PR tree-optimization/ 79376 - wrong lower bound with %s and non-constant
[official-gcc.git] / gcc / lra.c
blob9be0053f54369e16ce3722977bfd3f9c742afe19
1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
30 as possible
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
37 generated;
38 o Some pseudos might be spilled to assign hard registers to
39 new reload pseudos;
40 o Recalculating spilled pseudo values (rematerialization);
41 o Changing spilled pseudos to stack memory or their equivalences;
42 o Allocation stack memory changes the address displacement and
43 new iteration is needed.
45 Here is block diagram of LRA passes:
47 ------------------------
48 --------------- | Undo inheritance for | ---------------
49 | Memory-memory | | spilled pseudos, | | New (and old) |
50 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
51 --------------- | the same hard regs, | | assignment |
52 Start | | and optional reloads | ---------------
53 | | ------------------------ ^
54 V | ---------------- |
55 ----------- V | Update virtual | |
56 | Remove |----> ------------>| register | |
57 | scratches | ^ | displacements | |
58 ----------- | ---------------- |
59 | | |
60 | V New |
61 | ------------ pseudos -------------------
62 | |Constraints:| or insns | Inheritance/split |
63 | | RTL |--------->| transformations |
64 | | transfor- | | in EBB scope |
65 | substi- | mations | -------------------
66 | tutions ------------
67 | | No change
68 ---------------- V
69 | Spilled pseudo | -------------------
70 | to memory |<----| Rematerialization |
71 | substitution | -------------------
72 ----------------
73 | No susbtitions
75 -------------------------
76 | Hard regs substitution, |
77 | devirtalization, and |------> Finish
78 | restoring scratches got |
79 | memory |
80 -------------------------
82 To speed up the process:
83 o We process only insns affected by changes on previous
84 iterations;
85 o We don't use DFA-infrastructure because it results in much slower
86 compiler speed than a special IR described below does;
87 o We use a special insn representation for quick access to insn
88 info which is always *synchronized* with the current RTL;
89 o Insn IR is minimized by memory. It is divided on three parts:
90 o one specific for each insn in RTL (only operand locations);
91 o one common for all insns in RTL with the same insn code
92 (different operand attributes from machine descriptions);
93 o one oriented for maintenance of live info (list of pseudos).
94 o Pseudo data:
95 o all insns where the pseudo is referenced;
96 o live info (conflicting hard regs, live ranges, # of
97 references etc);
98 o data used for assigning (preferred hard regs, costs etc).
100 This file contains LRA driver, LRA utility functions and data, and
101 code for dealing with scratches. */
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "backend.h"
107 #include "target.h"
108 #include "rtl.h"
109 #include "tree.h"
110 #include "predict.h"
111 #include "df.h"
112 #include "memmodel.h"
113 #include "tm_p.h"
114 #include "optabs.h"
115 #include "regs.h"
116 #include "ira.h"
117 #include "recog.h"
118 #include "expr.h"
119 #include "cfgrtl.h"
120 #include "cfgbuild.h"
121 #include "lra.h"
122 #include "lra-int.h"
123 #include "print-rtl.h"
125 /* Dump bitmap SET with TITLE and BB INDEX. */
126 void
127 lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
129 unsigned int i;
130 int count;
131 bitmap_iterator bi;
132 static const int max_nums_on_line = 10;
134 if (bitmap_empty_p (set))
135 return;
136 fprintf (lra_dump_file, " %s %d:", title, index);
137 fprintf (lra_dump_file, "\n");
138 count = max_nums_on_line + 1;
139 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
141 if (count > max_nums_on_line)
143 fprintf (lra_dump_file, "\n ");
144 count = 0;
146 fprintf (lra_dump_file, " %4u", i);
147 count++;
149 fprintf (lra_dump_file, "\n");
152 /* Hard registers currently not available for allocation. It can
153 changed after some hard registers become not eliminable. */
154 HARD_REG_SET lra_no_alloc_regs;
156 static int get_new_reg_value (void);
157 static void expand_reg_info (void);
158 static void invalidate_insn_recog_data (int);
159 static int get_insn_freq (rtx_insn *);
160 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
161 rtx_insn *, int);
163 /* Expand all regno related info needed for LRA. */
164 static void
165 expand_reg_data (int old)
167 resize_reg_info ();
168 expand_reg_info ();
169 ira_expand_reg_equiv ();
170 for (int i = (int) max_reg_num () - 1; i >= old; i--)
171 lra_change_class (i, ALL_REGS, " Set", true);
174 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
175 or of VOIDmode, use MD_MODE for the new reg. Initialize its
176 register class to RCLASS. Print message about assigning class
177 RCLASS containing new register name TITLE unless it is NULL. Use
178 attributes of ORIGINAL if it is a register. The created register
179 will have unique held value. */
181 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
182 enum reg_class rclass, const char *title)
184 machine_mode mode;
185 rtx new_reg;
187 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
188 mode = md_mode;
189 lra_assert (mode != VOIDmode);
190 new_reg = gen_reg_rtx (mode);
191 if (original == NULL_RTX || ! REG_P (original))
193 if (lra_dump_file != NULL)
194 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
196 else
198 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
199 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
200 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
201 REG_POINTER (new_reg) = REG_POINTER (original);
202 REG_ATTRS (new_reg) = REG_ATTRS (original);
203 if (lra_dump_file != NULL)
204 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
205 REGNO (new_reg), REGNO (original));
207 if (lra_dump_file != NULL)
209 if (title != NULL)
210 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
211 reg_class_names[rclass], *title == '\0' ? "" : " ",
212 title, REGNO (new_reg));
213 fprintf (lra_dump_file, "\n");
215 expand_reg_data (max_reg_num ());
216 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
217 return new_reg;
220 /* Analogous to the previous function but also inherits value of
221 ORIGINAL. */
223 lra_create_new_reg (machine_mode md_mode, rtx original,
224 enum reg_class rclass, const char *title)
226 rtx new_reg;
228 new_reg
229 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
230 if (original != NULL_RTX && REG_P (original))
231 lra_assign_reg_val (REGNO (original), REGNO (new_reg));
232 return new_reg;
235 /* Set up for REGNO unique hold value. */
236 void
237 lra_set_regno_unique_value (int regno)
239 lra_reg_info[regno].val = get_new_reg_value ();
242 /* Invalidate INSN related info used by LRA. The info should never be
243 used after that. */
244 void
245 lra_invalidate_insn_data (rtx_insn *insn)
247 lra_invalidate_insn_regno_info (insn);
248 invalidate_insn_recog_data (INSN_UID (insn));
251 /* Mark INSN deleted and invalidate the insn related info used by
252 LRA. */
253 void
254 lra_set_insn_deleted (rtx_insn *insn)
256 lra_invalidate_insn_data (insn);
257 SET_INSN_DELETED (insn);
260 /* Delete an unneeded INSN and any previous insns who sole purpose is
261 loading data that is dead in INSN. */
262 void
263 lra_delete_dead_insn (rtx_insn *insn)
265 rtx_insn *prev = prev_real_insn (insn);
266 rtx prev_dest;
268 /* If the previous insn sets a register that dies in our insn,
269 delete it too. */
270 if (prev && GET_CODE (PATTERN (prev)) == SET
271 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
272 && reg_mentioned_p (prev_dest, PATTERN (insn))
273 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
274 && ! side_effects_p (SET_SRC (PATTERN (prev))))
275 lra_delete_dead_insn (prev);
277 lra_set_insn_deleted (insn);
280 /* Emit insn x = y + z. Return NULL if we failed to do it.
281 Otherwise, return the insn. We don't use gen_add3_insn as it might
282 clobber CC. */
283 static rtx_insn *
284 emit_add3_insn (rtx x, rtx y, rtx z)
286 rtx_insn *last;
288 last = get_last_insn ();
290 if (have_addptr3_insn (x, y, z))
292 rtx_insn *insn = gen_addptr3_insn (x, y, z);
294 /* If the target provides an "addptr" pattern it hopefully does
295 for a reason. So falling back to the normal add would be
296 a bug. */
297 lra_assert (insn != NULL_RTX);
298 emit_insn (insn);
299 return insn;
302 rtx_insn *insn = emit_insn (gen_rtx_SET (x, gen_rtx_PLUS (GET_MODE (y),
303 y, z)));
304 if (recog_memoized (insn) < 0)
306 delete_insns_since (last);
307 insn = NULL;
309 return insn;
312 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
313 last resort. */
314 static rtx_insn *
315 emit_add2_insn (rtx x, rtx y)
317 rtx_insn *insn = emit_add3_insn (x, x, y);
318 if (insn == NULL_RTX)
320 insn = gen_add2_insn (x, y);
321 if (insn != NULL_RTX)
322 emit_insn (insn);
324 return insn;
327 /* Target checks operands through operand predicates to recognize an
328 insn. We should have a special precaution to generate add insns
329 which are frequent results of elimination.
331 Emit insns for x = y + z. X can be used to store intermediate
332 values and should be not in Y and Z when we use X to store an
333 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
334 + disp] where base and index are registers, disp and scale are
335 constants. Y should contain base if it is present, Z should
336 contain disp if any. index[*scale] can be part of Y or Z. */
337 void
338 lra_emit_add (rtx x, rtx y, rtx z)
340 int old;
341 rtx_insn *last;
342 rtx a1, a2, base, index, disp, scale, index_scale;
343 bool ok_p;
345 rtx_insn *add3_insn = emit_add3_insn (x, y, z);
346 old = max_reg_num ();
347 if (add3_insn != NULL)
349 else
351 disp = a2 = NULL_RTX;
352 if (GET_CODE (y) == PLUS)
354 a1 = XEXP (y, 0);
355 a2 = XEXP (y, 1);
356 disp = z;
358 else
360 a1 = y;
361 if (CONSTANT_P (z))
362 disp = z;
363 else
364 a2 = z;
366 index_scale = scale = NULL_RTX;
367 if (GET_CODE (a1) == MULT)
369 index_scale = a1;
370 index = XEXP (a1, 0);
371 scale = XEXP (a1, 1);
372 base = a2;
374 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
376 index_scale = a2;
377 index = XEXP (a2, 0);
378 scale = XEXP (a2, 1);
379 base = a1;
381 else
383 base = a1;
384 index = a2;
386 if ((base != NULL_RTX && ! (REG_P (base) || GET_CODE (base) == SUBREG))
387 || (index != NULL_RTX
388 && ! (REG_P (index) || GET_CODE (index) == SUBREG))
389 || (disp != NULL_RTX && ! CONSTANT_P (disp))
390 || (scale != NULL_RTX && ! CONSTANT_P (scale)))
392 /* Probably we have no 3 op add. Last chance is to use 2-op
393 add insn. To succeed, don't move Z to X as an address
394 segment always comes in Y. Otherwise, we might fail when
395 adding the address segment to register. */
396 lra_assert (x != y && x != z);
397 emit_move_insn (x, y);
398 rtx_insn *insn = emit_add2_insn (x, z);
399 lra_assert (insn != NULL_RTX);
401 else
403 if (index_scale == NULL_RTX)
404 index_scale = index;
405 if (disp == NULL_RTX)
407 /* Generate x = index_scale; x = x + base. */
408 lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
409 emit_move_insn (x, index_scale);
410 rtx_insn *insn = emit_add2_insn (x, base);
411 lra_assert (insn != NULL_RTX);
413 else if (scale == NULL_RTX)
415 /* Try x = base + disp. */
416 lra_assert (base != NULL_RTX);
417 last = get_last_insn ();
418 rtx_insn *move_insn =
419 emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
420 if (recog_memoized (move_insn) < 0)
422 delete_insns_since (last);
423 /* Generate x = disp; x = x + base. */
424 emit_move_insn (x, disp);
425 rtx_insn *add2_insn = emit_add2_insn (x, base);
426 lra_assert (add2_insn != NULL_RTX);
428 /* Generate x = x + index. */
429 if (index != NULL_RTX)
431 rtx_insn *insn = emit_add2_insn (x, index);
432 lra_assert (insn != NULL_RTX);
435 else
437 /* Try x = index_scale; x = x + disp; x = x + base. */
438 last = get_last_insn ();
439 rtx_insn *move_insn = emit_move_insn (x, index_scale);
440 ok_p = false;
441 if (recog_memoized (move_insn) >= 0)
443 rtx_insn *insn = emit_add2_insn (x, disp);
444 if (insn != NULL_RTX)
446 if (base == NULL_RTX)
447 ok_p = true;
448 else
450 insn = emit_add2_insn (x, base);
451 if (insn != NULL_RTX)
452 ok_p = true;
456 if (! ok_p)
458 rtx_insn *insn;
460 delete_insns_since (last);
461 /* Generate x = disp; x = x + base; x = x + index_scale. */
462 emit_move_insn (x, disp);
463 if (base != NULL_RTX)
465 insn = emit_add2_insn (x, base);
466 lra_assert (insn != NULL_RTX);
468 insn = emit_add2_insn (x, index_scale);
469 lra_assert (insn != NULL_RTX);
474 /* Functions emit_... can create pseudos -- so expand the pseudo
475 data. */
476 if (old != max_reg_num ())
477 expand_reg_data (old);
480 /* The number of emitted reload insns so far. */
481 int lra_curr_reload_num;
483 /* Emit x := y, processing special case when y = u + v or y = u + v *
484 scale + w through emit_add (Y can be an address which is base +
485 index reg * scale + displacement in general case). X may be used
486 as intermediate result therefore it should be not in Y. */
487 void
488 lra_emit_move (rtx x, rtx y)
490 int old;
492 if (GET_CODE (y) != PLUS)
494 if (rtx_equal_p (x, y))
495 return;
496 old = max_reg_num ();
497 emit_move_insn (x, y);
498 if (REG_P (x))
499 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
500 /* Function emit_move can create pseudos -- so expand the pseudo
501 data. */
502 if (old != max_reg_num ())
503 expand_reg_data (old);
504 return;
506 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
509 /* Update insn operands which are duplication of operands whose
510 numbers are in array of NOPS (with end marker -1). The insn is
511 represented by its LRA internal representation ID. */
512 void
513 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
515 int i, j, nop;
516 struct lra_static_insn_data *static_id = id->insn_static_data;
518 for (i = 0; i < static_id->n_dups; i++)
519 for (j = 0; (nop = nops[j]) >= 0; j++)
520 if (static_id->dup_num[i] == nop)
521 *id->dup_loc[i] = *id->operand_loc[nop];
526 /* This page contains code dealing with info about registers in the
527 insns. */
529 /* Pools for insn reg info. */
530 object_allocator<lra_insn_reg> lra_insn_reg_pool ("insn regs");
532 /* Create LRA insn related info about a reference to REGNO in INSN with
533 TYPE (in/out/inout), biggest reference mode MODE, flag that it is
534 reference through subreg (SUBREG_P), flag that is early clobbered
535 in the insn (EARLY_CLOBBER), and reference to the next insn reg
536 info (NEXT). */
537 static struct lra_insn_reg *
538 new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
539 machine_mode mode,
540 bool subreg_p, bool early_clobber, struct lra_insn_reg *next)
542 lra_insn_reg *ir = lra_insn_reg_pool.allocate ();
543 ir->type = type;
544 ir->biggest_mode = mode;
545 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (lra_reg_info[regno].biggest_mode)
546 && NONDEBUG_INSN_P (insn))
547 lra_reg_info[regno].biggest_mode = mode;
548 ir->subreg_p = subreg_p;
549 ir->early_clobber = early_clobber;
550 ir->regno = regno;
551 ir->next = next;
552 return ir;
555 /* Free insn reg info list IR. */
556 static void
557 free_insn_regs (struct lra_insn_reg *ir)
559 struct lra_insn_reg *next_ir;
561 for (; ir != NULL; ir = next_ir)
563 next_ir = ir->next;
564 lra_insn_reg_pool.remove (ir);
568 /* Finish pool for insn reg info. */
569 static void
570 finish_insn_regs (void)
572 lra_insn_reg_pool.release ();
577 /* This page contains code dealing LRA insn info (or in other words
578 LRA internal insn representation). */
580 /* Map INSN_CODE -> the static insn data. This info is valid during
581 all translation unit. */
582 struct lra_static_insn_data *insn_code_data[NUM_INSN_CODES];
584 /* Debug insns are represented as a special insn with one input
585 operand which is RTL expression in var_location. */
587 /* The following data are used as static insn operand data for all
588 debug insns. If structure lra_operand_data is changed, the
589 initializer should be changed too. */
590 static struct lra_operand_data debug_operand_data =
592 NULL, /* alternative */
593 VOIDmode, /* We are not interesting in the operand mode. */
594 OP_IN,
595 0, 0, 0, 0
598 /* The following data are used as static insn data for all debug
599 insns. If structure lra_static_insn_data is changed, the
600 initializer should be changed too. */
601 static struct lra_static_insn_data debug_insn_static_data =
603 &debug_operand_data,
604 0, /* Duplication operands #. */
605 -1, /* Commutative operand #. */
606 1, /* Operands #. There is only one operand which is debug RTL
607 expression. */
608 0, /* Duplications #. */
609 0, /* Alternatives #. We are not interesting in alternatives
610 because we does not proceed debug_insns for reloads. */
611 NULL, /* Hard registers referenced in machine description. */
612 NULL /* Descriptions of operands in alternatives. */
615 /* Called once per compiler work to initialize some LRA data related
616 to insns. */
617 static void
618 init_insn_code_data_once (void)
620 memset (insn_code_data, 0, sizeof (insn_code_data));
623 /* Called once per compiler work to finalize some LRA data related to
624 insns. */
625 static void
626 finish_insn_code_data_once (void)
628 for (unsigned int i = 0; i < NUM_INSN_CODES; i++)
630 if (insn_code_data[i] != NULL)
631 free (insn_code_data[i]);
635 /* Return static insn data, allocate and setup if necessary. Although
636 dup_num is static data (it depends only on icode), to set it up we
637 need to extract insn first. So recog_data should be valid for
638 normal insn (ICODE >= 0) before the call. */
639 static struct lra_static_insn_data *
640 get_static_insn_data (int icode, int nop, int ndup, int nalt)
642 struct lra_static_insn_data *data;
643 size_t n_bytes;
645 lra_assert (icode < (int) NUM_INSN_CODES);
646 if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
647 return data;
648 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
649 n_bytes = sizeof (struct lra_static_insn_data)
650 + sizeof (struct lra_operand_data) * nop
651 + sizeof (int) * ndup;
652 data = XNEWVAR (struct lra_static_insn_data, n_bytes);
653 data->operand_alternative = NULL;
654 data->n_operands = nop;
655 data->n_dups = ndup;
656 data->n_alternatives = nalt;
657 data->operand = ((struct lra_operand_data *)
658 ((char *) data + sizeof (struct lra_static_insn_data)));
659 data->dup_num = ((int *) ((char *) data->operand
660 + sizeof (struct lra_operand_data) * nop));
661 if (icode >= 0)
663 int i;
665 insn_code_data[icode] = data;
666 for (i = 0; i < nop; i++)
668 data->operand[i].constraint
669 = insn_data[icode].operand[i].constraint;
670 data->operand[i].mode = insn_data[icode].operand[i].mode;
671 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
672 data->operand[i].is_operator
673 = insn_data[icode].operand[i].is_operator;
674 data->operand[i].type
675 = (data->operand[i].constraint[0] == '=' ? OP_OUT
676 : data->operand[i].constraint[0] == '+' ? OP_INOUT
677 : OP_IN);
678 data->operand[i].is_address = false;
680 for (i = 0; i < ndup; i++)
681 data->dup_num[i] = recog_data.dup_num[i];
683 return data;
686 /* The current length of the following array. */
687 int lra_insn_recog_data_len;
689 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
690 lra_insn_recog_data_t *lra_insn_recog_data;
692 /* Initialize LRA data about insns. */
693 static void
694 init_insn_recog_data (void)
696 lra_insn_recog_data_len = 0;
697 lra_insn_recog_data = NULL;
700 /* Expand, if necessary, LRA data about insns. */
701 static void
702 check_and_expand_insn_recog_data (int index)
704 int i, old;
706 if (lra_insn_recog_data_len > index)
707 return;
708 old = lra_insn_recog_data_len;
709 lra_insn_recog_data_len = index * 3 / 2 + 1;
710 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
711 lra_insn_recog_data,
712 lra_insn_recog_data_len);
713 for (i = old; i < lra_insn_recog_data_len; i++)
714 lra_insn_recog_data[i] = NULL;
717 /* Finish LRA DATA about insn. */
718 static void
719 free_insn_recog_data (lra_insn_recog_data_t data)
721 if (data->operand_loc != NULL)
722 free (data->operand_loc);
723 if (data->dup_loc != NULL)
724 free (data->dup_loc);
725 if (data->arg_hard_regs != NULL)
726 free (data->arg_hard_regs);
727 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
729 if (data->insn_static_data->operand_alternative != NULL)
730 free (const_cast <operand_alternative *>
731 (data->insn_static_data->operand_alternative));
732 free_insn_regs (data->insn_static_data->hard_regs);
733 free (data->insn_static_data);
735 free_insn_regs (data->regs);
736 data->regs = NULL;
737 free (data);
740 /* Pools for copies. */
741 static object_allocator<lra_copy> lra_copy_pool ("lra copies");
743 /* Finish LRA data about all insns. */
744 static void
745 finish_insn_recog_data (void)
747 int i;
748 lra_insn_recog_data_t data;
750 for (i = 0; i < lra_insn_recog_data_len; i++)
751 if ((data = lra_insn_recog_data[i]) != NULL)
752 free_insn_recog_data (data);
753 finish_insn_regs ();
754 lra_copy_pool.release ();
755 lra_insn_reg_pool.release ();
756 free (lra_insn_recog_data);
759 /* Setup info about operands in alternatives of LRA DATA of insn. */
760 static void
761 setup_operand_alternative (lra_insn_recog_data_t data,
762 const operand_alternative *op_alt)
764 int i, j, nop, nalt;
765 int icode = data->icode;
766 struct lra_static_insn_data *static_data = data->insn_static_data;
768 static_data->commutative = -1;
769 nop = static_data->n_operands;
770 nalt = static_data->n_alternatives;
771 static_data->operand_alternative = op_alt;
772 for (i = 0; i < nop; i++)
774 static_data->operand[i].early_clobber = false;
775 static_data->operand[i].is_address = false;
776 if (static_data->operand[i].constraint[0] == '%')
778 /* We currently only support one commutative pair of operands. */
779 if (static_data->commutative < 0)
780 static_data->commutative = i;
781 else
782 lra_assert (icode < 0); /* Asm */
783 /* The last operand should not be marked commutative. */
784 lra_assert (i != nop - 1);
787 for (j = 0; j < nalt; j++)
788 for (i = 0; i < nop; i++, op_alt++)
790 static_data->operand[i].early_clobber |= op_alt->earlyclobber;
791 static_data->operand[i].is_address |= op_alt->is_address;
795 /* Recursively process X and collect info about registers, which are
796 not the insn operands, in X with TYPE (in/out/inout) and flag that
797 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
798 to LIST. X is a part of insn given by DATA. Return the result
799 list. */
800 static struct lra_insn_reg *
801 collect_non_operand_hard_regs (rtx *x, lra_insn_recog_data_t data,
802 struct lra_insn_reg *list,
803 enum op_type type, bool early_clobber)
805 int i, j, regno, last;
806 bool subreg_p;
807 machine_mode mode;
808 struct lra_insn_reg *curr;
809 rtx op = *x;
810 enum rtx_code code = GET_CODE (op);
811 const char *fmt = GET_RTX_FORMAT (code);
813 for (i = 0; i < data->insn_static_data->n_operands; i++)
814 if (x == data->operand_loc[i])
815 /* It is an operand loc. Stop here. */
816 return list;
817 for (i = 0; i < data->insn_static_data->n_dups; i++)
818 if (x == data->dup_loc[i])
819 /* It is a dup loc. Stop here. */
820 return list;
821 mode = GET_MODE (op);
822 subreg_p = false;
823 if (code == SUBREG)
825 op = SUBREG_REG (op);
826 code = GET_CODE (op);
827 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (op)))
829 mode = GET_MODE (op);
830 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
831 subreg_p = true;
834 if (REG_P (op))
836 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
837 return list;
838 /* Process all regs even unallocatable ones as we need info
839 about all regs for rematerialization pass. */
840 for (last = regno + hard_regno_nregs[regno][mode];
841 regno < last;
842 regno++)
844 for (curr = list; curr != NULL; curr = curr->next)
845 if (curr->regno == regno && curr->subreg_p == subreg_p
846 && curr->biggest_mode == mode)
848 if (curr->type != type)
849 curr->type = OP_INOUT;
850 if (curr->early_clobber != early_clobber)
851 curr->early_clobber = true;
852 break;
854 if (curr == NULL)
856 /* This is a new hard regno or the info can not be
857 integrated into the found structure. */
858 #ifdef STACK_REGS
859 early_clobber
860 = (early_clobber
861 /* This clobber is to inform popping floating
862 point stack only. */
863 && ! (FIRST_STACK_REG <= regno
864 && regno <= LAST_STACK_REG));
865 #endif
866 list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
867 early_clobber, list);
870 return list;
872 switch (code)
874 case SET:
875 list = collect_non_operand_hard_regs (&SET_DEST (op), data,
876 list, OP_OUT, false);
877 list = collect_non_operand_hard_regs (&SET_SRC (op), data,
878 list, OP_IN, false);
879 break;
880 case CLOBBER:
881 /* We treat clobber of non-operand hard registers as early
882 clobber (the behavior is expected from asm). */
883 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
884 list, OP_OUT, true);
885 break;
886 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
887 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
888 list, OP_INOUT, false);
889 break;
890 case PRE_MODIFY: case POST_MODIFY:
891 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
892 list, OP_INOUT, false);
893 list = collect_non_operand_hard_regs (&XEXP (op, 1), data,
894 list, OP_IN, false);
895 break;
896 default:
897 fmt = GET_RTX_FORMAT (code);
898 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
900 if (fmt[i] == 'e')
901 list = collect_non_operand_hard_regs (&XEXP (op, i), data,
902 list, OP_IN, false);
903 else if (fmt[i] == 'E')
904 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
905 list = collect_non_operand_hard_regs (&XVECEXP (op, i, j), data,
906 list, OP_IN, false);
909 return list;
912 /* Set up and return info about INSN. Set up the info if it is not set up
913 yet. */
914 lra_insn_recog_data_t
915 lra_set_insn_recog_data (rtx_insn *insn)
917 lra_insn_recog_data_t data;
918 int i, n, icode;
919 rtx **locs;
920 unsigned int uid = INSN_UID (insn);
921 struct lra_static_insn_data *insn_static_data;
923 check_and_expand_insn_recog_data (uid);
924 if (DEBUG_INSN_P (insn))
925 icode = -1;
926 else
928 icode = INSN_CODE (insn);
929 if (icode < 0)
930 /* It might be a new simple insn which is not recognized yet. */
931 INSN_CODE (insn) = icode = recog_memoized (insn);
933 data = XNEW (struct lra_insn_recog_data);
934 lra_insn_recog_data[uid] = data;
935 data->insn = insn;
936 data->used_insn_alternative = -1;
937 data->icode = icode;
938 data->regs = NULL;
939 if (DEBUG_INSN_P (insn))
941 data->insn_static_data = &debug_insn_static_data;
942 data->dup_loc = NULL;
943 data->arg_hard_regs = NULL;
944 data->preferred_alternatives = ALL_ALTERNATIVES;
945 data->operand_loc = XNEWVEC (rtx *, 1);
946 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
947 return data;
949 if (icode < 0)
951 int nop, nalt;
952 machine_mode operand_mode[MAX_RECOG_OPERANDS];
953 const char *constraints[MAX_RECOG_OPERANDS];
955 nop = asm_noperands (PATTERN (insn));
956 data->operand_loc = data->dup_loc = NULL;
957 nalt = 1;
958 if (nop < 0)
960 /* It is a special insn like USE or CLOBBER. We should
961 recognize any regular insn otherwise LRA can do nothing
962 with this insn. */
963 gcc_assert (GET_CODE (PATTERN (insn)) == USE
964 || GET_CODE (PATTERN (insn)) == CLOBBER
965 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
966 data->insn_static_data = insn_static_data
967 = get_static_insn_data (-1, 0, 0, nalt);
969 else
971 /* expand_asm_operands makes sure there aren't too many
972 operands. */
973 lra_assert (nop <= MAX_RECOG_OPERANDS);
974 if (nop != 0)
975 data->operand_loc = XNEWVEC (rtx *, nop);
976 /* Now get the operand values and constraints out of the
977 insn. */
978 decode_asm_operands (PATTERN (insn), NULL,
979 data->operand_loc,
980 constraints, operand_mode, NULL);
981 if (nop > 0)
983 const char *p = recog_data.constraints[0];
985 for (p = constraints[0]; *p; p++)
986 nalt += *p == ',';
988 data->insn_static_data = insn_static_data
989 = get_static_insn_data (-1, nop, 0, nalt);
990 for (i = 0; i < nop; i++)
992 insn_static_data->operand[i].mode = operand_mode[i];
993 insn_static_data->operand[i].constraint = constraints[i];
994 insn_static_data->operand[i].strict_low = false;
995 insn_static_data->operand[i].is_operator = false;
996 insn_static_data->operand[i].is_address = false;
999 for (i = 0; i < insn_static_data->n_operands; i++)
1000 insn_static_data->operand[i].type
1001 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1002 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1003 : OP_IN);
1004 data->preferred_alternatives = ALL_ALTERNATIVES;
1005 if (nop > 0)
1007 operand_alternative *op_alt = XCNEWVEC (operand_alternative,
1008 nalt * nop);
1009 preprocess_constraints (nop, nalt, constraints, op_alt);
1010 setup_operand_alternative (data, op_alt);
1013 else
1015 insn_extract (insn);
1016 data->insn_static_data = insn_static_data
1017 = get_static_insn_data (icode, insn_data[icode].n_operands,
1018 insn_data[icode].n_dups,
1019 insn_data[icode].n_alternatives);
1020 n = insn_static_data->n_operands;
1021 if (n == 0)
1022 locs = NULL;
1023 else
1025 locs = XNEWVEC (rtx *, n);
1026 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1028 data->operand_loc = locs;
1029 n = insn_static_data->n_dups;
1030 if (n == 0)
1031 locs = NULL;
1032 else
1034 locs = XNEWVEC (rtx *, n);
1035 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1037 data->dup_loc = locs;
1038 data->preferred_alternatives = get_preferred_alternatives (insn);
1039 const operand_alternative *op_alt = preprocess_insn_constraints (icode);
1040 if (!insn_static_data->operand_alternative)
1041 setup_operand_alternative (data, op_alt);
1042 else if (op_alt != insn_static_data->operand_alternative)
1043 insn_static_data->operand_alternative = op_alt;
1045 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1046 insn_static_data->hard_regs = NULL;
1047 else
1048 insn_static_data->hard_regs
1049 = collect_non_operand_hard_regs (&PATTERN (insn), data,
1050 NULL, OP_IN, false);
1051 data->arg_hard_regs = NULL;
1052 if (CALL_P (insn))
1054 bool use_p;
1055 rtx link;
1056 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1058 n_hard_regs = 0;
1059 /* Finding implicit hard register usage. We believe it will be
1060 not changed whatever transformations are used. Call insns
1061 are such example. */
1062 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1063 link != NULL_RTX;
1064 link = XEXP (link, 1))
1065 if (((use_p = GET_CODE (XEXP (link, 0)) == USE)
1066 || GET_CODE (XEXP (link, 0)) == CLOBBER)
1067 && REG_P (XEXP (XEXP (link, 0), 0)))
1069 regno = REGNO (XEXP (XEXP (link, 0), 0));
1070 lra_assert (regno < FIRST_PSEUDO_REGISTER);
1071 /* It is an argument register. */
1072 for (i = REG_NREGS (XEXP (XEXP (link, 0), 0)) - 1; i >= 0; i--)
1073 arg_hard_regs[n_hard_regs++]
1074 = regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER);
1076 if (n_hard_regs != 0)
1078 arg_hard_regs[n_hard_regs++] = -1;
1079 data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1080 memcpy (data->arg_hard_regs, arg_hard_regs,
1081 sizeof (int) * n_hard_regs);
1084 /* Some output operand can be recognized only from the context not
1085 from the constraints which are empty in this case. Call insn may
1086 contain a hard register in set destination with empty constraint
1087 and extract_insn treats them as an input. */
1088 for (i = 0; i < insn_static_data->n_operands; i++)
1090 int j;
1091 rtx pat, set;
1092 struct lra_operand_data *operand = &insn_static_data->operand[i];
1094 /* ??? Should we treat 'X' the same way. It looks to me that
1095 'X' means anything and empty constraint means we do not
1096 care. */
1097 if (operand->type != OP_IN || *operand->constraint != '\0'
1098 || operand->is_operator)
1099 continue;
1100 pat = PATTERN (insn);
1101 if (GET_CODE (pat) == SET)
1103 if (data->operand_loc[i] != &SET_DEST (pat))
1104 continue;
1106 else if (GET_CODE (pat) == PARALLEL)
1108 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1110 set = XVECEXP (PATTERN (insn), 0, j);
1111 if (GET_CODE (set) == SET
1112 && &SET_DEST (set) == data->operand_loc[i])
1113 break;
1115 if (j < 0)
1116 continue;
1118 else
1119 continue;
1120 operand->type = OP_OUT;
1122 return data;
1125 /* Return info about insn give by UID. The info should be already set
1126 up. */
1127 static lra_insn_recog_data_t
1128 get_insn_recog_data_by_uid (int uid)
1130 lra_insn_recog_data_t data;
1132 data = lra_insn_recog_data[uid];
1133 lra_assert (data != NULL);
1134 return data;
1137 /* Invalidate all info about insn given by its UID. */
1138 static void
1139 invalidate_insn_recog_data (int uid)
1141 lra_insn_recog_data_t data;
1143 data = lra_insn_recog_data[uid];
1144 lra_assert (data != NULL);
1145 free_insn_recog_data (data);
1146 lra_insn_recog_data[uid] = NULL;
1149 /* Update all the insn info about INSN. It is usually called when
1150 something in the insn was changed. Return the updated info. */
1151 lra_insn_recog_data_t
1152 lra_update_insn_recog_data (rtx_insn *insn)
1154 lra_insn_recog_data_t data;
1155 int n;
1156 unsigned int uid = INSN_UID (insn);
1157 struct lra_static_insn_data *insn_static_data;
1158 HOST_WIDE_INT sp_offset = 0;
1160 check_and_expand_insn_recog_data (uid);
1161 if ((data = lra_insn_recog_data[uid]) != NULL
1162 && data->icode != INSN_CODE (insn))
1164 sp_offset = data->sp_offset;
1165 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1166 invalidate_insn_recog_data (uid);
1167 data = NULL;
1169 if (data == NULL)
1171 data = lra_get_insn_recog_data (insn);
1172 /* Initiate or restore SP offset. */
1173 data->sp_offset = sp_offset;
1174 return data;
1176 insn_static_data = data->insn_static_data;
1177 data->used_insn_alternative = -1;
1178 if (DEBUG_INSN_P (insn))
1179 return data;
1180 if (data->icode < 0)
1182 int nop;
1183 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1184 const char *constraints[MAX_RECOG_OPERANDS];
1186 nop = asm_noperands (PATTERN (insn));
1187 if (nop >= 0)
1189 lra_assert (nop == data->insn_static_data->n_operands);
1190 /* Now get the operand values and constraints out of the
1191 insn. */
1192 decode_asm_operands (PATTERN (insn), NULL,
1193 data->operand_loc,
1194 constraints, operand_mode, NULL);
1196 if (flag_checking)
1197 for (int i = 0; i < nop; i++)
1198 lra_assert
1199 (insn_static_data->operand[i].mode == operand_mode[i]
1200 && insn_static_data->operand[i].constraint == constraints[i]
1201 && ! insn_static_data->operand[i].is_operator);
1204 if (flag_checking)
1205 for (int i = 0; i < insn_static_data->n_operands; i++)
1206 lra_assert
1207 (insn_static_data->operand[i].type
1208 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1209 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1210 : OP_IN));
1212 else
1214 insn_extract (insn);
1215 n = insn_static_data->n_operands;
1216 if (n != 0)
1217 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1218 n = insn_static_data->n_dups;
1219 if (n != 0)
1220 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1221 lra_assert (check_bool_attrs (insn));
1223 return data;
1226 /* Set up that INSN is using alternative ALT now. */
1227 void
1228 lra_set_used_insn_alternative (rtx_insn *insn, int alt)
1230 lra_insn_recog_data_t data;
1232 data = lra_get_insn_recog_data (insn);
1233 data->used_insn_alternative = alt;
1236 /* Set up that insn with UID is using alternative ALT now. The insn
1237 info should be already set up. */
1238 void
1239 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1241 lra_insn_recog_data_t data;
1243 check_and_expand_insn_recog_data (uid);
1244 data = lra_insn_recog_data[uid];
1245 lra_assert (data != NULL);
1246 data->used_insn_alternative = alt;
1251 /* This page contains code dealing with common register info and
1252 pseudo copies. */
1254 /* The size of the following array. */
1255 static int reg_info_size;
1256 /* Common info about each register. */
1257 struct lra_reg *lra_reg_info;
1259 /* Last register value. */
1260 static int last_reg_value;
1262 /* Return new register value. */
1263 static int
1264 get_new_reg_value (void)
1266 return ++last_reg_value;
1269 /* Vec referring to pseudo copies. */
1270 static vec<lra_copy_t> copy_vec;
1272 /* Initialize I-th element of lra_reg_info. */
1273 static inline void
1274 initialize_lra_reg_info_element (int i)
1276 bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1277 #ifdef STACK_REGS
1278 lra_reg_info[i].no_stack_p = false;
1279 #endif
1280 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1281 CLEAR_HARD_REG_SET (lra_reg_info[i].actual_call_used_reg_set);
1282 lra_reg_info[i].preferred_hard_regno1 = -1;
1283 lra_reg_info[i].preferred_hard_regno2 = -1;
1284 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1285 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1286 lra_reg_info[i].biggest_mode = VOIDmode;
1287 lra_reg_info[i].live_ranges = NULL;
1288 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1289 lra_reg_info[i].last_reload = 0;
1290 lra_reg_info[i].restore_rtx = NULL_RTX;
1291 lra_reg_info[i].val = get_new_reg_value ();
1292 lra_reg_info[i].offset = 0;
1293 lra_reg_info[i].copies = NULL;
1296 /* Initialize common reg info and copies. */
1297 static void
1298 init_reg_info (void)
1300 int i;
1302 last_reg_value = 0;
1303 reg_info_size = max_reg_num () * 3 / 2 + 1;
1304 lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size);
1305 for (i = 0; i < reg_info_size; i++)
1306 initialize_lra_reg_info_element (i);
1307 copy_vec.truncate (0);
1311 /* Finish common reg info and copies. */
1312 static void
1313 finish_reg_info (void)
1315 int i;
1317 for (i = 0; i < reg_info_size; i++)
1318 bitmap_clear (&lra_reg_info[i].insn_bitmap);
1319 free (lra_reg_info);
1320 reg_info_size = 0;
1323 /* Expand common reg info if it is necessary. */
1324 static void
1325 expand_reg_info (void)
1327 int i, old = reg_info_size;
1329 if (reg_info_size > max_reg_num ())
1330 return;
1331 reg_info_size = max_reg_num () * 3 / 2 + 1;
1332 lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size);
1333 for (i = old; i < reg_info_size; i++)
1334 initialize_lra_reg_info_element (i);
1337 /* Free all copies. */
1338 void
1339 lra_free_copies (void)
1341 lra_copy_t cp;
1343 while (copy_vec.length () != 0)
1345 cp = copy_vec.pop ();
1346 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1347 lra_copy_pool.remove (cp);
1351 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1352 frequency is FREQ. */
1353 void
1354 lra_create_copy (int regno1, int regno2, int freq)
1356 bool regno1_dest_p;
1357 lra_copy_t cp;
1359 lra_assert (regno1 != regno2);
1360 regno1_dest_p = true;
1361 if (regno1 > regno2)
1363 std::swap (regno1, regno2);
1364 regno1_dest_p = false;
1366 cp = lra_copy_pool.allocate ();
1367 copy_vec.safe_push (cp);
1368 cp->regno1_dest_p = regno1_dest_p;
1369 cp->freq = freq;
1370 cp->regno1 = regno1;
1371 cp->regno2 = regno2;
1372 cp->regno1_next = lra_reg_info[regno1].copies;
1373 lra_reg_info[regno1].copies = cp;
1374 cp->regno2_next = lra_reg_info[regno2].copies;
1375 lra_reg_info[regno2].copies = cp;
1376 if (lra_dump_file != NULL)
1377 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
1378 regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1381 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1382 NULL. */
1383 lra_copy_t
1384 lra_get_copy (int n)
1386 if (n >= (int) copy_vec.length ())
1387 return NULL;
1388 return copy_vec[n];
1393 /* This page contains code dealing with info about registers in
1394 insns. */
1396 /* Process X of insn UID recursively and add info (operand type is
1397 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1398 about registers in X to the insn DATA. */
1399 static void
1400 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x, int uid,
1401 enum op_type type, bool early_clobber)
1403 int i, j, regno;
1404 bool subreg_p;
1405 machine_mode mode;
1406 const char *fmt;
1407 enum rtx_code code;
1408 struct lra_insn_reg *curr;
1410 code = GET_CODE (x);
1411 mode = GET_MODE (x);
1412 subreg_p = false;
1413 if (GET_CODE (x) == SUBREG)
1415 x = SUBREG_REG (x);
1416 code = GET_CODE (x);
1417 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1419 mode = GET_MODE (x);
1420 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
1421 subreg_p = true;
1424 if (REG_P (x))
1426 regno = REGNO (x);
1427 /* Process all regs even unallocatable ones as we need info about
1428 all regs for rematerialization pass. */
1429 expand_reg_info ();
1430 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, uid))
1432 data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1433 early_clobber, data->regs);
1434 return;
1436 else
1438 for (curr = data->regs; curr != NULL; curr = curr->next)
1439 if (curr->regno == regno)
1441 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1442 /* The info can not be integrated into the found
1443 structure. */
1444 data->regs = new_insn_reg (data->insn, regno, type, mode,
1445 subreg_p, early_clobber,
1446 data->regs);
1447 else
1449 if (curr->type != type)
1450 curr->type = OP_INOUT;
1451 if (curr->early_clobber != early_clobber)
1452 curr->early_clobber = true;
1454 return;
1456 gcc_unreachable ();
1460 switch (code)
1462 case SET:
1463 add_regs_to_insn_regno_info (data, SET_DEST (x), uid, OP_OUT, false);
1464 add_regs_to_insn_regno_info (data, SET_SRC (x), uid, OP_IN, false);
1465 break;
1466 case CLOBBER:
1467 /* We treat clobber of non-operand hard registers as early
1468 clobber (the behavior is expected from asm). */
1469 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_OUT, true);
1470 break;
1471 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1472 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1473 break;
1474 case PRE_MODIFY: case POST_MODIFY:
1475 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1476 add_regs_to_insn_regno_info (data, XEXP (x, 1), uid, OP_IN, false);
1477 break;
1478 default:
1479 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1480 /* Some targets place small structures in registers for return
1481 values of functions, and those registers are wrapped in
1482 PARALLEL that we may see as the destination of a SET. Here
1483 is an example:
1485 (call_insn 13 12 14 2 (set (parallel:BLK [
1486 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1487 (const_int 0 [0]))
1488 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1489 (const_int 8 [0x8]))
1491 (call (mem:QI (symbol_ref:DI (... */
1492 type = OP_IN;
1493 fmt = GET_RTX_FORMAT (code);
1494 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1496 if (fmt[i] == 'e')
1497 add_regs_to_insn_regno_info (data, XEXP (x, i), uid, type, false);
1498 else if (fmt[i] == 'E')
1500 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1501 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), uid,
1502 type, false);
1508 /* Return execution frequency of INSN. */
1509 static int
1510 get_insn_freq (rtx_insn *insn)
1512 basic_block bb = BLOCK_FOR_INSN (insn);
1514 gcc_checking_assert (bb != NULL);
1515 return REG_FREQ_FROM_BB (bb);
1518 /* Invalidate all reg info of INSN with DATA and execution frequency
1519 FREQ. Update common info about the invalidated registers. */
1520 static void
1521 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
1522 int freq)
1524 int uid;
1525 bool debug_p;
1526 unsigned int i;
1527 struct lra_insn_reg *ir, *next_ir;
1529 uid = INSN_UID (insn);
1530 debug_p = DEBUG_INSN_P (insn);
1531 for (ir = data->regs; ir != NULL; ir = next_ir)
1533 i = ir->regno;
1534 next_ir = ir->next;
1535 lra_insn_reg_pool.remove (ir);
1536 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1537 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1539 lra_reg_info[i].nrefs--;
1540 lra_reg_info[i].freq -= freq;
1541 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1544 data->regs = NULL;
1547 /* Invalidate all reg info of INSN. Update common info about the
1548 invalidated registers. */
1549 void
1550 lra_invalidate_insn_regno_info (rtx_insn *insn)
1552 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1553 get_insn_freq (insn));
1556 /* Update common reg info from reg info of insn given by its DATA and
1557 execution frequency FREQ. */
1558 static void
1559 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1561 unsigned int i;
1562 struct lra_insn_reg *ir;
1564 for (ir = data->regs; ir != NULL; ir = ir->next)
1565 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1567 lra_reg_info[i].nrefs++;
1568 lra_reg_info[i].freq += freq;
1572 /* Set up insn reg info of INSN. Update common reg info from reg info
1573 of INSN. */
1574 void
1575 lra_update_insn_regno_info (rtx_insn *insn)
1577 int i, uid, freq;
1578 lra_insn_recog_data_t data;
1579 struct lra_static_insn_data *static_data;
1580 enum rtx_code code;
1581 rtx link;
1583 if (! INSN_P (insn))
1584 return;
1585 data = lra_get_insn_recog_data (insn);
1586 static_data = data->insn_static_data;
1587 freq = get_insn_freq (insn);
1588 invalidate_insn_data_regno_info (data, insn, freq);
1589 uid = INSN_UID (insn);
1590 for (i = static_data->n_operands - 1; i >= 0; i--)
1591 add_regs_to_insn_regno_info (data, *data->operand_loc[i], uid,
1592 static_data->operand[i].type,
1593 static_data->operand[i].early_clobber);
1594 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1595 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), uid,
1596 code == USE ? OP_IN : OP_OUT, false);
1597 if (CALL_P (insn))
1598 /* On some targets call insns can refer to pseudos in memory in
1599 CALL_INSN_FUNCTION_USAGE list. Process them in order to
1600 consider their occurrences in calls for different
1601 transformations (e.g. inheritance) with given pseudos. */
1602 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1603 link != NULL_RTX;
1604 link = XEXP (link, 1))
1605 if (((code = GET_CODE (XEXP (link, 0))) == USE || code == CLOBBER)
1606 && MEM_P (XEXP (XEXP (link, 0), 0)))
1607 add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), uid,
1608 code == USE ? OP_IN : OP_OUT, false);
1609 if (NONDEBUG_INSN_P (insn))
1610 setup_insn_reg_info (data, freq);
1613 /* Return reg info of insn given by it UID. */
1614 struct lra_insn_reg *
1615 lra_get_insn_regs (int uid)
1617 lra_insn_recog_data_t data;
1619 data = get_insn_recog_data_by_uid (uid);
1620 return data->regs;
1625 /* Recursive hash function for RTL X. */
1626 hashval_t
1627 lra_rtx_hash (rtx x)
1629 int i, j;
1630 enum rtx_code code;
1631 const char *fmt;
1632 hashval_t val = 0;
1634 if (x == 0)
1635 return val;
1637 code = GET_CODE (x);
1638 val += (int) code + 4095;
1640 /* Some RTL can be compared nonrecursively. */
1641 switch (code)
1643 case REG:
1644 return val + REGNO (x);
1646 case LABEL_REF:
1647 return iterative_hash_object (XEXP (x, 0), val);
1649 case SYMBOL_REF:
1650 return iterative_hash_object (XSTR (x, 0), val);
1652 case SCRATCH:
1653 case CONST_DOUBLE:
1654 case CONST_INT:
1655 case CONST_VECTOR:
1656 return val;
1658 default:
1659 break;
1662 /* Hash the elements. */
1663 fmt = GET_RTX_FORMAT (code);
1664 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1666 switch (fmt[i])
1668 case 'w':
1669 val += XWINT (x, i);
1670 break;
1672 case 'n':
1673 case 'i':
1674 val += XINT (x, i);
1675 break;
1677 case 'V':
1678 case 'E':
1679 val += XVECLEN (x, i);
1681 for (j = 0; j < XVECLEN (x, i); j++)
1682 val += lra_rtx_hash (XVECEXP (x, i, j));
1683 break;
1685 case 'e':
1686 val += lra_rtx_hash (XEXP (x, i));
1687 break;
1689 case 'S':
1690 case 's':
1691 val += htab_hash_string (XSTR (x, i));
1692 break;
1694 case 'u':
1695 case '0':
1696 case 't':
1697 break;
1699 /* It is believed that rtx's at this level will never
1700 contain anything but integers and other rtx's, except for
1701 within LABEL_REFs and SYMBOL_REFs. */
1702 default:
1703 abort ();
1706 return val;
1711 /* This page contains code dealing with stack of the insns which
1712 should be processed by the next constraint pass. */
1714 /* Bitmap used to put an insn on the stack only in one exemplar. */
1715 static sbitmap lra_constraint_insn_stack_bitmap;
1717 /* The stack itself. */
1718 vec<rtx_insn *> lra_constraint_insn_stack;
1720 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1721 info for INSN, otherwise only update it if INSN is not already on the
1722 stack. */
1723 static inline void
1724 lra_push_insn_1 (rtx_insn *insn, bool always_update)
1726 unsigned int uid = INSN_UID (insn);
1727 if (always_update)
1728 lra_update_insn_regno_info (insn);
1729 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1730 lra_constraint_insn_stack_bitmap =
1731 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1732 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1733 return;
1734 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1735 if (! always_update)
1736 lra_update_insn_regno_info (insn);
1737 lra_constraint_insn_stack.safe_push (insn);
1740 /* Put INSN on the stack. */
1741 void
1742 lra_push_insn (rtx_insn *insn)
1744 lra_push_insn_1 (insn, false);
1747 /* Put INSN on the stack and update its reg info. */
1748 void
1749 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
1751 lra_push_insn_1 (insn, true);
1754 /* Put insn with UID on the stack. */
1755 void
1756 lra_push_insn_by_uid (unsigned int uid)
1758 lra_push_insn (lra_insn_recog_data[uid]->insn);
1761 /* Take the last-inserted insns off the stack and return it. */
1762 rtx_insn *
1763 lra_pop_insn (void)
1765 rtx_insn *insn = lra_constraint_insn_stack.pop ();
1766 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1767 return insn;
1770 /* Return the current size of the insn stack. */
1771 unsigned int
1772 lra_insn_stack_length (void)
1774 return lra_constraint_insn_stack.length ();
1777 /* Push insns FROM to TO (excluding it) going in reverse order. */
1778 static void
1779 push_insns (rtx_insn *from, rtx_insn *to)
1781 rtx_insn *insn;
1783 if (from == NULL_RTX)
1784 return;
1785 for (insn = from; insn != to; insn = PREV_INSN (insn))
1786 if (INSN_P (insn))
1787 lra_push_insn (insn);
1790 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1791 taken from the next BB insn after LAST or zero if there in such
1792 insn. */
1793 static void
1794 setup_sp_offset (rtx_insn *from, rtx_insn *last)
1796 rtx_insn *before = next_nonnote_insn_bb (last);
1797 HOST_WIDE_INT offset = (before == NULL_RTX || ! INSN_P (before)
1798 ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1800 for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1801 lra_get_insn_recog_data (insn)->sp_offset = offset;
1804 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1805 insns onto the stack. Print about emitting the insns with
1806 TITLE. */
1807 void
1808 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
1809 const char *title)
1811 rtx_insn *last;
1813 if (before == NULL_RTX && after == NULL_RTX)
1814 return;
1815 if (lra_dump_file != NULL)
1817 dump_insn_slim (lra_dump_file, insn);
1818 if (before != NULL_RTX)
1820 fprintf (lra_dump_file," %s before:\n", title);
1821 dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
1823 if (after != NULL_RTX)
1825 fprintf (lra_dump_file, " %s after:\n", title);
1826 dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
1828 fprintf (lra_dump_file, "\n");
1830 if (before != NULL_RTX)
1832 if (cfun->can_throw_non_call_exceptions)
1833 copy_reg_eh_region_note_forward (insn, before, NULL);
1834 emit_insn_before (before, insn);
1835 push_insns (PREV_INSN (insn), PREV_INSN (before));
1836 setup_sp_offset (before, PREV_INSN (insn));
1838 if (after != NULL_RTX)
1840 if (cfun->can_throw_non_call_exceptions)
1841 copy_reg_eh_region_note_forward (insn, after, NULL);
1842 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1844 emit_insn_after (after, insn);
1845 push_insns (last, insn);
1846 setup_sp_offset (after, last);
1848 if (cfun->can_throw_non_call_exceptions)
1850 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1851 if (note && !insn_could_throw_p (insn))
1852 remove_note (insn, note);
1857 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1858 register NEW_REG. Try to simplify subreg of constant if SUBREG_P.
1859 Return true if any change was made. */
1860 bool
1861 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p)
1863 rtx x = *loc;
1864 bool result = false;
1865 enum rtx_code code;
1866 const char *fmt;
1867 int i, j;
1869 if (x == NULL_RTX)
1870 return false;
1872 code = GET_CODE (x);
1873 if (code == SUBREG && subreg_p)
1875 rtx subst, inner = SUBREG_REG (x);
1876 /* Transform subreg of constant while we still have inner mode
1877 of the subreg. The subreg internal should not be an insn
1878 operand. */
1879 if (REG_P (inner) && (int) REGNO (inner) == old_regno
1880 && CONSTANT_P (new_reg)
1881 && (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner),
1882 SUBREG_BYTE (x))) != NULL_RTX)
1884 *loc = subst;
1885 return true;
1889 else if (code == REG && (int) REGNO (x) == old_regno)
1891 machine_mode mode = GET_MODE (x);
1892 machine_mode inner_mode = GET_MODE (new_reg);
1894 if (mode != inner_mode
1895 && ! (CONST_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
1897 if (GET_MODE_SIZE (mode) >= GET_MODE_SIZE (inner_mode)
1898 || ! SCALAR_INT_MODE_P (inner_mode))
1899 new_reg = gen_rtx_SUBREG (mode, new_reg, 0);
1900 else
1901 new_reg = gen_lowpart_SUBREG (mode, new_reg);
1903 *loc = new_reg;
1904 return true;
1907 /* Scan all the operand sub-expressions. */
1908 fmt = GET_RTX_FORMAT (code);
1909 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1911 if (fmt[i] == 'e')
1913 if (lra_substitute_pseudo (&XEXP (x, i), old_regno,
1914 new_reg, subreg_p))
1915 result = true;
1917 else if (fmt[i] == 'E')
1919 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1920 if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno,
1921 new_reg, subreg_p))
1922 result = true;
1925 return result;
1928 /* Call lra_substitute_pseudo within an insn. Try to simplify subreg
1929 of constant if SUBREG_P. This won't update the insn ptr, just the
1930 contents of the insn. */
1931 bool
1932 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno,
1933 rtx new_reg, bool subreg_p)
1935 rtx loc = insn;
1936 return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p);
1941 /* This page contains code dealing with scratches (changing them onto
1942 pseudos and restoring them from the pseudos).
1944 We change scratches into pseudos at the beginning of LRA to
1945 simplify dealing with them (conflicts, hard register assignments).
1947 If the pseudo denoting scratch was spilled it means that we do need
1948 a hard register for it. Such pseudos are transformed back to
1949 scratches at the end of LRA. */
1951 /* Description of location of a former scratch operand. */
1952 struct sloc
1954 rtx_insn *insn; /* Insn where the scratch was. */
1955 int nop; /* Number of the operand which was a scratch. */
1958 typedef struct sloc *sloc_t;
1960 /* Locations of the former scratches. */
1961 static vec<sloc_t> scratches;
1963 /* Bitmap of scratch regnos. */
1964 static bitmap_head scratch_bitmap;
1966 /* Bitmap of scratch operands. */
1967 static bitmap_head scratch_operand_bitmap;
1969 /* Return true if pseudo REGNO is made of SCRATCH. */
1970 bool
1971 lra_former_scratch_p (int regno)
1973 return bitmap_bit_p (&scratch_bitmap, regno);
1976 /* Return true if the operand NOP of INSN is a former scratch. */
1977 bool
1978 lra_former_scratch_operand_p (rtx_insn *insn, int nop)
1980 return bitmap_bit_p (&scratch_operand_bitmap,
1981 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
1984 /* Register operand NOP in INSN as a former scratch. It will be
1985 changed to scratch back, if it is necessary, at the LRA end. */
1986 void
1987 lra_register_new_scratch_op (rtx_insn *insn, int nop)
1989 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
1990 rtx op = *id->operand_loc[nop];
1991 sloc_t loc = XNEW (struct sloc);
1992 lra_assert (REG_P (op));
1993 loc->insn = insn;
1994 loc->nop = nop;
1995 scratches.safe_push (loc);
1996 bitmap_set_bit (&scratch_bitmap, REGNO (op));
1997 bitmap_set_bit (&scratch_operand_bitmap,
1998 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
1999 add_reg_note (insn, REG_UNUSED, op);
2002 /* Change scratches onto pseudos and save their location. */
2003 static void
2004 remove_scratches (void)
2006 int i;
2007 bool insn_changed_p;
2008 basic_block bb;
2009 rtx_insn *insn;
2010 rtx reg;
2011 lra_insn_recog_data_t id;
2012 struct lra_static_insn_data *static_id;
2014 scratches.create (get_max_uid ());
2015 bitmap_initialize (&scratch_bitmap, &reg_obstack);
2016 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
2017 FOR_EACH_BB_FN (bb, cfun)
2018 FOR_BB_INSNS (bb, insn)
2019 if (INSN_P (insn))
2021 id = lra_get_insn_recog_data (insn);
2022 static_id = id->insn_static_data;
2023 insn_changed_p = false;
2024 for (i = 0; i < static_id->n_operands; i++)
2025 if (GET_CODE (*id->operand_loc[i]) == SCRATCH
2026 && GET_MODE (*id->operand_loc[i]) != VOIDmode)
2028 insn_changed_p = true;
2029 *id->operand_loc[i] = reg
2030 = lra_create_new_reg (static_id->operand[i].mode,
2031 *id->operand_loc[i], ALL_REGS, NULL);
2032 lra_register_new_scratch_op (insn, i);
2033 if (lra_dump_file != NULL)
2034 fprintf (lra_dump_file,
2035 "Removing SCRATCH in insn #%u (nop %d)\n",
2036 INSN_UID (insn), i);
2038 if (insn_changed_p)
2039 /* Because we might use DF right after caller-saves sub-pass
2040 we need to keep DF info up to date. */
2041 df_insn_rescan (insn);
2045 /* Changes pseudos created by function remove_scratches onto scratches. */
2046 static void
2047 restore_scratches (void)
2049 int regno;
2050 unsigned i;
2051 sloc_t loc;
2052 rtx_insn *last = NULL;
2053 lra_insn_recog_data_t id = NULL;
2055 for (i = 0; scratches.iterate (i, &loc); i++)
2057 /* Ignore already deleted insns. */
2058 if (NOTE_P (loc->insn)
2059 && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
2060 continue;
2061 if (last != loc->insn)
2063 last = loc->insn;
2064 id = lra_get_insn_recog_data (last);
2066 if (REG_P (*id->operand_loc[loc->nop])
2067 && ((regno = REGNO (*id->operand_loc[loc->nop]))
2068 >= FIRST_PSEUDO_REGISTER)
2069 && lra_get_regno_hard_regno (regno) < 0)
2071 /* It should be only case when scratch register with chosen
2072 constraint 'X' did not get memory or hard register. */
2073 lra_assert (lra_former_scratch_p (regno));
2074 *id->operand_loc[loc->nop]
2075 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
2076 lra_update_dup (id, loc->nop);
2077 if (lra_dump_file != NULL)
2078 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
2079 INSN_UID (loc->insn), loc->nop);
2082 for (i = 0; scratches.iterate (i, &loc); i++)
2083 free (loc);
2084 scratches.release ();
2085 bitmap_clear (&scratch_bitmap);
2086 bitmap_clear (&scratch_operand_bitmap);
2091 /* Function checks RTL for correctness. If FINAL_P is true, it is
2092 done at the end of LRA and the check is more rigorous. */
2093 static void
2094 check_rtl (bool final_p)
2096 basic_block bb;
2097 rtx_insn *insn;
2099 lra_assert (! final_p || reload_completed);
2100 FOR_EACH_BB_FN (bb, cfun)
2101 FOR_BB_INSNS (bb, insn)
2102 if (NONDEBUG_INSN_P (insn)
2103 && GET_CODE (PATTERN (insn)) != USE
2104 && GET_CODE (PATTERN (insn)) != CLOBBER
2105 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
2107 if (final_p)
2109 extract_constrain_insn (insn);
2110 continue;
2112 /* LRA code is based on assumption that all addresses can be
2113 correctly decomposed. LRA can generate reloads for
2114 decomposable addresses. The decomposition code checks the
2115 correctness of the addresses. So we don't need to check
2116 the addresses here. Don't call insn_invalid_p here, it can
2117 change the code at this stage. */
2118 if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2119 fatal_insn_not_found (insn);
2123 /* Determine if the current function has an exception receiver block
2124 that reaches the exit block via non-exceptional edges */
2125 static bool
2126 has_nonexceptional_receiver (void)
2128 edge e;
2129 edge_iterator ei;
2130 basic_block *tos, *worklist, bb;
2132 /* If we're not optimizing, then just err on the safe side. */
2133 if (!optimize)
2134 return true;
2136 /* First determine which blocks can reach exit via normal paths. */
2137 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2139 FOR_EACH_BB_FN (bb, cfun)
2140 bb->flags &= ~BB_REACHABLE;
2142 /* Place the exit block on our worklist. */
2143 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2144 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2146 /* Iterate: find everything reachable from what we've already seen. */
2147 while (tos != worklist)
2149 bb = *--tos;
2151 FOR_EACH_EDGE (e, ei, bb->preds)
2152 if (e->flags & EDGE_ABNORMAL)
2154 free (worklist);
2155 return true;
2157 else
2159 basic_block src = e->src;
2161 if (!(src->flags & BB_REACHABLE))
2163 src->flags |= BB_REACHABLE;
2164 *tos++ = src;
2168 free (worklist);
2169 /* No exceptional block reached exit unexceptionally. */
2170 return false;
2174 /* Process recursively X of INSN and add REG_INC notes if necessary. */
2175 static void
2176 add_auto_inc_notes (rtx_insn *insn, rtx x)
2178 enum rtx_code code = GET_CODE (x);
2179 const char *fmt;
2180 int i, j;
2182 if (code == MEM && auto_inc_p (XEXP (x, 0)))
2184 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2185 return;
2188 /* Scan all X sub-expressions. */
2189 fmt = GET_RTX_FORMAT (code);
2190 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2192 if (fmt[i] == 'e')
2193 add_auto_inc_notes (insn, XEXP (x, i));
2194 else if (fmt[i] == 'E')
2195 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2196 add_auto_inc_notes (insn, XVECEXP (x, i, j));
2201 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2202 We change pseudos by hard registers without notification of DF and
2203 that can make the notes obsolete. DF-infrastructure does not deal
2204 with REG_INC notes -- so we should regenerate them here. */
2205 static void
2206 update_inc_notes (void)
2208 rtx *pnote;
2209 basic_block bb;
2210 rtx_insn *insn;
2212 FOR_EACH_BB_FN (bb, cfun)
2213 FOR_BB_INSNS (bb, insn)
2214 if (NONDEBUG_INSN_P (insn))
2216 pnote = &REG_NOTES (insn);
2217 while (*pnote != 0)
2219 if (REG_NOTE_KIND (*pnote) == REG_DEAD
2220 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2221 || REG_NOTE_KIND (*pnote) == REG_INC)
2222 *pnote = XEXP (*pnote, 1);
2223 else
2224 pnote = &XEXP (*pnote, 1);
2227 if (AUTO_INC_DEC)
2228 add_auto_inc_notes (insn, PATTERN (insn));
2232 /* Set to 1 while in lra. */
2233 int lra_in_progress;
2235 /* Start of pseudo regnos before the LRA. */
2236 int lra_new_regno_start;
2238 /* Start of reload pseudo regnos before the new spill pass. */
2239 int lra_constraint_new_regno_start;
2241 /* Avoid spilling pseudos with regno more than the following value if
2242 it is possible. */
2243 int lra_bad_spill_regno_start;
2245 /* Inheritance pseudo regnos before the new spill pass. */
2246 bitmap_head lra_inheritance_pseudos;
2248 /* Split regnos before the new spill pass. */
2249 bitmap_head lra_split_regs;
2251 /* Reload pseudo regnos before the new assignmnet pass which still can
2252 be spilled after the assinment pass as memory is also accepted in
2253 insns for the reload pseudos. */
2254 bitmap_head lra_optional_reload_pseudos;
2256 /* Pseudo regnos used for subreg reloads before the new assignment
2257 pass. Such pseudos still can be spilled after the assinment
2258 pass. */
2259 bitmap_head lra_subreg_reload_pseudos;
2261 /* File used for output of LRA debug information. */
2262 FILE *lra_dump_file;
2264 /* True if we should try spill into registers of different classes
2265 instead of memory. */
2266 bool lra_reg_spill_p;
2268 /* Set up value LRA_REG_SPILL_P. */
2269 static void
2270 setup_reg_spill_flag (void)
2272 int cl, mode;
2274 if (targetm.spill_class != NULL)
2275 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2276 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2277 if (targetm.spill_class ((enum reg_class) cl,
2278 (machine_mode) mode) != NO_REGS)
2280 lra_reg_spill_p = true;
2281 return;
2283 lra_reg_spill_p = false;
2286 /* True if the current function is too big to use regular algorithms
2287 in LRA. In other words, we should use simpler and faster algorithms
2288 in LRA. It also means we should not worry about generation code
2289 for caller saves. The value is set up in IRA. */
2290 bool lra_simple_p;
2292 /* Major LRA entry function. F is a file should be used to dump LRA
2293 debug info. */
2294 void
2295 lra (FILE *f)
2297 int i;
2298 bool live_p, inserted_p;
2300 lra_dump_file = f;
2302 timevar_push (TV_LRA);
2304 /* Make sure that the last insn is a note. Some subsequent passes
2305 need it. */
2306 emit_note (NOTE_INSN_DELETED);
2308 COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs);
2310 init_reg_info ();
2311 expand_reg_info ();
2313 init_insn_recog_data ();
2315 /* Some quick check on RTL generated by previous passes. */
2316 if (flag_checking)
2317 check_rtl (false);
2319 lra_in_progress = 1;
2321 lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
2322 lra_assignment_iter = lra_assignment_iter_after_spill = 0;
2323 lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2324 lra_rematerialization_iter = 0;
2326 setup_reg_spill_flag ();
2328 /* Function remove_scratches can creates new pseudos for clobbers --
2329 so set up lra_constraint_new_regno_start before its call to
2330 permit changing reg classes for pseudos created by this
2331 simplification. */
2332 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2333 lra_bad_spill_regno_start = INT_MAX;
2334 remove_scratches ();
2336 /* A function that has a non-local label that can reach the exit
2337 block via non-exceptional paths must save all call-saved
2338 registers. */
2339 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2340 crtl->saves_all_registers = 1;
2342 if (crtl->saves_all_registers)
2343 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2344 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
2345 df_set_regs_ever_live (i, true);
2347 /* We don't DF from now and avoid its using because it is to
2348 expensive when a lot of RTL changes are made. */
2349 df_set_flags (DF_NO_INSN_RESCAN);
2350 lra_constraint_insn_stack.create (get_max_uid ());
2351 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2352 bitmap_clear (lra_constraint_insn_stack_bitmap);
2353 lra_live_ranges_init ();
2354 lra_constraints_init ();
2355 lra_curr_reload_num = 0;
2356 push_insns (get_last_insn (), NULL);
2357 /* It is needed for the 1st coalescing. */
2358 bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2359 bitmap_initialize (&lra_split_regs, &reg_obstack);
2360 bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2361 bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2362 live_p = false;
2363 if (get_frame_size () != 0 && crtl->stack_alignment_needed)
2364 /* If we have a stack frame, we must align it now. The stack size
2365 may be a part of the offset computation for register
2366 elimination. */
2367 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2368 lra_init_equiv ();
2369 for (;;)
2371 for (;;)
2373 /* We should try to assign hard registers to scratches even
2374 if there were no RTL transformations in lra_constraints.
2375 Also we should check IRA assignments on the first
2376 iteration as they can be wrong because of early clobbers
2377 operands which are ignored in IRA. */
2378 if (! lra_constraints (lra_constraint_iter == 0)
2379 && lra_constraint_iter > 1)
2380 break;
2381 /* Constraint transformations may result in that eliminable
2382 hard regs become uneliminable and pseudos which use them
2383 should be spilled. It is better to do it before pseudo
2384 assignments.
2386 For example, rs6000 can make
2387 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2388 to use a constant pool. */
2389 lra_eliminate (false, false);
2390 /* Do inheritance only for regular algorithms. */
2391 if (! lra_simple_p)
2393 if (flag_ipa_ra)
2395 if (live_p)
2396 lra_clear_live_ranges ();
2397 /* As a side-effect of lra_create_live_ranges, we calculate
2398 actual_call_used_reg_set, which is needed during
2399 lra_inheritance. */
2400 lra_create_live_ranges (true, true);
2401 live_p = true;
2403 lra_inheritance ();
2405 if (live_p)
2406 lra_clear_live_ranges ();
2407 /* We need live ranges for lra_assign -- so build them. But
2408 don't remove dead insns or change global live info as we
2409 can undo inheritance transformations after inheritance
2410 pseudo assigning. */
2411 lra_create_live_ranges (true, false);
2412 live_p = true;
2413 /* If we don't spill non-reload and non-inheritance pseudos,
2414 there is no sense to run memory-memory move coalescing.
2415 If inheritance pseudos were spilled, the memory-memory
2416 moves involving them will be removed by pass undoing
2417 inheritance. */
2418 if (lra_simple_p)
2419 lra_assign ();
2420 else
2422 bool spill_p = !lra_assign ();
2424 if (lra_undo_inheritance ())
2425 live_p = false;
2426 if (spill_p)
2428 if (! live_p)
2430 lra_create_live_ranges (true, true);
2431 live_p = true;
2433 if (lra_coalesce ())
2434 live_p = false;
2436 if (! live_p)
2437 lra_clear_live_ranges ();
2440 /* Don't clear optional reloads bitmap until all constraints are
2441 satisfied as we need to differ them from regular reloads. */
2442 bitmap_clear (&lra_optional_reload_pseudos);
2443 bitmap_clear (&lra_subreg_reload_pseudos);
2444 bitmap_clear (&lra_inheritance_pseudos);
2445 bitmap_clear (&lra_split_regs);
2446 if (! live_p)
2448 /* We need full live info for spilling pseudos into
2449 registers instead of memory. */
2450 lra_create_live_ranges (lra_reg_spill_p, true);
2451 live_p = true;
2453 /* We should check necessity for spilling here as the above live
2454 range pass can remove spilled pseudos. */
2455 if (! lra_need_for_spills_p ())
2456 break;
2457 /* Now we know what pseudos should be spilled. Try to
2458 rematerialize them first. */
2459 if (lra_remat ())
2461 /* We need full live info -- see the comment above. */
2462 lra_create_live_ranges (lra_reg_spill_p, true);
2463 live_p = true;
2464 if (! lra_need_for_spills_p ())
2465 break;
2467 lra_spill ();
2468 /* Assignment of stack slots changes elimination offsets for
2469 some eliminations. So update the offsets here. */
2470 lra_eliminate (false, false);
2471 lra_constraint_new_regno_start = max_reg_num ();
2472 if (lra_bad_spill_regno_start == INT_MAX
2473 && lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
2474 && lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
2475 /* After switching off inheritance and rematerialization
2476 passes, avoid spilling reload pseudos will be created to
2477 prevent LRA cycling in some complicated cases. */
2478 lra_bad_spill_regno_start = lra_constraint_new_regno_start;
2479 lra_assignment_iter_after_spill = 0;
2481 restore_scratches ();
2482 lra_eliminate (true, false);
2483 lra_final_code_change ();
2484 lra_in_progress = 0;
2485 if (live_p)
2486 lra_clear_live_ranges ();
2487 lra_live_ranges_finish ();
2488 lra_constraints_finish ();
2489 finish_reg_info ();
2490 sbitmap_free (lra_constraint_insn_stack_bitmap);
2491 lra_constraint_insn_stack.release ();
2492 finish_insn_recog_data ();
2493 regstat_free_n_sets_and_refs ();
2494 regstat_free_ri ();
2495 reload_completed = 1;
2496 update_inc_notes ();
2498 inserted_p = fixup_abnormal_edges ();
2500 /* We've possibly turned single trapping insn into multiple ones. */
2501 if (cfun->can_throw_non_call_exceptions)
2503 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2504 bitmap_ones (blocks);
2505 find_many_sub_basic_blocks (blocks);
2508 if (inserted_p)
2509 commit_edge_insertions ();
2511 /* Replacing pseudos with their memory equivalents might have
2512 created shared rtx. Subsequent passes would get confused
2513 by this, so unshare everything here. */
2514 unshare_all_rtl_again (get_insns ());
2516 if (flag_checking)
2517 check_rtl (true);
2519 timevar_pop (TV_LRA);
2522 /* Called once per compiler to initialize LRA data once. */
2523 void
2524 lra_init_once (void)
2526 init_insn_code_data_once ();
2529 /* Called once per compiler to finish LRA data which are initialize
2530 once. */
2531 void
2532 lra_finish_once (void)
2534 finish_insn_code_data_once ();