1 /* Subroutines used for MIPS code generation.
2 Copyright (C) 1989, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky, lich@inria.inria.fr.
6 Changes by Michael Meissner, meissner@osf.org.
7 64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
8 Brendan Eich, brendan@microunity.com.
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
28 #include "coretypes.h"
33 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "conditions.h"
37 #include "insn-attr.h"
53 #include "target-def.h"
54 #include "integrate.h"
55 #include "langhooks.h"
56 #include "cfglayout.h"
57 #include "sched-int.h"
58 #include "tree-gimple.h"
60 #include "diagnostic.h"
62 /* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
63 #define UNSPEC_ADDRESS_P(X) \
64 (GET_CODE (X) == UNSPEC \
65 && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
66 && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
68 /* Extract the symbol or label from UNSPEC wrapper X. */
69 #define UNSPEC_ADDRESS(X) \
72 /* Extract the symbol type from UNSPEC wrapper X. */
73 #define UNSPEC_ADDRESS_TYPE(X) \
74 ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
76 /* The maximum distance between the top of the stack frame and the
77 value $sp has when we save and restore registers.
79 The value for normal-mode code must be a SMALL_OPERAND and must
80 preserve the maximum stack alignment. We therefore use a value
81 of 0x7ff0 in this case.
83 MIPS16e SAVE and RESTORE instructions can adjust the stack pointer by
84 up to 0x7f8 bytes and can usually save or restore all the registers
85 that we need to save or restore. (Note that we can only use these
86 instructions for o32, for which the stack alignment is 8 bytes.)
88 We use a maximum gap of 0x100 or 0x400 for MIPS16 code when SAVE and
89 RESTORE are not available. We can then use unextended instructions
90 to save and restore registers, and to allocate and deallocate the top
92 #define MIPS_MAX_FIRST_STACK_STEP \
93 (!TARGET_MIPS16 ? 0x7ff0 \
94 : GENERATE_MIPS16E_SAVE_RESTORE ? 0x7f8 \
95 : TARGET_64BIT ? 0x100 : 0x400)
97 /* True if INSN is a mips.md pattern or asm statement. */
98 #define USEFUL_INSN_P(INSN) \
100 && GET_CODE (PATTERN (INSN)) != USE \
101 && GET_CODE (PATTERN (INSN)) != CLOBBER \
102 && GET_CODE (PATTERN (INSN)) != ADDR_VEC \
103 && GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC)
105 /* If INSN is a delayed branch sequence, return the first instruction
106 in the sequence, otherwise return INSN itself. */
107 #define SEQ_BEGIN(INSN) \
108 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
109 ? XVECEXP (PATTERN (INSN), 0, 0) \
112 /* Likewise for the last instruction in a delayed branch sequence. */
113 #define SEQ_END(INSN) \
114 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
115 ? XVECEXP (PATTERN (INSN), 0, XVECLEN (PATTERN (INSN), 0) - 1) \
118 /* Execute the following loop body with SUBINSN set to each instruction
119 between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive. */
120 #define FOR_EACH_SUBINSN(SUBINSN, INSN) \
121 for ((SUBINSN) = SEQ_BEGIN (INSN); \
122 (SUBINSN) != NEXT_INSN (SEQ_END (INSN)); \
123 (SUBINSN) = NEXT_INSN (SUBINSN))
125 /* True if bit BIT is set in VALUE. */
126 #define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)
128 /* Classifies an address.
131 A natural register + offset address. The register satisfies
132 mips_valid_base_register_p and the offset is a const_arith_operand.
135 A LO_SUM rtx. The first operand is a valid base register and
136 the second operand is a symbolic address.
139 A signed 16-bit constant address.
142 A constant symbolic address. */
143 enum mips_address_type
{
150 /* Macros to create an enumeration identifier for a function prototype. */
151 #define MIPS_FTYPE_NAME1(A, B) MIPS_##A##_FTYPE_##B
152 #define MIPS_FTYPE_NAME2(A, B, C) MIPS_##A##_FTYPE_##B##_##C
153 #define MIPS_FTYPE_NAME3(A, B, C, D) MIPS_##A##_FTYPE_##B##_##C##_##D
154 #define MIPS_FTYPE_NAME4(A, B, C, D, E) MIPS_##A##_FTYPE_##B##_##C##_##D##_##E
156 /* Classifies the prototype of a built-in function. */
157 enum mips_function_type
{
158 #define DEF_MIPS_FTYPE(NARGS, LIST) MIPS_FTYPE_NAME##NARGS LIST,
159 #include "config/mips/mips-ftypes.def"
160 #undef DEF_MIPS_FTYPE
164 /* Specifies how a built-in function should be converted into rtl. */
165 enum mips_builtin_type
{
166 /* The function corresponds directly to an .md pattern. The return
167 value is mapped to operand 0 and the arguments are mapped to
168 operands 1 and above. */
171 /* The function corresponds directly to an .md pattern. There is no return
172 value and the arguments are mapped to operands 0 and above. */
173 MIPS_BUILTIN_DIRECT_NO_TARGET
,
175 /* The function corresponds to a comparison instruction followed by
176 a mips_cond_move_tf_ps pattern. The first two arguments are the
177 values to compare and the second two arguments are the vector
178 operands for the movt.ps or movf.ps instruction (in assembly order). */
182 /* The function corresponds to a V2SF comparison instruction. Operand 0
183 of this instruction is the result of the comparison, which has mode
184 CCV2 or CCV4. The function arguments are mapped to operands 1 and
185 above. The function's return value is an SImode boolean that is
186 true under the following conditions:
188 MIPS_BUILTIN_CMP_ANY: one of the registers is true
189 MIPS_BUILTIN_CMP_ALL: all of the registers are true
190 MIPS_BUILTIN_CMP_LOWER: the first register is true
191 MIPS_BUILTIN_CMP_UPPER: the second register is true. */
192 MIPS_BUILTIN_CMP_ANY
,
193 MIPS_BUILTIN_CMP_ALL
,
194 MIPS_BUILTIN_CMP_UPPER
,
195 MIPS_BUILTIN_CMP_LOWER
,
197 /* As above, but the instruction only sets a single $fcc register. */
198 MIPS_BUILTIN_CMP_SINGLE
,
200 /* For generating bposge32 branch instructions in MIPS32 DSP ASE. */
201 MIPS_BUILTIN_BPOSGE32
204 /* Invoke MACRO (COND) for each C.cond.fmt condition. */
205 #define MIPS_FP_CONDITIONS(MACRO) \
223 /* Enumerates the codes above as MIPS_FP_COND_<X>. */
224 #define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
225 enum mips_fp_condition
{
226 MIPS_FP_CONDITIONS (DECLARE_MIPS_COND
)
229 /* Index X provides the string representation of MIPS_FP_COND_<X>. */
230 #define STRINGIFY(X) #X
231 static const char *const mips_fp_conditions
[] = {
232 MIPS_FP_CONDITIONS (STRINGIFY
)
235 /* Information about a function's frame layout. */
236 struct mips_frame_info
GTY(()) {
237 /* The size of the frame in bytes. */
238 HOST_WIDE_INT total_size
;
240 /* The number of bytes allocated to variables. */
241 HOST_WIDE_INT var_size
;
243 /* The number of bytes allocated to outgoing function arguments. */
244 HOST_WIDE_INT args_size
;
246 /* The number of bytes allocated to the .cprestore slot, or 0 if there
248 HOST_WIDE_INT cprestore_size
;
250 /* Bit X is set if the function saves or restores GPR X. */
253 /* Likewise FPR X. */
256 /* The number of GPRs and FPRs saved. */
260 /* The offset of the topmost GPR and FPR save slots from the top of
261 the frame, or zero if no such slots are needed. */
262 HOST_WIDE_INT gp_save_offset
;
263 HOST_WIDE_INT fp_save_offset
;
265 /* Likewise, but giving offsets from the bottom of the frame. */
266 HOST_WIDE_INT gp_sp_offset
;
267 HOST_WIDE_INT fp_sp_offset
;
269 /* The offset of arg_pointer_rtx from frame_pointer_rtx. */
270 HOST_WIDE_INT arg_pointer_offset
;
272 /* The offset of hard_frame_pointer_rtx from frame_pointer_rtx. */
273 HOST_WIDE_INT hard_frame_pointer_offset
;
276 struct machine_function
GTY(()) {
277 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
278 rtx mips16_gp_pseudo_rtx
;
280 /* The number of extra stack bytes taken up by register varargs.
281 This area is allocated by the callee at the very top of the frame. */
284 /* The current frame information, calculated by mips_compute_frame_info. */
285 struct mips_frame_info frame
;
287 /* The register to use as the function's global pointer. */
288 unsigned int global_pointer
;
290 /* True if mips_adjust_insn_length should ignore an instruction's
292 bool ignore_hazard_length_p
;
294 /* True if the whole function is suitable for .set noreorder and
296 bool all_noreorder_p
;
298 /* True if the function is known to have an instruction that needs $gp. */
301 /* True if we have emitted an instruction to initialize
302 mips16_gp_pseudo_rtx. */
303 bool initialized_mips16_gp_pseudo_p
;
306 /* Information about a single argument. */
307 struct mips_arg_info
{
308 /* True if the argument is passed in a floating-point register, or
309 would have been if we hadn't run out of registers. */
312 /* The number of words passed in registers, rounded up. */
313 unsigned int reg_words
;
315 /* For EABI, the offset of the first register from GP_ARG_FIRST or
316 FP_ARG_FIRST. For other ABIs, the offset of the first register from
317 the start of the ABI's argument structure (see the CUMULATIVE_ARGS
318 comment for details).
320 The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
322 unsigned int reg_offset
;
324 /* The number of words that must be passed on the stack, rounded up. */
325 unsigned int stack_words
;
327 /* The offset from the start of the stack overflow area of the argument's
328 first stack word. Only meaningful when STACK_WORDS is nonzero. */
329 unsigned int stack_offset
;
332 /* Information about an address described by mips_address_type.
338 REG is the base register and OFFSET is the constant offset.
341 REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE
342 is the type of symbol it references.
345 SYMBOL_TYPE is the type of symbol that the address references. */
346 struct mips_address_info
{
347 enum mips_address_type type
;
350 enum mips_symbol_type symbol_type
;
353 /* One stage in a constant building sequence. These sequences have
357 A = A CODE[1] VALUE[1]
358 A = A CODE[2] VALUE[2]
361 where A is an accumulator, each CODE[i] is a binary rtl operation
362 and each VALUE[i] is a constant integer. CODE[0] is undefined. */
363 struct mips_integer_op
{
365 unsigned HOST_WIDE_INT value
;
368 /* The largest number of operations needed to load an integer constant.
369 The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
370 When the lowest bit is clear, we can try, but reject a sequence with
371 an extra SLL at the end. */
372 #define MIPS_MAX_INTEGER_OPS 7
374 /* Information about a MIPS16e SAVE or RESTORE instruction. */
375 struct mips16e_save_restore_info
{
376 /* The number of argument registers saved by a SAVE instruction.
377 0 for RESTORE instructions. */
380 /* Bit X is set if the instruction saves or restores GPR X. */
383 /* The total number of bytes to allocate. */
387 /* Global variables for machine-dependent things. */
389 /* The -G setting, or the configuration's default small-data limit if
390 no -G option is given. */
391 static unsigned int mips_small_data_threshold
;
393 /* The number of file directives written by mips_output_filename. */
394 int num_source_filenames
;
396 /* The name that appeared in the last .file directive written by
397 mips_output_filename, or "" if mips_output_filename hasn't
398 written anything yet. */
399 const char *current_function_file
= "";
401 /* A label counter used by PUT_SDB_BLOCK_START and PUT_SDB_BLOCK_END. */
404 /* Arrays that map GCC register numbers to debugger register numbers. */
405 int mips_dbx_regno
[FIRST_PSEUDO_REGISTER
];
406 int mips_dwarf_regno
[FIRST_PSEUDO_REGISTER
];
408 /* The nesting depth of the PRINT_OPERAND '%(', '%<' and '%[' constructs. */
413 /* True if we're writing out a branch-likely instruction rather than a
415 static bool mips_branch_likely
;
417 /* The operands passed to the last cmpMM expander. */
420 /* The current instruction-set architecture. */
421 enum processor_type mips_arch
;
422 const struct mips_cpu_info
*mips_arch_info
;
424 /* The processor that we should tune the code for. */
425 enum processor_type mips_tune
;
426 const struct mips_cpu_info
*mips_tune_info
;
428 /* The ISA level associated with mips_arch. */
431 /* The architecture selected by -mipsN, or null if -mipsN wasn't used. */
432 static const struct mips_cpu_info
*mips_isa_option_info
;
434 /* Which ABI to use. */
435 int mips_abi
= MIPS_ABI_DEFAULT
;
437 /* Which cost information to use. */
438 const struct mips_rtx_cost_data
*mips_cost
;
440 /* The ambient target flags, excluding MASK_MIPS16. */
441 static int mips_base_target_flags
;
443 /* True if MIPS16 is the default mode. */
444 static bool mips_base_mips16
;
446 /* The ambient values of other global variables. */
447 static int mips_base_delayed_branch
; /* flag_delayed_branch */
448 static int mips_base_schedule_insns
; /* flag_schedule_insns */
449 static int mips_base_reorder_blocks_and_partition
; /* flag_reorder... */
450 static int mips_base_move_loop_invariants
; /* flag_move_loop_invariants */
451 static int mips_base_align_loops
; /* align_loops */
452 static int mips_base_align_jumps
; /* align_jumps */
453 static int mips_base_align_functions
; /* align_functions */
455 /* The -mcode-readable setting. */
456 enum mips_code_readable_setting mips_code_readable
= CODE_READABLE_YES
;
458 /* Index [M][R] is true if register R is allowed to hold a value of mode M. */
459 bool mips_hard_regno_mode_ok
[(int) MAX_MACHINE_MODE
][FIRST_PSEUDO_REGISTER
];
461 /* Index C is true if character C is a valid PRINT_OPERAND punctation
463 bool mips_print_operand_punct
[256];
465 static GTY (()) int mips_output_filename_first_time
= 1;
467 /* mips_split_p[X] is true if symbols of type X can be split by
468 mips_split_symbol. */
469 bool mips_split_p
[NUM_SYMBOL_TYPES
];
471 /* mips_lo_relocs[X] is the relocation to use when a symbol of type X
472 appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
473 if they are matched by a special .md file pattern. */
474 static const char *mips_lo_relocs
[NUM_SYMBOL_TYPES
];
476 /* Likewise for HIGHs. */
477 static const char *mips_hi_relocs
[NUM_SYMBOL_TYPES
];
479 /* Index R is the smallest register class that contains register R. */
480 const enum reg_class mips_regno_to_class
[FIRST_PSEUDO_REGISTER
] = {
481 LEA_REGS
, LEA_REGS
, M16_NA_REGS
, V1_REG
,
482 M16_REGS
, M16_REGS
, M16_REGS
, M16_REGS
,
483 LEA_REGS
, LEA_REGS
, LEA_REGS
, LEA_REGS
,
484 LEA_REGS
, LEA_REGS
, LEA_REGS
, LEA_REGS
,
485 M16_NA_REGS
, M16_NA_REGS
, LEA_REGS
, LEA_REGS
,
486 LEA_REGS
, LEA_REGS
, LEA_REGS
, LEA_REGS
,
487 T_REG
, PIC_FN_ADDR_REG
, LEA_REGS
, LEA_REGS
,
488 LEA_REGS
, LEA_REGS
, LEA_REGS
, LEA_REGS
,
489 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
490 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
491 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
492 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
493 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
494 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
495 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
496 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
497 MD0_REG
, MD1_REG
, NO_REGS
, ST_REGS
,
498 ST_REGS
, ST_REGS
, ST_REGS
, ST_REGS
,
499 ST_REGS
, ST_REGS
, ST_REGS
, NO_REGS
,
500 NO_REGS
, ALL_REGS
, ALL_REGS
, NO_REGS
,
501 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
502 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
503 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
504 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
505 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
506 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
507 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
508 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
509 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
510 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
511 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
512 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
513 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
514 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
515 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
516 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
517 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
518 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
519 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
520 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
521 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
522 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
523 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
524 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
525 DSP_ACC_REGS
, DSP_ACC_REGS
, DSP_ACC_REGS
, DSP_ACC_REGS
,
526 DSP_ACC_REGS
, DSP_ACC_REGS
, ALL_REGS
, ALL_REGS
,
527 ALL_REGS
, ALL_REGS
, ALL_REGS
, ALL_REGS
530 /* The value of TARGET_ATTRIBUTE_TABLE. */
531 const struct attribute_spec mips_attribute_table
[] = {
532 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
533 { "long_call", 0, 0, false, true, true, NULL
},
534 { "far", 0, 0, false, true, true, NULL
},
535 { "near", 0, 0, false, true, true, NULL
},
536 /* We would really like to treat "mips16" and "nomips16" as type
537 attributes, but GCC doesn't provide the hooks we need to support
538 the right conversion rules. As declaration attributes, they affect
539 code generation but don't carry other semantics. */
540 { "mips16", 0, 0, true, false, false, NULL
},
541 { "nomips16", 0, 0, true, false, false, NULL
},
542 { NULL
, 0, 0, false, false, false, NULL
}
545 /* A table describing all the processors GCC knows about. Names are
546 matched in the order listed. The first mention of an ISA level is
547 taken as the canonical name for that ISA.
549 To ease comparison, please keep this table in the same order
550 as GAS's mips_cpu_info_table. Please also make sure that
551 MIPS_ISA_LEVEL_SPEC and MIPS_ARCH_FLOAT_SPEC handle all -march
552 options correctly. */
553 static const struct mips_cpu_info mips_cpu_info_table
[] = {
554 /* Entries for generic ISAs. */
555 { "mips1", PROCESSOR_R3000
, 1, 0 },
556 { "mips2", PROCESSOR_R6000
, 2, 0 },
557 { "mips3", PROCESSOR_R4000
, 3, 0 },
558 { "mips4", PROCESSOR_R8000
, 4, 0 },
559 /* Prefer not to use branch-likely instructions for generic MIPS32rX
560 and MIPS64rX code. The instructions were officially deprecated
561 in revisions 2 and earlier, but revision 3 is likely to downgrade
562 that to a recommendation to avoid the instructions in code that
563 isn't tuned to a specific processor. */
564 { "mips32", PROCESSOR_4KC
, 32, PTF_AVOID_BRANCHLIKELY
},
565 { "mips32r2", PROCESSOR_M4K
, 33, PTF_AVOID_BRANCHLIKELY
},
566 { "mips64", PROCESSOR_5KC
, 64, PTF_AVOID_BRANCHLIKELY
},
568 /* MIPS I processors. */
569 { "r3000", PROCESSOR_R3000
, 1, 0 },
570 { "r2000", PROCESSOR_R3000
, 1, 0 },
571 { "r3900", PROCESSOR_R3900
, 1, 0 },
573 /* MIPS II processors. */
574 { "r6000", PROCESSOR_R6000
, 2, 0 },
576 /* MIPS III processors. */
577 { "r4000", PROCESSOR_R4000
, 3, 0 },
578 { "vr4100", PROCESSOR_R4100
, 3, 0 },
579 { "vr4111", PROCESSOR_R4111
, 3, 0 },
580 { "vr4120", PROCESSOR_R4120
, 3, 0 },
581 { "vr4130", PROCESSOR_R4130
, 3, 0 },
582 { "vr4300", PROCESSOR_R4300
, 3, 0 },
583 { "r4400", PROCESSOR_R4000
, 3, 0 },
584 { "r4600", PROCESSOR_R4600
, 3, 0 },
585 { "orion", PROCESSOR_R4600
, 3, 0 },
586 { "r4650", PROCESSOR_R4650
, 3, 0 },
588 /* MIPS IV processors. */
589 { "r8000", PROCESSOR_R8000
, 4, 0 },
590 { "vr5000", PROCESSOR_R5000
, 4, 0 },
591 { "vr5400", PROCESSOR_R5400
, 4, 0 },
592 { "vr5500", PROCESSOR_R5500
, 4, PTF_AVOID_BRANCHLIKELY
},
593 { "rm7000", PROCESSOR_R7000
, 4, 0 },
594 { "rm9000", PROCESSOR_R9000
, 4, 0 },
596 /* MIPS32 processors. */
597 { "4kc", PROCESSOR_4KC
, 32, 0 },
598 { "4km", PROCESSOR_4KC
, 32, 0 },
599 { "4kp", PROCESSOR_4KP
, 32, 0 },
600 { "4ksc", PROCESSOR_4KC
, 32, 0 },
602 /* MIPS32 Release 2 processors. */
603 { "m4k", PROCESSOR_M4K
, 33, 0 },
604 { "4kec", PROCESSOR_4KC
, 33, 0 },
605 { "4kem", PROCESSOR_4KC
, 33, 0 },
606 { "4kep", PROCESSOR_4KP
, 33, 0 },
607 { "4ksd", PROCESSOR_4KC
, 33, 0 },
609 { "24kc", PROCESSOR_24KC
, 33, 0 },
610 { "24kf2_1", PROCESSOR_24KF2_1
, 33, 0 },
611 { "24kf", PROCESSOR_24KF2_1
, 33, 0 },
612 { "24kf1_1", PROCESSOR_24KF1_1
, 33, 0 },
613 { "24kfx", PROCESSOR_24KF1_1
, 33, 0 },
614 { "24kx", PROCESSOR_24KF1_1
, 33, 0 },
616 { "24kec", PROCESSOR_24KC
, 33, 0 }, /* 24K with DSP. */
617 { "24kef2_1", PROCESSOR_24KF2_1
, 33, 0 },
618 { "24kef", PROCESSOR_24KF2_1
, 33, 0 },
619 { "24kef1_1", PROCESSOR_24KF1_1
, 33, 0 },
620 { "24kefx", PROCESSOR_24KF1_1
, 33, 0 },
621 { "24kex", PROCESSOR_24KF1_1
, 33, 0 },
623 { "34kc", PROCESSOR_24KC
, 33, 0 }, /* 34K with MT/DSP. */
624 { "34kf2_1", PROCESSOR_24KF2_1
, 33, 0 },
625 { "34kf", PROCESSOR_24KF2_1
, 33, 0 },
626 { "34kf1_1", PROCESSOR_24KF1_1
, 33, 0 },
627 { "34kfx", PROCESSOR_24KF1_1
, 33, 0 },
628 { "34kx", PROCESSOR_24KF1_1
, 33, 0 },
630 { "74kc", PROCESSOR_74KC
, 33, 0 }, /* 74K with DSPr2. */
631 { "74kf2_1", PROCESSOR_74KF2_1
, 33, 0 },
632 { "74kf", PROCESSOR_74KF2_1
, 33, 0 },
633 { "74kf1_1", PROCESSOR_74KF1_1
, 33, 0 },
634 { "74kfx", PROCESSOR_74KF1_1
, 33, 0 },
635 { "74kx", PROCESSOR_74KF1_1
, 33, 0 },
636 { "74kf3_2", PROCESSOR_74KF3_2
, 33, 0 },
638 /* MIPS64 processors. */
639 { "5kc", PROCESSOR_5KC
, 64, 0 },
640 { "5kf", PROCESSOR_5KF
, 64, 0 },
641 { "20kc", PROCESSOR_20KC
, 64, PTF_AVOID_BRANCHLIKELY
},
642 { "sb1", PROCESSOR_SB1
, 64, PTF_AVOID_BRANCHLIKELY
},
643 { "sb1a", PROCESSOR_SB1A
, 64, PTF_AVOID_BRANCHLIKELY
},
644 { "sr71000", PROCESSOR_SR71000
, 64, PTF_AVOID_BRANCHLIKELY
},
647 /* Default costs. If these are used for a processor we should look
648 up the actual costs. */
649 #define DEFAULT_COSTS COSTS_N_INSNS (6), /* fp_add */ \
650 COSTS_N_INSNS (7), /* fp_mult_sf */ \
651 COSTS_N_INSNS (8), /* fp_mult_df */ \
652 COSTS_N_INSNS (23), /* fp_div_sf */ \
653 COSTS_N_INSNS (36), /* fp_div_df */ \
654 COSTS_N_INSNS (10), /* int_mult_si */ \
655 COSTS_N_INSNS (10), /* int_mult_di */ \
656 COSTS_N_INSNS (69), /* int_div_si */ \
657 COSTS_N_INSNS (69), /* int_div_di */ \
658 2, /* branch_cost */ \
659 4 /* memory_latency */
661 /* Floating-point costs for processors without an FPU. Just assume that
662 all floating-point libcalls are very expensive. */
663 #define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */ \
664 COSTS_N_INSNS (256), /* fp_mult_sf */ \
665 COSTS_N_INSNS (256), /* fp_mult_df */ \
666 COSTS_N_INSNS (256), /* fp_div_sf */ \
667 COSTS_N_INSNS (256) /* fp_div_df */
669 /* Costs to use when optimizing for size. */
670 static const struct mips_rtx_cost_data mips_rtx_cost_optimize_size
= {
671 COSTS_N_INSNS (1), /* fp_add */
672 COSTS_N_INSNS (1), /* fp_mult_sf */
673 COSTS_N_INSNS (1), /* fp_mult_df */
674 COSTS_N_INSNS (1), /* fp_div_sf */
675 COSTS_N_INSNS (1), /* fp_div_df */
676 COSTS_N_INSNS (1), /* int_mult_si */
677 COSTS_N_INSNS (1), /* int_mult_di */
678 COSTS_N_INSNS (1), /* int_div_si */
679 COSTS_N_INSNS (1), /* int_div_di */
681 4 /* memory_latency */
684 /* Costs to use when optimizing for speed, indexed by processor. */
685 static const struct mips_rtx_cost_data mips_rtx_cost_data
[PROCESSOR_MAX
] = {
687 COSTS_N_INSNS (2), /* fp_add */
688 COSTS_N_INSNS (4), /* fp_mult_sf */
689 COSTS_N_INSNS (5), /* fp_mult_df */
690 COSTS_N_INSNS (12), /* fp_div_sf */
691 COSTS_N_INSNS (19), /* fp_div_df */
692 COSTS_N_INSNS (12), /* int_mult_si */
693 COSTS_N_INSNS (12), /* int_mult_di */
694 COSTS_N_INSNS (35), /* int_div_si */
695 COSTS_N_INSNS (35), /* int_div_di */
697 4 /* memory_latency */
701 COSTS_N_INSNS (6), /* int_mult_si */
702 COSTS_N_INSNS (6), /* int_mult_di */
703 COSTS_N_INSNS (36), /* int_div_si */
704 COSTS_N_INSNS (36), /* int_div_di */
706 4 /* memory_latency */
710 COSTS_N_INSNS (36), /* int_mult_si */
711 COSTS_N_INSNS (36), /* int_mult_di */
712 COSTS_N_INSNS (37), /* int_div_si */
713 COSTS_N_INSNS (37), /* int_div_di */
715 4 /* memory_latency */
719 COSTS_N_INSNS (4), /* int_mult_si */
720 COSTS_N_INSNS (11), /* int_mult_di */
721 COSTS_N_INSNS (36), /* int_div_si */
722 COSTS_N_INSNS (68), /* int_div_di */
724 4 /* memory_latency */
727 COSTS_N_INSNS (4), /* fp_add */
728 COSTS_N_INSNS (4), /* fp_mult_sf */
729 COSTS_N_INSNS (5), /* fp_mult_df */
730 COSTS_N_INSNS (17), /* fp_div_sf */
731 COSTS_N_INSNS (32), /* fp_div_df */
732 COSTS_N_INSNS (4), /* int_mult_si */
733 COSTS_N_INSNS (11), /* int_mult_di */
734 COSTS_N_INSNS (36), /* int_div_si */
735 COSTS_N_INSNS (68), /* int_div_di */
737 4 /* memory_latency */
740 COSTS_N_INSNS (4), /* fp_add */
741 COSTS_N_INSNS (4), /* fp_mult_sf */
742 COSTS_N_INSNS (5), /* fp_mult_df */
743 COSTS_N_INSNS (17), /* fp_div_sf */
744 COSTS_N_INSNS (32), /* fp_div_df */
745 COSTS_N_INSNS (4), /* int_mult_si */
746 COSTS_N_INSNS (7), /* int_mult_di */
747 COSTS_N_INSNS (42), /* int_div_si */
748 COSTS_N_INSNS (72), /* int_div_di */
750 4 /* memory_latency */
754 COSTS_N_INSNS (5), /* int_mult_si */
755 COSTS_N_INSNS (5), /* int_mult_di */
756 COSTS_N_INSNS (41), /* int_div_si */
757 COSTS_N_INSNS (41), /* int_div_di */
759 4 /* memory_latency */
762 COSTS_N_INSNS (8), /* fp_add */
763 COSTS_N_INSNS (8), /* fp_mult_sf */
764 COSTS_N_INSNS (10), /* fp_mult_df */
765 COSTS_N_INSNS (34), /* fp_div_sf */
766 COSTS_N_INSNS (64), /* fp_div_df */
767 COSTS_N_INSNS (5), /* int_mult_si */
768 COSTS_N_INSNS (5), /* int_mult_di */
769 COSTS_N_INSNS (41), /* int_div_si */
770 COSTS_N_INSNS (41), /* int_div_di */
772 4 /* memory_latency */
775 COSTS_N_INSNS (4), /* fp_add */
776 COSTS_N_INSNS (4), /* fp_mult_sf */
777 COSTS_N_INSNS (5), /* fp_mult_df */
778 COSTS_N_INSNS (17), /* fp_div_sf */
779 COSTS_N_INSNS (32), /* fp_div_df */
780 COSTS_N_INSNS (5), /* int_mult_si */
781 COSTS_N_INSNS (5), /* int_mult_di */
782 COSTS_N_INSNS (41), /* int_div_si */
783 COSTS_N_INSNS (41), /* int_div_di */
785 4 /* memory_latency */
789 COSTS_N_INSNS (5), /* int_mult_si */
790 COSTS_N_INSNS (5), /* int_mult_di */
791 COSTS_N_INSNS (41), /* int_div_si */
792 COSTS_N_INSNS (41), /* int_div_di */
794 4 /* memory_latency */
797 COSTS_N_INSNS (8), /* fp_add */
798 COSTS_N_INSNS (8), /* fp_mult_sf */
799 COSTS_N_INSNS (10), /* fp_mult_df */
800 COSTS_N_INSNS (34), /* fp_div_sf */
801 COSTS_N_INSNS (64), /* fp_div_df */
802 COSTS_N_INSNS (5), /* int_mult_si */
803 COSTS_N_INSNS (5), /* int_mult_di */
804 COSTS_N_INSNS (41), /* int_div_si */
805 COSTS_N_INSNS (41), /* int_div_di */
807 4 /* memory_latency */
810 COSTS_N_INSNS (4), /* fp_add */
811 COSTS_N_INSNS (4), /* fp_mult_sf */
812 COSTS_N_INSNS (5), /* fp_mult_df */
813 COSTS_N_INSNS (17), /* fp_div_sf */
814 COSTS_N_INSNS (32), /* fp_div_df */
815 COSTS_N_INSNS (5), /* int_mult_si */
816 COSTS_N_INSNS (5), /* int_mult_di */
817 COSTS_N_INSNS (41), /* int_div_si */
818 COSTS_N_INSNS (41), /* int_div_di */
820 4 /* memory_latency */
823 COSTS_N_INSNS (6), /* fp_add */
824 COSTS_N_INSNS (6), /* fp_mult_sf */
825 COSTS_N_INSNS (7), /* fp_mult_df */
826 COSTS_N_INSNS (25), /* fp_div_sf */
827 COSTS_N_INSNS (48), /* fp_div_df */
828 COSTS_N_INSNS (5), /* int_mult_si */
829 COSTS_N_INSNS (5), /* int_mult_di */
830 COSTS_N_INSNS (41), /* int_div_si */
831 COSTS_N_INSNS (41), /* int_div_di */
833 4 /* memory_latency */
839 COSTS_N_INSNS (2), /* fp_add */
840 COSTS_N_INSNS (4), /* fp_mult_sf */
841 COSTS_N_INSNS (5), /* fp_mult_df */
842 COSTS_N_INSNS (12), /* fp_div_sf */
843 COSTS_N_INSNS (19), /* fp_div_df */
844 COSTS_N_INSNS (2), /* int_mult_si */
845 COSTS_N_INSNS (2), /* int_mult_di */
846 COSTS_N_INSNS (35), /* int_div_si */
847 COSTS_N_INSNS (35), /* int_div_di */
849 4 /* memory_latency */
852 COSTS_N_INSNS (3), /* fp_add */
853 COSTS_N_INSNS (5), /* fp_mult_sf */
854 COSTS_N_INSNS (6), /* fp_mult_df */
855 COSTS_N_INSNS (15), /* fp_div_sf */
856 COSTS_N_INSNS (16), /* fp_div_df */
857 COSTS_N_INSNS (17), /* int_mult_si */
858 COSTS_N_INSNS (17), /* int_mult_di */
859 COSTS_N_INSNS (38), /* int_div_si */
860 COSTS_N_INSNS (38), /* int_div_di */
862 6 /* memory_latency */
865 COSTS_N_INSNS (6), /* fp_add */
866 COSTS_N_INSNS (7), /* fp_mult_sf */
867 COSTS_N_INSNS (8), /* fp_mult_df */
868 COSTS_N_INSNS (23), /* fp_div_sf */
869 COSTS_N_INSNS (36), /* fp_div_df */
870 COSTS_N_INSNS (10), /* int_mult_si */
871 COSTS_N_INSNS (10), /* int_mult_di */
872 COSTS_N_INSNS (69), /* int_div_si */
873 COSTS_N_INSNS (69), /* int_div_di */
875 6 /* memory_latency */
887 /* The only costs that appear to be updated here are
888 integer multiplication. */
890 COSTS_N_INSNS (4), /* int_mult_si */
891 COSTS_N_INSNS (6), /* int_mult_di */
892 COSTS_N_INSNS (69), /* int_div_si */
893 COSTS_N_INSNS (69), /* int_div_di */
895 4 /* memory_latency */
907 COSTS_N_INSNS (6), /* fp_add */
908 COSTS_N_INSNS (4), /* fp_mult_sf */
909 COSTS_N_INSNS (5), /* fp_mult_df */
910 COSTS_N_INSNS (23), /* fp_div_sf */
911 COSTS_N_INSNS (36), /* fp_div_df */
912 COSTS_N_INSNS (5), /* int_mult_si */
913 COSTS_N_INSNS (5), /* int_mult_di */
914 COSTS_N_INSNS (36), /* int_div_si */
915 COSTS_N_INSNS (36), /* int_div_di */
917 4 /* memory_latency */
920 COSTS_N_INSNS (6), /* fp_add */
921 COSTS_N_INSNS (5), /* fp_mult_sf */
922 COSTS_N_INSNS (6), /* fp_mult_df */
923 COSTS_N_INSNS (30), /* fp_div_sf */
924 COSTS_N_INSNS (59), /* fp_div_df */
925 COSTS_N_INSNS (3), /* int_mult_si */
926 COSTS_N_INSNS (4), /* int_mult_di */
927 COSTS_N_INSNS (42), /* int_div_si */
928 COSTS_N_INSNS (74), /* int_div_di */
930 4 /* memory_latency */
933 COSTS_N_INSNS (6), /* fp_add */
934 COSTS_N_INSNS (5), /* fp_mult_sf */
935 COSTS_N_INSNS (6), /* fp_mult_df */
936 COSTS_N_INSNS (30), /* fp_div_sf */
937 COSTS_N_INSNS (59), /* fp_div_df */
938 COSTS_N_INSNS (5), /* int_mult_si */
939 COSTS_N_INSNS (9), /* int_mult_di */
940 COSTS_N_INSNS (42), /* int_div_si */
941 COSTS_N_INSNS (74), /* int_div_di */
943 4 /* memory_latency */
946 /* The only costs that are changed here are
947 integer multiplication. */
948 COSTS_N_INSNS (6), /* fp_add */
949 COSTS_N_INSNS (7), /* fp_mult_sf */
950 COSTS_N_INSNS (8), /* fp_mult_df */
951 COSTS_N_INSNS (23), /* fp_div_sf */
952 COSTS_N_INSNS (36), /* fp_div_df */
953 COSTS_N_INSNS (5), /* int_mult_si */
954 COSTS_N_INSNS (9), /* int_mult_di */
955 COSTS_N_INSNS (69), /* int_div_si */
956 COSTS_N_INSNS (69), /* int_div_di */
958 4 /* memory_latency */
964 /* The only costs that are changed here are
965 integer multiplication. */
966 COSTS_N_INSNS (6), /* fp_add */
967 COSTS_N_INSNS (7), /* fp_mult_sf */
968 COSTS_N_INSNS (8), /* fp_mult_df */
969 COSTS_N_INSNS (23), /* fp_div_sf */
970 COSTS_N_INSNS (36), /* fp_div_df */
971 COSTS_N_INSNS (3), /* int_mult_si */
972 COSTS_N_INSNS (8), /* int_mult_di */
973 COSTS_N_INSNS (69), /* int_div_si */
974 COSTS_N_INSNS (69), /* int_div_di */
976 4 /* memory_latency */
979 /* These costs are the same as the SB-1A below. */
980 COSTS_N_INSNS (4), /* fp_add */
981 COSTS_N_INSNS (4), /* fp_mult_sf */
982 COSTS_N_INSNS (4), /* fp_mult_df */
983 COSTS_N_INSNS (24), /* fp_div_sf */
984 COSTS_N_INSNS (32), /* fp_div_df */
985 COSTS_N_INSNS (3), /* int_mult_si */
986 COSTS_N_INSNS (4), /* int_mult_di */
987 COSTS_N_INSNS (36), /* int_div_si */
988 COSTS_N_INSNS (68), /* int_div_di */
990 4 /* memory_latency */
993 /* These costs are the same as the SB-1 above. */
994 COSTS_N_INSNS (4), /* fp_add */
995 COSTS_N_INSNS (4), /* fp_mult_sf */
996 COSTS_N_INSNS (4), /* fp_mult_df */
997 COSTS_N_INSNS (24), /* fp_div_sf */
998 COSTS_N_INSNS (32), /* fp_div_df */
999 COSTS_N_INSNS (3), /* int_mult_si */
1000 COSTS_N_INSNS (4), /* int_mult_di */
1001 COSTS_N_INSNS (36), /* int_div_si */
1002 COSTS_N_INSNS (68), /* int_div_di */
1003 1, /* branch_cost */
1004 4 /* memory_latency */
1011 /* This hash table keeps track of implicit "mips16" and "nomips16" attributes
1012 for -mflip_mips16. It maps decl names onto a boolean mode setting. */
1013 struct mflip_mips16_entry
GTY (()) {
1017 static GTY ((param_is (struct mflip_mips16_entry
))) htab_t mflip_mips16_htab
;
1019 /* Hash table callbacks for mflip_mips16_htab. */
1022 mflip_mips16_htab_hash (const void *entry
)
1024 return htab_hash_string (((const struct mflip_mips16_entry
*) entry
)->name
);
1028 mflip_mips16_htab_eq (const void *entry
, const void *name
)
1030 return strcmp (((const struct mflip_mips16_entry
*) entry
)->name
,
1031 (const char *) name
) == 0;
1034 /* True if -mflip-mips16 should next add an attribute for the default MIPS16
1035 mode, false if it should next add an attribute for the opposite mode. */
1036 static GTY(()) bool mips16_flipper
;
1038 /* DECL is a function that needs a default "mips16" or "nomips16" attribute
1039 for -mflip-mips16. Return true if it should use "mips16" and false if
1040 it should use "nomips16". */
1043 mflip_mips16_use_mips16_p (tree decl
)
1045 struct mflip_mips16_entry
*entry
;
1050 /* Use the opposite of the command-line setting for anonymous decls. */
1051 if (!DECL_NAME (decl
))
1052 return !mips_base_mips16
;
1054 if (!mflip_mips16_htab
)
1055 mflip_mips16_htab
= htab_create_ggc (37, mflip_mips16_htab_hash
,
1056 mflip_mips16_htab_eq
, NULL
);
1058 name
= IDENTIFIER_POINTER (DECL_NAME (decl
));
1059 hash
= htab_hash_string (name
);
1060 slot
= htab_find_slot_with_hash (mflip_mips16_htab
, name
, hash
, INSERT
);
1061 entry
= (struct mflip_mips16_entry
*) *slot
;
1064 mips16_flipper
= !mips16_flipper
;
1065 entry
= GGC_NEW (struct mflip_mips16_entry
);
1067 entry
->mips16_p
= mips16_flipper
? !mips_base_mips16
: mips_base_mips16
;
1070 return entry
->mips16_p
;
1073 /* Predicates to test for presence of "near" and "far"/"long_call"
1074 attributes on the given TYPE. */
1077 mips_near_type_p (const_tree type
)
1079 return lookup_attribute ("near", TYPE_ATTRIBUTES (type
)) != NULL
;
1083 mips_far_type_p (const_tree type
)
1085 return (lookup_attribute ("long_call", TYPE_ATTRIBUTES (type
)) != NULL
1086 || lookup_attribute ("far", TYPE_ATTRIBUTES (type
)) != NULL
);
1089 /* Similar predicates for "mips16"/"nomips16" function attributes. */
1092 mips_mips16_decl_p (const_tree decl
)
1094 return lookup_attribute ("mips16", DECL_ATTRIBUTES (decl
)) != NULL
;
1098 mips_nomips16_decl_p (const_tree decl
)
1100 return lookup_attribute ("nomips16", DECL_ATTRIBUTES (decl
)) != NULL
;
1103 /* Return true if function DECL is a MIPS16 function. Return the ambient
1104 setting if DECL is null. */
1107 mips_use_mips16_mode_p (tree decl
)
1111 /* Nested functions must use the same frame pointer as their
1112 parent and must therefore use the same ISA mode. */
1113 tree parent
= decl_function_context (decl
);
1116 if (mips_mips16_decl_p (decl
))
1118 if (mips_nomips16_decl_p (decl
))
1121 return mips_base_mips16
;
1124 /* Implement TARGET_COMP_TYPE_ATTRIBUTES. */
1127 mips_comp_type_attributes (const_tree type1
, const_tree type2
)
1129 /* Disallow mixed near/far attributes. */
1130 if (mips_far_type_p (type1
) && mips_near_type_p (type2
))
1132 if (mips_near_type_p (type1
) && mips_far_type_p (type2
))
1137 /* Implement TARGET_INSERT_ATTRIBUTES. */
1140 mips_insert_attributes (tree decl
, tree
*attributes
)
1143 bool mips16_p
, nomips16_p
;
1145 /* Check for "mips16" and "nomips16" attributes. */
1146 mips16_p
= lookup_attribute ("mips16", *attributes
) != NULL
;
1147 nomips16_p
= lookup_attribute ("nomips16", *attributes
) != NULL
;
1148 if (TREE_CODE (decl
) != FUNCTION_DECL
)
1151 error ("%qs attribute only applies to functions", "mips16");
1153 error ("%qs attribute only applies to functions", "nomips16");
1157 mips16_p
|= mips_mips16_decl_p (decl
);
1158 nomips16_p
|= mips_nomips16_decl_p (decl
);
1159 if (mips16_p
|| nomips16_p
)
1161 /* DECL cannot be simultaneously "mips16" and "nomips16". */
1162 if (mips16_p
&& nomips16_p
)
1163 error ("%qs cannot have both %<mips16%> and "
1164 "%<nomips16%> attributes",
1165 IDENTIFIER_POINTER (DECL_NAME (decl
)));
1167 else if (TARGET_FLIP_MIPS16
&& !DECL_ARTIFICIAL (decl
))
1169 /* Implement -mflip-mips16. If DECL has neither a "nomips16" nor a
1170 "mips16" attribute, arbitrarily pick one. We must pick the same
1171 setting for duplicate declarations of a function. */
1172 name
= mflip_mips16_use_mips16_p (decl
) ? "mips16" : "nomips16";
1173 *attributes
= tree_cons (get_identifier (name
), NULL
, *attributes
);
1178 /* Implement TARGET_MERGE_DECL_ATTRIBUTES. */
1181 mips_merge_decl_attributes (tree olddecl
, tree newdecl
)
1183 /* The decls' "mips16" and "nomips16" attributes must match exactly. */
1184 if (mips_mips16_decl_p (olddecl
) != mips_mips16_decl_p (newdecl
))
1185 error ("%qs redeclared with conflicting %qs attributes",
1186 IDENTIFIER_POINTER (DECL_NAME (newdecl
)), "mips16");
1187 if (mips_nomips16_decl_p (olddecl
) != mips_nomips16_decl_p (newdecl
))
1188 error ("%qs redeclared with conflicting %qs attributes",
1189 IDENTIFIER_POINTER (DECL_NAME (newdecl
)), "nomips16");
1191 return merge_attributes (DECL_ATTRIBUTES (olddecl
),
1192 DECL_ATTRIBUTES (newdecl
));
1195 /* If X is a PLUS of a CONST_INT, return the two terms in *BASE_PTR
1196 and *OFFSET_PTR. Return X in *BASE_PTR and 0 in *OFFSET_PTR otherwise. */
1199 mips_split_plus (rtx x
, rtx
*base_ptr
, HOST_WIDE_INT
*offset_ptr
)
1201 if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1203 *base_ptr
= XEXP (x
, 0);
1204 *offset_ptr
= INTVAL (XEXP (x
, 1));
1213 static unsigned int mips_build_integer (struct mips_integer_op
*,
1214 unsigned HOST_WIDE_INT
);
1216 /* A subroutine of mips_build_integer, with the same interface.
1217 Assume that the final action in the sequence should be a left shift. */
1220 mips_build_shift (struct mips_integer_op
*codes
, HOST_WIDE_INT value
)
1222 unsigned int i
, shift
;
1224 /* Shift VALUE right until its lowest bit is set. Shift arithmetically
1225 since signed numbers are easier to load than unsigned ones. */
1227 while ((value
& 1) == 0)
1228 value
/= 2, shift
++;
1230 i
= mips_build_integer (codes
, value
);
1231 codes
[i
].code
= ASHIFT
;
1232 codes
[i
].value
= shift
;
1236 /* As for mips_build_shift, but assume that the final action will be
1237 an IOR or PLUS operation. */
1240 mips_build_lower (struct mips_integer_op
*codes
, unsigned HOST_WIDE_INT value
)
1242 unsigned HOST_WIDE_INT high
;
1245 high
= value
& ~(unsigned HOST_WIDE_INT
) 0xffff;
1246 if (!LUI_OPERAND (high
) && (value
& 0x18000) == 0x18000)
1248 /* The constant is too complex to load with a simple LUI/ORI pair,
1249 so we want to give the recursive call as many trailing zeros as
1250 possible. In this case, we know bit 16 is set and that the
1251 low 16 bits form a negative number. If we subtract that number
1252 from VALUE, we will clear at least the lowest 17 bits, maybe more. */
1253 i
= mips_build_integer (codes
, CONST_HIGH_PART (value
));
1254 codes
[i
].code
= PLUS
;
1255 codes
[i
].value
= CONST_LOW_PART (value
);
1259 /* Either this is a simple LUI/ORI pair, or clearing the lowest 16
1260 bits gives a value with at least 17 trailing zeros. */
1261 i
= mips_build_integer (codes
, high
);
1262 codes
[i
].code
= IOR
;
1263 codes
[i
].value
= value
& 0xffff;
1268 /* Fill CODES with a sequence of rtl operations to load VALUE.
1269 Return the number of operations needed. */
1272 mips_build_integer (struct mips_integer_op
*codes
,
1273 unsigned HOST_WIDE_INT value
)
1275 if (SMALL_OPERAND (value
)
1276 || SMALL_OPERAND_UNSIGNED (value
)
1277 || LUI_OPERAND (value
))
1279 /* The value can be loaded with a single instruction. */
1280 codes
[0].code
= UNKNOWN
;
1281 codes
[0].value
= value
;
1284 else if ((value
& 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value
)))
1286 /* Either the constant is a simple LUI/ORI combination or its
1287 lowest bit is set. We don't want to shift in this case. */
1288 return mips_build_lower (codes
, value
);
1290 else if ((value
& 0xffff) == 0)
1292 /* The constant will need at least three actions. The lowest
1293 16 bits are clear, so the final action will be a shift. */
1294 return mips_build_shift (codes
, value
);
1298 /* The final action could be a shift, add or inclusive OR.
1299 Rather than use a complex condition to select the best
1300 approach, try both mips_build_shift and mips_build_lower
1301 and pick the one that gives the shortest sequence.
1302 Note that this case is only used once per constant. */
1303 struct mips_integer_op alt_codes
[MIPS_MAX_INTEGER_OPS
];
1304 unsigned int cost
, alt_cost
;
1306 cost
= mips_build_shift (codes
, value
);
1307 alt_cost
= mips_build_lower (alt_codes
, value
);
1308 if (alt_cost
< cost
)
1310 memcpy (codes
, alt_codes
, alt_cost
* sizeof (codes
[0]));
1317 /* Return true if X is a thread-local symbol. */
1320 mips_tls_symbol_p (rtx x
)
1322 return GET_CODE (x
) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (x
) != 0;
1325 /* Return true if SYMBOL_REF X is associated with a global symbol
1326 (in the STB_GLOBAL sense). */
1329 mips_global_symbol_p (const_rtx x
)
1331 const_tree decl
= SYMBOL_REF_DECL (x
);
1334 return !SYMBOL_REF_LOCAL_P (x
);
1336 /* Weakref symbols are not TREE_PUBLIC, but their targets are global
1337 or weak symbols. Relocations in the object file will be against
1338 the target symbol, so it's that symbol's binding that matters here. */
1339 return DECL_P (decl
) && (TREE_PUBLIC (decl
) || DECL_WEAK (decl
));
1342 /* Return true if SYMBOL_REF X binds locally. */
1345 mips_symbol_binds_local_p (const_rtx x
)
1347 return (SYMBOL_REF_DECL (x
)
1348 ? targetm
.binds_local_p (SYMBOL_REF_DECL (x
))
1349 : SYMBOL_REF_LOCAL_P (x
));
1352 /* Return true if rtx constants of mode MODE should be put into a small
1356 mips_rtx_constant_in_small_data_p (enum machine_mode mode
)
1358 return (!TARGET_EMBEDDED_DATA
1359 && TARGET_LOCAL_SDATA
1360 && GET_MODE_SIZE (mode
) <= mips_small_data_threshold
);
1363 /* Return true if X should not be moved directly into register $25.
1364 We need this because many versions of GAS will treat "la $25,foo" as
1365 part of a call sequence and so allow a global "foo" to be lazily bound. */
1368 mips_dangerous_for_la25_p (rtx x
)
1370 return (!TARGET_EXPLICIT_RELOCS
1372 && GET_CODE (x
) == SYMBOL_REF
1373 && mips_global_symbol_p (x
));
1376 /* Return the method that should be used to access SYMBOL_REF or
1377 LABEL_REF X in context CONTEXT. */
1379 static enum mips_symbol_type
1380 mips_classify_symbol (const_rtx x
, enum mips_symbol_context context
)
1383 return SYMBOL_GOT_DISP
;
1385 if (GET_CODE (x
) == LABEL_REF
)
1387 /* LABEL_REFs are used for jump tables as well as text labels.
1388 Only return SYMBOL_PC_RELATIVE if we know the label is in
1389 the text section. */
1390 if (TARGET_MIPS16_SHORT_JUMP_TABLES
)
1391 return SYMBOL_PC_RELATIVE
;
1393 if (TARGET_ABICALLS
&& !TARGET_ABSOLUTE_ABICALLS
)
1394 return SYMBOL_GOT_PAGE_OFST
;
1396 return SYMBOL_ABSOLUTE
;
1399 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
1401 if (SYMBOL_REF_TLS_MODEL (x
))
1404 if (CONSTANT_POOL_ADDRESS_P (x
))
1406 if (TARGET_MIPS16_TEXT_LOADS
)
1407 return SYMBOL_PC_RELATIVE
;
1409 if (TARGET_MIPS16_PCREL_LOADS
&& context
== SYMBOL_CONTEXT_MEM
)
1410 return SYMBOL_PC_RELATIVE
;
1412 if (mips_rtx_constant_in_small_data_p (get_pool_mode (x
)))
1413 return SYMBOL_GP_RELATIVE
;
1416 /* Do not use small-data accesses for weak symbols; they may end up
1418 if (TARGET_GPOPT
&& SYMBOL_REF_SMALL_P (x
) && !SYMBOL_REF_WEAK (x
))
1419 return SYMBOL_GP_RELATIVE
;
1421 /* Don't use GOT accesses for locally-binding symbols when -mno-shared
1424 && !(TARGET_ABSOLUTE_ABICALLS
&& mips_symbol_binds_local_p (x
)))
1426 /* There are three cases to consider:
1428 - o32 PIC (either with or without explicit relocs)
1429 - n32/n64 PIC without explicit relocs
1430 - n32/n64 PIC with explicit relocs
1432 In the first case, both local and global accesses will use an
1433 R_MIPS_GOT16 relocation. We must correctly predict which of
1434 the two semantics (local or global) the assembler and linker
1435 will apply. The choice depends on the symbol's binding rather
1436 than its visibility.
1438 In the second case, the assembler will not use R_MIPS_GOT16
1439 relocations, but it chooses between local and global accesses
1440 in the same way as for o32 PIC.
1442 In the third case we have more freedom since both forms of
1443 access will work for any kind of symbol. However, there seems
1444 little point in doing things differently. */
1445 if (mips_global_symbol_p (x
))
1446 return SYMBOL_GOT_DISP
;
1448 return SYMBOL_GOT_PAGE_OFST
;
1451 if (TARGET_MIPS16_PCREL_LOADS
&& context
!= SYMBOL_CONTEXT_CALL
)
1452 return SYMBOL_FORCE_TO_MEM
;
1454 return SYMBOL_ABSOLUTE
;
1457 /* Classify the base of symbolic expression X, given that X appears in
1460 static enum mips_symbol_type
1461 mips_classify_symbolic_expression (rtx x
, enum mips_symbol_context context
)
1465 split_const (x
, &x
, &offset
);
1466 if (UNSPEC_ADDRESS_P (x
))
1467 return UNSPEC_ADDRESS_TYPE (x
);
1469 return mips_classify_symbol (x
, context
);
1472 /* Return true if OFFSET is within the range [0, ALIGN), where ALIGN
1473 is the alignment in bytes of SYMBOL_REF X. */
1476 mips_offset_within_alignment_p (rtx x
, HOST_WIDE_INT offset
)
1478 HOST_WIDE_INT align
;
1480 align
= SYMBOL_REF_DECL (x
) ? DECL_ALIGN_UNIT (SYMBOL_REF_DECL (x
)) : 1;
1481 return IN_RANGE (offset
, 0, align
- 1);
1484 /* Return true if X is a symbolic constant that can be used in context
1485 CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */
1488 mips_symbolic_constant_p (rtx x
, enum mips_symbol_context context
,
1489 enum mips_symbol_type
*symbol_type
)
1493 split_const (x
, &x
, &offset
);
1494 if (UNSPEC_ADDRESS_P (x
))
1496 *symbol_type
= UNSPEC_ADDRESS_TYPE (x
);
1497 x
= UNSPEC_ADDRESS (x
);
1499 else if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
1501 *symbol_type
= mips_classify_symbol (x
, context
);
1502 if (*symbol_type
== SYMBOL_TLS
)
1508 if (offset
== const0_rtx
)
1511 /* Check whether a nonzero offset is valid for the underlying
1513 switch (*symbol_type
)
1515 case SYMBOL_ABSOLUTE
:
1516 case SYMBOL_FORCE_TO_MEM
:
1517 case SYMBOL_32_HIGH
:
1518 case SYMBOL_64_HIGH
:
1521 /* If the target has 64-bit pointers and the object file only
1522 supports 32-bit symbols, the values of those symbols will be
1523 sign-extended. In this case we can't allow an arbitrary offset
1524 in case the 32-bit value X + OFFSET has a different sign from X. */
1525 if (Pmode
== DImode
&& !ABI_HAS_64BIT_SYMBOLS
)
1526 return offset_within_block_p (x
, INTVAL (offset
));
1528 /* In other cases the relocations can handle any offset. */
1531 case SYMBOL_PC_RELATIVE
:
1532 /* Allow constant pool references to be converted to LABEL+CONSTANT.
1533 In this case, we no longer have access to the underlying constant,
1534 but the original symbol-based access was known to be valid. */
1535 if (GET_CODE (x
) == LABEL_REF
)
1540 case SYMBOL_GP_RELATIVE
:
1541 /* Make sure that the offset refers to something within the
1542 same object block. This should guarantee that the final
1543 PC- or GP-relative offset is within the 16-bit limit. */
1544 return offset_within_block_p (x
, INTVAL (offset
));
1546 case SYMBOL_GOT_PAGE_OFST
:
1547 case SYMBOL_GOTOFF_PAGE
:
1548 /* If the symbol is global, the GOT entry will contain the symbol's
1549 address, and we will apply a 16-bit offset after loading it.
1550 If the symbol is local, the linker should provide enough local
1551 GOT entries for a 16-bit offset, but larger offsets may lead
1553 return SMALL_INT (offset
);
1557 /* There is no carry between the HI and LO REL relocations, so the
1558 offset is only valid if we know it won't lead to such a carry. */
1559 return mips_offset_within_alignment_p (x
, INTVAL (offset
));
1561 case SYMBOL_GOT_DISP
:
1562 case SYMBOL_GOTOFF_DISP
:
1563 case SYMBOL_GOTOFF_CALL
:
1564 case SYMBOL_GOTOFF_LOADGP
:
1567 case SYMBOL_GOTTPREL
:
1575 /* Like mips_symbol_insns, but treat extended MIPS16 instructions as a
1576 single instruction. We rely on the fact that, in the worst case,
1577 all instructions involved in a MIPS16 address calculation are usually
1581 mips_symbol_insns_1 (enum mips_symbol_type type
, enum machine_mode mode
)
1585 case SYMBOL_ABSOLUTE
:
1586 /* When using 64-bit symbols, we need 5 preparatory instructions,
1589 lui $at,%highest(symbol)
1590 daddiu $at,$at,%higher(symbol)
1592 daddiu $at,$at,%hi(symbol)
1595 The final address is then $at + %lo(symbol). With 32-bit
1596 symbols we just need a preparatory LUI for normal mode and
1597 a preparatory LI and SLL for MIPS16. */
1598 return ABI_HAS_64BIT_SYMBOLS
? 6 : TARGET_MIPS16
? 3 : 2;
1600 case SYMBOL_GP_RELATIVE
:
1601 /* Treat GP-relative accesses as taking a single instruction on
1602 MIPS16 too; the copy of $gp can often be shared. */
1605 case SYMBOL_PC_RELATIVE
:
1606 /* PC-relative constants can be only be used with ADDIUPC,
1607 DADDIUPC, LWPC and LDPC. */
1608 if (mode
== MAX_MACHINE_MODE
1609 || GET_MODE_SIZE (mode
) == 4
1610 || GET_MODE_SIZE (mode
) == 8)
1613 /* The constant must be loaded using ADDIUPC or DADDIUPC first. */
1616 case SYMBOL_FORCE_TO_MEM
:
1617 /* LEAs will be converted into constant-pool references by
1619 if (mode
== MAX_MACHINE_MODE
)
1622 /* The constant must be loaded and then dereferenced. */
1625 case SYMBOL_GOT_DISP
:
1626 /* The constant will have to be loaded from the GOT before it
1627 is used in an address. */
1628 if (mode
!= MAX_MACHINE_MODE
)
1633 case SYMBOL_GOT_PAGE_OFST
:
1634 /* Unless -funit-at-a-time is in effect, we can't be sure whether the
1635 local/global classification is accurate. The worst cases are:
1637 (1) For local symbols when generating o32 or o64 code. The assembler
1643 ...and the final address will be $at + %lo(symbol).
1645 (2) For global symbols when -mxgot. The assembler will use:
1647 lui $at,%got_hi(symbol)
1650 ...and the final address will be $at + %got_lo(symbol). */
1653 case SYMBOL_GOTOFF_PAGE
:
1654 case SYMBOL_GOTOFF_DISP
:
1655 case SYMBOL_GOTOFF_CALL
:
1656 case SYMBOL_GOTOFF_LOADGP
:
1657 case SYMBOL_32_HIGH
:
1658 case SYMBOL_64_HIGH
:
1664 case SYMBOL_GOTTPREL
:
1667 /* A 16-bit constant formed by a single relocation, or a 32-bit
1668 constant formed from a high 16-bit relocation and a low 16-bit
1669 relocation. Use mips_split_p to determine which. 32-bit
1670 constants need an "lui; addiu" sequence for normal mode and
1671 an "li; sll; addiu" sequence for MIPS16 mode. */
1672 return !mips_split_p
[type
] ? 1 : TARGET_MIPS16
? 3 : 2;
1675 /* We don't treat a bare TLS symbol as a constant. */
1681 /* If MODE is MAX_MACHINE_MODE, return the number of instructions needed
1682 to load symbols of type TYPE into a register. Return 0 if the given
1683 type of symbol cannot be used as an immediate operand.
1685 Otherwise, return the number of instructions needed to load or store
1686 values of mode MODE to or from addresses of type TYPE. Return 0 if
1687 the given type of symbol is not valid in addresses.
1689 In both cases, treat extended MIPS16 instructions as two instructions. */
1692 mips_symbol_insns (enum mips_symbol_type type
, enum machine_mode mode
)
1694 return mips_symbol_insns_1 (type
, mode
) * (TARGET_MIPS16
? 2 : 1);
1697 /* A for_each_rtx callback. Stop the search if *X references a
1698 thread-local symbol. */
1701 mips_tls_symbol_ref_1 (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
1703 return mips_tls_symbol_p (*x
);
1706 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1709 mips_cannot_force_const_mem (rtx x
)
1715 /* As an optimization, reject constants that mips_legitimize_move
1718 Suppose we have a multi-instruction sequence that loads constant C
1719 into register R. If R does not get allocated a hard register, and
1720 R is used in an operand that allows both registers and memory
1721 references, reload will consider forcing C into memory and using
1722 one of the instruction's memory alternatives. Returning false
1723 here will force it to use an input reload instead. */
1724 if (GET_CODE (x
) == CONST_INT
)
1727 split_const (x
, &base
, &offset
);
1728 if (symbolic_operand (base
, VOIDmode
) && SMALL_INT (offset
))
1732 /* TLS symbols must be computed by mips_legitimize_move. */
1733 if (for_each_rtx (&x
, &mips_tls_symbol_ref_1
, NULL
))
1739 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. We can't use blocks for
1740 constants when we're using a per-function constant pool. */
1743 mips_use_blocks_for_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED
,
1744 const_rtx x ATTRIBUTE_UNUSED
)
1746 return !TARGET_MIPS16_PCREL_LOADS
;
1749 /* Return true if register REGNO is a valid base register for mode MODE.
1750 STRICT_P is true if REG_OK_STRICT is in effect. */
1753 mips_regno_mode_ok_for_base_p (int regno
, enum machine_mode mode
,
1756 if (!HARD_REGISTER_NUM_P (regno
))
1760 regno
= reg_renumber
[regno
];
1763 /* These fake registers will be eliminated to either the stack or
1764 hard frame pointer, both of which are usually valid base registers.
1765 Reload deals with the cases where the eliminated form isn't valid. */
1766 if (regno
== ARG_POINTER_REGNUM
|| regno
== FRAME_POINTER_REGNUM
)
1769 /* In MIPS16 mode, the stack pointer can only address word and doubleword
1770 values, nothing smaller. There are two problems here:
1772 (a) Instantiating virtual registers can introduce new uses of the
1773 stack pointer. If these virtual registers are valid addresses,
1774 the stack pointer should be too.
1776 (b) Most uses of the stack pointer are not made explicit until
1777 FRAME_POINTER_REGNUM and ARG_POINTER_REGNUM have been eliminated.
1778 We don't know until that stage whether we'll be eliminating to the
1779 stack pointer (which needs the restriction) or the hard frame
1780 pointer (which doesn't).
1782 All in all, it seems more consistent to only enforce this restriction
1783 during and after reload. */
1784 if (TARGET_MIPS16
&& regno
== STACK_POINTER_REGNUM
)
1785 return !strict_p
|| GET_MODE_SIZE (mode
) == 4 || GET_MODE_SIZE (mode
) == 8;
1787 return TARGET_MIPS16
? M16_REG_P (regno
) : GP_REG_P (regno
);
1790 /* Return true if X is a valid base register for mode MODE.
1791 STRICT_P is true if REG_OK_STRICT is in effect. */
1794 mips_valid_base_register_p (rtx x
, enum machine_mode mode
, bool strict_p
)
1796 if (!strict_p
&& GET_CODE (x
) == SUBREG
)
1800 && mips_regno_mode_ok_for_base_p (REGNO (x
), mode
, strict_p
));
1803 /* Return true if X is a valid address for machine mode MODE. If it is,
1804 fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
1808 mips_classify_address (struct mips_address_info
*info
, rtx x
,
1809 enum machine_mode mode
, bool strict_p
)
1811 switch (GET_CODE (x
))
1815 info
->type
= ADDRESS_REG
;
1817 info
->offset
= const0_rtx
;
1818 return mips_valid_base_register_p (info
->reg
, mode
, strict_p
);
1821 info
->type
= ADDRESS_REG
;
1822 info
->reg
= XEXP (x
, 0);
1823 info
->offset
= XEXP (x
, 1);
1824 return (mips_valid_base_register_p (info
->reg
, mode
, strict_p
)
1825 && const_arith_operand (info
->offset
, VOIDmode
));
1828 info
->type
= ADDRESS_LO_SUM
;
1829 info
->reg
= XEXP (x
, 0);
1830 info
->offset
= XEXP (x
, 1);
1831 /* We have to trust the creator of the LO_SUM to do something vaguely
1832 sane. Target-independent code that creates a LO_SUM should also
1833 create and verify the matching HIGH. Target-independent code that
1834 adds an offset to a LO_SUM must prove that the offset will not
1835 induce a carry. Failure to do either of these things would be
1836 a bug, and we are not required to check for it here. The MIPS
1837 backend itself should only create LO_SUMs for valid symbolic
1838 constants, with the high part being either a HIGH or a copy
1841 = mips_classify_symbolic_expression (info
->offset
, SYMBOL_CONTEXT_MEM
);
1842 return (mips_valid_base_register_p (info
->reg
, mode
, strict_p
)
1843 && mips_symbol_insns (info
->symbol_type
, mode
) > 0
1844 && mips_lo_relocs
[info
->symbol_type
] != 0);
1847 /* Small-integer addresses don't occur very often, but they
1848 are legitimate if $0 is a valid base register. */
1849 info
->type
= ADDRESS_CONST_INT
;
1850 return !TARGET_MIPS16
&& SMALL_INT (x
);
1855 info
->type
= ADDRESS_SYMBOLIC
;
1856 return (mips_symbolic_constant_p (x
, SYMBOL_CONTEXT_MEM
,
1858 && mips_symbol_insns (info
->symbol_type
, mode
) > 0
1859 && !mips_split_p
[info
->symbol_type
]);
1866 /* Return true if X is a legitimate address for a memory operand of mode
1867 MODE. STRICT_P is true if REG_OK_STRICT is in effect. */
1870 mips_legitimate_address_p (enum machine_mode mode
, rtx x
, bool strict_p
)
1872 struct mips_address_info addr
;
1874 return mips_classify_address (&addr
, x
, mode
, strict_p
);
1877 /* Return true if X is a legitimate $sp-based address for mode MDOE. */
1880 mips_stack_address_p (rtx x
, enum machine_mode mode
)
1882 struct mips_address_info addr
;
1884 return (mips_classify_address (&addr
, x
, mode
, false)
1885 && addr
.type
== ADDRESS_REG
1886 && addr
.reg
== stack_pointer_rtx
);
1889 /* Return true if ADDR matches the pattern for the LWXS load scaled indexed
1890 address instruction. Note that such addresses are not considered
1891 legitimate in the GO_IF_LEGITIMATE_ADDRESS sense, because their use
1892 is so restricted. */
1895 mips_lwxs_address_p (rtx addr
)
1898 && GET_CODE (addr
) == PLUS
1899 && REG_P (XEXP (addr
, 1)))
1901 rtx offset
= XEXP (addr
, 0);
1902 if (GET_CODE (offset
) == MULT
1903 && REG_P (XEXP (offset
, 0))
1904 && GET_CODE (XEXP (offset
, 1)) == CONST_INT
1905 && INTVAL (XEXP (offset
, 1)) == 4)
1911 /* Return true if a value at OFFSET bytes from base register BASE can be
1912 accessed using an unextended MIPS16 instruction. MODE is the mode of
1915 Usually the offset in an unextended instruction is a 5-bit field.
1916 The offset is unsigned and shifted left once for LH and SH, twice
1917 for LW and SW, and so on. An exception is LWSP and SWSP, which have
1918 an 8-bit immediate field that's shifted left twice. */
1921 mips16_unextended_reference_p (enum machine_mode mode
, rtx base
,
1922 unsigned HOST_WIDE_INT offset
)
1924 if (offset
% GET_MODE_SIZE (mode
) == 0)
1926 if (GET_MODE_SIZE (mode
) == 4 && base
== stack_pointer_rtx
)
1927 return offset
< 256U * GET_MODE_SIZE (mode
);
1928 return offset
< 32U * GET_MODE_SIZE (mode
);
1933 /* Return the number of instructions needed to load or store a value
1934 of mode MODE at address X. Return 0 if X isn't valid for MODE.
1935 Assume that multiword moves may need to be split into word moves
1936 if MIGHT_SPLIT_P, otherwise assume that a single load or store is
1939 For MIPS16 code, count extended instructions as two instructions. */
1942 mips_address_insns (rtx x
, enum machine_mode mode
, bool might_split_p
)
1944 struct mips_address_info addr
;
1947 /* BLKmode is used for single unaligned loads and stores and should
1948 not count as a multiword mode. (GET_MODE_SIZE (BLKmode) is pretty
1949 meaningless, so we have to single it out as a special case one way
1951 if (mode
!= BLKmode
&& might_split_p
)
1952 factor
= (GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
1956 if (mips_classify_address (&addr
, x
, mode
, false))
1961 && !mips16_unextended_reference_p (mode
, addr
.reg
,
1962 UINTVAL (addr
.offset
)))
1966 case ADDRESS_LO_SUM
:
1967 return TARGET_MIPS16
? factor
* 2 : factor
;
1969 case ADDRESS_CONST_INT
:
1972 case ADDRESS_SYMBOLIC
:
1973 return factor
* mips_symbol_insns (addr
.symbol_type
, mode
);
1978 /* Return the number of instructions needed to load constant X.
1979 Return 0 if X isn't a valid constant. */
1982 mips_const_insns (rtx x
)
1984 struct mips_integer_op codes
[MIPS_MAX_INTEGER_OPS
];
1985 enum mips_symbol_type symbol_type
;
1988 switch (GET_CODE (x
))
1991 if (!mips_symbolic_constant_p (XEXP (x
, 0), SYMBOL_CONTEXT_LEA
,
1993 || !mips_split_p
[symbol_type
])
1996 /* This is simply an LUI for normal mode. It is an extended
1997 LI followed by an extended SLL for MIPS16. */
1998 return TARGET_MIPS16
? 4 : 1;
2002 /* Unsigned 8-bit constants can be loaded using an unextended
2003 LI instruction. Unsigned 16-bit constants can be loaded
2004 using an extended LI. Negative constants must be loaded
2005 using LI and then negated. */
2006 return (IN_RANGE (INTVAL (x
), 0, 255) ? 1
2007 : SMALL_OPERAND_UNSIGNED (INTVAL (x
)) ? 2
2008 : IN_RANGE (-INTVAL (x
), 0, 255) ? 2
2009 : SMALL_OPERAND_UNSIGNED (-INTVAL (x
)) ? 3
2012 return mips_build_integer (codes
, INTVAL (x
));
2016 /* Allow zeros for normal mode, where we can use $0. */
2017 return !TARGET_MIPS16
&& x
== CONST0_RTX (GET_MODE (x
)) ? 1 : 0;
2023 /* See if we can refer to X directly. */
2024 if (mips_symbolic_constant_p (x
, SYMBOL_CONTEXT_LEA
, &symbol_type
))
2025 return mips_symbol_insns (symbol_type
, MAX_MACHINE_MODE
);
2027 /* Otherwise try splitting the constant into a base and offset.
2028 16-bit offsets can be added using an extra ADDIU. Larger offsets
2029 must be calculated separately and then added to the base. */
2030 split_const (x
, &x
, &offset
);
2033 int n
= mips_const_insns (x
);
2036 if (SMALL_INT (offset
))
2039 return n
+ 1 + mips_build_integer (codes
, INTVAL (offset
));
2046 return mips_symbol_insns (mips_classify_symbol (x
, SYMBOL_CONTEXT_LEA
),
2054 /* Return the number of instructions needed to implement INSN,
2055 given that it loads from or stores to MEM. Count extended
2056 MIPS16 instructions as two instructions. */
2059 mips_load_store_insns (rtx mem
, rtx insn
)
2061 enum machine_mode mode
;
2065 gcc_assert (MEM_P (mem
));
2066 mode
= GET_MODE (mem
);
2068 /* Try to prove that INSN does not need to be split. */
2069 might_split_p
= true;
2070 if (GET_MODE_BITSIZE (mode
) == 64)
2072 set
= single_set (insn
);
2073 if (set
&& !mips_split_64bit_move_p (SET_DEST (set
), SET_SRC (set
)))
2074 might_split_p
= false;
2077 return mips_address_insns (XEXP (mem
, 0), mode
, might_split_p
);
2080 /* Return the number of instructions needed for an integer division. */
2083 mips_idiv_insns (void)
2088 if (TARGET_CHECK_ZERO_DIV
)
2090 if (GENERATE_DIVIDE_TRAPS
)
2096 if (TARGET_FIX_R4000
|| TARGET_FIX_R4400
)
2101 /* Emit a move from SRC to DEST. Assume that the move expanders can
2102 handle all moves if !can_create_pseudo_p (). The distinction is
2103 important because, unlike emit_move_insn, the move expanders know
2104 how to force Pmode objects into the constant pool even when the
2105 constant pool address is not itself legitimate. */
2108 mips_emit_move (rtx dest
, rtx src
)
2110 return (can_create_pseudo_p ()
2111 ? emit_move_insn (dest
, src
)
2112 : emit_move_insn_1 (dest
, src
));
2115 /* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
2118 mips_emit_binary (enum rtx_code code
, rtx target
, rtx op0
, rtx op1
)
2120 emit_insn (gen_rtx_SET (VOIDmode
, target
,
2121 gen_rtx_fmt_ee (code
, GET_MODE (target
), op0
, op1
)));
2124 /* Copy VALUE to a register and return that register. If new pseudos
2125 are allowed, copy it into a new register, otherwise use DEST. */
2128 mips_force_temporary (rtx dest
, rtx value
)
2130 if (can_create_pseudo_p ())
2131 return force_reg (Pmode
, value
);
2134 mips_emit_move (dest
, value
);
2139 /* Return a pseudo register that contains the value of $gp throughout
2140 the current function. Such registers are needed by MIPS16 functions,
2141 for which $gp itself is not a valid base register or addition operand. */
2144 mips16_gp_pseudo_reg (void)
2146 if (cfun
->machine
->mips16_gp_pseudo_rtx
== NULL_RTX
)
2147 cfun
->machine
->mips16_gp_pseudo_rtx
= gen_reg_rtx (Pmode
);
2149 /* Don't emit an instruction to initialize the pseudo register if
2150 we are being called from the tree optimizers' cost-calculation
2152 if (!cfun
->machine
->initialized_mips16_gp_pseudo_p
2153 && (current_ir_type () != IR_GIMPLE
|| currently_expanding_to_rtl
))
2155 rtx insn
, scan
, after
;
2157 /* We want GCC to treat the register's value as constant, so that
2158 it can be rematerialized on demand. */
2159 insn
= gen_load_const_gp (cfun
->machine
->mips16_gp_pseudo_rtx
);
2161 push_topmost_sequence ();
2162 /* We need to emit the initialization after the FUNCTION_BEG
2163 note, so that it will be integrated. */
2164 after
= get_insns ();
2165 for (scan
= after
; scan
!= NULL_RTX
; scan
= NEXT_INSN (scan
))
2166 if (NOTE_P (scan
) && NOTE_KIND (scan
) == NOTE_INSN_FUNCTION_BEG
)
2171 insn
= emit_insn_after (insn
, after
);
2172 pop_topmost_sequence ();
2174 cfun
->machine
->initialized_mips16_gp_pseudo_p
= true;
2177 return cfun
->machine
->mips16_gp_pseudo_rtx
;
2180 /* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
2181 it appears in a MEM of that mode. Return true if ADDR is a legitimate
2182 constant in that context and can be split into a high part and a LO_SUM.
2183 If so, and if LO_SUM_OUT is nonnull, emit the high part and return
2184 the LO_SUM in *LO_SUM_OUT. Leave *LO_SUM_OUT unchanged otherwise.
2186 TEMP is as for mips_force_temporary and is used to load the high
2187 part into a register. */
2190 mips_split_symbol (rtx temp
, rtx addr
, enum machine_mode mode
, rtx
*lo_sum_out
)
2192 enum mips_symbol_context context
;
2193 enum mips_symbol_type symbol_type
;
2196 context
= (mode
== MAX_MACHINE_MODE
2197 ? SYMBOL_CONTEXT_LEA
2198 : SYMBOL_CONTEXT_MEM
);
2199 if (!mips_symbolic_constant_p (addr
, context
, &symbol_type
)
2200 || mips_symbol_insns (symbol_type
, mode
) == 0
2201 || !mips_split_p
[symbol_type
])
2206 if (symbol_type
== SYMBOL_GP_RELATIVE
)
2208 if (!can_create_pseudo_p ())
2210 emit_insn (gen_load_const_gp (temp
));
2214 high
= mips16_gp_pseudo_reg ();
2218 high
= gen_rtx_HIGH (Pmode
, copy_rtx (addr
));
2219 high
= mips_force_temporary (temp
, high
);
2221 *lo_sum_out
= gen_rtx_LO_SUM (Pmode
, high
, addr
);
2226 /* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
2227 then add CONST_INT OFFSET to the result. */
2230 mips_unspec_address_offset (rtx base
, rtx offset
,
2231 enum mips_symbol_type symbol_type
)
2233 base
= gen_rtx_UNSPEC (Pmode
, gen_rtvec (1, base
),
2234 UNSPEC_ADDRESS_FIRST
+ symbol_type
);
2235 if (offset
!= const0_rtx
)
2236 base
= gen_rtx_PLUS (Pmode
, base
, offset
);
2237 return gen_rtx_CONST (Pmode
, base
);
2240 /* Return an UNSPEC address with underlying address ADDRESS and symbol
2241 type SYMBOL_TYPE. */
2244 mips_unspec_address (rtx address
, enum mips_symbol_type symbol_type
)
2248 split_const (address
, &base
, &offset
);
2249 return mips_unspec_address_offset (base
, offset
, symbol_type
);
2252 /* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
2253 high part to BASE and return the result. Just return BASE otherwise.
2254 TEMP is as for mips_force_temporary.
2256 The returned expression can be used as the first operand to a LO_SUM. */
2259 mips_unspec_offset_high (rtx temp
, rtx base
, rtx addr
,
2260 enum mips_symbol_type symbol_type
)
2262 if (mips_split_p
[symbol_type
])
2264 addr
= gen_rtx_HIGH (Pmode
, mips_unspec_address (addr
, symbol_type
));
2265 addr
= mips_force_temporary (temp
, addr
);
2266 base
= mips_force_temporary (temp
, gen_rtx_PLUS (Pmode
, addr
, base
));
2271 /* Return a legitimate address for REG + OFFSET. TEMP is as for
2272 mips_force_temporary; it is only needed when OFFSET is not a
2276 mips_add_offset (rtx temp
, rtx reg
, HOST_WIDE_INT offset
)
2278 if (!SMALL_OPERAND (offset
))
2284 /* Load the full offset into a register so that we can use
2285 an unextended instruction for the address itself. */
2286 high
= GEN_INT (offset
);
2291 /* Leave OFFSET as a 16-bit offset and put the excess in HIGH. */
2292 high
= GEN_INT (CONST_HIGH_PART (offset
));
2293 offset
= CONST_LOW_PART (offset
);
2295 high
= mips_force_temporary (temp
, high
);
2296 reg
= mips_force_temporary (temp
, gen_rtx_PLUS (Pmode
, high
, reg
));
2298 return plus_constant (reg
, offset
);
2301 /* The __tls_get_attr symbol. */
2302 static GTY(()) rtx mips_tls_symbol
;
2304 /* Return an instruction sequence that calls __tls_get_addr. SYM is
2305 the TLS symbol we are referencing and TYPE is the symbol type to use
2306 (either global dynamic or local dynamic). V0 is an RTX for the
2307 return value location. */
2310 mips_call_tls_get_addr (rtx sym
, enum mips_symbol_type type
, rtx v0
)
2312 rtx insn
, loc
, tga
, a0
;
2314 a0
= gen_rtx_REG (Pmode
, GP_ARG_FIRST
);
2316 if (!mips_tls_symbol
)
2317 mips_tls_symbol
= init_one_libfunc ("__tls_get_addr");
2319 loc
= mips_unspec_address (sym
, type
);
2323 emit_insn (gen_rtx_SET (Pmode
, a0
,
2324 gen_rtx_LO_SUM (Pmode
, pic_offset_table_rtx
, loc
)));
2325 tga
= gen_const_mem (Pmode
, mips_tls_symbol
);
2326 insn
= emit_call_insn (gen_call_value (v0
, tga
, const0_rtx
, const0_rtx
));
2327 CONST_OR_PURE_CALL_P (insn
) = 1;
2328 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), a0
);
2329 insn
= get_insns ();
2336 /* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
2337 its address. The return value will be both a valid address and a valid
2338 SET_SRC (either a REG or a LO_SUM). */
2341 mips_legitimize_tls_address (rtx loc
)
2343 rtx dest
, insn
, v0
, v1
, tmp1
, tmp2
, eqv
;
2344 enum tls_model model
;
2348 sorry ("MIPS16 TLS");
2349 return gen_reg_rtx (Pmode
);
2352 model
= SYMBOL_REF_TLS_MODEL (loc
);
2353 /* Only TARGET_ABICALLS code can have more than one module; other
2354 code must be be static and should not use a GOT. All TLS models
2355 reduce to local exec in this situation. */
2356 if (!TARGET_ABICALLS
)
2357 model
= TLS_MODEL_LOCAL_EXEC
;
2361 case TLS_MODEL_GLOBAL_DYNAMIC
:
2362 v0
= gen_rtx_REG (Pmode
, GP_RETURN
);
2363 insn
= mips_call_tls_get_addr (loc
, SYMBOL_TLSGD
, v0
);
2364 dest
= gen_reg_rtx (Pmode
);
2365 emit_libcall_block (insn
, dest
, v0
, loc
);
2368 case TLS_MODEL_LOCAL_DYNAMIC
:
2369 v0
= gen_rtx_REG (Pmode
, GP_RETURN
);
2370 insn
= mips_call_tls_get_addr (loc
, SYMBOL_TLSLDM
, v0
);
2371 tmp1
= gen_reg_rtx (Pmode
);
2373 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2374 share the LDM result with other LD model accesses. */
2375 eqv
= gen_rtx_UNSPEC (Pmode
, gen_rtvec (1, const0_rtx
),
2377 emit_libcall_block (insn
, tmp1
, v0
, eqv
);
2379 tmp2
= mips_unspec_offset_high (NULL
, tmp1
, loc
, SYMBOL_DTPREL
);
2380 dest
= gen_rtx_LO_SUM (Pmode
, tmp2
,
2381 mips_unspec_address (loc
, SYMBOL_DTPREL
));
2384 case TLS_MODEL_INITIAL_EXEC
:
2385 v1
= gen_rtx_REG (Pmode
, GP_RETURN
+ 1);
2386 tmp1
= gen_reg_rtx (Pmode
);
2387 tmp2
= mips_unspec_address (loc
, SYMBOL_GOTTPREL
);
2388 if (Pmode
== DImode
)
2390 emit_insn (gen_tls_get_tp_di (v1
));
2391 emit_insn (gen_load_gotdi (tmp1
, pic_offset_table_rtx
, tmp2
));
2395 emit_insn (gen_tls_get_tp_si (v1
));
2396 emit_insn (gen_load_gotsi (tmp1
, pic_offset_table_rtx
, tmp2
));
2398 dest
= gen_reg_rtx (Pmode
);
2399 emit_insn (gen_add3_insn (dest
, tmp1
, v1
));
2402 case TLS_MODEL_LOCAL_EXEC
:
2403 v1
= gen_rtx_REG (Pmode
, GP_RETURN
+ 1);
2404 if (Pmode
== DImode
)
2405 emit_insn (gen_tls_get_tp_di (v1
));
2407 emit_insn (gen_tls_get_tp_si (v1
));
2409 tmp1
= mips_unspec_offset_high (NULL
, v1
, loc
, SYMBOL_TPREL
);
2410 dest
= gen_rtx_LO_SUM (Pmode
, tmp1
,
2411 mips_unspec_address (loc
, SYMBOL_TPREL
));
2420 /* This function is used to implement LEGITIMIZE_ADDRESS. If *XLOC can
2421 be legitimized in a way that the generic machinery might not expect,
2422 put the new address in *XLOC and return true. MODE is the mode of
2423 the memory being accessed. */
2426 mips_legitimize_address (rtx
*xloc
, enum machine_mode mode
)
2429 HOST_WIDE_INT offset
;
2431 if (mips_tls_symbol_p (*xloc
))
2433 *xloc
= mips_legitimize_tls_address (*xloc
);
2437 /* See if the address can split into a high part and a LO_SUM. */
2438 if (mips_split_symbol (NULL
, *xloc
, mode
, xloc
))
2441 /* Handle BASE + OFFSET using mips_add_offset. */
2442 mips_split_plus (*xloc
, &base
, &offset
);
2445 if (!mips_valid_base_register_p (base
, mode
, false))
2446 base
= copy_to_mode_reg (Pmode
, base
);
2447 *xloc
= mips_add_offset (NULL
, base
, offset
);
2453 /* Load VALUE into DEST. TEMP is as for mips_force_temporary. */
2456 mips_move_integer (rtx temp
, rtx dest
, unsigned HOST_WIDE_INT value
)
2458 struct mips_integer_op codes
[MIPS_MAX_INTEGER_OPS
];
2459 enum machine_mode mode
;
2460 unsigned int i
, num_ops
;
2463 mode
= GET_MODE (dest
);
2464 num_ops
= mips_build_integer (codes
, value
);
2466 /* Apply each binary operation to X. Invariant: X is a legitimate
2467 source operand for a SET pattern. */
2468 x
= GEN_INT (codes
[0].value
);
2469 for (i
= 1; i
< num_ops
; i
++)
2471 if (!can_create_pseudo_p ())
2473 emit_insn (gen_rtx_SET (VOIDmode
, temp
, x
));
2477 x
= force_reg (mode
, x
);
2478 x
= gen_rtx_fmt_ee (codes
[i
].code
, mode
, x
, GEN_INT (codes
[i
].value
));
2481 emit_insn (gen_rtx_SET (VOIDmode
, dest
, x
));
2484 /* Subroutine of mips_legitimize_move. Move constant SRC into register
2485 DEST given that SRC satisfies immediate_operand but doesn't satisfy
2489 mips_legitimize_const_move (enum machine_mode mode
, rtx dest
, rtx src
)
2493 /* Split moves of big integers into smaller pieces. */
2494 if (splittable_const_int_operand (src
, mode
))
2496 mips_move_integer (dest
, dest
, INTVAL (src
));
2500 /* Split moves of symbolic constants into high/low pairs. */
2501 if (mips_split_symbol (dest
, src
, MAX_MACHINE_MODE
, &src
))
2503 emit_insn (gen_rtx_SET (VOIDmode
, dest
, src
));
2507 /* Generate the appropriate access sequences for TLS symbols. */
2508 if (mips_tls_symbol_p (src
))
2510 mips_emit_move (dest
, mips_legitimize_tls_address (src
));
2514 /* If we have (const (plus symbol offset)), and that expression cannot
2515 be forced into memory, load the symbol first and add in the offset.
2516 In non-MIPS16 mode, prefer to do this even if the constant _can_ be
2517 forced into memory, as it usually produces better code. */
2518 split_const (src
, &base
, &offset
);
2519 if (offset
!= const0_rtx
2520 && (targetm
.cannot_force_const_mem (src
)
2521 || (!TARGET_MIPS16
&& can_create_pseudo_p ())))
2523 base
= mips_force_temporary (dest
, base
);
2524 mips_emit_move (dest
, mips_add_offset (NULL
, base
, INTVAL (offset
)));
2528 src
= force_const_mem (mode
, src
);
2530 /* When using explicit relocs, constant pool references are sometimes
2531 not legitimate addresses. */
2532 mips_split_symbol (dest
, XEXP (src
, 0), mode
, &XEXP (src
, 0));
2533 mips_emit_move (dest
, src
);
2536 /* If (set DEST SRC) is not a valid move instruction, emit an equivalent
2537 sequence that is valid. */
2540 mips_legitimize_move (enum machine_mode mode
, rtx dest
, rtx src
)
2542 if (!register_operand (dest
, mode
) && !reg_or_0_operand (src
, mode
))
2544 mips_emit_move (dest
, force_reg (mode
, src
));
2548 /* Check for individual, fully-reloaded mflo and mfhi instructions. */
2549 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
2550 && REG_P (src
) && MD_REG_P (REGNO (src
))
2551 && REG_P (dest
) && GP_REG_P (REGNO (dest
)))
2553 int other_regno
= REGNO (src
) == HI_REGNUM
? LO_REGNUM
: HI_REGNUM
;
2554 if (GET_MODE_SIZE (mode
) <= 4)
2555 emit_insn (gen_mfhilo_si (gen_lowpart (SImode
, dest
),
2556 gen_lowpart (SImode
, src
),
2557 gen_rtx_REG (SImode
, other_regno
)));
2559 emit_insn (gen_mfhilo_di (gen_lowpart (DImode
, dest
),
2560 gen_lowpart (DImode
, src
),
2561 gen_rtx_REG (DImode
, other_regno
)));
2565 /* We need to deal with constants that would be legitimate
2566 immediate_operands but aren't legitimate move_operands. */
2567 if (CONSTANT_P (src
) && !move_operand (src
, mode
))
2569 mips_legitimize_const_move (mode
, dest
, src
);
2570 set_unique_reg_note (get_last_insn (), REG_EQUAL
, copy_rtx (src
));
2576 /* Return true if value X in context CONTEXT is a small-data address
2577 that can be rewritten as a LO_SUM. */
2580 mips_rewrite_small_data_p (rtx x
, enum mips_symbol_context context
)
2582 enum mips_symbol_type symbol_type
;
2584 return (TARGET_EXPLICIT_RELOCS
2585 && mips_symbolic_constant_p (x
, context
, &symbol_type
)
2586 && symbol_type
== SYMBOL_GP_RELATIVE
);
2589 /* A for_each_rtx callback for mips_small_data_pattern_p. DATA is the
2590 containing MEM, or null if none. */
2593 mips_small_data_pattern_1 (rtx
*loc
, void *data
)
2595 enum mips_symbol_context context
;
2597 if (GET_CODE (*loc
) == LO_SUM
)
2602 if (for_each_rtx (&XEXP (*loc
, 0), mips_small_data_pattern_1
, *loc
))
2607 context
= data
? SYMBOL_CONTEXT_MEM
: SYMBOL_CONTEXT_LEA
;
2608 return mips_rewrite_small_data_p (*loc
, context
);
2611 /* Return true if OP refers to small data symbols directly, not through
2615 mips_small_data_pattern_p (rtx op
)
2617 return for_each_rtx (&op
, mips_small_data_pattern_1
, NULL
);
2620 /* A for_each_rtx callback, used by mips_rewrite_small_data.
2621 DATA is the containing MEM, or null if none. */
2624 mips_rewrite_small_data_1 (rtx
*loc
, void *data
)
2626 enum mips_symbol_context context
;
2630 for_each_rtx (&XEXP (*loc
, 0), mips_rewrite_small_data_1
, *loc
);
2634 context
= data
? SYMBOL_CONTEXT_MEM
: SYMBOL_CONTEXT_LEA
;
2635 if (mips_rewrite_small_data_p (*loc
, context
))
2636 *loc
= gen_rtx_LO_SUM (Pmode
, pic_offset_table_rtx
, *loc
);
2638 if (GET_CODE (*loc
) == LO_SUM
)
2644 /* Rewrite instruction pattern PATTERN so that it refers to small data
2645 using explicit relocations. */
2648 mips_rewrite_small_data (rtx pattern
)
2650 pattern
= copy_insn (pattern
);
2651 for_each_rtx (&pattern
, mips_rewrite_small_data_1
, NULL
);
2655 /* We need a lot of little routines to check the range of MIPS16 immediate
2659 m16_check_op (rtx op
, int low
, int high
, int mask
)
2661 return (GET_CODE (op
) == CONST_INT
2662 && IN_RANGE (INTVAL (op
), low
, high
)
2663 && (INTVAL (op
) & mask
) == 0);
2667 m16_uimm3_b (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2669 return m16_check_op (op
, 0x1, 0x8, 0);
2673 m16_simm4_1 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2675 return m16_check_op (op
, -0x8, 0x7, 0);
2679 m16_nsimm4_1 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2681 return m16_check_op (op
, -0x7, 0x8, 0);
2685 m16_simm5_1 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2687 return m16_check_op (op
, -0x10, 0xf, 0);
2691 m16_nsimm5_1 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2693 return m16_check_op (op
, -0xf, 0x10, 0);
2697 m16_uimm5_4 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2699 return m16_check_op (op
, -0x10 << 2, 0xf << 2, 3);
2703 m16_nuimm5_4 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2705 return m16_check_op (op
, -0xf << 2, 0x10 << 2, 3);
2709 m16_simm8_1 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2711 return m16_check_op (op
, -0x80, 0x7f, 0);
2715 m16_nsimm8_1 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2717 return m16_check_op (op
, -0x7f, 0x80, 0);
2721 m16_uimm8_1 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2723 return m16_check_op (op
, 0x0, 0xff, 0);
2727 m16_nuimm8_1 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2729 return m16_check_op (op
, -0xff, 0x0, 0);
2733 m16_uimm8_m1_1 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2735 return m16_check_op (op
, -0x1, 0xfe, 0);
2739 m16_uimm8_4 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2741 return m16_check_op (op
, 0x0, 0xff << 2, 3);
2745 m16_nuimm8_4 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2747 return m16_check_op (op
, -0xff << 2, 0x0, 3);
2751 m16_simm8_8 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2753 return m16_check_op (op
, -0x80 << 3, 0x7f << 3, 7);
2757 m16_nsimm8_8 (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2759 return m16_check_op (op
, -0x7f << 3, 0x80 << 3, 7);
2762 /* The cost of loading values from the constant pool. It should be
2763 larger than the cost of any constant we want to synthesize inline. */
2764 #define CONSTANT_POOL_COST COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 8)
2766 /* Return the cost of X when used as an operand to the MIPS16 instruction
2767 that implements CODE. Return -1 if there is no such instruction, or if
2768 X is not a valid immediate operand for it. */
2771 mips16_constant_cost (int code
, HOST_WIDE_INT x
)
2778 /* Shifts by between 1 and 8 bits (inclusive) are unextended,
2779 other shifts are extended. The shift patterns truncate the shift
2780 count to the right size, so there are no out-of-range values. */
2781 if (IN_RANGE (x
, 1, 8))
2783 return COSTS_N_INSNS (1);
2786 if (IN_RANGE (x
, -128, 127))
2788 if (SMALL_OPERAND (x
))
2789 return COSTS_N_INSNS (1);
2793 /* Like LE, but reject the always-true case. */
2797 /* We add 1 to the immediate and use SLT. */
2800 /* We can use CMPI for an xor with an unsigned 16-bit X. */
2803 if (IN_RANGE (x
, 0, 255))
2805 if (SMALL_OPERAND_UNSIGNED (x
))
2806 return COSTS_N_INSNS (1);
2811 /* Equality comparisons with 0 are cheap. */
2821 /* Return true if there is a non-MIPS16 instruction that implements CODE
2822 and if that instruction accepts X as an immediate operand. */
2825 mips_immediate_operand_p (int code
, HOST_WIDE_INT x
)
2832 /* All shift counts are truncated to a valid constant. */
2837 /* Likewise rotates, if the target supports rotates at all. */
2843 /* These instructions take 16-bit unsigned immediates. */
2844 return SMALL_OPERAND_UNSIGNED (x
);
2849 /* These instructions take 16-bit signed immediates. */
2850 return SMALL_OPERAND (x
);
2856 /* The "immediate" forms of these instructions are really
2857 implemented as comparisons with register 0. */
2862 /* Likewise, meaning that the only valid immediate operand is 1. */
2866 /* We add 1 to the immediate and use SLT. */
2867 return SMALL_OPERAND (x
+ 1);
2870 /* Likewise SLTU, but reject the always-true case. */
2871 return SMALL_OPERAND (x
+ 1) && x
+ 1 != 0;
2875 /* The bit position and size are immediate operands. */
2876 return ISA_HAS_EXT_INS
;
2879 /* By default assume that $0 can be used for 0. */
2884 /* Return the cost of binary operation X, given that the instruction
2885 sequence for a word-sized or smaller operation has cost SINGLE_COST
2886 and that the sequence of a double-word operation has cost DOUBLE_COST. */
2889 mips_binary_cost (rtx x
, int single_cost
, int double_cost
)
2893 if (GET_MODE_SIZE (GET_MODE (x
)) == UNITS_PER_WORD
* 2)
2898 + rtx_cost (XEXP (x
, 0), 0)
2899 + rtx_cost (XEXP (x
, 1), GET_CODE (x
)));
2902 /* Return the cost of floating-point multiplications of mode MODE. */
2905 mips_fp_mult_cost (enum machine_mode mode
)
2907 return mode
== DFmode
? mips_cost
->fp_mult_df
: mips_cost
->fp_mult_sf
;
2910 /* Return the cost of floating-point divisions of mode MODE. */
2913 mips_fp_div_cost (enum machine_mode mode
)
2915 return mode
== DFmode
? mips_cost
->fp_div_df
: mips_cost
->fp_div_sf
;
2918 /* Return the cost of sign-extending OP to mode MODE, not including the
2919 cost of OP itself. */
2922 mips_sign_extend_cost (enum machine_mode mode
, rtx op
)
2925 /* Extended loads are as cheap as unextended ones. */
2928 if (TARGET_64BIT
&& mode
== DImode
&& GET_MODE (op
) == SImode
)
2929 /* A sign extension from SImode to DImode in 64-bit mode is free. */
2932 if (ISA_HAS_SEB_SEH
|| GENERATE_MIPS16E
)
2933 /* We can use SEB or SEH. */
2934 return COSTS_N_INSNS (1);
2936 /* We need to use a shift left and a shift right. */
2937 return COSTS_N_INSNS (TARGET_MIPS16
? 4 : 2);
2940 /* Return the cost of zero-extending OP to mode MODE, not including the
2941 cost of OP itself. */
2944 mips_zero_extend_cost (enum machine_mode mode
, rtx op
)
2947 /* Extended loads are as cheap as unextended ones. */
2950 if (TARGET_64BIT
&& mode
== DImode
&& GET_MODE (op
) == SImode
)
2951 /* We need a shift left by 32 bits and a shift right by 32 bits. */
2952 return COSTS_N_INSNS (TARGET_MIPS16
? 4 : 2);
2954 if (GENERATE_MIPS16E
)
2955 /* We can use ZEB or ZEH. */
2956 return COSTS_N_INSNS (1);
2959 /* We need to load 0xff or 0xffff into a register and use AND. */
2960 return COSTS_N_INSNS (GET_MODE (op
) == QImode
? 2 : 3);
2962 /* We can use ANDI. */
2963 return COSTS_N_INSNS (1);
2966 /* Implement TARGET_RTX_COSTS. */
2969 mips_rtx_costs (rtx x
, int code
, int outer_code
, int *total
)
2971 enum machine_mode mode
= GET_MODE (x
);
2972 bool float_mode_p
= FLOAT_MODE_P (mode
);
2976 /* The cost of a COMPARE is hard to define for MIPS. COMPAREs don't
2977 appear in the instruction stream, and the cost of a comparison is
2978 really the cost of the branch or scc condition. At the time of
2979 writing, GCC only uses an explicit outer COMPARE code when optabs
2980 is testing whether a constant is expensive enough to force into a
2981 register. We want optabs to pass such constants through the MIPS
2982 expanders instead, so make all constants very cheap here. */
2983 if (outer_code
== COMPARE
)
2985 gcc_assert (CONSTANT_P (x
));
2993 /* Treat *clear_upper32-style ANDs as having zero cost in the
2994 second operand. The cost is entirely in the first operand.
2996 ??? This is needed because we would otherwise try to CSE
2997 the constant operand. Although that's the right thing for
2998 instructions that continue to be a register operation throughout
2999 compilation, it is disastrous for instructions that could
3000 later be converted into a memory operation. */
3002 && outer_code
== AND
3003 && UINTVAL (x
) == 0xffffffff)
3011 cost
= mips16_constant_cost (outer_code
, INTVAL (x
));
3020 /* When not optimizing for size, we care more about the cost
3021 of hot code, and hot code is often in a loop. If a constant
3022 operand needs to be forced into a register, we will often be
3023 able to hoist the constant load out of the loop, so the load
3024 should not contribute to the cost. */
3026 || mips_immediate_operand_p (outer_code
, INTVAL (x
)))
3038 if (force_to_mem_operand (x
, VOIDmode
))
3040 *total
= COSTS_N_INSNS (1);
3043 cost
= mips_const_insns (x
);
3046 /* If the constant is likely to be stored in a GPR, SETs of
3047 single-insn constants are as cheap as register sets; we
3048 never want to CSE them.
3050 Don't reduce the cost of storing a floating-point zero in
3051 FPRs. If we have a zero in an FPR for other reasons, we
3052 can get better cfg-cleanup and delayed-branch results by
3053 using it consistently, rather than using $0 sometimes and
3054 an FPR at other times. Also, moves between floating-point
3055 registers are sometimes cheaper than (D)MTC1 $0. */
3057 && outer_code
== SET
3058 && !(float_mode_p
&& TARGET_HARD_FLOAT
))
3060 /* When non-MIPS16 code loads a constant N>1 times, we rarely
3061 want to CSE the constant itself. It is usually better to
3062 have N copies of the last operation in the sequence and one
3063 shared copy of the other operations. (Note that this is
3064 not true for MIPS16 code, where the final operation in the
3065 sequence is often an extended instruction.)
3067 Also, if we have a CONST_INT, we don't know whether it is
3068 for a word or doubleword operation, so we cannot rely on
3069 the result of mips_build_integer. */
3070 else if (!TARGET_MIPS16
3071 && (outer_code
== SET
|| mode
== VOIDmode
))
3073 *total
= COSTS_N_INSNS (cost
);
3076 /* The value will need to be fetched from the constant pool. */
3077 *total
= CONSTANT_POOL_COST
;
3081 /* If the address is legitimate, return the number of
3082 instructions it needs. */
3084 cost
= mips_address_insns (addr
, mode
, true);
3087 *total
= COSTS_N_INSNS (cost
+ 1);
3090 /* Check for a scaled indexed address. */
3091 if (mips_lwxs_address_p (addr
))
3093 *total
= COSTS_N_INSNS (2);
3096 /* Otherwise use the default handling. */
3100 *total
= COSTS_N_INSNS (6);
3104 *total
= COSTS_N_INSNS (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
? 2 : 1);
3108 /* Check for a *clear_upper32 pattern and treat it like a zero
3109 extension. See the pattern's comment for details. */
3112 && CONST_INT_P (XEXP (x
, 1))
3113 && UINTVAL (XEXP (x
, 1)) == 0xffffffff)
3115 *total
= (mips_zero_extend_cost (mode
, XEXP (x
, 0))
3116 + rtx_cost (XEXP (x
, 0), 0));
3123 /* Double-word operations use two single-word operations. */
3124 *total
= mips_binary_cost (x
, COSTS_N_INSNS (1), COSTS_N_INSNS (2));
3132 if (CONSTANT_P (XEXP (x
, 1)))
3133 *total
= mips_binary_cost (x
, COSTS_N_INSNS (1), COSTS_N_INSNS (4));
3135 *total
= mips_binary_cost (x
, COSTS_N_INSNS (1), COSTS_N_INSNS (12));
3140 *total
= mips_cost
->fp_add
;
3142 *total
= COSTS_N_INSNS (4);
3146 /* Low-part immediates need an extended MIPS16 instruction. */
3147 *total
= (COSTS_N_INSNS (TARGET_MIPS16
? 2 : 1)
3148 + rtx_cost (XEXP (x
, 0), 0));
3163 /* Branch comparisons have VOIDmode, so use the first operand's
3165 mode
= GET_MODE (XEXP (x
, 0));
3166 if (FLOAT_MODE_P (mode
))
3168 *total
= mips_cost
->fp_add
;
3171 *total
= mips_binary_cost (x
, COSTS_N_INSNS (1), COSTS_N_INSNS (4));
3176 && ISA_HAS_NMADD_NMSUB (mode
)
3177 && TARGET_FUSED_MADD
3178 && !HONOR_NANS (mode
)
3179 && !HONOR_SIGNED_ZEROS (mode
))
3181 /* See if we can use NMADD or NMSUB. See mips.md for the
3182 associated patterns. */
3183 rtx op0
= XEXP (x
, 0);
3184 rtx op1
= XEXP (x
, 1);
3185 if (GET_CODE (op0
) == MULT
&& GET_CODE (XEXP (op0
, 0)) == NEG
)
3187 *total
= (mips_fp_mult_cost (mode
)
3188 + rtx_cost (XEXP (XEXP (op0
, 0), 0), 0)
3189 + rtx_cost (XEXP (op0
, 1), 0)
3190 + rtx_cost (op1
, 0));
3193 if (GET_CODE (op1
) == MULT
)
3195 *total
= (mips_fp_mult_cost (mode
)
3197 + rtx_cost (XEXP (op1
, 0), 0)
3198 + rtx_cost (XEXP (op1
, 1), 0));
3207 /* If this is part of a MADD or MSUB, treat the PLUS as
3210 && TARGET_FUSED_MADD
3211 && GET_CODE (XEXP (x
, 0)) == MULT
)
3214 *total
= mips_cost
->fp_add
;
3218 /* Double-word operations require three single-word operations and
3219 an SLTU. The MIPS16 version then needs to move the result of
3220 the SLTU from $24 to a MIPS16 register. */
3221 *total
= mips_binary_cost (x
, COSTS_N_INSNS (1),
3222 COSTS_N_INSNS (TARGET_MIPS16
? 5 : 4));
3227 && ISA_HAS_NMADD_NMSUB (mode
)
3228 && TARGET_FUSED_MADD
3229 && !HONOR_NANS (mode
)
3230 && HONOR_SIGNED_ZEROS (mode
))
3232 /* See if we can use NMADD or NMSUB. See mips.md for the
3233 associated patterns. */
3234 rtx op
= XEXP (x
, 0);
3235 if ((GET_CODE (op
) == PLUS
|| GET_CODE (op
) == MINUS
)
3236 && GET_CODE (XEXP (op
, 0)) == MULT
)
3238 *total
= (mips_fp_mult_cost (mode
)
3239 + rtx_cost (XEXP (XEXP (op
, 0), 0), 0)
3240 + rtx_cost (XEXP (XEXP (op
, 0), 1), 0)
3241 + rtx_cost (XEXP (op
, 1), 0));
3247 *total
= mips_cost
->fp_add
;
3249 *total
= COSTS_N_INSNS (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
? 4 : 1);
3254 *total
= mips_fp_mult_cost (mode
);
3255 else if (mode
== DImode
&& !TARGET_64BIT
)
3256 /* Synthesized from 2 mulsi3s, 1 mulsidi3 and two additions,
3257 where the mulsidi3 always includes an MFHI and an MFLO. */
3258 *total
= (optimize_size
3259 ? COSTS_N_INSNS (ISA_HAS_MUL3
? 7 : 9)
3260 : mips_cost
->int_mult_si
* 3 + 6);
3261 else if (optimize_size
)
3262 *total
= (ISA_HAS_MUL3
? 1 : 2);
3263 else if (mode
== DImode
)
3264 *total
= mips_cost
->int_mult_di
;
3266 *total
= mips_cost
->int_mult_si
;
3270 /* Check for a reciprocal. */
3273 && flag_unsafe_math_optimizations
3274 && XEXP (x
, 0) == CONST1_RTX (mode
))
3276 if (outer_code
== SQRT
|| GET_CODE (XEXP (x
, 1)) == SQRT
)
3277 /* An rsqrt<mode>a or rsqrt<mode>b pattern. Count the
3278 division as being free. */
3279 *total
= rtx_cost (XEXP (x
, 1), 0);
3281 *total
= mips_fp_div_cost (mode
) + rtx_cost (XEXP (x
, 1), 0);
3290 *total
= mips_fp_div_cost (mode
);
3299 /* It is our responsibility to make division by a power of 2
3300 as cheap as 2 register additions if we want the division
3301 expanders to be used for such operations; see the setting
3302 of sdiv_pow2_cheap in optabs.c. Using (D)DIV for MIPS16
3303 should always produce shorter code than using
3304 expand_sdiv2_pow2. */
3306 && CONST_INT_P (XEXP (x
, 1))
3307 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0)
3309 *total
= COSTS_N_INSNS (2) + rtx_cost (XEXP (x
, 0), 0);
3312 *total
= COSTS_N_INSNS (mips_idiv_insns ());
3314 else if (mode
== DImode
)
3315 *total
= mips_cost
->int_div_di
;
3317 *total
= mips_cost
->int_div_si
;
3321 *total
= mips_sign_extend_cost (mode
, XEXP (x
, 0));
3325 *total
= mips_zero_extend_cost (mode
, XEXP (x
, 0));
3329 case UNSIGNED_FLOAT
:
3332 case FLOAT_TRUNCATE
:
3333 *total
= mips_cost
->fp_add
;
3341 /* Implement TARGET_ADDRESS_COST. */
3344 mips_address_cost (rtx addr
)
3346 return mips_address_insns (addr
, SImode
, false);
3349 /* Return one word of double-word value OP, taking into account the fixed
3350 endianness of certain registers. HIGH_P is true to select the high part,
3351 false to select the low part. */
3354 mips_subword (rtx op
, bool high_p
)
3356 unsigned int byte
, offset
;
3357 enum machine_mode mode
;
3359 mode
= GET_MODE (op
);
3360 if (mode
== VOIDmode
)
3363 if (TARGET_BIG_ENDIAN
? !high_p
: high_p
)
3364 byte
= UNITS_PER_WORD
;
3368 if (FP_REG_RTX_P (op
))
3370 /* Paired FPRs are always ordered little-endian. */
3371 offset
= (UNITS_PER_WORD
< UNITS_PER_HWFPVALUE
? high_p
: byte
!= 0);
3372 return gen_rtx_REG (word_mode
, REGNO (op
) + offset
);
3376 return mips_rewrite_small_data (adjust_address (op
, word_mode
, byte
));
3378 return simplify_gen_subreg (word_mode
, op
, mode
, byte
);
3381 /* Return true if a 64-bit move from SRC to DEST should be split into two. */
3384 mips_split_64bit_move_p (rtx dest
, rtx src
)
3389 /* FPR-to-FPR moves can be done in a single instruction, if they're
3391 if (FP_REG_RTX_P (src
) && FP_REG_RTX_P (dest
))
3394 /* Check for floating-point loads and stores. */
3395 if (ISA_HAS_LDC1_SDC1
)
3397 if (FP_REG_RTX_P (dest
) && MEM_P (src
))
3399 if (FP_REG_RTX_P (src
) && MEM_P (dest
))
3405 /* Split a doubleword move from SRC to DEST. On 32-bit targets,
3406 this function handles 64-bit moves for which mips_split_64bit_move_p
3407 holds. For 64-bit targets, this function handles 128-bit moves. */
3410 mips_split_doubleword_move (rtx dest
, rtx src
)
3412 if (FP_REG_RTX_P (dest
) || FP_REG_RTX_P (src
))
3414 if (!TARGET_64BIT
&& GET_MODE (dest
) == DImode
)
3415 emit_insn (gen_move_doubleword_fprdi (dest
, src
));
3416 else if (!TARGET_64BIT
&& GET_MODE (dest
) == DFmode
)
3417 emit_insn (gen_move_doubleword_fprdf (dest
, src
));
3418 else if (!TARGET_64BIT
&& GET_MODE (dest
) == V2SFmode
)
3419 emit_insn (gen_move_doubleword_fprv2sf (dest
, src
));
3420 else if (TARGET_64BIT
&& GET_MODE (dest
) == TFmode
)
3421 emit_insn (gen_move_doubleword_fprtf (dest
, src
));
3427 /* The operation can be split into two normal moves. Decide in
3428 which order to do them. */
3431 low_dest
= mips_subword (dest
, false);
3432 if (REG_P (low_dest
)
3433 && reg_overlap_mentioned_p (low_dest
, src
))
3435 mips_emit_move (mips_subword (dest
, true), mips_subword (src
, true));
3436 mips_emit_move (low_dest
, mips_subword (src
, false));
3440 mips_emit_move (low_dest
, mips_subword (src
, false));
3441 mips_emit_move (mips_subword (dest
, true), mips_subword (src
, true));
3446 /* Return the appropriate instructions to move SRC into DEST. Assume
3447 that SRC is operand 1 and DEST is operand 0. */
3450 mips_output_move (rtx dest
, rtx src
)
3452 enum rtx_code dest_code
, src_code
;
3453 enum machine_mode mode
;
3454 enum mips_symbol_type symbol_type
;
3457 dest_code
= GET_CODE (dest
);
3458 src_code
= GET_CODE (src
);
3459 mode
= GET_MODE (dest
);
3460 dbl_p
= (GET_MODE_SIZE (mode
) == 8);
3462 if (dbl_p
&& mips_split_64bit_move_p (dest
, src
))
3465 if ((src_code
== REG
&& GP_REG_P (REGNO (src
)))
3466 || (!TARGET_MIPS16
&& src
== CONST0_RTX (mode
)))
3468 if (dest_code
== REG
)
3470 if (GP_REG_P (REGNO (dest
)))
3471 return "move\t%0,%z1";
3473 if (MD_REG_P (REGNO (dest
)))
3476 if (DSP_ACC_REG_P (REGNO (dest
)))
3478 static char retval
[] = "mt__\t%z1,%q0";
3480 retval
[2] = reg_names
[REGNO (dest
)][4];
3481 retval
[3] = reg_names
[REGNO (dest
)][5];
3485 if (FP_REG_P (REGNO (dest
)))
3486 return dbl_p
? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0";
3488 if (ALL_COP_REG_P (REGNO (dest
)))
3490 static char retval
[] = "dmtc_\t%z1,%0";
3492 retval
[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest
));
3493 return dbl_p
? retval
: retval
+ 1;
3496 if (dest_code
== MEM
)
3497 return dbl_p
? "sd\t%z1,%0" : "sw\t%z1,%0";
3499 if (dest_code
== REG
&& GP_REG_P (REGNO (dest
)))
3501 if (src_code
== REG
)
3503 /* Handled by separate patterns. */
3504 gcc_assert (!MD_REG_P (REGNO (src
)));
3506 if (DSP_ACC_REG_P (REGNO (src
)))
3508 static char retval
[] = "mf__\t%0,%q1";
3510 retval
[2] = reg_names
[REGNO (src
)][4];
3511 retval
[3] = reg_names
[REGNO (src
)][5];
3515 if (FP_REG_P (REGNO (src
)))
3516 return dbl_p
? "dmfc1\t%0,%1" : "mfc1\t%0,%1";
3518 if (ALL_COP_REG_P (REGNO (src
)))
3520 static char retval
[] = "dmfc_\t%0,%1";
3522 retval
[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src
));
3523 return dbl_p
? retval
: retval
+ 1;
3526 if (ST_REG_P (REGNO (src
)) && ISA_HAS_8CC
)
3527 return "lui\t%0,0x3f80\n\tmovf\t%0,%.,%1";
3530 if (src_code
== MEM
)
3531 return dbl_p
? "ld\t%0,%1" : "lw\t%0,%1";
3533 if (src_code
== CONST_INT
)
3535 /* Don't use the X format for the operand itself, because that
3536 will give out-of-range numbers for 64-bit hosts and 32-bit
3539 return "li\t%0,%1\t\t\t# %X1";
3541 if (SMALL_OPERAND_UNSIGNED (INTVAL (src
)))
3544 if (SMALL_OPERAND_UNSIGNED (-INTVAL (src
)))
3548 if (src_code
== HIGH
)
3549 return TARGET_MIPS16
? "#" : "lui\t%0,%h1";
3551 if (CONST_GP_P (src
))
3552 return "move\t%0,%1";
3554 if (mips_symbolic_constant_p (src
, SYMBOL_CONTEXT_LEA
, &symbol_type
)
3555 && mips_lo_relocs
[symbol_type
] != 0)
3557 /* A signed 16-bit constant formed by applying a relocation
3558 operator to a symbolic address. */
3559 gcc_assert (!mips_split_p
[symbol_type
]);
3560 return "li\t%0,%R1";
3563 if (symbolic_operand (src
, VOIDmode
))
3565 gcc_assert (TARGET_MIPS16
3566 ? TARGET_MIPS16_TEXT_LOADS
3567 : !TARGET_EXPLICIT_RELOCS
);
3568 return dbl_p
? "dla\t%0,%1" : "la\t%0,%1";
3571 if (src_code
== REG
&& FP_REG_P (REGNO (src
)))
3573 if (dest_code
== REG
&& FP_REG_P (REGNO (dest
)))
3575 if (GET_MODE (dest
) == V2SFmode
)
3576 return "mov.ps\t%0,%1";
3578 return dbl_p
? "mov.d\t%0,%1" : "mov.s\t%0,%1";
3581 if (dest_code
== MEM
)
3582 return dbl_p
? "sdc1\t%1,%0" : "swc1\t%1,%0";
3584 if (dest_code
== REG
&& FP_REG_P (REGNO (dest
)))
3586 if (src_code
== MEM
)
3587 return dbl_p
? "ldc1\t%0,%1" : "lwc1\t%0,%1";
3589 if (dest_code
== REG
&& ALL_COP_REG_P (REGNO (dest
)) && src_code
== MEM
)
3591 static char retval
[] = "l_c_\t%0,%1";
3593 retval
[1] = (dbl_p
? 'd' : 'w');
3594 retval
[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest
));
3597 if (dest_code
== MEM
&& src_code
== REG
&& ALL_COP_REG_P (REGNO (src
)))
3599 static char retval
[] = "s_c_\t%1,%0";
3601 retval
[1] = (dbl_p
? 'd' : 'w');
3602 retval
[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src
));
3608 /* Return true if CMP1 is a suitable second operand for integer ordering
3609 test CODE. See also the *sCC patterns in mips.md. */
3612 mips_int_order_operand_ok_p (enum rtx_code code
, rtx cmp1
)
3618 return reg_or_0_operand (cmp1
, VOIDmode
);
3622 return !TARGET_MIPS16
&& cmp1
== const1_rtx
;
3626 return arith_operand (cmp1
, VOIDmode
);
3629 return sle_operand (cmp1
, VOIDmode
);
3632 return sleu_operand (cmp1
, VOIDmode
);
3639 /* Return true if *CMP1 (of mode MODE) is a valid second operand for
3640 integer ordering test *CODE, or if an equivalent combination can
3641 be formed by adjusting *CODE and *CMP1. When returning true, update
3642 *CODE and *CMP1 with the chosen code and operand, otherwise leave
3646 mips_canonicalize_int_order_test (enum rtx_code
*code
, rtx
*cmp1
,
3647 enum machine_mode mode
)
3649 HOST_WIDE_INT plus_one
;
3651 if (mips_int_order_operand_ok_p (*code
, *cmp1
))
3654 if (GET_CODE (*cmp1
) == CONST_INT
)
3658 plus_one
= trunc_int_for_mode (UINTVAL (*cmp1
) + 1, mode
);
3659 if (INTVAL (*cmp1
) < plus_one
)
3662 *cmp1
= force_reg (mode
, GEN_INT (plus_one
));
3668 plus_one
= trunc_int_for_mode (UINTVAL (*cmp1
) + 1, mode
);
3672 *cmp1
= force_reg (mode
, GEN_INT (plus_one
));
3683 /* Compare CMP0 and CMP1 using ordering test CODE and store the result
3684 in TARGET. CMP0 and TARGET are register_operands that have the same
3685 integer mode. If INVERT_PTR is nonnull, it's OK to set TARGET to the
3686 inverse of the result and flip *INVERT_PTR instead. */
3689 mips_emit_int_order_test (enum rtx_code code
, bool *invert_ptr
,
3690 rtx target
, rtx cmp0
, rtx cmp1
)
3692 enum machine_mode mode
;
3694 /* First see if there is a MIPS instruction that can do this operation.
3695 If not, try doing the same for the inverse operation. If that also
3696 fails, force CMP1 into a register and try again. */
3697 mode
= GET_MODE (target
);
3698 if (mips_canonicalize_int_order_test (&code
, &cmp1
, mode
))
3699 mips_emit_binary (code
, target
, cmp0
, cmp1
);
3702 enum rtx_code inv_code
= reverse_condition (code
);
3703 if (!mips_canonicalize_int_order_test (&inv_code
, &cmp1
, mode
))
3705 cmp1
= force_reg (mode
, cmp1
);
3706 mips_emit_int_order_test (code
, invert_ptr
, target
, cmp0
, cmp1
);
3708 else if (invert_ptr
== 0)
3710 rtx inv_target
= gen_reg_rtx (mode
);
3711 mips_emit_binary (inv_code
, inv_target
, cmp0
, cmp1
);
3712 mips_emit_binary (XOR
, target
, inv_target
, const1_rtx
);
3716 *invert_ptr
= !*invert_ptr
;
3717 mips_emit_binary (inv_code
, target
, cmp0
, cmp1
);
3722 /* Return a register that is zero iff CMP0 and CMP1 are equal.
3723 The register will have the same mode as CMP0. */
3726 mips_zero_if_equal (rtx cmp0
, rtx cmp1
)
3728 if (cmp1
== const0_rtx
)
3731 if (uns_arith_operand (cmp1
, VOIDmode
))
3732 return expand_binop (GET_MODE (cmp0
), xor_optab
,
3733 cmp0
, cmp1
, 0, 0, OPTAB_DIRECT
);
3735 return expand_binop (GET_MODE (cmp0
), sub_optab
,
3736 cmp0
, cmp1
, 0, 0, OPTAB_DIRECT
);
3739 /* Convert *CODE into a code that can be used in a floating-point
3740 scc instruction (C.cond.fmt). Return true if the values of
3741 the condition code registers will be inverted, with 0 indicating
3742 that the condition holds. */
3745 mips_reversed_fp_cond (enum rtx_code
*code
)
3752 *code
= reverse_condition_maybe_unordered (*code
);
3760 /* Convert a comparison into something that can be used in a branch or
3761 conditional move. cmp_operands[0] and cmp_operands[1] are the values
3762 being compared and *CODE is the code used to compare them.
3764 Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
3765 If NEED_EQ_NE_P, then only EQ or NE comparisons against zero are possible,
3766 otherwise any standard branch condition can be used. The standard branch
3769 - EQ or NE between two registers.
3770 - any comparison between a register and zero. */
3773 mips_emit_compare (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
, bool need_eq_ne_p
)
3775 if (GET_MODE_CLASS (GET_MODE (cmp_operands
[0])) == MODE_INT
)
3777 if (!need_eq_ne_p
&& cmp_operands
[1] == const0_rtx
)
3779 *op0
= cmp_operands
[0];
3780 *op1
= cmp_operands
[1];
3782 else if (*code
== EQ
|| *code
== NE
)
3786 *op0
= mips_zero_if_equal (cmp_operands
[0], cmp_operands
[1]);
3791 *op0
= cmp_operands
[0];
3792 *op1
= force_reg (GET_MODE (*op0
), cmp_operands
[1]);
3797 /* The comparison needs a separate scc instruction. Store the
3798 result of the scc in *OP0 and compare it against zero. */
3799 bool invert
= false;
3800 *op0
= gen_reg_rtx (GET_MODE (cmp_operands
[0]));
3801 mips_emit_int_order_test (*code
, &invert
, *op0
,
3802 cmp_operands
[0], cmp_operands
[1]);
3803 *code
= (invert
? EQ
: NE
);
3807 else if (ALL_FIXED_POINT_MODE_P (GET_MODE (cmp_operands
[0])))
3809 *op0
= gen_rtx_REG (CCDSPmode
, CCDSP_CC_REGNUM
);
3810 mips_emit_binary (*code
, *op0
, cmp_operands
[0], cmp_operands
[1]);
3816 enum rtx_code cmp_code
;
3818 /* Floating-point tests use a separate C.cond.fmt comparison to
3819 set a condition code register. The branch or conditional move
3820 will then compare that register against zero.
3822 Set CMP_CODE to the code of the comparison instruction and
3823 *CODE to the code that the branch or move should use. */
3825 *code
= mips_reversed_fp_cond (&cmp_code
) ? EQ
: NE
;
3827 ? gen_reg_rtx (CCmode
)
3828 : gen_rtx_REG (CCmode
, FPSW_REGNUM
));
3830 mips_emit_binary (cmp_code
, *op0
, cmp_operands
[0], cmp_operands
[1]);
3834 /* Try comparing cmp_operands[0] and cmp_operands[1] using rtl code CODE.
3835 Store the result in TARGET and return true if successful.
3837 On 64-bit targets, TARGET may be wider than cmp_operands[0]. */
3840 mips_expand_scc (enum rtx_code code
, rtx target
)
3842 if (GET_MODE_CLASS (GET_MODE (cmp_operands
[0])) != MODE_INT
)
3845 target
= gen_lowpart (GET_MODE (cmp_operands
[0]), target
);
3846 if (code
== EQ
|| code
== NE
)
3848 rtx zie
= mips_zero_if_equal (cmp_operands
[0], cmp_operands
[1]);
3849 mips_emit_binary (code
, target
, zie
, const0_rtx
);
3852 mips_emit_int_order_test (code
, 0, target
,
3853 cmp_operands
[0], cmp_operands
[1]);
3857 /* Compare cmp_operands[0] with cmp_operands[1] using comparison code
3858 CODE and jump to OPERANDS[0] if the condition holds. */
3861 mips_expand_conditional_branch (rtx
*operands
, enum rtx_code code
)
3863 rtx op0
, op1
, condition
;
3865 mips_emit_compare (&code
, &op0
, &op1
, TARGET_MIPS16
);
3866 condition
= gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
3867 emit_jump_insn (gen_condjump (condition
, operands
[0]));
3872 (set temp (COND:CCV2 CMP_OP0 CMP_OP1))
3873 (set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS)) */
3876 mips_expand_vcondv2sf (rtx dest
, rtx true_src
, rtx false_src
,
3877 enum rtx_code cond
, rtx cmp_op0
, rtx cmp_op1
)
3882 reversed_p
= mips_reversed_fp_cond (&cond
);
3883 cmp_result
= gen_reg_rtx (CCV2mode
);
3884 emit_insn (gen_scc_ps (cmp_result
,
3885 gen_rtx_fmt_ee (cond
, VOIDmode
, cmp_op0
, cmp_op1
)));
3887 emit_insn (gen_mips_cond_move_tf_ps (dest
, false_src
, true_src
,
3890 emit_insn (gen_mips_cond_move_tf_ps (dest
, true_src
, false_src
,
3894 /* Compare cmp_operands[0] with cmp_operands[1] using the code of
3895 OPERANDS[1]. Move OPERANDS[2] into OPERANDS[0] if the condition
3896 holds, otherwise move OPERANDS[3] into OPERANDS[0]. */
3899 mips_expand_conditional_move (rtx
*operands
)
3904 code
= GET_CODE (operands
[1]);
3905 mips_emit_compare (&code
, &op0
, &op1
, true);
3906 cond
= gen_rtx_fmt_ee (code
, GET_MODE (op0
), op0
, op1
),
3907 emit_insn (gen_rtx_SET (VOIDmode
, operands
[0],
3908 gen_rtx_IF_THEN_ELSE (GET_MODE (operands
[0]), cond
,
3909 operands
[2], operands
[3])));
3912 /* Compare cmp_operands[0] with cmp_operands[1] using rtl code CODE,
3913 then trap if the condition holds. */
3916 mips_expand_conditional_trap (enum rtx_code code
)
3919 enum machine_mode mode
;
3921 /* MIPS conditional trap instructions don't have GT or LE flavors,
3922 so we must swap the operands and convert to LT and GE respectively. */
3929 code
= swap_condition (code
);
3930 op0
= cmp_operands
[1];
3931 op1
= cmp_operands
[0];
3935 op0
= cmp_operands
[0];
3936 op1
= cmp_operands
[1];
3940 mode
= GET_MODE (cmp_operands
[0]);
3941 op0
= force_reg (mode
, op0
);
3942 if (!arith_operand (op1
, mode
))
3943 op1
= force_reg (mode
, op1
);
3945 emit_insn (gen_rtx_TRAP_IF (VOIDmode
,
3946 gen_rtx_fmt_ee (code
, mode
, op0
, op1
),
3950 /* Initialize *CUM for a call to a function of type FNTYPE. */
3953 mips_init_cumulative_args (CUMULATIVE_ARGS
*cum
, tree fntype
)
3955 memset (cum
, 0, sizeof (*cum
));
3956 cum
->prototype
= (fntype
&& prototype_p (fntype
));
3957 cum
->gp_reg_found
= (cum
->prototype
&& stdarg_p (fntype
));
3960 /* Fill INFO with information about a single argument. CUM is the
3961 cumulative state for earlier arguments. MODE is the mode of this
3962 argument and TYPE is its type (if known). NAMED is true if this
3963 is a named (fixed) argument rather than a variable one. */
3966 mips_get_arg_info (struct mips_arg_info
*info
, const CUMULATIVE_ARGS
*cum
,
3967 enum machine_mode mode
, tree type
, int named
)
3969 bool doubleword_aligned_p
;
3970 unsigned int num_bytes
, num_words
, max_regs
;
3972 /* Work out the size of the argument. */
3973 num_bytes
= type
? int_size_in_bytes (type
) : GET_MODE_SIZE (mode
);
3974 num_words
= (num_bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
3976 /* Decide whether it should go in a floating-point register, assuming
3977 one is free. Later code checks for availability.
3979 The checks against UNITS_PER_FPVALUE handle the soft-float and
3980 single-float cases. */
3984 /* The EABI conventions have traditionally been defined in terms
3985 of TYPE_MODE, regardless of the actual type. */
3986 info
->fpr_p
= ((GET_MODE_CLASS (mode
) == MODE_FLOAT
3987 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
)
3988 && GET_MODE_SIZE (mode
) <= UNITS_PER_FPVALUE
);
3993 /* Only leading floating-point scalars are passed in
3994 floating-point registers. We also handle vector floats the same
3995 say, which is OK because they are not covered by the standard ABI. */
3996 info
->fpr_p
= (!cum
->gp_reg_found
3997 && cum
->arg_number
< 2
3999 || SCALAR_FLOAT_TYPE_P (type
)
4000 || VECTOR_FLOAT_TYPE_P (type
))
4001 && (GET_MODE_CLASS (mode
) == MODE_FLOAT
4002 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
)
4003 && GET_MODE_SIZE (mode
) <= UNITS_PER_FPVALUE
);
4008 /* Scalar, complex and vector floating-point types are passed in
4009 floating-point registers, as long as this is a named rather
4010 than a variable argument. */
4011 info
->fpr_p
= (named
4012 && (type
== 0 || FLOAT_TYPE_P (type
))
4013 && (GET_MODE_CLASS (mode
) == MODE_FLOAT
4014 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
4015 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
)
4016 && GET_MODE_UNIT_SIZE (mode
) <= UNITS_PER_FPVALUE
);
4018 /* ??? According to the ABI documentation, the real and imaginary
4019 parts of complex floats should be passed in individual registers.
4020 The real and imaginary parts of stack arguments are supposed
4021 to be contiguous and there should be an extra word of padding
4024 This has two problems. First, it makes it impossible to use a
4025 single "void *" va_list type, since register and stack arguments
4026 are passed differently. (At the time of writing, MIPSpro cannot
4027 handle complex float varargs correctly.) Second, it's unclear
4028 what should happen when there is only one register free.
4030 For now, we assume that named complex floats should go into FPRs
4031 if there are two FPRs free, otherwise they should be passed in the
4032 same way as a struct containing two floats. */
4034 && GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
4035 && GET_MODE_UNIT_SIZE (mode
) < UNITS_PER_FPVALUE
)
4037 if (cum
->num_gprs
>= MAX_ARGS_IN_REGISTERS
- 1)
4038 info
->fpr_p
= false;
4048 /* See whether the argument has doubleword alignment. */
4049 doubleword_aligned_p
= FUNCTION_ARG_BOUNDARY (mode
, type
) > BITS_PER_WORD
;
4051 /* Set REG_OFFSET to the register count we're interested in.
4052 The EABI allocates the floating-point registers separately,
4053 but the other ABIs allocate them like integer registers. */
4054 info
->reg_offset
= (mips_abi
== ABI_EABI
&& info
->fpr_p
4058 /* Advance to an even register if the argument is doubleword-aligned. */
4059 if (doubleword_aligned_p
)
4060 info
->reg_offset
+= info
->reg_offset
& 1;
4062 /* Work out the offset of a stack argument. */
4063 info
->stack_offset
= cum
->stack_words
;
4064 if (doubleword_aligned_p
)
4065 info
->stack_offset
+= info
->stack_offset
& 1;
4067 max_regs
= MAX_ARGS_IN_REGISTERS
- info
->reg_offset
;
4069 /* Partition the argument between registers and stack. */
4070 info
->reg_words
= MIN (num_words
, max_regs
);
4071 info
->stack_words
= num_words
- info
->reg_words
;
4074 /* INFO describes a register argument that has the normal format for the
4075 argument's mode. Return the register it uses, assuming that FPRs are
4076 available if HARD_FLOAT_P. */
4079 mips_arg_regno (const struct mips_arg_info
*info
, bool hard_float_p
)
4081 if (!info
->fpr_p
|| !hard_float_p
)
4082 return GP_ARG_FIRST
+ info
->reg_offset
;
4083 else if (mips_abi
== ABI_32
&& TARGET_DOUBLE_FLOAT
&& info
->reg_offset
> 0)
4084 /* In o32, the second argument is always passed in $f14
4085 for TARGET_DOUBLE_FLOAT, regardless of whether the
4086 first argument was a word or doubleword. */
4087 return FP_ARG_FIRST
+ 2;
4089 return FP_ARG_FIRST
+ info
->reg_offset
;
4092 /* Implement TARGET_STRICT_ARGUMENT_NAMING. */
4095 mips_strict_argument_naming (CUMULATIVE_ARGS
*ca ATTRIBUTE_UNUSED
)
4097 return !TARGET_OLDABI
;
4100 /* Implement FUNCTION_ARG. */
4103 mips_function_arg (const CUMULATIVE_ARGS
*cum
, enum machine_mode mode
,
4104 tree type
, int named
)
4106 struct mips_arg_info info
;
4108 /* We will be called with a mode of VOIDmode after the last argument
4109 has been seen. Whatever we return will be passed to the call expander.
4110 If we need a MIPS16 fp_code, return a REG with the code stored as
4112 if (mode
== VOIDmode
)
4114 if (TARGET_MIPS16
&& cum
->fp_code
!= 0)
4115 return gen_rtx_REG ((enum machine_mode
) cum
->fp_code
, 0);
4120 mips_get_arg_info (&info
, cum
, mode
, type
, named
);
4122 /* Return straight away if the whole argument is passed on the stack. */
4123 if (info
.reg_offset
== MAX_ARGS_IN_REGISTERS
)
4126 /* The n32 and n64 ABIs say that if any 64-bit chunk of the structure
4127 contains a double in its entirety, then that 64-bit chunk is passed
4128 in a floating-point register. */
4130 && TARGET_HARD_FLOAT
4133 && TREE_CODE (type
) == RECORD_TYPE
4134 && TYPE_SIZE_UNIT (type
)
4135 && host_integerp (TYPE_SIZE_UNIT (type
), 1))
4139 /* First check to see if there is any such field. */
4140 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
4141 if (TREE_CODE (field
) == FIELD_DECL
4142 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field
))
4143 && TYPE_PRECISION (TREE_TYPE (field
)) == BITS_PER_WORD
4144 && host_integerp (bit_position (field
), 0)
4145 && int_bit_position (field
) % BITS_PER_WORD
== 0)
4150 /* Now handle the special case by returning a PARALLEL
4151 indicating where each 64-bit chunk goes. INFO.REG_WORDS
4152 chunks are passed in registers. */
4154 HOST_WIDE_INT bitpos
;
4157 /* assign_parms checks the mode of ENTRY_PARM, so we must
4158 use the actual mode here. */
4159 ret
= gen_rtx_PARALLEL (mode
, rtvec_alloc (info
.reg_words
));
4162 field
= TYPE_FIELDS (type
);
4163 for (i
= 0; i
< info
.reg_words
; i
++)
4167 for (; field
; field
= TREE_CHAIN (field
))
4168 if (TREE_CODE (field
) == FIELD_DECL
4169 && int_bit_position (field
) >= bitpos
)
4173 && int_bit_position (field
) == bitpos
4174 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field
))
4175 && TYPE_PRECISION (TREE_TYPE (field
)) == BITS_PER_WORD
)
4176 reg
= gen_rtx_REG (DFmode
, FP_ARG_FIRST
+ info
.reg_offset
+ i
);
4178 reg
= gen_rtx_REG (DImode
, GP_ARG_FIRST
+ info
.reg_offset
+ i
);
4181 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
4182 GEN_INT (bitpos
/ BITS_PER_UNIT
));
4184 bitpos
+= BITS_PER_WORD
;
4190 /* Handle the n32/n64 conventions for passing complex floating-point
4191 arguments in FPR pairs. The real part goes in the lower register
4192 and the imaginary part goes in the upper register. */
4195 && GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
)
4198 enum machine_mode inner
;
4201 inner
= GET_MODE_INNER (mode
);
4202 regno
= FP_ARG_FIRST
+ info
.reg_offset
;
4203 if (info
.reg_words
* UNITS_PER_WORD
== GET_MODE_SIZE (inner
))
4205 /* Real part in registers, imaginary part on stack. */
4206 gcc_assert (info
.stack_words
== info
.reg_words
);
4207 return gen_rtx_REG (inner
, regno
);
4211 gcc_assert (info
.stack_words
== 0);
4212 real
= gen_rtx_EXPR_LIST (VOIDmode
,
4213 gen_rtx_REG (inner
, regno
),
4215 imag
= gen_rtx_EXPR_LIST (VOIDmode
,
4217 regno
+ info
.reg_words
/ 2),
4218 GEN_INT (GET_MODE_SIZE (inner
)));
4219 return gen_rtx_PARALLEL (mode
, gen_rtvec (2, real
, imag
));
4223 return gen_rtx_REG (mode
, mips_arg_regno (&info
, TARGET_HARD_FLOAT
));
4226 /* Implement FUNCTION_ARG_ADVANCE. */
4229 mips_function_arg_advance (CUMULATIVE_ARGS
*cum
, enum machine_mode mode
,
4230 tree type
, int named
)
4232 struct mips_arg_info info
;
4234 mips_get_arg_info (&info
, cum
, mode
, type
, named
);
4237 cum
->gp_reg_found
= true;
4239 /* See the comment above the CUMULATIVE_ARGS structure in mips.h for
4240 an explanation of what this code does. It assumes that we're using
4241 either the o32 or the o64 ABI, both of which pass at most 2 arguments
4243 if (cum
->arg_number
< 2 && info
.fpr_p
)
4244 cum
->fp_code
+= (mode
== SFmode
? 1 : 2) << (cum
->arg_number
* 2);
4246 /* Advance the register count. This has the effect of setting
4247 num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
4248 argument required us to skip the final GPR and pass the whole
4249 argument on the stack. */
4250 if (mips_abi
!= ABI_EABI
|| !info
.fpr_p
)
4251 cum
->num_gprs
= info
.reg_offset
+ info
.reg_words
;
4252 else if (info
.reg_words
> 0)
4253 cum
->num_fprs
+= MAX_FPRS_PER_FMT
;
4255 /* Advance the stack word count. */
4256 if (info
.stack_words
> 0)
4257 cum
->stack_words
= info
.stack_offset
+ info
.stack_words
;
4262 /* Implement TARGET_ARG_PARTIAL_BYTES. */
4265 mips_arg_partial_bytes (CUMULATIVE_ARGS
*cum
,
4266 enum machine_mode mode
, tree type
, bool named
)
4268 struct mips_arg_info info
;
4270 mips_get_arg_info (&info
, cum
, mode
, type
, named
);
4271 return info
.stack_words
> 0 ? info
.reg_words
* UNITS_PER_WORD
: 0;
4274 /* Implement FUNCTION_ARG_BOUNDARY. Every parameter gets at least
4275 PARM_BOUNDARY bits of alignment, but will be given anything up
4276 to STACK_BOUNDARY bits if the type requires it. */
4279 mips_function_arg_boundary (enum machine_mode mode
, tree type
)
4281 unsigned int alignment
;
4283 alignment
= type
? TYPE_ALIGN (type
) : GET_MODE_ALIGNMENT (mode
);
4284 if (alignment
< PARM_BOUNDARY
)
4285 alignment
= PARM_BOUNDARY
;
4286 if (alignment
> STACK_BOUNDARY
)
4287 alignment
= STACK_BOUNDARY
;
4291 /* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
4292 upward rather than downward. In other words, return true if the
4293 first byte of the stack slot has useful data, false if the last
4297 mips_pad_arg_upward (enum machine_mode mode
, const_tree type
)
4299 /* On little-endian targets, the first byte of every stack argument
4300 is passed in the first byte of the stack slot. */
4301 if (!BYTES_BIG_ENDIAN
)
4304 /* Otherwise, integral types are padded downward: the last byte of a
4305 stack argument is passed in the last byte of the stack slot. */
4307 ? (INTEGRAL_TYPE_P (type
)
4308 || POINTER_TYPE_P (type
)
4309 || FIXED_POINT_TYPE_P (type
))
4310 : (SCALAR_INT_MODE_P (mode
)
4311 || ALL_SCALAR_FIXED_POINT_MODE_P (mode
)))
4314 /* Big-endian o64 pads floating-point arguments downward. */
4315 if (mips_abi
== ABI_O64
)
4316 if (type
!= 0 ? FLOAT_TYPE_P (type
) : GET_MODE_CLASS (mode
) == MODE_FLOAT
)
4319 /* Other types are padded upward for o32, o64, n32 and n64. */
4320 if (mips_abi
!= ABI_EABI
)
4323 /* Arguments smaller than a stack slot are padded downward. */
4324 if (mode
!= BLKmode
)
4325 return GET_MODE_BITSIZE (mode
) >= PARM_BOUNDARY
;
4327 return int_size_in_bytes (type
) >= (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4330 /* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...). Return !BYTES_BIG_ENDIAN
4331 if the least significant byte of the register has useful data. Return
4332 the opposite if the most significant byte does. */
4335 mips_pad_reg_upward (enum machine_mode mode
, tree type
)
4337 /* No shifting is required for floating-point arguments. */
4338 if (type
!= 0 ? FLOAT_TYPE_P (type
) : GET_MODE_CLASS (mode
) == MODE_FLOAT
)
4339 return !BYTES_BIG_ENDIAN
;
4341 /* Otherwise, apply the same padding to register arguments as we do
4342 to stack arguments. */
4343 return mips_pad_arg_upward (mode
, type
);
4346 /* Return nonzero when an argument must be passed by reference. */
4349 mips_pass_by_reference (CUMULATIVE_ARGS
*cum ATTRIBUTE_UNUSED
,
4350 enum machine_mode mode
, const_tree type
,
4351 bool named ATTRIBUTE_UNUSED
)
4353 if (mips_abi
== ABI_EABI
)
4357 /* ??? How should SCmode be handled? */
4358 if (mode
== DImode
|| mode
== DFmode
4359 || mode
== DQmode
|| mode
== UDQmode
4360 || mode
== DAmode
|| mode
== UDAmode
)
4363 size
= type
? int_size_in_bytes (type
) : GET_MODE_SIZE (mode
);
4364 return size
== -1 || size
> UNITS_PER_WORD
;
4368 /* If we have a variable-sized parameter, we have no choice. */
4369 return targetm
.calls
.must_pass_in_stack (mode
, type
);
4373 /* Implement TARGET_CALLEE_COPIES. */
4376 mips_callee_copies (CUMULATIVE_ARGS
*cum ATTRIBUTE_UNUSED
,
4377 enum machine_mode mode ATTRIBUTE_UNUSED
,
4378 const_tree type ATTRIBUTE_UNUSED
, bool named
)
4380 return mips_abi
== ABI_EABI
&& named
;
4383 /* See whether VALTYPE is a record whose fields should be returned in
4384 floating-point registers. If so, return the number of fields and
4385 list them in FIELDS (which should have two elements). Return 0
4388 For n32 & n64, a structure with one or two fields is returned in
4389 floating-point registers as long as every field has a floating-point
4393 mips_fpr_return_fields (const_tree valtype
, tree
*fields
)
4401 if (TREE_CODE (valtype
) != RECORD_TYPE
)
4405 for (field
= TYPE_FIELDS (valtype
); field
!= 0; field
= TREE_CHAIN (field
))
4407 if (TREE_CODE (field
) != FIELD_DECL
)
4410 if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (field
)))
4416 fields
[i
++] = field
;
4421 /* Implement TARGET_RETURN_IN_MSB. For n32 & n64, we should return
4422 a value in the most significant part of $2/$3 if:
4424 - the target is big-endian;
4426 - the value has a structure or union type (we generalize this to
4427 cover aggregates from other languages too); and
4429 - the structure is not returned in floating-point registers. */
4432 mips_return_in_msb (const_tree valtype
)
4436 return (TARGET_NEWABI
4437 && TARGET_BIG_ENDIAN
4438 && AGGREGATE_TYPE_P (valtype
)
4439 && mips_fpr_return_fields (valtype
, fields
) == 0);
4442 /* Return true if the function return value MODE will get returned in a
4443 floating-point register. */
4446 mips_return_mode_in_fpr_p (enum machine_mode mode
)
4448 return ((GET_MODE_CLASS (mode
) == MODE_FLOAT
4449 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
4450 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
)
4451 && GET_MODE_UNIT_SIZE (mode
) <= UNITS_PER_HWFPVALUE
);
4454 /* Return the representation of an FPR return register when the
4455 value being returned in FP_RETURN has mode VALUE_MODE and the
4456 return type itself has mode TYPE_MODE. On NewABI targets,
4457 the two modes may be different for structures like:
4459 struct __attribute__((packed)) foo { float f; }
4461 where we return the SFmode value of "f" in FP_RETURN, but where
4462 the structure itself has mode BLKmode. */
4465 mips_return_fpr_single (enum machine_mode type_mode
,
4466 enum machine_mode value_mode
)
4470 x
= gen_rtx_REG (value_mode
, FP_RETURN
);
4471 if (type_mode
!= value_mode
)
4473 x
= gen_rtx_EXPR_LIST (VOIDmode
, x
, const0_rtx
);
4474 x
= gen_rtx_PARALLEL (type_mode
, gen_rtvec (1, x
));
4479 /* Return a composite value in a pair of floating-point registers.
4480 MODE1 and OFFSET1 are the mode and byte offset for the first value,
4481 likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
4484 For n32 & n64, $f0 always holds the first value and $f2 the second.
4485 Otherwise the values are packed together as closely as possible. */
4488 mips_return_fpr_pair (enum machine_mode mode
,
4489 enum machine_mode mode1
, HOST_WIDE_INT offset1
,
4490 enum machine_mode mode2
, HOST_WIDE_INT offset2
)
4494 inc
= (TARGET_NEWABI
? 2 : MAX_FPRS_PER_FMT
);
4495 return gen_rtx_PARALLEL
4498 gen_rtx_EXPR_LIST (VOIDmode
,
4499 gen_rtx_REG (mode1
, FP_RETURN
),
4501 gen_rtx_EXPR_LIST (VOIDmode
,
4502 gen_rtx_REG (mode2
, FP_RETURN
+ inc
),
4503 GEN_INT (offset2
))));
4507 /* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
4508 VALTYPE is the return type and MODE is VOIDmode. For libcalls,
4509 VALTYPE is null and MODE is the mode of the return value. */
4512 mips_function_value (const_tree valtype
, enum machine_mode mode
)
4519 mode
= TYPE_MODE (valtype
);
4520 unsigned_p
= TYPE_UNSIGNED (valtype
);
4522 /* Since TARGET_PROMOTE_FUNCTION_RETURN unconditionally returns true,
4523 we must promote the mode just as PROMOTE_MODE does. */
4524 mode
= promote_mode (valtype
, mode
, &unsigned_p
, 1);
4526 /* Handle structures whose fields are returned in $f0/$f2. */
4527 switch (mips_fpr_return_fields (valtype
, fields
))
4530 return mips_return_fpr_single (mode
,
4531 TYPE_MODE (TREE_TYPE (fields
[0])));
4534 return mips_return_fpr_pair (mode
,
4535 TYPE_MODE (TREE_TYPE (fields
[0])),
4536 int_byte_position (fields
[0]),
4537 TYPE_MODE (TREE_TYPE (fields
[1])),
4538 int_byte_position (fields
[1]));
4541 /* If a value is passed in the most significant part of a register, see
4542 whether we have to round the mode up to a whole number of words. */
4543 if (mips_return_in_msb (valtype
))
4545 HOST_WIDE_INT size
= int_size_in_bytes (valtype
);
4546 if (size
% UNITS_PER_WORD
!= 0)
4548 size
+= UNITS_PER_WORD
- size
% UNITS_PER_WORD
;
4549 mode
= mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
, 0);
4553 /* For EABI, the class of return register depends entirely on MODE.
4554 For example, "struct { some_type x; }" and "union { some_type x; }"
4555 are returned in the same way as a bare "some_type" would be.
4556 Other ABIs only use FPRs for scalar, complex or vector types. */
4557 if (mips_abi
!= ABI_EABI
&& !FLOAT_TYPE_P (valtype
))
4558 return gen_rtx_REG (mode
, GP_RETURN
);
4563 /* Handle long doubles for n32 & n64. */
4565 return mips_return_fpr_pair (mode
,
4567 DImode
, GET_MODE_SIZE (mode
) / 2);
4569 if (mips_return_mode_in_fpr_p (mode
))
4571 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
)
4572 return mips_return_fpr_pair (mode
,
4573 GET_MODE_INNER (mode
), 0,
4574 GET_MODE_INNER (mode
),
4575 GET_MODE_SIZE (mode
) / 2);
4577 return gen_rtx_REG (mode
, FP_RETURN
);
4581 return gen_rtx_REG (mode
, GP_RETURN
);
4584 /* Implement TARGET_RETURN_IN_MEMORY. Under the o32 and o64 ABIs,
4585 all BLKmode objects are returned in memory. Under the n32, n64
4586 and embedded ABIs, small structures are returned in a register.
4587 Objects with varying size must still be returned in memory, of
4591 mips_return_in_memory (const_tree type
, const_tree fndecl ATTRIBUTE_UNUSED
)
4593 return (TARGET_OLDABI
4594 ? TYPE_MODE (type
) == BLKmode
4595 : !IN_RANGE (int_size_in_bytes (type
), 0, 2 * UNITS_PER_WORD
));
4598 /* Implement TARGET_SETUP_INCOMING_VARARGS. */
4601 mips_setup_incoming_varargs (CUMULATIVE_ARGS
*cum
, enum machine_mode mode
,
4602 tree type
, int *pretend_size ATTRIBUTE_UNUSED
,
4605 CUMULATIVE_ARGS local_cum
;
4606 int gp_saved
, fp_saved
;
4608 /* The caller has advanced CUM up to, but not beyond, the last named
4609 argument. Advance a local copy of CUM past the last "real" named
4610 argument, to find out how many registers are left over. */
4612 FUNCTION_ARG_ADVANCE (local_cum
, mode
, type
, true);
4614 /* Found out how many registers we need to save. */
4615 gp_saved
= MAX_ARGS_IN_REGISTERS
- local_cum
.num_gprs
;
4616 fp_saved
= (EABI_FLOAT_VARARGS_P
4617 ? MAX_ARGS_IN_REGISTERS
- local_cum
.num_fprs
4626 ptr
= plus_constant (virtual_incoming_args_rtx
,
4627 REG_PARM_STACK_SPACE (cfun
->decl
)
4628 - gp_saved
* UNITS_PER_WORD
);
4629 mem
= gen_frame_mem (BLKmode
, ptr
);
4630 set_mem_alias_set (mem
, get_varargs_alias_set ());
4632 move_block_from_reg (local_cum
.num_gprs
+ GP_ARG_FIRST
,
4637 /* We can't use move_block_from_reg, because it will use
4639 enum machine_mode mode
;
4642 /* Set OFF to the offset from virtual_incoming_args_rtx of
4643 the first float register. The FP save area lies below
4644 the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */
4645 off
= (-gp_saved
* UNITS_PER_WORD
) & -UNITS_PER_FPVALUE
;
4646 off
-= fp_saved
* UNITS_PER_FPREG
;
4648 mode
= TARGET_SINGLE_FLOAT
? SFmode
: DFmode
;
4650 for (i
= local_cum
.num_fprs
; i
< MAX_ARGS_IN_REGISTERS
;
4651 i
+= MAX_FPRS_PER_FMT
)
4655 ptr
= plus_constant (virtual_incoming_args_rtx
, off
);
4656 mem
= gen_frame_mem (mode
, ptr
);
4657 set_mem_alias_set (mem
, get_varargs_alias_set ());
4658 mips_emit_move (mem
, gen_rtx_REG (mode
, FP_ARG_FIRST
+ i
));
4659 off
+= UNITS_PER_HWFPVALUE
;
4663 if (REG_PARM_STACK_SPACE (cfun
->decl
) == 0)
4664 cfun
->machine
->varargs_size
= (gp_saved
* UNITS_PER_WORD
4665 + fp_saved
* UNITS_PER_FPREG
);
4668 /* Implement TARGET_BUILTIN_VA_LIST. */
4671 mips_build_builtin_va_list (void)
4673 if (EABI_FLOAT_VARARGS_P
)
4675 /* We keep 3 pointers, and two offsets.
4677 Two pointers are to the overflow area, which starts at the CFA.
4678 One of these is constant, for addressing into the GPR save area
4679 below it. The other is advanced up the stack through the
4682 The third pointer is to the bottom of the GPR save area.
4683 Since the FPR save area is just below it, we can address
4684 FPR slots off this pointer.
4686 We also keep two one-byte offsets, which are to be subtracted
4687 from the constant pointers to yield addresses in the GPR and
4688 FPR save areas. These are downcounted as float or non-float
4689 arguments are used, and when they get to zero, the argument
4690 must be obtained from the overflow region. */
4691 tree f_ovfl
, f_gtop
, f_ftop
, f_goff
, f_foff
, f_res
, record
;
4694 record
= lang_hooks
.types
.make_type (RECORD_TYPE
);
4696 f_ovfl
= build_decl (FIELD_DECL
, get_identifier ("__overflow_argptr"),
4698 f_gtop
= build_decl (FIELD_DECL
, get_identifier ("__gpr_top"),
4700 f_ftop
= build_decl (FIELD_DECL
, get_identifier ("__fpr_top"),
4702 f_goff
= build_decl (FIELD_DECL
, get_identifier ("__gpr_offset"),
4703 unsigned_char_type_node
);
4704 f_foff
= build_decl (FIELD_DECL
, get_identifier ("__fpr_offset"),
4705 unsigned_char_type_node
);
4706 /* Explicitly pad to the size of a pointer, so that -Wpadded won't
4707 warn on every user file. */
4708 index
= build_int_cst (NULL_TREE
, GET_MODE_SIZE (ptr_mode
) - 2 - 1);
4709 array
= build_array_type (unsigned_char_type_node
,
4710 build_index_type (index
));
4711 f_res
= build_decl (FIELD_DECL
, get_identifier ("__reserved"), array
);
4713 DECL_FIELD_CONTEXT (f_ovfl
) = record
;
4714 DECL_FIELD_CONTEXT (f_gtop
) = record
;
4715 DECL_FIELD_CONTEXT (f_ftop
) = record
;
4716 DECL_FIELD_CONTEXT (f_goff
) = record
;
4717 DECL_FIELD_CONTEXT (f_foff
) = record
;
4718 DECL_FIELD_CONTEXT (f_res
) = record
;
4720 TYPE_FIELDS (record
) = f_ovfl
;
4721 TREE_CHAIN (f_ovfl
) = f_gtop
;
4722 TREE_CHAIN (f_gtop
) = f_ftop
;
4723 TREE_CHAIN (f_ftop
) = f_goff
;
4724 TREE_CHAIN (f_goff
) = f_foff
;
4725 TREE_CHAIN (f_foff
) = f_res
;
4727 layout_type (record
);
4730 else if (TARGET_IRIX
&& TARGET_IRIX6
)
4731 /* On IRIX 6, this type is 'char *'. */
4732 return build_pointer_type (char_type_node
);
4734 /* Otherwise, we use 'void *'. */
4735 return ptr_type_node
;
4738 /* Implement TARGET_EXPAND_BUILTIN_VA_START. */
4741 mips_va_start (tree valist
, rtx nextarg
)
4743 if (EABI_FLOAT_VARARGS_P
)
4745 const CUMULATIVE_ARGS
*cum
;
4746 tree f_ovfl
, f_gtop
, f_ftop
, f_goff
, f_foff
;
4747 tree ovfl
, gtop
, ftop
, goff
, foff
;
4749 int gpr_save_area_size
;
4750 int fpr_save_area_size
;
4753 cum
= ¤t_function_args_info
;
4755 = (MAX_ARGS_IN_REGISTERS
- cum
->num_gprs
) * UNITS_PER_WORD
;
4757 = (MAX_ARGS_IN_REGISTERS
- cum
->num_fprs
) * UNITS_PER_FPREG
;
4759 f_ovfl
= TYPE_FIELDS (va_list_type_node
);
4760 f_gtop
= TREE_CHAIN (f_ovfl
);
4761 f_ftop
= TREE_CHAIN (f_gtop
);
4762 f_goff
= TREE_CHAIN (f_ftop
);
4763 f_foff
= TREE_CHAIN (f_goff
);
4765 ovfl
= build3 (COMPONENT_REF
, TREE_TYPE (f_ovfl
), valist
, f_ovfl
,
4767 gtop
= build3 (COMPONENT_REF
, TREE_TYPE (f_gtop
), valist
, f_gtop
,
4769 ftop
= build3 (COMPONENT_REF
, TREE_TYPE (f_ftop
), valist
, f_ftop
,
4771 goff
= build3 (COMPONENT_REF
, TREE_TYPE (f_goff
), valist
, f_goff
,
4773 foff
= build3 (COMPONENT_REF
, TREE_TYPE (f_foff
), valist
, f_foff
,
4776 /* Emit code to initialize OVFL, which points to the next varargs
4777 stack argument. CUM->STACK_WORDS gives the number of stack
4778 words used by named arguments. */
4779 t
= make_tree (TREE_TYPE (ovfl
), virtual_incoming_args_rtx
);
4780 if (cum
->stack_words
> 0)
4781 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (ovfl
), t
,
4782 size_int (cum
->stack_words
* UNITS_PER_WORD
));
4783 t
= build2 (GIMPLE_MODIFY_STMT
, TREE_TYPE (ovfl
), ovfl
, t
);
4784 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
4786 /* Emit code to initialize GTOP, the top of the GPR save area. */
4787 t
= make_tree (TREE_TYPE (gtop
), virtual_incoming_args_rtx
);
4788 t
= build2 (GIMPLE_MODIFY_STMT
, TREE_TYPE (gtop
), gtop
, t
);
4789 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
4791 /* Emit code to initialize FTOP, the top of the FPR save area.
4792 This address is gpr_save_area_bytes below GTOP, rounded
4793 down to the next fp-aligned boundary. */
4794 t
= make_tree (TREE_TYPE (ftop
), virtual_incoming_args_rtx
);
4795 fpr_offset
= gpr_save_area_size
+ UNITS_PER_FPVALUE
- 1;
4796 fpr_offset
&= -UNITS_PER_FPVALUE
;
4798 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (ftop
), t
,
4799 size_int (-fpr_offset
));
4800 t
= build2 (GIMPLE_MODIFY_STMT
, TREE_TYPE (ftop
), ftop
, t
);
4801 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
4803 /* Emit code to initialize GOFF, the offset from GTOP of the
4804 next GPR argument. */
4805 t
= build2 (GIMPLE_MODIFY_STMT
, TREE_TYPE (goff
), goff
,
4806 build_int_cst (TREE_TYPE (goff
), gpr_save_area_size
));
4807 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
4809 /* Likewise emit code to initialize FOFF, the offset from FTOP
4810 of the next FPR argument. */
4811 t
= build2 (GIMPLE_MODIFY_STMT
, TREE_TYPE (foff
), foff
,
4812 build_int_cst (TREE_TYPE (foff
), fpr_save_area_size
));
4813 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
4817 nextarg
= plus_constant (nextarg
, -cfun
->machine
->varargs_size
);
4818 std_expand_builtin_va_start (valist
, nextarg
);
4822 /* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */
4825 mips_gimplify_va_arg_expr (tree valist
, tree type
, tree
*pre_p
, tree
*post_p
)
4830 indirect_p
= pass_by_reference (NULL
, TYPE_MODE (type
), type
, 0);
4832 type
= build_pointer_type (type
);
4834 if (!EABI_FLOAT_VARARGS_P
)
4835 addr
= std_gimplify_va_arg_expr (valist
, type
, pre_p
, post_p
);
4838 tree f_ovfl
, f_gtop
, f_ftop
, f_goff
, f_foff
;
4839 tree ovfl
, top
, off
, align
;
4840 HOST_WIDE_INT size
, rsize
, osize
;
4843 f_ovfl
= TYPE_FIELDS (va_list_type_node
);
4844 f_gtop
= TREE_CHAIN (f_ovfl
);
4845 f_ftop
= TREE_CHAIN (f_gtop
);
4846 f_goff
= TREE_CHAIN (f_ftop
);
4847 f_foff
= TREE_CHAIN (f_goff
);
4851 TOP be the top of the GPR or FPR save area;
4852 OFF be the offset from TOP of the next register;
4853 ADDR_RTX be the address of the argument;
4854 SIZE be the number of bytes in the argument type;
4855 RSIZE be the number of bytes used to store the argument
4856 when it's in the register save area; and
4857 OSIZE be the number of bytes used to store it when it's
4858 in the stack overflow area.
4860 The code we want is:
4862 1: off &= -rsize; // round down
4865 4: addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0);
4870 9: ovfl = ((intptr_t) ovfl + osize - 1) & -osize;
4871 10: addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0);
4875 [1] and [9] can sometimes be optimized away. */
4877 ovfl
= build3 (COMPONENT_REF
, TREE_TYPE (f_ovfl
), valist
, f_ovfl
,
4879 size
= int_size_in_bytes (type
);
4881 if (GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_FLOAT
4882 && GET_MODE_SIZE (TYPE_MODE (type
)) <= UNITS_PER_FPVALUE
)
4884 top
= build3 (COMPONENT_REF
, TREE_TYPE (f_ftop
), valist
, f_ftop
,
4886 off
= build3 (COMPONENT_REF
, TREE_TYPE (f_foff
), valist
, f_foff
,
4889 /* When va_start saves FPR arguments to the stack, each slot
4890 takes up UNITS_PER_HWFPVALUE bytes, regardless of the
4891 argument's precision. */
4892 rsize
= UNITS_PER_HWFPVALUE
;
4894 /* Overflow arguments are padded to UNITS_PER_WORD bytes
4895 (= PARM_BOUNDARY bits). This can be different from RSIZE
4898 (1) On 32-bit targets when TYPE is a structure such as:
4900 struct s { float f; };
4902 Such structures are passed in paired FPRs, so RSIZE
4903 will be 8 bytes. However, the structure only takes
4904 up 4 bytes of memory, so OSIZE will only be 4.
4906 (2) In combinations such as -mgp64 -msingle-float
4907 -fshort-double. Doubles passed in registers will then take
4908 up 4 (UNITS_PER_HWFPVALUE) bytes, but those passed on the
4909 stack take up UNITS_PER_WORD bytes. */
4910 osize
= MAX (GET_MODE_SIZE (TYPE_MODE (type
)), UNITS_PER_WORD
);
4914 top
= build3 (COMPONENT_REF
, TREE_TYPE (f_gtop
), valist
, f_gtop
,
4916 off
= build3 (COMPONENT_REF
, TREE_TYPE (f_goff
), valist
, f_goff
,
4918 rsize
= (size
+ UNITS_PER_WORD
- 1) & -UNITS_PER_WORD
;
4919 if (rsize
> UNITS_PER_WORD
)
4921 /* [1] Emit code for: off &= -rsize. */
4922 t
= build2 (BIT_AND_EXPR
, TREE_TYPE (off
), off
,
4923 build_int_cst (NULL_TREE
, -rsize
));
4924 t
= build2 (GIMPLE_MODIFY_STMT
, TREE_TYPE (off
), off
, t
);
4925 gimplify_and_add (t
, pre_p
);
4930 /* [2] Emit code to branch if off == 0. */
4931 t
= build2 (NE_EXPR
, boolean_type_node
, off
,
4932 build_int_cst (TREE_TYPE (off
), 0));
4933 addr
= build3 (COND_EXPR
, ptr_type_node
, t
, NULL_TREE
, NULL_TREE
);
4935 /* [5] Emit code for: off -= rsize. We do this as a form of
4936 post-decrement not available to C. */
4937 t
= fold_convert (TREE_TYPE (off
), build_int_cst (NULL_TREE
, rsize
));
4938 t
= build2 (POSTDECREMENT_EXPR
, TREE_TYPE (off
), off
, t
);
4940 /* [4] Emit code for:
4941 addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0). */
4942 t
= fold_convert (sizetype
, t
);
4943 t
= fold_build1 (NEGATE_EXPR
, sizetype
, t
);
4944 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (top
), top
, t
);
4945 if (BYTES_BIG_ENDIAN
&& rsize
> size
)
4947 u
= size_int (rsize
- size
);
4948 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (t
), t
, u
);
4950 COND_EXPR_THEN (addr
) = t
;
4952 if (osize
> UNITS_PER_WORD
)
4954 /* [9] Emit: ovfl = ((intptr_t) ovfl + osize - 1) & -osize. */
4955 u
= size_int (osize
- 1);
4956 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (ovfl
), ovfl
, u
);
4957 t
= fold_convert (sizetype
, t
);
4958 u
= size_int (-osize
);
4959 t
= build2 (BIT_AND_EXPR
, sizetype
, t
, u
);
4960 t
= fold_convert (TREE_TYPE (ovfl
), t
);
4961 align
= build2 (GIMPLE_MODIFY_STMT
, TREE_TYPE (ovfl
), ovfl
, t
);
4966 /* [10, 11] Emit code for:
4967 addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0)
4969 u
= fold_convert (TREE_TYPE (ovfl
), build_int_cst (NULL_TREE
, osize
));
4970 t
= build2 (POSTINCREMENT_EXPR
, TREE_TYPE (ovfl
), ovfl
, u
);
4971 if (BYTES_BIG_ENDIAN
&& osize
> size
)
4973 u
= size_int (osize
- size
);
4974 t
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (t
), t
, u
);
4977 /* String [9] and [10, 11] together. */
4979 t
= build2 (COMPOUND_EXPR
, TREE_TYPE (t
), align
, t
);
4980 COND_EXPR_ELSE (addr
) = t
;
4982 addr
= fold_convert (build_pointer_type (type
), addr
);
4983 addr
= build_va_arg_indirect_ref (addr
);
4987 addr
= build_va_arg_indirect_ref (addr
);
4992 /* A chained list of functions for which mips16_build_call_stub has already
4993 generated a stub. NAME is the name of the function and FP_RET_P is true
4994 if the function returns a value in floating-point registers. */
4995 struct mips16_stub
{
4996 struct mips16_stub
*next
;
5000 static struct mips16_stub
*mips16_stubs
;
5002 /* Return the two-character string that identifies floating-point
5003 return mode MODE in the name of a MIPS16 function stub. */
5006 mips16_call_stub_mode_suffix (enum machine_mode mode
)
5010 else if (mode
== DFmode
)
5012 else if (mode
== SCmode
)
5014 else if (mode
== DCmode
)
5016 else if (mode
== V2SFmode
)
5022 /* Write instructions to move a 32-bit value between general register
5023 GPREG and floating-point register FPREG. DIRECTION is 't' to move
5024 from GPREG to FPREG and 'f' to move in the opposite direction. */
5027 mips_output_32bit_xfer (char direction
, unsigned int gpreg
, unsigned int fpreg
)
5029 fprintf (asm_out_file
, "\tm%cc1\t%s,%s\n", direction
,
5030 reg_names
[gpreg
], reg_names
[fpreg
]);
5033 /* Likewise for 64-bit values. */
5036 mips_output_64bit_xfer (char direction
, unsigned int gpreg
, unsigned int fpreg
)
5039 fprintf (asm_out_file
, "\tdm%cc1\t%s,%s\n", direction
,
5040 reg_names
[gpreg
], reg_names
[fpreg
]);
5041 else if (TARGET_FLOAT64
)
5043 fprintf (asm_out_file
, "\tm%cc1\t%s,%s\n", direction
,
5044 reg_names
[gpreg
+ TARGET_BIG_ENDIAN
], reg_names
[fpreg
]);
5045 fprintf (asm_out_file
, "\tm%chc1\t%s,%s\n", direction
,
5046 reg_names
[gpreg
+ TARGET_LITTLE_ENDIAN
], reg_names
[fpreg
]);
5050 /* Move the least-significant word. */
5051 fprintf (asm_out_file
, "\tm%cc1\t%s,%s\n", direction
,
5052 reg_names
[gpreg
+ TARGET_BIG_ENDIAN
], reg_names
[fpreg
]);
5053 /* ...then the most significant word. */
5054 fprintf (asm_out_file
, "\tm%cc1\t%s,%s\n", direction
,
5055 reg_names
[gpreg
+ TARGET_LITTLE_ENDIAN
], reg_names
[fpreg
+ 1]);
5059 /* Write out code to move floating-point arguments into or out of
5060 general registers. FP_CODE is the code describing which arguments
5061 are present (see the comment above the definition of CUMULATIVE_ARGS
5062 in mips.h). DIRECTION is as for mips_output_32bit_xfer. */
5065 mips_output_args_xfer (int fp_code
, char direction
)
5067 unsigned int gparg
, fparg
, f
;
5068 CUMULATIVE_ARGS cum
;
5070 /* This code only works for o32 and o64. */
5071 gcc_assert (TARGET_OLDABI
);
5073 mips_init_cumulative_args (&cum
, NULL
);
5075 for (f
= (unsigned int) fp_code
; f
!= 0; f
>>= 2)
5077 enum machine_mode mode
;
5078 struct mips_arg_info info
;
5082 else if ((f
& 3) == 2)
5087 mips_get_arg_info (&info
, &cum
, mode
, NULL
, true);
5088 gparg
= mips_arg_regno (&info
, false);
5089 fparg
= mips_arg_regno (&info
, true);
5092 mips_output_32bit_xfer (direction
, gparg
, fparg
);
5094 mips_output_64bit_xfer (direction
, gparg
, fparg
);
5096 mips_function_arg_advance (&cum
, mode
, NULL
, true);
5100 /* Write a MIPS16 stub for the current function. This stub is used
5101 for functions which take arguments in the floating-point registers.
5102 It is normal-mode code that moves the floating-point arguments
5103 into the general registers and then jumps to the MIPS16 code. */
5106 mips16_build_function_stub (void)
5108 const char *fnname
, *separator
;
5109 char *secname
, *stubname
;
5113 /* Create the name of the stub, and its unique section. */
5114 fnname
= XSTR (XEXP (DECL_RTL (current_function_decl
), 0), 0);
5115 fnname
= targetm
.strip_name_encoding (fnname
);
5116 secname
= ACONCAT ((".mips16.fn.", fnname
, NULL
));
5117 stubname
= ACONCAT (("__fn_stub_", fnname
, NULL
));
5119 /* Build a decl for the stub. */
5120 stubdecl
= build_decl (FUNCTION_DECL
, get_identifier (stubname
),
5121 build_function_type (void_type_node
, NULL_TREE
));
5122 DECL_SECTION_NAME (stubdecl
) = build_string (strlen (secname
), secname
);
5123 DECL_RESULT (stubdecl
) = build_decl (RESULT_DECL
, NULL_TREE
, void_type_node
);
5125 /* Output a comment. */
5126 fprintf (asm_out_file
, "\t# Stub function for %s (",
5127 current_function_name ());
5129 for (f
= (unsigned int) current_function_args_info
.fp_code
; f
!= 0; f
>>= 2)
5131 fprintf (asm_out_file
, "%s%s", separator
,
5132 (f
& 3) == 1 ? "float" : "double");
5135 fprintf (asm_out_file
, ")\n");
5137 /* Write the preamble leading up to the function declaration. */
5138 fprintf (asm_out_file
, "\t.set\tnomips16\n");
5139 switch_to_section (function_section (stubdecl
));
5140 ASM_OUTPUT_ALIGN (asm_out_file
,
5141 floor_log2 (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
));
5143 /* ??? If FUNCTION_NAME_ALREADY_DECLARED is defined, then we are
5144 within a .ent, and we cannot emit another .ent. */
5145 if (!FUNCTION_NAME_ALREADY_DECLARED
)
5147 fputs ("\t.ent\t", asm_out_file
);
5148 assemble_name (asm_out_file
, stubname
);
5149 fputs ("\n", asm_out_file
);
5152 /* Start the definition proper. */
5153 assemble_name (asm_out_file
, stubname
);
5154 fputs (":\n", asm_out_file
);
5156 /* Load the address of the MIPS16 function into $at. Do this first so
5157 that targets with coprocessor interlocks can use an MFC1 to fill the
5159 fprintf (asm_out_file
, "\t.set\tnoat\n");
5160 fprintf (asm_out_file
, "\tla\t%s,", reg_names
[GP_REG_FIRST
+ 1]);
5161 assemble_name (asm_out_file
, fnname
);
5162 fprintf (asm_out_file
, "\n");
5164 /* Move the arguments from floating-point registers to general registers. */
5165 mips_output_args_xfer (current_function_args_info
.fp_code
, 'f');
5167 /* Jump to the MIPS16 function. */
5168 fprintf (asm_out_file
, "\tjr\t%s\n", reg_names
[GP_REG_FIRST
+ 1]);
5169 fprintf (asm_out_file
, "\t.set\tat\n");
5171 if (!FUNCTION_NAME_ALREADY_DECLARED
)
5173 fputs ("\t.end\t", asm_out_file
);
5174 assemble_name (asm_out_file
, stubname
);
5175 fputs ("\n", asm_out_file
);
5178 switch_to_section (function_section (current_function_decl
));
5181 /* The current function is a MIPS16 function that returns a value in an FPR.
5182 Copy the return value from its soft-float to its hard-float location.
5183 libgcc2 has special non-MIPS16 helper functions for each case. */
5186 mips16_copy_fpr_return_value (void)
5188 rtx fn
, insn
, arg
, call
;
5189 tree id
, return_type
;
5190 enum machine_mode return_mode
;
5192 return_type
= DECL_RESULT (current_function_decl
);
5193 return_mode
= DECL_MODE (return_type
);
5195 id
= get_identifier (ACONCAT (("__mips16_ret_",
5196 mips16_call_stub_mode_suffix (return_mode
),
5198 fn
= gen_rtx_SYMBOL_REF (Pmode
, IDENTIFIER_POINTER (id
));
5199 arg
= gen_rtx_REG (return_mode
, GP_RETURN
);
5200 call
= gen_call_value_internal (arg
, fn
, const0_rtx
);
5201 insn
= emit_call_insn (call
);
5202 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), arg
);
5205 /* Consider building a stub for a MIPS16 call to function FN.
5206 RETVAL is the location of the return value, or null if this is
5207 a "call" rather than a "call_value". ARGS_SIZE is the size of the
5208 arguments and FP_CODE is the code built by mips_function_arg;
5209 see the comment above CUMULATIVE_ARGS for details.
5211 Return true if a stub was needed, and emit the call if so.
5213 A stub is needed for calls to functions that, in normal mode,
5214 receive arguments in FPRs or return values in FPRs. The stub
5215 copies the arguments from their soft-float positions to their
5216 hard-float positions, calls the real function, then copies the
5217 return value from its hard-float position to its soft-float
5220 We emit a JAL to FN even when FN might need a stub. If FN turns out
5221 to be to a non-MIPS16 function, the linker automatically redirects
5222 the JAL to the stub, otherwise the JAL continues to call FN directly. */
5225 mips16_build_call_stub (rtx retval
, rtx fn
, rtx args_size
, int fp_code
)
5229 struct mips16_stub
*l
;
5232 /* We don't need to do anything if we aren't in MIPS16 mode, or if
5233 we were invoked with the -msoft-float option. */
5234 if (!TARGET_MIPS16
|| TARGET_SOFT_FLOAT_ABI
)
5237 /* Figure out whether the value might come back in a floating-point
5239 fp_ret_p
= retval
&& mips_return_mode_in_fpr_p (GET_MODE (retval
));
5241 /* We don't need to do anything if there were no floating-point
5242 arguments and the value will not be returned in a floating-point
5244 if (fp_code
== 0 && !fp_ret_p
)
5247 /* We don't need to do anything if this is a call to a special
5248 MIPS16 support function. */
5249 if (GET_CODE (fn
) == SYMBOL_REF
5250 && strncmp (XSTR (fn
, 0), "__mips16_", 9) == 0)
5253 /* This code will only work for o32 and o64 abis. The other ABI's
5254 require more sophisticated support. */
5255 gcc_assert (TARGET_OLDABI
);
5257 /* If we're calling via a function pointer, use one of the magic
5258 libgcc.a stubs provided for each (FP_CODE, FP_RET_P) combination.
5259 Each stub expects the function address to arrive in register $2. */
5260 if (GET_CODE (fn
) != SYMBOL_REF
)
5266 /* Create a SYMBOL_REF for the libgcc.a function. */
5268 sprintf (buf
, "__mips16_call_stub_%s_%d",
5269 mips16_call_stub_mode_suffix (GET_MODE (retval
)),
5272 sprintf (buf
, "__mips16_call_stub_%d", fp_code
);
5273 id
= get_identifier (buf
);
5274 stub_fn
= gen_rtx_SYMBOL_REF (Pmode
, IDENTIFIER_POINTER (id
));
5276 /* Load the target function into $2. */
5277 mips_emit_move (gen_rtx_REG (Pmode
, 2), fn
);
5279 /* Emit the call. */
5280 if (retval
== NULL_RTX
)
5281 insn
= gen_call_internal (stub_fn
, args_size
);
5283 insn
= gen_call_value_internal (retval
, stub_fn
, args_size
);
5284 insn
= emit_call_insn (insn
);
5286 /* Tell GCC that this call does indeed use the value of $2. */
5287 CALL_INSN_FUNCTION_USAGE (insn
) =
5288 gen_rtx_EXPR_LIST (VOIDmode
,
5289 gen_rtx_USE (VOIDmode
, gen_rtx_REG (Pmode
, 2)),
5290 CALL_INSN_FUNCTION_USAGE (insn
));
5292 /* If we are handling a floating-point return value, we need to
5293 save $18 in the function prologue. Putting a note on the
5294 call will mean that df_regs_ever_live_p ($18) will be true if the
5295 call is not eliminated, and we can check that in the prologue
5298 CALL_INSN_FUNCTION_USAGE (insn
) =
5299 gen_rtx_EXPR_LIST (VOIDmode
,
5300 gen_rtx_USE (VOIDmode
,
5301 gen_rtx_REG (word_mode
, 18)),
5302 CALL_INSN_FUNCTION_USAGE (insn
));
5307 /* We know the function we are going to call. If we have already
5308 built a stub, we don't need to do anything further. */
5309 fnname
= targetm
.strip_name_encoding (XSTR (fn
, 0));
5310 for (l
= mips16_stubs
; l
!= NULL
; l
= l
->next
)
5311 if (strcmp (l
->name
, fnname
) == 0)
5316 const char *separator
;
5317 char *secname
, *stubname
;
5318 tree stubid
, stubdecl
;
5321 /* If the function does not return in FPRs, the special stub
5325 If the function does return in FPRs, the stub section is named
5326 .mips16.call.fp.FNNAME
5328 Build a decl for the stub. */
5329 secname
= ACONCAT ((".mips16.call.", fp_ret_p
? "fp." : "",
5331 stubname
= ACONCAT (("__call_stub_", fp_ret_p
? "fp_" : "",
5333 stubid
= get_identifier (stubname
);
5334 stubdecl
= build_decl (FUNCTION_DECL
, stubid
,
5335 build_function_type (void_type_node
, NULL_TREE
));
5336 DECL_SECTION_NAME (stubdecl
) = build_string (strlen (secname
), secname
);
5337 DECL_RESULT (stubdecl
) = build_decl (RESULT_DECL
, NULL_TREE
,
5340 /* Output a comment. */
5341 fprintf (asm_out_file
, "\t# Stub function to call %s%s (",
5343 ? (GET_MODE (retval
) == SFmode
? "float " : "double ")
5347 for (f
= (unsigned int) fp_code
; f
!= 0; f
>>= 2)
5349 fprintf (asm_out_file
, "%s%s", separator
,
5350 (f
& 3) == 1 ? "float" : "double");
5353 fprintf (asm_out_file
, ")\n");
5355 /* Write the preamble leading up to the function declaration. */
5356 fprintf (asm_out_file
, "\t.set\tnomips16\n");
5357 assemble_start_function (stubdecl
, stubname
);
5359 if (!FUNCTION_NAME_ALREADY_DECLARED
)
5361 fputs ("\t.ent\t", asm_out_file
);
5362 assemble_name (asm_out_file
, stubname
);
5363 fputs ("\n", asm_out_file
);
5365 assemble_name (asm_out_file
, stubname
);
5366 fputs (":\n", asm_out_file
);
5371 /* Load the address of the MIPS16 function into $at. Do this
5372 first so that targets with coprocessor interlocks can use
5373 an MFC1 to fill the delay slot. */
5374 fprintf (asm_out_file
, "\t.set\tnoat\n");
5375 fprintf (asm_out_file
, "\tla\t%s,%s\n", reg_names
[GP_REG_FIRST
+ 1],
5379 /* Move the arguments from general registers to floating-point
5381 mips_output_args_xfer (fp_code
, 't');
5385 /* Jump to the previously-loaded address. */
5386 fprintf (asm_out_file
, "\tjr\t%s\n", reg_names
[GP_REG_FIRST
+ 1]);
5387 fprintf (asm_out_file
, "\t.set\tat\n");
5391 /* Save the return address in $18 and call the non-MIPS16 function.
5392 The stub's caller knows that $18 might be clobbered, even though
5393 $18 is usually a call-saved register. */
5394 fprintf (asm_out_file
, "\tmove\t%s,%s\n",
5395 reg_names
[GP_REG_FIRST
+ 18], reg_names
[GP_REG_FIRST
+ 31]);
5396 fprintf (asm_out_file
, "\tjal\t%s\n", fnname
);
5398 /* Move the result from floating-point registers to
5399 general registers. */
5400 switch (GET_MODE (retval
))
5403 mips_output_32bit_xfer ('f', GP_RETURN
+ 1,
5404 FP_REG_FIRST
+ MAX_FPRS_PER_FMT
);
5407 mips_output_32bit_xfer ('f', GP_RETURN
, FP_REG_FIRST
);
5408 if (GET_MODE (retval
) == SCmode
&& TARGET_64BIT
)
5410 /* On 64-bit targets, complex floats are returned in
5411 a single GPR, such that "sd" on a suitably-aligned
5412 target would store the value correctly. */
5413 fprintf (asm_out_file
, "\tdsll\t%s,%s,32\n",
5414 reg_names
[GP_RETURN
+ TARGET_LITTLE_ENDIAN
],
5415 reg_names
[GP_RETURN
+ TARGET_LITTLE_ENDIAN
]);
5416 fprintf (asm_out_file
, "\tor\t%s,%s,%s\n",
5417 reg_names
[GP_RETURN
],
5418 reg_names
[GP_RETURN
],
5419 reg_names
[GP_RETURN
+ 1]);
5424 mips_output_64bit_xfer ('f', GP_RETURN
+ (8 / UNITS_PER_WORD
),
5425 FP_REG_FIRST
+ MAX_FPRS_PER_FMT
);
5429 mips_output_64bit_xfer ('f', GP_RETURN
, FP_REG_FIRST
);
5435 fprintf (asm_out_file
, "\tjr\t%s\n", reg_names
[GP_REG_FIRST
+ 18]);
5438 #ifdef ASM_DECLARE_FUNCTION_SIZE
5439 ASM_DECLARE_FUNCTION_SIZE (asm_out_file
, stubname
, stubdecl
);
5442 if (!FUNCTION_NAME_ALREADY_DECLARED
)
5444 fputs ("\t.end\t", asm_out_file
);
5445 assemble_name (asm_out_file
, stubname
);
5446 fputs ("\n", asm_out_file
);
5449 /* Record this stub. */
5450 l
= XNEW (struct mips16_stub
);
5451 l
->name
= xstrdup (fnname
);
5452 l
->fp_ret_p
= fp_ret_p
;
5453 l
->next
= mips16_stubs
;
5457 /* If we expect a floating-point return value, but we've built a
5458 stub which does not expect one, then we're in trouble. We can't
5459 use the existing stub, because it won't handle the floating-point
5460 value. We can't build a new stub, because the linker won't know
5461 which stub to use for the various calls in this object file.
5462 Fortunately, this case is illegal, since it means that a function
5463 was declared in two different ways in a single compilation. */
5464 if (fp_ret_p
&& !l
->fp_ret_p
)
5465 error ("cannot handle inconsistent calls to %qs", fnname
);
5467 if (retval
== NULL_RTX
)
5468 insn
= gen_call_internal_direct (fn
, args_size
);
5470 insn
= gen_call_value_internal_direct (retval
, fn
, args_size
);
5471 insn
= emit_call_insn (insn
);
5473 /* If we are calling a stub which handles a floating-point return
5474 value, we need to arrange to save $18 in the prologue. We do this
5475 by marking the function call as using the register. The prologue
5476 will later see that it is used, and emit code to save it. */
5478 CALL_INSN_FUNCTION_USAGE (insn
) =
5479 gen_rtx_EXPR_LIST (VOIDmode
,
5480 gen_rtx_USE (VOIDmode
, gen_rtx_REG (word_mode
, 18)),
5481 CALL_INSN_FUNCTION_USAGE (insn
));
5486 /* Return true if calls to X can use R_MIPS_CALL* relocations. */
5489 mips_ok_for_lazy_binding_p (rtx x
)
5491 return (TARGET_USE_GOT
5492 && GET_CODE (x
) == SYMBOL_REF
5493 && !mips_symbol_binds_local_p (x
));
5496 /* Load function address ADDR into register DEST. SIBCALL_P is true
5497 if the address is needed for a sibling call. Return true if we
5498 used an explicit lazy-binding sequence. */
5501 mips_load_call_address (rtx dest
, rtx addr
, bool sibcall_p
)
5503 /* If we're generating PIC, and this call is to a global function,
5504 try to allow its address to be resolved lazily. This isn't
5505 possible for sibcalls when $gp is call-saved because the value
5506 of $gp on entry to the stub would be our caller's gp, not ours. */
5507 if (TARGET_EXPLICIT_RELOCS
5508 && !(sibcall_p
&& TARGET_CALL_SAVED_GP
)
5509 && mips_ok_for_lazy_binding_p (addr
))
5511 rtx high
, lo_sum_symbol
;
5513 high
= mips_unspec_offset_high (dest
, pic_offset_table_rtx
,
5514 addr
, SYMBOL_GOTOFF_CALL
);
5515 lo_sum_symbol
= mips_unspec_address (addr
, SYMBOL_GOTOFF_CALL
);
5516 if (Pmode
== SImode
)
5517 emit_insn (gen_load_callsi (dest
, high
, lo_sum_symbol
));
5519 emit_insn (gen_load_calldi (dest
, high
, lo_sum_symbol
));
5524 mips_emit_move (dest
, addr
);
5529 /* Expand a "call", "sibcall", "call_value" or "sibcall_value" instruction.
5530 RESULT is where the result will go (null for "call"s and "sibcall"s),
5531 ADDR is the address of the function, ARGS_SIZE is the size of the
5532 arguments and AUX is the value passed to us by mips_function_arg.
5533 SIBCALL_P is true if we are expanding a sibling call, false if we're
5534 expanding a normal call. */
5537 mips_expand_call (rtx result
, rtx addr
, rtx args_size
, rtx aux
, bool sibcall_p
)
5539 rtx orig_addr
, pattern
, insn
;
5544 if (!call_insn_operand (addr
, VOIDmode
))
5546 addr
= gen_reg_rtx (Pmode
);
5547 lazy_p
= mips_load_call_address (addr
, orig_addr
, sibcall_p
);
5551 && TARGET_HARD_FLOAT_ABI
5552 && mips16_build_call_stub (result
, addr
, args_size
,
5553 aux
== 0 ? 0 : (int) GET_MODE (aux
)))
5555 gcc_assert (!sibcall_p
);
5560 pattern
= (sibcall_p
5561 ? gen_sibcall_internal (addr
, args_size
)
5562 : gen_call_internal (addr
, args_size
));
5563 else if (GET_CODE (result
) == PARALLEL
&& XVECLEN (result
, 0) == 2)
5565 /* Handle return values created by mips_return_fpr_pair. */
5568 reg1
= XEXP (XVECEXP (result
, 0, 0), 0);
5569 reg2
= XEXP (XVECEXP (result
, 0, 1), 0);
5572 ? gen_sibcall_value_multiple_internal (reg1
, addr
, args_size
, reg2
)
5573 : gen_call_value_multiple_internal (reg1
, addr
, args_size
, reg2
));
5577 /* Handle return values created by mips_return_fpr_single. */
5578 if (GET_CODE (result
) == PARALLEL
&& XVECLEN (result
, 0) == 1)
5579 result
= XEXP (XVECEXP (result
, 0, 0), 0);
5580 pattern
= (sibcall_p
5581 ? gen_sibcall_value_internal (result
, addr
, args_size
)
5582 : gen_call_value_internal (result
, addr
, args_size
));
5585 insn
= emit_call_insn (pattern
);
5587 /* Lazy-binding stubs require $gp to be valid on entry. We also pretend
5588 that they use FAKE_CALL_REGNO; see the load_call<mode> patterns for
5592 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), pic_offset_table_rtx
);
5593 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
),
5594 gen_rtx_REG (Pmode
, FAKE_CALL_REGNO
));
5598 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
5601 mips_function_ok_for_sibcall (tree decl
, tree exp ATTRIBUTE_UNUSED
)
5603 if (!TARGET_SIBCALLS
)
5606 /* We can't do a sibcall if the called function is a MIPS16 function
5607 because there is no direct "jx" instruction equivalent to "jalx" to
5608 switch the ISA mode. We only care about cases where the sibling
5609 and normal calls would both be direct. */
5610 if (mips_use_mips16_mode_p (decl
)
5611 && const_call_insn_operand (XEXP (DECL_RTL (decl
), 0), VOIDmode
))
5614 /* When -minterlink-mips16 is in effect, assume that non-locally-binding
5615 functions could be MIPS16 ones unless an attribute explicitly tells
5617 if (TARGET_INTERLINK_MIPS16
5619 && (DECL_EXTERNAL (decl
) || !targetm
.binds_local_p (decl
))
5620 && !mips_nomips16_decl_p (decl
)
5621 && const_call_insn_operand (XEXP (DECL_RTL (decl
), 0), VOIDmode
))
5628 /* Emit code to move general operand SRC into condition-code
5629 register DEST given that SCRATCH is a scratch TFmode FPR.
5636 where FP1 and FP2 are single-precision FPRs taken from SCRATCH. */
5639 mips_expand_fcc_reload (rtx dest
, rtx src
, rtx scratch
)
5643 /* Change the source to SFmode. */
5645 src
= adjust_address (src
, SFmode
, 0);
5646 else if (REG_P (src
) || GET_CODE (src
) == SUBREG
)
5647 src
= gen_rtx_REG (SFmode
, true_regnum (src
));
5649 fp1
= gen_rtx_REG (SFmode
, REGNO (scratch
));
5650 fp2
= gen_rtx_REG (SFmode
, REGNO (scratch
) + MAX_FPRS_PER_FMT
);
5652 mips_emit_move (copy_rtx (fp1
), src
);
5653 mips_emit_move (copy_rtx (fp2
), CONST0_RTX (SFmode
));
5654 emit_insn (gen_slt_sf (dest
, fp2
, fp1
));
5657 /* Emit straight-line code to move LENGTH bytes from SRC to DEST.
5658 Assume that the areas do not overlap. */
5661 mips_block_move_straight (rtx dest
, rtx src
, HOST_WIDE_INT length
)
5663 HOST_WIDE_INT offset
, delta
;
5664 unsigned HOST_WIDE_INT bits
;
5666 enum machine_mode mode
;
5669 /* Work out how many bits to move at a time. If both operands have
5670 half-word alignment, it is usually better to move in half words.
5671 For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
5672 and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
5673 Otherwise move word-sized chunks. */
5674 if (MEM_ALIGN (src
) == BITS_PER_WORD
/ 2
5675 && MEM_ALIGN (dest
) == BITS_PER_WORD
/ 2)
5676 bits
= BITS_PER_WORD
/ 2;
5678 bits
= BITS_PER_WORD
;
5680 mode
= mode_for_size (bits
, MODE_INT
, 0);
5681 delta
= bits
/ BITS_PER_UNIT
;
5683 /* Allocate a buffer for the temporary registers. */
5684 regs
= alloca (sizeof (rtx
) * length
/ delta
);
5686 /* Load as many BITS-sized chunks as possible. Use a normal load if
5687 the source has enough alignment, otherwise use left/right pairs. */
5688 for (offset
= 0, i
= 0; offset
+ delta
<= length
; offset
+= delta
, i
++)
5690 regs
[i
] = gen_reg_rtx (mode
);
5691 if (MEM_ALIGN (src
) >= bits
)
5692 mips_emit_move (regs
[i
], adjust_address (src
, mode
, offset
));
5695 rtx part
= adjust_address (src
, BLKmode
, offset
);
5696 if (!mips_expand_ext_as_unaligned_load (regs
[i
], part
, bits
, 0))
5701 /* Copy the chunks to the destination. */
5702 for (offset
= 0, i
= 0; offset
+ delta
<= length
; offset
+= delta
, i
++)
5703 if (MEM_ALIGN (dest
) >= bits
)
5704 mips_emit_move (adjust_address (dest
, mode
, offset
), regs
[i
]);
5707 rtx part
= adjust_address (dest
, BLKmode
, offset
);
5708 if (!mips_expand_ins_as_unaligned_store (part
, regs
[i
], bits
, 0))
5712 /* Mop up any left-over bytes. */
5713 if (offset
< length
)
5715 src
= adjust_address (src
, BLKmode
, offset
);
5716 dest
= adjust_address (dest
, BLKmode
, offset
);
5717 move_by_pieces (dest
, src
, length
- offset
,
5718 MIN (MEM_ALIGN (src
), MEM_ALIGN (dest
)), 0);
5722 /* Helper function for doing a loop-based block operation on memory
5723 reference MEM. Each iteration of the loop will operate on LENGTH
5726 Create a new base register for use within the loop and point it to
5727 the start of MEM. Create a new memory reference that uses this
5728 register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
5731 mips_adjust_block_mem (rtx mem
, HOST_WIDE_INT length
,
5732 rtx
*loop_reg
, rtx
*loop_mem
)
5734 *loop_reg
= copy_addr_to_reg (XEXP (mem
, 0));
5736 /* Although the new mem does not refer to a known location,
5737 it does keep up to LENGTH bytes of alignment. */
5738 *loop_mem
= change_address (mem
, BLKmode
, *loop_reg
);
5739 set_mem_align (*loop_mem
, MIN (MEM_ALIGN (mem
), length
* BITS_PER_UNIT
));
5742 /* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
5743 bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that
5744 the memory regions do not overlap. */
5747 mips_block_move_loop (rtx dest
, rtx src
, HOST_WIDE_INT length
,
5748 HOST_WIDE_INT bytes_per_iter
)
5750 rtx label
, src_reg
, dest_reg
, final_src
;
5751 HOST_WIDE_INT leftover
;
5753 leftover
= length
% bytes_per_iter
;
5756 /* Create registers and memory references for use within the loop. */
5757 mips_adjust_block_mem (src
, bytes_per_iter
, &src_reg
, &src
);
5758 mips_adjust_block_mem (dest
, bytes_per_iter
, &dest_reg
, &dest
);
5760 /* Calculate the value that SRC_REG should have after the last iteration
5762 final_src
= expand_simple_binop (Pmode
, PLUS
, src_reg
, GEN_INT (length
),
5765 /* Emit the start of the loop. */
5766 label
= gen_label_rtx ();
5769 /* Emit the loop body. */
5770 mips_block_move_straight (dest
, src
, bytes_per_iter
);
5772 /* Move on to the next block. */
5773 mips_emit_move (src_reg
, plus_constant (src_reg
, bytes_per_iter
));
5774 mips_emit_move (dest_reg
, plus_constant (dest_reg
, bytes_per_iter
));
5776 /* Emit the loop condition. */
5777 if (Pmode
== DImode
)
5778 emit_insn (gen_cmpdi (src_reg
, final_src
));
5780 emit_insn (gen_cmpsi (src_reg
, final_src
));
5781 emit_jump_insn (gen_bne (label
));
5783 /* Mop up any left-over bytes. */
5785 mips_block_move_straight (dest
, src
, leftover
);
5788 /* Expand a movmemsi instruction, which copies LENGTH bytes from
5789 memory reference SRC to memory reference DEST. */
5792 mips_expand_block_move (rtx dest
, rtx src
, rtx length
)
5794 if (GET_CODE (length
) == CONST_INT
)
5796 if (INTVAL (length
) <= MIPS_MAX_MOVE_BYTES_STRAIGHT
)
5798 mips_block_move_straight (dest
, src
, INTVAL (length
));
5803 mips_block_move_loop (dest
, src
, INTVAL (length
),
5804 MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER
);
5811 /* Expand a loop of synci insns for the address range [BEGIN, END). */
5814 mips_expand_synci_loop (rtx begin
, rtx end
)
5816 rtx inc
, label
, cmp
, cmp_result
;
5818 /* Load INC with the cache line size (rdhwr INC,$1). */
5819 inc
= gen_reg_rtx (SImode
);
5820 emit_insn (gen_rdhwr (inc
, const1_rtx
));
5822 /* Loop back to here. */
5823 label
= gen_label_rtx ();
5826 emit_insn (gen_synci (begin
));
5828 cmp
= gen_reg_rtx (Pmode
);
5829 mips_emit_binary (GTU
, cmp
, begin
, end
);
5831 mips_emit_binary (PLUS
, begin
, begin
, inc
);
5833 cmp_result
= gen_rtx_EQ (VOIDmode
, cmp
, const0_rtx
);
5834 emit_jump_insn (gen_condjump (cmp_result
, label
));
5837 /* Return true if it is possible to use left/right accesses for a
5838 bitfield of WIDTH bits starting BITPOS bits into *OP. When
5839 returning true, update *OP, *LEFT and *RIGHT as follows:
5841 *OP is a BLKmode reference to the whole field.
5843 *LEFT is a QImode reference to the first byte if big endian or
5844 the last byte if little endian. This address can be used in the
5845 left-side instructions (LWL, SWL, LDL, SDL).
5847 *RIGHT is a QImode reference to the opposite end of the field and
5848 can be used in the patterning right-side instruction. */
5851 mips_get_unaligned_mem (rtx
*op
, HOST_WIDE_INT width
, HOST_WIDE_INT bitpos
,
5852 rtx
*left
, rtx
*right
)
5856 /* Check that the operand really is a MEM. Not all the extv and
5857 extzv predicates are checked. */
5861 /* Check that the size is valid. */
5862 if (width
!= 32 && (!TARGET_64BIT
|| width
!= 64))
5865 /* We can only access byte-aligned values. Since we are always passed
5866 a reference to the first byte of the field, it is not necessary to
5867 do anything with BITPOS after this check. */
5868 if (bitpos
% BITS_PER_UNIT
!= 0)
5871 /* Reject aligned bitfields: we want to use a normal load or store
5872 instead of a left/right pair. */
5873 if (MEM_ALIGN (*op
) >= width
)
5876 /* Adjust *OP to refer to the whole field. This also has the effect
5877 of legitimizing *OP's address for BLKmode, possibly simplifying it. */
5878 *op
= adjust_address (*op
, BLKmode
, 0);
5879 set_mem_size (*op
, GEN_INT (width
/ BITS_PER_UNIT
));
5881 /* Get references to both ends of the field. We deliberately don't
5882 use the original QImode *OP for FIRST since the new BLKmode one
5883 might have a simpler address. */
5884 first
= adjust_address (*op
, QImode
, 0);
5885 last
= adjust_address (*op
, QImode
, width
/ BITS_PER_UNIT
- 1);
5887 /* Allocate to LEFT and RIGHT according to endianness. LEFT should
5888 correspond to the MSB and RIGHT to the LSB. */
5889 if (TARGET_BIG_ENDIAN
)
5890 *left
= first
, *right
= last
;
5892 *left
= last
, *right
= first
;
5897 /* Try to use left/right loads to expand an "extv" or "extzv" pattern.
5898 DEST, SRC, WIDTH and BITPOS are the operands passed to the expander;
5899 the operation is the equivalent of:
5901 (set DEST (*_extract SRC WIDTH BITPOS))
5903 Return true on success. */
5906 mips_expand_ext_as_unaligned_load (rtx dest
, rtx src
, HOST_WIDE_INT width
,
5907 HOST_WIDE_INT bitpos
)
5909 rtx left
, right
, temp
;
5911 /* If TARGET_64BIT, the destination of a 32-bit "extz" or "extzv" will
5912 be a paradoxical word_mode subreg. This is the only case in which
5913 we allow the destination to be larger than the source. */
5914 if (GET_CODE (dest
) == SUBREG
5915 && GET_MODE (dest
) == DImode
5916 && GET_MODE (SUBREG_REG (dest
)) == SImode
)
5917 dest
= SUBREG_REG (dest
);
5919 /* After the above adjustment, the destination must be the same
5920 width as the source. */
5921 if (GET_MODE_BITSIZE (GET_MODE (dest
)) != width
)
5924 if (!mips_get_unaligned_mem (&src
, width
, bitpos
, &left
, &right
))
5927 temp
= gen_reg_rtx (GET_MODE (dest
));
5928 if (GET_MODE (dest
) == DImode
)
5930 emit_insn (gen_mov_ldl (temp
, src
, left
));
5931 emit_insn (gen_mov_ldr (dest
, copy_rtx (src
), right
, temp
));
5935 emit_insn (gen_mov_lwl (temp
, src
, left
));
5936 emit_insn (gen_mov_lwr (dest
, copy_rtx (src
), right
, temp
));
5941 /* Try to use left/right stores to expand an "ins" pattern. DEST, WIDTH,
5942 BITPOS and SRC are the operands passed to the expander; the operation
5943 is the equivalent of:
5945 (set (zero_extract DEST WIDTH BITPOS) SRC)
5947 Return true on success. */
5950 mips_expand_ins_as_unaligned_store (rtx dest
, rtx src
, HOST_WIDE_INT width
,
5951 HOST_WIDE_INT bitpos
)
5954 enum machine_mode mode
;
5956 if (!mips_get_unaligned_mem (&dest
, width
, bitpos
, &left
, &right
))
5959 mode
= mode_for_size (width
, MODE_INT
, 0);
5960 src
= gen_lowpart (mode
, src
);
5963 emit_insn (gen_mov_sdl (dest
, src
, left
));
5964 emit_insn (gen_mov_sdr (copy_rtx (dest
), copy_rtx (src
), right
));
5968 emit_insn (gen_mov_swl (dest
, src
, left
));
5969 emit_insn (gen_mov_swr (copy_rtx (dest
), copy_rtx (src
), right
));
5974 /* Return true if X is a MEM with the same size as MODE. */
5977 mips_mem_fits_mode_p (enum machine_mode mode
, rtx x
)
5984 size
= MEM_SIZE (x
);
5985 return size
&& INTVAL (size
) == GET_MODE_SIZE (mode
);
5988 /* Return true if (zero_extract OP WIDTH BITPOS) can be used as the
5989 source of an "ext" instruction or the destination of an "ins"
5990 instruction. OP must be a register operand and the following
5991 conditions must hold:
5993 0 <= BITPOS < GET_MODE_BITSIZE (GET_MODE (op))
5994 0 < WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
5995 0 < BITPOS + WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
5997 Also reject lengths equal to a word as they are better handled
5998 by the move patterns. */
6001 mips_use_ins_ext_p (rtx op
, HOST_WIDE_INT width
, HOST_WIDE_INT bitpos
)
6003 if (!ISA_HAS_EXT_INS
6004 || !register_operand (op
, VOIDmode
)
6005 || GET_MODE_BITSIZE (GET_MODE (op
)) > BITS_PER_WORD
)
6008 if (!IN_RANGE (width
, 1, GET_MODE_BITSIZE (GET_MODE (op
)) - 1))
6011 if (bitpos
< 0 || bitpos
+ width
> GET_MODE_BITSIZE (GET_MODE (op
)))
6017 /* Return true if -msplit-addresses is selected and should be honored.
6019 -msplit-addresses is a half-way house between explicit relocations
6020 and the traditional assembler macros. It can split absolute 32-bit
6021 symbolic constants into a high/lo_sum pair but uses macros for other
6024 Like explicit relocation support for REL targets, it relies
6025 on GNU extensions in the assembler and the linker.
6027 Although this code should work for -O0, it has traditionally
6028 been treated as an optimization. */
6031 mips_split_addresses_p (void)
6033 return (TARGET_SPLIT_ADDRESSES
6037 && !ABI_HAS_64BIT_SYMBOLS
);
6040 /* (Re-)Initialize mips_split_p, mips_lo_relocs and mips_hi_relocs. */
6043 mips_init_relocs (void)
6045 memset (mips_split_p
, '\0', sizeof (mips_split_p
));
6046 memset (mips_hi_relocs
, '\0', sizeof (mips_hi_relocs
));
6047 memset (mips_lo_relocs
, '\0', sizeof (mips_lo_relocs
));
6049 if (ABI_HAS_64BIT_SYMBOLS
)
6051 if (TARGET_EXPLICIT_RELOCS
)
6053 mips_split_p
[SYMBOL_64_HIGH
] = true;
6054 mips_hi_relocs
[SYMBOL_64_HIGH
] = "%highest(";
6055 mips_lo_relocs
[SYMBOL_64_HIGH
] = "%higher(";
6057 mips_split_p
[SYMBOL_64_MID
] = true;
6058 mips_hi_relocs
[SYMBOL_64_MID
] = "%higher(";
6059 mips_lo_relocs
[SYMBOL_64_MID
] = "%hi(";
6061 mips_split_p
[SYMBOL_64_LOW
] = true;
6062 mips_hi_relocs
[SYMBOL_64_LOW
] = "%hi(";
6063 mips_lo_relocs
[SYMBOL_64_LOW
] = "%lo(";
6065 mips_split_p
[SYMBOL_ABSOLUTE
] = true;
6066 mips_lo_relocs
[SYMBOL_ABSOLUTE
] = "%lo(";
6071 if (TARGET_EXPLICIT_RELOCS
|| mips_split_addresses_p () || TARGET_MIPS16
)
6073 mips_split_p
[SYMBOL_ABSOLUTE
] = true;
6074 mips_hi_relocs
[SYMBOL_ABSOLUTE
] = "%hi(";
6075 mips_lo_relocs
[SYMBOL_ABSOLUTE
] = "%lo(";
6077 mips_lo_relocs
[SYMBOL_32_HIGH
] = "%hi(";
6083 /* The high part is provided by a pseudo copy of $gp. */
6084 mips_split_p
[SYMBOL_GP_RELATIVE
] = true;
6085 mips_lo_relocs
[SYMBOL_GP_RELATIVE
] = "%gprel(";
6088 if (TARGET_EXPLICIT_RELOCS
)
6090 /* Small data constants are kept whole until after reload,
6091 then lowered by mips_rewrite_small_data. */
6092 mips_lo_relocs
[SYMBOL_GP_RELATIVE
] = "%gp_rel(";
6094 mips_split_p
[SYMBOL_GOT_PAGE_OFST
] = true;
6097 mips_lo_relocs
[SYMBOL_GOTOFF_PAGE
] = "%got_page(";
6098 mips_lo_relocs
[SYMBOL_GOT_PAGE_OFST
] = "%got_ofst(";
6102 mips_lo_relocs
[SYMBOL_GOTOFF_PAGE
] = "%got(";
6103 mips_lo_relocs
[SYMBOL_GOT_PAGE_OFST
] = "%lo(";
6108 /* The HIGH and LO_SUM are matched by special .md patterns. */
6109 mips_split_p
[SYMBOL_GOT_DISP
] = true;
6111 mips_split_p
[SYMBOL_GOTOFF_DISP
] = true;
6112 mips_hi_relocs
[SYMBOL_GOTOFF_DISP
] = "%got_hi(";
6113 mips_lo_relocs
[SYMBOL_GOTOFF_DISP
] = "%got_lo(";
6115 mips_split_p
[SYMBOL_GOTOFF_CALL
] = true;
6116 mips_hi_relocs
[SYMBOL_GOTOFF_CALL
] = "%call_hi(";
6117 mips_lo_relocs
[SYMBOL_GOTOFF_CALL
] = "%call_lo(";
6122 mips_lo_relocs
[SYMBOL_GOTOFF_DISP
] = "%got_disp(";
6124 mips_lo_relocs
[SYMBOL_GOTOFF_DISP
] = "%got(";
6125 mips_lo_relocs
[SYMBOL_GOTOFF_CALL
] = "%call16(";
6131 mips_split_p
[SYMBOL_GOTOFF_LOADGP
] = true;
6132 mips_hi_relocs
[SYMBOL_GOTOFF_LOADGP
] = "%hi(%neg(%gp_rel(";
6133 mips_lo_relocs
[SYMBOL_GOTOFF_LOADGP
] = "%lo(%neg(%gp_rel(";
6136 mips_lo_relocs
[SYMBOL_TLSGD
] = "%tlsgd(";
6137 mips_lo_relocs
[SYMBOL_TLSLDM
] = "%tlsldm(";
6139 mips_split_p
[SYMBOL_DTPREL
] = true;
6140 mips_hi_relocs
[SYMBOL_DTPREL
] = "%dtprel_hi(";
6141 mips_lo_relocs
[SYMBOL_DTPREL
] = "%dtprel_lo(";
6143 mips_lo_relocs
[SYMBOL_GOTTPREL
] = "%gottprel(";
6145 mips_split_p
[SYMBOL_TPREL
] = true;
6146 mips_hi_relocs
[SYMBOL_TPREL
] = "%tprel_hi(";
6147 mips_lo_relocs
[SYMBOL_TPREL
] = "%tprel_lo(";
6149 mips_lo_relocs
[SYMBOL_HALF
] = "%half(";
6152 /* If OP is an UNSPEC address, return the address to which it refers,
6153 otherwise return OP itself. */
6156 mips_strip_unspec_address (rtx op
)
6160 split_const (op
, &base
, &offset
);
6161 if (UNSPEC_ADDRESS_P (base
))
6162 op
= plus_constant (UNSPEC_ADDRESS (base
), INTVAL (offset
));
6166 /* Print symbolic operand OP, which is part of a HIGH or LO_SUM
6167 in context CONTEXT. RELOCS is the array of relocations to use. */
6170 mips_print_operand_reloc (FILE *file
, rtx op
, enum mips_symbol_context context
,
6171 const char **relocs
)
6173 enum mips_symbol_type symbol_type
;
6176 symbol_type
= mips_classify_symbolic_expression (op
, context
);
6177 gcc_assert (relocs
[symbol_type
]);
6179 fputs (relocs
[symbol_type
], file
);
6180 output_addr_const (file
, mips_strip_unspec_address (op
));
6181 for (p
= relocs
[symbol_type
]; *p
!= 0; p
++)
6186 /* Print the text for PRINT_OPERAND punctation character CH to FILE.
6187 The punctuation characters are:
6189 '(' Start a nested ".set noreorder" block.
6190 ')' End a nested ".set noreorder" block.
6191 '[' Start a nested ".set noat" block.
6192 ']' End a nested ".set noat" block.
6193 '<' Start a nested ".set nomacro" block.
6194 '>' End a nested ".set nomacro" block.
6195 '*' Behave like %(%< if generating a delayed-branch sequence.
6196 '#' Print a nop if in a ".set noreorder" block.
6197 '/' Like '#', but do nothing within a delayed-branch sequence.
6198 '?' Print "l" if mips_branch_likely is true
6199 '.' Print the name of the register with a hard-wired zero (zero or $0).
6200 '@' Print the name of the assembler temporary register (at or $1).
6201 '^' Print the name of the pic call-through register (t9 or $25).
6202 '+' Print the name of the gp register (usually gp or $28).
6203 '$' Print the name of the stack pointer register (sp or $29).
6204 '|' Print ".set push; .set mips2" if !ISA_HAS_LL_SC.
6205 '-' Print ".set pop" under the same conditions for '|'.
6207 See also mips_init_print_operand_pucnt. */
6210 mips_print_operand_punctuation (FILE *file
, int ch
)
6215 if (set_noreorder
++ == 0)
6216 fputs (".set\tnoreorder\n\t", file
);
6220 gcc_assert (set_noreorder
> 0);
6221 if (--set_noreorder
== 0)
6222 fputs ("\n\t.set\treorder", file
);
6226 if (set_noat
++ == 0)
6227 fputs (".set\tnoat\n\t", file
);
6231 gcc_assert (set_noat
> 0);
6232 if (--set_noat
== 0)
6233 fputs ("\n\t.set\tat", file
);
6237 if (set_nomacro
++ == 0)
6238 fputs (".set\tnomacro\n\t", file
);
6242 gcc_assert (set_nomacro
> 0);
6243 if (--set_nomacro
== 0)
6244 fputs ("\n\t.set\tmacro", file
);
6248 if (final_sequence
!= 0)
6250 mips_print_operand_punctuation (file
, '(');
6251 mips_print_operand_punctuation (file
, '<');
6256 if (set_noreorder
!= 0)
6257 fputs ("\n\tnop", file
);
6261 /* Print an extra newline so that the delayed insn is separated
6262 from the following ones. This looks neater and is consistent
6263 with non-nop delayed sequences. */
6264 if (set_noreorder
!= 0 && final_sequence
== 0)
6265 fputs ("\n\tnop\n", file
);
6269 if (mips_branch_likely
)
6274 fputs (reg_names
[GP_REG_FIRST
+ 0], file
);
6278 fputs (reg_names
[GP_REG_FIRST
+ 1], file
);
6282 fputs (reg_names
[PIC_FUNCTION_ADDR_REGNUM
], file
);
6286 fputs (reg_names
[PIC_OFFSET_TABLE_REGNUM
], file
);
6290 fputs (reg_names
[STACK_POINTER_REGNUM
], file
);
6295 fputs (".set\tpush\n\t.set\tmips2\n\t", file
);
6300 fputs ("\n\t.set\tpop", file
);
6309 /* Initialize mips_print_operand_punct. */
6312 mips_init_print_operand_punct (void)
6316 for (p
= "()[]<>*#/?.@^+$|-"; *p
; p
++)
6317 mips_print_operand_punct
[(unsigned char) *p
] = true;
6320 /* PRINT_OPERAND prefix LETTER refers to the integer branch instruction
6321 associated with condition CODE. Print the condition part of the
6325 mips_print_int_branch_condition (FILE *file
, enum rtx_code code
, int letter
)
6339 /* Conveniently, the MIPS names for these conditions are the same
6340 as their RTL equivalents. */
6341 fputs (GET_RTX_NAME (code
), file
);
6345 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter
);
6350 /* Likewise floating-point branches. */
6353 mips_print_float_branch_condition (FILE *file
, enum rtx_code code
, int letter
)
6358 fputs ("c1f", file
);
6362 fputs ("c1t", file
);
6366 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter
);
6371 /* Implement the PRINT_OPERAND macro. The MIPS-specific operand codes are:
6373 'X' Print CONST_INT OP in hexadecimal format.
6374 'x' Print the low 16 bits of CONST_INT OP in hexadecimal format.
6375 'd' Print CONST_INT OP in decimal.
6376 'h' Print the high-part relocation associated with OP, after stripping
6378 'R' Print the low-part relocation associated with OP.
6379 'C' Print the integer branch condition for comparison OP.
6380 'N' Print the inverse of the integer branch condition for comparison OP.
6381 'F' Print the FPU branch condition for comparison OP.
6382 'W' Print the inverse of the FPU branch condition for comparison OP.
6383 'T' Print 'f' for (eq:CC ...), 't' for (ne:CC ...),
6384 'z' for (eq:?I ...), 'n' for (ne:?I ...).
6385 't' Like 'T', but with the EQ/NE cases reversed
6386 'Y' Print mips_fp_conditions[INTVAL (OP)]
6387 'Z' Print OP and a comma for ISA_HAS_8CC, otherwise print nothing.
6388 'q' Print a DSP accumulator register.
6389 'D' Print the second part of a double-word register or memory operand.
6390 'L' Print the low-order register in a double-word register operand.
6391 'M' Print high-order register in a double-word register operand.
6392 'z' Print $0 if OP is zero, otherwise print OP normally. */
6395 mips_print_operand (FILE *file
, rtx op
, int letter
)
6399 if (PRINT_OPERAND_PUNCT_VALID_P (letter
))
6401 mips_print_operand_punctuation (file
, letter
);
6406 code
= GET_CODE (op
);
6411 if (GET_CODE (op
) == CONST_INT
)
6412 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, INTVAL (op
));
6414 output_operand_lossage ("invalid use of '%%%c'", letter
);
6418 if (GET_CODE (op
) == CONST_INT
)
6419 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, INTVAL (op
) & 0xffff);
6421 output_operand_lossage ("invalid use of '%%%c'", letter
);
6425 if (GET_CODE (op
) == CONST_INT
)
6426 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (op
));
6428 output_operand_lossage ("invalid use of '%%%c'", letter
);
6434 mips_print_operand_reloc (file
, op
, SYMBOL_CONTEXT_LEA
, mips_hi_relocs
);
6438 mips_print_operand_reloc (file
, op
, SYMBOL_CONTEXT_LEA
, mips_lo_relocs
);
6442 mips_print_int_branch_condition (file
, code
, letter
);
6446 mips_print_int_branch_condition (file
, reverse_condition (code
), letter
);
6450 mips_print_float_branch_condition (file
, code
, letter
);
6454 mips_print_float_branch_condition (file
, reverse_condition (code
),
6461 int truth
= (code
== NE
) == (letter
== 'T');
6462 fputc ("zfnt"[truth
* 2 + (GET_MODE (op
) == CCmode
)], file
);
6467 if (code
== CONST_INT
&& UINTVAL (op
) < ARRAY_SIZE (mips_fp_conditions
))
6468 fputs (mips_fp_conditions
[UINTVAL (op
)], file
);
6470 output_operand_lossage ("'%%%c' is not a valid operand prefix",
6477 mips_print_operand (file
, op
, 0);
6483 if (code
== REG
&& MD_REG_P (REGNO (op
)))
6484 fprintf (file
, "$ac0");
6485 else if (code
== REG
&& DSP_ACC_REG_P (REGNO (op
)))
6486 fprintf (file
, "$ac%c", reg_names
[REGNO (op
)][3]);
6488 output_operand_lossage ("invalid use of '%%%c'", letter
);
6496 unsigned int regno
= REGNO (op
);
6497 if ((letter
== 'M' && TARGET_LITTLE_ENDIAN
)
6498 || (letter
== 'L' && TARGET_BIG_ENDIAN
)
6501 fprintf (file
, "%s", reg_names
[regno
]);
6507 output_address (plus_constant (XEXP (op
, 0), 4));
6509 output_address (XEXP (op
, 0));
6513 if (letter
== 'z' && op
== CONST0_RTX (GET_MODE (op
)))
6514 fputs (reg_names
[GP_REG_FIRST
], file
);
6515 else if (CONST_GP_P (op
))
6516 fputs (reg_names
[GLOBAL_POINTER_REGNUM
], file
);
6518 output_addr_const (file
, mips_strip_unspec_address (op
));
6524 /* Output address operand X to FILE. */
6527 mips_print_operand_address (FILE *file
, rtx x
)
6529 struct mips_address_info addr
;
6531 if (mips_classify_address (&addr
, x
, word_mode
, true))
6535 mips_print_operand (file
, addr
.offset
, 0);
6536 fprintf (file
, "(%s)", reg_names
[REGNO (addr
.reg
)]);
6539 case ADDRESS_LO_SUM
:
6540 mips_print_operand_reloc (file
, addr
.offset
, SYMBOL_CONTEXT_MEM
,
6542 fprintf (file
, "(%s)", reg_names
[REGNO (addr
.reg
)]);
6545 case ADDRESS_CONST_INT
:
6546 output_addr_const (file
, x
);
6547 fprintf (file
, "(%s)", reg_names
[GP_REG_FIRST
]);
6550 case ADDRESS_SYMBOLIC
:
6551 output_addr_const (file
, mips_strip_unspec_address (x
));
6557 /* Implement TARGET_ENCODE_SECTION_INFO. */
6560 mips_encode_section_info (tree decl
, rtx rtl
, int first
)
6562 default_encode_section_info (decl
, rtl
, first
);
6564 if (TREE_CODE (decl
) == FUNCTION_DECL
)
6566 rtx symbol
= XEXP (rtl
, 0);
6567 tree type
= TREE_TYPE (decl
);
6569 /* Encode whether the symbol is short or long. */
6570 if ((TARGET_LONG_CALLS
&& !mips_near_type_p (type
))
6571 || mips_far_type_p (type
))
6572 SYMBOL_REF_FLAGS (symbol
) |= SYMBOL_FLAG_LONG_CALL
;
6576 /* Implement TARGET_SELECT_RTX_SECTION. */
6579 mips_select_rtx_section (enum machine_mode mode
, rtx x
,
6580 unsigned HOST_WIDE_INT align
)
6582 /* ??? Consider using mergeable small data sections. */
6583 if (mips_rtx_constant_in_small_data_p (mode
))
6584 return get_named_section (NULL
, ".sdata", 0);
6586 return default_elf_select_rtx_section (mode
, x
, align
);
6589 /* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
6591 The complication here is that, with the combination TARGET_ABICALLS
6592 && !TARGET_GPWORD, jump tables will use absolute addresses, and should
6593 therefore not be included in the read-only part of a DSO. Handle such
6594 cases by selecting a normal data section instead of a read-only one.
6595 The logic apes that in default_function_rodata_section. */
6598 mips_function_rodata_section (tree decl
)
6600 if (!TARGET_ABICALLS
|| TARGET_GPWORD
)
6601 return default_function_rodata_section (decl
);
6603 if (decl
&& DECL_SECTION_NAME (decl
))
6605 const char *name
= TREE_STRING_POINTER (DECL_SECTION_NAME (decl
));
6606 if (DECL_ONE_ONLY (decl
) && strncmp (name
, ".gnu.linkonce.t.", 16) == 0)
6608 char *rname
= ASTRDUP (name
);
6610 return get_section (rname
, SECTION_LINKONCE
| SECTION_WRITE
, decl
);
6612 else if (flag_function_sections
6613 && flag_data_sections
6614 && strncmp (name
, ".text.", 6) == 0)
6616 char *rname
= ASTRDUP (name
);
6617 memcpy (rname
+ 1, "data", 4);
6618 return get_section (rname
, SECTION_WRITE
, decl
);
6621 return data_section
;
6624 /* Implement TARGET_IN_SMALL_DATA_P. */
6627 mips_in_small_data_p (const_tree decl
)
6629 unsigned HOST_WIDE_INT size
;
6631 if (TREE_CODE (decl
) == STRING_CST
|| TREE_CODE (decl
) == FUNCTION_DECL
)
6634 /* We don't yet generate small-data references for -mabicalls
6635 or VxWorks RTP code. See the related -G handling in
6636 mips_override_options. */
6637 if (TARGET_ABICALLS
|| TARGET_VXWORKS_RTP
)
6640 if (TREE_CODE (decl
) == VAR_DECL
&& DECL_SECTION_NAME (decl
) != 0)
6644 /* Reject anything that isn't in a known small-data section. */
6645 name
= TREE_STRING_POINTER (DECL_SECTION_NAME (decl
));
6646 if (strcmp (name
, ".sdata") != 0 && strcmp (name
, ".sbss") != 0)
6649 /* If a symbol is defined externally, the assembler will use the
6650 usual -G rules when deciding how to implement macros. */
6651 if (mips_lo_relocs
[SYMBOL_GP_RELATIVE
] || !DECL_EXTERNAL (decl
))
6654 else if (TARGET_EMBEDDED_DATA
)
6656 /* Don't put constants into the small data section: we want them
6657 to be in ROM rather than RAM. */
6658 if (TREE_CODE (decl
) != VAR_DECL
)
6661 if (TREE_READONLY (decl
)
6662 && !TREE_SIDE_EFFECTS (decl
)
6663 && (!DECL_INITIAL (decl
) || TREE_CONSTANT (DECL_INITIAL (decl
))))
6667 /* Enforce -mlocal-sdata. */
6668 if (!TARGET_LOCAL_SDATA
&& !TREE_PUBLIC (decl
))
6671 /* Enforce -mextern-sdata. */
6672 if (!TARGET_EXTERN_SDATA
&& DECL_P (decl
))
6674 if (DECL_EXTERNAL (decl
))
6676 if (DECL_COMMON (decl
) && DECL_INITIAL (decl
) == NULL
)
6680 size
= int_size_in_bytes (TREE_TYPE (decl
));
6681 return size
<= mips_small_data_threshold
;
6684 /* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use
6685 anchors for small data: the GP register acts as an anchor in that
6686 case. We also don't want to use them for PC-relative accesses,
6687 where the PC acts as an anchor. */
6690 mips_use_anchors_for_symbol_p (const_rtx symbol
)
6692 switch (mips_classify_symbol (symbol
, SYMBOL_CONTEXT_MEM
))
6694 case SYMBOL_PC_RELATIVE
:
6695 case SYMBOL_GP_RELATIVE
:
6699 return default_use_anchors_for_symbol_p (symbol
);
6703 /* The MIPS debug format wants all automatic variables and arguments
6704 to be in terms of the virtual frame pointer (stack pointer before
6705 any adjustment in the function), while the MIPS 3.0 linker wants
6706 the frame pointer to be the stack pointer after the initial
6707 adjustment. So, we do the adjustment here. The arg pointer (which
6708 is eliminated) points to the virtual frame pointer, while the frame
6709 pointer (which may be eliminated) points to the stack pointer after
6710 the initial adjustments. */
6713 mips_debugger_offset (rtx addr
, HOST_WIDE_INT offset
)
6715 rtx offset2
= const0_rtx
;
6716 rtx reg
= eliminate_constant_term (addr
, &offset2
);
6719 offset
= INTVAL (offset2
);
6721 if (reg
== stack_pointer_rtx
6722 || reg
== frame_pointer_rtx
6723 || reg
== hard_frame_pointer_rtx
)
6725 offset
-= cfun
->machine
->frame
.total_size
;
6726 if (reg
== hard_frame_pointer_rtx
)
6727 offset
+= cfun
->machine
->frame
.hard_frame_pointer_offset
;
6730 /* sdbout_parms does not want this to crash for unrecognized cases. */
6732 else if (reg
!= arg_pointer_rtx
)
6733 fatal_insn ("mips_debugger_offset called with non stack/frame/arg pointer",
6740 /* Implement ASM_OUTPUT_EXTERNAL. */
6743 mips_output_external (FILE *file
, tree decl
, const char *name
)
6745 default_elf_asm_output_external (file
, decl
, name
);
6747 /* We output the name if and only if TREE_SYMBOL_REFERENCED is
6748 set in order to avoid putting out names that are never really
6750 if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl
)))
6752 if (!TARGET_EXPLICIT_RELOCS
&& mips_in_small_data_p (decl
))
6754 /* When using assembler macros, emit .extern directives for
6755 all small-data externs so that the assembler knows how
6758 In most cases it would be safe (though pointless) to emit
6759 .externs for other symbols too. One exception is when an
6760 object is within the -G limit but declared by the user to
6761 be in a section other than .sbss or .sdata. */
6762 fputs ("\t.extern\t", file
);
6763 assemble_name (file
, name
);
6764 fprintf (file
, ", " HOST_WIDE_INT_PRINT_DEC
"\n",
6765 int_size_in_bytes (TREE_TYPE (decl
)));
6767 else if (TARGET_IRIX
6768 && mips_abi
== ABI_32
6769 && TREE_CODE (decl
) == FUNCTION_DECL
)
6771 /* In IRIX 5 or IRIX 6 for the O32 ABI, we must output a
6772 `.global name .text' directive for every used but
6773 undefined function. If we don't, the linker may perform
6774 an optimization (skipping over the insns that set $gp)
6775 when it is unsafe. */
6776 fputs ("\t.globl ", file
);
6777 assemble_name (file
, name
);
6778 fputs (" .text\n", file
);
6783 /* Implement ASM_OUTPUT_SOURCE_FILENAME. */
6786 mips_output_filename (FILE *stream
, const char *name
)
6788 /* If we are emitting DWARF-2, let dwarf2out handle the ".file"
6790 if (write_symbols
== DWARF2_DEBUG
)
6792 else if (mips_output_filename_first_time
)
6794 mips_output_filename_first_time
= 0;
6795 num_source_filenames
+= 1;
6796 current_function_file
= name
;
6797 fprintf (stream
, "\t.file\t%d ", num_source_filenames
);
6798 output_quoted_string (stream
, name
);
6799 putc ('\n', stream
);
6801 /* If we are emitting stabs, let dbxout.c handle this (except for
6802 the mips_output_filename_first_time case). */
6803 else if (write_symbols
== DBX_DEBUG
)
6805 else if (name
!= current_function_file
6806 && strcmp (name
, current_function_file
) != 0)
6808 num_source_filenames
+= 1;
6809 current_function_file
= name
;
6810 fprintf (stream
, "\t.file\t%d ", num_source_filenames
);
6811 output_quoted_string (stream
, name
);
6812 putc ('\n', stream
);
6816 /* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */
6818 static void ATTRIBUTE_UNUSED
6819 mips_output_dwarf_dtprel (FILE *file
, int size
, rtx x
)
6824 fputs ("\t.dtprelword\t", file
);
6828 fputs ("\t.dtpreldword\t", file
);
6834 output_addr_const (file
, x
);
6835 fputs ("+0x8000", file
);
6838 /* Implement TARGET_DWARF_REGISTER_SPAN. */
6841 mips_dwarf_register_span (rtx reg
)
6844 enum machine_mode mode
;
6846 /* By default, GCC maps increasing register numbers to increasing
6847 memory locations, but paired FPRs are always little-endian,
6848 regardless of the prevailing endianness. */
6849 mode
= GET_MODE (reg
);
6850 if (FP_REG_P (REGNO (reg
))
6851 && TARGET_BIG_ENDIAN
6852 && MAX_FPRS_PER_FMT
> 1
6853 && GET_MODE_SIZE (mode
) > UNITS_PER_FPREG
)
6855 gcc_assert (GET_MODE_SIZE (mode
) == UNITS_PER_HWFPVALUE
);
6856 high
= mips_subword (reg
, true);
6857 low
= mips_subword (reg
, false);
6858 return gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, high
, low
));
6864 /* Implement ASM_OUTPUT_ASCII. */
6867 mips_output_ascii (FILE *stream
, const char *string
, size_t len
)
6873 fprintf (stream
, "\t.ascii\t\"");
6874 for (i
= 0; i
< len
; i
++)
6878 c
= (unsigned char) string
[i
];
6881 if (c
== '\\' || c
== '\"')
6883 putc ('\\', stream
);
6891 fprintf (stream
, "\\%03o", c
);
6895 if (cur_pos
> 72 && i
+1 < len
)
6898 fprintf (stream
, "\"\n\t.ascii\t\"");
6901 fprintf (stream
, "\"\n");
6904 /* Emit either a label, .comm, or .lcomm directive. When using assembler
6905 macros, mark the symbol as written so that mips_asm_output_external
6906 won't emit an .extern for it. STREAM is the output file, NAME is the
6907 name of the symbol, INIT_STRING is the string that should be written
6908 before the symbol and FINAL_STRING is the string that should be
6909 written after it. FINAL_STRING is a printf format that consumes the
6910 remaining arguments. */
6913 mips_declare_object (FILE *stream
, const char *name
, const char *init_string
,
6914 const char *final_string
, ...)
6918 fputs (init_string
, stream
);
6919 assemble_name (stream
, name
);
6920 va_start (ap
, final_string
);
6921 vfprintf (stream
, final_string
, ap
);
6924 if (!TARGET_EXPLICIT_RELOCS
)
6926 tree name_tree
= get_identifier (name
);
6927 TREE_ASM_WRITTEN (name_tree
) = 1;
6931 /* Declare a common object of SIZE bytes using asm directive INIT_STRING.
6932 NAME is the name of the object and ALIGN is the required alignment
6933 in bytes. TAKES_ALIGNMENT_P is true if the directive takes a third
6934 alignment argument. */
6937 mips_declare_common_object (FILE *stream
, const char *name
,
6938 const char *init_string
,
6939 unsigned HOST_WIDE_INT size
,
6940 unsigned int align
, bool takes_alignment_p
)
6942 if (!takes_alignment_p
)
6944 size
+= (align
/ BITS_PER_UNIT
) - 1;
6945 size
-= size
% (align
/ BITS_PER_UNIT
);
6946 mips_declare_object (stream
, name
, init_string
,
6947 "," HOST_WIDE_INT_PRINT_UNSIGNED
"\n", size
);
6950 mips_declare_object (stream
, name
, init_string
,
6951 "," HOST_WIDE_INT_PRINT_UNSIGNED
",%u\n",
6952 size
, align
/ BITS_PER_UNIT
);
6955 /* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON. This is usually the same as the
6956 elfos.h version, but we also need to handle -muninit-const-in-rodata. */
6959 mips_output_aligned_decl_common (FILE *stream
, tree decl
, const char *name
,
6960 unsigned HOST_WIDE_INT size
,
6963 /* If the target wants uninitialized const declarations in
6964 .rdata then don't put them in .comm. */
6965 if (TARGET_EMBEDDED_DATA
6966 && TARGET_UNINIT_CONST_IN_RODATA
6967 && TREE_CODE (decl
) == VAR_DECL
6968 && TREE_READONLY (decl
)
6969 && (DECL_INITIAL (decl
) == 0 || DECL_INITIAL (decl
) == error_mark_node
))
6971 if (TREE_PUBLIC (decl
) && DECL_NAME (decl
))
6972 targetm
.asm_out
.globalize_label (stream
, name
);
6974 switch_to_section (readonly_data_section
);
6975 ASM_OUTPUT_ALIGN (stream
, floor_log2 (align
/ BITS_PER_UNIT
));
6976 mips_declare_object (stream
, name
, "",
6977 ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED
"\n",
6981 mips_declare_common_object (stream
, name
, "\n\t.comm\t",
6985 #ifdef ASM_OUTPUT_SIZE_DIRECTIVE
6986 extern int size_directive_output
;
6988 /* Implement ASM_DECLARE_OBJECT_NAME. This is like most of the standard ELF
6989 definitions except that it uses mips_declare_object to emit the label. */
6992 mips_declare_object_name (FILE *stream
, const char *name
,
6993 tree decl ATTRIBUTE_UNUSED
)
6995 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
6996 ASM_OUTPUT_TYPE_DIRECTIVE (stream
, name
, "object");
6999 size_directive_output
= 0;
7000 if (!flag_inhibit_size_directive
&& DECL_SIZE (decl
))
7004 size_directive_output
= 1;
7005 size
= int_size_in_bytes (TREE_TYPE (decl
));
7006 ASM_OUTPUT_SIZE_DIRECTIVE (stream
, name
, size
);
7009 mips_declare_object (stream
, name
, "", ":\n");
7012 /* Implement ASM_FINISH_DECLARE_OBJECT. This is generic ELF stuff. */
7015 mips_finish_declare_object (FILE *stream
, tree decl
, int top_level
, int at_end
)
7019 name
= XSTR (XEXP (DECL_RTL (decl
), 0), 0);
7020 if (!flag_inhibit_size_directive
7021 && DECL_SIZE (decl
) != 0
7024 && DECL_INITIAL (decl
) == error_mark_node
7025 && !size_directive_output
)
7029 size_directive_output
= 1;
7030 size
= int_size_in_bytes (TREE_TYPE (decl
));
7031 ASM_OUTPUT_SIZE_DIRECTIVE (stream
, name
, size
);
7036 /* Return the FOO in the name of the ".mdebug.FOO" section associated
7037 with the current ABI. */
7040 mips_mdebug_abi_name (void)
7053 return TARGET_64BIT
? "eabi64" : "eabi32";
7059 /* Implement TARGET_ASM_FILE_START. */
7062 mips_file_start (void)
7064 default_file_start ();
7066 /* Generate a special section to describe the ABI switches used to
7067 produce the resultant binary. This is unnecessary on IRIX and
7068 causes unwanted warnings from the native linker. */
7071 /* Record the ABI itself. Modern versions of binutils encode
7072 this information in the ELF header flags, but GDB needs the
7073 information in order to correctly debug binaries produced by
7074 older binutils. See the function mips_gdbarch_init in
7076 fprintf (asm_out_file
, "\t.section .mdebug.%s\n\t.previous\n",
7077 mips_mdebug_abi_name ());
7079 /* There is no ELF header flag to distinguish long32 forms of the
7080 EABI from long64 forms. Emit a special section to help tools
7081 such as GDB. Do the same for o64, which is sometimes used with
7083 if (mips_abi
== ABI_EABI
|| mips_abi
== ABI_O64
)
7084 fprintf (asm_out_file
, "\t.section .gcc_compiled_long%d\n"
7085 "\t.previous\n", TARGET_LONG64
? 64 : 32);
7087 #ifdef HAVE_AS_GNU_ATTRIBUTE
7088 fprintf (asm_out_file
, "\t.gnu_attribute 4, %d\n",
7089 (TARGET_HARD_FLOAT_ABI
7090 ? (TARGET_DOUBLE_FLOAT
7091 ? ((!TARGET_64BIT
&& TARGET_FLOAT64
) ? 4 : 1) : 2) : 3));
7095 /* If TARGET_ABICALLS, tell GAS to generate -KPIC code. */
7096 if (TARGET_ABICALLS
)
7097 fprintf (asm_out_file
, "\t.abicalls\n");
7099 if (flag_verbose_asm
)
7100 fprintf (asm_out_file
, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
7102 mips_small_data_threshold
, mips_arch_info
->name
, mips_isa
);
7105 /* Make the last instruction frame-related and note that it performs
7106 the operation described by FRAME_PATTERN. */
7109 mips_set_frame_expr (rtx frame_pattern
)
7113 insn
= get_last_insn ();
7114 RTX_FRAME_RELATED_P (insn
) = 1;
7115 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR
,
7120 /* Return a frame-related rtx that stores REG at MEM.
7121 REG must be a single register. */
7124 mips_frame_set (rtx mem
, rtx reg
)
7128 /* If we're saving the return address register and the DWARF return
7129 address column differs from the hard register number, adjust the
7130 note reg to refer to the former. */
7131 if (REGNO (reg
) == GP_REG_FIRST
+ 31
7132 && DWARF_FRAME_RETURN_COLUMN
!= GP_REG_FIRST
+ 31)
7133 reg
= gen_rtx_REG (GET_MODE (reg
), DWARF_FRAME_RETURN_COLUMN
);
7135 set
= gen_rtx_SET (VOIDmode
, mem
, reg
);
7136 RTX_FRAME_RELATED_P (set
) = 1;
7141 /* If a MIPS16e SAVE or RESTORE instruction saves or restores register
7142 mips16e_s2_s8_regs[X], it must also save the registers in indexes
7143 X + 1 onwards. Likewise mips16e_a0_a3_regs. */
7144 static const unsigned char mips16e_s2_s8_regs
[] = {
7145 30, 23, 22, 21, 20, 19, 18
7147 static const unsigned char mips16e_a0_a3_regs
[] = {
7151 /* A list of the registers that can be saved by the MIPS16e SAVE instruction,
7152 ordered from the uppermost in memory to the lowest in memory. */
7153 static const unsigned char mips16e_save_restore_regs
[] = {
7154 31, 30, 23, 22, 21, 20, 19, 18, 17, 16, 7, 6, 5, 4
7157 /* Return the index of the lowest X in the range [0, SIZE) for which
7158 bit REGS[X] is set in MASK. Return SIZE if there is no such X. */
7161 mips16e_find_first_register (unsigned int mask
, const unsigned char *regs
,
7166 for (i
= 0; i
< size
; i
++)
7167 if (BITSET_P (mask
, regs
[i
]))
7173 /* *MASK_PTR is a mask of general-purpose registers and *NUM_REGS_PTR
7174 is the number of set bits. If *MASK_PTR contains REGS[X] for some X
7175 in [0, SIZE), adjust *MASK_PTR and *NUM_REGS_PTR so that the same
7176 is true for all indexes (X, SIZE). */
7179 mips16e_mask_registers (unsigned int *mask_ptr
, const unsigned char *regs
,
7180 unsigned int size
, unsigned int *num_regs_ptr
)
7184 i
= mips16e_find_first_register (*mask_ptr
, regs
, size
);
7185 for (i
++; i
< size
; i
++)
7186 if (!BITSET_P (*mask_ptr
, regs
[i
]))
7189 *mask_ptr
|= 1 << regs
[i
];
7193 /* Return a simplified form of X using the register values in REG_VALUES.
7194 REG_VALUES[R] is the last value assigned to hard register R, or null
7195 if R has not been modified.
7197 This function is rather limited, but is good enough for our purposes. */
7200 mips16e_collect_propagate_value (rtx x
, rtx
*reg_values
)
7202 x
= avoid_constant_pool_reference (x
);
7206 rtx x0
= mips16e_collect_propagate_value (XEXP (x
, 0), reg_values
);
7207 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
),
7208 x0
, GET_MODE (XEXP (x
, 0)));
7211 if (ARITHMETIC_P (x
))
7213 rtx x0
= mips16e_collect_propagate_value (XEXP (x
, 0), reg_values
);
7214 rtx x1
= mips16e_collect_propagate_value (XEXP (x
, 1), reg_values
);
7215 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), x0
, x1
);
7219 && reg_values
[REGNO (x
)]
7220 && !rtx_unstable_p (reg_values
[REGNO (x
)]))
7221 return reg_values
[REGNO (x
)];
7226 /* Return true if (set DEST SRC) stores an argument register into its
7227 caller-allocated save slot, storing the number of that argument
7228 register in *REGNO_PTR if so. REG_VALUES is as for
7229 mips16e_collect_propagate_value. */
7232 mips16e_collect_argument_save_p (rtx dest
, rtx src
, rtx
*reg_values
,
7233 unsigned int *regno_ptr
)
7235 unsigned int argno
, regno
;
7236 HOST_WIDE_INT offset
, required_offset
;
7239 /* Check that this is a word-mode store. */
7240 if (!MEM_P (dest
) || !REG_P (src
) || GET_MODE (dest
) != word_mode
)
7243 /* Check that the register being saved is an unmodified argument
7245 regno
= REGNO (src
);
7246 if (!IN_RANGE (regno
, GP_ARG_FIRST
, GP_ARG_LAST
) || reg_values
[regno
])
7248 argno
= regno
- GP_ARG_FIRST
;
7250 /* Check whether the address is an appropriate stack-pointer or
7251 frame-pointer access. */
7252 addr
= mips16e_collect_propagate_value (XEXP (dest
, 0), reg_values
);
7253 mips_split_plus (addr
, &base
, &offset
);
7254 required_offset
= cfun
->machine
->frame
.total_size
+ argno
* UNITS_PER_WORD
;
7255 if (base
== hard_frame_pointer_rtx
)
7256 required_offset
-= cfun
->machine
->frame
.hard_frame_pointer_offset
;
7257 else if (base
!= stack_pointer_rtx
)
7259 if (offset
!= required_offset
)
7266 /* A subroutine of mips_expand_prologue, called only when generating
7267 MIPS16e SAVE instructions. Search the start of the function for any
7268 instructions that save argument registers into their caller-allocated
7269 save slots. Delete such instructions and return a value N such that
7270 saving [GP_ARG_FIRST, GP_ARG_FIRST + N) would make all the deleted
7271 instructions redundant. */
7274 mips16e_collect_argument_saves (void)
7276 rtx reg_values
[FIRST_PSEUDO_REGISTER
];
7277 rtx insn
, next
, set
, dest
, src
;
7278 unsigned int nargs
, regno
;
7280 push_topmost_sequence ();
7282 memset (reg_values
, 0, sizeof (reg_values
));
7283 for (insn
= get_insns (); insn
; insn
= next
)
7285 next
= NEXT_INSN (insn
);
7292 set
= PATTERN (insn
);
7293 if (GET_CODE (set
) != SET
)
7296 dest
= SET_DEST (set
);
7297 src
= SET_SRC (set
);
7298 if (mips16e_collect_argument_save_p (dest
, src
, reg_values
, ®no
))
7300 if (!BITSET_P (cfun
->machine
->frame
.mask
, regno
))
7303 nargs
= MAX (nargs
, (regno
- GP_ARG_FIRST
) + 1);
7306 else if (REG_P (dest
) && GET_MODE (dest
) == word_mode
)
7307 reg_values
[REGNO (dest
)]
7308 = mips16e_collect_propagate_value (src
, reg_values
);
7312 pop_topmost_sequence ();
7317 /* Return a move between register REGNO and memory location SP + OFFSET.
7318 Make the move a load if RESTORE_P, otherwise make it a frame-related
7322 mips16e_save_restore_reg (bool restore_p
, HOST_WIDE_INT offset
,
7327 mem
= gen_frame_mem (SImode
, plus_constant (stack_pointer_rtx
, offset
));
7328 reg
= gen_rtx_REG (SImode
, regno
);
7330 ? gen_rtx_SET (VOIDmode
, reg
, mem
)
7331 : mips_frame_set (mem
, reg
));
7334 /* Return RTL for a MIPS16e SAVE or RESTORE instruction; RESTORE_P says which.
7335 The instruction must:
7337 - Allocate or deallocate SIZE bytes in total; SIZE is known
7340 - Save or restore as many registers in *MASK_PTR as possible.
7341 The instruction saves the first registers at the top of the
7342 allocated area, with the other registers below it.
7344 - Save NARGS argument registers above the allocated area.
7346 (NARGS is always zero if RESTORE_P.)
7348 The SAVE and RESTORE instructions cannot save and restore all general
7349 registers, so there may be some registers left over for the caller to
7350 handle. Destructively modify *MASK_PTR so that it contains the registers
7351 that still need to be saved or restored. The caller can save these
7352 registers in the memory immediately below *OFFSET_PTR, which is a
7353 byte offset from the bottom of the allocated stack area. */
7356 mips16e_build_save_restore (bool restore_p
, unsigned int *mask_ptr
,
7357 HOST_WIDE_INT
*offset_ptr
, unsigned int nargs
,
7361 HOST_WIDE_INT offset
, top_offset
;
7362 unsigned int i
, regno
;
7365 gcc_assert (cfun
->machine
->frame
.num_fp
== 0);
7367 /* Calculate the number of elements in the PARALLEL. We need one element
7368 for the stack adjustment, one for each argument register save, and one
7369 for each additional register move. */
7371 for (i
= 0; i
< ARRAY_SIZE (mips16e_save_restore_regs
); i
++)
7372 if (BITSET_P (*mask_ptr
, mips16e_save_restore_regs
[i
]))
7375 /* Create the final PARALLEL. */
7376 pattern
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (n
));
7379 /* Add the stack pointer adjustment. */
7380 set
= gen_rtx_SET (VOIDmode
, stack_pointer_rtx
,
7381 plus_constant (stack_pointer_rtx
,
7382 restore_p
? size
: -size
));
7383 RTX_FRAME_RELATED_P (set
) = 1;
7384 XVECEXP (pattern
, 0, n
++) = set
;
7386 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
7387 top_offset
= restore_p
? size
: 0;
7389 /* Save the arguments. */
7390 for (i
= 0; i
< nargs
; i
++)
7392 offset
= top_offset
+ i
* UNITS_PER_WORD
;
7393 set
= mips16e_save_restore_reg (restore_p
, offset
, GP_ARG_FIRST
+ i
);
7394 XVECEXP (pattern
, 0, n
++) = set
;
7397 /* Then fill in the other register moves. */
7398 offset
= top_offset
;
7399 for (i
= 0; i
< ARRAY_SIZE (mips16e_save_restore_regs
); i
++)
7401 regno
= mips16e_save_restore_regs
[i
];
7402 if (BITSET_P (*mask_ptr
, regno
))
7404 offset
-= UNITS_PER_WORD
;
7405 set
= mips16e_save_restore_reg (restore_p
, offset
, regno
);
7406 XVECEXP (pattern
, 0, n
++) = set
;
7407 *mask_ptr
&= ~(1 << regno
);
7411 /* Tell the caller what offset it should use for the remaining registers. */
7412 *offset_ptr
= size
+ (offset
- top_offset
);
7414 gcc_assert (n
== XVECLEN (pattern
, 0));
7419 /* PATTERN is a PARALLEL whose first element adds ADJUST to the stack
7420 pointer. Return true if PATTERN matches the kind of instruction
7421 generated by mips16e_build_save_restore. If INFO is nonnull,
7422 initialize it when returning true. */
7425 mips16e_save_restore_pattern_p (rtx pattern
, HOST_WIDE_INT adjust
,
7426 struct mips16e_save_restore_info
*info
)
7428 unsigned int i
, nargs
, mask
, extra
;
7429 HOST_WIDE_INT top_offset
, save_offset
, offset
;
7430 rtx set
, reg
, mem
, base
;
7433 if (!GENERATE_MIPS16E_SAVE_RESTORE
)
7436 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
7437 top_offset
= adjust
> 0 ? adjust
: 0;
7439 /* Interpret all other members of the PARALLEL. */
7440 save_offset
= top_offset
- UNITS_PER_WORD
;
7444 for (n
= 1; n
< XVECLEN (pattern
, 0); n
++)
7446 /* Check that we have a SET. */
7447 set
= XVECEXP (pattern
, 0, n
);
7448 if (GET_CODE (set
) != SET
)
7451 /* Check that the SET is a load (if restoring) or a store
7453 mem
= adjust
> 0 ? SET_SRC (set
) : SET_DEST (set
);
7457 /* Check that the address is the sum of the stack pointer and a
7458 possibly-zero constant offset. */
7459 mips_split_plus (XEXP (mem
, 0), &base
, &offset
);
7460 if (base
!= stack_pointer_rtx
)
7463 /* Check that SET's other operand is a register. */
7464 reg
= adjust
> 0 ? SET_DEST (set
) : SET_SRC (set
);
7468 /* Check for argument saves. */
7469 if (offset
== top_offset
+ nargs
* UNITS_PER_WORD
7470 && REGNO (reg
) == GP_ARG_FIRST
+ nargs
)
7472 else if (offset
== save_offset
)
7474 while (mips16e_save_restore_regs
[i
++] != REGNO (reg
))
7475 if (i
== ARRAY_SIZE (mips16e_save_restore_regs
))
7478 mask
|= 1 << REGNO (reg
);
7479 save_offset
-= UNITS_PER_WORD
;
7485 /* Check that the restrictions on register ranges are met. */
7487 mips16e_mask_registers (&mask
, mips16e_s2_s8_regs
,
7488 ARRAY_SIZE (mips16e_s2_s8_regs
), &extra
);
7489 mips16e_mask_registers (&mask
, mips16e_a0_a3_regs
,
7490 ARRAY_SIZE (mips16e_a0_a3_regs
), &extra
);
7494 /* Make sure that the topmost argument register is not saved twice.
7495 The checks above ensure that the same is then true for the other
7496 argument registers. */
7497 if (nargs
> 0 && BITSET_P (mask
, GP_ARG_FIRST
+ nargs
- 1))
7500 /* Pass back information, if requested. */
7503 info
->nargs
= nargs
;
7505 info
->size
= (adjust
> 0 ? adjust
: -adjust
);
7511 /* Add a MIPS16e SAVE or RESTORE register-range argument to string S
7512 for the register range [MIN_REG, MAX_REG]. Return a pointer to
7513 the null terminator. */
7516 mips16e_add_register_range (char *s
, unsigned int min_reg
,
7517 unsigned int max_reg
)
7519 if (min_reg
!= max_reg
)
7520 s
+= sprintf (s
, ",%s-%s", reg_names
[min_reg
], reg_names
[max_reg
]);
7522 s
+= sprintf (s
, ",%s", reg_names
[min_reg
]);
7526 /* Return the assembly instruction for a MIPS16e SAVE or RESTORE instruction.
7527 PATTERN and ADJUST are as for mips16e_save_restore_pattern_p. */
7530 mips16e_output_save_restore (rtx pattern
, HOST_WIDE_INT adjust
)
7532 static char buffer
[300];
7534 struct mips16e_save_restore_info info
;
7535 unsigned int i
, end
;
7538 /* Parse the pattern. */
7539 if (!mips16e_save_restore_pattern_p (pattern
, adjust
, &info
))
7542 /* Add the mnemonic. */
7543 s
= strcpy (buffer
, adjust
> 0 ? "restore\t" : "save\t");
7546 /* Save the arguments. */
7548 s
+= sprintf (s
, "%s-%s,", reg_names
[GP_ARG_FIRST
],
7549 reg_names
[GP_ARG_FIRST
+ info
.nargs
- 1]);
7550 else if (info
.nargs
== 1)
7551 s
+= sprintf (s
, "%s,", reg_names
[GP_ARG_FIRST
]);
7553 /* Emit the amount of stack space to allocate or deallocate. */
7554 s
+= sprintf (s
, "%d", (int) info
.size
);
7556 /* Save or restore $16. */
7557 if (BITSET_P (info
.mask
, 16))
7558 s
+= sprintf (s
, ",%s", reg_names
[GP_REG_FIRST
+ 16]);
7560 /* Save or restore $17. */
7561 if (BITSET_P (info
.mask
, 17))
7562 s
+= sprintf (s
, ",%s", reg_names
[GP_REG_FIRST
+ 17]);
7564 /* Save or restore registers in the range $s2...$s8, which
7565 mips16e_s2_s8_regs lists in decreasing order. Note that this
7566 is a software register range; the hardware registers are not
7567 numbered consecutively. */
7568 end
= ARRAY_SIZE (mips16e_s2_s8_regs
);
7569 i
= mips16e_find_first_register (info
.mask
, mips16e_s2_s8_regs
, end
);
7571 s
= mips16e_add_register_range (s
, mips16e_s2_s8_regs
[end
- 1],
7572 mips16e_s2_s8_regs
[i
]);
7574 /* Save or restore registers in the range $a0...$a3. */
7575 end
= ARRAY_SIZE (mips16e_a0_a3_regs
);
7576 i
= mips16e_find_first_register (info
.mask
, mips16e_a0_a3_regs
, end
);
7578 s
= mips16e_add_register_range (s
, mips16e_a0_a3_regs
[i
],
7579 mips16e_a0_a3_regs
[end
- 1]);
7581 /* Save or restore $31. */
7582 if (BITSET_P (info
.mask
, 31))
7583 s
+= sprintf (s
, ",%s", reg_names
[GP_REG_FIRST
+ 31]);
7588 /* Return true if the current function has an insn that implicitly
7592 mips_function_has_gp_insn (void)
7594 /* Don't bother rechecking if we found one last time. */
7595 if (!cfun
->machine
->has_gp_insn_p
)
7599 push_topmost_sequence ();
7600 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
7601 if (USEFUL_INSN_P (insn
)
7602 && (get_attr_got (insn
) != GOT_UNSET
7603 || mips_small_data_pattern_p (PATTERN (insn
))))
7605 cfun
->machine
->has_gp_insn_p
= true;
7608 pop_topmost_sequence ();
7610 return cfun
->machine
->has_gp_insn_p
;
7613 /* Return the register that should be used as the global pointer
7614 within this function. Return 0 if the function doesn't need
7615 a global pointer. */
7618 mips_global_pointer (void)
7622 /* $gp is always available unless we're using a GOT. */
7623 if (!TARGET_USE_GOT
)
7624 return GLOBAL_POINTER_REGNUM
;
7626 /* We must always provide $gp when it is used implicitly. */
7627 if (!TARGET_EXPLICIT_RELOCS
)
7628 return GLOBAL_POINTER_REGNUM
;
7630 /* FUNCTION_PROFILER includes a jal macro, so we need to give it
7632 if (current_function_profile
)
7633 return GLOBAL_POINTER_REGNUM
;
7635 /* If the function has a nonlocal goto, $gp must hold the correct
7636 global pointer for the target function. */
7637 if (current_function_has_nonlocal_goto
)
7638 return GLOBAL_POINTER_REGNUM
;
7640 /* If the gp is never referenced, there's no need to initialize it.
7641 Note that reload can sometimes introduce constant pool references
7642 into a function that otherwise didn't need them. For example,
7643 suppose we have an instruction like:
7645 (set (reg:DF R1) (float:DF (reg:SI R2)))
7647 If R2 turns out to be constant such as 1, the instruction may have a
7648 REG_EQUAL note saying that R1 == 1.0. Reload then has the option of
7649 using this constant if R2 doesn't get allocated to a register.
7651 In cases like these, reload will have added the constant to the pool
7652 but no instruction will yet refer to it. */
7653 if (!df_regs_ever_live_p (GLOBAL_POINTER_REGNUM
)
7654 && !current_function_uses_const_pool
7655 && !mips_function_has_gp_insn ())
7658 /* We need a global pointer, but perhaps we can use a call-clobbered
7659 register instead of $gp. */
7660 if (TARGET_CALL_SAVED_GP
&& current_function_is_leaf
)
7661 for (regno
= GP_REG_FIRST
; regno
<= GP_REG_LAST
; regno
++)
7662 if (!df_regs_ever_live_p (regno
)
7663 && call_really_used_regs
[regno
]
7664 && !fixed_regs
[regno
]
7665 && regno
!= PIC_FUNCTION_ADDR_REGNUM
)
7668 return GLOBAL_POINTER_REGNUM
;
7671 /* Return true if the current function returns its value in a floating-point
7672 register in MIPS16 mode. */
7675 mips16_cfun_returns_in_fpr_p (void)
7677 tree return_type
= DECL_RESULT (current_function_decl
);
7678 return (TARGET_MIPS16
7679 && TARGET_HARD_FLOAT_ABI
7680 && !aggregate_value_p (return_type
, current_function_decl
)
7681 && mips_return_mode_in_fpr_p (DECL_MODE (return_type
)));
7684 /* Return true if the current function must save register REGNO. */
7687 mips_save_reg_p (unsigned int regno
)
7689 /* We only need to save $gp if TARGET_CALL_SAVED_GP and only then
7690 if we have not chosen a call-clobbered substitute. */
7691 if (regno
== GLOBAL_POINTER_REGNUM
)
7692 return TARGET_CALL_SAVED_GP
&& cfun
->machine
->global_pointer
== regno
;
7694 /* Check call-saved registers. */
7695 if ((current_function_saves_all_registers
|| df_regs_ever_live_p (regno
))
7696 && !call_really_used_regs
[regno
])
7699 /* Save both registers in an FPR pair if either one is used. This is
7700 needed for the case when MIN_FPRS_PER_FMT == 1, which allows the odd
7701 register to be used without the even register. */
7702 if (FP_REG_P (regno
)
7703 && MAX_FPRS_PER_FMT
== 2
7704 && df_regs_ever_live_p (regno
+ 1)
7705 && !call_really_used_regs
[regno
+ 1])
7708 /* We need to save the old frame pointer before setting up a new one. */
7709 if (regno
== HARD_FRAME_POINTER_REGNUM
&& frame_pointer_needed
)
7712 /* Check for registers that must be saved for FUNCTION_PROFILER. */
7713 if (current_function_profile
&& MIPS_SAVE_REG_FOR_PROFILING_P (regno
))
7716 /* We need to save the incoming return address if it is ever clobbered
7717 within the function, if __builtin_eh_return is being used to set a
7718 different return address, or if a stub is being used to return a
7720 if (regno
== GP_REG_FIRST
+ 31
7721 && (df_regs_ever_live_p (regno
)
7722 || current_function_calls_eh_return
7723 || mips16_cfun_returns_in_fpr_p ()))
7729 /* Populate the current function's mips_frame_info structure.
7731 MIPS stack frames look like:
7733 +-------------------------------+
7735 | incoming stack arguments |
7737 +-------------------------------+
7739 | caller-allocated save area |
7740 A | for register arguments |
7742 +-------------------------------+ <-- incoming stack pointer
7744 | callee-allocated save area |
7745 B | for arguments that are |
7746 | split between registers and |
7749 +-------------------------------+ <-- arg_pointer_rtx
7751 C | callee-allocated save area |
7752 | for register varargs |
7754 +-------------------------------+ <-- frame_pointer_rtx + fp_sp_offset
7755 | | + UNITS_PER_HWFPVALUE
7758 +-------------------------------+ <-- frame_pointer_rtx + gp_sp_offset
7759 | | + UNITS_PER_WORD
7762 +-------------------------------+
7764 | local variables | | var_size
7766 +-------------------------------+
7768 | $gp save area | | cprestore_size
7770 P +-------------------------------+ <-- hard_frame_pointer_rtx for
7772 | outgoing stack arguments |
7774 +-------------------------------+
7776 | caller-allocated save area |
7777 | for register arguments |
7779 +-------------------------------+ <-- stack_pointer_rtx
7781 hard_frame_pointer_rtx for
7784 At least two of A, B and C will be empty.
7786 Dynamic stack allocations such as alloca insert data at point P.
7787 They decrease stack_pointer_rtx but leave frame_pointer_rtx and
7788 hard_frame_pointer_rtx unchanged. */
7791 mips_compute_frame_info (void)
7793 struct mips_frame_info
*frame
;
7794 HOST_WIDE_INT offset
, size
;
7795 unsigned int regno
, i
;
7797 frame
= &cfun
->machine
->frame
;
7798 memset (frame
, 0, sizeof (*frame
));
7799 size
= get_frame_size ();
7801 cfun
->machine
->global_pointer
= mips_global_pointer ();
7803 /* The first STARTING_FRAME_OFFSET bytes contain the outgoing argument
7804 area and the $gp save slot. This area isn't needed in leaf functions,
7805 but if the target-independent frame size is nonzero, we're committed
7806 to allocating it anyway. */
7807 if (size
== 0 && current_function_is_leaf
)
7809 /* The MIPS 3.0 linker does not like functions that dynamically
7810 allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
7811 looks like we are trying to create a second frame pointer to the
7812 function, so allocate some stack space to make it happy. */
7813 if (current_function_calls_alloca
)
7814 frame
->args_size
= REG_PARM_STACK_SPACE (cfun
->decl
);
7816 frame
->args_size
= 0;
7817 frame
->cprestore_size
= 0;
7821 frame
->args_size
= current_function_outgoing_args_size
;
7822 frame
->cprestore_size
= STARTING_FRAME_OFFSET
- frame
->args_size
;
7824 offset
= frame
->args_size
+ frame
->cprestore_size
;
7826 /* Move above the local variables. */
7827 frame
->var_size
= MIPS_STACK_ALIGN (size
);
7828 offset
+= frame
->var_size
;
7830 /* Find out which GPRs we need to save. */
7831 for (regno
= GP_REG_FIRST
; regno
<= GP_REG_LAST
; regno
++)
7832 if (mips_save_reg_p (regno
))
7835 frame
->mask
|= 1 << (regno
- GP_REG_FIRST
);
7838 /* If this function calls eh_return, we must also save and restore the
7839 EH data registers. */
7840 if (current_function_calls_eh_return
)
7841 for (i
= 0; EH_RETURN_DATA_REGNO (i
) != INVALID_REGNUM
; i
++)
7844 frame
->mask
|= 1 << (EH_RETURN_DATA_REGNO (i
) - GP_REG_FIRST
);
7847 /* The MIPS16e SAVE and RESTORE instructions have two ranges of registers:
7848 $a3-$a0 and $s2-$s8. If we save one register in the range, we must
7849 save all later registers too. */
7850 if (GENERATE_MIPS16E_SAVE_RESTORE
)
7852 mips16e_mask_registers (&frame
->mask
, mips16e_s2_s8_regs
,
7853 ARRAY_SIZE (mips16e_s2_s8_regs
), &frame
->num_gp
);
7854 mips16e_mask_registers (&frame
->mask
, mips16e_a0_a3_regs
,
7855 ARRAY_SIZE (mips16e_a0_a3_regs
), &frame
->num_gp
);
7858 /* Move above the GPR save area. */
7859 if (frame
->num_gp
> 0)
7861 offset
+= MIPS_STACK_ALIGN (frame
->num_gp
* UNITS_PER_WORD
);
7862 frame
->gp_sp_offset
= offset
- UNITS_PER_WORD
;
7865 /* Find out which FPRs we need to save. This loop must iterate over
7866 the same space as its companion in mips_for_each_saved_reg. */
7867 if (TARGET_HARD_FLOAT
)
7868 for (regno
= FP_REG_FIRST
; regno
<= FP_REG_LAST
; regno
+= MAX_FPRS_PER_FMT
)
7869 if (mips_save_reg_p (regno
))
7871 frame
->num_fp
+= MAX_FPRS_PER_FMT
;
7872 frame
->fmask
|= ~(~0 << MAX_FPRS_PER_FMT
) << (regno
- FP_REG_FIRST
);
7875 /* Move above the FPR save area. */
7876 if (frame
->num_fp
> 0)
7878 offset
+= MIPS_STACK_ALIGN (frame
->num_fp
* UNITS_PER_FPREG
);
7879 frame
->fp_sp_offset
= offset
- UNITS_PER_HWFPVALUE
;
7882 /* Move above the callee-allocated varargs save area. */
7883 offset
+= MIPS_STACK_ALIGN (cfun
->machine
->varargs_size
);
7884 frame
->arg_pointer_offset
= offset
;
7886 /* Move above the callee-allocated area for pretend stack arguments. */
7887 offset
+= current_function_pretend_args_size
;
7888 frame
->total_size
= offset
;
7890 /* Work out the offsets of the save areas from the top of the frame. */
7891 if (frame
->gp_sp_offset
> 0)
7892 frame
->gp_save_offset
= frame
->gp_sp_offset
- offset
;
7893 if (frame
->fp_sp_offset
> 0)
7894 frame
->fp_save_offset
= frame
->fp_sp_offset
- offset
;
7896 /* MIPS16 code offsets the frame pointer by the size of the outgoing
7897 arguments. This tends to increase the chances of using unextended
7898 instructions for local variables and incoming arguments. */
7900 frame
->hard_frame_pointer_offset
= frame
->args_size
;
7903 /* Return the style of GP load sequence that is being used for the
7904 current function. */
7906 enum mips_loadgp_style
7907 mips_current_loadgp_style (void)
7909 if (!TARGET_USE_GOT
|| cfun
->machine
->global_pointer
== 0)
7915 if (TARGET_ABSOLUTE_ABICALLS
)
7916 return LOADGP_ABSOLUTE
;
7918 return TARGET_NEWABI
? LOADGP_NEWABI
: LOADGP_OLDABI
;
7921 /* Implement FRAME_POINTER_REQUIRED. */
7924 mips_frame_pointer_required (void)
7926 /* If the function contains dynamic stack allocations, we need to
7927 use the frame pointer to access the static parts of the frame. */
7928 if (current_function_calls_alloca
)
7931 /* In MIPS16 mode, we need a frame pointer for a large frame; otherwise,
7932 reload may be unable to compute the address of a local variable,
7933 since there is no way to add a large constant to the stack pointer
7934 without using a second temporary register. */
7937 mips_compute_frame_info ();
7938 if (!SMALL_OPERAND (cfun
->machine
->frame
.total_size
))
7945 /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
7946 or argument pointer. TO is either the stack pointer or hard frame
7950 mips_initial_elimination_offset (int from
, int to
)
7952 HOST_WIDE_INT offset
;
7954 mips_compute_frame_info ();
7956 /* Set OFFSET to the offset from the soft frame pointer, which is also
7957 the offset from the end-of-prologue stack pointer. */
7960 case FRAME_POINTER_REGNUM
:
7964 case ARG_POINTER_REGNUM
:
7965 offset
= cfun
->machine
->frame
.arg_pointer_offset
;
7972 if (to
== HARD_FRAME_POINTER_REGNUM
)
7973 offset
-= cfun
->machine
->frame
.hard_frame_pointer_offset
;
7978 /* Implement TARGET_EXTRA_LIVE_ON_ENTRY. Some code models use the incoming
7979 value of PIC_FUNCTION_ADDR_REGNUM to set up the global pointer. */
7982 mips_extra_live_on_entry (bitmap regs
)
7984 if (TARGET_USE_GOT
&& !TARGET_ABSOLUTE_ABICALLS
)
7985 bitmap_set_bit (regs
, PIC_FUNCTION_ADDR_REGNUM
);
7988 /* Implement RETURN_ADDR_RTX. We do not support moving back to a
7992 mips_return_addr (int count
, rtx frame ATTRIBUTE_UNUSED
)
7997 return get_hard_reg_initial_val (Pmode
, GP_REG_FIRST
+ 31);
8000 /* Emit code to change the current function's return address to
8001 ADDRESS. SCRATCH is available as a scratch register, if needed.
8002 ADDRESS and SCRATCH are both word-mode GPRs. */
8005 mips_set_return_address (rtx address
, rtx scratch
)
8009 gcc_assert (BITSET_P (cfun
->machine
->frame
.mask
, 31));
8010 slot_address
= mips_add_offset (scratch
, stack_pointer_rtx
,
8011 cfun
->machine
->frame
.gp_sp_offset
);
8012 mips_emit_move (gen_frame_mem (GET_MODE (address
), slot_address
), address
);
8015 /* Restore $gp from its save slot. Valid only when using o32 or
8019 mips_restore_gp (void)
8023 gcc_assert (TARGET_ABICALLS
&& TARGET_OLDABI
);
8025 base
= frame_pointer_needed
? hard_frame_pointer_rtx
: stack_pointer_rtx
;
8026 address
= mips_add_offset (pic_offset_table_rtx
, base
,
8027 current_function_outgoing_args_size
);
8028 mips_emit_move (pic_offset_table_rtx
, gen_frame_mem (Pmode
, address
));
8029 if (!TARGET_EXPLICIT_RELOCS
)
8030 emit_insn (gen_blockage ());
8033 /* A function to save or store a register. The first argument is the
8034 register and the second is the stack slot. */
8035 typedef void (*mips_save_restore_fn
) (rtx
, rtx
);
8037 /* Use FN to save or restore register REGNO. MODE is the register's
8038 mode and OFFSET is the offset of its save slot from the current
8042 mips_save_restore_reg (enum machine_mode mode
, int regno
,
8043 HOST_WIDE_INT offset
, mips_save_restore_fn fn
)
8047 mem
= gen_frame_mem (mode
, plus_constant (stack_pointer_rtx
, offset
));
8048 fn (gen_rtx_REG (mode
, regno
), mem
);
8051 /* Call FN for each register that is saved by the current function.
8052 SP_OFFSET is the offset of the current stack pointer from the start
8056 mips_for_each_saved_reg (HOST_WIDE_INT sp_offset
, mips_save_restore_fn fn
)
8058 enum machine_mode fpr_mode
;
8059 HOST_WIDE_INT offset
;
8062 /* Save registers starting from high to low. The debuggers prefer at least
8063 the return register be stored at func+4, and also it allows us not to
8064 need a nop in the epilogue if at least one register is reloaded in
8065 addition to return address. */
8066 offset
= cfun
->machine
->frame
.gp_sp_offset
- sp_offset
;
8067 for (regno
= GP_REG_LAST
; regno
>= GP_REG_FIRST
; regno
--)
8068 if (BITSET_P (cfun
->machine
->frame
.mask
, regno
- GP_REG_FIRST
))
8070 mips_save_restore_reg (word_mode
, regno
, offset
, fn
);
8071 offset
-= UNITS_PER_WORD
;
8074 /* This loop must iterate over the same space as its companion in
8075 mips_compute_frame_info. */
8076 offset
= cfun
->machine
->frame
.fp_sp_offset
- sp_offset
;
8077 fpr_mode
= (TARGET_SINGLE_FLOAT
? SFmode
: DFmode
);
8078 for (regno
= FP_REG_LAST
- MAX_FPRS_PER_FMT
+ 1;
8079 regno
>= FP_REG_FIRST
;
8080 regno
-= MAX_FPRS_PER_FMT
)
8081 if (BITSET_P (cfun
->machine
->frame
.fmask
, regno
- FP_REG_FIRST
))
8083 mips_save_restore_reg (fpr_mode
, regno
, offset
, fn
);
8084 offset
-= GET_MODE_SIZE (fpr_mode
);
8088 /* If we're generating n32 or n64 abicalls, and the current function
8089 does not use $28 as its global pointer, emit a cplocal directive.
8090 Use pic_offset_table_rtx as the argument to the directive. */
8093 mips_output_cplocal (void)
8095 if (!TARGET_EXPLICIT_RELOCS
8096 && cfun
->machine
->global_pointer
> 0
8097 && cfun
->machine
->global_pointer
!= GLOBAL_POINTER_REGNUM
)
8098 output_asm_insn (".cplocal %+", 0);
8101 /* Implement TARGET_OUTPUT_FUNCTION_PROLOGUE. */
8104 mips_output_function_prologue (FILE *file
, HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
8108 #ifdef SDB_DEBUGGING_INFO
8109 if (debug_info_level
!= DINFO_LEVEL_TERSE
&& write_symbols
== SDB_DEBUG
)
8110 SDB_OUTPUT_SOURCE_LINE (file
, DECL_SOURCE_LINE (current_function_decl
));
8113 /* In MIPS16 mode, we may need to generate a non-MIPS16 stub to handle
8114 floating-point arguments. */
8116 && TARGET_HARD_FLOAT_ABI
8117 && current_function_args_info
.fp_code
!= 0)
8118 mips16_build_function_stub ();
8120 /* Select the MIPS16 mode for this function. */
8122 fprintf (file
, "\t.set\tmips16\n");
8124 fprintf (file
, "\t.set\tnomips16\n");
8126 if (!FUNCTION_NAME_ALREADY_DECLARED
)
8128 /* Get the function name the same way that toplev.c does before calling
8129 assemble_start_function. This is needed so that the name used here
8130 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
8131 fnname
= XSTR (XEXP (DECL_RTL (current_function_decl
), 0), 0);
8133 if (!flag_inhibit_size_directive
)
8135 fputs ("\t.ent\t", file
);
8136 assemble_name (file
, fnname
);
8140 assemble_name (file
, fnname
);
8141 fputs (":\n", file
);
8144 /* Stop mips_file_end from treating this function as external. */
8145 if (TARGET_IRIX
&& mips_abi
== ABI_32
)
8146 TREE_ASM_WRITTEN (DECL_NAME (cfun
->decl
)) = 1;
8148 /* Output MIPS-specific frame information. */
8149 if (!flag_inhibit_size_directive
)
8151 const struct mips_frame_info
*frame
;
8153 frame
= &cfun
->machine
->frame
;
8155 /* .frame FRAMEREG, FRAMESIZE, RETREG. */
8157 "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC
",%s\t\t"
8158 "# vars= " HOST_WIDE_INT_PRINT_DEC
8160 ", args= " HOST_WIDE_INT_PRINT_DEC
8161 ", gp= " HOST_WIDE_INT_PRINT_DEC
"\n",
8162 reg_names
[frame_pointer_needed
8163 ? HARD_FRAME_POINTER_REGNUM
8164 : STACK_POINTER_REGNUM
],
8165 (frame_pointer_needed
8166 ? frame
->total_size
- frame
->hard_frame_pointer_offset
8167 : frame
->total_size
),
8168 reg_names
[GP_REG_FIRST
+ 31],
8170 frame
->num_gp
, frame
->num_fp
,
8172 frame
->cprestore_size
);
8174 /* .mask MASK, OFFSET. */
8175 fprintf (file
, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC
"\n",
8176 frame
->mask
, frame
->gp_save_offset
);
8178 /* .fmask MASK, OFFSET. */
8179 fprintf (file
, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC
"\n",
8180 frame
->fmask
, frame
->fp_save_offset
);
8183 /* Handle the initialization of $gp for SVR4 PIC, if applicable.
8184 Also emit the ".set noreorder; .set nomacro" sequence for functions
8186 if (mips_current_loadgp_style () == LOADGP_OLDABI
)
8188 /* .cpload must be in a .set noreorder but not a .set nomacro block. */
8189 if (!cfun
->machine
->all_noreorder_p
)
8190 output_asm_insn ("%(.cpload\t%^%)", 0);
8192 output_asm_insn ("%(.cpload\t%^\n\t%<", 0);
8194 else if (cfun
->machine
->all_noreorder_p
)
8195 output_asm_insn ("%(%<", 0);
8197 /* Tell the assembler which register we're using as the global
8198 pointer. This is needed for thunks, since they can use either
8199 explicit relocs or assembler macros. */
8200 mips_output_cplocal ();
8203 /* Implement TARGET_OUTPUT_FUNCTION_EPILOGUE. */
8206 mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED
,
8207 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
8209 /* Reinstate the normal $gp. */
8210 SET_REGNO (pic_offset_table_rtx
, GLOBAL_POINTER_REGNUM
);
8211 mips_output_cplocal ();
8213 if (cfun
->machine
->all_noreorder_p
)
8215 /* Avoid using %>%) since it adds excess whitespace. */
8216 output_asm_insn (".set\tmacro", 0);
8217 output_asm_insn (".set\treorder", 0);
8218 set_noreorder
= set_nomacro
= 0;
8221 if (!FUNCTION_NAME_ALREADY_DECLARED
&& !flag_inhibit_size_directive
)
8225 /* Get the function name the same way that toplev.c does before calling
8226 assemble_start_function. This is needed so that the name used here
8227 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
8228 fnname
= XSTR (XEXP (DECL_RTL (current_function_decl
), 0), 0);
8229 fputs ("\t.end\t", file
);
8230 assemble_name (file
, fnname
);
8235 /* Save register REG to MEM. Make the instruction frame-related. */
8238 mips_save_reg (rtx reg
, rtx mem
)
8240 if (GET_MODE (reg
) == DFmode
&& !TARGET_FLOAT64
)
8244 if (mips_split_64bit_move_p (mem
, reg
))
8245 mips_split_doubleword_move (mem
, reg
);
8247 mips_emit_move (mem
, reg
);
8249 x1
= mips_frame_set (mips_subword (mem
, false),
8250 mips_subword (reg
, false));
8251 x2
= mips_frame_set (mips_subword (mem
, true),
8252 mips_subword (reg
, true));
8253 mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, x1
, x2
)));
8258 && REGNO (reg
) != GP_REG_FIRST
+ 31
8259 && !M16_REG_P (REGNO (reg
)))
8261 /* Save a non-MIPS16 register by moving it through a temporary.
8262 We don't need to do this for $31 since there's a special
8263 instruction for it. */
8264 mips_emit_move (MIPS_PROLOGUE_TEMP (GET_MODE (reg
)), reg
);
8265 mips_emit_move (mem
, MIPS_PROLOGUE_TEMP (GET_MODE (reg
)));
8268 mips_emit_move (mem
, reg
);
8270 mips_set_frame_expr (mips_frame_set (mem
, reg
));
8274 /* The __gnu_local_gp symbol. */
8276 static GTY(()) rtx mips_gnu_local_gp
;
8278 /* If we're generating n32 or n64 abicalls, emit instructions
8279 to set up the global pointer. */
8282 mips_emit_loadgp (void)
8284 rtx addr
, offset
, incoming_address
, base
, index
;
8286 switch (mips_current_loadgp_style ())
8288 case LOADGP_ABSOLUTE
:
8289 if (mips_gnu_local_gp
== NULL
)
8291 mips_gnu_local_gp
= gen_rtx_SYMBOL_REF (Pmode
, "__gnu_local_gp");
8292 SYMBOL_REF_FLAGS (mips_gnu_local_gp
) |= SYMBOL_FLAG_LOCAL
;
8294 emit_insn (gen_loadgp_absolute (mips_gnu_local_gp
));
8298 addr
= XEXP (DECL_RTL (current_function_decl
), 0);
8299 offset
= mips_unspec_address (addr
, SYMBOL_GOTOFF_LOADGP
);
8300 incoming_address
= gen_rtx_REG (Pmode
, PIC_FUNCTION_ADDR_REGNUM
);
8301 emit_insn (gen_loadgp_newabi (offset
, incoming_address
));
8302 if (!TARGET_EXPLICIT_RELOCS
)
8303 emit_insn (gen_loadgp_blockage ());
8307 base
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (VXWORKS_GOTT_BASE
));
8308 index
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (VXWORKS_GOTT_INDEX
));
8309 emit_insn (gen_loadgp_rtp (base
, index
));
8310 if (!TARGET_EXPLICIT_RELOCS
)
8311 emit_insn (gen_loadgp_blockage ());
8319 /* Expand the "prologue" pattern. */
8322 mips_expand_prologue (void)
8324 const struct mips_frame_info
*frame
;
8329 if (cfun
->machine
->global_pointer
> 0)
8330 SET_REGNO (pic_offset_table_rtx
, cfun
->machine
->global_pointer
);
8332 frame
= &cfun
->machine
->frame
;
8333 size
= frame
->total_size
;
8335 /* Save the registers. Allocate up to MIPS_MAX_FIRST_STACK_STEP
8336 bytes beforehand; this is enough to cover the register save area
8337 without going out of range. */
8338 if ((frame
->mask
| frame
->fmask
) != 0)
8340 HOST_WIDE_INT step1
;
8342 step1
= MIN (size
, MIPS_MAX_FIRST_STACK_STEP
);
8343 if (GENERATE_MIPS16E_SAVE_RESTORE
)
8345 HOST_WIDE_INT offset
;
8346 unsigned int mask
, regno
;
8348 /* Try to merge argument stores into the save instruction. */
8349 nargs
= mips16e_collect_argument_saves ();
8351 /* Build the save instruction. */
8353 insn
= mips16e_build_save_restore (false, &mask
, &offset
,
8355 RTX_FRAME_RELATED_P (emit_insn (insn
)) = 1;
8358 /* Check if we need to save other registers. */
8359 for (regno
= GP_REG_FIRST
; regno
< GP_REG_LAST
; regno
++)
8360 if (BITSET_P (mask
, regno
- GP_REG_FIRST
))
8362 offset
-= UNITS_PER_WORD
;
8363 mips_save_restore_reg (word_mode
, regno
,
8364 offset
, mips_save_reg
);
8369 insn
= gen_add3_insn (stack_pointer_rtx
,
8372 RTX_FRAME_RELATED_P (emit_insn (insn
)) = 1;
8374 mips_for_each_saved_reg (size
, mips_save_reg
);
8378 /* Allocate the rest of the frame. */
8381 if (SMALL_OPERAND (-size
))
8382 RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx
,
8384 GEN_INT (-size
)))) = 1;
8387 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode
), GEN_INT (size
));
8390 /* There are no instructions to add or subtract registers
8391 from the stack pointer, so use the frame pointer as a
8392 temporary. We should always be using a frame pointer
8393 in this case anyway. */
8394 gcc_assert (frame_pointer_needed
);
8395 mips_emit_move (hard_frame_pointer_rtx
, stack_pointer_rtx
);
8396 emit_insn (gen_sub3_insn (hard_frame_pointer_rtx
,
8397 hard_frame_pointer_rtx
,
8398 MIPS_PROLOGUE_TEMP (Pmode
)));
8399 mips_emit_move (stack_pointer_rtx
, hard_frame_pointer_rtx
);
8402 emit_insn (gen_sub3_insn (stack_pointer_rtx
,
8404 MIPS_PROLOGUE_TEMP (Pmode
)));
8406 /* Describe the combined effect of the previous instructions. */
8408 (gen_rtx_SET (VOIDmode
, stack_pointer_rtx
,
8409 plus_constant (stack_pointer_rtx
, -size
)));
8413 /* Set up the frame pointer, if we're using one. */
8414 if (frame_pointer_needed
)
8416 HOST_WIDE_INT offset
;
8418 offset
= frame
->hard_frame_pointer_offset
;
8421 insn
= mips_emit_move (hard_frame_pointer_rtx
, stack_pointer_rtx
);
8422 RTX_FRAME_RELATED_P (insn
) = 1;
8424 else if (SMALL_OPERAND (offset
))
8426 insn
= gen_add3_insn (hard_frame_pointer_rtx
,
8427 stack_pointer_rtx
, GEN_INT (offset
));
8428 RTX_FRAME_RELATED_P (emit_insn (insn
)) = 1;
8432 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode
), GEN_INT (offset
));
8433 mips_emit_move (hard_frame_pointer_rtx
, stack_pointer_rtx
);
8434 emit_insn (gen_add3_insn (hard_frame_pointer_rtx
,
8435 hard_frame_pointer_rtx
,
8436 MIPS_PROLOGUE_TEMP (Pmode
)));
8438 (gen_rtx_SET (VOIDmode
, hard_frame_pointer_rtx
,
8439 plus_constant (stack_pointer_rtx
, offset
)));
8443 mips_emit_loadgp ();
8445 /* Initialize the $gp save slot. */
8446 if (frame
->cprestore_size
> 0)
8447 emit_insn (gen_cprestore (GEN_INT (current_function_outgoing_args_size
)));
8449 /* If we are profiling, make sure no instructions are scheduled before
8450 the call to mcount. */
8451 if (current_function_profile
)
8452 emit_insn (gen_blockage ());
8455 /* Emit instructions to restore register REG from slot MEM. */
8458 mips_restore_reg (rtx reg
, rtx mem
)
8460 /* There's no MIPS16 instruction to load $31 directly. Load into
8461 $7 instead and adjust the return insn appropriately. */
8462 if (TARGET_MIPS16
&& REGNO (reg
) == GP_REG_FIRST
+ 31)
8463 reg
= gen_rtx_REG (GET_MODE (reg
), GP_REG_FIRST
+ 7);
8465 if (TARGET_MIPS16
&& !M16_REG_P (REGNO (reg
)))
8467 /* Can't restore directly; move through a temporary. */
8468 mips_emit_move (MIPS_EPILOGUE_TEMP (GET_MODE (reg
)), mem
);
8469 mips_emit_move (reg
, MIPS_EPILOGUE_TEMP (GET_MODE (reg
)));
8472 mips_emit_move (reg
, mem
);
8475 /* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
8479 mips_expand_epilogue (bool sibcall_p
)
8481 const struct mips_frame_info
*frame
;
8482 HOST_WIDE_INT step1
, step2
;
8485 if (!sibcall_p
&& mips_can_use_return_insn ())
8487 emit_jump_insn (gen_return ());
8491 /* In MIPS16 mode, if the return value should go into a floating-point
8492 register, we need to call a helper routine to copy it over. */
8493 if (mips16_cfun_returns_in_fpr_p ())
8494 mips16_copy_fpr_return_value ();
8496 /* Split the frame into two. STEP1 is the amount of stack we should
8497 deallocate before restoring the registers. STEP2 is the amount we
8498 should deallocate afterwards.
8500 Start off by assuming that no registers need to be restored. */
8501 frame
= &cfun
->machine
->frame
;
8502 step1
= frame
->total_size
;
8505 /* Work out which register holds the frame address. */
8506 if (!frame_pointer_needed
)
8507 base
= stack_pointer_rtx
;
8510 base
= hard_frame_pointer_rtx
;
8511 step1
-= frame
->hard_frame_pointer_offset
;
8514 /* If we need to restore registers, deallocate as much stack as
8515 possible in the second step without going out of range. */
8516 if ((frame
->mask
| frame
->fmask
) != 0)
8518 step2
= MIN (step1
, MIPS_MAX_FIRST_STACK_STEP
);
8522 /* Set TARGET to BASE + STEP1. */
8528 /* Get an rtx for STEP1 that we can add to BASE. */
8529 adjust
= GEN_INT (step1
);
8530 if (!SMALL_OPERAND (step1
))
8532 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode
), adjust
);
8533 adjust
= MIPS_EPILOGUE_TEMP (Pmode
);
8536 /* Normal mode code can copy the result straight into $sp. */
8538 target
= stack_pointer_rtx
;
8540 emit_insn (gen_add3_insn (target
, base
, adjust
));
8543 /* Copy TARGET into the stack pointer. */
8544 if (target
!= stack_pointer_rtx
)
8545 mips_emit_move (stack_pointer_rtx
, target
);
8547 /* If we're using addressing macros, $gp is implicitly used by all
8548 SYMBOL_REFs. We must emit a blockage insn before restoring $gp
8550 if (TARGET_CALL_SAVED_GP
&& !TARGET_EXPLICIT_RELOCS
)
8551 emit_insn (gen_blockage ());
8553 if (GENERATE_MIPS16E_SAVE_RESTORE
&& frame
->mask
!= 0)
8555 unsigned int regno
, mask
;
8556 HOST_WIDE_INT offset
;
8559 /* Generate the restore instruction. */
8561 restore
= mips16e_build_save_restore (true, &mask
, &offset
, 0, step2
);
8563 /* Restore any other registers manually. */
8564 for (regno
= GP_REG_FIRST
; regno
< GP_REG_LAST
; regno
++)
8565 if (BITSET_P (mask
, regno
- GP_REG_FIRST
))
8567 offset
-= UNITS_PER_WORD
;
8568 mips_save_restore_reg (word_mode
, regno
, offset
, mips_restore_reg
);
8571 /* Restore the remaining registers and deallocate the final bit
8573 emit_insn (restore
);
8577 /* Restore the registers. */
8578 mips_for_each_saved_reg (frame
->total_size
- step2
, mips_restore_reg
);
8580 /* Deallocate the final bit of the frame. */
8582 emit_insn (gen_add3_insn (stack_pointer_rtx
,
8587 /* Add in the __builtin_eh_return stack adjustment. We need to
8588 use a temporary in MIPS16 code. */
8589 if (current_function_calls_eh_return
)
8593 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode
), stack_pointer_rtx
);
8594 emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode
),
8595 MIPS_EPILOGUE_TEMP (Pmode
),
8596 EH_RETURN_STACKADJ_RTX
));
8597 mips_emit_move (stack_pointer_rtx
, MIPS_EPILOGUE_TEMP (Pmode
));
8600 emit_insn (gen_add3_insn (stack_pointer_rtx
,
8602 EH_RETURN_STACKADJ_RTX
));
8609 /* When generating MIPS16 code, the normal mips_for_each_saved_reg
8610 path will restore the return address into $7 rather than $31. */
8612 && !GENERATE_MIPS16E_SAVE_RESTORE
8613 && BITSET_P (frame
->mask
, 31))
8614 regno
= GP_REG_FIRST
+ 7;
8616 regno
= GP_REG_FIRST
+ 31;
8617 emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode
, regno
)));
8621 /* Return nonzero if this function is known to have a null epilogue.
8622 This allows the optimizer to omit jumps to jumps if no stack
8626 mips_can_use_return_insn (void)
8628 if (!reload_completed
)
8631 if (current_function_profile
)
8634 /* In MIPS16 mode, a function that returns a floating-point value
8635 needs to arrange to copy the return value into the floating-point
8637 if (mips16_cfun_returns_in_fpr_p ())
8640 return cfun
->machine
->frame
.total_size
== 0;
8643 /* Return true if register REGNO can store a value of mode MODE.
8644 The result of this function is cached in mips_hard_regno_mode_ok. */
8647 mips_hard_regno_mode_ok_p (unsigned int regno
, enum machine_mode mode
)
8650 enum mode_class
class;
8652 if (mode
== CCV2mode
)
8655 && (regno
- ST_REG_FIRST
) % 2 == 0);
8657 if (mode
== CCV4mode
)
8660 && (regno
- ST_REG_FIRST
) % 4 == 0);
8665 return regno
== FPSW_REGNUM
;
8667 return (ST_REG_P (regno
)
8669 || FP_REG_P (regno
));
8672 size
= GET_MODE_SIZE (mode
);
8673 class = GET_MODE_CLASS (mode
);
8675 if (GP_REG_P (regno
))
8676 return ((regno
- GP_REG_FIRST
) & 1) == 0 || size
<= UNITS_PER_WORD
;
8678 if (FP_REG_P (regno
)
8679 && (((regno
- FP_REG_FIRST
) % MAX_FPRS_PER_FMT
) == 0
8680 || (MIN_FPRS_PER_FMT
== 1 && size
<= UNITS_PER_FPREG
)))
8682 /* Allow TFmode for CCmode reloads. */
8683 if (mode
== TFmode
&& ISA_HAS_8CC
)
8686 if (class == MODE_FLOAT
8687 || class == MODE_COMPLEX_FLOAT
8688 || class == MODE_VECTOR_FLOAT
)
8689 return size
<= UNITS_PER_FPVALUE
;
8691 /* Allow integer modes that fit into a single register. We need
8692 to put integers into FPRs when using instructions like CVT
8693 and TRUNC. There's no point allowing sizes smaller than a word,
8694 because the FPU has no appropriate load/store instructions. */
8695 if (class == MODE_INT
)
8696 return size
>= MIN_UNITS_PER_WORD
&& size
<= UNITS_PER_FPREG
;
8699 if (ACC_REG_P (regno
)
8700 && (INTEGRAL_MODE_P (mode
) || ALL_FIXED_POINT_MODE_P (mode
)))
8702 if (size
<= UNITS_PER_WORD
)
8705 if (size
<= UNITS_PER_WORD
* 2)
8706 return (DSP_ACC_REG_P (regno
)
8707 ? ((regno
- DSP_ACC_REG_FIRST
) & 1) == 0
8708 : regno
== MD_REG_FIRST
);
8711 if (ALL_COP_REG_P (regno
))
8712 return class == MODE_INT
&& size
<= UNITS_PER_WORD
;
8717 /* Implement HARD_REGNO_NREGS. */
8720 mips_hard_regno_nregs (int regno
, enum machine_mode mode
)
8722 if (ST_REG_P (regno
))
8723 /* The size of FP status registers is always 4, because they only hold
8724 CCmode values, and CCmode is always considered to be 4 bytes wide. */
8725 return (GET_MODE_SIZE (mode
) + 3) / 4;
8727 if (FP_REG_P (regno
))
8728 return (GET_MODE_SIZE (mode
) + UNITS_PER_FPREG
- 1) / UNITS_PER_FPREG
;
8730 /* All other registers are word-sized. */
8731 return (GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
8734 /* Implement CLASS_MAX_NREGS, taking the maximum of the cases
8735 in mips_hard_regno_nregs. */
8738 mips_class_max_nregs (enum reg_class
class, enum machine_mode mode
)
8744 COPY_HARD_REG_SET (left
, reg_class_contents
[(int) class]);
8745 if (hard_reg_set_intersect_p (left
, reg_class_contents
[(int) ST_REGS
]))
8747 size
= MIN (size
, 4);
8748 AND_COMPL_HARD_REG_SET (left
, reg_class_contents
[(int) ST_REGS
]);
8750 if (hard_reg_set_intersect_p (left
, reg_class_contents
[(int) FP_REGS
]))
8752 size
= MIN (size
, UNITS_PER_FPREG
);
8753 AND_COMPL_HARD_REG_SET (left
, reg_class_contents
[(int) FP_REGS
]);
8755 if (!hard_reg_set_empty_p (left
))
8756 size
= MIN (size
, UNITS_PER_WORD
);
8757 return (GET_MODE_SIZE (mode
) + size
- 1) / size
;
8760 /* Implement CANNOT_CHANGE_MODE_CLASS. */
8763 mips_cannot_change_mode_class (enum machine_mode from ATTRIBUTE_UNUSED
,
8764 enum machine_mode to ATTRIBUTE_UNUSED
,
8765 enum reg_class
class)
8767 /* There are several problems with changing the modes of values
8768 in floating-point registers:
8770 - When a multi-word value is stored in paired floating-point
8771 registers, the first register always holds the low word.
8772 We therefore can't allow FPRs to change between single-word
8773 and multi-word modes on big-endian targets.
8775 - GCC assumes that each word of a multiword register can be accessed
8776 individually using SUBREGs. This is not true for floating-point
8777 registers if they are bigger than a word.
8779 - Loading a 32-bit value into a 64-bit floating-point register
8780 will not sign-extend the value, despite what LOAD_EXTEND_OP says.
8781 We can't allow FPRs to change from SImode to to a wider mode on
8784 - If the FPU has already interpreted a value in one format, we must
8785 not ask it to treat the value as having a different format.
8787 We therefore disallow all mode changes involving FPRs. */
8788 return reg_classes_intersect_p (FP_REGS
, class);
8791 /* Return true if moves in mode MODE can use the FPU's mov.fmt instruction. */
8794 mips_mode_ok_for_mov_fmt_p (enum machine_mode mode
)
8799 return TARGET_HARD_FLOAT
;
8802 return TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
;
8805 return TARGET_HARD_FLOAT
&& TARGET_PAIRED_SINGLE_FLOAT
;
8812 /* Implement MODES_TIEABLE_P. */
8815 mips_modes_tieable_p (enum machine_mode mode1
, enum machine_mode mode2
)
8817 /* FPRs allow no mode punning, so it's not worth tying modes if we'd
8818 prefer to put one of them in FPRs. */
8819 return (mode1
== mode2
8820 || (!mips_mode_ok_for_mov_fmt_p (mode1
)
8821 && !mips_mode_ok_for_mov_fmt_p (mode2
)));
8824 /* Implement PREFERRED_RELOAD_CLASS. */
8827 mips_preferred_reload_class (rtx x
, enum reg_class
class)
8829 if (mips_dangerous_for_la25_p (x
) && reg_class_subset_p (LEA_REGS
, class))
8832 if (reg_class_subset_p (FP_REGS
, class)
8833 && mips_mode_ok_for_mov_fmt_p (GET_MODE (x
)))
8836 if (reg_class_subset_p (GR_REGS
, class))
8839 if (TARGET_MIPS16
&& reg_class_subset_p (M16_REGS
, class))
8845 /* Implement REGISTER_MOVE_COST. */
8848 mips_register_move_cost (enum machine_mode mode
,
8849 enum reg_class to
, enum reg_class from
)
8853 /* ??? We cannot move general registers into HI and LO because
8854 MIPS16 has no MTHI and MTLO instructions. Make the cost of
8855 moves in the opposite direction just as high, which stops the
8856 register allocators from using HI and LO for pseudos. */
8857 if (reg_class_subset_p (from
, GENERAL_REGS
)
8858 && reg_class_subset_p (to
, GENERAL_REGS
))
8860 if (reg_class_subset_p (from
, M16_REGS
)
8861 || reg_class_subset_p (to
, M16_REGS
))
8867 else if (reg_class_subset_p (from
, GENERAL_REGS
))
8869 if (reg_class_subset_p (to
, GENERAL_REGS
))
8871 if (reg_class_subset_p (to
, FP_REGS
))
8873 if (reg_class_subset_p (to
, ALL_COP_AND_GR_REGS
))
8875 if (reg_class_subset_p (to
, ACC_REGS
))
8878 else if (reg_class_subset_p (to
, GENERAL_REGS
))
8880 if (reg_class_subset_p (from
, FP_REGS
))
8882 if (reg_class_subset_p (from
, ST_REGS
))
8883 /* LUI followed by MOVF. */
8885 if (reg_class_subset_p (from
, ALL_COP_AND_GR_REGS
))
8887 if (reg_class_subset_p (from
, ACC_REGS
))
8890 else if (reg_class_subset_p (from
, FP_REGS
))
8892 if (reg_class_subset_p (to
, FP_REGS
)
8893 && mips_mode_ok_for_mov_fmt_p (mode
))
8895 if (reg_class_subset_p (to
, ST_REGS
))
8896 /* An expensive sequence. */
8903 /* Return the register class required for a secondary register when
8904 copying between one of the registers in CLASS and value X, which
8905 has mode MODE. X is the source of the move if IN_P, otherwise it
8906 is the destination. Return NO_REGS if no secondary register is
8910 mips_secondary_reload_class (enum reg_class
class,
8911 enum machine_mode mode
, rtx x
, bool in_p
)
8915 /* If X is a constant that cannot be loaded into $25, it must be loaded
8916 into some other GPR. No other register class allows a direct move. */
8917 if (mips_dangerous_for_la25_p (x
))
8918 return reg_class_subset_p (class, LEA_REGS
) ? NO_REGS
: LEA_REGS
;
8920 regno
= true_regnum (x
);
8923 /* In MIPS16 mode, every move must involve a member of M16_REGS. */
8924 if (!reg_class_subset_p (class, M16_REGS
) && !M16_REG_P (regno
))
8927 /* We can't really copy to HI or LO at all in MIPS16 mode. */
8928 if (in_p
? reg_classes_intersect_p (class, ACC_REGS
) : ACC_REG_P (regno
))
8934 /* Copying from accumulator registers to anywhere other than a general
8935 register requires a temporary general register. */
8936 if (reg_class_subset_p (class, ACC_REGS
))
8937 return GP_REG_P (regno
) ? NO_REGS
: GR_REGS
;
8938 if (ACC_REG_P (regno
))
8939 return reg_class_subset_p (class, GR_REGS
) ? NO_REGS
: GR_REGS
;
8941 /* We can only copy a value to a condition code register from a
8942 floating-point register, and even then we require a scratch
8943 floating-point register. We can only copy a value out of a
8944 condition-code register into a general register. */
8945 if (reg_class_subset_p (class, ST_REGS
))
8949 return GP_REG_P (regno
) ? NO_REGS
: GR_REGS
;
8951 if (ST_REG_P (regno
))
8955 return reg_class_subset_p (class, GR_REGS
) ? NO_REGS
: GR_REGS
;
8958 if (reg_class_subset_p (class, FP_REGS
))
8961 && (GET_MODE_SIZE (mode
) == 4 || GET_MODE_SIZE (mode
) == 8))
8962 /* In this case we can use lwc1, swc1, ldc1 or sdc1. We'll use
8963 pairs of lwc1s and swc1s if ldc1 and sdc1 are not supported. */
8966 if (GP_REG_P (regno
) || x
== CONST0_RTX (mode
))
8967 /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */
8970 if (CONSTANT_P (x
) && !targetm
.cannot_force_const_mem (x
))
8971 /* We can force the constant to memory and use lwc1
8972 and ldc1. As above, we will use pairs of lwc1s if
8973 ldc1 is not supported. */
8976 if (FP_REG_P (regno
) && mips_mode_ok_for_mov_fmt_p (mode
))
8977 /* In this case we can use mov.fmt. */
8980 /* Otherwise, we need to reload through an integer register. */
8983 if (FP_REG_P (regno
))
8984 return reg_class_subset_p (class, GR_REGS
) ? NO_REGS
: GR_REGS
;
8989 /* Implement TARGET_MODE_REP_EXTENDED. */
8992 mips_mode_rep_extended (enum machine_mode mode
, enum machine_mode mode_rep
)
8994 /* On 64-bit targets, SImode register values are sign-extended to DImode. */
8995 if (TARGET_64BIT
&& mode
== SImode
&& mode_rep
== DImode
)
9001 /* Implement TARGET_VALID_POINTER_MODE. */
9004 mips_valid_pointer_mode (enum machine_mode mode
)
9006 return mode
== SImode
|| (TARGET_64BIT
&& mode
== DImode
);
9009 /* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */
9012 mips_vector_mode_supported_p (enum machine_mode mode
)
9017 return TARGET_PAIRED_SINGLE_FLOAT
;
9034 /* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
9037 mips_scalar_mode_supported_p (enum machine_mode mode
)
9039 if (ALL_FIXED_POINT_MODE_P (mode
)
9040 && GET_MODE_PRECISION (mode
) <= 2 * BITS_PER_WORD
)
9043 return default_scalar_mode_supported_p (mode
);
9046 /* Implement TARGET_INIT_LIBFUNCS. */
9048 #include "config/gofast.h"
9051 mips_init_libfuncs (void)
9053 if (TARGET_FIX_VR4120
)
9055 /* Register the special divsi3 and modsi3 functions needed to work
9056 around VR4120 division errata. */
9057 set_optab_libfunc (sdiv_optab
, SImode
, "__vr4120_divsi3");
9058 set_optab_libfunc (smod_optab
, SImode
, "__vr4120_modsi3");
9061 if (TARGET_MIPS16
&& TARGET_HARD_FLOAT_ABI
)
9063 /* Register the MIPS16 -mhard-float stubs. */
9064 set_optab_libfunc (add_optab
, SFmode
, "__mips16_addsf3");
9065 set_optab_libfunc (sub_optab
, SFmode
, "__mips16_subsf3");
9066 set_optab_libfunc (smul_optab
, SFmode
, "__mips16_mulsf3");
9067 set_optab_libfunc (sdiv_optab
, SFmode
, "__mips16_divsf3");
9069 set_optab_libfunc (eq_optab
, SFmode
, "__mips16_eqsf2");
9070 set_optab_libfunc (ne_optab
, SFmode
, "__mips16_nesf2");
9071 set_optab_libfunc (gt_optab
, SFmode
, "__mips16_gtsf2");
9072 set_optab_libfunc (ge_optab
, SFmode
, "__mips16_gesf2");
9073 set_optab_libfunc (lt_optab
, SFmode
, "__mips16_ltsf2");
9074 set_optab_libfunc (le_optab
, SFmode
, "__mips16_lesf2");
9075 set_optab_libfunc (unord_optab
, SFmode
, "__mips16_unordsf2");
9077 set_conv_libfunc (sfix_optab
, SImode
, SFmode
, "__mips16_fix_truncsfsi");
9078 set_conv_libfunc (sfloat_optab
, SFmode
, SImode
, "__mips16_floatsisf");
9079 set_conv_libfunc (ufloat_optab
, SFmode
, SImode
, "__mips16_floatunsisf");
9081 if (TARGET_DOUBLE_FLOAT
)
9083 set_optab_libfunc (add_optab
, DFmode
, "__mips16_adddf3");
9084 set_optab_libfunc (sub_optab
, DFmode
, "__mips16_subdf3");
9085 set_optab_libfunc (smul_optab
, DFmode
, "__mips16_muldf3");
9086 set_optab_libfunc (sdiv_optab
, DFmode
, "__mips16_divdf3");
9088 set_optab_libfunc (eq_optab
, DFmode
, "__mips16_eqdf2");
9089 set_optab_libfunc (ne_optab
, DFmode
, "__mips16_nedf2");
9090 set_optab_libfunc (gt_optab
, DFmode
, "__mips16_gtdf2");
9091 set_optab_libfunc (ge_optab
, DFmode
, "__mips16_gedf2");
9092 set_optab_libfunc (lt_optab
, DFmode
, "__mips16_ltdf2");
9093 set_optab_libfunc (le_optab
, DFmode
, "__mips16_ledf2");
9094 set_optab_libfunc (unord_optab
, DFmode
, "__mips16_unorddf2");
9096 set_conv_libfunc (sext_optab
, DFmode
, SFmode
,
9097 "__mips16_extendsfdf2");
9098 set_conv_libfunc (trunc_optab
, SFmode
, DFmode
,
9099 "__mips16_truncdfsf2");
9100 set_conv_libfunc (sfix_optab
, SImode
, DFmode
,
9101 "__mips16_fix_truncdfsi");
9102 set_conv_libfunc (sfloat_optab
, DFmode
, SImode
,
9103 "__mips16_floatsidf");
9104 set_conv_libfunc (ufloat_optab
, DFmode
, SImode
,
9105 "__mips16_floatunsidf");
9109 /* Register the gofast functions if selected using --enable-gofast. */
9110 gofast_maybe_init_libfuncs ();
9113 /* Return the length of INSN. LENGTH is the initial length computed by
9114 attributes in the machine-description file. */
9117 mips_adjust_insn_length (rtx insn
, int length
)
9119 /* A unconditional jump has an unfilled delay slot if it is not part
9120 of a sequence. A conditional jump normally has a delay slot, but
9121 does not on MIPS16. */
9122 if (CALL_P (insn
) || (TARGET_MIPS16
? simplejump_p (insn
) : JUMP_P (insn
)))
9125 /* See how many nops might be needed to avoid hardware hazards. */
9126 if (!cfun
->machine
->ignore_hazard_length_p
&& INSN_CODE (insn
) >= 0)
9127 switch (get_attr_hazard (insn
))
9141 /* In order to make it easier to share MIPS16 and non-MIPS16 patterns,
9142 the .md file length attributes are 4-based for both modes.
9143 Adjust the MIPS16 ones here. */
9150 /* Return an asm sequence to start a noat block and load the address
9151 of a label into $1. */
9154 mips_output_load_label (void)
9156 if (TARGET_EXPLICIT_RELOCS
)
9160 return "%[lw\t%@,%%got_page(%0)(%+)\n\taddiu\t%@,%@,%%got_ofst(%0)";
9163 return "%[ld\t%@,%%got_page(%0)(%+)\n\tdaddiu\t%@,%@,%%got_ofst(%0)";
9166 if (ISA_HAS_LOAD_DELAY
)
9167 return "%[lw\t%@,%%got(%0)(%+)%#\n\taddiu\t%@,%@,%%lo(%0)";
9168 return "%[lw\t%@,%%got(%0)(%+)\n\taddiu\t%@,%@,%%lo(%0)";
9172 if (Pmode
== DImode
)
9173 return "%[dla\t%@,%0";
9175 return "%[la\t%@,%0";
9179 /* Return the assembly code for INSN, which has the operands given by
9180 OPERANDS, and which branches to OPERANDS[1] if some condition is true.
9181 BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[1]
9182 is in range of a direct branch. BRANCH_IF_FALSE is an inverted
9183 version of BRANCH_IF_TRUE. */
9186 mips_output_conditional_branch (rtx insn
, rtx
*operands
,
9187 const char *branch_if_true
,
9188 const char *branch_if_false
)
9190 unsigned int length
;
9191 rtx taken
, not_taken
;
9193 length
= get_attr_length (insn
);
9196 /* Just a simple conditional branch. */
9197 mips_branch_likely
= (final_sequence
&& INSN_ANNULLED_BRANCH_P (insn
));
9198 return branch_if_true
;
9201 /* Generate a reversed branch around a direct jump. This fallback does
9202 not use branch-likely instructions. */
9203 mips_branch_likely
= false;
9204 not_taken
= gen_label_rtx ();
9205 taken
= operands
[1];
9207 /* Generate the reversed branch to NOT_TAKEN. */
9208 operands
[1] = not_taken
;
9209 output_asm_insn (branch_if_false
, operands
);
9211 /* If INSN has a delay slot, we must provide delay slots for both the
9212 branch to NOT_TAKEN and the conditional jump. We must also ensure
9213 that INSN's delay slot is executed in the appropriate cases. */
9216 /* This first delay slot will always be executed, so use INSN's
9217 delay slot if is not annulled. */
9218 if (!INSN_ANNULLED_BRANCH_P (insn
))
9220 final_scan_insn (XVECEXP (final_sequence
, 0, 1),
9221 asm_out_file
, optimize
, 1, NULL
);
9222 INSN_DELETED_P (XVECEXP (final_sequence
, 0, 1)) = 1;
9225 output_asm_insn ("nop", 0);
9226 fprintf (asm_out_file
, "\n");
9229 /* Output the unconditional branch to TAKEN. */
9231 output_asm_insn ("j\t%0%/", &taken
);
9234 output_asm_insn (mips_output_load_label (), &taken
);
9235 output_asm_insn ("jr\t%@%]%/", 0);
9238 /* Now deal with its delay slot; see above. */
9241 /* This delay slot will only be executed if the branch is taken.
9242 Use INSN's delay slot if is annulled. */
9243 if (INSN_ANNULLED_BRANCH_P (insn
))
9245 final_scan_insn (XVECEXP (final_sequence
, 0, 1),
9246 asm_out_file
, optimize
, 1, NULL
);
9247 INSN_DELETED_P (XVECEXP (final_sequence
, 0, 1)) = 1;
9250 output_asm_insn ("nop", 0);
9251 fprintf (asm_out_file
, "\n");
9254 /* Output NOT_TAKEN. */
9255 targetm
.asm_out
.internal_label (asm_out_file
, "L",
9256 CODE_LABEL_NUMBER (not_taken
));
9260 /* Return the assembly code for INSN, which branches to OPERANDS[1]
9261 if some ordering condition is true. The condition is given by
9262 OPERANDS[0] if !INVERTED_P, otherwise it is the inverse of
9263 OPERANDS[0]. OPERANDS[2] is the comparison's first operand;
9264 its second is always zero. */
9267 mips_output_order_conditional_branch (rtx insn
, rtx
*operands
, bool inverted_p
)
9269 const char *branch
[2];
9271 /* Make BRANCH[1] branch to OPERANDS[1] when the condition is true.
9272 Make BRANCH[0] branch on the inverse condition. */
9273 switch (GET_CODE (operands
[0]))
9275 /* These cases are equivalent to comparisons against zero. */
9277 inverted_p
= !inverted_p
;
9280 branch
[!inverted_p
] = MIPS_BRANCH ("bne", "%2,%.,%1");
9281 branch
[inverted_p
] = MIPS_BRANCH ("beq", "%2,%.,%1");
9284 /* These cases are always true or always false. */
9286 inverted_p
= !inverted_p
;
9289 branch
[!inverted_p
] = MIPS_BRANCH ("beq", "%.,%.,%1");
9290 branch
[inverted_p
] = MIPS_BRANCH ("bne", "%.,%.,%1");
9294 branch
[!inverted_p
] = MIPS_BRANCH ("b%C0z", "%2,%1");
9295 branch
[inverted_p
] = MIPS_BRANCH ("b%N0z", "%2,%1");
9298 return mips_output_conditional_branch (insn
, operands
, branch
[1], branch
[0]);
9301 /* Return the assembly code for DIV or DDIV instruction DIVISION, which has
9302 the operands given by OPERANDS. Add in a divide-by-zero check if needed.
9304 When working around R4000 and R4400 errata, we need to make sure that
9305 the division is not immediately followed by a shift[1][2]. We also
9306 need to stop the division from being put into a branch delay slot[3].
9307 The easiest way to avoid both problems is to add a nop after the
9308 division. When a divide-by-zero check is needed, this nop can be
9309 used to fill the branch delay slot.
9311 [1] If a double-word or a variable shift executes immediately
9312 after starting an integer division, the shift may give an
9313 incorrect result. See quotations of errata #16 and #28 from
9314 "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
9315 in mips.md for details.
9317 [2] A similar bug to [1] exists for all revisions of the
9318 R4000 and the R4400 when run in an MC configuration.
9319 From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
9321 "19. In this following sequence:
9323 ddiv (or ddivu or div or divu)
9324 dsll32 (or dsrl32, dsra32)
9326 if an MPT stall occurs, while the divide is slipping the cpu
9327 pipeline, then the following double shift would end up with an
9330 Workaround: The compiler needs to avoid generating any
9331 sequence with divide followed by extended double shift."
9333 This erratum is also present in "MIPS R4400MC Errata, Processor
9334 Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
9335 & 3.0" as errata #10 and #4, respectively.
9337 [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
9338 (also valid for MIPS R4000MC processors):
9340 "52. R4000SC: This bug does not apply for the R4000PC.
9342 There are two flavors of this bug:
9344 1) If the instruction just after divide takes an RF exception
9345 (tlb-refill, tlb-invalid) and gets an instruction cache
9346 miss (both primary and secondary) and the line which is
9347 currently in secondary cache at this index had the first
9348 data word, where the bits 5..2 are set, then R4000 would
9349 get a wrong result for the div.
9354 ------------------- # end-of page. -tlb-refill
9359 ------------------- # end-of page. -tlb-invalid
9362 2) If the divide is in the taken branch delay slot, where the
9363 target takes RF exception and gets an I-cache miss for the
9364 exception vector or where I-cache miss occurs for the
9365 target address, under the above mentioned scenarios, the
9366 div would get wrong results.
9369 j r2 # to next page mapped or unmapped
9370 div r8,r9 # this bug would be there as long
9371 # as there is an ICache miss and
9372 nop # the "data pattern" is present
9375 beq r0, r0, NextPage # to Next page
9379 This bug is present for div, divu, ddiv, and ddivu
9382 Workaround: For item 1), OS could make sure that the next page
9383 after the divide instruction is also mapped. For item 2), the
9384 compiler could make sure that the divide instruction is not in
9385 the branch delay slot."
9387 These processors have PRId values of 0x00004220 and 0x00004300 for
9388 the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400. */
9391 mips_output_division (const char *division
, rtx
*operands
)
9396 if (TARGET_FIX_R4000
|| TARGET_FIX_R4400
)
9398 output_asm_insn (s
, operands
);
9401 if (TARGET_CHECK_ZERO_DIV
)
9405 output_asm_insn (s
, operands
);
9406 s
= "bnez\t%2,1f\n\tbreak\t7\n1:";
9408 else if (GENERATE_DIVIDE_TRAPS
)
9410 output_asm_insn (s
, operands
);
9415 output_asm_insn ("%(bne\t%2,%.,1f", operands
);
9416 output_asm_insn (s
, operands
);
9417 s
= "break\t7%)\n1:";
9423 /* Return true if IN_INSN is a multiply-add or multiply-subtract
9424 instruction and if OUT_INSN assigns to the accumulator operand. */
9427 mips_linked_madd_p (rtx out_insn
, rtx in_insn
)
9431 x
= single_set (in_insn
);
9437 if (GET_CODE (x
) == PLUS
9438 && GET_CODE (XEXP (x
, 0)) == MULT
9439 && reg_set_p (XEXP (x
, 1), out_insn
))
9442 if (GET_CODE (x
) == MINUS
9443 && GET_CODE (XEXP (x
, 1)) == MULT
9444 && reg_set_p (XEXP (x
, 0), out_insn
))
9450 /* True if the dependency between OUT_INSN and IN_INSN is on the store
9451 data rather than the address. We need this because the cprestore
9452 pattern is type "store", but is defined using an UNSPEC_VOLATILE,
9453 which causes the default routine to abort. We just return false
9457 mips_store_data_bypass_p (rtx out_insn
, rtx in_insn
)
9459 if (GET_CODE (PATTERN (in_insn
)) == UNSPEC_VOLATILE
)
9462 return !store_data_bypass_p (out_insn
, in_insn
);
9465 /* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output
9466 dependencies have no cost, except on the 20Kc where output-dependence
9467 is treated like input-dependence. */
9470 mips_adjust_cost (rtx insn ATTRIBUTE_UNUSED
, rtx link
,
9471 rtx dep ATTRIBUTE_UNUSED
, int cost
)
9473 if (REG_NOTE_KIND (link
) == REG_DEP_OUTPUT
9476 if (REG_NOTE_KIND (link
) != 0)
9481 /* Return the number of instructions that can be issued per cycle. */
9484 mips_issue_rate (void)
9488 case PROCESSOR_74KC
:
9489 case PROCESSOR_74KF2_1
:
9490 case PROCESSOR_74KF1_1
:
9491 case PROCESSOR_74KF3_2
:
9492 /* The 74k is not strictly quad-issue cpu, but can be seen as one
9493 by the scheduler. It can issue 1 ALU, 1 AGEN and 2 FPU insns,
9494 but in reality only a maximum of 3 insns can be issued as
9495 floating-point loads and stores also require a slot in the
9499 case PROCESSOR_20KC
:
9500 case PROCESSOR_R4130
:
9501 case PROCESSOR_R5400
:
9502 case PROCESSOR_R5500
:
9503 case PROCESSOR_R7000
:
9504 case PROCESSOR_R9000
:
9508 case PROCESSOR_SB1A
:
9509 /* This is actually 4, but we get better performance if we claim 3.
9510 This is partly because of unwanted speculative code motion with the
9511 larger number, and partly because in most common cases we can't
9512 reach the theoretical max of 4. */
9520 /* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD. This should
9521 be as wide as the scheduling freedom in the DFA. */
9524 mips_multipass_dfa_lookahead (void)
9526 /* Can schedule up to 4 of the 6 function units in any one cycle. */
9533 /* Remove the instruction at index LOWER from ready queue READY and
9534 reinsert it in front of the instruction at index HIGHER. LOWER must
9538 mips_promote_ready (rtx
*ready
, int lower
, int higher
)
9543 new_head
= ready
[lower
];
9544 for (i
= lower
; i
< higher
; i
++)
9545 ready
[i
] = ready
[i
+ 1];
9546 ready
[i
] = new_head
;
9549 /* If the priority of the instruction at POS2 in the ready queue READY
9550 is within LIMIT units of that of the instruction at POS1, swap the
9551 instructions if POS2 is not already less than POS1. */
9554 mips_maybe_swap_ready (rtx
*ready
, int pos1
, int pos2
, int limit
)
9557 && INSN_PRIORITY (ready
[pos1
]) + limit
>= INSN_PRIORITY (ready
[pos2
]))
9562 ready
[pos1
] = ready
[pos2
];
9567 /* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
9568 that may clobber hi or lo. */
9569 static rtx mips_macc_chains_last_hilo
;
9571 /* A TUNE_MACC_CHAINS helper function. Record that instruction INSN has
9572 been scheduled, updating mips_macc_chains_last_hilo appropriately. */
9575 mips_macc_chains_record (rtx insn
)
9577 if (get_attr_may_clobber_hilo (insn
))
9578 mips_macc_chains_last_hilo
= insn
;
9581 /* A TUNE_MACC_CHAINS helper function. Search ready queue READY, which
9582 has NREADY elements, looking for a multiply-add or multiply-subtract
9583 instruction that is cumulative with mips_macc_chains_last_hilo.
9584 If there is one, promote it ahead of anything else that might
9585 clobber hi or lo. */
9588 mips_macc_chains_reorder (rtx
*ready
, int nready
)
9592 if (mips_macc_chains_last_hilo
!= 0)
9593 for (i
= nready
- 1; i
>= 0; i
--)
9594 if (mips_linked_madd_p (mips_macc_chains_last_hilo
, ready
[i
]))
9596 for (j
= nready
- 1; j
> i
; j
--)
9597 if (recog_memoized (ready
[j
]) >= 0
9598 && get_attr_may_clobber_hilo (ready
[j
]))
9600 mips_promote_ready (ready
, i
, j
);
9607 /* The last instruction to be scheduled. */
9608 static rtx vr4130_last_insn
;
9610 /* A note_stores callback used by vr4130_true_reg_dependence_p. DATA
9611 points to an rtx that is initially an instruction. Nullify the rtx
9612 if the instruction uses the value of register X. */
9615 vr4130_true_reg_dependence_p_1 (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
,
9620 insn_ptr
= (rtx
*) data
;
9623 && reg_referenced_p (x
, PATTERN (*insn_ptr
)))
9627 /* Return true if there is true register dependence between vr4130_last_insn
9631 vr4130_true_reg_dependence_p (rtx insn
)
9633 note_stores (PATTERN (vr4130_last_insn
),
9634 vr4130_true_reg_dependence_p_1
, &insn
);
9638 /* A TUNE_MIPS4130 helper function. Given that INSN1 is at the head of
9639 the ready queue and that INSN2 is the instruction after it, return
9640 true if it is worth promoting INSN2 ahead of INSN1. Look for cases
9641 in which INSN1 and INSN2 can probably issue in parallel, but for
9642 which (INSN2, INSN1) should be less sensitive to instruction
9643 alignment than (INSN1, INSN2). See 4130.md for more details. */
9646 vr4130_swap_insns_p (rtx insn1
, rtx insn2
)
9648 sd_iterator_def sd_it
;
9651 /* Check for the following case:
9653 1) there is some other instruction X with an anti dependence on INSN1;
9654 2) X has a higher priority than INSN2; and
9655 3) X is an arithmetic instruction (and thus has no unit restrictions).
9657 If INSN1 is the last instruction blocking X, it would better to
9658 choose (INSN1, X) over (INSN2, INSN1). */
9659 FOR_EACH_DEP (insn1
, SD_LIST_FORW
, sd_it
, dep
)
9660 if (DEP_TYPE (dep
) == REG_DEP_ANTI
9661 && INSN_PRIORITY (DEP_CON (dep
)) > INSN_PRIORITY (insn2
)
9662 && recog_memoized (DEP_CON (dep
)) >= 0
9663 && get_attr_vr4130_class (DEP_CON (dep
)) == VR4130_CLASS_ALU
)
9666 if (vr4130_last_insn
!= 0
9667 && recog_memoized (insn1
) >= 0
9668 && recog_memoized (insn2
) >= 0)
9670 /* See whether INSN1 and INSN2 use different execution units,
9671 or if they are both ALU-type instructions. If so, they can
9672 probably execute in parallel. */
9673 enum attr_vr4130_class class1
= get_attr_vr4130_class (insn1
);
9674 enum attr_vr4130_class class2
= get_attr_vr4130_class (insn2
);
9675 if (class1
!= class2
|| class1
== VR4130_CLASS_ALU
)
9677 /* If only one of the instructions has a dependence on
9678 vr4130_last_insn, prefer to schedule the other one first. */
9679 bool dep1_p
= vr4130_true_reg_dependence_p (insn1
);
9680 bool dep2_p
= vr4130_true_reg_dependence_p (insn2
);
9681 if (dep1_p
!= dep2_p
)
9684 /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
9685 is not an ALU-type instruction and if INSN1 uses the same
9686 execution unit. (Note that if this condition holds, we already
9687 know that INSN2 uses a different execution unit.) */
9688 if (class1
!= VR4130_CLASS_ALU
9689 && recog_memoized (vr4130_last_insn
) >= 0
9690 && class1
== get_attr_vr4130_class (vr4130_last_insn
))
9697 /* A TUNE_MIPS4130 helper function. (READY, NREADY) describes a ready
9698 queue with at least two instructions. Swap the first two if
9699 vr4130_swap_insns_p says that it could be worthwhile. */
9702 vr4130_reorder (rtx
*ready
, int nready
)
9704 if (vr4130_swap_insns_p (ready
[nready
- 1], ready
[nready
- 2]))
9705 mips_promote_ready (ready
, nready
- 2, nready
- 1);
9708 /* Record whether last 74k AGEN instruction was a load or store. */
9709 static enum attr_type mips_last_74k_agen_insn
= TYPE_UNKNOWN
;
9711 /* Initialize mips_last_74k_agen_insn from INSN. A null argument
9712 resets to TYPE_UNKNOWN state. */
9715 mips_74k_agen_init (rtx insn
)
9717 if (!insn
|| !NONJUMP_INSN_P (insn
))
9718 mips_last_74k_agen_insn
= TYPE_UNKNOWN
;
9721 enum attr_type type
= get_attr_type (insn
);
9722 if (type
== TYPE_LOAD
|| type
== TYPE_STORE
)
9723 mips_last_74k_agen_insn
= type
;
9727 /* A TUNE_74K helper function. The 74K AGEN pipeline likes multiple
9728 loads to be grouped together, and multiple stores to be grouped
9729 together. Swap things around in the ready queue to make this happen. */
9732 mips_74k_agen_reorder (rtx
*ready
, int nready
)
9735 int store_pos
, load_pos
;
9740 for (i
= nready
- 1; i
>= 0; i
--)
9742 rtx insn
= ready
[i
];
9743 if (USEFUL_INSN_P (insn
))
9744 switch (get_attr_type (insn
))
9747 if (store_pos
== -1)
9761 if (load_pos
== -1 || store_pos
== -1)
9764 switch (mips_last_74k_agen_insn
)
9767 /* Prefer to schedule loads since they have a higher latency. */
9769 /* Swap loads to the front of the queue. */
9770 mips_maybe_swap_ready (ready
, load_pos
, store_pos
, 4);
9773 /* Swap stores to the front of the queue. */
9774 mips_maybe_swap_ready (ready
, store_pos
, load_pos
, 4);
9781 /* Implement TARGET_SCHED_INIT. */
9784 mips_sched_init (FILE *file ATTRIBUTE_UNUSED
, int verbose ATTRIBUTE_UNUSED
,
9785 int max_ready ATTRIBUTE_UNUSED
)
9787 mips_macc_chains_last_hilo
= 0;
9788 vr4130_last_insn
= 0;
9789 mips_74k_agen_init (NULL_RTX
);
9792 /* Implement TARGET_SCHED_REORDER and TARGET_SCHED_REORDER2. */
9795 mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED
, int verbose ATTRIBUTE_UNUSED
,
9796 rtx
*ready
, int *nreadyp
, int cycle ATTRIBUTE_UNUSED
)
9798 if (!reload_completed
9801 mips_macc_chains_reorder (ready
, *nreadyp
);
9803 if (reload_completed
9805 && !TARGET_VR4130_ALIGN
9807 vr4130_reorder (ready
, *nreadyp
);
9810 mips_74k_agen_reorder (ready
, *nreadyp
);
9812 return mips_issue_rate ();
9815 /* Implement TARGET_SCHED_VARIABLE_ISSUE. */
9818 mips_variable_issue (FILE *file ATTRIBUTE_UNUSED
, int verbose ATTRIBUTE_UNUSED
,
9821 /* Ignore USEs and CLOBBERs; don't count them against the issue rate. */
9822 if (USEFUL_INSN_P (insn
))
9825 if (!reload_completed
&& TUNE_MACC_CHAINS
)
9826 mips_macc_chains_record (insn
);
9827 vr4130_last_insn
= insn
;
9829 mips_74k_agen_init (insn
);
9834 /* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
9835 return the first operand of the associated PREF or PREFX insn. */
9838 mips_prefetch_cookie (rtx write
, rtx locality
)
9840 /* store_streamed / load_streamed. */
9841 if (INTVAL (locality
) <= 0)
9842 return GEN_INT (INTVAL (write
) + 4);
9845 if (INTVAL (locality
) <= 2)
9848 /* store_retained / load_retained. */
9849 return GEN_INT (INTVAL (write
) + 6);
9852 /* This structure describes a single built-in function. */
9853 struct mips_builtin_description
{
9854 /* The code of the main .md file instruction. See mips_builtin_type
9855 for more information. */
9856 enum insn_code icode
;
9858 /* The floating-point comparison code to use with ICODE, if any. */
9859 enum mips_fp_condition cond
;
9861 /* The name of the built-in function. */
9864 /* Specifies how the function should be expanded. */
9865 enum mips_builtin_type builtin_type
;
9867 /* The function's prototype. */
9868 enum mips_function_type function_type
;
9870 /* The target flags required for this function. */
9874 /* Define a MIPS_BUILTIN_DIRECT function for instruction CODE_FOR_mips_<INSN>.
9875 FUNCTION_TYPE and TARGET_FLAGS are mips_builtin_description fields. */
9876 #define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS) \
9877 { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN, \
9878 MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, TARGET_FLAGS }
9880 /* Define __builtin_mips_<INSN>_<COND>_{s,d} functions, both of which
9881 require TARGET_FLAGS. */
9882 #define CMP_SCALAR_BUILTINS(INSN, COND, TARGET_FLAGS) \
9883 { CODE_FOR_mips_ ## INSN ## _cond_s, MIPS_FP_COND_ ## COND, \
9884 "__builtin_mips_" #INSN "_" #COND "_s", \
9885 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, TARGET_FLAGS }, \
9886 { CODE_FOR_mips_ ## INSN ## _cond_d, MIPS_FP_COND_ ## COND, \
9887 "__builtin_mips_" #INSN "_" #COND "_d", \
9888 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, TARGET_FLAGS }
9890 /* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
9891 The lower and upper forms require TARGET_FLAGS while the any and all
9892 forms require MASK_MIPS3D. */
9893 #define CMP_PS_BUILTINS(INSN, COND, TARGET_FLAGS) \
9894 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9895 "__builtin_mips_any_" #INSN "_" #COND "_ps", \
9896 MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D }, \
9897 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9898 "__builtin_mips_all_" #INSN "_" #COND "_ps", \
9899 MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D }, \
9900 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9901 "__builtin_mips_lower_" #INSN "_" #COND "_ps", \
9902 MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }, \
9903 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9904 "__builtin_mips_upper_" #INSN "_" #COND "_ps", \
9905 MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }
9907 /* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s. The functions
9908 require MASK_MIPS3D. */
9909 #define CMP_4S_BUILTINS(INSN, COND) \
9910 { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND, \
9911 "__builtin_mips_any_" #INSN "_" #COND "_4s", \
9912 MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, \
9914 { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND, \
9915 "__builtin_mips_all_" #INSN "_" #COND "_4s", \
9916 MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, \
9919 /* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps. The comparison
9920 instruction requires TARGET_FLAGS. */
9921 #define MOVTF_BUILTINS(INSN, COND, TARGET_FLAGS) \
9922 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9923 "__builtin_mips_movt_" #INSN "_" #COND "_ps", \
9924 MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
9926 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
9927 "__builtin_mips_movf_" #INSN "_" #COND "_ps", \
9928 MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
9931 /* Define all the built-in functions related to C.cond.fmt condition COND. */
9932 #define CMP_BUILTINS(COND) \
9933 MOVTF_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT), \
9934 MOVTF_BUILTINS (cabs, COND, MASK_MIPS3D), \
9935 CMP_SCALAR_BUILTINS (cabs, COND, MASK_MIPS3D), \
9936 CMP_PS_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT), \
9937 CMP_PS_BUILTINS (cabs, COND, MASK_MIPS3D), \
9938 CMP_4S_BUILTINS (c, COND), \
9939 CMP_4S_BUILTINS (cabs, COND)
9941 static const struct mips_builtin_description mips_ps_bdesc
[] = {
9942 DIRECT_BUILTIN (pll_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, MASK_PAIRED_SINGLE_FLOAT
),
9943 DIRECT_BUILTIN (pul_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, MASK_PAIRED_SINGLE_FLOAT
),
9944 DIRECT_BUILTIN (plu_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, MASK_PAIRED_SINGLE_FLOAT
),
9945 DIRECT_BUILTIN (puu_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, MASK_PAIRED_SINGLE_FLOAT
),
9946 DIRECT_BUILTIN (cvt_ps_s
, MIPS_V2SF_FTYPE_SF_SF
, MASK_PAIRED_SINGLE_FLOAT
),
9947 DIRECT_BUILTIN (cvt_s_pl
, MIPS_SF_FTYPE_V2SF
, MASK_PAIRED_SINGLE_FLOAT
),
9948 DIRECT_BUILTIN (cvt_s_pu
, MIPS_SF_FTYPE_V2SF
, MASK_PAIRED_SINGLE_FLOAT
),
9949 DIRECT_BUILTIN (abs_ps
, MIPS_V2SF_FTYPE_V2SF
, MASK_PAIRED_SINGLE_FLOAT
),
9951 DIRECT_BUILTIN (alnv_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF_INT
,
9952 MASK_PAIRED_SINGLE_FLOAT
),
9953 DIRECT_BUILTIN (addr_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, MASK_MIPS3D
),
9954 DIRECT_BUILTIN (mulr_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, MASK_MIPS3D
),
9955 DIRECT_BUILTIN (cvt_pw_ps
, MIPS_V2SF_FTYPE_V2SF
, MASK_MIPS3D
),
9956 DIRECT_BUILTIN (cvt_ps_pw
, MIPS_V2SF_FTYPE_V2SF
, MASK_MIPS3D
),
9958 DIRECT_BUILTIN (recip1_s
, MIPS_SF_FTYPE_SF
, MASK_MIPS3D
),
9959 DIRECT_BUILTIN (recip1_d
, MIPS_DF_FTYPE_DF
, MASK_MIPS3D
),
9960 DIRECT_BUILTIN (recip1_ps
, MIPS_V2SF_FTYPE_V2SF
, MASK_MIPS3D
),
9961 DIRECT_BUILTIN (recip2_s
, MIPS_SF_FTYPE_SF_SF
, MASK_MIPS3D
),
9962 DIRECT_BUILTIN (recip2_d
, MIPS_DF_FTYPE_DF_DF
, MASK_MIPS3D
),
9963 DIRECT_BUILTIN (recip2_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, MASK_MIPS3D
),
9965 DIRECT_BUILTIN (rsqrt1_s
, MIPS_SF_FTYPE_SF
, MASK_MIPS3D
),
9966 DIRECT_BUILTIN (rsqrt1_d
, MIPS_DF_FTYPE_DF
, MASK_MIPS3D
),
9967 DIRECT_BUILTIN (rsqrt1_ps
, MIPS_V2SF_FTYPE_V2SF
, MASK_MIPS3D
),
9968 DIRECT_BUILTIN (rsqrt2_s
, MIPS_SF_FTYPE_SF_SF
, MASK_MIPS3D
),
9969 DIRECT_BUILTIN (rsqrt2_d
, MIPS_DF_FTYPE_DF_DF
, MASK_MIPS3D
),
9970 DIRECT_BUILTIN (rsqrt2_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, MASK_MIPS3D
),
9972 MIPS_FP_CONDITIONS (CMP_BUILTINS
)
9975 /* Built-in functions for the SB-1 processor. */
9977 #define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
9979 static const struct mips_builtin_description mips_sb1_bdesc
[] = {
9980 DIRECT_BUILTIN (sqrt_ps
, MIPS_V2SF_FTYPE_V2SF
, MASK_PAIRED_SINGLE_FLOAT
)
9983 /* Built-in functions for the DSP ASE. */
9985 #define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
9986 #define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
9987 #define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
9988 #define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
9989 #define CODE_FOR_mips_mul_ph CODE_FOR_mulv2hi3
9991 /* Define a MIPS_BUILTIN_DIRECT_NO_TARGET function for instruction
9992 CODE_FOR_mips_<INSN>. FUNCTION_TYPE and TARGET_FLAGS are
9993 mips_builtin_description fields. */
9994 #define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS) \
9995 { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN, \
9996 MIPS_BUILTIN_DIRECT_NO_TARGET, FUNCTION_TYPE, TARGET_FLAGS }
9998 /* Define __builtin_mips_bposge<VALUE>. <VALUE> is 32 for the MIPS32 DSP
9999 branch instruction. TARGET_FLAGS is a mips_builtin_description field. */
10000 #define BPOSGE_BUILTIN(VALUE, TARGET_FLAGS) \
10001 { CODE_FOR_mips_bposge, 0, "__builtin_mips_bposge" #VALUE, \
10002 MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, TARGET_FLAGS }
10004 static const struct mips_builtin_description mips_dsp_bdesc
[] = {
10005 DIRECT_BUILTIN (addq_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10006 DIRECT_BUILTIN (addq_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10007 DIRECT_BUILTIN (addq_s_w
, MIPS_SI_FTYPE_SI_SI
, MASK_DSP
),
10008 DIRECT_BUILTIN (addu_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, MASK_DSP
),
10009 DIRECT_BUILTIN (addu_s_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, MASK_DSP
),
10010 DIRECT_BUILTIN (subq_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10011 DIRECT_BUILTIN (subq_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10012 DIRECT_BUILTIN (subq_s_w
, MIPS_SI_FTYPE_SI_SI
, MASK_DSP
),
10013 DIRECT_BUILTIN (subu_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, MASK_DSP
),
10014 DIRECT_BUILTIN (subu_s_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, MASK_DSP
),
10015 DIRECT_BUILTIN (addsc
, MIPS_SI_FTYPE_SI_SI
, MASK_DSP
),
10016 DIRECT_BUILTIN (addwc
, MIPS_SI_FTYPE_SI_SI
, MASK_DSP
),
10017 DIRECT_BUILTIN (modsub
, MIPS_SI_FTYPE_SI_SI
, MASK_DSP
),
10018 DIRECT_BUILTIN (raddu_w_qb
, MIPS_SI_FTYPE_V4QI
, MASK_DSP
),
10019 DIRECT_BUILTIN (absq_s_ph
, MIPS_V2HI_FTYPE_V2HI
, MASK_DSP
),
10020 DIRECT_BUILTIN (absq_s_w
, MIPS_SI_FTYPE_SI
, MASK_DSP
),
10021 DIRECT_BUILTIN (precrq_qb_ph
, MIPS_V4QI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10022 DIRECT_BUILTIN (precrq_ph_w
, MIPS_V2HI_FTYPE_SI_SI
, MASK_DSP
),
10023 DIRECT_BUILTIN (precrq_rs_ph_w
, MIPS_V2HI_FTYPE_SI_SI
, MASK_DSP
),
10024 DIRECT_BUILTIN (precrqu_s_qb_ph
, MIPS_V4QI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10025 DIRECT_BUILTIN (preceq_w_phl
, MIPS_SI_FTYPE_V2HI
, MASK_DSP
),
10026 DIRECT_BUILTIN (preceq_w_phr
, MIPS_SI_FTYPE_V2HI
, MASK_DSP
),
10027 DIRECT_BUILTIN (precequ_ph_qbl
, MIPS_V2HI_FTYPE_V4QI
, MASK_DSP
),
10028 DIRECT_BUILTIN (precequ_ph_qbr
, MIPS_V2HI_FTYPE_V4QI
, MASK_DSP
),
10029 DIRECT_BUILTIN (precequ_ph_qbla
, MIPS_V2HI_FTYPE_V4QI
, MASK_DSP
),
10030 DIRECT_BUILTIN (precequ_ph_qbra
, MIPS_V2HI_FTYPE_V4QI
, MASK_DSP
),
10031 DIRECT_BUILTIN (preceu_ph_qbl
, MIPS_V2HI_FTYPE_V4QI
, MASK_DSP
),
10032 DIRECT_BUILTIN (preceu_ph_qbr
, MIPS_V2HI_FTYPE_V4QI
, MASK_DSP
),
10033 DIRECT_BUILTIN (preceu_ph_qbla
, MIPS_V2HI_FTYPE_V4QI
, MASK_DSP
),
10034 DIRECT_BUILTIN (preceu_ph_qbra
, MIPS_V2HI_FTYPE_V4QI
, MASK_DSP
),
10035 DIRECT_BUILTIN (shll_qb
, MIPS_V4QI_FTYPE_V4QI_SI
, MASK_DSP
),
10036 DIRECT_BUILTIN (shll_ph
, MIPS_V2HI_FTYPE_V2HI_SI
, MASK_DSP
),
10037 DIRECT_BUILTIN (shll_s_ph
, MIPS_V2HI_FTYPE_V2HI_SI
, MASK_DSP
),
10038 DIRECT_BUILTIN (shll_s_w
, MIPS_SI_FTYPE_SI_SI
, MASK_DSP
),
10039 DIRECT_BUILTIN (shrl_qb
, MIPS_V4QI_FTYPE_V4QI_SI
, MASK_DSP
),
10040 DIRECT_BUILTIN (shra_ph
, MIPS_V2HI_FTYPE_V2HI_SI
, MASK_DSP
),
10041 DIRECT_BUILTIN (shra_r_ph
, MIPS_V2HI_FTYPE_V2HI_SI
, MASK_DSP
),
10042 DIRECT_BUILTIN (shra_r_w
, MIPS_SI_FTYPE_SI_SI
, MASK_DSP
),
10043 DIRECT_BUILTIN (muleu_s_ph_qbl
, MIPS_V2HI_FTYPE_V4QI_V2HI
, MASK_DSP
),
10044 DIRECT_BUILTIN (muleu_s_ph_qbr
, MIPS_V2HI_FTYPE_V4QI_V2HI
, MASK_DSP
),
10045 DIRECT_BUILTIN (mulq_rs_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10046 DIRECT_BUILTIN (muleq_s_w_phl
, MIPS_SI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10047 DIRECT_BUILTIN (muleq_s_w_phr
, MIPS_SI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10048 DIRECT_BUILTIN (bitrev
, MIPS_SI_FTYPE_SI
, MASK_DSP
),
10049 DIRECT_BUILTIN (insv
, MIPS_SI_FTYPE_SI_SI
, MASK_DSP
),
10050 DIRECT_BUILTIN (repl_qb
, MIPS_V4QI_FTYPE_SI
, MASK_DSP
),
10051 DIRECT_BUILTIN (repl_ph
, MIPS_V2HI_FTYPE_SI
, MASK_DSP
),
10052 DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb
, MIPS_VOID_FTYPE_V4QI_V4QI
, MASK_DSP
),
10053 DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb
, MIPS_VOID_FTYPE_V4QI_V4QI
, MASK_DSP
),
10054 DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb
, MIPS_VOID_FTYPE_V4QI_V4QI
, MASK_DSP
),
10055 DIRECT_BUILTIN (cmpgu_eq_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, MASK_DSP
),
10056 DIRECT_BUILTIN (cmpgu_lt_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, MASK_DSP
),
10057 DIRECT_BUILTIN (cmpgu_le_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, MASK_DSP
),
10058 DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph
, MIPS_VOID_FTYPE_V2HI_V2HI
, MASK_DSP
),
10059 DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph
, MIPS_VOID_FTYPE_V2HI_V2HI
, MASK_DSP
),
10060 DIRECT_NO_TARGET_BUILTIN (cmp_le_ph
, MIPS_VOID_FTYPE_V2HI_V2HI
, MASK_DSP
),
10061 DIRECT_BUILTIN (pick_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, MASK_DSP
),
10062 DIRECT_BUILTIN (pick_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10063 DIRECT_BUILTIN (packrl_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSP
),
10064 DIRECT_NO_TARGET_BUILTIN (wrdsp
, MIPS_VOID_FTYPE_SI_SI
, MASK_DSP
),
10065 DIRECT_BUILTIN (rddsp
, MIPS_SI_FTYPE_SI
, MASK_DSP
),
10066 DIRECT_BUILTIN (lbux
, MIPS_SI_FTYPE_POINTER_SI
, MASK_DSP
),
10067 DIRECT_BUILTIN (lhx
, MIPS_SI_FTYPE_POINTER_SI
, MASK_DSP
),
10068 DIRECT_BUILTIN (lwx
, MIPS_SI_FTYPE_POINTER_SI
, MASK_DSP
),
10069 BPOSGE_BUILTIN (32, MASK_DSP
),
10071 /* The following are for the MIPS DSP ASE REV 2. */
10072 DIRECT_BUILTIN (absq_s_qb
, MIPS_V4QI_FTYPE_V4QI
, MASK_DSPR2
),
10073 DIRECT_BUILTIN (addu_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10074 DIRECT_BUILTIN (addu_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10075 DIRECT_BUILTIN (adduh_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, MASK_DSPR2
),
10076 DIRECT_BUILTIN (adduh_r_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, MASK_DSPR2
),
10077 DIRECT_BUILTIN (append
, MIPS_SI_FTYPE_SI_SI_SI
, MASK_DSPR2
),
10078 DIRECT_BUILTIN (balign
, MIPS_SI_FTYPE_SI_SI_SI
, MASK_DSPR2
),
10079 DIRECT_BUILTIN (cmpgdu_eq_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, MASK_DSPR2
),
10080 DIRECT_BUILTIN (cmpgdu_lt_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, MASK_DSPR2
),
10081 DIRECT_BUILTIN (cmpgdu_le_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, MASK_DSPR2
),
10082 DIRECT_BUILTIN (mul_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10083 DIRECT_BUILTIN (mul_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10084 DIRECT_BUILTIN (mulq_rs_w
, MIPS_SI_FTYPE_SI_SI
, MASK_DSPR2
),
10085 DIRECT_BUILTIN (mulq_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10086 DIRECT_BUILTIN (mulq_s_w
, MIPS_SI_FTYPE_SI_SI
, MASK_DSPR2
),
10087 DIRECT_BUILTIN (precr_qb_ph
, MIPS_V4QI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10088 DIRECT_BUILTIN (precr_sra_ph_w
, MIPS_V2HI_FTYPE_SI_SI_SI
, MASK_DSPR2
),
10089 DIRECT_BUILTIN (precr_sra_r_ph_w
, MIPS_V2HI_FTYPE_SI_SI_SI
, MASK_DSPR2
),
10090 DIRECT_BUILTIN (prepend
, MIPS_SI_FTYPE_SI_SI_SI
, MASK_DSPR2
),
10091 DIRECT_BUILTIN (shra_qb
, MIPS_V4QI_FTYPE_V4QI_SI
, MASK_DSPR2
),
10092 DIRECT_BUILTIN (shra_r_qb
, MIPS_V4QI_FTYPE_V4QI_SI
, MASK_DSPR2
),
10093 DIRECT_BUILTIN (shrl_ph
, MIPS_V2HI_FTYPE_V2HI_SI
, MASK_DSPR2
),
10094 DIRECT_BUILTIN (subu_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10095 DIRECT_BUILTIN (subu_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10096 DIRECT_BUILTIN (subuh_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, MASK_DSPR2
),
10097 DIRECT_BUILTIN (subuh_r_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, MASK_DSPR2
),
10098 DIRECT_BUILTIN (addqh_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10099 DIRECT_BUILTIN (addqh_r_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10100 DIRECT_BUILTIN (addqh_w
, MIPS_SI_FTYPE_SI_SI
, MASK_DSPR2
),
10101 DIRECT_BUILTIN (addqh_r_w
, MIPS_SI_FTYPE_SI_SI
, MASK_DSPR2
),
10102 DIRECT_BUILTIN (subqh_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10103 DIRECT_BUILTIN (subqh_r_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, MASK_DSPR2
),
10104 DIRECT_BUILTIN (subqh_w
, MIPS_SI_FTYPE_SI_SI
, MASK_DSPR2
),
10105 DIRECT_BUILTIN (subqh_r_w
, MIPS_SI_FTYPE_SI_SI
, MASK_DSPR2
)
10108 static const struct mips_builtin_description mips_dsp_32only_bdesc
[] = {
10109 DIRECT_BUILTIN (dpau_h_qbl
, MIPS_DI_FTYPE_DI_V4QI_V4QI
, MASK_DSP
),
10110 DIRECT_BUILTIN (dpau_h_qbr
, MIPS_DI_FTYPE_DI_V4QI_V4QI
, MASK_DSP
),
10111 DIRECT_BUILTIN (dpsu_h_qbl
, MIPS_DI_FTYPE_DI_V4QI_V4QI
, MASK_DSP
),
10112 DIRECT_BUILTIN (dpsu_h_qbr
, MIPS_DI_FTYPE_DI_V4QI_V4QI
, MASK_DSP
),
10113 DIRECT_BUILTIN (dpaq_s_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSP
),
10114 DIRECT_BUILTIN (dpsq_s_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSP
),
10115 DIRECT_BUILTIN (mulsaq_s_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSP
),
10116 DIRECT_BUILTIN (dpaq_sa_l_w
, MIPS_DI_FTYPE_DI_SI_SI
, MASK_DSP
),
10117 DIRECT_BUILTIN (dpsq_sa_l_w
, MIPS_DI_FTYPE_DI_SI_SI
, MASK_DSP
),
10118 DIRECT_BUILTIN (maq_s_w_phl
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSP
),
10119 DIRECT_BUILTIN (maq_s_w_phr
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSP
),
10120 DIRECT_BUILTIN (maq_sa_w_phl
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSP
),
10121 DIRECT_BUILTIN (maq_sa_w_phr
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSP
),
10122 DIRECT_BUILTIN (extr_w
, MIPS_SI_FTYPE_DI_SI
, MASK_DSP
),
10123 DIRECT_BUILTIN (extr_r_w
, MIPS_SI_FTYPE_DI_SI
, MASK_DSP
),
10124 DIRECT_BUILTIN (extr_rs_w
, MIPS_SI_FTYPE_DI_SI
, MASK_DSP
),
10125 DIRECT_BUILTIN (extr_s_h
, MIPS_SI_FTYPE_DI_SI
, MASK_DSP
),
10126 DIRECT_BUILTIN (extp
, MIPS_SI_FTYPE_DI_SI
, MASK_DSP
),
10127 DIRECT_BUILTIN (extpdp
, MIPS_SI_FTYPE_DI_SI
, MASK_DSP
),
10128 DIRECT_BUILTIN (shilo
, MIPS_DI_FTYPE_DI_SI
, MASK_DSP
),
10129 DIRECT_BUILTIN (mthlip
, MIPS_DI_FTYPE_DI_SI
, MASK_DSP
),
10131 /* The following are for the MIPS DSP ASE REV 2. */
10132 DIRECT_BUILTIN (dpa_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSPR2
),
10133 DIRECT_BUILTIN (dps_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSPR2
),
10134 DIRECT_BUILTIN (madd
, MIPS_DI_FTYPE_DI_SI_SI
, MASK_DSPR2
),
10135 DIRECT_BUILTIN (maddu
, MIPS_DI_FTYPE_DI_USI_USI
, MASK_DSPR2
),
10136 DIRECT_BUILTIN (msub
, MIPS_DI_FTYPE_DI_SI_SI
, MASK_DSPR2
),
10137 DIRECT_BUILTIN (msubu
, MIPS_DI_FTYPE_DI_USI_USI
, MASK_DSPR2
),
10138 DIRECT_BUILTIN (mulsa_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSPR2
),
10139 DIRECT_BUILTIN (mult
, MIPS_DI_FTYPE_SI_SI
, MASK_DSPR2
),
10140 DIRECT_BUILTIN (multu
, MIPS_DI_FTYPE_USI_USI
, MASK_DSPR2
),
10141 DIRECT_BUILTIN (dpax_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSPR2
),
10142 DIRECT_BUILTIN (dpsx_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSPR2
),
10143 DIRECT_BUILTIN (dpaqx_s_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSPR2
),
10144 DIRECT_BUILTIN (dpaqx_sa_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSPR2
),
10145 DIRECT_BUILTIN (dpsqx_s_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSPR2
),
10146 DIRECT_BUILTIN (dpsqx_sa_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, MASK_DSPR2
)
10149 /* This structure describes an array of mips_builtin_description entries. */
10150 struct mips_bdesc_map
{
10151 /* The array that this entry describes. */
10152 const struct mips_builtin_description
*bdesc
;
10154 /* The number of entries in BDESC. */
10157 /* The target processor that supports the functions in BDESC.
10158 PROCESSOR_MAX means we enable them for all processors. */
10159 enum processor_type proc
;
10161 /* The functions in BDESC are not supported if any of these
10162 target flags are set. */
10163 int unsupported_target_flags
;
10166 /* All MIPS-specific built-in functions. */
10167 static const struct mips_bdesc_map mips_bdesc_arrays
[] = {
10168 { mips_ps_bdesc
, ARRAY_SIZE (mips_ps_bdesc
), PROCESSOR_MAX
, 0 },
10169 { mips_sb1_bdesc
, ARRAY_SIZE (mips_sb1_bdesc
), PROCESSOR_SB1
, 0 },
10170 { mips_dsp_bdesc
, ARRAY_SIZE (mips_dsp_bdesc
), PROCESSOR_MAX
, 0 },
10171 { mips_dsp_32only_bdesc
, ARRAY_SIZE (mips_dsp_32only_bdesc
),
10172 PROCESSOR_MAX
, MASK_64BIT
}
10175 /* MODE is a vector mode whose elements have type TYPE. Return the type
10176 of the vector itself. */
10179 mips_builtin_vector_type (tree type
, enum machine_mode mode
)
10181 static tree types
[(int) MAX_MACHINE_MODE
];
10183 if (types
[(int) mode
] == NULL_TREE
)
10184 types
[(int) mode
] = build_vector_type_for_mode (type
, mode
);
10185 return types
[(int) mode
];
10188 /* Source-level argument types. */
10189 #define MIPS_ATYPE_VOID void_type_node
10190 #define MIPS_ATYPE_INT integer_type_node
10191 #define MIPS_ATYPE_POINTER ptr_type_node
10193 /* Standard mode-based argument types. */
10194 #define MIPS_ATYPE_SI intSI_type_node
10195 #define MIPS_ATYPE_USI unsigned_intSI_type_node
10196 #define MIPS_ATYPE_DI intDI_type_node
10197 #define MIPS_ATYPE_SF float_type_node
10198 #define MIPS_ATYPE_DF double_type_node
10200 /* Vector argument types. */
10201 #define MIPS_ATYPE_V2SF mips_builtin_vector_type (float_type_node, V2SFmode)
10202 #define MIPS_ATYPE_V2HI mips_builtin_vector_type (intHI_type_node, V2HImode)
10203 #define MIPS_ATYPE_V4QI mips_builtin_vector_type (intQI_type_node, V4QImode)
10205 /* MIPS_FTYPE_ATYPESN takes N MIPS_FTYPES-like type codes and lists
10206 their associated MIPS_ATYPEs. */
10207 #define MIPS_FTYPE_ATYPES1(A, B) \
10208 MIPS_ATYPE_##A, MIPS_ATYPE_##B
10210 #define MIPS_FTYPE_ATYPES2(A, B, C) \
10211 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C
10213 #define MIPS_FTYPE_ATYPES3(A, B, C, D) \
10214 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D
10216 #define MIPS_FTYPE_ATYPES4(A, B, C, D, E) \
10217 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D, \
10220 /* Return the function type associated with function prototype TYPE. */
10223 mips_build_function_type (enum mips_function_type type
)
10225 static tree types
[(int) MIPS_MAX_FTYPE_MAX
];
10227 if (types
[(int) type
] == NULL_TREE
)
10230 #define DEF_MIPS_FTYPE(NUM, ARGS) \
10231 case MIPS_FTYPE_NAME##NUM ARGS: \
10232 types[(int) type] \
10233 = build_function_type_list (MIPS_FTYPE_ATYPES##NUM ARGS, \
10236 #include "config/mips/mips-ftypes.def"
10237 #undef DEF_MIPS_FTYPE
10239 gcc_unreachable ();
10242 return types
[(int) type
];
10245 /* Implement TARGET_INIT_BUILTINS. */
10248 mips_init_builtins (void)
10250 const struct mips_builtin_description
*d
;
10251 const struct mips_bdesc_map
*m
;
10252 unsigned int offset
;
10254 /* Iterate through all of the bdesc arrays, initializing all of the
10255 builtin functions. */
10257 for (m
= mips_bdesc_arrays
;
10258 m
< &mips_bdesc_arrays
[ARRAY_SIZE (mips_bdesc_arrays
)];
10261 if ((m
->proc
== PROCESSOR_MAX
|| m
->proc
== mips_arch
)
10262 && (m
->unsupported_target_flags
& target_flags
) == 0)
10263 for (d
= m
->bdesc
; d
< &m
->bdesc
[m
->size
]; d
++)
10264 if ((d
->target_flags
& target_flags
) == d
->target_flags
)
10265 add_builtin_function (d
->name
,
10266 mips_build_function_type (d
->function_type
),
10267 d
- m
->bdesc
+ offset
,
10268 BUILT_IN_MD
, NULL
, NULL
);
10273 /* Take argument ARGNO from EXP's argument list and convert it into a
10274 form suitable for input operand OPNO of instruction ICODE. Return the
10278 mips_prepare_builtin_arg (enum insn_code icode
,
10279 unsigned int opno
, tree exp
, unsigned int argno
)
10282 enum machine_mode mode
;
10284 value
= expand_normal (CALL_EXPR_ARG (exp
, argno
));
10285 mode
= insn_data
[icode
].operand
[opno
].mode
;
10286 if (!insn_data
[icode
].operand
[opno
].predicate (value
, mode
))
10288 value
= copy_to_mode_reg (mode
, value
);
10289 /* Check the predicate again. */
10290 if (!insn_data
[icode
].operand
[opno
].predicate (value
, mode
))
10292 error ("invalid argument to built-in function");
10300 /* Return an rtx suitable for output operand OP of instruction ICODE.
10301 If TARGET is non-null, try to use it where possible. */
10304 mips_prepare_builtin_target (enum insn_code icode
, unsigned int op
, rtx target
)
10306 enum machine_mode mode
;
10308 mode
= insn_data
[icode
].operand
[op
].mode
;
10309 if (target
== 0 || !insn_data
[icode
].operand
[op
].predicate (target
, mode
))
10310 target
= gen_reg_rtx (mode
);
10315 /* Expand a MIPS_BUILTIN_DIRECT or MIPS_BUILTIN_DIRECT_NO_TARGET function;
10316 HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function
10317 and ICODE is the code of the associated .md pattern. TARGET, if nonnull,
10318 suggests a good place to put the result. */
10321 mips_expand_builtin_direct (enum insn_code icode
, rtx target
, tree exp
,
10324 rtx ops
[MAX_RECOG_OPERANDS
];
10327 /* Map any target to operand 0. */
10331 ops
[opno
] = mips_prepare_builtin_target (icode
, opno
, target
);
10335 /* Map the arguments to the other operands. The n_operands value
10336 for an expander includes match_dups and match_scratches as well as
10337 match_operands, so n_operands is only an upper bound on the number
10338 of arguments to the expander function. */
10339 gcc_assert (opno
+ call_expr_nargs (exp
) <= insn_data
[icode
].n_operands
);
10340 for (argno
= 0; argno
< call_expr_nargs (exp
); argno
++, opno
++)
10341 ops
[opno
] = mips_prepare_builtin_arg (icode
, opno
, exp
, argno
);
10346 emit_insn (GEN_FCN (icode
) (ops
[0], ops
[1]));
10350 emit_insn (GEN_FCN (icode
) (ops
[0], ops
[1], ops
[2]));
10354 emit_insn (GEN_FCN (icode
) (ops
[0], ops
[1], ops
[2], ops
[3]));
10358 gcc_unreachable ();
10363 /* Expand a __builtin_mips_movt_*_ps or __builtin_mips_movf_*_ps
10364 function; TYPE says which. EXP is the CALL_EXPR that calls the
10365 function, ICODE is the instruction that should be used to compare
10366 the first two arguments, and COND is the condition it should test.
10367 TARGET, if nonnull, suggests a good place to put the result. */
10370 mips_expand_builtin_movtf (enum mips_builtin_type type
,
10371 enum insn_code icode
, enum mips_fp_condition cond
,
10372 rtx target
, tree exp
)
10374 rtx cmp_result
, op0
, op1
;
10376 cmp_result
= mips_prepare_builtin_target (icode
, 0, 0);
10377 op0
= mips_prepare_builtin_arg (icode
, 1, exp
, 0);
10378 op1
= mips_prepare_builtin_arg (icode
, 2, exp
, 1);
10379 emit_insn (GEN_FCN (icode
) (cmp_result
, op0
, op1
, GEN_INT (cond
)));
10381 icode
= CODE_FOR_mips_cond_move_tf_ps
;
10382 target
= mips_prepare_builtin_target (icode
, 0, target
);
10383 if (type
== MIPS_BUILTIN_MOVT
)
10385 op1
= mips_prepare_builtin_arg (icode
, 2, exp
, 2);
10386 op0
= mips_prepare_builtin_arg (icode
, 1, exp
, 3);
10390 op0
= mips_prepare_builtin_arg (icode
, 1, exp
, 2);
10391 op1
= mips_prepare_builtin_arg (icode
, 2, exp
, 3);
10393 emit_insn (gen_mips_cond_move_tf_ps (target
, op0
, op1
, cmp_result
));
10397 /* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
10398 into TARGET otherwise. Return TARGET. */
10401 mips_builtin_branch_and_move (rtx condition
, rtx target
,
10402 rtx value_if_true
, rtx value_if_false
)
10404 rtx true_label
, done_label
;
10406 true_label
= gen_label_rtx ();
10407 done_label
= gen_label_rtx ();
10409 /* First assume that CONDITION is false. */
10410 mips_emit_move (target
, value_if_false
);
10412 /* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise. */
10413 emit_jump_insn (gen_condjump (condition
, true_label
));
10414 emit_jump_insn (gen_jump (done_label
));
10417 /* Fix TARGET if CONDITION is true. */
10418 emit_label (true_label
);
10419 mips_emit_move (target
, value_if_true
);
10421 emit_label (done_label
);
10425 /* Expand a comparison built-in function of type BUILTIN_TYPE. EXP is
10426 the CALL_EXPR that calls the function, ICODE is the code of the
10427 comparison instruction, and COND is the condition it should test.
10428 TARGET, if nonnull, suggests a good place to put the boolean result. */
10431 mips_expand_builtin_compare (enum mips_builtin_type builtin_type
,
10432 enum insn_code icode
, enum mips_fp_condition cond
,
10433 rtx target
, tree exp
)
10435 rtx offset
, condition
, cmp_result
, args
[MAX_RECOG_OPERANDS
];
10438 if (target
== 0 || GET_MODE (target
) != SImode
)
10439 target
= gen_reg_rtx (SImode
);
10441 /* The instruction should have a target operand, an operand for each
10442 argument, and an operand for COND. */
10443 gcc_assert (call_expr_nargs (exp
) + 2 == insn_data
[icode
].n_operands
);
10445 /* Prepare the operands to the comparison. */
10446 cmp_result
= mips_prepare_builtin_target (icode
, 0, 0);
10447 for (argno
= 0; argno
< call_expr_nargs (exp
); argno
++)
10448 args
[argno
] = mips_prepare_builtin_arg (icode
, argno
+ 1, exp
, argno
);
10450 switch (insn_data
[icode
].n_operands
)
10453 emit_insn (GEN_FCN (icode
) (cmp_result
, args
[0], args
[1],
10458 emit_insn (GEN_FCN (icode
) (cmp_result
, args
[0], args
[1],
10459 args
[2], args
[3], GEN_INT (cond
)));
10463 gcc_unreachable ();
10466 /* If the comparison sets more than one register, we define the result
10467 to be 0 if all registers are false and -1 if all registers are true.
10468 The value of the complete result is indeterminate otherwise. */
10469 switch (builtin_type
)
10471 case MIPS_BUILTIN_CMP_ALL
:
10472 condition
= gen_rtx_NE (VOIDmode
, cmp_result
, constm1_rtx
);
10473 return mips_builtin_branch_and_move (condition
, target
,
10474 const0_rtx
, const1_rtx
);
10476 case MIPS_BUILTIN_CMP_UPPER
:
10477 case MIPS_BUILTIN_CMP_LOWER
:
10478 offset
= GEN_INT (builtin_type
== MIPS_BUILTIN_CMP_UPPER
);
10479 condition
= gen_single_cc (cmp_result
, offset
);
10480 return mips_builtin_branch_and_move (condition
, target
,
10481 const1_rtx
, const0_rtx
);
10484 condition
= gen_rtx_NE (VOIDmode
, cmp_result
, const0_rtx
);
10485 return mips_builtin_branch_and_move (condition
, target
,
10486 const1_rtx
, const0_rtx
);
10490 /* Expand a bposge built-in function of type BUILTIN_TYPE. TARGET,
10491 if nonnull, suggests a good place to put the boolean result. */
10494 mips_expand_builtin_bposge (enum mips_builtin_type builtin_type
, rtx target
)
10496 rtx condition
, cmp_result
;
10499 if (target
== 0 || GET_MODE (target
) != SImode
)
10500 target
= gen_reg_rtx (SImode
);
10502 cmp_result
= gen_rtx_REG (CCDSPmode
, CCDSP_PO_REGNUM
);
10504 if (builtin_type
== MIPS_BUILTIN_BPOSGE32
)
10509 condition
= gen_rtx_GE (VOIDmode
, cmp_result
, GEN_INT (cmp_value
));
10510 return mips_builtin_branch_and_move (condition
, target
,
10511 const1_rtx
, const0_rtx
);
10514 /* EXP is a CALL_EXPR that calls the function described by BDESC.
10515 Expand the call and return an rtx for its return value.
10516 TARGET, if nonnull, suggests a good place to put this value. */
10519 mips_expand_builtin_1 (const struct mips_builtin_description
*bdesc
,
10520 tree exp
, rtx target
)
10522 switch (bdesc
->builtin_type
)
10524 case MIPS_BUILTIN_DIRECT
:
10525 return mips_expand_builtin_direct (bdesc
->icode
, target
, exp
, true);
10527 case MIPS_BUILTIN_DIRECT_NO_TARGET
:
10528 return mips_expand_builtin_direct (bdesc
->icode
, target
, exp
, false);
10530 case MIPS_BUILTIN_MOVT
:
10531 case MIPS_BUILTIN_MOVF
:
10532 return mips_expand_builtin_movtf (bdesc
->builtin_type
, bdesc
->icode
,
10533 bdesc
->cond
, target
, exp
);
10535 case MIPS_BUILTIN_CMP_ANY
:
10536 case MIPS_BUILTIN_CMP_ALL
:
10537 case MIPS_BUILTIN_CMP_UPPER
:
10538 case MIPS_BUILTIN_CMP_LOWER
:
10539 case MIPS_BUILTIN_CMP_SINGLE
:
10540 return mips_expand_builtin_compare (bdesc
->builtin_type
, bdesc
->icode
,
10541 bdesc
->cond
, target
, exp
);
10543 case MIPS_BUILTIN_BPOSGE32
:
10544 return mips_expand_builtin_bposge (bdesc
->builtin_type
, target
);
10546 gcc_unreachable ();
10549 /* Implement TARGET_EXPAND_BUILTIN. */
10552 mips_expand_builtin (tree exp
, rtx target
, rtx subtarget ATTRIBUTE_UNUSED
,
10553 enum machine_mode mode ATTRIBUTE_UNUSED
,
10554 int ignore ATTRIBUTE_UNUSED
)
10557 unsigned int fcode
;
10558 const struct mips_bdesc_map
*m
;
10560 fndecl
= TREE_OPERAND (CALL_EXPR_FN (exp
), 0);
10561 fcode
= DECL_FUNCTION_CODE (fndecl
);
10564 error ("built-in function %qs not supported for MIPS16",
10565 IDENTIFIER_POINTER (DECL_NAME (fndecl
)));
10569 for (m
= mips_bdesc_arrays
;
10570 m
< &mips_bdesc_arrays
[ARRAY_SIZE (mips_bdesc_arrays
)];
10573 if (fcode
< m
->size
)
10574 return mips_expand_builtin_1 (m
->bdesc
+ fcode
, exp
, target
);
10577 gcc_unreachable ();
10580 /* An entry in the MIPS16 constant pool. VALUE is the pool constant,
10581 MODE is its mode, and LABEL is the CODE_LABEL associated with it. */
10582 struct mips16_constant
{
10583 struct mips16_constant
*next
;
10586 enum machine_mode mode
;
10589 /* Information about an incomplete MIPS16 constant pool. FIRST is the
10590 first constant, HIGHEST_ADDRESS is the highest address that the first
10591 byte of the pool can have, and INSN_ADDRESS is the current instruction
10593 struct mips16_constant_pool
{
10594 struct mips16_constant
*first
;
10595 int highest_address
;
10599 /* Add constant VALUE to POOL and return its label. MODE is the
10600 value's mode (used for CONST_INTs, etc.). */
10603 mips16_add_constant (struct mips16_constant_pool
*pool
,
10604 rtx value
, enum machine_mode mode
)
10606 struct mips16_constant
**p
, *c
;
10607 bool first_of_size_p
;
10609 /* See whether the constant is already in the pool. If so, return the
10610 existing label, otherwise leave P pointing to the place where the
10611 constant should be added.
10613 Keep the pool sorted in increasing order of mode size so that we can
10614 reduce the number of alignments needed. */
10615 first_of_size_p
= true;
10616 for (p
= &pool
->first
; *p
!= 0; p
= &(*p
)->next
)
10618 if (mode
== (*p
)->mode
&& rtx_equal_p (value
, (*p
)->value
))
10619 return (*p
)->label
;
10620 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE ((*p
)->mode
))
10622 if (GET_MODE_SIZE (mode
) == GET_MODE_SIZE ((*p
)->mode
))
10623 first_of_size_p
= false;
10626 /* In the worst case, the constant needed by the earliest instruction
10627 will end up at the end of the pool. The entire pool must then be
10628 accessible from that instruction.
10630 When adding the first constant, set the pool's highest address to
10631 the address of the first out-of-range byte. Adjust this address
10632 downwards each time a new constant is added. */
10633 if (pool
->first
== 0)
10634 /* For LWPC, ADDIUPC and DADDIUPC, the base PC value is the address
10635 of the instruction with the lowest two bits clear. The base PC
10636 value for LDPC has the lowest three bits clear. Assume the worst
10637 case here; namely that the PC-relative instruction occupies the
10638 last 2 bytes in an aligned word. */
10639 pool
->highest_address
= pool
->insn_address
- (UNITS_PER_WORD
- 2) + 0x8000;
10640 pool
->highest_address
-= GET_MODE_SIZE (mode
);
10641 if (first_of_size_p
)
10642 /* Take into account the worst possible padding due to alignment. */
10643 pool
->highest_address
-= GET_MODE_SIZE (mode
) - 1;
10645 /* Create a new entry. */
10646 c
= XNEW (struct mips16_constant
);
10649 c
->label
= gen_label_rtx ();
10656 /* Output constant VALUE after instruction INSN and return the last
10657 instruction emitted. MODE is the mode of the constant. */
10660 mips16_emit_constants_1 (enum machine_mode mode
, rtx value
, rtx insn
)
10662 if (SCALAR_INT_MODE_P (mode
) || ALL_SCALAR_FIXED_POINT_MODE_P (mode
))
10664 rtx size
= GEN_INT (GET_MODE_SIZE (mode
));
10665 return emit_insn_after (gen_consttable_int (value
, size
), insn
);
10668 if (SCALAR_FLOAT_MODE_P (mode
))
10669 return emit_insn_after (gen_consttable_float (value
), insn
);
10671 if (VECTOR_MODE_P (mode
))
10675 for (i
= 0; i
< CONST_VECTOR_NUNITS (value
); i
++)
10676 insn
= mips16_emit_constants_1 (GET_MODE_INNER (mode
),
10677 CONST_VECTOR_ELT (value
, i
), insn
);
10681 gcc_unreachable ();
10684 /* Dump out the constants in CONSTANTS after INSN. */
10687 mips16_emit_constants (struct mips16_constant
*constants
, rtx insn
)
10689 struct mips16_constant
*c
, *next
;
10693 for (c
= constants
; c
!= NULL
; c
= next
)
10695 /* If necessary, increase the alignment of PC. */
10696 if (align
< GET_MODE_SIZE (c
->mode
))
10698 int align_log
= floor_log2 (GET_MODE_SIZE (c
->mode
));
10699 insn
= emit_insn_after (gen_align (GEN_INT (align_log
)), insn
);
10701 align
= GET_MODE_SIZE (c
->mode
);
10703 insn
= emit_label_after (c
->label
, insn
);
10704 insn
= mips16_emit_constants_1 (c
->mode
, c
->value
, insn
);
10710 emit_barrier_after (insn
);
10713 /* Return the length of instruction INSN. */
10716 mips16_insn_length (rtx insn
)
10720 rtx body
= PATTERN (insn
);
10721 if (GET_CODE (body
) == ADDR_VEC
)
10722 return GET_MODE_SIZE (GET_MODE (body
)) * XVECLEN (body
, 0);
10723 if (GET_CODE (body
) == ADDR_DIFF_VEC
)
10724 return GET_MODE_SIZE (GET_MODE (body
)) * XVECLEN (body
, 1);
10726 return get_attr_length (insn
);
10729 /* If *X is a symbolic constant that refers to the constant pool, add
10730 the constant to POOL and rewrite *X to use the constant's label. */
10733 mips16_rewrite_pool_constant (struct mips16_constant_pool
*pool
, rtx
*x
)
10735 rtx base
, offset
, label
;
10737 split_const (*x
, &base
, &offset
);
10738 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
10740 label
= mips16_add_constant (pool
, get_pool_constant (base
),
10741 get_pool_mode (base
));
10742 base
= gen_rtx_LABEL_REF (Pmode
, label
);
10743 *x
= mips_unspec_address_offset (base
, offset
, SYMBOL_PC_RELATIVE
);
10747 /* This structure is used to communicate with mips16_rewrite_pool_refs.
10748 INSN is the instruction we're rewriting and POOL points to the current
10750 struct mips16_rewrite_pool_refs_info
{
10752 struct mips16_constant_pool
*pool
;
10755 /* Rewrite *X so that constant pool references refer to the constant's
10756 label instead. DATA points to a mips16_rewrite_pool_refs_info
10760 mips16_rewrite_pool_refs (rtx
*x
, void *data
)
10762 struct mips16_rewrite_pool_refs_info
*info
= data
;
10764 if (force_to_mem_operand (*x
, Pmode
))
10766 rtx mem
= force_const_mem (GET_MODE (*x
), *x
);
10767 validate_change (info
->insn
, x
, mem
, false);
10772 mips16_rewrite_pool_constant (info
->pool
, &XEXP (*x
, 0));
10776 if (TARGET_MIPS16_TEXT_LOADS
)
10777 mips16_rewrite_pool_constant (info
->pool
, x
);
10779 return GET_CODE (*x
) == CONST
? -1 : 0;
10782 /* Build MIPS16 constant pools. */
10785 mips16_lay_out_constants (void)
10787 struct mips16_constant_pool pool
;
10788 struct mips16_rewrite_pool_refs_info info
;
10791 if (!TARGET_MIPS16_PCREL_LOADS
)
10795 memset (&pool
, 0, sizeof (pool
));
10796 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
10798 /* Rewrite constant pool references in INSN. */
10803 for_each_rtx (&PATTERN (insn
), mips16_rewrite_pool_refs
, &info
);
10806 pool
.insn_address
+= mips16_insn_length (insn
);
10808 if (pool
.first
!= NULL
)
10810 /* If there are no natural barriers between the first user of
10811 the pool and the highest acceptable address, we'll need to
10812 create a new instruction to jump around the constant pool.
10813 In the worst case, this instruction will be 4 bytes long.
10815 If it's too late to do this transformation after INSN,
10816 do it immediately before INSN. */
10817 if (barrier
== 0 && pool
.insn_address
+ 4 > pool
.highest_address
)
10821 label
= gen_label_rtx ();
10823 jump
= emit_jump_insn_before (gen_jump (label
), insn
);
10824 JUMP_LABEL (jump
) = label
;
10825 LABEL_NUSES (label
) = 1;
10826 barrier
= emit_barrier_after (jump
);
10828 emit_label_after (label
, barrier
);
10829 pool
.insn_address
+= 4;
10832 /* See whether the constant pool is now out of range of the first
10833 user. If so, output the constants after the previous barrier.
10834 Note that any instructions between BARRIER and INSN (inclusive)
10835 will use negative offsets to refer to the pool. */
10836 if (pool
.insn_address
> pool
.highest_address
)
10838 mips16_emit_constants (pool
.first
, barrier
);
10842 else if (BARRIER_P (insn
))
10846 mips16_emit_constants (pool
.first
, get_last_insn ());
10849 /* A temporary variable used by for_each_rtx callbacks, etc. */
10850 static rtx mips_sim_insn
;
10852 /* A structure representing the state of the processor pipeline.
10853 Used by the mips_sim_* family of functions. */
10855 /* The maximum number of instructions that can be issued in a cycle.
10856 (Caches mips_issue_rate.) */
10857 unsigned int issue_rate
;
10859 /* The current simulation time. */
10862 /* How many more instructions can be issued in the current cycle. */
10863 unsigned int insns_left
;
10865 /* LAST_SET[X].INSN is the last instruction to set register X.
10866 LAST_SET[X].TIME is the time at which that instruction was issued.
10867 INSN is null if no instruction has yet set register X. */
10871 } last_set
[FIRST_PSEUDO_REGISTER
];
10873 /* The pipeline's current DFA state. */
10877 /* Reset STATE to the initial simulation state. */
10880 mips_sim_reset (struct mips_sim
*state
)
10883 state
->insns_left
= state
->issue_rate
;
10884 memset (&state
->last_set
, 0, sizeof (state
->last_set
));
10885 state_reset (state
->dfa_state
);
10888 /* Initialize STATE before its first use. DFA_STATE points to an
10889 allocated but uninitialized DFA state. */
10892 mips_sim_init (struct mips_sim
*state
, state_t dfa_state
)
10894 state
->issue_rate
= mips_issue_rate ();
10895 state
->dfa_state
= dfa_state
;
10896 mips_sim_reset (state
);
10899 /* Advance STATE by one clock cycle. */
10902 mips_sim_next_cycle (struct mips_sim
*state
)
10905 state
->insns_left
= state
->issue_rate
;
10906 state_transition (state
->dfa_state
, 0);
10909 /* Advance simulation state STATE until instruction INSN can read
10913 mips_sim_wait_reg (struct mips_sim
*state
, rtx insn
, rtx reg
)
10915 unsigned int regno
, end_regno
;
10917 end_regno
= END_REGNO (reg
);
10918 for (regno
= REGNO (reg
); regno
< end_regno
; regno
++)
10919 if (state
->last_set
[regno
].insn
!= 0)
10923 t
= (state
->last_set
[regno
].time
10924 + insn_latency (state
->last_set
[regno
].insn
, insn
));
10925 while (state
->time
< t
)
10926 mips_sim_next_cycle (state
);
10930 /* A for_each_rtx callback. If *X is a register, advance simulation state
10931 DATA until mips_sim_insn can read the register's value. */
10934 mips_sim_wait_regs_2 (rtx
*x
, void *data
)
10937 mips_sim_wait_reg (data
, mips_sim_insn
, *x
);
10941 /* Call mips_sim_wait_regs_2 (R, DATA) for each register R mentioned in *X. */
10944 mips_sim_wait_regs_1 (rtx
*x
, void *data
)
10946 for_each_rtx (x
, mips_sim_wait_regs_2
, data
);
10949 /* Advance simulation state STATE until all of INSN's register
10950 dependencies are satisfied. */
10953 mips_sim_wait_regs (struct mips_sim
*state
, rtx insn
)
10955 mips_sim_insn
= insn
;
10956 note_uses (&PATTERN (insn
), mips_sim_wait_regs_1
, state
);
10959 /* Advance simulation state STATE until the units required by
10960 instruction INSN are available. */
10963 mips_sim_wait_units (struct mips_sim
*state
, rtx insn
)
10967 tmp_state
= alloca (state_size ());
10968 while (state
->insns_left
== 0
10969 || (memcpy (tmp_state
, state
->dfa_state
, state_size ()),
10970 state_transition (tmp_state
, insn
) >= 0))
10971 mips_sim_next_cycle (state
);
10974 /* Advance simulation state STATE until INSN is ready to issue. */
10977 mips_sim_wait_insn (struct mips_sim
*state
, rtx insn
)
10979 mips_sim_wait_regs (state
, insn
);
10980 mips_sim_wait_units (state
, insn
);
10983 /* mips_sim_insn has just set X. Update the LAST_SET array
10984 in simulation state DATA. */
10987 mips_sim_record_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
10989 struct mips_sim
*state
;
10994 unsigned int regno
, end_regno
;
10996 end_regno
= END_REGNO (x
);
10997 for (regno
= REGNO (x
); regno
< end_regno
; regno
++)
10999 state
->last_set
[regno
].insn
= mips_sim_insn
;
11000 state
->last_set
[regno
].time
= state
->time
;
11005 /* Issue instruction INSN in scheduler state STATE. Assume that INSN
11006 can issue immediately (i.e., that mips_sim_wait_insn has already
11010 mips_sim_issue_insn (struct mips_sim
*state
, rtx insn
)
11012 state_transition (state
->dfa_state
, insn
);
11013 state
->insns_left
--;
11015 mips_sim_insn
= insn
;
11016 note_stores (PATTERN (insn
), mips_sim_record_set
, state
);
11019 /* Simulate issuing a NOP in state STATE. */
11022 mips_sim_issue_nop (struct mips_sim
*state
)
11024 if (state
->insns_left
== 0)
11025 mips_sim_next_cycle (state
);
11026 state
->insns_left
--;
11029 /* Update simulation state STATE so that it's ready to accept the instruction
11030 after INSN. INSN should be part of the main rtl chain, not a member of a
11034 mips_sim_finish_insn (struct mips_sim
*state
, rtx insn
)
11036 /* If INSN is a jump with an implicit delay slot, simulate a nop. */
11038 mips_sim_issue_nop (state
);
11040 switch (GET_CODE (SEQ_BEGIN (insn
)))
11044 /* We can't predict the processor state after a call or label. */
11045 mips_sim_reset (state
);
11049 /* The delay slots of branch likely instructions are only executed
11050 when the branch is taken. Therefore, if the caller has simulated
11051 the delay slot instruction, STATE does not really reflect the state
11052 of the pipeline for the instruction after the delay slot. Also,
11053 branch likely instructions tend to incur a penalty when not taken,
11054 so there will probably be an extra delay between the branch and
11055 the instruction after the delay slot. */
11056 if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn
)))
11057 mips_sim_reset (state
);
11065 /* The VR4130 pipeline issues aligned pairs of instructions together,
11066 but it stalls the second instruction if it depends on the first.
11067 In order to cut down the amount of logic required, this dependence
11068 check is not based on a full instruction decode. Instead, any non-SPECIAL
11069 instruction is assumed to modify the register specified by bits 20-16
11070 (which is usually the "rt" field).
11072 In BEQ, BEQL, BNE and BNEL instructions, the rt field is actually an
11073 input, so we can end up with a false dependence between the branch
11074 and its delay slot. If this situation occurs in instruction INSN,
11075 try to avoid it by swapping rs and rt. */
11078 vr4130_avoid_branch_rt_conflict (rtx insn
)
11082 first
= SEQ_BEGIN (insn
);
11083 second
= SEQ_END (insn
);
11085 && NONJUMP_INSN_P (second
)
11086 && GET_CODE (PATTERN (first
)) == SET
11087 && GET_CODE (SET_DEST (PATTERN (first
))) == PC
11088 && GET_CODE (SET_SRC (PATTERN (first
))) == IF_THEN_ELSE
)
11090 /* Check for the right kind of condition. */
11091 rtx cond
= XEXP (SET_SRC (PATTERN (first
)), 0);
11092 if ((GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
11093 && REG_P (XEXP (cond
, 0))
11094 && REG_P (XEXP (cond
, 1))
11095 && reg_referenced_p (XEXP (cond
, 1), PATTERN (second
))
11096 && !reg_referenced_p (XEXP (cond
, 0), PATTERN (second
)))
11098 /* SECOND mentions the rt register but not the rs register. */
11099 rtx tmp
= XEXP (cond
, 0);
11100 XEXP (cond
, 0) = XEXP (cond
, 1);
11101 XEXP (cond
, 1) = tmp
;
11106 /* Implement -mvr4130-align. Go through each basic block and simulate the
11107 processor pipeline. If we find that a pair of instructions could execute
11108 in parallel, and the first of those instructions is not 8-byte aligned,
11109 insert a nop to make it aligned. */
11112 vr4130_align_insns (void)
11114 struct mips_sim state
;
11115 rtx insn
, subinsn
, last
, last2
, next
;
11120 /* LAST is the last instruction before INSN to have a nonzero length.
11121 LAST2 is the last such instruction before LAST. */
11125 /* ALIGNED_P is true if INSN is known to be at an aligned address. */
11128 mips_sim_init (&state
, alloca (state_size ()));
11129 for (insn
= get_insns (); insn
!= 0; insn
= next
)
11131 unsigned int length
;
11133 next
= NEXT_INSN (insn
);
11135 /* See the comment above vr4130_avoid_branch_rt_conflict for details.
11136 This isn't really related to the alignment pass, but we do it on
11137 the fly to avoid a separate instruction walk. */
11138 vr4130_avoid_branch_rt_conflict (insn
);
11140 if (USEFUL_INSN_P (insn
))
11141 FOR_EACH_SUBINSN (subinsn
, insn
)
11143 mips_sim_wait_insn (&state
, subinsn
);
11145 /* If we want this instruction to issue in parallel with the
11146 previous one, make sure that the previous instruction is
11147 aligned. There are several reasons why this isn't worthwhile
11148 when the second instruction is a call:
11150 - Calls are less likely to be performance critical,
11151 - There's a good chance that the delay slot can execute
11152 in parallel with the call.
11153 - The return address would then be unaligned.
11155 In general, if we're going to insert a nop between instructions
11156 X and Y, it's better to insert it immediately after X. That
11157 way, if the nop makes Y aligned, it will also align any labels
11158 between X and Y. */
11159 if (state
.insns_left
!= state
.issue_rate
11160 && !CALL_P (subinsn
))
11162 if (subinsn
== SEQ_BEGIN (insn
) && aligned_p
)
11164 /* SUBINSN is the first instruction in INSN and INSN is
11165 aligned. We want to align the previous instruction
11166 instead, so insert a nop between LAST2 and LAST.
11168 Note that LAST could be either a single instruction
11169 or a branch with a delay slot. In the latter case,
11170 LAST, like INSN, is already aligned, but the delay
11171 slot must have some extra delay that stops it from
11172 issuing at the same time as the branch. We therefore
11173 insert a nop before the branch in order to align its
11175 emit_insn_after (gen_nop (), last2
);
11178 else if (subinsn
!= SEQ_BEGIN (insn
) && !aligned_p
)
11180 /* SUBINSN is the delay slot of INSN, but INSN is
11181 currently unaligned. Insert a nop between
11182 LAST and INSN to align it. */
11183 emit_insn_after (gen_nop (), last
);
11187 mips_sim_issue_insn (&state
, subinsn
);
11189 mips_sim_finish_insn (&state
, insn
);
11191 /* Update LAST, LAST2 and ALIGNED_P for the next instruction. */
11192 length
= get_attr_length (insn
);
11195 /* If the instruction is an asm statement or multi-instruction
11196 mips.md patern, the length is only an estimate. Insert an
11197 8 byte alignment after it so that the following instructions
11198 can be handled correctly. */
11199 if (NONJUMP_INSN_P (SEQ_BEGIN (insn
))
11200 && (recog_memoized (insn
) < 0 || length
>= 8))
11202 next
= emit_insn_after (gen_align (GEN_INT (3)), insn
);
11203 next
= NEXT_INSN (next
);
11204 mips_sim_next_cycle (&state
);
11207 else if (length
& 4)
11208 aligned_p
= !aligned_p
;
11213 /* See whether INSN is an aligned label. */
11214 if (LABEL_P (insn
) && label_to_alignment (insn
) >= 3)
11220 /* This structure records that the current function has a LO_SUM
11221 involving SYMBOL_REF or LABEL_REF BASE and that MAX_OFFSET is
11222 the largest offset applied to BASE by all such LO_SUMs. */
11223 struct mips_lo_sum_offset
{
11225 HOST_WIDE_INT offset
;
11228 /* Return a hash value for SYMBOL_REF or LABEL_REF BASE. */
11231 mips_hash_base (rtx base
)
11233 int do_not_record_p
;
11235 return hash_rtx (base
, GET_MODE (base
), &do_not_record_p
, NULL
, false);
11238 /* Hash-table callbacks for mips_lo_sum_offsets. */
11241 mips_lo_sum_offset_hash (const void *entry
)
11243 return mips_hash_base (((const struct mips_lo_sum_offset
*) entry
)->base
);
11247 mips_lo_sum_offset_eq (const void *entry
, const void *value
)
11249 return rtx_equal_p (((const struct mips_lo_sum_offset
*) entry
)->base
,
11250 (const_rtx
) value
);
11253 /* Look up symbolic constant X in HTAB, which is a hash table of
11254 mips_lo_sum_offsets. If OPTION is NO_INSERT, return true if X can be
11255 paired with a recorded LO_SUM, otherwise record X in the table. */
11258 mips_lo_sum_offset_lookup (htab_t htab
, rtx x
, enum insert_option option
)
11262 struct mips_lo_sum_offset
*entry
;
11264 /* Split X into a base and offset. */
11265 split_const (x
, &base
, &offset
);
11266 if (UNSPEC_ADDRESS_P (base
))
11267 base
= UNSPEC_ADDRESS (base
);
11269 /* Look up the base in the hash table. */
11270 slot
= htab_find_slot_with_hash (htab
, base
, mips_hash_base (base
), option
);
11274 entry
= (struct mips_lo_sum_offset
*) *slot
;
11275 if (option
== INSERT
)
11279 entry
= XNEW (struct mips_lo_sum_offset
);
11280 entry
->base
= base
;
11281 entry
->offset
= INTVAL (offset
);
11286 if (INTVAL (offset
) > entry
->offset
)
11287 entry
->offset
= INTVAL (offset
);
11290 return INTVAL (offset
) <= entry
->offset
;
11293 /* A for_each_rtx callback for which DATA is a mips_lo_sum_offset hash table.
11294 Record every LO_SUM in *LOC. */
11297 mips_record_lo_sum (rtx
*loc
, void *data
)
11299 if (GET_CODE (*loc
) == LO_SUM
)
11300 mips_lo_sum_offset_lookup ((htab_t
) data
, XEXP (*loc
, 1), INSERT
);
11304 /* Return true if INSN is a SET of an orphaned high-part relocation.
11305 HTAB is a hash table of mips_lo_sum_offsets that describes all the
11306 LO_SUMs in the current function. */
11309 mips_orphaned_high_part_p (htab_t htab
, rtx insn
)
11311 enum mips_symbol_type type
;
11314 set
= single_set (insn
);
11317 /* Check for %his. */
11319 if (GET_CODE (x
) == HIGH
11320 && absolute_symbolic_operand (XEXP (x
, 0), VOIDmode
))
11321 return !mips_lo_sum_offset_lookup (htab
, XEXP (x
, 0), NO_INSERT
);
11323 /* Check for local %gots (and %got_pages, which is redundant but OK). */
11324 if (GET_CODE (x
) == UNSPEC
11325 && XINT (x
, 1) == UNSPEC_LOAD_GOT
11326 && mips_symbolic_constant_p (XVECEXP (x
, 0, 1),
11327 SYMBOL_CONTEXT_LEA
, &type
)
11328 && type
== SYMBOL_GOTOFF_PAGE
)
11329 return !mips_lo_sum_offset_lookup (htab
, XVECEXP (x
, 0, 1), NO_INSERT
);
11334 /* Subroutine of mips_reorg_process_insns. If there is a hazard between
11335 INSN and a previous instruction, avoid it by inserting nops after
11338 *DELAYED_REG and *HILO_DELAY describe the hazards that apply at
11339 this point. If *DELAYED_REG is non-null, INSN must wait a cycle
11340 before using the value of that register. *HILO_DELAY counts the
11341 number of instructions since the last hilo hazard (that is,
11342 the number of instructions since the last MFLO or MFHI).
11344 After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
11345 for the next instruction.
11347 LO_REG is an rtx for the LO register, used in dependence checking. */
11350 mips_avoid_hazard (rtx after
, rtx insn
, int *hilo_delay
,
11351 rtx
*delayed_reg
, rtx lo_reg
)
11354 int nops
, ninsns
, hazard_set
;
11356 pattern
= PATTERN (insn
);
11358 /* Do not put the whole function in .set noreorder if it contains
11359 an asm statement. We don't know whether there will be hazards
11360 between the asm statement and the gcc-generated code. */
11361 if (GET_CODE (pattern
) == ASM_INPUT
|| asm_noperands (pattern
) >= 0)
11362 cfun
->machine
->all_noreorder_p
= false;
11364 /* Ignore zero-length instructions (barriers and the like). */
11365 ninsns
= get_attr_length (insn
) / 4;
11369 /* Work out how many nops are needed. Note that we only care about
11370 registers that are explicitly mentioned in the instruction's pattern.
11371 It doesn't matter that calls use the argument registers or that they
11372 clobber hi and lo. */
11373 if (*hilo_delay
< 2 && reg_set_p (lo_reg
, pattern
))
11374 nops
= 2 - *hilo_delay
;
11375 else if (*delayed_reg
!= 0 && reg_referenced_p (*delayed_reg
, pattern
))
11380 /* Insert the nops between this instruction and the previous one.
11381 Each new nop takes us further from the last hilo hazard. */
11382 *hilo_delay
+= nops
;
11384 emit_insn_after (gen_hazard_nop (), after
);
11386 /* Set up the state for the next instruction. */
11387 *hilo_delay
+= ninsns
;
11389 if (INSN_CODE (insn
) >= 0)
11390 switch (get_attr_hazard (insn
))
11400 hazard_set
= (int) get_attr_hazard_set (insn
);
11401 if (hazard_set
== 0)
11402 set
= single_set (insn
);
11405 gcc_assert (GET_CODE (PATTERN (insn
)) == PARALLEL
);
11406 set
= XVECEXP (PATTERN (insn
), 0, hazard_set
- 1);
11408 gcc_assert (set
&& GET_CODE (set
) == SET
);
11409 *delayed_reg
= SET_DEST (set
);
11414 /* Go through the instruction stream and insert nops where necessary.
11415 Also delete any high-part relocations whose partnering low parts
11416 are now all dead. See if the whole function can then be put into
11417 .set noreorder and .set nomacro. */
11420 mips_reorg_process_insns (void)
11422 rtx insn
, last_insn
, subinsn
, next_insn
, lo_reg
, delayed_reg
;
11426 /* Force all instructions to be split into their final form. */
11427 split_all_insns_noflow ();
11429 /* Recalculate instruction lengths without taking nops into account. */
11430 cfun
->machine
->ignore_hazard_length_p
= true;
11431 shorten_branches (get_insns ());
11433 cfun
->machine
->all_noreorder_p
= true;
11435 /* Code that doesn't use explicit relocs can't be ".set nomacro". */
11436 if (!TARGET_EXPLICIT_RELOCS
)
11437 cfun
->machine
->all_noreorder_p
= false;
11439 /* Profiled functions can't be all noreorder because the profiler
11440 support uses assembler macros. */
11441 if (current_function_profile
)
11442 cfun
->machine
->all_noreorder_p
= false;
11444 /* Code compiled with -mfix-vr4120 can't be all noreorder because
11445 we rely on the assembler to work around some errata. */
11446 if (TARGET_FIX_VR4120
)
11447 cfun
->machine
->all_noreorder_p
= false;
11449 /* The same is true for -mfix-vr4130 if we might generate MFLO or
11450 MFHI instructions. Note that we avoid using MFLO and MFHI if
11451 the VR4130 MACC and DMACC instructions are available instead;
11452 see the *mfhilo_{si,di}_macc patterns. */
11453 if (TARGET_FIX_VR4130
&& !ISA_HAS_MACCHI
)
11454 cfun
->machine
->all_noreorder_p
= false;
11456 htab
= htab_create (37, mips_lo_sum_offset_hash
,
11457 mips_lo_sum_offset_eq
, free
);
11459 /* Make a first pass over the instructions, recording all the LO_SUMs. */
11460 for (insn
= get_insns (); insn
!= 0; insn
= NEXT_INSN (insn
))
11461 FOR_EACH_SUBINSN (subinsn
, insn
)
11462 if (INSN_P (subinsn
))
11463 for_each_rtx (&PATTERN (subinsn
), mips_record_lo_sum
, htab
);
11468 lo_reg
= gen_rtx_REG (SImode
, LO_REGNUM
);
11470 /* Make a second pass over the instructions. Delete orphaned
11471 high-part relocations or turn them into NOPs. Avoid hazards
11472 by inserting NOPs. */
11473 for (insn
= get_insns (); insn
!= 0; insn
= next_insn
)
11475 next_insn
= NEXT_INSN (insn
);
11478 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
11480 /* If we find an orphaned high-part relocation in a delay
11481 slot, it's easier to turn that instruction into a NOP than
11482 to delete it. The delay slot will be a NOP either way. */
11483 FOR_EACH_SUBINSN (subinsn
, insn
)
11484 if (INSN_P (subinsn
))
11486 if (mips_orphaned_high_part_p (htab
, subinsn
))
11488 PATTERN (subinsn
) = gen_nop ();
11489 INSN_CODE (subinsn
) = CODE_FOR_nop
;
11491 mips_avoid_hazard (last_insn
, subinsn
, &hilo_delay
,
11492 &delayed_reg
, lo_reg
);
11498 /* INSN is a single instruction. Delete it if it's an
11499 orphaned high-part relocation. */
11500 if (mips_orphaned_high_part_p (htab
, insn
))
11501 delete_insn (insn
);
11504 mips_avoid_hazard (last_insn
, insn
, &hilo_delay
,
11505 &delayed_reg
, lo_reg
);
11512 htab_delete (htab
);
11515 /* Implement TARGET_MACHINE_DEPENDENT_REORG. */
11520 mips16_lay_out_constants ();
11521 if (mips_base_delayed_branch
)
11522 dbr_schedule (get_insns ());
11523 mips_reorg_process_insns ();
11524 if (TARGET_EXPLICIT_RELOCS
&& TUNE_MIPS4130
&& TARGET_VR4130_ALIGN
)
11525 vr4130_align_insns ();
11528 /* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
11529 in order to avoid duplicating too much logic from elsewhere. */
11532 mips_output_mi_thunk (FILE *file
, tree thunk_fndecl ATTRIBUTE_UNUSED
,
11533 HOST_WIDE_INT delta
, HOST_WIDE_INT vcall_offset
,
11536 rtx
this, temp1
, temp2
, insn
, fnaddr
;
11537 bool use_sibcall_p
;
11539 /* Pretend to be a post-reload pass while generating rtl. */
11540 reload_completed
= 1;
11542 /* Mark the end of the (empty) prologue. */
11543 emit_note (NOTE_INSN_PROLOGUE_END
);
11545 /* Determine if we can use a sibcall to call FUNCTION directly. */
11546 fnaddr
= XEXP (DECL_RTL (function
), 0);
11547 use_sibcall_p
= (mips_function_ok_for_sibcall (function
, NULL
)
11548 && const_call_insn_operand (fnaddr
, Pmode
));
11550 /* Determine if we need to load FNADDR from the GOT. */
11551 if (!use_sibcall_p
)
11552 switch (mips_classify_symbol (fnaddr
, SYMBOL_CONTEXT_LEA
))
11554 case SYMBOL_GOT_PAGE_OFST
:
11555 case SYMBOL_GOT_DISP
:
11556 /* Pick a global pointer. Use a call-clobbered register if
11557 TARGET_CALL_SAVED_GP. */
11558 cfun
->machine
->global_pointer
=
11559 TARGET_CALL_SAVED_GP
? 15 : GLOBAL_POINTER_REGNUM
;
11560 SET_REGNO (pic_offset_table_rtx
, cfun
->machine
->global_pointer
);
11562 /* Set up the global pointer for n32 or n64 abicalls. */
11563 mips_emit_loadgp ();
11570 /* We need two temporary registers in some cases. */
11571 temp1
= gen_rtx_REG (Pmode
, 2);
11572 temp2
= gen_rtx_REG (Pmode
, 3);
11574 /* Find out which register contains the "this" pointer. */
11575 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function
)), function
))
11576 this = gen_rtx_REG (Pmode
, GP_ARG_FIRST
+ 1);
11578 this = gen_rtx_REG (Pmode
, GP_ARG_FIRST
);
11580 /* Add DELTA to THIS. */
11583 rtx offset
= GEN_INT (delta
);
11584 if (!SMALL_OPERAND (delta
))
11586 mips_emit_move (temp1
, offset
);
11589 emit_insn (gen_add3_insn (this, this, offset
));
11592 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
11593 if (vcall_offset
!= 0)
11597 /* Set TEMP1 to *THIS. */
11598 mips_emit_move (temp1
, gen_rtx_MEM (Pmode
, this));
11600 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
11601 addr
= mips_add_offset (temp2
, temp1
, vcall_offset
);
11603 /* Load the offset and add it to THIS. */
11604 mips_emit_move (temp1
, gen_rtx_MEM (Pmode
, addr
));
11605 emit_insn (gen_add3_insn (this, this, temp1
));
11608 /* Jump to the target function. Use a sibcall if direct jumps are
11609 allowed, otherwise load the address into a register first. */
11612 insn
= emit_call_insn (gen_sibcall_internal (fnaddr
, const0_rtx
));
11613 SIBLING_CALL_P (insn
) = 1;
11617 /* This is messy. GAS treats "la $25,foo" as part of a call
11618 sequence and may allow a global "foo" to be lazily bound.
11619 The general move patterns therefore reject this combination.
11621 In this context, lazy binding would actually be OK
11622 for TARGET_CALL_CLOBBERED_GP, but it's still wrong for
11623 TARGET_CALL_SAVED_GP; see mips_load_call_address.
11624 We must therefore load the address via a temporary
11625 register if mips_dangerous_for_la25_p.
11627 If we jump to the temporary register rather than $25, the assembler
11628 can use the move insn to fill the jump's delay slot. */
11629 if (TARGET_USE_PIC_FN_ADDR_REG
11630 && !mips_dangerous_for_la25_p (fnaddr
))
11631 temp1
= gen_rtx_REG (Pmode
, PIC_FUNCTION_ADDR_REGNUM
);
11632 mips_load_call_address (temp1
, fnaddr
, true);
11634 if (TARGET_USE_PIC_FN_ADDR_REG
11635 && REGNO (temp1
) != PIC_FUNCTION_ADDR_REGNUM
)
11636 mips_emit_move (gen_rtx_REG (Pmode
, PIC_FUNCTION_ADDR_REGNUM
), temp1
);
11637 emit_jump_insn (gen_indirect_jump (temp1
));
11640 /* Run just enough of rest_of_compilation. This sequence was
11641 "borrowed" from alpha.c. */
11642 insn
= get_insns ();
11643 insn_locators_alloc ();
11644 split_all_insns_noflow ();
11645 mips16_lay_out_constants ();
11646 shorten_branches (insn
);
11647 final_start_function (insn
, file
, 1);
11648 final (insn
, file
, 1);
11649 final_end_function ();
11651 /* Clean up the vars set above. Note that final_end_function resets
11652 the global pointer for us. */
11653 reload_completed
= 0;
11656 /* The last argument passed to mips_set_mips16_mode, or negative if the
11657 function hasn't been called yet. */
11658 static GTY(()) int was_mips16_p
= -1;
11660 /* Set up the target-dependent global state so that it matches the
11661 current function's ISA mode. */
11664 mips_set_mips16_mode (int mips16_p
)
11666 if (mips16_p
== was_mips16_p
)
11669 /* Restore base settings of various flags. */
11670 target_flags
= mips_base_target_flags
;
11671 flag_schedule_insns
= mips_base_schedule_insns
;
11672 flag_reorder_blocks_and_partition
= mips_base_reorder_blocks_and_partition
;
11673 flag_move_loop_invariants
= mips_base_move_loop_invariants
;
11674 align_loops
= mips_base_align_loops
;
11675 align_jumps
= mips_base_align_jumps
;
11676 align_functions
= mips_base_align_functions
;
11680 /* Switch to MIPS16 mode. */
11681 target_flags
|= MASK_MIPS16
;
11683 /* Don't run the scheduler before reload, since it tends to
11684 increase register pressure. */
11685 flag_schedule_insns
= 0;
11687 /* Don't do hot/cold partitioning. mips16_lay_out_constants expects
11688 the whole function to be in a single section. */
11689 flag_reorder_blocks_and_partition
= 0;
11691 /* Don't move loop invariants, because it tends to increase
11692 register pressure. It also introduces an extra move in cases
11693 where the constant is the first operand in a two-operand binary
11694 instruction, or when it forms a register argument to a functon
11696 flag_move_loop_invariants
= 0;
11698 /* Silently disable -mexplicit-relocs since it doesn't apply
11699 to MIPS16 code. Even so, it would overly pedantic to warn
11700 about "-mips16 -mexplicit-relocs", especially given that
11701 we use a %gprel() operator. */
11702 target_flags
&= ~MASK_EXPLICIT_RELOCS
;
11704 /* Experiments suggest we get the best overall section-anchor
11705 results from using the range of an unextended LW or SW. Code
11706 that makes heavy use of byte or short accesses can do better
11707 with ranges of 0...31 and 0...63 respectively, but most code is
11708 sensitive to the range of LW and SW instead. */
11709 targetm
.min_anchor_offset
= 0;
11710 targetm
.max_anchor_offset
= 127;
11712 if (flag_pic
|| TARGET_ABICALLS
)
11713 sorry ("MIPS16 PIC");
11715 if (TARGET_HARD_FLOAT_ABI
&& !TARGET_OLDABI
)
11716 sorry ("hard-float MIPS16 code for ABIs other than o32 and o64");
11720 /* Switch to normal (non-MIPS16) mode. */
11721 target_flags
&= ~MASK_MIPS16
;
11723 /* Provide default values for align_* for 64-bit targets. */
11726 if (align_loops
== 0)
11728 if (align_jumps
== 0)
11730 if (align_functions
== 0)
11731 align_functions
= 8;
11734 targetm
.min_anchor_offset
= -32768;
11735 targetm
.max_anchor_offset
= 32767;
11738 /* (Re)initialize MIPS target internals for new ISA. */
11739 mips_init_relocs ();
11741 if (was_mips16_p
>= 0)
11742 /* Reinitialize target-dependent state. */
11745 was_mips16_p
= mips16_p
;
11748 /* Implement TARGET_SET_CURRENT_FUNCTION. Decide whether the current
11749 function should use the MIPS16 ISA and switch modes accordingly. */
11752 mips_set_current_function (tree fndecl
)
11754 mips_set_mips16_mode (mips_use_mips16_mode_p (fndecl
));
11757 /* Allocate a chunk of memory for per-function machine-dependent data. */
11759 static struct machine_function
*
11760 mips_init_machine_status (void)
11762 return ((struct machine_function
*)
11763 ggc_alloc_cleared (sizeof (struct machine_function
)));
11766 /* Return the processor associated with the given ISA level, or null
11767 if the ISA isn't valid. */
11769 static const struct mips_cpu_info
*
11770 mips_cpu_info_from_isa (int isa
)
11774 for (i
= 0; i
< ARRAY_SIZE (mips_cpu_info_table
); i
++)
11775 if (mips_cpu_info_table
[i
].isa
== isa
)
11776 return mips_cpu_info_table
+ i
;
11781 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
11782 with a final "000" replaced by "k". Ignore case.
11784 Note: this function is shared between GCC and GAS. */
11787 mips_strict_matching_cpu_name_p (const char *canonical
, const char *given
)
11789 while (*given
!= 0 && TOLOWER (*given
) == TOLOWER (*canonical
))
11790 given
++, canonical
++;
11792 return ((*given
== 0 && *canonical
== 0)
11793 || (strcmp (canonical
, "000") == 0 && strcasecmp (given
, "k") == 0));
11796 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
11797 CPU name. We've traditionally allowed a lot of variation here.
11799 Note: this function is shared between GCC and GAS. */
11802 mips_matching_cpu_name_p (const char *canonical
, const char *given
)
11804 /* First see if the name matches exactly, or with a final "000"
11805 turned into "k". */
11806 if (mips_strict_matching_cpu_name_p (canonical
, given
))
11809 /* If not, try comparing based on numerical designation alone.
11810 See if GIVEN is an unadorned number, or 'r' followed by a number. */
11811 if (TOLOWER (*given
) == 'r')
11813 if (!ISDIGIT (*given
))
11816 /* Skip over some well-known prefixes in the canonical name,
11817 hoping to find a number there too. */
11818 if (TOLOWER (canonical
[0]) == 'v' && TOLOWER (canonical
[1]) == 'r')
11820 else if (TOLOWER (canonical
[0]) == 'r' && TOLOWER (canonical
[1]) == 'm')
11822 else if (TOLOWER (canonical
[0]) == 'r')
11825 return mips_strict_matching_cpu_name_p (canonical
, given
);
11828 /* Return the mips_cpu_info entry for the processor or ISA given
11829 by CPU_STRING. Return null if the string isn't recognized.
11831 A similar function exists in GAS. */
11833 static const struct mips_cpu_info
*
11834 mips_parse_cpu (const char *cpu_string
)
11839 /* In the past, we allowed upper-case CPU names, but it doesn't
11840 work well with the multilib machinery. */
11841 for (s
= cpu_string
; *s
!= 0; s
++)
11844 warning (0, "CPU names must be lower case");
11848 /* 'from-abi' selects the most compatible architecture for the given
11849 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
11850 EABIs, we have to decide whether we're using the 32-bit or 64-bit
11852 if (strcasecmp (cpu_string
, "from-abi") == 0)
11853 return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS
? 1
11854 : ABI_NEEDS_64BIT_REGS
? 3
11855 : (TARGET_64BIT
? 3 : 1));
11857 /* 'default' has traditionally been a no-op. Probably not very useful. */
11858 if (strcasecmp (cpu_string
, "default") == 0)
11861 for (i
= 0; i
< ARRAY_SIZE (mips_cpu_info_table
); i
++)
11862 if (mips_matching_cpu_name_p (mips_cpu_info_table
[i
].name
, cpu_string
))
11863 return mips_cpu_info_table
+ i
;
11868 /* Set up globals to generate code for the ISA or processor
11869 described by INFO. */
11872 mips_set_architecture (const struct mips_cpu_info
*info
)
11876 mips_arch_info
= info
;
11877 mips_arch
= info
->cpu
;
11878 mips_isa
= info
->isa
;
11882 /* Likewise for tuning. */
11885 mips_set_tune (const struct mips_cpu_info
*info
)
11889 mips_tune_info
= info
;
11890 mips_tune
= info
->cpu
;
11894 /* Implement TARGET_HANDLE_OPTION. */
11897 mips_handle_option (size_t code
, const char *arg
, int value ATTRIBUTE_UNUSED
)
11902 if (strcmp (arg
, "32") == 0)
11904 else if (strcmp (arg
, "o64") == 0)
11905 mips_abi
= ABI_O64
;
11906 else if (strcmp (arg
, "n32") == 0)
11907 mips_abi
= ABI_N32
;
11908 else if (strcmp (arg
, "64") == 0)
11910 else if (strcmp (arg
, "eabi") == 0)
11911 mips_abi
= ABI_EABI
;
11918 return mips_parse_cpu (arg
) != 0;
11921 mips_isa_option_info
= mips_parse_cpu (ACONCAT (("mips", arg
, NULL
)));
11922 return mips_isa_option_info
!= 0;
11924 case OPT_mno_flush_func
:
11925 mips_cache_flush_func
= NULL
;
11928 case OPT_mcode_readable_
:
11929 if (strcmp (arg
, "yes") == 0)
11930 mips_code_readable
= CODE_READABLE_YES
;
11931 else if (strcmp (arg
, "pcrel") == 0)
11932 mips_code_readable
= CODE_READABLE_PCREL
;
11933 else if (strcmp (arg
, "no") == 0)
11934 mips_code_readable
= CODE_READABLE_NO
;
11944 /* Implement OVERRIDE_OPTIONS. */
11947 mips_override_options (void)
11949 int i
, start
, regno
, mode
;
11951 #ifdef SUBTARGET_OVERRIDE_OPTIONS
11952 SUBTARGET_OVERRIDE_OPTIONS
;
11955 /* Set the small data limit. */
11956 mips_small_data_threshold
= (g_switch_set
11958 : MIPS_DEFAULT_GVALUE
);
11960 /* The following code determines the architecture and register size.
11961 Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
11962 The GAS and GCC code should be kept in sync as much as possible. */
11964 if (mips_arch_string
!= 0)
11965 mips_set_architecture (mips_parse_cpu (mips_arch_string
));
11967 if (mips_isa_option_info
!= 0)
11969 if (mips_arch_info
== 0)
11970 mips_set_architecture (mips_isa_option_info
);
11971 else if (mips_arch_info
->isa
!= mips_isa_option_info
->isa
)
11972 error ("%<-%s%> conflicts with the other architecture options, "
11973 "which specify a %s processor",
11974 mips_isa_option_info
->name
,
11975 mips_cpu_info_from_isa (mips_arch_info
->isa
)->name
);
11978 if (mips_arch_info
== 0)
11980 #ifdef MIPS_CPU_STRING_DEFAULT
11981 mips_set_architecture (mips_parse_cpu (MIPS_CPU_STRING_DEFAULT
));
11983 mips_set_architecture (mips_cpu_info_from_isa (MIPS_ISA_DEFAULT
));
11987 if (ABI_NEEDS_64BIT_REGS
&& !ISA_HAS_64BIT_REGS
)
11988 error ("%<-march=%s%> is not compatible with the selected ABI",
11989 mips_arch_info
->name
);
11991 /* Optimize for mips_arch, unless -mtune selects a different processor. */
11992 if (mips_tune_string
!= 0)
11993 mips_set_tune (mips_parse_cpu (mips_tune_string
));
11995 if (mips_tune_info
== 0)
11996 mips_set_tune (mips_arch_info
);
11998 if ((target_flags_explicit
& MASK_64BIT
) != 0)
12000 /* The user specified the size of the integer registers. Make sure
12001 it agrees with the ABI and ISA. */
12002 if (TARGET_64BIT
&& !ISA_HAS_64BIT_REGS
)
12003 error ("%<-mgp64%> used with a 32-bit processor");
12004 else if (!TARGET_64BIT
&& ABI_NEEDS_64BIT_REGS
)
12005 error ("%<-mgp32%> used with a 64-bit ABI");
12006 else if (TARGET_64BIT
&& ABI_NEEDS_32BIT_REGS
)
12007 error ("%<-mgp64%> used with a 32-bit ABI");
12011 /* Infer the integer register size from the ABI and processor.
12012 Restrict ourselves to 32-bit registers if that's all the
12013 processor has, or if the ABI cannot handle 64-bit registers. */
12014 if (ABI_NEEDS_32BIT_REGS
|| !ISA_HAS_64BIT_REGS
)
12015 target_flags
&= ~MASK_64BIT
;
12017 target_flags
|= MASK_64BIT
;
12020 if ((target_flags_explicit
& MASK_FLOAT64
) != 0)
12022 if (TARGET_SINGLE_FLOAT
&& TARGET_FLOAT64
)
12023 error ("unsupported combination: %s", "-mfp64 -msingle-float");
12024 else if (TARGET_64BIT
&& TARGET_DOUBLE_FLOAT
&& !TARGET_FLOAT64
)
12025 error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
12026 else if (!TARGET_64BIT
&& TARGET_FLOAT64
)
12028 if (!ISA_HAS_MXHC1
)
12029 error ("%<-mgp32%> and %<-mfp64%> can only be combined if"
12030 " the target supports the mfhc1 and mthc1 instructions");
12031 else if (mips_abi
!= ABI_32
)
12032 error ("%<-mgp32%> and %<-mfp64%> can only be combined when using"
12038 /* -msingle-float selects 32-bit float registers. Otherwise the
12039 float registers should be the same size as the integer ones. */
12040 if (TARGET_64BIT
&& TARGET_DOUBLE_FLOAT
)
12041 target_flags
|= MASK_FLOAT64
;
12043 target_flags
&= ~MASK_FLOAT64
;
12046 /* End of code shared with GAS. */
12048 /* If no -mlong* option was given, infer it from the other options. */
12049 if ((target_flags_explicit
& MASK_LONG64
) == 0)
12051 if ((mips_abi
== ABI_EABI
&& TARGET_64BIT
) || mips_abi
== ABI_64
)
12052 target_flags
|= MASK_LONG64
;
12054 target_flags
&= ~MASK_LONG64
;
12057 if (!TARGET_OLDABI
)
12058 flag_pcc_struct_return
= 0;
12060 /* Decide which rtx_costs structure to use. */
12062 mips_cost
= &mips_rtx_cost_optimize_size
;
12064 mips_cost
= &mips_rtx_cost_data
[mips_tune
];
12066 /* If the user hasn't specified a branch cost, use the processor's
12068 if (mips_branch_cost
== 0)
12069 mips_branch_cost
= mips_cost
->branch_cost
;
12071 /* If neither -mbranch-likely nor -mno-branch-likely was given
12072 on the command line, set MASK_BRANCHLIKELY based on the target
12073 architecture and tuning flags. Annulled delay slots are a
12074 size win, so we only consider the processor-specific tuning
12075 for !optimize_size. */
12076 if ((target_flags_explicit
& MASK_BRANCHLIKELY
) == 0)
12078 if (ISA_HAS_BRANCHLIKELY
12080 || (mips_tune_info
->tune_flags
& PTF_AVOID_BRANCHLIKELY
) == 0))
12081 target_flags
|= MASK_BRANCHLIKELY
;
12083 target_flags
&= ~MASK_BRANCHLIKELY
;
12085 else if (TARGET_BRANCHLIKELY
&& !ISA_HAS_BRANCHLIKELY
)
12086 warning (0, "the %qs architecture does not support branch-likely"
12087 " instructions", mips_arch_info
->name
);
12089 /* The effect of -mabicalls isn't defined for the EABI. */
12090 if (mips_abi
== ABI_EABI
&& TARGET_ABICALLS
)
12092 error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
12093 target_flags
&= ~MASK_ABICALLS
;
12096 /* MIPS16 cannot generate PIC yet. */
12097 if (TARGET_MIPS16
&& (flag_pic
|| TARGET_ABICALLS
))
12099 sorry ("MIPS16 PIC");
12100 target_flags
&= ~MASK_ABICALLS
;
12101 flag_pic
= flag_pie
= flag_shlib
= 0;
12104 if (TARGET_ABICALLS
)
12105 /* We need to set flag_pic for executables as well as DSOs
12106 because we may reference symbols that are not defined in
12107 the final executable. (MIPS does not use things like
12108 copy relocs, for example.)
12110 Also, there is a body of code that uses __PIC__ to distinguish
12111 between -mabicalls and -mno-abicalls code. */
12114 /* -mvr4130-align is a "speed over size" optimization: it usually produces
12115 faster code, but at the expense of more nops. Enable it at -O3 and
12117 if (optimize
> 2 && (target_flags_explicit
& MASK_VR4130_ALIGN
) == 0)
12118 target_flags
|= MASK_VR4130_ALIGN
;
12120 /* Prefer a call to memcpy over inline code when optimizing for size,
12121 though see MOVE_RATIO in mips.h. */
12122 if (optimize_size
&& (target_flags_explicit
& MASK_MEMCPY
) == 0)
12123 target_flags
|= MASK_MEMCPY
;
12125 /* If we have a nonzero small-data limit, check that the -mgpopt
12126 setting is consistent with the other target flags. */
12127 if (mips_small_data_threshold
> 0)
12131 if (!TARGET_MIPS16
&& !TARGET_EXPLICIT_RELOCS
)
12132 error ("%<-mno-gpopt%> needs %<-mexplicit-relocs%>");
12134 TARGET_LOCAL_SDATA
= false;
12135 TARGET_EXTERN_SDATA
= false;
12139 if (TARGET_VXWORKS_RTP
)
12140 warning (0, "cannot use small-data accesses for %qs", "-mrtp");
12142 if (TARGET_ABICALLS
)
12143 warning (0, "cannot use small-data accesses for %qs",
12148 #ifdef MIPS_TFMODE_FORMAT
12149 REAL_MODE_FORMAT (TFmode
) = &MIPS_TFMODE_FORMAT
;
12152 /* Make sure that the user didn't turn off paired single support when
12153 MIPS-3D support is requested. */
12155 && (target_flags_explicit
& MASK_PAIRED_SINGLE_FLOAT
)
12156 && !TARGET_PAIRED_SINGLE_FLOAT
)
12157 error ("%<-mips3d%> requires %<-mpaired-single%>");
12159 /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT. */
12161 target_flags
|= MASK_PAIRED_SINGLE_FLOAT
;
12163 /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
12164 and TARGET_HARD_FLOAT_ABI are both true. */
12165 if (TARGET_PAIRED_SINGLE_FLOAT
&& !(TARGET_FLOAT64
&& TARGET_HARD_FLOAT_ABI
))
12166 error ("%qs must be used with %qs",
12167 TARGET_MIPS3D
? "-mips3d" : "-mpaired-single",
12168 TARGET_HARD_FLOAT_ABI
? "-mfp64" : "-mhard-float");
12170 /* Make sure that the ISA supports TARGET_PAIRED_SINGLE_FLOAT when it is
12172 if (TARGET_PAIRED_SINGLE_FLOAT
&& !ISA_HAS_PAIRED_SINGLE
)
12173 warning (0, "the %qs architecture does not support paired-single"
12174 " instructions", mips_arch_info
->name
);
12176 /* If TARGET_DSPR2, enable MASK_DSP. */
12178 target_flags
|= MASK_DSP
;
12180 mips_init_print_operand_punct ();
12182 /* Set up array to map GCC register number to debug register number.
12183 Ignore the special purpose register numbers. */
12185 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
12187 mips_dbx_regno
[i
] = INVALID_REGNUM
;
12188 if (GP_REG_P (i
) || FP_REG_P (i
) || ALL_COP_REG_P (i
))
12189 mips_dwarf_regno
[i
] = i
;
12191 mips_dwarf_regno
[i
] = INVALID_REGNUM
;
12194 start
= GP_DBX_FIRST
- GP_REG_FIRST
;
12195 for (i
= GP_REG_FIRST
; i
<= GP_REG_LAST
; i
++)
12196 mips_dbx_regno
[i
] = i
+ start
;
12198 start
= FP_DBX_FIRST
- FP_REG_FIRST
;
12199 for (i
= FP_REG_FIRST
; i
<= FP_REG_LAST
; i
++)
12200 mips_dbx_regno
[i
] = i
+ start
;
12202 /* Accumulator debug registers use big-endian ordering. */
12203 mips_dbx_regno
[HI_REGNUM
] = MD_DBX_FIRST
+ 0;
12204 mips_dbx_regno
[LO_REGNUM
] = MD_DBX_FIRST
+ 1;
12205 mips_dwarf_regno
[HI_REGNUM
] = MD_REG_FIRST
+ 0;
12206 mips_dwarf_regno
[LO_REGNUM
] = MD_REG_FIRST
+ 1;
12207 for (i
= DSP_ACC_REG_FIRST
; i
<= DSP_ACC_REG_LAST
; i
+= 2)
12209 mips_dwarf_regno
[i
+ TARGET_LITTLE_ENDIAN
] = i
;
12210 mips_dwarf_regno
[i
+ TARGET_BIG_ENDIAN
] = i
+ 1;
12213 /* Set up mips_hard_regno_mode_ok. */
12214 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
12215 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
12216 mips_hard_regno_mode_ok
[(int)mode
][regno
]
12217 = mips_hard_regno_mode_ok_p (regno
, mode
);
12219 /* Function to allocate machine-dependent function status. */
12220 init_machine_status
= &mips_init_machine_status
;
12222 /* Default to working around R4000 errata only if the processor
12223 was selected explicitly. */
12224 if ((target_flags_explicit
& MASK_FIX_R4000
) == 0
12225 && mips_matching_cpu_name_p (mips_arch_info
->name
, "r4000"))
12226 target_flags
|= MASK_FIX_R4000
;
12228 /* Default to working around R4400 errata only if the processor
12229 was selected explicitly. */
12230 if ((target_flags_explicit
& MASK_FIX_R4400
) == 0
12231 && mips_matching_cpu_name_p (mips_arch_info
->name
, "r4400"))
12232 target_flags
|= MASK_FIX_R4400
;
12234 /* Save base state of options. */
12235 mips_base_mips16
= TARGET_MIPS16
;
12236 mips_base_target_flags
= target_flags
;
12237 mips_base_delayed_branch
= flag_delayed_branch
;
12238 mips_base_schedule_insns
= flag_schedule_insns
;
12239 mips_base_reorder_blocks_and_partition
= flag_reorder_blocks_and_partition
;
12240 mips_base_move_loop_invariants
= flag_move_loop_invariants
;
12241 mips_base_align_loops
= align_loops
;
12242 mips_base_align_jumps
= align_jumps
;
12243 mips_base_align_functions
= align_functions
;
12245 /* Now select the ISA mode. */
12246 mips_set_mips16_mode (mips_base_mips16
);
12248 /* We call dbr_schedule from within mips_reorg. */
12249 flag_delayed_branch
= 0;
12252 /* Swap the register information for registers I and I + 1, which
12253 currently have the wrong endianness. Note that the registers'
12254 fixedness and call-clobberedness might have been set on the
12258 mips_swap_registers (unsigned int i
)
12263 #define SWAP_INT(X, Y) (tmpi = (X), (X) = (Y), (Y) = tmpi)
12264 #define SWAP_STRING(X, Y) (tmps = (X), (X) = (Y), (Y) = tmps)
12266 SWAP_INT (fixed_regs
[i
], fixed_regs
[i
+ 1]);
12267 SWAP_INT (call_used_regs
[i
], call_used_regs
[i
+ 1]);
12268 SWAP_INT (call_really_used_regs
[i
], call_really_used_regs
[i
+ 1]);
12269 SWAP_STRING (reg_names
[i
], reg_names
[i
+ 1]);
12275 /* Implement CONDITIONAL_REGISTER_USAGE. */
12278 mips_conditional_register_usage (void)
12284 for (regno
= DSP_ACC_REG_FIRST
; regno
<= DSP_ACC_REG_LAST
; regno
++)
12285 fixed_regs
[regno
] = call_used_regs
[regno
] = 1;
12287 if (!TARGET_HARD_FLOAT
)
12291 for (regno
= FP_REG_FIRST
; regno
<= FP_REG_LAST
; regno
++)
12292 fixed_regs
[regno
] = call_used_regs
[regno
] = 1;
12293 for (regno
= ST_REG_FIRST
; regno
<= ST_REG_LAST
; regno
++)
12294 fixed_regs
[regno
] = call_used_regs
[regno
] = 1;
12296 else if (! ISA_HAS_8CC
)
12300 /* We only have a single condition-code register. We implement
12301 this by fixing all the condition-code registers and generating
12302 RTL that refers directly to ST_REG_FIRST. */
12303 for (regno
= ST_REG_FIRST
; regno
<= ST_REG_LAST
; regno
++)
12304 fixed_regs
[regno
] = call_used_regs
[regno
] = 1;
12306 /* In MIPS16 mode, we permit the $t temporary registers to be used
12307 for reload. We prohibit the unused $s registers, since they
12308 are call-saved, and saving them via a MIPS16 register would
12309 probably waste more time than just reloading the value. */
12312 fixed_regs
[18] = call_used_regs
[18] = 1;
12313 fixed_regs
[19] = call_used_regs
[19] = 1;
12314 fixed_regs
[20] = call_used_regs
[20] = 1;
12315 fixed_regs
[21] = call_used_regs
[21] = 1;
12316 fixed_regs
[22] = call_used_regs
[22] = 1;
12317 fixed_regs
[23] = call_used_regs
[23] = 1;
12318 fixed_regs
[26] = call_used_regs
[26] = 1;
12319 fixed_regs
[27] = call_used_regs
[27] = 1;
12320 fixed_regs
[30] = call_used_regs
[30] = 1;
12322 /* $f20-$f23 are call-clobbered for n64. */
12323 if (mips_abi
== ABI_64
)
12326 for (regno
= FP_REG_FIRST
+ 20; regno
< FP_REG_FIRST
+ 24; regno
++)
12327 call_really_used_regs
[regno
] = call_used_regs
[regno
] = 1;
12329 /* Odd registers in the range $f21-$f31 (inclusive) are call-clobbered
12331 if (mips_abi
== ABI_N32
)
12334 for (regno
= FP_REG_FIRST
+ 21; regno
<= FP_REG_FIRST
+ 31; regno
+=2)
12335 call_really_used_regs
[regno
] = call_used_regs
[regno
] = 1;
12337 /* Make sure that double-register accumulator values are correctly
12338 ordered for the current endianness. */
12339 if (TARGET_LITTLE_ENDIAN
)
12341 unsigned int regno
;
12343 mips_swap_registers (MD_REG_FIRST
);
12344 for (regno
= DSP_ACC_REG_FIRST
; regno
<= DSP_ACC_REG_LAST
; regno
+= 2)
12345 mips_swap_registers (regno
);
12349 /* When generating MIPS16 code, we want to allocate $24 (T_REG) before
12350 other registers for instructions for which it is possible. This
12351 encourages the compiler to use CMP in cases where an XOR would
12352 require some register shuffling. */
12355 mips_order_regs_for_local_alloc (void)
12359 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
12360 reg_alloc_order
[i
] = i
;
12364 /* It really doesn't matter where we put register 0, since it is
12365 a fixed register anyhow. */
12366 reg_alloc_order
[0] = 24;
12367 reg_alloc_order
[24] = 0;
12371 /* Initialize the GCC target structure. */
12372 #undef TARGET_ASM_ALIGNED_HI_OP
12373 #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
12374 #undef TARGET_ASM_ALIGNED_SI_OP
12375 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
12376 #undef TARGET_ASM_ALIGNED_DI_OP
12377 #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
12379 #undef TARGET_ASM_FUNCTION_PROLOGUE
12380 #define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
12381 #undef TARGET_ASM_FUNCTION_EPILOGUE
12382 #define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
12383 #undef TARGET_ASM_SELECT_RTX_SECTION
12384 #define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
12385 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
12386 #define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
12388 #undef TARGET_SCHED_INIT
12389 #define TARGET_SCHED_INIT mips_sched_init
12390 #undef TARGET_SCHED_REORDER
12391 #define TARGET_SCHED_REORDER mips_sched_reorder
12392 #undef TARGET_SCHED_REORDER2
12393 #define TARGET_SCHED_REORDER2 mips_sched_reorder
12394 #undef TARGET_SCHED_VARIABLE_ISSUE
12395 #define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
12396 #undef TARGET_SCHED_ADJUST_COST
12397 #define TARGET_SCHED_ADJUST_COST mips_adjust_cost
12398 #undef TARGET_SCHED_ISSUE_RATE
12399 #define TARGET_SCHED_ISSUE_RATE mips_issue_rate
12400 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
12401 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
12402 mips_multipass_dfa_lookahead
12404 #undef TARGET_DEFAULT_TARGET_FLAGS
12405 #define TARGET_DEFAULT_TARGET_FLAGS \
12407 | TARGET_CPU_DEFAULT \
12408 | TARGET_ENDIAN_DEFAULT \
12409 | TARGET_FP_EXCEPTIONS_DEFAULT \
12410 | MASK_CHECK_ZERO_DIV \
12412 #undef TARGET_HANDLE_OPTION
12413 #define TARGET_HANDLE_OPTION mips_handle_option
12415 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
12416 #define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
12418 #undef TARGET_INSERT_ATTRIBUTES
12419 #define TARGET_INSERT_ATTRIBUTES mips_insert_attributes
12420 #undef TARGET_MERGE_DECL_ATTRIBUTES
12421 #define TARGET_MERGE_DECL_ATTRIBUTES mips_merge_decl_attributes
12422 #undef TARGET_SET_CURRENT_FUNCTION
12423 #define TARGET_SET_CURRENT_FUNCTION mips_set_current_function
12425 #undef TARGET_VALID_POINTER_MODE
12426 #define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
12427 #undef TARGET_RTX_COSTS
12428 #define TARGET_RTX_COSTS mips_rtx_costs
12429 #undef TARGET_ADDRESS_COST
12430 #define TARGET_ADDRESS_COST mips_address_cost
12432 #undef TARGET_IN_SMALL_DATA_P
12433 #define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
12435 #undef TARGET_MACHINE_DEPENDENT_REORG
12436 #define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
12438 #undef TARGET_ASM_FILE_START
12439 #define TARGET_ASM_FILE_START mips_file_start
12440 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
12441 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
12443 #undef TARGET_INIT_LIBFUNCS
12444 #define TARGET_INIT_LIBFUNCS mips_init_libfuncs
12446 #undef TARGET_BUILD_BUILTIN_VA_LIST
12447 #define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
12448 #undef TARGET_EXPAND_BUILTIN_VA_START
12449 #define TARGET_EXPAND_BUILTIN_VA_START mips_va_start
12450 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
12451 #define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
12453 #undef TARGET_PROMOTE_FUNCTION_ARGS
12454 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
12455 #undef TARGET_PROMOTE_FUNCTION_RETURN
12456 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
12457 #undef TARGET_PROMOTE_PROTOTYPES
12458 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
12460 #undef TARGET_RETURN_IN_MEMORY
12461 #define TARGET_RETURN_IN_MEMORY mips_return_in_memory
12462 #undef TARGET_RETURN_IN_MSB
12463 #define TARGET_RETURN_IN_MSB mips_return_in_msb
12465 #undef TARGET_ASM_OUTPUT_MI_THUNK
12466 #define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
12467 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
12468 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
12470 #undef TARGET_SETUP_INCOMING_VARARGS
12471 #define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
12472 #undef TARGET_STRICT_ARGUMENT_NAMING
12473 #define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
12474 #undef TARGET_MUST_PASS_IN_STACK
12475 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
12476 #undef TARGET_PASS_BY_REFERENCE
12477 #define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
12478 #undef TARGET_CALLEE_COPIES
12479 #define TARGET_CALLEE_COPIES mips_callee_copies
12480 #undef TARGET_ARG_PARTIAL_BYTES
12481 #define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
12483 #undef TARGET_MODE_REP_EXTENDED
12484 #define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
12486 #undef TARGET_VECTOR_MODE_SUPPORTED_P
12487 #define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
12489 #undef TARGET_SCALAR_MODE_SUPPORTED_P
12490 #define TARGET_SCALAR_MODE_SUPPORTED_P mips_scalar_mode_supported_p
12492 #undef TARGET_INIT_BUILTINS
12493 #define TARGET_INIT_BUILTINS mips_init_builtins
12494 #undef TARGET_EXPAND_BUILTIN
12495 #define TARGET_EXPAND_BUILTIN mips_expand_builtin
12497 #undef TARGET_HAVE_TLS
12498 #define TARGET_HAVE_TLS HAVE_AS_TLS
12500 #undef TARGET_CANNOT_FORCE_CONST_MEM
12501 #define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
12503 #undef TARGET_ENCODE_SECTION_INFO
12504 #define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
12506 #undef TARGET_ATTRIBUTE_TABLE
12507 #define TARGET_ATTRIBUTE_TABLE mips_attribute_table
12508 /* All our function attributes are related to how out-of-line copies should
12509 be compiled or called. They don't in themselves prevent inlining. */
12510 #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
12511 #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
12513 #undef TARGET_EXTRA_LIVE_ON_ENTRY
12514 #define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
12516 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
12517 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
12518 #undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
12519 #define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
12521 #undef TARGET_COMP_TYPE_ATTRIBUTES
12522 #define TARGET_COMP_TYPE_ATTRIBUTES mips_comp_type_attributes
12524 #ifdef HAVE_AS_DTPRELWORD
12525 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
12526 #define TARGET_ASM_OUTPUT_DWARF_DTPREL mips_output_dwarf_dtprel
12528 #undef TARGET_DWARF_REGISTER_SPAN
12529 #define TARGET_DWARF_REGISTER_SPAN mips_dwarf_register_span
12531 struct gcc_target targetm
= TARGET_INITIALIZER
;
12533 #include "gt-mips.h"