2007-02-19 Thomas Koenig <Thomas.Koenig@online.de>
[official-gcc.git] / gcc / final.c
blobbd96444ea485483633d5fe732d41b822120b09ef
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "timevar.h"
77 #include "cgraph.h"
78 #include "coverage.h"
79 #include "vecprim.h"
81 #ifdef XCOFF_DEBUGGING_INFO
82 #include "xcoffout.h" /* Needed for external data
83 declarations for e.g. AIX 4.x. */
84 #endif
86 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
87 #include "dwarf2out.h"
88 #endif
90 #ifdef DBX_DEBUGGING_INFO
91 #include "dbxout.h"
92 #endif
94 #ifdef SDB_DEBUGGING_INFO
95 #include "sdbout.h"
96 #endif
98 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
99 null default for it to save conditionalization later. */
100 #ifndef CC_STATUS_INIT
101 #define CC_STATUS_INIT
102 #endif
104 /* How to start an assembler comment. */
105 #ifndef ASM_COMMENT_START
106 #define ASM_COMMENT_START ";#"
107 #endif
109 /* Is the given character a logical line separator for the assembler? */
110 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
111 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
112 #endif
114 #ifndef JUMP_TABLES_IN_TEXT_SECTION
115 #define JUMP_TABLES_IN_TEXT_SECTION 0
116 #endif
118 /* Bitflags used by final_scan_insn. */
119 #define SEEN_BB 1
120 #define SEEN_NOTE 2
121 #define SEEN_EMITTED 4
123 /* Last insn processed by final_scan_insn. */
124 static rtx debug_insn;
125 rtx current_output_insn;
127 /* Line number of last NOTE. */
128 static int last_linenum;
130 /* Highest line number in current block. */
131 static int high_block_linenum;
133 /* Likewise for function. */
134 static int high_function_linenum;
136 /* Filename of last NOTE. */
137 static const char *last_filename;
139 /* Whether to force emission of a line note before the next insn. */
140 static bool force_source_line = false;
142 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
144 /* Nonzero while outputting an `asm' with operands.
145 This means that inconsistencies are the user's fault, so don't die.
146 The precise value is the insn being output, to pass to error_for_asm. */
147 rtx this_is_asm_operands;
149 /* Number of operands of this insn, for an `asm' with operands. */
150 static unsigned int insn_noperands;
152 /* Compare optimization flag. */
154 static rtx last_ignored_compare = 0;
156 /* Assign a unique number to each insn that is output.
157 This can be used to generate unique local labels. */
159 static int insn_counter = 0;
161 #ifdef HAVE_cc0
162 /* This variable contains machine-dependent flags (defined in tm.h)
163 set and examined by output routines
164 that describe how to interpret the condition codes properly. */
166 CC_STATUS cc_status;
168 /* During output of an insn, this contains a copy of cc_status
169 from before the insn. */
171 CC_STATUS cc_prev_status;
172 #endif
174 /* Indexed by hardware reg number, is 1 if that register is ever
175 used in the current function.
177 In life_analysis, or in stupid_life_analysis, this is set
178 up to record the hard regs used explicitly. Reload adds
179 in the hard regs used for holding pseudo regs. Final uses
180 it to generate the code in the function prologue and epilogue
181 to save and restore registers as needed. */
183 char regs_ever_live[FIRST_PSEUDO_REGISTER];
185 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
186 Unlike regs_ever_live, elements of this array corresponding to
187 eliminable regs like the frame pointer are set if an asm sets them. */
189 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
191 /* Nonzero means current function must be given a frame pointer.
192 Initialized in function.c to 0. Set only in reload1.c as per
193 the needs of the function. */
195 int frame_pointer_needed;
197 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
199 static int block_depth;
201 /* Nonzero if have enabled APP processing of our assembler output. */
203 static int app_on;
205 /* If we are outputting an insn sequence, this contains the sequence rtx.
206 Zero otherwise. */
208 rtx final_sequence;
210 #ifdef ASSEMBLER_DIALECT
212 /* Number of the assembler dialect to use, starting at 0. */
213 static int dialect_number;
214 #endif
216 #ifdef HAVE_conditional_execution
217 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
218 rtx current_insn_predicate;
219 #endif
221 #ifdef HAVE_ATTR_length
222 static int asm_insn_count (rtx);
223 #endif
224 static void profile_function (FILE *);
225 static void profile_after_prologue (FILE *);
226 static bool notice_source_line (rtx);
227 static rtx walk_alter_subreg (rtx *);
228 static void output_asm_name (void);
229 static void output_alternate_entry_point (FILE *, rtx);
230 static tree get_mem_expr_from_op (rtx, int *);
231 static void output_asm_operand_names (rtx *, int *, int);
232 static void output_operand (rtx, int);
233 #ifdef LEAF_REGISTERS
234 static void leaf_renumber_regs (rtx);
235 #endif
236 #ifdef HAVE_cc0
237 static int alter_cond (rtx);
238 #endif
239 #ifndef ADDR_VEC_ALIGN
240 static int final_addr_vec_align (rtx);
241 #endif
242 #ifdef HAVE_ATTR_length
243 static int align_fuzz (rtx, rtx, int, unsigned);
244 #endif
246 /* Initialize data in final at the beginning of a compilation. */
248 void
249 init_final (const char *filename ATTRIBUTE_UNUSED)
251 app_on = 0;
252 final_sequence = 0;
254 #ifdef ASSEMBLER_DIALECT
255 dialect_number = ASSEMBLER_DIALECT;
256 #endif
259 /* Default target function prologue and epilogue assembler output.
261 If not overridden for epilogue code, then the function body itself
262 contains return instructions wherever needed. */
263 void
264 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
265 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
269 /* Default target hook that outputs nothing to a stream. */
270 void
271 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
275 /* Enable APP processing of subsequent output.
276 Used before the output from an `asm' statement. */
278 void
279 app_enable (void)
281 if (! app_on)
283 fputs (ASM_APP_ON, asm_out_file);
284 app_on = 1;
288 /* Disable APP processing of subsequent output.
289 Called from varasm.c before most kinds of output. */
291 void
292 app_disable (void)
294 if (app_on)
296 fputs (ASM_APP_OFF, asm_out_file);
297 app_on = 0;
301 /* Return the number of slots filled in the current
302 delayed branch sequence (we don't count the insn needing the
303 delay slot). Zero if not in a delayed branch sequence. */
305 #ifdef DELAY_SLOTS
307 dbr_sequence_length (void)
309 if (final_sequence != 0)
310 return XVECLEN (final_sequence, 0) - 1;
311 else
312 return 0;
314 #endif
316 /* The next two pages contain routines used to compute the length of an insn
317 and to shorten branches. */
319 /* Arrays for insn lengths, and addresses. The latter is referenced by
320 `insn_current_length'. */
322 static int *insn_lengths;
324 VEC(int,heap) *insn_addresses_;
326 /* Max uid for which the above arrays are valid. */
327 static int insn_lengths_max_uid;
329 /* Address of insn being processed. Used by `insn_current_length'. */
330 int insn_current_address;
332 /* Address of insn being processed in previous iteration. */
333 int insn_last_address;
335 /* known invariant alignment of insn being processed. */
336 int insn_current_align;
338 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
339 gives the next following alignment insn that increases the known
340 alignment, or NULL_RTX if there is no such insn.
341 For any alignment obtained this way, we can again index uid_align with
342 its uid to obtain the next following align that in turn increases the
343 alignment, till we reach NULL_RTX; the sequence obtained this way
344 for each insn we'll call the alignment chain of this insn in the following
345 comments. */
347 struct label_alignment
349 short alignment;
350 short max_skip;
353 static rtx *uid_align;
354 static int *uid_shuid;
355 static struct label_alignment *label_align;
357 /* Indicate that branch shortening hasn't yet been done. */
359 void
360 init_insn_lengths (void)
362 if (uid_shuid)
364 free (uid_shuid);
365 uid_shuid = 0;
367 if (insn_lengths)
369 free (insn_lengths);
370 insn_lengths = 0;
371 insn_lengths_max_uid = 0;
373 #ifdef HAVE_ATTR_length
374 INSN_ADDRESSES_FREE ();
375 #endif
376 if (uid_align)
378 free (uid_align);
379 uid_align = 0;
383 /* Obtain the current length of an insn. If branch shortening has been done,
384 get its actual length. Otherwise, use FALLBACK_FN to calculate the
385 length. */
386 static inline int
387 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
388 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
390 #ifdef HAVE_ATTR_length
391 rtx body;
392 int i;
393 int length = 0;
395 if (insn_lengths_max_uid > INSN_UID (insn))
396 return insn_lengths[INSN_UID (insn)];
397 else
398 switch (GET_CODE (insn))
400 case NOTE:
401 case BARRIER:
402 case CODE_LABEL:
403 return 0;
405 case CALL_INSN:
406 length = fallback_fn (insn);
407 break;
409 case JUMP_INSN:
410 body = PATTERN (insn);
411 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
413 /* Alignment is machine-dependent and should be handled by
414 ADDR_VEC_ALIGN. */
416 else
417 length = fallback_fn (insn);
418 break;
420 case INSN:
421 body = PATTERN (insn);
422 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
423 return 0;
425 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
426 length = asm_insn_count (body) * fallback_fn (insn);
427 else if (GET_CODE (body) == SEQUENCE)
428 for (i = 0; i < XVECLEN (body, 0); i++)
429 length += get_attr_length (XVECEXP (body, 0, i));
430 else
431 length = fallback_fn (insn);
432 break;
434 default:
435 break;
438 #ifdef ADJUST_INSN_LENGTH
439 ADJUST_INSN_LENGTH (insn, length);
440 #endif
441 return length;
442 #else /* not HAVE_ATTR_length */
443 return 0;
444 #define insn_default_length 0
445 #define insn_min_length 0
446 #endif /* not HAVE_ATTR_length */
449 /* Obtain the current length of an insn. If branch shortening has been done,
450 get its actual length. Otherwise, get its maximum length. */
452 get_attr_length (rtx insn)
454 return get_attr_length_1 (insn, insn_default_length);
457 /* Obtain the current length of an insn. If branch shortening has been done,
458 get its actual length. Otherwise, get its minimum length. */
460 get_attr_min_length (rtx insn)
462 return get_attr_length_1 (insn, insn_min_length);
465 /* Code to handle alignment inside shorten_branches. */
467 /* Here is an explanation how the algorithm in align_fuzz can give
468 proper results:
470 Call a sequence of instructions beginning with alignment point X
471 and continuing until the next alignment point `block X'. When `X'
472 is used in an expression, it means the alignment value of the
473 alignment point.
475 Call the distance between the start of the first insn of block X, and
476 the end of the last insn of block X `IX', for the `inner size of X'.
477 This is clearly the sum of the instruction lengths.
479 Likewise with the next alignment-delimited block following X, which we
480 shall call block Y.
482 Call the distance between the start of the first insn of block X, and
483 the start of the first insn of block Y `OX', for the `outer size of X'.
485 The estimated padding is then OX - IX.
487 OX can be safely estimated as
489 if (X >= Y)
490 OX = round_up(IX, Y)
491 else
492 OX = round_up(IX, X) + Y - X
494 Clearly est(IX) >= real(IX), because that only depends on the
495 instruction lengths, and those being overestimated is a given.
497 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
498 we needn't worry about that when thinking about OX.
500 When X >= Y, the alignment provided by Y adds no uncertainty factor
501 for branch ranges starting before X, so we can just round what we have.
502 But when X < Y, we don't know anything about the, so to speak,
503 `middle bits', so we have to assume the worst when aligning up from an
504 address mod X to one mod Y, which is Y - X. */
506 #ifndef LABEL_ALIGN
507 #define LABEL_ALIGN(LABEL) align_labels_log
508 #endif
510 #ifndef LABEL_ALIGN_MAX_SKIP
511 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
512 #endif
514 #ifndef LOOP_ALIGN
515 #define LOOP_ALIGN(LABEL) align_loops_log
516 #endif
518 #ifndef LOOP_ALIGN_MAX_SKIP
519 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
520 #endif
522 #ifndef LABEL_ALIGN_AFTER_BARRIER
523 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
524 #endif
526 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
527 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
528 #endif
530 #ifndef JUMP_ALIGN
531 #define JUMP_ALIGN(LABEL) align_jumps_log
532 #endif
534 #ifndef JUMP_ALIGN_MAX_SKIP
535 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
536 #endif
538 #ifndef ADDR_VEC_ALIGN
539 static int
540 final_addr_vec_align (rtx addr_vec)
542 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
544 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
545 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
546 return exact_log2 (align);
550 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
551 #endif
553 #ifndef INSN_LENGTH_ALIGNMENT
554 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
555 #endif
557 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
559 static int min_labelno, max_labelno;
561 #define LABEL_TO_ALIGNMENT(LABEL) \
562 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
564 #define LABEL_TO_MAX_SKIP(LABEL) \
565 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
567 /* For the benefit of port specific code do this also as a function. */
570 label_to_alignment (rtx label)
572 return LABEL_TO_ALIGNMENT (label);
575 #ifdef HAVE_ATTR_length
576 /* The differences in addresses
577 between a branch and its target might grow or shrink depending on
578 the alignment the start insn of the range (the branch for a forward
579 branch or the label for a backward branch) starts out on; if these
580 differences are used naively, they can even oscillate infinitely.
581 We therefore want to compute a 'worst case' address difference that
582 is independent of the alignment the start insn of the range end
583 up on, and that is at least as large as the actual difference.
584 The function align_fuzz calculates the amount we have to add to the
585 naively computed difference, by traversing the part of the alignment
586 chain of the start insn of the range that is in front of the end insn
587 of the range, and considering for each alignment the maximum amount
588 that it might contribute to a size increase.
590 For casesi tables, we also want to know worst case minimum amounts of
591 address difference, in case a machine description wants to introduce
592 some common offset that is added to all offsets in a table.
593 For this purpose, align_fuzz with a growth argument of 0 computes the
594 appropriate adjustment. */
596 /* Compute the maximum delta by which the difference of the addresses of
597 START and END might grow / shrink due to a different address for start
598 which changes the size of alignment insns between START and END.
599 KNOWN_ALIGN_LOG is the alignment known for START.
600 GROWTH should be ~0 if the objective is to compute potential code size
601 increase, and 0 if the objective is to compute potential shrink.
602 The return value is undefined for any other value of GROWTH. */
604 static int
605 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
607 int uid = INSN_UID (start);
608 rtx align_label;
609 int known_align = 1 << known_align_log;
610 int end_shuid = INSN_SHUID (end);
611 int fuzz = 0;
613 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
615 int align_addr, new_align;
617 uid = INSN_UID (align_label);
618 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
619 if (uid_shuid[uid] > end_shuid)
620 break;
621 known_align_log = LABEL_TO_ALIGNMENT (align_label);
622 new_align = 1 << known_align_log;
623 if (new_align < known_align)
624 continue;
625 fuzz += (-align_addr ^ growth) & (new_align - known_align);
626 known_align = new_align;
628 return fuzz;
631 /* Compute a worst-case reference address of a branch so that it
632 can be safely used in the presence of aligned labels. Since the
633 size of the branch itself is unknown, the size of the branch is
634 not included in the range. I.e. for a forward branch, the reference
635 address is the end address of the branch as known from the previous
636 branch shortening pass, minus a value to account for possible size
637 increase due to alignment. For a backward branch, it is the start
638 address of the branch as known from the current pass, plus a value
639 to account for possible size increase due to alignment.
640 NB.: Therefore, the maximum offset allowed for backward branches needs
641 to exclude the branch size. */
644 insn_current_reference_address (rtx branch)
646 rtx dest, seq;
647 int seq_uid;
649 if (! INSN_ADDRESSES_SET_P ())
650 return 0;
652 seq = NEXT_INSN (PREV_INSN (branch));
653 seq_uid = INSN_UID (seq);
654 if (!JUMP_P (branch))
655 /* This can happen for example on the PA; the objective is to know the
656 offset to address something in front of the start of the function.
657 Thus, we can treat it like a backward branch.
658 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
659 any alignment we'd encounter, so we skip the call to align_fuzz. */
660 return insn_current_address;
661 dest = JUMP_LABEL (branch);
663 /* BRANCH has no proper alignment chain set, so use SEQ.
664 BRANCH also has no INSN_SHUID. */
665 if (INSN_SHUID (seq) < INSN_SHUID (dest))
667 /* Forward branch. */
668 return (insn_last_address + insn_lengths[seq_uid]
669 - align_fuzz (seq, dest, length_unit_log, ~0));
671 else
673 /* Backward branch. */
674 return (insn_current_address
675 + align_fuzz (dest, seq, length_unit_log, ~0));
678 #endif /* HAVE_ATTR_length */
680 /* Compute branch alignments based on frequency information in the
681 CFG. */
683 static unsigned int
684 compute_alignments (void)
686 int log, max_skip, max_log;
687 basic_block bb;
689 if (label_align)
691 free (label_align);
692 label_align = 0;
695 max_labelno = max_label_num ();
696 min_labelno = get_first_label_num ();
697 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
699 /* If not optimizing or optimizing for size, don't assign any alignments. */
700 if (! optimize || optimize_size)
701 return 0;
703 FOR_EACH_BB (bb)
705 rtx label = BB_HEAD (bb);
706 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
710 if (!LABEL_P (label)
711 || probably_never_executed_bb_p (bb))
712 continue;
713 max_log = LABEL_ALIGN (label);
714 max_skip = LABEL_ALIGN_MAX_SKIP;
716 FOR_EACH_EDGE (e, ei, bb->preds)
718 if (e->flags & EDGE_FALLTHRU)
719 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
720 else
721 branch_frequency += EDGE_FREQUENCY (e);
724 /* There are two purposes to align block with no fallthru incoming edge:
725 1) to avoid fetch stalls when branch destination is near cache boundary
726 2) to improve cache efficiency in case the previous block is not executed
727 (so it does not need to be in the cache).
729 We to catch first case, we align frequently executed blocks.
730 To catch the second, we align blocks that are executed more frequently
731 than the predecessor and the predecessor is likely to not be executed
732 when function is called. */
734 if (!has_fallthru
735 && (branch_frequency > BB_FREQ_MAX / 10
736 || (bb->frequency > bb->prev_bb->frequency * 10
737 && (bb->prev_bb->frequency
738 <= ENTRY_BLOCK_PTR->frequency / 2))))
740 log = JUMP_ALIGN (label);
741 if (max_log < log)
743 max_log = log;
744 max_skip = JUMP_ALIGN_MAX_SKIP;
747 /* In case block is frequent and reached mostly by non-fallthru edge,
748 align it. It is most likely a first block of loop. */
749 if (has_fallthru
750 && maybe_hot_bb_p (bb)
751 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
752 && branch_frequency > fallthru_frequency * 2)
754 log = LOOP_ALIGN (label);
755 if (max_log < log)
757 max_log = log;
758 max_skip = LOOP_ALIGN_MAX_SKIP;
761 LABEL_TO_ALIGNMENT (label) = max_log;
762 LABEL_TO_MAX_SKIP (label) = max_skip;
764 return 0;
767 struct tree_opt_pass pass_compute_alignments =
769 NULL, /* name */
770 NULL, /* gate */
771 compute_alignments, /* execute */
772 NULL, /* sub */
773 NULL, /* next */
774 0, /* static_pass_number */
775 0, /* tv_id */
776 0, /* properties_required */
777 0, /* properties_provided */
778 0, /* properties_destroyed */
779 0, /* todo_flags_start */
780 0, /* todo_flags_finish */
781 0 /* letter */
785 /* Make a pass over all insns and compute their actual lengths by shortening
786 any branches of variable length if possible. */
788 /* shorten_branches might be called multiple times: for example, the SH
789 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
790 In order to do this, it needs proper length information, which it obtains
791 by calling shorten_branches. This cannot be collapsed with
792 shorten_branches itself into a single pass unless we also want to integrate
793 reorg.c, since the branch splitting exposes new instructions with delay
794 slots. */
796 void
797 shorten_branches (rtx first ATTRIBUTE_UNUSED)
799 rtx insn;
800 int max_uid;
801 int i;
802 int max_log;
803 int max_skip;
804 #ifdef HAVE_ATTR_length
805 #define MAX_CODE_ALIGN 16
806 rtx seq;
807 int something_changed = 1;
808 char *varying_length;
809 rtx body;
810 int uid;
811 rtx align_tab[MAX_CODE_ALIGN];
813 #endif
815 /* Compute maximum UID and allocate label_align / uid_shuid. */
816 max_uid = get_max_uid ();
818 /* Free uid_shuid before reallocating it. */
819 free (uid_shuid);
821 uid_shuid = XNEWVEC (int, max_uid);
823 if (max_labelno != max_label_num ())
825 int old = max_labelno;
826 int n_labels;
827 int n_old_labels;
829 max_labelno = max_label_num ();
831 n_labels = max_labelno - min_labelno + 1;
832 n_old_labels = old - min_labelno + 1;
834 label_align = xrealloc (label_align,
835 n_labels * sizeof (struct label_alignment));
837 /* Range of labels grows monotonically in the function. Failing here
838 means that the initialization of array got lost. */
839 gcc_assert (n_old_labels <= n_labels);
841 memset (label_align + n_old_labels, 0,
842 (n_labels - n_old_labels) * sizeof (struct label_alignment));
845 /* Initialize label_align and set up uid_shuid to be strictly
846 monotonically rising with insn order. */
847 /* We use max_log here to keep track of the maximum alignment we want to
848 impose on the next CODE_LABEL (or the current one if we are processing
849 the CODE_LABEL itself). */
851 max_log = 0;
852 max_skip = 0;
854 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
856 int log;
858 INSN_SHUID (insn) = i++;
859 if (INSN_P (insn))
860 continue;
862 if (LABEL_P (insn))
864 rtx next;
866 /* Merge in alignments computed by compute_alignments. */
867 log = LABEL_TO_ALIGNMENT (insn);
868 if (max_log < log)
870 max_log = log;
871 max_skip = LABEL_TO_MAX_SKIP (insn);
874 log = LABEL_ALIGN (insn);
875 if (max_log < log)
877 max_log = log;
878 max_skip = LABEL_ALIGN_MAX_SKIP;
880 next = next_nonnote_insn (insn);
881 /* ADDR_VECs only take room if read-only data goes into the text
882 section. */
883 if (JUMP_TABLES_IN_TEXT_SECTION
884 || readonly_data_section == text_section)
885 if (next && JUMP_P (next))
887 rtx nextbody = PATTERN (next);
888 if (GET_CODE (nextbody) == ADDR_VEC
889 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
891 log = ADDR_VEC_ALIGN (next);
892 if (max_log < log)
894 max_log = log;
895 max_skip = LABEL_ALIGN_MAX_SKIP;
899 LABEL_TO_ALIGNMENT (insn) = max_log;
900 LABEL_TO_MAX_SKIP (insn) = max_skip;
901 max_log = 0;
902 max_skip = 0;
904 else if (BARRIER_P (insn))
906 rtx label;
908 for (label = insn; label && ! INSN_P (label);
909 label = NEXT_INSN (label))
910 if (LABEL_P (label))
912 log = LABEL_ALIGN_AFTER_BARRIER (insn);
913 if (max_log < log)
915 max_log = log;
916 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
918 break;
922 #ifdef HAVE_ATTR_length
924 /* Allocate the rest of the arrays. */
925 insn_lengths = XNEWVEC (int, max_uid);
926 insn_lengths_max_uid = max_uid;
927 /* Syntax errors can lead to labels being outside of the main insn stream.
928 Initialize insn_addresses, so that we get reproducible results. */
929 INSN_ADDRESSES_ALLOC (max_uid);
931 varying_length = XCNEWVEC (char, max_uid);
933 /* Initialize uid_align. We scan instructions
934 from end to start, and keep in align_tab[n] the last seen insn
935 that does an alignment of at least n+1, i.e. the successor
936 in the alignment chain for an insn that does / has a known
937 alignment of n. */
938 uid_align = XCNEWVEC (rtx, max_uid);
940 for (i = MAX_CODE_ALIGN; --i >= 0;)
941 align_tab[i] = NULL_RTX;
942 seq = get_last_insn ();
943 for (; seq; seq = PREV_INSN (seq))
945 int uid = INSN_UID (seq);
946 int log;
947 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
948 uid_align[uid] = align_tab[0];
949 if (log)
951 /* Found an alignment label. */
952 uid_align[uid] = align_tab[log];
953 for (i = log - 1; i >= 0; i--)
954 align_tab[i] = seq;
957 #ifdef CASE_VECTOR_SHORTEN_MODE
958 if (optimize)
960 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
961 label fields. */
963 int min_shuid = INSN_SHUID (get_insns ()) - 1;
964 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
965 int rel;
967 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
969 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
970 int len, i, min, max, insn_shuid;
971 int min_align;
972 addr_diff_vec_flags flags;
974 if (!JUMP_P (insn)
975 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
976 continue;
977 pat = PATTERN (insn);
978 len = XVECLEN (pat, 1);
979 gcc_assert (len > 0);
980 min_align = MAX_CODE_ALIGN;
981 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
983 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
984 int shuid = INSN_SHUID (lab);
985 if (shuid < min)
987 min = shuid;
988 min_lab = lab;
990 if (shuid > max)
992 max = shuid;
993 max_lab = lab;
995 if (min_align > LABEL_TO_ALIGNMENT (lab))
996 min_align = LABEL_TO_ALIGNMENT (lab);
998 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
999 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1000 insn_shuid = INSN_SHUID (insn);
1001 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1002 memset (&flags, 0, sizeof (flags));
1003 flags.min_align = min_align;
1004 flags.base_after_vec = rel > insn_shuid;
1005 flags.min_after_vec = min > insn_shuid;
1006 flags.max_after_vec = max > insn_shuid;
1007 flags.min_after_base = min > rel;
1008 flags.max_after_base = max > rel;
1009 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1012 #endif /* CASE_VECTOR_SHORTEN_MODE */
1014 /* Compute initial lengths, addresses, and varying flags for each insn. */
1015 for (insn_current_address = 0, insn = first;
1016 insn != 0;
1017 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1019 uid = INSN_UID (insn);
1021 insn_lengths[uid] = 0;
1023 if (LABEL_P (insn))
1025 int log = LABEL_TO_ALIGNMENT (insn);
1026 if (log)
1028 int align = 1 << log;
1029 int new_address = (insn_current_address + align - 1) & -align;
1030 insn_lengths[uid] = new_address - insn_current_address;
1034 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1036 if (NOTE_P (insn) || BARRIER_P (insn)
1037 || LABEL_P (insn))
1038 continue;
1039 if (INSN_DELETED_P (insn))
1040 continue;
1042 body = PATTERN (insn);
1043 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1045 /* This only takes room if read-only data goes into the text
1046 section. */
1047 if (JUMP_TABLES_IN_TEXT_SECTION
1048 || readonly_data_section == text_section)
1049 insn_lengths[uid] = (XVECLEN (body,
1050 GET_CODE (body) == ADDR_DIFF_VEC)
1051 * GET_MODE_SIZE (GET_MODE (body)));
1052 /* Alignment is handled by ADDR_VEC_ALIGN. */
1054 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1055 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1056 else if (GET_CODE (body) == SEQUENCE)
1058 int i;
1059 int const_delay_slots;
1060 #ifdef DELAY_SLOTS
1061 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1062 #else
1063 const_delay_slots = 0;
1064 #endif
1065 /* Inside a delay slot sequence, we do not do any branch shortening
1066 if the shortening could change the number of delay slots
1067 of the branch. */
1068 for (i = 0; i < XVECLEN (body, 0); i++)
1070 rtx inner_insn = XVECEXP (body, 0, i);
1071 int inner_uid = INSN_UID (inner_insn);
1072 int inner_length;
1074 if (GET_CODE (body) == ASM_INPUT
1075 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1076 inner_length = (asm_insn_count (PATTERN (inner_insn))
1077 * insn_default_length (inner_insn));
1078 else
1079 inner_length = insn_default_length (inner_insn);
1081 insn_lengths[inner_uid] = inner_length;
1082 if (const_delay_slots)
1084 if ((varying_length[inner_uid]
1085 = insn_variable_length_p (inner_insn)) != 0)
1086 varying_length[uid] = 1;
1087 INSN_ADDRESSES (inner_uid) = (insn_current_address
1088 + insn_lengths[uid]);
1090 else
1091 varying_length[inner_uid] = 0;
1092 insn_lengths[uid] += inner_length;
1095 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1097 insn_lengths[uid] = insn_default_length (insn);
1098 varying_length[uid] = insn_variable_length_p (insn);
1101 /* If needed, do any adjustment. */
1102 #ifdef ADJUST_INSN_LENGTH
1103 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1104 if (insn_lengths[uid] < 0)
1105 fatal_insn ("negative insn length", insn);
1106 #endif
1109 /* Now loop over all the insns finding varying length insns. For each,
1110 get the current insn length. If it has changed, reflect the change.
1111 When nothing changes for a full pass, we are done. */
1113 while (something_changed)
1115 something_changed = 0;
1116 insn_current_align = MAX_CODE_ALIGN - 1;
1117 for (insn_current_address = 0, insn = first;
1118 insn != 0;
1119 insn = NEXT_INSN (insn))
1121 int new_length;
1122 #ifdef ADJUST_INSN_LENGTH
1123 int tmp_length;
1124 #endif
1125 int length_align;
1127 uid = INSN_UID (insn);
1129 if (LABEL_P (insn))
1131 int log = LABEL_TO_ALIGNMENT (insn);
1132 if (log > insn_current_align)
1134 int align = 1 << log;
1135 int new_address= (insn_current_address + align - 1) & -align;
1136 insn_lengths[uid] = new_address - insn_current_address;
1137 insn_current_align = log;
1138 insn_current_address = new_address;
1140 else
1141 insn_lengths[uid] = 0;
1142 INSN_ADDRESSES (uid) = insn_current_address;
1143 continue;
1146 length_align = INSN_LENGTH_ALIGNMENT (insn);
1147 if (length_align < insn_current_align)
1148 insn_current_align = length_align;
1150 insn_last_address = INSN_ADDRESSES (uid);
1151 INSN_ADDRESSES (uid) = insn_current_address;
1153 #ifdef CASE_VECTOR_SHORTEN_MODE
1154 if (optimize && JUMP_P (insn)
1155 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1157 rtx body = PATTERN (insn);
1158 int old_length = insn_lengths[uid];
1159 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1160 rtx min_lab = XEXP (XEXP (body, 2), 0);
1161 rtx max_lab = XEXP (XEXP (body, 3), 0);
1162 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1163 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1164 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1165 rtx prev;
1166 int rel_align = 0;
1167 addr_diff_vec_flags flags;
1169 /* Avoid automatic aggregate initialization. */
1170 flags = ADDR_DIFF_VEC_FLAGS (body);
1172 /* Try to find a known alignment for rel_lab. */
1173 for (prev = rel_lab;
1174 prev
1175 && ! insn_lengths[INSN_UID (prev)]
1176 && ! (varying_length[INSN_UID (prev)] & 1);
1177 prev = PREV_INSN (prev))
1178 if (varying_length[INSN_UID (prev)] & 2)
1180 rel_align = LABEL_TO_ALIGNMENT (prev);
1181 break;
1184 /* See the comment on addr_diff_vec_flags in rtl.h for the
1185 meaning of the flags values. base: REL_LAB vec: INSN */
1186 /* Anything after INSN has still addresses from the last
1187 pass; adjust these so that they reflect our current
1188 estimate for this pass. */
1189 if (flags.base_after_vec)
1190 rel_addr += insn_current_address - insn_last_address;
1191 if (flags.min_after_vec)
1192 min_addr += insn_current_address - insn_last_address;
1193 if (flags.max_after_vec)
1194 max_addr += insn_current_address - insn_last_address;
1195 /* We want to know the worst case, i.e. lowest possible value
1196 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1197 its offset is positive, and we have to be wary of code shrink;
1198 otherwise, it is negative, and we have to be vary of code
1199 size increase. */
1200 if (flags.min_after_base)
1202 /* If INSN is between REL_LAB and MIN_LAB, the size
1203 changes we are about to make can change the alignment
1204 within the observed offset, therefore we have to break
1205 it up into two parts that are independent. */
1206 if (! flags.base_after_vec && flags.min_after_vec)
1208 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1209 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1211 else
1212 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1214 else
1216 if (flags.base_after_vec && ! flags.min_after_vec)
1218 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1219 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1221 else
1222 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1224 /* Likewise, determine the highest lowest possible value
1225 for the offset of MAX_LAB. */
1226 if (flags.max_after_base)
1228 if (! flags.base_after_vec && flags.max_after_vec)
1230 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1231 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1233 else
1234 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1236 else
1238 if (flags.base_after_vec && ! flags.max_after_vec)
1240 max_addr += align_fuzz (max_lab, insn, 0, 0);
1241 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1243 else
1244 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1246 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1247 max_addr - rel_addr,
1248 body));
1249 if (JUMP_TABLES_IN_TEXT_SECTION
1250 || readonly_data_section == text_section)
1252 insn_lengths[uid]
1253 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1254 insn_current_address += insn_lengths[uid];
1255 if (insn_lengths[uid] != old_length)
1256 something_changed = 1;
1259 continue;
1261 #endif /* CASE_VECTOR_SHORTEN_MODE */
1263 if (! (varying_length[uid]))
1265 if (NONJUMP_INSN_P (insn)
1266 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1268 int i;
1270 body = PATTERN (insn);
1271 for (i = 0; i < XVECLEN (body, 0); i++)
1273 rtx inner_insn = XVECEXP (body, 0, i);
1274 int inner_uid = INSN_UID (inner_insn);
1276 INSN_ADDRESSES (inner_uid) = insn_current_address;
1278 insn_current_address += insn_lengths[inner_uid];
1281 else
1282 insn_current_address += insn_lengths[uid];
1284 continue;
1287 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1289 int i;
1291 body = PATTERN (insn);
1292 new_length = 0;
1293 for (i = 0; i < XVECLEN (body, 0); i++)
1295 rtx inner_insn = XVECEXP (body, 0, i);
1296 int inner_uid = INSN_UID (inner_insn);
1297 int inner_length;
1299 INSN_ADDRESSES (inner_uid) = insn_current_address;
1301 /* insn_current_length returns 0 for insns with a
1302 non-varying length. */
1303 if (! varying_length[inner_uid])
1304 inner_length = insn_lengths[inner_uid];
1305 else
1306 inner_length = insn_current_length (inner_insn);
1308 if (inner_length != insn_lengths[inner_uid])
1310 insn_lengths[inner_uid] = inner_length;
1311 something_changed = 1;
1313 insn_current_address += insn_lengths[inner_uid];
1314 new_length += inner_length;
1317 else
1319 new_length = insn_current_length (insn);
1320 insn_current_address += new_length;
1323 #ifdef ADJUST_INSN_LENGTH
1324 /* If needed, do any adjustment. */
1325 tmp_length = new_length;
1326 ADJUST_INSN_LENGTH (insn, new_length);
1327 insn_current_address += (new_length - tmp_length);
1328 #endif
1330 if (new_length != insn_lengths[uid])
1332 insn_lengths[uid] = new_length;
1333 something_changed = 1;
1336 /* For a non-optimizing compile, do only a single pass. */
1337 if (!optimize)
1338 break;
1341 free (varying_length);
1343 #endif /* HAVE_ATTR_length */
1346 #ifdef HAVE_ATTR_length
1347 /* Given the body of an INSN known to be generated by an ASM statement, return
1348 the number of machine instructions likely to be generated for this insn.
1349 This is used to compute its length. */
1351 static int
1352 asm_insn_count (rtx body)
1354 const char *template;
1355 int count = 1;
1357 if (GET_CODE (body) == ASM_INPUT)
1358 template = XSTR (body, 0);
1359 else
1360 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1362 for (; *template; template++)
1363 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1364 count++;
1366 return count;
1368 #endif
1370 /* Output assembler code for the start of a function,
1371 and initialize some of the variables in this file
1372 for the new function. The label for the function and associated
1373 assembler pseudo-ops have already been output in `assemble_start_function'.
1375 FIRST is the first insn of the rtl for the function being compiled.
1376 FILE is the file to write assembler code to.
1377 OPTIMIZE is nonzero if we should eliminate redundant
1378 test and compare insns. */
1380 void
1381 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1382 int optimize ATTRIBUTE_UNUSED)
1384 block_depth = 0;
1386 this_is_asm_operands = 0;
1388 last_filename = locator_file (prologue_locator);
1389 last_linenum = locator_line (prologue_locator);
1391 high_block_linenum = high_function_linenum = last_linenum;
1393 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1395 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1396 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1397 dwarf2out_begin_prologue (0, NULL);
1398 #endif
1400 #ifdef LEAF_REG_REMAP
1401 if (current_function_uses_only_leaf_regs)
1402 leaf_renumber_regs (first);
1403 #endif
1405 /* The Sun386i and perhaps other machines don't work right
1406 if the profiling code comes after the prologue. */
1407 #ifdef PROFILE_BEFORE_PROLOGUE
1408 if (current_function_profile)
1409 profile_function (file);
1410 #endif /* PROFILE_BEFORE_PROLOGUE */
1412 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1413 if (dwarf2out_do_frame ())
1414 dwarf2out_frame_debug (NULL_RTX, false);
1415 #endif
1417 /* If debugging, assign block numbers to all of the blocks in this
1418 function. */
1419 if (write_symbols)
1421 reemit_insn_block_notes ();
1422 number_blocks (current_function_decl);
1423 /* We never actually put out begin/end notes for the top-level
1424 block in the function. But, conceptually, that block is
1425 always needed. */
1426 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1429 /* First output the function prologue: code to set up the stack frame. */
1430 targetm.asm_out.function_prologue (file, get_frame_size ());
1432 /* If the machine represents the prologue as RTL, the profiling code must
1433 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1434 #ifdef HAVE_prologue
1435 if (! HAVE_prologue)
1436 #endif
1437 profile_after_prologue (file);
1440 static void
1441 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1443 #ifndef PROFILE_BEFORE_PROLOGUE
1444 if (current_function_profile)
1445 profile_function (file);
1446 #endif /* not PROFILE_BEFORE_PROLOGUE */
1449 static void
1450 profile_function (FILE *file ATTRIBUTE_UNUSED)
1452 #ifndef NO_PROFILE_COUNTERS
1453 # define NO_PROFILE_COUNTERS 0
1454 #endif
1455 #if defined(ASM_OUTPUT_REG_PUSH)
1456 int sval = current_function_returns_struct;
1457 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1458 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1459 int cxt = cfun->static_chain_decl != NULL;
1460 #endif
1461 #endif /* ASM_OUTPUT_REG_PUSH */
1463 if (! NO_PROFILE_COUNTERS)
1465 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1466 switch_to_section (data_section);
1467 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1468 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1469 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1472 switch_to_section (current_function_section ());
1474 #if defined(ASM_OUTPUT_REG_PUSH)
1475 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1476 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1477 #endif
1479 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1480 if (cxt)
1481 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1482 #else
1483 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1484 if (cxt)
1486 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1488 #endif
1489 #endif
1491 FUNCTION_PROFILER (file, current_function_funcdef_no);
1493 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1494 if (cxt)
1495 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1496 #else
1497 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1498 if (cxt)
1500 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1502 #endif
1503 #endif
1505 #if defined(ASM_OUTPUT_REG_PUSH)
1506 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1507 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1508 #endif
1511 /* Output assembler code for the end of a function.
1512 For clarity, args are same as those of `final_start_function'
1513 even though not all of them are needed. */
1515 void
1516 final_end_function (void)
1518 app_disable ();
1520 (*debug_hooks->end_function) (high_function_linenum);
1522 /* Finally, output the function epilogue:
1523 code to restore the stack frame and return to the caller. */
1524 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1526 /* And debug output. */
1527 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1529 #if defined (DWARF2_UNWIND_INFO)
1530 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1531 && dwarf2out_do_frame ())
1532 dwarf2out_end_epilogue (last_linenum, last_filename);
1533 #endif
1536 /* Output assembler code for some insns: all or part of a function.
1537 For description of args, see `final_start_function', above. */
1539 void
1540 final (rtx first, FILE *file, int optimize)
1542 rtx insn;
1543 int max_uid = 0;
1544 int seen = 0;
1546 last_ignored_compare = 0;
1548 #ifdef SDB_DEBUGGING_INFO
1549 /* When producing SDB debugging info, delete troublesome line number
1550 notes from inlined functions in other files as well as duplicate
1551 line number notes. */
1552 if (write_symbols == SDB_DEBUG)
1554 rtx last = 0;
1555 for (insn = first; insn; insn = NEXT_INSN (insn))
1556 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1558 if (last != 0
1559 #ifdef USE_MAPPED_LOCATION
1560 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1561 #else
1562 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1563 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1564 #endif
1567 delete_insn (insn); /* Use delete_note. */
1568 continue;
1570 last = insn;
1573 #endif
1575 for (insn = first; insn; insn = NEXT_INSN (insn))
1577 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1578 max_uid = INSN_UID (insn);
1579 #ifdef HAVE_cc0
1580 /* If CC tracking across branches is enabled, record the insn which
1581 jumps to each branch only reached from one place. */
1582 if (optimize && JUMP_P (insn))
1584 rtx lab = JUMP_LABEL (insn);
1585 if (lab && LABEL_NUSES (lab) == 1)
1587 LABEL_REFS (lab) = insn;
1590 #endif
1593 init_recog ();
1595 CC_STATUS_INIT;
1597 /* Output the insns. */
1598 for (insn = first; insn;)
1600 #ifdef HAVE_ATTR_length
1601 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1603 /* This can be triggered by bugs elsewhere in the compiler if
1604 new insns are created after init_insn_lengths is called. */
1605 gcc_assert (NOTE_P (insn));
1606 insn_current_address = -1;
1608 else
1609 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1610 #endif /* HAVE_ATTR_length */
1612 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1616 const char *
1617 get_insn_template (int code, rtx insn)
1619 switch (insn_data[code].output_format)
1621 case INSN_OUTPUT_FORMAT_SINGLE:
1622 return insn_data[code].output.single;
1623 case INSN_OUTPUT_FORMAT_MULTI:
1624 return insn_data[code].output.multi[which_alternative];
1625 case INSN_OUTPUT_FORMAT_FUNCTION:
1626 gcc_assert (insn);
1627 return (*insn_data[code].output.function) (recog_data.operand, insn);
1629 default:
1630 gcc_unreachable ();
1634 /* Emit the appropriate declaration for an alternate-entry-point
1635 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1636 LABEL_KIND != LABEL_NORMAL.
1638 The case fall-through in this function is intentional. */
1639 static void
1640 output_alternate_entry_point (FILE *file, rtx insn)
1642 const char *name = LABEL_NAME (insn);
1644 switch (LABEL_KIND (insn))
1646 case LABEL_WEAK_ENTRY:
1647 #ifdef ASM_WEAKEN_LABEL
1648 ASM_WEAKEN_LABEL (file, name);
1649 #endif
1650 case LABEL_GLOBAL_ENTRY:
1651 targetm.asm_out.globalize_label (file, name);
1652 case LABEL_STATIC_ENTRY:
1653 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1654 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1655 #endif
1656 ASM_OUTPUT_LABEL (file, name);
1657 break;
1659 case LABEL_NORMAL:
1660 default:
1661 gcc_unreachable ();
1665 /* The final scan for one insn, INSN.
1666 Args are same as in `final', except that INSN
1667 is the insn being scanned.
1668 Value returned is the next insn to be scanned.
1670 NOPEEPHOLES is the flag to disallow peephole processing (currently
1671 used for within delayed branch sequence output).
1673 SEEN is used to track the end of the prologue, for emitting
1674 debug information. We force the emission of a line note after
1675 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1676 at the beginning of the second basic block, whichever comes
1677 first. */
1680 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1681 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1683 #ifdef HAVE_cc0
1684 rtx set;
1685 #endif
1686 rtx next;
1688 insn_counter++;
1690 /* Ignore deleted insns. These can occur when we split insns (due to a
1691 template of "#") while not optimizing. */
1692 if (INSN_DELETED_P (insn))
1693 return NEXT_INSN (insn);
1695 switch (GET_CODE (insn))
1697 case NOTE:
1698 switch (NOTE_LINE_NUMBER (insn))
1700 case NOTE_INSN_DELETED:
1701 break;
1703 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1704 in_cold_section_p = !in_cold_section_p;
1705 (*debug_hooks->switch_text_section) ();
1706 switch_to_section (current_function_section ());
1707 break;
1709 case NOTE_INSN_BASIC_BLOCK:
1710 #ifdef TARGET_UNWIND_INFO
1711 targetm.asm_out.unwind_emit (asm_out_file, insn);
1712 #endif
1714 if (flag_debug_asm)
1715 fprintf (asm_out_file, "\t%s basic block %d\n",
1716 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1718 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1720 *seen |= SEEN_EMITTED;
1721 force_source_line = true;
1723 else
1724 *seen |= SEEN_BB;
1726 break;
1728 case NOTE_INSN_EH_REGION_BEG:
1729 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1730 NOTE_EH_HANDLER (insn));
1731 break;
1733 case NOTE_INSN_EH_REGION_END:
1734 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1735 NOTE_EH_HANDLER (insn));
1736 break;
1738 case NOTE_INSN_PROLOGUE_END:
1739 targetm.asm_out.function_end_prologue (file);
1740 profile_after_prologue (file);
1742 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1744 *seen |= SEEN_EMITTED;
1745 force_source_line = true;
1747 else
1748 *seen |= SEEN_NOTE;
1750 break;
1752 case NOTE_INSN_EPILOGUE_BEG:
1753 targetm.asm_out.function_begin_epilogue (file);
1754 break;
1756 case NOTE_INSN_FUNCTION_BEG:
1757 app_disable ();
1758 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1760 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1762 *seen |= SEEN_EMITTED;
1763 force_source_line = true;
1765 else
1766 *seen |= SEEN_NOTE;
1768 break;
1770 case NOTE_INSN_BLOCK_BEG:
1771 if (debug_info_level == DINFO_LEVEL_NORMAL
1772 || debug_info_level == DINFO_LEVEL_VERBOSE
1773 || write_symbols == DWARF2_DEBUG
1774 || write_symbols == VMS_AND_DWARF2_DEBUG
1775 || write_symbols == VMS_DEBUG)
1777 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1779 app_disable ();
1780 ++block_depth;
1781 high_block_linenum = last_linenum;
1783 /* Output debugging info about the symbol-block beginning. */
1784 (*debug_hooks->begin_block) (last_linenum, n);
1786 /* Mark this block as output. */
1787 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1789 break;
1791 case NOTE_INSN_BLOCK_END:
1792 if (debug_info_level == DINFO_LEVEL_NORMAL
1793 || debug_info_level == DINFO_LEVEL_VERBOSE
1794 || write_symbols == DWARF2_DEBUG
1795 || write_symbols == VMS_AND_DWARF2_DEBUG
1796 || write_symbols == VMS_DEBUG)
1798 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1800 app_disable ();
1802 /* End of a symbol-block. */
1803 --block_depth;
1804 gcc_assert (block_depth >= 0);
1806 (*debug_hooks->end_block) (high_block_linenum, n);
1808 break;
1810 case NOTE_INSN_DELETED_LABEL:
1811 /* Emit the label. We may have deleted the CODE_LABEL because
1812 the label could be proved to be unreachable, though still
1813 referenced (in the form of having its address taken. */
1814 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1815 break;
1817 case NOTE_INSN_VAR_LOCATION:
1818 (*debug_hooks->var_location) (insn);
1819 break;
1821 case 0:
1822 break;
1824 default:
1825 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1826 break;
1828 break;
1830 case BARRIER:
1831 #if defined (DWARF2_UNWIND_INFO)
1832 if (dwarf2out_do_frame ())
1833 dwarf2out_frame_debug (insn, false);
1834 #endif
1835 break;
1837 case CODE_LABEL:
1838 /* The target port might emit labels in the output function for
1839 some insn, e.g. sh.c output_branchy_insn. */
1840 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1842 int align = LABEL_TO_ALIGNMENT (insn);
1843 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1844 int max_skip = LABEL_TO_MAX_SKIP (insn);
1845 #endif
1847 if (align && NEXT_INSN (insn))
1849 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1850 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1851 #else
1852 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1853 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1854 #else
1855 ASM_OUTPUT_ALIGN (file, align);
1856 #endif
1857 #endif
1860 #ifdef HAVE_cc0
1861 CC_STATUS_INIT;
1862 /* If this label is reached from only one place, set the condition
1863 codes from the instruction just before the branch. */
1865 /* Disabled because some insns set cc_status in the C output code
1866 and NOTICE_UPDATE_CC alone can set incorrect status. */
1867 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1869 rtx jump = LABEL_REFS (insn);
1870 rtx barrier = prev_nonnote_insn (insn);
1871 rtx prev;
1872 /* If the LABEL_REFS field of this label has been set to point
1873 at a branch, the predecessor of the branch is a regular
1874 insn, and that branch is the only way to reach this label,
1875 set the condition codes based on the branch and its
1876 predecessor. */
1877 if (barrier && BARRIER_P (barrier)
1878 && jump && JUMP_P (jump)
1879 && (prev = prev_nonnote_insn (jump))
1880 && NONJUMP_INSN_P (prev))
1882 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1883 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1886 #endif
1888 if (LABEL_NAME (insn))
1889 (*debug_hooks->label) (insn);
1891 if (app_on)
1893 fputs (ASM_APP_OFF, file);
1894 app_on = 0;
1897 next = next_nonnote_insn (insn);
1898 if (next != 0 && JUMP_P (next))
1900 rtx nextbody = PATTERN (next);
1902 /* If this label is followed by a jump-table,
1903 make sure we put the label in the read-only section. Also
1904 possibly write the label and jump table together. */
1906 if (GET_CODE (nextbody) == ADDR_VEC
1907 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1909 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1910 /* In this case, the case vector is being moved by the
1911 target, so don't output the label at all. Leave that
1912 to the back end macros. */
1913 #else
1914 if (! JUMP_TABLES_IN_TEXT_SECTION)
1916 int log_align;
1918 switch_to_section (targetm.asm_out.function_rodata_section
1919 (current_function_decl));
1921 #ifdef ADDR_VEC_ALIGN
1922 log_align = ADDR_VEC_ALIGN (next);
1923 #else
1924 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1925 #endif
1926 ASM_OUTPUT_ALIGN (file, log_align);
1928 else
1929 switch_to_section (current_function_section ());
1931 #ifdef ASM_OUTPUT_CASE_LABEL
1932 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1933 next);
1934 #else
1935 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1936 #endif
1937 #endif
1938 break;
1941 if (LABEL_ALT_ENTRY_P (insn))
1942 output_alternate_entry_point (file, insn);
1943 else
1944 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1945 break;
1947 default:
1949 rtx body = PATTERN (insn);
1950 int insn_code_number;
1951 const char *template;
1953 #ifdef HAVE_conditional_execution
1954 /* Reset this early so it is correct for ASM statements. */
1955 current_insn_predicate = NULL_RTX;
1956 #endif
1957 /* An INSN, JUMP_INSN or CALL_INSN.
1958 First check for special kinds that recog doesn't recognize. */
1960 if (GET_CODE (body) == USE /* These are just declarations. */
1961 || GET_CODE (body) == CLOBBER)
1962 break;
1964 #ifdef HAVE_cc0
1966 /* If there is a REG_CC_SETTER note on this insn, it means that
1967 the setting of the condition code was done in the delay slot
1968 of the insn that branched here. So recover the cc status
1969 from the insn that set it. */
1971 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1972 if (note)
1974 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1975 cc_prev_status = cc_status;
1978 #endif
1980 /* Detect insns that are really jump-tables
1981 and output them as such. */
1983 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1985 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1986 int vlen, idx;
1987 #endif
1989 if (! JUMP_TABLES_IN_TEXT_SECTION)
1990 switch_to_section (targetm.asm_out.function_rodata_section
1991 (current_function_decl));
1992 else
1993 switch_to_section (current_function_section ());
1995 if (app_on)
1997 fputs (ASM_APP_OFF, file);
1998 app_on = 0;
2001 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2002 if (GET_CODE (body) == ADDR_VEC)
2004 #ifdef ASM_OUTPUT_ADDR_VEC
2005 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2006 #else
2007 gcc_unreachable ();
2008 #endif
2010 else
2012 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2013 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2014 #else
2015 gcc_unreachable ();
2016 #endif
2018 #else
2019 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2020 for (idx = 0; idx < vlen; idx++)
2022 if (GET_CODE (body) == ADDR_VEC)
2024 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2025 ASM_OUTPUT_ADDR_VEC_ELT
2026 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2027 #else
2028 gcc_unreachable ();
2029 #endif
2031 else
2033 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2034 ASM_OUTPUT_ADDR_DIFF_ELT
2035 (file,
2036 body,
2037 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2038 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2039 #else
2040 gcc_unreachable ();
2041 #endif
2044 #ifdef ASM_OUTPUT_CASE_END
2045 ASM_OUTPUT_CASE_END (file,
2046 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2047 insn);
2048 #endif
2049 #endif
2051 switch_to_section (current_function_section ());
2053 break;
2055 /* Output this line note if it is the first or the last line
2056 note in a row. */
2057 if (notice_source_line (insn))
2059 (*debug_hooks->source_line) (last_linenum, last_filename);
2062 if (GET_CODE (body) == ASM_INPUT)
2064 const char *string = XSTR (body, 0);
2066 /* There's no telling what that did to the condition codes. */
2067 CC_STATUS_INIT;
2069 if (string[0])
2071 if (! app_on)
2073 fputs (ASM_APP_ON, file);
2074 app_on = 1;
2076 fprintf (asm_out_file, "\t%s\n", string);
2078 break;
2081 /* Detect `asm' construct with operands. */
2082 if (asm_noperands (body) >= 0)
2084 unsigned int noperands = asm_noperands (body);
2085 rtx *ops = alloca (noperands * sizeof (rtx));
2086 const char *string;
2088 /* There's no telling what that did to the condition codes. */
2089 CC_STATUS_INIT;
2091 /* Get out the operand values. */
2092 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2093 /* Inhibit dieing on what would otherwise be compiler bugs. */
2094 insn_noperands = noperands;
2095 this_is_asm_operands = insn;
2097 #ifdef FINAL_PRESCAN_INSN
2098 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2099 #endif
2101 /* Output the insn using them. */
2102 if (string[0])
2104 if (! app_on)
2106 fputs (ASM_APP_ON, file);
2107 app_on = 1;
2109 output_asm_insn (string, ops);
2112 this_is_asm_operands = 0;
2113 break;
2116 if (app_on)
2118 fputs (ASM_APP_OFF, file);
2119 app_on = 0;
2122 if (GET_CODE (body) == SEQUENCE)
2124 /* A delayed-branch sequence */
2125 int i;
2127 final_sequence = body;
2129 /* Record the delay slots' frame information before the branch.
2130 This is needed for delayed calls: see execute_cfa_program(). */
2131 #if defined (DWARF2_UNWIND_INFO)
2132 if (dwarf2out_do_frame ())
2133 for (i = 1; i < XVECLEN (body, 0); i++)
2134 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2135 #endif
2137 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2138 force the restoration of a comparison that was previously
2139 thought unnecessary. If that happens, cancel this sequence
2140 and cause that insn to be restored. */
2142 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2143 if (next != XVECEXP (body, 0, 1))
2145 final_sequence = 0;
2146 return next;
2149 for (i = 1; i < XVECLEN (body, 0); i++)
2151 rtx insn = XVECEXP (body, 0, i);
2152 rtx next = NEXT_INSN (insn);
2153 /* We loop in case any instruction in a delay slot gets
2154 split. */
2156 insn = final_scan_insn (insn, file, 0, 1, seen);
2157 while (insn != next);
2159 #ifdef DBR_OUTPUT_SEQEND
2160 DBR_OUTPUT_SEQEND (file);
2161 #endif
2162 final_sequence = 0;
2164 /* If the insn requiring the delay slot was a CALL_INSN, the
2165 insns in the delay slot are actually executed before the
2166 called function. Hence we don't preserve any CC-setting
2167 actions in these insns and the CC must be marked as being
2168 clobbered by the function. */
2169 if (CALL_P (XVECEXP (body, 0, 0)))
2171 CC_STATUS_INIT;
2173 break;
2176 /* We have a real machine instruction as rtl. */
2178 body = PATTERN (insn);
2180 #ifdef HAVE_cc0
2181 set = single_set (insn);
2183 /* Check for redundant test and compare instructions
2184 (when the condition codes are already set up as desired).
2185 This is done only when optimizing; if not optimizing,
2186 it should be possible for the user to alter a variable
2187 with the debugger in between statements
2188 and the next statement should reexamine the variable
2189 to compute the condition codes. */
2191 if (optimize)
2193 if (set
2194 && GET_CODE (SET_DEST (set)) == CC0
2195 && insn != last_ignored_compare)
2197 if (GET_CODE (SET_SRC (set)) == SUBREG)
2198 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2199 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2201 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2202 XEXP (SET_SRC (set), 0)
2203 = alter_subreg (&XEXP (SET_SRC (set), 0));
2204 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2205 XEXP (SET_SRC (set), 1)
2206 = alter_subreg (&XEXP (SET_SRC (set), 1));
2208 if ((cc_status.value1 != 0
2209 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2210 || (cc_status.value2 != 0
2211 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2213 /* Don't delete insn if it has an addressing side-effect. */
2214 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2215 /* or if anything in it is volatile. */
2216 && ! volatile_refs_p (PATTERN (insn)))
2218 /* We don't really delete the insn; just ignore it. */
2219 last_ignored_compare = insn;
2220 break;
2225 #endif
2227 #ifdef HAVE_cc0
2228 /* If this is a conditional branch, maybe modify it
2229 if the cc's are in a nonstandard state
2230 so that it accomplishes the same thing that it would
2231 do straightforwardly if the cc's were set up normally. */
2233 if (cc_status.flags != 0
2234 && JUMP_P (insn)
2235 && GET_CODE (body) == SET
2236 && SET_DEST (body) == pc_rtx
2237 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2238 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2239 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2241 /* This function may alter the contents of its argument
2242 and clear some of the cc_status.flags bits.
2243 It may also return 1 meaning condition now always true
2244 or -1 meaning condition now always false
2245 or 2 meaning condition nontrivial but altered. */
2246 int result = alter_cond (XEXP (SET_SRC (body), 0));
2247 /* If condition now has fixed value, replace the IF_THEN_ELSE
2248 with its then-operand or its else-operand. */
2249 if (result == 1)
2250 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2251 if (result == -1)
2252 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2254 /* The jump is now either unconditional or a no-op.
2255 If it has become a no-op, don't try to output it.
2256 (It would not be recognized.) */
2257 if (SET_SRC (body) == pc_rtx)
2259 delete_insn (insn);
2260 break;
2262 else if (GET_CODE (SET_SRC (body)) == RETURN)
2263 /* Replace (set (pc) (return)) with (return). */
2264 PATTERN (insn) = body = SET_SRC (body);
2266 /* Rerecognize the instruction if it has changed. */
2267 if (result != 0)
2268 INSN_CODE (insn) = -1;
2271 /* Make same adjustments to instructions that examine the
2272 condition codes without jumping and instructions that
2273 handle conditional moves (if this machine has either one). */
2275 if (cc_status.flags != 0
2276 && set != 0)
2278 rtx cond_rtx, then_rtx, else_rtx;
2280 if (!JUMP_P (insn)
2281 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2283 cond_rtx = XEXP (SET_SRC (set), 0);
2284 then_rtx = XEXP (SET_SRC (set), 1);
2285 else_rtx = XEXP (SET_SRC (set), 2);
2287 else
2289 cond_rtx = SET_SRC (set);
2290 then_rtx = const_true_rtx;
2291 else_rtx = const0_rtx;
2294 switch (GET_CODE (cond_rtx))
2296 case GTU:
2297 case GT:
2298 case LTU:
2299 case LT:
2300 case GEU:
2301 case GE:
2302 case LEU:
2303 case LE:
2304 case EQ:
2305 case NE:
2307 int result;
2308 if (XEXP (cond_rtx, 0) != cc0_rtx)
2309 break;
2310 result = alter_cond (cond_rtx);
2311 if (result == 1)
2312 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2313 else if (result == -1)
2314 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2315 else if (result == 2)
2316 INSN_CODE (insn) = -1;
2317 if (SET_DEST (set) == SET_SRC (set))
2318 delete_insn (insn);
2320 break;
2322 default:
2323 break;
2327 #endif
2329 #ifdef HAVE_peephole
2330 /* Do machine-specific peephole optimizations if desired. */
2332 if (optimize && !flag_no_peephole && !nopeepholes)
2334 rtx next = peephole (insn);
2335 /* When peepholing, if there were notes within the peephole,
2336 emit them before the peephole. */
2337 if (next != 0 && next != NEXT_INSN (insn))
2339 rtx note, prev = PREV_INSN (insn);
2341 for (note = NEXT_INSN (insn); note != next;
2342 note = NEXT_INSN (note))
2343 final_scan_insn (note, file, optimize, nopeepholes, seen);
2345 /* Put the notes in the proper position for a later
2346 rescan. For example, the SH target can do this
2347 when generating a far jump in a delayed branch
2348 sequence. */
2349 note = NEXT_INSN (insn);
2350 PREV_INSN (note) = prev;
2351 NEXT_INSN (prev) = note;
2352 NEXT_INSN (PREV_INSN (next)) = insn;
2353 PREV_INSN (insn) = PREV_INSN (next);
2354 NEXT_INSN (insn) = next;
2355 PREV_INSN (next) = insn;
2358 /* PEEPHOLE might have changed this. */
2359 body = PATTERN (insn);
2361 #endif
2363 /* Try to recognize the instruction.
2364 If successful, verify that the operands satisfy the
2365 constraints for the instruction. Crash if they don't,
2366 since `reload' should have changed them so that they do. */
2368 insn_code_number = recog_memoized (insn);
2369 cleanup_subreg_operands (insn);
2371 /* Dump the insn in the assembly for debugging. */
2372 if (flag_dump_rtl_in_asm)
2374 print_rtx_head = ASM_COMMENT_START;
2375 print_rtl_single (asm_out_file, insn);
2376 print_rtx_head = "";
2379 if (! constrain_operands_cached (1))
2380 fatal_insn_not_found (insn);
2382 /* Some target machines need to prescan each insn before
2383 it is output. */
2385 #ifdef FINAL_PRESCAN_INSN
2386 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2387 #endif
2389 #ifdef HAVE_conditional_execution
2390 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2391 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2392 #endif
2394 #ifdef HAVE_cc0
2395 cc_prev_status = cc_status;
2397 /* Update `cc_status' for this instruction.
2398 The instruction's output routine may change it further.
2399 If the output routine for a jump insn needs to depend
2400 on the cc status, it should look at cc_prev_status. */
2402 NOTICE_UPDATE_CC (body, insn);
2403 #endif
2405 current_output_insn = debug_insn = insn;
2407 #if defined (DWARF2_UNWIND_INFO)
2408 if (CALL_P (insn) && dwarf2out_do_frame ())
2409 dwarf2out_frame_debug (insn, false);
2410 #endif
2412 /* Find the proper template for this insn. */
2413 template = get_insn_template (insn_code_number, insn);
2415 /* If the C code returns 0, it means that it is a jump insn
2416 which follows a deleted test insn, and that test insn
2417 needs to be reinserted. */
2418 if (template == 0)
2420 rtx prev;
2422 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2424 /* We have already processed the notes between the setter and
2425 the user. Make sure we don't process them again, this is
2426 particularly important if one of the notes is a block
2427 scope note or an EH note. */
2428 for (prev = insn;
2429 prev != last_ignored_compare;
2430 prev = PREV_INSN (prev))
2432 if (NOTE_P (prev))
2433 delete_insn (prev); /* Use delete_note. */
2436 return prev;
2439 /* If the template is the string "#", it means that this insn must
2440 be split. */
2441 if (template[0] == '#' && template[1] == '\0')
2443 rtx new = try_split (body, insn, 0);
2445 /* If we didn't split the insn, go away. */
2446 if (new == insn && PATTERN (new) == body)
2447 fatal_insn ("could not split insn", insn);
2449 #ifdef HAVE_ATTR_length
2450 /* This instruction should have been split in shorten_branches,
2451 to ensure that we would have valid length info for the
2452 splitees. */
2453 gcc_unreachable ();
2454 #endif
2456 return new;
2459 #ifdef TARGET_UNWIND_INFO
2460 /* ??? This will put the directives in the wrong place if
2461 get_insn_template outputs assembly directly. However calling it
2462 before get_insn_template breaks if the insns is split. */
2463 targetm.asm_out.unwind_emit (asm_out_file, insn);
2464 #endif
2466 /* Output assembler code from the template. */
2467 output_asm_insn (template, recog_data.operand);
2469 /* If necessary, report the effect that the instruction has on
2470 the unwind info. We've already done this for delay slots
2471 and call instructions. */
2472 #if defined (DWARF2_UNWIND_INFO)
2473 if (final_sequence == 0
2474 #if !defined (HAVE_prologue)
2475 && !ACCUMULATE_OUTGOING_ARGS
2476 #endif
2477 && dwarf2out_do_frame ())
2478 dwarf2out_frame_debug (insn, true);
2479 #endif
2481 current_output_insn = debug_insn = 0;
2484 return NEXT_INSN (insn);
2487 /* Return whether a source line note needs to be emitted before INSN. */
2489 static bool
2490 notice_source_line (rtx insn)
2492 const char *filename = insn_file (insn);
2493 int linenum = insn_line (insn);
2495 if (filename
2496 && (force_source_line
2497 || filename != last_filename
2498 || last_linenum != linenum))
2500 force_source_line = false;
2501 last_filename = filename;
2502 last_linenum = linenum;
2503 high_block_linenum = MAX (last_linenum, high_block_linenum);
2504 high_function_linenum = MAX (last_linenum, high_function_linenum);
2505 return true;
2507 return false;
2510 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2511 directly to the desired hard register. */
2513 void
2514 cleanup_subreg_operands (rtx insn)
2516 int i;
2517 extract_insn_cached (insn);
2518 for (i = 0; i < recog_data.n_operands; i++)
2520 /* The following test cannot use recog_data.operand when testing
2521 for a SUBREG: the underlying object might have been changed
2522 already if we are inside a match_operator expression that
2523 matches the else clause. Instead we test the underlying
2524 expression directly. */
2525 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2526 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2527 else if (GET_CODE (recog_data.operand[i]) == PLUS
2528 || GET_CODE (recog_data.operand[i]) == MULT
2529 || MEM_P (recog_data.operand[i]))
2530 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2533 for (i = 0; i < recog_data.n_dups; i++)
2535 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2536 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2537 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2538 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2539 || MEM_P (*recog_data.dup_loc[i]))
2540 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2544 /* If X is a SUBREG, replace it with a REG or a MEM,
2545 based on the thing it is a subreg of. */
2548 alter_subreg (rtx *xp)
2550 rtx x = *xp;
2551 rtx y = SUBREG_REG (x);
2553 /* simplify_subreg does not remove subreg from volatile references.
2554 We are required to. */
2555 if (MEM_P (y))
2557 int offset = SUBREG_BYTE (x);
2559 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2560 contains 0 instead of the proper offset. See simplify_subreg. */
2561 if (offset == 0
2562 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2564 int difference = GET_MODE_SIZE (GET_MODE (y))
2565 - GET_MODE_SIZE (GET_MODE (x));
2566 if (WORDS_BIG_ENDIAN)
2567 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2568 if (BYTES_BIG_ENDIAN)
2569 offset += difference % UNITS_PER_WORD;
2572 *xp = adjust_address (y, GET_MODE (x), offset);
2574 else
2576 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2577 SUBREG_BYTE (x));
2579 if (new != 0)
2580 *xp = new;
2581 else if (REG_P (y))
2583 /* Simplify_subreg can't handle some REG cases, but we have to. */
2584 unsigned int regno = subreg_regno (x);
2585 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2589 return *xp;
2592 /* Do alter_subreg on all the SUBREGs contained in X. */
2594 static rtx
2595 walk_alter_subreg (rtx *xp)
2597 rtx x = *xp;
2598 switch (GET_CODE (x))
2600 case PLUS:
2601 case MULT:
2602 case AND:
2603 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2604 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2605 break;
2607 case MEM:
2608 case ZERO_EXTEND:
2609 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2610 break;
2612 case SUBREG:
2613 return alter_subreg (xp);
2615 default:
2616 break;
2619 return *xp;
2622 #ifdef HAVE_cc0
2624 /* Given BODY, the body of a jump instruction, alter the jump condition
2625 as required by the bits that are set in cc_status.flags.
2626 Not all of the bits there can be handled at this level in all cases.
2628 The value is normally 0.
2629 1 means that the condition has become always true.
2630 -1 means that the condition has become always false.
2631 2 means that COND has been altered. */
2633 static int
2634 alter_cond (rtx cond)
2636 int value = 0;
2638 if (cc_status.flags & CC_REVERSED)
2640 value = 2;
2641 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2644 if (cc_status.flags & CC_INVERTED)
2646 value = 2;
2647 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2650 if (cc_status.flags & CC_NOT_POSITIVE)
2651 switch (GET_CODE (cond))
2653 case LE:
2654 case LEU:
2655 case GEU:
2656 /* Jump becomes unconditional. */
2657 return 1;
2659 case GT:
2660 case GTU:
2661 case LTU:
2662 /* Jump becomes no-op. */
2663 return -1;
2665 case GE:
2666 PUT_CODE (cond, EQ);
2667 value = 2;
2668 break;
2670 case LT:
2671 PUT_CODE (cond, NE);
2672 value = 2;
2673 break;
2675 default:
2676 break;
2679 if (cc_status.flags & CC_NOT_NEGATIVE)
2680 switch (GET_CODE (cond))
2682 case GE:
2683 case GEU:
2684 /* Jump becomes unconditional. */
2685 return 1;
2687 case LT:
2688 case LTU:
2689 /* Jump becomes no-op. */
2690 return -1;
2692 case LE:
2693 case LEU:
2694 PUT_CODE (cond, EQ);
2695 value = 2;
2696 break;
2698 case GT:
2699 case GTU:
2700 PUT_CODE (cond, NE);
2701 value = 2;
2702 break;
2704 default:
2705 break;
2708 if (cc_status.flags & CC_NO_OVERFLOW)
2709 switch (GET_CODE (cond))
2711 case GEU:
2712 /* Jump becomes unconditional. */
2713 return 1;
2715 case LEU:
2716 PUT_CODE (cond, EQ);
2717 value = 2;
2718 break;
2720 case GTU:
2721 PUT_CODE (cond, NE);
2722 value = 2;
2723 break;
2725 case LTU:
2726 /* Jump becomes no-op. */
2727 return -1;
2729 default:
2730 break;
2733 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2734 switch (GET_CODE (cond))
2736 default:
2737 gcc_unreachable ();
2739 case NE:
2740 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2741 value = 2;
2742 break;
2744 case EQ:
2745 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2746 value = 2;
2747 break;
2750 if (cc_status.flags & CC_NOT_SIGNED)
2751 /* The flags are valid if signed condition operators are converted
2752 to unsigned. */
2753 switch (GET_CODE (cond))
2755 case LE:
2756 PUT_CODE (cond, LEU);
2757 value = 2;
2758 break;
2760 case LT:
2761 PUT_CODE (cond, LTU);
2762 value = 2;
2763 break;
2765 case GT:
2766 PUT_CODE (cond, GTU);
2767 value = 2;
2768 break;
2770 case GE:
2771 PUT_CODE (cond, GEU);
2772 value = 2;
2773 break;
2775 default:
2776 break;
2779 return value;
2781 #endif
2783 /* Report inconsistency between the assembler template and the operands.
2784 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2786 void
2787 output_operand_lossage (const char *cmsgid, ...)
2789 char *fmt_string;
2790 char *new_message;
2791 const char *pfx_str;
2792 va_list ap;
2794 va_start (ap, cmsgid);
2796 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2797 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2798 vasprintf (&new_message, fmt_string, ap);
2800 if (this_is_asm_operands)
2801 error_for_asm (this_is_asm_operands, "%s", new_message);
2802 else
2803 internal_error ("%s", new_message);
2805 free (fmt_string);
2806 free (new_message);
2807 va_end (ap);
2810 /* Output of assembler code from a template, and its subroutines. */
2812 /* Annotate the assembly with a comment describing the pattern and
2813 alternative used. */
2815 static void
2816 output_asm_name (void)
2818 if (debug_insn)
2820 int num = INSN_CODE (debug_insn);
2821 fprintf (asm_out_file, "\t%s %d\t%s",
2822 ASM_COMMENT_START, INSN_UID (debug_insn),
2823 insn_data[num].name);
2824 if (insn_data[num].n_alternatives > 1)
2825 fprintf (asm_out_file, "/%d", which_alternative + 1);
2826 #ifdef HAVE_ATTR_length
2827 fprintf (asm_out_file, "\t[length = %d]",
2828 get_attr_length (debug_insn));
2829 #endif
2830 /* Clear this so only the first assembler insn
2831 of any rtl insn will get the special comment for -dp. */
2832 debug_insn = 0;
2836 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2837 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2838 corresponds to the address of the object and 0 if to the object. */
2840 static tree
2841 get_mem_expr_from_op (rtx op, int *paddressp)
2843 tree expr;
2844 int inner_addressp;
2846 *paddressp = 0;
2848 if (REG_P (op))
2849 return REG_EXPR (op);
2850 else if (!MEM_P (op))
2851 return 0;
2853 if (MEM_EXPR (op) != 0)
2854 return MEM_EXPR (op);
2856 /* Otherwise we have an address, so indicate it and look at the address. */
2857 *paddressp = 1;
2858 op = XEXP (op, 0);
2860 /* First check if we have a decl for the address, then look at the right side
2861 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2862 But don't allow the address to itself be indirect. */
2863 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2864 return expr;
2865 else if (GET_CODE (op) == PLUS
2866 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2867 return expr;
2869 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2870 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2871 op = XEXP (op, 0);
2873 expr = get_mem_expr_from_op (op, &inner_addressp);
2874 return inner_addressp ? 0 : expr;
2877 /* Output operand names for assembler instructions. OPERANDS is the
2878 operand vector, OPORDER is the order to write the operands, and NOPS
2879 is the number of operands to write. */
2881 static void
2882 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2884 int wrote = 0;
2885 int i;
2887 for (i = 0; i < nops; i++)
2889 int addressp;
2890 rtx op = operands[oporder[i]];
2891 tree expr = get_mem_expr_from_op (op, &addressp);
2893 fprintf (asm_out_file, "%c%s",
2894 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2895 wrote = 1;
2896 if (expr)
2898 fprintf (asm_out_file, "%s",
2899 addressp ? "*" : "");
2900 print_mem_expr (asm_out_file, expr);
2901 wrote = 1;
2903 else if (REG_P (op) && ORIGINAL_REGNO (op)
2904 && ORIGINAL_REGNO (op) != REGNO (op))
2905 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2909 /* Output text from TEMPLATE to the assembler output file,
2910 obeying %-directions to substitute operands taken from
2911 the vector OPERANDS.
2913 %N (for N a digit) means print operand N in usual manner.
2914 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2915 and print the label name with no punctuation.
2916 %cN means require operand N to be a constant
2917 and print the constant expression with no punctuation.
2918 %aN means expect operand N to be a memory address
2919 (not a memory reference!) and print a reference
2920 to that address.
2921 %nN means expect operand N to be a constant
2922 and print a constant expression for minus the value
2923 of the operand, with no other punctuation. */
2925 void
2926 output_asm_insn (const char *template, rtx *operands)
2928 const char *p;
2929 int c;
2930 #ifdef ASSEMBLER_DIALECT
2931 int dialect = 0;
2932 #endif
2933 int oporder[MAX_RECOG_OPERANDS];
2934 char opoutput[MAX_RECOG_OPERANDS];
2935 int ops = 0;
2937 /* An insn may return a null string template
2938 in a case where no assembler code is needed. */
2939 if (*template == 0)
2940 return;
2942 memset (opoutput, 0, sizeof opoutput);
2943 p = template;
2944 putc ('\t', asm_out_file);
2946 #ifdef ASM_OUTPUT_OPCODE
2947 ASM_OUTPUT_OPCODE (asm_out_file, p);
2948 #endif
2950 while ((c = *p++))
2951 switch (c)
2953 case '\n':
2954 if (flag_verbose_asm)
2955 output_asm_operand_names (operands, oporder, ops);
2956 if (flag_print_asm_name)
2957 output_asm_name ();
2959 ops = 0;
2960 memset (opoutput, 0, sizeof opoutput);
2962 putc (c, asm_out_file);
2963 #ifdef ASM_OUTPUT_OPCODE
2964 while ((c = *p) == '\t')
2966 putc (c, asm_out_file);
2967 p++;
2969 ASM_OUTPUT_OPCODE (asm_out_file, p);
2970 #endif
2971 break;
2973 #ifdef ASSEMBLER_DIALECT
2974 case '{':
2976 int i;
2978 if (dialect)
2979 output_operand_lossage ("nested assembly dialect alternatives");
2980 else
2981 dialect = 1;
2983 /* If we want the first dialect, do nothing. Otherwise, skip
2984 DIALECT_NUMBER of strings ending with '|'. */
2985 for (i = 0; i < dialect_number; i++)
2987 while (*p && *p != '}' && *p++ != '|')
2989 if (*p == '}')
2990 break;
2991 if (*p == '|')
2992 p++;
2995 if (*p == '\0')
2996 output_operand_lossage ("unterminated assembly dialect alternative");
2998 break;
3000 case '|':
3001 if (dialect)
3003 /* Skip to close brace. */
3006 if (*p == '\0')
3008 output_operand_lossage ("unterminated assembly dialect alternative");
3009 break;
3012 while (*p++ != '}');
3013 dialect = 0;
3015 else
3016 putc (c, asm_out_file);
3017 break;
3019 case '}':
3020 if (! dialect)
3021 putc (c, asm_out_file);
3022 dialect = 0;
3023 break;
3024 #endif
3026 case '%':
3027 /* %% outputs a single %. */
3028 if (*p == '%')
3030 p++;
3031 putc (c, asm_out_file);
3033 /* %= outputs a number which is unique to each insn in the entire
3034 compilation. This is useful for making local labels that are
3035 referred to more than once in a given insn. */
3036 else if (*p == '=')
3038 p++;
3039 fprintf (asm_out_file, "%d", insn_counter);
3041 /* % followed by a letter and some digits
3042 outputs an operand in a special way depending on the letter.
3043 Letters `acln' are implemented directly.
3044 Other letters are passed to `output_operand' so that
3045 the PRINT_OPERAND macro can define them. */
3046 else if (ISALPHA (*p))
3048 int letter = *p++;
3049 unsigned long opnum;
3050 char *endptr;
3052 opnum = strtoul (p, &endptr, 10);
3054 if (endptr == p)
3055 output_operand_lossage ("operand number missing "
3056 "after %%-letter");
3057 else if (this_is_asm_operands && opnum >= insn_noperands)
3058 output_operand_lossage ("operand number out of range");
3059 else if (letter == 'l')
3060 output_asm_label (operands[opnum]);
3061 else if (letter == 'a')
3062 output_address (operands[opnum]);
3063 else if (letter == 'c')
3065 if (CONSTANT_ADDRESS_P (operands[opnum]))
3066 output_addr_const (asm_out_file, operands[opnum]);
3067 else
3068 output_operand (operands[opnum], 'c');
3070 else if (letter == 'n')
3072 if (GET_CODE (operands[opnum]) == CONST_INT)
3073 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3074 - INTVAL (operands[opnum]));
3075 else
3077 putc ('-', asm_out_file);
3078 output_addr_const (asm_out_file, operands[opnum]);
3081 else
3082 output_operand (operands[opnum], letter);
3084 if (!opoutput[opnum])
3085 oporder[ops++] = opnum;
3086 opoutput[opnum] = 1;
3088 p = endptr;
3089 c = *p;
3091 /* % followed by a digit outputs an operand the default way. */
3092 else if (ISDIGIT (*p))
3094 unsigned long opnum;
3095 char *endptr;
3097 opnum = strtoul (p, &endptr, 10);
3098 if (this_is_asm_operands && opnum >= insn_noperands)
3099 output_operand_lossage ("operand number out of range");
3100 else
3101 output_operand (operands[opnum], 0);
3103 if (!opoutput[opnum])
3104 oporder[ops++] = opnum;
3105 opoutput[opnum] = 1;
3107 p = endptr;
3108 c = *p;
3110 /* % followed by punctuation: output something for that
3111 punctuation character alone, with no operand.
3112 The PRINT_OPERAND macro decides what is actually done. */
3113 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3114 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3115 output_operand (NULL_RTX, *p++);
3116 #endif
3117 else
3118 output_operand_lossage ("invalid %%-code");
3119 break;
3121 default:
3122 putc (c, asm_out_file);
3125 /* Write out the variable names for operands, if we know them. */
3126 if (flag_verbose_asm)
3127 output_asm_operand_names (operands, oporder, ops);
3128 if (flag_print_asm_name)
3129 output_asm_name ();
3131 putc ('\n', asm_out_file);
3134 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3136 void
3137 output_asm_label (rtx x)
3139 char buf[256];
3141 if (GET_CODE (x) == LABEL_REF)
3142 x = XEXP (x, 0);
3143 if (LABEL_P (x)
3144 || (NOTE_P (x)
3145 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3146 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3147 else
3148 output_operand_lossage ("'%%l' operand isn't a label");
3150 assemble_name (asm_out_file, buf);
3153 /* Print operand X using machine-dependent assembler syntax.
3154 The macro PRINT_OPERAND is defined just to control this function.
3155 CODE is a non-digit that preceded the operand-number in the % spec,
3156 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3157 between the % and the digits.
3158 When CODE is a non-letter, X is 0.
3160 The meanings of the letters are machine-dependent and controlled
3161 by PRINT_OPERAND. */
3163 static void
3164 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3166 if (x && GET_CODE (x) == SUBREG)
3167 x = alter_subreg (&x);
3169 /* X must not be a pseudo reg. */
3170 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3172 PRINT_OPERAND (asm_out_file, x, code);
3175 /* Print a memory reference operand for address X
3176 using machine-dependent assembler syntax.
3177 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3179 void
3180 output_address (rtx x)
3182 walk_alter_subreg (&x);
3183 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3186 /* Print an integer constant expression in assembler syntax.
3187 Addition and subtraction are the only arithmetic
3188 that may appear in these expressions. */
3190 void
3191 output_addr_const (FILE *file, rtx x)
3193 char buf[256];
3195 restart:
3196 switch (GET_CODE (x))
3198 case PC:
3199 putc ('.', file);
3200 break;
3202 case SYMBOL_REF:
3203 if (SYMBOL_REF_DECL (x))
3204 mark_decl_referenced (SYMBOL_REF_DECL (x));
3205 #ifdef ASM_OUTPUT_SYMBOL_REF
3206 ASM_OUTPUT_SYMBOL_REF (file, x);
3207 #else
3208 assemble_name (file, XSTR (x, 0));
3209 #endif
3210 break;
3212 case LABEL_REF:
3213 x = XEXP (x, 0);
3214 /* Fall through. */
3215 case CODE_LABEL:
3216 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3217 #ifdef ASM_OUTPUT_LABEL_REF
3218 ASM_OUTPUT_LABEL_REF (file, buf);
3219 #else
3220 assemble_name (file, buf);
3221 #endif
3222 break;
3224 case CONST_INT:
3225 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3226 break;
3228 case CONST:
3229 /* This used to output parentheses around the expression,
3230 but that does not work on the 386 (either ATT or BSD assembler). */
3231 output_addr_const (file, XEXP (x, 0));
3232 break;
3234 case CONST_DOUBLE:
3235 if (GET_MODE (x) == VOIDmode)
3237 /* We can use %d if the number is one word and positive. */
3238 if (CONST_DOUBLE_HIGH (x))
3239 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3240 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3241 else if (CONST_DOUBLE_LOW (x) < 0)
3242 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3243 else
3244 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3246 else
3247 /* We can't handle floating point constants;
3248 PRINT_OPERAND must handle them. */
3249 output_operand_lossage ("floating constant misused");
3250 break;
3252 case PLUS:
3253 /* Some assemblers need integer constants to appear last (eg masm). */
3254 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3256 output_addr_const (file, XEXP (x, 1));
3257 if (INTVAL (XEXP (x, 0)) >= 0)
3258 fprintf (file, "+");
3259 output_addr_const (file, XEXP (x, 0));
3261 else
3263 output_addr_const (file, XEXP (x, 0));
3264 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3265 || INTVAL (XEXP (x, 1)) >= 0)
3266 fprintf (file, "+");
3267 output_addr_const (file, XEXP (x, 1));
3269 break;
3271 case MINUS:
3272 /* Avoid outputting things like x-x or x+5-x,
3273 since some assemblers can't handle that. */
3274 x = simplify_subtraction (x);
3275 if (GET_CODE (x) != MINUS)
3276 goto restart;
3278 output_addr_const (file, XEXP (x, 0));
3279 fprintf (file, "-");
3280 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3281 || GET_CODE (XEXP (x, 1)) == PC
3282 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3283 output_addr_const (file, XEXP (x, 1));
3284 else
3286 fputs (targetm.asm_out.open_paren, file);
3287 output_addr_const (file, XEXP (x, 1));
3288 fputs (targetm.asm_out.close_paren, file);
3290 break;
3292 case ZERO_EXTEND:
3293 case SIGN_EXTEND:
3294 case SUBREG:
3295 output_addr_const (file, XEXP (x, 0));
3296 break;
3298 default:
3299 #ifdef OUTPUT_ADDR_CONST_EXTRA
3300 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3301 break;
3303 fail:
3304 #endif
3305 output_operand_lossage ("invalid expression as operand");
3309 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3310 %R prints the value of REGISTER_PREFIX.
3311 %L prints the value of LOCAL_LABEL_PREFIX.
3312 %U prints the value of USER_LABEL_PREFIX.
3313 %I prints the value of IMMEDIATE_PREFIX.
3314 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3315 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3317 We handle alternate assembler dialects here, just like output_asm_insn. */
3319 void
3320 asm_fprintf (FILE *file, const char *p, ...)
3322 char buf[10];
3323 char *q, c;
3324 va_list argptr;
3326 va_start (argptr, p);
3328 buf[0] = '%';
3330 while ((c = *p++))
3331 switch (c)
3333 #ifdef ASSEMBLER_DIALECT
3334 case '{':
3336 int i;
3338 /* If we want the first dialect, do nothing. Otherwise, skip
3339 DIALECT_NUMBER of strings ending with '|'. */
3340 for (i = 0; i < dialect_number; i++)
3342 while (*p && *p++ != '|')
3345 if (*p == '|')
3346 p++;
3349 break;
3351 case '|':
3352 /* Skip to close brace. */
3353 while (*p && *p++ != '}')
3355 break;
3357 case '}':
3358 break;
3359 #endif
3361 case '%':
3362 c = *p++;
3363 q = &buf[1];
3364 while (strchr ("-+ #0", c))
3366 *q++ = c;
3367 c = *p++;
3369 while (ISDIGIT (c) || c == '.')
3371 *q++ = c;
3372 c = *p++;
3374 switch (c)
3376 case '%':
3377 putc ('%', file);
3378 break;
3380 case 'd': case 'i': case 'u':
3381 case 'x': case 'X': case 'o':
3382 case 'c':
3383 *q++ = c;
3384 *q = 0;
3385 fprintf (file, buf, va_arg (argptr, int));
3386 break;
3388 case 'w':
3389 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3390 'o' cases, but we do not check for those cases. It
3391 means that the value is a HOST_WIDE_INT, which may be
3392 either `long' or `long long'. */
3393 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3394 q += strlen (HOST_WIDE_INT_PRINT);
3395 *q++ = *p++;
3396 *q = 0;
3397 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3398 break;
3400 case 'l':
3401 *q++ = c;
3402 #ifdef HAVE_LONG_LONG
3403 if (*p == 'l')
3405 *q++ = *p++;
3406 *q++ = *p++;
3407 *q = 0;
3408 fprintf (file, buf, va_arg (argptr, long long));
3410 else
3411 #endif
3413 *q++ = *p++;
3414 *q = 0;
3415 fprintf (file, buf, va_arg (argptr, long));
3418 break;
3420 case 's':
3421 *q++ = c;
3422 *q = 0;
3423 fprintf (file, buf, va_arg (argptr, char *));
3424 break;
3426 case 'O':
3427 #ifdef ASM_OUTPUT_OPCODE
3428 ASM_OUTPUT_OPCODE (asm_out_file, p);
3429 #endif
3430 break;
3432 case 'R':
3433 #ifdef REGISTER_PREFIX
3434 fprintf (file, "%s", REGISTER_PREFIX);
3435 #endif
3436 break;
3438 case 'I':
3439 #ifdef IMMEDIATE_PREFIX
3440 fprintf (file, "%s", IMMEDIATE_PREFIX);
3441 #endif
3442 break;
3444 case 'L':
3445 #ifdef LOCAL_LABEL_PREFIX
3446 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3447 #endif
3448 break;
3450 case 'U':
3451 fputs (user_label_prefix, file);
3452 break;
3454 #ifdef ASM_FPRINTF_EXTENSIONS
3455 /* Uppercase letters are reserved for general use by asm_fprintf
3456 and so are not available to target specific code. In order to
3457 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3458 they are defined here. As they get turned into real extensions
3459 to asm_fprintf they should be removed from this list. */
3460 case 'A': case 'B': case 'C': case 'D': case 'E':
3461 case 'F': case 'G': case 'H': case 'J': case 'K':
3462 case 'M': case 'N': case 'P': case 'Q': case 'S':
3463 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3464 break;
3466 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3467 #endif
3468 default:
3469 gcc_unreachable ();
3471 break;
3473 default:
3474 putc (c, file);
3476 va_end (argptr);
3479 /* Split up a CONST_DOUBLE or integer constant rtx
3480 into two rtx's for single words,
3481 storing in *FIRST the word that comes first in memory in the target
3482 and in *SECOND the other. */
3484 void
3485 split_double (rtx value, rtx *first, rtx *second)
3487 if (GET_CODE (value) == CONST_INT)
3489 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3491 /* In this case the CONST_INT holds both target words.
3492 Extract the bits from it into two word-sized pieces.
3493 Sign extend each half to HOST_WIDE_INT. */
3494 unsigned HOST_WIDE_INT low, high;
3495 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3497 /* Set sign_bit to the most significant bit of a word. */
3498 sign_bit = 1;
3499 sign_bit <<= BITS_PER_WORD - 1;
3501 /* Set mask so that all bits of the word are set. We could
3502 have used 1 << BITS_PER_WORD instead of basing the
3503 calculation on sign_bit. However, on machines where
3504 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3505 compiler warning, even though the code would never be
3506 executed. */
3507 mask = sign_bit << 1;
3508 mask--;
3510 /* Set sign_extend as any remaining bits. */
3511 sign_extend = ~mask;
3513 /* Pick the lower word and sign-extend it. */
3514 low = INTVAL (value);
3515 low &= mask;
3516 if (low & sign_bit)
3517 low |= sign_extend;
3519 /* Pick the higher word, shifted to the least significant
3520 bits, and sign-extend it. */
3521 high = INTVAL (value);
3522 high >>= BITS_PER_WORD - 1;
3523 high >>= 1;
3524 high &= mask;
3525 if (high & sign_bit)
3526 high |= sign_extend;
3528 /* Store the words in the target machine order. */
3529 if (WORDS_BIG_ENDIAN)
3531 *first = GEN_INT (high);
3532 *second = GEN_INT (low);
3534 else
3536 *first = GEN_INT (low);
3537 *second = GEN_INT (high);
3540 else
3542 /* The rule for using CONST_INT for a wider mode
3543 is that we regard the value as signed.
3544 So sign-extend it. */
3545 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3546 if (WORDS_BIG_ENDIAN)
3548 *first = high;
3549 *second = value;
3551 else
3553 *first = value;
3554 *second = high;
3558 else if (GET_CODE (value) != CONST_DOUBLE)
3560 if (WORDS_BIG_ENDIAN)
3562 *first = const0_rtx;
3563 *second = value;
3565 else
3567 *first = value;
3568 *second = const0_rtx;
3571 else if (GET_MODE (value) == VOIDmode
3572 /* This is the old way we did CONST_DOUBLE integers. */
3573 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3575 /* In an integer, the words are defined as most and least significant.
3576 So order them by the target's convention. */
3577 if (WORDS_BIG_ENDIAN)
3579 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3580 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3582 else
3584 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3585 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3588 else
3590 REAL_VALUE_TYPE r;
3591 long l[2];
3592 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3594 /* Note, this converts the REAL_VALUE_TYPE to the target's
3595 format, splits up the floating point double and outputs
3596 exactly 32 bits of it into each of l[0] and l[1] --
3597 not necessarily BITS_PER_WORD bits. */
3598 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3600 /* If 32 bits is an entire word for the target, but not for the host,
3601 then sign-extend on the host so that the number will look the same
3602 way on the host that it would on the target. See for instance
3603 simplify_unary_operation. The #if is needed to avoid compiler
3604 warnings. */
3606 #if HOST_BITS_PER_LONG > 32
3607 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3609 if (l[0] & ((long) 1 << 31))
3610 l[0] |= ((long) (-1) << 32);
3611 if (l[1] & ((long) 1 << 31))
3612 l[1] |= ((long) (-1) << 32);
3614 #endif
3616 *first = GEN_INT (l[0]);
3617 *second = GEN_INT (l[1]);
3621 /* Return nonzero if this function has no function calls. */
3624 leaf_function_p (void)
3626 rtx insn;
3627 rtx link;
3629 if (current_function_profile || profile_arc_flag)
3630 return 0;
3632 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3634 if (CALL_P (insn)
3635 && ! SIBLING_CALL_P (insn))
3636 return 0;
3637 if (NONJUMP_INSN_P (insn)
3638 && GET_CODE (PATTERN (insn)) == SEQUENCE
3639 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3640 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3641 return 0;
3643 for (link = current_function_epilogue_delay_list;
3644 link;
3645 link = XEXP (link, 1))
3647 insn = XEXP (link, 0);
3649 if (CALL_P (insn)
3650 && ! SIBLING_CALL_P (insn))
3651 return 0;
3652 if (NONJUMP_INSN_P (insn)
3653 && GET_CODE (PATTERN (insn)) == SEQUENCE
3654 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3655 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3656 return 0;
3659 return 1;
3662 /* Return 1 if branch is a forward branch.
3663 Uses insn_shuid array, so it works only in the final pass. May be used by
3664 output templates to customary add branch prediction hints.
3667 final_forward_branch_p (rtx insn)
3669 int insn_id, label_id;
3671 gcc_assert (uid_shuid);
3672 insn_id = INSN_SHUID (insn);
3673 label_id = INSN_SHUID (JUMP_LABEL (insn));
3674 /* We've hit some insns that does not have id information available. */
3675 gcc_assert (insn_id && label_id);
3676 return insn_id < label_id;
3679 /* On some machines, a function with no call insns
3680 can run faster if it doesn't create its own register window.
3681 When output, the leaf function should use only the "output"
3682 registers. Ordinarily, the function would be compiled to use
3683 the "input" registers to find its arguments; it is a candidate
3684 for leaf treatment if it uses only the "input" registers.
3685 Leaf function treatment means renumbering so the function
3686 uses the "output" registers instead. */
3688 #ifdef LEAF_REGISTERS
3690 /* Return 1 if this function uses only the registers that can be
3691 safely renumbered. */
3694 only_leaf_regs_used (void)
3696 int i;
3697 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3699 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3700 if ((regs_ever_live[i] || global_regs[i])
3701 && ! permitted_reg_in_leaf_functions[i])
3702 return 0;
3704 if (current_function_uses_pic_offset_table
3705 && pic_offset_table_rtx != 0
3706 && REG_P (pic_offset_table_rtx)
3707 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3708 return 0;
3710 return 1;
3713 /* Scan all instructions and renumber all registers into those
3714 available in leaf functions. */
3716 static void
3717 leaf_renumber_regs (rtx first)
3719 rtx insn;
3721 /* Renumber only the actual patterns.
3722 The reg-notes can contain frame pointer refs,
3723 and renumbering them could crash, and should not be needed. */
3724 for (insn = first; insn; insn = NEXT_INSN (insn))
3725 if (INSN_P (insn))
3726 leaf_renumber_regs_insn (PATTERN (insn));
3727 for (insn = current_function_epilogue_delay_list;
3728 insn;
3729 insn = XEXP (insn, 1))
3730 if (INSN_P (XEXP (insn, 0)))
3731 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3734 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3735 available in leaf functions. */
3737 void
3738 leaf_renumber_regs_insn (rtx in_rtx)
3740 int i, j;
3741 const char *format_ptr;
3743 if (in_rtx == 0)
3744 return;
3746 /* Renumber all input-registers into output-registers.
3747 renumbered_regs would be 1 for an output-register;
3748 they */
3750 if (REG_P (in_rtx))
3752 int newreg;
3754 /* Don't renumber the same reg twice. */
3755 if (in_rtx->used)
3756 return;
3758 newreg = REGNO (in_rtx);
3759 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3760 to reach here as part of a REG_NOTE. */
3761 if (newreg >= FIRST_PSEUDO_REGISTER)
3763 in_rtx->used = 1;
3764 return;
3766 newreg = LEAF_REG_REMAP (newreg);
3767 gcc_assert (newreg >= 0);
3768 regs_ever_live[REGNO (in_rtx)] = 0;
3769 regs_ever_live[newreg] = 1;
3770 REGNO (in_rtx) = newreg;
3771 in_rtx->used = 1;
3774 if (INSN_P (in_rtx))
3776 /* Inside a SEQUENCE, we find insns.
3777 Renumber just the patterns of these insns,
3778 just as we do for the top-level insns. */
3779 leaf_renumber_regs_insn (PATTERN (in_rtx));
3780 return;
3783 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3785 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3786 switch (*format_ptr++)
3788 case 'e':
3789 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3790 break;
3792 case 'E':
3793 if (NULL != XVEC (in_rtx, i))
3795 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3796 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3798 break;
3800 case 'S':
3801 case 's':
3802 case '0':
3803 case 'i':
3804 case 'w':
3805 case 'n':
3806 case 'u':
3807 break;
3809 default:
3810 gcc_unreachable ();
3813 #endif
3816 /* When -gused is used, emit debug info for only used symbols. But in
3817 addition to the standard intercepted debug_hooks there are some direct
3818 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3819 Those routines may also be called from a higher level intercepted routine. So
3820 to prevent recording data for an inner call to one of these for an intercept,
3821 we maintain an intercept nesting counter (debug_nesting). We only save the
3822 intercepted arguments if the nesting is 1. */
3823 int debug_nesting = 0;
3825 static tree *symbol_queue;
3826 int symbol_queue_index = 0;
3827 static int symbol_queue_size = 0;
3829 /* Generate the symbols for any queued up type symbols we encountered
3830 while generating the type info for some originally used symbol.
3831 This might generate additional entries in the queue. Only when
3832 the nesting depth goes to 0 is this routine called. */
3834 void
3835 debug_flush_symbol_queue (void)
3837 int i;
3839 /* Make sure that additionally queued items are not flushed
3840 prematurely. */
3842 ++debug_nesting;
3844 for (i = 0; i < symbol_queue_index; ++i)
3846 /* If we pushed queued symbols then such symbols must be
3847 output no matter what anyone else says. Specifically,
3848 we need to make sure dbxout_symbol() thinks the symbol was
3849 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3850 which may be set for outside reasons. */
3851 int saved_tree_used = TREE_USED (symbol_queue[i]);
3852 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3853 TREE_USED (symbol_queue[i]) = 1;
3854 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3856 #ifdef DBX_DEBUGGING_INFO
3857 dbxout_symbol (symbol_queue[i], 0);
3858 #endif
3860 TREE_USED (symbol_queue[i]) = saved_tree_used;
3861 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3864 symbol_queue_index = 0;
3865 --debug_nesting;
3868 /* Queue a type symbol needed as part of the definition of a decl
3869 symbol. These symbols are generated when debug_flush_symbol_queue()
3870 is called. */
3872 void
3873 debug_queue_symbol (tree decl)
3875 if (symbol_queue_index >= symbol_queue_size)
3877 symbol_queue_size += 10;
3878 symbol_queue = xrealloc (symbol_queue,
3879 symbol_queue_size * sizeof (tree));
3882 symbol_queue[symbol_queue_index++] = decl;
3885 /* Free symbol queue. */
3886 void
3887 debug_free_queue (void)
3889 if (symbol_queue)
3891 free (symbol_queue);
3892 symbol_queue = NULL;
3893 symbol_queue_size = 0;
3897 /* Turn the RTL into assembly. */
3898 static unsigned int
3899 rest_of_handle_final (void)
3901 rtx x;
3902 const char *fnname;
3904 /* Get the function's name, as described by its RTL. This may be
3905 different from the DECL_NAME name used in the source file. */
3907 x = DECL_RTL (current_function_decl);
3908 gcc_assert (MEM_P (x));
3909 x = XEXP (x, 0);
3910 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3911 fnname = XSTR (x, 0);
3913 assemble_start_function (current_function_decl, fnname);
3914 final_start_function (get_insns (), asm_out_file, optimize);
3915 final (get_insns (), asm_out_file, optimize);
3916 final_end_function ();
3918 #ifdef TARGET_UNWIND_INFO
3919 /* ??? The IA-64 ".handlerdata" directive must be issued before
3920 the ".endp" directive that closes the procedure descriptor. */
3921 output_function_exception_table (fnname);
3922 #endif
3924 assemble_end_function (current_function_decl, fnname);
3926 #ifndef TARGET_UNWIND_INFO
3927 /* Otherwise, it feels unclean to switch sections in the middle. */
3928 output_function_exception_table (fnname);
3929 #endif
3931 user_defined_section_attribute = false;
3933 if (! quiet_flag)
3934 fflush (asm_out_file);
3936 /* Release all memory allocated by flow. */
3937 free_basic_block_vars ();
3939 /* Write DBX symbols if requested. */
3941 /* Note that for those inline functions where we don't initially
3942 know for certain that we will be generating an out-of-line copy,
3943 the first invocation of this routine (rest_of_compilation) will
3944 skip over this code by doing a `goto exit_rest_of_compilation;'.
3945 Later on, wrapup_global_declarations will (indirectly) call
3946 rest_of_compilation again for those inline functions that need
3947 to have out-of-line copies generated. During that call, we
3948 *will* be routed past here. */
3950 timevar_push (TV_SYMOUT);
3951 (*debug_hooks->function_decl) (current_function_decl);
3952 timevar_pop (TV_SYMOUT);
3953 return 0;
3956 struct tree_opt_pass pass_final =
3958 NULL, /* name */
3959 NULL, /* gate */
3960 rest_of_handle_final, /* execute */
3961 NULL, /* sub */
3962 NULL, /* next */
3963 0, /* static_pass_number */
3964 TV_FINAL, /* tv_id */
3965 0, /* properties_required */
3966 0, /* properties_provided */
3967 0, /* properties_destroyed */
3968 0, /* todo_flags_start */
3969 TODO_ggc_collect, /* todo_flags_finish */
3970 0 /* letter */
3974 static unsigned int
3975 rest_of_handle_shorten_branches (void)
3977 /* Shorten branches. */
3978 shorten_branches (get_insns ());
3979 return 0;
3982 struct tree_opt_pass pass_shorten_branches =
3984 "shorten", /* name */
3985 NULL, /* gate */
3986 rest_of_handle_shorten_branches, /* execute */
3987 NULL, /* sub */
3988 NULL, /* next */
3989 0, /* static_pass_number */
3990 TV_FINAL, /* tv_id */
3991 0, /* properties_required */
3992 0, /* properties_provided */
3993 0, /* properties_destroyed */
3994 0, /* todo_flags_start */
3995 TODO_dump_func, /* todo_flags_finish */
3996 0 /* letter */
4000 static unsigned int
4001 rest_of_clean_state (void)
4003 rtx insn, next;
4005 /* It is very important to decompose the RTL instruction chain here:
4006 debug information keeps pointing into CODE_LABEL insns inside the function
4007 body. If these remain pointing to the other insns, we end up preserving
4008 whole RTL chain and attached detailed debug info in memory. */
4009 for (insn = get_insns (); insn; insn = next)
4011 next = NEXT_INSN (insn);
4012 NEXT_INSN (insn) = NULL;
4013 PREV_INSN (insn) = NULL;
4016 /* In case the function was not output,
4017 don't leave any temporary anonymous types
4018 queued up for sdb output. */
4019 #ifdef SDB_DEBUGGING_INFO
4020 if (write_symbols == SDB_DEBUG)
4021 sdbout_types (NULL_TREE);
4022 #endif
4024 reload_completed = 0;
4025 epilogue_completed = 0;
4026 flow2_completed = 0;
4027 no_new_pseudos = 0;
4028 #ifdef STACK_REGS
4029 regstack_completed = 0;
4030 #endif
4032 /* Clear out the insn_length contents now that they are no
4033 longer valid. */
4034 init_insn_lengths ();
4036 /* Show no temporary slots allocated. */
4037 init_temp_slots ();
4039 free_basic_block_vars ();
4040 free_bb_for_insn ();
4043 if (targetm.binds_local_p (current_function_decl))
4045 int pref = cfun->preferred_stack_boundary;
4046 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4047 pref = cfun->stack_alignment_needed;
4048 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4049 = pref;
4052 /* Make sure volatile mem refs aren't considered valid operands for
4053 arithmetic insns. We must call this here if this is a nested inline
4054 function, since the above code leaves us in the init_recog state,
4055 and the function context push/pop code does not save/restore volatile_ok.
4057 ??? Maybe it isn't necessary for expand_start_function to call this
4058 anymore if we do it here? */
4060 init_recog_no_volatile ();
4062 /* We're done with this function. Free up memory if we can. */
4063 free_after_parsing (cfun);
4064 free_after_compilation (cfun);
4065 return 0;
4068 struct tree_opt_pass pass_clean_state =
4070 NULL, /* name */
4071 NULL, /* gate */
4072 rest_of_clean_state, /* execute */
4073 NULL, /* sub */
4074 NULL, /* next */
4075 0, /* static_pass_number */
4076 TV_FINAL, /* tv_id */
4077 0, /* properties_required */
4078 0, /* properties_provided */
4079 PROP_rtl, /* properties_destroyed */
4080 0, /* todo_flags_start */
4081 0, /* todo_flags_finish */
4082 0 /* letter */