1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "insn-codes.h"
30 #include "tree-pass.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
52 #include "tree-scalar-evolution.h"
53 #include "tree-ssa-propagate.h"
54 #include "tree-chrec.h"
55 #include "tree-ssa-threadupdate.h"
56 #include "tree-ssa-scopedtables.h"
57 #include "tree-ssa-threadedge.h"
58 #include "omp-general.h"
60 #include "case-cfn-macros.h"
62 #include "alloc-pool.h"
64 #include "tree-cfgcleanup.h"
66 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
68 /* Allocation pools for tree-vrp allocations. */
69 static object_allocator
<value_range
> vrp_value_range_pool ("Tree VRP value ranges");
70 static bitmap_obstack vrp_equiv_obstack
;
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
76 /* Return true if the SSA name NAME is live on the edge E. */
79 live_on_edge (edge e
, tree name
)
81 return (live
[e
->dest
->index
]
82 && bitmap_bit_p (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
85 /* Local functions. */
86 static int compare_values (tree val1
, tree val2
);
87 static int compare_values_warnv (tree val1
, tree val2
, bool *);
88 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
89 tree
, tree
, bool, bool *,
92 /* Location information for ASSERT_EXPRs. Each instance of this
93 structure describes an ASSERT_EXPR for an SSA name. Since a single
94 SSA name may have more than one assertion associated with it, these
95 locations are kept in a linked list attached to the corresponding
99 /* Basic block where the assertion would be inserted. */
102 /* Some assertions need to be inserted on an edge (e.g., assertions
103 generated by COND_EXPRs). In those cases, BB will be NULL. */
106 /* Pointer to the statement that generated this assertion. */
107 gimple_stmt_iterator si
;
109 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
110 enum tree_code comp_code
;
112 /* Value being compared against. */
115 /* Expression to compare. */
118 /* Next node in the linked list. */
122 /* If bit I is present, it means that SSA name N_i has a list of
123 assertions that should be inserted in the IL. */
124 static bitmap need_assert_for
;
126 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
127 holds a list of ASSERT_LOCUS_T nodes that describe where
128 ASSERT_EXPRs for SSA name N_I should be inserted. */
129 static assert_locus
**asserts_for
;
131 /* Value range array. After propagation, VR_VALUE[I] holds the range
132 of values that SSA name N_I may take. */
133 static unsigned num_vr_values
;
134 static value_range
**vr_value
;
135 static bool values_propagated
;
137 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
138 number of executable edges we saw the last time we visited the
140 static int *vr_phi_edge_counts
;
142 struct switch_update
{
147 static vec
<edge
> to_remove_edges
;
148 static vec
<switch_update
> to_update_switch_stmts
;
151 /* Return the maximum value for TYPE. */
154 vrp_val_max (const_tree type
)
156 if (!INTEGRAL_TYPE_P (type
))
159 return TYPE_MAX_VALUE (type
);
162 /* Return the minimum value for TYPE. */
165 vrp_val_min (const_tree type
)
167 if (!INTEGRAL_TYPE_P (type
))
170 return TYPE_MIN_VALUE (type
);
173 /* Return whether VAL is equal to the maximum value of its type. This
174 will be true for a positive overflow infinity. We can't do a
175 simple equality comparison with TYPE_MAX_VALUE because C typedefs
176 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
177 to the integer constant with the same value in the type. */
180 vrp_val_is_max (const_tree val
)
182 tree type_max
= vrp_val_max (TREE_TYPE (val
));
183 return (val
== type_max
184 || (type_max
!= NULL_TREE
185 && operand_equal_p (val
, type_max
, 0)));
188 /* Return whether VAL is equal to the minimum value of its type. This
189 will be true for a negative overflow infinity. */
192 vrp_val_is_min (const_tree val
)
194 tree type_min
= vrp_val_min (TREE_TYPE (val
));
195 return (val
== type_min
196 || (type_min
!= NULL_TREE
197 && operand_equal_p (val
, type_min
, 0)));
201 /* Return whether TYPE should use an overflow infinity distinct from
202 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
203 represent a signed overflow during VRP computations. An infinity
204 is distinct from a half-range, which will go from some number to
205 TYPE_{MIN,MAX}_VALUE. */
208 needs_overflow_infinity (const_tree type
)
210 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
213 /* Return whether TYPE can support our overflow infinity
214 representation: we use the TREE_OVERFLOW flag, which only exists
215 for constants. If TYPE doesn't support this, we don't optimize
216 cases which would require signed overflow--we drop them to
220 supports_overflow_infinity (const_tree type
)
222 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
223 gcc_checking_assert (needs_overflow_infinity (type
));
224 return (min
!= NULL_TREE
225 && CONSTANT_CLASS_P (min
)
227 && CONSTANT_CLASS_P (max
));
230 /* VAL is the maximum or minimum value of a type. Return a
231 corresponding overflow infinity. */
234 make_overflow_infinity (tree val
)
236 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
237 val
= copy_node (val
);
238 TREE_OVERFLOW (val
) = 1;
242 /* Return a negative overflow infinity for TYPE. */
245 negative_overflow_infinity (tree type
)
247 gcc_checking_assert (supports_overflow_infinity (type
));
248 return make_overflow_infinity (vrp_val_min (type
));
251 /* Return a positive overflow infinity for TYPE. */
254 positive_overflow_infinity (tree type
)
256 gcc_checking_assert (supports_overflow_infinity (type
));
257 return make_overflow_infinity (vrp_val_max (type
));
260 /* Return whether VAL is a negative overflow infinity. */
263 is_negative_overflow_infinity (const_tree val
)
265 return (TREE_OVERFLOW_P (val
)
266 && needs_overflow_infinity (TREE_TYPE (val
))
267 && vrp_val_is_min (val
));
270 /* Return whether VAL is a positive overflow infinity. */
273 is_positive_overflow_infinity (const_tree val
)
275 return (TREE_OVERFLOW_P (val
)
276 && needs_overflow_infinity (TREE_TYPE (val
))
277 && vrp_val_is_max (val
));
280 /* Return whether VAL is a positive or negative overflow infinity. */
283 is_overflow_infinity (const_tree val
)
285 return (TREE_OVERFLOW_P (val
)
286 && needs_overflow_infinity (TREE_TYPE (val
))
287 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
290 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
293 stmt_overflow_infinity (gimple
*stmt
)
295 if (is_gimple_assign (stmt
)
296 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
298 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
302 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
303 the same value with TREE_OVERFLOW clear. This can be used to avoid
304 confusing a regular value with an overflow value. */
307 avoid_overflow_infinity (tree val
)
309 if (!is_overflow_infinity (val
))
312 if (vrp_val_is_max (val
))
313 return vrp_val_max (TREE_TYPE (val
));
316 gcc_checking_assert (vrp_val_is_min (val
));
317 return vrp_val_min (TREE_TYPE (val
));
322 /* Set value range VR to VR_UNDEFINED. */
325 set_value_range_to_undefined (value_range
*vr
)
327 vr
->type
= VR_UNDEFINED
;
328 vr
->min
= vr
->max
= NULL_TREE
;
330 bitmap_clear (vr
->equiv
);
334 /* Set value range VR to VR_VARYING. */
337 set_value_range_to_varying (value_range
*vr
)
339 vr
->type
= VR_VARYING
;
340 vr
->min
= vr
->max
= NULL_TREE
;
342 bitmap_clear (vr
->equiv
);
346 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
349 set_value_range (value_range
*vr
, enum value_range_type t
, tree min
,
350 tree max
, bitmap equiv
)
352 /* Check the validity of the range. */
354 && (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
))
358 gcc_assert (min
&& max
);
360 gcc_assert ((!TREE_OVERFLOW_P (min
) || is_overflow_infinity (min
))
361 && (!TREE_OVERFLOW_P (max
) || is_overflow_infinity (max
)));
363 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
364 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
366 cmp
= compare_values (min
, max
);
367 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
371 && (t
== VR_UNDEFINED
|| t
== VR_VARYING
))
373 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
374 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
381 /* Since updating the equivalence set involves deep copying the
382 bitmaps, only do it if absolutely necessary. */
383 if (vr
->equiv
== NULL
385 vr
->equiv
= BITMAP_ALLOC (&vrp_equiv_obstack
);
387 if (equiv
!= vr
->equiv
)
389 if (equiv
&& !bitmap_empty_p (equiv
))
390 bitmap_copy (vr
->equiv
, equiv
);
392 bitmap_clear (vr
->equiv
);
397 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
398 This means adjusting T, MIN and MAX representing the case of a
399 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
400 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
401 In corner cases where MAX+1 or MIN-1 wraps this will fall back
403 This routine exists to ease canonicalization in the case where we
404 extract ranges from var + CST op limit. */
407 set_and_canonicalize_value_range (value_range
*vr
, enum value_range_type t
,
408 tree min
, tree max
, bitmap equiv
)
410 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
411 if (t
== VR_UNDEFINED
)
413 set_value_range_to_undefined (vr
);
416 else if (t
== VR_VARYING
)
418 set_value_range_to_varying (vr
);
422 /* Nothing to canonicalize for symbolic ranges. */
423 if (TREE_CODE (min
) != INTEGER_CST
424 || TREE_CODE (max
) != INTEGER_CST
)
426 set_value_range (vr
, t
, min
, max
, equiv
);
430 /* Wrong order for min and max, to swap them and the VR type we need
432 if (tree_int_cst_lt (max
, min
))
436 /* For one bit precision if max < min, then the swapped
437 range covers all values, so for VR_RANGE it is varying and
438 for VR_ANTI_RANGE empty range, so drop to varying as well. */
439 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1)
441 set_value_range_to_varying (vr
);
445 one
= build_int_cst (TREE_TYPE (min
), 1);
446 tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
447 max
= int_const_binop (MINUS_EXPR
, min
, one
);
450 /* There's one corner case, if we had [C+1, C] before we now have
451 that again. But this represents an empty value range, so drop
452 to varying in this case. */
453 if (tree_int_cst_lt (max
, min
))
455 set_value_range_to_varying (vr
);
459 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
462 /* Anti-ranges that can be represented as ranges should be so. */
463 if (t
== VR_ANTI_RANGE
)
465 bool is_min
= vrp_val_is_min (min
);
466 bool is_max
= vrp_val_is_max (max
);
468 if (is_min
&& is_max
)
470 /* We cannot deal with empty ranges, drop to varying.
471 ??? This could be VR_UNDEFINED instead. */
472 set_value_range_to_varying (vr
);
475 else if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
476 && (is_min
|| is_max
))
478 /* Non-empty boolean ranges can always be represented
479 as a singleton range. */
481 min
= max
= vrp_val_max (TREE_TYPE (min
));
483 min
= max
= vrp_val_min (TREE_TYPE (min
));
487 /* As a special exception preserve non-null ranges. */
488 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
489 && integer_zerop (max
)))
491 tree one
= build_int_cst (TREE_TYPE (max
), 1);
492 min
= int_const_binop (PLUS_EXPR
, max
, one
);
493 max
= vrp_val_max (TREE_TYPE (max
));
498 tree one
= build_int_cst (TREE_TYPE (min
), 1);
499 max
= int_const_binop (MINUS_EXPR
, min
, one
);
500 min
= vrp_val_min (TREE_TYPE (min
));
505 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
506 to make sure VRP iteration terminates, otherwise we can get into
509 set_value_range (vr
, t
, min
, max
, equiv
);
512 /* Copy value range FROM into value range TO. */
515 copy_value_range (value_range
*to
, value_range
*from
)
517 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
520 /* Set value range VR to a single value. This function is only called
521 with values we get from statements, and exists to clear the
522 TREE_OVERFLOW flag so that we don't think we have an overflow
523 infinity when we shouldn't. */
526 set_value_range_to_value (value_range
*vr
, tree val
, bitmap equiv
)
528 gcc_assert (is_gimple_min_invariant (val
));
529 if (TREE_OVERFLOW_P (val
))
530 val
= drop_tree_overflow (val
);
531 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
534 /* Set value range VR to a non-negative range of type TYPE.
535 OVERFLOW_INFINITY indicates whether to use an overflow infinity
536 rather than TYPE_MAX_VALUE; this should be true if we determine
537 that the range is nonnegative based on the assumption that signed
538 overflow does not occur. */
541 set_value_range_to_nonnegative (value_range
*vr
, tree type
,
542 bool overflow_infinity
)
546 if (overflow_infinity
&& !supports_overflow_infinity (type
))
548 set_value_range_to_varying (vr
);
552 zero
= build_int_cst (type
, 0);
553 set_value_range (vr
, VR_RANGE
, zero
,
555 ? positive_overflow_infinity (type
)
556 : TYPE_MAX_VALUE (type
)),
560 /* Set value range VR to a non-NULL range of type TYPE. */
563 set_value_range_to_nonnull (value_range
*vr
, tree type
)
565 tree zero
= build_int_cst (type
, 0);
566 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
570 /* Set value range VR to a NULL range of type TYPE. */
573 set_value_range_to_null (value_range
*vr
, tree type
)
575 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
579 /* Set value range VR to a range of a truthvalue of type TYPE. */
582 set_value_range_to_truthvalue (value_range
*vr
, tree type
)
584 if (TYPE_PRECISION (type
) == 1)
585 set_value_range_to_varying (vr
);
587 set_value_range (vr
, VR_RANGE
,
588 build_int_cst (type
, 0), build_int_cst (type
, 1),
593 /* If abs (min) < abs (max), set VR to [-max, max], if
594 abs (min) >= abs (max), set VR to [-min, min]. */
597 abs_extent_range (value_range
*vr
, tree min
, tree max
)
601 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
602 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
603 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
604 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
605 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
606 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
607 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
609 set_value_range_to_varying (vr
);
612 cmp
= compare_values (min
, max
);
614 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
615 else if (cmp
== 0 || cmp
== 1)
618 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
622 set_value_range_to_varying (vr
);
625 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
629 /* Return value range information for VAR.
631 If we have no values ranges recorded (ie, VRP is not running), then
632 return NULL. Otherwise create an empty range if none existed for VAR. */
635 get_value_range (const_tree var
)
637 static const value_range vr_const_varying
638 = { VR_VARYING
, NULL_TREE
, NULL_TREE
, NULL
};
641 unsigned ver
= SSA_NAME_VERSION (var
);
643 /* If we have no recorded ranges, then return NULL. */
647 /* If we query the range for a new SSA name return an unmodifiable VARYING.
648 We should get here at most from the substitute-and-fold stage which
649 will never try to change values. */
650 if (ver
>= num_vr_values
)
651 return CONST_CAST (value_range
*, &vr_const_varying
);
657 /* After propagation finished do not allocate new value-ranges. */
658 if (values_propagated
)
659 return CONST_CAST (value_range
*, &vr_const_varying
);
661 /* Create a default value range. */
662 vr_value
[ver
] = vr
= vrp_value_range_pool
.allocate ();
663 memset (vr
, 0, sizeof (*vr
));
665 /* Defer allocating the equivalence set. */
668 /* If VAR is a default definition of a parameter, the variable can
669 take any value in VAR's type. */
670 if (SSA_NAME_IS_DEFAULT_DEF (var
))
672 sym
= SSA_NAME_VAR (var
);
673 if (TREE_CODE (sym
) == PARM_DECL
)
675 /* Try to use the "nonnull" attribute to create ~[0, 0]
676 anti-ranges for pointers. Note that this is only valid with
677 default definitions of PARM_DECLs. */
678 if (POINTER_TYPE_P (TREE_TYPE (sym
))
679 && (nonnull_arg_p (sym
)
680 || get_ptr_nonnull (var
)))
681 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
682 else if (INTEGRAL_TYPE_P (TREE_TYPE (sym
)))
685 value_range_type rtype
= get_range_info (var
, &min
, &max
);
686 if (rtype
== VR_RANGE
|| rtype
== VR_ANTI_RANGE
)
687 set_value_range (vr
, rtype
,
688 wide_int_to_tree (TREE_TYPE (var
), min
),
689 wide_int_to_tree (TREE_TYPE (var
), max
),
692 set_value_range_to_varying (vr
);
695 set_value_range_to_varying (vr
);
697 else if (TREE_CODE (sym
) == RESULT_DECL
698 && DECL_BY_REFERENCE (sym
))
699 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
705 /* Set value-ranges of all SSA names defined by STMT to varying. */
708 set_defs_to_varying (gimple
*stmt
)
712 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
714 value_range
*vr
= get_value_range (def
);
715 /* Avoid writing to vr_const_varying get_value_range may return. */
716 if (vr
->type
!= VR_VARYING
)
717 set_value_range_to_varying (vr
);
722 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
725 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
729 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
731 return is_overflow_infinity (val1
) == is_overflow_infinity (val2
);
734 /* Return true, if the bitmaps B1 and B2 are equal. */
737 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
740 || ((!b1
|| bitmap_empty_p (b1
))
741 && (!b2
|| bitmap_empty_p (b2
)))
743 && bitmap_equal_p (b1
, b2
)));
746 /* Update the value range and equivalence set for variable VAR to
747 NEW_VR. Return true if NEW_VR is different from VAR's previous
750 NOTE: This function assumes that NEW_VR is a temporary value range
751 object created for the sole purpose of updating VAR's range. The
752 storage used by the equivalence set from NEW_VR will be freed by
753 this function. Do not call update_value_range when NEW_VR
754 is the range object associated with another SSA name. */
757 update_value_range (const_tree var
, value_range
*new_vr
)
762 /* If there is a value-range on the SSA name from earlier analysis
764 if (INTEGRAL_TYPE_P (TREE_TYPE (var
)))
767 value_range_type rtype
= get_range_info (var
, &min
, &max
);
768 if (rtype
== VR_RANGE
|| rtype
== VR_ANTI_RANGE
)
771 /* Range info on SSA names doesn't carry overflow information
772 so make sure to preserve the overflow bit on the lattice. */
773 if (rtype
== VR_RANGE
774 && needs_overflow_infinity (TREE_TYPE (var
))
775 && (new_vr
->type
== VR_VARYING
776 || (new_vr
->type
== VR_RANGE
777 && is_negative_overflow_infinity (new_vr
->min
)))
778 && wi::eq_p (vrp_val_min (TREE_TYPE (var
)), min
))
779 nr_min
= negative_overflow_infinity (TREE_TYPE (var
));
781 nr_min
= wide_int_to_tree (TREE_TYPE (var
), min
);
782 if (rtype
== VR_RANGE
783 && needs_overflow_infinity (TREE_TYPE (var
))
784 && (new_vr
->type
== VR_VARYING
785 || (new_vr
->type
== VR_RANGE
786 && is_positive_overflow_infinity (new_vr
->max
)))
787 && wi::eq_p (vrp_val_max (TREE_TYPE (var
)), max
))
788 nr_max
= positive_overflow_infinity (TREE_TYPE (var
));
790 nr_max
= wide_int_to_tree (TREE_TYPE (var
), max
);
791 value_range nr
= VR_INITIALIZER
;
792 set_and_canonicalize_value_range (&nr
, rtype
, nr_min
, nr_max
, NULL
);
793 vrp_intersect_ranges (new_vr
, &nr
);
797 /* Update the value range, if necessary. */
798 old_vr
= get_value_range (var
);
799 is_new
= old_vr
->type
!= new_vr
->type
800 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
801 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
802 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
806 /* Do not allow transitions up the lattice. The following
807 is slightly more awkward than just new_vr->type < old_vr->type
808 because VR_RANGE and VR_ANTI_RANGE need to be considered
809 the same. We may not have is_new when transitioning to
810 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
812 if (new_vr
->type
== VR_UNDEFINED
)
814 BITMAP_FREE (new_vr
->equiv
);
815 set_value_range_to_varying (old_vr
);
816 set_value_range_to_varying (new_vr
);
820 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
824 BITMAP_FREE (new_vr
->equiv
);
830 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
831 point where equivalence processing can be turned on/off. */
834 add_equivalence (bitmap
*equiv
, const_tree var
)
836 unsigned ver
= SSA_NAME_VERSION (var
);
837 value_range
*vr
= get_value_range (var
);
840 *equiv
= BITMAP_ALLOC (&vrp_equiv_obstack
);
841 bitmap_set_bit (*equiv
, ver
);
843 bitmap_ior_into (*equiv
, vr
->equiv
);
847 /* Return true if VR is ~[0, 0]. */
850 range_is_nonnull (value_range
*vr
)
852 return vr
->type
== VR_ANTI_RANGE
853 && integer_zerop (vr
->min
)
854 && integer_zerop (vr
->max
);
858 /* Return true if VR is [0, 0]. */
861 range_is_null (value_range
*vr
)
863 return vr
->type
== VR_RANGE
864 && integer_zerop (vr
->min
)
865 && integer_zerop (vr
->max
);
868 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
872 range_int_cst_p (value_range
*vr
)
874 return (vr
->type
== VR_RANGE
875 && TREE_CODE (vr
->max
) == INTEGER_CST
876 && TREE_CODE (vr
->min
) == INTEGER_CST
);
879 /* Return true if VR is a INTEGER_CST singleton. */
882 range_int_cst_singleton_p (value_range
*vr
)
884 return (range_int_cst_p (vr
)
885 && !is_overflow_infinity (vr
->min
)
886 && !is_overflow_infinity (vr
->max
)
887 && tree_int_cst_equal (vr
->min
, vr
->max
));
890 /* Return true if value range VR involves at least one symbol. */
893 symbolic_range_p (value_range
*vr
)
895 return (!is_gimple_min_invariant (vr
->min
)
896 || !is_gimple_min_invariant (vr
->max
));
899 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
900 otherwise. We only handle additive operations and set NEG to true if the
901 symbol is negated and INV to the invariant part, if any. */
904 get_single_symbol (tree t
, bool *neg
, tree
*inv
)
912 if (TREE_CODE (t
) == PLUS_EXPR
913 || TREE_CODE (t
) == POINTER_PLUS_EXPR
914 || TREE_CODE (t
) == MINUS_EXPR
)
916 if (is_gimple_min_invariant (TREE_OPERAND (t
, 0)))
918 neg_
= (TREE_CODE (t
) == MINUS_EXPR
);
919 inv_
= TREE_OPERAND (t
, 0);
920 t
= TREE_OPERAND (t
, 1);
922 else if (is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
925 inv_
= TREE_OPERAND (t
, 1);
926 t
= TREE_OPERAND (t
, 0);
937 if (TREE_CODE (t
) == NEGATE_EXPR
)
939 t
= TREE_OPERAND (t
, 0);
943 if (TREE_CODE (t
) != SSA_NAME
)
951 /* The reverse operation: build a symbolic expression with TYPE
952 from symbol SYM, negated according to NEG, and invariant INV. */
955 build_symbolic_expr (tree type
, tree sym
, bool neg
, tree inv
)
957 const bool pointer_p
= POINTER_TYPE_P (type
);
961 t
= build1 (NEGATE_EXPR
, type
, t
);
963 if (integer_zerop (inv
))
966 return build2 (pointer_p
? POINTER_PLUS_EXPR
: PLUS_EXPR
, type
, t
, inv
);
969 /* Return true if value range VR involves exactly one symbol SYM. */
972 symbolic_range_based_on_p (value_range
*vr
, const_tree sym
)
974 bool neg
, min_has_symbol
, max_has_symbol
;
977 if (is_gimple_min_invariant (vr
->min
))
978 min_has_symbol
= false;
979 else if (get_single_symbol (vr
->min
, &neg
, &inv
) == sym
)
980 min_has_symbol
= true;
984 if (is_gimple_min_invariant (vr
->max
))
985 max_has_symbol
= false;
986 else if (get_single_symbol (vr
->max
, &neg
, &inv
) == sym
)
987 max_has_symbol
= true;
991 return (min_has_symbol
|| max_has_symbol
);
994 /* Return true if value range VR uses an overflow infinity. */
997 overflow_infinity_range_p (value_range
*vr
)
999 return (vr
->type
== VR_RANGE
1000 && (is_overflow_infinity (vr
->min
)
1001 || is_overflow_infinity (vr
->max
)));
1004 /* Return false if we can not make a valid comparison based on VR;
1005 this will be the case if it uses an overflow infinity and overflow
1006 is not undefined (i.e., -fno-strict-overflow is in effect).
1007 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1008 uses an overflow infinity. */
1011 usable_range_p (value_range
*vr
, bool *strict_overflow_p
)
1013 gcc_assert (vr
->type
== VR_RANGE
);
1014 if (is_overflow_infinity (vr
->min
))
1016 *strict_overflow_p
= true;
1017 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
1020 if (is_overflow_infinity (vr
->max
))
1022 *strict_overflow_p
= true;
1023 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
1029 /* Return true if the result of assignment STMT is know to be non-zero.
1030 If the return value is based on the assumption that signed overflow is
1031 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1032 *STRICT_OVERFLOW_P.*/
1035 gimple_assign_nonzero_warnv_p (gimple
*stmt
, bool *strict_overflow_p
)
1037 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1038 switch (get_gimple_rhs_class (code
))
1040 case GIMPLE_UNARY_RHS
:
1041 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1042 gimple_expr_type (stmt
),
1043 gimple_assign_rhs1 (stmt
),
1045 case GIMPLE_BINARY_RHS
:
1046 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1047 gimple_expr_type (stmt
),
1048 gimple_assign_rhs1 (stmt
),
1049 gimple_assign_rhs2 (stmt
),
1051 case GIMPLE_TERNARY_RHS
:
1053 case GIMPLE_SINGLE_RHS
:
1054 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
1056 case GIMPLE_INVALID_RHS
:
1063 /* Return true if STMT is known to compute a non-zero value.
1064 If the return value is based on the assumption that signed overflow is
1065 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1066 *STRICT_OVERFLOW_P.*/
1069 gimple_stmt_nonzero_warnv_p (gimple
*stmt
, bool *strict_overflow_p
)
1071 switch (gimple_code (stmt
))
1074 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
1077 tree fndecl
= gimple_call_fndecl (stmt
);
1078 if (!fndecl
) return false;
1079 if (flag_delete_null_pointer_checks
&& !flag_check_new
1080 && DECL_IS_OPERATOR_NEW (fndecl
)
1081 && !TREE_NOTHROW (fndecl
))
1083 /* References are always non-NULL. */
1084 if (flag_delete_null_pointer_checks
1085 && TREE_CODE (TREE_TYPE (fndecl
)) == REFERENCE_TYPE
)
1087 if (flag_delete_null_pointer_checks
&&
1088 lookup_attribute ("returns_nonnull",
1089 TYPE_ATTRIBUTES (gimple_call_fntype (stmt
))))
1092 gcall
*call_stmt
= as_a
<gcall
*> (stmt
);
1093 unsigned rf
= gimple_call_return_flags (call_stmt
);
1094 if (rf
& ERF_RETURNS_ARG
)
1096 unsigned argnum
= rf
& ERF_RETURN_ARG_MASK
;
1097 if (argnum
< gimple_call_num_args (call_stmt
))
1099 tree arg
= gimple_call_arg (call_stmt
, argnum
);
1101 && infer_nonnull_range_by_attribute (stmt
, arg
))
1105 return gimple_alloca_call_p (stmt
);
1112 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1116 vrp_stmt_computes_nonzero (gimple
*stmt
, bool *strict_overflow_p
)
1118 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1121 /* If we have an expression of the form &X->a, then the expression
1122 is nonnull if X is nonnull. */
1123 if (is_gimple_assign (stmt
)
1124 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1126 tree expr
= gimple_assign_rhs1 (stmt
);
1127 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1129 if (base
!= NULL_TREE
1130 && TREE_CODE (base
) == MEM_REF
1131 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1133 value_range
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1134 if (range_is_nonnull (vr
))
1142 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1143 a gimple invariant, or SSA_NAME +- CST. */
1146 valid_value_p (tree expr
)
1148 if (TREE_CODE (expr
) == SSA_NAME
)
1151 if (TREE_CODE (expr
) == PLUS_EXPR
1152 || TREE_CODE (expr
) == MINUS_EXPR
)
1153 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1154 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1156 return is_gimple_min_invariant (expr
);
1162 -2 if those are incomparable. */
1164 operand_less_p (tree val
, tree val2
)
1166 /* LT is folded faster than GE and others. Inline the common case. */
1167 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1169 if (! is_positive_overflow_infinity (val2
))
1170 return tree_int_cst_lt (val
, val2
);
1176 fold_defer_overflow_warnings ();
1178 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1180 fold_undefer_and_ignore_overflow_warnings ();
1183 || TREE_CODE (tcmp
) != INTEGER_CST
)
1186 if (!integer_zerop (tcmp
))
1190 /* val >= val2, not considering overflow infinity. */
1191 if (is_negative_overflow_infinity (val
))
1192 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1193 else if (is_positive_overflow_infinity (val2
))
1194 return is_positive_overflow_infinity (val
) ? 0 : 1;
1199 /* Compare two values VAL1 and VAL2. Return
1201 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1204 +1 if VAL1 > VAL2, and
1207 This is similar to tree_int_cst_compare but supports pointer values
1208 and values that cannot be compared at compile time.
1210 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1211 true if the return value is only valid if we assume that signed
1212 overflow is undefined. */
1215 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1220 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1222 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1223 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1225 /* Convert the two values into the same type. This is needed because
1226 sizetype causes sign extension even for unsigned types. */
1227 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1228 STRIP_USELESS_TYPE_CONVERSION (val2
);
1230 const bool overflow_undefined
1231 = INTEGRAL_TYPE_P (TREE_TYPE (val1
))
1232 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
));
1235 tree sym1
= get_single_symbol (val1
, &neg1
, &inv1
);
1236 tree sym2
= get_single_symbol (val2
, &neg2
, &inv2
);
1238 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1239 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1242 /* Both values must use the same name with the same sign. */
1243 if (sym1
!= sym2
|| neg1
!= neg2
)
1246 /* [-]NAME + CST == [-]NAME + CST. */
1250 /* If overflow is defined we cannot simplify more. */
1251 if (!overflow_undefined
)
1254 if (strict_overflow_p
!= NULL
1255 && (!inv1
|| !TREE_NO_WARNING (val1
))
1256 && (!inv2
|| !TREE_NO_WARNING (val2
)))
1257 *strict_overflow_p
= true;
1260 inv1
= build_int_cst (TREE_TYPE (val1
), 0);
1262 inv2
= build_int_cst (TREE_TYPE (val2
), 0);
1264 return compare_values_warnv (inv1
, inv2
, strict_overflow_p
);
1267 const bool cst1
= is_gimple_min_invariant (val1
);
1268 const bool cst2
= is_gimple_min_invariant (val2
);
1270 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1271 it might be possible to say something depending on the constants. */
1272 if ((sym1
&& inv1
&& cst2
) || (sym2
&& inv2
&& cst1
))
1274 if (!overflow_undefined
)
1277 if (strict_overflow_p
!= NULL
1278 && (!sym1
|| !TREE_NO_WARNING (val1
))
1279 && (!sym2
|| !TREE_NO_WARNING (val2
)))
1280 *strict_overflow_p
= true;
1282 const signop sgn
= TYPE_SIGN (TREE_TYPE (val1
));
1283 tree cst
= cst1
? val1
: val2
;
1284 tree inv
= cst1
? inv2
: inv1
;
1286 /* Compute the difference between the constants. If it overflows or
1287 underflows, this means that we can trivially compare the NAME with
1288 it and, consequently, the two values with each other. */
1289 wide_int diff
= wi::sub (cst
, inv
);
1290 if (wi::cmp (0, inv
, sgn
) != wi::cmp (diff
, cst
, sgn
))
1292 const int res
= wi::cmp (cst
, inv
, sgn
);
1293 return cst1
? res
: -res
;
1299 /* We cannot say anything more for non-constants. */
1303 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1305 /* We cannot compare overflowed values, except for overflow
1307 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1309 if (strict_overflow_p
!= NULL
)
1310 *strict_overflow_p
= true;
1311 if (is_negative_overflow_infinity (val1
))
1312 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1313 else if (is_negative_overflow_infinity (val2
))
1315 else if (is_positive_overflow_infinity (val1
))
1316 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1317 else if (is_positive_overflow_infinity (val2
))
1322 return tree_int_cst_compare (val1
, val2
);
1328 /* First see if VAL1 and VAL2 are not the same. */
1329 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1332 /* If VAL1 is a lower address than VAL2, return -1. */
1333 if (operand_less_p (val1
, val2
) == 1)
1336 /* If VAL1 is a higher address than VAL2, return +1. */
1337 if (operand_less_p (val2
, val1
) == 1)
1340 /* If VAL1 is different than VAL2, return +2.
1341 For integer constants we either have already returned -1 or 1
1342 or they are equivalent. We still might succeed in proving
1343 something about non-trivial operands. */
1344 if (TREE_CODE (val1
) != INTEGER_CST
1345 || TREE_CODE (val2
) != INTEGER_CST
)
1347 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1348 if (t
&& integer_onep (t
))
1356 /* Compare values like compare_values_warnv, but treat comparisons of
1357 nonconstants which rely on undefined overflow as incomparable. */
1360 compare_values (tree val1
, tree val2
)
1366 ret
= compare_values_warnv (val1
, val2
, &sop
);
1368 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1374 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1375 0 if VAL is not inside [MIN, MAX],
1376 -2 if we cannot tell either way.
1378 Benchmark compile/20001226-1.c compilation time after changing this
1382 value_inside_range (tree val
, tree min
, tree max
)
1386 cmp1
= operand_less_p (val
, min
);
1392 cmp2
= operand_less_p (max
, val
);
1400 /* Return true if value ranges VR0 and VR1 have a non-empty
1403 Benchmark compile/20001226-1.c compilation time after changing this
1408 value_ranges_intersect_p (value_range
*vr0
, value_range
*vr1
)
1410 /* The value ranges do not intersect if the maximum of the first range is
1411 less than the minimum of the second range or vice versa.
1412 When those relations are unknown, we can't do any better. */
1413 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1415 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1421 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1422 include the value zero, -2 if we cannot tell. */
1425 range_includes_zero_p (tree min
, tree max
)
1427 tree zero
= build_int_cst (TREE_TYPE (min
), 0);
1428 return value_inside_range (zero
, min
, max
);
1431 /* Return true if *VR is know to only contain nonnegative values. */
1434 value_range_nonnegative_p (value_range
*vr
)
1436 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1437 which would return a useful value should be encoded as a
1439 if (vr
->type
== VR_RANGE
)
1441 int result
= compare_values (vr
->min
, integer_zero_node
);
1442 return (result
== 0 || result
== 1);
1448 /* If *VR has a value rante that is a single constant value return that,
1449 otherwise return NULL_TREE. */
1452 value_range_constant_singleton (value_range
*vr
)
1454 if (vr
->type
== VR_RANGE
1455 && vrp_operand_equal_p (vr
->min
, vr
->max
)
1456 && is_gimple_min_invariant (vr
->min
))
1462 /* If OP has a value range with a single constant value return that,
1463 otherwise return NULL_TREE. This returns OP itself if OP is a
1467 op_with_constant_singleton_value_range (tree op
)
1469 if (is_gimple_min_invariant (op
))
1472 if (TREE_CODE (op
) != SSA_NAME
)
1475 return value_range_constant_singleton (get_value_range (op
));
1478 /* Return true if op is in a boolean [0, 1] value-range. */
1481 op_with_boolean_value_range_p (tree op
)
1485 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
1488 if (integer_zerop (op
)
1489 || integer_onep (op
))
1492 if (TREE_CODE (op
) != SSA_NAME
)
1495 vr
= get_value_range (op
);
1496 return (vr
->type
== VR_RANGE
1497 && integer_zerop (vr
->min
)
1498 && integer_onep (vr
->max
));
1501 /* Extract value range information for VAR when (OP COND_CODE LIMIT) is
1502 true and store it in *VR_P. */
1505 extract_range_for_var_from_comparison_expr (tree var
, enum tree_code cond_code
,
1506 tree op
, tree limit
,
1509 tree min
, max
, type
;
1510 value_range
*limit_vr
;
1511 limit
= avoid_overflow_infinity (limit
);
1512 type
= TREE_TYPE (var
);
1513 gcc_assert (limit
!= var
);
1515 /* For pointer arithmetic, we only keep track of pointer equality
1517 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1519 set_value_range_to_varying (vr_p
);
1523 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1524 try to use LIMIT's range to avoid creating symbolic ranges
1526 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1528 /* LIMIT's range is only interesting if it has any useful information. */
1530 || limit_vr
->type
== VR_UNDEFINED
1531 || limit_vr
->type
== VR_VARYING
1532 || (symbolic_range_p (limit_vr
)
1533 && ! (limit_vr
->type
== VR_RANGE
1534 && (limit_vr
->min
== limit_vr
->max
1535 || operand_equal_p (limit_vr
->min
, limit_vr
->max
, 0)))))
1538 /* Initially, the new range has the same set of equivalences of
1539 VAR's range. This will be revised before returning the final
1540 value. Since assertions may be chained via mutually exclusive
1541 predicates, we will need to trim the set of equivalences before
1543 gcc_assert (vr_p
->equiv
== NULL
);
1544 add_equivalence (&vr_p
->equiv
, var
);
1546 /* Extract a new range based on the asserted comparison for VAR and
1547 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1548 will only use it for equality comparisons (EQ_EXPR). For any
1549 other kind of assertion, we cannot derive a range from LIMIT's
1550 anti-range that can be used to describe the new range. For
1551 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1552 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1553 no single range for x_2 that could describe LE_EXPR, so we might
1554 as well build the range [b_4, +INF] for it.
1555 One special case we handle is extracting a range from a
1556 range test encoded as (unsigned)var + CST <= limit. */
1557 if (TREE_CODE (op
) == NOP_EXPR
1558 || TREE_CODE (op
) == PLUS_EXPR
)
1560 if (TREE_CODE (op
) == PLUS_EXPR
)
1562 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (op
, 1)),
1563 TREE_OPERAND (op
, 1));
1564 max
= int_const_binop (PLUS_EXPR
, limit
, min
);
1565 op
= TREE_OPERAND (op
, 0);
1569 min
= build_int_cst (TREE_TYPE (var
), 0);
1573 /* Make sure to not set TREE_OVERFLOW on the final type
1574 conversion. We are willingly interpreting large positive
1575 unsigned values as negative signed values here. */
1576 min
= force_fit_type (TREE_TYPE (var
), wi::to_widest (min
), 0, false);
1577 max
= force_fit_type (TREE_TYPE (var
), wi::to_widest (max
), 0, false);
1579 /* We can transform a max, min range to an anti-range or
1580 vice-versa. Use set_and_canonicalize_value_range which does
1582 if (cond_code
== LE_EXPR
)
1583 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1584 min
, max
, vr_p
->equiv
);
1585 else if (cond_code
== GT_EXPR
)
1586 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1587 min
, max
, vr_p
->equiv
);
1591 else if (cond_code
== EQ_EXPR
)
1593 enum value_range_type range_type
;
1597 range_type
= limit_vr
->type
;
1598 min
= limit_vr
->min
;
1599 max
= limit_vr
->max
;
1603 range_type
= VR_RANGE
;
1608 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1610 /* When asserting the equality VAR == LIMIT and LIMIT is another
1611 SSA name, the new range will also inherit the equivalence set
1613 if (TREE_CODE (limit
) == SSA_NAME
)
1614 add_equivalence (&vr_p
->equiv
, limit
);
1616 else if (cond_code
== NE_EXPR
)
1618 /* As described above, when LIMIT's range is an anti-range and
1619 this assertion is an inequality (NE_EXPR), then we cannot
1620 derive anything from the anti-range. For instance, if
1621 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1622 not imply that VAR's range is [0, 0]. So, in the case of
1623 anti-ranges, we just assert the inequality using LIMIT and
1626 If LIMIT_VR is a range, we can only use it to build a new
1627 anti-range if LIMIT_VR is a single-valued range. For
1628 instance, if LIMIT_VR is [0, 1], the predicate
1629 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1630 Rather, it means that for value 0 VAR should be ~[0, 0]
1631 and for value 1, VAR should be ~[1, 1]. We cannot
1632 represent these ranges.
1634 The only situation in which we can build a valid
1635 anti-range is when LIMIT_VR is a single-valued range
1636 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1637 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1639 && limit_vr
->type
== VR_RANGE
1640 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1642 min
= limit_vr
->min
;
1643 max
= limit_vr
->max
;
1647 /* In any other case, we cannot use LIMIT's range to build a
1648 valid anti-range. */
1652 /* If MIN and MAX cover the whole range for their type, then
1653 just use the original LIMIT. */
1654 if (INTEGRAL_TYPE_P (type
)
1655 && vrp_val_is_min (min
)
1656 && vrp_val_is_max (max
))
1659 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1660 min
, max
, vr_p
->equiv
);
1662 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1664 min
= TYPE_MIN_VALUE (type
);
1666 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1670 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1671 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1673 max
= limit_vr
->max
;
1676 /* If the maximum value forces us to be out of bounds, simply punt.
1677 It would be pointless to try and do anything more since this
1678 all should be optimized away above us. */
1679 if ((cond_code
== LT_EXPR
1680 && compare_values (max
, min
) == 0)
1681 || is_overflow_infinity (max
))
1682 set_value_range_to_varying (vr_p
);
1685 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1686 if (cond_code
== LT_EXPR
)
1688 if (TYPE_PRECISION (TREE_TYPE (max
)) == 1
1689 && !TYPE_UNSIGNED (TREE_TYPE (max
)))
1690 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (max
), max
,
1691 build_int_cst (TREE_TYPE (max
), -1));
1693 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
,
1694 build_int_cst (TREE_TYPE (max
), 1));
1696 TREE_NO_WARNING (max
) = 1;
1699 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1702 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1704 max
= TYPE_MAX_VALUE (type
);
1706 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1710 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1711 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1713 min
= limit_vr
->min
;
1716 /* If the minimum value forces us to be out of bounds, simply punt.
1717 It would be pointless to try and do anything more since this
1718 all should be optimized away above us. */
1719 if ((cond_code
== GT_EXPR
1720 && compare_values (min
, max
) == 0)
1721 || is_overflow_infinity (min
))
1722 set_value_range_to_varying (vr_p
);
1725 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1726 if (cond_code
== GT_EXPR
)
1728 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
1729 && !TYPE_UNSIGNED (TREE_TYPE (min
)))
1730 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (min
), min
,
1731 build_int_cst (TREE_TYPE (min
), -1));
1733 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min
), min
,
1734 build_int_cst (TREE_TYPE (min
), 1));
1736 TREE_NO_WARNING (min
) = 1;
1739 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1745 /* Finally intersect the new range with what we already know about var. */
1746 vrp_intersect_ranges (vr_p
, get_value_range (var
));
1749 /* Extract value range information from an ASSERT_EXPR EXPR and store
1753 extract_range_from_assert (value_range
*vr_p
, tree expr
)
1755 tree var
= ASSERT_EXPR_VAR (expr
);
1756 tree cond
= ASSERT_EXPR_COND (expr
);
1758 enum tree_code cond_code
;
1759 gcc_assert (COMPARISON_CLASS_P (cond
));
1761 /* Find VAR in the ASSERT_EXPR conditional. */
1762 if (var
== TREE_OPERAND (cond
, 0)
1763 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1764 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1766 /* If the predicate is of the form VAR COMP LIMIT, then we just
1767 take LIMIT from the RHS and use the same comparison code. */
1768 cond_code
= TREE_CODE (cond
);
1769 limit
= TREE_OPERAND (cond
, 1);
1770 op
= TREE_OPERAND (cond
, 0);
1774 /* If the predicate is of the form LIMIT COMP VAR, then we need
1775 to flip around the comparison code to create the proper range
1777 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1778 limit
= TREE_OPERAND (cond
, 0);
1779 op
= TREE_OPERAND (cond
, 1);
1781 extract_range_for_var_from_comparison_expr (var
, cond_code
, op
,
1785 /* Extract range information from SSA name VAR and store it in VR. If
1786 VAR has an interesting range, use it. Otherwise, create the
1787 range [VAR, VAR] and return it. This is useful in situations where
1788 we may have conditionals testing values of VARYING names. For
1795 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1799 extract_range_from_ssa_name (value_range
*vr
, tree var
)
1801 value_range
*var_vr
= get_value_range (var
);
1803 if (var_vr
->type
!= VR_VARYING
)
1804 copy_value_range (vr
, var_vr
);
1806 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1808 add_equivalence (&vr
->equiv
, var
);
1812 /* Wrapper around int_const_binop. If the operation overflows and we
1813 are not using wrapping arithmetic, then adjust the result to be
1814 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1815 NULL_TREE if we need to use an overflow infinity representation but
1816 the type does not support it. */
1819 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1823 res
= int_const_binop (code
, val1
, val2
);
1825 /* If we are using unsigned arithmetic, operate symbolically
1826 on -INF and +INF as int_const_binop only handles signed overflow. */
1827 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1829 int checkz
= compare_values (res
, val1
);
1830 bool overflow
= false;
1832 /* Ensure that res = val1 [+*] val2 >= val1
1833 or that res = val1 - val2 <= val1. */
1834 if ((code
== PLUS_EXPR
1835 && !(checkz
== 1 || checkz
== 0))
1836 || (code
== MINUS_EXPR
1837 && !(checkz
== 0 || checkz
== -1)))
1841 /* Checking for multiplication overflow is done by dividing the
1842 output of the multiplication by the first input of the
1843 multiplication. If the result of that division operation is
1844 not equal to the second input of the multiplication, then the
1845 multiplication overflowed. */
1846 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
1848 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
1851 int check
= compare_values (tmp
, val2
);
1859 res
= copy_node (res
);
1860 TREE_OVERFLOW (res
) = 1;
1864 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
1865 /* If the singed operation wraps then int_const_binop has done
1866 everything we want. */
1868 /* Signed division of -1/0 overflows and by the time it gets here
1869 returns NULL_TREE. */
1872 else if ((TREE_OVERFLOW (res
)
1873 && !TREE_OVERFLOW (val1
)
1874 && !TREE_OVERFLOW (val2
))
1875 || is_overflow_infinity (val1
)
1876 || is_overflow_infinity (val2
))
1878 /* If the operation overflowed but neither VAL1 nor VAL2 are
1879 overflown, return -INF or +INF depending on the operation
1880 and the combination of signs of the operands. */
1881 int sgn1
= tree_int_cst_sgn (val1
);
1882 int sgn2
= tree_int_cst_sgn (val2
);
1884 if (needs_overflow_infinity (TREE_TYPE (res
))
1885 && !supports_overflow_infinity (TREE_TYPE (res
)))
1888 /* We have to punt on adding infinities of different signs,
1889 since we can't tell what the sign of the result should be.
1890 Likewise for subtracting infinities of the same sign. */
1891 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
1892 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
1893 && is_overflow_infinity (val1
)
1894 && is_overflow_infinity (val2
))
1897 /* Don't try to handle division or shifting of infinities. */
1898 if ((code
== TRUNC_DIV_EXPR
1899 || code
== FLOOR_DIV_EXPR
1900 || code
== CEIL_DIV_EXPR
1901 || code
== EXACT_DIV_EXPR
1902 || code
== ROUND_DIV_EXPR
1903 || code
== RSHIFT_EXPR
)
1904 && (is_overflow_infinity (val1
)
1905 || is_overflow_infinity (val2
)))
1908 /* Notice that we only need to handle the restricted set of
1909 operations handled by extract_range_from_binary_expr.
1910 Among them, only multiplication, addition and subtraction
1911 can yield overflow without overflown operands because we
1912 are working with integral types only... except in the
1913 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1914 for division too. */
1916 /* For multiplication, the sign of the overflow is given
1917 by the comparison of the signs of the operands. */
1918 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
1919 /* For addition, the operands must be of the same sign
1920 to yield an overflow. Its sign is therefore that
1921 of one of the operands, for example the first. For
1922 infinite operands X + -INF is negative, not positive. */
1923 || (code
== PLUS_EXPR
1925 ? !is_negative_overflow_infinity (val2
)
1926 : is_positive_overflow_infinity (val2
)))
1927 /* For subtraction, non-infinite operands must be of
1928 different signs to yield an overflow. Its sign is
1929 therefore that of the first operand or the opposite of
1930 that of the second operand. A first operand of 0 counts
1931 as positive here, for the corner case 0 - (-INF), which
1932 overflows, but must yield +INF. For infinite operands 0
1933 - INF is negative, not positive. */
1934 || (code
== MINUS_EXPR
1936 ? !is_positive_overflow_infinity (val2
)
1937 : is_negative_overflow_infinity (val2
)))
1938 /* We only get in here with positive shift count, so the
1939 overflow direction is the same as the sign of val1.
1940 Actually rshift does not overflow at all, but we only
1941 handle the case of shifting overflowed -INF and +INF. */
1942 || (code
== RSHIFT_EXPR
1944 /* For division, the only case is -INF / -1 = +INF. */
1945 || code
== TRUNC_DIV_EXPR
1946 || code
== FLOOR_DIV_EXPR
1947 || code
== CEIL_DIV_EXPR
1948 || code
== EXACT_DIV_EXPR
1949 || code
== ROUND_DIV_EXPR
)
1950 return (needs_overflow_infinity (TREE_TYPE (res
))
1951 ? positive_overflow_infinity (TREE_TYPE (res
))
1952 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
1954 return (needs_overflow_infinity (TREE_TYPE (res
))
1955 ? negative_overflow_infinity (TREE_TYPE (res
))
1956 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
1963 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
1964 bitmask if some bit is unset, it means for all numbers in the range
1965 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1966 bitmask if some bit is set, it means for all numbers in the range
1967 the bit is 1, otherwise it might be 0 or 1. */
1970 zero_nonzero_bits_from_vr (const tree expr_type
,
1972 wide_int
*may_be_nonzero
,
1973 wide_int
*must_be_nonzero
)
1975 *may_be_nonzero
= wi::minus_one (TYPE_PRECISION (expr_type
));
1976 *must_be_nonzero
= wi::zero (TYPE_PRECISION (expr_type
));
1977 if (!range_int_cst_p (vr
)
1978 || is_overflow_infinity (vr
->min
)
1979 || is_overflow_infinity (vr
->max
))
1982 if (range_int_cst_singleton_p (vr
))
1984 *may_be_nonzero
= vr
->min
;
1985 *must_be_nonzero
= *may_be_nonzero
;
1987 else if (tree_int_cst_sgn (vr
->min
) >= 0
1988 || tree_int_cst_sgn (vr
->max
) < 0)
1990 wide_int xor_mask
= wi::bit_xor (vr
->min
, vr
->max
);
1991 *may_be_nonzero
= wi::bit_or (vr
->min
, vr
->max
);
1992 *must_be_nonzero
= wi::bit_and (vr
->min
, vr
->max
);
1995 wide_int mask
= wi::mask (wi::floor_log2 (xor_mask
), false,
1996 may_be_nonzero
->get_precision ());
1997 *may_be_nonzero
= *may_be_nonzero
| mask
;
1998 *must_be_nonzero
= must_be_nonzero
->and_not (mask
);
2005 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2006 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2007 false otherwise. If *AR can be represented with a single range
2008 *VR1 will be VR_UNDEFINED. */
2011 ranges_from_anti_range (value_range
*ar
,
2012 value_range
*vr0
, value_range
*vr1
)
2014 tree type
= TREE_TYPE (ar
->min
);
2016 vr0
->type
= VR_UNDEFINED
;
2017 vr1
->type
= VR_UNDEFINED
;
2019 if (ar
->type
!= VR_ANTI_RANGE
2020 || TREE_CODE (ar
->min
) != INTEGER_CST
2021 || TREE_CODE (ar
->max
) != INTEGER_CST
2022 || !vrp_val_min (type
)
2023 || !vrp_val_max (type
))
2026 if (!vrp_val_is_min (ar
->min
))
2028 vr0
->type
= VR_RANGE
;
2029 vr0
->min
= vrp_val_min (type
);
2030 vr0
->max
= wide_int_to_tree (type
, wi::sub (ar
->min
, 1));
2032 if (!vrp_val_is_max (ar
->max
))
2034 vr1
->type
= VR_RANGE
;
2035 vr1
->min
= wide_int_to_tree (type
, wi::add (ar
->max
, 1));
2036 vr1
->max
= vrp_val_max (type
);
2038 if (vr0
->type
== VR_UNDEFINED
)
2041 vr1
->type
= VR_UNDEFINED
;
2044 return vr0
->type
!= VR_UNDEFINED
;
2047 /* Helper to extract a value-range *VR for a multiplicative operation
2051 extract_range_from_multiplicative_op_1 (value_range
*vr
,
2052 enum tree_code code
,
2053 value_range
*vr0
, value_range
*vr1
)
2055 enum value_range_type type
;
2062 /* Multiplications, divisions and shifts are a bit tricky to handle,
2063 depending on the mix of signs we have in the two ranges, we
2064 need to operate on different values to get the minimum and
2065 maximum values for the new range. One approach is to figure
2066 out all the variations of range combinations and do the
2069 However, this involves several calls to compare_values and it
2070 is pretty convoluted. It's simpler to do the 4 operations
2071 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2072 MAX1) and then figure the smallest and largest values to form
2074 gcc_assert (code
== MULT_EXPR
2075 || code
== TRUNC_DIV_EXPR
2076 || code
== FLOOR_DIV_EXPR
2077 || code
== CEIL_DIV_EXPR
2078 || code
== EXACT_DIV_EXPR
2079 || code
== ROUND_DIV_EXPR
2080 || code
== RSHIFT_EXPR
2081 || code
== LSHIFT_EXPR
);
2082 gcc_assert ((vr0
->type
== VR_RANGE
2083 || (code
== MULT_EXPR
&& vr0
->type
== VR_ANTI_RANGE
))
2084 && vr0
->type
== vr1
->type
);
2088 /* Compute the 4 cross operations. */
2090 val
[0] = vrp_int_const_binop (code
, vr0
->min
, vr1
->min
);
2091 if (val
[0] == NULL_TREE
)
2094 if (vr1
->max
== vr1
->min
)
2098 val
[1] = vrp_int_const_binop (code
, vr0
->min
, vr1
->max
);
2099 if (val
[1] == NULL_TREE
)
2103 if (vr0
->max
== vr0
->min
)
2107 val
[2] = vrp_int_const_binop (code
, vr0
->max
, vr1
->min
);
2108 if (val
[2] == NULL_TREE
)
2112 if (vr0
->min
== vr0
->max
|| vr1
->min
== vr1
->max
)
2116 val
[3] = vrp_int_const_binop (code
, vr0
->max
, vr1
->max
);
2117 if (val
[3] == NULL_TREE
)
2123 set_value_range_to_varying (vr
);
2127 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2131 for (i
= 1; i
< 4; i
++)
2133 if (!is_gimple_min_invariant (min
)
2134 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2135 || !is_gimple_min_invariant (max
)
2136 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2141 if (!is_gimple_min_invariant (val
[i
])
2142 || (TREE_OVERFLOW (val
[i
])
2143 && !is_overflow_infinity (val
[i
])))
2145 /* If we found an overflowed value, set MIN and MAX
2146 to it so that we set the resulting range to
2152 if (compare_values (val
[i
], min
) == -1)
2155 if (compare_values (val
[i
], max
) == 1)
2160 /* If either MIN or MAX overflowed, then set the resulting range to
2161 VARYING. But we do accept an overflow infinity
2163 if (min
== NULL_TREE
2164 || !is_gimple_min_invariant (min
)
2165 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2167 || !is_gimple_min_invariant (max
)
2168 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2170 set_value_range_to_varying (vr
);
2176 2) [-INF, +-INF(OVF)]
2177 3) [+-INF(OVF), +INF]
2178 4) [+-INF(OVF), +-INF(OVF)]
2179 We learn nothing when we have INF and INF(OVF) on both sides.
2180 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2182 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2183 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2185 set_value_range_to_varying (vr
);
2189 cmp
= compare_values (min
, max
);
2190 if (cmp
== -2 || cmp
== 1)
2192 /* If the new range has its limits swapped around (MIN > MAX),
2193 then the operation caused one of them to wrap around, mark
2194 the new range VARYING. */
2195 set_value_range_to_varying (vr
);
2198 set_value_range (vr
, type
, min
, max
, NULL
);
2201 /* Extract range information from a binary operation CODE based on
2202 the ranges of each of its operands *VR0 and *VR1 with resulting
2203 type EXPR_TYPE. The resulting range is stored in *VR. */
2206 extract_range_from_binary_expr_1 (value_range
*vr
,
2207 enum tree_code code
, tree expr_type
,
2208 value_range
*vr0_
, value_range
*vr1_
)
2210 value_range vr0
= *vr0_
, vr1
= *vr1_
;
2211 value_range vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
2212 enum value_range_type type
;
2213 tree min
= NULL_TREE
, max
= NULL_TREE
;
2216 if (!INTEGRAL_TYPE_P (expr_type
)
2217 && !POINTER_TYPE_P (expr_type
))
2219 set_value_range_to_varying (vr
);
2223 /* Not all binary expressions can be applied to ranges in a
2224 meaningful way. Handle only arithmetic operations. */
2225 if (code
!= PLUS_EXPR
2226 && code
!= MINUS_EXPR
2227 && code
!= POINTER_PLUS_EXPR
2228 && code
!= MULT_EXPR
2229 && code
!= TRUNC_DIV_EXPR
2230 && code
!= FLOOR_DIV_EXPR
2231 && code
!= CEIL_DIV_EXPR
2232 && code
!= EXACT_DIV_EXPR
2233 && code
!= ROUND_DIV_EXPR
2234 && code
!= TRUNC_MOD_EXPR
2235 && code
!= RSHIFT_EXPR
2236 && code
!= LSHIFT_EXPR
2239 && code
!= BIT_AND_EXPR
2240 && code
!= BIT_IOR_EXPR
2241 && code
!= BIT_XOR_EXPR
)
2243 set_value_range_to_varying (vr
);
2247 /* If both ranges are UNDEFINED, so is the result. */
2248 if (vr0
.type
== VR_UNDEFINED
&& vr1
.type
== VR_UNDEFINED
)
2250 set_value_range_to_undefined (vr
);
2253 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2254 code. At some point we may want to special-case operations that
2255 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2257 else if (vr0
.type
== VR_UNDEFINED
)
2258 set_value_range_to_varying (&vr0
);
2259 else if (vr1
.type
== VR_UNDEFINED
)
2260 set_value_range_to_varying (&vr1
);
2262 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2263 and express ~[] op X as ([]' op X) U ([]'' op X). */
2264 if (vr0
.type
== VR_ANTI_RANGE
2265 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
2267 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vrtem0
, vr1_
);
2268 if (vrtem1
.type
!= VR_UNDEFINED
)
2270 value_range vrres
= VR_INITIALIZER
;
2271 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2273 vrp_meet (vr
, &vrres
);
2277 /* Likewise for X op ~[]. */
2278 if (vr1
.type
== VR_ANTI_RANGE
2279 && ranges_from_anti_range (&vr1
, &vrtem0
, &vrtem1
))
2281 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, vr0_
, &vrtem0
);
2282 if (vrtem1
.type
!= VR_UNDEFINED
)
2284 value_range vrres
= VR_INITIALIZER
;
2285 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2287 vrp_meet (vr
, &vrres
);
2292 /* The type of the resulting value range defaults to VR0.TYPE. */
2295 /* Refuse to operate on VARYING ranges, ranges of different kinds
2296 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2297 because we may be able to derive a useful range even if one of
2298 the operands is VR_VARYING or symbolic range. Similarly for
2299 divisions, MIN/MAX and PLUS/MINUS.
2301 TODO, we may be able to derive anti-ranges in some cases. */
2302 if (code
!= BIT_AND_EXPR
2303 && code
!= BIT_IOR_EXPR
2304 && code
!= TRUNC_DIV_EXPR
2305 && code
!= FLOOR_DIV_EXPR
2306 && code
!= CEIL_DIV_EXPR
2307 && code
!= EXACT_DIV_EXPR
2308 && code
!= ROUND_DIV_EXPR
2309 && code
!= TRUNC_MOD_EXPR
2312 && code
!= PLUS_EXPR
2313 && code
!= MINUS_EXPR
2314 && code
!= RSHIFT_EXPR
2315 && (vr0
.type
== VR_VARYING
2316 || vr1
.type
== VR_VARYING
2317 || vr0
.type
!= vr1
.type
2318 || symbolic_range_p (&vr0
)
2319 || symbolic_range_p (&vr1
)))
2321 set_value_range_to_varying (vr
);
2325 /* Now evaluate the expression to determine the new range. */
2326 if (POINTER_TYPE_P (expr_type
))
2328 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2330 /* For MIN/MAX expressions with pointers, we only care about
2331 nullness, if both are non null, then the result is nonnull.
2332 If both are null, then the result is null. Otherwise they
2334 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2335 set_value_range_to_nonnull (vr
, expr_type
);
2336 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2337 set_value_range_to_null (vr
, expr_type
);
2339 set_value_range_to_varying (vr
);
2341 else if (code
== POINTER_PLUS_EXPR
)
2343 /* For pointer types, we are really only interested in asserting
2344 whether the expression evaluates to non-NULL. */
2345 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2346 set_value_range_to_nonnull (vr
, expr_type
);
2347 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2348 set_value_range_to_null (vr
, expr_type
);
2350 set_value_range_to_varying (vr
);
2352 else if (code
== BIT_AND_EXPR
)
2354 /* For pointer types, we are really only interested in asserting
2355 whether the expression evaluates to non-NULL. */
2356 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2357 set_value_range_to_nonnull (vr
, expr_type
);
2358 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2359 set_value_range_to_null (vr
, expr_type
);
2361 set_value_range_to_varying (vr
);
2364 set_value_range_to_varying (vr
);
2369 /* For integer ranges, apply the operation to each end of the
2370 range and see what we end up with. */
2371 if (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
2373 const bool minus_p
= (code
== MINUS_EXPR
);
2374 tree min_op0
= vr0
.min
;
2375 tree min_op1
= minus_p
? vr1
.max
: vr1
.min
;
2376 tree max_op0
= vr0
.max
;
2377 tree max_op1
= minus_p
? vr1
.min
: vr1
.max
;
2378 tree sym_min_op0
= NULL_TREE
;
2379 tree sym_min_op1
= NULL_TREE
;
2380 tree sym_max_op0
= NULL_TREE
;
2381 tree sym_max_op1
= NULL_TREE
;
2382 bool neg_min_op0
, neg_min_op1
, neg_max_op0
, neg_max_op1
;
2384 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2385 single-symbolic ranges, try to compute the precise resulting range,
2386 but only if we know that this resulting range will also be constant
2387 or single-symbolic. */
2388 if (vr0
.type
== VR_RANGE
&& vr1
.type
== VR_RANGE
2389 && (TREE_CODE (min_op0
) == INTEGER_CST
2391 = get_single_symbol (min_op0
, &neg_min_op0
, &min_op0
)))
2392 && (TREE_CODE (min_op1
) == INTEGER_CST
2394 = get_single_symbol (min_op1
, &neg_min_op1
, &min_op1
)))
2395 && (!(sym_min_op0
&& sym_min_op1
)
2396 || (sym_min_op0
== sym_min_op1
2397 && neg_min_op0
== (minus_p
? neg_min_op1
: !neg_min_op1
)))
2398 && (TREE_CODE (max_op0
) == INTEGER_CST
2400 = get_single_symbol (max_op0
, &neg_max_op0
, &max_op0
)))
2401 && (TREE_CODE (max_op1
) == INTEGER_CST
2403 = get_single_symbol (max_op1
, &neg_max_op1
, &max_op1
)))
2404 && (!(sym_max_op0
&& sym_max_op1
)
2405 || (sym_max_op0
== sym_max_op1
2406 && neg_max_op0
== (minus_p
? neg_max_op1
: !neg_max_op1
))))
2408 const signop sgn
= TYPE_SIGN (expr_type
);
2409 const unsigned int prec
= TYPE_PRECISION (expr_type
);
2410 wide_int type_min
, type_max
, wmin
, wmax
;
2414 /* Get the lower and upper bounds of the type. */
2415 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2417 type_min
= wi::min_value (prec
, sgn
);
2418 type_max
= wi::max_value (prec
, sgn
);
2422 type_min
= vrp_val_min (expr_type
);
2423 type_max
= vrp_val_max (expr_type
);
2426 /* Combine the lower bounds, if any. */
2427 if (min_op0
&& min_op1
)
2431 wmin
= wi::sub (min_op0
, min_op1
);
2433 /* Check for overflow. */
2434 if (wi::cmp (0, min_op1
, sgn
)
2435 != wi::cmp (wmin
, min_op0
, sgn
))
2436 min_ovf
= wi::cmp (min_op0
, min_op1
, sgn
);
2440 wmin
= wi::add (min_op0
, min_op1
);
2442 /* Check for overflow. */
2443 if (wi::cmp (min_op1
, 0, sgn
)
2444 != wi::cmp (wmin
, min_op0
, sgn
))
2445 min_ovf
= wi::cmp (min_op0
, wmin
, sgn
);
2451 wmin
= minus_p
? wi::neg (min_op1
) : min_op1
;
2453 wmin
= wi::shwi (0, prec
);
2455 /* Combine the upper bounds, if any. */
2456 if (max_op0
&& max_op1
)
2460 wmax
= wi::sub (max_op0
, max_op1
);
2462 /* Check for overflow. */
2463 if (wi::cmp (0, max_op1
, sgn
)
2464 != wi::cmp (wmax
, max_op0
, sgn
))
2465 max_ovf
= wi::cmp (max_op0
, max_op1
, sgn
);
2469 wmax
= wi::add (max_op0
, max_op1
);
2471 if (wi::cmp (max_op1
, 0, sgn
)
2472 != wi::cmp (wmax
, max_op0
, sgn
))
2473 max_ovf
= wi::cmp (max_op0
, wmax
, sgn
);
2479 wmax
= minus_p
? wi::neg (max_op1
) : max_op1
;
2481 wmax
= wi::shwi (0, prec
);
2483 /* Check for type overflow. */
2486 if (wi::cmp (wmin
, type_min
, sgn
) == -1)
2488 else if (wi::cmp (wmin
, type_max
, sgn
) == 1)
2493 if (wi::cmp (wmax
, type_min
, sgn
) == -1)
2495 else if (wi::cmp (wmax
, type_max
, sgn
) == 1)
2499 /* If we have overflow for the constant part and the resulting
2500 range will be symbolic, drop to VR_VARYING. */
2501 if ((min_ovf
&& sym_min_op0
!= sym_min_op1
)
2502 || (max_ovf
&& sym_max_op0
!= sym_max_op1
))
2504 set_value_range_to_varying (vr
);
2508 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2510 /* If overflow wraps, truncate the values and adjust the
2511 range kind and bounds appropriately. */
2512 wide_int tmin
= wide_int::from (wmin
, prec
, sgn
);
2513 wide_int tmax
= wide_int::from (wmax
, prec
, sgn
);
2514 if (min_ovf
== max_ovf
)
2516 /* No overflow or both overflow or underflow. The
2517 range kind stays VR_RANGE. */
2518 min
= wide_int_to_tree (expr_type
, tmin
);
2519 max
= wide_int_to_tree (expr_type
, tmax
);
2521 else if ((min_ovf
== -1 && max_ovf
== 0)
2522 || (max_ovf
== 1 && min_ovf
== 0))
2524 /* Min underflow or max overflow. The range kind
2525 changes to VR_ANTI_RANGE. */
2526 bool covers
= false;
2527 wide_int tem
= tmin
;
2528 type
= VR_ANTI_RANGE
;
2530 if (wi::cmp (tmin
, tmax
, sgn
) < 0)
2533 if (wi::cmp (tmax
, tem
, sgn
) > 0)
2535 /* If the anti-range would cover nothing, drop to varying.
2536 Likewise if the anti-range bounds are outside of the
2538 if (covers
|| wi::cmp (tmin
, tmax
, sgn
) > 0)
2540 set_value_range_to_varying (vr
);
2543 min
= wide_int_to_tree (expr_type
, tmin
);
2544 max
= wide_int_to_tree (expr_type
, tmax
);
2548 /* Other underflow and/or overflow, drop to VR_VARYING. */
2549 set_value_range_to_varying (vr
);
2555 /* If overflow does not wrap, saturate to the types min/max
2559 if (needs_overflow_infinity (expr_type
)
2560 && supports_overflow_infinity (expr_type
))
2561 min
= negative_overflow_infinity (expr_type
);
2563 min
= wide_int_to_tree (expr_type
, type_min
);
2565 else if (min_ovf
== 1)
2567 if (needs_overflow_infinity (expr_type
)
2568 && supports_overflow_infinity (expr_type
))
2569 min
= positive_overflow_infinity (expr_type
);
2571 min
= wide_int_to_tree (expr_type
, type_max
);
2574 min
= wide_int_to_tree (expr_type
, wmin
);
2578 if (needs_overflow_infinity (expr_type
)
2579 && supports_overflow_infinity (expr_type
))
2580 max
= negative_overflow_infinity (expr_type
);
2582 max
= wide_int_to_tree (expr_type
, type_min
);
2584 else if (max_ovf
== 1)
2586 if (needs_overflow_infinity (expr_type
)
2587 && supports_overflow_infinity (expr_type
))
2588 max
= positive_overflow_infinity (expr_type
);
2590 max
= wide_int_to_tree (expr_type
, type_max
);
2593 max
= wide_int_to_tree (expr_type
, wmax
);
2596 if (needs_overflow_infinity (expr_type
)
2597 && supports_overflow_infinity (expr_type
))
2599 if ((min_op0
&& is_negative_overflow_infinity (min_op0
))
2602 ? is_positive_overflow_infinity (min_op1
)
2603 : is_negative_overflow_infinity (min_op1
))))
2604 min
= negative_overflow_infinity (expr_type
);
2605 if ((max_op0
&& is_positive_overflow_infinity (max_op0
))
2608 ? is_negative_overflow_infinity (max_op1
)
2609 : is_positive_overflow_infinity (max_op1
))))
2610 max
= positive_overflow_infinity (expr_type
);
2613 /* If the result lower bound is constant, we're done;
2614 otherwise, build the symbolic lower bound. */
2615 if (sym_min_op0
== sym_min_op1
)
2617 else if (sym_min_op0
)
2618 min
= build_symbolic_expr (expr_type
, sym_min_op0
,
2620 else if (sym_min_op1
)
2621 min
= build_symbolic_expr (expr_type
, sym_min_op1
,
2622 neg_min_op1
^ minus_p
, min
);
2624 /* Likewise for the upper bound. */
2625 if (sym_max_op0
== sym_max_op1
)
2627 else if (sym_max_op0
)
2628 max
= build_symbolic_expr (expr_type
, sym_max_op0
,
2630 else if (sym_max_op1
)
2631 max
= build_symbolic_expr (expr_type
, sym_max_op1
,
2632 neg_max_op1
^ minus_p
, max
);
2636 /* For other cases, for example if we have a PLUS_EXPR with two
2637 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2638 to compute a precise range for such a case.
2639 ??? General even mixed range kind operations can be expressed
2640 by for example transforming ~[3, 5] + [1, 2] to range-only
2641 operations and a union primitive:
2642 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2643 [-INF+1, 4] U [6, +INF(OVF)]
2644 though usually the union is not exactly representable with
2645 a single range or anti-range as the above is
2646 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2647 but one could use a scheme similar to equivalences for this. */
2648 set_value_range_to_varying (vr
);
2652 else if (code
== MIN_EXPR
2653 || code
== MAX_EXPR
)
2655 if (vr0
.type
== VR_RANGE
2656 && !symbolic_range_p (&vr0
))
2659 if (vr1
.type
== VR_RANGE
2660 && !symbolic_range_p (&vr1
))
2662 /* For operations that make the resulting range directly
2663 proportional to the original ranges, apply the operation to
2664 the same end of each range. */
2665 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2666 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2668 else if (code
== MIN_EXPR
)
2670 min
= vrp_val_min (expr_type
);
2673 else if (code
== MAX_EXPR
)
2676 max
= vrp_val_max (expr_type
);
2679 else if (vr1
.type
== VR_RANGE
2680 && !symbolic_range_p (&vr1
))
2683 if (code
== MIN_EXPR
)
2685 min
= vrp_val_min (expr_type
);
2688 else if (code
== MAX_EXPR
)
2691 max
= vrp_val_max (expr_type
);
2696 set_value_range_to_varying (vr
);
2700 else if (code
== MULT_EXPR
)
2702 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2703 drop to varying. This test requires 2*prec bits if both
2704 operands are signed and 2*prec + 2 bits if either is not. */
2706 signop sign
= TYPE_SIGN (expr_type
);
2707 unsigned int prec
= TYPE_PRECISION (expr_type
);
2709 if (range_int_cst_p (&vr0
)
2710 && range_int_cst_p (&vr1
)
2711 && TYPE_OVERFLOW_WRAPS (expr_type
))
2713 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION
* 2) vrp_int
;
2714 typedef generic_wide_int
2715 <wi::extended_tree
<WIDE_INT_MAX_PRECISION
* 2> > vrp_int_cst
;
2716 vrp_int sizem1
= wi::mask
<vrp_int
> (prec
, false);
2717 vrp_int size
= sizem1
+ 1;
2719 /* Extend the values using the sign of the result to PREC2.
2720 From here on out, everthing is just signed math no matter
2721 what the input types were. */
2722 vrp_int min0
= vrp_int_cst (vr0
.min
);
2723 vrp_int max0
= vrp_int_cst (vr0
.max
);
2724 vrp_int min1
= vrp_int_cst (vr1
.min
);
2725 vrp_int max1
= vrp_int_cst (vr1
.max
);
2726 /* Canonicalize the intervals. */
2727 if (sign
== UNSIGNED
)
2729 if (wi::ltu_p (size
, min0
+ max0
))
2735 if (wi::ltu_p (size
, min1
+ max1
))
2742 vrp_int prod0
= min0
* min1
;
2743 vrp_int prod1
= min0
* max1
;
2744 vrp_int prod2
= max0
* min1
;
2745 vrp_int prod3
= max0
* max1
;
2747 /* Sort the 4 products so that min is in prod0 and max is in
2749 /* min0min1 > max0max1 */
2751 std::swap (prod0
, prod3
);
2753 /* min0max1 > max0min1 */
2755 std::swap (prod1
, prod2
);
2758 std::swap (prod0
, prod1
);
2761 std::swap (prod2
, prod3
);
2763 /* diff = max - min. */
2764 prod2
= prod3
- prod0
;
2765 if (wi::geu_p (prod2
, sizem1
))
2767 /* the range covers all values. */
2768 set_value_range_to_varying (vr
);
2772 /* The following should handle the wrapping and selecting
2773 VR_ANTI_RANGE for us. */
2774 min
= wide_int_to_tree (expr_type
, prod0
);
2775 max
= wide_int_to_tree (expr_type
, prod3
);
2776 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
2780 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2781 drop to VR_VARYING. It would take more effort to compute a
2782 precise range for such a case. For example, if we have
2783 op0 == 65536 and op1 == 65536 with their ranges both being
2784 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2785 we cannot claim that the product is in ~[0,0]. Note that we
2786 are guaranteed to have vr0.type == vr1.type at this
2788 if (vr0
.type
== VR_ANTI_RANGE
2789 && !TYPE_OVERFLOW_UNDEFINED (expr_type
))
2791 set_value_range_to_varying (vr
);
2795 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2798 else if (code
== RSHIFT_EXPR
2799 || code
== LSHIFT_EXPR
)
2801 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2802 then drop to VR_VARYING. Outside of this range we get undefined
2803 behavior from the shift operation. We cannot even trust
2804 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2805 shifts, and the operation at the tree level may be widened. */
2806 if (range_int_cst_p (&vr1
)
2807 && compare_tree_int (vr1
.min
, 0) >= 0
2808 && compare_tree_int (vr1
.max
, TYPE_PRECISION (expr_type
)) == -1)
2810 if (code
== RSHIFT_EXPR
)
2812 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2813 useful ranges just from the shift count. E.g.
2814 x >> 63 for signed 64-bit x is always [-1, 0]. */
2815 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2817 vr0
.type
= type
= VR_RANGE
;
2818 vr0
.min
= vrp_val_min (expr_type
);
2819 vr0
.max
= vrp_val_max (expr_type
);
2821 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2824 /* We can map lshifts by constants to MULT_EXPR handling. */
2825 else if (code
== LSHIFT_EXPR
2826 && range_int_cst_singleton_p (&vr1
))
2828 bool saved_flag_wrapv
;
2829 value_range vr1p
= VR_INITIALIZER
;
2830 vr1p
.type
= VR_RANGE
;
2831 vr1p
.min
= (wide_int_to_tree
2833 wi::set_bit_in_zero (tree_to_shwi (vr1
.min
),
2834 TYPE_PRECISION (expr_type
))));
2835 vr1p
.max
= vr1p
.min
;
2836 /* We have to use a wrapping multiply though as signed overflow
2837 on lshifts is implementation defined in C89. */
2838 saved_flag_wrapv
= flag_wrapv
;
2840 extract_range_from_binary_expr_1 (vr
, MULT_EXPR
, expr_type
,
2842 flag_wrapv
= saved_flag_wrapv
;
2845 else if (code
== LSHIFT_EXPR
2846 && range_int_cst_p (&vr0
))
2848 int prec
= TYPE_PRECISION (expr_type
);
2849 int overflow_pos
= prec
;
2851 wide_int low_bound
, high_bound
;
2852 bool uns
= TYPE_UNSIGNED (expr_type
);
2853 bool in_bounds
= false;
2858 bound_shift
= overflow_pos
- tree_to_shwi (vr1
.max
);
2859 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2860 overflow. However, for that to happen, vr1.max needs to be
2861 zero, which means vr1 is a singleton range of zero, which
2862 means it should be handled by the previous LSHIFT_EXPR
2864 wide_int bound
= wi::set_bit_in_zero (bound_shift
, prec
);
2865 wide_int complement
= ~(bound
- 1);
2870 high_bound
= complement
;
2871 if (wi::ltu_p (vr0
.max
, low_bound
))
2873 /* [5, 6] << [1, 2] == [10, 24]. */
2874 /* We're shifting out only zeroes, the value increases
2878 else if (wi::ltu_p (high_bound
, vr0
.min
))
2880 /* [0xffffff00, 0xffffffff] << [1, 2]
2881 == [0xfffffc00, 0xfffffffe]. */
2882 /* We're shifting out only ones, the value decreases
2889 /* [-1, 1] << [1, 2] == [-4, 4]. */
2890 low_bound
= complement
;
2892 if (wi::lts_p (vr0
.max
, high_bound
)
2893 && wi::lts_p (low_bound
, vr0
.min
))
2895 /* For non-negative numbers, we're shifting out only
2896 zeroes, the value increases monotonically.
2897 For negative numbers, we're shifting out only ones, the
2898 value decreases monotomically. */
2905 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2910 set_value_range_to_varying (vr
);
2913 else if (code
== TRUNC_DIV_EXPR
2914 || code
== FLOOR_DIV_EXPR
2915 || code
== CEIL_DIV_EXPR
2916 || code
== EXACT_DIV_EXPR
2917 || code
== ROUND_DIV_EXPR
)
2919 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2921 /* For division, if op1 has VR_RANGE but op0 does not, something
2922 can be deduced just from that range. Say [min, max] / [4, max]
2923 gives [min / 4, max / 4] range. */
2924 if (vr1
.type
== VR_RANGE
2925 && !symbolic_range_p (&vr1
)
2926 && range_includes_zero_p (vr1
.min
, vr1
.max
) == 0)
2928 vr0
.type
= type
= VR_RANGE
;
2929 vr0
.min
= vrp_val_min (expr_type
);
2930 vr0
.max
= vrp_val_max (expr_type
);
2934 set_value_range_to_varying (vr
);
2939 /* For divisions, if flag_non_call_exceptions is true, we must
2940 not eliminate a division by zero. */
2941 if (cfun
->can_throw_non_call_exceptions
2942 && (vr1
.type
!= VR_RANGE
2943 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
2945 set_value_range_to_varying (vr
);
2949 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2950 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2952 if (vr0
.type
== VR_RANGE
2953 && (vr1
.type
!= VR_RANGE
2954 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
2956 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
2961 if (TYPE_UNSIGNED (expr_type
)
2962 || value_range_nonnegative_p (&vr1
))
2964 /* For unsigned division or when divisor is known
2965 to be non-negative, the range has to cover
2966 all numbers from 0 to max for positive max
2967 and all numbers from min to 0 for negative min. */
2968 cmp
= compare_values (vr0
.max
, zero
);
2971 /* When vr0.max < 0, vr1.min != 0 and value
2972 ranges for dividend and divisor are available. */
2973 if (vr1
.type
== VR_RANGE
2974 && !symbolic_range_p (&vr0
)
2975 && !symbolic_range_p (&vr1
)
2976 && compare_values (vr1
.min
, zero
) != 0)
2977 max
= int_const_binop (code
, vr0
.max
, vr1
.min
);
2981 else if (cmp
== 0 || cmp
== 1)
2985 cmp
= compare_values (vr0
.min
, zero
);
2988 /* For unsigned division when value ranges for dividend
2989 and divisor are available. */
2990 if (vr1
.type
== VR_RANGE
2991 && !symbolic_range_p (&vr0
)
2992 && !symbolic_range_p (&vr1
)
2993 && compare_values (vr1
.max
, zero
) != 0)
2994 min
= int_const_binop (code
, vr0
.min
, vr1
.max
);
2998 else if (cmp
== 0 || cmp
== -1)
3005 /* Otherwise the range is -max .. max or min .. -min
3006 depending on which bound is bigger in absolute value,
3007 as the division can change the sign. */
3008 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
3011 if (type
== VR_VARYING
)
3013 set_value_range_to_varying (vr
);
3017 else if (!symbolic_range_p (&vr0
) && !symbolic_range_p (&vr1
))
3019 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
3023 else if (code
== TRUNC_MOD_EXPR
)
3025 if (range_is_null (&vr1
))
3027 set_value_range_to_undefined (vr
);
3030 /* ABS (A % B) < ABS (B) and either
3031 0 <= A % B <= A or A <= A % B <= 0. */
3033 signop sgn
= TYPE_SIGN (expr_type
);
3034 unsigned int prec
= TYPE_PRECISION (expr_type
);
3035 wide_int wmin
, wmax
, tmp
;
3036 wide_int zero
= wi::zero (prec
);
3037 wide_int one
= wi::one (prec
);
3038 if (vr1
.type
== VR_RANGE
&& !symbolic_range_p (&vr1
))
3040 wmax
= wi::sub (vr1
.max
, one
);
3043 tmp
= wi::sub (wi::minus_one (prec
), vr1
.min
);
3044 wmax
= wi::smax (wmax
, tmp
);
3049 wmax
= wi::max_value (prec
, sgn
);
3050 /* X % INT_MIN may be INT_MAX. */
3051 if (sgn
== UNSIGNED
)
3055 if (sgn
== UNSIGNED
)
3060 if (vr0
.type
== VR_RANGE
&& TREE_CODE (vr0
.min
) == INTEGER_CST
)
3063 if (wi::gts_p (tmp
, zero
))
3065 wmin
= wi::smax (wmin
, tmp
);
3069 if (vr0
.type
== VR_RANGE
&& TREE_CODE (vr0
.max
) == INTEGER_CST
)
3072 if (sgn
== SIGNED
&& wi::neg_p (tmp
))
3074 wmax
= wi::min (wmax
, tmp
, sgn
);
3077 min
= wide_int_to_tree (expr_type
, wmin
);
3078 max
= wide_int_to_tree (expr_type
, wmax
);
3080 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
3082 bool int_cst_range0
, int_cst_range1
;
3083 wide_int may_be_nonzero0
, may_be_nonzero1
;
3084 wide_int must_be_nonzero0
, must_be_nonzero1
;
3086 int_cst_range0
= zero_nonzero_bits_from_vr (expr_type
, &vr0
,
3089 int_cst_range1
= zero_nonzero_bits_from_vr (expr_type
, &vr1
,
3094 if (code
== BIT_AND_EXPR
)
3096 min
= wide_int_to_tree (expr_type
,
3097 must_be_nonzero0
& must_be_nonzero1
);
3098 wide_int wmax
= may_be_nonzero0
& may_be_nonzero1
;
3099 /* If both input ranges contain only negative values we can
3100 truncate the result range maximum to the minimum of the
3101 input range maxima. */
3102 if (int_cst_range0
&& int_cst_range1
3103 && tree_int_cst_sgn (vr0
.max
) < 0
3104 && tree_int_cst_sgn (vr1
.max
) < 0)
3106 wmax
= wi::min (wmax
, vr0
.max
, TYPE_SIGN (expr_type
));
3107 wmax
= wi::min (wmax
, vr1
.max
, TYPE_SIGN (expr_type
));
3109 /* If either input range contains only non-negative values
3110 we can truncate the result range maximum to the respective
3111 maximum of the input range. */
3112 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
3113 wmax
= wi::min (wmax
, vr0
.max
, TYPE_SIGN (expr_type
));
3114 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
3115 wmax
= wi::min (wmax
, vr1
.max
, TYPE_SIGN (expr_type
));
3116 max
= wide_int_to_tree (expr_type
, wmax
);
3117 cmp
= compare_values (min
, max
);
3118 /* PR68217: In case of signed & sign-bit-CST should
3119 result in [-INF, 0] instead of [-INF, INF]. */
3120 if (cmp
== -2 || cmp
== 1)
3123 = wi::set_bit_in_zero (TYPE_PRECISION (expr_type
) - 1,
3124 TYPE_PRECISION (expr_type
));
3125 if (!TYPE_UNSIGNED (expr_type
)
3126 && ((value_range_constant_singleton (&vr0
)
3127 && !wi::cmps (vr0
.min
, sign_bit
))
3128 || (value_range_constant_singleton (&vr1
)
3129 && !wi::cmps (vr1
.min
, sign_bit
))))
3131 min
= TYPE_MIN_VALUE (expr_type
);
3132 max
= build_int_cst (expr_type
, 0);
3136 else if (code
== BIT_IOR_EXPR
)
3138 max
= wide_int_to_tree (expr_type
,
3139 may_be_nonzero0
| may_be_nonzero1
);
3140 wide_int wmin
= must_be_nonzero0
| must_be_nonzero1
;
3141 /* If the input ranges contain only positive values we can
3142 truncate the minimum of the result range to the maximum
3143 of the input range minima. */
3144 if (int_cst_range0
&& int_cst_range1
3145 && tree_int_cst_sgn (vr0
.min
) >= 0
3146 && tree_int_cst_sgn (vr1
.min
) >= 0)
3148 wmin
= wi::max (wmin
, vr0
.min
, TYPE_SIGN (expr_type
));
3149 wmin
= wi::max (wmin
, vr1
.min
, TYPE_SIGN (expr_type
));
3151 /* If either input range contains only negative values
3152 we can truncate the minimum of the result range to the
3153 respective minimum range. */
3154 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.max
) < 0)
3155 wmin
= wi::max (wmin
, vr0
.min
, TYPE_SIGN (expr_type
));
3156 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.max
) < 0)
3157 wmin
= wi::max (wmin
, vr1
.min
, TYPE_SIGN (expr_type
));
3158 min
= wide_int_to_tree (expr_type
, wmin
);
3160 else if (code
== BIT_XOR_EXPR
)
3162 wide_int result_zero_bits
= ((must_be_nonzero0
& must_be_nonzero1
)
3163 | ~(may_be_nonzero0
| may_be_nonzero1
));
3164 wide_int result_one_bits
3165 = (must_be_nonzero0
.and_not (may_be_nonzero1
)
3166 | must_be_nonzero1
.and_not (may_be_nonzero0
));
3167 max
= wide_int_to_tree (expr_type
, ~result_zero_bits
);
3168 min
= wide_int_to_tree (expr_type
, result_one_bits
);
3169 /* If the range has all positive or all negative values the
3170 result is better than VARYING. */
3171 if (tree_int_cst_sgn (min
) < 0
3172 || tree_int_cst_sgn (max
) >= 0)
3175 max
= min
= NULL_TREE
;
3181 /* If either MIN or MAX overflowed, then set the resulting range to
3182 VARYING. But we do accept an overflow infinity representation. */
3183 if (min
== NULL_TREE
3184 || (TREE_OVERFLOW_P (min
) && !is_overflow_infinity (min
))
3186 || (TREE_OVERFLOW_P (max
) && !is_overflow_infinity (max
)))
3188 set_value_range_to_varying (vr
);
3194 2) [-INF, +-INF(OVF)]
3195 3) [+-INF(OVF), +INF]
3196 4) [+-INF(OVF), +-INF(OVF)]
3197 We learn nothing when we have INF and INF(OVF) on both sides.
3198 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3200 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
3201 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
3203 set_value_range_to_varying (vr
);
3207 cmp
= compare_values (min
, max
);
3208 if (cmp
== -2 || cmp
== 1)
3210 /* If the new range has its limits swapped around (MIN > MAX),
3211 then the operation caused one of them to wrap around, mark
3212 the new range VARYING. */
3213 set_value_range_to_varying (vr
);
3216 set_value_range (vr
, type
, min
, max
, NULL
);
3219 /* Extract range information from a binary expression OP0 CODE OP1 based on
3220 the ranges of each of its operands with resulting type EXPR_TYPE.
3221 The resulting range is stored in *VR. */
3224 extract_range_from_binary_expr (value_range
*vr
,
3225 enum tree_code code
,
3226 tree expr_type
, tree op0
, tree op1
)
3228 value_range vr0
= VR_INITIALIZER
;
3229 value_range vr1
= VR_INITIALIZER
;
3231 /* Get value ranges for each operand. For constant operands, create
3232 a new value range with the operand to simplify processing. */
3233 if (TREE_CODE (op0
) == SSA_NAME
)
3234 vr0
= *(get_value_range (op0
));
3235 else if (is_gimple_min_invariant (op0
))
3236 set_value_range_to_value (&vr0
, op0
, NULL
);
3238 set_value_range_to_varying (&vr0
);
3240 if (TREE_CODE (op1
) == SSA_NAME
)
3241 vr1
= *(get_value_range (op1
));
3242 else if (is_gimple_min_invariant (op1
))
3243 set_value_range_to_value (&vr1
, op1
, NULL
);
3245 set_value_range_to_varying (&vr1
);
3247 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &vr1
);
3249 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3250 and based on the other operand, for example if it was deduced from a
3251 symbolic comparison. When a bound of the range of the first operand
3252 is invariant, we set the corresponding bound of the new range to INF
3253 in order to avoid recursing on the range of the second operand. */
3254 if (vr
->type
== VR_VARYING
3255 && (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
3256 && TREE_CODE (op1
) == SSA_NAME
3257 && vr0
.type
== VR_RANGE
3258 && symbolic_range_based_on_p (&vr0
, op1
))
3260 const bool minus_p
= (code
== MINUS_EXPR
);
3261 value_range n_vr1
= VR_INITIALIZER
;
3263 /* Try with VR0 and [-INF, OP1]. */
3264 if (is_gimple_min_invariant (minus_p
? vr0
.max
: vr0
.min
))
3265 set_value_range (&n_vr1
, VR_RANGE
, vrp_val_min (expr_type
), op1
, NULL
);
3267 /* Try with VR0 and [OP1, +INF]. */
3268 else if (is_gimple_min_invariant (minus_p
? vr0
.min
: vr0
.max
))
3269 set_value_range (&n_vr1
, VR_RANGE
, op1
, vrp_val_max (expr_type
), NULL
);
3271 /* Try with VR0 and [OP1, OP1]. */
3273 set_value_range (&n_vr1
, VR_RANGE
, op1
, op1
, NULL
);
3275 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &n_vr1
);
3278 if (vr
->type
== VR_VARYING
3279 && (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
3280 && TREE_CODE (op0
) == SSA_NAME
3281 && vr1
.type
== VR_RANGE
3282 && symbolic_range_based_on_p (&vr1
, op0
))
3284 const bool minus_p
= (code
== MINUS_EXPR
);
3285 value_range n_vr0
= VR_INITIALIZER
;
3287 /* Try with [-INF, OP0] and VR1. */
3288 if (is_gimple_min_invariant (minus_p
? vr1
.max
: vr1
.min
))
3289 set_value_range (&n_vr0
, VR_RANGE
, vrp_val_min (expr_type
), op0
, NULL
);
3291 /* Try with [OP0, +INF] and VR1. */
3292 else if (is_gimple_min_invariant (minus_p
? vr1
.min
: vr1
.max
))
3293 set_value_range (&n_vr0
, VR_RANGE
, op0
, vrp_val_max (expr_type
), NULL
);
3295 /* Try with [OP0, OP0] and VR1. */
3297 set_value_range (&n_vr0
, VR_RANGE
, op0
, op0
, NULL
);
3299 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &n_vr0
, &vr1
);
3303 /* Extract range information from a unary operation CODE based on
3304 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3305 The resulting range is stored in *VR. */
3308 extract_range_from_unary_expr (value_range
*vr
,
3309 enum tree_code code
, tree type
,
3310 value_range
*vr0_
, tree op0_type
)
3312 value_range vr0
= *vr0_
, vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
3314 /* VRP only operates on integral and pointer types. */
3315 if (!(INTEGRAL_TYPE_P (op0_type
)
3316 || POINTER_TYPE_P (op0_type
))
3317 || !(INTEGRAL_TYPE_P (type
)
3318 || POINTER_TYPE_P (type
)))
3320 set_value_range_to_varying (vr
);
3324 /* If VR0 is UNDEFINED, so is the result. */
3325 if (vr0
.type
== VR_UNDEFINED
)
3327 set_value_range_to_undefined (vr
);
3331 /* Handle operations that we express in terms of others. */
3332 if (code
== PAREN_EXPR
|| code
== OBJ_TYPE_REF
)
3334 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3335 copy_value_range (vr
, &vr0
);
3338 else if (code
== NEGATE_EXPR
)
3340 /* -X is simply 0 - X, so re-use existing code that also handles
3341 anti-ranges fine. */
3342 value_range zero
= VR_INITIALIZER
;
3343 set_value_range_to_value (&zero
, build_int_cst (type
, 0), NULL
);
3344 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
3347 else if (code
== BIT_NOT_EXPR
)
3349 /* ~X is simply -1 - X, so re-use existing code that also handles
3350 anti-ranges fine. */
3351 value_range minusone
= VR_INITIALIZER
;
3352 set_value_range_to_value (&minusone
, build_int_cst (type
, -1), NULL
);
3353 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
,
3354 type
, &minusone
, &vr0
);
3358 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3359 and express op ~[] as (op []') U (op []''). */
3360 if (vr0
.type
== VR_ANTI_RANGE
3361 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
3363 extract_range_from_unary_expr (vr
, code
, type
, &vrtem0
, op0_type
);
3364 if (vrtem1
.type
!= VR_UNDEFINED
)
3366 value_range vrres
= VR_INITIALIZER
;
3367 extract_range_from_unary_expr (&vrres
, code
, type
,
3369 vrp_meet (vr
, &vrres
);
3374 if (CONVERT_EXPR_CODE_P (code
))
3376 tree inner_type
= op0_type
;
3377 tree outer_type
= type
;
3379 /* If the expression evaluates to a pointer, we are only interested in
3380 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3381 if (POINTER_TYPE_P (type
))
3383 if (range_is_nonnull (&vr0
))
3384 set_value_range_to_nonnull (vr
, type
);
3385 else if (range_is_null (&vr0
))
3386 set_value_range_to_null (vr
, type
);
3388 set_value_range_to_varying (vr
);
3392 /* If VR0 is varying and we increase the type precision, assume
3393 a full range for the following transformation. */
3394 if (vr0
.type
== VR_VARYING
3395 && INTEGRAL_TYPE_P (inner_type
)
3396 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
3398 vr0
.type
= VR_RANGE
;
3399 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
3400 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
3403 /* If VR0 is a constant range or anti-range and the conversion is
3404 not truncating we can convert the min and max values and
3405 canonicalize the resulting range. Otherwise we can do the
3406 conversion if the size of the range is less than what the
3407 precision of the target type can represent and the range is
3408 not an anti-range. */
3409 if ((vr0
.type
== VR_RANGE
3410 || vr0
.type
== VR_ANTI_RANGE
)
3411 && TREE_CODE (vr0
.min
) == INTEGER_CST
3412 && TREE_CODE (vr0
.max
) == INTEGER_CST
3413 && (!is_overflow_infinity (vr0
.min
)
3414 || (vr0
.type
== VR_RANGE
3415 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3416 && needs_overflow_infinity (outer_type
)
3417 && supports_overflow_infinity (outer_type
)))
3418 && (!is_overflow_infinity (vr0
.max
)
3419 || (vr0
.type
== VR_RANGE
3420 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3421 && needs_overflow_infinity (outer_type
)
3422 && supports_overflow_infinity (outer_type
)))
3423 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
3424 || (vr0
.type
== VR_RANGE
3425 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
3426 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
),
3427 size_int (TYPE_PRECISION (outer_type
)))))))
3429 tree new_min
, new_max
;
3430 if (is_overflow_infinity (vr0
.min
))
3431 new_min
= negative_overflow_infinity (outer_type
);
3433 new_min
= force_fit_type (outer_type
, wi::to_widest (vr0
.min
),
3435 if (is_overflow_infinity (vr0
.max
))
3436 new_max
= positive_overflow_infinity (outer_type
);
3438 new_max
= force_fit_type (outer_type
, wi::to_widest (vr0
.max
),
3440 set_and_canonicalize_value_range (vr
, vr0
.type
,
3441 new_min
, new_max
, NULL
);
3445 set_value_range_to_varying (vr
);
3448 else if (code
== ABS_EXPR
)
3453 /* Pass through vr0 in the easy cases. */
3454 if (TYPE_UNSIGNED (type
)
3455 || value_range_nonnegative_p (&vr0
))
3457 copy_value_range (vr
, &vr0
);
3461 /* For the remaining varying or symbolic ranges we can't do anything
3463 if (vr0
.type
== VR_VARYING
3464 || symbolic_range_p (&vr0
))
3466 set_value_range_to_varying (vr
);
3470 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3472 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3473 && ((vr0
.type
== VR_RANGE
3474 && vrp_val_is_min (vr0
.min
))
3475 || (vr0
.type
== VR_ANTI_RANGE
3476 && !vrp_val_is_min (vr0
.min
))))
3478 set_value_range_to_varying (vr
);
3482 /* ABS_EXPR may flip the range around, if the original range
3483 included negative values. */
3484 if (is_overflow_infinity (vr0
.min
))
3485 min
= positive_overflow_infinity (type
);
3486 else if (!vrp_val_is_min (vr0
.min
))
3487 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3488 else if (!needs_overflow_infinity (type
))
3489 min
= TYPE_MAX_VALUE (type
);
3490 else if (supports_overflow_infinity (type
))
3491 min
= positive_overflow_infinity (type
);
3494 set_value_range_to_varying (vr
);
3498 if (is_overflow_infinity (vr0
.max
))
3499 max
= positive_overflow_infinity (type
);
3500 else if (!vrp_val_is_min (vr0
.max
))
3501 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3502 else if (!needs_overflow_infinity (type
))
3503 max
= TYPE_MAX_VALUE (type
);
3504 else if (supports_overflow_infinity (type
)
3505 /* We shouldn't generate [+INF, +INF] as set_value_range
3506 doesn't like this and ICEs. */
3507 && !is_positive_overflow_infinity (min
))
3508 max
= positive_overflow_infinity (type
);
3511 set_value_range_to_varying (vr
);
3515 cmp
= compare_values (min
, max
);
3517 /* If a VR_ANTI_RANGEs contains zero, then we have
3518 ~[-INF, min(MIN, MAX)]. */
3519 if (vr0
.type
== VR_ANTI_RANGE
)
3521 if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3523 /* Take the lower of the two values. */
3527 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3528 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3529 flag_wrapv is set and the original anti-range doesn't include
3530 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3531 if (TYPE_OVERFLOW_WRAPS (type
))
3533 tree type_min_value
= TYPE_MIN_VALUE (type
);
3535 min
= (vr0
.min
!= type_min_value
3536 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3537 build_int_cst (TREE_TYPE (type_min_value
), 1))
3542 if (overflow_infinity_range_p (&vr0
))
3543 min
= negative_overflow_infinity (type
);
3545 min
= TYPE_MIN_VALUE (type
);
3550 /* All else has failed, so create the range [0, INF], even for
3551 flag_wrapv since TYPE_MIN_VALUE is in the original
3553 vr0
.type
= VR_RANGE
;
3554 min
= build_int_cst (type
, 0);
3555 if (needs_overflow_infinity (type
))
3557 if (supports_overflow_infinity (type
))
3558 max
= positive_overflow_infinity (type
);
3561 set_value_range_to_varying (vr
);
3566 max
= TYPE_MAX_VALUE (type
);
3570 /* If the range contains zero then we know that the minimum value in the
3571 range will be zero. */
3572 else if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3576 min
= build_int_cst (type
, 0);
3580 /* If the range was reversed, swap MIN and MAX. */
3582 std::swap (min
, max
);
3585 cmp
= compare_values (min
, max
);
3586 if (cmp
== -2 || cmp
== 1)
3588 /* If the new range has its limits swapped around (MIN > MAX),
3589 then the operation caused one of them to wrap around, mark
3590 the new range VARYING. */
3591 set_value_range_to_varying (vr
);
3594 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3598 /* For unhandled operations fall back to varying. */
3599 set_value_range_to_varying (vr
);
3604 /* Extract range information from a unary expression CODE OP0 based on
3605 the range of its operand with resulting type TYPE.
3606 The resulting range is stored in *VR. */
3609 extract_range_from_unary_expr (value_range
*vr
, enum tree_code code
,
3610 tree type
, tree op0
)
3612 value_range vr0
= VR_INITIALIZER
;
3614 /* Get value ranges for the operand. For constant operands, create
3615 a new value range with the operand to simplify processing. */
3616 if (TREE_CODE (op0
) == SSA_NAME
)
3617 vr0
= *(get_value_range (op0
));
3618 else if (is_gimple_min_invariant (op0
))
3619 set_value_range_to_value (&vr0
, op0
, NULL
);
3621 set_value_range_to_varying (&vr0
);
3623 extract_range_from_unary_expr (vr
, code
, type
, &vr0
, TREE_TYPE (op0
));
3627 /* Extract range information from a conditional expression STMT based on
3628 the ranges of each of its operands and the expression code. */
3631 extract_range_from_cond_expr (value_range
*vr
, gassign
*stmt
)
3634 value_range vr0
= VR_INITIALIZER
;
3635 value_range vr1
= VR_INITIALIZER
;
3637 /* Get value ranges for each operand. For constant operands, create
3638 a new value range with the operand to simplify processing. */
3639 op0
= gimple_assign_rhs2 (stmt
);
3640 if (TREE_CODE (op0
) == SSA_NAME
)
3641 vr0
= *(get_value_range (op0
));
3642 else if (is_gimple_min_invariant (op0
))
3643 set_value_range_to_value (&vr0
, op0
, NULL
);
3645 set_value_range_to_varying (&vr0
);
3647 op1
= gimple_assign_rhs3 (stmt
);
3648 if (TREE_CODE (op1
) == SSA_NAME
)
3649 vr1
= *(get_value_range (op1
));
3650 else if (is_gimple_min_invariant (op1
))
3651 set_value_range_to_value (&vr1
, op1
, NULL
);
3653 set_value_range_to_varying (&vr1
);
3655 /* The resulting value range is the union of the operand ranges */
3656 copy_value_range (vr
, &vr0
);
3657 vrp_meet (vr
, &vr1
);
3661 /* Extract range information from a comparison expression EXPR based
3662 on the range of its operand and the expression code. */
3665 extract_range_from_comparison (value_range
*vr
, enum tree_code code
,
3666 tree type
, tree op0
, tree op1
)
3671 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3674 /* A disadvantage of using a special infinity as an overflow
3675 representation is that we lose the ability to record overflow
3676 when we don't have an infinity. So we have to ignore a result
3677 which relies on overflow. */
3679 if (val
&& !is_overflow_infinity (val
) && !sop
)
3681 /* Since this expression was found on the RHS of an assignment,
3682 its type may be different from _Bool. Convert VAL to EXPR's
3684 val
= fold_convert (type
, val
);
3685 if (is_gimple_min_invariant (val
))
3686 set_value_range_to_value (vr
, val
, vr
->equiv
);
3688 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3691 /* The result of a comparison is always true or false. */
3692 set_value_range_to_truthvalue (vr
, type
);
3695 /* Helper function for simplify_internal_call_using_ranges and
3696 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3697 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3698 always overflow. Set *OVF to true if it is known to always
3702 check_for_binary_op_overflow (enum tree_code subcode
, tree type
,
3703 tree op0
, tree op1
, bool *ovf
)
3705 value_range vr0
= VR_INITIALIZER
;
3706 value_range vr1
= VR_INITIALIZER
;
3707 if (TREE_CODE (op0
) == SSA_NAME
)
3708 vr0
= *get_value_range (op0
);
3709 else if (TREE_CODE (op0
) == INTEGER_CST
)
3710 set_value_range_to_value (&vr0
, op0
, NULL
);
3712 set_value_range_to_varying (&vr0
);
3714 if (TREE_CODE (op1
) == SSA_NAME
)
3715 vr1
= *get_value_range (op1
);
3716 else if (TREE_CODE (op1
) == INTEGER_CST
)
3717 set_value_range_to_value (&vr1
, op1
, NULL
);
3719 set_value_range_to_varying (&vr1
);
3721 if (!range_int_cst_p (&vr0
)
3722 || TREE_OVERFLOW (vr0
.min
)
3723 || TREE_OVERFLOW (vr0
.max
))
3725 vr0
.min
= vrp_val_min (TREE_TYPE (op0
));
3726 vr0
.max
= vrp_val_max (TREE_TYPE (op0
));
3728 if (!range_int_cst_p (&vr1
)
3729 || TREE_OVERFLOW (vr1
.min
)
3730 || TREE_OVERFLOW (vr1
.max
))
3732 vr1
.min
= vrp_val_min (TREE_TYPE (op1
));
3733 vr1
.max
= vrp_val_max (TREE_TYPE (op1
));
3735 *ovf
= arith_overflowed_p (subcode
, type
, vr0
.min
,
3736 subcode
== MINUS_EXPR
? vr1
.max
: vr1
.min
);
3737 if (arith_overflowed_p (subcode
, type
, vr0
.max
,
3738 subcode
== MINUS_EXPR
? vr1
.min
: vr1
.max
) != *ovf
)
3740 if (subcode
== MULT_EXPR
)
3742 if (arith_overflowed_p (subcode
, type
, vr0
.min
, vr1
.max
) != *ovf
3743 || arith_overflowed_p (subcode
, type
, vr0
.max
, vr1
.min
) != *ovf
)
3748 /* So far we found that there is an overflow on the boundaries.
3749 That doesn't prove that there is an overflow even for all values
3750 in between the boundaries. For that compute widest_int range
3751 of the result and see if it doesn't overlap the range of
3753 widest_int wmin
, wmax
;
3756 w
[0] = wi::to_widest (vr0
.min
);
3757 w
[1] = wi::to_widest (vr0
.max
);
3758 w
[2] = wi::to_widest (vr1
.min
);
3759 w
[3] = wi::to_widest (vr1
.max
);
3760 for (i
= 0; i
< 4; i
++)
3766 wt
= wi::add (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3769 wt
= wi::sub (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3772 wt
= wi::mul (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3784 wmin
= wi::smin (wmin
, wt
);
3785 wmax
= wi::smax (wmax
, wt
);
3788 /* The result of op0 CODE op1 is known to be in range
3790 widest_int wtmin
= wi::to_widest (vrp_val_min (type
));
3791 widest_int wtmax
= wi::to_widest (vrp_val_max (type
));
3792 /* If all values in [wmin, wmax] are smaller than
3793 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3794 the arithmetic operation will always overflow. */
3795 if (wmax
< wtmin
|| wmin
> wtmax
)
3802 /* Try to derive a nonnegative or nonzero range out of STMT relying
3803 primarily on generic routines in fold in conjunction with range data.
3804 Store the result in *VR */
3807 extract_range_basic (value_range
*vr
, gimple
*stmt
)
3810 tree type
= gimple_expr_type (stmt
);
3812 if (is_gimple_call (stmt
))
3815 int mini
, maxi
, zerov
= 0, prec
;
3816 enum tree_code subcode
= ERROR_MARK
;
3817 combined_fn cfn
= gimple_call_combined_fn (stmt
);
3821 case CFN_BUILT_IN_CONSTANT_P
:
3822 /* If the call is __builtin_constant_p and the argument is a
3823 function parameter resolve it to false. This avoids bogus
3824 array bound warnings.
3825 ??? We could do this as early as inlining is finished. */
3826 arg
= gimple_call_arg (stmt
, 0);
3827 if (TREE_CODE (arg
) == SSA_NAME
3828 && SSA_NAME_IS_DEFAULT_DEF (arg
)
3829 && TREE_CODE (SSA_NAME_VAR (arg
)) == PARM_DECL
3830 && cfun
->after_inlining
)
3832 set_value_range_to_null (vr
, type
);
3836 /* Both __builtin_ffs* and __builtin_popcount return
3840 arg
= gimple_call_arg (stmt
, 0);
3841 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3844 if (TREE_CODE (arg
) == SSA_NAME
)
3846 value_range
*vr0
= get_value_range (arg
);
3847 /* If arg is non-zero, then ffs or popcount
3849 if (((vr0
->type
== VR_RANGE
3850 && range_includes_zero_p (vr0
->min
, vr0
->max
) == 0)
3851 || (vr0
->type
== VR_ANTI_RANGE
3852 && range_includes_zero_p (vr0
->min
, vr0
->max
) == 1))
3853 && !is_overflow_infinity (vr0
->min
)
3854 && !is_overflow_infinity (vr0
->max
))
3856 /* If some high bits are known to be zero,
3857 we can decrease the maximum. */
3858 if (vr0
->type
== VR_RANGE
3859 && TREE_CODE (vr0
->max
) == INTEGER_CST
3860 && !operand_less_p (vr0
->min
,
3861 build_zero_cst (TREE_TYPE (vr0
->min
)))
3862 && !is_overflow_infinity (vr0
->max
))
3863 maxi
= tree_floor_log2 (vr0
->max
) + 1;
3866 /* __builtin_parity* returns [0, 1]. */
3871 /* __builtin_c[lt]z* return [0, prec-1], except for
3872 when the argument is 0, but that is undefined behavior.
3873 On many targets where the CLZ RTL or optab value is defined
3874 for 0 the value is prec, so include that in the range
3877 arg
= gimple_call_arg (stmt
, 0);
3878 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3881 if (optab_handler (clz_optab
, TYPE_MODE (TREE_TYPE (arg
)))
3883 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg
)),
3885 /* Handle only the single common value. */
3887 /* Magic value to give up, unless vr0 proves
3890 if (TREE_CODE (arg
) == SSA_NAME
)
3892 value_range
*vr0
= get_value_range (arg
);
3893 /* From clz of VR_RANGE minimum we can compute
3895 if (vr0
->type
== VR_RANGE
3896 && TREE_CODE (vr0
->min
) == INTEGER_CST
3897 && !is_overflow_infinity (vr0
->min
))
3899 maxi
= prec
- 1 - tree_floor_log2 (vr0
->min
);
3903 else if (vr0
->type
== VR_ANTI_RANGE
3904 && integer_zerop (vr0
->min
)
3905 && !is_overflow_infinity (vr0
->min
))
3912 /* From clz of VR_RANGE maximum we can compute
3914 if (vr0
->type
== VR_RANGE
3915 && TREE_CODE (vr0
->max
) == INTEGER_CST
3916 && !is_overflow_infinity (vr0
->max
))
3918 mini
= prec
- 1 - tree_floor_log2 (vr0
->max
);
3926 /* __builtin_ctz* return [0, prec-1], except for
3927 when the argument is 0, but that is undefined behavior.
3928 If there is a ctz optab for this mode and
3929 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3930 otherwise just assume 0 won't be seen. */
3932 arg
= gimple_call_arg (stmt
, 0);
3933 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3936 if (optab_handler (ctz_optab
, TYPE_MODE (TREE_TYPE (arg
)))
3938 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg
)),
3941 /* Handle only the two common values. */
3944 else if (zerov
== prec
)
3947 /* Magic value to give up, unless vr0 proves
3951 if (TREE_CODE (arg
) == SSA_NAME
)
3953 value_range
*vr0
= get_value_range (arg
);
3954 /* If arg is non-zero, then use [0, prec - 1]. */
3955 if (((vr0
->type
== VR_RANGE
3956 && integer_nonzerop (vr0
->min
))
3957 || (vr0
->type
== VR_ANTI_RANGE
3958 && integer_zerop (vr0
->min
)))
3959 && !is_overflow_infinity (vr0
->min
))
3964 /* If some high bits are known to be zero,
3965 we can decrease the result maximum. */
3966 if (vr0
->type
== VR_RANGE
3967 && TREE_CODE (vr0
->max
) == INTEGER_CST
3968 && !is_overflow_infinity (vr0
->max
))
3970 maxi
= tree_floor_log2 (vr0
->max
);
3971 /* For vr0 [0, 0] give up. */
3979 /* __builtin_clrsb* returns [0, prec-1]. */
3981 arg
= gimple_call_arg (stmt
, 0);
3982 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3987 set_value_range (vr
, VR_RANGE
, build_int_cst (type
, mini
),
3988 build_int_cst (type
, maxi
), NULL
);
3990 case CFN_UBSAN_CHECK_ADD
:
3991 subcode
= PLUS_EXPR
;
3993 case CFN_UBSAN_CHECK_SUB
:
3994 subcode
= MINUS_EXPR
;
3996 case CFN_UBSAN_CHECK_MUL
:
3997 subcode
= MULT_EXPR
;
3999 case CFN_GOACC_DIM_SIZE
:
4000 case CFN_GOACC_DIM_POS
:
4001 /* Optimizing these two internal functions helps the loop
4002 optimizer eliminate outer comparisons. Size is [1,N]
4003 and pos is [0,N-1]. */
4005 bool is_pos
= cfn
== CFN_GOACC_DIM_POS
;
4006 int axis
= oacc_get_ifn_dim_arg (stmt
);
4007 int size
= oacc_get_fn_dim_size (current_function_decl
, axis
);
4010 /* If it's dynamic, the backend might know a hardware
4012 size
= targetm
.goacc
.dim_limit (axis
);
4014 tree type
= TREE_TYPE (gimple_call_lhs (stmt
));
4015 set_value_range (vr
, VR_RANGE
,
4016 build_int_cst (type
, is_pos
? 0 : 1),
4017 size
? build_int_cst (type
, size
- is_pos
)
4018 : vrp_val_max (type
), NULL
);
4021 case CFN_BUILT_IN_STRLEN
:
4022 if (tree lhs
= gimple_call_lhs (stmt
))
4023 if (ptrdiff_type_node
4024 && (TYPE_PRECISION (ptrdiff_type_node
)
4025 == TYPE_PRECISION (TREE_TYPE (lhs
))))
4027 tree type
= TREE_TYPE (lhs
);
4028 tree max
= vrp_val_max (ptrdiff_type_node
);
4029 wide_int wmax
= wi::to_wide (max
, TYPE_PRECISION (TREE_TYPE (max
)));
4030 tree range_min
= build_zero_cst (type
);
4031 tree range_max
= wide_int_to_tree (type
, wmax
- 1);
4032 set_value_range (vr
, VR_RANGE
, range_min
, range_max
, NULL
);
4039 if (subcode
!= ERROR_MARK
)
4041 bool saved_flag_wrapv
= flag_wrapv
;
4042 /* Pretend the arithmetics is wrapping. If there is
4043 any overflow, we'll complain, but will actually do
4044 wrapping operation. */
4046 extract_range_from_binary_expr (vr
, subcode
, type
,
4047 gimple_call_arg (stmt
, 0),
4048 gimple_call_arg (stmt
, 1));
4049 flag_wrapv
= saved_flag_wrapv
;
4051 /* If for both arguments vrp_valueize returned non-NULL,
4052 this should have been already folded and if not, it
4053 wasn't folded because of overflow. Avoid removing the
4054 UBSAN_CHECK_* calls in that case. */
4055 if (vr
->type
== VR_RANGE
4056 && (vr
->min
== vr
->max
4057 || operand_equal_p (vr
->min
, vr
->max
, 0)))
4058 set_value_range_to_varying (vr
);
4062 /* Handle extraction of the two results (result of arithmetics and
4063 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4064 internal function. */
4065 else if (is_gimple_assign (stmt
)
4066 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
4067 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
4068 && INTEGRAL_TYPE_P (type
))
4070 enum tree_code code
= gimple_assign_rhs_code (stmt
);
4071 tree op
= gimple_assign_rhs1 (stmt
);
4072 if (TREE_CODE (op
) == code
&& TREE_CODE (TREE_OPERAND (op
, 0)) == SSA_NAME
)
4074 gimple
*g
= SSA_NAME_DEF_STMT (TREE_OPERAND (op
, 0));
4075 if (is_gimple_call (g
) && gimple_call_internal_p (g
))
4077 enum tree_code subcode
= ERROR_MARK
;
4078 switch (gimple_call_internal_fn (g
))
4080 case IFN_ADD_OVERFLOW
:
4081 subcode
= PLUS_EXPR
;
4083 case IFN_SUB_OVERFLOW
:
4084 subcode
= MINUS_EXPR
;
4086 case IFN_MUL_OVERFLOW
:
4087 subcode
= MULT_EXPR
;
4092 if (subcode
!= ERROR_MARK
)
4094 tree op0
= gimple_call_arg (g
, 0);
4095 tree op1
= gimple_call_arg (g
, 1);
4096 if (code
== IMAGPART_EXPR
)
4099 if (check_for_binary_op_overflow (subcode
, type
,
4101 set_value_range_to_value (vr
,
4102 build_int_cst (type
, ovf
),
4104 else if (TYPE_PRECISION (type
) == 1
4105 && !TYPE_UNSIGNED (type
))
4106 set_value_range_to_varying (vr
);
4108 set_value_range (vr
, VR_RANGE
, build_int_cst (type
, 0),
4109 build_int_cst (type
, 1), NULL
);
4111 else if (types_compatible_p (type
, TREE_TYPE (op0
))
4112 && types_compatible_p (type
, TREE_TYPE (op1
)))
4114 bool saved_flag_wrapv
= flag_wrapv
;
4115 /* Pretend the arithmetics is wrapping. If there is
4116 any overflow, IMAGPART_EXPR will be set. */
4118 extract_range_from_binary_expr (vr
, subcode
, type
,
4120 flag_wrapv
= saved_flag_wrapv
;
4124 value_range vr0
= VR_INITIALIZER
;
4125 value_range vr1
= VR_INITIALIZER
;
4126 bool saved_flag_wrapv
= flag_wrapv
;
4127 /* Pretend the arithmetics is wrapping. If there is
4128 any overflow, IMAGPART_EXPR will be set. */
4130 extract_range_from_unary_expr (&vr0
, NOP_EXPR
,
4132 extract_range_from_unary_expr (&vr1
, NOP_EXPR
,
4134 extract_range_from_binary_expr_1 (vr
, subcode
, type
,
4136 flag_wrapv
= saved_flag_wrapv
;
4143 if (INTEGRAL_TYPE_P (type
)
4144 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
4145 set_value_range_to_nonnegative (vr
, type
,
4146 sop
|| stmt_overflow_infinity (stmt
));
4147 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
4149 set_value_range_to_nonnull (vr
, type
);
4151 set_value_range_to_varying (vr
);
4155 /* Try to compute a useful range out of assignment STMT and store it
4159 extract_range_from_assignment (value_range
*vr
, gassign
*stmt
)
4161 enum tree_code code
= gimple_assign_rhs_code (stmt
);
4163 if (code
== ASSERT_EXPR
)
4164 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
4165 else if (code
== SSA_NAME
)
4166 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
4167 else if (TREE_CODE_CLASS (code
) == tcc_binary
)
4168 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
4169 gimple_expr_type (stmt
),
4170 gimple_assign_rhs1 (stmt
),
4171 gimple_assign_rhs2 (stmt
));
4172 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
4173 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
4174 gimple_expr_type (stmt
),
4175 gimple_assign_rhs1 (stmt
));
4176 else if (code
== COND_EXPR
)
4177 extract_range_from_cond_expr (vr
, stmt
);
4178 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4179 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
4180 gimple_expr_type (stmt
),
4181 gimple_assign_rhs1 (stmt
),
4182 gimple_assign_rhs2 (stmt
));
4183 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
4184 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
4185 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
4187 set_value_range_to_varying (vr
);
4189 if (vr
->type
== VR_VARYING
)
4190 extract_range_basic (vr
, stmt
);
4193 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4194 would be profitable to adjust VR using scalar evolution information
4195 for VAR. If so, update VR with the new limits. */
4198 adjust_range_with_scev (value_range
*vr
, struct loop
*loop
,
4199 gimple
*stmt
, tree var
)
4201 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
4202 enum ev_direction dir
;
4204 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4205 better opportunities than a regular range, but I'm not sure. */
4206 if (vr
->type
== VR_ANTI_RANGE
)
4209 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
4211 /* Like in PR19590, scev can return a constant function. */
4212 if (is_gimple_min_invariant (chrec
))
4214 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
4218 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
4221 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
4222 tem
= op_with_constant_singleton_value_range (init
);
4225 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
4226 tem
= op_with_constant_singleton_value_range (step
);
4230 /* If STEP is symbolic, we can't know whether INIT will be the
4231 minimum or maximum value in the range. Also, unless INIT is
4232 a simple expression, compare_values and possibly other functions
4233 in tree-vrp won't be able to handle it. */
4234 if (step
== NULL_TREE
4235 || !is_gimple_min_invariant (step
)
4236 || !valid_value_p (init
))
4239 dir
= scev_direction (chrec
);
4240 if (/* Do not adjust ranges if we do not know whether the iv increases
4241 or decreases, ... */
4242 dir
== EV_DIR_UNKNOWN
4243 /* ... or if it may wrap. */
4244 || scev_probably_wraps_p (NULL_TREE
, init
, step
, stmt
,
4245 get_chrec_loop (chrec
), true))
4248 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4249 negative_overflow_infinity and positive_overflow_infinity,
4250 because we have concluded that the loop probably does not
4253 type
= TREE_TYPE (var
);
4254 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
4255 tmin
= lower_bound_in_type (type
, type
);
4257 tmin
= TYPE_MIN_VALUE (type
);
4258 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
4259 tmax
= upper_bound_in_type (type
, type
);
4261 tmax
= TYPE_MAX_VALUE (type
);
4263 /* Try to use estimated number of iterations for the loop to constrain the
4264 final value in the evolution. */
4265 if (TREE_CODE (step
) == INTEGER_CST
4266 && is_gimple_val (init
)
4267 && (TREE_CODE (init
) != SSA_NAME
4268 || get_value_range (init
)->type
== VR_RANGE
))
4272 /* We are only entering here for loop header PHI nodes, so using
4273 the number of latch executions is the correct thing to use. */
4274 if (max_loop_iterations (loop
, &nit
))
4276 value_range maxvr
= VR_INITIALIZER
;
4277 signop sgn
= TYPE_SIGN (TREE_TYPE (step
));
4280 widest_int wtmp
= wi::mul (wi::to_widest (step
), nit
, sgn
,
4282 /* If the multiplication overflowed we can't do a meaningful
4283 adjustment. Likewise if the result doesn't fit in the type
4284 of the induction variable. For a signed type we have to
4285 check whether the result has the expected signedness which
4286 is that of the step as number of iterations is unsigned. */
4288 && wi::fits_to_tree_p (wtmp
, TREE_TYPE (init
))
4290 || wi::gts_p (wtmp
, 0) == wi::gts_p (step
, 0)))
4292 tem
= wide_int_to_tree (TREE_TYPE (init
), wtmp
);
4293 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
4294 TREE_TYPE (init
), init
, tem
);
4295 /* Likewise if the addition did. */
4296 if (maxvr
.type
== VR_RANGE
)
4298 value_range initvr
= VR_INITIALIZER
;
4300 if (TREE_CODE (init
) == SSA_NAME
)
4301 initvr
= *(get_value_range (init
));
4302 else if (is_gimple_min_invariant (init
))
4303 set_value_range_to_value (&initvr
, init
, NULL
);
4307 /* Check if init + nit * step overflows. Though we checked
4308 scev {init, step}_loop doesn't wrap, it is not enough
4309 because the loop may exit immediately. Overflow could
4310 happen in the plus expression in this case. */
4311 if ((dir
== EV_DIR_DECREASES
4312 && (is_negative_overflow_infinity (maxvr
.min
)
4313 || compare_values (maxvr
.min
, initvr
.min
) != -1))
4314 || (dir
== EV_DIR_GROWS
4315 && (is_positive_overflow_infinity (maxvr
.max
)
4316 || compare_values (maxvr
.max
, initvr
.max
) != 1)))
4326 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
4331 /* For VARYING or UNDEFINED ranges, just about anything we get
4332 from scalar evolutions should be better. */
4334 if (dir
== EV_DIR_DECREASES
)
4339 else if (vr
->type
== VR_RANGE
)
4344 if (dir
== EV_DIR_DECREASES
)
4346 /* INIT is the maximum value. If INIT is lower than VR->MAX
4347 but no smaller than VR->MIN, set VR->MAX to INIT. */
4348 if (compare_values (init
, max
) == -1)
4351 /* According to the loop information, the variable does not
4352 overflow. If we think it does, probably because of an
4353 overflow due to arithmetic on a different INF value,
4355 if (is_negative_overflow_infinity (min
)
4356 || compare_values (min
, tmin
) == -1)
4362 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4363 if (compare_values (init
, min
) == 1)
4366 if (is_positive_overflow_infinity (max
)
4367 || compare_values (tmax
, max
) == -1)
4374 /* If we just created an invalid range with the minimum
4375 greater than the maximum, we fail conservatively.
4376 This should happen only in unreachable
4377 parts of code, or for invalid programs. */
4378 if (compare_values (min
, max
) == 1
4379 || (is_negative_overflow_infinity (min
)
4380 && is_positive_overflow_infinity (max
)))
4383 /* Even for valid range info, sometimes overflow flag will leak in.
4384 As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
4385 drop them except for +-overflow_infinity which still need special
4386 handling in vrp pass. */
4387 if (TREE_OVERFLOW_P (min
)
4388 && ! is_negative_overflow_infinity (min
))
4389 min
= drop_tree_overflow (min
);
4390 if (TREE_OVERFLOW_P (max
)
4391 && ! is_positive_overflow_infinity (max
))
4392 max
= drop_tree_overflow (max
);
4394 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
4398 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4400 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4401 all the values in the ranges.
4403 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4405 - Return NULL_TREE if it is not always possible to determine the
4406 value of the comparison.
4408 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4409 overflow infinity was used in the test. */
4413 compare_ranges (enum tree_code comp
, value_range
*vr0
, value_range
*vr1
,
4414 bool *strict_overflow_p
)
4416 /* VARYING or UNDEFINED ranges cannot be compared. */
4417 if (vr0
->type
== VR_VARYING
4418 || vr0
->type
== VR_UNDEFINED
4419 || vr1
->type
== VR_VARYING
4420 || vr1
->type
== VR_UNDEFINED
)
4423 /* Anti-ranges need to be handled separately. */
4424 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
4426 /* If both are anti-ranges, then we cannot compute any
4428 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
4431 /* These comparisons are never statically computable. */
4438 /* Equality can be computed only between a range and an
4439 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4440 if (vr0
->type
== VR_RANGE
)
4442 /* To simplify processing, make VR0 the anti-range. */
4443 value_range
*tmp
= vr0
;
4448 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
4450 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
4451 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
4452 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4457 if (!usable_range_p (vr0
, strict_overflow_p
)
4458 || !usable_range_p (vr1
, strict_overflow_p
))
4461 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4462 operands around and change the comparison code. */
4463 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4465 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
4466 std::swap (vr0
, vr1
);
4469 if (comp
== EQ_EXPR
)
4471 /* Equality may only be computed if both ranges represent
4472 exactly one value. */
4473 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
4474 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
4476 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
4478 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
4480 if (cmp_min
== 0 && cmp_max
== 0)
4481 return boolean_true_node
;
4482 else if (cmp_min
!= -2 && cmp_max
!= -2)
4483 return boolean_false_node
;
4485 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4486 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
4487 strict_overflow_p
) == 1
4488 || compare_values_warnv (vr1
->min
, vr0
->max
,
4489 strict_overflow_p
) == 1)
4490 return boolean_false_node
;
4494 else if (comp
== NE_EXPR
)
4498 /* If VR0 is completely to the left or completely to the right
4499 of VR1, they are always different. Notice that we need to
4500 make sure that both comparisons yield similar results to
4501 avoid comparing values that cannot be compared at
4503 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
4504 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
4505 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
4506 return boolean_true_node
;
4508 /* If VR0 and VR1 represent a single value and are identical,
4510 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
4511 strict_overflow_p
) == 0
4512 && compare_values_warnv (vr1
->min
, vr1
->max
,
4513 strict_overflow_p
) == 0
4514 && compare_values_warnv (vr0
->min
, vr1
->min
,
4515 strict_overflow_p
) == 0
4516 && compare_values_warnv (vr0
->max
, vr1
->max
,
4517 strict_overflow_p
) == 0)
4518 return boolean_false_node
;
4520 /* Otherwise, they may or may not be different. */
4524 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4528 /* If VR0 is to the left of VR1, return true. */
4529 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
4530 if ((comp
== LT_EXPR
&& tst
== -1)
4531 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4533 if (overflow_infinity_range_p (vr0
)
4534 || overflow_infinity_range_p (vr1
))
4535 *strict_overflow_p
= true;
4536 return boolean_true_node
;
4539 /* If VR0 is to the right of VR1, return false. */
4540 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
4541 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4542 || (comp
== LE_EXPR
&& tst
== 1))
4544 if (overflow_infinity_range_p (vr0
)
4545 || overflow_infinity_range_p (vr1
))
4546 *strict_overflow_p
= true;
4547 return boolean_false_node
;
4550 /* Otherwise, we don't know. */
4558 /* Given a value range VR, a value VAL and a comparison code COMP, return
4559 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4560 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4561 always returns false. Return NULL_TREE if it is not always
4562 possible to determine the value of the comparison. Also set
4563 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4564 infinity was used in the test. */
4567 compare_range_with_value (enum tree_code comp
, value_range
*vr
, tree val
,
4568 bool *strict_overflow_p
)
4570 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
4573 /* Anti-ranges need to be handled separately. */
4574 if (vr
->type
== VR_ANTI_RANGE
)
4576 /* For anti-ranges, the only predicates that we can compute at
4577 compile time are equality and inequality. */
4584 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4585 if (value_inside_range (val
, vr
->min
, vr
->max
) == 1)
4586 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4591 if (!usable_range_p (vr
, strict_overflow_p
))
4594 if (comp
== EQ_EXPR
)
4596 /* EQ_EXPR may only be computed if VR represents exactly
4598 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
4600 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4602 return boolean_true_node
;
4603 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
4604 return boolean_false_node
;
4606 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
4607 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
4608 return boolean_false_node
;
4612 else if (comp
== NE_EXPR
)
4614 /* If VAL is not inside VR, then they are always different. */
4615 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
4616 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
4617 return boolean_true_node
;
4619 /* If VR represents exactly one value equal to VAL, then return
4621 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
4622 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
4623 return boolean_false_node
;
4625 /* Otherwise, they may or may not be different. */
4628 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4632 /* If VR is to the left of VAL, return true. */
4633 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4634 if ((comp
== LT_EXPR
&& tst
== -1)
4635 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4637 if (overflow_infinity_range_p (vr
))
4638 *strict_overflow_p
= true;
4639 return boolean_true_node
;
4642 /* If VR is to the right of VAL, return false. */
4643 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4644 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4645 || (comp
== LE_EXPR
&& tst
== 1))
4647 if (overflow_infinity_range_p (vr
))
4648 *strict_overflow_p
= true;
4649 return boolean_false_node
;
4652 /* Otherwise, we don't know. */
4655 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4659 /* If VR is to the right of VAL, return true. */
4660 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4661 if ((comp
== GT_EXPR
&& tst
== 1)
4662 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
4664 if (overflow_infinity_range_p (vr
))
4665 *strict_overflow_p
= true;
4666 return boolean_true_node
;
4669 /* If VR is to the left of VAL, return false. */
4670 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4671 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
4672 || (comp
== GE_EXPR
&& tst
== -1))
4674 if (overflow_infinity_range_p (vr
))
4675 *strict_overflow_p
= true;
4676 return boolean_false_node
;
4679 /* Otherwise, we don't know. */
4687 /* Debugging dumps. */
4689 void dump_value_range (FILE *, const value_range
*);
4690 void debug_value_range (value_range
*);
4691 void dump_all_value_ranges (FILE *);
4692 void debug_all_value_ranges (void);
4693 void dump_vr_equiv (FILE *, bitmap
);
4694 void debug_vr_equiv (bitmap
);
4697 /* Dump value range VR to FILE. */
4700 dump_value_range (FILE *file
, const value_range
*vr
)
4703 fprintf (file
, "[]");
4704 else if (vr
->type
== VR_UNDEFINED
)
4705 fprintf (file
, "UNDEFINED");
4706 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
4708 tree type
= TREE_TYPE (vr
->min
);
4710 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
4712 if (is_negative_overflow_infinity (vr
->min
))
4713 fprintf (file
, "-INF(OVF)");
4714 else if (INTEGRAL_TYPE_P (type
)
4715 && !TYPE_UNSIGNED (type
)
4716 && vrp_val_is_min (vr
->min
))
4717 fprintf (file
, "-INF");
4719 print_generic_expr (file
, vr
->min
, 0);
4721 fprintf (file
, ", ");
4723 if (is_positive_overflow_infinity (vr
->max
))
4724 fprintf (file
, "+INF(OVF)");
4725 else if (INTEGRAL_TYPE_P (type
)
4726 && vrp_val_is_max (vr
->max
))
4727 fprintf (file
, "+INF");
4729 print_generic_expr (file
, vr
->max
, 0);
4731 fprintf (file
, "]");
4738 fprintf (file
, " EQUIVALENCES: { ");
4740 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
4742 print_generic_expr (file
, ssa_name (i
), 0);
4743 fprintf (file
, " ");
4747 fprintf (file
, "} (%u elements)", c
);
4750 else if (vr
->type
== VR_VARYING
)
4751 fprintf (file
, "VARYING");
4753 fprintf (file
, "INVALID RANGE");
4757 /* Dump value range VR to stderr. */
4760 debug_value_range (value_range
*vr
)
4762 dump_value_range (stderr
, vr
);
4763 fprintf (stderr
, "\n");
4767 /* Dump value ranges of all SSA_NAMEs to FILE. */
4770 dump_all_value_ranges (FILE *file
)
4774 for (i
= 0; i
< num_vr_values
; i
++)
4778 print_generic_expr (file
, ssa_name (i
), 0);
4779 fprintf (file
, ": ");
4780 dump_value_range (file
, vr_value
[i
]);
4781 fprintf (file
, "\n");
4785 fprintf (file
, "\n");
4789 /* Dump all value ranges to stderr. */
4792 debug_all_value_ranges (void)
4794 dump_all_value_ranges (stderr
);
4798 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4799 create a new SSA name N and return the assertion assignment
4800 'N = ASSERT_EXPR <V, V OP W>'. */
4803 build_assert_expr_for (tree cond
, tree v
)
4808 gcc_assert (TREE_CODE (v
) == SSA_NAME
4809 && COMPARISON_CLASS_P (cond
));
4811 a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
4812 assertion
= gimple_build_assign (NULL_TREE
, a
);
4814 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4815 operand of the ASSERT_EXPR. Create it so the new name and the old one
4816 are registered in the replacement table so that we can fix the SSA web
4817 after adding all the ASSERT_EXPRs. */
4818 create_new_def_for (v
, assertion
, NULL
);
4824 /* Return false if EXPR is a predicate expression involving floating
4828 fp_predicate (gimple
*stmt
)
4830 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
4832 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
4835 /* If the range of values taken by OP can be inferred after STMT executes,
4836 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4837 describes the inferred range. Return true if a range could be
4841 infer_value_range (gimple
*stmt
, tree op
, tree_code
*comp_code_p
, tree
*val_p
)
4844 *comp_code_p
= ERROR_MARK
;
4846 /* Do not attempt to infer anything in names that flow through
4848 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4851 /* If STMT is the last statement of a basic block with no normal
4852 successors, there is no point inferring anything about any of its
4853 operands. We would not be able to find a proper insertion point
4854 for the assertion, anyway. */
4855 if (stmt_ends_bb_p (stmt
))
4860 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
4861 if (!(e
->flags
& (EDGE_ABNORMAL
|EDGE_EH
)))
4867 if (infer_nonnull_range (stmt
, op
))
4869 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4870 *comp_code_p
= NE_EXPR
;
4878 void dump_asserts_for (FILE *, tree
);
4879 void debug_asserts_for (tree
);
4880 void dump_all_asserts (FILE *);
4881 void debug_all_asserts (void);
4883 /* Dump all the registered assertions for NAME to FILE. */
4886 dump_asserts_for (FILE *file
, tree name
)
4890 fprintf (file
, "Assertions to be inserted for ");
4891 print_generic_expr (file
, name
, 0);
4892 fprintf (file
, "\n");
4894 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4897 fprintf (file
, "\t");
4898 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4899 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4902 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4903 loc
->e
->dest
->index
);
4904 dump_edge_info (file
, loc
->e
, dump_flags
, 0);
4906 fprintf (file
, "\n\tPREDICATE: ");
4907 print_generic_expr (file
, loc
->expr
, 0);
4908 fprintf (file
, " %s ", get_tree_code_name (loc
->comp_code
));
4909 print_generic_expr (file
, loc
->val
, 0);
4910 fprintf (file
, "\n\n");
4914 fprintf (file
, "\n");
4918 /* Dump all the registered assertions for NAME to stderr. */
4921 debug_asserts_for (tree name
)
4923 dump_asserts_for (stderr
, name
);
4927 /* Dump all the registered assertions for all the names to FILE. */
4930 dump_all_asserts (FILE *file
)
4935 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
4936 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4937 dump_asserts_for (file
, ssa_name (i
));
4938 fprintf (file
, "\n");
4942 /* Dump all the registered assertions for all the names to stderr. */
4945 debug_all_asserts (void)
4947 dump_all_asserts (stderr
);
4951 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4952 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4953 E->DEST, then register this location as a possible insertion point
4954 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4956 BB, E and SI provide the exact insertion point for the new
4957 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4958 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4959 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4960 must not be NULL. */
4963 register_new_assert_for (tree name
, tree expr
,
4964 enum tree_code comp_code
,
4968 gimple_stmt_iterator si
)
4970 assert_locus
*n
, *loc
, *last_loc
;
4971 basic_block dest_bb
;
4973 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
4976 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
4977 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
4979 /* Never build an assert comparing against an integer constant with
4980 TREE_OVERFLOW set. This confuses our undefined overflow warning
4982 if (TREE_OVERFLOW_P (val
))
4983 val
= drop_tree_overflow (val
);
4985 /* The new assertion A will be inserted at BB or E. We need to
4986 determine if the new location is dominated by a previously
4987 registered location for A. If we are doing an edge insertion,
4988 assume that A will be inserted at E->DEST. Note that this is not
4991 If E is a critical edge, it will be split. But even if E is
4992 split, the new block will dominate the same set of blocks that
4995 The reverse, however, is not true, blocks dominated by E->DEST
4996 will not be dominated by the new block created to split E. So,
4997 if the insertion location is on a critical edge, we will not use
4998 the new location to move another assertion previously registered
4999 at a block dominated by E->DEST. */
5000 dest_bb
= (bb
) ? bb
: e
->dest
;
5002 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5003 VAL at a block dominating DEST_BB, then we don't need to insert a new
5004 one. Similarly, if the same assertion already exists at a block
5005 dominated by DEST_BB and the new location is not on a critical
5006 edge, then update the existing location for the assertion (i.e.,
5007 move the assertion up in the dominance tree).
5009 Note, this is implemented as a simple linked list because there
5010 should not be more than a handful of assertions registered per
5011 name. If this becomes a performance problem, a table hashed by
5012 COMP_CODE and VAL could be implemented. */
5013 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
5017 if (loc
->comp_code
== comp_code
5019 || operand_equal_p (loc
->val
, val
, 0))
5020 && (loc
->expr
== expr
5021 || operand_equal_p (loc
->expr
, expr
, 0)))
5023 /* If E is not a critical edge and DEST_BB
5024 dominates the existing location for the assertion, move
5025 the assertion up in the dominance tree by updating its
5026 location information. */
5027 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
5028 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
5037 /* Update the last node of the list and move to the next one. */
5042 /* If we didn't find an assertion already registered for
5043 NAME COMP_CODE VAL, add a new one at the end of the list of
5044 assertions associated with NAME. */
5045 n
= XNEW (struct assert_locus
);
5049 n
->comp_code
= comp_code
;
5057 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
5059 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
5062 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5063 Extract a suitable test code and value and store them into *CODE_P and
5064 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5066 If no extraction was possible, return FALSE, otherwise return TRUE.
5068 If INVERT is true, then we invert the result stored into *CODE_P. */
5071 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
5072 tree cond_op0
, tree cond_op1
,
5073 bool invert
, enum tree_code
*code_p
,
5076 enum tree_code comp_code
;
5079 /* Otherwise, we have a comparison of the form NAME COMP VAL
5080 or VAL COMP NAME. */
5081 if (name
== cond_op1
)
5083 /* If the predicate is of the form VAL COMP NAME, flip
5084 COMP around because we need to register NAME as the
5085 first operand in the predicate. */
5086 comp_code
= swap_tree_comparison (cond_code
);
5089 else if (name
== cond_op0
)
5091 /* The comparison is of the form NAME COMP VAL, so the
5092 comparison code remains unchanged. */
5093 comp_code
= cond_code
;
5099 /* Invert the comparison code as necessary. */
5101 comp_code
= invert_tree_comparison (comp_code
, 0);
5103 /* VRP only handles integral and pointer types. */
5104 if (! INTEGRAL_TYPE_P (TREE_TYPE (val
))
5105 && ! POINTER_TYPE_P (TREE_TYPE (val
)))
5108 /* Do not register always-false predicates.
5109 FIXME: this works around a limitation in fold() when dealing with
5110 enumerations. Given 'enum { N1, N2 } x;', fold will not
5111 fold 'if (x > N2)' to 'if (0)'. */
5112 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
5113 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
5115 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
5116 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
5118 if (comp_code
== GT_EXPR
5120 || compare_values (val
, max
) == 0))
5123 if (comp_code
== LT_EXPR
5125 || compare_values (val
, min
) == 0))
5128 *code_p
= comp_code
;
5133 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5134 (otherwise return VAL). VAL and MASK must be zero-extended for
5135 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5136 (to transform signed values into unsigned) and at the end xor
5140 masked_increment (const wide_int
&val_in
, const wide_int
&mask
,
5141 const wide_int
&sgnbit
, unsigned int prec
)
5143 wide_int bit
= wi::one (prec
), res
;
5146 wide_int val
= val_in
^ sgnbit
;
5147 for (i
= 0; i
< prec
; i
++, bit
+= bit
)
5150 if ((res
& bit
) == 0)
5153 res
= (val
+ bit
).and_not (res
);
5155 if (wi::gtu_p (res
, val
))
5156 return res
^ sgnbit
;
5158 return val
^ sgnbit
;
5161 /* Try to register an edge assertion for SSA name NAME on edge E for
5162 the condition COND contributing to the conditional jump pointed to by BSI.
5163 Invert the condition COND if INVERT is true. */
5166 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
5167 enum tree_code cond_code
,
5168 tree cond_op0
, tree cond_op1
, bool invert
)
5171 enum tree_code comp_code
;
5173 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5176 invert
, &comp_code
, &val
))
5179 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5180 reachable from E. */
5181 if (live_on_edge (e
, name
))
5182 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
5184 /* In the case of NAME <= CST and NAME being defined as
5185 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5186 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5187 This catches range and anti-range tests. */
5188 if ((comp_code
== LE_EXPR
5189 || comp_code
== GT_EXPR
)
5190 && TREE_CODE (val
) == INTEGER_CST
5191 && TYPE_UNSIGNED (TREE_TYPE (val
)))
5193 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
5194 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
5196 /* Extract CST2 from the (optional) addition. */
5197 if (is_gimple_assign (def_stmt
)
5198 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
5200 name2
= gimple_assign_rhs1 (def_stmt
);
5201 cst2
= gimple_assign_rhs2 (def_stmt
);
5202 if (TREE_CODE (name2
) == SSA_NAME
5203 && TREE_CODE (cst2
) == INTEGER_CST
)
5204 def_stmt
= SSA_NAME_DEF_STMT (name2
);
5207 /* Extract NAME2 from the (optional) sign-changing cast. */
5208 if (gimple_assign_cast_p (def_stmt
))
5210 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
5211 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
5212 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
5213 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
5214 name3
= gimple_assign_rhs1 (def_stmt
);
5217 /* If name3 is used later, create an ASSERT_EXPR for it. */
5218 if (name3
!= NULL_TREE
5219 && TREE_CODE (name3
) == SSA_NAME
5220 && (cst2
== NULL_TREE
5221 || TREE_CODE (cst2
) == INTEGER_CST
)
5222 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
5223 && live_on_edge (e
, name3
))
5227 /* Build an expression for the range test. */
5228 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
5229 if (cst2
!= NULL_TREE
)
5230 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
5234 fprintf (dump_file
, "Adding assert for ");
5235 print_generic_expr (dump_file
, name3
, 0);
5236 fprintf (dump_file
, " from ");
5237 print_generic_expr (dump_file
, tmp
, 0);
5238 fprintf (dump_file
, "\n");
5241 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
5244 /* If name2 is used later, create an ASSERT_EXPR for it. */
5245 if (name2
!= NULL_TREE
5246 && TREE_CODE (name2
) == SSA_NAME
5247 && TREE_CODE (cst2
) == INTEGER_CST
5248 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5249 && live_on_edge (e
, name2
))
5253 /* Build an expression for the range test. */
5255 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
5256 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
5257 if (cst2
!= NULL_TREE
)
5258 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
5262 fprintf (dump_file
, "Adding assert for ");
5263 print_generic_expr (dump_file
, name2
, 0);
5264 fprintf (dump_file
, " from ");
5265 print_generic_expr (dump_file
, tmp
, 0);
5266 fprintf (dump_file
, "\n");
5269 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
5273 /* In the case of post-in/decrement tests like if (i++) ... and uses
5274 of the in/decremented value on the edge the extra name we want to
5275 assert for is not on the def chain of the name compared. Instead
5276 it is in the set of use stmts.
5277 Similar cases happen for conversions that were simplified through
5278 fold_{sign_changed,widened}_comparison. */
5279 if ((comp_code
== NE_EXPR
5280 || comp_code
== EQ_EXPR
)
5281 && TREE_CODE (val
) == INTEGER_CST
)
5283 imm_use_iterator ui
;
5285 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, name
)
5287 if (!is_gimple_assign (use_stmt
))
5290 /* Cut off to use-stmts that are dominating the predecessor. */
5291 if (!dominated_by_p (CDI_DOMINATORS
, e
->src
, gimple_bb (use_stmt
)))
5294 tree name2
= gimple_assign_lhs (use_stmt
);
5295 if (TREE_CODE (name2
) != SSA_NAME
5296 || !live_on_edge (e
, name2
))
5299 enum tree_code code
= gimple_assign_rhs_code (use_stmt
);
5301 if (code
== PLUS_EXPR
5302 || code
== MINUS_EXPR
)
5304 cst
= gimple_assign_rhs2 (use_stmt
);
5305 if (TREE_CODE (cst
) != INTEGER_CST
)
5307 cst
= int_const_binop (code
, val
, cst
);
5309 else if (CONVERT_EXPR_CODE_P (code
))
5311 /* For truncating conversions we cannot record
5313 if (comp_code
== NE_EXPR
5314 && (TYPE_PRECISION (TREE_TYPE (name2
))
5315 < TYPE_PRECISION (TREE_TYPE (name
))))
5317 cst
= fold_convert (TREE_TYPE (name2
), val
);
5322 if (TREE_OVERFLOW_P (cst
))
5323 cst
= drop_tree_overflow (cst
);
5324 register_new_assert_for (name2
, name2
, comp_code
, cst
,
5329 if (TREE_CODE_CLASS (comp_code
) == tcc_comparison
5330 && TREE_CODE (val
) == INTEGER_CST
)
5332 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
5333 tree name2
= NULL_TREE
, names
[2], cst2
= NULL_TREE
;
5334 tree val2
= NULL_TREE
;
5335 unsigned int prec
= TYPE_PRECISION (TREE_TYPE (val
));
5336 wide_int mask
= wi::zero (prec
);
5337 unsigned int nprec
= prec
;
5338 enum tree_code rhs_code
= ERROR_MARK
;
5340 if (is_gimple_assign (def_stmt
))
5341 rhs_code
= gimple_assign_rhs_code (def_stmt
);
5343 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
5344 assert that A != CST1 -+ CST2. */
5345 if ((comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
5346 && (rhs_code
== PLUS_EXPR
|| rhs_code
== MINUS_EXPR
))
5348 tree op0
= gimple_assign_rhs1 (def_stmt
);
5349 tree op1
= gimple_assign_rhs2 (def_stmt
);
5350 if (TREE_CODE (op0
) == SSA_NAME
5351 && TREE_CODE (op1
) == INTEGER_CST
5352 && live_on_edge (e
, op0
))
5354 enum tree_code reverse_op
= (rhs_code
== PLUS_EXPR
5355 ? MINUS_EXPR
: PLUS_EXPR
);
5356 op1
= int_const_binop (reverse_op
, val
, op1
);
5357 if (TREE_OVERFLOW (op1
))
5358 op1
= drop_tree_overflow (op1
);
5359 register_new_assert_for (op0
, op0
, comp_code
, op1
, NULL
, e
, bsi
);
5363 /* Add asserts for NAME cmp CST and NAME being defined
5364 as NAME = (int) NAME2. */
5365 if (!TYPE_UNSIGNED (TREE_TYPE (val
))
5366 && (comp_code
== LE_EXPR
|| comp_code
== LT_EXPR
5367 || comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
5368 && gimple_assign_cast_p (def_stmt
))
5370 name2
= gimple_assign_rhs1 (def_stmt
);
5371 if (CONVERT_EXPR_CODE_P (rhs_code
)
5372 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5373 && TYPE_UNSIGNED (TREE_TYPE (name2
))
5374 && prec
== TYPE_PRECISION (TREE_TYPE (name2
))
5375 && (comp_code
== LE_EXPR
|| comp_code
== GT_EXPR
5376 || !tree_int_cst_equal (val
,
5377 TYPE_MIN_VALUE (TREE_TYPE (val
))))
5378 && live_on_edge (e
, name2
))
5381 enum tree_code new_comp_code
= comp_code
;
5383 cst
= fold_convert (TREE_TYPE (name2
),
5384 TYPE_MIN_VALUE (TREE_TYPE (val
)));
5385 /* Build an expression for the range test. */
5386 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name2
), name2
, cst
);
5387 cst
= fold_build2 (PLUS_EXPR
, TREE_TYPE (name2
), cst
,
5388 fold_convert (TREE_TYPE (name2
), val
));
5389 if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
5391 new_comp_code
= comp_code
== LT_EXPR
? LE_EXPR
: GT_EXPR
;
5392 cst
= fold_build2 (MINUS_EXPR
, TREE_TYPE (name2
), cst
,
5393 build_int_cst (TREE_TYPE (name2
), 1));
5398 fprintf (dump_file
, "Adding assert for ");
5399 print_generic_expr (dump_file
, name2
, 0);
5400 fprintf (dump_file
, " from ");
5401 print_generic_expr (dump_file
, tmp
, 0);
5402 fprintf (dump_file
, "\n");
5405 register_new_assert_for (name2
, tmp
, new_comp_code
, cst
, NULL
,
5410 /* Add asserts for NAME cmp CST and NAME being defined as
5411 NAME = NAME2 >> CST2.
5413 Extract CST2 from the right shift. */
5414 if (rhs_code
== RSHIFT_EXPR
)
5416 name2
= gimple_assign_rhs1 (def_stmt
);
5417 cst2
= gimple_assign_rhs2 (def_stmt
);
5418 if (TREE_CODE (name2
) == SSA_NAME
5419 && tree_fits_uhwi_p (cst2
)
5420 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5421 && IN_RANGE (tree_to_uhwi (cst2
), 1, prec
- 1)
5422 && prec
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val
)))
5423 && live_on_edge (e
, name2
))
5425 mask
= wi::mask (tree_to_uhwi (cst2
), false, prec
);
5426 val2
= fold_binary (LSHIFT_EXPR
, TREE_TYPE (val
), val
, cst2
);
5429 if (val2
!= NULL_TREE
5430 && TREE_CODE (val2
) == INTEGER_CST
5431 && simple_cst_equal (fold_build2 (RSHIFT_EXPR
,
5435 enum tree_code new_comp_code
= comp_code
;
5439 if (comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
5441 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
5443 tree type
= build_nonstandard_integer_type (prec
, 1);
5444 tmp
= build1 (NOP_EXPR
, type
, name2
);
5445 val2
= fold_convert (type
, val2
);
5447 tmp
= fold_build2 (MINUS_EXPR
, TREE_TYPE (tmp
), tmp
, val2
);
5448 new_val
= wide_int_to_tree (TREE_TYPE (tmp
), mask
);
5449 new_comp_code
= comp_code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
5451 else if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
5454 = wi::min_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
5456 if (minval
== new_val
)
5457 new_val
= NULL_TREE
;
5462 = wi::max_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
5465 new_val
= NULL_TREE
;
5467 new_val
= wide_int_to_tree (TREE_TYPE (val2
), mask
);
5474 fprintf (dump_file
, "Adding assert for ");
5475 print_generic_expr (dump_file
, name2
, 0);
5476 fprintf (dump_file
, " from ");
5477 print_generic_expr (dump_file
, tmp
, 0);
5478 fprintf (dump_file
, "\n");
5481 register_new_assert_for (name2
, tmp
, new_comp_code
, new_val
,
5486 /* Add asserts for NAME cmp CST and NAME being defined as
5487 NAME = NAME2 & CST2.
5489 Extract CST2 from the and.
5492 NAME = (unsigned) NAME2;
5493 casts where NAME's type is unsigned and has smaller precision
5494 than NAME2's type as if it was NAME = NAME2 & MASK. */
5495 names
[0] = NULL_TREE
;
5496 names
[1] = NULL_TREE
;
5498 if (rhs_code
== BIT_AND_EXPR
5499 || (CONVERT_EXPR_CODE_P (rhs_code
)
5500 && INTEGRAL_TYPE_P (TREE_TYPE (val
))
5501 && TYPE_UNSIGNED (TREE_TYPE (val
))
5502 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
5505 name2
= gimple_assign_rhs1 (def_stmt
);
5506 if (rhs_code
== BIT_AND_EXPR
)
5507 cst2
= gimple_assign_rhs2 (def_stmt
);
5510 cst2
= TYPE_MAX_VALUE (TREE_TYPE (val
));
5511 nprec
= TYPE_PRECISION (TREE_TYPE (name2
));
5513 if (TREE_CODE (name2
) == SSA_NAME
5514 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5515 && TREE_CODE (cst2
) == INTEGER_CST
5516 && !integer_zerop (cst2
)
5518 || TYPE_UNSIGNED (TREE_TYPE (val
))))
5520 gimple
*def_stmt2
= SSA_NAME_DEF_STMT (name2
);
5521 if (gimple_assign_cast_p (def_stmt2
))
5523 names
[1] = gimple_assign_rhs1 (def_stmt2
);
5524 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2
))
5525 || !INTEGRAL_TYPE_P (TREE_TYPE (names
[1]))
5526 || (TYPE_PRECISION (TREE_TYPE (name2
))
5527 != TYPE_PRECISION (TREE_TYPE (names
[1])))
5528 || !live_on_edge (e
, names
[1]))
5529 names
[1] = NULL_TREE
;
5531 if (live_on_edge (e
, name2
))
5535 if (names
[0] || names
[1])
5537 wide_int minv
, maxv
, valv
, cst2v
;
5538 wide_int tem
, sgnbit
;
5539 bool valid_p
= false, valn
, cst2n
;
5540 enum tree_code ccode
= comp_code
;
5542 valv
= wide_int::from (val
, nprec
, UNSIGNED
);
5543 cst2v
= wide_int::from (cst2
, nprec
, UNSIGNED
);
5544 valn
= wi::neg_p (valv
, TYPE_SIGN (TREE_TYPE (val
)));
5545 cst2n
= wi::neg_p (cst2v
, TYPE_SIGN (TREE_TYPE (val
)));
5546 /* If CST2 doesn't have most significant bit set,
5547 but VAL is negative, we have comparison like
5548 if ((x & 0x123) > -4) (always true). Just give up. */
5552 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
5554 sgnbit
= wi::zero (nprec
);
5555 minv
= valv
& cst2v
;
5559 /* Minimum unsigned value for equality is VAL & CST2
5560 (should be equal to VAL, otherwise we probably should
5561 have folded the comparison into false) and
5562 maximum unsigned value is VAL | ~CST2. */
5563 maxv
= valv
| ~cst2v
;
5568 tem
= valv
| ~cst2v
;
5569 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5573 sgnbit
= wi::zero (nprec
);
5576 /* If (VAL | ~CST2) is all ones, handle it as
5577 (X & CST2) < VAL. */
5582 sgnbit
= wi::zero (nprec
);
5585 if (!cst2n
&& wi::neg_p (cst2v
))
5586 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
5595 if (tem
== wi::mask (nprec
- 1, false, nprec
))
5601 sgnbit
= wi::zero (nprec
);
5606 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5607 is VAL and maximum unsigned value is ~0. For signed
5608 comparison, if CST2 doesn't have most significant bit
5609 set, handle it similarly. If CST2 has MSB set,
5610 the minimum is the same, and maximum is ~0U/2. */
5613 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5615 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5619 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
5625 /* Find out smallest MINV where MINV > VAL
5626 && (MINV & CST2) == MINV, if any. If VAL is signed and
5627 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5628 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5631 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
5636 /* Minimum unsigned value for <= is 0 and maximum
5637 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5638 Otherwise, find smallest VAL2 where VAL2 > VAL
5639 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5641 For signed comparison, if CST2 doesn't have most
5642 significant bit set, handle it similarly. If CST2 has
5643 MSB set, the maximum is the same and minimum is INT_MIN. */
5648 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5660 /* Minimum unsigned value for < is 0 and maximum
5661 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5662 Otherwise, find smallest VAL2 where VAL2 > VAL
5663 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5665 For signed comparison, if CST2 doesn't have most
5666 significant bit set, handle it similarly. If CST2 has
5667 MSB set, the maximum is the same and minimum is INT_MIN. */
5676 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5690 && (maxv
- minv
) != -1)
5692 tree tmp
, new_val
, type
;
5695 for (i
= 0; i
< 2; i
++)
5698 wide_int maxv2
= maxv
;
5700 type
= TREE_TYPE (names
[i
]);
5701 if (!TYPE_UNSIGNED (type
))
5703 type
= build_nonstandard_integer_type (nprec
, 1);
5704 tmp
= build1 (NOP_EXPR
, type
, names
[i
]);
5708 tmp
= build2 (PLUS_EXPR
, type
, tmp
,
5709 wide_int_to_tree (type
, -minv
));
5710 maxv2
= maxv
- minv
;
5712 new_val
= wide_int_to_tree (type
, maxv2
);
5716 fprintf (dump_file
, "Adding assert for ");
5717 print_generic_expr (dump_file
, names
[i
], 0);
5718 fprintf (dump_file
, " from ");
5719 print_generic_expr (dump_file
, tmp
, 0);
5720 fprintf (dump_file
, "\n");
5723 register_new_assert_for (names
[i
], tmp
, LE_EXPR
,
5724 new_val
, NULL
, e
, bsi
);
5731 /* OP is an operand of a truth value expression which is known to have
5732 a particular value. Register any asserts for OP and for any
5733 operands in OP's defining statement.
5735 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5736 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5739 register_edge_assert_for_1 (tree op
, enum tree_code code
,
5740 edge e
, gimple_stmt_iterator bsi
)
5744 enum tree_code rhs_code
;
5746 /* We only care about SSA_NAMEs. */
5747 if (TREE_CODE (op
) != SSA_NAME
)
5750 /* We know that OP will have a zero or nonzero value. If OP is used
5751 more than once go ahead and register an assert for OP. */
5752 if (live_on_edge (e
, op
))
5754 val
= build_int_cst (TREE_TYPE (op
), 0);
5755 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
5758 /* Now look at how OP is set. If it's set from a comparison,
5759 a truth operation or some bit operations, then we may be able
5760 to register information about the operands of that assignment. */
5761 op_def
= SSA_NAME_DEF_STMT (op
);
5762 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
5765 rhs_code
= gimple_assign_rhs_code (op_def
);
5767 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
5769 bool invert
= (code
== EQ_EXPR
? true : false);
5770 tree op0
= gimple_assign_rhs1 (op_def
);
5771 tree op1
= gimple_assign_rhs2 (op_def
);
5773 if (TREE_CODE (op0
) == SSA_NAME
)
5774 register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
, invert
);
5775 if (TREE_CODE (op1
) == SSA_NAME
)
5776 register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
, invert
);
5778 else if ((code
== NE_EXPR
5779 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
5781 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
5783 /* Recurse on each operand. */
5784 tree op0
= gimple_assign_rhs1 (op_def
);
5785 tree op1
= gimple_assign_rhs2 (op_def
);
5786 if (TREE_CODE (op0
) == SSA_NAME
5787 && has_single_use (op0
))
5788 register_edge_assert_for_1 (op0
, code
, e
, bsi
);
5789 if (TREE_CODE (op1
) == SSA_NAME
5790 && has_single_use (op1
))
5791 register_edge_assert_for_1 (op1
, code
, e
, bsi
);
5793 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
5794 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
5796 /* Recurse, flipping CODE. */
5797 code
= invert_tree_comparison (code
, false);
5798 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, bsi
);
5800 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
5802 /* Recurse through the copy. */
5803 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, bsi
);
5805 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
5807 /* Recurse through the type conversion, unless it is a narrowing
5808 conversion or conversion from non-integral type. */
5809 tree rhs
= gimple_assign_rhs1 (op_def
);
5810 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs
))
5811 && (TYPE_PRECISION (TREE_TYPE (rhs
))
5812 <= TYPE_PRECISION (TREE_TYPE (op
))))
5813 register_edge_assert_for_1 (rhs
, code
, e
, bsi
);
5817 /* Try to register an edge assertion for SSA name NAME on edge E for
5818 the condition COND contributing to the conditional jump pointed to by
5822 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
5823 enum tree_code cond_code
, tree cond_op0
,
5827 enum tree_code comp_code
;
5828 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
5830 /* Do not attempt to infer anything in names that flow through
5832 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
5835 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5841 /* Register ASSERT_EXPRs for name. */
5842 register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
5843 cond_op1
, is_else_edge
);
5846 /* If COND is effectively an equality test of an SSA_NAME against
5847 the value zero or one, then we may be able to assert values
5848 for SSA_NAMEs which flow into COND. */
5850 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5851 statement of NAME we can assert both operands of the BIT_AND_EXPR
5852 have nonzero value. */
5853 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
5854 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
5856 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
5858 if (is_gimple_assign (def_stmt
)
5859 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
5861 tree op0
= gimple_assign_rhs1 (def_stmt
);
5862 tree op1
= gimple_assign_rhs2 (def_stmt
);
5863 register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
5864 register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
5868 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5869 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5871 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
5872 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
5874 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
5876 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5877 necessarily zero value, or if type-precision is one. */
5878 if (is_gimple_assign (def_stmt
)
5879 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
5880 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
5881 || comp_code
== EQ_EXPR
)))
5883 tree op0
= gimple_assign_rhs1 (def_stmt
);
5884 tree op1
= gimple_assign_rhs2 (def_stmt
);
5885 register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
5886 register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
5892 /* Determine whether the outgoing edges of BB should receive an
5893 ASSERT_EXPR for each of the operands of BB's LAST statement.
5894 The last statement of BB must be a COND_EXPR.
5896 If any of the sub-graphs rooted at BB have an interesting use of
5897 the predicate operands, an assert location node is added to the
5898 list of assertions for the corresponding operands. */
5901 find_conditional_asserts (basic_block bb
, gcond
*last
)
5903 gimple_stmt_iterator bsi
;
5909 bsi
= gsi_for_stmt (last
);
5911 /* Look for uses of the operands in each of the sub-graphs
5912 rooted at BB. We need to check each of the outgoing edges
5913 separately, so that we know what kind of ASSERT_EXPR to
5915 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5920 /* Register the necessary assertions for each operand in the
5921 conditional predicate. */
5922 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
5923 register_edge_assert_for (op
, e
, bsi
,
5924 gimple_cond_code (last
),
5925 gimple_cond_lhs (last
),
5926 gimple_cond_rhs (last
));
5936 /* Compare two case labels sorting first by the destination bb index
5937 and then by the case value. */
5940 compare_case_labels (const void *p1
, const void *p2
)
5942 const struct case_info
*ci1
= (const struct case_info
*) p1
;
5943 const struct case_info
*ci2
= (const struct case_info
*) p2
;
5944 int idx1
= ci1
->bb
->index
;
5945 int idx2
= ci2
->bb
->index
;
5949 else if (idx1
== idx2
)
5951 /* Make sure the default label is first in a group. */
5952 if (!CASE_LOW (ci1
->expr
))
5954 else if (!CASE_LOW (ci2
->expr
))
5957 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
5958 CASE_LOW (ci2
->expr
));
5964 /* Determine whether the outgoing edges of BB should receive an
5965 ASSERT_EXPR for each of the operands of BB's LAST statement.
5966 The last statement of BB must be a SWITCH_EXPR.
5968 If any of the sub-graphs rooted at BB have an interesting use of
5969 the predicate operands, an assert location node is added to the
5970 list of assertions for the corresponding operands. */
5973 find_switch_asserts (basic_block bb
, gswitch
*last
)
5975 gimple_stmt_iterator bsi
;
5978 struct case_info
*ci
;
5979 size_t n
= gimple_switch_num_labels (last
);
5980 #if GCC_VERSION >= 4000
5983 /* Work around GCC 3.4 bug (PR 37086). */
5984 volatile unsigned int idx
;
5987 bsi
= gsi_for_stmt (last
);
5988 op
= gimple_switch_index (last
);
5989 if (TREE_CODE (op
) != SSA_NAME
)
5992 /* Build a vector of case labels sorted by destination label. */
5993 ci
= XNEWVEC (struct case_info
, n
);
5994 for (idx
= 0; idx
< n
; ++idx
)
5996 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
5997 ci
[idx
].bb
= label_to_block (CASE_LABEL (ci
[idx
].expr
));
5999 edge default_edge
= find_edge (bb
, ci
[0].bb
);
6000 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
6002 for (idx
= 0; idx
< n
; ++idx
)
6005 tree cl
= ci
[idx
].expr
;
6006 basic_block cbb
= ci
[idx
].bb
;
6008 min
= CASE_LOW (cl
);
6009 max
= CASE_HIGH (cl
);
6011 /* If there are multiple case labels with the same destination
6012 we need to combine them to a single value range for the edge. */
6013 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
6015 /* Skip labels until the last of the group. */
6018 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
6021 /* Pick up the maximum of the case label range. */
6022 if (CASE_HIGH (ci
[idx
].expr
))
6023 max
= CASE_HIGH (ci
[idx
].expr
);
6025 max
= CASE_LOW (ci
[idx
].expr
);
6028 /* Can't extract a useful assertion out of a range that includes the
6030 if (min
== NULL_TREE
)
6033 /* Find the edge to register the assert expr on. */
6034 e
= find_edge (bb
, cbb
);
6036 /* Register the necessary assertions for the operand in the
6038 register_edge_assert_for (op
, e
, bsi
,
6039 max
? GE_EXPR
: EQ_EXPR
,
6040 op
, fold_convert (TREE_TYPE (op
), min
));
6042 register_edge_assert_for (op
, e
, bsi
, LE_EXPR
, op
,
6043 fold_convert (TREE_TYPE (op
), max
));
6048 if (!live_on_edge (default_edge
, op
))
6051 /* Now register along the default label assertions that correspond to the
6052 anti-range of each label. */
6053 int insertion_limit
= PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS
);
6054 if (insertion_limit
== 0)
6057 /* We can't do this if the default case shares a label with another case. */
6058 tree default_cl
= gimple_switch_default_label (last
);
6059 for (idx
= 1; idx
< n
; idx
++)
6062 tree cl
= gimple_switch_label (last
, idx
);
6063 if (CASE_LABEL (cl
) == CASE_LABEL (default_cl
))
6066 min
= CASE_LOW (cl
);
6067 max
= CASE_HIGH (cl
);
6069 /* Combine contiguous case ranges to reduce the number of assertions
6071 for (idx
= idx
+ 1; idx
< n
; idx
++)
6073 tree next_min
, next_max
;
6074 tree next_cl
= gimple_switch_label (last
, idx
);
6075 if (CASE_LABEL (next_cl
) == CASE_LABEL (default_cl
))
6078 next_min
= CASE_LOW (next_cl
);
6079 next_max
= CASE_HIGH (next_cl
);
6081 wide_int difference
= wi::sub (next_min
, max
? max
: min
);
6082 if (wi::eq_p (difference
, 1))
6083 max
= next_max
? next_max
: next_min
;
6089 if (max
== NULL_TREE
)
6091 /* Register the assertion OP != MIN. */
6092 min
= fold_convert (TREE_TYPE (op
), min
);
6093 register_edge_assert_for (op
, default_edge
, bsi
, NE_EXPR
, op
, min
);
6097 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
6098 which will give OP the anti-range ~[MIN,MAX]. */
6099 tree uop
= fold_convert (unsigned_type_for (TREE_TYPE (op
)), op
);
6100 min
= fold_convert (TREE_TYPE (uop
), min
);
6101 max
= fold_convert (TREE_TYPE (uop
), max
);
6103 tree lhs
= fold_build2 (MINUS_EXPR
, TREE_TYPE (uop
), uop
, min
);
6104 tree rhs
= int_const_binop (MINUS_EXPR
, max
, min
);
6105 register_new_assert_for (op
, lhs
, GT_EXPR
, rhs
,
6106 NULL
, default_edge
, bsi
);
6109 if (--insertion_limit
== 0)
6115 /* Traverse all the statements in block BB looking for statements that
6116 may generate useful assertions for the SSA names in their operand.
6117 If a statement produces a useful assertion A for name N_i, then the
6118 list of assertions already generated for N_i is scanned to
6119 determine if A is actually needed.
6121 If N_i already had the assertion A at a location dominating the
6122 current location, then nothing needs to be done. Otherwise, the
6123 new location for A is recorded instead.
6125 1- For every statement S in BB, all the variables used by S are
6126 added to bitmap FOUND_IN_SUBGRAPH.
6128 2- If statement S uses an operand N in a way that exposes a known
6129 value range for N, then if N was not already generated by an
6130 ASSERT_EXPR, create a new assert location for N. For instance,
6131 if N is a pointer and the statement dereferences it, we can
6132 assume that N is not NULL.
6134 3- COND_EXPRs are a special case of #2. We can derive range
6135 information from the predicate but need to insert different
6136 ASSERT_EXPRs for each of the sub-graphs rooted at the
6137 conditional block. If the last statement of BB is a conditional
6138 expression of the form 'X op Y', then
6140 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6142 b) If the conditional is the only entry point to the sub-graph
6143 corresponding to the THEN_CLAUSE, recurse into it. On
6144 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6145 an ASSERT_EXPR is added for the corresponding variable.
6147 c) Repeat step (b) on the ELSE_CLAUSE.
6149 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6158 In this case, an assertion on the THEN clause is useful to
6159 determine that 'a' is always 9 on that edge. However, an assertion
6160 on the ELSE clause would be unnecessary.
6162 4- If BB does not end in a conditional expression, then we recurse
6163 into BB's dominator children.
6165 At the end of the recursive traversal, every SSA name will have a
6166 list of locations where ASSERT_EXPRs should be added. When a new
6167 location for name N is found, it is registered by calling
6168 register_new_assert_for. That function keeps track of all the
6169 registered assertions to prevent adding unnecessary assertions.
6170 For instance, if a pointer P_4 is dereferenced more than once in a
6171 dominator tree, only the location dominating all the dereference of
6172 P_4 will receive an ASSERT_EXPR. */
6175 find_assert_locations_1 (basic_block bb
, sbitmap live
)
6179 last
= last_stmt (bb
);
6181 /* If BB's last statement is a conditional statement involving integer
6182 operands, determine if we need to add ASSERT_EXPRs. */
6184 && gimple_code (last
) == GIMPLE_COND
6185 && !fp_predicate (last
)
6186 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
6187 find_conditional_asserts (bb
, as_a
<gcond
*> (last
));
6189 /* If BB's last statement is a switch statement involving integer
6190 operands, determine if we need to add ASSERT_EXPRs. */
6192 && gimple_code (last
) == GIMPLE_SWITCH
6193 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
6194 find_switch_asserts (bb
, as_a
<gswitch
*> (last
));
6196 /* Traverse all the statements in BB marking used names and looking
6197 for statements that may infer assertions for their used operands. */
6198 for (gimple_stmt_iterator si
= gsi_last_bb (bb
); !gsi_end_p (si
);
6205 stmt
= gsi_stmt (si
);
6207 if (is_gimple_debug (stmt
))
6210 /* See if we can derive an assertion for any of STMT's operands. */
6211 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
6214 enum tree_code comp_code
;
6216 /* If op is not live beyond this stmt, do not bother to insert
6218 if (!bitmap_bit_p (live
, SSA_NAME_VERSION (op
)))
6221 /* If OP is used in such a way that we can infer a value
6222 range for it, and we don't find a previous assertion for
6223 it, create a new assertion location node for OP. */
6224 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
6226 /* If we are able to infer a nonzero value range for OP,
6227 then walk backwards through the use-def chain to see if OP
6228 was set via a typecast.
6230 If so, then we can also infer a nonzero value range
6231 for the operand of the NOP_EXPR. */
6232 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
6235 gimple
*def_stmt
= SSA_NAME_DEF_STMT (t
);
6237 while (is_gimple_assign (def_stmt
)
6238 && CONVERT_EXPR_CODE_P
6239 (gimple_assign_rhs_code (def_stmt
))
6241 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
6243 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
6245 t
= gimple_assign_rhs1 (def_stmt
);
6246 def_stmt
= SSA_NAME_DEF_STMT (t
);
6248 /* Note we want to register the assert for the
6249 operand of the NOP_EXPR after SI, not after the
6251 if (bitmap_bit_p (live
, SSA_NAME_VERSION (t
)))
6252 register_new_assert_for (t
, t
, comp_code
, value
,
6257 register_new_assert_for (op
, op
, comp_code
, value
, bb
, NULL
, si
);
6262 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
6263 bitmap_set_bit (live
, SSA_NAME_VERSION (op
));
6264 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_DEF
)
6265 bitmap_clear_bit (live
, SSA_NAME_VERSION (op
));
6268 /* Traverse all PHI nodes in BB, updating live. */
6269 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
6272 use_operand_p arg_p
;
6274 gphi
*phi
= si
.phi ();
6275 tree res
= gimple_phi_result (phi
);
6277 if (virtual_operand_p (res
))
6280 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
6282 tree arg
= USE_FROM_PTR (arg_p
);
6283 if (TREE_CODE (arg
) == SSA_NAME
)
6284 bitmap_set_bit (live
, SSA_NAME_VERSION (arg
));
6287 bitmap_clear_bit (live
, SSA_NAME_VERSION (res
));
6291 /* Do an RPO walk over the function computing SSA name liveness
6292 on-the-fly and deciding on assert expressions to insert. */
6295 find_assert_locations (void)
6297 int *rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6298 int *bb_rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6299 int *last_rpo
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
6302 live
= XCNEWVEC (sbitmap
, last_basic_block_for_fn (cfun
));
6303 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
6304 for (i
= 0; i
< rpo_cnt
; ++i
)
6307 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6308 the order we compute liveness and insert asserts we otherwise
6309 fail to insert asserts into the loop latch. */
6311 FOR_EACH_LOOP (loop
, 0)
6313 i
= loop
->latch
->index
;
6314 unsigned int j
= single_succ_edge (loop
->latch
)->dest_idx
;
6315 for (gphi_iterator gsi
= gsi_start_phis (loop
->header
);
6316 !gsi_end_p (gsi
); gsi_next (&gsi
))
6318 gphi
*phi
= gsi
.phi ();
6319 if (virtual_operand_p (gimple_phi_result (phi
)))
6321 tree arg
= gimple_phi_arg_def (phi
, j
);
6322 if (TREE_CODE (arg
) == SSA_NAME
)
6324 if (live
[i
] == NULL
)
6326 live
[i
] = sbitmap_alloc (num_ssa_names
);
6327 bitmap_clear (live
[i
]);
6329 bitmap_set_bit (live
[i
], SSA_NAME_VERSION (arg
));
6334 for (i
= rpo_cnt
- 1; i
>= 0; --i
)
6336 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
6342 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
6343 bitmap_clear (live
[rpo
[i
]]);
6346 /* Process BB and update the live information with uses in
6348 find_assert_locations_1 (bb
, live
[rpo
[i
]]);
6350 /* Merge liveness into the predecessor blocks and free it. */
6351 if (!bitmap_empty_p (live
[rpo
[i
]]))
6354 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6356 int pred
= e
->src
->index
;
6357 if ((e
->flags
& EDGE_DFS_BACK
) || pred
== ENTRY_BLOCK
)
6362 live
[pred
] = sbitmap_alloc (num_ssa_names
);
6363 bitmap_clear (live
[pred
]);
6365 bitmap_ior (live
[pred
], live
[pred
], live
[rpo
[i
]]);
6367 if (bb_rpo
[pred
] < pred_rpo
)
6368 pred_rpo
= bb_rpo
[pred
];
6371 /* Record the RPO number of the last visited block that needs
6372 live information from this block. */
6373 last_rpo
[rpo
[i
]] = pred_rpo
;
6377 sbitmap_free (live
[rpo
[i
]]);
6378 live
[rpo
[i
]] = NULL
;
6381 /* We can free all successors live bitmaps if all their
6382 predecessors have been visited already. */
6383 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6384 if (last_rpo
[e
->dest
->index
] == i
6385 && live
[e
->dest
->index
])
6387 sbitmap_free (live
[e
->dest
->index
]);
6388 live
[e
->dest
->index
] = NULL
;
6393 XDELETEVEC (bb_rpo
);
6394 XDELETEVEC (last_rpo
);
6395 for (i
= 0; i
< last_basic_block_for_fn (cfun
); ++i
)
6397 sbitmap_free (live
[i
]);
6401 /* Create an ASSERT_EXPR for NAME and insert it in the location
6402 indicated by LOC. Return true if we made any edge insertions. */
6405 process_assert_insertions_for (tree name
, assert_locus
*loc
)
6407 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6410 gimple
*assert_stmt
;
6414 /* If we have X <=> X do not insert an assert expr for that. */
6415 if (loc
->expr
== loc
->val
)
6418 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
6419 assert_stmt
= build_assert_expr_for (cond
, name
);
6422 /* We have been asked to insert the assertion on an edge. This
6423 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6424 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
6425 || (gimple_code (gsi_stmt (loc
->si
))
6428 gsi_insert_on_edge (loc
->e
, assert_stmt
);
6432 /* If the stmt iterator points at the end then this is an insertion
6433 at the beginning of a block. */
6434 if (gsi_end_p (loc
->si
))
6436 gimple_stmt_iterator si
= gsi_after_labels (loc
->bb
);
6437 gsi_insert_before (&si
, assert_stmt
, GSI_SAME_STMT
);
6441 /* Otherwise, we can insert right after LOC->SI iff the
6442 statement must not be the last statement in the block. */
6443 stmt
= gsi_stmt (loc
->si
);
6444 if (!stmt_ends_bb_p (stmt
))
6446 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
6450 /* If STMT must be the last statement in BB, we can only insert new
6451 assertions on the non-abnormal edge out of BB. Note that since
6452 STMT is not control flow, there may only be one non-abnormal/eh edge
6454 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
6455 if (!(e
->flags
& (EDGE_ABNORMAL
|EDGE_EH
)))
6457 gsi_insert_on_edge (e
, assert_stmt
);
6464 /* Qsort helper for sorting assert locations. */
6467 compare_assert_loc (const void *pa
, const void *pb
)
6469 assert_locus
* const a
= *(assert_locus
* const *)pa
;
6470 assert_locus
* const b
= *(assert_locus
* const *)pb
;
6473 else if (a
->e
&& ! b
->e
)
6476 /* Sort after destination index. */
6477 if (! a
->e
&& ! b
->e
)
6479 else if (a
->e
->dest
->index
> b
->e
->dest
->index
)
6481 else if (a
->e
->dest
->index
< b
->e
->dest
->index
)
6484 /* Sort after comp_code. */
6485 if (a
->comp_code
> b
->comp_code
)
6487 else if (a
->comp_code
< b
->comp_code
)
6490 /* Break the tie using hashing and source/bb index. */
6491 hashval_t ha
= iterative_hash_expr (a
->expr
, iterative_hash_expr (a
->val
, 0));
6492 hashval_t hb
= iterative_hash_expr (b
->expr
, iterative_hash_expr (b
->val
, 0));
6494 return (a
->e
&& b
->e
6495 ? a
->e
->src
->index
- b
->e
->src
->index
6496 : a
->bb
->index
- b
->bb
->index
);
6500 /* Process all the insertions registered for every name N_i registered
6501 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6502 found in ASSERTS_FOR[i]. */
6505 process_assert_insertions (void)
6509 bool update_edges_p
= false;
6510 int num_asserts
= 0;
6512 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6513 dump_all_asserts (dump_file
);
6515 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
6517 assert_locus
*loc
= asserts_for
[i
];
6520 auto_vec
<assert_locus
*, 16> asserts
;
6521 for (; loc
; loc
= loc
->next
)
6522 asserts
.safe_push (loc
);
6523 asserts
.qsort (compare_assert_loc
);
6525 /* Push down common asserts to successors and remove redundant ones. */
6527 assert_locus
*common
= NULL
;
6528 unsigned commonj
= 0;
6529 for (unsigned j
= 0; j
< asserts
.length (); ++j
)
6535 || loc
->e
->dest
!= common
->e
->dest
6536 || loc
->comp_code
!= common
->comp_code
6537 || ! operand_equal_p (loc
->val
, common
->val
, 0)
6538 || ! operand_equal_p (loc
->expr
, common
->expr
, 0))
6544 else if (loc
->e
== asserts
[j
-1]->e
)
6546 /* Remove duplicate asserts. */
6547 if (commonj
== j
- 1)
6552 free (asserts
[j
-1]);
6553 asserts
[j
-1] = NULL
;
6558 if (EDGE_COUNT (common
->e
->dest
->preds
) == ecnt
)
6560 /* We have the same assertion on all incoming edges of a BB.
6561 Insert it at the beginning of that block. */
6562 loc
->bb
= loc
->e
->dest
;
6564 loc
->si
= gsi_none ();
6566 /* Clear asserts commoned. */
6567 for (; commonj
!= j
; ++commonj
)
6568 if (asserts
[commonj
])
6570 free (asserts
[commonj
]);
6571 asserts
[commonj
] = NULL
;
6577 for (unsigned j
= 0; j
< asserts
.length (); ++j
)
6582 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
6589 gsi_commit_edge_inserts ();
6591 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
6596 /* Traverse the flowgraph looking for conditional jumps to insert range
6597 expressions. These range expressions are meant to provide information
6598 to optimizations that need to reason in terms of value ranges. They
6599 will not be expanded into RTL. For instance, given:
6608 this pass will transform the code into:
6614 x = ASSERT_EXPR <x, x < y>
6619 y = ASSERT_EXPR <y, x >= y>
6623 The idea is that once copy and constant propagation have run, other
6624 optimizations will be able to determine what ranges of values can 'x'
6625 take in different paths of the code, simply by checking the reaching
6626 definition of 'x'. */
6629 insert_range_assertions (void)
6631 need_assert_for
= BITMAP_ALLOC (NULL
);
6632 asserts_for
= XCNEWVEC (assert_locus
*, num_ssa_names
);
6634 calculate_dominance_info (CDI_DOMINATORS
);
6636 find_assert_locations ();
6637 if (!bitmap_empty_p (need_assert_for
))
6639 process_assert_insertions ();
6640 update_ssa (TODO_update_ssa_no_phi
);
6643 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6645 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
6646 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
6650 BITMAP_FREE (need_assert_for
);
6653 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6654 and "struct" hacks. If VRP can determine that the
6655 array subscript is a constant, check if it is outside valid
6656 range. If the array subscript is a RANGE, warn if it is
6657 non-overlapping with valid range.
6658 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6661 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
6663 value_range
*vr
= NULL
;
6664 tree low_sub
, up_sub
;
6665 tree low_bound
, up_bound
, up_bound_p1
;
6667 if (TREE_NO_WARNING (ref
))
6670 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
6671 up_bound
= array_ref_up_bound (ref
);
6673 /* Can not check flexible arrays. */
6675 || TREE_CODE (up_bound
) != INTEGER_CST
)
6678 /* Accesses to trailing arrays via pointers may access storage
6679 beyond the types array bounds. */
6680 if (warn_array_bounds
< 2
6681 && array_at_struct_end_p (ref
))
6684 low_bound
= array_ref_low_bound (ref
);
6685 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
,
6686 build_int_cst (TREE_TYPE (up_bound
), 1));
6689 if (tree_int_cst_equal (low_bound
, up_bound_p1
))
6691 warning_at (location
, OPT_Warray_bounds
,
6692 "array subscript is above array bounds");
6693 TREE_NO_WARNING (ref
) = 1;
6696 if (TREE_CODE (low_sub
) == SSA_NAME
)
6698 vr
= get_value_range (low_sub
);
6699 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
6701 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
6702 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
6706 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
6708 if (TREE_CODE (up_sub
) == INTEGER_CST
6709 && (ignore_off_by_one
6710 ? tree_int_cst_lt (up_bound
, up_sub
)
6711 : tree_int_cst_le (up_bound
, up_sub
))
6712 && TREE_CODE (low_sub
) == INTEGER_CST
6713 && tree_int_cst_le (low_sub
, low_bound
))
6715 warning_at (location
, OPT_Warray_bounds
,
6716 "array subscript is outside array bounds");
6717 TREE_NO_WARNING (ref
) = 1;
6720 else if (TREE_CODE (up_sub
) == INTEGER_CST
6721 && (ignore_off_by_one
6722 ? !tree_int_cst_le (up_sub
, up_bound_p1
)
6723 : !tree_int_cst_le (up_sub
, up_bound
)))
6725 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6727 fprintf (dump_file
, "Array bound warning for ");
6728 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
6729 fprintf (dump_file
, "\n");
6731 warning_at (location
, OPT_Warray_bounds
,
6732 "array subscript is above array bounds");
6733 TREE_NO_WARNING (ref
) = 1;
6735 else if (TREE_CODE (low_sub
) == INTEGER_CST
6736 && tree_int_cst_lt (low_sub
, low_bound
))
6738 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6740 fprintf (dump_file
, "Array bound warning for ");
6741 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
6742 fprintf (dump_file
, "\n");
6744 warning_at (location
, OPT_Warray_bounds
,
6745 "array subscript is below array bounds");
6746 TREE_NO_WARNING (ref
) = 1;
6750 /* Searches if the expr T, located at LOCATION computes
6751 address of an ARRAY_REF, and call check_array_ref on it. */
6754 search_for_addr_array (tree t
, location_t location
)
6756 /* Check each ARRAY_REFs in the reference chain. */
6759 if (TREE_CODE (t
) == ARRAY_REF
)
6760 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
6762 t
= TREE_OPERAND (t
, 0);
6764 while (handled_component_p (t
));
6766 if (TREE_CODE (t
) == MEM_REF
6767 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
6768 && !TREE_NO_WARNING (t
))
6770 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
6771 tree low_bound
, up_bound
, el_sz
;
6773 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
6774 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
6775 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
6778 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6779 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6780 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
6782 || TREE_CODE (low_bound
) != INTEGER_CST
6784 || TREE_CODE (up_bound
) != INTEGER_CST
6786 || TREE_CODE (el_sz
) != INTEGER_CST
)
6789 idx
= mem_ref_offset (t
);
6790 idx
= wi::sdiv_trunc (idx
, wi::to_offset (el_sz
));
6793 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6795 fprintf (dump_file
, "Array bound warning for ");
6796 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
6797 fprintf (dump_file
, "\n");
6799 warning_at (location
, OPT_Warray_bounds
,
6800 "array subscript is below array bounds");
6801 TREE_NO_WARNING (t
) = 1;
6803 else if (idx
> (wi::to_offset (up_bound
)
6804 - wi::to_offset (low_bound
) + 1))
6806 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6808 fprintf (dump_file
, "Array bound warning for ");
6809 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
6810 fprintf (dump_file
, "\n");
6812 warning_at (location
, OPT_Warray_bounds
,
6813 "array subscript is above array bounds");
6814 TREE_NO_WARNING (t
) = 1;
6819 /* walk_tree() callback that checks if *TP is
6820 an ARRAY_REF inside an ADDR_EXPR (in which an array
6821 subscript one outside the valid range is allowed). Call
6822 check_array_ref for each ARRAY_REF found. The location is
6826 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
6829 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6830 location_t location
;
6832 if (EXPR_HAS_LOCATION (t
))
6833 location
= EXPR_LOCATION (t
);
6836 location_t
*locp
= (location_t
*) wi
->info
;
6840 *walk_subtree
= TRUE
;
6842 if (TREE_CODE (t
) == ARRAY_REF
)
6843 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
6845 else if (TREE_CODE (t
) == ADDR_EXPR
)
6847 search_for_addr_array (t
, location
);
6848 *walk_subtree
= FALSE
;
6854 /* Walk over all statements of all reachable BBs and call check_array_bounds
6858 check_all_array_refs (void)
6861 gimple_stmt_iterator si
;
6863 FOR_EACH_BB_FN (bb
, cfun
)
6867 bool executable
= false;
6869 /* Skip blocks that were found to be unreachable. */
6870 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6871 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
6875 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6877 gimple
*stmt
= gsi_stmt (si
);
6878 struct walk_stmt_info wi
;
6879 if (!gimple_has_location (stmt
)
6880 || is_gimple_debug (stmt
))
6883 memset (&wi
, 0, sizeof (wi
));
6885 location_t loc
= gimple_location (stmt
);
6888 walk_gimple_op (gsi_stmt (si
),
6895 /* Return true if all imm uses of VAR are either in STMT, or
6896 feed (optionally through a chain of single imm uses) GIMPLE_COND
6897 in basic block COND_BB. */
6900 all_imm_uses_in_stmt_or_feed_cond (tree var
, gimple
*stmt
, basic_block cond_bb
)
6902 use_operand_p use_p
, use2_p
;
6903 imm_use_iterator iter
;
6905 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
6906 if (USE_STMT (use_p
) != stmt
)
6908 gimple
*use_stmt
= USE_STMT (use_p
), *use_stmt2
;
6909 if (is_gimple_debug (use_stmt
))
6911 while (is_gimple_assign (use_stmt
)
6912 && TREE_CODE (gimple_assign_lhs (use_stmt
)) == SSA_NAME
6913 && single_imm_use (gimple_assign_lhs (use_stmt
),
6914 &use2_p
, &use_stmt2
))
6915 use_stmt
= use_stmt2
;
6916 if (gimple_code (use_stmt
) != GIMPLE_COND
6917 || gimple_bb (use_stmt
) != cond_bb
)
6930 __builtin_unreachable ();
6932 x_5 = ASSERT_EXPR <x_3, ...>;
6933 If x_3 has no other immediate uses (checked by caller),
6934 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6935 from the non-zero bitmask. */
6938 maybe_set_nonzero_bits (basic_block bb
, tree var
)
6940 edge e
= single_pred_edge (bb
);
6941 basic_block cond_bb
= e
->src
;
6942 gimple
*stmt
= last_stmt (cond_bb
);
6946 || gimple_code (stmt
) != GIMPLE_COND
6947 || gimple_cond_code (stmt
) != ((e
->flags
& EDGE_TRUE_VALUE
)
6948 ? EQ_EXPR
: NE_EXPR
)
6949 || TREE_CODE (gimple_cond_lhs (stmt
)) != SSA_NAME
6950 || !integer_zerop (gimple_cond_rhs (stmt
)))
6953 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt
));
6954 if (!is_gimple_assign (stmt
)
6955 || gimple_assign_rhs_code (stmt
) != BIT_AND_EXPR
6956 || TREE_CODE (gimple_assign_rhs2 (stmt
)) != INTEGER_CST
)
6958 if (gimple_assign_rhs1 (stmt
) != var
)
6962 if (TREE_CODE (gimple_assign_rhs1 (stmt
)) != SSA_NAME
)
6964 stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
6965 if (!gimple_assign_cast_p (stmt2
)
6966 || gimple_assign_rhs1 (stmt2
) != var
6967 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2
))
6968 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt
)))
6969 != TYPE_PRECISION (TREE_TYPE (var
))))
6972 cst
= gimple_assign_rhs2 (stmt
);
6973 set_nonzero_bits (var
, wi::bit_and_not (get_nonzero_bits (var
), cst
));
6976 /* Convert range assertion expressions into the implied copies and
6977 copy propagate away the copies. Doing the trivial copy propagation
6978 here avoids the need to run the full copy propagation pass after
6981 FIXME, this will eventually lead to copy propagation removing the
6982 names that had useful range information attached to them. For
6983 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6984 then N_i will have the range [3, +INF].
6986 However, by converting the assertion into the implied copy
6987 operation N_i = N_j, we will then copy-propagate N_j into the uses
6988 of N_i and lose the range information. We may want to hold on to
6989 ASSERT_EXPRs a little while longer as the ranges could be used in
6990 things like jump threading.
6992 The problem with keeping ASSERT_EXPRs around is that passes after
6993 VRP need to handle them appropriately.
6995 Another approach would be to make the range information a first
6996 class property of the SSA_NAME so that it can be queried from
6997 any pass. This is made somewhat more complex by the need for
6998 multiple ranges to be associated with one SSA_NAME. */
7001 remove_range_assertions (void)
7004 gimple_stmt_iterator si
;
7005 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
7006 a basic block preceeded by GIMPLE_COND branching to it and
7007 __builtin_trap, -1 if not yet checked, 0 otherwise. */
7010 /* Note that the BSI iterator bump happens at the bottom of the
7011 loop and no bump is necessary if we're removing the statement
7012 referenced by the current BSI. */
7013 FOR_EACH_BB_FN (bb
, cfun
)
7014 for (si
= gsi_after_labels (bb
), is_unreachable
= -1; !gsi_end_p (si
);)
7016 gimple
*stmt
= gsi_stmt (si
);
7018 if (is_gimple_assign (stmt
)
7019 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
7021 tree lhs
= gimple_assign_lhs (stmt
);
7022 tree rhs
= gimple_assign_rhs1 (stmt
);
7025 var
= ASSERT_EXPR_VAR (rhs
);
7027 if (TREE_CODE (var
) == SSA_NAME
7028 && !POINTER_TYPE_P (TREE_TYPE (lhs
))
7029 && SSA_NAME_RANGE_INFO (lhs
))
7031 if (is_unreachable
== -1)
7034 if (single_pred_p (bb
)
7035 && assert_unreachable_fallthru_edge_p
7036 (single_pred_edge (bb
)))
7040 if (x_7 >= 10 && x_7 < 20)
7041 __builtin_unreachable ();
7042 x_8 = ASSERT_EXPR <x_7, ...>;
7043 if the only uses of x_7 are in the ASSERT_EXPR and
7044 in the condition. In that case, we can copy the
7045 range info from x_8 computed in this pass also
7048 && all_imm_uses_in_stmt_or_feed_cond (var
, stmt
,
7051 set_range_info (var
, SSA_NAME_RANGE_TYPE (lhs
),
7052 SSA_NAME_RANGE_INFO (lhs
)->get_min (),
7053 SSA_NAME_RANGE_INFO (lhs
)->get_max ());
7054 maybe_set_nonzero_bits (bb
, var
);
7058 /* Propagate the RHS into every use of the LHS. For SSA names
7059 also propagate abnormals as it merely restores the original
7060 IL in this case (an replace_uses_by would assert). */
7061 if (TREE_CODE (var
) == SSA_NAME
)
7063 imm_use_iterator iter
;
7064 use_operand_p use_p
;
7066 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
7067 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7068 SET_USE (use_p
, var
);
7071 replace_uses_by (lhs
, var
);
7073 /* And finally, remove the copy, it is not needed. */
7074 gsi_remove (&si
, true);
7075 release_defs (stmt
);
7079 if (!is_gimple_debug (gsi_stmt (si
)))
7087 /* Return true if STMT is interesting for VRP. */
7090 stmt_interesting_for_vrp (gimple
*stmt
)
7092 if (gimple_code (stmt
) == GIMPLE_PHI
)
7094 tree res
= gimple_phi_result (stmt
);
7095 return (!virtual_operand_p (res
)
7096 && (INTEGRAL_TYPE_P (TREE_TYPE (res
))
7097 || POINTER_TYPE_P (TREE_TYPE (res
))));
7099 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
7101 tree lhs
= gimple_get_lhs (stmt
);
7103 /* In general, assignments with virtual operands are not useful
7104 for deriving ranges, with the obvious exception of calls to
7105 builtin functions. */
7106 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
7107 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
7108 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
7109 && (is_gimple_call (stmt
)
7110 || !gimple_vuse (stmt
)))
7112 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
7113 switch (gimple_call_internal_fn (stmt
))
7115 case IFN_ADD_OVERFLOW
:
7116 case IFN_SUB_OVERFLOW
:
7117 case IFN_MUL_OVERFLOW
:
7118 /* These internal calls return _Complex integer type,
7119 but are interesting to VRP nevertheless. */
7120 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
7127 else if (gimple_code (stmt
) == GIMPLE_COND
7128 || gimple_code (stmt
) == GIMPLE_SWITCH
)
7134 /* Initialize VRP lattice. */
7137 vrp_initialize_lattice ()
7139 values_propagated
= false;
7140 num_vr_values
= num_ssa_names
;
7141 vr_value
= XCNEWVEC (value_range
*, num_vr_values
);
7142 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
7143 bitmap_obstack_initialize (&vrp_equiv_obstack
);
7146 /* Initialization required by ssa_propagate engine. */
7153 FOR_EACH_BB_FN (bb
, cfun
)
7155 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
7158 gphi
*phi
= si
.phi ();
7159 if (!stmt_interesting_for_vrp (phi
))
7161 tree lhs
= PHI_RESULT (phi
);
7162 set_value_range_to_varying (get_value_range (lhs
));
7163 prop_set_simulate_again (phi
, false);
7166 prop_set_simulate_again (phi
, true);
7169 for (gimple_stmt_iterator si
= gsi_start_bb (bb
); !gsi_end_p (si
);
7172 gimple
*stmt
= gsi_stmt (si
);
7174 /* If the statement is a control insn, then we do not
7175 want to avoid simulating the statement once. Failure
7176 to do so means that those edges will never get added. */
7177 if (stmt_ends_bb_p (stmt
))
7178 prop_set_simulate_again (stmt
, true);
7179 else if (!stmt_interesting_for_vrp (stmt
))
7181 set_defs_to_varying (stmt
);
7182 prop_set_simulate_again (stmt
, false);
7185 prop_set_simulate_again (stmt
, true);
7190 /* Return the singleton value-range for NAME or NAME. */
7193 vrp_valueize (tree name
)
7195 if (TREE_CODE (name
) == SSA_NAME
)
7197 value_range
*vr
= get_value_range (name
);
7198 if (vr
->type
== VR_RANGE
7199 && (TREE_CODE (vr
->min
) == SSA_NAME
7200 || is_gimple_min_invariant (vr
->min
))
7201 && vrp_operand_equal_p (vr
->min
, vr
->max
))
7207 /* Return the singleton value-range for NAME if that is a constant
7208 but signal to not follow SSA edges. */
7211 vrp_valueize_1 (tree name
)
7213 if (TREE_CODE (name
) == SSA_NAME
)
7215 /* If the definition may be simulated again we cannot follow
7216 this SSA edge as the SSA propagator does not necessarily
7217 re-visit the use. */
7218 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
7219 if (!gimple_nop_p (def_stmt
)
7220 && prop_simulate_again_p (def_stmt
))
7222 value_range
*vr
= get_value_range (name
);
7223 if (range_int_cst_singleton_p (vr
))
7229 /* Visit assignment STMT. If it produces an interesting range, record
7230 the range in VR and set LHS to OUTPUT_P. */
7233 vrp_visit_assignment_or_call (gimple
*stmt
, tree
*output_p
, value_range
*vr
)
7236 enum gimple_code code
= gimple_code (stmt
);
7237 lhs
= gimple_get_lhs (stmt
);
7238 *output_p
= NULL_TREE
;
7240 /* We only keep track of ranges in integral and pointer types. */
7241 if (TREE_CODE (lhs
) == SSA_NAME
7242 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
7243 /* It is valid to have NULL MIN/MAX values on a type. See
7244 build_range_type. */
7245 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
7246 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
7247 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
7251 /* Try folding the statement to a constant first. */
7252 tree tem
= gimple_fold_stmt_to_constant_1 (stmt
, vrp_valueize
,
7256 if (TREE_CODE (tem
) == SSA_NAME
7257 && (SSA_NAME_IS_DEFAULT_DEF (tem
)
7258 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem
))))
7260 extract_range_from_ssa_name (vr
, tem
);
7263 else if (is_gimple_min_invariant (tem
))
7265 set_value_range_to_value (vr
, tem
, NULL
);
7269 /* Then dispatch to value-range extracting functions. */
7270 if (code
== GIMPLE_CALL
)
7271 extract_range_basic (vr
, stmt
);
7273 extract_range_from_assignment (vr
, as_a
<gassign
*> (stmt
));
7277 /* Helper that gets the value range of the SSA_NAME with version I
7278 or a symbolic range containing the SSA_NAME only if the value range
7279 is varying or undefined. */
7281 static inline value_range
7282 get_vr_for_comparison (int i
)
7284 value_range vr
= *get_value_range (ssa_name (i
));
7286 /* If name N_i does not have a valid range, use N_i as its own
7287 range. This allows us to compare against names that may
7288 have N_i in their ranges. */
7289 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
7292 vr
.min
= ssa_name (i
);
7293 vr
.max
= ssa_name (i
);
7299 /* Compare all the value ranges for names equivalent to VAR with VAL
7300 using comparison code COMP. Return the same value returned by
7301 compare_range_with_value, including the setting of
7302 *STRICT_OVERFLOW_P. */
7305 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
7306 bool *strict_overflow_p
, bool use_equiv_p
)
7312 int used_strict_overflow
;
7314 value_range equiv_vr
;
7316 /* Get the set of equivalences for VAR. */
7317 e
= get_value_range (var
)->equiv
;
7319 /* Start at -1. Set it to 0 if we do a comparison without relying
7320 on overflow, or 1 if all comparisons rely on overflow. */
7321 used_strict_overflow
= -1;
7323 /* Compare vars' value range with val. */
7324 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
7326 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
7328 used_strict_overflow
= sop
? 1 : 0;
7330 /* If the equiv set is empty we have done all work we need to do. */
7334 && used_strict_overflow
> 0)
7335 *strict_overflow_p
= true;
7339 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
7341 tree name
= ssa_name (i
);
7346 && ! SSA_NAME_IS_DEFAULT_DEF (name
)
7347 && prop_simulate_again_p (SSA_NAME_DEF_STMT (name
)))
7350 equiv_vr
= get_vr_for_comparison (i
);
7352 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
7355 /* If we get different answers from different members
7356 of the equivalence set this check must be in a dead
7357 code region. Folding it to a trap representation
7358 would be correct here. For now just return don't-know. */
7368 used_strict_overflow
= 0;
7369 else if (used_strict_overflow
< 0)
7370 used_strict_overflow
= 1;
7375 && used_strict_overflow
> 0)
7376 *strict_overflow_p
= true;
7382 /* Given a comparison code COMP and names N1 and N2, compare all the
7383 ranges equivalent to N1 against all the ranges equivalent to N2
7384 to determine the value of N1 COMP N2. Return the same value
7385 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7386 whether we relied on an overflow infinity in the comparison. */
7390 compare_names (enum tree_code comp
, tree n1
, tree n2
,
7391 bool *strict_overflow_p
)
7395 bitmap_iterator bi1
, bi2
;
7397 int used_strict_overflow
;
7398 static bitmap_obstack
*s_obstack
= NULL
;
7399 static bitmap s_e1
= NULL
, s_e2
= NULL
;
7401 /* Compare the ranges of every name equivalent to N1 against the
7402 ranges of every name equivalent to N2. */
7403 e1
= get_value_range (n1
)->equiv
;
7404 e2
= get_value_range (n2
)->equiv
;
7406 /* Use the fake bitmaps if e1 or e2 are not available. */
7407 if (s_obstack
== NULL
)
7409 s_obstack
= XNEW (bitmap_obstack
);
7410 bitmap_obstack_initialize (s_obstack
);
7411 s_e1
= BITMAP_ALLOC (s_obstack
);
7412 s_e2
= BITMAP_ALLOC (s_obstack
);
7419 /* Add N1 and N2 to their own set of equivalences to avoid
7420 duplicating the body of the loop just to check N1 and N2
7422 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
7423 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
7425 /* If the equivalence sets have a common intersection, then the two
7426 names can be compared without checking their ranges. */
7427 if (bitmap_intersect_p (e1
, e2
))
7429 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7430 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7432 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
7434 : boolean_false_node
;
7437 /* Start at -1. Set it to 0 if we do a comparison without relying
7438 on overflow, or 1 if all comparisons rely on overflow. */
7439 used_strict_overflow
= -1;
7441 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7442 N2 to their own set of equivalences to avoid duplicating the body
7443 of the loop just to check N1 and N2 ranges. */
7444 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
7446 if (! ssa_name (i1
))
7449 value_range vr1
= get_vr_for_comparison (i1
);
7451 t
= retval
= NULL_TREE
;
7452 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
7454 if (! ssa_name (i2
))
7459 value_range vr2
= get_vr_for_comparison (i2
);
7461 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
7464 /* If we get different answers from different members
7465 of the equivalence set this check must be in a dead
7466 code region. Folding it to a trap representation
7467 would be correct here. For now just return don't-know. */
7471 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7472 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7478 used_strict_overflow
= 0;
7479 else if (used_strict_overflow
< 0)
7480 used_strict_overflow
= 1;
7486 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7487 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7488 if (used_strict_overflow
> 0)
7489 *strict_overflow_p
= true;
7494 /* None of the equivalent ranges are useful in computing this
7496 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7497 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7501 /* Helper function for vrp_evaluate_conditional_warnv & other
7505 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
7507 bool * strict_overflow_p
)
7509 value_range
*vr0
, *vr1
;
7511 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
7512 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
7514 tree res
= NULL_TREE
;
7516 res
= compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
7518 res
= compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
7520 res
= (compare_range_with_value
7521 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
7525 /* Helper function for vrp_evaluate_conditional_warnv. */
7528 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
7529 tree op1
, bool use_equiv_p
,
7530 bool *strict_overflow_p
, bool *only_ranges
)
7534 *only_ranges
= true;
7536 /* We only deal with integral and pointer types. */
7537 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7538 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
7541 if ((ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
7542 (code
, op0
, op1
, strict_overflow_p
)))
7545 *only_ranges
= false;
7546 /* Do not use compare_names during propagation, it's quadratic. */
7547 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
7549 return compare_names (code
, op0
, op1
, strict_overflow_p
);
7550 else if (TREE_CODE (op0
) == SSA_NAME
)
7551 return compare_name_with_value (code
, op0
, op1
,
7552 strict_overflow_p
, use_equiv_p
);
7553 else if (TREE_CODE (op1
) == SSA_NAME
)
7554 return compare_name_with_value (swap_tree_comparison (code
), op1
, op0
,
7555 strict_overflow_p
, use_equiv_p
);
7559 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7560 information. Return NULL if the conditional can not be evaluated.
7561 The ranges of all the names equivalent with the operands in COND
7562 will be used when trying to compute the value. If the result is
7563 based on undefined signed overflow, issue a warning if
7567 vrp_evaluate_conditional (tree_code code
, tree op0
, tree op1
, gimple
*stmt
)
7573 /* Some passes and foldings leak constants with overflow flag set
7574 into the IL. Avoid doing wrong things with these and bail out. */
7575 if ((TREE_CODE (op0
) == INTEGER_CST
7576 && TREE_OVERFLOW (op0
))
7577 || (TREE_CODE (op1
) == INTEGER_CST
7578 && TREE_OVERFLOW (op1
)))
7582 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
7587 enum warn_strict_overflow_code wc
;
7588 const char* warnmsg
;
7590 if (is_gimple_min_invariant (ret
))
7592 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
7593 warnmsg
= G_("assuming signed overflow does not occur when "
7594 "simplifying conditional to constant");
7598 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
7599 warnmsg
= G_("assuming signed overflow does not occur when "
7600 "simplifying conditional");
7603 if (issue_strict_overflow_warning (wc
))
7605 location_t location
;
7607 if (!gimple_has_location (stmt
))
7608 location
= input_location
;
7610 location
= gimple_location (stmt
);
7611 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
7615 if (warn_type_limits
7616 && ret
&& only_ranges
7617 && TREE_CODE_CLASS (code
) == tcc_comparison
7618 && TREE_CODE (op0
) == SSA_NAME
)
7620 /* If the comparison is being folded and the operand on the LHS
7621 is being compared against a constant value that is outside of
7622 the natural range of OP0's type, then the predicate will
7623 always fold regardless of the value of OP0. If -Wtype-limits
7624 was specified, emit a warning. */
7625 tree type
= TREE_TYPE (op0
);
7626 value_range
*vr0
= get_value_range (op0
);
7628 if (vr0
->type
== VR_RANGE
7629 && INTEGRAL_TYPE_P (type
)
7630 && vrp_val_is_min (vr0
->min
)
7631 && vrp_val_is_max (vr0
->max
)
7632 && is_gimple_min_invariant (op1
))
7634 location_t location
;
7636 if (!gimple_has_location (stmt
))
7637 location
= input_location
;
7639 location
= gimple_location (stmt
);
7641 warning_at (location
, OPT_Wtype_limits
,
7643 ? G_("comparison always false "
7644 "due to limited range of data type")
7645 : G_("comparison always true "
7646 "due to limited range of data type"));
7654 /* Visit conditional statement STMT. If we can determine which edge
7655 will be taken out of STMT's basic block, record it in
7656 *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
7659 vrp_visit_cond_stmt (gcond
*stmt
, edge
*taken_edge_p
)
7664 *taken_edge_p
= NULL
;
7666 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7671 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
7672 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7673 fprintf (dump_file
, "\nWith known ranges\n");
7675 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
7677 fprintf (dump_file
, "\t");
7678 print_generic_expr (dump_file
, use
, 0);
7679 fprintf (dump_file
, ": ");
7680 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
7683 fprintf (dump_file
, "\n");
7686 /* Compute the value of the predicate COND by checking the known
7687 ranges of each of its operands.
7689 Note that we cannot evaluate all the equivalent ranges here
7690 because those ranges may not yet be final and with the current
7691 propagation strategy, we cannot determine when the value ranges
7692 of the names in the equivalence set have changed.
7694 For instance, given the following code fragment
7698 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7702 Assume that on the first visit to i_14, i_5 has the temporary
7703 range [8, 8] because the second argument to the PHI function is
7704 not yet executable. We derive the range ~[0, 0] for i_14 and the
7705 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7706 the first time, since i_14 is equivalent to the range [8, 8], we
7707 determine that the predicate is always false.
7709 On the next round of propagation, i_13 is determined to be
7710 VARYING, which causes i_5 to drop down to VARYING. So, another
7711 visit to i_14 is scheduled. In this second visit, we compute the
7712 exact same range and equivalence set for i_14, namely ~[0, 0] and
7713 { i_5 }. But we did not have the previous range for i_5
7714 registered, so vrp_visit_assignment thinks that the range for
7715 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7716 is not visited again, which stops propagation from visiting
7717 statements in the THEN clause of that if().
7719 To properly fix this we would need to keep the previous range
7720 value for the names in the equivalence set. This way we would've
7721 discovered that from one visit to the other i_5 changed from
7722 range [8, 8] to VR_VARYING.
7724 However, fixing this apparent limitation may not be worth the
7725 additional checking. Testing on several code bases (GCC, DLV,
7726 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7727 4 more predicates folded in SPEC. */
7730 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
7731 gimple_cond_lhs (stmt
),
7732 gimple_cond_rhs (stmt
),
7737 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
7740 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7742 "\nIgnoring predicate evaluation because "
7743 "it assumes that signed overflow is undefined");
7748 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7750 fprintf (dump_file
, "\nPredicate evaluates to: ");
7751 if (val
== NULL_TREE
)
7752 fprintf (dump_file
, "DON'T KNOW\n");
7754 print_generic_stmt (dump_file
, val
, 0);
7758 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7759 that includes the value VAL. The search is restricted to the range
7760 [START_IDX, n - 1] where n is the size of VEC.
7762 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7765 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7766 it is placed in IDX and false is returned.
7768 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7772 find_case_label_index (gswitch
*stmt
, size_t start_idx
, tree val
, size_t *idx
)
7774 size_t n
= gimple_switch_num_labels (stmt
);
7777 /* Find case label for minimum of the value range or the next one.
7778 At each iteration we are searching in [low, high - 1]. */
7780 for (low
= start_idx
, high
= n
; high
!= low
; )
7784 /* Note that i != high, so we never ask for n. */
7785 size_t i
= (high
+ low
) / 2;
7786 t
= gimple_switch_label (stmt
, i
);
7788 /* Cache the result of comparing CASE_LOW and val. */
7789 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
7793 /* Ranges cannot be empty. */
7802 if (CASE_HIGH (t
) != NULL
7803 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
7815 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7816 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7817 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7818 then MAX_IDX < MIN_IDX.
7819 Returns true if the default label is not needed. */
7822 find_case_label_range (gswitch
*stmt
, tree min
, tree max
, size_t *min_idx
,
7826 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
7827 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
7831 && max_take_default
)
7833 /* Only the default case label reached.
7834 Return an empty range. */
7841 bool take_default
= min_take_default
|| max_take_default
;
7845 if (max_take_default
)
7848 /* If the case label range is continuous, we do not need
7849 the default case label. Verify that. */
7850 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
7851 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
7852 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
7853 for (k
= i
+ 1; k
<= j
; ++k
)
7855 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
7856 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
7858 take_default
= true;
7862 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
7863 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
7868 return !take_default
;
7872 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7873 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7874 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7875 Returns true if the default label is not needed. */
7878 find_case_label_ranges (gswitch
*stmt
, value_range
*vr
, size_t *min_idx1
,
7879 size_t *max_idx1
, size_t *min_idx2
,
7883 unsigned int n
= gimple_switch_num_labels (stmt
);
7885 tree case_low
, case_high
;
7886 tree min
= vr
->min
, max
= vr
->max
;
7888 gcc_checking_assert (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
);
7890 take_default
= !find_case_label_range (stmt
, min
, max
, &i
, &j
);
7892 /* Set second range to emtpy. */
7896 if (vr
->type
== VR_RANGE
)
7900 return !take_default
;
7903 /* Set first range to all case labels. */
7910 /* Make sure all the values of case labels [i , j] are contained in
7911 range [MIN, MAX]. */
7912 case_low
= CASE_LOW (gimple_switch_label (stmt
, i
));
7913 case_high
= CASE_HIGH (gimple_switch_label (stmt
, j
));
7914 if (tree_int_cst_compare (case_low
, min
) < 0)
7916 if (case_high
!= NULL_TREE
7917 && tree_int_cst_compare (max
, case_high
) < 0)
7923 /* If the range spans case labels [i, j], the corresponding anti-range spans
7924 the labels [1, i - 1] and [j + 1, n - 1]. */
7950 /* Visit switch statement STMT. If we can determine which edge
7951 will be taken out of STMT's basic block, record it in
7952 *TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */
7955 vrp_visit_switch_stmt (gswitch
*stmt
, edge
*taken_edge_p
)
7959 size_t i
= 0, j
= 0, k
, l
;
7962 *taken_edge_p
= NULL
;
7963 op
= gimple_switch_index (stmt
);
7964 if (TREE_CODE (op
) != SSA_NAME
)
7967 vr
= get_value_range (op
);
7968 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7970 fprintf (dump_file
, "\nVisiting switch expression with operand ");
7971 print_generic_expr (dump_file
, op
, 0);
7972 fprintf (dump_file
, " with known range ");
7973 dump_value_range (dump_file
, vr
);
7974 fprintf (dump_file
, "\n");
7977 if ((vr
->type
!= VR_RANGE
7978 && vr
->type
!= VR_ANTI_RANGE
)
7979 || symbolic_range_p (vr
))
7982 /* Find the single edge that is taken from the switch expression. */
7983 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
7985 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7989 gcc_assert (take_default
);
7990 val
= gimple_switch_default_label (stmt
);
7994 /* Check if labels with index i to j and maybe the default label
7995 are all reaching the same label. */
7997 val
= gimple_switch_label (stmt
, i
);
7999 && CASE_LABEL (gimple_switch_default_label (stmt
))
8000 != CASE_LABEL (val
))
8002 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8003 fprintf (dump_file
, " not a single destination for this "
8007 for (++i
; i
<= j
; ++i
)
8009 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
8011 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8012 fprintf (dump_file
, " not a single destination for this "
8019 if (CASE_LABEL (gimple_switch_label (stmt
, k
)) != CASE_LABEL (val
))
8021 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8022 fprintf (dump_file
, " not a single destination for this "
8029 *taken_edge_p
= find_edge (gimple_bb (stmt
),
8030 label_to_block (CASE_LABEL (val
)));
8032 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8034 fprintf (dump_file
, " will take edge to ");
8035 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
8040 /* Evaluate statement STMT. If the statement produces a useful range,
8041 set VR and corepsponding OUTPUT_P.
8043 If STMT is a conditional branch and we can determine its truth
8044 value, the taken edge is recorded in *TAKEN_EDGE_P. */
8047 extract_range_from_stmt (gimple
*stmt
, edge
*taken_edge_p
,
8048 tree
*output_p
, value_range
*vr
)
8051 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8053 fprintf (dump_file
, "\nVisiting statement:\n");
8054 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
8057 if (!stmt_interesting_for_vrp (stmt
))
8058 gcc_assert (stmt_ends_bb_p (stmt
));
8059 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
8060 vrp_visit_assignment_or_call (stmt
, output_p
, vr
);
8061 else if (gimple_code (stmt
) == GIMPLE_COND
)
8062 vrp_visit_cond_stmt (as_a
<gcond
*> (stmt
), taken_edge_p
);
8063 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
8064 vrp_visit_switch_stmt (as_a
<gswitch
*> (stmt
), taken_edge_p
);
8067 /* Evaluate statement STMT. If the statement produces a useful range,
8068 return SSA_PROP_INTERESTING and record the SSA name with the
8069 interesting range into *OUTPUT_P.
8071 If STMT is a conditional branch and we can determine its truth
8072 value, the taken edge is recorded in *TAKEN_EDGE_P.
8074 If STMT produces a varying value, return SSA_PROP_VARYING. */
8076 static enum ssa_prop_result
8077 vrp_visit_stmt (gimple
*stmt
, edge
*taken_edge_p
, tree
*output_p
)
8079 value_range vr
= VR_INITIALIZER
;
8080 tree lhs
= gimple_get_lhs (stmt
);
8081 extract_range_from_stmt (stmt
, taken_edge_p
, output_p
, &vr
);
8085 if (update_value_range (*output_p
, &vr
))
8087 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8089 fprintf (dump_file
, "Found new range for ");
8090 print_generic_expr (dump_file
, *output_p
, 0);
8091 fprintf (dump_file
, ": ");
8092 dump_value_range (dump_file
, &vr
);
8093 fprintf (dump_file
, "\n");
8096 if (vr
.type
== VR_VARYING
)
8097 return SSA_PROP_VARYING
;
8099 return SSA_PROP_INTERESTING
;
8101 return SSA_PROP_NOT_INTERESTING
;
8104 if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
8105 switch (gimple_call_internal_fn (stmt
))
8107 case IFN_ADD_OVERFLOW
:
8108 case IFN_SUB_OVERFLOW
:
8109 case IFN_MUL_OVERFLOW
:
8110 /* These internal calls return _Complex integer type,
8111 which VRP does not track, but the immediate uses
8112 thereof might be interesting. */
8113 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
8115 imm_use_iterator iter
;
8116 use_operand_p use_p
;
8117 enum ssa_prop_result res
= SSA_PROP_VARYING
;
8119 set_value_range_to_varying (get_value_range (lhs
));
8121 FOR_EACH_IMM_USE_FAST (use_p
, iter
, lhs
)
8123 gimple
*use_stmt
= USE_STMT (use_p
);
8124 if (!is_gimple_assign (use_stmt
))
8126 enum tree_code rhs_code
= gimple_assign_rhs_code (use_stmt
);
8127 if (rhs_code
!= REALPART_EXPR
&& rhs_code
!= IMAGPART_EXPR
)
8129 tree rhs1
= gimple_assign_rhs1 (use_stmt
);
8130 tree use_lhs
= gimple_assign_lhs (use_stmt
);
8131 if (TREE_CODE (rhs1
) != rhs_code
8132 || TREE_OPERAND (rhs1
, 0) != lhs
8133 || TREE_CODE (use_lhs
) != SSA_NAME
8134 || !stmt_interesting_for_vrp (use_stmt
)
8135 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs
))
8136 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs
))
8137 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs
))))
8140 /* If there is a change in the value range for any of the
8141 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
8142 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
8143 or IMAGPART_EXPR immediate uses, but none of them have
8144 a change in their value ranges, return
8145 SSA_PROP_NOT_INTERESTING. If there are no
8146 {REAL,IMAG}PART_EXPR uses at all,
8147 return SSA_PROP_VARYING. */
8148 value_range new_vr
= VR_INITIALIZER
;
8149 extract_range_basic (&new_vr
, use_stmt
);
8150 value_range
*old_vr
= get_value_range (use_lhs
);
8151 if (old_vr
->type
!= new_vr
.type
8152 || !vrp_operand_equal_p (old_vr
->min
, new_vr
.min
)
8153 || !vrp_operand_equal_p (old_vr
->max
, new_vr
.max
)
8154 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
.equiv
))
8155 res
= SSA_PROP_INTERESTING
;
8157 res
= SSA_PROP_NOT_INTERESTING
;
8158 BITMAP_FREE (new_vr
.equiv
);
8159 if (res
== SSA_PROP_INTERESTING
)
8173 /* All other statements produce nothing of interest for VRP, so mark
8174 their outputs varying and prevent further simulation. */
8175 set_defs_to_varying (stmt
);
8177 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
8180 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8181 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8182 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8183 possible such range. The resulting range is not canonicalized. */
8186 union_ranges (enum value_range_type
*vr0type
,
8187 tree
*vr0min
, tree
*vr0max
,
8188 enum value_range_type vr1type
,
8189 tree vr1min
, tree vr1max
)
8191 bool mineq
= vrp_operand_equal_p (*vr0min
, vr1min
);
8192 bool maxeq
= vrp_operand_equal_p (*vr0max
, vr1max
);
8194 /* [] is vr0, () is vr1 in the following classification comments. */
8198 if (*vr0type
== vr1type
)
8199 /* Nothing to do for equal ranges. */
8201 else if ((*vr0type
== VR_RANGE
8202 && vr1type
== VR_ANTI_RANGE
)
8203 || (*vr0type
== VR_ANTI_RANGE
8204 && vr1type
== VR_RANGE
))
8206 /* For anti-range with range union the result is varying. */
8212 else if (operand_less_p (*vr0max
, vr1min
) == 1
8213 || operand_less_p (vr1max
, *vr0min
) == 1)
8215 /* [ ] ( ) or ( ) [ ]
8216 If the ranges have an empty intersection, result of the union
8217 operation is the anti-range or if both are anti-ranges
8219 if (*vr0type
== VR_ANTI_RANGE
8220 && vr1type
== VR_ANTI_RANGE
)
8222 else if (*vr0type
== VR_ANTI_RANGE
8223 && vr1type
== VR_RANGE
)
8225 else if (*vr0type
== VR_RANGE
8226 && vr1type
== VR_ANTI_RANGE
)
8232 else if (*vr0type
== VR_RANGE
8233 && vr1type
== VR_RANGE
)
8235 /* The result is the convex hull of both ranges. */
8236 if (operand_less_p (*vr0max
, vr1min
) == 1)
8238 /* If the result can be an anti-range, create one. */
8239 if (TREE_CODE (*vr0max
) == INTEGER_CST
8240 && TREE_CODE (vr1min
) == INTEGER_CST
8241 && vrp_val_is_min (*vr0min
)
8242 && vrp_val_is_max (vr1max
))
8244 tree min
= int_const_binop (PLUS_EXPR
,
8246 build_int_cst (TREE_TYPE (*vr0max
), 1));
8247 tree max
= int_const_binop (MINUS_EXPR
,
8249 build_int_cst (TREE_TYPE (vr1min
), 1));
8250 if (!operand_less_p (max
, min
))
8252 *vr0type
= VR_ANTI_RANGE
;
8264 /* If the result can be an anti-range, create one. */
8265 if (TREE_CODE (vr1max
) == INTEGER_CST
8266 && TREE_CODE (*vr0min
) == INTEGER_CST
8267 && vrp_val_is_min (vr1min
)
8268 && vrp_val_is_max (*vr0max
))
8270 tree min
= int_const_binop (PLUS_EXPR
,
8272 build_int_cst (TREE_TYPE (vr1max
), 1));
8273 tree max
= int_const_binop (MINUS_EXPR
,
8275 build_int_cst (TREE_TYPE (*vr0min
), 1));
8276 if (!operand_less_p (max
, min
))
8278 *vr0type
= VR_ANTI_RANGE
;
8292 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
8293 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
8295 /* [ ( ) ] or [( ) ] or [ ( )] */
8296 if (*vr0type
== VR_RANGE
8297 && vr1type
== VR_RANGE
)
8299 else if (*vr0type
== VR_ANTI_RANGE
8300 && vr1type
== VR_ANTI_RANGE
)
8306 else if (*vr0type
== VR_ANTI_RANGE
8307 && vr1type
== VR_RANGE
)
8309 /* Arbitrarily choose the right or left gap. */
8310 if (!mineq
&& TREE_CODE (vr1min
) == INTEGER_CST
)
8311 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8312 build_int_cst (TREE_TYPE (vr1min
), 1));
8313 else if (!maxeq
&& TREE_CODE (vr1max
) == INTEGER_CST
)
8314 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8315 build_int_cst (TREE_TYPE (vr1max
), 1));
8319 else if (*vr0type
== VR_RANGE
8320 && vr1type
== VR_ANTI_RANGE
)
8321 /* The result covers everything. */
8326 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
8327 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
8329 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8330 if (*vr0type
== VR_RANGE
8331 && vr1type
== VR_RANGE
)
8337 else if (*vr0type
== VR_ANTI_RANGE
8338 && vr1type
== VR_ANTI_RANGE
)
8340 else if (*vr0type
== VR_RANGE
8341 && vr1type
== VR_ANTI_RANGE
)
8343 *vr0type
= VR_ANTI_RANGE
;
8344 if (!mineq
&& TREE_CODE (*vr0min
) == INTEGER_CST
)
8346 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8347 build_int_cst (TREE_TYPE (*vr0min
), 1));
8350 else if (!maxeq
&& TREE_CODE (*vr0max
) == INTEGER_CST
)
8352 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8353 build_int_cst (TREE_TYPE (*vr0max
), 1));
8359 else if (*vr0type
== VR_ANTI_RANGE
8360 && vr1type
== VR_RANGE
)
8361 /* The result covers everything. */
8366 else if ((operand_less_p (vr1min
, *vr0max
) == 1
8367 || operand_equal_p (vr1min
, *vr0max
, 0))
8368 && operand_less_p (*vr0min
, vr1min
) == 1
8369 && operand_less_p (*vr0max
, vr1max
) == 1)
8371 /* [ ( ] ) or [ ]( ) */
8372 if (*vr0type
== VR_RANGE
8373 && vr1type
== VR_RANGE
)
8375 else if (*vr0type
== VR_ANTI_RANGE
8376 && vr1type
== VR_ANTI_RANGE
)
8378 else if (*vr0type
== VR_ANTI_RANGE
8379 && vr1type
== VR_RANGE
)
8381 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8382 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8383 build_int_cst (TREE_TYPE (vr1min
), 1));
8387 else if (*vr0type
== VR_RANGE
8388 && vr1type
== VR_ANTI_RANGE
)
8390 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8393 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8394 build_int_cst (TREE_TYPE (*vr0max
), 1));
8403 else if ((operand_less_p (*vr0min
, vr1max
) == 1
8404 || operand_equal_p (*vr0min
, vr1max
, 0))
8405 && operand_less_p (vr1min
, *vr0min
) == 1
8406 && operand_less_p (vr1max
, *vr0max
) == 1)
8408 /* ( [ ) ] or ( )[ ] */
8409 if (*vr0type
== VR_RANGE
8410 && vr1type
== VR_RANGE
)
8412 else if (*vr0type
== VR_ANTI_RANGE
8413 && vr1type
== VR_ANTI_RANGE
)
8415 else if (*vr0type
== VR_ANTI_RANGE
8416 && vr1type
== VR_RANGE
)
8418 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8419 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8420 build_int_cst (TREE_TYPE (vr1max
), 1));
8424 else if (*vr0type
== VR_RANGE
8425 && vr1type
== VR_ANTI_RANGE
)
8427 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8431 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8432 build_int_cst (TREE_TYPE (*vr0min
), 1));
8446 *vr0type
= VR_VARYING
;
8447 *vr0min
= NULL_TREE
;
8448 *vr0max
= NULL_TREE
;
8451 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8452 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8453 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8454 possible such range. The resulting range is not canonicalized. */
8457 intersect_ranges (enum value_range_type
*vr0type
,
8458 tree
*vr0min
, tree
*vr0max
,
8459 enum value_range_type vr1type
,
8460 tree vr1min
, tree vr1max
)
8462 bool mineq
= vrp_operand_equal_p (*vr0min
, vr1min
);
8463 bool maxeq
= vrp_operand_equal_p (*vr0max
, vr1max
);
8465 /* [] is vr0, () is vr1 in the following classification comments. */
8469 if (*vr0type
== vr1type
)
8470 /* Nothing to do for equal ranges. */
8472 else if ((*vr0type
== VR_RANGE
8473 && vr1type
== VR_ANTI_RANGE
)
8474 || (*vr0type
== VR_ANTI_RANGE
8475 && vr1type
== VR_RANGE
))
8477 /* For anti-range with range intersection the result is empty. */
8478 *vr0type
= VR_UNDEFINED
;
8479 *vr0min
= NULL_TREE
;
8480 *vr0max
= NULL_TREE
;
8485 else if (operand_less_p (*vr0max
, vr1min
) == 1
8486 || operand_less_p (vr1max
, *vr0min
) == 1)
8488 /* [ ] ( ) or ( ) [ ]
8489 If the ranges have an empty intersection, the result of the
8490 intersect operation is the range for intersecting an
8491 anti-range with a range or empty when intersecting two ranges. */
8492 if (*vr0type
== VR_RANGE
8493 && vr1type
== VR_ANTI_RANGE
)
8495 else if (*vr0type
== VR_ANTI_RANGE
8496 && vr1type
== VR_RANGE
)
8502 else if (*vr0type
== VR_RANGE
8503 && vr1type
== VR_RANGE
)
8505 *vr0type
= VR_UNDEFINED
;
8506 *vr0min
= NULL_TREE
;
8507 *vr0max
= NULL_TREE
;
8509 else if (*vr0type
== VR_ANTI_RANGE
8510 && vr1type
== VR_ANTI_RANGE
)
8512 /* If the anti-ranges are adjacent to each other merge them. */
8513 if (TREE_CODE (*vr0max
) == INTEGER_CST
8514 && TREE_CODE (vr1min
) == INTEGER_CST
8515 && operand_less_p (*vr0max
, vr1min
) == 1
8516 && integer_onep (int_const_binop (MINUS_EXPR
,
8519 else if (TREE_CODE (vr1max
) == INTEGER_CST
8520 && TREE_CODE (*vr0min
) == INTEGER_CST
8521 && operand_less_p (vr1max
, *vr0min
) == 1
8522 && integer_onep (int_const_binop (MINUS_EXPR
,
8525 /* Else arbitrarily take VR0. */
8528 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
8529 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
8531 /* [ ( ) ] or [( ) ] or [ ( )] */
8532 if (*vr0type
== VR_RANGE
8533 && vr1type
== VR_RANGE
)
8535 /* If both are ranges the result is the inner one. */
8540 else if (*vr0type
== VR_RANGE
8541 && vr1type
== VR_ANTI_RANGE
)
8543 /* Choose the right gap if the left one is empty. */
8546 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8547 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8548 build_int_cst (TREE_TYPE (vr1max
), 1));
8552 /* Choose the left gap if the right one is empty. */
8555 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8556 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8557 build_int_cst (TREE_TYPE (vr1min
), 1));
8561 /* Choose the anti-range if the range is effectively varying. */
8562 else if (vrp_val_is_min (*vr0min
)
8563 && vrp_val_is_max (*vr0max
))
8569 /* Else choose the range. */
8571 else if (*vr0type
== VR_ANTI_RANGE
8572 && vr1type
== VR_ANTI_RANGE
)
8573 /* If both are anti-ranges the result is the outer one. */
8575 else if (*vr0type
== VR_ANTI_RANGE
8576 && vr1type
== VR_RANGE
)
8578 /* The intersection is empty. */
8579 *vr0type
= VR_UNDEFINED
;
8580 *vr0min
= NULL_TREE
;
8581 *vr0max
= NULL_TREE
;
8586 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
8587 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
8589 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8590 if (*vr0type
== VR_RANGE
8591 && vr1type
== VR_RANGE
)
8592 /* Choose the inner range. */
8594 else if (*vr0type
== VR_ANTI_RANGE
8595 && vr1type
== VR_RANGE
)
8597 /* Choose the right gap if the left is empty. */
8600 *vr0type
= VR_RANGE
;
8601 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8602 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8603 build_int_cst (TREE_TYPE (*vr0max
), 1));
8608 /* Choose the left gap if the right is empty. */
8611 *vr0type
= VR_RANGE
;
8612 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8613 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8614 build_int_cst (TREE_TYPE (*vr0min
), 1));
8619 /* Choose the anti-range if the range is effectively varying. */
8620 else if (vrp_val_is_min (vr1min
)
8621 && vrp_val_is_max (vr1max
))
8623 /* Else choose the range. */
8631 else if (*vr0type
== VR_ANTI_RANGE
8632 && vr1type
== VR_ANTI_RANGE
)
8634 /* If both are anti-ranges the result is the outer one. */
8639 else if (vr1type
== VR_ANTI_RANGE
8640 && *vr0type
== VR_RANGE
)
8642 /* The intersection is empty. */
8643 *vr0type
= VR_UNDEFINED
;
8644 *vr0min
= NULL_TREE
;
8645 *vr0max
= NULL_TREE
;
8650 else if ((operand_less_p (vr1min
, *vr0max
) == 1
8651 || operand_equal_p (vr1min
, *vr0max
, 0))
8652 && operand_less_p (*vr0min
, vr1min
) == 1)
8654 /* [ ( ] ) or [ ]( ) */
8655 if (*vr0type
== VR_ANTI_RANGE
8656 && vr1type
== VR_ANTI_RANGE
)
8658 else if (*vr0type
== VR_RANGE
8659 && vr1type
== VR_RANGE
)
8661 else if (*vr0type
== VR_RANGE
8662 && vr1type
== VR_ANTI_RANGE
)
8664 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8665 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8666 build_int_cst (TREE_TYPE (vr1min
), 1));
8670 else if (*vr0type
== VR_ANTI_RANGE
8671 && vr1type
== VR_RANGE
)
8673 *vr0type
= VR_RANGE
;
8674 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8675 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8676 build_int_cst (TREE_TYPE (*vr0max
), 1));
8684 else if ((operand_less_p (*vr0min
, vr1max
) == 1
8685 || operand_equal_p (*vr0min
, vr1max
, 0))
8686 && operand_less_p (vr1min
, *vr0min
) == 1)
8688 /* ( [ ) ] or ( )[ ] */
8689 if (*vr0type
== VR_ANTI_RANGE
8690 && vr1type
== VR_ANTI_RANGE
)
8692 else if (*vr0type
== VR_RANGE
8693 && vr1type
== VR_RANGE
)
8695 else if (*vr0type
== VR_RANGE
8696 && vr1type
== VR_ANTI_RANGE
)
8698 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8699 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8700 build_int_cst (TREE_TYPE (vr1max
), 1));
8704 else if (*vr0type
== VR_ANTI_RANGE
8705 && vr1type
== VR_RANGE
)
8707 *vr0type
= VR_RANGE
;
8708 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8709 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8710 build_int_cst (TREE_TYPE (*vr0min
), 1));
8719 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8720 result for the intersection. That's always a conservative
8721 correct estimate unless VR1 is a constant singleton range
8722 in which case we choose that. */
8723 if (vr1type
== VR_RANGE
8724 && is_gimple_min_invariant (vr1min
)
8725 && vrp_operand_equal_p (vr1min
, vr1max
))
8736 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8737 in *VR0. This may not be the smallest possible such range. */
8740 vrp_intersect_ranges_1 (value_range
*vr0
, value_range
*vr1
)
8744 /* If either range is VR_VARYING the other one wins. */
8745 if (vr1
->type
== VR_VARYING
)
8747 if (vr0
->type
== VR_VARYING
)
8749 copy_value_range (vr0
, vr1
);
8753 /* When either range is VR_UNDEFINED the resulting range is
8754 VR_UNDEFINED, too. */
8755 if (vr0
->type
== VR_UNDEFINED
)
8757 if (vr1
->type
== VR_UNDEFINED
)
8759 set_value_range_to_undefined (vr0
);
8763 /* Save the original vr0 so we can return it as conservative intersection
8764 result when our worker turns things to varying. */
8766 intersect_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
8767 vr1
->type
, vr1
->min
, vr1
->max
);
8768 /* Make sure to canonicalize the result though as the inversion of a
8769 VR_RANGE can still be a VR_RANGE. */
8770 set_and_canonicalize_value_range (vr0
, vr0
->type
,
8771 vr0
->min
, vr0
->max
, vr0
->equiv
);
8772 /* If that failed, use the saved original VR0. */
8773 if (vr0
->type
== VR_VARYING
)
8778 /* If the result is VR_UNDEFINED there is no need to mess with
8779 the equivalencies. */
8780 if (vr0
->type
== VR_UNDEFINED
)
8783 /* The resulting set of equivalences for range intersection is the union of
8785 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
8786 bitmap_ior_into (vr0
->equiv
, vr1
->equiv
);
8787 else if (vr1
->equiv
&& !vr0
->equiv
)
8789 vr0
->equiv
= BITMAP_ALLOC (&vrp_equiv_obstack
);
8790 bitmap_copy (vr0
->equiv
, vr1
->equiv
);
8795 vrp_intersect_ranges (value_range
*vr0
, value_range
*vr1
)
8797 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8799 fprintf (dump_file
, "Intersecting\n ");
8800 dump_value_range (dump_file
, vr0
);
8801 fprintf (dump_file
, "\nand\n ");
8802 dump_value_range (dump_file
, vr1
);
8803 fprintf (dump_file
, "\n");
8805 vrp_intersect_ranges_1 (vr0
, vr1
);
8806 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8808 fprintf (dump_file
, "to\n ");
8809 dump_value_range (dump_file
, vr0
);
8810 fprintf (dump_file
, "\n");
8814 /* Meet operation for value ranges. Given two value ranges VR0 and
8815 VR1, store in VR0 a range that contains both VR0 and VR1. This
8816 may not be the smallest possible such range. */
8819 vrp_meet_1 (value_range
*vr0
, const value_range
*vr1
)
8823 if (vr0
->type
== VR_UNDEFINED
)
8825 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr1
->equiv
);
8829 if (vr1
->type
== VR_UNDEFINED
)
8831 /* VR0 already has the resulting range. */
8835 if (vr0
->type
== VR_VARYING
)
8837 /* Nothing to do. VR0 already has the resulting range. */
8841 if (vr1
->type
== VR_VARYING
)
8843 set_value_range_to_varying (vr0
);
8848 union_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
8849 vr1
->type
, vr1
->min
, vr1
->max
);
8850 if (vr0
->type
== VR_VARYING
)
8852 /* Failed to find an efficient meet. Before giving up and setting
8853 the result to VARYING, see if we can at least derive a useful
8854 anti-range. FIXME, all this nonsense about distinguishing
8855 anti-ranges from ranges is necessary because of the odd
8856 semantics of range_includes_zero_p and friends. */
8857 if (((saved
.type
== VR_RANGE
8858 && range_includes_zero_p (saved
.min
, saved
.max
) == 0)
8859 || (saved
.type
== VR_ANTI_RANGE
8860 && range_includes_zero_p (saved
.min
, saved
.max
) == 1))
8861 && ((vr1
->type
== VR_RANGE
8862 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 0)
8863 || (vr1
->type
== VR_ANTI_RANGE
8864 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 1)))
8866 set_value_range_to_nonnull (vr0
, TREE_TYPE (saved
.min
));
8868 /* Since this meet operation did not result from the meeting of
8869 two equivalent names, VR0 cannot have any equivalences. */
8871 bitmap_clear (vr0
->equiv
);
8875 set_value_range_to_varying (vr0
);
8878 set_and_canonicalize_value_range (vr0
, vr0
->type
, vr0
->min
, vr0
->max
,
8880 if (vr0
->type
== VR_VARYING
)
8883 /* The resulting set of equivalences is always the intersection of
8885 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
8886 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
8887 else if (vr0
->equiv
&& !vr1
->equiv
)
8888 bitmap_clear (vr0
->equiv
);
8892 vrp_meet (value_range
*vr0
, const value_range
*vr1
)
8894 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8896 fprintf (dump_file
, "Meeting\n ");
8897 dump_value_range (dump_file
, vr0
);
8898 fprintf (dump_file
, "\nand\n ");
8899 dump_value_range (dump_file
, vr1
);
8900 fprintf (dump_file
, "\n");
8902 vrp_meet_1 (vr0
, vr1
);
8903 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8905 fprintf (dump_file
, "to\n ");
8906 dump_value_range (dump_file
, vr0
);
8907 fprintf (dump_file
, "\n");
8912 /* Visit all arguments for PHI node PHI that flow through executable
8913 edges. If a valid value range can be derived from all the incoming
8914 value ranges, set a new range in VR_RESULT. */
8917 extract_range_from_phi_node (gphi
*phi
, value_range
*vr_result
)
8920 tree lhs
= PHI_RESULT (phi
);
8921 value_range
*lhs_vr
= get_value_range (lhs
);
8923 int edges
, old_edges
;
8926 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8928 fprintf (dump_file
, "\nVisiting PHI node: ");
8929 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
8932 bool may_simulate_backedge_again
= false;
8934 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
8936 edge e
= gimple_phi_arg_edge (phi
, i
);
8938 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8941 " Argument #%d (%d -> %d %sexecutable)\n",
8942 (int) i
, e
->src
->index
, e
->dest
->index
,
8943 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
8946 if (e
->flags
& EDGE_EXECUTABLE
)
8948 tree arg
= PHI_ARG_DEF (phi
, i
);
8953 if (TREE_CODE (arg
) == SSA_NAME
)
8955 /* See if we are eventually going to change one of the args. */
8956 gimple
*def_stmt
= SSA_NAME_DEF_STMT (arg
);
8957 if (! gimple_nop_p (def_stmt
)
8958 && prop_simulate_again_p (def_stmt
)
8959 && e
->flags
& EDGE_DFS_BACK
)
8960 may_simulate_backedge_again
= true;
8962 vr_arg
= *(get_value_range (arg
));
8963 /* Do not allow equivalences or symbolic ranges to leak in from
8964 backedges. That creates invalid equivalencies.
8965 See PR53465 and PR54767. */
8966 if (e
->flags
& EDGE_DFS_BACK
)
8968 if (vr_arg
.type
== VR_RANGE
8969 || vr_arg
.type
== VR_ANTI_RANGE
)
8971 vr_arg
.equiv
= NULL
;
8972 if (symbolic_range_p (&vr_arg
))
8974 vr_arg
.type
= VR_VARYING
;
8975 vr_arg
.min
= NULL_TREE
;
8976 vr_arg
.max
= NULL_TREE
;
8982 /* If the non-backedge arguments range is VR_VARYING then
8983 we can still try recording a simple equivalence. */
8984 if (vr_arg
.type
== VR_VARYING
)
8986 vr_arg
.type
= VR_RANGE
;
8989 vr_arg
.equiv
= NULL
;
8995 if (TREE_OVERFLOW_P (arg
))
8996 arg
= drop_tree_overflow (arg
);
8998 vr_arg
.type
= VR_RANGE
;
9001 vr_arg
.equiv
= NULL
;
9004 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
9006 fprintf (dump_file
, "\t");
9007 print_generic_expr (dump_file
, arg
, dump_flags
);
9008 fprintf (dump_file
, ": ");
9009 dump_value_range (dump_file
, &vr_arg
);
9010 fprintf (dump_file
, "\n");
9014 copy_value_range (vr_result
, &vr_arg
);
9016 vrp_meet (vr_result
, &vr_arg
);
9019 if (vr_result
->type
== VR_VARYING
)
9024 if (vr_result
->type
== VR_VARYING
)
9026 else if (vr_result
->type
== VR_UNDEFINED
)
9029 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
9030 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
9032 /* To prevent infinite iterations in the algorithm, derive ranges
9033 when the new value is slightly bigger or smaller than the
9034 previous one. We don't do this if we have seen a new executable
9035 edge; this helps us avoid an overflow infinity for conditionals
9036 which are not in a loop. If the old value-range was VR_UNDEFINED
9037 use the updated range and iterate one more time. If we will not
9038 simulate this PHI again via the backedge allow us to iterate. */
9040 && gimple_phi_num_args (phi
) > 1
9041 && edges
== old_edges
9042 && lhs_vr
->type
!= VR_UNDEFINED
9043 && may_simulate_backedge_again
)
9045 /* Compare old and new ranges, fall back to varying if the
9046 values are not comparable. */
9047 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
->min
);
9050 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
->max
);
9054 /* For non VR_RANGE or for pointers fall back to varying if
9055 the range changed. */
9056 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
->type
!= VR_RANGE
9057 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
9058 && (cmp_min
!= 0 || cmp_max
!= 0))
9061 /* If the new minimum is larger than the previous one
9062 retain the old value. If the new minimum value is smaller
9063 than the previous one and not -INF go all the way to -INF + 1.
9064 In the first case, to avoid infinite bouncing between different
9065 minimums, and in the other case to avoid iterating millions of
9066 times to reach -INF. Going to -INF + 1 also lets the following
9067 iteration compute whether there will be any overflow, at the
9068 expense of one additional iteration. */
9070 vr_result
->min
= lhs_vr
->min
;
9071 else if (cmp_min
> 0
9072 && !vrp_val_is_min (vr_result
->min
))
9074 = int_const_binop (PLUS_EXPR
,
9075 vrp_val_min (TREE_TYPE (vr_result
->min
)),
9076 build_int_cst (TREE_TYPE (vr_result
->min
), 1));
9078 /* Similarly for the maximum value. */
9080 vr_result
->max
= lhs_vr
->max
;
9081 else if (cmp_max
< 0
9082 && !vrp_val_is_max (vr_result
->max
))
9084 = int_const_binop (MINUS_EXPR
,
9085 vrp_val_max (TREE_TYPE (vr_result
->min
)),
9086 build_int_cst (TREE_TYPE (vr_result
->min
), 1));
9088 /* If we dropped either bound to +-INF then if this is a loop
9089 PHI node SCEV may known more about its value-range. */
9090 if (cmp_min
> 0 || cmp_min
< 0
9091 || cmp_max
< 0 || cmp_max
> 0)
9094 goto infinite_check
;
9100 set_value_range_to_varying (vr_result
);
9103 /* If this is a loop PHI node SCEV may known more about its value-range.
9104 scev_check can be reached from two paths, one is a fall through from above
9105 "varying" label, the other is direct goto from code block which tries to
9106 avoid infinite simulation. */
9107 if ((l
= loop_containing_stmt (phi
))
9108 && l
->header
== gimple_bb (phi
))
9109 adjust_range_with_scev (vr_result
, l
, phi
, lhs
);
9112 /* If we will end up with a (-INF, +INF) range, set it to
9113 VARYING. Same if the previous max value was invalid for
9114 the type and we end up with vr_result.min > vr_result.max. */
9115 if ((vr_result
->type
== VR_RANGE
|| vr_result
->type
== VR_ANTI_RANGE
)
9116 && !((vrp_val_is_max (vr_result
->max
) && vrp_val_is_min (vr_result
->min
))
9117 || compare_values (vr_result
->min
, vr_result
->max
) > 0))
9120 set_value_range_to_varying (vr_result
);
9122 /* If the new range is different than the previous value, keep
9128 /* Visit all arguments for PHI node PHI that flow through executable
9129 edges. If a valid value range can be derived from all the incoming
9130 value ranges, set a new range for the LHS of PHI. */
9132 static enum ssa_prop_result
9133 vrp_visit_phi_node (gphi
*phi
)
9135 tree lhs
= PHI_RESULT (phi
);
9136 value_range vr_result
= VR_INITIALIZER
;
9137 extract_range_from_phi_node (phi
, &vr_result
);
9138 if (update_value_range (lhs
, &vr_result
))
9140 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
9142 fprintf (dump_file
, "Found new range for ");
9143 print_generic_expr (dump_file
, lhs
, 0);
9144 fprintf (dump_file
, ": ");
9145 dump_value_range (dump_file
, &vr_result
);
9146 fprintf (dump_file
, "\n");
9149 if (vr_result
.type
== VR_VARYING
)
9150 return SSA_PROP_VARYING
;
9152 return SSA_PROP_INTERESTING
;
9155 /* Nothing changed, don't add outgoing edges. */
9156 return SSA_PROP_NOT_INTERESTING
;
9159 /* Simplify boolean operations if the source is known
9160 to be already a boolean. */
9162 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple
*stmt
)
9164 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
9166 bool need_conversion
;
9168 /* We handle only !=/== case here. */
9169 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
9171 op0
= gimple_assign_rhs1 (stmt
);
9172 if (!op_with_boolean_value_range_p (op0
))
9175 op1
= gimple_assign_rhs2 (stmt
);
9176 if (!op_with_boolean_value_range_p (op1
))
9179 /* Reduce number of cases to handle to NE_EXPR. As there is no
9180 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
9181 if (rhs_code
== EQ_EXPR
)
9183 if (TREE_CODE (op1
) == INTEGER_CST
)
9184 op1
= int_const_binop (BIT_XOR_EXPR
, op1
,
9185 build_int_cst (TREE_TYPE (op1
), 1));
9190 lhs
= gimple_assign_lhs (stmt
);
9192 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
9194 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9196 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
9197 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
9198 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
9201 /* For A != 0 we can substitute A itself. */
9202 if (integer_zerop (op1
))
9203 gimple_assign_set_rhs_with_ops (gsi
,
9205 ? NOP_EXPR
: TREE_CODE (op0
), op0
);
9206 /* For A != B we substitute A ^ B. Either with conversion. */
9207 else if (need_conversion
)
9209 tree tem
= make_ssa_name (TREE_TYPE (op0
));
9211 = gimple_build_assign (tem
, BIT_XOR_EXPR
, op0
, op1
);
9212 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
9213 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
9214 && TYPE_PRECISION (TREE_TYPE (tem
)) > 1)
9215 set_range_info (tem
, VR_RANGE
,
9216 wi::zero (TYPE_PRECISION (TREE_TYPE (tem
))),
9217 wi::one (TYPE_PRECISION (TREE_TYPE (tem
))));
9218 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
);
9222 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
9223 update_stmt (gsi_stmt (*gsi
));
9224 fold_stmt (gsi
, follow_single_use_edges
);
9229 /* Simplify a division or modulo operator to a right shift or
9230 bitwise and if the first operand is unsigned or is greater
9231 than zero and the second operand is an exact power of two.
9232 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
9233 into just op0 if op0's range is known to be a subset of
9234 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
9238 simplify_div_or_mod_using_ranges (gimple_stmt_iterator
*gsi
, gimple
*stmt
)
9240 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
9242 tree op0
= gimple_assign_rhs1 (stmt
);
9243 tree op1
= gimple_assign_rhs2 (stmt
);
9244 value_range
*vr
= get_value_range (op0
);
9246 if (rhs_code
== TRUNC_MOD_EXPR
9247 && TREE_CODE (op1
) == INTEGER_CST
9248 && tree_int_cst_sgn (op1
) == 1
9249 && range_int_cst_p (vr
)
9250 && tree_int_cst_lt (vr
->max
, op1
))
9252 if (TYPE_UNSIGNED (TREE_TYPE (op0
))
9253 || tree_int_cst_sgn (vr
->min
) >= 0
9254 || tree_int_cst_lt (fold_unary (NEGATE_EXPR
, TREE_TYPE (op1
), op1
),
9257 /* If op0 already has the range op0 % op1 has,
9258 then TRUNC_MOD_EXPR won't change anything. */
9259 gimple_assign_set_rhs_from_tree (gsi
, op0
);
9264 if (!integer_pow2p (op1
))
9266 /* X % -Y can be only optimized into X % Y either if
9267 X is not INT_MIN, or Y is not -1. Fold it now, as after
9268 remove_range_assertions the range info might be not available
9270 if (rhs_code
== TRUNC_MOD_EXPR
9271 && fold_stmt (gsi
, follow_single_use_edges
))
9276 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
9277 val
= integer_one_node
;
9282 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
9286 && integer_onep (val
)
9287 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
9289 location_t location
;
9291 if (!gimple_has_location (stmt
))
9292 location
= input_location
;
9294 location
= gimple_location (stmt
);
9295 warning_at (location
, OPT_Wstrict_overflow
,
9296 "assuming signed overflow does not occur when "
9297 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9301 if (val
&& integer_onep (val
))
9305 if (rhs_code
== TRUNC_DIV_EXPR
)
9307 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
9308 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
9309 gimple_assign_set_rhs1 (stmt
, op0
);
9310 gimple_assign_set_rhs2 (stmt
, t
);
9314 t
= build_int_cst (TREE_TYPE (op1
), 1);
9315 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
9316 t
= fold_convert (TREE_TYPE (op0
), t
);
9318 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
9319 gimple_assign_set_rhs1 (stmt
, op0
);
9320 gimple_assign_set_rhs2 (stmt
, t
);
9324 fold_stmt (gsi
, follow_single_use_edges
);
9331 /* Simplify a min or max if the ranges of the two operands are
9332 disjoint. Return true if we do simplify. */
9335 simplify_min_or_max_using_ranges (gimple_stmt_iterator
*gsi
, gimple
*stmt
)
9337 tree op0
= gimple_assign_rhs1 (stmt
);
9338 tree op1
= gimple_assign_rhs2 (stmt
);
9342 val
= (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9343 (LE_EXPR
, op0
, op1
, &sop
));
9347 val
= (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9348 (LT_EXPR
, op0
, op1
, &sop
));
9353 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
9355 location_t location
;
9357 if (!gimple_has_location (stmt
))
9358 location
= input_location
;
9360 location
= gimple_location (stmt
);
9361 warning_at (location
, OPT_Wstrict_overflow
,
9362 "assuming signed overflow does not occur when "
9363 "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
9366 /* VAL == TRUE -> OP0 < or <= op1
9367 VAL == FALSE -> OP0 > or >= op1. */
9368 tree res
= ((gimple_assign_rhs_code (stmt
) == MAX_EXPR
)
9369 == integer_zerop (val
)) ? op0
: op1
;
9370 gimple_assign_set_rhs_from_tree (gsi
, res
);
9377 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9378 ABS_EXPR. If the operand is <= 0, then simplify the
9379 ABS_EXPR into a NEGATE_EXPR. */
9382 simplify_abs_using_ranges (gimple_stmt_iterator
*gsi
, gimple
*stmt
)
9384 tree op
= gimple_assign_rhs1 (stmt
);
9385 value_range
*vr
= get_value_range (op
);
9392 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
9395 /* The range is neither <= 0 nor > 0. Now see if it is
9396 either < 0 or >= 0. */
9398 val
= compare_range_with_value (LT_EXPR
, vr
, integer_zero_node
,
9404 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
9406 location_t location
;
9408 if (!gimple_has_location (stmt
))
9409 location
= input_location
;
9411 location
= gimple_location (stmt
);
9412 warning_at (location
, OPT_Wstrict_overflow
,
9413 "assuming signed overflow does not occur when "
9414 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9417 gimple_assign_set_rhs1 (stmt
, op
);
9418 if (integer_zerop (val
))
9419 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
9421 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
9423 fold_stmt (gsi
, follow_single_use_edges
);
9431 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9432 If all the bits that are being cleared by & are already
9433 known to be zero from VR, or all the bits that are being
9434 set by | are already known to be one from VR, the bit
9435 operation is redundant. */
9438 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple
*stmt
)
9440 tree op0
= gimple_assign_rhs1 (stmt
);
9441 tree op1
= gimple_assign_rhs2 (stmt
);
9442 tree op
= NULL_TREE
;
9443 value_range vr0
= VR_INITIALIZER
;
9444 value_range vr1
= VR_INITIALIZER
;
9445 wide_int may_be_nonzero0
, may_be_nonzero1
;
9446 wide_int must_be_nonzero0
, must_be_nonzero1
;
9449 if (TREE_CODE (op0
) == SSA_NAME
)
9450 vr0
= *(get_value_range (op0
));
9451 else if (is_gimple_min_invariant (op0
))
9452 set_value_range_to_value (&vr0
, op0
, NULL
);
9456 if (TREE_CODE (op1
) == SSA_NAME
)
9457 vr1
= *(get_value_range (op1
));
9458 else if (is_gimple_min_invariant (op1
))
9459 set_value_range_to_value (&vr1
, op1
, NULL
);
9463 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0
), &vr0
, &may_be_nonzero0
,
9466 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1
), &vr1
, &may_be_nonzero1
,
9470 switch (gimple_assign_rhs_code (stmt
))
9473 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
9479 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
9487 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
9493 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
9504 if (op
== NULL_TREE
)
9507 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
);
9508 update_stmt (gsi_stmt (*gsi
));
9512 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9513 a known value range VR.
9515 If there is one and only one value which will satisfy the
9516 conditional, then return that value. Else return NULL.
9518 If signed overflow must be undefined for the value to satisfy
9519 the conditional, then set *STRICT_OVERFLOW_P to true. */
9522 test_for_singularity (enum tree_code cond_code
, tree op0
,
9523 tree op1
, value_range
*vr
,
9524 bool *strict_overflow_p
)
9529 /* Extract minimum/maximum values which satisfy the conditional as it was
9531 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
9533 /* This should not be negative infinity; there is no overflow
9535 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
9538 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
9540 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
9541 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
9543 TREE_NO_WARNING (max
) = 1;
9546 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
9548 /* This should not be positive infinity; there is no overflow
9550 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
9553 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
9555 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
9556 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
9558 TREE_NO_WARNING (min
) = 1;
9562 /* Now refine the minimum and maximum values using any
9563 value range information we have for op0. */
9566 if (compare_values (vr
->min
, min
) == 1)
9568 if (compare_values (vr
->max
, max
) == -1)
9571 /* If the new min/max values have converged to a single value,
9572 then there is only one value which can satisfy the condition,
9573 return that value. */
9574 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
9576 if ((cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
9577 && is_overflow_infinity (vr
->max
))
9578 *strict_overflow_p
= true;
9579 if ((cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
9580 && is_overflow_infinity (vr
->min
))
9581 *strict_overflow_p
= true;
9589 /* Return whether the value range *VR fits in an integer type specified
9590 by PRECISION and UNSIGNED_P. */
9593 range_fits_type_p (value_range
*vr
, unsigned dest_precision
, signop dest_sgn
)
9596 unsigned src_precision
;
9600 /* We can only handle integral and pointer types. */
9601 src_type
= TREE_TYPE (vr
->min
);
9602 if (!INTEGRAL_TYPE_P (src_type
)
9603 && !POINTER_TYPE_P (src_type
))
9606 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9607 and so is an identity transform. */
9608 src_precision
= TYPE_PRECISION (TREE_TYPE (vr
->min
));
9609 src_sgn
= TYPE_SIGN (src_type
);
9610 if ((src_precision
< dest_precision
9611 && !(dest_sgn
== UNSIGNED
&& src_sgn
== SIGNED
))
9612 || (src_precision
== dest_precision
&& src_sgn
== dest_sgn
))
9615 /* Now we can only handle ranges with constant bounds. */
9616 if (vr
->type
!= VR_RANGE
9617 || TREE_CODE (vr
->min
) != INTEGER_CST
9618 || TREE_CODE (vr
->max
) != INTEGER_CST
)
9621 /* For sign changes, the MSB of the wide_int has to be clear.
9622 An unsigned value with its MSB set cannot be represented by
9623 a signed wide_int, while a negative value cannot be represented
9624 by an unsigned wide_int. */
9625 if (src_sgn
!= dest_sgn
9626 && (wi::lts_p (vr
->min
, 0) || wi::lts_p (vr
->max
, 0)))
9629 /* Then we can perform the conversion on both ends and compare
9630 the result for equality. */
9631 tem
= wi::ext (wi::to_widest (vr
->min
), dest_precision
, dest_sgn
);
9632 if (tem
!= wi::to_widest (vr
->min
))
9634 tem
= wi::ext (wi::to_widest (vr
->max
), dest_precision
, dest_sgn
);
9635 if (tem
!= wi::to_widest (vr
->max
))
9641 /* Simplify a conditional using a relational operator to an equality
9642 test if the range information indicates only one value can satisfy
9643 the original conditional. */
9646 simplify_cond_using_ranges (gcond
*stmt
)
9648 tree op0
= gimple_cond_lhs (stmt
);
9649 tree op1
= gimple_cond_rhs (stmt
);
9650 enum tree_code cond_code
= gimple_cond_code (stmt
);
9652 if (cond_code
!= NE_EXPR
9653 && cond_code
!= EQ_EXPR
9654 && TREE_CODE (op0
) == SSA_NAME
9655 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
9656 && is_gimple_min_invariant (op1
))
9658 value_range
*vr
= get_value_range (op0
);
9660 /* If we have range information for OP0, then we might be
9661 able to simplify this conditional. */
9662 if (vr
->type
== VR_RANGE
)
9664 enum warn_strict_overflow_code wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
9666 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
, &sop
);
9669 && (!sop
|| TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
))))
9673 fprintf (dump_file
, "Simplified relational ");
9674 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9675 fprintf (dump_file
, " into ");
9678 gimple_cond_set_code (stmt
, EQ_EXPR
);
9679 gimple_cond_set_lhs (stmt
, op0
);
9680 gimple_cond_set_rhs (stmt
, new_tree
);
9686 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9687 fprintf (dump_file
, "\n");
9690 if (sop
&& issue_strict_overflow_warning (wc
))
9692 location_t location
= input_location
;
9693 if (gimple_has_location (stmt
))
9694 location
= gimple_location (stmt
);
9696 warning_at (location
, OPT_Wstrict_overflow
,
9697 "assuming signed overflow does not occur when "
9698 "simplifying conditional");
9704 /* Try again after inverting the condition. We only deal
9705 with integral types here, so no need to worry about
9706 issues with inverting FP comparisons. */
9708 new_tree
= test_for_singularity
9709 (invert_tree_comparison (cond_code
, false),
9710 op0
, op1
, vr
, &sop
);
9713 && (!sop
|| TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
))))
9717 fprintf (dump_file
, "Simplified relational ");
9718 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9719 fprintf (dump_file
, " into ");
9722 gimple_cond_set_code (stmt
, NE_EXPR
);
9723 gimple_cond_set_lhs (stmt
, op0
);
9724 gimple_cond_set_rhs (stmt
, new_tree
);
9730 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9731 fprintf (dump_file
, "\n");
9734 if (sop
&& issue_strict_overflow_warning (wc
))
9736 location_t location
= input_location
;
9737 if (gimple_has_location (stmt
))
9738 location
= gimple_location (stmt
);
9740 warning_at (location
, OPT_Wstrict_overflow
,
9741 "assuming signed overflow does not occur when "
9742 "simplifying conditional");
9750 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9751 see if OP0 was set by a type conversion where the source of
9752 the conversion is another SSA_NAME with a range that fits
9753 into the range of OP0's type.
9755 If so, the conversion is redundant as the earlier SSA_NAME can be
9756 used for the comparison directly if we just massage the constant in the
9758 if (TREE_CODE (op0
) == SSA_NAME
9759 && TREE_CODE (op1
) == INTEGER_CST
)
9761 gimple
*def_stmt
= SSA_NAME_DEF_STMT (op0
);
9764 if (!is_gimple_assign (def_stmt
)
9765 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
9768 innerop
= gimple_assign_rhs1 (def_stmt
);
9770 if (TREE_CODE (innerop
) == SSA_NAME
9771 && !POINTER_TYPE_P (TREE_TYPE (innerop
))
9772 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop
)
9773 && desired_pro_or_demotion_p (TREE_TYPE (innerop
), TREE_TYPE (op0
)))
9775 value_range
*vr
= get_value_range (innerop
);
9777 if (range_int_cst_p (vr
)
9778 && range_fits_type_p (vr
,
9779 TYPE_PRECISION (TREE_TYPE (op0
)),
9780 TYPE_SIGN (TREE_TYPE (op0
)))
9781 && int_fits_type_p (op1
, TREE_TYPE (innerop
))
9782 /* The range must not have overflowed, or if it did overflow
9783 we must not be wrapping/trapping overflow and optimizing
9784 with strict overflow semantics. */
9785 && ((!is_negative_overflow_infinity (vr
->min
)
9786 && !is_positive_overflow_infinity (vr
->max
))
9787 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop
))))
9789 /* If the range overflowed and the user has asked for warnings
9790 when strict overflow semantics were used to optimize code,
9791 issue an appropriate warning. */
9792 if (cond_code
!= EQ_EXPR
&& cond_code
!= NE_EXPR
9793 && (is_negative_overflow_infinity (vr
->min
)
9794 || is_positive_overflow_infinity (vr
->max
))
9795 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL
))
9797 location_t location
;
9799 if (!gimple_has_location (stmt
))
9800 location
= input_location
;
9802 location
= gimple_location (stmt
);
9803 warning_at (location
, OPT_Wstrict_overflow
,
9804 "assuming signed overflow does not occur when "
9805 "simplifying conditional");
9808 tree newconst
= fold_convert (TREE_TYPE (innerop
), op1
);
9809 gimple_cond_set_lhs (stmt
, innerop
);
9810 gimple_cond_set_rhs (stmt
, newconst
);
9819 /* Simplify a switch statement using the value range of the switch
9823 simplify_switch_using_ranges (gswitch
*stmt
)
9825 tree op
= gimple_switch_index (stmt
);
9826 value_range
*vr
= NULL
;
9830 size_t i
= 0, j
= 0, n
, n2
;
9833 size_t k
= 1, l
= 0;
9835 if (TREE_CODE (op
) == SSA_NAME
)
9837 vr
= get_value_range (op
);
9839 /* We can only handle integer ranges. */
9840 if ((vr
->type
!= VR_RANGE
9841 && vr
->type
!= VR_ANTI_RANGE
)
9842 || symbolic_range_p (vr
))
9845 /* Find case label for min/max of the value range. */
9846 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
9848 else if (TREE_CODE (op
) == INTEGER_CST
)
9850 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
9864 n
= gimple_switch_num_labels (stmt
);
9866 /* We can truncate the case label ranges that partially overlap with OP's
9868 size_t min_idx
= 1, max_idx
= 0;
9870 find_case_label_range (stmt
, vr
->min
, vr
->max
, &min_idx
, &max_idx
);
9871 if (min_idx
<= max_idx
)
9873 tree min_label
= gimple_switch_label (stmt
, min_idx
);
9874 tree max_label
= gimple_switch_label (stmt
, max_idx
);
9876 /* Avoid changing the type of the case labels when truncating. */
9877 tree case_label_type
= TREE_TYPE (CASE_LOW (min_label
));
9878 tree vr_min
= fold_convert (case_label_type
, vr
->min
);
9879 tree vr_max
= fold_convert (case_label_type
, vr
->max
);
9881 if (vr
->type
== VR_RANGE
)
9883 /* If OP's value range is [2,8] and the low label range is
9884 0 ... 3, truncate the label's range to 2 .. 3. */
9885 if (tree_int_cst_compare (CASE_LOW (min_label
), vr_min
) < 0
9886 && CASE_HIGH (min_label
) != NULL_TREE
9887 && tree_int_cst_compare (CASE_HIGH (min_label
), vr_min
) >= 0)
9888 CASE_LOW (min_label
) = vr_min
;
9890 /* If OP's value range is [2,8] and the high label range is
9891 7 ... 10, truncate the label's range to 7 .. 8. */
9892 if (tree_int_cst_compare (CASE_LOW (max_label
), vr_max
) <= 0
9893 && CASE_HIGH (max_label
) != NULL_TREE
9894 && tree_int_cst_compare (CASE_HIGH (max_label
), vr_max
) > 0)
9895 CASE_HIGH (max_label
) = vr_max
;
9897 else if (vr
->type
== VR_ANTI_RANGE
)
9899 tree one_cst
= build_one_cst (case_label_type
);
9901 if (min_label
== max_label
)
9903 /* If OP's value range is ~[7,8] and the label's range is
9904 7 ... 10, truncate the label's range to 9 ... 10. */
9905 if (tree_int_cst_compare (CASE_LOW (min_label
), vr_min
) == 0
9906 && CASE_HIGH (min_label
) != NULL_TREE
9907 && tree_int_cst_compare (CASE_HIGH (min_label
), vr_max
) > 0)
9908 CASE_LOW (min_label
)
9909 = int_const_binop (PLUS_EXPR
, vr_max
, one_cst
);
9911 /* If OP's value range is ~[7,8] and the label's range is
9912 5 ... 8, truncate the label's range to 5 ... 6. */
9913 if (tree_int_cst_compare (CASE_LOW (min_label
), vr_min
) < 0
9914 && CASE_HIGH (min_label
) != NULL_TREE
9915 && tree_int_cst_compare (CASE_HIGH (min_label
), vr_max
) == 0)
9916 CASE_HIGH (min_label
)
9917 = int_const_binop (MINUS_EXPR
, vr_min
, one_cst
);
9921 /* If OP's value range is ~[2,8] and the low label range is
9922 0 ... 3, truncate the label's range to 0 ... 1. */
9923 if (tree_int_cst_compare (CASE_LOW (min_label
), vr_min
) < 0
9924 && CASE_HIGH (min_label
) != NULL_TREE
9925 && tree_int_cst_compare (CASE_HIGH (min_label
), vr_min
) >= 0)
9926 CASE_HIGH (min_label
)
9927 = int_const_binop (MINUS_EXPR
, vr_min
, one_cst
);
9929 /* If OP's value range is ~[2,8] and the high label range is
9930 7 ... 10, truncate the label's range to 9 ... 10. */
9931 if (tree_int_cst_compare (CASE_LOW (max_label
), vr_max
) <= 0
9932 && CASE_HIGH (max_label
) != NULL_TREE
9933 && tree_int_cst_compare (CASE_HIGH (max_label
), vr_max
) > 0)
9934 CASE_LOW (max_label
)
9935 = int_const_binop (PLUS_EXPR
, vr_max
, one_cst
);
9939 /* Canonicalize singleton case ranges. */
9940 if (tree_int_cst_equal (CASE_LOW (min_label
), CASE_HIGH (min_label
)))
9941 CASE_HIGH (min_label
) = NULL_TREE
;
9942 if (tree_int_cst_equal (CASE_LOW (max_label
), CASE_HIGH (max_label
)))
9943 CASE_HIGH (max_label
) = NULL_TREE
;
9946 /* We can also eliminate case labels that lie completely outside OP's value
9949 /* Bail out if this is just all edges taken. */
9955 /* Build a new vector of taken case labels. */
9956 vec2
= make_tree_vec (j
- i
+ 1 + l
- k
+ 1 + (int)take_default
);
9959 /* Add the default edge, if necessary. */
9961 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
9963 for (; i
<= j
; ++i
, ++n2
)
9964 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
9966 for (; k
<= l
; ++k
, ++n2
)
9967 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, k
);
9969 /* Mark needed edges. */
9970 for (i
= 0; i
< n2
; ++i
)
9972 e
= find_edge (gimple_bb (stmt
),
9973 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
9974 e
->aux
= (void *)-1;
9977 /* Queue not needed edges for later removal. */
9978 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
9980 if (e
->aux
== (void *)-1)
9986 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
9988 fprintf (dump_file
, "removing unreachable case label\n");
9990 to_remove_edges
.safe_push (e
);
9991 e
->flags
&= ~EDGE_EXECUTABLE
;
9994 /* And queue an update for the stmt. */
9997 to_update_switch_stmts
.safe_push (su
);
10001 /* Simplify an integral conversion from an SSA name in STMT. */
10004 simplify_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple
*stmt
)
10006 tree innerop
, middleop
, finaltype
;
10008 signop inner_sgn
, middle_sgn
, final_sgn
;
10009 unsigned inner_prec
, middle_prec
, final_prec
;
10010 widest_int innermin
, innermed
, innermax
, middlemin
, middlemed
, middlemax
;
10012 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
10013 if (!INTEGRAL_TYPE_P (finaltype
))
10015 middleop
= gimple_assign_rhs1 (stmt
);
10016 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
10017 if (!is_gimple_assign (def_stmt
)
10018 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
10020 innerop
= gimple_assign_rhs1 (def_stmt
);
10021 if (TREE_CODE (innerop
) != SSA_NAME
10022 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop
))
10025 /* Get the value-range of the inner operand. Use get_range_info in
10026 case innerop was created during substitute-and-fold. */
10027 wide_int imin
, imax
;
10028 if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop
))
10029 || get_range_info (innerop
, &imin
, &imax
) != VR_RANGE
)
10031 innermin
= widest_int::from (imin
, TYPE_SIGN (TREE_TYPE (innerop
)));
10032 innermax
= widest_int::from (imax
, TYPE_SIGN (TREE_TYPE (innerop
)));
10034 /* Simulate the conversion chain to check if the result is equal if
10035 the middle conversion is removed. */
10036 inner_prec
= TYPE_PRECISION (TREE_TYPE (innerop
));
10037 middle_prec
= TYPE_PRECISION (TREE_TYPE (middleop
));
10038 final_prec
= TYPE_PRECISION (finaltype
);
10040 /* If the first conversion is not injective, the second must not
10042 if (wi::gtu_p (innermax
- innermin
,
10043 wi::mask
<widest_int
> (middle_prec
, false))
10044 && middle_prec
< final_prec
)
10046 /* We also want a medium value so that we can track the effect that
10047 narrowing conversions with sign change have. */
10048 inner_sgn
= TYPE_SIGN (TREE_TYPE (innerop
));
10049 if (inner_sgn
== UNSIGNED
)
10050 innermed
= wi::shifted_mask
<widest_int
> (1, inner_prec
- 1, false);
10053 if (wi::cmp (innermin
, innermed
, inner_sgn
) >= 0
10054 || wi::cmp (innermed
, innermax
, inner_sgn
) >= 0)
10055 innermed
= innermin
;
10057 middle_sgn
= TYPE_SIGN (TREE_TYPE (middleop
));
10058 middlemin
= wi::ext (innermin
, middle_prec
, middle_sgn
);
10059 middlemed
= wi::ext (innermed
, middle_prec
, middle_sgn
);
10060 middlemax
= wi::ext (innermax
, middle_prec
, middle_sgn
);
10062 /* Require that the final conversion applied to both the original
10063 and the intermediate range produces the same result. */
10064 final_sgn
= TYPE_SIGN (finaltype
);
10065 if (wi::ext (middlemin
, final_prec
, final_sgn
)
10066 != wi::ext (innermin
, final_prec
, final_sgn
)
10067 || wi::ext (middlemed
, final_prec
, final_sgn
)
10068 != wi::ext (innermed
, final_prec
, final_sgn
)
10069 || wi::ext (middlemax
, final_prec
, final_sgn
)
10070 != wi::ext (innermax
, final_prec
, final_sgn
))
10073 gimple_assign_set_rhs1 (stmt
, innerop
);
10074 fold_stmt (gsi
, follow_single_use_edges
);
10078 /* Simplify a conversion from integral SSA name to float in STMT. */
10081 simplify_float_conversion_using_ranges (gimple_stmt_iterator
*gsi
,
10084 tree rhs1
= gimple_assign_rhs1 (stmt
);
10085 value_range
*vr
= get_value_range (rhs1
);
10086 machine_mode fltmode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
10091 /* We can only handle constant ranges. */
10092 if (vr
->type
!= VR_RANGE
10093 || TREE_CODE (vr
->min
) != INTEGER_CST
10094 || TREE_CODE (vr
->max
) != INTEGER_CST
)
10097 /* First check if we can use a signed type in place of an unsigned. */
10098 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
10099 && (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)), 0)
10100 != CODE_FOR_nothing
)
10101 && range_fits_type_p (vr
, TYPE_PRECISION (TREE_TYPE (rhs1
)), SIGNED
))
10102 mode
= TYPE_MODE (TREE_TYPE (rhs1
));
10103 /* If we can do the conversion in the current input mode do nothing. */
10104 else if (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)),
10105 TYPE_UNSIGNED (TREE_TYPE (rhs1
))) != CODE_FOR_nothing
)
10107 /* Otherwise search for a mode we can use, starting from the narrowest
10108 integer mode available. */
10111 mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
10114 /* If we cannot do a signed conversion to float from mode
10115 or if the value-range does not fit in the signed type
10116 try with a wider mode. */
10117 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
10118 && range_fits_type_p (vr
, GET_MODE_PRECISION (mode
), SIGNED
))
10121 mode
= GET_MODE_WIDER_MODE (mode
);
10122 /* But do not widen the input. Instead leave that to the
10123 optabs expansion code. */
10124 if (GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
10127 while (mode
!= VOIDmode
);
10128 if (mode
== VOIDmode
)
10132 /* It works, insert a truncation or sign-change before the
10133 float conversion. */
10134 tem
= make_ssa_name (build_nonstandard_integer_type
10135 (GET_MODE_PRECISION (mode
), 0));
10136 conv
= gimple_build_assign (tem
, NOP_EXPR
, rhs1
);
10137 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
10138 gimple_assign_set_rhs1 (stmt
, tem
);
10139 fold_stmt (gsi
, follow_single_use_edges
);
10144 /* Simplify an internal fn call using ranges if possible. */
10147 simplify_internal_call_using_ranges (gimple_stmt_iterator
*gsi
, gimple
*stmt
)
10149 enum tree_code subcode
;
10150 bool is_ubsan
= false;
10152 switch (gimple_call_internal_fn (stmt
))
10154 case IFN_UBSAN_CHECK_ADD
:
10155 subcode
= PLUS_EXPR
;
10158 case IFN_UBSAN_CHECK_SUB
:
10159 subcode
= MINUS_EXPR
;
10162 case IFN_UBSAN_CHECK_MUL
:
10163 subcode
= MULT_EXPR
;
10166 case IFN_ADD_OVERFLOW
:
10167 subcode
= PLUS_EXPR
;
10169 case IFN_SUB_OVERFLOW
:
10170 subcode
= MINUS_EXPR
;
10172 case IFN_MUL_OVERFLOW
:
10173 subcode
= MULT_EXPR
;
10179 tree op0
= gimple_call_arg (stmt
, 0);
10180 tree op1
= gimple_call_arg (stmt
, 1);
10184 type
= TREE_TYPE (op0
);
10185 if (VECTOR_TYPE_P (type
))
10188 else if (gimple_call_lhs (stmt
) == NULL_TREE
)
10191 type
= TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt
)));
10192 if (!check_for_binary_op_overflow (subcode
, type
, op0
, op1
, &ovf
)
10193 || (is_ubsan
&& ovf
))
10197 location_t loc
= gimple_location (stmt
);
10199 g
= gimple_build_assign (gimple_call_lhs (stmt
), subcode
, op0
, op1
);
10202 int prec
= TYPE_PRECISION (type
);
10205 || !useless_type_conversion_p (type
, TREE_TYPE (op0
))
10206 || !useless_type_conversion_p (type
, TREE_TYPE (op1
)))
10207 utype
= build_nonstandard_integer_type (prec
, 1);
10208 if (TREE_CODE (op0
) == INTEGER_CST
)
10209 op0
= fold_convert (utype
, op0
);
10210 else if (!useless_type_conversion_p (utype
, TREE_TYPE (op0
)))
10212 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, op0
);
10213 gimple_set_location (g
, loc
);
10214 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
10215 op0
= gimple_assign_lhs (g
);
10217 if (TREE_CODE (op1
) == INTEGER_CST
)
10218 op1
= fold_convert (utype
, op1
);
10219 else if (!useless_type_conversion_p (utype
, TREE_TYPE (op1
)))
10221 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, op1
);
10222 gimple_set_location (g
, loc
);
10223 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
10224 op1
= gimple_assign_lhs (g
);
10226 g
= gimple_build_assign (make_ssa_name (utype
), subcode
, op0
, op1
);
10227 gimple_set_location (g
, loc
);
10228 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
10231 g
= gimple_build_assign (make_ssa_name (type
), NOP_EXPR
,
10232 gimple_assign_lhs (g
));
10233 gimple_set_location (g
, loc
);
10234 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
10236 g
= gimple_build_assign (gimple_call_lhs (stmt
), COMPLEX_EXPR
,
10237 gimple_assign_lhs (g
),
10238 build_int_cst (type
, ovf
));
10240 gimple_set_location (g
, loc
);
10241 gsi_replace (gsi
, g
, false);
10245 /* Return true if VAR is a two-valued variable. Set a and b with the
10246 two-values when it is true. Return false otherwise. */
10249 two_valued_val_range_p (tree var
, tree
*a
, tree
*b
)
10251 value_range
*vr
= get_value_range (var
);
10252 if ((vr
->type
!= VR_RANGE
10253 && vr
->type
!= VR_ANTI_RANGE
)
10254 || TREE_CODE (vr
->min
) != INTEGER_CST
10255 || TREE_CODE (vr
->max
) != INTEGER_CST
)
10258 if (vr
->type
== VR_RANGE
10259 && wi::sub (vr
->max
, vr
->min
) == 1)
10266 /* ~[TYPE_MIN + 1, TYPE_MAX - 1] */
10267 if (vr
->type
== VR_ANTI_RANGE
10268 && wi::sub (vr
->min
, vrp_val_min (TREE_TYPE (var
))) == 1
10269 && wi::sub (vrp_val_max (TREE_TYPE (var
)), vr
->max
) == 1)
10271 *a
= vrp_val_min (TREE_TYPE (var
));
10272 *b
= vrp_val_max (TREE_TYPE (var
));
10279 /* Simplify STMT using ranges if possible. */
10282 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
10284 gimple
*stmt
= gsi_stmt (*gsi
);
10285 if (is_gimple_assign (stmt
))
10287 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
10288 tree rhs1
= gimple_assign_rhs1 (stmt
);
10289 tree rhs2
= gimple_assign_rhs2 (stmt
);
10290 tree lhs
= gimple_assign_lhs (stmt
);
10291 tree val1
= NULL_TREE
, val2
= NULL_TREE
;
10292 use_operand_p use_p
;
10296 LHS = CST BINOP VAR
10297 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10299 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
10302 LHS = VAR BINOP CST
10303 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10305 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
10307 if (TREE_CODE_CLASS (rhs_code
) == tcc_binary
10308 && INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
10309 && ((TREE_CODE (rhs1
) == INTEGER_CST
10310 && TREE_CODE (rhs2
) == SSA_NAME
)
10311 || (TREE_CODE (rhs2
) == INTEGER_CST
10312 && TREE_CODE (rhs1
) == SSA_NAME
))
10313 && single_imm_use (lhs
, &use_p
, &use_stmt
)
10314 && gimple_code (use_stmt
) == GIMPLE_COND
)
10317 tree new_rhs1
= NULL_TREE
;
10318 tree new_rhs2
= NULL_TREE
;
10319 tree cmp_var
= NULL_TREE
;
10321 if (TREE_CODE (rhs2
) == SSA_NAME
10322 && two_valued_val_range_p (rhs2
, &val1
, &val2
))
10324 /* Optimize RHS1 OP [VAL1, VAL2]. */
10325 new_rhs1
= int_const_binop (rhs_code
, rhs1
, val1
);
10326 new_rhs2
= int_const_binop (rhs_code
, rhs1
, val2
);
10329 else if (TREE_CODE (rhs1
) == SSA_NAME
10330 && two_valued_val_range_p (rhs1
, &val1
, &val2
))
10332 /* Optimize [VAL1, VAL2] OP RHS2. */
10333 new_rhs1
= int_const_binop (rhs_code
, val1
, rhs2
);
10334 new_rhs2
= int_const_binop (rhs_code
, val2
, rhs2
);
10338 /* If we could not find two-vals or the optimzation is invalid as
10339 in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
10340 if (new_rhs1
&& new_rhs2
)
10342 tree cond
= build2 (EQ_EXPR
, boolean_type_node
, cmp_var
, val1
);
10343 gimple_assign_set_rhs_with_ops (gsi
,
10347 update_stmt (gsi_stmt (*gsi
));
10348 fold_stmt (gsi
, follow_single_use_edges
);
10357 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
10358 if the RHS is zero or one, and the LHS are known to be boolean
10360 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
10361 return simplify_truth_ops_using_ranges (gsi
, stmt
);
10364 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
10365 and BIT_AND_EXPR respectively if the first operand is greater
10366 than zero and the second operand is an exact power of two.
10367 Also optimize TRUNC_MOD_EXPR away if the second operand is
10368 constant and the first operand already has the right value
10370 case TRUNC_DIV_EXPR
:
10371 case TRUNC_MOD_EXPR
:
10372 if (TREE_CODE (rhs1
) == SSA_NAME
10373 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
10374 return simplify_div_or_mod_using_ranges (gsi
, stmt
);
10377 /* Transform ABS (X) into X or -X as appropriate. */
10379 if (TREE_CODE (rhs1
) == SSA_NAME
10380 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
10381 return simplify_abs_using_ranges (gsi
, stmt
);
10386 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
10387 if all the bits being cleared are already cleared or
10388 all the bits being set are already set. */
10389 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
10390 return simplify_bit_ops_using_ranges (gsi
, stmt
);
10394 if (TREE_CODE (rhs1
) == SSA_NAME
10395 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
10396 return simplify_conversion_using_ranges (gsi
, stmt
);
10400 if (TREE_CODE (rhs1
) == SSA_NAME
10401 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
10402 return simplify_float_conversion_using_ranges (gsi
, stmt
);
10407 return simplify_min_or_max_using_ranges (gsi
, stmt
);
10413 else if (gimple_code (stmt
) == GIMPLE_COND
)
10414 return simplify_cond_using_ranges (as_a
<gcond
*> (stmt
));
10415 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
10416 return simplify_switch_using_ranges (as_a
<gswitch
*> (stmt
));
10417 else if (is_gimple_call (stmt
)
10418 && gimple_call_internal_p (stmt
))
10419 return simplify_internal_call_using_ranges (gsi
, stmt
);
10424 /* If the statement pointed by SI has a predicate whose value can be
10425 computed using the value range information computed by VRP, compute
10426 its value and return true. Otherwise, return false. */
10429 fold_predicate_in (gimple_stmt_iterator
*si
)
10431 bool assignment_p
= false;
10433 gimple
*stmt
= gsi_stmt (*si
);
10435 if (is_gimple_assign (stmt
)
10436 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
10438 assignment_p
= true;
10439 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
10440 gimple_assign_rhs1 (stmt
),
10441 gimple_assign_rhs2 (stmt
),
10444 else if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
10445 val
= vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
10446 gimple_cond_lhs (cond_stmt
),
10447 gimple_cond_rhs (cond_stmt
),
10455 val
= fold_convert (gimple_expr_type (stmt
), val
);
10459 fprintf (dump_file
, "Folding predicate ");
10460 print_gimple_expr (dump_file
, stmt
, 0, 0);
10461 fprintf (dump_file
, " to ");
10462 print_generic_expr (dump_file
, val
, 0);
10463 fprintf (dump_file
, "\n");
10466 if (is_gimple_assign (stmt
))
10467 gimple_assign_set_rhs_from_tree (si
, val
);
10470 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
10471 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
10472 if (integer_zerop (val
))
10473 gimple_cond_make_false (cond_stmt
);
10474 else if (integer_onep (val
))
10475 gimple_cond_make_true (cond_stmt
);
10477 gcc_unreachable ();
10486 /* Callback for substitute_and_fold folding the stmt at *SI. */
10489 vrp_fold_stmt (gimple_stmt_iterator
*si
)
10491 if (fold_predicate_in (si
))
10494 return simplify_stmt_using_ranges (si
);
10497 /* Unwindable const/copy equivalences. */
10498 const_and_copies
*equiv_stack
;
10500 /* A trivial wrapper so that we can present the generic jump threading
10501 code with a simple API for simplifying statements. STMT is the
10502 statement we want to simplify, WITHIN_STMT provides the location
10503 for any overflow warnings. */
10506 simplify_stmt_for_jump_threading (gimple
*stmt
, gimple
*within_stmt
,
10507 class avail_exprs_stack
*avail_exprs_stack ATTRIBUTE_UNUSED
)
10509 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
10510 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
10511 gimple_cond_lhs (cond_stmt
),
10512 gimple_cond_rhs (cond_stmt
),
10515 /* We simplify a switch statement by trying to determine which case label
10516 will be taken. If we are successful then we return the corresponding
10517 CASE_LABEL_EXPR. */
10518 if (gswitch
*switch_stmt
= dyn_cast
<gswitch
*> (stmt
))
10520 tree op
= gimple_switch_index (switch_stmt
);
10521 if (TREE_CODE (op
) != SSA_NAME
)
10524 value_range
*vr
= get_value_range (op
);
10525 if ((vr
->type
!= VR_RANGE
&& vr
->type
!= VR_ANTI_RANGE
)
10526 || symbolic_range_p (vr
))
10529 if (vr
->type
== VR_RANGE
)
10532 /* Get the range of labels that contain a part of the operand's
10534 find_case_label_range (switch_stmt
, vr
->min
, vr
->max
, &i
, &j
);
10536 /* Is there only one such label? */
10539 tree label
= gimple_switch_label (switch_stmt
, i
);
10541 /* The i'th label will be taken only if the value range of the
10542 operand is entirely within the bounds of this label. */
10543 if (CASE_HIGH (label
) != NULL_TREE
10544 ? (tree_int_cst_compare (CASE_LOW (label
), vr
->min
) <= 0
10545 && tree_int_cst_compare (CASE_HIGH (label
), vr
->max
) >= 0)
10546 : (tree_int_cst_equal (CASE_LOW (label
), vr
->min
)
10547 && tree_int_cst_equal (vr
->min
, vr
->max
)))
10551 /* If there are no such labels then the default label will be
10554 return gimple_switch_label (switch_stmt
, 0);
10557 if (vr
->type
== VR_ANTI_RANGE
)
10559 unsigned n
= gimple_switch_num_labels (switch_stmt
);
10560 tree min_label
= gimple_switch_label (switch_stmt
, 1);
10561 tree max_label
= gimple_switch_label (switch_stmt
, n
- 1);
10563 /* The default label will be taken only if the anti-range of the
10564 operand is entirely outside the bounds of all the (non-default)
10566 if (tree_int_cst_compare (vr
->min
, CASE_LOW (min_label
)) <= 0
10567 && (CASE_HIGH (max_label
) != NULL_TREE
10568 ? tree_int_cst_compare (vr
->max
, CASE_HIGH (max_label
)) >= 0
10569 : tree_int_cst_compare (vr
->max
, CASE_LOW (max_label
)) >= 0))
10570 return gimple_switch_label (switch_stmt
, 0);
10576 if (gassign
*assign_stmt
= dyn_cast
<gassign
*> (stmt
))
10578 value_range new_vr
= VR_INITIALIZER
;
10579 tree lhs
= gimple_assign_lhs (assign_stmt
);
10581 if (TREE_CODE (lhs
) == SSA_NAME
10582 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
10583 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
10585 extract_range_from_assignment (&new_vr
, assign_stmt
);
10586 if (range_int_cst_singleton_p (&new_vr
))
10594 /* Blocks which have more than one predecessor and more than
10595 one successor present jump threading opportunities, i.e.,
10596 when the block is reached from a specific predecessor, we
10597 may be able to determine which of the outgoing edges will
10598 be traversed. When this optimization applies, we are able
10599 to avoid conditionals at runtime and we may expose secondary
10600 optimization opportunities.
10602 This routine is effectively a driver for the generic jump
10603 threading code. It basically just presents the generic code
10604 with edges that may be suitable for jump threading.
10606 Unlike DOM, we do not iterate VRP if jump threading was successful.
10607 While iterating may expose new opportunities for VRP, it is expected
10608 those opportunities would be very limited and the compile time cost
10609 to expose those opportunities would be significant.
10611 As jump threading opportunities are discovered, they are registered
10612 for later realization. */
10615 identify_jump_threads (void)
10622 /* Ugh. When substituting values earlier in this pass we can
10623 wipe the dominance information. So rebuild the dominator
10624 information as we need it within the jump threading code. */
10625 calculate_dominance_info (CDI_DOMINATORS
);
10627 /* We do not allow VRP information to be used for jump threading
10628 across a back edge in the CFG. Otherwise it becomes too
10629 difficult to avoid eliminating loop exit tests. Of course
10630 EDGE_DFS_BACK is not accurate at this time so we have to
10632 mark_dfs_back_edges ();
10634 /* Do not thread across edges we are about to remove. Just marking
10635 them as EDGE_IGNORE will do. */
10636 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
10637 e
->flags
|= EDGE_IGNORE
;
10639 /* Allocate our unwinder stack to unwind any temporary equivalences
10640 that might be recorded. */
10641 equiv_stack
= new const_and_copies ();
10643 /* To avoid lots of silly node creation, we create a single
10644 conditional and just modify it in-place when attempting to
10646 dummy
= gimple_build_cond (EQ_EXPR
,
10647 integer_zero_node
, integer_zero_node
,
10650 /* Walk through all the blocks finding those which present a
10651 potential jump threading opportunity. We could set this up
10652 as a dominator walker and record data during the walk, but
10653 I doubt it's worth the effort for the classes of jump
10654 threading opportunities we are trying to identify at this
10655 point in compilation. */
10656 FOR_EACH_BB_FN (bb
, cfun
)
10660 /* If the generic jump threading code does not find this block
10661 interesting, then there is nothing to do. */
10662 if (! potentially_threadable_block (bb
))
10665 last
= last_stmt (bb
);
10667 /* We're basically looking for a switch or any kind of conditional with
10668 integral or pointer type arguments. Note the type of the second
10669 argument will be the same as the first argument, so no need to
10670 check it explicitly.
10672 We also handle the case where there are no statements in the
10673 block. This come up with forwarder blocks that are not
10674 optimized away because they lead to a loop header. But we do
10675 want to thread through them as we can sometimes thread to the
10676 loop exit which is obviously profitable. */
10678 || gimple_code (last
) == GIMPLE_SWITCH
10679 || (gimple_code (last
) == GIMPLE_COND
10680 && TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
10681 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
10682 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
10683 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
10684 || is_gimple_min_invariant (gimple_cond_rhs (last
)))))
10688 /* We've got a block with multiple predecessors and multiple
10689 successors which also ends in a suitable conditional or
10690 switch statement. For each predecessor, see if we can thread
10691 it to a specific successor. */
10692 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
10694 /* Do not thread across edges marked to ignoreor abnormal
10695 edges in the CFG. */
10696 if (e
->flags
& (EDGE_IGNORE
| EDGE_COMPLEX
))
10699 thread_across_edge (dummy
, e
, true, equiv_stack
, NULL
,
10700 simplify_stmt_for_jump_threading
);
10705 /* Clear EDGE_IGNORE. */
10706 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
10707 e
->flags
&= ~EDGE_IGNORE
;
10709 /* We do not actually update the CFG or SSA graphs at this point as
10710 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10711 handle ASSERT_EXPRs gracefully. */
10714 /* We identified all the jump threading opportunities earlier, but could
10715 not transform the CFG at that time. This routine transforms the
10716 CFG and arranges for the dominator tree to be rebuilt if necessary.
10718 Note the SSA graph update will occur during the normal TODO
10719 processing by the pass manager. */
10721 finalize_jump_threads (void)
10723 thread_through_all_blocks (false);
10724 delete equiv_stack
;
10727 /* Free VRP lattice. */
10730 vrp_free_lattice ()
10732 /* Free allocated memory. */
10734 free (vr_phi_edge_counts
);
10735 bitmap_obstack_release (&vrp_equiv_obstack
);
10736 vrp_value_range_pool
.release ();
10738 /* So that we can distinguish between VRP data being available
10739 and not available. */
10741 vr_phi_edge_counts
= NULL
;
10744 /* Traverse all the blocks folding conditionals with known ranges. */
10747 vrp_finalize (bool warn_array_bounds_p
)
10751 values_propagated
= true;
10755 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
10756 dump_all_value_ranges (dump_file
);
10757 fprintf (dump_file
, "\n");
10760 /* Set value range to non pointer SSA_NAMEs. */
10761 for (i
= 0; i
< num_vr_values
; i
++)
10764 tree name
= ssa_name (i
);
10767 || (vr_value
[i
]->type
== VR_VARYING
)
10768 || (vr_value
[i
]->type
== VR_UNDEFINED
)
10769 || (TREE_CODE (vr_value
[i
]->min
) != INTEGER_CST
)
10770 || (TREE_CODE (vr_value
[i
]->max
) != INTEGER_CST
))
10773 if (POINTER_TYPE_P (TREE_TYPE (name
))
10774 && ((vr_value
[i
]->type
== VR_RANGE
10775 && range_includes_zero_p (vr_value
[i
]->min
,
10776 vr_value
[i
]->max
) == 0)
10777 || (vr_value
[i
]->type
== VR_ANTI_RANGE
10778 && range_includes_zero_p (vr_value
[i
]->min
,
10779 vr_value
[i
]->max
) == 1)))
10780 set_ptr_nonnull (name
);
10781 else if (!POINTER_TYPE_P (TREE_TYPE (name
)))
10782 set_range_info (name
, vr_value
[i
]->type
, vr_value
[i
]->min
,
10786 substitute_and_fold (op_with_constant_singleton_value_range
, vrp_fold_stmt
);
10788 if (warn_array_bounds
&& warn_array_bounds_p
)
10789 check_all_array_refs ();
10791 /* We must identify jump threading opportunities before we release
10792 the datastructures built by VRP. */
10793 identify_jump_threads ();
10796 /* evrp_dom_walker visits the basic blocks in the dominance order and set
10797 the Value Ranges (VR) for SSA_NAMEs in the scope. Use this VR to
10798 discover more VRs. */
10800 class evrp_dom_walker
: public dom_walker
10804 : dom_walker (CDI_DOMINATORS
), stack (10)
10806 need_eh_cleanup
= BITMAP_ALLOC (NULL
);
10808 ~evrp_dom_walker ()
10810 BITMAP_FREE (need_eh_cleanup
);
10812 virtual edge
before_dom_children (basic_block
);
10813 virtual void after_dom_children (basic_block
);
10814 void push_value_range (tree var
, value_range
*vr
);
10815 value_range
*pop_value_range (tree var
);
10816 value_range
*try_find_new_range (tree op
, tree_code code
, tree limit
);
10818 /* Cond_stack holds the old VR. */
10819 auto_vec
<std::pair
<tree
, value_range
*> > stack
;
10820 bitmap need_eh_cleanup
;
10821 auto_vec
<gimple
*> stmts_to_fixup
;
10822 auto_vec
<gimple
*> stmts_to_remove
;
10825 /* Find new range for OP such that (OP CODE LIMIT) is true. */
10828 evrp_dom_walker::try_find_new_range (tree op
, tree_code code
, tree limit
)
10830 value_range vr
= VR_INITIALIZER
;
10831 value_range
*old_vr
= get_value_range (op
);
10833 /* Discover VR when condition is true. */
10834 extract_range_for_var_from_comparison_expr (op
, code
, op
,
10836 if (old_vr
->type
== VR_RANGE
|| old_vr
->type
== VR_ANTI_RANGE
)
10837 vrp_intersect_ranges (&vr
, old_vr
);
10838 /* If we found any usable VR, set the VR to ssa_name and create a
10839 PUSH old value in the stack with the old VR. */
10840 if (vr
.type
== VR_RANGE
|| vr
.type
== VR_ANTI_RANGE
)
10842 if (old_vr
->type
== vr
.type
10843 && vrp_operand_equal_p (old_vr
->min
, vr
.min
)
10844 && vrp_operand_equal_p (old_vr
->max
, vr
.max
))
10846 value_range
*new_vr
= vrp_value_range_pool
.allocate ();
10853 /* See if there is any new scope is entered with new VR and set that VR to
10854 ssa_name before visiting the statements in the scope. */
10857 evrp_dom_walker::before_dom_children (basic_block bb
)
10859 tree op0
= NULL_TREE
;
10863 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10864 fprintf (dump_file
, "Visiting BB%d\n", bb
->index
);
10866 stack
.safe_push (std::make_pair (NULL_TREE
, (value_range
*)NULL
));
10868 edge pred_e
= NULL
;
10869 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
10871 /* Ignore simple backedges from this to allow recording conditions
10872 in loop headers. */
10873 if (dominated_by_p (CDI_DOMINATORS
, e
->src
, e
->dest
))
10885 gimple
*stmt
= last_stmt (pred_e
->src
);
10887 && gimple_code (stmt
) == GIMPLE_COND
10888 && (op0
= gimple_cond_lhs (stmt
))
10889 && TREE_CODE (op0
) == SSA_NAME
10890 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)))
10891 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)))))
10893 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10895 fprintf (dump_file
, "Visiting controlling predicate ");
10896 print_gimple_stmt (dump_file
, stmt
, 0, 0);
10898 /* Entering a new scope. Try to see if we can find a VR
10900 tree op1
= gimple_cond_rhs (stmt
);
10901 tree_code code
= gimple_cond_code (stmt
);
10903 if (TREE_OVERFLOW_P (op1
))
10904 op1
= drop_tree_overflow (op1
);
10906 /* If condition is false, invert the cond. */
10907 if (pred_e
->flags
& EDGE_FALSE_VALUE
)
10908 code
= invert_tree_comparison (gimple_cond_code (stmt
),
10910 /* Add VR when (OP0 CODE OP1) condition is true. */
10911 value_range
*op0_range
= try_find_new_range (op0
, code
, op1
);
10913 /* Register ranges for y in x < y where
10914 y might have ranges that are useful. */
10916 tree_code new_code
;
10917 if (TREE_CODE (op1
) == SSA_NAME
10918 && extract_code_and_val_from_cond_with_ops (op1
, code
,
10921 &new_code
, &limit
))
10923 /* Add VR when (OP1 NEW_CODE LIMIT) condition is true. */
10924 value_range
*op1_range
= try_find_new_range (op1
, new_code
, limit
);
10926 push_value_range (op1
, op1_range
);
10930 push_value_range (op0
, op0_range
);
10934 /* Visit PHI stmts and discover any new VRs possible. */
10935 bool has_unvisited_preds
= false;
10936 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
10937 if (e
->flags
& EDGE_EXECUTABLE
10938 && !(e
->src
->flags
& BB_VISITED
))
10940 has_unvisited_preds
= true;
10944 for (gphi_iterator gpi
= gsi_start_phis (bb
);
10945 !gsi_end_p (gpi
); gsi_next (&gpi
))
10947 gphi
*phi
= gpi
.phi ();
10948 tree lhs
= PHI_RESULT (phi
);
10949 if (virtual_operand_p (lhs
))
10951 value_range vr_result
= VR_INITIALIZER
;
10952 bool interesting
= stmt_interesting_for_vrp (phi
);
10953 if (interesting
&& dump_file
&& (dump_flags
& TDF_DETAILS
))
10955 fprintf (dump_file
, "Visiting PHI node ");
10956 print_gimple_stmt (dump_file
, phi
, 0, 0);
10958 if (!has_unvisited_preds
10960 extract_range_from_phi_node (phi
, &vr_result
);
10963 set_value_range_to_varying (&vr_result
);
10964 /* When we have an unvisited executable predecessor we can't
10965 use PHI arg ranges which may be still UNDEFINED but have
10966 to use VARYING for them. But we can still resort to
10967 SCEV for loop header PHIs. */
10970 && (l
= loop_containing_stmt (phi
))
10971 && l
->header
== gimple_bb (phi
))
10972 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
10974 update_value_range (lhs
, &vr_result
);
10976 /* Mark PHIs whose lhs we fully propagate for removal. */
10977 tree val
= op_with_constant_singleton_value_range (lhs
);
10978 if (val
&& may_propagate_copy (lhs
, val
))
10980 stmts_to_remove
.safe_push (phi
);
10984 /* Set the SSA with the value range. */
10985 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs
)))
10987 if ((vr_result
.type
== VR_RANGE
10988 || vr_result
.type
== VR_ANTI_RANGE
)
10989 && (TREE_CODE (vr_result
.min
) == INTEGER_CST
)
10990 && (TREE_CODE (vr_result
.max
) == INTEGER_CST
))
10991 set_range_info (lhs
,
10992 vr_result
.type
, vr_result
.min
, vr_result
.max
);
10994 else if (POINTER_TYPE_P (TREE_TYPE (lhs
))
10995 && ((vr_result
.type
== VR_RANGE
10996 && range_includes_zero_p (vr_result
.min
,
10997 vr_result
.max
) == 0)
10998 || (vr_result
.type
== VR_ANTI_RANGE
10999 && range_includes_zero_p (vr_result
.min
,
11000 vr_result
.max
) == 1)))
11001 set_ptr_nonnull (lhs
);
11004 edge taken_edge
= NULL
;
11006 /* Visit all other stmts and discover any new VRs possible. */
11007 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
11008 !gsi_end_p (gsi
); gsi_next (&gsi
))
11010 gimple
*stmt
= gsi_stmt (gsi
);
11011 tree output
= NULL_TREE
;
11012 gimple
*old_stmt
= stmt
;
11013 bool was_noreturn
= (is_gimple_call (stmt
)
11014 && gimple_call_noreturn_p (stmt
));
11016 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11018 fprintf (dump_file
, "Visiting stmt ");
11019 print_gimple_stmt (dump_file
, stmt
, 0, 0);
11022 if (gcond
*cond
= dyn_cast
<gcond
*> (stmt
))
11024 vrp_visit_cond_stmt (cond
, &taken_edge
);
11027 if (taken_edge
->flags
& EDGE_TRUE_VALUE
)
11028 gimple_cond_make_true (cond
);
11029 else if (taken_edge
->flags
& EDGE_FALSE_VALUE
)
11030 gimple_cond_make_false (cond
);
11032 gcc_unreachable ();
11033 update_stmt (stmt
);
11036 else if (stmt_interesting_for_vrp (stmt
))
11039 value_range vr
= VR_INITIALIZER
;
11040 extract_range_from_stmt (stmt
, &taken_edge
, &output
, &vr
);
11042 && (vr
.type
== VR_RANGE
|| vr
.type
== VR_ANTI_RANGE
))
11044 update_value_range (output
, &vr
);
11045 vr
= *get_value_range (output
);
11047 /* Mark stmts whose output we fully propagate for removal. */
11049 if ((val
= op_with_constant_singleton_value_range (output
))
11050 && may_propagate_copy (output
, val
)
11051 && !stmt_could_throw_p (stmt
)
11052 && !gimple_has_side_effects (stmt
))
11054 stmts_to_remove
.safe_push (stmt
);
11058 /* Set the SSA with the value range. */
11059 if (INTEGRAL_TYPE_P (TREE_TYPE (output
)))
11061 if ((vr
.type
== VR_RANGE
11062 || vr
.type
== VR_ANTI_RANGE
)
11063 && (TREE_CODE (vr
.min
) == INTEGER_CST
)
11064 && (TREE_CODE (vr
.max
) == INTEGER_CST
))
11065 set_range_info (output
, vr
.type
, vr
.min
, vr
.max
);
11067 else if (POINTER_TYPE_P (TREE_TYPE (output
))
11068 && ((vr
.type
== VR_RANGE
11069 && range_includes_zero_p (vr
.min
,
11071 || (vr
.type
== VR_ANTI_RANGE
11072 && range_includes_zero_p (vr
.min
,
11074 set_ptr_nonnull (output
);
11077 set_defs_to_varying (stmt
);
11080 set_defs_to_varying (stmt
);
11082 /* See if we can derive a range for any of STMT's operands. */
11085 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
11088 enum tree_code comp_code
;
11090 /* If OP is used in such a way that we can infer a value
11091 range for it, and we don't find a previous assertion for
11092 it, create a new assertion location node for OP. */
11093 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
11095 /* If we are able to infer a nonzero value range for OP,
11096 then walk backwards through the use-def chain to see if OP
11097 was set via a typecast.
11098 If so, then we can also infer a nonzero value range
11099 for the operand of the NOP_EXPR. */
11100 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
11103 gimple
*def_stmt
= SSA_NAME_DEF_STMT (t
);
11104 while (is_gimple_assign (def_stmt
)
11105 && CONVERT_EXPR_CODE_P
11106 (gimple_assign_rhs_code (def_stmt
))
11108 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
11110 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
11112 t
= gimple_assign_rhs1 (def_stmt
);
11113 def_stmt
= SSA_NAME_DEF_STMT (t
);
11115 /* Add VR when (T COMP_CODE value) condition is
11117 value_range
*op_range
11118 = try_find_new_range (t
, comp_code
, value
);
11120 push_value_range (t
, op_range
);
11123 /* Add VR when (OP COMP_CODE value) condition is true. */
11124 value_range
*op_range
= try_find_new_range (op
,
11127 push_value_range (op
, op_range
);
11131 /* Try folding stmts with the VR discovered. */
11133 = replace_uses_in (stmt
, op_with_constant_singleton_value_range
);
11134 if (fold_stmt (&gsi
, follow_single_use_edges
)
11137 stmt
= gsi_stmt (gsi
);
11138 update_stmt (stmt
);
11139 did_replace
= true;
11144 /* If we cleaned up EH information from the statement,
11145 remove EH edges. */
11146 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
11147 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
11149 /* If we turned a not noreturn call into a noreturn one
11150 schedule it for fixup. */
11152 && is_gimple_call (stmt
)
11153 && gimple_call_noreturn_p (stmt
))
11154 stmts_to_fixup
.safe_push (stmt
);
11156 if (gimple_assign_single_p (stmt
))
11158 tree rhs
= gimple_assign_rhs1 (stmt
);
11159 if (TREE_CODE (rhs
) == ADDR_EXPR
)
11160 recompute_tree_invariant_for_addr_expr (rhs
);
11165 /* Visit BB successor PHI nodes and replace PHI args. */
11166 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
11168 for (gphi_iterator gpi
= gsi_start_phis (e
->dest
);
11169 !gsi_end_p (gpi
); gsi_next (&gpi
))
11171 gphi
*phi
= gpi
.phi ();
11172 use_operand_p use_p
= PHI_ARG_DEF_PTR_FROM_EDGE (phi
, e
);
11173 tree arg
= USE_FROM_PTR (use_p
);
11174 if (TREE_CODE (arg
) != SSA_NAME
11175 || virtual_operand_p (arg
))
11177 tree val
= op_with_constant_singleton_value_range (arg
);
11178 if (val
&& may_propagate_copy (arg
, val
))
11179 propagate_value (use_p
, val
);
11183 bb
->flags
|= BB_VISITED
;
11188 /* Restore/pop VRs valid only for BB when we leave BB. */
11191 evrp_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED
)
11193 gcc_checking_assert (!stack
.is_empty ());
11194 while (stack
.last ().first
!= NULL_TREE
)
11195 pop_value_range (stack
.last ().first
);
11199 /* Push the Value Range of VAR to the stack and update it with new VR. */
11202 evrp_dom_walker::push_value_range (tree var
, value_range
*vr
)
11204 if (SSA_NAME_VERSION (var
) >= num_vr_values
)
11206 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11208 fprintf (dump_file
, "pushing new range for ");
11209 print_generic_expr (dump_file
, var
, 0);
11210 fprintf (dump_file
, ": ");
11211 dump_value_range (dump_file
, vr
);
11212 fprintf (dump_file
, "\n");
11214 stack
.safe_push (std::make_pair (var
, get_value_range (var
)));
11215 vr_value
[SSA_NAME_VERSION (var
)] = vr
;
11218 /* Pop the Value Range from the vrp_stack and update VAR with it. */
11221 evrp_dom_walker::pop_value_range (tree var
)
11223 value_range
*vr
= stack
.last ().second
;
11224 gcc_checking_assert (var
== stack
.last ().first
);
11225 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11227 fprintf (dump_file
, "popping range for ");
11228 print_generic_expr (dump_file
, var
, 0);
11229 fprintf (dump_file
, ", restoring ");
11230 dump_value_range (dump_file
, vr
);
11231 fprintf (dump_file
, "\n");
11233 vr_value
[SSA_NAME_VERSION (var
)] = vr
;
11239 /* Main entry point for the early vrp pass which is a simplified non-iterative
11240 version of vrp where basic blocks are visited in dominance order. Value
11241 ranges discovered in early vrp will also be used by ipa-vrp. */
11243 static unsigned int
11244 execute_early_vrp ()
11250 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
11251 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
11252 scev_initialize ();
11253 calculate_dominance_info (CDI_DOMINATORS
);
11254 FOR_EACH_BB_FN (bb
, cfun
)
11256 bb
->flags
&= ~BB_VISITED
;
11257 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
11258 e
->flags
|= EDGE_EXECUTABLE
;
11260 vrp_initialize_lattice ();
11262 /* Walk stmts in dominance order and propagate VRP. */
11263 evrp_dom_walker walker
;
11264 walker
.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
11268 fprintf (dump_file
, "\nValue ranges after Early VRP:\n\n");
11269 dump_all_value_ranges (dump_file
);
11270 fprintf (dump_file
, "\n");
11273 /* Remove stmts in reverse order to make debug stmt creation possible. */
11274 while (! walker
.stmts_to_remove
.is_empty ())
11276 gimple
*stmt
= walker
.stmts_to_remove
.pop ();
11277 if (dump_file
&& dump_flags
& TDF_DETAILS
)
11279 fprintf (dump_file
, "Removing dead stmt ");
11280 print_gimple_stmt (dump_file
, stmt
, 0, 0);
11281 fprintf (dump_file
, "\n");
11283 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
11284 if (gimple_code (stmt
) == GIMPLE_PHI
)
11285 remove_phi_node (&gsi
, true);
11288 unlink_stmt_vdef (stmt
);
11289 gsi_remove (&gsi
, true);
11290 release_defs (stmt
);
11294 if (!bitmap_empty_p (walker
.need_eh_cleanup
))
11295 gimple_purge_all_dead_eh_edges (walker
.need_eh_cleanup
);
11297 /* Fixup stmts that became noreturn calls. This may require splitting
11298 blocks and thus isn't possible during the dominator walk. Do this
11299 in reverse order so we don't inadvertedly remove a stmt we want to
11300 fixup by visiting a dominating now noreturn call first. */
11301 while (!walker
.stmts_to_fixup
.is_empty ())
11303 gimple
*stmt
= walker
.stmts_to_fixup
.pop ();
11304 fixup_noreturn_call (stmt
);
11307 vrp_free_lattice ();
11309 loop_optimizer_finalize ();
11314 /* Main entry point to VRP (Value Range Propagation). This pass is
11315 loosely based on J. R. C. Patterson, ``Accurate Static Branch
11316 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
11317 Programming Language Design and Implementation, pp. 67-78, 1995.
11318 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
11320 This is essentially an SSA-CCP pass modified to deal with ranges
11321 instead of constants.
11323 While propagating ranges, we may find that two or more SSA name
11324 have equivalent, though distinct ranges. For instance,
11327 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
11329 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
11333 In the code above, pointer p_5 has range [q_2, q_2], but from the
11334 code we can also determine that p_5 cannot be NULL and, if q_2 had
11335 a non-varying range, p_5's range should also be compatible with it.
11337 These equivalences are created by two expressions: ASSERT_EXPR and
11338 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
11339 result of another assertion, then we can use the fact that p_5 and
11340 p_4 are equivalent when evaluating p_5's range.
11342 Together with value ranges, we also propagate these equivalences
11343 between names so that we can take advantage of information from
11344 multiple ranges when doing final replacement. Note that this
11345 equivalency relation is transitive but not symmetric.
11347 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
11348 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
11349 in contexts where that assertion does not hold (e.g., in line 6).
11351 TODO, the main difference between this pass and Patterson's is that
11352 we do not propagate edge probabilities. We only compute whether
11353 edges can be taken or not. That is, instead of having a spectrum
11354 of jump probabilities between 0 and 1, we only deal with 0, 1 and
11355 DON'T KNOW. In the future, it may be worthwhile to propagate
11356 probabilities to aid branch prediction. */
11358 static unsigned int
11359 execute_vrp (bool warn_array_bounds_p
)
11365 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
11366 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
11367 scev_initialize ();
11369 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
11370 Inserting assertions may split edges which will invalidate
11372 insert_range_assertions ();
11374 to_remove_edges
.create (10);
11375 to_update_switch_stmts
.create (5);
11376 threadedge_initialize_values ();
11378 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
11379 mark_dfs_back_edges ();
11381 vrp_initialize_lattice ();
11383 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
11384 vrp_finalize (warn_array_bounds_p
);
11385 vrp_free_lattice ();
11387 free_numbers_of_iterations_estimates (cfun
);
11389 /* ASSERT_EXPRs must be removed before finalizing jump threads
11390 as finalizing jump threads calls the CFG cleanup code which
11391 does not properly handle ASSERT_EXPRs. */
11392 remove_range_assertions ();
11394 /* If we exposed any new variables, go ahead and put them into
11395 SSA form now, before we handle jump threading. This simplifies
11396 interactions between rewriting of _DECL nodes into SSA form
11397 and rewriting SSA_NAME nodes into SSA form after block
11398 duplication and CFG manipulation. */
11399 update_ssa (TODO_update_ssa
);
11401 finalize_jump_threads ();
11403 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
11404 CFG in a broken state and requires a cfg_cleanup run. */
11405 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
11407 /* Update SWITCH_EXPR case label vector. */
11408 FOR_EACH_VEC_ELT (to_update_switch_stmts
, i
, su
)
11411 size_t n
= TREE_VEC_LENGTH (su
->vec
);
11413 gimple_switch_set_num_labels (su
->stmt
, n
);
11414 for (j
= 0; j
< n
; j
++)
11415 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
11416 /* As we may have replaced the default label with a regular one
11417 make sure to make it a real default label again. This ensures
11418 optimal expansion. */
11419 label
= gimple_switch_label (su
->stmt
, 0);
11420 CASE_LOW (label
) = NULL_TREE
;
11421 CASE_HIGH (label
) = NULL_TREE
;
11424 if (to_remove_edges
.length () > 0)
11426 free_dominance_info (CDI_DOMINATORS
);
11427 loops_state_set (LOOPS_NEED_FIXUP
);
11430 to_remove_edges
.release ();
11431 to_update_switch_stmts
.release ();
11432 threadedge_finalize_values ();
11435 loop_optimizer_finalize ();
11441 const pass_data pass_data_vrp
=
11443 GIMPLE_PASS
, /* type */
11445 OPTGROUP_NONE
, /* optinfo_flags */
11446 TV_TREE_VRP
, /* tv_id */
11447 PROP_ssa
, /* properties_required */
11448 0, /* properties_provided */
11449 0, /* properties_destroyed */
11450 0, /* todo_flags_start */
11451 ( TODO_cleanup_cfg
| TODO_update_ssa
), /* todo_flags_finish */
11454 class pass_vrp
: public gimple_opt_pass
11457 pass_vrp (gcc::context
*ctxt
)
11458 : gimple_opt_pass (pass_data_vrp
, ctxt
), warn_array_bounds_p (false)
11461 /* opt_pass methods: */
11462 opt_pass
* clone () { return new pass_vrp (m_ctxt
); }
11463 void set_pass_param (unsigned int n
, bool param
)
11465 gcc_assert (n
== 0);
11466 warn_array_bounds_p
= param
;
11468 virtual bool gate (function
*) { return flag_tree_vrp
!= 0; }
11469 virtual unsigned int execute (function
*)
11470 { return execute_vrp (warn_array_bounds_p
); }
11473 bool warn_array_bounds_p
;
11474 }; // class pass_vrp
11476 } // anon namespace
11479 make_pass_vrp (gcc::context
*ctxt
)
11481 return new pass_vrp (ctxt
);
11486 const pass_data pass_data_early_vrp
=
11488 GIMPLE_PASS
, /* type */
11490 OPTGROUP_NONE
, /* optinfo_flags */
11491 TV_TREE_EARLY_VRP
, /* tv_id */
11492 PROP_ssa
, /* properties_required */
11493 0, /* properties_provided */
11494 0, /* properties_destroyed */
11495 0, /* todo_flags_start */
11496 ( TODO_cleanup_cfg
| TODO_update_ssa
| TODO_verify_all
),
11499 class pass_early_vrp
: public gimple_opt_pass
11502 pass_early_vrp (gcc::context
*ctxt
)
11503 : gimple_opt_pass (pass_data_early_vrp
, ctxt
)
11506 /* opt_pass methods: */
11507 opt_pass
* clone () { return new pass_early_vrp (m_ctxt
); }
11508 virtual bool gate (function
*)
11510 return flag_tree_vrp
!= 0;
11512 virtual unsigned int execute (function
*)
11513 { return execute_early_vrp (); }
11515 }; // class pass_vrp
11516 } // anon namespace
11519 make_pass_early_vrp (gcc::context
*ctxt
)
11521 return new pass_early_vrp (ctxt
);