1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Return true when gimple SSA form was built.
29 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
30 infrastructure is initialized. Check for presence of the datastructures
33 gimple_in_ssa_p (struct function
*fun
)
35 return fun
&& fun
->gimple_df
&& fun
->gimple_df
->in_ssa_p
;
38 /* 'true' after aliases have been computed (see compute_may_aliases). */
40 gimple_aliases_computed_p (struct function
*fun
)
42 gcc_assert (fun
&& fun
->gimple_df
);
43 return fun
->gimple_df
->aliases_computed_p
;
46 /* Addressable variables in the function. If bit I is set, then
47 REFERENCED_VARS (I) has had its address taken. Note that
48 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
49 addressable variable is not necessarily call-clobbered (e.g., a
50 local addressable whose address does not escape) and not all
51 call-clobbered variables are addressable (e.g., a local static
54 gimple_addressable_vars (struct function
*fun
)
56 gcc_assert (fun
&& fun
->gimple_df
);
57 return fun
->gimple_df
->addressable_vars
;
60 /* Call clobbered variables in the function. If bit I is set, then
61 REFERENCED_VARS (I) is call-clobbered. */
63 gimple_call_clobbered_vars (struct function
*fun
)
65 gcc_assert (fun
&& fun
->gimple_df
);
66 return fun
->gimple_df
->call_clobbered_vars
;
69 /* Array of all variables referenced in the function. */
71 gimple_referenced_vars (struct function
*fun
)
75 return fun
->gimple_df
->referenced_vars
;
78 /* Artificial variable used to model the effects of function calls. */
80 gimple_global_var (struct function
*fun
)
82 gcc_assert (fun
&& fun
->gimple_df
);
83 return fun
->gimple_df
->global_var
;
86 /* Artificial variable used to model the effects of nonlocal
89 gimple_nonlocal_all (struct function
*fun
)
91 gcc_assert (fun
&& fun
->gimple_df
);
92 return fun
->gimple_df
->nonlocal_all
;
95 /* Hashtable of variables annotations. Used for static variables only;
96 local variables have direct pointer in the tree node. */
98 gimple_var_anns (struct function
*fun
)
100 return fun
->gimple_df
->var_anns
;
103 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
106 first_htab_element (htab_iterator
*hti
, htab_t table
)
109 hti
->slot
= table
->entries
;
110 hti
->limit
= hti
->slot
+ htab_size (table
);
113 PTR x
= *(hti
->slot
);
114 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
116 } while (++(hti
->slot
) < hti
->limit
);
118 if (hti
->slot
< hti
->limit
)
123 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
124 or NULL if we have reached the end. */
127 end_htab_p (htab_iterator
*hti
)
129 if (hti
->slot
>= hti
->limit
)
134 /* Advance the hashtable iterator pointed to by HTI to the next element of the
138 next_htab_element (htab_iterator
*hti
)
140 while (++(hti
->slot
) < hti
->limit
)
142 PTR x
= *(hti
->slot
);
143 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
149 /* Initialize ITER to point to the first referenced variable in the
150 referenced_vars hashtable, and return that variable. */
153 first_referenced_var (referenced_var_iterator
*iter
)
155 struct int_tree_map
*itm
;
156 itm
= (struct int_tree_map
*) first_htab_element (&iter
->hti
,
157 gimple_referenced_vars
164 /* Return true if we have hit the end of the referenced variables ITER is
165 iterating through. */
168 end_referenced_vars_p (referenced_var_iterator
*iter
)
170 return end_htab_p (&iter
->hti
);
173 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
174 and return that variable. */
177 next_referenced_var (referenced_var_iterator
*iter
)
179 struct int_tree_map
*itm
;
180 itm
= (struct int_tree_map
*) next_htab_element (&iter
->hti
);
186 /* Fill up VEC with the variables in the referenced vars hashtable. */
189 fill_referenced_var_vec (VEC (tree
, heap
) **vec
)
191 referenced_var_iterator rvi
;
194 FOR_EACH_REFERENCED_VAR (var
, rvi
)
195 VEC_safe_push (tree
, heap
, *vec
, var
);
198 /* Return the variable annotation for T, which must be a _DECL node.
199 Return NULL if the variable annotation doesn't already exist. */
200 static inline var_ann_t
204 gcc_assert (DECL_P (t
));
205 gcc_assert (TREE_CODE (t
) != FUNCTION_DECL
);
206 if (!MTAG_P (t
) && (TREE_STATIC (t
) || DECL_EXTERNAL (t
)))
208 struct static_var_ann_d
*sann
209 = ((struct static_var_ann_d
*)
210 htab_find_with_hash (gimple_var_anns (cfun
), t
, DECL_UID (t
)));
213 gcc_assert (sann
->ann
.common
.type
= VAR_ANN
);
216 gcc_assert (!t
->base
.ann
217 || t
->base
.ann
->common
.type
== VAR_ANN
);
219 return (var_ann_t
) t
->base
.ann
;
222 /* Return the variable annotation for T, which must be a _DECL node.
223 Create the variable annotation if it doesn't exist. */
224 static inline var_ann_t
225 get_var_ann (tree var
)
227 var_ann_t ann
= var_ann (var
);
228 return (ann
) ? ann
: create_var_ann (var
);
231 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
232 Return NULL if the function annotation doesn't already exist. */
233 static inline function_ann_t
234 function_ann (tree t
)
237 gcc_assert (TREE_CODE (t
) == FUNCTION_DECL
);
238 gcc_assert (!t
->base
.ann
239 || t
->base
.ann
->common
.type
== FUNCTION_ANN
);
241 return (function_ann_t
) t
->base
.ann
;
244 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
245 Create the function annotation if it doesn't exist. */
246 static inline function_ann_t
247 get_function_ann (tree var
)
249 function_ann_t ann
= function_ann (var
);
250 gcc_assert (!var
->base
.ann
|| var
->base
.ann
->common
.type
== FUNCTION_ANN
);
251 return (ann
) ? ann
: create_function_ann (var
);
254 /* Return true if T has a statement annotation attached to it. */
257 has_stmt_ann (tree t
)
259 #ifdef ENABLE_CHECKING
260 gcc_assert (is_gimple_stmt (t
));
262 return t
->base
.ann
&& t
->base
.ann
->common
.type
== STMT_ANN
;
265 /* Return the statement annotation for T, which must be a statement
266 node. Return NULL if the statement annotation doesn't exist. */
267 static inline stmt_ann_t
270 #ifdef ENABLE_CHECKING
271 gcc_assert (is_gimple_stmt (t
));
273 gcc_assert (!t
->base
.ann
|| t
->base
.ann
->common
.type
== STMT_ANN
);
274 return (stmt_ann_t
) t
->base
.ann
;
277 /* Return the statement annotation for T, which must be a statement
278 node. Create the statement annotation if it doesn't exist. */
279 static inline stmt_ann_t
280 get_stmt_ann (tree stmt
)
282 stmt_ann_t ann
= stmt_ann (stmt
);
283 return (ann
) ? ann
: create_stmt_ann (stmt
);
286 /* Return the annotation type for annotation ANN. */
287 static inline enum tree_ann_type
288 ann_type (tree_ann_t ann
)
290 return ann
->common
.type
;
293 /* Return the basic block for statement T. */
294 static inline basic_block
299 if (TREE_CODE (t
) == PHI_NODE
)
303 return ann
? ann
->bb
: NULL
;
306 /* Return the may_aliases bitmap for variable VAR, or NULL if it has
309 may_aliases (tree var
)
311 return MTAG_ALIASES (var
);
314 /* Return the line number for EXPR, or return -1 if we have no line
315 number information for it. */
317 get_lineno (tree expr
)
319 if (expr
== NULL_TREE
)
322 if (TREE_CODE (expr
) == COMPOUND_EXPR
)
323 expr
= TREE_OPERAND (expr
, 0);
325 if (! EXPR_HAS_LOCATION (expr
))
328 return EXPR_LINENO (expr
);
331 /* Return the file name for EXPR, or return "???" if we have no
332 filename information. */
333 static inline const char *
334 get_filename (tree expr
)
336 const char *filename
;
337 if (expr
== NULL_TREE
)
340 if (TREE_CODE (expr
) == COMPOUND_EXPR
)
341 expr
= TREE_OPERAND (expr
, 0);
343 if (EXPR_HAS_LOCATION (expr
) && (filename
= EXPR_FILENAME (expr
)))
349 /* Return true if T is a noreturn call. */
351 noreturn_call_p (tree t
)
353 tree call
= get_call_expr_in (t
);
354 return call
!= 0 && (call_expr_flags (call
) & ECF_NORETURN
) != 0;
357 /* Mark statement T as modified. */
359 mark_stmt_modified (tree t
)
362 if (TREE_CODE (t
) == PHI_NODE
)
367 ann
= create_stmt_ann (t
);
368 else if (noreturn_call_p (t
) && cfun
->gimple_df
)
369 VEC_safe_push (tree
, gc
, MODIFIED_NORETURN_CALLS (cfun
), t
);
373 /* Mark statement T as modified, and update it. */
377 if (TREE_CODE (t
) == PHI_NODE
)
379 mark_stmt_modified (t
);
380 update_stmt_operands (t
);
384 update_stmt_if_modified (tree t
)
386 if (stmt_modified_p (t
))
387 update_stmt_operands (t
);
390 /* Return true if T is marked as modified, false otherwise. */
392 stmt_modified_p (tree t
)
394 stmt_ann_t ann
= stmt_ann (t
);
396 /* Note that if the statement doesn't yet have an annotation, we consider it
397 modified. This will force the next call to update_stmt_operands to scan
399 return ann
? ann
->modified
: true;
402 /* Delink an immediate_uses node from its chain. */
404 delink_imm_use (ssa_use_operand_t
*linknode
)
406 /* Return if this node is not in a list. */
407 if (linknode
->prev
== NULL
)
410 linknode
->prev
->next
= linknode
->next
;
411 linknode
->next
->prev
= linknode
->prev
;
412 linknode
->prev
= NULL
;
413 linknode
->next
= NULL
;
416 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
418 link_imm_use_to_list (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*list
)
420 /* Link the new node at the head of the list. If we are in the process of
421 traversing the list, we won't visit any new nodes added to it. */
422 linknode
->prev
= list
;
423 linknode
->next
= list
->next
;
424 list
->next
->prev
= linknode
;
425 list
->next
= linknode
;
428 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
430 link_imm_use (ssa_use_operand_t
*linknode
, tree def
)
432 ssa_use_operand_t
*root
;
434 if (!def
|| TREE_CODE (def
) != SSA_NAME
)
435 linknode
->prev
= NULL
;
438 root
= &(SSA_NAME_IMM_USE_NODE (def
));
439 #ifdef ENABLE_CHECKING
441 gcc_assert (*(linknode
->use
) == def
);
443 link_imm_use_to_list (linknode
, root
);
447 /* Set the value of a use pointed to by USE to VAL. */
449 set_ssa_use_from_ptr (use_operand_p use
, tree val
)
451 delink_imm_use (use
);
453 link_imm_use (use
, val
);
456 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
459 link_imm_use_stmt (ssa_use_operand_t
*linknode
, tree def
, tree stmt
)
462 link_imm_use (linknode
, def
);
464 link_imm_use (linknode
, NULL
);
465 linknode
->stmt
= stmt
;
468 /* Relink a new node in place of an old node in the list. */
470 relink_imm_use (ssa_use_operand_t
*node
, ssa_use_operand_t
*old
)
472 /* The node one had better be in the same list. */
473 gcc_assert (*(old
->use
) == *(node
->use
));
474 node
->prev
= old
->prev
;
475 node
->next
= old
->next
;
478 old
->prev
->next
= node
;
479 old
->next
->prev
= node
;
480 /* Remove the old node from the list. */
485 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
488 relink_imm_use_stmt (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*old
, tree stmt
)
491 relink_imm_use (linknode
, old
);
493 link_imm_use (linknode
, NULL
);
494 linknode
->stmt
= stmt
;
498 /* Return true is IMM has reached the end of the immediate use list. */
500 end_readonly_imm_use_p (imm_use_iterator
*imm
)
502 return (imm
->imm_use
== imm
->end_p
);
505 /* Initialize iterator IMM to process the list for VAR. */
506 static inline use_operand_p
507 first_readonly_imm_use (imm_use_iterator
*imm
, tree var
)
509 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
511 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
512 imm
->imm_use
= imm
->end_p
->next
;
513 #ifdef ENABLE_CHECKING
514 imm
->iter_node
.next
= imm
->imm_use
->next
;
516 if (end_readonly_imm_use_p (imm
))
517 return NULL_USE_OPERAND_P
;
521 /* Bump IMM to the next use in the list. */
522 static inline use_operand_p
523 next_readonly_imm_use (imm_use_iterator
*imm
)
525 use_operand_p old
= imm
->imm_use
;
527 #ifdef ENABLE_CHECKING
528 /* If this assertion fails, it indicates the 'next' pointer has changed
529 since we the last bump. This indicates that the list is being modified
530 via stmt changes, or SET_USE, or somesuch thing, and you need to be
531 using the SAFE version of the iterator. */
532 gcc_assert (imm
->iter_node
.next
== old
->next
);
533 imm
->iter_node
.next
= old
->next
->next
;
536 imm
->imm_use
= old
->next
;
537 if (end_readonly_imm_use_p (imm
))
542 /* Return true if VAR has no uses. */
544 has_zero_uses (tree var
)
546 ssa_use_operand_t
*ptr
;
547 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
548 /* A single use means there is no items in the list. */
549 return (ptr
== ptr
->next
);
552 /* Return true if VAR has a single use. */
554 has_single_use (tree var
)
556 ssa_use_operand_t
*ptr
;
557 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
558 /* A single use means there is one item in the list. */
559 return (ptr
!= ptr
->next
&& ptr
== ptr
->next
->next
);
563 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
564 to the use pointer and stmt of occurrence. */
566 single_imm_use (tree var
, use_operand_p
*use_p
, tree
*stmt
)
568 ssa_use_operand_t
*ptr
;
570 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
571 if (ptr
!= ptr
->next
&& ptr
== ptr
->next
->next
)
574 *stmt
= ptr
->next
->stmt
;
577 *use_p
= NULL_USE_OPERAND_P
;
582 /* Return the number of immediate uses of VAR. */
583 static inline unsigned int
584 num_imm_uses (tree var
)
586 ssa_use_operand_t
*ptr
, *start
;
589 start
= &(SSA_NAME_IMM_USE_NODE (var
));
591 for (ptr
= start
->next
; ptr
!= start
; ptr
= ptr
->next
)
597 /* Return the tree pointer to by USE. */
599 get_use_from_ptr (use_operand_p use
)
604 /* Return the tree pointer to by DEF. */
606 get_def_from_ptr (def_operand_p def
)
611 /* Return a def_operand_p pointer for the result of PHI. */
612 static inline def_operand_p
613 get_phi_result_ptr (tree phi
)
615 return &(PHI_RESULT_TREE (phi
));
618 /* Return a use_operand_p pointer for argument I of phinode PHI. */
619 static inline use_operand_p
620 get_phi_arg_def_ptr (tree phi
, int i
)
622 return &(PHI_ARG_IMM_USE_NODE (phi
,i
));
626 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
629 addresses_taken (tree stmt
)
631 stmt_ann_t ann
= stmt_ann (stmt
);
632 return ann
? ann
->addresses_taken
: NULL
;
635 /* Return the PHI nodes for basic block BB, or NULL if there are no
638 phi_nodes (basic_block bb
)
640 return bb
->phi_nodes
;
643 /* Set list of phi nodes of a basic block BB to L. */
646 set_phi_nodes (basic_block bb
, tree l
)
651 for (phi
= l
; phi
; phi
= PHI_CHAIN (phi
))
652 set_bb_for_stmt (phi
, bb
);
655 /* Return the phi argument which contains the specified use. */
658 phi_arg_index_from_use (use_operand_p use
)
660 struct phi_arg_d
*element
, *root
;
664 /* Since the use is the first thing in a PHI argument element, we can
665 calculate its index based on casting it to an argument, and performing
666 pointer arithmetic. */
668 phi
= USE_STMT (use
);
669 gcc_assert (TREE_CODE (phi
) == PHI_NODE
);
671 element
= (struct phi_arg_d
*)use
;
672 root
= &(PHI_ARG_ELT (phi
, 0));
673 index
= element
- root
;
675 #ifdef ENABLE_CHECKING
676 /* Make sure the calculation doesn't have any leftover bytes. If it does,
677 then imm_use is likely not the first element in phi_arg_d. */
679 (((char *)element
- (char *)root
) % sizeof (struct phi_arg_d
)) == 0);
680 gcc_assert (index
>= 0 && index
< PHI_ARG_CAPACITY (phi
));
686 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
689 set_is_used (tree var
)
691 var_ann_t ann
= get_var_ann (var
);
695 /* Return true if T is an executable statement. */
697 is_exec_stmt (tree t
)
699 return (t
&& !IS_EMPTY_STMT (t
) && t
!= error_mark_node
);
703 /* Return true if this stmt can be the target of a control transfer stmt such
706 is_label_stmt (tree t
)
709 switch (TREE_CODE (t
))
713 case CASE_LABEL_EXPR
:
721 /* PHI nodes should contain only ssa_names and invariants. A test
722 for ssa_name is definitely simpler; don't let invalid contents
723 slip in in the meantime. */
726 phi_ssa_name_p (tree t
)
728 if (TREE_CODE (t
) == SSA_NAME
)
730 #ifdef ENABLE_CHECKING
731 gcc_assert (is_gimple_min_invariant (t
));
736 /* ----------------------------------------------------------------------- */
738 /* Return a block_stmt_iterator that points to beginning of basic
740 static inline block_stmt_iterator
741 bsi_start (basic_block bb
)
743 block_stmt_iterator bsi
;
745 bsi
.tsi
= tsi_start (bb
->stmt_list
);
748 gcc_assert (bb
->index
< NUM_FIXED_BLOCKS
);
750 bsi
.tsi
.container
= NULL
;
756 /* Return a block statement iterator that points to the first non-label
757 statement in block BB. */
759 static inline block_stmt_iterator
760 bsi_after_labels (basic_block bb
)
762 block_stmt_iterator bsi
= bsi_start (bb
);
764 while (!bsi_end_p (bsi
) && TREE_CODE (bsi_stmt (bsi
)) == LABEL_EXPR
)
770 /* Return a block statement iterator that points to the end of basic
772 static inline block_stmt_iterator
773 bsi_last (basic_block bb
)
775 block_stmt_iterator bsi
;
777 bsi
.tsi
= tsi_last (bb
->stmt_list
);
780 gcc_assert (bb
->index
< NUM_FIXED_BLOCKS
);
782 bsi
.tsi
.container
= NULL
;
788 /* Return true if block statement iterator I has reached the end of
791 bsi_end_p (block_stmt_iterator i
)
793 return tsi_end_p (i
.tsi
);
796 /* Modify block statement iterator I so that it is at the next
797 statement in the basic block. */
799 bsi_next (block_stmt_iterator
*i
)
804 /* Modify block statement iterator I so that it is at the previous
805 statement in the basic block. */
807 bsi_prev (block_stmt_iterator
*i
)
812 /* Return the statement that block statement iterator I is currently
815 bsi_stmt (block_stmt_iterator i
)
817 return tsi_stmt (i
.tsi
);
820 /* Return a pointer to the statement that block statement iterator I
823 bsi_stmt_ptr (block_stmt_iterator i
)
825 return tsi_stmt_ptr (i
.tsi
);
828 /* Returns the loop of the statement STMT. */
830 static inline struct loop
*
831 loop_containing_stmt (tree stmt
)
833 basic_block bb
= bb_for_stmt (stmt
);
837 return bb
->loop_father
;
841 /* Return the memory partition tag associated with symbol SYM. */
844 memory_partition (tree sym
)
848 /* MPTs belong to their own partition. */
849 if (TREE_CODE (sym
) == MEMORY_PARTITION_TAG
)
852 gcc_assert (!is_gimple_reg (sym
));
853 tag
= get_var_ann (sym
)->mpt
;
855 #if defined ENABLE_CHECKING
857 gcc_assert (TREE_CODE (tag
) == MEMORY_PARTITION_TAG
);
864 /* Set MPT to be the memory partition associated with symbol SYM. */
867 set_memory_partition (tree sym
, tree mpt
)
869 #if defined ENABLE_CHECKING
871 gcc_assert (TREE_CODE (mpt
) == MEMORY_PARTITION_TAG
872 && !is_gimple_reg (sym
));
874 var_ann (sym
)->mpt
= mpt
;
877 bitmap_set_bit (MPT_SYMBOLS (mpt
), DECL_UID (sym
));
879 /* MPT inherits the call-clobbering attributes from SYM. */
880 if (is_call_clobbered (sym
))
882 MTAG_GLOBAL (mpt
) = 1;
883 mark_call_clobbered (mpt
, ESCAPE_IS_GLOBAL
);
888 /* Return true if NAME is a memory factoring SSA name (i.e., an SSA
889 name for a memory partition. */
892 factoring_name_p (tree name
)
894 return TREE_CODE (SSA_NAME_VAR (name
)) == MEMORY_PARTITION_TAG
;
897 /* Return true if VAR is a clobbered by function calls. */
899 is_call_clobbered (tree var
)
902 return var_ann (var
)->call_clobbered
;
904 return bitmap_bit_p (gimple_call_clobbered_vars (cfun
), DECL_UID (var
));
907 /* Mark variable VAR as being clobbered by function calls. */
909 mark_call_clobbered (tree var
, unsigned int escape_type
)
911 var_ann (var
)->escape_mask
|= escape_type
;
913 var_ann (var
)->call_clobbered
= true;
914 bitmap_set_bit (gimple_call_clobbered_vars (cfun
), DECL_UID (var
));
917 /* Clear the call-clobbered attribute from variable VAR. */
919 clear_call_clobbered (tree var
)
921 var_ann_t ann
= var_ann (var
);
922 ann
->escape_mask
= 0;
923 if (MTAG_P (var
) && TREE_CODE (var
) != STRUCT_FIELD_TAG
)
924 MTAG_GLOBAL (var
) = 0;
926 var_ann (var
)->call_clobbered
= false;
927 bitmap_clear_bit (gimple_call_clobbered_vars (cfun
), DECL_UID (var
));
930 /* Return the common annotation for T. Return NULL if the annotation
931 doesn't already exist. */
932 static inline tree_ann_common_t
933 tree_common_ann (tree t
)
935 /* Watch out static variables with unshared annotations. */
936 if (DECL_P (t
) && TREE_CODE (t
) == VAR_DECL
)
937 return &var_ann (t
)->common
;
938 return &t
->base
.ann
->common
;
941 /* Return a common annotation for T. Create the constant annotation if it
943 static inline tree_ann_common_t
944 get_tree_common_ann (tree t
)
946 tree_ann_common_t ann
= tree_common_ann (t
);
947 return (ann
) ? ann
: create_tree_common_ann (t
);
950 /* ----------------------------------------------------------------------- */
952 /* The following set of routines are used to iterator over various type of
955 /* Return true if PTR is finished iterating. */
957 op_iter_done (ssa_op_iter
*ptr
)
962 /* Get the next iterator use value for PTR. */
963 static inline use_operand_p
964 op_iter_next_use (ssa_op_iter
*ptr
)
967 #ifdef ENABLE_CHECKING
968 gcc_assert (ptr
->iter_type
== ssa_op_iter_use
);
972 use_p
= USE_OP_PTR (ptr
->uses
);
973 ptr
->uses
= ptr
->uses
->next
;
978 use_p
= VUSE_OP_PTR (ptr
->vuses
, ptr
->vuse_index
);
979 if (++(ptr
->vuse_index
) >= VUSE_NUM (ptr
->vuses
))
982 ptr
->vuses
= ptr
->vuses
->next
;
988 use_p
= VDEF_OP_PTR (ptr
->mayuses
, ptr
->mayuse_index
);
989 if (++(ptr
->mayuse_index
) >= VDEF_NUM (ptr
->mayuses
))
991 ptr
->mayuse_index
= 0;
992 ptr
->mayuses
= ptr
->mayuses
->next
;
996 if (ptr
->phi_i
< ptr
->num_phi
)
998 return PHI_ARG_DEF_PTR (ptr
->phi_stmt
, (ptr
->phi_i
)++);
1001 return NULL_USE_OPERAND_P
;
1004 /* Get the next iterator def value for PTR. */
1005 static inline def_operand_p
1006 op_iter_next_def (ssa_op_iter
*ptr
)
1008 def_operand_p def_p
;
1009 #ifdef ENABLE_CHECKING
1010 gcc_assert (ptr
->iter_type
== ssa_op_iter_def
);
1014 def_p
= DEF_OP_PTR (ptr
->defs
);
1015 ptr
->defs
= ptr
->defs
->next
;
1020 def_p
= VDEF_RESULT_PTR (ptr
->vdefs
);
1021 ptr
->vdefs
= ptr
->vdefs
->next
;
1025 return NULL_DEF_OPERAND_P
;
1028 /* Get the next iterator tree value for PTR. */
1030 op_iter_next_tree (ssa_op_iter
*ptr
)
1033 #ifdef ENABLE_CHECKING
1034 gcc_assert (ptr
->iter_type
== ssa_op_iter_tree
);
1038 val
= USE_OP (ptr
->uses
);
1039 ptr
->uses
= ptr
->uses
->next
;
1044 val
= VUSE_OP (ptr
->vuses
, ptr
->vuse_index
);
1045 if (++(ptr
->vuse_index
) >= VUSE_NUM (ptr
->vuses
))
1047 ptr
->vuse_index
= 0;
1048 ptr
->vuses
= ptr
->vuses
->next
;
1054 val
= VDEF_OP (ptr
->mayuses
, ptr
->mayuse_index
);
1055 if (++(ptr
->mayuse_index
) >= VDEF_NUM (ptr
->mayuses
))
1057 ptr
->mayuse_index
= 0;
1058 ptr
->mayuses
= ptr
->mayuses
->next
;
1064 val
= DEF_OP (ptr
->defs
);
1065 ptr
->defs
= ptr
->defs
->next
;
1070 val
= VDEF_RESULT (ptr
->vdefs
);
1071 ptr
->vdefs
= ptr
->vdefs
->next
;
1081 /* This functions clears the iterator PTR, and marks it done. This is normally
1082 used to prevent warnings in the compile about might be uninitialized
1086 clear_and_done_ssa_iter (ssa_op_iter
*ptr
)
1092 ptr
->mayuses
= NULL
;
1093 ptr
->iter_type
= ssa_op_iter_none
;
1096 ptr
->phi_stmt
= NULL_TREE
;
1098 ptr
->vuse_index
= 0;
1099 ptr
->mayuse_index
= 0;
1102 /* Initialize the iterator PTR to the virtual defs in STMT. */
1104 op_iter_init (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1106 #ifdef ENABLE_CHECKING
1107 gcc_assert (stmt_ann (stmt
));
1110 ptr
->defs
= (flags
& SSA_OP_DEF
) ? DEF_OPS (stmt
) : NULL
;
1111 ptr
->uses
= (flags
& SSA_OP_USE
) ? USE_OPS (stmt
) : NULL
;
1112 ptr
->vuses
= (flags
& SSA_OP_VUSE
) ? VUSE_OPS (stmt
) : NULL
;
1113 ptr
->vdefs
= (flags
& SSA_OP_VDEF
) ? VDEF_OPS (stmt
) : NULL
;
1114 ptr
->mayuses
= (flags
& SSA_OP_VMAYUSE
) ? VDEF_OPS (stmt
) : NULL
;
1119 ptr
->phi_stmt
= NULL_TREE
;
1120 ptr
->vuse_index
= 0;
1121 ptr
->mayuse_index
= 0;
1124 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1126 static inline use_operand_p
1127 op_iter_init_use (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1129 gcc_assert ((flags
& SSA_OP_ALL_DEFS
) == 0);
1130 op_iter_init (ptr
, stmt
, flags
);
1131 ptr
->iter_type
= ssa_op_iter_use
;
1132 return op_iter_next_use (ptr
);
1135 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1137 static inline def_operand_p
1138 op_iter_init_def (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1140 gcc_assert ((flags
& SSA_OP_ALL_USES
) == 0);
1141 op_iter_init (ptr
, stmt
, flags
);
1142 ptr
->iter_type
= ssa_op_iter_def
;
1143 return op_iter_next_def (ptr
);
1146 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1147 the first operand as a tree. */
1149 op_iter_init_tree (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1151 op_iter_init (ptr
, stmt
, flags
);
1152 ptr
->iter_type
= ssa_op_iter_tree
;
1153 return op_iter_next_tree (ptr
);
1156 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1159 op_iter_next_vdef (vuse_vec_p
*use
, def_operand_p
*def
,
1162 #ifdef ENABLE_CHECKING
1163 gcc_assert (ptr
->iter_type
== ssa_op_iter_vdef
);
1167 *def
= VDEF_RESULT_PTR (ptr
->mayuses
);
1168 *use
= VDEF_VECT (ptr
->mayuses
);
1169 ptr
->mayuses
= ptr
->mayuses
->next
;
1173 *def
= NULL_DEF_OPERAND_P
;
1181 op_iter_next_mustdef (use_operand_p
*use
, def_operand_p
*def
,
1185 op_iter_next_vdef (&vp
, def
, ptr
);
1188 gcc_assert (VUSE_VECT_NUM_ELEM (*vp
) == 1);
1189 *use
= VUSE_ELEMENT_PTR (*vp
, 0);
1192 *use
= NULL_USE_OPERAND_P
;
1195 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1198 op_iter_init_vdef (ssa_op_iter
*ptr
, tree stmt
, vuse_vec_p
*use
,
1201 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1203 op_iter_init (ptr
, stmt
, SSA_OP_VMAYUSE
);
1204 ptr
->iter_type
= ssa_op_iter_vdef
;
1205 op_iter_next_vdef (use
, def
, ptr
);
1209 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1212 single_ssa_tree_operand (tree stmt
, int flags
)
1217 var
= op_iter_init_tree (&iter
, stmt
, flags
);
1218 if (op_iter_done (&iter
))
1220 op_iter_next_tree (&iter
);
1221 if (op_iter_done (&iter
))
1227 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1229 static inline use_operand_p
1230 single_ssa_use_operand (tree stmt
, int flags
)
1235 var
= op_iter_init_use (&iter
, stmt
, flags
);
1236 if (op_iter_done (&iter
))
1237 return NULL_USE_OPERAND_P
;
1238 op_iter_next_use (&iter
);
1239 if (op_iter_done (&iter
))
1241 return NULL_USE_OPERAND_P
;
1246 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1248 static inline def_operand_p
1249 single_ssa_def_operand (tree stmt
, int flags
)
1254 var
= op_iter_init_def (&iter
, stmt
, flags
);
1255 if (op_iter_done (&iter
))
1256 return NULL_DEF_OPERAND_P
;
1257 op_iter_next_def (&iter
);
1258 if (op_iter_done (&iter
))
1260 return NULL_DEF_OPERAND_P
;
1264 /* Return true if there are zero operands in STMT matching the type
1267 zero_ssa_operands (tree stmt
, int flags
)
1271 op_iter_init_tree (&iter
, stmt
, flags
);
1272 return op_iter_done (&iter
);
1276 /* Return the number of operands matching FLAGS in STMT. */
1278 num_ssa_operands (tree stmt
, int flags
)
1284 FOR_EACH_SSA_TREE_OPERAND (t
, stmt
, iter
, flags
)
1290 /* Delink all immediate_use information for STMT. */
1292 delink_stmt_imm_use (tree stmt
)
1295 use_operand_p use_p
;
1297 if (ssa_operands_active ())
1298 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
1299 delink_imm_use (use_p
);
1303 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1304 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1306 compare_ssa_operands_equal (tree stmt1
, tree stmt2
, int flags
)
1308 ssa_op_iter iter1
, iter2
;
1309 tree op1
= NULL_TREE
;
1310 tree op2
= NULL_TREE
;
1316 look1
= stmt1
&& stmt_ann (stmt1
);
1317 look2
= stmt2
&& stmt_ann (stmt2
);
1321 op1
= op_iter_init_tree (&iter1
, stmt1
, flags
);
1323 return op_iter_done (&iter1
);
1326 clear_and_done_ssa_iter (&iter1
);
1330 op2
= op_iter_init_tree (&iter2
, stmt2
, flags
);
1332 return op_iter_done (&iter2
);
1335 clear_and_done_ssa_iter (&iter2
);
1337 while (!op_iter_done (&iter1
) && !op_iter_done (&iter2
))
1341 op1
= op_iter_next_tree (&iter1
);
1342 op2
= op_iter_next_tree (&iter2
);
1345 return (op_iter_done (&iter1
) && op_iter_done (&iter2
));
1349 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1350 Otherwise return NULL_DEF_OPERAND_P. */
1352 single_phi_def (tree stmt
, int flags
)
1354 tree def
= PHI_RESULT (stmt
);
1355 if ((flags
& SSA_OP_DEF
) && is_gimple_reg (def
))
1357 if ((flags
& SSA_OP_VIRTUAL_DEFS
) && !is_gimple_reg (def
))
1362 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1363 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
1364 static inline use_operand_p
1365 op_iter_init_phiuse (ssa_op_iter
*ptr
, tree phi
, int flags
)
1367 tree phi_def
= PHI_RESULT (phi
);
1370 clear_and_done_ssa_iter (ptr
);
1373 gcc_assert ((flags
& (SSA_OP_USE
| SSA_OP_VIRTUAL_USES
)) != 0);
1375 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
1377 /* If the PHI node doesn't the operand type we care about, we're done. */
1378 if ((flags
& comp
) == 0)
1381 return NULL_USE_OPERAND_P
;
1384 ptr
->phi_stmt
= phi
;
1385 ptr
->num_phi
= PHI_NUM_ARGS (phi
);
1386 ptr
->iter_type
= ssa_op_iter_use
;
1387 return op_iter_next_use (ptr
);
1391 /* Start an iterator for a PHI definition. */
1393 static inline def_operand_p
1394 op_iter_init_phidef (ssa_op_iter
*ptr
, tree phi
, int flags
)
1396 tree phi_def
= PHI_RESULT (phi
);
1399 clear_and_done_ssa_iter (ptr
);
1402 gcc_assert ((flags
& (SSA_OP_DEF
| SSA_OP_VIRTUAL_DEFS
)) != 0);
1404 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_DEF
: SSA_OP_VIRTUAL_DEFS
);
1406 /* If the PHI node doesn't the operand type we care about, we're done. */
1407 if ((flags
& comp
) == 0)
1410 return NULL_USE_OPERAND_P
;
1413 ptr
->iter_type
= ssa_op_iter_def
;
1414 /* The first call to op_iter_next_def will terminate the iterator since
1415 all the fields are NULL. Simply return the result here as the first and
1416 therefore only result. */
1417 return PHI_RESULT_PTR (phi
);
1420 /* Return true is IMM has reached the end of the immediate use stmt list. */
1423 end_imm_use_stmt_p (imm_use_iterator
*imm
)
1425 return (imm
->imm_use
== imm
->end_p
);
1428 /* Finished the traverse of an immediate use stmt list IMM by removing the
1429 placeholder node from the list. */
1432 end_imm_use_stmt_traverse (imm_use_iterator
*imm
)
1434 delink_imm_use (&(imm
->iter_node
));
1437 /* Immediate use traversal of uses within a stmt require that all the
1438 uses on a stmt be sequentially listed. This routine is used to build up
1439 this sequential list by adding USE_P to the end of the current list
1440 currently delimited by HEAD and LAST_P. The new LAST_P value is
1443 static inline use_operand_p
1444 move_use_after_head (use_operand_p use_p
, use_operand_p head
,
1445 use_operand_p last_p
)
1447 gcc_assert (USE_FROM_PTR (use_p
) == USE_FROM_PTR (head
));
1448 /* Skip head when we find it. */
1451 /* If use_p is already linked in after last_p, continue. */
1452 if (last_p
->next
== use_p
)
1456 /* Delink from current location, and link in at last_p. */
1457 delink_imm_use (use_p
);
1458 link_imm_use_to_list (use_p
, last_p
);
1466 /* This routine will relink all uses with the same stmt as HEAD into the list
1467 immediately following HEAD for iterator IMM. */
1470 link_use_stmts_after (use_operand_p head
, imm_use_iterator
*imm
)
1472 use_operand_p use_p
;
1473 use_operand_p last_p
= head
;
1474 tree head_stmt
= USE_STMT (head
);
1475 tree use
= USE_FROM_PTR (head
);
1476 ssa_op_iter op_iter
;
1479 /* Only look at virtual or real uses, depending on the type of HEAD. */
1480 flag
= (is_gimple_reg (use
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
1482 if (TREE_CODE (head_stmt
) == PHI_NODE
)
1484 FOR_EACH_PHI_ARG (use_p
, head_stmt
, op_iter
, flag
)
1485 if (USE_FROM_PTR (use_p
) == use
)
1486 last_p
= move_use_after_head (use_p
, head
, last_p
);
1490 FOR_EACH_SSA_USE_OPERAND (use_p
, head_stmt
, op_iter
, flag
)
1491 if (USE_FROM_PTR (use_p
) == use
)
1492 last_p
= move_use_after_head (use_p
, head
, last_p
);
1494 /* LInk iter node in after last_p. */
1495 if (imm
->iter_node
.prev
!= NULL
)
1496 delink_imm_use (&imm
->iter_node
);
1497 link_imm_use_to_list (&(imm
->iter_node
), last_p
);
1500 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1502 first_imm_use_stmt (imm_use_iterator
*imm
, tree var
)
1504 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
1506 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
1507 imm
->imm_use
= imm
->end_p
->next
;
1508 imm
->next_imm_name
= NULL_USE_OPERAND_P
;
1510 /* iter_node is used as a marker within the immediate use list to indicate
1511 where the end of the current stmt's uses are. Initialize it to NULL
1512 stmt and use, which indicates a marker node. */
1513 imm
->iter_node
.prev
= NULL_USE_OPERAND_P
;
1514 imm
->iter_node
.next
= NULL_USE_OPERAND_P
;
1515 imm
->iter_node
.stmt
= NULL_TREE
;
1516 imm
->iter_node
.use
= NULL_USE_OPERAND_P
;
1518 if (end_imm_use_stmt_p (imm
))
1521 link_use_stmts_after (imm
->imm_use
, imm
);
1523 return USE_STMT (imm
->imm_use
);
1526 /* Bump IMM to the next stmt which has a use of var. */
1529 next_imm_use_stmt (imm_use_iterator
*imm
)
1531 imm
->imm_use
= imm
->iter_node
.next
;
1532 if (end_imm_use_stmt_p (imm
))
1534 if (imm
->iter_node
.prev
!= NULL
)
1535 delink_imm_use (&imm
->iter_node
);
1539 link_use_stmts_after (imm
->imm_use
, imm
);
1540 return USE_STMT (imm
->imm_use
);
1544 /* This routine will return the first use on the stmt IMM currently refers
1547 static inline use_operand_p
1548 first_imm_use_on_stmt (imm_use_iterator
*imm
)
1550 imm
->next_imm_name
= imm
->imm_use
->next
;
1551 return imm
->imm_use
;
1554 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1557 end_imm_use_on_stmt_p (imm_use_iterator
*imm
)
1559 return (imm
->imm_use
== &(imm
->iter_node
));
1562 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1564 static inline use_operand_p
1565 next_imm_use_on_stmt (imm_use_iterator
*imm
)
1567 imm
->imm_use
= imm
->next_imm_name
;
1568 if (end_imm_use_on_stmt_p (imm
))
1569 return NULL_USE_OPERAND_P
;
1572 imm
->next_imm_name
= imm
->imm_use
->next
;
1573 return imm
->imm_use
;
1577 /* Return true if VAR cannot be modified by the program. */
1580 unmodifiable_var_p (tree var
)
1582 if (TREE_CODE (var
) == SSA_NAME
)
1583 var
= SSA_NAME_VAR (var
);
1586 return TREE_READONLY (var
) && (TREE_STATIC (var
) || MTAG_GLOBAL (var
));
1588 return TREE_READONLY (var
) && (TREE_STATIC (var
) || DECL_EXTERNAL (var
));
1591 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1594 array_ref_contains_indirect_ref (tree ref
)
1596 gcc_assert (TREE_CODE (ref
) == ARRAY_REF
);
1599 ref
= TREE_OPERAND (ref
, 0);
1600 } while (handled_component_p (ref
));
1602 return TREE_CODE (ref
) == INDIRECT_REF
;
1605 /* Return true if REF, a handled component reference, has an ARRAY_REF
1609 ref_contains_array_ref (tree ref
)
1611 gcc_assert (handled_component_p (ref
));
1614 if (TREE_CODE (ref
) == ARRAY_REF
)
1616 ref
= TREE_OPERAND (ref
, 0);
1617 } while (handled_component_p (ref
));
1622 /* Given a variable VAR, lookup and return a pointer to the list of
1623 subvariables for it. */
1625 static inline subvar_t
*
1626 lookup_subvars_for_var (tree var
)
1628 var_ann_t ann
= var_ann (var
);
1630 return &ann
->subvars
;
1633 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1634 NULL, if there are no subvariables. */
1636 static inline subvar_t
1637 get_subvars_for_var (tree var
)
1641 gcc_assert (SSA_VAR_P (var
));
1643 if (TREE_CODE (var
) == SSA_NAME
)
1644 subvars
= *(lookup_subvars_for_var (SSA_NAME_VAR (var
)));
1646 subvars
= *(lookup_subvars_for_var (var
));
1650 /* Return the subvariable of VAR at offset OFFSET. */
1653 get_subvar_at (tree var
, unsigned HOST_WIDE_INT offset
)
1657 for (sv
= get_subvars_for_var (var
); sv
; sv
= sv
->next
)
1658 if (SFT_OFFSET (sv
->var
) == offset
)
1664 /* Return true if V is a tree that we can have subvars for.
1665 Normally, this is any aggregate type. Also complex
1666 types which are not gimple registers can have subvars. */
1669 var_can_have_subvars (tree v
)
1671 /* Volatile variables should never have subvars. */
1672 if (TREE_THIS_VOLATILE (v
))
1675 /* Non decls or memory tags can never have subvars. */
1676 if (!DECL_P (v
) || MTAG_P (v
))
1679 /* Aggregates can have subvars. */
1680 if (AGGREGATE_TYPE_P (TREE_TYPE (v
)))
1683 /* Complex types variables which are not also a gimple register can
1685 if (TREE_CODE (TREE_TYPE (v
)) == COMPLEX_TYPE
1686 && !DECL_GIMPLE_REG_P (v
))
1693 /* Return true if OFFSET and SIZE define a range that overlaps with some
1694 portion of the range of SV, a subvar. If there was an exact overlap,
1695 *EXACT will be set to true upon return. */
1698 overlap_subvar (unsigned HOST_WIDE_INT offset
, unsigned HOST_WIDE_INT size
,
1699 tree sv
, bool *exact
)
1701 /* There are three possible cases of overlap.
1702 1. We can have an exact overlap, like so:
1703 |offset, offset + size |
1704 |sv->offset, sv->offset + sv->size |
1706 2. We can have offset starting after sv->offset, like so:
1708 |offset, offset + size |
1709 |sv->offset, sv->offset + sv->size |
1711 3. We can have offset starting before sv->offset, like so:
1713 |offset, offset + size |
1714 |sv->offset, sv->offset + sv->size|
1719 if (offset
== SFT_OFFSET (sv
) && size
== SFT_SIZE (sv
))
1725 else if (offset
>= SFT_OFFSET (sv
)
1726 && offset
< (SFT_OFFSET (sv
) + SFT_SIZE (sv
)))
1730 else if (offset
< SFT_OFFSET (sv
)
1731 && (size
> SFT_OFFSET (sv
) - offset
))
1739 /* Return the memory tag associated with symbol SYM. */
1742 symbol_mem_tag (tree sym
)
1744 tree tag
= get_var_ann (sym
)->symbol_mem_tag
;
1746 #if defined ENABLE_CHECKING
1748 gcc_assert (TREE_CODE (tag
) == SYMBOL_MEMORY_TAG
);
1755 /* Set the memory tag associated with symbol SYM. */
1758 set_symbol_mem_tag (tree sym
, tree tag
)
1760 #if defined ENABLE_CHECKING
1762 gcc_assert (TREE_CODE (tag
) == SYMBOL_MEMORY_TAG
);
1765 get_var_ann (sym
)->symbol_mem_tag
= tag
;
1768 /* Get the value handle of EXPR. This is the only correct way to get
1769 the value handle for a "thing". If EXPR does not have a value
1770 handle associated, it returns NULL_TREE.
1771 NB: If EXPR is min_invariant, this function is *required* to return
1775 get_value_handle (tree expr
)
1777 if (TREE_CODE (expr
) == SSA_NAME
)
1778 return SSA_NAME_VALUE (expr
);
1779 else if (DECL_P (expr
) || TREE_CODE (expr
) == TREE_LIST
1780 || TREE_CODE (expr
) == CONSTRUCTOR
)
1782 tree_ann_common_t ann
= tree_common_ann (expr
);
1783 return ((ann
) ? ann
->value_handle
: NULL_TREE
);
1785 else if (is_gimple_min_invariant (expr
))
1787 else if (EXPR_P (expr
))
1789 tree_ann_common_t ann
= tree_common_ann (expr
);
1790 return ((ann
) ? ann
->value_handle
: NULL_TREE
);
1796 /* Accessor to tree-ssa-operands.c caches. */
1797 static inline struct ssa_operands
*
1798 gimple_ssa_operands (struct function
*fun
)
1800 return &fun
->gimple_df
->ssa_operands
;
1802 #endif /* _TREE_FLOW_INLINE_H */