Add assember CFI directives to millicode division and remainder routines.
[official-gcc.git] / gcc / ada / eval_fat.adb
blob42ed41309c54227c47ea2c7a6a9b6da9556e785e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E V A L _ F A T --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Einfo; use Einfo;
27 with Einfo.Utils; use Einfo.Utils;
28 with Errout; use Errout;
29 with Opt; use Opt;
30 with Sem_Util; use Sem_Util;
32 package body Eval_Fat is
34 Radix : constant Int := 2;
35 -- This code is currently only correct for the radix 2 case. We use the
36 -- symbolic value Radix where possible to help in the unlikely case of
37 -- anyone ever having to adjust this code for another value, and for
38 -- documentation purposes.
40 -- Another assumption is that the range of the floating-point type is
41 -- symmetric around zero.
43 type Radix_Power_Table is array (Int range 1 .. 4) of Int;
45 Radix_Powers : constant Radix_Power_Table :=
46 (Radix ** 1, Radix ** 2, Radix ** 3, Radix ** 4);
48 -----------------------
49 -- Local Subprograms --
50 -----------------------
52 procedure Decompose
53 (RT : R;
54 X : T;
55 Fraction : out T;
56 Exponent : out UI;
57 Mode : Rounding_Mode := Round);
58 -- Decomposes a non-zero floating-point number into fraction and exponent
59 -- parts. The fraction is in the interval 1.0 / Radix .. T'Pred (1.0) and
60 -- uses Rbase = Radix. The result is rounded to a nearest machine number.
62 --------------
63 -- Adjacent --
64 --------------
66 function Adjacent (RT : R; X, Towards : T) return T is
67 begin
68 if Towards = X then
69 return X;
70 elsif Towards > X then
71 return Succ (RT, X);
72 else
73 return Pred (RT, X);
74 end if;
75 end Adjacent;
77 -------------
78 -- Ceiling --
79 -------------
81 function Ceiling (RT : R; X : T) return T is
82 XT : constant T := Truncation (RT, X);
83 begin
84 if UR_Is_Negative (X) then
85 return XT;
86 elsif X = XT then
87 return X;
88 else
89 return XT + Ureal_1;
90 end if;
91 end Ceiling;
93 -------------
94 -- Compose --
95 -------------
97 function Compose (RT : R; Fraction : T; Exponent : UI) return T is
98 Arg_Frac : T;
99 Arg_Exp : UI;
100 pragma Warnings (Off, Arg_Exp);
101 begin
102 Decompose (RT, Fraction, Arg_Frac, Arg_Exp);
103 return Scaling (RT, Arg_Frac, Exponent);
104 end Compose;
106 ---------------
107 -- Copy_Sign --
108 ---------------
110 function Copy_Sign (RT : R; Value, Sign : T) return T is
111 pragma Warnings (Off, RT);
112 Result : T;
114 begin
115 Result := abs Value;
117 if UR_Is_Negative (Sign) then
118 return -Result;
119 else
120 return Result;
121 end if;
122 end Copy_Sign;
124 ---------------
125 -- Decompose --
126 ---------------
128 procedure Decompose
129 (RT : R;
130 X : T;
131 Fraction : out T;
132 Exponent : out UI;
133 Mode : Rounding_Mode := Round)
135 Int_F : UI;
137 begin
138 Decompose_Int (RT, abs X, Int_F, Exponent, Mode);
140 Fraction := UR_From_Components
141 (Num => Int_F,
142 Den => Machine_Mantissa_Value (RT),
143 Rbase => Radix,
144 Negative => False);
146 if UR_Is_Negative (X) then
147 Fraction := -Fraction;
148 end if;
150 return;
151 end Decompose;
153 -------------------
154 -- Decompose_Int --
155 -------------------
157 -- This procedure should be modified with care, as there are many non-
158 -- obvious details that may cause problems that are hard to detect. For
159 -- zero arguments, Fraction and Exponent are set to zero. Note that sign
160 -- of zero cannot be preserved.
162 procedure Decompose_Int
163 (RT : R;
164 X : T;
165 Fraction : out UI;
166 Exponent : out UI;
167 Mode : Rounding_Mode)
169 Base : Int := Rbase (X);
170 N : UI := abs Numerator (X);
171 D : UI := Denominator (X);
173 N_Times_Radix : UI;
175 Even : Boolean;
176 -- True iff Fraction is even
178 Most_Significant_Digit : constant UI :=
179 Radix ** (Machine_Mantissa_Value (RT) - 1);
181 Uintp_Mark : Uintp.Save_Mark;
182 -- The code is divided into blocks that systematically release
183 -- intermediate values (this routine generates lots of junk).
185 begin
186 if N = Uint_0 then
187 Fraction := Uint_0;
188 Exponent := Uint_0;
189 return;
190 end if;
192 Calculate_D_And_Exponent_1 : begin
193 Uintp_Mark := Mark;
194 Exponent := Uint_0;
196 -- In cases where Base > 1, the actual denominator is Base**D. For
197 -- cases where Base is a power of Radix, use the value 1 for the
198 -- Denominator and adjust the exponent.
200 -- Note: Exponent has different sign from D, because D is a divisor
202 for Power in 1 .. Radix_Powers'Last loop
203 if Base = Radix_Powers (Power) then
204 Exponent := -D * Power;
205 Base := 0;
206 D := Uint_1;
207 exit;
208 end if;
209 end loop;
211 Release_And_Save (Uintp_Mark, D, Exponent);
212 end Calculate_D_And_Exponent_1;
214 if Base > 0 then
215 Calculate_Exponent : begin
216 Uintp_Mark := Mark;
218 -- For bases that are a multiple of the Radix, divide the base by
219 -- Radix and adjust the Exponent. This will help because D will be
220 -- much smaller and faster to process.
222 -- This occurs for decimal bases on machines with binary floating-
223 -- point for example. When calculating 1E40, with Radix = 2, N
224 -- will be 93 bits instead of 133.
226 -- N E
227 -- ------ * Radix
228 -- D
229 -- Base
231 -- N E
232 -- = -------------------------- * Radix
233 -- D D
234 -- (Base/Radix) * Radix
236 -- N E-D
237 -- = --------------- * Radix
238 -- D
239 -- (Base/Radix)
241 -- This code is commented out, because it causes numerous
242 -- failures in the regression suite. To be studied ???
244 while False and then Base > 0 and then Base mod Radix = 0 loop
245 Base := Base / Radix;
246 Exponent := Exponent + D;
247 end loop;
249 Release_And_Save (Uintp_Mark, Exponent);
250 end Calculate_Exponent;
252 -- For remaining bases we must actually compute the exponentiation
254 -- Because the exponentiation can be negative, and D must be integer,
255 -- the numerator is corrected instead.
257 Calculate_N_And_D : begin
258 Uintp_Mark := Mark;
260 if D < 0 then
261 N := N * Base ** (-D);
262 D := Uint_1;
263 else
264 D := Base ** D;
265 end if;
267 Release_And_Save (Uintp_Mark, N, D);
268 end Calculate_N_And_D;
270 Base := 0;
271 end if;
273 -- Now scale N and D so that N / D is a value in the interval [1.0 /
274 -- Radix, 1.0) and adjust Exponent accordingly, so the value N / D *
275 -- Radix ** Exponent remains unchanged.
277 -- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0
279 -- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D.
280 -- As this scaling is not possible for N is Uint_0, zero is handled
281 -- explicitly at the start of this subprogram.
283 Calculate_N_And_Exponent : begin
284 Uintp_Mark := Mark;
286 N_Times_Radix := N * Radix;
287 while not (N_Times_Radix >= D) loop
288 N := N_Times_Radix;
289 Exponent := Exponent - 1;
290 N_Times_Radix := N * Radix;
291 end loop;
293 Release_And_Save (Uintp_Mark, N, Exponent);
294 end Calculate_N_And_Exponent;
296 -- Step 2 - Adjust D so N / D < 1
298 -- Scale up D so N / D < 1, so N < D
300 Calculate_D_And_Exponent_2 : begin
301 Uintp_Mark := Mark;
303 while not (N < D) loop
305 -- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, so
306 -- the result of Step 1 stays valid
308 D := D * Radix;
309 Exponent := Exponent + 1;
310 end loop;
312 Release_And_Save (Uintp_Mark, D, Exponent);
313 end Calculate_D_And_Exponent_2;
315 -- Here the value N / D is in the range [1.0 / Radix .. 1.0)
317 -- Now find the fraction by doing a very simple-minded division until
318 -- enough digits have been computed.
320 -- This division works for all radices, but is only efficient for a
321 -- binary radix. It is just like a manual division algorithm, but
322 -- instead of moving the denominator one digit right, we move the
323 -- numerator one digit left so the numerator and denominator remain
324 -- integral.
326 Fraction := Uint_0;
327 Even := True;
329 Calculate_Fraction_And_N : begin
330 Uintp_Mark := Mark;
332 loop
333 while N >= D loop
334 N := N - D;
335 Fraction := Fraction + 1;
336 Even := not Even;
337 end loop;
339 -- Stop when the result is in [1.0 / Radix, 1.0)
341 exit when Fraction >= Most_Significant_Digit;
343 N := N * Radix;
344 Fraction := Fraction * Radix;
345 Even := True;
346 end loop;
348 Release_And_Save (Uintp_Mark, Fraction, N);
349 end Calculate_Fraction_And_N;
351 Calculate_Fraction_And_Exponent : begin
352 Uintp_Mark := Mark;
354 -- Determine correct rounding based on the remainder which is in
355 -- N and the divisor D. The rounding is performed on the absolute
356 -- value of X, so Ceiling and Floor need to check for the sign of
357 -- X explicitly.
359 case Mode is
360 when Round_Even =>
362 -- This rounding mode corresponds to the unbiased rounding
363 -- method that is used at run time. When the real value is
364 -- exactly between two machine numbers, choose the machine
365 -- number with its least significant bit equal to zero.
367 -- The recommendation advice in RM 4.9(38) is that static
368 -- expressions are rounded to machine numbers in the same
369 -- way as the target machine does.
371 if (Even and then N * 2 > D)
372 or else
373 (not Even and then N * 2 >= D)
374 then
375 Fraction := Fraction + 1;
376 end if;
378 when Round =>
380 -- Do not round to even as is done with IEEE arithmetic, but
381 -- instead round away from zero when the result is exactly
382 -- between two machine numbers. This biased rounding method
383 -- should not be used to convert static expressions to
384 -- machine numbers, see AI95-268.
386 if N * 2 >= D then
387 Fraction := Fraction + 1;
388 end if;
390 when Ceiling =>
391 if N > Uint_0 and then not UR_Is_Negative (X) then
392 Fraction := Fraction + 1;
393 end if;
395 when Floor =>
396 if N > Uint_0 and then UR_Is_Negative (X) then
397 Fraction := Fraction + 1;
398 end if;
399 end case;
401 -- The result must be normalized to [1.0/Radix, 1.0), so adjust if
402 -- the result is 1.0 because of rounding.
404 if Fraction = Most_Significant_Digit * Radix then
405 Fraction := Most_Significant_Digit;
406 Exponent := Exponent + 1;
407 end if;
409 -- Put back sign after applying the rounding
411 if UR_Is_Negative (X) then
412 Fraction := -Fraction;
413 end if;
415 Release_And_Save (Uintp_Mark, Fraction, Exponent);
416 end Calculate_Fraction_And_Exponent;
417 end Decompose_Int;
419 --------------
420 -- Exponent --
421 --------------
423 function Exponent (RT : R; X : T) return UI is
424 X_Frac : UI;
425 X_Exp : UI;
426 pragma Warnings (Off, X_Frac);
427 begin
428 Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even);
429 return X_Exp;
430 end Exponent;
432 -----------
433 -- Floor --
434 -----------
436 function Floor (RT : R; X : T) return T is
437 XT : constant T := Truncation (RT, X);
439 begin
440 if UR_Is_Positive (X) then
441 return XT;
443 elsif XT = X then
444 return X;
446 else
447 return XT - Ureal_1;
448 end if;
449 end Floor;
451 --------------
452 -- Fraction --
453 --------------
455 function Fraction (RT : R; X : T) return T is
456 X_Frac : T;
457 X_Exp : UI;
458 pragma Warnings (Off, X_Exp);
459 begin
460 Decompose (RT, X, X_Frac, X_Exp);
461 return X_Frac;
462 end Fraction;
464 ------------------
465 -- Leading_Part --
466 ------------------
468 function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is
469 RD : constant UI := UI_Min (Radix_Digits, Machine_Mantissa_Value (RT));
470 L : UI;
471 Y : T;
472 begin
473 L := Exponent (RT, X) - RD;
474 Y := UR_From_Uint (UR_Trunc (Scaling (RT, X, -L)));
475 return Scaling (RT, Y, L);
476 end Leading_Part;
478 -------------
479 -- Machine --
480 -------------
482 function Machine
483 (RT : R;
484 X : T;
485 Mode : Rounding_Mode;
486 Enode : Node_Id) return T
488 X_Frac : T;
489 X_Exp : UI;
490 Emin : constant UI := Machine_Emin_Value (RT);
492 begin
493 Decompose (RT, X, X_Frac, X_Exp, Mode);
495 -- Case of denormalized number or (gradual) underflow
497 -- A denormalized number is one with the minimum exponent Emin, but that
498 -- breaks the assumption that the first digit of the mantissa is a one.
499 -- This allows the first non-zero digit to be in any of the remaining
500 -- Mant - 1 spots. The gap between subsequent denormalized numbers is
501 -- the same as for the smallest normalized numbers. However, the number
502 -- of significant digits left decreases as a result of the mantissa now
503 -- having leading seros.
505 if X_Exp < Emin then
506 declare
507 Emin_Den : constant UI := Machine_Emin_Value (RT) -
508 Machine_Mantissa_Value (RT) + Uint_1;
510 begin
511 -- Do not issue warnings about underflows in GNATprove mode,
512 -- as calling Machine as part of interval checking may lead
513 -- to spurious warnings.
515 if X_Exp < Emin_Den or not Has_Denormals (RT) then
516 if Has_Signed_Zeros (RT) and then UR_Is_Negative (X) then
517 if not GNATprove_Mode then
518 Error_Msg_N
519 ("floating-point value underflows to -0.0??", Enode);
520 end if;
522 return Ureal_M_0;
524 else
525 if not GNATprove_Mode then
526 Error_Msg_N
527 ("floating-point value underflows to 0.0??", Enode);
528 end if;
530 return Ureal_0;
531 end if;
533 elsif Has_Denormals (RT) then
535 -- Emin - Mant <= X_Exp < Emin, so result is denormal. Handle
536 -- gradual underflow by first computing the number of
537 -- significant bits still available for the mantissa and
538 -- then truncating the fraction to this number of bits.
540 -- If this value is different from the original fraction,
541 -- precision is lost due to gradual underflow.
543 -- We probably should round here and prevent double rounding as
544 -- a result of first rounding to a model number and then to a
545 -- machine number. However, this is an extremely rare case that
546 -- is not worth the extra complexity. In any case, a warning is
547 -- issued in cases where gradual underflow occurs.
549 declare
550 Denorm_Sig_Bits : constant UI := X_Exp - Emin_Den + 1;
552 X_Frac_Denorm : constant T := UR_From_Components
553 (UR_Trunc (Scaling (RT, abs X_Frac, Denorm_Sig_Bits)),
554 Denorm_Sig_Bits,
555 Radix,
556 UR_Is_Negative (X));
558 begin
559 -- Do not issue warnings about loss of precision in
560 -- GNATprove mode, as calling Machine as part of interval
561 -- checking may lead to spurious warnings.
563 if X_Frac_Denorm /= X_Frac then
564 if not GNATprove_Mode then
565 Error_Msg_N
566 ("gradual underflow causes loss of precision??",
567 Enode);
568 end if;
569 X_Frac := X_Frac_Denorm;
570 end if;
571 end;
572 end if;
573 end;
574 end if;
576 return Scaling (RT, X_Frac, X_Exp);
577 end Machine;
579 -----------
580 -- Model --
581 -----------
583 function Model (RT : R; X : T) return T is
584 X_Frac : T;
585 X_Exp : UI;
586 begin
587 Decompose (RT, X, X_Frac, X_Exp);
588 return Compose (RT, X_Frac, X_Exp);
589 end Model;
591 ----------
592 -- Pred --
593 ----------
595 function Pred (RT : R; X : T) return T is
596 begin
597 return -Succ (RT, -X);
598 end Pred;
600 ---------------
601 -- Remainder --
602 ---------------
604 function Remainder (RT : R; X, Y : T) return T is
605 A : T;
606 B : T;
607 Arg : T;
608 P : T;
609 Arg_Frac : T;
610 P_Frac : T;
611 Sign_X : T;
612 IEEE_Rem : T;
613 Arg_Exp : UI;
614 P_Exp : UI;
615 K : UI;
616 P_Even : Boolean;
618 pragma Warnings (Off, Arg_Frac);
620 begin
621 if UR_Is_Positive (X) then
622 Sign_X := Ureal_1;
623 else
624 Sign_X := -Ureal_1;
625 end if;
627 Arg := abs X;
628 P := abs Y;
630 if Arg < P then
631 P_Even := True;
632 IEEE_Rem := Arg;
633 P_Exp := Exponent (RT, P);
635 else
636 -- ??? what about zero cases?
637 Decompose (RT, Arg, Arg_Frac, Arg_Exp);
638 Decompose (RT, P, P_Frac, P_Exp);
640 P := Compose (RT, P_Frac, Arg_Exp);
641 K := Arg_Exp - P_Exp;
642 P_Even := True;
643 IEEE_Rem := Arg;
645 for Cnt in reverse 0 .. UI_To_Int (K) loop
646 if IEEE_Rem >= P then
647 P_Even := False;
648 IEEE_Rem := IEEE_Rem - P;
649 else
650 P_Even := True;
651 end if;
653 P := P * Ureal_Half;
654 end loop;
655 end if;
657 -- That completes the calculation of modulus remainder. The final step
658 -- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2.
660 if P_Exp >= 0 then
661 A := IEEE_Rem;
662 B := abs Y * Ureal_Half;
664 else
665 A := IEEE_Rem * Ureal_2;
666 B := abs Y;
667 end if;
669 if A > B or else (A = B and then not P_Even) then
670 IEEE_Rem := IEEE_Rem - abs Y;
671 end if;
673 return Sign_X * IEEE_Rem;
674 end Remainder;
676 --------------
677 -- Rounding --
678 --------------
680 function Rounding (RT : R; X : T) return T is
681 Result : T;
682 Tail : T;
684 begin
685 Result := Truncation (RT, abs X);
686 Tail := abs X - Result;
688 if Tail >= Ureal_Half then
689 Result := Result + Ureal_1;
690 end if;
692 if UR_Is_Negative (X) then
693 return -Result;
694 else
695 return Result;
696 end if;
697 end Rounding;
699 -------------
700 -- Scaling --
701 -------------
703 function Scaling (RT : R; X : T; Adjustment : UI) return T is
704 pragma Warnings (Off, RT);
706 begin
707 if Rbase (X) = Radix then
708 return UR_From_Components
709 (Num => Numerator (X),
710 Den => Denominator (X) - Adjustment,
711 Rbase => Radix,
712 Negative => UR_Is_Negative (X));
714 elsif Adjustment >= 0 then
715 return X * Radix ** Adjustment;
716 else
717 return X / Radix ** (-Adjustment);
718 end if;
719 end Scaling;
721 ----------
722 -- Succ --
723 ----------
725 function Succ (RT : R; X : T) return T is
726 Emin : constant UI := Machine_Emin_Value (RT);
727 Mantissa : constant UI := Machine_Mantissa_Value (RT);
728 Exp : UI := UI_Max (Emin, Exponent (RT, X));
729 Frac : T;
730 New_Frac : T;
732 begin
733 -- Treat zero as a regular denormalized number if they are supported,
734 -- otherwise return the smallest normalized number.
736 if UR_Is_Zero (X) then
737 if Has_Denormals (RT) then
738 Exp := Emin;
739 else
740 return Scaling (RT, Ureal_Half, Emin);
741 end if;
742 end if;
744 -- Multiply the number by 2.0**(Mantissa-Exp) so that the radix point
745 -- will be directly following the mantissa after scaling.
747 Exp := Exp - Mantissa;
748 Frac := Scaling (RT, X, -Exp);
750 -- Round to the neareast integer towards +Inf
752 New_Frac := Ceiling (RT, Frac);
754 -- If the rounding was a NOP, add one, except for -2.0**(Mantissa-1)
755 -- because the exponent is going to be reduced.
757 if New_Frac = Frac then
758 if New_Frac = Scaling (RT, -Ureal_1, Mantissa - 1) then
759 New_Frac := New_Frac + Ureal_Half;
760 else
761 New_Frac := New_Frac + Ureal_1;
762 end if;
763 end if;
765 -- Divide back by 2.0**(Mantissa-Exp) to get the final result
767 return Scaling (RT, New_Frac, Exp);
768 end Succ;
770 ----------------
771 -- Truncation --
772 ----------------
774 function Truncation (RT : R; X : T) return T is
775 pragma Warnings (Off, RT);
776 begin
777 return UR_From_Uint (UR_Trunc (X));
778 end Truncation;
780 -----------------------
781 -- Unbiased_Rounding --
782 -----------------------
784 function Unbiased_Rounding (RT : R; X : T) return T is
785 Abs_X : constant T := abs X;
786 Result : T;
787 Tail : T;
789 begin
790 Result := Truncation (RT, Abs_X);
791 Tail := Abs_X - Result;
793 if Tail > Ureal_Half then
794 Result := Result + Ureal_1;
796 elsif Tail = Ureal_Half then
797 Result := Ureal_2 *
798 Truncation (RT, (Result / Ureal_2) + Ureal_Half);
799 end if;
801 if UR_Is_Negative (X) then
802 return -Result;
803 elsif UR_Is_Positive (X) then
804 return Result;
806 -- For zero case, make sure sign of zero is preserved
808 else
809 return X;
810 end if;
811 end Unbiased_Rounding;
813 end Eval_Fat;