Add assember CFI directives to millicode division and remainder routines.
[official-gcc.git] / gcc / ada / repinfo.adb
blobe39856b7a82d193fe2a4b7802886498c65952970
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- R E P I N F O --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1999-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Alloc;
27 with Atree; use Atree;
28 with Casing; use Casing;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Einfo.Utils; use Einfo.Utils;
33 with Lib; use Lib;
34 with Namet; use Namet;
35 with Nlists; use Nlists;
36 with Opt; use Opt;
37 with Output; use Output;
38 with Osint.C; use Osint.C;
39 with Sem_Aux; use Sem_Aux;
40 with Sem_Eval; use Sem_Eval;
41 with Sem_Util;
42 with Sinfo; use Sinfo;
43 with Sinfo.Nodes; use Sinfo.Nodes;
44 with Sinfo.Utils; use Sinfo.Utils;
45 with Sinput; use Sinput;
46 with Snames; use Snames;
47 with Stand; use Stand;
48 with Stringt; use Stringt;
49 with Table;
50 with Ttypes;
51 with Uname; use Uname;
52 with Urealp; use Urealp;
54 with Ada.Unchecked_Conversion;
56 with GNAT.HTable;
58 package body Repinfo is
60 SSU : Pos renames Ttypes.System_Storage_Unit;
61 -- Value for Storage_Unit
63 ---------------------------------------
64 -- Representation of GCC Expressions --
65 ---------------------------------------
67 -- A table internal to this unit is used to hold the values of back
68 -- annotated expressions.
70 -- Node values are stored as Uint values using the negative of the node
71 -- index in this table. Constants appear as non-negative Uint values.
73 type Exp_Node is record
74 Expr : TCode;
75 Op1 : Node_Ref_Or_Val;
76 Op2 : Node_Ref_Or_Val;
77 Op3 : Node_Ref_Or_Val;
78 end record;
80 -- The following representation clause ensures that the above record
81 -- has no holes. We do this so that when instances of this record are
82 -- written, we do not write uninitialized values to the file.
84 for Exp_Node use record
85 Expr at 0 range 0 .. 31;
86 Op1 at 4 range 0 .. 31;
87 Op2 at 8 range 0 .. 31;
88 Op3 at 12 range 0 .. 31;
89 end record;
91 for Exp_Node'Size use 16 * 8;
92 -- This ensures that we did not leave out any fields
94 package Rep_Table is new Table.Table (
95 Table_Component_Type => Exp_Node,
96 Table_Index_Type => Nat,
97 Table_Low_Bound => 1,
98 Table_Initial => Alloc.Rep_Table_Initial,
99 Table_Increment => Alloc.Rep_Table_Increment,
100 Table_Name => "BE_Rep_Table");
102 --------------------------------------------------------------
103 -- Representation of Front-End Dynamic Size/Offset Entities --
104 --------------------------------------------------------------
106 package Dynamic_SO_Entity_Table is new Table.Table (
107 Table_Component_Type => Entity_Id,
108 Table_Index_Type => Nat,
109 Table_Low_Bound => 1,
110 Table_Initial => Alloc.Rep_Table_Initial,
111 Table_Increment => Alloc.Rep_Table_Increment,
112 Table_Name => "FE_Rep_Table");
114 Unit_Casing : Casing_Type;
115 -- Identifier casing for current unit. This is set by List_Rep_Info for
116 -- each unit, before calling subprograms which may read it.
118 Need_Separator : Boolean;
119 -- Set True if a separator is needed before outputting any information for
120 -- the current entity.
122 ------------------------------
123 -- Set of Relevant Entities --
124 ------------------------------
126 Relevant_Entities_Size : constant := 4093;
127 -- Number of headers in hash table
129 subtype Entity_Header_Num is Integer range 0 .. Relevant_Entities_Size - 1;
130 -- Range of headers in hash table
132 function Entity_Hash (Id : Entity_Id) return Entity_Header_Num;
133 -- Simple hash function for Entity_Ids
135 package Relevant_Entities is new GNAT.Htable.Simple_HTable
136 (Header_Num => Entity_Header_Num,
137 Element => Boolean,
138 No_Element => False,
139 Key => Entity_Id,
140 Hash => Entity_Hash,
141 Equal => "=");
142 -- Hash table to record which compiler-generated entities are relevant
144 -----------------------
145 -- Local Subprograms --
146 -----------------------
148 procedure List_Entities
149 (Ent : Entity_Id;
150 Bytes_Big_Endian : Boolean;
151 In_Subprogram : Boolean := False);
152 -- This procedure lists the entities associated with the entity E, starting
153 -- with the First_Entity and using the Next_Entity link. If a nested
154 -- package is found, entities within the package are recursively processed.
155 -- When recursing within a subprogram body, Is_Subprogram suppresses
156 -- duplicate information about signature.
158 procedure List_Name (Ent : Entity_Id);
159 -- List name of entity Ent in appropriate case. The name is listed with
160 -- full qualification up to but not including the compilation unit name.
162 procedure List_Array_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean);
163 -- List representation info for array type Ent
165 procedure List_Common_Type_Info (Ent : Entity_Id);
166 -- List common type info (name, size, alignment) for type Ent
168 procedure List_Linker_Section (Ent : Entity_Id);
169 -- List linker section for Ent (caller has checked that Ent is an entity
170 -- for which the Linker_Section_Pragma field is defined).
172 procedure List_Location (Ent : Entity_Id);
173 -- List location information for Ent
175 procedure List_Object_Info (Ent : Entity_Id);
176 -- List representation info for object Ent
178 procedure List_Record_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean);
179 -- List representation info for record type Ent
181 procedure List_Scalar_Storage_Order
182 (Ent : Entity_Id;
183 Bytes_Big_Endian : Boolean);
184 -- List scalar storage order information for record or array type Ent.
185 -- Also includes bit order information for record types, if necessary.
187 procedure List_Subprogram_Info (Ent : Entity_Id);
188 -- List subprogram info for subprogram Ent
190 procedure List_Type_Info (Ent : Entity_Id);
191 -- List type info for type Ent
193 function Compile_Time_Known_Rep (Val : Node_Ref_Or_Val) return Boolean;
194 -- Returns True if Val represents a representation value that is known at
195 -- compile time.
197 procedure Spaces (N : Natural);
198 -- Output given number of spaces
200 procedure Write_Info_Line (S : String);
201 -- Routine to write a line to Repinfo output file. This routine is passed
202 -- as a special output procedure to Output.Set_Special_Output. Note that
203 -- Write_Info_Line is called with an EOL character at the end of each line,
204 -- as per the Output spec, but the internal call to the appropriate routine
205 -- in Osint requires that the end of line sequence be stripped off.
207 procedure Write_Mechanism (M : Mechanism_Type);
208 -- Writes symbolic string for mechanism represented by M
210 procedure Write_Separator;
211 -- Called before outputting anything for an entity. Ensures that
212 -- a separator precedes the output for a particular entity.
214 procedure Write_Unknown_Val;
215 -- Writes symbolic string for an unknown or non-representable value
217 procedure Write_Val (Val : Node_Ref_Or_Val; Paren : Boolean := False);
218 -- Given a representation value, write it out. No_Uint values or values
219 -- dependent on discriminants are written as two question marks. If the
220 -- flag Paren is set, then the output is surrounded in parentheses if it is
221 -- other than a simple value.
223 ------------------------
224 -- Create_Discrim_Ref --
225 ------------------------
227 function Create_Discrim_Ref (Discr : Entity_Id) return Node_Ref is
228 begin
229 return Create_Node
230 (Expr => Discrim_Val,
231 Op1 => Discriminant_Number (Discr));
232 end Create_Discrim_Ref;
234 ---------------------------
235 -- Create_Dynamic_SO_Ref --
236 ---------------------------
238 function Create_Dynamic_SO_Ref (E : Entity_Id) return Dynamic_SO_Ref is
239 begin
240 Dynamic_SO_Entity_Table.Append (E);
241 return UI_From_Int (-Dynamic_SO_Entity_Table.Last);
242 end Create_Dynamic_SO_Ref;
244 -----------------
245 -- Create_Node --
246 -----------------
248 function Create_Node
249 (Expr : TCode;
250 Op1 : Node_Ref_Or_Val;
251 Op2 : Node_Ref_Or_Val := No_Uint;
252 Op3 : Node_Ref_Or_Val := No_Uint) return Node_Ref
254 begin
255 Rep_Table.Append (
256 (Expr => Expr,
257 Op1 => Op1,
258 Op2 => Op2,
259 Op3 => Op3));
260 return UI_From_Int (-Rep_Table.Last);
261 end Create_Node;
263 -----------------
264 -- Entity_Hash --
265 -----------------
267 function Entity_Hash (Id : Entity_Id) return Entity_Header_Num is
268 begin
269 return Entity_Header_Num (Id mod Relevant_Entities_Size);
270 end Entity_Hash;
272 ---------------------------
273 -- Get_Dynamic_SO_Entity --
274 ---------------------------
276 function Get_Dynamic_SO_Entity (U : Dynamic_SO_Ref) return Entity_Id is
277 begin
278 return Dynamic_SO_Entity_Table.Table (-UI_To_Int (U));
279 end Get_Dynamic_SO_Entity;
281 -----------------------
282 -- Is_Dynamic_SO_Ref --
283 -----------------------
285 function Is_Dynamic_SO_Ref (U : SO_Ref) return Boolean is
286 begin
287 return U < Uint_0;
288 end Is_Dynamic_SO_Ref;
290 ----------------------
291 -- Is_Static_SO_Ref --
292 ----------------------
294 function Is_Static_SO_Ref (U : SO_Ref) return Boolean is
295 begin
296 return U >= Uint_0;
297 end Is_Static_SO_Ref;
299 ---------
300 -- lgx --
301 ---------
303 procedure lgx (U : Node_Ref_Or_Val) is
304 begin
305 List_GCC_Expression (U);
306 Write_Eol;
307 end lgx;
309 ----------------------
310 -- List_Array_Info --
311 ----------------------
313 procedure List_Array_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean) is
314 begin
315 Write_Separator;
317 if List_Representation_Info_To_JSON then
318 Write_Line ("{");
319 end if;
321 List_Common_Type_Info (Ent);
323 if List_Representation_Info_To_JSON then
324 Write_Line (",");
325 Write_Str (" ""Component_Size"": ");
326 Write_Val (Component_Size (Ent));
327 else
328 Write_Str ("for ");
329 List_Name (Ent);
330 Write_Str ("'Component_Size use ");
331 Write_Val (Component_Size (Ent));
332 Write_Line (";");
333 end if;
335 List_Scalar_Storage_Order (Ent, Bytes_Big_Endian);
337 List_Linker_Section (Ent);
339 if List_Representation_Info_To_JSON then
340 Write_Eol;
341 Write_Line ("}");
342 end if;
344 -- The component type is relevant for an array
346 if List_Representation_Info = 4
347 and then Is_Itype (Component_Type (Base_Type (Ent)))
348 then
349 Relevant_Entities.Set (Component_Type (Base_Type (Ent)), True);
350 end if;
351 end List_Array_Info;
353 ---------------------------
354 -- List_Common_Type_Info --
355 ---------------------------
357 procedure List_Common_Type_Info (Ent : Entity_Id) is
358 begin
359 if List_Representation_Info_To_JSON then
360 Write_Str (" ""name"": """);
361 List_Name (Ent);
362 Write_Line (""",");
363 List_Location (Ent);
364 end if;
366 -- Do not list size info for unconstrained arrays, not meaningful
368 if Is_Array_Type (Ent) and then not Is_Constrained (Ent) then
369 null;
371 else
372 if Known_Esize (Ent) and then Known_RM_Size (Ent) then
373 -- If Esize and RM_Size are the same, list as Size. This is a
374 -- common case, which we may as well list in simple form.
376 if Esize (Ent) = RM_Size (Ent) then
377 if List_Representation_Info_To_JSON then
378 Write_Str (" ""Size"": ");
379 Write_Val (Esize (Ent));
380 Write_Line (",");
381 else
382 Write_Str ("for ");
383 List_Name (Ent);
384 Write_Str ("'Size use ");
385 Write_Val (Esize (Ent));
386 Write_Line (";");
387 end if;
389 -- Otherwise list size values separately
391 else
392 if List_Representation_Info_To_JSON then
393 Write_Str (" ""Object_Size"": ");
394 Write_Val (Esize (Ent));
395 Write_Line (",");
397 Write_Str (" ""Value_Size"": ");
398 Write_Val (RM_Size (Ent));
399 Write_Line (",");
401 else
402 Write_Str ("for ");
403 List_Name (Ent);
404 Write_Str ("'Object_Size use ");
405 Write_Val (Esize (Ent));
406 Write_Line (";");
408 Write_Str ("for ");
409 List_Name (Ent);
410 Write_Str ("'Value_Size use ");
411 Write_Val (RM_Size (Ent));
412 Write_Line (";");
413 end if;
414 end if;
415 end if;
416 end if;
418 if Known_Alignment (Ent) then
419 if List_Representation_Info_To_JSON then
420 Write_Str (" ""Alignment"": ");
421 Write_Val (Alignment (Ent));
422 else
423 Write_Str ("for ");
424 List_Name (Ent);
425 Write_Str ("'Alignment use ");
426 Write_Val (Alignment (Ent));
427 Write_Line (";");
428 end if;
430 -- Alignment is not always set for task, protected, and class-wide
431 -- types. Representation aspects are not computed for types in a
432 -- generic unit.
434 else
435 pragma Assert
436 (Is_Concurrent_Type (Ent) or else
437 Is_Class_Wide_Type (Ent) or else
438 Sem_Util.In_Generic_Scope (Ent));
439 end if;
440 end List_Common_Type_Info;
442 -------------------
443 -- List_Entities --
444 -------------------
446 procedure List_Entities
447 (Ent : Entity_Id;
448 Bytes_Big_Endian : Boolean;
449 In_Subprogram : Boolean := False)
451 Body_E : Entity_Id;
452 E : Entity_Id;
454 function Find_Declaration (E : Entity_Id) return Node_Id;
455 -- Utility to retrieve declaration node for entity in the
456 -- case of package bodies and subprograms.
458 ----------------------
459 -- Find_Declaration --
460 ----------------------
462 function Find_Declaration (E : Entity_Id) return Node_Id is
463 Decl : Node_Id;
465 begin
466 Decl := Parent (E);
467 while Present (Decl)
468 and then Nkind (Decl) /= N_Package_Body
469 and then Nkind (Decl) /= N_Subprogram_Declaration
470 and then Nkind (Decl) /= N_Subprogram_Body
471 loop
472 Decl := Parent (Decl);
473 end loop;
475 return Decl;
476 end Find_Declaration;
478 -- Start of processing for List_Entities
480 begin
481 -- List entity if we have one, and it is not a renaming declaration.
482 -- For renamings, we don't get proper information, and really it makes
483 -- sense to restrict the output to the renamed entity.
485 if Present (Ent)
486 and then Nkind (Declaration_Node (Ent)) not in N_Renaming_Declaration
487 and then not Is_Ignored_Ghost_Entity (Ent)
488 then
489 -- If entity is a subprogram and we are listing mechanisms,
490 -- then we need to list mechanisms for this entity. We skip this
491 -- if it is a nested subprogram, as the information has already
492 -- been produced when listing the enclosing scope.
494 if List_Representation_Info_Mechanisms
495 and then Is_Subprogram_Or_Entry (Ent)
496 and then not In_Subprogram
497 then
498 List_Subprogram_Info (Ent);
499 end if;
501 E := First_Entity (Ent);
502 while Present (E) loop
503 -- We list entities that come from source (excluding private or
504 -- incomplete types or deferred constants, for which we will list
505 -- the information for the full view). If requested, we also list
506 -- relevant entities that have been generated when processing the
507 -- original entities coming from source. But if debug flag A is
508 -- set, then all entities are listed.
510 if ((Comes_From_Source (E)
511 or else (Ekind (E) = E_Block
512 and then
513 Nkind (Parent (E)) = N_Implicit_Label_Declaration
514 and then
515 Comes_From_Source (Label_Construct (Parent (E)))))
516 and then not Is_Incomplete_Or_Private_Type (E)
517 and then not (Ekind (E) = E_Constant
518 and then Present (Full_View (E))))
519 or else (List_Representation_Info = 4
520 and then Relevant_Entities.Get (E))
521 or else Debug_Flag_AA
522 then
523 if Is_Subprogram (E) then
524 if List_Representation_Info_Mechanisms then
525 List_Subprogram_Info (E);
526 end if;
528 -- Recurse into entities local to subprogram
530 List_Entities (E, Bytes_Big_Endian, True);
532 elsif Ekind (E) in E_Entry
533 | E_Entry_Family
534 | E_Subprogram_Type
535 then
536 if List_Representation_Info_Mechanisms then
537 List_Subprogram_Info (E);
538 end if;
540 elsif Is_Record_Type (E) then
541 if List_Representation_Info >= 1 then
542 List_Record_Info (E, Bytes_Big_Endian);
544 -- Recurse into entities local to a record type
546 if List_Representation_Info = 4 then
547 List_Entities (E, Bytes_Big_Endian, False);
548 end if;
549 end if;
551 elsif Is_Array_Type (E) then
552 if List_Representation_Info >= 1 then
553 List_Array_Info (E, Bytes_Big_Endian);
554 end if;
556 elsif Is_Type (E) then
557 if List_Representation_Info >= 2 then
558 List_Type_Info (E);
559 end if;
561 -- Note that formals are not annotated so we skip them here
563 elsif Ekind (E) in E_Constant
564 | E_Loop_Parameter
565 | E_Variable
566 then
567 if List_Representation_Info >= 2 then
568 List_Object_Info (E);
569 end if;
570 end if;
572 -- Recurse into nested package, but not child packages, and not
573 -- nested package renamings (in particular renamings of the
574 -- enclosing package, as for some Java bindings and for generic
575 -- instances).
577 if Ekind (E) = E_Package then
578 if No (Renamed_Entity (E)) and then not Is_Child_Unit (E)
579 then
580 List_Entities (E, Bytes_Big_Endian);
581 end if;
583 -- Recurse into bodies
585 elsif Ekind (E) in E_Package_Body
586 | E_Protected_Body
587 | E_Protected_Type
588 | E_Subprogram_Body
589 | E_Task_Body
590 | E_Task_Type
591 then
592 List_Entities (E, Bytes_Big_Endian);
594 -- Recurse into blocks
596 elsif Ekind (E) = E_Block then
597 List_Entities (E, Bytes_Big_Endian);
598 end if;
599 end if;
601 Next_Entity (E);
602 end loop;
604 -- For a package body, the entities of the visible subprograms are
605 -- declared in the corresponding spec. Iterate over its entities in
606 -- order to handle properly the subprogram bodies. Skip bodies in
607 -- subunits, which are listed independently.
609 if Ekind (Ent) = E_Package_Body
610 and then Present (Corresponding_Spec (Find_Declaration (Ent)))
611 then
612 E := First_Entity (Corresponding_Spec (Find_Declaration (Ent)));
613 while Present (E) loop
614 if Is_Subprogram (E)
615 and then
616 Nkind (Find_Declaration (E)) = N_Subprogram_Declaration
617 then
618 Body_E := Corresponding_Body (Find_Declaration (E));
620 if Present (Body_E)
621 and then
622 Nkind (Parent (Find_Declaration (Body_E))) /= N_Subunit
623 then
624 List_Entities (Body_E, Bytes_Big_Endian);
625 end if;
626 end if;
628 Next_Entity (E);
629 end loop;
630 end if;
631 end if;
632 end List_Entities;
634 -------------------------
635 -- List_GCC_Expression --
636 -------------------------
638 procedure List_GCC_Expression (U : Node_Ref_Or_Val) is
640 procedure Print_Expr (Val : Node_Ref_Or_Val);
641 -- Internal recursive procedure to print expression
643 ----------------
644 -- Print_Expr --
645 ----------------
647 procedure Print_Expr (Val : Node_Ref_Or_Val) is
648 begin
649 if Val >= 0 then
650 UI_Write (Val, Decimal);
652 else
653 declare
654 Node : Exp_Node renames Rep_Table.Table (-UI_To_Int (Val));
656 procedure Unop (S : String);
657 -- Output text for unary operator with S being operator name
659 procedure Binop (S : String);
660 -- Output text for binary operator with S being operator name
662 ----------
663 -- Unop --
664 ----------
666 procedure Unop (S : String) is
667 begin
668 if List_Representation_Info_To_JSON then
669 Write_Str ("{ ""code"": """);
670 if S (S'Last) = ' ' then
671 Write_Str (S (S'First .. S'Last - 1));
672 else
673 Write_Str (S);
674 end if;
675 Write_Str (""", ""operands"": [ ");
676 Print_Expr (Node.Op1);
677 Write_Str (" ] }");
678 else
679 Write_Str (S);
680 Print_Expr (Node.Op1);
681 end if;
682 end Unop;
684 -----------
685 -- Binop --
686 -----------
688 procedure Binop (S : String) is
689 begin
690 if List_Representation_Info_To_JSON then
691 Write_Str ("{ ""code"": """);
692 Write_Str (S (S'First + 1 .. S'Last - 1));
693 Write_Str (""", ""operands"": [ ");
694 Print_Expr (Node.Op1);
695 Write_Str (", ");
696 Print_Expr (Node.Op2);
697 Write_Str (" ] }");
698 else
699 Write_Char ('(');
700 Print_Expr (Node.Op1);
701 Write_Str (S);
702 Print_Expr (Node.Op2);
703 Write_Char (')');
704 end if;
705 end Binop;
707 -- Start of processing for Print_Expr
709 begin
710 case Node.Expr is
711 when Cond_Expr =>
712 if List_Representation_Info_To_JSON then
713 Write_Str ("{ ""code"": ""?<>""");
714 Write_Str (", ""operands"": [ ");
715 Print_Expr (Node.Op1);
716 Write_Str (", ");
717 Print_Expr (Node.Op2);
718 Write_Str (", ");
719 Print_Expr (Node.Op3);
720 Write_Str (" ] }");
721 else
722 Write_Str ("(if ");
723 Print_Expr (Node.Op1);
724 Write_Str (" then ");
725 Print_Expr (Node.Op2);
726 Write_Str (" else ");
727 Print_Expr (Node.Op3);
728 Write_Str (" end)");
729 end if;
731 when Plus_Expr =>
732 Binop (" + ");
734 when Minus_Expr =>
735 Binop (" - ");
737 when Mult_Expr =>
738 Binop (" * ");
740 when Trunc_Div_Expr =>
741 Binop (" /t ");
743 when Ceil_Div_Expr =>
744 Binop (" /c ");
746 when Floor_Div_Expr =>
747 Binop (" /f ");
749 when Trunc_Mod_Expr =>
750 Binop (" modt ");
752 when Ceil_Mod_Expr =>
753 Binop (" modc ");
755 when Floor_Mod_Expr =>
756 Binop (" modf ");
758 when Exact_Div_Expr =>
759 Binop (" /e ");
761 when Negate_Expr =>
762 Unop ("-");
764 when Min_Expr =>
765 Binop (" min ");
767 when Max_Expr =>
768 Binop (" max ");
770 when Abs_Expr =>
771 Unop ("abs ");
773 when Truth_And_Expr =>
774 Binop (" and ");
776 when Truth_Or_Expr =>
777 Binop (" or ");
779 when Truth_Xor_Expr =>
780 Binop (" xor ");
782 when Truth_Not_Expr =>
783 Unop ("not ");
785 when Lt_Expr =>
786 Binop (" < ");
788 when Le_Expr =>
789 Binop (" <= ");
791 when Gt_Expr =>
792 Binop (" > ");
794 when Ge_Expr =>
795 Binop (" >= ");
797 when Eq_Expr =>
798 Binop (" == ");
800 when Ne_Expr =>
801 Binop (" != ");
803 when Bit_And_Expr =>
804 Binop (" & ");
806 when Discrim_Val =>
807 Unop ("#");
809 when Dynamic_Val =>
810 Unop ("var");
811 end case;
812 end;
813 end if;
814 end Print_Expr;
816 -- Start of processing for List_GCC_Expression
818 begin
819 if No (U) then
820 Write_Unknown_Val;
821 else
822 Print_Expr (U);
823 end if;
824 end List_GCC_Expression;
826 -------------------------
827 -- List_Linker_Section --
828 -------------------------
830 procedure List_Linker_Section (Ent : Entity_Id) is
831 Args : List_Id;
832 Sect : Node_Id;
834 begin
835 if Present (Linker_Section_Pragma (Ent)) then
836 Args := Pragma_Argument_Associations (Linker_Section_Pragma (Ent));
837 Sect := Expr_Value_S (Get_Pragma_Arg (Last (Args)));
839 if List_Representation_Info_To_JSON then
840 Write_Line (",");
841 Write_Str (" ""Linker_Section"": """);
842 else
843 Write_Str ("pragma Linker_Section (");
844 List_Name (Ent);
845 Write_Str (", """);
846 end if;
848 pragma Assert (Nkind (Sect) = N_String_Literal);
849 String_To_Name_Buffer (Strval (Sect));
850 Write_Str (Name_Buffer (1 .. Name_Len));
851 Write_Str ("""");
852 if not List_Representation_Info_To_JSON then
853 Write_Line (");");
854 end if;
855 end if;
856 end List_Linker_Section;
858 -------------------
859 -- List_Location --
860 -------------------
862 procedure List_Location (Ent : Entity_Id) is
863 begin
864 pragma Assert (List_Representation_Info_To_JSON);
865 Write_Str (" ""location"": """);
866 Write_Location (Sloc (Ent));
867 Write_Line (""",");
868 end List_Location;
870 ---------------
871 -- List_Name --
872 ---------------
874 procedure List_Name (Ent : Entity_Id) is
875 C : Character;
877 begin
878 -- In JSON mode, we recurse up to Standard. This is also valid in
879 -- default mode where we recurse up to the first compilation unit and
880 -- should not get to Standard.
882 if Scope (Ent) = Standard_Standard then
883 null;
884 elsif not Is_Compilation_Unit (Scope (Ent))
885 or else List_Representation_Info_To_JSON
886 then
887 List_Name (Scope (Ent));
888 Write_Char ('.');
889 end if;
891 Get_Unqualified_Decoded_Name_String (Chars (Ent));
892 Set_Casing (Unit_Casing);
894 -- The name of operators needs to be properly escaped for JSON
896 for J in 1 .. Name_Len loop
897 C := Name_Buffer (J);
898 if C = '"' and then List_Representation_Info_To_JSON then
899 Write_Char ('\');
900 end if;
901 Write_Char (C);
902 end loop;
903 end List_Name;
905 ---------------------
906 -- List_Object_Info --
907 ---------------------
909 procedure List_Object_Info (Ent : Entity_Id) is
910 begin
911 -- If size and alignment have not been computed (e.g. if we are in a
912 -- generic unit, or if the back end is not being run), don't try to
913 -- print them.
915 pragma Assert (Known_Esize (Ent) = Known_Alignment (Ent));
916 if not Known_Alignment (Ent) then
917 return;
918 end if;
920 Write_Separator;
922 if List_Representation_Info_To_JSON then
923 Write_Line ("{");
925 Write_Str (" ""name"": """);
926 List_Name (Ent);
927 Write_Line (""",");
928 List_Location (Ent);
930 Write_Str (" ""Size"": ");
931 Write_Val (Esize (Ent));
932 Write_Line (",");
934 Write_Str (" ""Alignment"": ");
935 Write_Val (Alignment (Ent));
937 List_Linker_Section (Ent);
939 Write_Eol;
940 Write_Line ("}");
941 else
942 Write_Str ("for ");
943 List_Name (Ent);
944 Write_Str ("'Size use ");
945 Write_Val (Esize (Ent));
946 Write_Line (";");
948 Write_Str ("for ");
949 List_Name (Ent);
950 Write_Str ("'Alignment use ");
951 Write_Val (Alignment (Ent));
952 Write_Line (";");
954 List_Linker_Section (Ent);
955 end if;
957 -- The type is relevant for an object
959 if List_Representation_Info = 4 and then Is_Itype (Etype (Ent)) then
960 Relevant_Entities.Set (Etype (Ent), True);
961 end if;
962 end List_Object_Info;
964 ----------------------
965 -- List_Record_Info --
966 ----------------------
968 procedure List_Record_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean) is
969 procedure Compute_Max_Length
970 (Ent : Entity_Id;
971 Starting_Position : Uint := Uint_0;
972 Starting_First_Bit : Uint := Uint_0;
973 Prefix_Length : Natural := 0);
974 -- Internal recursive procedure to compute the max length
976 procedure List_Component_Layout
977 (Ent : Entity_Id;
978 Starting_Position : Uint := Uint_0;
979 Starting_First_Bit : Uint := Uint_0;
980 Prefix : String := "";
981 Indent : Natural := 0);
982 -- Procedure to display the layout of a single component
984 procedure List_Record_Layout
985 (Ent : Entity_Id;
986 Starting_Position : Uint := Uint_0;
987 Starting_First_Bit : Uint := Uint_0;
988 Prefix : String := "");
989 -- Internal recursive procedure to display the layout
991 procedure List_Structural_Record_Layout
992 (Ent : Entity_Id;
993 Ext_Ent : Entity_Id;
994 Ext_Level : Nat := 0;
995 Variant : Node_Id := Empty;
996 Indent : Natural := 0);
997 -- Internal recursive procedure to display the structural layout.
998 -- If Ext_Ent is not equal to Ent, it is an extension of Ent and
999 -- Ext_Level is the number of successive extensions between them.
1000 -- If Variant is present, it's for a variant in the variant part
1001 -- instead of the common part of Ent. Indent is the indentation.
1003 Incomplete_Layout : exception;
1004 -- Exception raised if the layout is incomplete in -gnatc mode
1006 Not_In_Extended_Main : exception;
1007 -- Exception raised when an ancestor is not declared in the main unit
1009 Max_Name_Length : Natural := 0;
1010 Max_Spos_Length : Natural := 0;
1012 ------------------------
1013 -- Compute_Max_Length --
1014 ------------------------
1016 procedure Compute_Max_Length
1017 (Ent : Entity_Id;
1018 Starting_Position : Uint := Uint_0;
1019 Starting_First_Bit : Uint := Uint_0;
1020 Prefix_Length : Natural := 0)
1022 Comp : Entity_Id;
1024 begin
1025 Comp := First_Component_Or_Discriminant (Ent);
1026 while Present (Comp) loop
1028 -- Skip a completely hidden discriminant or a discriminant in an
1029 -- unchecked union (since it is not there).
1031 if Ekind (Comp) = E_Discriminant
1032 and then (Is_Completely_Hidden (Comp)
1033 or else Is_Unchecked_Union (Ent))
1034 then
1035 goto Continue;
1036 end if;
1038 -- Skip _Parent component in extension (to avoid overlap)
1040 if Chars (Comp) = Name_uParent then
1041 goto Continue;
1042 end if;
1044 -- All other cases
1046 declare
1047 Ctyp : constant Entity_Id := Underlying_Type (Etype (Comp));
1048 Bofs : constant Uint := Component_Bit_Offset (Comp);
1049 Npos : Uint;
1050 Fbit : Uint;
1051 Spos : Uint;
1052 Sbit : Uint;
1054 Name_Length : Natural;
1056 begin
1057 Get_Decoded_Name_String (Chars (Comp));
1058 Name_Length := Prefix_Length + Name_Len;
1060 if Compile_Time_Known_Rep (Bofs) then
1061 Npos := Bofs / SSU;
1062 Fbit := Bofs mod SSU;
1064 -- Complete annotation in case not done
1066 if not Known_Normalized_First_Bit (Comp) then
1067 Set_Normalized_Position (Comp, Npos);
1068 Set_Normalized_First_Bit (Comp, Fbit);
1069 end if;
1071 Spos := Starting_Position + Npos;
1072 Sbit := Starting_First_Bit + Fbit;
1074 if Sbit >= SSU then
1075 Spos := Spos + 1;
1076 Sbit := Sbit - SSU;
1077 end if;
1079 -- If extended information is requested, recurse fully into
1080 -- record components, i.e. skip the outer level.
1082 if List_Representation_Info_Extended
1083 and then Is_Record_Type (Ctyp)
1084 then
1085 Compute_Max_Length (Ctyp, Spos, Sbit, Name_Length + 1);
1086 goto Continue;
1087 end if;
1089 UI_Image (Spos);
1090 else
1091 -- If the record is not packed, then we know that all fields
1092 -- whose position is not specified have starting normalized
1093 -- bit position of zero.
1095 if not Known_Normalized_First_Bit (Comp)
1096 and then not Is_Packed (Ent)
1097 then
1098 Set_Normalized_First_Bit (Comp, Uint_0);
1099 end if;
1101 UI_Image_Length := 2; -- For "??" marker
1102 end if;
1104 Max_Name_Length := Natural'Max (Max_Name_Length, Name_Length);
1105 Max_Spos_Length :=
1106 Natural'Max (Max_Spos_Length, UI_Image_Length);
1107 end;
1109 <<Continue>>
1110 Next_Component_Or_Discriminant (Comp);
1111 end loop;
1112 end Compute_Max_Length;
1114 ---------------------------
1115 -- List_Component_Layout --
1116 ---------------------------
1118 procedure List_Component_Layout
1119 (Ent : Entity_Id;
1120 Starting_Position : Uint := Uint_0;
1121 Starting_First_Bit : Uint := Uint_0;
1122 Prefix : String := "";
1123 Indent : Natural := 0)
1125 Esiz : constant Uint := Esize (Ent);
1126 Npos : constant Uint := Normalized_Position (Ent);
1127 Fbit : constant Uint := Normalized_First_Bit (Ent);
1128 Spos : Uint;
1129 Sbit : Uint := No_Uint;
1130 Lbit : Uint;
1132 begin
1133 if List_Representation_Info_To_JSON then
1134 Spaces (Indent);
1135 Write_Line (" {");
1136 Spaces (Indent);
1137 Write_Str (" ""name"": """);
1138 Write_Str (Prefix);
1139 Write_Str (Name_Buffer (1 .. Name_Len));
1140 Write_Line (""",");
1141 if Ekind (Ent) = E_Discriminant then
1142 Spaces (Indent);
1143 Write_Str (" ""discriminant"": ");
1144 UI_Write (Discriminant_Number (Ent), Decimal);
1145 Write_Line (",");
1146 end if;
1147 Spaces (Indent);
1148 Write_Str (" ""Position"": ");
1149 else
1150 Write_Str (" ");
1151 Write_Str (Prefix);
1152 Write_Str (Name_Buffer (1 .. Name_Len));
1153 Spaces (Max_Name_Length - Prefix'Length - Name_Len);
1154 Write_Str (" at ");
1155 end if;
1157 if Known_Static_Normalized_Position (Ent) then
1158 Spos := Starting_Position + Npos;
1159 Sbit := Starting_First_Bit + Fbit;
1161 if Sbit >= SSU then
1162 Spos := Spos + 1;
1163 end if;
1165 UI_Image (Spos);
1166 Spaces (Max_Spos_Length - UI_Image_Length);
1167 Write_Str (UI_Image_Buffer (1 .. UI_Image_Length));
1169 elsif Known_Normalized_Position (Ent)
1170 and then List_Representation_Info >= 3
1171 then
1172 Spaces (Max_Spos_Length - 2);
1174 if Starting_Position /= Uint_0 then
1175 UI_Write (Starting_Position, Decimal);
1176 Write_Str (" + ");
1177 end if;
1179 Write_Val (Npos);
1181 else
1182 Write_Unknown_Val;
1183 end if;
1185 if List_Representation_Info_To_JSON then
1186 Write_Line (",");
1187 Spaces (Indent);
1188 Write_Str (" ""First_Bit"": ");
1189 else
1190 Write_Str (" range ");
1191 end if;
1193 if Known_Static_Normalized_First_Bit (Ent) then
1194 Sbit := Starting_First_Bit + Fbit;
1196 if Sbit >= SSU then
1197 Sbit := Sbit - SSU;
1198 end if;
1200 UI_Write (Sbit, Decimal);
1201 else
1202 Write_Unknown_Val;
1203 end if;
1205 if List_Representation_Info_To_JSON then
1206 Write_Line (", ");
1207 Spaces (Indent);
1208 Write_Str (" ""Size"": ");
1209 else
1210 Write_Str (" .. ");
1211 end if;
1213 if Known_Static_Esize (Ent)
1214 and then Known_Static_Normalized_First_Bit (Ent)
1215 then
1216 Lbit := Sbit + Esiz - 1;
1218 if List_Representation_Info_To_JSON then
1219 UI_Write (Esiz, Decimal);
1220 else
1221 if Lbit >= 0 and then Lbit < 10 then
1222 Write_Char (' ');
1223 end if;
1225 UI_Write (Lbit, Decimal);
1226 end if;
1228 elsif List_Representation_Info < 3 or else not Known_Esize (Ent) then
1229 Write_Unknown_Val;
1231 -- List_Representation >= 3 and Known_Esize (Ent)
1233 else
1234 Write_Val (Esiz, Paren => not List_Representation_Info_To_JSON);
1236 -- Add appropriate first bit offset
1238 if not List_Representation_Info_To_JSON then
1239 if Sbit = 0 then
1240 Write_Str (" - 1");
1242 elsif Sbit = 1 then
1243 null;
1245 else
1246 Write_Str (" + ");
1247 Write_Int (UI_To_Int (Sbit) - 1);
1248 end if;
1249 end if;
1250 end if;
1252 if List_Representation_Info_To_JSON then
1253 Write_Eol;
1254 Spaces (Indent);
1255 Write_Str (" }");
1256 else
1257 Write_Line (";");
1258 end if;
1260 -- The type is relevant for a component
1262 if List_Representation_Info = 4 and then Is_Itype (Etype (Ent)) then
1263 Relevant_Entities.Set (Etype (Ent), True);
1264 end if;
1265 end List_Component_Layout;
1267 ------------------------
1268 -- List_Record_Layout --
1269 ------------------------
1271 procedure List_Record_Layout
1272 (Ent : Entity_Id;
1273 Starting_Position : Uint := Uint_0;
1274 Starting_First_Bit : Uint := Uint_0;
1275 Prefix : String := "")
1277 Comp : Entity_Id;
1278 First : Boolean := True;
1280 begin
1281 Comp := First_Component_Or_Discriminant (Ent);
1282 while Present (Comp) loop
1284 -- Skip a completely hidden discriminant or a discriminant in an
1285 -- unchecked union (since it is not there).
1287 if Ekind (Comp) = E_Discriminant
1288 and then (Is_Completely_Hidden (Comp)
1289 or else Is_Unchecked_Union (Ent))
1290 then
1291 goto Continue;
1292 end if;
1294 -- Skip _Parent component in extension (to avoid overlap)
1296 if Chars (Comp) = Name_uParent then
1297 goto Continue;
1298 end if;
1300 -- All other cases
1302 declare
1303 Ctyp : constant Entity_Id := Underlying_Type (Etype (Comp));
1304 Npos : constant Uint := Normalized_Position (Comp);
1305 Fbit : constant Uint := Normalized_First_Bit (Comp);
1306 Spos : Uint;
1307 Sbit : Uint;
1309 begin
1310 Get_Decoded_Name_String (Chars (Comp));
1311 Set_Casing (Unit_Casing);
1313 -- If extended information is requested, recurse fully into
1314 -- record components, i.e. skip the outer level.
1316 if List_Representation_Info_Extended
1317 and then Is_Record_Type (Ctyp)
1318 and then Known_Static_Normalized_Position (Comp)
1319 and then Known_Static_Normalized_First_Bit (Comp)
1320 then
1321 Spos := Starting_Position + Npos;
1322 Sbit := Starting_First_Bit + Fbit;
1324 if Sbit >= SSU then
1325 Spos := Spos + 1;
1326 Sbit := Sbit - SSU;
1327 end if;
1329 List_Record_Layout (Ctyp,
1330 Spos, Sbit, Prefix & Name_Buffer (1 .. Name_Len) & ".");
1332 goto Continue;
1333 end if;
1335 if List_Representation_Info_To_JSON then
1336 if First then
1337 Write_Eol;
1338 First := False;
1339 else
1340 Write_Line (",");
1341 end if;
1342 end if;
1344 -- The Parent_Subtype in an extension is not back-annotated
1346 List_Component_Layout (
1347 (if Known_Normalized_Position (Comp)
1348 then Comp
1349 else Original_Record_Component (Comp)),
1350 Starting_Position, Starting_First_Bit, Prefix);
1351 end;
1353 <<Continue>>
1354 Next_Component_Or_Discriminant (Comp);
1355 end loop;
1356 end List_Record_Layout;
1358 -----------------------------------
1359 -- List_Structural_Record_Layout --
1360 -----------------------------------
1362 procedure List_Structural_Record_Layout
1363 (Ent : Entity_Id;
1364 Ext_Ent : Entity_Id;
1365 Ext_Level : Nat := 0;
1366 Variant : Node_Id := Empty;
1367 Indent : Natural := 0)
1369 function Derived_Discriminant (Disc : Entity_Id) return Entity_Id;
1370 -- This function assumes that Ext_Ent is an extension of Ent.
1371 -- Disc is a discriminant of Ent that does not itself constrain a
1372 -- discriminant of the parent type of Ent. Return the discriminant
1373 -- of Ext_Ent that ultimately constrains Disc, if any.
1375 ----------------------------
1376 -- Derived_Discriminant --
1377 ----------------------------
1379 function Derived_Discriminant (Disc : Entity_Id) return Entity_Id is
1380 Corr_Disc : Entity_Id;
1381 Derived_Disc : Entity_Id;
1383 begin
1384 Derived_Disc := First_Discriminant (Ext_Ent);
1386 -- Loop over the discriminants of the extension
1388 while Present (Derived_Disc) loop
1390 -- Check if this discriminant constrains another discriminant.
1391 -- If so, find the ultimately constrained discriminant and
1392 -- compare with the original components in the base type.
1394 if Present (Corresponding_Discriminant (Derived_Disc)) then
1395 Corr_Disc := Corresponding_Discriminant (Derived_Disc);
1397 while Present (Corresponding_Discriminant (Corr_Disc)) loop
1398 Corr_Disc := Corresponding_Discriminant (Corr_Disc);
1399 end loop;
1401 if Original_Record_Component (Corr_Disc) =
1402 Original_Record_Component (Disc)
1403 then
1404 return Derived_Disc;
1405 end if;
1406 end if;
1408 Next_Discriminant (Derived_Disc);
1409 end loop;
1411 -- Disc is not constrained by a discriminant of Ext_Ent
1413 return Empty;
1414 end Derived_Discriminant;
1416 -- Local declarations
1418 Comp : Node_Id;
1419 Comp_List : Node_Id;
1420 First : Boolean := True;
1421 Var : Node_Id;
1423 -- Start of processing for List_Structural_Record_Layout
1425 begin
1426 -- If we are dealing with a variant, just process the components
1428 if Present (Variant) then
1429 Comp_List := Component_List (Variant);
1431 -- Otherwise, we are dealing with the full record and need to get
1432 -- to its definition in order to retrieve its structural layout.
1434 else
1435 declare
1436 Definition : Node_Id :=
1437 Type_Definition (Declaration_Node (Ent));
1439 Is_Extension : constant Boolean :=
1440 Is_Tagged_Type (Ent)
1441 and then Nkind (Definition) =
1442 N_Derived_Type_Definition;
1444 Disc : Entity_Id;
1445 Listed_Disc : Entity_Id;
1446 Parent_Type : Entity_Id;
1448 begin
1449 -- If this is an extension, first list the layout of the parent
1450 -- and then proceed to the extension part, if any.
1452 if Is_Extension then
1453 Parent_Type := Parent_Subtype (Ent);
1454 if No (Parent_Type) then
1455 raise Incomplete_Layout;
1456 end if;
1458 if Is_Private_Type (Parent_Type) then
1459 Parent_Type := Full_View (Parent_Type);
1460 pragma Assert (Present (Parent_Type));
1461 end if;
1463 -- Do not list variants if one of them has been selected
1465 if Has_Static_Discriminants (Parent_Type) then
1466 List_Record_Layout (Parent_Type);
1468 else
1469 Parent_Type := Base_Type (Parent_Type);
1470 if not In_Extended_Main_Source_Unit (Parent_Type) then
1471 raise Not_In_Extended_Main;
1472 end if;
1474 List_Structural_Record_Layout
1475 (Parent_Type, Ext_Ent, Ext_Level + 1);
1476 end if;
1478 First := False;
1480 if Present (Record_Extension_Part (Definition)) then
1481 Definition := Record_Extension_Part (Definition);
1482 end if;
1483 end if;
1485 -- If the record has discriminants and is not an unchecked
1486 -- union, then display them now. Note that, even if this is
1487 -- a structural layout, we list the visible discriminants.
1489 if Has_Discriminants (Ent)
1490 and then not Is_Unchecked_Union (Ent)
1491 then
1492 Disc := First_Discriminant (Ent);
1493 while Present (Disc) loop
1495 -- If this is a record extension and the discriminant is
1496 -- the renaming of another discriminant, skip it.
1498 if Is_Extension
1499 and then Present (Corresponding_Discriminant (Disc))
1500 then
1501 goto Continue_Disc;
1502 end if;
1504 -- If this is the parent type of an extension, retrieve
1505 -- the derived discriminant from the extension, if any.
1507 if Ent /= Ext_Ent then
1508 Listed_Disc := Derived_Discriminant (Disc);
1510 if No (Listed_Disc) then
1511 goto Continue_Disc;
1512 end if;
1513 else
1514 Listed_Disc := Disc;
1515 end if;
1517 Get_Decoded_Name_String (Chars (Listed_Disc));
1518 Set_Casing (Unit_Casing);
1520 if First then
1521 Write_Eol;
1522 First := False;
1523 else
1524 Write_Line (",");
1525 end if;
1527 List_Component_Layout (Listed_Disc, Indent => Indent);
1529 <<Continue_Disc>>
1530 Next_Discriminant (Disc);
1531 end loop;
1532 end if;
1534 Comp_List := Component_List (Definition);
1535 end;
1536 end if;
1538 -- Bail out for the null record
1540 if No (Comp_List) then
1541 return;
1542 end if;
1544 -- Now deal with the regular components, if any
1546 if Present (Component_Items (Comp_List)) then
1547 Comp := First_Non_Pragma (Component_Items (Comp_List));
1548 while Present (Comp) loop
1550 -- Skip _Parent component in extension (to avoid overlap)
1552 if Chars (Defining_Identifier (Comp)) = Name_uParent then
1553 goto Continue_Comp;
1554 end if;
1556 Get_Decoded_Name_String (Chars (Defining_Identifier (Comp)));
1557 Set_Casing (Unit_Casing);
1559 if First then
1560 Write_Eol;
1561 First := False;
1562 else
1563 Write_Line (",");
1564 end if;
1566 List_Component_Layout
1567 (Defining_Identifier (Comp), Indent => Indent);
1569 <<Continue_Comp>>
1570 Next_Non_Pragma (Comp);
1571 end loop;
1572 end if;
1574 -- We are done if there is no variant part
1576 if No (Variant_Part (Comp_List)) then
1577 return;
1578 end if;
1580 Write_Eol;
1581 Spaces (Indent);
1582 Write_Line (" ],");
1583 Spaces (Indent);
1584 Write_Str (" """);
1585 for J in 1 .. Ext_Level loop
1586 Write_Str ("parent_");
1587 end loop;
1588 Write_Str ("variant"" : [");
1590 -- Otherwise we recurse on each variant
1592 Var := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
1593 First := True;
1594 while Present (Var) loop
1595 if First then
1596 Write_Eol;
1597 First := False;
1598 else
1599 Write_Line (",");
1600 end if;
1602 Spaces (Indent);
1603 Write_Line (" {");
1604 Spaces (Indent);
1605 Write_Str (" ""present"": ");
1606 Write_Val (Present_Expr (Var));
1607 Write_Line (",");
1608 Spaces (Indent);
1609 Write_Str (" ""record"": [");
1611 List_Structural_Record_Layout
1612 (Ent, Ext_Ent, Ext_Level, Var, Indent + 4);
1614 Write_Eol;
1615 Spaces (Indent);
1616 Write_Line (" ]");
1617 Spaces (Indent);
1618 Write_Str (" }");
1619 Next_Non_Pragma (Var);
1620 end loop;
1621 end List_Structural_Record_Layout;
1623 -- Start of processing for List_Record_Info
1625 begin
1626 Write_Separator;
1628 if List_Representation_Info_To_JSON then
1629 Write_Line ("{");
1630 end if;
1632 List_Common_Type_Info (Ent);
1634 -- First find out max line length and max starting position
1635 -- length, for the purpose of lining things up nicely.
1637 Compute_Max_Length (Ent);
1639 -- Then do actual output based on those values
1641 if List_Representation_Info_To_JSON then
1642 Write_Line (",");
1643 Write_Str (" ""record"": [");
1645 -- ??? We can output structural layout only for base types fully
1646 -- declared in the extended main source unit for the time being,
1647 -- because otherwise declarations might not be processed at all.
1649 if Is_Base_Type (Ent) then
1650 begin
1651 List_Structural_Record_Layout (Ent, Ent);
1653 exception
1654 when Incomplete_Layout
1655 | Not_In_Extended_Main
1657 List_Record_Layout (Ent);
1659 when others =>
1660 raise Program_Error;
1661 end;
1662 else
1663 List_Record_Layout (Ent);
1664 end if;
1666 Write_Eol;
1667 Write_Str (" ]");
1668 else
1669 Write_Str ("for ");
1670 List_Name (Ent);
1671 Write_Line (" use record");
1673 List_Record_Layout (Ent);
1675 Write_Line ("end record;");
1676 end if;
1678 List_Scalar_Storage_Order (Ent, Bytes_Big_Endian);
1680 List_Linker_Section (Ent);
1682 if List_Representation_Info_To_JSON then
1683 Write_Eol;
1684 Write_Line ("}");
1685 end if;
1687 -- The type is relevant for a record subtype
1689 if List_Representation_Info = 4
1690 and then not Is_Base_Type (Ent)
1691 and then Is_Itype (Etype (Ent))
1692 then
1693 Relevant_Entities.Set (Etype (Ent), True);
1694 end if;
1695 end List_Record_Info;
1697 -------------------
1698 -- List_Rep_Info --
1699 -------------------
1701 procedure List_Rep_Info (Bytes_Big_Endian : Boolean) is
1702 Col : Nat;
1704 begin
1705 if List_Representation_Info /= 0
1706 or else List_Representation_Info_Mechanisms
1707 then
1708 -- For the normal case, we output a single JSON stream
1710 if not List_Representation_Info_To_File
1711 and then List_Representation_Info_To_JSON
1712 then
1713 Write_Line ("[");
1714 Need_Separator := False;
1715 end if;
1717 for U in Main_Unit .. Last_Unit loop
1718 if In_Extended_Main_Source_Unit (Cunit_Entity (U)) then
1719 Unit_Casing := Identifier_Casing (Source_Index (U));
1721 if List_Representation_Info = 4 then
1722 Relevant_Entities.Reset;
1723 end if;
1725 -- Normal case, list to standard output
1727 if not List_Representation_Info_To_File then
1728 if not List_Representation_Info_To_JSON then
1729 Write_Eol;
1730 Write_Str ("Representation information for unit ");
1731 Write_Unit_Name (Unit_Name (U));
1732 Col := Column;
1733 Write_Eol;
1735 for J in 1 .. Col - 1 loop
1736 Write_Char ('-');
1737 end loop;
1739 Write_Eol;
1740 Need_Separator := True;
1741 end if;
1743 List_Entities (Cunit_Entity (U), Bytes_Big_Endian);
1745 -- List representation information to file
1747 else
1748 Create_Repinfo_File
1749 (Get_Name_String (File_Name (Source_Index (U))));
1750 Set_Special_Output (Write_Info_Line'Access);
1751 if List_Representation_Info_To_JSON then
1752 Write_Line ("[");
1753 end if;
1754 Need_Separator := False;
1755 List_Entities (Cunit_Entity (U), Bytes_Big_Endian);
1756 if List_Representation_Info_To_JSON then
1757 Write_Line ("]");
1758 end if;
1759 Cancel_Special_Output;
1760 Close_Repinfo_File;
1761 end if;
1762 end if;
1763 end loop;
1765 if not List_Representation_Info_To_File
1766 and then List_Representation_Info_To_JSON
1767 then
1768 Write_Line ("]");
1769 end if;
1770 end if;
1771 end List_Rep_Info;
1773 -------------------------------
1774 -- List_Scalar_Storage_Order --
1775 -------------------------------
1777 procedure List_Scalar_Storage_Order
1778 (Ent : Entity_Id;
1779 Bytes_Big_Endian : Boolean)
1781 procedure List_Attr (Attr_Name : String; Is_Reversed : Boolean);
1782 -- Show attribute definition clause for Attr_Name (an endianness
1783 -- attribute), depending on whether or not the endianness is reversed
1784 -- compared to native endianness.
1786 ---------------
1787 -- List_Attr --
1788 ---------------
1790 procedure List_Attr (Attr_Name : String; Is_Reversed : Boolean) is
1791 begin
1792 if List_Representation_Info_To_JSON then
1793 Write_Line (",");
1794 Write_Str (" """);
1795 Write_Str (Attr_Name);
1796 Write_Str (""": ""System.");
1797 else
1798 Write_Str ("for ");
1799 List_Name (Ent);
1800 Write_Char (''');
1801 Write_Str (Attr_Name);
1802 Write_Str (" use System.");
1803 end if;
1805 if Bytes_Big_Endian xor Is_Reversed then
1806 Write_Str ("High");
1807 else
1808 Write_Str ("Low");
1809 end if;
1811 Write_Str ("_Order_First");
1812 if List_Representation_Info_To_JSON then
1813 Write_Str ("""");
1814 else
1815 Write_Line (";");
1816 end if;
1817 end List_Attr;
1819 List_SSO : constant Boolean :=
1820 Has_Rep_Item (Ent, Name_Scalar_Storage_Order)
1821 or else SSO_Set_Low_By_Default (Ent)
1822 or else SSO_Set_High_By_Default (Ent);
1823 -- Scalar_Storage_Order is displayed if specified explicitly or set by
1824 -- Default_Scalar_Storage_Order.
1826 -- Start of processing for List_Scalar_Storage_Order
1828 begin
1829 -- For record types, list Bit_Order if not default, or if SSO is shown
1831 -- Also, when -gnatR4 is in effect always list bit order and scalar
1832 -- storage order explicitly, so that you don't need to know the native
1833 -- endianness of the target for which the output was produced in order
1834 -- to interpret it.
1836 if Is_Record_Type (Ent)
1837 and then (List_SSO
1838 or else Reverse_Bit_Order (Ent)
1839 or else List_Representation_Info = 4)
1840 then
1841 List_Attr ("Bit_Order", Reverse_Bit_Order (Ent));
1842 end if;
1844 -- List SSO if required. If not, then storage is supposed to be in
1845 -- native order.
1847 if List_SSO or else List_Representation_Info = 4 then
1848 List_Attr ("Scalar_Storage_Order", Reverse_Storage_Order (Ent));
1849 else
1850 pragma Assert (not Reverse_Storage_Order (Ent));
1851 null;
1852 end if;
1853 end List_Scalar_Storage_Order;
1855 --------------------------
1856 -- List_Subprogram_Info --
1857 --------------------------
1859 procedure List_Subprogram_Info (Ent : Entity_Id) is
1860 First : Boolean := True;
1861 Plen : Natural;
1862 Form : Entity_Id;
1864 begin
1865 Write_Separator;
1867 if List_Representation_Info_To_JSON then
1868 Write_Line ("{");
1869 Write_Str (" ""name"": """);
1870 List_Name (Ent);
1871 Write_Line (""",");
1872 List_Location (Ent);
1874 Write_Str (" ""Convention"": """);
1875 else
1876 case Ekind (Ent) is
1877 when E_Function =>
1878 Write_Str ("function ");
1880 when E_Operator =>
1881 Write_Str ("operator ");
1883 when E_Procedure =>
1884 Write_Str ("procedure ");
1886 when E_Subprogram_Type =>
1887 Write_Str ("type ");
1889 when E_Entry
1890 | E_Entry_Family
1892 Write_Str ("entry ");
1894 when others =>
1895 raise Program_Error;
1896 end case;
1898 List_Name (Ent);
1899 Write_Str (" declared at ");
1900 Write_Location (Sloc (Ent));
1901 Write_Eol;
1903 Write_Str ("convention : ");
1904 end if;
1906 case Convention (Ent) is
1907 when Convention_Ada =>
1908 Write_Str ("Ada");
1910 when Convention_Ada_Pass_By_Copy =>
1911 Write_Str ("Ada_Pass_By_Copy");
1913 when Convention_Ada_Pass_By_Reference =>
1914 Write_Str ("Ada_Pass_By_Reference");
1916 when Convention_Intrinsic =>
1917 Write_Str ("Intrinsic");
1919 when Convention_Entry =>
1920 Write_Str ("Entry");
1922 when Convention_Protected =>
1923 Write_Str ("Protected");
1925 when Convention_Assembler =>
1926 Write_Str ("Assembler");
1928 when Convention_C =>
1929 Write_Str ("C");
1931 when Convention_C_Variadic =>
1932 declare
1933 N : Nat :=
1934 Convention_Id'Pos (Convention (Ent)) -
1935 Convention_Id'Pos (Convention_C_Variadic_0);
1936 begin
1937 Write_Str ("C_Variadic_");
1938 if N >= 10 then
1939 Write_Char ('1');
1940 N := N - 10;
1941 end if;
1942 pragma Assert (N < 10);
1943 Write_Char (Character'Val (Character'Pos ('0') + N));
1944 end;
1946 when Convention_COBOL =>
1947 Write_Str ("COBOL");
1949 when Convention_CPP =>
1950 Write_Str ("C++");
1952 when Convention_Fortran =>
1953 Write_Str ("Fortran");
1955 when Convention_Stdcall =>
1956 Write_Str ("Stdcall");
1958 when Convention_Stubbed =>
1959 Write_Str ("Stubbed");
1960 end case;
1962 if List_Representation_Info_To_JSON then
1963 Write_Line (""",");
1964 Write_Str (" ""formal"": [");
1965 else
1966 Write_Eol;
1967 end if;
1969 -- Find max length of formal name
1971 Plen := 0;
1972 Form := First_Formal (Ent);
1973 while Present (Form) loop
1974 Get_Unqualified_Decoded_Name_String (Chars (Form));
1976 if Name_Len > Plen then
1977 Plen := Name_Len;
1978 end if;
1980 Next_Formal (Form);
1981 end loop;
1983 -- Output formals and mechanisms
1985 Form := First_Formal (Ent);
1986 while Present (Form) loop
1987 Get_Unqualified_Decoded_Name_String (Chars (Form));
1988 Set_Casing (Unit_Casing);
1990 if List_Representation_Info_To_JSON then
1991 if First then
1992 Write_Eol;
1993 First := False;
1994 else
1995 Write_Line (",");
1996 end if;
1998 Write_Line (" {");
1999 Write_Str (" ""name"": """);
2000 Write_Str (Name_Buffer (1 .. Name_Len));
2001 Write_Line (""",");
2003 Write_Str (" ""mechanism"": """);
2004 Write_Mechanism (Mechanism (Form));
2005 Write_Line ("""");
2006 Write_Str (" }");
2007 else
2008 while Name_Len <= Plen loop
2009 Name_Len := Name_Len + 1;
2010 Name_Buffer (Name_Len) := ' ';
2011 end loop;
2013 Write_Str (" ");
2014 Write_Str (Name_Buffer (1 .. Plen + 1));
2015 Write_Str (": passed by ");
2017 Write_Mechanism (Mechanism (Form));
2018 Write_Eol;
2019 end if;
2021 Next_Formal (Form);
2022 end loop;
2024 if List_Representation_Info_To_JSON then
2025 Write_Eol;
2026 Write_Str (" ]");
2027 end if;
2029 if Ekind (Ent) = E_Function then
2030 if List_Representation_Info_To_JSON then
2031 Write_Line (",");
2032 Write_Str (" ""mechanism"": """);
2033 Write_Mechanism (Mechanism (Ent));
2034 Write_Str ("""");
2035 else
2036 Write_Str ("returns by ");
2037 Write_Mechanism (Mechanism (Ent));
2038 Write_Eol;
2039 end if;
2040 end if;
2042 if not Is_Entry (Ent) then
2043 List_Linker_Section (Ent);
2044 end if;
2046 if List_Representation_Info_To_JSON then
2047 Write_Eol;
2048 Write_Line ("}");
2049 end if;
2050 end List_Subprogram_Info;
2052 --------------------
2053 -- List_Type_Info --
2054 --------------------
2056 procedure List_Type_Info (Ent : Entity_Id) is
2057 begin
2058 Write_Separator;
2060 if List_Representation_Info_To_JSON then
2061 Write_Line ("{");
2062 end if;
2064 List_Common_Type_Info (Ent);
2066 -- Special stuff for fixed-point
2068 if Is_Fixed_Point_Type (Ent) then
2070 -- Write small (always a static constant)
2072 if List_Representation_Info_To_JSON then
2073 Write_Line (",");
2074 Write_Str (" ""Small"": ");
2075 UR_Write_To_JSON (Small_Value (Ent));
2076 else
2077 Write_Str ("for ");
2078 List_Name (Ent);
2079 Write_Str ("'Small use ");
2080 UR_Write (Small_Value (Ent));
2081 Write_Line (";");
2082 end if;
2084 -- Write range if static
2086 declare
2087 R : constant Node_Id := Scalar_Range (Ent);
2089 begin
2090 if Nkind (Low_Bound (R)) = N_Real_Literal
2091 and then
2092 Nkind (High_Bound (R)) = N_Real_Literal
2093 then
2094 if List_Representation_Info_To_JSON then
2095 Write_Line (",");
2096 Write_Str (" ""Range"": [ ");
2097 UR_Write_To_JSON (Realval (Low_Bound (R)));
2098 Write_Str (", ");
2099 UR_Write_To_JSON (Realval (High_Bound (R)));
2100 Write_Str (" ]");
2101 else
2102 Write_Str ("for ");
2103 List_Name (Ent);
2104 Write_Str ("'Range use ");
2105 UR_Write (Realval (Low_Bound (R)));
2106 Write_Str (" .. ");
2107 UR_Write (Realval (High_Bound (R)));
2108 Write_Line (";");
2109 end if;
2110 end if;
2111 end;
2112 end if;
2114 List_Linker_Section (Ent);
2116 if List_Representation_Info_To_JSON then
2117 Write_Eol;
2118 Write_Line ("}");
2119 end if;
2120 end List_Type_Info;
2122 ----------------------------
2123 -- Compile_Time_Known_Rep --
2124 ----------------------------
2126 function Compile_Time_Known_Rep (Val : Node_Ref_Or_Val) return Boolean is
2127 begin
2128 return Present (Val) and then Val >= 0;
2129 end Compile_Time_Known_Rep;
2131 ---------------
2132 -- Rep_Value --
2133 ---------------
2135 function Rep_Value (Val : Node_Ref_Or_Val; D : Discrim_List) return Uint is
2137 function B (Val : Boolean) return Ubool;
2138 -- Returns Uint_0 for False, Uint_1 for True
2140 function T (Val : Node_Ref_Or_Val) return Boolean;
2141 -- Returns True for 0, False for any non-zero (i.e. True)
2143 function V (Val : Node_Ref_Or_Val) return Uint;
2144 -- Internal recursive routine to evaluate tree
2146 function W (Val : Uint) return Word;
2147 -- Convert Val to Word, assuming Val is always in the Int range. This
2148 -- is a helper function for the evaluation of bitwise expressions like
2149 -- Bit_And_Expr, for which there is no direct support in uintp. Uint
2150 -- values out of the Int range are expected to be seen in such
2151 -- expressions only with overflowing byte sizes around, introducing
2152 -- inherent unreliabilities in computations anyway.
2154 -------
2155 -- B --
2156 -------
2158 function B (Val : Boolean) return Ubool is
2159 begin
2160 if Val then
2161 return Uint_1;
2162 else
2163 return Uint_0;
2164 end if;
2165 end B;
2167 -------
2168 -- T --
2169 -------
2171 function T (Val : Node_Ref_Or_Val) return Boolean is
2172 begin
2173 if V (Val) = 0 then
2174 return False;
2175 else
2176 return True;
2177 end if;
2178 end T;
2180 -------
2181 -- V --
2182 -------
2184 function V (Val : Node_Ref_Or_Val) return Uint is
2185 L, R, Q : Uint;
2187 begin
2188 if Val >= 0 then
2189 return Val;
2191 else
2192 declare
2193 Node : Exp_Node renames Rep_Table.Table (-UI_To_Int (Val));
2195 begin
2196 case Node.Expr is
2197 when Cond_Expr =>
2198 if T (Node.Op1) then
2199 return V (Node.Op2);
2200 else
2201 return V (Node.Op3);
2202 end if;
2204 when Plus_Expr =>
2205 return V (Node.Op1) + V (Node.Op2);
2207 when Minus_Expr =>
2208 return V (Node.Op1) - V (Node.Op2);
2210 when Mult_Expr =>
2211 return V (Node.Op1) * V (Node.Op2);
2213 when Trunc_Div_Expr =>
2214 return V (Node.Op1) / V (Node.Op2);
2216 when Ceil_Div_Expr =>
2217 return
2218 UR_Ceiling
2219 (V (Node.Op1) / UR_From_Uint (V (Node.Op2)));
2221 when Floor_Div_Expr =>
2222 return
2223 UR_Floor
2224 (V (Node.Op1) / UR_From_Uint (V (Node.Op2)));
2226 when Trunc_Mod_Expr =>
2227 return V (Node.Op1) rem V (Node.Op2);
2229 when Floor_Mod_Expr =>
2230 return V (Node.Op1) mod V (Node.Op2);
2232 when Ceil_Mod_Expr =>
2233 L := V (Node.Op1);
2234 R := V (Node.Op2);
2235 Q := UR_Ceiling (L / UR_From_Uint (R));
2236 return L - R * Q;
2238 when Exact_Div_Expr =>
2239 return V (Node.Op1) / V (Node.Op2);
2241 when Negate_Expr =>
2242 return -V (Node.Op1);
2244 when Min_Expr =>
2245 return UI_Min (V (Node.Op1), V (Node.Op2));
2247 when Max_Expr =>
2248 return UI_Max (V (Node.Op1), V (Node.Op2));
2250 when Abs_Expr =>
2251 return UI_Abs (V (Node.Op1));
2253 when Truth_And_Expr =>
2254 return B (T (Node.Op1) and then T (Node.Op2));
2256 when Truth_Or_Expr =>
2257 return B (T (Node.Op1) or else T (Node.Op2));
2259 when Truth_Xor_Expr =>
2260 return B (T (Node.Op1) xor T (Node.Op2));
2262 when Truth_Not_Expr =>
2263 return B (not T (Node.Op1));
2265 when Bit_And_Expr =>
2266 L := V (Node.Op1);
2267 R := V (Node.Op2);
2268 return UI_From_Int (Int (W (L) and W (R)));
2270 when Lt_Expr =>
2271 return B (V (Node.Op1) < V (Node.Op2));
2273 when Le_Expr =>
2274 return B (V (Node.Op1) <= V (Node.Op2));
2276 when Gt_Expr =>
2277 return B (V (Node.Op1) > V (Node.Op2));
2279 when Ge_Expr =>
2280 return B (V (Node.Op1) >= V (Node.Op2));
2282 when Eq_Expr =>
2283 return B (V (Node.Op1) = V (Node.Op2));
2285 when Ne_Expr =>
2286 return B (V (Node.Op1) /= V (Node.Op2));
2288 when Discrim_Val =>
2289 declare
2290 Sub : constant Int := UI_To_Int (Node.Op1);
2291 begin
2292 pragma Assert (Sub in D'Range);
2293 return D (Sub);
2294 end;
2296 when Dynamic_Val =>
2297 return No_Uint;
2298 end case;
2299 end;
2300 end if;
2301 end V;
2303 -------
2304 -- W --
2305 -------
2307 -- We use an unchecked conversion to map Int values to their Word
2308 -- bitwise equivalent, which we could not achieve with a normal type
2309 -- conversion for negative Ints. We want bitwise equivalents because W
2310 -- is used as a helper for bit operators like Bit_And_Expr, and can be
2311 -- called for negative Ints in the context of aligning expressions like
2312 -- X+Align & -Align.
2314 function W (Val : Uint) return Word is
2315 function To_Word is new Ada.Unchecked_Conversion (Int, Word);
2316 begin
2317 return To_Word (UI_To_Int (Val));
2318 end W;
2320 -- Start of processing for Rep_Value
2322 begin
2323 if No (Val) then
2324 return No_Uint;
2326 else
2327 return V (Val);
2328 end if;
2329 end Rep_Value;
2331 ------------
2332 -- Spaces --
2333 ------------
2335 procedure Spaces (N : Natural) is
2336 begin
2337 for J in 1 .. N loop
2338 Write_Char (' ');
2339 end loop;
2340 end Spaces;
2342 ---------------------
2343 -- Write_Info_Line --
2344 ---------------------
2346 procedure Write_Info_Line (S : String) is
2347 begin
2348 Write_Repinfo_Line (S (S'First .. S'Last - 1));
2349 end Write_Info_Line;
2351 ---------------------
2352 -- Write_Mechanism --
2353 ---------------------
2355 procedure Write_Mechanism (M : Mechanism_Type) is
2356 begin
2357 case M is
2358 when 0 =>
2359 Write_Str ("default");
2361 when -1 =>
2362 Write_Str ("copy");
2364 when -2 =>
2365 Write_Str ("reference");
2367 when others =>
2368 raise Program_Error;
2369 end case;
2370 end Write_Mechanism;
2372 ---------------------
2373 -- Write_Separator --
2374 ---------------------
2376 procedure Write_Separator is
2377 begin
2378 if Need_Separator then
2379 if List_Representation_Info_To_JSON then
2380 Write_Line (",");
2381 else
2382 Write_Eol;
2383 end if;
2384 else
2385 Need_Separator := True;
2386 end if;
2387 end Write_Separator;
2389 -----------------------
2390 -- Write_Unknown_Val --
2391 -----------------------
2393 procedure Write_Unknown_Val is
2394 begin
2395 if List_Representation_Info_To_JSON then
2396 Write_Str ("""??""");
2397 else
2398 Write_Str ("??");
2399 end if;
2400 end Write_Unknown_Val;
2402 ---------------
2403 -- Write_Val --
2404 ---------------
2406 procedure Write_Val (Val : Node_Ref_Or_Val; Paren : Boolean := False) is
2407 begin
2408 if Compile_Time_Known_Rep (Val) then
2409 UI_Write (Val, Decimal);
2410 elsif List_Representation_Info < 3 or else No (Val) then
2411 Write_Unknown_Val;
2412 else
2413 if Paren then
2414 Write_Char ('(');
2415 end if;
2417 List_GCC_Expression (Val);
2419 if Paren then
2420 Write_Char (')');
2421 end if;
2422 end if;
2423 end Write_Val;
2425 end Repinfo;