2007-02-19 Thomas Koenig <Thomas.Koenig@online.de>
[official-gcc.git] / gcc / alias.c
blob3ac6848378331cb67f9a5cc0dd99cb100e5b9a94
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "varray.h"
47 #include "tree-pass.h"
48 #include "ipa-type-escape.h"
50 /* The aliasing API provided here solves related but different problems:
52 Say there exists (in c)
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
59 struct Y y2, *py;
60 struct Z z2, *pz;
63 py = &px1.y1;
64 px2 = &x1;
66 Consider the four questions:
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 (*px2).z2
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
74 The answer to these questions can be yes, yes, yes, and maybe.
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
89 The pass ipa-type-escape does this analysis for the types whose
90 instances do not escape across the compilation boundary.
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
101 /* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
106 struct S { int i; double d; };
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
111 like:
112 struct S
115 |/_ _\|
116 int double
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
124 past immediate descendants, however, since we propagate all
125 grandchildren up one level.
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
131 struct alias_set_entry GTY(())
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 HOST_WIDE_INT alias_set;
136 /* The children of the alias set. These are not just the immediate
137 children, but, in fact, all descendants. So, if we have:
139 struct T { struct S s; float f; }
141 continuing our example above, the children here will be all of
142 `int', `double', `float', and `struct S'. */
143 splay_tree GTY((param1_is (int), param2_is (int))) children;
145 /* Nonzero if would have a child of zero: this effectively makes this
146 alias set the same as alias set zero. */
147 int has_zero_child;
149 typedef struct alias_set_entry *alias_set_entry;
151 static int rtx_equal_for_memref_p (rtx, rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, rtx, void *);
154 static int base_alias_check (rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static tree find_base_decl (tree);
160 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
161 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
162 int (*) (rtx, int));
163 static int aliases_everything_p (rtx);
164 static bool nonoverlapping_component_refs_p (tree, tree);
165 static tree decl_for_component_ref (tree);
166 static rtx adjust_offset_for_component_ref (tree, rtx);
167 static int nonoverlapping_memrefs_p (rtx, rtx);
168 static int write_dependence_p (rtx, rtx, int);
170 static void memory_modified_1 (rtx, rtx, void *);
171 static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
173 /* Set up all info needed to perform alias analysis on memory references. */
175 /* Returns the size in bytes of the mode of X. */
176 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
178 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
179 different alias sets. We ignore alias sets in functions making use
180 of variable arguments because the va_arg macros on some systems are
181 not legal ANSI C. */
182 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
183 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains. 10 is a completely arbitrary choice. */
187 #define MAX_ALIAS_LOOP_PASSES 10
189 /* reg_base_value[N] gives an address to which register N is related.
190 If all sets after the first add or subtract to the current value
191 or otherwise modify it so it does not point to a different top level
192 object, reg_base_value[N] is equal to the address part of the source
193 of the first set.
195 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
196 expressions represent certain special values: function arguments and
197 the stack, frame, and argument pointers.
199 The contents of an ADDRESS is not normally used, the mode of the
200 ADDRESS determines whether the ADDRESS is a function argument or some
201 other special value. Pointer equality, not rtx_equal_p, determines whether
202 two ADDRESS expressions refer to the same base address.
204 The only use of the contents of an ADDRESS is for determining if the
205 current function performs nonlocal memory memory references for the
206 purposes of marking the function as a constant function. */
208 static GTY(()) VEC(rtx,gc) *reg_base_value;
209 static rtx *new_reg_base_value;
211 /* We preserve the copy of old array around to avoid amount of garbage
212 produced. About 8% of garbage produced were attributed to this
213 array. */
214 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
216 /* Static hunks of RTL used by the aliasing code; these are initialized
217 once per function to avoid unnecessary RTL allocations. */
218 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
220 #define REG_BASE_VALUE(X) \
221 (REGNO (X) < VEC_length (rtx, reg_base_value) \
222 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
224 /* Vector indexed by N giving the initial (unchanging) value known for
225 pseudo-register N. This array is initialized in init_alias_analysis,
226 and does not change until end_alias_analysis is called. */
227 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
229 /* Indicates number of valid entries in reg_known_value. */
230 static GTY(()) unsigned int reg_known_value_size;
232 /* Vector recording for each reg_known_value whether it is due to a
233 REG_EQUIV note. Future passes (viz., reload) may replace the
234 pseudo with the equivalent expression and so we account for the
235 dependences that would be introduced if that happens.
237 The REG_EQUIV notes created in assign_parms may mention the arg
238 pointer, and there are explicit insns in the RTL that modify the
239 arg pointer. Thus we must ensure that such insns don't get
240 scheduled across each other because that would invalidate the
241 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
242 wrong, but solving the problem in the scheduler will likely give
243 better code, so we do it here. */
244 static bool *reg_known_equiv_p;
246 /* True when scanning insns from the start of the rtl to the
247 NOTE_INSN_FUNCTION_BEG note. */
248 static bool copying_arguments;
250 DEF_VEC_P(alias_set_entry);
251 DEF_VEC_ALLOC_P(alias_set_entry,gc);
253 /* The splay-tree used to store the various alias set entries. */
254 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
256 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
257 such an entry, or NULL otherwise. */
259 static inline alias_set_entry
260 get_alias_set_entry (HOST_WIDE_INT alias_set)
262 return VEC_index (alias_set_entry, alias_sets, alias_set);
265 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
266 the two MEMs cannot alias each other. */
268 static inline int
269 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
271 /* Perform a basic sanity check. Namely, that there are no alias sets
272 if we're not using strict aliasing. This helps to catch bugs
273 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
274 where a MEM is allocated in some way other than by the use of
275 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
276 use alias sets to indicate that spilled registers cannot alias each
277 other, we might need to remove this check. */
278 gcc_assert (flag_strict_aliasing
279 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
281 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
284 /* Insert the NODE into the splay tree given by DATA. Used by
285 record_alias_subset via splay_tree_foreach. */
287 static int
288 insert_subset_children (splay_tree_node node, void *data)
290 splay_tree_insert ((splay_tree) data, node->key, node->value);
292 return 0;
295 /* Return true if the first alias set is a subset of the second. */
297 bool
298 alias_set_subset_of (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
300 alias_set_entry ase;
302 /* Everything is a subset of the "aliases everything" set. */
303 if (set2 == 0)
304 return true;
306 /* Otherwise, check if set1 is a subset of set2. */
307 ase = get_alias_set_entry (set2);
308 if (ase != 0
309 && (splay_tree_lookup (ase->children,
310 (splay_tree_key) set1)))
311 return true;
312 return false;
315 /* Return 1 if the two specified alias sets may conflict. */
318 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
320 alias_set_entry ase;
322 /* If have no alias set information for one of the operands, we have
323 to assume it can alias anything. */
324 if (set1 == 0 || set2 == 0
325 /* If the two alias sets are the same, they may alias. */
326 || set1 == set2)
327 return 1;
329 /* See if the first alias set is a subset of the second. */
330 ase = get_alias_set_entry (set1);
331 if (ase != 0
332 && (ase->has_zero_child
333 || splay_tree_lookup (ase->children,
334 (splay_tree_key) set2)))
335 return 1;
337 /* Now do the same, but with the alias sets reversed. */
338 ase = get_alias_set_entry (set2);
339 if (ase != 0
340 && (ase->has_zero_child
341 || splay_tree_lookup (ase->children,
342 (splay_tree_key) set1)))
343 return 1;
345 /* The two alias sets are distinct and neither one is the
346 child of the other. Therefore, they cannot alias. */
347 return 0;
350 /* Return 1 if the two specified alias sets might conflict, or if any subtype
351 of these alias sets might conflict. */
354 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
356 if (set1 == 0 || set2 == 0 || set1 == set2)
357 return 1;
359 return 0;
363 /* Return 1 if any MEM object of type T1 will always conflict (using the
364 dependency routines in this file) with any MEM object of type T2.
365 This is used when allocating temporary storage. If T1 and/or T2 are
366 NULL_TREE, it means we know nothing about the storage. */
369 objects_must_conflict_p (tree t1, tree t2)
371 HOST_WIDE_INT set1, set2;
373 /* If neither has a type specified, we don't know if they'll conflict
374 because we may be using them to store objects of various types, for
375 example the argument and local variables areas of inlined functions. */
376 if (t1 == 0 && t2 == 0)
377 return 0;
379 /* If they are the same type, they must conflict. */
380 if (t1 == t2
381 /* Likewise if both are volatile. */
382 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
383 return 1;
385 set1 = t1 ? get_alias_set (t1) : 0;
386 set2 = t2 ? get_alias_set (t2) : 0;
388 /* Otherwise they conflict if they have no alias set or the same. We
389 can't simply use alias_sets_conflict_p here, because we must make
390 sure that every subtype of t1 will conflict with every subtype of
391 t2 for which a pair of subobjects of these respective subtypes
392 overlaps on the stack. */
393 return set1 == 0 || set2 == 0 || set1 == set2;
396 /* T is an expression with pointer type. Find the DECL on which this
397 expression is based. (For example, in `a[i]' this would be `a'.)
398 If there is no such DECL, or a unique decl cannot be determined,
399 NULL_TREE is returned. */
401 static tree
402 find_base_decl (tree t)
404 tree d0, d1;
406 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
407 return 0;
409 /* If this is a declaration, return it. If T is based on a restrict
410 qualified decl, return that decl. */
411 if (DECL_P (t))
413 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
414 t = DECL_GET_RESTRICT_BASE (t);
415 return t;
418 /* Handle general expressions. It would be nice to deal with
419 COMPONENT_REFs here. If we could tell that `a' and `b' were the
420 same, then `a->f' and `b->f' are also the same. */
421 switch (TREE_CODE_CLASS (TREE_CODE (t)))
423 case tcc_unary:
424 return find_base_decl (TREE_OPERAND (t, 0));
426 case tcc_binary:
427 /* Return 0 if found in neither or both are the same. */
428 d0 = find_base_decl (TREE_OPERAND (t, 0));
429 d1 = find_base_decl (TREE_OPERAND (t, 1));
430 if (d0 == d1)
431 return d0;
432 else if (d0 == 0)
433 return d1;
434 else if (d1 == 0)
435 return d0;
436 else
437 return 0;
439 default:
440 return 0;
444 /* Return true if all nested component references handled by
445 get_inner_reference in T are such that we should use the alias set
446 provided by the object at the heart of T.
448 This is true for non-addressable components (which don't have their
449 own alias set), as well as components of objects in alias set zero.
450 This later point is a special case wherein we wish to override the
451 alias set used by the component, but we don't have per-FIELD_DECL
452 assignable alias sets. */
454 bool
455 component_uses_parent_alias_set (tree t)
457 while (1)
459 /* If we're at the end, it vacuously uses its own alias set. */
460 if (!handled_component_p (t))
461 return false;
463 switch (TREE_CODE (t))
465 case COMPONENT_REF:
466 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
467 return true;
468 break;
470 case ARRAY_REF:
471 case ARRAY_RANGE_REF:
472 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
473 return true;
474 break;
476 case REALPART_EXPR:
477 case IMAGPART_EXPR:
478 break;
480 default:
481 /* Bitfields and casts are never addressable. */
482 return true;
485 t = TREE_OPERAND (t, 0);
486 if (get_alias_set (TREE_TYPE (t)) == 0)
487 return true;
491 /* Return the alias set for T, which may be either a type or an
492 expression. Call language-specific routine for help, if needed. */
494 HOST_WIDE_INT
495 get_alias_set (tree t)
497 HOST_WIDE_INT set;
499 /* If we're not doing any alias analysis, just assume everything
500 aliases everything else. Also return 0 if this or its type is
501 an error. */
502 if (! flag_strict_aliasing || t == error_mark_node
503 || (! TYPE_P (t)
504 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
505 return 0;
507 /* We can be passed either an expression or a type. This and the
508 language-specific routine may make mutually-recursive calls to each other
509 to figure out what to do. At each juncture, we see if this is a tree
510 that the language may need to handle specially. First handle things that
511 aren't types. */
512 if (! TYPE_P (t))
514 tree inner = t;
516 /* Remove any nops, then give the language a chance to do
517 something with this tree before we look at it. */
518 STRIP_NOPS (t);
519 set = lang_hooks.get_alias_set (t);
520 if (set != -1)
521 return set;
523 /* First see if the actual object referenced is an INDIRECT_REF from a
524 restrict-qualified pointer or a "void *". */
525 while (handled_component_p (inner))
527 inner = TREE_OPERAND (inner, 0);
528 STRIP_NOPS (inner);
531 /* Check for accesses through restrict-qualified pointers. */
532 if (INDIRECT_REF_P (inner))
534 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
536 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
538 /* If we haven't computed the actual alias set, do it now. */
539 if (DECL_POINTER_ALIAS_SET (decl) == -2)
541 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
543 /* No two restricted pointers can point at the same thing.
544 However, a restricted pointer can point at the same thing
545 as an unrestricted pointer, if that unrestricted pointer
546 is based on the restricted pointer. So, we make the
547 alias set for the restricted pointer a subset of the
548 alias set for the type pointed to by the type of the
549 decl. */
550 HOST_WIDE_INT pointed_to_alias_set
551 = get_alias_set (pointed_to_type);
553 if (pointed_to_alias_set == 0)
554 /* It's not legal to make a subset of alias set zero. */
555 DECL_POINTER_ALIAS_SET (decl) = 0;
556 else if (AGGREGATE_TYPE_P (pointed_to_type))
557 /* For an aggregate, we must treat the restricted
558 pointer the same as an ordinary pointer. If we
559 were to make the type pointed to by the
560 restricted pointer a subset of the pointed-to
561 type, then we would believe that other subsets
562 of the pointed-to type (such as fields of that
563 type) do not conflict with the type pointed to
564 by the restricted pointer. */
565 DECL_POINTER_ALIAS_SET (decl)
566 = pointed_to_alias_set;
567 else
569 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
570 record_alias_subset (pointed_to_alias_set,
571 DECL_POINTER_ALIAS_SET (decl));
575 /* We use the alias set indicated in the declaration. */
576 return DECL_POINTER_ALIAS_SET (decl);
579 /* If we have an INDIRECT_REF via a void pointer, we don't
580 know anything about what that might alias. Likewise if the
581 pointer is marked that way. */
582 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
583 || (TYPE_REF_CAN_ALIAS_ALL
584 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
585 return 0;
588 /* Otherwise, pick up the outermost object that we could have a pointer
589 to, processing conversions as above. */
590 while (component_uses_parent_alias_set (t))
592 t = TREE_OPERAND (t, 0);
593 STRIP_NOPS (t);
596 /* If we've already determined the alias set for a decl, just return
597 it. This is necessary for C++ anonymous unions, whose component
598 variables don't look like union members (boo!). */
599 if (TREE_CODE (t) == VAR_DECL
600 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
601 return MEM_ALIAS_SET (DECL_RTL (t));
603 /* Now all we care about is the type. */
604 t = TREE_TYPE (t);
607 /* Variant qualifiers don't affect the alias set, so get the main
608 variant. If this is a type with a known alias set, return it. */
609 t = TYPE_MAIN_VARIANT (t);
610 if (TYPE_ALIAS_SET_KNOWN_P (t))
611 return TYPE_ALIAS_SET (t);
613 /* See if the language has special handling for this type. */
614 set = lang_hooks.get_alias_set (t);
615 if (set != -1)
616 return set;
618 /* There are no objects of FUNCTION_TYPE, so there's no point in
619 using up an alias set for them. (There are, of course, pointers
620 and references to functions, but that's different.) */
621 else if (TREE_CODE (t) == FUNCTION_TYPE)
622 set = 0;
624 /* Unless the language specifies otherwise, let vector types alias
625 their components. This avoids some nasty type punning issues in
626 normal usage. And indeed lets vectors be treated more like an
627 array slice. */
628 else if (TREE_CODE (t) == VECTOR_TYPE)
629 set = get_alias_set (TREE_TYPE (t));
631 else
632 /* Otherwise make a new alias set for this type. */
633 set = new_alias_set ();
635 TYPE_ALIAS_SET (t) = set;
637 /* If this is an aggregate type, we must record any component aliasing
638 information. */
639 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
640 record_component_aliases (t);
642 return set;
645 /* Return a brand-new alias set. */
647 HOST_WIDE_INT
648 new_alias_set (void)
650 if (flag_strict_aliasing)
652 if (alias_sets == 0)
653 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
654 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
655 return VEC_length (alias_set_entry, alias_sets) - 1;
657 else
658 return 0;
661 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
662 not everything that aliases SUPERSET also aliases SUBSET. For example,
663 in C, a store to an `int' can alias a load of a structure containing an
664 `int', and vice versa. But it can't alias a load of a 'double' member
665 of the same structure. Here, the structure would be the SUPERSET and
666 `int' the SUBSET. This relationship is also described in the comment at
667 the beginning of this file.
669 This function should be called only once per SUPERSET/SUBSET pair.
671 It is illegal for SUPERSET to be zero; everything is implicitly a
672 subset of alias set zero. */
674 static void
675 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
677 alias_set_entry superset_entry;
678 alias_set_entry subset_entry;
680 /* It is possible in complex type situations for both sets to be the same,
681 in which case we can ignore this operation. */
682 if (superset == subset)
683 return;
685 gcc_assert (superset);
687 superset_entry = get_alias_set_entry (superset);
688 if (superset_entry == 0)
690 /* Create an entry for the SUPERSET, so that we have a place to
691 attach the SUBSET. */
692 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
693 superset_entry->alias_set = superset;
694 superset_entry->children
695 = splay_tree_new_ggc (splay_tree_compare_ints);
696 superset_entry->has_zero_child = 0;
697 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
700 if (subset == 0)
701 superset_entry->has_zero_child = 1;
702 else
704 subset_entry = get_alias_set_entry (subset);
705 /* If there is an entry for the subset, enter all of its children
706 (if they are not already present) as children of the SUPERSET. */
707 if (subset_entry)
709 if (subset_entry->has_zero_child)
710 superset_entry->has_zero_child = 1;
712 splay_tree_foreach (subset_entry->children, insert_subset_children,
713 superset_entry->children);
716 /* Enter the SUBSET itself as a child of the SUPERSET. */
717 splay_tree_insert (superset_entry->children,
718 (splay_tree_key) subset, 0);
722 /* Record that component types of TYPE, if any, are part of that type for
723 aliasing purposes. For record types, we only record component types
724 for fields that are marked addressable. For array types, we always
725 record the component types, so the front end should not call this
726 function if the individual component aren't addressable. */
728 void
729 record_component_aliases (tree type)
731 HOST_WIDE_INT superset = get_alias_set (type);
732 tree field;
734 if (superset == 0)
735 return;
737 switch (TREE_CODE (type))
739 case ARRAY_TYPE:
740 if (! TYPE_NONALIASED_COMPONENT (type))
741 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
742 break;
744 case RECORD_TYPE:
745 case UNION_TYPE:
746 case QUAL_UNION_TYPE:
747 /* Recursively record aliases for the base classes, if there are any. */
748 if (TYPE_BINFO (type))
750 int i;
751 tree binfo, base_binfo;
753 for (binfo = TYPE_BINFO (type), i = 0;
754 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
755 record_alias_subset (superset,
756 get_alias_set (BINFO_TYPE (base_binfo)));
758 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
759 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
760 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
761 break;
763 case COMPLEX_TYPE:
764 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
765 break;
767 default:
768 break;
772 /* Allocate an alias set for use in storing and reading from the varargs
773 spill area. */
775 static GTY(()) HOST_WIDE_INT varargs_set = -1;
777 HOST_WIDE_INT
778 get_varargs_alias_set (void)
780 #if 1
781 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
782 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
783 consistently use the varargs alias set for loads from the varargs
784 area. So don't use it anywhere. */
785 return 0;
786 #else
787 if (varargs_set == -1)
788 varargs_set = new_alias_set ();
790 return varargs_set;
791 #endif
794 /* Likewise, but used for the fixed portions of the frame, e.g., register
795 save areas. */
797 static GTY(()) HOST_WIDE_INT frame_set = -1;
799 HOST_WIDE_INT
800 get_frame_alias_set (void)
802 if (frame_set == -1)
803 frame_set = new_alias_set ();
805 return frame_set;
808 /* Inside SRC, the source of a SET, find a base address. */
810 static rtx
811 find_base_value (rtx src)
813 unsigned int regno;
815 switch (GET_CODE (src))
817 case SYMBOL_REF:
818 case LABEL_REF:
819 return src;
821 case REG:
822 regno = REGNO (src);
823 /* At the start of a function, argument registers have known base
824 values which may be lost later. Returning an ADDRESS
825 expression here allows optimization based on argument values
826 even when the argument registers are used for other purposes. */
827 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
828 return new_reg_base_value[regno];
830 /* If a pseudo has a known base value, return it. Do not do this
831 for non-fixed hard regs since it can result in a circular
832 dependency chain for registers which have values at function entry.
834 The test above is not sufficient because the scheduler may move
835 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
836 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
837 && regno < VEC_length (rtx, reg_base_value))
839 /* If we're inside init_alias_analysis, use new_reg_base_value
840 to reduce the number of relaxation iterations. */
841 if (new_reg_base_value && new_reg_base_value[regno]
842 && REG_N_SETS (regno) == 1)
843 return new_reg_base_value[regno];
845 if (VEC_index (rtx, reg_base_value, regno))
846 return VEC_index (rtx, reg_base_value, regno);
849 return 0;
851 case MEM:
852 /* Check for an argument passed in memory. Only record in the
853 copying-arguments block; it is too hard to track changes
854 otherwise. */
855 if (copying_arguments
856 && (XEXP (src, 0) == arg_pointer_rtx
857 || (GET_CODE (XEXP (src, 0)) == PLUS
858 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
859 return gen_rtx_ADDRESS (VOIDmode, src);
860 return 0;
862 case CONST:
863 src = XEXP (src, 0);
864 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
865 break;
867 /* ... fall through ... */
869 case PLUS:
870 case MINUS:
872 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
874 /* If either operand is a REG that is a known pointer, then it
875 is the base. */
876 if (REG_P (src_0) && REG_POINTER (src_0))
877 return find_base_value (src_0);
878 if (REG_P (src_1) && REG_POINTER (src_1))
879 return find_base_value (src_1);
881 /* If either operand is a REG, then see if we already have
882 a known value for it. */
883 if (REG_P (src_0))
885 temp = find_base_value (src_0);
886 if (temp != 0)
887 src_0 = temp;
890 if (REG_P (src_1))
892 temp = find_base_value (src_1);
893 if (temp!= 0)
894 src_1 = temp;
897 /* If either base is named object or a special address
898 (like an argument or stack reference), then use it for the
899 base term. */
900 if (src_0 != 0
901 && (GET_CODE (src_0) == SYMBOL_REF
902 || GET_CODE (src_0) == LABEL_REF
903 || (GET_CODE (src_0) == ADDRESS
904 && GET_MODE (src_0) != VOIDmode)))
905 return src_0;
907 if (src_1 != 0
908 && (GET_CODE (src_1) == SYMBOL_REF
909 || GET_CODE (src_1) == LABEL_REF
910 || (GET_CODE (src_1) == ADDRESS
911 && GET_MODE (src_1) != VOIDmode)))
912 return src_1;
914 /* Guess which operand is the base address:
915 If either operand is a symbol, then it is the base. If
916 either operand is a CONST_INT, then the other is the base. */
917 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
918 return find_base_value (src_0);
919 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
920 return find_base_value (src_1);
922 return 0;
925 case LO_SUM:
926 /* The standard form is (lo_sum reg sym) so look only at the
927 second operand. */
928 return find_base_value (XEXP (src, 1));
930 case AND:
931 /* If the second operand is constant set the base
932 address to the first operand. */
933 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
934 return find_base_value (XEXP (src, 0));
935 return 0;
937 case TRUNCATE:
938 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
939 break;
940 /* Fall through. */
941 case HIGH:
942 case PRE_INC:
943 case PRE_DEC:
944 case POST_INC:
945 case POST_DEC:
946 case PRE_MODIFY:
947 case POST_MODIFY:
948 return find_base_value (XEXP (src, 0));
950 case ZERO_EXTEND:
951 case SIGN_EXTEND: /* used for NT/Alpha pointers */
953 rtx temp = find_base_value (XEXP (src, 0));
955 if (temp != 0 && CONSTANT_P (temp))
956 temp = convert_memory_address (Pmode, temp);
958 return temp;
961 default:
962 break;
965 return 0;
968 /* Called from init_alias_analysis indirectly through note_stores. */
970 /* While scanning insns to find base values, reg_seen[N] is nonzero if
971 register N has been set in this function. */
972 static char *reg_seen;
974 /* Addresses which are known not to alias anything else are identified
975 by a unique integer. */
976 static int unique_id;
978 static void
979 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
981 unsigned regno;
982 rtx src;
983 int n;
985 if (!REG_P (dest))
986 return;
988 regno = REGNO (dest);
990 gcc_assert (regno < VEC_length (rtx, reg_base_value));
992 /* If this spans multiple hard registers, then we must indicate that every
993 register has an unusable value. */
994 if (regno < FIRST_PSEUDO_REGISTER)
995 n = hard_regno_nregs[regno][GET_MODE (dest)];
996 else
997 n = 1;
998 if (n != 1)
1000 while (--n >= 0)
1002 reg_seen[regno + n] = 1;
1003 new_reg_base_value[regno + n] = 0;
1005 return;
1008 if (set)
1010 /* A CLOBBER wipes out any old value but does not prevent a previously
1011 unset register from acquiring a base address (i.e. reg_seen is not
1012 set). */
1013 if (GET_CODE (set) == CLOBBER)
1015 new_reg_base_value[regno] = 0;
1016 return;
1018 src = SET_SRC (set);
1020 else
1022 if (reg_seen[regno])
1024 new_reg_base_value[regno] = 0;
1025 return;
1027 reg_seen[regno] = 1;
1028 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1029 GEN_INT (unique_id++));
1030 return;
1033 /* If this is not the first set of REGNO, see whether the new value
1034 is related to the old one. There are two cases of interest:
1036 (1) The register might be assigned an entirely new value
1037 that has the same base term as the original set.
1039 (2) The set might be a simple self-modification that
1040 cannot change REGNO's base value.
1042 If neither case holds, reject the original base value as invalid.
1043 Note that the following situation is not detected:
1045 extern int x, y; int *p = &x; p += (&y-&x);
1047 ANSI C does not allow computing the difference of addresses
1048 of distinct top level objects. */
1049 if (new_reg_base_value[regno] != 0
1050 && find_base_value (src) != new_reg_base_value[regno])
1051 switch (GET_CODE (src))
1053 case LO_SUM:
1054 case MINUS:
1055 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1056 new_reg_base_value[regno] = 0;
1057 break;
1058 case PLUS:
1059 /* If the value we add in the PLUS is also a valid base value,
1060 this might be the actual base value, and the original value
1061 an index. */
1063 rtx other = NULL_RTX;
1065 if (XEXP (src, 0) == dest)
1066 other = XEXP (src, 1);
1067 else if (XEXP (src, 1) == dest)
1068 other = XEXP (src, 0);
1070 if (! other || find_base_value (other))
1071 new_reg_base_value[regno] = 0;
1072 break;
1074 case AND:
1075 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1076 new_reg_base_value[regno] = 0;
1077 break;
1078 default:
1079 new_reg_base_value[regno] = 0;
1080 break;
1082 /* If this is the first set of a register, record the value. */
1083 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1084 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1085 new_reg_base_value[regno] = find_base_value (src);
1087 reg_seen[regno] = 1;
1090 /* Clear alias info for a register. This is used if an RTL transformation
1091 changes the value of a register. This is used in flow by AUTO_INC_DEC
1092 optimizations. We don't need to clear reg_base_value, since flow only
1093 changes the offset. */
1095 void
1096 clear_reg_alias_info (rtx reg)
1098 unsigned int regno = REGNO (reg);
1100 if (regno >= FIRST_PSEUDO_REGISTER)
1102 regno -= FIRST_PSEUDO_REGISTER;
1103 if (regno < reg_known_value_size)
1105 reg_known_value[regno] = reg;
1106 reg_known_equiv_p[regno] = false;
1111 /* If a value is known for REGNO, return it. */
1114 get_reg_known_value (unsigned int regno)
1116 if (regno >= FIRST_PSEUDO_REGISTER)
1118 regno -= FIRST_PSEUDO_REGISTER;
1119 if (regno < reg_known_value_size)
1120 return reg_known_value[regno];
1122 return NULL;
1125 /* Set it. */
1127 static void
1128 set_reg_known_value (unsigned int regno, rtx val)
1130 if (regno >= FIRST_PSEUDO_REGISTER)
1132 regno -= FIRST_PSEUDO_REGISTER;
1133 if (regno < reg_known_value_size)
1134 reg_known_value[regno] = val;
1138 /* Similarly for reg_known_equiv_p. */
1140 bool
1141 get_reg_known_equiv_p (unsigned int regno)
1143 if (regno >= FIRST_PSEUDO_REGISTER)
1145 regno -= FIRST_PSEUDO_REGISTER;
1146 if (regno < reg_known_value_size)
1147 return reg_known_equiv_p[regno];
1149 return false;
1152 static void
1153 set_reg_known_equiv_p (unsigned int regno, bool val)
1155 if (regno >= FIRST_PSEUDO_REGISTER)
1157 regno -= FIRST_PSEUDO_REGISTER;
1158 if (regno < reg_known_value_size)
1159 reg_known_equiv_p[regno] = val;
1164 /* Returns a canonical version of X, from the point of view alias
1165 analysis. (For example, if X is a MEM whose address is a register,
1166 and the register has a known value (say a SYMBOL_REF), then a MEM
1167 whose address is the SYMBOL_REF is returned.) */
1170 canon_rtx (rtx x)
1172 /* Recursively look for equivalences. */
1173 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1175 rtx t = get_reg_known_value (REGNO (x));
1176 if (t == x)
1177 return x;
1178 if (t)
1179 return canon_rtx (t);
1182 if (GET_CODE (x) == PLUS)
1184 rtx x0 = canon_rtx (XEXP (x, 0));
1185 rtx x1 = canon_rtx (XEXP (x, 1));
1187 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1189 if (GET_CODE (x0) == CONST_INT)
1190 return plus_constant (x1, INTVAL (x0));
1191 else if (GET_CODE (x1) == CONST_INT)
1192 return plus_constant (x0, INTVAL (x1));
1193 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1197 /* This gives us much better alias analysis when called from
1198 the loop optimizer. Note we want to leave the original
1199 MEM alone, but need to return the canonicalized MEM with
1200 all the flags with their original values. */
1201 else if (MEM_P (x))
1202 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1204 return x;
1207 /* Return 1 if X and Y are identical-looking rtx's.
1208 Expect that X and Y has been already canonicalized.
1210 We use the data in reg_known_value above to see if two registers with
1211 different numbers are, in fact, equivalent. */
1213 static int
1214 rtx_equal_for_memref_p (rtx x, rtx y)
1216 int i;
1217 int j;
1218 enum rtx_code code;
1219 const char *fmt;
1221 if (x == 0 && y == 0)
1222 return 1;
1223 if (x == 0 || y == 0)
1224 return 0;
1226 if (x == y)
1227 return 1;
1229 code = GET_CODE (x);
1230 /* Rtx's of different codes cannot be equal. */
1231 if (code != GET_CODE (y))
1232 return 0;
1234 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1235 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1237 if (GET_MODE (x) != GET_MODE (y))
1238 return 0;
1240 /* Some RTL can be compared without a recursive examination. */
1241 switch (code)
1243 case REG:
1244 return REGNO (x) == REGNO (y);
1246 case LABEL_REF:
1247 return XEXP (x, 0) == XEXP (y, 0);
1249 case SYMBOL_REF:
1250 return XSTR (x, 0) == XSTR (y, 0);
1252 case VALUE:
1253 case CONST_INT:
1254 case CONST_DOUBLE:
1255 /* There's no need to compare the contents of CONST_DOUBLEs or
1256 CONST_INTs because pointer equality is a good enough
1257 comparison for these nodes. */
1258 return 0;
1260 default:
1261 break;
1264 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1265 if (code == PLUS)
1266 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1267 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1268 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1269 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1270 /* For commutative operations, the RTX match if the operand match in any
1271 order. Also handle the simple binary and unary cases without a loop. */
1272 if (COMMUTATIVE_P (x))
1274 rtx xop0 = canon_rtx (XEXP (x, 0));
1275 rtx yop0 = canon_rtx (XEXP (y, 0));
1276 rtx yop1 = canon_rtx (XEXP (y, 1));
1278 return ((rtx_equal_for_memref_p (xop0, yop0)
1279 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1280 || (rtx_equal_for_memref_p (xop0, yop1)
1281 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1283 else if (NON_COMMUTATIVE_P (x))
1285 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1286 canon_rtx (XEXP (y, 0)))
1287 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1288 canon_rtx (XEXP (y, 1))));
1290 else if (UNARY_P (x))
1291 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1292 canon_rtx (XEXP (y, 0)));
1294 /* Compare the elements. If any pair of corresponding elements
1295 fail to match, return 0 for the whole things.
1297 Limit cases to types which actually appear in addresses. */
1299 fmt = GET_RTX_FORMAT (code);
1300 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1302 switch (fmt[i])
1304 case 'i':
1305 if (XINT (x, i) != XINT (y, i))
1306 return 0;
1307 break;
1309 case 'E':
1310 /* Two vectors must have the same length. */
1311 if (XVECLEN (x, i) != XVECLEN (y, i))
1312 return 0;
1314 /* And the corresponding elements must match. */
1315 for (j = 0; j < XVECLEN (x, i); j++)
1316 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1317 canon_rtx (XVECEXP (y, i, j))) == 0)
1318 return 0;
1319 break;
1321 case 'e':
1322 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1323 canon_rtx (XEXP (y, i))) == 0)
1324 return 0;
1325 break;
1327 /* This can happen for asm operands. */
1328 case 's':
1329 if (strcmp (XSTR (x, i), XSTR (y, i)))
1330 return 0;
1331 break;
1333 /* This can happen for an asm which clobbers memory. */
1334 case '0':
1335 break;
1337 /* It is believed that rtx's at this level will never
1338 contain anything but integers and other rtx's,
1339 except for within LABEL_REFs and SYMBOL_REFs. */
1340 default:
1341 gcc_unreachable ();
1344 return 1;
1348 find_base_term (rtx x)
1350 cselib_val *val;
1351 struct elt_loc_list *l;
1353 #if defined (FIND_BASE_TERM)
1354 /* Try machine-dependent ways to find the base term. */
1355 x = FIND_BASE_TERM (x);
1356 #endif
1358 switch (GET_CODE (x))
1360 case REG:
1361 return REG_BASE_VALUE (x);
1363 case TRUNCATE:
1364 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1365 return 0;
1366 /* Fall through. */
1367 case HIGH:
1368 case PRE_INC:
1369 case PRE_DEC:
1370 case POST_INC:
1371 case POST_DEC:
1372 case PRE_MODIFY:
1373 case POST_MODIFY:
1374 return find_base_term (XEXP (x, 0));
1376 case ZERO_EXTEND:
1377 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1379 rtx temp = find_base_term (XEXP (x, 0));
1381 if (temp != 0 && CONSTANT_P (temp))
1382 temp = convert_memory_address (Pmode, temp);
1384 return temp;
1387 case VALUE:
1388 val = CSELIB_VAL_PTR (x);
1389 if (!val)
1390 return 0;
1391 for (l = val->locs; l; l = l->next)
1392 if ((x = find_base_term (l->loc)) != 0)
1393 return x;
1394 return 0;
1396 case CONST:
1397 x = XEXP (x, 0);
1398 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1399 return 0;
1400 /* Fall through. */
1401 case LO_SUM:
1402 case PLUS:
1403 case MINUS:
1405 rtx tmp1 = XEXP (x, 0);
1406 rtx tmp2 = XEXP (x, 1);
1408 /* This is a little bit tricky since we have to determine which of
1409 the two operands represents the real base address. Otherwise this
1410 routine may return the index register instead of the base register.
1412 That may cause us to believe no aliasing was possible, when in
1413 fact aliasing is possible.
1415 We use a few simple tests to guess the base register. Additional
1416 tests can certainly be added. For example, if one of the operands
1417 is a shift or multiply, then it must be the index register and the
1418 other operand is the base register. */
1420 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1421 return find_base_term (tmp2);
1423 /* If either operand is known to be a pointer, then use it
1424 to determine the base term. */
1425 if (REG_P (tmp1) && REG_POINTER (tmp1))
1426 return find_base_term (tmp1);
1428 if (REG_P (tmp2) && REG_POINTER (tmp2))
1429 return find_base_term (tmp2);
1431 /* Neither operand was known to be a pointer. Go ahead and find the
1432 base term for both operands. */
1433 tmp1 = find_base_term (tmp1);
1434 tmp2 = find_base_term (tmp2);
1436 /* If either base term is named object or a special address
1437 (like an argument or stack reference), then use it for the
1438 base term. */
1439 if (tmp1 != 0
1440 && (GET_CODE (tmp1) == SYMBOL_REF
1441 || GET_CODE (tmp1) == LABEL_REF
1442 || (GET_CODE (tmp1) == ADDRESS
1443 && GET_MODE (tmp1) != VOIDmode)))
1444 return tmp1;
1446 if (tmp2 != 0
1447 && (GET_CODE (tmp2) == SYMBOL_REF
1448 || GET_CODE (tmp2) == LABEL_REF
1449 || (GET_CODE (tmp2) == ADDRESS
1450 && GET_MODE (tmp2) != VOIDmode)))
1451 return tmp2;
1453 /* We could not determine which of the two operands was the
1454 base register and which was the index. So we can determine
1455 nothing from the base alias check. */
1456 return 0;
1459 case AND:
1460 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1461 return find_base_term (XEXP (x, 0));
1462 return 0;
1464 case SYMBOL_REF:
1465 case LABEL_REF:
1466 return x;
1468 default:
1469 return 0;
1473 /* Return 0 if the addresses X and Y are known to point to different
1474 objects, 1 if they might be pointers to the same object. */
1476 static int
1477 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1478 enum machine_mode y_mode)
1480 rtx x_base = find_base_term (x);
1481 rtx y_base = find_base_term (y);
1483 /* If the address itself has no known base see if a known equivalent
1484 value has one. If either address still has no known base, nothing
1485 is known about aliasing. */
1486 if (x_base == 0)
1488 rtx x_c;
1490 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1491 return 1;
1493 x_base = find_base_term (x_c);
1494 if (x_base == 0)
1495 return 1;
1498 if (y_base == 0)
1500 rtx y_c;
1501 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1502 return 1;
1504 y_base = find_base_term (y_c);
1505 if (y_base == 0)
1506 return 1;
1509 /* If the base addresses are equal nothing is known about aliasing. */
1510 if (rtx_equal_p (x_base, y_base))
1511 return 1;
1513 /* The base addresses of the read and write are different expressions.
1514 If they are both symbols and they are not accessed via AND, there is
1515 no conflict. We can bring knowledge of object alignment into play
1516 here. For example, on alpha, "char a, b;" can alias one another,
1517 though "char a; long b;" cannot. */
1518 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1520 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1521 return 1;
1522 if (GET_CODE (x) == AND
1523 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1524 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1525 return 1;
1526 if (GET_CODE (y) == AND
1527 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1528 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1529 return 1;
1530 /* Differing symbols never alias. */
1531 return 0;
1534 /* If one address is a stack reference there can be no alias:
1535 stack references using different base registers do not alias,
1536 a stack reference can not alias a parameter, and a stack reference
1537 can not alias a global. */
1538 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1539 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1540 return 0;
1542 if (! flag_argument_noalias)
1543 return 1;
1545 if (flag_argument_noalias > 1)
1546 return 0;
1548 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1549 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1552 /* Convert the address X into something we can use. This is done by returning
1553 it unchanged unless it is a value; in the latter case we call cselib to get
1554 a more useful rtx. */
1557 get_addr (rtx x)
1559 cselib_val *v;
1560 struct elt_loc_list *l;
1562 if (GET_CODE (x) != VALUE)
1563 return x;
1564 v = CSELIB_VAL_PTR (x);
1565 if (v)
1567 for (l = v->locs; l; l = l->next)
1568 if (CONSTANT_P (l->loc))
1569 return l->loc;
1570 for (l = v->locs; l; l = l->next)
1571 if (!REG_P (l->loc) && !MEM_P (l->loc))
1572 return l->loc;
1573 if (v->locs)
1574 return v->locs->loc;
1576 return x;
1579 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1580 where SIZE is the size in bytes of the memory reference. If ADDR
1581 is not modified by the memory reference then ADDR is returned. */
1583 static rtx
1584 addr_side_effect_eval (rtx addr, int size, int n_refs)
1586 int offset = 0;
1588 switch (GET_CODE (addr))
1590 case PRE_INC:
1591 offset = (n_refs + 1) * size;
1592 break;
1593 case PRE_DEC:
1594 offset = -(n_refs + 1) * size;
1595 break;
1596 case POST_INC:
1597 offset = n_refs * size;
1598 break;
1599 case POST_DEC:
1600 offset = -n_refs * size;
1601 break;
1603 default:
1604 return addr;
1607 if (offset)
1608 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1609 GEN_INT (offset));
1610 else
1611 addr = XEXP (addr, 0);
1612 addr = canon_rtx (addr);
1614 return addr;
1617 /* Return nonzero if X and Y (memory addresses) could reference the
1618 same location in memory. C is an offset accumulator. When
1619 C is nonzero, we are testing aliases between X and Y + C.
1620 XSIZE is the size in bytes of the X reference,
1621 similarly YSIZE is the size in bytes for Y.
1622 Expect that canon_rtx has been already called for X and Y.
1624 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1625 referenced (the reference was BLKmode), so make the most pessimistic
1626 assumptions.
1628 If XSIZE or YSIZE is negative, we may access memory outside the object
1629 being referenced as a side effect. This can happen when using AND to
1630 align memory references, as is done on the Alpha.
1632 Nice to notice that varying addresses cannot conflict with fp if no
1633 local variables had their addresses taken, but that's too hard now. */
1635 static int
1636 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1638 if (GET_CODE (x) == VALUE)
1639 x = get_addr (x);
1640 if (GET_CODE (y) == VALUE)
1641 y = get_addr (y);
1642 if (GET_CODE (x) == HIGH)
1643 x = XEXP (x, 0);
1644 else if (GET_CODE (x) == LO_SUM)
1645 x = XEXP (x, 1);
1646 else
1647 x = addr_side_effect_eval (x, xsize, 0);
1648 if (GET_CODE (y) == HIGH)
1649 y = XEXP (y, 0);
1650 else if (GET_CODE (y) == LO_SUM)
1651 y = XEXP (y, 1);
1652 else
1653 y = addr_side_effect_eval (y, ysize, 0);
1655 if (rtx_equal_for_memref_p (x, y))
1657 if (xsize <= 0 || ysize <= 0)
1658 return 1;
1659 if (c >= 0 && xsize > c)
1660 return 1;
1661 if (c < 0 && ysize+c > 0)
1662 return 1;
1663 return 0;
1666 /* This code used to check for conflicts involving stack references and
1667 globals but the base address alias code now handles these cases. */
1669 if (GET_CODE (x) == PLUS)
1671 /* The fact that X is canonicalized means that this
1672 PLUS rtx is canonicalized. */
1673 rtx x0 = XEXP (x, 0);
1674 rtx x1 = XEXP (x, 1);
1676 if (GET_CODE (y) == PLUS)
1678 /* The fact that Y is canonicalized means that this
1679 PLUS rtx is canonicalized. */
1680 rtx y0 = XEXP (y, 0);
1681 rtx y1 = XEXP (y, 1);
1683 if (rtx_equal_for_memref_p (x1, y1))
1684 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1685 if (rtx_equal_for_memref_p (x0, y0))
1686 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1687 if (GET_CODE (x1) == CONST_INT)
1689 if (GET_CODE (y1) == CONST_INT)
1690 return memrefs_conflict_p (xsize, x0, ysize, y0,
1691 c - INTVAL (x1) + INTVAL (y1));
1692 else
1693 return memrefs_conflict_p (xsize, x0, ysize, y,
1694 c - INTVAL (x1));
1696 else if (GET_CODE (y1) == CONST_INT)
1697 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1699 return 1;
1701 else if (GET_CODE (x1) == CONST_INT)
1702 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1704 else if (GET_CODE (y) == PLUS)
1706 /* The fact that Y is canonicalized means that this
1707 PLUS rtx is canonicalized. */
1708 rtx y0 = XEXP (y, 0);
1709 rtx y1 = XEXP (y, 1);
1711 if (GET_CODE (y1) == CONST_INT)
1712 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1713 else
1714 return 1;
1717 if (GET_CODE (x) == GET_CODE (y))
1718 switch (GET_CODE (x))
1720 case MULT:
1722 /* Handle cases where we expect the second operands to be the
1723 same, and check only whether the first operand would conflict
1724 or not. */
1725 rtx x0, y0;
1726 rtx x1 = canon_rtx (XEXP (x, 1));
1727 rtx y1 = canon_rtx (XEXP (y, 1));
1728 if (! rtx_equal_for_memref_p (x1, y1))
1729 return 1;
1730 x0 = canon_rtx (XEXP (x, 0));
1731 y0 = canon_rtx (XEXP (y, 0));
1732 if (rtx_equal_for_memref_p (x0, y0))
1733 return (xsize == 0 || ysize == 0
1734 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1736 /* Can't properly adjust our sizes. */
1737 if (GET_CODE (x1) != CONST_INT)
1738 return 1;
1739 xsize /= INTVAL (x1);
1740 ysize /= INTVAL (x1);
1741 c /= INTVAL (x1);
1742 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1745 default:
1746 break;
1749 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1750 as an access with indeterminate size. Assume that references
1751 besides AND are aligned, so if the size of the other reference is
1752 at least as large as the alignment, assume no other overlap. */
1753 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1755 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1756 xsize = -1;
1757 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1759 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1761 /* ??? If we are indexing far enough into the array/structure, we
1762 may yet be able to determine that we can not overlap. But we
1763 also need to that we are far enough from the end not to overlap
1764 a following reference, so we do nothing with that for now. */
1765 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1766 ysize = -1;
1767 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1770 if (CONSTANT_P (x))
1772 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1774 c += (INTVAL (y) - INTVAL (x));
1775 return (xsize <= 0 || ysize <= 0
1776 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1779 if (GET_CODE (x) == CONST)
1781 if (GET_CODE (y) == CONST)
1782 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1783 ysize, canon_rtx (XEXP (y, 0)), c);
1784 else
1785 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1786 ysize, y, c);
1788 if (GET_CODE (y) == CONST)
1789 return memrefs_conflict_p (xsize, x, ysize,
1790 canon_rtx (XEXP (y, 0)), c);
1792 if (CONSTANT_P (y))
1793 return (xsize <= 0 || ysize <= 0
1794 || (rtx_equal_for_memref_p (x, y)
1795 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1797 return 1;
1799 return 1;
1802 /* Functions to compute memory dependencies.
1804 Since we process the insns in execution order, we can build tables
1805 to keep track of what registers are fixed (and not aliased), what registers
1806 are varying in known ways, and what registers are varying in unknown
1807 ways.
1809 If both memory references are volatile, then there must always be a
1810 dependence between the two references, since their order can not be
1811 changed. A volatile and non-volatile reference can be interchanged
1812 though.
1814 A MEM_IN_STRUCT reference at a non-AND varying address can never
1815 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1816 also must allow AND addresses, because they may generate accesses
1817 outside the object being referenced. This is used to generate
1818 aligned addresses from unaligned addresses, for instance, the alpha
1819 storeqi_unaligned pattern. */
1821 /* Read dependence: X is read after read in MEM takes place. There can
1822 only be a dependence here if both reads are volatile. */
1825 read_dependence (rtx mem, rtx x)
1827 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1830 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1831 MEM2 is a reference to a structure at a varying address, or returns
1832 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1833 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1834 to decide whether or not an address may vary; it should return
1835 nonzero whenever variation is possible.
1836 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1838 static rtx
1839 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1840 rtx mem2_addr,
1841 int (*varies_p) (rtx, int))
1843 if (! flag_strict_aliasing)
1844 return NULL_RTX;
1846 if (MEM_ALIAS_SET (mem2)
1847 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1848 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1849 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1850 varying address. */
1851 return mem1;
1853 if (MEM_ALIAS_SET (mem1)
1854 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1855 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1856 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1857 varying address. */
1858 return mem2;
1860 return NULL_RTX;
1863 /* Returns nonzero if something about the mode or address format MEM1
1864 indicates that it might well alias *anything*. */
1866 static int
1867 aliases_everything_p (rtx mem)
1869 if (GET_CODE (XEXP (mem, 0)) == AND)
1870 /* If the address is an AND, it's very hard to know at what it is
1871 actually pointing. */
1872 return 1;
1874 return 0;
1877 /* Return true if we can determine that the fields referenced cannot
1878 overlap for any pair of objects. */
1880 static bool
1881 nonoverlapping_component_refs_p (tree x, tree y)
1883 tree fieldx, fieldy, typex, typey, orig_y;
1887 /* The comparison has to be done at a common type, since we don't
1888 know how the inheritance hierarchy works. */
1889 orig_y = y;
1892 fieldx = TREE_OPERAND (x, 1);
1893 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1895 y = orig_y;
1898 fieldy = TREE_OPERAND (y, 1);
1899 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1901 if (typex == typey)
1902 goto found;
1904 y = TREE_OPERAND (y, 0);
1906 while (y && TREE_CODE (y) == COMPONENT_REF);
1908 x = TREE_OPERAND (x, 0);
1910 while (x && TREE_CODE (x) == COMPONENT_REF);
1911 /* Never found a common type. */
1912 return false;
1914 found:
1915 /* If we're left with accessing different fields of a structure,
1916 then no overlap. */
1917 if (TREE_CODE (typex) == RECORD_TYPE
1918 && fieldx != fieldy)
1919 return true;
1921 /* The comparison on the current field failed. If we're accessing
1922 a very nested structure, look at the next outer level. */
1923 x = TREE_OPERAND (x, 0);
1924 y = TREE_OPERAND (y, 0);
1926 while (x && y
1927 && TREE_CODE (x) == COMPONENT_REF
1928 && TREE_CODE (y) == COMPONENT_REF);
1930 return false;
1933 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1935 static tree
1936 decl_for_component_ref (tree x)
1940 x = TREE_OPERAND (x, 0);
1942 while (x && TREE_CODE (x) == COMPONENT_REF);
1944 return x && DECL_P (x) ? x : NULL_TREE;
1947 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1948 offset of the field reference. */
1950 static rtx
1951 adjust_offset_for_component_ref (tree x, rtx offset)
1953 HOST_WIDE_INT ioffset;
1955 if (! offset)
1956 return NULL_RTX;
1958 ioffset = INTVAL (offset);
1961 tree offset = component_ref_field_offset (x);
1962 tree field = TREE_OPERAND (x, 1);
1964 if (! host_integerp (offset, 1))
1965 return NULL_RTX;
1966 ioffset += (tree_low_cst (offset, 1)
1967 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1968 / BITS_PER_UNIT));
1970 x = TREE_OPERAND (x, 0);
1972 while (x && TREE_CODE (x) == COMPONENT_REF);
1974 return GEN_INT (ioffset);
1977 /* Return nonzero if we can determine the exprs corresponding to memrefs
1978 X and Y and they do not overlap. */
1980 static int
1981 nonoverlapping_memrefs_p (rtx x, rtx y)
1983 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1984 rtx rtlx, rtly;
1985 rtx basex, basey;
1986 rtx moffsetx, moffsety;
1987 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1989 /* Unless both have exprs, we can't tell anything. */
1990 if (exprx == 0 || expry == 0)
1991 return 0;
1993 /* If both are field references, we may be able to determine something. */
1994 if (TREE_CODE (exprx) == COMPONENT_REF
1995 && TREE_CODE (expry) == COMPONENT_REF
1996 && nonoverlapping_component_refs_p (exprx, expry))
1997 return 1;
2000 /* If the field reference test failed, look at the DECLs involved. */
2001 moffsetx = MEM_OFFSET (x);
2002 if (TREE_CODE (exprx) == COMPONENT_REF)
2004 if (TREE_CODE (expry) == VAR_DECL
2005 && POINTER_TYPE_P (TREE_TYPE (expry)))
2007 tree field = TREE_OPERAND (exprx, 1);
2008 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2009 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2010 TREE_TYPE (field)))
2011 return 1;
2014 tree t = decl_for_component_ref (exprx);
2015 if (! t)
2016 return 0;
2017 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2018 exprx = t;
2021 else if (INDIRECT_REF_P (exprx))
2023 exprx = TREE_OPERAND (exprx, 0);
2024 if (flag_argument_noalias < 2
2025 || TREE_CODE (exprx) != PARM_DECL)
2026 return 0;
2029 moffsety = MEM_OFFSET (y);
2030 if (TREE_CODE (expry) == COMPONENT_REF)
2032 if (TREE_CODE (exprx) == VAR_DECL
2033 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2035 tree field = TREE_OPERAND (expry, 1);
2036 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2037 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2038 TREE_TYPE (field)))
2039 return 1;
2042 tree t = decl_for_component_ref (expry);
2043 if (! t)
2044 return 0;
2045 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2046 expry = t;
2049 else if (INDIRECT_REF_P (expry))
2051 expry = TREE_OPERAND (expry, 0);
2052 if (flag_argument_noalias < 2
2053 || TREE_CODE (expry) != PARM_DECL)
2054 return 0;
2057 if (! DECL_P (exprx) || ! DECL_P (expry))
2058 return 0;
2060 rtlx = DECL_RTL (exprx);
2061 rtly = DECL_RTL (expry);
2063 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2064 can't overlap unless they are the same because we never reuse that part
2065 of the stack frame used for locals for spilled pseudos. */
2066 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2067 && ! rtx_equal_p (rtlx, rtly))
2068 return 1;
2070 /* Get the base and offsets of both decls. If either is a register, we
2071 know both are and are the same, so use that as the base. The only
2072 we can avoid overlap is if we can deduce that they are nonoverlapping
2073 pieces of that decl, which is very rare. */
2074 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2075 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2076 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2078 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2079 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2080 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2082 /* If the bases are different, we know they do not overlap if both
2083 are constants or if one is a constant and the other a pointer into the
2084 stack frame. Otherwise a different base means we can't tell if they
2085 overlap or not. */
2086 if (! rtx_equal_p (basex, basey))
2087 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2088 || (CONSTANT_P (basex) && REG_P (basey)
2089 && REGNO_PTR_FRAME_P (REGNO (basey)))
2090 || (CONSTANT_P (basey) && REG_P (basex)
2091 && REGNO_PTR_FRAME_P (REGNO (basex))));
2093 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2094 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2095 : -1);
2096 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2097 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2098 -1);
2100 /* If we have an offset for either memref, it can update the values computed
2101 above. */
2102 if (moffsetx)
2103 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2104 if (moffsety)
2105 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2107 /* If a memref has both a size and an offset, we can use the smaller size.
2108 We can't do this if the offset isn't known because we must view this
2109 memref as being anywhere inside the DECL's MEM. */
2110 if (MEM_SIZE (x) && moffsetx)
2111 sizex = INTVAL (MEM_SIZE (x));
2112 if (MEM_SIZE (y) && moffsety)
2113 sizey = INTVAL (MEM_SIZE (y));
2115 /* Put the values of the memref with the lower offset in X's values. */
2116 if (offsetx > offsety)
2118 tem = offsetx, offsetx = offsety, offsety = tem;
2119 tem = sizex, sizex = sizey, sizey = tem;
2122 /* If we don't know the size of the lower-offset value, we can't tell
2123 if they conflict. Otherwise, we do the test. */
2124 return sizex >= 0 && offsety >= offsetx + sizex;
2127 /* True dependence: X is read after store in MEM takes place. */
2130 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2131 int (*varies) (rtx, int))
2133 rtx x_addr, mem_addr;
2134 rtx base;
2136 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2137 return 1;
2139 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2140 This is used in epilogue deallocation functions, and in cselib. */
2141 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2142 return 1;
2143 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2144 return 1;
2145 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2146 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2147 return 1;
2149 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2150 return 0;
2152 /* Read-only memory is by definition never modified, and therefore can't
2153 conflict with anything. We don't expect to find read-only set on MEM,
2154 but stupid user tricks can produce them, so don't die. */
2155 if (MEM_READONLY_P (x))
2156 return 0;
2158 if (nonoverlapping_memrefs_p (mem, x))
2159 return 0;
2161 if (mem_mode == VOIDmode)
2162 mem_mode = GET_MODE (mem);
2164 x_addr = get_addr (XEXP (x, 0));
2165 mem_addr = get_addr (XEXP (mem, 0));
2167 base = find_base_term (x_addr);
2168 if (base && (GET_CODE (base) == LABEL_REF
2169 || (GET_CODE (base) == SYMBOL_REF
2170 && CONSTANT_POOL_ADDRESS_P (base))))
2171 return 0;
2173 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2174 return 0;
2176 x_addr = canon_rtx (x_addr);
2177 mem_addr = canon_rtx (mem_addr);
2179 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2180 SIZE_FOR_MODE (x), x_addr, 0))
2181 return 0;
2183 if (aliases_everything_p (x))
2184 return 1;
2186 /* We cannot use aliases_everything_p to test MEM, since we must look
2187 at MEM_MODE, rather than GET_MODE (MEM). */
2188 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2189 return 1;
2191 /* In true_dependence we also allow BLKmode to alias anything. Why
2192 don't we do this in anti_dependence and output_dependence? */
2193 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2194 return 1;
2196 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2197 varies);
2200 /* Canonical true dependence: X is read after store in MEM takes place.
2201 Variant of true_dependence which assumes MEM has already been
2202 canonicalized (hence we no longer do that here).
2203 The mem_addr argument has been added, since true_dependence computed
2204 this value prior to canonicalizing. */
2207 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2208 rtx x, int (*varies) (rtx, int))
2210 rtx x_addr;
2212 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2213 return 1;
2215 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2216 This is used in epilogue deallocation functions. */
2217 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2218 return 1;
2219 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2220 return 1;
2221 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2222 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2223 return 1;
2225 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2226 return 0;
2228 /* Read-only memory is by definition never modified, and therefore can't
2229 conflict with anything. We don't expect to find read-only set on MEM,
2230 but stupid user tricks can produce them, so don't die. */
2231 if (MEM_READONLY_P (x))
2232 return 0;
2234 if (nonoverlapping_memrefs_p (x, mem))
2235 return 0;
2237 x_addr = get_addr (XEXP (x, 0));
2239 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2240 return 0;
2242 x_addr = canon_rtx (x_addr);
2243 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2244 SIZE_FOR_MODE (x), x_addr, 0))
2245 return 0;
2247 if (aliases_everything_p (x))
2248 return 1;
2250 /* We cannot use aliases_everything_p to test MEM, since we must look
2251 at MEM_MODE, rather than GET_MODE (MEM). */
2252 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2253 return 1;
2255 /* In true_dependence we also allow BLKmode to alias anything. Why
2256 don't we do this in anti_dependence and output_dependence? */
2257 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2258 return 1;
2260 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2261 varies);
2264 /* Returns nonzero if a write to X might alias a previous read from
2265 (or, if WRITEP is nonzero, a write to) MEM. */
2267 static int
2268 write_dependence_p (rtx mem, rtx x, int writep)
2270 rtx x_addr, mem_addr;
2271 rtx fixed_scalar;
2272 rtx base;
2274 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2275 return 1;
2277 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2278 This is used in epilogue deallocation functions. */
2279 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2280 return 1;
2281 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2282 return 1;
2283 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2284 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2285 return 1;
2287 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2288 return 0;
2290 /* A read from read-only memory can't conflict with read-write memory. */
2291 if (!writep && MEM_READONLY_P (mem))
2292 return 0;
2294 if (nonoverlapping_memrefs_p (x, mem))
2295 return 0;
2297 x_addr = get_addr (XEXP (x, 0));
2298 mem_addr = get_addr (XEXP (mem, 0));
2300 if (! writep)
2302 base = find_base_term (mem_addr);
2303 if (base && (GET_CODE (base) == LABEL_REF
2304 || (GET_CODE (base) == SYMBOL_REF
2305 && CONSTANT_POOL_ADDRESS_P (base))))
2306 return 0;
2309 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2310 GET_MODE (mem)))
2311 return 0;
2313 x_addr = canon_rtx (x_addr);
2314 mem_addr = canon_rtx (mem_addr);
2316 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2317 SIZE_FOR_MODE (x), x_addr, 0))
2318 return 0;
2320 fixed_scalar
2321 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2322 rtx_addr_varies_p);
2324 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2325 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2328 /* Anti dependence: X is written after read in MEM takes place. */
2331 anti_dependence (rtx mem, rtx x)
2333 return write_dependence_p (mem, x, /*writep=*/0);
2336 /* Output dependence: X is written after store in MEM takes place. */
2339 output_dependence (rtx mem, rtx x)
2341 return write_dependence_p (mem, x, /*writep=*/1);
2345 void
2346 init_alias_once (void)
2348 int i;
2350 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2351 /* Check whether this register can hold an incoming pointer
2352 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2353 numbers, so translate if necessary due to register windows. */
2354 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2355 && HARD_REGNO_MODE_OK (i, Pmode))
2356 static_reg_base_value[i]
2357 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2359 static_reg_base_value[STACK_POINTER_REGNUM]
2360 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2361 static_reg_base_value[ARG_POINTER_REGNUM]
2362 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2363 static_reg_base_value[FRAME_POINTER_REGNUM]
2364 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2365 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2366 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2367 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2368 #endif
2371 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2372 to be memory reference. */
2373 static bool memory_modified;
2374 static void
2375 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2377 if (MEM_P (x))
2379 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2380 memory_modified = true;
2385 /* Return true when INSN possibly modify memory contents of MEM
2386 (i.e. address can be modified). */
2387 bool
2388 memory_modified_in_insn_p (rtx mem, rtx insn)
2390 if (!INSN_P (insn))
2391 return false;
2392 memory_modified = false;
2393 note_stores (PATTERN (insn), memory_modified_1, mem);
2394 return memory_modified;
2397 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2398 array. */
2400 void
2401 init_alias_analysis (void)
2403 unsigned int maxreg = max_reg_num ();
2404 int changed, pass;
2405 int i;
2406 unsigned int ui;
2407 rtx insn;
2409 timevar_push (TV_ALIAS_ANALYSIS);
2411 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2412 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2413 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2415 /* If we have memory allocated from the previous run, use it. */
2416 if (old_reg_base_value)
2417 reg_base_value = old_reg_base_value;
2419 if (reg_base_value)
2420 VEC_truncate (rtx, reg_base_value, 0);
2422 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2424 new_reg_base_value = XNEWVEC (rtx, maxreg);
2425 reg_seen = XNEWVEC (char, maxreg);
2427 /* The basic idea is that each pass through this loop will use the
2428 "constant" information from the previous pass to propagate alias
2429 information through another level of assignments.
2431 This could get expensive if the assignment chains are long. Maybe
2432 we should throttle the number of iterations, possibly based on
2433 the optimization level or flag_expensive_optimizations.
2435 We could propagate more information in the first pass by making use
2436 of REG_N_SETS to determine immediately that the alias information
2437 for a pseudo is "constant".
2439 A program with an uninitialized variable can cause an infinite loop
2440 here. Instead of doing a full dataflow analysis to detect such problems
2441 we just cap the number of iterations for the loop.
2443 The state of the arrays for the set chain in question does not matter
2444 since the program has undefined behavior. */
2446 pass = 0;
2449 /* Assume nothing will change this iteration of the loop. */
2450 changed = 0;
2452 /* We want to assign the same IDs each iteration of this loop, so
2453 start counting from zero each iteration of the loop. */
2454 unique_id = 0;
2456 /* We're at the start of the function each iteration through the
2457 loop, so we're copying arguments. */
2458 copying_arguments = true;
2460 /* Wipe the potential alias information clean for this pass. */
2461 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2463 /* Wipe the reg_seen array clean. */
2464 memset (reg_seen, 0, maxreg);
2466 /* Mark all hard registers which may contain an address.
2467 The stack, frame and argument pointers may contain an address.
2468 An argument register which can hold a Pmode value may contain
2469 an address even if it is not in BASE_REGS.
2471 The address expression is VOIDmode for an argument and
2472 Pmode for other registers. */
2474 memcpy (new_reg_base_value, static_reg_base_value,
2475 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2477 /* Walk the insns adding values to the new_reg_base_value array. */
2478 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2480 if (INSN_P (insn))
2482 rtx note, set;
2484 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2485 /* The prologue/epilogue insns are not threaded onto the
2486 insn chain until after reload has completed. Thus,
2487 there is no sense wasting time checking if INSN is in
2488 the prologue/epilogue until after reload has completed. */
2489 if (reload_completed
2490 && prologue_epilogue_contains (insn))
2491 continue;
2492 #endif
2494 /* If this insn has a noalias note, process it, Otherwise,
2495 scan for sets. A simple set will have no side effects
2496 which could change the base value of any other register. */
2498 if (GET_CODE (PATTERN (insn)) == SET
2499 && REG_NOTES (insn) != 0
2500 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2501 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2502 else
2503 note_stores (PATTERN (insn), record_set, NULL);
2505 set = single_set (insn);
2507 if (set != 0
2508 && REG_P (SET_DEST (set))
2509 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2511 unsigned int regno = REGNO (SET_DEST (set));
2512 rtx src = SET_SRC (set);
2513 rtx t;
2515 note = find_reg_equal_equiv_note (insn);
2516 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2517 && REG_N_SETS (regno) != 1)
2518 note = NULL_RTX;
2520 if (note != NULL_RTX
2521 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2522 && ! rtx_varies_p (XEXP (note, 0), 1)
2523 && ! reg_overlap_mentioned_p (SET_DEST (set),
2524 XEXP (note, 0)))
2526 set_reg_known_value (regno, XEXP (note, 0));
2527 set_reg_known_equiv_p (regno,
2528 REG_NOTE_KIND (note) == REG_EQUIV);
2530 else if (REG_N_SETS (regno) == 1
2531 && GET_CODE (src) == PLUS
2532 && REG_P (XEXP (src, 0))
2533 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2534 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2536 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2537 set_reg_known_value (regno, t);
2538 set_reg_known_equiv_p (regno, 0);
2540 else if (REG_N_SETS (regno) == 1
2541 && ! rtx_varies_p (src, 1))
2543 set_reg_known_value (regno, src);
2544 set_reg_known_equiv_p (regno, 0);
2548 else if (NOTE_P (insn)
2549 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2550 copying_arguments = false;
2553 /* Now propagate values from new_reg_base_value to reg_base_value. */
2554 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2556 for (ui = 0; ui < maxreg; ui++)
2558 if (new_reg_base_value[ui]
2559 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2560 && ! rtx_equal_p (new_reg_base_value[ui],
2561 VEC_index (rtx, reg_base_value, ui)))
2563 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2564 changed = 1;
2568 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2570 /* Fill in the remaining entries. */
2571 for (i = 0; i < (int)reg_known_value_size; i++)
2572 if (reg_known_value[i] == 0)
2573 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2575 /* Clean up. */
2576 free (new_reg_base_value);
2577 new_reg_base_value = 0;
2578 free (reg_seen);
2579 reg_seen = 0;
2580 timevar_pop (TV_ALIAS_ANALYSIS);
2583 void
2584 end_alias_analysis (void)
2586 old_reg_base_value = reg_base_value;
2587 ggc_free (reg_known_value);
2588 reg_known_value = 0;
2589 reg_known_value_size = 0;
2590 free (reg_known_equiv_p);
2591 reg_known_equiv_p = 0;
2594 #include "gt-alias.h"