in regset DATA.
245 Called via for_each_rtx. */
247 mentions_nonequal_regs (rtx
*x
, void *data
)
249 regset nonequal
= (regset
) data
;
255 if (REGNO_REG_SET_P (nonequal
, regno
))
257 if (regno
< FIRST_PSEUDO_REGISTER
)
259 int n
= hard_regno_nregs
[regno
][GET_MODE (*x
)];
261 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
267 /* Attempt to prove that the basic block B will have no side effects and
268 always continues in the same edge if reached via E. Return the edge
269 if exist, NULL otherwise. */
272 thread_jump (int mode
, edge e
, basic_block b
)
274 rtx set1
, set2
, cond1
, cond2
, insn
;
275 enum rtx_code code1
, code2
, reversed_code2
;
276 bool reverse1
= false;
281 if (BB_FLAGS (b
) & BB_NONTHREADABLE_BLOCK
)
284 /* At the moment, we do handle only conditional jumps, but later we may
285 want to extend this code to tablejumps and others. */
286 if (!e
->src
->succ
->succ_next
|| e
->src
->succ
->succ_next
->succ_next
)
288 if (!b
->succ
|| !b
->succ
->succ_next
|| b
->succ
->succ_next
->succ_next
)
290 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
294 /* Second branch must end with onlyjump, as we will eliminate the jump. */
295 if (!any_condjump_p (BB_END (e
->src
)))
298 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
300 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
304 set1
= pc_set (BB_END (e
->src
));
305 set2
= pc_set (BB_END (b
));
306 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
307 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
310 cond1
= XEXP (SET_SRC (set1
), 0);
311 cond2
= XEXP (SET_SRC (set2
), 0);
313 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
315 code1
= GET_CODE (cond1
);
317 code2
= GET_CODE (cond2
);
318 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
320 if (!comparison_dominates_p (code1
, code2
)
321 && !comparison_dominates_p (code1
, reversed_code2
))
324 /* Ensure that the comparison operators are equivalent.
325 ??? This is far too pessimistic. We should allow swapped operands,
326 different CCmodes, or for example comparisons for interval, that
327 dominate even when operands are not equivalent. */
328 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
329 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
332 /* Short circuit cases where block B contains some side effects, as we can't
334 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
335 insn
= NEXT_INSN (insn
))
336 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
338 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
344 /* First process all values computed in the source basic block. */
345 for (insn
= NEXT_INSN (BB_HEAD (e
->src
)); insn
!= NEXT_INSN (BB_END (e
->src
));
346 insn
= NEXT_INSN (insn
))
348 cselib_process_insn (insn
);
350 nonequal
= BITMAP_XMALLOC();
351 CLEAR_REG_SET (nonequal
);
353 /* Now assume that we've continued by the edge E to B and continue
354 processing as if it were same basic block.
355 Our goal is to prove that whole block is an NOOP. */
357 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
358 insn
= NEXT_INSN (insn
))
362 rtx pat
= PATTERN (insn
);
364 if (GET_CODE (pat
) == PARALLEL
)
366 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
367 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
370 failed
|= mark_effect (pat
, nonequal
);
373 cselib_process_insn (insn
);
376 /* Later we should clear nonequal of dead registers. So far we don't
377 have life information in cfg_cleanup. */
380 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
384 /* cond2 must not mention any register that is not equal to the
386 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
389 /* In case liveness information is available, we need to prove equivalence
390 only of the live values. */
391 if (mode
& CLEANUP_UPDATE_LIFE
)
392 AND_REG_SET (nonequal
, b
->global_live_at_end
);
394 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, goto failed_exit
;);
396 BITMAP_XFREE (nonequal
);
398 if ((comparison_dominates_p (code1
, code2
) != 0)
399 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
400 return BRANCH_EDGE (b
);
402 return FALLTHRU_EDGE (b
);
405 BITMAP_XFREE (nonequal
);
410 /* Attempt to forward edges leaving basic block B.
411 Return true if successful. */
414 try_forward_edges (int mode
, basic_block b
)
416 bool changed
= false;
417 edge e
, next
, *threaded_edges
= NULL
;
419 /* If we are partitioning hot/cold basic blocks, we don't want to
420 mess up unconditional or indirect jumps that cross between hot
421 and cold sections. */
423 if (flag_reorder_blocks_and_partition
424 && find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
))
427 for (e
= b
->succ
; e
; e
= next
)
429 basic_block target
, first
;
431 bool threaded
= false;
432 int nthreaded_edges
= 0;
433 bool may_thread
= first_pass
| (b
->flags
& BB_DIRTY
);
437 /* Skip complex edges because we don't know how to update them.
439 Still handle fallthru edges, as we can succeed to forward fallthru
440 edge to the same place as the branch edge of conditional branch
441 and turn conditional branch to an unconditional branch. */
442 if (e
->flags
& EDGE_COMPLEX
)
445 target
= first
= e
->dest
;
448 while (counter
< n_basic_blocks
)
450 basic_block new_target
= NULL
;
451 bool new_target_threaded
= false;
452 may_thread
|= target
->flags
& BB_DIRTY
;
454 if (FORWARDER_BLOCK_P (target
)
455 && target
->succ
->dest
!= EXIT_BLOCK_PTR
)
457 /* Bypass trivial infinite loops. */
458 if (target
== target
->succ
->dest
)
459 counter
= n_basic_blocks
;
460 new_target
= target
->succ
->dest
;
463 /* Allow to thread only over one edge at time to simplify updating
465 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
467 edge t
= thread_jump (mode
, e
, target
);
471 threaded_edges
= xmalloc (sizeof (*threaded_edges
)
477 /* Detect an infinite loop across blocks not
478 including the start block. */
479 for (i
= 0; i
< nthreaded_edges
; ++i
)
480 if (threaded_edges
[i
] == t
)
482 if (i
< nthreaded_edges
)
484 counter
= n_basic_blocks
;
489 /* Detect an infinite loop across the start block. */
493 if (nthreaded_edges
>= n_basic_blocks
)
495 threaded_edges
[nthreaded_edges
++] = t
;
497 new_target
= t
->dest
;
498 new_target_threaded
= true;
505 /* Avoid killing of loop pre-headers, as it is the place loop
506 optimizer wants to hoist code to.
508 For fallthru forwarders, the LOOP_BEG note must appear between
509 the header of block and CODE_LABEL of the loop, for non forwarders
510 it must appear before the JUMP_INSN. */
511 if ((mode
& CLEANUP_PRE_LOOP
) && optimize
)
513 rtx insn
= (target
->succ
->flags
& EDGE_FALLTHRU
514 ? BB_HEAD (target
) : prev_nonnote_insn (BB_END (target
)));
517 insn
= NEXT_INSN (insn
);
519 for (; insn
&& !LABEL_P (insn
) && !INSN_P (insn
);
520 insn
= NEXT_INSN (insn
))
522 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
528 /* Do not clean up branches to just past the end of a loop
529 at this time; it can mess up the loop optimizer's
530 recognition of some patterns. */
532 insn
= PREV_INSN (BB_HEAD (target
));
533 if (insn
&& NOTE_P (insn
)
534 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
540 threaded
|= new_target_threaded
;
543 if (counter
>= n_basic_blocks
)
546 fprintf (dump_file
, "Infinite loop in BB %i.\n",
549 else if (target
== first
)
550 ; /* We didn't do anything. */
553 /* Save the values now, as the edge may get removed. */
554 gcov_type edge_count
= e
->count
;
555 int edge_probability
= e
->probability
;
559 /* Don't force if target is exit block. */
560 if (threaded
&& target
!= EXIT_BLOCK_PTR
)
562 notice_new_block (redirect_edge_and_branch_force (e
, target
));
564 fprintf (dump_file
, "Conditionals threaded.\n");
566 else if (!redirect_edge_and_branch (e
, target
))
570 "Forwarding edge %i->%i to %i failed.\n",
571 b
->index
, e
->dest
->index
, target
->index
);
575 /* We successfully forwarded the edge. Now update profile
576 data: for each edge we traversed in the chain, remove
577 the original edge's execution count. */
578 edge_frequency
= ((edge_probability
* b
->frequency
579 + REG_BR_PROB_BASE
/ 2)
582 if (!FORWARDER_BLOCK_P (b
) && forwarder_block_p (b
))
583 BB_SET_FLAG (b
, BB_FORWARDER_BLOCK
);
589 first
->count
-= edge_count
;
590 if (first
->count
< 0)
592 first
->frequency
-= edge_frequency
;
593 if (first
->frequency
< 0)
594 first
->frequency
= 0;
595 if (first
->succ
->succ_next
)
599 if (n
>= nthreaded_edges
)
601 t
= threaded_edges
[n
++];
604 if (first
->frequency
)
605 prob
= edge_frequency
* REG_BR_PROB_BASE
/ first
->frequency
;
608 if (prob
> t
->probability
)
609 prob
= t
->probability
;
610 t
->probability
-= prob
;
611 prob
= REG_BR_PROB_BASE
- prob
;
614 first
->succ
->probability
= REG_BR_PROB_BASE
;
615 first
->succ
->succ_next
->probability
= 0;
618 for (e
= first
->succ
; e
; e
= e
->succ_next
)
619 e
->probability
= ((e
->probability
* REG_BR_PROB_BASE
)
621 update_br_prob_note (first
);
625 /* It is possible that as the result of
626 threading we've removed edge as it is
627 threaded to the fallthru edge. Avoid
628 getting out of sync. */
629 if (n
< nthreaded_edges
630 && first
== threaded_edges
[n
]->src
)
635 t
->count
-= edge_count
;
640 while (first
!= target
);
647 free (threaded_edges
);
652 /* Blocks A and B are to be merged into a single block. A has no incoming
653 fallthru edge, so it can be moved before B without adding or modifying
654 any jumps (aside from the jump from A to B). */
657 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
661 /* If we are partitioning hot/cold basic blocks, we don't want to
662 mess up unconditional or indirect jumps that cross between hot
663 and cold sections. */
665 if (flag_reorder_blocks_and_partition
666 && (a
->partition
!= b
->partition
667 || find_reg_note (BB_END (a
), REG_CROSSING_JUMP
, NULL_RTX
)))
670 barrier
= next_nonnote_insn (BB_END (a
));
671 if (!BARRIER_P (barrier
))
673 delete_insn (barrier
);
675 /* Move block and loop notes out of the chain so that we do not
678 ??? A better solution would be to squeeze out all the non-nested notes
679 and adjust the block trees appropriately. Even better would be to have
680 a tighter connection between block trees and rtl so that this is not
682 if (squeeze_notes (&BB_HEAD (a
), &BB_END (a
)))
685 /* Scramble the insn chain. */
686 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
687 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
688 a
->flags
|= BB_DIRTY
;
691 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
694 /* Swap the records for the two blocks around. */
697 link_block (a
, b
->prev_bb
);
699 /* Now blocks A and B are contiguous. Merge them. */
703 /* Blocks A and B are to be merged into a single block. B has no outgoing
704 fallthru edge, so it can be moved after A without adding or modifying
705 any jumps (aside from the jump from A to B). */
708 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
710 rtx barrier
, real_b_end
;
713 /* If we are partitioning hot/cold basic blocks, we don't want to
714 mess up unconditional or indirect jumps that cross between hot
715 and cold sections. */
717 if (flag_reorder_blocks_and_partition
718 && (find_reg_note (BB_END (a
), REG_CROSSING_JUMP
, NULL_RTX
)
719 || a
->partition
!= b
->partition
))
722 real_b_end
= BB_END (b
);
724 /* If there is a jump table following block B temporarily add the jump table
725 to block B so that it will also be moved to the correct location. */
726 if (tablejump_p (BB_END (b
), &label
, &table
)
727 && prev_active_insn (label
) == BB_END (b
))
732 /* There had better have been a barrier there. Delete it. */
733 barrier
= NEXT_INSN (BB_END (b
));
734 if (barrier
&& BARRIER_P (barrier
))
735 delete_insn (barrier
);
737 /* Move block and loop notes out of the chain so that we do not
740 ??? A better solution would be to squeeze out all the non-nested notes
741 and adjust the block trees appropriately. Even better would be to have
742 a tighter connection between block trees and rtl so that this is not
744 if (squeeze_notes (&BB_HEAD (b
), &BB_END (b
)))
747 /* Scramble the insn chain. */
748 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
750 /* Restore the real end of b. */
751 BB_END (b
) = real_b_end
;
754 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
757 /* Now blocks A and B are contiguous. Merge them. */
761 /* Attempt to merge basic blocks that are potentially non-adjacent.
762 Return NULL iff the attempt failed, otherwise return basic block
763 where cleanup_cfg should continue. Because the merging commonly
764 moves basic block away or introduces another optimization
765 possibility, return basic block just before B so cleanup_cfg don't
768 It may be good idea to return basic block before C in the case
769 C has been moved after B and originally appeared earlier in the
770 insn sequence, but we have no information available about the
771 relative ordering of these two. Hopefully it is not too common. */
774 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
778 /* If we are partitioning hot/cold basic blocks, we don't want to
779 mess up unconditional or indirect jumps that cross between hot
780 and cold sections. */
782 if (flag_reorder_blocks_and_partition
783 && (find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
)
784 || find_reg_note (BB_END (c
), REG_CROSSING_JUMP
, NULL_RTX
)
785 || b
->partition
!= c
->partition
))
790 /* If B has a fallthru edge to C, no need to move anything. */
791 if (e
->flags
& EDGE_FALLTHRU
)
793 int b_index
= b
->index
, c_index
= c
->index
;
795 update_forwarder_flag (b
);
798 fprintf (dump_file
, "Merged %d and %d without moving.\n",
801 return b
->prev_bb
== ENTRY_BLOCK_PTR
? b
: b
->prev_bb
;
804 /* Otherwise we will need to move code around. Do that only if expensive
805 transformations are allowed. */
806 else if (mode
& CLEANUP_EXPENSIVE
)
808 edge tmp_edge
, b_fallthru_edge
;
809 bool c_has_outgoing_fallthru
;
810 bool b_has_incoming_fallthru
;
812 /* Avoid overactive code motion, as the forwarder blocks should be
813 eliminated by edge redirection instead. One exception might have
814 been if B is a forwarder block and C has no fallthru edge, but
815 that should be cleaned up by bb-reorder instead. */
816 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
819 /* We must make sure to not munge nesting of lexical blocks,
820 and loop notes. This is done by squeezing out all the notes
821 and leaving them there to lie. Not ideal, but functional. */
823 for (tmp_edge
= c
->succ
; tmp_edge
; tmp_edge
= tmp_edge
->succ_next
)
824 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
827 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
829 for (tmp_edge
= b
->pred
; tmp_edge
; tmp_edge
= tmp_edge
->pred_next
)
830 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
833 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
834 b_fallthru_edge
= tmp_edge
;
837 next
= next
->prev_bb
;
839 /* Otherwise, we're going to try to move C after B. If C does
840 not have an outgoing fallthru, then it can be moved
841 immediately after B without introducing or modifying jumps. */
842 if (! c_has_outgoing_fallthru
)
844 merge_blocks_move_successor_nojumps (b
, c
);
845 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
848 /* If B does not have an incoming fallthru, then it can be moved
849 immediately before C without introducing or modifying jumps.
850 C cannot be the first block, so we do not have to worry about
851 accessing a non-existent block. */
853 if (b_has_incoming_fallthru
)
857 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR
)
859 bb
= force_nonfallthru (b_fallthru_edge
);
861 notice_new_block (bb
);
864 merge_blocks_move_predecessor_nojumps (b
, c
);
865 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
872 /* Removes the memory attributes of MEM expression
873 if they are not equal. */
876 merge_memattrs (rtx x
, rtx y
)
885 if (x
== 0 || y
== 0)
890 if (code
!= GET_CODE (y
))
893 if (GET_MODE (x
) != GET_MODE (y
))
896 if (code
== MEM
&& MEM_ATTRS (x
) != MEM_ATTRS (y
))
900 else if (! MEM_ATTRS (y
))
904 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
906 set_mem_alias_set (x
, 0);
907 set_mem_alias_set (y
, 0);
910 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
914 set_mem_offset (x
, 0);
915 set_mem_offset (y
, 0);
917 else if (MEM_OFFSET (x
) != MEM_OFFSET (y
))
919 set_mem_offset (x
, 0);
920 set_mem_offset (y
, 0);
923 set_mem_size (x
, MAX (MEM_SIZE (x
), MEM_SIZE (y
)));
924 set_mem_size (y
, MEM_SIZE (x
));
926 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
927 set_mem_align (y
, MEM_ALIGN (x
));
931 fmt
= GET_RTX_FORMAT (code
);
932 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
937 /* Two vectors must have the same length. */
938 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
941 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
942 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
947 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
954 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
957 insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx i1
, rtx i2
)
961 /* Verify that I1 and I2 are equivalent. */
962 if (GET_CODE (i1
) != GET_CODE (i2
))
968 if (GET_CODE (p1
) != GET_CODE (p2
))
971 /* If this is a CALL_INSN, compare register usage information.
972 If we don't check this on stack register machines, the two
973 CALL_INSNs might be merged leaving reg-stack.c with mismatching
974 numbers of stack registers in the same basic block.
975 If we don't check this on machines with delay slots, a delay slot may
976 be filled that clobbers a parameter expected by the subroutine.
978 ??? We take the simple route for now and assume that if they're
979 equal, they were constructed identically. */
982 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
983 CALL_INSN_FUNCTION_USAGE (i2
))
984 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
)))
988 /* If cross_jump_death_matters is not 0, the insn's mode
989 indicates whether or not the insn contains any stack-like
992 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
994 /* If register stack conversion has already been done, then
995 death notes must also be compared before it is certain that
996 the two instruction streams match. */
999 HARD_REG_SET i1_regset
, i2_regset
;
1001 CLEAR_HARD_REG_SET (i1_regset
);
1002 CLEAR_HARD_REG_SET (i2_regset
);
1004 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1005 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1006 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1008 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1009 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1010 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1012 GO_IF_HARD_REG_EQUAL (i1_regset
, i2_regset
, done
);
1021 if (reload_completed
1022 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1025 /* Do not do EQUIV substitution after reload. First, we're undoing the
1026 work of reload_cse. Second, we may be undoing the work of the post-
1027 reload splitting pass. */
1028 /* ??? Possibly add a new phase switch variable that can be used by
1029 targets to disallow the troublesome insns after splitting. */
1030 if (!reload_completed
)
1032 /* The following code helps take care of G++ cleanups. */
1033 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1034 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1036 if (equiv1
&& equiv2
1037 /* If the equivalences are not to a constant, they may
1038 reference pseudos that no longer exist, so we can't
1040 && (! reload_completed
1041 || (CONSTANT_P (XEXP (equiv1
, 0))
1042 && rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))))
1044 rtx s1
= single_set (i1
);
1045 rtx s2
= single_set (i2
);
1046 if (s1
!= 0 && s2
!= 0
1047 && rtx_renumbered_equal_p (SET_DEST (s1
), SET_DEST (s2
)))
1049 validate_change (i1
, &SET_SRC (s1
), XEXP (equiv1
, 0), 1);
1050 validate_change (i2
, &SET_SRC (s2
), XEXP (equiv2
, 0), 1);
1051 if (! rtx_renumbered_equal_p (p1
, p2
))
1053 else if (apply_change_group ())
1062 /* Look through the insns at the end of BB1 and BB2 and find the longest
1063 sequence that are equivalent. Store the first insns for that sequence
1064 in *F1 and *F2 and return the sequence length.
1066 To simplify callers of this function, if the blocks match exactly,
1067 store the head of the blocks in *F1 and *F2. */
1070 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED
, basic_block bb1
,
1071 basic_block bb2
, rtx
*f1
, rtx
*f2
)
1073 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1076 /* Skip simple jumps at the end of the blocks. Complex jumps still
1077 need to be compared for equivalence, which we'll do below. */
1080 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1082 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1085 i1
= PREV_INSN (i1
);
1090 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1093 /* Count everything except for unconditional jump as insn. */
1094 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
)
1096 i2
= PREV_INSN (i2
);
1102 while (!INSN_P (i1
) && i1
!= BB_HEAD (bb1
))
1103 i1
= PREV_INSN (i1
);
1105 while (!INSN_P (i2
) && i2
!= BB_HEAD (bb2
))
1106 i2
= PREV_INSN (i2
);
1108 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1111 if (!insns_match_p (mode
, i1
, i2
))
1114 merge_memattrs (i1
, i2
);
1116 /* Don't begin a cross-jump with a NOTE insn. */
1119 /* If the merged insns have different REG_EQUAL notes, then
1121 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1122 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1124 if (equiv1
&& !equiv2
)
1125 remove_note (i1
, equiv1
);
1126 else if (!equiv1
&& equiv2
)
1127 remove_note (i2
, equiv2
);
1128 else if (equiv1
&& equiv2
1129 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1131 remove_note (i1
, equiv1
);
1132 remove_note (i2
, equiv2
);
1135 afterlast1
= last1
, afterlast2
= last2
;
1136 last1
= i1
, last2
= i2
;
1140 i1
= PREV_INSN (i1
);
1141 i2
= PREV_INSN (i2
);
1145 /* Don't allow the insn after a compare to be shared by
1146 cross-jumping unless the compare is also shared. */
1147 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1148 last1
= afterlast1
, last2
= afterlast2
, ninsns
--;
1151 /* Include preceding notes and labels in the cross-jump. One,
1152 this may bring us to the head of the blocks as requested above.
1153 Two, it keeps line number notes as matched as may be. */
1156 while (last1
!= BB_HEAD (bb1
) && !INSN_P (PREV_INSN (last1
)))
1157 last1
= PREV_INSN (last1
);
1159 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1160 last1
= PREV_INSN (last1
);
1162 while (last2
!= BB_HEAD (bb2
) && !INSN_P (PREV_INSN (last2
)))
1163 last2
= PREV_INSN (last2
);
1165 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1166 last2
= PREV_INSN (last2
);
1175 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1176 the branch instruction. This means that if we commonize the control
1177 flow before end of the basic block, the semantic remains unchanged.
1179 We may assume that there exists one edge with a common destination. */
1182 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1184 int nehedges1
= 0, nehedges2
= 0;
1185 edge fallthru1
= 0, fallthru2
= 0;
1188 /* If BB1 has only one successor, we may be looking at either an
1189 unconditional jump, or a fake edge to exit. */
1190 if (bb1
->succ
&& !bb1
->succ
->succ_next
1191 && (bb1
->succ
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1192 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1193 return (bb2
->succ
&& !bb2
->succ
->succ_next
1194 && (bb2
->succ
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1195 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1197 /* Match conditional jumps - this may get tricky when fallthru and branch
1198 edges are crossed. */
1200 && bb1
->succ
->succ_next
1201 && !bb1
->succ
->succ_next
->succ_next
1202 && any_condjump_p (BB_END (bb1
))
1203 && onlyjump_p (BB_END (bb1
)))
1205 edge b1
, f1
, b2
, f2
;
1206 bool reverse
, match
;
1207 rtx set1
, set2
, cond1
, cond2
;
1208 enum rtx_code code1
, code2
;
1211 || !bb2
->succ
->succ_next
1212 || bb2
->succ
->succ_next
->succ_next
1213 || !any_condjump_p (BB_END (bb2
))
1214 || !onlyjump_p (BB_END (bb2
)))
1217 b1
= BRANCH_EDGE (bb1
);
1218 b2
= BRANCH_EDGE (bb2
);
1219 f1
= FALLTHRU_EDGE (bb1
);
1220 f2
= FALLTHRU_EDGE (bb2
);
1222 /* Get around possible forwarders on fallthru edges. Other cases
1223 should be optimized out already. */
1224 if (FORWARDER_BLOCK_P (f1
->dest
))
1225 f1
= f1
->dest
->succ
;
1227 if (FORWARDER_BLOCK_P (f2
->dest
))
1228 f2
= f2
->dest
->succ
;
1230 /* To simplify use of this function, return false if there are
1231 unneeded forwarder blocks. These will get eliminated later
1232 during cleanup_cfg. */
1233 if (FORWARDER_BLOCK_P (f1
->dest
)
1234 || FORWARDER_BLOCK_P (f2
->dest
)
1235 || FORWARDER_BLOCK_P (b1
->dest
)
1236 || FORWARDER_BLOCK_P (b2
->dest
))
1239 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1241 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1246 set1
= pc_set (BB_END (bb1
));
1247 set2
= pc_set (BB_END (bb2
));
1248 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1249 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1252 cond1
= XEXP (SET_SRC (set1
), 0);
1253 cond2
= XEXP (SET_SRC (set2
), 0);
1254 code1
= GET_CODE (cond1
);
1256 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1258 code2
= GET_CODE (cond2
);
1260 if (code2
== UNKNOWN
)
1263 /* Verify codes and operands match. */
1264 match
= ((code1
== code2
1265 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1266 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1267 || (code1
== swap_condition (code2
)
1268 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1270 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1273 /* If we return true, we will join the blocks. Which means that
1274 we will only have one branch prediction bit to work with. Thus
1275 we require the existing branches to have probabilities that are
1279 && maybe_hot_bb_p (bb1
)
1280 && maybe_hot_bb_p (bb2
))
1284 if (b1
->dest
== b2
->dest
)
1285 prob2
= b2
->probability
;
1287 /* Do not use f2 probability as f2 may be forwarded. */
1288 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1290 /* Fail if the difference in probabilities is greater than 50%.
1291 This rules out two well-predicted branches with opposite
1293 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1297 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1298 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1304 if (dump_file
&& match
)
1305 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1306 bb1
->index
, bb2
->index
);
1311 /* Generic case - we are seeing a computed jump, table jump or trapping
1314 #ifndef CASE_DROPS_THROUGH
1315 /* Check whether there are tablejumps in the end of BB1 and BB2.
1316 Return true if they are identical. */
1321 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1322 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1323 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1325 /* The labels should never be the same rtx. If they really are same
1326 the jump tables are same too. So disable crossjumping of blocks BB1
1327 and BB2 because when deleting the common insns in the end of BB1
1328 by delete_basic_block () the jump table would be deleted too. */
1329 /* If LABEL2 is referenced in BB1->END do not do anything
1330 because we would loose information when replacing
1331 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1332 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1334 /* Set IDENTICAL to true when the tables are identical. */
1335 bool identical
= false;
1338 p1
= PATTERN (table1
);
1339 p2
= PATTERN (table2
);
1340 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1344 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1345 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1346 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1347 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1352 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1353 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1359 replace_label_data rr
;
1362 /* Temporarily replace references to LABEL1 with LABEL2
1363 in BB1->END so that we could compare the instructions. */
1366 rr
.update_label_nuses
= false;
1367 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1369 match
= insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
));
1370 if (dump_file
&& match
)
1372 "Tablejumps in bb %i and %i match.\n",
1373 bb1
->index
, bb2
->index
);
1375 /* Set the original label in BB1->END because when deleting
1376 a block whose end is a tablejump, the tablejump referenced
1377 from the instruction is deleted too. */
1380 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1390 /* First ensure that the instructions match. There may be many outgoing
1391 edges so this test is generally cheaper. */
1392 if (!insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
)))
1395 /* Search the outgoing edges, ensure that the counts do match, find possible
1396 fallthru and exception handling edges since these needs more
1398 for (e1
= bb1
->succ
, e2
= bb2
->succ
; e1
&& e2
;
1399 e1
= e1
->succ_next
, e2
= e2
->succ_next
)
1401 if (e1
->flags
& EDGE_EH
)
1404 if (e2
->flags
& EDGE_EH
)
1407 if (e1
->flags
& EDGE_FALLTHRU
)
1409 if (e2
->flags
& EDGE_FALLTHRU
)
1413 /* If number of edges of various types does not match, fail. */
1415 || nehedges1
!= nehedges2
1416 || (fallthru1
!= 0) != (fallthru2
!= 0))
1419 /* fallthru edges must be forwarded to the same destination. */
1422 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1423 ? fallthru1
->dest
->succ
->dest
: fallthru1
->dest
);
1424 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1425 ? fallthru2
->dest
->succ
->dest
: fallthru2
->dest
);
1431 /* Ensure the same EH region. */
1433 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1434 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1439 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1443 /* We don't need to match the rest of edges as above checks should be enough
1444 to ensure that they are equivalent. */
1448 /* E1 and E2 are edges with the same destination block. Search their
1449 predecessors for common code. If found, redirect control flow from
1450 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1453 try_crossjump_to_edge (int mode
, edge e1
, edge e2
)
1456 basic_block src1
= e1
->src
, src2
= e2
->src
;
1457 basic_block redirect_to
, redirect_from
, to_remove
;
1458 rtx newpos1
, newpos2
;
1461 newpos1
= newpos2
= NULL_RTX
;
1463 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1464 to try this optimization. */
1466 if (flag_reorder_blocks_and_partition
&& no_new_pseudos
)
1469 /* Search backward through forwarder blocks. We don't need to worry
1470 about multiple entry or chained forwarders, as they will be optimized
1471 away. We do this to look past the unconditional jump following a
1472 conditional jump that is required due to the current CFG shape. */
1474 && !src1
->pred
->pred_next
1475 && FORWARDER_BLOCK_P (src1
))
1476 e1
= src1
->pred
, src1
= e1
->src
;
1479 && !src2
->pred
->pred_next
1480 && FORWARDER_BLOCK_P (src2
))
1481 e2
= src2
->pred
, src2
= e2
->src
;
1483 /* Nothing to do if we reach ENTRY, or a common source block. */
1484 if (src1
== ENTRY_BLOCK_PTR
|| src2
== ENTRY_BLOCK_PTR
)
1489 /* Seeing more than 1 forwarder blocks would confuse us later... */
1490 if (FORWARDER_BLOCK_P (e1
->dest
)
1491 && FORWARDER_BLOCK_P (e1
->dest
->succ
->dest
))
1494 if (FORWARDER_BLOCK_P (e2
->dest
)
1495 && FORWARDER_BLOCK_P (e2
->dest
->succ
->dest
))
1498 /* Likewise with dead code (possibly newly created by the other optimizations
1500 if (!src1
->pred
|| !src2
->pred
)
1503 /* Look for the common insn sequence, part the first ... */
1504 if (!outgoing_edges_match (mode
, src1
, src2
))
1507 /* ... and part the second. */
1508 nmatch
= flow_find_cross_jump (mode
, src1
, src2
, &newpos1
, &newpos2
);
1512 #ifndef CASE_DROPS_THROUGH
1513 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1515 If we have tablejumps in the end of SRC1 and SRC2
1516 they have been already compared for equivalence in outgoing_edges_match ()
1517 so replace the references to TABLE1 by references to TABLE2. */
1522 if (tablejump_p (BB_END (src1
), &label1
, &table1
)
1523 && tablejump_p (BB_END (src2
), &label2
, &table2
)
1524 && label1
!= label2
)
1526 replace_label_data rr
;
1529 /* Replace references to LABEL1 with LABEL2. */
1532 rr
.update_label_nuses
= true;
1533 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1535 /* Do not replace the label in SRC1->END because when deleting
1536 a block whose end is a tablejump, the tablejump referenced
1537 from the instruction is deleted too. */
1538 if (insn
!= BB_END (src1
))
1539 for_each_rtx (&insn
, replace_label
, &rr
);
1545 /* Avoid splitting if possible. */
1546 if (newpos2
== BB_HEAD (src2
))
1551 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
1552 src2
->index
, nmatch
);
1553 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
1558 "Cross jumping from bb %i to bb %i; %i common insns\n",
1559 src1
->index
, src2
->index
, nmatch
);
1561 redirect_to
->count
+= src1
->count
;
1562 redirect_to
->frequency
+= src1
->frequency
;
1563 /* We may have some registers visible trought the block. */
1564 redirect_to
->flags
|= BB_DIRTY
;
1566 /* Recompute the frequencies and counts of outgoing edges. */
1567 for (s
= redirect_to
->succ
; s
; s
= s
->succ_next
)
1570 basic_block d
= s
->dest
;
1572 if (FORWARDER_BLOCK_P (d
))
1575 for (s2
= src1
->succ
; ; s2
= s2
->succ_next
)
1577 basic_block d2
= s2
->dest
;
1578 if (FORWARDER_BLOCK_P (d2
))
1579 d2
= d2
->succ
->dest
;
1584 s
->count
+= s2
->count
;
1586 /* Take care to update possible forwarder blocks. We verified
1587 that there is no more than one in the chain, so we can't run
1588 into infinite loop. */
1589 if (FORWARDER_BLOCK_P (s
->dest
))
1591 s
->dest
->succ
->count
+= s2
->count
;
1592 s
->dest
->count
+= s2
->count
;
1593 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
1596 if (FORWARDER_BLOCK_P (s2
->dest
))
1598 s2
->dest
->succ
->count
-= s2
->count
;
1599 if (s2
->dest
->succ
->count
< 0)
1600 s2
->dest
->succ
->count
= 0;
1601 s2
->dest
->count
-= s2
->count
;
1602 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
1603 if (s2
->dest
->frequency
< 0)
1604 s2
->dest
->frequency
= 0;
1605 if (s2
->dest
->count
< 0)
1606 s2
->dest
->count
= 0;
1609 if (!redirect_to
->frequency
&& !src1
->frequency
)
1610 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
1613 = ((s
->probability
* redirect_to
->frequency
+
1614 s2
->probability
* src1
->frequency
)
1615 / (redirect_to
->frequency
+ src1
->frequency
));
1618 update_br_prob_note (redirect_to
);
1620 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1622 /* Skip possible basic block header. */
1623 if (LABEL_P (newpos1
))
1624 newpos1
= NEXT_INSN (newpos1
);
1626 if (NOTE_P (newpos1
))
1627 newpos1
= NEXT_INSN (newpos1
);
1629 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
1630 to_remove
= redirect_from
->succ
->dest
;
1632 redirect_edge_and_branch_force (redirect_from
->succ
, redirect_to
);
1633 delete_basic_block (to_remove
);
1635 update_forwarder_flag (redirect_from
);
1640 /* Search the predecessors of BB for common insn sequences. When found,
1641 share code between them by redirecting control flow. Return true if
1642 any changes made. */
1645 try_crossjump_bb (int mode
, basic_block bb
)
1647 edge e
, e2
, nexte2
, nexte
, fallthru
;
1651 /* Nothing to do if there is not at least two incoming edges. */
1652 if (!bb
->pred
|| !bb
->pred
->pred_next
)
1655 /* If we are partitioning hot/cold basic blocks, we don't want to
1656 mess up unconditional or indirect jumps that cross between hot
1657 and cold sections. */
1659 if (flag_reorder_blocks_and_partition
1660 && (bb
->pred
->src
->partition
!= bb
->pred
->pred_next
->src
->partition
1661 || bb
->pred
->crossing_edge
))
1664 /* It is always cheapest to redirect a block that ends in a branch to
1665 a block that falls through into BB, as that adds no branches to the
1666 program. We'll try that combination first. */
1668 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
1669 for (e
= bb
->pred
; e
; e
= e
->pred_next
, n
++)
1671 if (e
->flags
& EDGE_FALLTHRU
)
1678 for (e
= bb
->pred
; e
; e
= nexte
)
1680 nexte
= e
->pred_next
;
1682 /* As noted above, first try with the fallthru predecessor. */
1685 /* Don't combine the fallthru edge into anything else.
1686 If there is a match, we'll do it the other way around. */
1689 /* If nothing changed since the last attempt, there is nothing
1692 && (!(e
->src
->flags
& BB_DIRTY
)
1693 && !(fallthru
->src
->flags
& BB_DIRTY
)))
1696 if (try_crossjump_to_edge (mode
, e
, fallthru
))
1704 /* Non-obvious work limiting check: Recognize that we're going
1705 to call try_crossjump_bb on every basic block. So if we have
1706 two blocks with lots of outgoing edges (a switch) and they
1707 share lots of common destinations, then we would do the
1708 cross-jump check once for each common destination.
1710 Now, if the blocks actually are cross-jump candidates, then
1711 all of their destinations will be shared. Which means that
1712 we only need check them for cross-jump candidacy once. We
1713 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1714 choosing to do the check from the block for which the edge
1715 in question is the first successor of A. */
1716 if (e
->src
->succ
!= e
)
1719 for (e2
= bb
->pred
; e2
; e2
= nexte2
)
1721 nexte2
= e2
->pred_next
;
1726 /* We've already checked the fallthru edge above. */
1730 /* The "first successor" check above only prevents multiple
1731 checks of crossjump(A,B). In order to prevent redundant
1732 checks of crossjump(B,A), require that A be the block
1733 with the lowest index. */
1734 if (e
->src
->index
> e2
->src
->index
)
1737 /* If nothing changed since the last attempt, there is nothing
1740 && (!(e
->src
->flags
& BB_DIRTY
)
1741 && !(e2
->src
->flags
& BB_DIRTY
)))
1744 if (try_crossjump_to_edge (mode
, e
, e2
))
1756 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1757 instructions etc. Return nonzero if changes were made. */
1760 try_optimize_cfg (int mode
)
1762 bool changed_overall
= false;
1765 basic_block bb
, b
, next
;
1767 if (mode
& CLEANUP_CROSSJUMP
)
1768 add_noreturn_fake_exit_edges ();
1771 update_forwarder_flag (bb
);
1773 if (mode
& (CLEANUP_UPDATE_LIFE
| CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
1776 if (! targetm
.cannot_modify_jumps_p ())
1779 /* Attempt to merge blocks as made possible by edge removal. If
1780 a block has only one successor, and the successor has only
1781 one predecessor, they may be combined. */
1789 "\n\ntry_optimize_cfg iteration %i\n\n",
1792 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
;)
1796 bool changed_here
= false;
1798 /* Delete trivially dead basic blocks. */
1799 while (b
->pred
== NULL
)
1803 fprintf (dump_file
, "Deleting block %i.\n",
1806 delete_basic_block (b
);
1807 if (!(mode
& CLEANUP_CFGLAYOUT
))
1812 /* Remove code labels no longer used. */
1813 if (b
->pred
->pred_next
== NULL
1814 && (b
->pred
->flags
& EDGE_FALLTHRU
)
1815 && !(b
->pred
->flags
& EDGE_COMPLEX
)
1816 && LABEL_P (BB_HEAD (b
))
1817 /* If the previous block ends with a branch to this
1818 block, we can't delete the label. Normally this
1819 is a condjump that is yet to be simplified, but
1820 if CASE_DROPS_THRU, this can be a tablejump with
1821 some element going to the same place as the
1822 default (fallthru). */
1823 && (b
->pred
->src
== ENTRY_BLOCK_PTR
1824 || !JUMP_P (BB_END (b
->pred
->src
))
1825 || ! label_is_jump_target_p (BB_HEAD (b
),
1826 BB_END (b
->pred
->src
))))
1828 rtx label
= BB_HEAD (b
);
1830 delete_insn_chain (label
, label
);
1831 /* In the case label is undeletable, move it after the
1832 BASIC_BLOCK note. */
1833 if (NOTE_LINE_NUMBER (BB_HEAD (b
)) == NOTE_INSN_DELETED_LABEL
)
1835 rtx bb_note
= NEXT_INSN (BB_HEAD (b
));
1837 reorder_insns_nobb (label
, label
, bb_note
);
1838 BB_HEAD (b
) = bb_note
;
1841 fprintf (dump_file
, "Deleted label in block %i.\n",
1845 /* If we fall through an empty block, we can remove it. */
1846 if (!(mode
& CLEANUP_CFGLAYOUT
)
1847 && b
->pred
->pred_next
== NULL
1848 && (b
->pred
->flags
& EDGE_FALLTHRU
)
1849 && !LABEL_P (BB_HEAD (b
))
1850 && FORWARDER_BLOCK_P (b
)
1851 /* Note that forwarder_block_p true ensures that
1852 there is a successor for this block. */
1853 && (b
->succ
->flags
& EDGE_FALLTHRU
)
1854 && n_basic_blocks
> 1)
1858 "Deleting fallthru block %i.\n",
1861 c
= b
->prev_bb
== ENTRY_BLOCK_PTR
? b
->next_bb
: b
->prev_bb
;
1862 redirect_edge_succ_nodup (b
->pred
, b
->succ
->dest
);
1863 delete_basic_block (b
);
1868 if ((s
= b
->succ
) != NULL
1869 && s
->succ_next
== NULL
1870 && !(s
->flags
& EDGE_COMPLEX
)
1871 && (c
= s
->dest
) != EXIT_BLOCK_PTR
1872 && c
->pred
->pred_next
== NULL
1875 /* When not in cfg_layout mode use code aware of reordering
1876 INSN. This code possibly creates new basic blocks so it
1877 does not fit merge_blocks interface and is kept here in
1878 hope that it will become useless once more of compiler
1879 is transformed to use cfg_layout mode. */
1881 if ((mode
& CLEANUP_CFGLAYOUT
)
1882 && can_merge_blocks_p (b
, c
))
1884 merge_blocks (b
, c
);
1885 update_forwarder_flag (b
);
1886 changed_here
= true;
1888 else if (!(mode
& CLEANUP_CFGLAYOUT
)
1889 /* If the jump insn has side effects,
1890 we can't kill the edge. */
1891 && (!JUMP_P (BB_END (b
))
1892 || (reload_completed
1893 ? simplejump_p (BB_END (b
))
1894 : (onlyjump_p (BB_END (b
))
1895 && !tablejump_p (BB_END (b
),
1897 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
1900 changed_here
= true;
1904 /* Simplify branch over branch. */
1905 if ((mode
& CLEANUP_EXPENSIVE
)
1906 && !(mode
& CLEANUP_CFGLAYOUT
)
1907 && try_simplify_condjump (b
))
1908 changed_here
= true;
1910 /* If B has a single outgoing edge, but uses a
1911 non-trivial jump instruction without side-effects, we
1912 can either delete the jump entirely, or replace it
1913 with a simple unconditional jump. */
1915 && ! b
->succ
->succ_next
1916 && b
->succ
->dest
!= EXIT_BLOCK_PTR
1917 && onlyjump_p (BB_END (b
))
1918 && !find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
)
1919 && try_redirect_by_replacing_jump (b
->succ
, b
->succ
->dest
,
1920 (mode
& CLEANUP_CFGLAYOUT
) != 0))
1922 update_forwarder_flag (b
);
1923 changed_here
= true;
1926 /* Simplify branch to branch. */
1927 if (try_forward_edges (mode
, b
))
1928 changed_here
= true;
1930 /* Look for shared code between blocks. */
1931 if ((mode
& CLEANUP_CROSSJUMP
)
1932 && try_crossjump_bb (mode
, b
))
1933 changed_here
= true;
1935 /* Don't get confused by the index shift caused by
1943 if ((mode
& CLEANUP_CROSSJUMP
)
1944 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR
))
1947 #ifdef ENABLE_CHECKING
1949 verify_flow_info ();
1952 changed_overall
|= changed
;
1958 if (mode
& CLEANUP_CROSSJUMP
)
1959 remove_fake_exit_edges ();
1961 clear_aux_for_blocks ();
1963 return changed_overall
;
1966 /* Delete all unreachable basic blocks. */
1969 delete_unreachable_blocks (void)
1971 bool changed
= false;
1972 basic_block b
, next_bb
;
1974 find_unreachable_blocks ();
1976 /* Delete all unreachable basic blocks. */
1978 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
1980 next_bb
= b
->next_bb
;
1982 if (!(b
->flags
& BB_REACHABLE
))
1984 delete_basic_block (b
);
1990 tidy_fallthru_edges ();
1994 /* Merges sequential blocks if possible. */
1997 merge_seq_blocks (void)
2000 bool changed
= false;
2002 for (bb
= ENTRY_BLOCK_PTR
->next_bb
; bb
!= EXIT_BLOCK_PTR
; )
2005 && !bb
->succ
->succ_next
2006 && can_merge_blocks_p (bb
, bb
->succ
->dest
))
2008 /* Merge the blocks and retry. */
2009 merge_blocks (bb
, bb
->succ
->dest
);
2020 /* Tidy the CFG by deleting unreachable code and whatnot. */
2023 cleanup_cfg (int mode
)
2025 bool changed
= false;
2027 timevar_push (TV_CLEANUP_CFG
);
2028 if (delete_unreachable_blocks ())
2031 /* We've possibly created trivially dead code. Cleanup it right
2032 now to introduce more opportunities for try_optimize_cfg. */
2033 if (!(mode
& (CLEANUP_NO_INSN_DEL
| CLEANUP_UPDATE_LIFE
))
2034 && !reload_completed
)
2035 delete_trivially_dead_insns (get_insns(), max_reg_num ());
2040 while (try_optimize_cfg (mode
))
2042 delete_unreachable_blocks (), changed
= true;
2043 if (mode
& CLEANUP_UPDATE_LIFE
)
2045 /* Cleaning up CFG introduces more opportunities for dead code
2046 removal that in turn may introduce more opportunities for
2047 cleaning up the CFG. */
2048 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
2050 | PROP_SCAN_DEAD_CODE
2051 | PROP_KILL_DEAD_CODE
2052 | ((mode
& CLEANUP_LOG_LINKS
)
2053 ? PROP_LOG_LINKS
: 0)))
2056 else if (!(mode
& CLEANUP_NO_INSN_DEL
)
2057 && (mode
& CLEANUP_EXPENSIVE
)
2058 && !reload_completed
)
2060 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
2065 delete_dead_jumptables ();
2068 /* Kill the data we won't maintain. */
2069 free_EXPR_LIST_list (&label_value_list
);
2070 timevar_pop (TV_CLEANUP_CFG
);