* tree-data-ref.c (free_data_refs): Free each data_reference
[official-gcc.git] / gcc / reload.c
blobeec1b0fcf5290906a473e5d560cf087a6acc91b1
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 /* True if X is a constant that can be forced into the constant pool. */
112 #define CONST_POOL_OK_P(X) \
113 (CONSTANT_P (X) \
114 && GET_CODE (X) != HIGH \
115 && !targetm.cannot_force_const_mem (X))
117 /* All reloads of the current insn are recorded here. See reload.h for
118 comments. */
119 int n_reloads;
120 struct reload rld[MAX_RELOADS];
122 /* All the "earlyclobber" operands of the current insn
123 are recorded here. */
124 int n_earlyclobbers;
125 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
127 int reload_n_operands;
129 /* Replacing reloads.
131 If `replace_reloads' is nonzero, then as each reload is recorded
132 an entry is made for it in the table `replacements'.
133 Then later `subst_reloads' can look through that table and
134 perform all the replacements needed. */
136 /* Nonzero means record the places to replace. */
137 static int replace_reloads;
139 /* Each replacement is recorded with a structure like this. */
140 struct replacement
142 rtx *where; /* Location to store in */
143 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
144 a SUBREG; 0 otherwise. */
145 int what; /* which reload this is for */
146 enum machine_mode mode; /* mode it must have */
149 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
151 /* Number of replacements currently recorded. */
152 static int n_replacements;
154 /* Used to track what is modified by an operand. */
155 struct decomposition
157 int reg_flag; /* Nonzero if referencing a register. */
158 int safe; /* Nonzero if this can't conflict with anything. */
159 rtx base; /* Base address for MEM. */
160 HOST_WIDE_INT start; /* Starting offset or register number. */
161 HOST_WIDE_INT end; /* Ending offset or register number. */
164 #ifdef SECONDARY_MEMORY_NEEDED
166 /* Save MEMs needed to copy from one class of registers to another. One MEM
167 is used per mode, but normally only one or two modes are ever used.
169 We keep two versions, before and after register elimination. The one
170 after register elimination is record separately for each operand. This
171 is done in case the address is not valid to be sure that we separately
172 reload each. */
174 static rtx secondary_memlocs[NUM_MACHINE_MODES];
175 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
176 static int secondary_memlocs_elim_used = 0;
177 #endif
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (REG_P (x) \
207 ? REG_P (y) && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *);
242 #endif
243 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
244 int, unsigned int);
245 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
246 static void push_replacement (rtx *, int, enum machine_mode);
247 static void dup_replacements (rtx *, rtx *);
248 static void combine_reloads (void);
249 static int find_reusable_reload (rtx *, rtx, enum reg_class,
250 enum reload_type, int, int);
251 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
252 enum machine_mode, enum reg_class, int, int);
253 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
254 static struct decomposition decompose (rtx);
255 static int immune_p (rtx, rtx, struct decomposition);
256 static int alternative_allows_memconst (const char *, int);
257 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
258 int *);
259 static rtx make_memloc (rtx, int);
260 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
261 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
262 int, enum reload_type, int, rtx);
263 static rtx subst_reg_equivs (rtx, rtx);
264 static rtx subst_indexed_address (rtx);
265 static void update_auto_inc_notes (rtx, int, int);
266 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
267 int, enum reload_type,int, rtx);
268 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
269 enum machine_mode, int,
270 enum reload_type, int);
271 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
272 int, rtx);
273 static void copy_replacements_1 (rtx *, rtx *, int);
274 static int find_inc_amount (rtx, rtx);
275 static int refers_to_mem_for_reload_p (rtx);
276 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
277 rtx, rtx *);
279 #ifdef HAVE_SECONDARY_RELOADS
281 /* Determine if any secondary reloads are needed for loading (if IN_P is
282 nonzero) or storing (if IN_P is zero) X to or from a reload register of
283 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
284 are needed, push them.
286 Return the reload number of the secondary reload we made, or -1 if
287 we didn't need one. *PICODE is set to the insn_code to use if we do
288 need a secondary reload. */
290 static int
291 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
292 enum reg_class reload_class,
293 enum machine_mode reload_mode, enum reload_type type,
294 enum insn_code *picode)
296 enum reg_class class = NO_REGS;
297 enum machine_mode mode = reload_mode;
298 enum insn_code icode = CODE_FOR_nothing;
299 enum reg_class t_class = NO_REGS;
300 enum machine_mode t_mode = VOIDmode;
301 enum insn_code t_icode = CODE_FOR_nothing;
302 enum reload_type secondary_type;
303 int s_reload, t_reload = -1;
305 if (type == RELOAD_FOR_INPUT_ADDRESS
306 || type == RELOAD_FOR_OUTPUT_ADDRESS
307 || type == RELOAD_FOR_INPADDR_ADDRESS
308 || type == RELOAD_FOR_OUTADDR_ADDRESS)
309 secondary_type = type;
310 else
311 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
313 *picode = CODE_FOR_nothing;
315 /* If X is a paradoxical SUBREG, use the inner value to determine both the
316 mode and object being reloaded. */
317 if (GET_CODE (x) == SUBREG
318 && (GET_MODE_SIZE (GET_MODE (x))
319 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
321 x = SUBREG_REG (x);
322 reload_mode = GET_MODE (x);
325 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
326 is still a pseudo-register by now, it *must* have an equivalent MEM
327 but we don't want to assume that), use that equivalent when seeing if
328 a secondary reload is needed since whether or not a reload is needed
329 might be sensitive to the form of the MEM. */
331 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
332 && reg_equiv_mem[REGNO (x)] != 0)
333 x = reg_equiv_mem[REGNO (x)];
335 #ifdef SECONDARY_INPUT_RELOAD_CLASS
336 if (in_p)
337 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
338 #endif
340 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
341 if (! in_p)
342 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
343 #endif
345 /* If we don't need any secondary registers, done. */
346 if (class == NO_REGS)
347 return -1;
349 /* Get a possible insn to use. If the predicate doesn't accept X, don't
350 use the insn. */
352 icode = (in_p ? reload_in_optab[(int) reload_mode]
353 : reload_out_optab[(int) reload_mode]);
355 if (icode != CODE_FOR_nothing
356 && insn_data[(int) icode].operand[in_p].predicate
357 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
358 icode = CODE_FOR_nothing;
360 /* If we will be using an insn, see if it can directly handle the reload
361 register we will be using. If it can, the secondary reload is for a
362 scratch register. If it can't, we will use the secondary reload for
363 an intermediate register and require a tertiary reload for the scratch
364 register. */
366 if (icode != CODE_FOR_nothing)
368 /* If IN_P is nonzero, the reload register will be the output in
369 operand 0. If IN_P is zero, the reload register will be the input
370 in operand 1. Outputs should have an initial "=", which we must
371 skip. */
373 enum reg_class insn_class;
375 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
376 insn_class = ALL_REGS;
377 else
379 const char *insn_constraint
380 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
381 char insn_letter = *insn_constraint;
382 insn_class
383 = (insn_letter == 'r' ? GENERAL_REGS
384 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
385 insn_constraint));
387 gcc_assert (insn_class != NO_REGS);
388 gcc_assert (!in_p
389 || insn_data[(int) icode].operand[!in_p].constraint[0]
390 == '=');
393 /* The scratch register's constraint must start with "=&". */
394 gcc_assert (insn_data[(int) icode].operand[2].constraint[0] == '='
395 && insn_data[(int) icode].operand[2].constraint[1] == '&');
397 if (reg_class_subset_p (reload_class, insn_class))
398 mode = insn_data[(int) icode].operand[2].mode;
399 else
401 const char *t_constraint
402 = &insn_data[(int) icode].operand[2].constraint[2];
403 char t_letter = *t_constraint;
404 class = insn_class;
405 t_mode = insn_data[(int) icode].operand[2].mode;
406 t_class = (t_letter == 'r' ? GENERAL_REGS
407 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
408 t_constraint));
409 t_icode = icode;
410 icode = CODE_FOR_nothing;
414 /* This case isn't valid, so fail. Reload is allowed to use the same
415 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
416 in the case of a secondary register, we actually need two different
417 registers for correct code. We fail here to prevent the possibility of
418 silently generating incorrect code later.
420 The convention is that secondary input reloads are valid only if the
421 secondary_class is different from class. If you have such a case, you
422 can not use secondary reloads, you must work around the problem some
423 other way.
425 Allow this when a reload_in/out pattern is being used. I.e. assume
426 that the generated code handles this case. */
428 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
429 || t_icode != CODE_FOR_nothing);
431 /* If we need a tertiary reload, see if we have one we can reuse or else
432 make a new one. */
434 if (t_class != NO_REGS)
436 for (t_reload = 0; t_reload < n_reloads; t_reload++)
437 if (rld[t_reload].secondary_p
438 && (reg_class_subset_p (t_class, rld[t_reload].class)
439 || reg_class_subset_p (rld[t_reload].class, t_class))
440 && ((in_p && rld[t_reload].inmode == t_mode)
441 || (! in_p && rld[t_reload].outmode == t_mode))
442 && ((in_p && (rld[t_reload].secondary_in_icode
443 == CODE_FOR_nothing))
444 || (! in_p &&(rld[t_reload].secondary_out_icode
445 == CODE_FOR_nothing)))
446 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
447 && MERGABLE_RELOADS (secondary_type,
448 rld[t_reload].when_needed,
449 opnum, rld[t_reload].opnum))
451 if (in_p)
452 rld[t_reload].inmode = t_mode;
453 if (! in_p)
454 rld[t_reload].outmode = t_mode;
456 if (reg_class_subset_p (t_class, rld[t_reload].class))
457 rld[t_reload].class = t_class;
459 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
460 rld[t_reload].optional &= optional;
461 rld[t_reload].secondary_p = 1;
462 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
463 opnum, rld[t_reload].opnum))
464 rld[t_reload].when_needed = RELOAD_OTHER;
467 if (t_reload == n_reloads)
469 /* We need to make a new tertiary reload for this register class. */
470 rld[t_reload].in = rld[t_reload].out = 0;
471 rld[t_reload].class = t_class;
472 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
473 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
474 rld[t_reload].reg_rtx = 0;
475 rld[t_reload].optional = optional;
476 rld[t_reload].inc = 0;
477 /* Maybe we could combine these, but it seems too tricky. */
478 rld[t_reload].nocombine = 1;
479 rld[t_reload].in_reg = 0;
480 rld[t_reload].out_reg = 0;
481 rld[t_reload].opnum = opnum;
482 rld[t_reload].when_needed = secondary_type;
483 rld[t_reload].secondary_in_reload = -1;
484 rld[t_reload].secondary_out_reload = -1;
485 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
486 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
487 rld[t_reload].secondary_p = 1;
489 n_reloads++;
493 /* See if we can reuse an existing secondary reload. */
494 for (s_reload = 0; s_reload < n_reloads; s_reload++)
495 if (rld[s_reload].secondary_p
496 && (reg_class_subset_p (class, rld[s_reload].class)
497 || reg_class_subset_p (rld[s_reload].class, class))
498 && ((in_p && rld[s_reload].inmode == mode)
499 || (! in_p && rld[s_reload].outmode == mode))
500 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
501 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
502 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
503 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
504 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
505 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
506 opnum, rld[s_reload].opnum))
508 if (in_p)
509 rld[s_reload].inmode = mode;
510 if (! in_p)
511 rld[s_reload].outmode = mode;
513 if (reg_class_subset_p (class, rld[s_reload].class))
514 rld[s_reload].class = class;
516 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
517 rld[s_reload].optional &= optional;
518 rld[s_reload].secondary_p = 1;
519 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
520 opnum, rld[s_reload].opnum))
521 rld[s_reload].when_needed = RELOAD_OTHER;
524 if (s_reload == n_reloads)
526 #ifdef SECONDARY_MEMORY_NEEDED
527 /* If we need a memory location to copy between the two reload regs,
528 set it up now. Note that we do the input case before making
529 the reload and the output case after. This is due to the
530 way reloads are output. */
532 if (in_p && icode == CODE_FOR_nothing
533 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
535 get_secondary_mem (x, reload_mode, opnum, type);
537 /* We may have just added new reloads. Make sure we add
538 the new reload at the end. */
539 s_reload = n_reloads;
541 #endif
543 /* We need to make a new secondary reload for this register class. */
544 rld[s_reload].in = rld[s_reload].out = 0;
545 rld[s_reload].class = class;
547 rld[s_reload].inmode = in_p ? mode : VOIDmode;
548 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
549 rld[s_reload].reg_rtx = 0;
550 rld[s_reload].optional = optional;
551 rld[s_reload].inc = 0;
552 /* Maybe we could combine these, but it seems too tricky. */
553 rld[s_reload].nocombine = 1;
554 rld[s_reload].in_reg = 0;
555 rld[s_reload].out_reg = 0;
556 rld[s_reload].opnum = opnum;
557 rld[s_reload].when_needed = secondary_type;
558 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
559 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
560 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
561 rld[s_reload].secondary_out_icode
562 = ! in_p ? t_icode : CODE_FOR_nothing;
563 rld[s_reload].secondary_p = 1;
565 n_reloads++;
567 #ifdef SECONDARY_MEMORY_NEEDED
568 if (! in_p && icode == CODE_FOR_nothing
569 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
570 get_secondary_mem (x, mode, opnum, type);
571 #endif
574 *picode = icode;
575 return s_reload;
577 #endif /* HAVE_SECONDARY_RELOADS */
579 #ifdef SECONDARY_MEMORY_NEEDED
581 /* Return a memory location that will be used to copy X in mode MODE.
582 If we haven't already made a location for this mode in this insn,
583 call find_reloads_address on the location being returned. */
586 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
587 int opnum, enum reload_type type)
589 rtx loc;
590 int mem_valid;
592 /* By default, if MODE is narrower than a word, widen it to a word.
593 This is required because most machines that require these memory
594 locations do not support short load and stores from all registers
595 (e.g., FP registers). */
597 #ifdef SECONDARY_MEMORY_NEEDED_MODE
598 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
599 #else
600 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
601 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
602 #endif
604 /* If we already have made a MEM for this operand in MODE, return it. */
605 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
606 return secondary_memlocs_elim[(int) mode][opnum];
608 /* If this is the first time we've tried to get a MEM for this mode,
609 allocate a new one. `something_changed' in reload will get set
610 by noticing that the frame size has changed. */
612 if (secondary_memlocs[(int) mode] == 0)
614 #ifdef SECONDARY_MEMORY_NEEDED_RTX
615 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
616 #else
617 secondary_memlocs[(int) mode]
618 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
619 #endif
622 /* Get a version of the address doing any eliminations needed. If that
623 didn't give us a new MEM, make a new one if it isn't valid. */
625 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
626 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
628 if (! mem_valid && loc == secondary_memlocs[(int) mode])
629 loc = copy_rtx (loc);
631 /* The only time the call below will do anything is if the stack
632 offset is too large. In that case IND_LEVELS doesn't matter, so we
633 can just pass a zero. Adjust the type to be the address of the
634 corresponding object. If the address was valid, save the eliminated
635 address. If it wasn't valid, we need to make a reload each time, so
636 don't save it. */
638 if (! mem_valid)
640 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
641 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
642 : RELOAD_OTHER);
644 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
645 opnum, type, 0, 0);
648 secondary_memlocs_elim[(int) mode][opnum] = loc;
649 if (secondary_memlocs_elim_used <= (int)mode)
650 secondary_memlocs_elim_used = (int)mode + 1;
651 return loc;
654 /* Clear any secondary memory locations we've made. */
656 void
657 clear_secondary_mem (void)
659 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
661 #endif /* SECONDARY_MEMORY_NEEDED */
664 /* Find the largest class which has at least one register valid in
665 mode INNER, and which for every such register, that register number
666 plus N is also valid in OUTER (if in range) and is cheap to move
667 into REGNO. Abort if no such class exists. */
669 static enum reg_class
670 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
671 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
672 unsigned int dest_regno ATTRIBUTE_UNUSED)
674 int best_cost = -1;
675 int class;
676 int regno;
677 enum reg_class best_class = NO_REGS;
678 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
679 unsigned int best_size = 0;
680 int cost;
682 for (class = 1; class < N_REG_CLASSES; class++)
684 int bad = 0;
685 int good = 0;
686 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
687 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
689 if (HARD_REGNO_MODE_OK (regno, inner))
691 good = 1;
692 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
693 || ! HARD_REGNO_MODE_OK (regno + n, outer))
694 bad = 1;
698 if (bad || !good)
699 continue;
700 cost = REGISTER_MOVE_COST (outer, class, dest_class);
702 if ((reg_class_size[class] > best_size
703 && (best_cost < 0 || best_cost >= cost))
704 || best_cost > cost)
706 best_class = class;
707 best_size = reg_class_size[class];
708 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
712 gcc_assert (best_size != 0);
714 return best_class;
717 /* Return the number of a previously made reload that can be combined with
718 a new one, or n_reloads if none of the existing reloads can be used.
719 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
720 push_reload, they determine the kind of the new reload that we try to
721 combine. P_IN points to the corresponding value of IN, which can be
722 modified by this function.
723 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
725 static int
726 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
727 enum reload_type type, int opnum, int dont_share)
729 rtx in = *p_in;
730 int i;
731 /* We can't merge two reloads if the output of either one is
732 earlyclobbered. */
734 if (earlyclobber_operand_p (out))
735 return n_reloads;
737 /* We can use an existing reload if the class is right
738 and at least one of IN and OUT is a match
739 and the other is at worst neutral.
740 (A zero compared against anything is neutral.)
742 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
743 for the same thing since that can cause us to need more reload registers
744 than we otherwise would. */
746 for (i = 0; i < n_reloads; i++)
747 if ((reg_class_subset_p (class, rld[i].class)
748 || reg_class_subset_p (rld[i].class, class))
749 /* If the existing reload has a register, it must fit our class. */
750 && (rld[i].reg_rtx == 0
751 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
752 true_regnum (rld[i].reg_rtx)))
753 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
754 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
755 || (out != 0 && MATCHES (rld[i].out, out)
756 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
757 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
758 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
759 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
760 return i;
762 /* Reloading a plain reg for input can match a reload to postincrement
763 that reg, since the postincrement's value is the right value.
764 Likewise, it can match a preincrement reload, since we regard
765 the preincrementation as happening before any ref in this insn
766 to that register. */
767 for (i = 0; i < n_reloads; i++)
768 if ((reg_class_subset_p (class, rld[i].class)
769 || reg_class_subset_p (rld[i].class, class))
770 /* If the existing reload has a register, it must fit our
771 class. */
772 && (rld[i].reg_rtx == 0
773 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
774 true_regnum (rld[i].reg_rtx)))
775 && out == 0 && rld[i].out == 0 && rld[i].in != 0
776 && ((REG_P (in)
777 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
778 && MATCHES (XEXP (rld[i].in, 0), in))
779 || (REG_P (rld[i].in)
780 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
781 && MATCHES (XEXP (in, 0), rld[i].in)))
782 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
783 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
784 && MERGABLE_RELOADS (type, rld[i].when_needed,
785 opnum, rld[i].opnum))
787 /* Make sure reload_in ultimately has the increment,
788 not the plain register. */
789 if (REG_P (in))
790 *p_in = rld[i].in;
791 return i;
793 return n_reloads;
796 /* Return nonzero if X is a SUBREG which will require reloading of its
797 SUBREG_REG expression. */
799 static int
800 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
802 rtx inner;
804 /* Only SUBREGs are problematical. */
805 if (GET_CODE (x) != SUBREG)
806 return 0;
808 inner = SUBREG_REG (x);
810 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
811 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
812 return 1;
814 /* If INNER is not a hard register, then INNER will not need to
815 be reloaded. */
816 if (!REG_P (inner)
817 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
818 return 0;
820 /* If INNER is not ok for MODE, then INNER will need reloading. */
821 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
822 return 1;
824 /* If the outer part is a word or smaller, INNER larger than a
825 word and the number of regs for INNER is not the same as the
826 number of words in INNER, then INNER will need reloading. */
827 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
828 && output
829 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
830 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
831 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
834 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
835 requiring an extra reload register. The caller has already found that
836 IN contains some reference to REGNO, so check that we can produce the
837 new value in a single step. E.g. if we have
838 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
839 instruction that adds one to a register, this should succeed.
840 However, if we have something like
841 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
842 needs to be loaded into a register first, we need a separate reload
843 register.
844 Such PLUS reloads are generated by find_reload_address_part.
845 The out-of-range PLUS expressions are usually introduced in the instruction
846 patterns by register elimination and substituting pseudos without a home
847 by their function-invariant equivalences. */
848 static int
849 can_reload_into (rtx in, int regno, enum machine_mode mode)
851 rtx dst, test_insn;
852 int r = 0;
853 struct recog_data save_recog_data;
855 /* For matching constraints, we often get notional input reloads where
856 we want to use the original register as the reload register. I.e.
857 technically this is a non-optional input-output reload, but IN is
858 already a valid register, and has been chosen as the reload register.
859 Speed this up, since it trivially works. */
860 if (REG_P (in))
861 return 1;
863 /* To test MEMs properly, we'd have to take into account all the reloads
864 that are already scheduled, which can become quite complicated.
865 And since we've already handled address reloads for this MEM, it
866 should always succeed anyway. */
867 if (MEM_P (in))
868 return 1;
870 /* If we can make a simple SET insn that does the job, everything should
871 be fine. */
872 dst = gen_rtx_REG (mode, regno);
873 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
874 save_recog_data = recog_data;
875 if (recog_memoized (test_insn) >= 0)
877 extract_insn (test_insn);
878 r = constrain_operands (1);
880 recog_data = save_recog_data;
881 return r;
884 /* Record one reload that needs to be performed.
885 IN is an rtx saying where the data are to be found before this instruction.
886 OUT says where they must be stored after the instruction.
887 (IN is zero for data not read, and OUT is zero for data not written.)
888 INLOC and OUTLOC point to the places in the instructions where
889 IN and OUT were found.
890 If IN and OUT are both nonzero, it means the same register must be used
891 to reload both IN and OUT.
893 CLASS is a register class required for the reloaded data.
894 INMODE is the machine mode that the instruction requires
895 for the reg that replaces IN and OUTMODE is likewise for OUT.
897 If IN is zero, then OUT's location and mode should be passed as
898 INLOC and INMODE.
900 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
902 OPTIONAL nonzero means this reload does not need to be performed:
903 it can be discarded if that is more convenient.
905 OPNUM and TYPE say what the purpose of this reload is.
907 The return value is the reload-number for this reload.
909 If both IN and OUT are nonzero, in some rare cases we might
910 want to make two separate reloads. (Actually we never do this now.)
911 Therefore, the reload-number for OUT is stored in
912 output_reloadnum when we return; the return value applies to IN.
913 Usually (presently always), when IN and OUT are nonzero,
914 the two reload-numbers are equal, but the caller should be careful to
915 distinguish them. */
918 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
919 enum reg_class class, enum machine_mode inmode,
920 enum machine_mode outmode, int strict_low, int optional,
921 int opnum, enum reload_type type)
923 int i;
924 int dont_share = 0;
925 int dont_remove_subreg = 0;
926 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
927 int secondary_in_reload = -1, secondary_out_reload = -1;
928 enum insn_code secondary_in_icode = CODE_FOR_nothing;
929 enum insn_code secondary_out_icode = CODE_FOR_nothing;
931 /* INMODE and/or OUTMODE could be VOIDmode if no mode
932 has been specified for the operand. In that case,
933 use the operand's mode as the mode to reload. */
934 if (inmode == VOIDmode && in != 0)
935 inmode = GET_MODE (in);
936 if (outmode == VOIDmode && out != 0)
937 outmode = GET_MODE (out);
939 /* If IN is a pseudo register everywhere-equivalent to a constant, and
940 it is not in a hard register, reload straight from the constant,
941 since we want to get rid of such pseudo registers.
942 Often this is done earlier, but not always in find_reloads_address. */
943 if (in != 0 && REG_P (in))
945 int regno = REGNO (in);
947 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
948 && reg_equiv_constant[regno] != 0)
949 in = reg_equiv_constant[regno];
952 /* Likewise for OUT. Of course, OUT will never be equivalent to
953 an actual constant, but it might be equivalent to a memory location
954 (in the case of a parameter). */
955 if (out != 0 && REG_P (out))
957 int regno = REGNO (out);
959 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
960 && reg_equiv_constant[regno] != 0)
961 out = reg_equiv_constant[regno];
964 /* If we have a read-write operand with an address side-effect,
965 change either IN or OUT so the side-effect happens only once. */
966 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
967 switch (GET_CODE (XEXP (in, 0)))
969 case POST_INC: case POST_DEC: case POST_MODIFY:
970 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
971 break;
973 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
974 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
975 break;
977 default:
978 break;
981 /* If we are reloading a (SUBREG constant ...), really reload just the
982 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
983 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
984 a pseudo and hence will become a MEM) with M1 wider than M2 and the
985 register is a pseudo, also reload the inside expression.
986 For machines that extend byte loads, do this for any SUBREG of a pseudo
987 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
988 M2 is an integral mode that gets extended when loaded.
989 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
990 either M1 is not valid for R or M2 is wider than a word but we only
991 need one word to store an M2-sized quantity in R.
992 (However, if OUT is nonzero, we need to reload the reg *and*
993 the subreg, so do nothing here, and let following statement handle it.)
995 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
996 we can't handle it here because CONST_INT does not indicate a mode.
998 Similarly, we must reload the inside expression if we have a
999 STRICT_LOW_PART (presumably, in == out in the cas).
1001 Also reload the inner expression if it does not require a secondary
1002 reload but the SUBREG does.
1004 Finally, reload the inner expression if it is a register that is in
1005 the class whose registers cannot be referenced in a different size
1006 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1007 cannot reload just the inside since we might end up with the wrong
1008 register class. But if it is inside a STRICT_LOW_PART, we have
1009 no choice, so we hope we do get the right register class there. */
1011 if (in != 0 && GET_CODE (in) == SUBREG
1012 && (subreg_lowpart_p (in) || strict_low)
1013 #ifdef CANNOT_CHANGE_MODE_CLASS
1014 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1015 #endif
1016 && (CONSTANT_P (SUBREG_REG (in))
1017 || GET_CODE (SUBREG_REG (in)) == PLUS
1018 || strict_low
1019 || (((REG_P (SUBREG_REG (in))
1020 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1021 || MEM_P (SUBREG_REG (in)))
1022 && ((GET_MODE_SIZE (inmode)
1023 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1024 #ifdef LOAD_EXTEND_OP
1025 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1026 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1027 <= UNITS_PER_WORD)
1028 && (GET_MODE_SIZE (inmode)
1029 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1030 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1031 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1032 #endif
1033 #ifdef WORD_REGISTER_OPERATIONS
1034 || ((GET_MODE_SIZE (inmode)
1035 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1036 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1037 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1038 / UNITS_PER_WORD)))
1039 #endif
1041 || (REG_P (SUBREG_REG (in))
1042 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1043 /* The case where out is nonzero
1044 is handled differently in the following statement. */
1045 && (out == 0 || subreg_lowpart_p (in))
1046 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1047 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1048 > UNITS_PER_WORD)
1049 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1050 / UNITS_PER_WORD)
1051 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1052 [GET_MODE (SUBREG_REG (in))]))
1053 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1054 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1055 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1056 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1057 GET_MODE (SUBREG_REG (in)),
1058 SUBREG_REG (in))
1059 == NO_REGS))
1060 #endif
1061 #ifdef CANNOT_CHANGE_MODE_CLASS
1062 || (REG_P (SUBREG_REG (in))
1063 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1064 && REG_CANNOT_CHANGE_MODE_P
1065 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1066 #endif
1069 in_subreg_loc = inloc;
1070 inloc = &SUBREG_REG (in);
1071 in = *inloc;
1072 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1073 if (MEM_P (in))
1074 /* This is supposed to happen only for paradoxical subregs made by
1075 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1076 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1077 #endif
1078 inmode = GET_MODE (in);
1081 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1082 either M1 is not valid for R or M2 is wider than a word but we only
1083 need one word to store an M2-sized quantity in R.
1085 However, we must reload the inner reg *as well as* the subreg in
1086 that case. */
1088 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1089 code above. This can happen if SUBREG_BYTE != 0. */
1091 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1093 enum reg_class in_class = class;
1095 if (REG_P (SUBREG_REG (in)))
1096 in_class
1097 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1098 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1099 GET_MODE (SUBREG_REG (in)),
1100 SUBREG_BYTE (in),
1101 GET_MODE (in)),
1102 REGNO (SUBREG_REG (in)));
1104 /* This relies on the fact that emit_reload_insns outputs the
1105 instructions for input reloads of type RELOAD_OTHER in the same
1106 order as the reloads. Thus if the outer reload is also of type
1107 RELOAD_OTHER, we are guaranteed that this inner reload will be
1108 output before the outer reload. */
1109 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1110 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1111 dont_remove_subreg = 1;
1114 /* Similarly for paradoxical and problematical SUBREGs on the output.
1115 Note that there is no reason we need worry about the previous value
1116 of SUBREG_REG (out); even if wider than out,
1117 storing in a subreg is entitled to clobber it all
1118 (except in the case of STRICT_LOW_PART,
1119 and in that case the constraint should label it input-output.) */
1120 if (out != 0 && GET_CODE (out) == SUBREG
1121 && (subreg_lowpart_p (out) || strict_low)
1122 #ifdef CANNOT_CHANGE_MODE_CLASS
1123 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1124 #endif
1125 && (CONSTANT_P (SUBREG_REG (out))
1126 || strict_low
1127 || (((REG_P (SUBREG_REG (out))
1128 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1129 || MEM_P (SUBREG_REG (out)))
1130 && ((GET_MODE_SIZE (outmode)
1131 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1132 #ifdef WORD_REGISTER_OPERATIONS
1133 || ((GET_MODE_SIZE (outmode)
1134 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1135 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1136 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1137 / UNITS_PER_WORD)))
1138 #endif
1140 || (REG_P (SUBREG_REG (out))
1141 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1142 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1143 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1144 > UNITS_PER_WORD)
1145 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1146 / UNITS_PER_WORD)
1147 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1148 [GET_MODE (SUBREG_REG (out))]))
1149 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1150 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1151 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1152 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1153 GET_MODE (SUBREG_REG (out)),
1154 SUBREG_REG (out))
1155 == NO_REGS))
1156 #endif
1157 #ifdef CANNOT_CHANGE_MODE_CLASS
1158 || (REG_P (SUBREG_REG (out))
1159 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1160 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1161 GET_MODE (SUBREG_REG (out)),
1162 outmode))
1163 #endif
1166 out_subreg_loc = outloc;
1167 outloc = &SUBREG_REG (out);
1168 out = *outloc;
1169 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1170 gcc_assert (!MEM_P (out)
1171 || GET_MODE_SIZE (GET_MODE (out))
1172 <= GET_MODE_SIZE (outmode));
1173 #endif
1174 outmode = GET_MODE (out);
1177 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1178 either M1 is not valid for R or M2 is wider than a word but we only
1179 need one word to store an M2-sized quantity in R.
1181 However, we must reload the inner reg *as well as* the subreg in
1182 that case. In this case, the inner reg is an in-out reload. */
1184 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1186 /* This relies on the fact that emit_reload_insns outputs the
1187 instructions for output reloads of type RELOAD_OTHER in reverse
1188 order of the reloads. Thus if the outer reload is also of type
1189 RELOAD_OTHER, we are guaranteed that this inner reload will be
1190 output after the outer reload. */
1191 dont_remove_subreg = 1;
1192 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1193 &SUBREG_REG (out),
1194 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1195 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1196 GET_MODE (SUBREG_REG (out)),
1197 SUBREG_BYTE (out),
1198 GET_MODE (out)),
1199 REGNO (SUBREG_REG (out))),
1200 VOIDmode, VOIDmode, 0, 0,
1201 opnum, RELOAD_OTHER);
1204 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1205 if (in != 0 && out != 0 && MEM_P (out)
1206 && (REG_P (in) || MEM_P (in))
1207 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1208 dont_share = 1;
1210 /* If IN is a SUBREG of a hard register, make a new REG. This
1211 simplifies some of the cases below. */
1213 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1214 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1215 && ! dont_remove_subreg)
1216 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1218 /* Similarly for OUT. */
1219 if (out != 0 && GET_CODE (out) == SUBREG
1220 && REG_P (SUBREG_REG (out))
1221 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1222 && ! dont_remove_subreg)
1223 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1225 /* Narrow down the class of register wanted if that is
1226 desirable on this machine for efficiency. */
1227 if (in != 0)
1228 class = PREFERRED_RELOAD_CLASS (in, class);
1230 /* Output reloads may need analogous treatment, different in detail. */
1231 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1232 if (out != 0)
1233 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1234 #endif
1236 /* Make sure we use a class that can handle the actual pseudo
1237 inside any subreg. For example, on the 386, QImode regs
1238 can appear within SImode subregs. Although GENERAL_REGS
1239 can handle SImode, QImode needs a smaller class. */
1240 #ifdef LIMIT_RELOAD_CLASS
1241 if (in_subreg_loc)
1242 class = LIMIT_RELOAD_CLASS (inmode, class);
1243 else if (in != 0 && GET_CODE (in) == SUBREG)
1244 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1246 if (out_subreg_loc)
1247 class = LIMIT_RELOAD_CLASS (outmode, class);
1248 if (out != 0 && GET_CODE (out) == SUBREG)
1249 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1250 #endif
1252 /* Verify that this class is at least possible for the mode that
1253 is specified. */
1254 if (this_insn_is_asm)
1256 enum machine_mode mode;
1257 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1258 mode = inmode;
1259 else
1260 mode = outmode;
1261 if (mode == VOIDmode)
1263 error_for_asm (this_insn, "cannot reload integer constant "
1264 "operand in %<asm%>");
1265 mode = word_mode;
1266 if (in != 0)
1267 inmode = word_mode;
1268 if (out != 0)
1269 outmode = word_mode;
1271 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1272 if (HARD_REGNO_MODE_OK (i, mode)
1273 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1275 int nregs = hard_regno_nregs[i][mode];
1277 int j;
1278 for (j = 1; j < nregs; j++)
1279 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1280 break;
1281 if (j == nregs)
1282 break;
1284 if (i == FIRST_PSEUDO_REGISTER)
1286 error_for_asm (this_insn, "impossible register constraint "
1287 "in %<asm%>");
1288 class = ALL_REGS;
1292 /* Optional output reloads are always OK even if we have no register class,
1293 since the function of these reloads is only to have spill_reg_store etc.
1294 set, so that the storing insn can be deleted later. */
1295 gcc_assert (class != NO_REGS
1296 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1298 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1300 if (i == n_reloads)
1302 /* See if we need a secondary reload register to move between CLASS
1303 and IN or CLASS and OUT. Get the icode and push any required reloads
1304 needed for each of them if so. */
1306 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1307 if (in != 0)
1308 secondary_in_reload
1309 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1310 &secondary_in_icode);
1311 #endif
1313 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1314 if (out != 0 && GET_CODE (out) != SCRATCH)
1315 secondary_out_reload
1316 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1317 type, &secondary_out_icode);
1318 #endif
1320 /* We found no existing reload suitable for re-use.
1321 So add an additional reload. */
1323 #ifdef SECONDARY_MEMORY_NEEDED
1324 /* If a memory location is needed for the copy, make one. */
1325 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1326 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1327 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1328 class, inmode))
1329 get_secondary_mem (in, inmode, opnum, type);
1330 #endif
1332 i = n_reloads;
1333 rld[i].in = in;
1334 rld[i].out = out;
1335 rld[i].class = class;
1336 rld[i].inmode = inmode;
1337 rld[i].outmode = outmode;
1338 rld[i].reg_rtx = 0;
1339 rld[i].optional = optional;
1340 rld[i].inc = 0;
1341 rld[i].nocombine = 0;
1342 rld[i].in_reg = inloc ? *inloc : 0;
1343 rld[i].out_reg = outloc ? *outloc : 0;
1344 rld[i].opnum = opnum;
1345 rld[i].when_needed = type;
1346 rld[i].secondary_in_reload = secondary_in_reload;
1347 rld[i].secondary_out_reload = secondary_out_reload;
1348 rld[i].secondary_in_icode = secondary_in_icode;
1349 rld[i].secondary_out_icode = secondary_out_icode;
1350 rld[i].secondary_p = 0;
1352 n_reloads++;
1354 #ifdef SECONDARY_MEMORY_NEEDED
1355 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1356 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1357 && SECONDARY_MEMORY_NEEDED (class,
1358 REGNO_REG_CLASS (reg_or_subregno (out)),
1359 outmode))
1360 get_secondary_mem (out, outmode, opnum, type);
1361 #endif
1363 else
1365 /* We are reusing an existing reload,
1366 but we may have additional information for it.
1367 For example, we may now have both IN and OUT
1368 while the old one may have just one of them. */
1370 /* The modes can be different. If they are, we want to reload in
1371 the larger mode, so that the value is valid for both modes. */
1372 if (inmode != VOIDmode
1373 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1374 rld[i].inmode = inmode;
1375 if (outmode != VOIDmode
1376 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1377 rld[i].outmode = outmode;
1378 if (in != 0)
1380 rtx in_reg = inloc ? *inloc : 0;
1381 /* If we merge reloads for two distinct rtl expressions that
1382 are identical in content, there might be duplicate address
1383 reloads. Remove the extra set now, so that if we later find
1384 that we can inherit this reload, we can get rid of the
1385 address reloads altogether.
1387 Do not do this if both reloads are optional since the result
1388 would be an optional reload which could potentially leave
1389 unresolved address replacements.
1391 It is not sufficient to call transfer_replacements since
1392 choose_reload_regs will remove the replacements for address
1393 reloads of inherited reloads which results in the same
1394 problem. */
1395 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1396 && ! (rld[i].optional && optional))
1398 /* We must keep the address reload with the lower operand
1399 number alive. */
1400 if (opnum > rld[i].opnum)
1402 remove_address_replacements (in);
1403 in = rld[i].in;
1404 in_reg = rld[i].in_reg;
1406 else
1407 remove_address_replacements (rld[i].in);
1409 rld[i].in = in;
1410 rld[i].in_reg = in_reg;
1412 if (out != 0)
1414 rld[i].out = out;
1415 rld[i].out_reg = outloc ? *outloc : 0;
1417 if (reg_class_subset_p (class, rld[i].class))
1418 rld[i].class = class;
1419 rld[i].optional &= optional;
1420 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1421 opnum, rld[i].opnum))
1422 rld[i].when_needed = RELOAD_OTHER;
1423 rld[i].opnum = MIN (rld[i].opnum, opnum);
1426 /* If the ostensible rtx being reloaded differs from the rtx found
1427 in the location to substitute, this reload is not safe to combine
1428 because we cannot reliably tell whether it appears in the insn. */
1430 if (in != 0 && in != *inloc)
1431 rld[i].nocombine = 1;
1433 #if 0
1434 /* This was replaced by changes in find_reloads_address_1 and the new
1435 function inc_for_reload, which go with a new meaning of reload_inc. */
1437 /* If this is an IN/OUT reload in an insn that sets the CC,
1438 it must be for an autoincrement. It doesn't work to store
1439 the incremented value after the insn because that would clobber the CC.
1440 So we must do the increment of the value reloaded from,
1441 increment it, store it back, then decrement again. */
1442 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1444 out = 0;
1445 rld[i].out = 0;
1446 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1447 /* If we did not find a nonzero amount-to-increment-by,
1448 that contradicts the belief that IN is being incremented
1449 in an address in this insn. */
1450 gcc_assert (rld[i].inc != 0);
1452 #endif
1454 /* If we will replace IN and OUT with the reload-reg,
1455 record where they are located so that substitution need
1456 not do a tree walk. */
1458 if (replace_reloads)
1460 if (inloc != 0)
1462 struct replacement *r = &replacements[n_replacements++];
1463 r->what = i;
1464 r->subreg_loc = in_subreg_loc;
1465 r->where = inloc;
1466 r->mode = inmode;
1468 if (outloc != 0 && outloc != inloc)
1470 struct replacement *r = &replacements[n_replacements++];
1471 r->what = i;
1472 r->where = outloc;
1473 r->subreg_loc = out_subreg_loc;
1474 r->mode = outmode;
1478 /* If this reload is just being introduced and it has both
1479 an incoming quantity and an outgoing quantity that are
1480 supposed to be made to match, see if either one of the two
1481 can serve as the place to reload into.
1483 If one of them is acceptable, set rld[i].reg_rtx
1484 to that one. */
1486 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1488 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1489 inmode, outmode,
1490 rld[i].class, i,
1491 earlyclobber_operand_p (out));
1493 /* If the outgoing register already contains the same value
1494 as the incoming one, we can dispense with loading it.
1495 The easiest way to tell the caller that is to give a phony
1496 value for the incoming operand (same as outgoing one). */
1497 if (rld[i].reg_rtx == out
1498 && (REG_P (in) || CONSTANT_P (in))
1499 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1500 static_reload_reg_p, i, inmode))
1501 rld[i].in = out;
1504 /* If this is an input reload and the operand contains a register that
1505 dies in this insn and is used nowhere else, see if it is the right class
1506 to be used for this reload. Use it if so. (This occurs most commonly
1507 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1508 this if it is also an output reload that mentions the register unless
1509 the output is a SUBREG that clobbers an entire register.
1511 Note that the operand might be one of the spill regs, if it is a
1512 pseudo reg and we are in a block where spilling has not taken place.
1513 But if there is no spilling in this block, that is OK.
1514 An explicitly used hard reg cannot be a spill reg. */
1516 if (rld[i].reg_rtx == 0 && in != 0)
1518 rtx note;
1519 int regno;
1520 enum machine_mode rel_mode = inmode;
1522 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1523 rel_mode = outmode;
1525 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1526 if (REG_NOTE_KIND (note) == REG_DEAD
1527 && REG_P (XEXP (note, 0))
1528 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1529 && reg_mentioned_p (XEXP (note, 0), in)
1530 && ! refers_to_regno_for_reload_p (regno,
1531 (regno
1532 + hard_regno_nregs[regno]
1533 [rel_mode]),
1534 PATTERN (this_insn), inloc)
1535 /* If this is also an output reload, IN cannot be used as
1536 the reload register if it is set in this insn unless IN
1537 is also OUT. */
1538 && (out == 0 || in == out
1539 || ! hard_reg_set_here_p (regno,
1540 (regno
1541 + hard_regno_nregs[regno]
1542 [rel_mode]),
1543 PATTERN (this_insn)))
1544 /* ??? Why is this code so different from the previous?
1545 Is there any simple coherent way to describe the two together?
1546 What's going on here. */
1547 && (in != out
1548 || (GET_CODE (in) == SUBREG
1549 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1550 / UNITS_PER_WORD)
1551 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1552 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1553 /* Make sure the operand fits in the reg that dies. */
1554 && (GET_MODE_SIZE (rel_mode)
1555 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1556 && HARD_REGNO_MODE_OK (regno, inmode)
1557 && HARD_REGNO_MODE_OK (regno, outmode))
1559 unsigned int offs;
1560 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1561 hard_regno_nregs[regno][outmode]);
1563 for (offs = 0; offs < nregs; offs++)
1564 if (fixed_regs[regno + offs]
1565 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1566 regno + offs))
1567 break;
1569 if (offs == nregs
1570 && (! (refers_to_regno_for_reload_p
1571 (regno, (regno + hard_regno_nregs[regno][inmode]),
1572 in, (rtx *)0))
1573 || can_reload_into (in, regno, inmode)))
1575 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1576 break;
1581 if (out)
1582 output_reloadnum = i;
1584 return i;
1587 /* Record an additional place we must replace a value
1588 for which we have already recorded a reload.
1589 RELOADNUM is the value returned by push_reload
1590 when the reload was recorded.
1591 This is used in insn patterns that use match_dup. */
1593 static void
1594 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1596 if (replace_reloads)
1598 struct replacement *r = &replacements[n_replacements++];
1599 r->what = reloadnum;
1600 r->where = loc;
1601 r->subreg_loc = 0;
1602 r->mode = mode;
1606 /* Duplicate any replacement we have recorded to apply at
1607 location ORIG_LOC to also be performed at DUP_LOC.
1608 This is used in insn patterns that use match_dup. */
1610 static void
1611 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1613 int i, n = n_replacements;
1615 for (i = 0; i < n; i++)
1617 struct replacement *r = &replacements[i];
1618 if (r->where == orig_loc)
1619 push_replacement (dup_loc, r->what, r->mode);
1623 /* Transfer all replacements that used to be in reload FROM to be in
1624 reload TO. */
1626 void
1627 transfer_replacements (int to, int from)
1629 int i;
1631 for (i = 0; i < n_replacements; i++)
1632 if (replacements[i].what == from)
1633 replacements[i].what = to;
1636 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1637 or a subpart of it. If we have any replacements registered for IN_RTX,
1638 cancel the reloads that were supposed to load them.
1639 Return nonzero if we canceled any reloads. */
1641 remove_address_replacements (rtx in_rtx)
1643 int i, j;
1644 char reload_flags[MAX_RELOADS];
1645 int something_changed = 0;
1647 memset (reload_flags, 0, sizeof reload_flags);
1648 for (i = 0, j = 0; i < n_replacements; i++)
1650 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1651 reload_flags[replacements[i].what] |= 1;
1652 else
1654 replacements[j++] = replacements[i];
1655 reload_flags[replacements[i].what] |= 2;
1658 /* Note that the following store must be done before the recursive calls. */
1659 n_replacements = j;
1661 for (i = n_reloads - 1; i >= 0; i--)
1663 if (reload_flags[i] == 1)
1665 deallocate_reload_reg (i);
1666 remove_address_replacements (rld[i].in);
1667 rld[i].in = 0;
1668 something_changed = 1;
1671 return something_changed;
1674 /* If there is only one output reload, and it is not for an earlyclobber
1675 operand, try to combine it with a (logically unrelated) input reload
1676 to reduce the number of reload registers needed.
1678 This is safe if the input reload does not appear in
1679 the value being output-reloaded, because this implies
1680 it is not needed any more once the original insn completes.
1682 If that doesn't work, see we can use any of the registers that
1683 die in this insn as a reload register. We can if it is of the right
1684 class and does not appear in the value being output-reloaded. */
1686 static void
1687 combine_reloads (void)
1689 int i;
1690 int output_reload = -1;
1691 int secondary_out = -1;
1692 rtx note;
1694 /* Find the output reload; return unless there is exactly one
1695 and that one is mandatory. */
1697 for (i = 0; i < n_reloads; i++)
1698 if (rld[i].out != 0)
1700 if (output_reload >= 0)
1701 return;
1702 output_reload = i;
1705 if (output_reload < 0 || rld[output_reload].optional)
1706 return;
1708 /* An input-output reload isn't combinable. */
1710 if (rld[output_reload].in != 0)
1711 return;
1713 /* If this reload is for an earlyclobber operand, we can't do anything. */
1714 if (earlyclobber_operand_p (rld[output_reload].out))
1715 return;
1717 /* If there is a reload for part of the address of this operand, we would
1718 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1719 its life to the point where doing this combine would not lower the
1720 number of spill registers needed. */
1721 for (i = 0; i < n_reloads; i++)
1722 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1723 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1724 && rld[i].opnum == rld[output_reload].opnum)
1725 return;
1727 /* Check each input reload; can we combine it? */
1729 for (i = 0; i < n_reloads; i++)
1730 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1731 /* Life span of this reload must not extend past main insn. */
1732 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1733 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1734 && rld[i].when_needed != RELOAD_OTHER
1735 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1736 == CLASS_MAX_NREGS (rld[output_reload].class,
1737 rld[output_reload].outmode))
1738 && rld[i].inc == 0
1739 && rld[i].reg_rtx == 0
1740 #ifdef SECONDARY_MEMORY_NEEDED
1741 /* Don't combine two reloads with different secondary
1742 memory locations. */
1743 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1744 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1745 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1746 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1747 #endif
1748 && (SMALL_REGISTER_CLASSES
1749 ? (rld[i].class == rld[output_reload].class)
1750 : (reg_class_subset_p (rld[i].class,
1751 rld[output_reload].class)
1752 || reg_class_subset_p (rld[output_reload].class,
1753 rld[i].class)))
1754 && (MATCHES (rld[i].in, rld[output_reload].out)
1755 /* Args reversed because the first arg seems to be
1756 the one that we imagine being modified
1757 while the second is the one that might be affected. */
1758 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1759 rld[i].in)
1760 /* However, if the input is a register that appears inside
1761 the output, then we also can't share.
1762 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1763 If the same reload reg is used for both reg 69 and the
1764 result to be stored in memory, then that result
1765 will clobber the address of the memory ref. */
1766 && ! (REG_P (rld[i].in)
1767 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1768 rld[output_reload].out))))
1769 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1770 rld[i].when_needed != RELOAD_FOR_INPUT)
1771 && (reg_class_size[(int) rld[i].class]
1772 || SMALL_REGISTER_CLASSES)
1773 /* We will allow making things slightly worse by combining an
1774 input and an output, but no worse than that. */
1775 && (rld[i].when_needed == RELOAD_FOR_INPUT
1776 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1778 int j;
1780 /* We have found a reload to combine with! */
1781 rld[i].out = rld[output_reload].out;
1782 rld[i].out_reg = rld[output_reload].out_reg;
1783 rld[i].outmode = rld[output_reload].outmode;
1784 /* Mark the old output reload as inoperative. */
1785 rld[output_reload].out = 0;
1786 /* The combined reload is needed for the entire insn. */
1787 rld[i].when_needed = RELOAD_OTHER;
1788 /* If the output reload had a secondary reload, copy it. */
1789 if (rld[output_reload].secondary_out_reload != -1)
1791 rld[i].secondary_out_reload
1792 = rld[output_reload].secondary_out_reload;
1793 rld[i].secondary_out_icode
1794 = rld[output_reload].secondary_out_icode;
1797 #ifdef SECONDARY_MEMORY_NEEDED
1798 /* Copy any secondary MEM. */
1799 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1800 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1801 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1802 #endif
1803 /* If required, minimize the register class. */
1804 if (reg_class_subset_p (rld[output_reload].class,
1805 rld[i].class))
1806 rld[i].class = rld[output_reload].class;
1808 /* Transfer all replacements from the old reload to the combined. */
1809 for (j = 0; j < n_replacements; j++)
1810 if (replacements[j].what == output_reload)
1811 replacements[j].what = i;
1813 return;
1816 /* If this insn has only one operand that is modified or written (assumed
1817 to be the first), it must be the one corresponding to this reload. It
1818 is safe to use anything that dies in this insn for that output provided
1819 that it does not occur in the output (we already know it isn't an
1820 earlyclobber. If this is an asm insn, give up. */
1822 if (INSN_CODE (this_insn) == -1)
1823 return;
1825 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1826 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1827 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1828 return;
1830 /* See if some hard register that dies in this insn and is not used in
1831 the output is the right class. Only works if the register we pick
1832 up can fully hold our output reload. */
1833 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1834 if (REG_NOTE_KIND (note) == REG_DEAD
1835 && REG_P (XEXP (note, 0))
1836 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1837 rld[output_reload].out)
1838 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1839 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1840 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1841 REGNO (XEXP (note, 0)))
1842 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1843 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1844 /* Ensure that a secondary or tertiary reload for this output
1845 won't want this register. */
1846 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1847 || (! (TEST_HARD_REG_BIT
1848 (reg_class_contents[(int) rld[secondary_out].class],
1849 REGNO (XEXP (note, 0))))
1850 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1851 || ! (TEST_HARD_REG_BIT
1852 (reg_class_contents[(int) rld[secondary_out].class],
1853 REGNO (XEXP (note, 0)))))))
1854 && ! fixed_regs[REGNO (XEXP (note, 0))])
1856 rld[output_reload].reg_rtx
1857 = gen_rtx_REG (rld[output_reload].outmode,
1858 REGNO (XEXP (note, 0)));
1859 return;
1863 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1864 See if one of IN and OUT is a register that may be used;
1865 this is desirable since a spill-register won't be needed.
1866 If so, return the register rtx that proves acceptable.
1868 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1869 CLASS is the register class required for the reload.
1871 If FOR_REAL is >= 0, it is the number of the reload,
1872 and in some cases when it can be discovered that OUT doesn't need
1873 to be computed, clear out rld[FOR_REAL].out.
1875 If FOR_REAL is -1, this should not be done, because this call
1876 is just to see if a register can be found, not to find and install it.
1878 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1879 puts an additional constraint on being able to use IN for OUT since
1880 IN must not appear elsewhere in the insn (it is assumed that IN itself
1881 is safe from the earlyclobber). */
1883 static rtx
1884 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1885 enum machine_mode inmode, enum machine_mode outmode,
1886 enum reg_class class, int for_real, int earlyclobber)
1888 rtx in = real_in;
1889 rtx out = real_out;
1890 int in_offset = 0;
1891 int out_offset = 0;
1892 rtx value = 0;
1894 /* If operands exceed a word, we can't use either of them
1895 unless they have the same size. */
1896 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1897 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1898 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1899 return 0;
1901 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1902 respectively refers to a hard register. */
1904 /* Find the inside of any subregs. */
1905 while (GET_CODE (out) == SUBREG)
1907 if (REG_P (SUBREG_REG (out))
1908 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1909 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1910 GET_MODE (SUBREG_REG (out)),
1911 SUBREG_BYTE (out),
1912 GET_MODE (out));
1913 out = SUBREG_REG (out);
1915 while (GET_CODE (in) == SUBREG)
1917 if (REG_P (SUBREG_REG (in))
1918 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1919 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1920 GET_MODE (SUBREG_REG (in)),
1921 SUBREG_BYTE (in),
1922 GET_MODE (in));
1923 in = SUBREG_REG (in);
1926 /* Narrow down the reg class, the same way push_reload will;
1927 otherwise we might find a dummy now, but push_reload won't. */
1928 class = PREFERRED_RELOAD_CLASS (in, class);
1930 /* See if OUT will do. */
1931 if (REG_P (out)
1932 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1934 unsigned int regno = REGNO (out) + out_offset;
1935 unsigned int nwords = hard_regno_nregs[regno][outmode];
1936 rtx saved_rtx;
1938 /* When we consider whether the insn uses OUT,
1939 ignore references within IN. They don't prevent us
1940 from copying IN into OUT, because those refs would
1941 move into the insn that reloads IN.
1943 However, we only ignore IN in its role as this reload.
1944 If the insn uses IN elsewhere and it contains OUT,
1945 that counts. We can't be sure it's the "same" operand
1946 so it might not go through this reload. */
1947 saved_rtx = *inloc;
1948 *inloc = const0_rtx;
1950 if (regno < FIRST_PSEUDO_REGISTER
1951 && HARD_REGNO_MODE_OK (regno, outmode)
1952 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1953 PATTERN (this_insn), outloc))
1955 unsigned int i;
1957 for (i = 0; i < nwords; i++)
1958 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1959 regno + i))
1960 break;
1962 if (i == nwords)
1964 if (REG_P (real_out))
1965 value = real_out;
1966 else
1967 value = gen_rtx_REG (outmode, regno);
1971 *inloc = saved_rtx;
1974 /* Consider using IN if OUT was not acceptable
1975 or if OUT dies in this insn (like the quotient in a divmod insn).
1976 We can't use IN unless it is dies in this insn,
1977 which means we must know accurately which hard regs are live.
1978 Also, the result can't go in IN if IN is used within OUT,
1979 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1980 if (hard_regs_live_known
1981 && REG_P (in)
1982 && REGNO (in) < FIRST_PSEUDO_REGISTER
1983 && (value == 0
1984 || find_reg_note (this_insn, REG_UNUSED, real_out))
1985 && find_reg_note (this_insn, REG_DEAD, real_in)
1986 && !fixed_regs[REGNO (in)]
1987 && HARD_REGNO_MODE_OK (REGNO (in),
1988 /* The only case where out and real_out might
1989 have different modes is where real_out
1990 is a subreg, and in that case, out
1991 has a real mode. */
1992 (GET_MODE (out) != VOIDmode
1993 ? GET_MODE (out) : outmode)))
1995 unsigned int regno = REGNO (in) + in_offset;
1996 unsigned int nwords = hard_regno_nregs[regno][inmode];
1998 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1999 && ! hard_reg_set_here_p (regno, regno + nwords,
2000 PATTERN (this_insn))
2001 && (! earlyclobber
2002 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2003 PATTERN (this_insn), inloc)))
2005 unsigned int i;
2007 for (i = 0; i < nwords; i++)
2008 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2009 regno + i))
2010 break;
2012 if (i == nwords)
2014 /* If we were going to use OUT as the reload reg
2015 and changed our mind, it means OUT is a dummy that
2016 dies here. So don't bother copying value to it. */
2017 if (for_real >= 0 && value == real_out)
2018 rld[for_real].out = 0;
2019 if (REG_P (real_in))
2020 value = real_in;
2021 else
2022 value = gen_rtx_REG (inmode, regno);
2027 return value;
2030 /* This page contains subroutines used mainly for determining
2031 whether the IN or an OUT of a reload can serve as the
2032 reload register. */
2034 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2037 earlyclobber_operand_p (rtx x)
2039 int i;
2041 for (i = 0; i < n_earlyclobbers; i++)
2042 if (reload_earlyclobbers[i] == x)
2043 return 1;
2045 return 0;
2048 /* Return 1 if expression X alters a hard reg in the range
2049 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2050 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2051 X should be the body of an instruction. */
2053 static int
2054 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2056 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2058 rtx op0 = SET_DEST (x);
2060 while (GET_CODE (op0) == SUBREG)
2061 op0 = SUBREG_REG (op0);
2062 if (REG_P (op0))
2064 unsigned int r = REGNO (op0);
2066 /* See if this reg overlaps range under consideration. */
2067 if (r < end_regno
2068 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2069 return 1;
2072 else if (GET_CODE (x) == PARALLEL)
2074 int i = XVECLEN (x, 0) - 1;
2076 for (; i >= 0; i--)
2077 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2078 return 1;
2081 return 0;
2084 /* Return 1 if ADDR is a valid memory address for mode MODE,
2085 and check that each pseudo reg has the proper kind of
2086 hard reg. */
2089 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2091 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2092 return 0;
2094 win:
2095 return 1;
2098 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2099 if they are the same hard reg, and has special hacks for
2100 autoincrement and autodecrement.
2101 This is specifically intended for find_reloads to use
2102 in determining whether two operands match.
2103 X is the operand whose number is the lower of the two.
2105 The value is 2 if Y contains a pre-increment that matches
2106 a non-incrementing address in X. */
2108 /* ??? To be completely correct, we should arrange to pass
2109 for X the output operand and for Y the input operand.
2110 For now, we assume that the output operand has the lower number
2111 because that is natural in (SET output (... input ...)). */
2114 operands_match_p (rtx x, rtx y)
2116 int i;
2117 RTX_CODE code = GET_CODE (x);
2118 const char *fmt;
2119 int success_2;
2121 if (x == y)
2122 return 1;
2123 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2124 && (REG_P (y) || (GET_CODE (y) == SUBREG
2125 && REG_P (SUBREG_REG (y)))))
2127 int j;
2129 if (code == SUBREG)
2131 i = REGNO (SUBREG_REG (x));
2132 if (i >= FIRST_PSEUDO_REGISTER)
2133 goto slow;
2134 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2135 GET_MODE (SUBREG_REG (x)),
2136 SUBREG_BYTE (x),
2137 GET_MODE (x));
2139 else
2140 i = REGNO (x);
2142 if (GET_CODE (y) == SUBREG)
2144 j = REGNO (SUBREG_REG (y));
2145 if (j >= FIRST_PSEUDO_REGISTER)
2146 goto slow;
2147 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2148 GET_MODE (SUBREG_REG (y)),
2149 SUBREG_BYTE (y),
2150 GET_MODE (y));
2152 else
2153 j = REGNO (y);
2155 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2156 multiple hard register group, so that for example (reg:DI 0) and
2157 (reg:SI 1) will be considered the same register. */
2158 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2159 && i < FIRST_PSEUDO_REGISTER)
2160 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2161 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2162 && j < FIRST_PSEUDO_REGISTER)
2163 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2165 return i == j;
2167 /* If two operands must match, because they are really a single
2168 operand of an assembler insn, then two postincrements are invalid
2169 because the assembler insn would increment only once.
2170 On the other hand, a postincrement matches ordinary indexing
2171 if the postincrement is the output operand. */
2172 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2173 return operands_match_p (XEXP (x, 0), y);
2174 /* Two preincrements are invalid
2175 because the assembler insn would increment only once.
2176 On the other hand, a preincrement matches ordinary indexing
2177 if the preincrement is the input operand.
2178 In this case, return 2, since some callers need to do special
2179 things when this happens. */
2180 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2181 || GET_CODE (y) == PRE_MODIFY)
2182 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2184 slow:
2186 /* Now we have disposed of all the cases
2187 in which different rtx codes can match. */
2188 if (code != GET_CODE (y))
2189 return 0;
2190 if (code == LABEL_REF)
2191 return XEXP (x, 0) == XEXP (y, 0);
2192 if (code == SYMBOL_REF)
2193 return XSTR (x, 0) == XSTR (y, 0);
2195 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2197 if (GET_MODE (x) != GET_MODE (y))
2198 return 0;
2200 /* Compare the elements. If any pair of corresponding elements
2201 fail to match, return 0 for the whole things. */
2203 success_2 = 0;
2204 fmt = GET_RTX_FORMAT (code);
2205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2207 int val, j;
2208 switch (fmt[i])
2210 case 'w':
2211 if (XWINT (x, i) != XWINT (y, i))
2212 return 0;
2213 break;
2215 case 'i':
2216 if (XINT (x, i) != XINT (y, i))
2217 return 0;
2218 break;
2220 case 'e':
2221 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2222 if (val == 0)
2223 return 0;
2224 /* If any subexpression returns 2,
2225 we should return 2 if we are successful. */
2226 if (val == 2)
2227 success_2 = 1;
2228 break;
2230 case '0':
2231 break;
2233 case 'E':
2234 if (XVECLEN (x, i) != XVECLEN (y, i))
2235 return 0;
2236 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2238 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2239 if (val == 0)
2240 return 0;
2241 if (val == 2)
2242 success_2 = 1;
2244 break;
2246 /* It is believed that rtx's at this level will never
2247 contain anything but integers and other rtx's,
2248 except for within LABEL_REFs and SYMBOL_REFs. */
2249 default:
2250 gcc_unreachable ();
2253 return 1 + success_2;
2256 /* Describe the range of registers or memory referenced by X.
2257 If X is a register, set REG_FLAG and put the first register
2258 number into START and the last plus one into END.
2259 If X is a memory reference, put a base address into BASE
2260 and a range of integer offsets into START and END.
2261 If X is pushing on the stack, we can assume it causes no trouble,
2262 so we set the SAFE field. */
2264 static struct decomposition
2265 decompose (rtx x)
2267 struct decomposition val;
2268 int all_const = 0;
2270 memset (&val, 0, sizeof (val));
2272 switch (GET_CODE (x))
2274 case MEM:
2276 rtx base = NULL_RTX, offset = 0;
2277 rtx addr = XEXP (x, 0);
2279 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2280 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2282 val.base = XEXP (addr, 0);
2283 val.start = -GET_MODE_SIZE (GET_MODE (x));
2284 val.end = GET_MODE_SIZE (GET_MODE (x));
2285 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2286 return val;
2289 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2291 if (GET_CODE (XEXP (addr, 1)) == PLUS
2292 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2293 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2295 val.base = XEXP (addr, 0);
2296 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2297 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2298 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2299 return val;
2303 if (GET_CODE (addr) == CONST)
2305 addr = XEXP (addr, 0);
2306 all_const = 1;
2308 if (GET_CODE (addr) == PLUS)
2310 if (CONSTANT_P (XEXP (addr, 0)))
2312 base = XEXP (addr, 1);
2313 offset = XEXP (addr, 0);
2315 else if (CONSTANT_P (XEXP (addr, 1)))
2317 base = XEXP (addr, 0);
2318 offset = XEXP (addr, 1);
2322 if (offset == 0)
2324 base = addr;
2325 offset = const0_rtx;
2327 if (GET_CODE (offset) == CONST)
2328 offset = XEXP (offset, 0);
2329 if (GET_CODE (offset) == PLUS)
2331 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2333 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2334 offset = XEXP (offset, 0);
2336 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2338 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2339 offset = XEXP (offset, 1);
2341 else
2343 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2344 offset = const0_rtx;
2347 else if (GET_CODE (offset) != CONST_INT)
2349 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2350 offset = const0_rtx;
2353 if (all_const && GET_CODE (base) == PLUS)
2354 base = gen_rtx_CONST (GET_MODE (base), base);
2356 gcc_assert (GET_CODE (offset) == CONST_INT);
2358 val.start = INTVAL (offset);
2359 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2360 val.base = base;
2362 break;
2364 case REG:
2365 val.reg_flag = 1;
2366 val.start = true_regnum (x);
2367 if (val.start < 0)
2369 /* A pseudo with no hard reg. */
2370 val.start = REGNO (x);
2371 val.end = val.start + 1;
2373 else
2374 /* A hard reg. */
2375 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2376 break;
2378 case SUBREG:
2379 if (!REG_P (SUBREG_REG (x)))
2380 /* This could be more precise, but it's good enough. */
2381 return decompose (SUBREG_REG (x));
2382 val.reg_flag = 1;
2383 val.start = true_regnum (x);
2384 if (val.start < 0)
2385 return decompose (SUBREG_REG (x));
2386 else
2387 /* A hard reg. */
2388 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2389 break;
2391 case SCRATCH:
2392 /* This hasn't been assigned yet, so it can't conflict yet. */
2393 val.safe = 1;
2394 break;
2396 default:
2397 gcc_assert (CONSTANT_P (x));
2398 val.safe = 1;
2399 break;
2401 return val;
2404 /* Return 1 if altering Y will not modify the value of X.
2405 Y is also described by YDATA, which should be decompose (Y). */
2407 static int
2408 immune_p (rtx x, rtx y, struct decomposition ydata)
2410 struct decomposition xdata;
2412 if (ydata.reg_flag)
2413 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2414 if (ydata.safe)
2415 return 1;
2417 gcc_assert (MEM_P (y));
2418 /* If Y is memory and X is not, Y can't affect X. */
2419 if (!MEM_P (x))
2420 return 1;
2422 xdata = decompose (x);
2424 if (! rtx_equal_p (xdata.base, ydata.base))
2426 /* If bases are distinct symbolic constants, there is no overlap. */
2427 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2428 return 1;
2429 /* Constants and stack slots never overlap. */
2430 if (CONSTANT_P (xdata.base)
2431 && (ydata.base == frame_pointer_rtx
2432 || ydata.base == hard_frame_pointer_rtx
2433 || ydata.base == stack_pointer_rtx))
2434 return 1;
2435 if (CONSTANT_P (ydata.base)
2436 && (xdata.base == frame_pointer_rtx
2437 || xdata.base == hard_frame_pointer_rtx
2438 || xdata.base == stack_pointer_rtx))
2439 return 1;
2440 /* If either base is variable, we don't know anything. */
2441 return 0;
2444 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2447 /* Similar, but calls decompose. */
2450 safe_from_earlyclobber (rtx op, rtx clobber)
2452 struct decomposition early_data;
2454 early_data = decompose (clobber);
2455 return immune_p (op, clobber, early_data);
2458 /* Main entry point of this file: search the body of INSN
2459 for values that need reloading and record them with push_reload.
2460 REPLACE nonzero means record also where the values occur
2461 so that subst_reloads can be used.
2463 IND_LEVELS says how many levels of indirection are supported by this
2464 machine; a value of zero means that a memory reference is not a valid
2465 memory address.
2467 LIVE_KNOWN says we have valid information about which hard
2468 regs are live at each point in the program; this is true when
2469 we are called from global_alloc but false when stupid register
2470 allocation has been done.
2472 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2473 which is nonnegative if the reg has been commandeered for reloading into.
2474 It is copied into STATIC_RELOAD_REG_P and referenced from there
2475 by various subroutines.
2477 Return TRUE if some operands need to be changed, because of swapping
2478 commutative operands, reg_equiv_address substitution, or whatever. */
2481 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2482 short *reload_reg_p)
2484 int insn_code_number;
2485 int i, j;
2486 int noperands;
2487 /* These start out as the constraints for the insn
2488 and they are chewed up as we consider alternatives. */
2489 char *constraints[MAX_RECOG_OPERANDS];
2490 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2491 a register. */
2492 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2493 char pref_or_nothing[MAX_RECOG_OPERANDS];
2494 /* Nonzero for a MEM operand whose entire address needs a reload.
2495 May be -1 to indicate the entire address may or may not need a reload. */
2496 int address_reloaded[MAX_RECOG_OPERANDS];
2497 /* Nonzero for an address operand that needs to be completely reloaded.
2498 May be -1 to indicate the entire operand may or may not need a reload. */
2499 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2500 /* Value of enum reload_type to use for operand. */
2501 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2502 /* Value of enum reload_type to use within address of operand. */
2503 enum reload_type address_type[MAX_RECOG_OPERANDS];
2504 /* Save the usage of each operand. */
2505 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2506 int no_input_reloads = 0, no_output_reloads = 0;
2507 int n_alternatives;
2508 int this_alternative[MAX_RECOG_OPERANDS];
2509 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2510 char this_alternative_win[MAX_RECOG_OPERANDS];
2511 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2512 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2513 int this_alternative_matches[MAX_RECOG_OPERANDS];
2514 int swapped;
2515 int goal_alternative[MAX_RECOG_OPERANDS];
2516 int this_alternative_number;
2517 int goal_alternative_number = 0;
2518 int operand_reloadnum[MAX_RECOG_OPERANDS];
2519 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2520 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2521 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2522 char goal_alternative_win[MAX_RECOG_OPERANDS];
2523 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2524 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2525 int goal_alternative_swapped;
2526 int best;
2527 int commutative;
2528 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2529 rtx substed_operand[MAX_RECOG_OPERANDS];
2530 rtx body = PATTERN (insn);
2531 rtx set = single_set (insn);
2532 int goal_earlyclobber = 0, this_earlyclobber;
2533 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2534 int retval = 0;
2536 this_insn = insn;
2537 n_reloads = 0;
2538 n_replacements = 0;
2539 n_earlyclobbers = 0;
2540 replace_reloads = replace;
2541 hard_regs_live_known = live_known;
2542 static_reload_reg_p = reload_reg_p;
2544 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2545 neither are insns that SET cc0. Insns that use CC0 are not allowed
2546 to have any input reloads. */
2547 if (JUMP_P (insn) || CALL_P (insn))
2548 no_output_reloads = 1;
2550 #ifdef HAVE_cc0
2551 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2552 no_input_reloads = 1;
2553 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2554 no_output_reloads = 1;
2555 #endif
2557 #ifdef SECONDARY_MEMORY_NEEDED
2558 /* The eliminated forms of any secondary memory locations are per-insn, so
2559 clear them out here. */
2561 if (secondary_memlocs_elim_used)
2563 memset (secondary_memlocs_elim, 0,
2564 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2565 secondary_memlocs_elim_used = 0;
2567 #endif
2569 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2570 is cheap to move between them. If it is not, there may not be an insn
2571 to do the copy, so we may need a reload. */
2572 if (GET_CODE (body) == SET
2573 && REG_P (SET_DEST (body))
2574 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2575 && REG_P (SET_SRC (body))
2576 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2577 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2578 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2579 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2580 return 0;
2582 extract_insn (insn);
2584 noperands = reload_n_operands = recog_data.n_operands;
2585 n_alternatives = recog_data.n_alternatives;
2587 /* Just return "no reloads" if insn has no operands with constraints. */
2588 if (noperands == 0 || n_alternatives == 0)
2589 return 0;
2591 insn_code_number = INSN_CODE (insn);
2592 this_insn_is_asm = insn_code_number < 0;
2594 memcpy (operand_mode, recog_data.operand_mode,
2595 noperands * sizeof (enum machine_mode));
2596 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2598 commutative = -1;
2600 /* If we will need to know, later, whether some pair of operands
2601 are the same, we must compare them now and save the result.
2602 Reloading the base and index registers will clobber them
2603 and afterward they will fail to match. */
2605 for (i = 0; i < noperands; i++)
2607 char *p;
2608 int c;
2610 substed_operand[i] = recog_data.operand[i];
2611 p = constraints[i];
2613 modified[i] = RELOAD_READ;
2615 /* Scan this operand's constraint to see if it is an output operand,
2616 an in-out operand, is commutative, or should match another. */
2618 while ((c = *p))
2620 p += CONSTRAINT_LEN (c, p);
2621 switch (c)
2623 case '=':
2624 modified[i] = RELOAD_WRITE;
2625 break;
2626 case '+':
2627 modified[i] = RELOAD_READ_WRITE;
2628 break;
2629 case '%':
2631 /* The last operand should not be marked commutative. */
2632 gcc_assert (i != noperands - 1);
2634 /* We currently only support one commutative pair of
2635 operands. Some existing asm code currently uses more
2636 than one pair. Previously, that would usually work,
2637 but sometimes it would crash the compiler. We
2638 continue supporting that case as well as we can by
2639 silently ignoring all but the first pair. In the
2640 future we may handle it correctly. */
2641 if (commutative < 0)
2642 commutative = i;
2643 else
2644 gcc_assert (this_insn_is_asm);
2646 break;
2647 /* Use of ISDIGIT is tempting here, but it may get expensive because
2648 of locale support we don't want. */
2649 case '0': case '1': case '2': case '3': case '4':
2650 case '5': case '6': case '7': case '8': case '9':
2652 c = strtoul (p - 1, &p, 10);
2654 operands_match[c][i]
2655 = operands_match_p (recog_data.operand[c],
2656 recog_data.operand[i]);
2658 /* An operand may not match itself. */
2659 gcc_assert (c != i);
2661 /* If C can be commuted with C+1, and C might need to match I,
2662 then C+1 might also need to match I. */
2663 if (commutative >= 0)
2665 if (c == commutative || c == commutative + 1)
2667 int other = c + (c == commutative ? 1 : -1);
2668 operands_match[other][i]
2669 = operands_match_p (recog_data.operand[other],
2670 recog_data.operand[i]);
2672 if (i == commutative || i == commutative + 1)
2674 int other = i + (i == commutative ? 1 : -1);
2675 operands_match[c][other]
2676 = operands_match_p (recog_data.operand[c],
2677 recog_data.operand[other]);
2679 /* Note that C is supposed to be less than I.
2680 No need to consider altering both C and I because in
2681 that case we would alter one into the other. */
2688 /* Examine each operand that is a memory reference or memory address
2689 and reload parts of the addresses into index registers.
2690 Also here any references to pseudo regs that didn't get hard regs
2691 but are equivalent to constants get replaced in the insn itself
2692 with those constants. Nobody will ever see them again.
2694 Finally, set up the preferred classes of each operand. */
2696 for (i = 0; i < noperands; i++)
2698 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2700 address_reloaded[i] = 0;
2701 address_operand_reloaded[i] = 0;
2702 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2703 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2704 : RELOAD_OTHER);
2705 address_type[i]
2706 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2707 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2708 : RELOAD_OTHER);
2710 if (*constraints[i] == 0)
2711 /* Ignore things like match_operator operands. */
2713 else if (constraints[i][0] == 'p'
2714 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2716 address_operand_reloaded[i]
2717 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2718 recog_data.operand[i],
2719 recog_data.operand_loc[i],
2720 i, operand_type[i], ind_levels, insn);
2722 /* If we now have a simple operand where we used to have a
2723 PLUS or MULT, re-recognize and try again. */
2724 if ((OBJECT_P (*recog_data.operand_loc[i])
2725 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2726 && (GET_CODE (recog_data.operand[i]) == MULT
2727 || GET_CODE (recog_data.operand[i]) == PLUS))
2729 INSN_CODE (insn) = -1;
2730 retval = find_reloads (insn, replace, ind_levels, live_known,
2731 reload_reg_p);
2732 return retval;
2735 recog_data.operand[i] = *recog_data.operand_loc[i];
2736 substed_operand[i] = recog_data.operand[i];
2738 /* Address operands are reloaded in their existing mode,
2739 no matter what is specified in the machine description. */
2740 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2742 else if (code == MEM)
2744 address_reloaded[i]
2745 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2746 recog_data.operand_loc[i],
2747 XEXP (recog_data.operand[i], 0),
2748 &XEXP (recog_data.operand[i], 0),
2749 i, address_type[i], ind_levels, insn);
2750 recog_data.operand[i] = *recog_data.operand_loc[i];
2751 substed_operand[i] = recog_data.operand[i];
2753 else if (code == SUBREG)
2755 rtx reg = SUBREG_REG (recog_data.operand[i]);
2756 rtx op
2757 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2758 ind_levels,
2759 set != 0
2760 && &SET_DEST (set) == recog_data.operand_loc[i],
2761 insn,
2762 &address_reloaded[i]);
2764 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2765 that didn't get a hard register, emit a USE with a REG_EQUAL
2766 note in front so that we might inherit a previous, possibly
2767 wider reload. */
2769 if (replace
2770 && MEM_P (op)
2771 && REG_P (reg)
2772 && (GET_MODE_SIZE (GET_MODE (reg))
2773 >= GET_MODE_SIZE (GET_MODE (op))))
2774 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2775 insn),
2776 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2778 substed_operand[i] = recog_data.operand[i] = op;
2780 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2781 /* We can get a PLUS as an "operand" as a result of register
2782 elimination. See eliminate_regs and gen_reload. We handle
2783 a unary operator by reloading the operand. */
2784 substed_operand[i] = recog_data.operand[i]
2785 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2786 ind_levels, 0, insn,
2787 &address_reloaded[i]);
2788 else if (code == REG)
2790 /* This is equivalent to calling find_reloads_toplev.
2791 The code is duplicated for speed.
2792 When we find a pseudo always equivalent to a constant,
2793 we replace it by the constant. We must be sure, however,
2794 that we don't try to replace it in the insn in which it
2795 is being set. */
2796 int regno = REGNO (recog_data.operand[i]);
2797 if (reg_equiv_constant[regno] != 0
2798 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2800 /* Record the existing mode so that the check if constants are
2801 allowed will work when operand_mode isn't specified. */
2803 if (operand_mode[i] == VOIDmode)
2804 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2806 substed_operand[i] = recog_data.operand[i]
2807 = reg_equiv_constant[regno];
2809 if (reg_equiv_memory_loc[regno] != 0
2810 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2811 /* We need not give a valid is_set_dest argument since the case
2812 of a constant equivalence was checked above. */
2813 substed_operand[i] = recog_data.operand[i]
2814 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2815 ind_levels, 0, insn,
2816 &address_reloaded[i]);
2818 /* If the operand is still a register (we didn't replace it with an
2819 equivalent), get the preferred class to reload it into. */
2820 code = GET_CODE (recog_data.operand[i]);
2821 preferred_class[i]
2822 = ((code == REG && REGNO (recog_data.operand[i])
2823 >= FIRST_PSEUDO_REGISTER)
2824 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2825 : NO_REGS);
2826 pref_or_nothing[i]
2827 = (code == REG
2828 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2829 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2832 /* If this is simply a copy from operand 1 to operand 0, merge the
2833 preferred classes for the operands. */
2834 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2835 && recog_data.operand[1] == SET_SRC (set))
2837 preferred_class[0] = preferred_class[1]
2838 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2839 pref_or_nothing[0] |= pref_or_nothing[1];
2840 pref_or_nothing[1] |= pref_or_nothing[0];
2843 /* Now see what we need for pseudo-regs that didn't get hard regs
2844 or got the wrong kind of hard reg. For this, we must consider
2845 all the operands together against the register constraints. */
2847 best = MAX_RECOG_OPERANDS * 2 + 600;
2849 swapped = 0;
2850 goal_alternative_swapped = 0;
2851 try_swapped:
2853 /* The constraints are made of several alternatives.
2854 Each operand's constraint looks like foo,bar,... with commas
2855 separating the alternatives. The first alternatives for all
2856 operands go together, the second alternatives go together, etc.
2858 First loop over alternatives. */
2860 for (this_alternative_number = 0;
2861 this_alternative_number < n_alternatives;
2862 this_alternative_number++)
2864 /* Loop over operands for one constraint alternative. */
2865 /* LOSERS counts those that don't fit this alternative
2866 and would require loading. */
2867 int losers = 0;
2868 /* BAD is set to 1 if it some operand can't fit this alternative
2869 even after reloading. */
2870 int bad = 0;
2871 /* REJECT is a count of how undesirable this alternative says it is
2872 if any reloading is required. If the alternative matches exactly
2873 then REJECT is ignored, but otherwise it gets this much
2874 counted against it in addition to the reloading needed. Each
2875 ? counts three times here since we want the disparaging caused by
2876 a bad register class to only count 1/3 as much. */
2877 int reject = 0;
2879 this_earlyclobber = 0;
2881 for (i = 0; i < noperands; i++)
2883 char *p = constraints[i];
2884 char *end;
2885 int len;
2886 int win = 0;
2887 int did_match = 0;
2888 /* 0 => this operand can be reloaded somehow for this alternative. */
2889 int badop = 1;
2890 /* 0 => this operand can be reloaded if the alternative allows regs. */
2891 int winreg = 0;
2892 int c;
2893 int m;
2894 rtx operand = recog_data.operand[i];
2895 int offset = 0;
2896 /* Nonzero means this is a MEM that must be reloaded into a reg
2897 regardless of what the constraint says. */
2898 int force_reload = 0;
2899 int offmemok = 0;
2900 /* Nonzero if a constant forced into memory would be OK for this
2901 operand. */
2902 int constmemok = 0;
2903 int earlyclobber = 0;
2905 /* If the predicate accepts a unary operator, it means that
2906 we need to reload the operand, but do not do this for
2907 match_operator and friends. */
2908 if (UNARY_P (operand) && *p != 0)
2909 operand = XEXP (operand, 0);
2911 /* If the operand is a SUBREG, extract
2912 the REG or MEM (or maybe even a constant) within.
2913 (Constants can occur as a result of reg_equiv_constant.) */
2915 while (GET_CODE (operand) == SUBREG)
2917 /* Offset only matters when operand is a REG and
2918 it is a hard reg. This is because it is passed
2919 to reg_fits_class_p if it is a REG and all pseudos
2920 return 0 from that function. */
2921 if (REG_P (SUBREG_REG (operand))
2922 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2924 if (!subreg_offset_representable_p
2925 (REGNO (SUBREG_REG (operand)),
2926 GET_MODE (SUBREG_REG (operand)),
2927 SUBREG_BYTE (operand),
2928 GET_MODE (operand)))
2929 force_reload = 1;
2930 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2931 GET_MODE (SUBREG_REG (operand)),
2932 SUBREG_BYTE (operand),
2933 GET_MODE (operand));
2935 operand = SUBREG_REG (operand);
2936 /* Force reload if this is a constant or PLUS or if there may
2937 be a problem accessing OPERAND in the outer mode. */
2938 if (CONSTANT_P (operand)
2939 || GET_CODE (operand) == PLUS
2940 /* We must force a reload of paradoxical SUBREGs
2941 of a MEM because the alignment of the inner value
2942 may not be enough to do the outer reference. On
2943 big-endian machines, it may also reference outside
2944 the object.
2946 On machines that extend byte operations and we have a
2947 SUBREG where both the inner and outer modes are no wider
2948 than a word and the inner mode is narrower, is integral,
2949 and gets extended when loaded from memory, combine.c has
2950 made assumptions about the behavior of the machine in such
2951 register access. If the data is, in fact, in memory we
2952 must always load using the size assumed to be in the
2953 register and let the insn do the different-sized
2954 accesses.
2956 This is doubly true if WORD_REGISTER_OPERATIONS. In
2957 this case eliminate_regs has left non-paradoxical
2958 subregs for push_reload to see. Make sure it does
2959 by forcing the reload.
2961 ??? When is it right at this stage to have a subreg
2962 of a mem that is _not_ to be handled specially? IMO
2963 those should have been reduced to just a mem. */
2964 || ((MEM_P (operand)
2965 || (REG_P (operand)
2966 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2967 #ifndef WORD_REGISTER_OPERATIONS
2968 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2969 < BIGGEST_ALIGNMENT)
2970 && (GET_MODE_SIZE (operand_mode[i])
2971 > GET_MODE_SIZE (GET_MODE (operand))))
2972 || BYTES_BIG_ENDIAN
2973 #ifdef LOAD_EXTEND_OP
2974 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2975 && (GET_MODE_SIZE (GET_MODE (operand))
2976 <= UNITS_PER_WORD)
2977 && (GET_MODE_SIZE (operand_mode[i])
2978 > GET_MODE_SIZE (GET_MODE (operand)))
2979 && INTEGRAL_MODE_P (GET_MODE (operand))
2980 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2981 #endif
2983 #endif
2986 force_reload = 1;
2989 this_alternative[i] = (int) NO_REGS;
2990 this_alternative_win[i] = 0;
2991 this_alternative_match_win[i] = 0;
2992 this_alternative_offmemok[i] = 0;
2993 this_alternative_earlyclobber[i] = 0;
2994 this_alternative_matches[i] = -1;
2996 /* An empty constraint or empty alternative
2997 allows anything which matched the pattern. */
2998 if (*p == 0 || *p == ',')
2999 win = 1, badop = 0;
3001 /* Scan this alternative's specs for this operand;
3002 set WIN if the operand fits any letter in this alternative.
3003 Otherwise, clear BADOP if this operand could
3004 fit some letter after reloads,
3005 or set WINREG if this operand could fit after reloads
3006 provided the constraint allows some registers. */
3009 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3011 case '\0':
3012 len = 0;
3013 break;
3014 case ',':
3015 c = '\0';
3016 break;
3018 case '=': case '+': case '*':
3019 break;
3021 case '%':
3022 /* We only support one commutative marker, the first
3023 one. We already set commutative above. */
3024 break;
3026 case '?':
3027 reject += 6;
3028 break;
3030 case '!':
3031 reject = 600;
3032 break;
3034 case '#':
3035 /* Ignore rest of this alternative as far as
3036 reloading is concerned. */
3038 p++;
3039 while (*p && *p != ',');
3040 len = 0;
3041 break;
3043 case '0': case '1': case '2': case '3': case '4':
3044 case '5': case '6': case '7': case '8': case '9':
3045 m = strtoul (p, &end, 10);
3046 p = end;
3047 len = 0;
3049 this_alternative_matches[i] = m;
3050 /* We are supposed to match a previous operand.
3051 If we do, we win if that one did.
3052 If we do not, count both of the operands as losers.
3053 (This is too conservative, since most of the time
3054 only a single reload insn will be needed to make
3055 the two operands win. As a result, this alternative
3056 may be rejected when it is actually desirable.) */
3057 if ((swapped && (m != commutative || i != commutative + 1))
3058 /* If we are matching as if two operands were swapped,
3059 also pretend that operands_match had been computed
3060 with swapped.
3061 But if I is the second of those and C is the first,
3062 don't exchange them, because operands_match is valid
3063 only on one side of its diagonal. */
3064 ? (operands_match
3065 [(m == commutative || m == commutative + 1)
3066 ? 2 * commutative + 1 - m : m]
3067 [(i == commutative || i == commutative + 1)
3068 ? 2 * commutative + 1 - i : i])
3069 : operands_match[m][i])
3071 /* If we are matching a non-offsettable address where an
3072 offsettable address was expected, then we must reject
3073 this combination, because we can't reload it. */
3074 if (this_alternative_offmemok[m]
3075 && MEM_P (recog_data.operand[m])
3076 && this_alternative[m] == (int) NO_REGS
3077 && ! this_alternative_win[m])
3078 bad = 1;
3080 did_match = this_alternative_win[m];
3082 else
3084 /* Operands don't match. */
3085 rtx value;
3086 int loc1, loc2;
3087 /* Retroactively mark the operand we had to match
3088 as a loser, if it wasn't already. */
3089 if (this_alternative_win[m])
3090 losers++;
3091 this_alternative_win[m] = 0;
3092 if (this_alternative[m] == (int) NO_REGS)
3093 bad = 1;
3094 /* But count the pair only once in the total badness of
3095 this alternative, if the pair can be a dummy reload.
3096 The pointers in operand_loc are not swapped; swap
3097 them by hand if necessary. */
3098 if (swapped && i == commutative)
3099 loc1 = commutative + 1;
3100 else if (swapped && i == commutative + 1)
3101 loc1 = commutative;
3102 else
3103 loc1 = i;
3104 if (swapped && m == commutative)
3105 loc2 = commutative + 1;
3106 else if (swapped && m == commutative + 1)
3107 loc2 = commutative;
3108 else
3109 loc2 = m;
3110 value
3111 = find_dummy_reload (recog_data.operand[i],
3112 recog_data.operand[m],
3113 recog_data.operand_loc[loc1],
3114 recog_data.operand_loc[loc2],
3115 operand_mode[i], operand_mode[m],
3116 this_alternative[m], -1,
3117 this_alternative_earlyclobber[m]);
3119 if (value != 0)
3120 losers--;
3122 /* This can be fixed with reloads if the operand
3123 we are supposed to match can be fixed with reloads. */
3124 badop = 0;
3125 this_alternative[i] = this_alternative[m];
3127 /* If we have to reload this operand and some previous
3128 operand also had to match the same thing as this
3129 operand, we don't know how to do that. So reject this
3130 alternative. */
3131 if (! did_match || force_reload)
3132 for (j = 0; j < i; j++)
3133 if (this_alternative_matches[j]
3134 == this_alternative_matches[i])
3135 badop = 1;
3136 break;
3138 case 'p':
3139 /* All necessary reloads for an address_operand
3140 were handled in find_reloads_address. */
3141 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3142 win = 1;
3143 badop = 0;
3144 break;
3146 case 'm':
3147 if (force_reload)
3148 break;
3149 if (MEM_P (operand)
3150 || (REG_P (operand)
3151 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3152 && reg_renumber[REGNO (operand)] < 0))
3153 win = 1;
3154 if (CONST_POOL_OK_P (operand))
3155 badop = 0;
3156 constmemok = 1;
3157 break;
3159 case '<':
3160 if (MEM_P (operand)
3161 && ! address_reloaded[i]
3162 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3163 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3164 win = 1;
3165 break;
3167 case '>':
3168 if (MEM_P (operand)
3169 && ! address_reloaded[i]
3170 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3171 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3172 win = 1;
3173 break;
3175 /* Memory operand whose address is not offsettable. */
3176 case 'V':
3177 if (force_reload)
3178 break;
3179 if (MEM_P (operand)
3180 && ! (ind_levels ? offsettable_memref_p (operand)
3181 : offsettable_nonstrict_memref_p (operand))
3182 /* Certain mem addresses will become offsettable
3183 after they themselves are reloaded. This is important;
3184 we don't want our own handling of unoffsettables
3185 to override the handling of reg_equiv_address. */
3186 && !(REG_P (XEXP (operand, 0))
3187 && (ind_levels == 0
3188 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3189 win = 1;
3190 break;
3192 /* Memory operand whose address is offsettable. */
3193 case 'o':
3194 if (force_reload)
3195 break;
3196 if ((MEM_P (operand)
3197 /* If IND_LEVELS, find_reloads_address won't reload a
3198 pseudo that didn't get a hard reg, so we have to
3199 reject that case. */
3200 && ((ind_levels ? offsettable_memref_p (operand)
3201 : offsettable_nonstrict_memref_p (operand))
3202 /* A reloaded address is offsettable because it is now
3203 just a simple register indirect. */
3204 || address_reloaded[i] == 1))
3205 || (REG_P (operand)
3206 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3207 && reg_renumber[REGNO (operand)] < 0
3208 /* If reg_equiv_address is nonzero, we will be
3209 loading it into a register; hence it will be
3210 offsettable, but we cannot say that reg_equiv_mem
3211 is offsettable without checking. */
3212 && ((reg_equiv_mem[REGNO (operand)] != 0
3213 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3214 || (reg_equiv_address[REGNO (operand)] != 0))))
3215 win = 1;
3216 if (CONST_POOL_OK_P (operand)
3217 || MEM_P (operand))
3218 badop = 0;
3219 constmemok = 1;
3220 offmemok = 1;
3221 break;
3223 case '&':
3224 /* Output operand that is stored before the need for the
3225 input operands (and their index registers) is over. */
3226 earlyclobber = 1, this_earlyclobber = 1;
3227 break;
3229 case 'E':
3230 case 'F':
3231 if (GET_CODE (operand) == CONST_DOUBLE
3232 || (GET_CODE (operand) == CONST_VECTOR
3233 && (GET_MODE_CLASS (GET_MODE (operand))
3234 == MODE_VECTOR_FLOAT)))
3235 win = 1;
3236 break;
3238 case 'G':
3239 case 'H':
3240 if (GET_CODE (operand) == CONST_DOUBLE
3241 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3242 win = 1;
3243 break;
3245 case 's':
3246 if (GET_CODE (operand) == CONST_INT
3247 || (GET_CODE (operand) == CONST_DOUBLE
3248 && GET_MODE (operand) == VOIDmode))
3249 break;
3250 case 'i':
3251 if (CONSTANT_P (operand)
3252 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3253 win = 1;
3254 break;
3256 case 'n':
3257 if (GET_CODE (operand) == CONST_INT
3258 || (GET_CODE (operand) == CONST_DOUBLE
3259 && GET_MODE (operand) == VOIDmode))
3260 win = 1;
3261 break;
3263 case 'I':
3264 case 'J':
3265 case 'K':
3266 case 'L':
3267 case 'M':
3268 case 'N':
3269 case 'O':
3270 case 'P':
3271 if (GET_CODE (operand) == CONST_INT
3272 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3273 win = 1;
3274 break;
3276 case 'X':
3277 win = 1;
3278 break;
3280 case 'g':
3281 if (! force_reload
3282 /* A PLUS is never a valid operand, but reload can make
3283 it from a register when eliminating registers. */
3284 && GET_CODE (operand) != PLUS
3285 /* A SCRATCH is not a valid operand. */
3286 && GET_CODE (operand) != SCRATCH
3287 && (! CONSTANT_P (operand)
3288 || ! flag_pic
3289 || LEGITIMATE_PIC_OPERAND_P (operand))
3290 && (GENERAL_REGS == ALL_REGS
3291 || !REG_P (operand)
3292 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3293 && reg_renumber[REGNO (operand)] < 0)))
3294 win = 1;
3295 /* Drop through into 'r' case. */
3297 case 'r':
3298 this_alternative[i]
3299 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3300 goto reg;
3302 default:
3303 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3305 #ifdef EXTRA_CONSTRAINT_STR
3306 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3308 if (force_reload)
3309 break;
3310 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3311 win = 1;
3312 /* If the address was already reloaded,
3313 we win as well. */
3314 else if (MEM_P (operand)
3315 && address_reloaded[i] == 1)
3316 win = 1;
3317 /* Likewise if the address will be reloaded because
3318 reg_equiv_address is nonzero. For reg_equiv_mem
3319 we have to check. */
3320 else if (REG_P (operand)
3321 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3322 && reg_renumber[REGNO (operand)] < 0
3323 && ((reg_equiv_mem[REGNO (operand)] != 0
3324 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3325 || (reg_equiv_address[REGNO (operand)] != 0)))
3326 win = 1;
3328 /* If we didn't already win, we can reload
3329 constants via force_const_mem, and other
3330 MEMs by reloading the address like for 'o'. */
3331 if (CONST_POOL_OK_P (operand)
3332 || MEM_P (operand))
3333 badop = 0;
3334 constmemok = 1;
3335 offmemok = 1;
3336 break;
3338 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3340 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3341 win = 1;
3343 /* If we didn't already win, we can reload
3344 the address into a base register. */
3345 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3346 badop = 0;
3347 break;
3350 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3351 win = 1;
3352 #endif
3353 break;
3356 this_alternative[i]
3357 = (int) (reg_class_subunion
3358 [this_alternative[i]]
3359 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3360 reg:
3361 if (GET_MODE (operand) == BLKmode)
3362 break;
3363 winreg = 1;
3364 if (REG_P (operand)
3365 && reg_fits_class_p (operand, this_alternative[i],
3366 offset, GET_MODE (recog_data.operand[i])))
3367 win = 1;
3368 break;
3370 while ((p += len), c);
3372 constraints[i] = p;
3374 /* If this operand could be handled with a reg,
3375 and some reg is allowed, then this operand can be handled. */
3376 if (winreg && this_alternative[i] != (int) NO_REGS)
3377 badop = 0;
3379 /* Record which operands fit this alternative. */
3380 this_alternative_earlyclobber[i] = earlyclobber;
3381 if (win && ! force_reload)
3382 this_alternative_win[i] = 1;
3383 else if (did_match && ! force_reload)
3384 this_alternative_match_win[i] = 1;
3385 else
3387 int const_to_mem = 0;
3389 this_alternative_offmemok[i] = offmemok;
3390 losers++;
3391 if (badop)
3392 bad = 1;
3393 /* Alternative loses if it has no regs for a reg operand. */
3394 if (REG_P (operand)
3395 && this_alternative[i] == (int) NO_REGS
3396 && this_alternative_matches[i] < 0)
3397 bad = 1;
3399 /* If this is a constant that is reloaded into the desired
3400 class by copying it to memory first, count that as another
3401 reload. This is consistent with other code and is
3402 required to avoid choosing another alternative when
3403 the constant is moved into memory by this function on
3404 an early reload pass. Note that the test here is
3405 precisely the same as in the code below that calls
3406 force_const_mem. */
3407 if (CONST_POOL_OK_P (operand)
3408 && ((PREFERRED_RELOAD_CLASS (operand,
3409 (enum reg_class) this_alternative[i])
3410 == NO_REGS)
3411 || no_input_reloads)
3412 && operand_mode[i] != VOIDmode)
3414 const_to_mem = 1;
3415 if (this_alternative[i] != (int) NO_REGS)
3416 losers++;
3419 /* If we can't reload this value at all, reject this
3420 alternative. Note that we could also lose due to
3421 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3422 here. */
3424 if (! CONSTANT_P (operand)
3425 && (enum reg_class) this_alternative[i] != NO_REGS
3426 && (PREFERRED_RELOAD_CLASS (operand,
3427 (enum reg_class) this_alternative[i])
3428 == NO_REGS))
3429 bad = 1;
3431 /* Alternative loses if it requires a type of reload not
3432 permitted for this insn. We can always reload SCRATCH
3433 and objects with a REG_UNUSED note. */
3434 else if (GET_CODE (operand) != SCRATCH
3435 && modified[i] != RELOAD_READ && no_output_reloads
3436 && ! find_reg_note (insn, REG_UNUSED, operand))
3437 bad = 1;
3438 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3439 && ! const_to_mem)
3440 bad = 1;
3442 /* We prefer to reload pseudos over reloading other things,
3443 since such reloads may be able to be eliminated later.
3444 If we are reloading a SCRATCH, we won't be generating any
3445 insns, just using a register, so it is also preferred.
3446 So bump REJECT in other cases. Don't do this in the
3447 case where we are forcing a constant into memory and
3448 it will then win since we don't want to have a different
3449 alternative match then. */
3450 if (! (REG_P (operand)
3451 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3452 && GET_CODE (operand) != SCRATCH
3453 && ! (const_to_mem && constmemok))
3454 reject += 2;
3456 /* Input reloads can be inherited more often than output
3457 reloads can be removed, so penalize output reloads. */
3458 if (operand_type[i] != RELOAD_FOR_INPUT
3459 && GET_CODE (operand) != SCRATCH)
3460 reject++;
3463 /* If this operand is a pseudo register that didn't get a hard
3464 reg and this alternative accepts some register, see if the
3465 class that we want is a subset of the preferred class for this
3466 register. If not, but it intersects that class, use the
3467 preferred class instead. If it does not intersect the preferred
3468 class, show that usage of this alternative should be discouraged;
3469 it will be discouraged more still if the register is `preferred
3470 or nothing'. We do this because it increases the chance of
3471 reusing our spill register in a later insn and avoiding a pair
3472 of memory stores and loads.
3474 Don't bother with this if this alternative will accept this
3475 operand.
3477 Don't do this for a multiword operand, since it is only a
3478 small win and has the risk of requiring more spill registers,
3479 which could cause a large loss.
3481 Don't do this if the preferred class has only one register
3482 because we might otherwise exhaust the class. */
3484 if (! win && ! did_match
3485 && this_alternative[i] != (int) NO_REGS
3486 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3487 && reg_class_size[(int) preferred_class[i]] > 1)
3489 if (! reg_class_subset_p (this_alternative[i],
3490 preferred_class[i]))
3492 /* Since we don't have a way of forming the intersection,
3493 we just do something special if the preferred class
3494 is a subset of the class we have; that's the most
3495 common case anyway. */
3496 if (reg_class_subset_p (preferred_class[i],
3497 this_alternative[i]))
3498 this_alternative[i] = (int) preferred_class[i];
3499 else
3500 reject += (2 + 2 * pref_or_nothing[i]);
3505 /* Now see if any output operands that are marked "earlyclobber"
3506 in this alternative conflict with any input operands
3507 or any memory addresses. */
3509 for (i = 0; i < noperands; i++)
3510 if (this_alternative_earlyclobber[i]
3511 && (this_alternative_win[i] || this_alternative_match_win[i]))
3513 struct decomposition early_data;
3515 early_data = decompose (recog_data.operand[i]);
3517 gcc_assert (modified[i] != RELOAD_READ);
3519 if (this_alternative[i] == NO_REGS)
3521 this_alternative_earlyclobber[i] = 0;
3522 gcc_assert (this_insn_is_asm);
3523 error_for_asm (this_insn,
3524 "%<&%> constraint used with no register class");
3527 for (j = 0; j < noperands; j++)
3528 /* Is this an input operand or a memory ref? */
3529 if ((MEM_P (recog_data.operand[j])
3530 || modified[j] != RELOAD_WRITE)
3531 && j != i
3532 /* Ignore things like match_operator operands. */
3533 && *recog_data.constraints[j] != 0
3534 /* Don't count an input operand that is constrained to match
3535 the early clobber operand. */
3536 && ! (this_alternative_matches[j] == i
3537 && rtx_equal_p (recog_data.operand[i],
3538 recog_data.operand[j]))
3539 /* Is it altered by storing the earlyclobber operand? */
3540 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3541 early_data))
3543 /* If the output is in a single-reg class,
3544 it's costly to reload it, so reload the input instead. */
3545 if (reg_class_size[this_alternative[i]] == 1
3546 && (REG_P (recog_data.operand[j])
3547 || GET_CODE (recog_data.operand[j]) == SUBREG))
3549 losers++;
3550 this_alternative_win[j] = 0;
3551 this_alternative_match_win[j] = 0;
3553 else
3554 break;
3556 /* If an earlyclobber operand conflicts with something,
3557 it must be reloaded, so request this and count the cost. */
3558 if (j != noperands)
3560 losers++;
3561 this_alternative_win[i] = 0;
3562 this_alternative_match_win[j] = 0;
3563 for (j = 0; j < noperands; j++)
3564 if (this_alternative_matches[j] == i
3565 && this_alternative_match_win[j])
3567 this_alternative_win[j] = 0;
3568 this_alternative_match_win[j] = 0;
3569 losers++;
3574 /* If one alternative accepts all the operands, no reload required,
3575 choose that alternative; don't consider the remaining ones. */
3576 if (losers == 0)
3578 /* Unswap these so that they are never swapped at `finish'. */
3579 if (commutative >= 0)
3581 recog_data.operand[commutative] = substed_operand[commutative];
3582 recog_data.operand[commutative + 1]
3583 = substed_operand[commutative + 1];
3585 for (i = 0; i < noperands; i++)
3587 goal_alternative_win[i] = this_alternative_win[i];
3588 goal_alternative_match_win[i] = this_alternative_match_win[i];
3589 goal_alternative[i] = this_alternative[i];
3590 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3591 goal_alternative_matches[i] = this_alternative_matches[i];
3592 goal_alternative_earlyclobber[i]
3593 = this_alternative_earlyclobber[i];
3595 goal_alternative_number = this_alternative_number;
3596 goal_alternative_swapped = swapped;
3597 goal_earlyclobber = this_earlyclobber;
3598 goto finish;
3601 /* REJECT, set by the ! and ? constraint characters and when a register
3602 would be reloaded into a non-preferred class, discourages the use of
3603 this alternative for a reload goal. REJECT is incremented by six
3604 for each ? and two for each non-preferred class. */
3605 losers = losers * 6 + reject;
3607 /* If this alternative can be made to work by reloading,
3608 and it needs less reloading than the others checked so far,
3609 record it as the chosen goal for reloading. */
3610 if (! bad && best > losers)
3612 for (i = 0; i < noperands; i++)
3614 goal_alternative[i] = this_alternative[i];
3615 goal_alternative_win[i] = this_alternative_win[i];
3616 goal_alternative_match_win[i] = this_alternative_match_win[i];
3617 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3618 goal_alternative_matches[i] = this_alternative_matches[i];
3619 goal_alternative_earlyclobber[i]
3620 = this_alternative_earlyclobber[i];
3622 goal_alternative_swapped = swapped;
3623 best = losers;
3624 goal_alternative_number = this_alternative_number;
3625 goal_earlyclobber = this_earlyclobber;
3629 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3630 then we need to try each alternative twice,
3631 the second time matching those two operands
3632 as if we had exchanged them.
3633 To do this, really exchange them in operands.
3635 If we have just tried the alternatives the second time,
3636 return operands to normal and drop through. */
3638 if (commutative >= 0)
3640 swapped = !swapped;
3641 if (swapped)
3643 enum reg_class tclass;
3644 int t;
3646 recog_data.operand[commutative] = substed_operand[commutative + 1];
3647 recog_data.operand[commutative + 1] = substed_operand[commutative];
3648 /* Swap the duplicates too. */
3649 for (i = 0; i < recog_data.n_dups; i++)
3650 if (recog_data.dup_num[i] == commutative
3651 || recog_data.dup_num[i] == commutative + 1)
3652 *recog_data.dup_loc[i]
3653 = recog_data.operand[(int) recog_data.dup_num[i]];
3655 tclass = preferred_class[commutative];
3656 preferred_class[commutative] = preferred_class[commutative + 1];
3657 preferred_class[commutative + 1] = tclass;
3659 t = pref_or_nothing[commutative];
3660 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3661 pref_or_nothing[commutative + 1] = t;
3663 memcpy (constraints, recog_data.constraints,
3664 noperands * sizeof (char *));
3665 goto try_swapped;
3667 else
3669 recog_data.operand[commutative] = substed_operand[commutative];
3670 recog_data.operand[commutative + 1]
3671 = substed_operand[commutative + 1];
3672 /* Unswap the duplicates too. */
3673 for (i = 0; i < recog_data.n_dups; i++)
3674 if (recog_data.dup_num[i] == commutative
3675 || recog_data.dup_num[i] == commutative + 1)
3676 *recog_data.dup_loc[i]
3677 = recog_data.operand[(int) recog_data.dup_num[i]];
3681 /* The operands don't meet the constraints.
3682 goal_alternative describes the alternative
3683 that we could reach by reloading the fewest operands.
3684 Reload so as to fit it. */
3686 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3688 /* No alternative works with reloads?? */
3689 if (insn_code_number >= 0)
3690 fatal_insn ("unable to generate reloads for:", insn);
3691 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3692 /* Avoid further trouble with this insn. */
3693 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3694 n_reloads = 0;
3695 return 0;
3698 /* Jump to `finish' from above if all operands are valid already.
3699 In that case, goal_alternative_win is all 1. */
3700 finish:
3702 /* Right now, for any pair of operands I and J that are required to match,
3703 with I < J,
3704 goal_alternative_matches[J] is I.
3705 Set up goal_alternative_matched as the inverse function:
3706 goal_alternative_matched[I] = J. */
3708 for (i = 0; i < noperands; i++)
3709 goal_alternative_matched[i] = -1;
3711 for (i = 0; i < noperands; i++)
3712 if (! goal_alternative_win[i]
3713 && goal_alternative_matches[i] >= 0)
3714 goal_alternative_matched[goal_alternative_matches[i]] = i;
3716 for (i = 0; i < noperands; i++)
3717 goal_alternative_win[i] |= goal_alternative_match_win[i];
3719 /* If the best alternative is with operands 1 and 2 swapped,
3720 consider them swapped before reporting the reloads. Update the
3721 operand numbers of any reloads already pushed. */
3723 if (goal_alternative_swapped)
3725 rtx tem;
3727 tem = substed_operand[commutative];
3728 substed_operand[commutative] = substed_operand[commutative + 1];
3729 substed_operand[commutative + 1] = tem;
3730 tem = recog_data.operand[commutative];
3731 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3732 recog_data.operand[commutative + 1] = tem;
3733 tem = *recog_data.operand_loc[commutative];
3734 *recog_data.operand_loc[commutative]
3735 = *recog_data.operand_loc[commutative + 1];
3736 *recog_data.operand_loc[commutative + 1] = tem;
3738 for (i = 0; i < n_reloads; i++)
3740 if (rld[i].opnum == commutative)
3741 rld[i].opnum = commutative + 1;
3742 else if (rld[i].opnum == commutative + 1)
3743 rld[i].opnum = commutative;
3747 for (i = 0; i < noperands; i++)
3749 operand_reloadnum[i] = -1;
3751 /* If this is an earlyclobber operand, we need to widen the scope.
3752 The reload must remain valid from the start of the insn being
3753 reloaded until after the operand is stored into its destination.
3754 We approximate this with RELOAD_OTHER even though we know that we
3755 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3757 One special case that is worth checking is when we have an
3758 output that is earlyclobber but isn't used past the insn (typically
3759 a SCRATCH). In this case, we only need have the reload live
3760 through the insn itself, but not for any of our input or output
3761 reloads.
3762 But we must not accidentally narrow the scope of an existing
3763 RELOAD_OTHER reload - leave these alone.
3765 In any case, anything needed to address this operand can remain
3766 however they were previously categorized. */
3768 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3769 operand_type[i]
3770 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3771 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3774 /* Any constants that aren't allowed and can't be reloaded
3775 into registers are here changed into memory references. */
3776 for (i = 0; i < noperands; i++)
3777 if (! goal_alternative_win[i]
3778 && CONST_POOL_OK_P (recog_data.operand[i])
3779 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3780 (enum reg_class) goal_alternative[i])
3781 == NO_REGS)
3782 || no_input_reloads)
3783 && operand_mode[i] != VOIDmode)
3785 substed_operand[i] = recog_data.operand[i]
3786 = find_reloads_toplev (force_const_mem (operand_mode[i],
3787 recog_data.operand[i]),
3788 i, address_type[i], ind_levels, 0, insn,
3789 NULL);
3790 if (alternative_allows_memconst (recog_data.constraints[i],
3791 goal_alternative_number))
3792 goal_alternative_win[i] = 1;
3795 /* Likewise any invalid constants appearing as operand of a PLUS
3796 that is to be reloaded. */
3797 for (i = 0; i < noperands; i++)
3798 if (! goal_alternative_win[i]
3799 && GET_CODE (recog_data.operand[i]) == PLUS
3800 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3801 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3802 (enum reg_class) goal_alternative[i])
3803 == NO_REGS)
3804 && operand_mode[i] != VOIDmode)
3806 rtx tem = force_const_mem (operand_mode[i],
3807 XEXP (recog_data.operand[i], 1));
3808 tem = gen_rtx_PLUS (operand_mode[i],
3809 XEXP (recog_data.operand[i], 0), tem);
3811 substed_operand[i] = recog_data.operand[i]
3812 = find_reloads_toplev (tem, i, address_type[i],
3813 ind_levels, 0, insn, NULL);
3816 /* Record the values of the earlyclobber operands for the caller. */
3817 if (goal_earlyclobber)
3818 for (i = 0; i < noperands; i++)
3819 if (goal_alternative_earlyclobber[i])
3820 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3822 /* Now record reloads for all the operands that need them. */
3823 for (i = 0; i < noperands; i++)
3824 if (! goal_alternative_win[i])
3826 /* Operands that match previous ones have already been handled. */
3827 if (goal_alternative_matches[i] >= 0)
3829 /* Handle an operand with a nonoffsettable address
3830 appearing where an offsettable address will do
3831 by reloading the address into a base register.
3833 ??? We can also do this when the operand is a register and
3834 reg_equiv_mem is not offsettable, but this is a bit tricky,
3835 so we don't bother with it. It may not be worth doing. */
3836 else if (goal_alternative_matched[i] == -1
3837 && goal_alternative_offmemok[i]
3838 && MEM_P (recog_data.operand[i]))
3840 operand_reloadnum[i]
3841 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3842 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3843 MODE_BASE_REG_CLASS (VOIDmode),
3844 GET_MODE (XEXP (recog_data.operand[i], 0)),
3845 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3846 rld[operand_reloadnum[i]].inc
3847 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3849 /* If this operand is an output, we will have made any
3850 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3851 now we are treating part of the operand as an input, so
3852 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3854 if (modified[i] == RELOAD_WRITE)
3856 for (j = 0; j < n_reloads; j++)
3858 if (rld[j].opnum == i)
3860 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3861 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3862 else if (rld[j].when_needed
3863 == RELOAD_FOR_OUTADDR_ADDRESS)
3864 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3869 else if (goal_alternative_matched[i] == -1)
3871 operand_reloadnum[i]
3872 = push_reload ((modified[i] != RELOAD_WRITE
3873 ? recog_data.operand[i] : 0),
3874 (modified[i] != RELOAD_READ
3875 ? recog_data.operand[i] : 0),
3876 (modified[i] != RELOAD_WRITE
3877 ? recog_data.operand_loc[i] : 0),
3878 (modified[i] != RELOAD_READ
3879 ? recog_data.operand_loc[i] : 0),
3880 (enum reg_class) goal_alternative[i],
3881 (modified[i] == RELOAD_WRITE
3882 ? VOIDmode : operand_mode[i]),
3883 (modified[i] == RELOAD_READ
3884 ? VOIDmode : operand_mode[i]),
3885 (insn_code_number < 0 ? 0
3886 : insn_data[insn_code_number].operand[i].strict_low),
3887 0, i, operand_type[i]);
3889 /* In a matching pair of operands, one must be input only
3890 and the other must be output only.
3891 Pass the input operand as IN and the other as OUT. */
3892 else if (modified[i] == RELOAD_READ
3893 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3895 operand_reloadnum[i]
3896 = push_reload (recog_data.operand[i],
3897 recog_data.operand[goal_alternative_matched[i]],
3898 recog_data.operand_loc[i],
3899 recog_data.operand_loc[goal_alternative_matched[i]],
3900 (enum reg_class) goal_alternative[i],
3901 operand_mode[i],
3902 operand_mode[goal_alternative_matched[i]],
3903 0, 0, i, RELOAD_OTHER);
3904 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3906 else if (modified[i] == RELOAD_WRITE
3907 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3909 operand_reloadnum[goal_alternative_matched[i]]
3910 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3911 recog_data.operand[i],
3912 recog_data.operand_loc[goal_alternative_matched[i]],
3913 recog_data.operand_loc[i],
3914 (enum reg_class) goal_alternative[i],
3915 operand_mode[goal_alternative_matched[i]],
3916 operand_mode[i],
3917 0, 0, i, RELOAD_OTHER);
3918 operand_reloadnum[i] = output_reloadnum;
3920 else
3922 gcc_assert (insn_code_number < 0);
3923 error_for_asm (insn, "inconsistent operand constraints "
3924 "in an %<asm%>");
3925 /* Avoid further trouble with this insn. */
3926 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3927 n_reloads = 0;
3928 return 0;
3931 else if (goal_alternative_matched[i] < 0
3932 && goal_alternative_matches[i] < 0
3933 && address_operand_reloaded[i] != 1
3934 && optimize)
3936 /* For each non-matching operand that's a MEM or a pseudo-register
3937 that didn't get a hard register, make an optional reload.
3938 This may get done even if the insn needs no reloads otherwise. */
3940 rtx operand = recog_data.operand[i];
3942 while (GET_CODE (operand) == SUBREG)
3943 operand = SUBREG_REG (operand);
3944 if ((MEM_P (operand)
3945 || (REG_P (operand)
3946 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3947 /* If this is only for an output, the optional reload would not
3948 actually cause us to use a register now, just note that
3949 something is stored here. */
3950 && ((enum reg_class) goal_alternative[i] != NO_REGS
3951 || modified[i] == RELOAD_WRITE)
3952 && ! no_input_reloads
3953 /* An optional output reload might allow to delete INSN later.
3954 We mustn't make in-out reloads on insns that are not permitted
3955 output reloads.
3956 If this is an asm, we can't delete it; we must not even call
3957 push_reload for an optional output reload in this case,
3958 because we can't be sure that the constraint allows a register,
3959 and push_reload verifies the constraints for asms. */
3960 && (modified[i] == RELOAD_READ
3961 || (! no_output_reloads && ! this_insn_is_asm)))
3962 operand_reloadnum[i]
3963 = push_reload ((modified[i] != RELOAD_WRITE
3964 ? recog_data.operand[i] : 0),
3965 (modified[i] != RELOAD_READ
3966 ? recog_data.operand[i] : 0),
3967 (modified[i] != RELOAD_WRITE
3968 ? recog_data.operand_loc[i] : 0),
3969 (modified[i] != RELOAD_READ
3970 ? recog_data.operand_loc[i] : 0),
3971 (enum reg_class) goal_alternative[i],
3972 (modified[i] == RELOAD_WRITE
3973 ? VOIDmode : operand_mode[i]),
3974 (modified[i] == RELOAD_READ
3975 ? VOIDmode : operand_mode[i]),
3976 (insn_code_number < 0 ? 0
3977 : insn_data[insn_code_number].operand[i].strict_low),
3978 1, i, operand_type[i]);
3979 /* If a memory reference remains (either as a MEM or a pseudo that
3980 did not get a hard register), yet we can't make an optional
3981 reload, check if this is actually a pseudo register reference;
3982 we then need to emit a USE and/or a CLOBBER so that reload
3983 inheritance will do the right thing. */
3984 else if (replace
3985 && (MEM_P (operand)
3986 || (REG_P (operand)
3987 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3988 && reg_renumber [REGNO (operand)] < 0)))
3990 operand = *recog_data.operand_loc[i];
3992 while (GET_CODE (operand) == SUBREG)
3993 operand = SUBREG_REG (operand);
3994 if (REG_P (operand))
3996 if (modified[i] != RELOAD_WRITE)
3997 /* We mark the USE with QImode so that we recognize
3998 it as one that can be safely deleted at the end
3999 of reload. */
4000 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4001 insn), QImode);
4002 if (modified[i] != RELOAD_READ)
4003 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4007 else if (goal_alternative_matches[i] >= 0
4008 && goal_alternative_win[goal_alternative_matches[i]]
4009 && modified[i] == RELOAD_READ
4010 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4011 && ! no_input_reloads && ! no_output_reloads
4012 && optimize)
4014 /* Similarly, make an optional reload for a pair of matching
4015 objects that are in MEM or a pseudo that didn't get a hard reg. */
4017 rtx operand = recog_data.operand[i];
4019 while (GET_CODE (operand) == SUBREG)
4020 operand = SUBREG_REG (operand);
4021 if ((MEM_P (operand)
4022 || (REG_P (operand)
4023 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4024 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4025 != NO_REGS))
4026 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4027 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4028 recog_data.operand[i],
4029 recog_data.operand_loc[goal_alternative_matches[i]],
4030 recog_data.operand_loc[i],
4031 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4032 operand_mode[goal_alternative_matches[i]],
4033 operand_mode[i],
4034 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4037 /* Perform whatever substitutions on the operands we are supposed
4038 to make due to commutativity or replacement of registers
4039 with equivalent constants or memory slots. */
4041 for (i = 0; i < noperands; i++)
4043 /* We only do this on the last pass through reload, because it is
4044 possible for some data (like reg_equiv_address) to be changed during
4045 later passes. Moreover, we loose the opportunity to get a useful
4046 reload_{in,out}_reg when we do these replacements. */
4048 if (replace)
4050 rtx substitution = substed_operand[i];
4052 *recog_data.operand_loc[i] = substitution;
4054 /* If we're replacing an operand with a LABEL_REF, we need
4055 to make sure that there's a REG_LABEL note attached to
4056 this instruction. */
4057 if (!JUMP_P (insn)
4058 && GET_CODE (substitution) == LABEL_REF
4059 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4060 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4061 XEXP (substitution, 0),
4062 REG_NOTES (insn));
4064 else
4065 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4068 /* If this insn pattern contains any MATCH_DUP's, make sure that
4069 they will be substituted if the operands they match are substituted.
4070 Also do now any substitutions we already did on the operands.
4072 Don't do this if we aren't making replacements because we might be
4073 propagating things allocated by frame pointer elimination into places
4074 it doesn't expect. */
4076 if (insn_code_number >= 0 && replace)
4077 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4079 int opno = recog_data.dup_num[i];
4080 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4081 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4084 #if 0
4085 /* This loses because reloading of prior insns can invalidate the equivalence
4086 (or at least find_equiv_reg isn't smart enough to find it any more),
4087 causing this insn to need more reload regs than it needed before.
4088 It may be too late to make the reload regs available.
4089 Now this optimization is done safely in choose_reload_regs. */
4091 /* For each reload of a reg into some other class of reg,
4092 search for an existing equivalent reg (same value now) in the right class.
4093 We can use it as long as we don't need to change its contents. */
4094 for (i = 0; i < n_reloads; i++)
4095 if (rld[i].reg_rtx == 0
4096 && rld[i].in != 0
4097 && REG_P (rld[i].in)
4098 && rld[i].out == 0)
4100 rld[i].reg_rtx
4101 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4102 static_reload_reg_p, 0, rld[i].inmode);
4103 /* Prevent generation of insn to load the value
4104 because the one we found already has the value. */
4105 if (rld[i].reg_rtx)
4106 rld[i].in = rld[i].reg_rtx;
4108 #endif
4110 /* Perhaps an output reload can be combined with another
4111 to reduce needs by one. */
4112 if (!goal_earlyclobber)
4113 combine_reloads ();
4115 /* If we have a pair of reloads for parts of an address, they are reloading
4116 the same object, the operands themselves were not reloaded, and they
4117 are for two operands that are supposed to match, merge the reloads and
4118 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4120 for (i = 0; i < n_reloads; i++)
4122 int k;
4124 for (j = i + 1; j < n_reloads; j++)
4125 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4126 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4127 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4128 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4129 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4130 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4131 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4132 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4133 && rtx_equal_p (rld[i].in, rld[j].in)
4134 && (operand_reloadnum[rld[i].opnum] < 0
4135 || rld[operand_reloadnum[rld[i].opnum]].optional)
4136 && (operand_reloadnum[rld[j].opnum] < 0
4137 || rld[operand_reloadnum[rld[j].opnum]].optional)
4138 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4139 || (goal_alternative_matches[rld[j].opnum]
4140 == rld[i].opnum)))
4142 for (k = 0; k < n_replacements; k++)
4143 if (replacements[k].what == j)
4144 replacements[k].what = i;
4146 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4147 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4148 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4149 else
4150 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4151 rld[j].in = 0;
4155 /* Scan all the reloads and update their type.
4156 If a reload is for the address of an operand and we didn't reload
4157 that operand, change the type. Similarly, change the operand number
4158 of a reload when two operands match. If a reload is optional, treat it
4159 as though the operand isn't reloaded.
4161 ??? This latter case is somewhat odd because if we do the optional
4162 reload, it means the object is hanging around. Thus we need only
4163 do the address reload if the optional reload was NOT done.
4165 Change secondary reloads to be the address type of their operand, not
4166 the normal type.
4168 If an operand's reload is now RELOAD_OTHER, change any
4169 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4170 RELOAD_FOR_OTHER_ADDRESS. */
4172 for (i = 0; i < n_reloads; i++)
4174 if (rld[i].secondary_p
4175 && rld[i].when_needed == operand_type[rld[i].opnum])
4176 rld[i].when_needed = address_type[rld[i].opnum];
4178 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4179 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4180 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4181 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4182 && (operand_reloadnum[rld[i].opnum] < 0
4183 || rld[operand_reloadnum[rld[i].opnum]].optional))
4185 /* If we have a secondary reload to go along with this reload,
4186 change its type to RELOAD_FOR_OPADDR_ADDR. */
4188 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4189 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4190 && rld[i].secondary_in_reload != -1)
4192 int secondary_in_reload = rld[i].secondary_in_reload;
4194 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4196 /* If there's a tertiary reload we have to change it also. */
4197 if (secondary_in_reload > 0
4198 && rld[secondary_in_reload].secondary_in_reload != -1)
4199 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4200 = RELOAD_FOR_OPADDR_ADDR;
4203 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4204 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4205 && rld[i].secondary_out_reload != -1)
4207 int secondary_out_reload = rld[i].secondary_out_reload;
4209 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4211 /* If there's a tertiary reload we have to change it also. */
4212 if (secondary_out_reload
4213 && rld[secondary_out_reload].secondary_out_reload != -1)
4214 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4215 = RELOAD_FOR_OPADDR_ADDR;
4218 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4219 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4220 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4221 else
4222 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4225 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4226 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4227 && operand_reloadnum[rld[i].opnum] >= 0
4228 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4229 == RELOAD_OTHER))
4230 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4232 if (goal_alternative_matches[rld[i].opnum] >= 0)
4233 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4236 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4237 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4238 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4240 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4241 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4242 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4243 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4244 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4245 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4246 This is complicated by the fact that a single operand can have more
4247 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4248 choose_reload_regs without affecting code quality, and cases that
4249 actually fail are extremely rare, so it turns out to be better to fix
4250 the problem here by not generating cases that choose_reload_regs will
4251 fail for. */
4252 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4253 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4254 a single operand.
4255 We can reduce the register pressure by exploiting that a
4256 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4257 does not conflict with any of them, if it is only used for the first of
4258 the RELOAD_FOR_X_ADDRESS reloads. */
4260 int first_op_addr_num = -2;
4261 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4262 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4263 int need_change = 0;
4264 /* We use last_op_addr_reload and the contents of the above arrays
4265 first as flags - -2 means no instance encountered, -1 means exactly
4266 one instance encountered.
4267 If more than one instance has been encountered, we store the reload
4268 number of the first reload of the kind in question; reload numbers
4269 are known to be non-negative. */
4270 for (i = 0; i < noperands; i++)
4271 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4272 for (i = n_reloads - 1; i >= 0; i--)
4274 switch (rld[i].when_needed)
4276 case RELOAD_FOR_OPERAND_ADDRESS:
4277 if (++first_op_addr_num >= 0)
4279 first_op_addr_num = i;
4280 need_change = 1;
4282 break;
4283 case RELOAD_FOR_INPUT_ADDRESS:
4284 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4286 first_inpaddr_num[rld[i].opnum] = i;
4287 need_change = 1;
4289 break;
4290 case RELOAD_FOR_OUTPUT_ADDRESS:
4291 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4293 first_outpaddr_num[rld[i].opnum] = i;
4294 need_change = 1;
4296 break;
4297 default:
4298 break;
4302 if (need_change)
4304 for (i = 0; i < n_reloads; i++)
4306 int first_num;
4307 enum reload_type type;
4309 switch (rld[i].when_needed)
4311 case RELOAD_FOR_OPADDR_ADDR:
4312 first_num = first_op_addr_num;
4313 type = RELOAD_FOR_OPERAND_ADDRESS;
4314 break;
4315 case RELOAD_FOR_INPADDR_ADDRESS:
4316 first_num = first_inpaddr_num[rld[i].opnum];
4317 type = RELOAD_FOR_INPUT_ADDRESS;
4318 break;
4319 case RELOAD_FOR_OUTADDR_ADDRESS:
4320 first_num = first_outpaddr_num[rld[i].opnum];
4321 type = RELOAD_FOR_OUTPUT_ADDRESS;
4322 break;
4323 default:
4324 continue;
4326 if (first_num < 0)
4327 continue;
4328 else if (i > first_num)
4329 rld[i].when_needed = type;
4330 else
4332 /* Check if the only TYPE reload that uses reload I is
4333 reload FIRST_NUM. */
4334 for (j = n_reloads - 1; j > first_num; j--)
4336 if (rld[j].when_needed == type
4337 && (rld[i].secondary_p
4338 ? rld[j].secondary_in_reload == i
4339 : reg_mentioned_p (rld[i].in, rld[j].in)))
4341 rld[i].when_needed = type;
4342 break;
4350 /* See if we have any reloads that are now allowed to be merged
4351 because we've changed when the reload is needed to
4352 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4353 check for the most common cases. */
4355 for (i = 0; i < n_reloads; i++)
4356 if (rld[i].in != 0 && rld[i].out == 0
4357 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4358 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4359 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4360 for (j = 0; j < n_reloads; j++)
4361 if (i != j && rld[j].in != 0 && rld[j].out == 0
4362 && rld[j].when_needed == rld[i].when_needed
4363 && MATCHES (rld[i].in, rld[j].in)
4364 && rld[i].class == rld[j].class
4365 && !rld[i].nocombine && !rld[j].nocombine
4366 && rld[i].reg_rtx == rld[j].reg_rtx)
4368 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4369 transfer_replacements (i, j);
4370 rld[j].in = 0;
4373 #ifdef HAVE_cc0
4374 /* If we made any reloads for addresses, see if they violate a
4375 "no input reloads" requirement for this insn. But loads that we
4376 do after the insn (such as for output addresses) are fine. */
4377 if (no_input_reloads)
4378 for (i = 0; i < n_reloads; i++)
4379 gcc_assert (rld[i].in == 0
4380 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4381 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4382 #endif
4384 /* Compute reload_mode and reload_nregs. */
4385 for (i = 0; i < n_reloads; i++)
4387 rld[i].mode
4388 = (rld[i].inmode == VOIDmode
4389 || (GET_MODE_SIZE (rld[i].outmode)
4390 > GET_MODE_SIZE (rld[i].inmode)))
4391 ? rld[i].outmode : rld[i].inmode;
4393 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4396 /* Special case a simple move with an input reload and a
4397 destination of a hard reg, if the hard reg is ok, use it. */
4398 for (i = 0; i < n_reloads; i++)
4399 if (rld[i].when_needed == RELOAD_FOR_INPUT
4400 && GET_CODE (PATTERN (insn)) == SET
4401 && REG_P (SET_DEST (PATTERN (insn)))
4402 && SET_SRC (PATTERN (insn)) == rld[i].in)
4404 rtx dest = SET_DEST (PATTERN (insn));
4405 unsigned int regno = REGNO (dest);
4407 if (regno < FIRST_PSEUDO_REGISTER
4408 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4409 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4411 int nr = hard_regno_nregs[regno][rld[i].mode];
4412 int ok = 1, nri;
4414 for (nri = 1; nri < nr; nri ++)
4415 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4416 ok = 0;
4418 if (ok)
4419 rld[i].reg_rtx = dest;
4423 return retval;
4426 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4427 accepts a memory operand with constant address. */
4429 static int
4430 alternative_allows_memconst (const char *constraint, int altnum)
4432 int c;
4433 /* Skip alternatives before the one requested. */
4434 while (altnum > 0)
4436 while (*constraint++ != ',');
4437 altnum--;
4439 /* Scan the requested alternative for 'm' or 'o'.
4440 If one of them is present, this alternative accepts memory constants. */
4441 for (; (c = *constraint) && c != ',' && c != '#';
4442 constraint += CONSTRAINT_LEN (c, constraint))
4443 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4444 return 1;
4445 return 0;
4448 /* Scan X for memory references and scan the addresses for reloading.
4449 Also checks for references to "constant" regs that we want to eliminate
4450 and replaces them with the values they stand for.
4451 We may alter X destructively if it contains a reference to such.
4452 If X is just a constant reg, we return the equivalent value
4453 instead of X.
4455 IND_LEVELS says how many levels of indirect addressing this machine
4456 supports.
4458 OPNUM and TYPE identify the purpose of the reload.
4460 IS_SET_DEST is true if X is the destination of a SET, which is not
4461 appropriate to be replaced by a constant.
4463 INSN, if nonzero, is the insn in which we do the reload. It is used
4464 to determine if we may generate output reloads, and where to put USEs
4465 for pseudos that we have to replace with stack slots.
4467 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4468 result of find_reloads_address. */
4470 static rtx
4471 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4472 int ind_levels, int is_set_dest, rtx insn,
4473 int *address_reloaded)
4475 RTX_CODE code = GET_CODE (x);
4477 const char *fmt = GET_RTX_FORMAT (code);
4478 int i;
4479 int copied;
4481 if (code == REG)
4483 /* This code is duplicated for speed in find_reloads. */
4484 int regno = REGNO (x);
4485 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4486 x = reg_equiv_constant[regno];
4487 #if 0
4488 /* This creates (subreg (mem...)) which would cause an unnecessary
4489 reload of the mem. */
4490 else if (reg_equiv_mem[regno] != 0)
4491 x = reg_equiv_mem[regno];
4492 #endif
4493 else if (reg_equiv_memory_loc[regno]
4494 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4496 rtx mem = make_memloc (x, regno);
4497 if (reg_equiv_address[regno]
4498 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4500 /* If this is not a toplevel operand, find_reloads doesn't see
4501 this substitution. We have to emit a USE of the pseudo so
4502 that delete_output_reload can see it. */
4503 if (replace_reloads && recog_data.operand[opnum] != x)
4504 /* We mark the USE with QImode so that we recognize it
4505 as one that can be safely deleted at the end of
4506 reload. */
4507 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4508 QImode);
4509 x = mem;
4510 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4511 opnum, type, ind_levels, insn);
4512 if (address_reloaded)
4513 *address_reloaded = i;
4516 return x;
4518 if (code == MEM)
4520 rtx tem = x;
4522 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4523 opnum, type, ind_levels, insn);
4524 if (address_reloaded)
4525 *address_reloaded = i;
4527 return tem;
4530 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4532 /* Check for SUBREG containing a REG that's equivalent to a constant.
4533 If the constant has a known value, truncate it right now.
4534 Similarly if we are extracting a single-word of a multi-word
4535 constant. If the constant is symbolic, allow it to be substituted
4536 normally. push_reload will strip the subreg later. If the
4537 constant is VOIDmode, abort because we will lose the mode of
4538 the register (this should never happen because one of the cases
4539 above should handle it). */
4541 int regno = REGNO (SUBREG_REG (x));
4542 rtx tem;
4544 if (subreg_lowpart_p (x)
4545 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4546 && reg_equiv_constant[regno] != 0
4547 && (tem = gen_lowpart_common (GET_MODE (x),
4548 reg_equiv_constant[regno])) != 0)
4549 return tem;
4551 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4552 && reg_equiv_constant[regno] != 0)
4554 tem =
4555 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4556 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4557 gcc_assert (tem);
4558 return tem;
4561 /* If the subreg contains a reg that will be converted to a mem,
4562 convert the subreg to a narrower memref now.
4563 Otherwise, we would get (subreg (mem ...) ...),
4564 which would force reload of the mem.
4566 We also need to do this if there is an equivalent MEM that is
4567 not offsettable. In that case, alter_subreg would produce an
4568 invalid address on big-endian machines.
4570 For machines that extend byte loads, we must not reload using
4571 a wider mode if we have a paradoxical SUBREG. find_reloads will
4572 force a reload in that case. So we should not do anything here. */
4574 else if (regno >= FIRST_PSEUDO_REGISTER
4575 #ifdef LOAD_EXTEND_OP
4576 && (GET_MODE_SIZE (GET_MODE (x))
4577 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4578 #endif
4579 && (reg_equiv_address[regno] != 0
4580 || (reg_equiv_mem[regno] != 0
4581 && (! strict_memory_address_p (GET_MODE (x),
4582 XEXP (reg_equiv_mem[regno], 0))
4583 || ! offsettable_memref_p (reg_equiv_mem[regno])
4584 || num_not_at_initial_offset))))
4585 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4586 insn);
4589 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4591 if (fmt[i] == 'e')
4593 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4594 ind_levels, is_set_dest, insn,
4595 address_reloaded);
4596 /* If we have replaced a reg with it's equivalent memory loc -
4597 that can still be handled here e.g. if it's in a paradoxical
4598 subreg - we must make the change in a copy, rather than using
4599 a destructive change. This way, find_reloads can still elect
4600 not to do the change. */
4601 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4603 x = shallow_copy_rtx (x);
4604 copied = 1;
4606 XEXP (x, i) = new_part;
4609 return x;
4612 /* Return a mem ref for the memory equivalent of reg REGNO.
4613 This mem ref is not shared with anything. */
4615 static rtx
4616 make_memloc (rtx ad, int regno)
4618 /* We must rerun eliminate_regs, in case the elimination
4619 offsets have changed. */
4620 rtx tem
4621 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4623 /* If TEM might contain a pseudo, we must copy it to avoid
4624 modifying it when we do the substitution for the reload. */
4625 if (rtx_varies_p (tem, 0))
4626 tem = copy_rtx (tem);
4628 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4629 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4631 /* Copy the result if it's still the same as the equivalence, to avoid
4632 modifying it when we do the substitution for the reload. */
4633 if (tem == reg_equiv_memory_loc[regno])
4634 tem = copy_rtx (tem);
4635 return tem;
4638 /* Returns true if AD could be turned into a valid memory reference
4639 to mode MODE by reloading the part pointed to by PART into a
4640 register. */
4642 static int
4643 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4645 int retv;
4646 rtx tem = *part;
4647 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4649 *part = reg;
4650 retv = memory_address_p (mode, ad);
4651 *part = tem;
4653 return retv;
4656 /* Record all reloads needed for handling memory address AD
4657 which appears in *LOC in a memory reference to mode MODE
4658 which itself is found in location *MEMREFLOC.
4659 Note that we take shortcuts assuming that no multi-reg machine mode
4660 occurs as part of an address.
4662 OPNUM and TYPE specify the purpose of this reload.
4664 IND_LEVELS says how many levels of indirect addressing this machine
4665 supports.
4667 INSN, if nonzero, is the insn in which we do the reload. It is used
4668 to determine if we may generate output reloads, and where to put USEs
4669 for pseudos that we have to replace with stack slots.
4671 Value is one if this address is reloaded or replaced as a whole; it is
4672 zero if the top level of this address was not reloaded or replaced, and
4673 it is -1 if it may or may not have been reloaded or replaced.
4675 Note that there is no verification that the address will be valid after
4676 this routine does its work. Instead, we rely on the fact that the address
4677 was valid when reload started. So we need only undo things that reload
4678 could have broken. These are wrong register types, pseudos not allocated
4679 to a hard register, and frame pointer elimination. */
4681 static int
4682 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4683 rtx *loc, int opnum, enum reload_type type,
4684 int ind_levels, rtx insn)
4686 int regno;
4687 int removed_and = 0;
4688 int op_index;
4689 rtx tem;
4691 /* If the address is a register, see if it is a legitimate address and
4692 reload if not. We first handle the cases where we need not reload
4693 or where we must reload in a non-standard way. */
4695 if (REG_P (ad))
4697 regno = REGNO (ad);
4699 /* If the register is equivalent to an invariant expression, substitute
4700 the invariant, and eliminate any eliminable register references. */
4701 tem = reg_equiv_constant[regno];
4702 if (tem != 0
4703 && (tem = eliminate_regs (tem, mode, insn))
4704 && strict_memory_address_p (mode, tem))
4706 *loc = ad = tem;
4707 return 0;
4710 tem = reg_equiv_memory_loc[regno];
4711 if (tem != 0)
4713 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4715 tem = make_memloc (ad, regno);
4716 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4718 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4719 &XEXP (tem, 0), opnum,
4720 ADDR_TYPE (type), ind_levels, insn);
4722 /* We can avoid a reload if the register's equivalent memory
4723 expression is valid as an indirect memory address.
4724 But not all addresses are valid in a mem used as an indirect
4725 address: only reg or reg+constant. */
4727 if (ind_levels > 0
4728 && strict_memory_address_p (mode, tem)
4729 && (REG_P (XEXP (tem, 0))
4730 || (GET_CODE (XEXP (tem, 0)) == PLUS
4731 && REG_P (XEXP (XEXP (tem, 0), 0))
4732 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4734 /* TEM is not the same as what we'll be replacing the
4735 pseudo with after reload, put a USE in front of INSN
4736 in the final reload pass. */
4737 if (replace_reloads
4738 && num_not_at_initial_offset
4739 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4741 *loc = tem;
4742 /* We mark the USE with QImode so that we
4743 recognize it as one that can be safely
4744 deleted at the end of reload. */
4745 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4746 insn), QImode);
4748 /* This doesn't really count as replacing the address
4749 as a whole, since it is still a memory access. */
4751 return 0;
4753 ad = tem;
4757 /* The only remaining case where we can avoid a reload is if this is a
4758 hard register that is valid as a base register and which is not the
4759 subject of a CLOBBER in this insn. */
4761 else if (regno < FIRST_PSEUDO_REGISTER
4762 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4763 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4764 return 0;
4766 /* If we do not have one of the cases above, we must do the reload. */
4767 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4768 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4769 return 1;
4772 if (strict_memory_address_p (mode, ad))
4774 /* The address appears valid, so reloads are not needed.
4775 But the address may contain an eliminable register.
4776 This can happen because a machine with indirect addressing
4777 may consider a pseudo register by itself a valid address even when
4778 it has failed to get a hard reg.
4779 So do a tree-walk to find and eliminate all such regs. */
4781 /* But first quickly dispose of a common case. */
4782 if (GET_CODE (ad) == PLUS
4783 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4784 && REG_P (XEXP (ad, 0))
4785 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4786 return 0;
4788 subst_reg_equivs_changed = 0;
4789 *loc = subst_reg_equivs (ad, insn);
4791 if (! subst_reg_equivs_changed)
4792 return 0;
4794 /* Check result for validity after substitution. */
4795 if (strict_memory_address_p (mode, ad))
4796 return 0;
4799 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4802 if (memrefloc)
4804 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4805 ind_levels, win);
4807 break;
4808 win:
4809 *memrefloc = copy_rtx (*memrefloc);
4810 XEXP (*memrefloc, 0) = ad;
4811 move_replacements (&ad, &XEXP (*memrefloc, 0));
4812 return -1;
4814 while (0);
4815 #endif
4817 /* The address is not valid. We have to figure out why. First see if
4818 we have an outer AND and remove it if so. Then analyze what's inside. */
4820 if (GET_CODE (ad) == AND)
4822 removed_and = 1;
4823 loc = &XEXP (ad, 0);
4824 ad = *loc;
4827 /* One possibility for why the address is invalid is that it is itself
4828 a MEM. This can happen when the frame pointer is being eliminated, a
4829 pseudo is not allocated to a hard register, and the offset between the
4830 frame and stack pointers is not its initial value. In that case the
4831 pseudo will have been replaced by a MEM referring to the
4832 stack pointer. */
4833 if (MEM_P (ad))
4835 /* First ensure that the address in this MEM is valid. Then, unless
4836 indirect addresses are valid, reload the MEM into a register. */
4837 tem = ad;
4838 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4839 opnum, ADDR_TYPE (type),
4840 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4842 /* If tem was changed, then we must create a new memory reference to
4843 hold it and store it back into memrefloc. */
4844 if (tem != ad && memrefloc)
4846 *memrefloc = copy_rtx (*memrefloc);
4847 copy_replacements (tem, XEXP (*memrefloc, 0));
4848 loc = &XEXP (*memrefloc, 0);
4849 if (removed_and)
4850 loc = &XEXP (*loc, 0);
4853 /* Check similar cases as for indirect addresses as above except
4854 that we can allow pseudos and a MEM since they should have been
4855 taken care of above. */
4857 if (ind_levels == 0
4858 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4859 || MEM_P (XEXP (tem, 0))
4860 || ! (REG_P (XEXP (tem, 0))
4861 || (GET_CODE (XEXP (tem, 0)) == PLUS
4862 && REG_P (XEXP (XEXP (tem, 0), 0))
4863 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4865 /* Must use TEM here, not AD, since it is the one that will
4866 have any subexpressions reloaded, if needed. */
4867 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4868 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4869 VOIDmode, 0,
4870 0, opnum, type);
4871 return ! removed_and;
4873 else
4874 return 0;
4877 /* If we have address of a stack slot but it's not valid because the
4878 displacement is too large, compute the sum in a register.
4879 Handle all base registers here, not just fp/ap/sp, because on some
4880 targets (namely SH) we can also get too large displacements from
4881 big-endian corrections. */
4882 else if (GET_CODE (ad) == PLUS
4883 && REG_P (XEXP (ad, 0))
4884 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4885 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4886 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4888 /* Unshare the MEM rtx so we can safely alter it. */
4889 if (memrefloc)
4891 *memrefloc = copy_rtx (*memrefloc);
4892 loc = &XEXP (*memrefloc, 0);
4893 if (removed_and)
4894 loc = &XEXP (*loc, 0);
4897 if (double_reg_address_ok)
4899 /* Unshare the sum as well. */
4900 *loc = ad = copy_rtx (ad);
4902 /* Reload the displacement into an index reg.
4903 We assume the frame pointer or arg pointer is a base reg. */
4904 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4905 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4906 type, ind_levels);
4907 return 0;
4909 else
4911 /* If the sum of two regs is not necessarily valid,
4912 reload the sum into a base reg.
4913 That will at least work. */
4914 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4915 Pmode, opnum, type, ind_levels);
4917 return ! removed_and;
4920 /* If we have an indexed stack slot, there are three possible reasons why
4921 it might be invalid: The index might need to be reloaded, the address
4922 might have been made by frame pointer elimination and hence have a
4923 constant out of range, or both reasons might apply.
4925 We can easily check for an index needing reload, but even if that is the
4926 case, we might also have an invalid constant. To avoid making the
4927 conservative assumption and requiring two reloads, we see if this address
4928 is valid when not interpreted strictly. If it is, the only problem is
4929 that the index needs a reload and find_reloads_address_1 will take care
4930 of it.
4932 Handle all base registers here, not just fp/ap/sp, because on some
4933 targets (namely SPARC) we can also get invalid addresses from preventive
4934 subreg big-endian corrections made by find_reloads_toplev. We
4935 can also get expressions involving LO_SUM (rather than PLUS) from
4936 find_reloads_subreg_address.
4938 If we decide to do something, it must be that `double_reg_address_ok'
4939 is true. We generate a reload of the base register + constant and
4940 rework the sum so that the reload register will be added to the index.
4941 This is safe because we know the address isn't shared.
4943 We check for the base register as both the first and second operand of
4944 the innermost PLUS and/or LO_SUM. */
4946 for (op_index = 0; op_index < 2; ++op_index)
4948 rtx operand;
4950 if (!(GET_CODE (ad) == PLUS
4951 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4952 && (GET_CODE (XEXP (ad, 0)) == PLUS
4953 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
4954 continue;
4956 operand = XEXP (XEXP (ad, 0), op_index);
4957 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4958 continue;
4960 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
4961 || operand == frame_pointer_rtx
4962 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4963 || operand == hard_frame_pointer_rtx
4964 #endif
4965 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4966 || operand == arg_pointer_rtx
4967 #endif
4968 || operand == stack_pointer_rtx)
4969 && ! maybe_memory_address_p (mode, ad,
4970 &XEXP (XEXP (ad, 0), 1 - op_index)))
4972 rtx offset_reg;
4973 rtx addend;
4975 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
4976 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4978 /* Form the adjusted address. */
4979 if (GET_CODE (XEXP (ad, 0)) == PLUS)
4980 ad = gen_rtx_PLUS (GET_MODE (ad),
4981 op_index == 0 ? offset_reg : addend,
4982 op_index == 0 ? addend : offset_reg);
4983 else
4984 ad = gen_rtx_LO_SUM (GET_MODE (ad),
4985 op_index == 0 ? offset_reg : addend,
4986 op_index == 0 ? addend : offset_reg);
4987 *loc = ad;
4989 find_reloads_address_part (XEXP (ad, op_index),
4990 &XEXP (ad, op_index),
4991 MODE_BASE_REG_CLASS (mode),
4992 GET_MODE (ad), opnum, type, ind_levels);
4993 find_reloads_address_1 (mode,
4994 XEXP (ad, 1 - op_index), 1,
4995 &XEXP (ad, 1 - op_index), opnum,
4996 type, 0, insn);
4998 return 0;
5002 /* See if address becomes valid when an eliminable register
5003 in a sum is replaced. */
5005 tem = ad;
5006 if (GET_CODE (ad) == PLUS)
5007 tem = subst_indexed_address (ad);
5008 if (tem != ad && strict_memory_address_p (mode, tem))
5010 /* Ok, we win that way. Replace any additional eliminable
5011 registers. */
5013 subst_reg_equivs_changed = 0;
5014 tem = subst_reg_equivs (tem, insn);
5016 /* Make sure that didn't make the address invalid again. */
5018 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5020 *loc = tem;
5021 return 0;
5025 /* If constants aren't valid addresses, reload the constant address
5026 into a register. */
5027 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5029 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5030 Unshare it so we can safely alter it. */
5031 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5032 && CONSTANT_POOL_ADDRESS_P (ad))
5034 *memrefloc = copy_rtx (*memrefloc);
5035 loc = &XEXP (*memrefloc, 0);
5036 if (removed_and)
5037 loc = &XEXP (*loc, 0);
5040 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5041 Pmode, opnum, type, ind_levels);
5042 return ! removed_and;
5045 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5046 insn);
5049 /* Find all pseudo regs appearing in AD
5050 that are eliminable in favor of equivalent values
5051 and do not have hard regs; replace them by their equivalents.
5052 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5053 front of it for pseudos that we have to replace with stack slots. */
5055 static rtx
5056 subst_reg_equivs (rtx ad, rtx insn)
5058 RTX_CODE code = GET_CODE (ad);
5059 int i;
5060 const char *fmt;
5062 switch (code)
5064 case HIGH:
5065 case CONST_INT:
5066 case CONST:
5067 case CONST_DOUBLE:
5068 case CONST_VECTOR:
5069 case SYMBOL_REF:
5070 case LABEL_REF:
5071 case PC:
5072 case CC0:
5073 return ad;
5075 case REG:
5077 int regno = REGNO (ad);
5079 if (reg_equiv_constant[regno] != 0)
5081 subst_reg_equivs_changed = 1;
5082 return reg_equiv_constant[regno];
5084 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5086 rtx mem = make_memloc (ad, regno);
5087 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5089 subst_reg_equivs_changed = 1;
5090 /* We mark the USE with QImode so that we recognize it
5091 as one that can be safely deleted at the end of
5092 reload. */
5093 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5094 QImode);
5095 return mem;
5099 return ad;
5101 case PLUS:
5102 /* Quickly dispose of a common case. */
5103 if (XEXP (ad, 0) == frame_pointer_rtx
5104 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5105 return ad;
5106 break;
5108 default:
5109 break;
5112 fmt = GET_RTX_FORMAT (code);
5113 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5114 if (fmt[i] == 'e')
5115 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5116 return ad;
5119 /* Compute the sum of X and Y, making canonicalizations assumed in an
5120 address, namely: sum constant integers, surround the sum of two
5121 constants with a CONST, put the constant as the second operand, and
5122 group the constant on the outermost sum.
5124 This routine assumes both inputs are already in canonical form. */
5127 form_sum (rtx x, rtx y)
5129 rtx tem;
5130 enum machine_mode mode = GET_MODE (x);
5132 if (mode == VOIDmode)
5133 mode = GET_MODE (y);
5135 if (mode == VOIDmode)
5136 mode = Pmode;
5138 if (GET_CODE (x) == CONST_INT)
5139 return plus_constant (y, INTVAL (x));
5140 else if (GET_CODE (y) == CONST_INT)
5141 return plus_constant (x, INTVAL (y));
5142 else if (CONSTANT_P (x))
5143 tem = x, x = y, y = tem;
5145 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5146 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5148 /* Note that if the operands of Y are specified in the opposite
5149 order in the recursive calls below, infinite recursion will occur. */
5150 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5151 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5153 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5154 constant will have been placed second. */
5155 if (CONSTANT_P (x) && CONSTANT_P (y))
5157 if (GET_CODE (x) == CONST)
5158 x = XEXP (x, 0);
5159 if (GET_CODE (y) == CONST)
5160 y = XEXP (y, 0);
5162 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5165 return gen_rtx_PLUS (mode, x, y);
5168 /* If ADDR is a sum containing a pseudo register that should be
5169 replaced with a constant (from reg_equiv_constant),
5170 return the result of doing so, and also apply the associative
5171 law so that the result is more likely to be a valid address.
5172 (But it is not guaranteed to be one.)
5174 Note that at most one register is replaced, even if more are
5175 replaceable. Also, we try to put the result into a canonical form
5176 so it is more likely to be a valid address.
5178 In all other cases, return ADDR. */
5180 static rtx
5181 subst_indexed_address (rtx addr)
5183 rtx op0 = 0, op1 = 0, op2 = 0;
5184 rtx tem;
5185 int regno;
5187 if (GET_CODE (addr) == PLUS)
5189 /* Try to find a register to replace. */
5190 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5191 if (REG_P (op0)
5192 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5193 && reg_renumber[regno] < 0
5194 && reg_equiv_constant[regno] != 0)
5195 op0 = reg_equiv_constant[regno];
5196 else if (REG_P (op1)
5197 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5198 && reg_renumber[regno] < 0
5199 && reg_equiv_constant[regno] != 0)
5200 op1 = reg_equiv_constant[regno];
5201 else if (GET_CODE (op0) == PLUS
5202 && (tem = subst_indexed_address (op0)) != op0)
5203 op0 = tem;
5204 else if (GET_CODE (op1) == PLUS
5205 && (tem = subst_indexed_address (op1)) != op1)
5206 op1 = tem;
5207 else
5208 return addr;
5210 /* Pick out up to three things to add. */
5211 if (GET_CODE (op1) == PLUS)
5212 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5213 else if (GET_CODE (op0) == PLUS)
5214 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5216 /* Compute the sum. */
5217 if (op2 != 0)
5218 op1 = form_sum (op1, op2);
5219 if (op1 != 0)
5220 op0 = form_sum (op0, op1);
5222 return op0;
5224 return addr;
5227 /* Update the REG_INC notes for an insn. It updates all REG_INC
5228 notes for the instruction which refer to REGNO the to refer
5229 to the reload number.
5231 INSN is the insn for which any REG_INC notes need updating.
5233 REGNO is the register number which has been reloaded.
5235 RELOADNUM is the reload number. */
5237 static void
5238 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5239 int reloadnum ATTRIBUTE_UNUSED)
5241 #ifdef AUTO_INC_DEC
5242 rtx link;
5244 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5245 if (REG_NOTE_KIND (link) == REG_INC
5246 && (int) REGNO (XEXP (link, 0)) == regno)
5247 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5248 #endif
5251 /* Record the pseudo registers we must reload into hard registers in a
5252 subexpression of a would-be memory address, X referring to a value
5253 in mode MODE. (This function is not called if the address we find
5254 is strictly valid.)
5256 CONTEXT = 1 means we are considering regs as index regs,
5257 = 0 means we are considering them as base regs, = 2 means we
5258 are considering them as base regs for REG + REG.
5260 OPNUM and TYPE specify the purpose of any reloads made.
5262 IND_LEVELS says how many levels of indirect addressing are
5263 supported at this point in the address.
5265 INSN, if nonzero, is the insn in which we do the reload. It is used
5266 to determine if we may generate output reloads.
5268 We return nonzero if X, as a whole, is reloaded or replaced. */
5270 /* Note that we take shortcuts assuming that no multi-reg machine mode
5271 occurs as part of an address.
5272 Also, this is not fully machine-customizable; it works for machines
5273 such as VAXen and 68000's and 32000's, but other possible machines
5274 could have addressing modes that this does not handle right. */
5276 static int
5277 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5278 rtx *loc, int opnum, enum reload_type type,
5279 int ind_levels, rtx insn)
5281 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE) \
5282 ((CONTEXT) == 2 \
5283 ? REGNO_MODE_OK_FOR_REG_BASE_P (REGNO, MODE) \
5284 : (CONTEXT) == 1 \
5285 ? REGNO_OK_FOR_INDEX_P (REGNO) \
5286 : REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE))
5288 enum reg_class context_reg_class;
5289 RTX_CODE code = GET_CODE (x);
5291 if (context == 2)
5292 context_reg_class = MODE_BASE_REG_REG_CLASS (mode);
5293 else if (context == 1)
5294 context_reg_class = INDEX_REG_CLASS;
5295 else
5296 context_reg_class = MODE_BASE_REG_CLASS (mode);
5298 switch (code)
5300 case PLUS:
5302 rtx orig_op0 = XEXP (x, 0);
5303 rtx orig_op1 = XEXP (x, 1);
5304 RTX_CODE code0 = GET_CODE (orig_op0);
5305 RTX_CODE code1 = GET_CODE (orig_op1);
5306 rtx op0 = orig_op0;
5307 rtx op1 = orig_op1;
5309 if (GET_CODE (op0) == SUBREG)
5311 op0 = SUBREG_REG (op0);
5312 code0 = GET_CODE (op0);
5313 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5314 op0 = gen_rtx_REG (word_mode,
5315 (REGNO (op0) +
5316 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5317 GET_MODE (SUBREG_REG (orig_op0)),
5318 SUBREG_BYTE (orig_op0),
5319 GET_MODE (orig_op0))));
5322 if (GET_CODE (op1) == SUBREG)
5324 op1 = SUBREG_REG (op1);
5325 code1 = GET_CODE (op1);
5326 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5327 /* ??? Why is this given op1's mode and above for
5328 ??? op0 SUBREGs we use word_mode? */
5329 op1 = gen_rtx_REG (GET_MODE (op1),
5330 (REGNO (op1) +
5331 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5332 GET_MODE (SUBREG_REG (orig_op1)),
5333 SUBREG_BYTE (orig_op1),
5334 GET_MODE (orig_op1))));
5336 /* Plus in the index register may be created only as a result of
5337 register remateralization for expression like &localvar*4. Reload it.
5338 It may be possible to combine the displacement on the outer level,
5339 but it is probably not worthwhile to do so. */
5340 if (context == 1)
5342 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5343 opnum, ADDR_TYPE (type), ind_levels, insn);
5344 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5345 context_reg_class,
5346 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5347 return 1;
5350 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5351 || code0 == ZERO_EXTEND || code1 == MEM)
5353 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5354 type, ind_levels, insn);
5355 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5356 type, ind_levels, insn);
5359 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5360 || code1 == ZERO_EXTEND || code0 == MEM)
5362 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5363 type, ind_levels, insn);
5364 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5365 type, ind_levels, insn);
5368 else if (code0 == CONST_INT || code0 == CONST
5369 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5370 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5371 type, ind_levels, insn);
5373 else if (code1 == CONST_INT || code1 == CONST
5374 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5375 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5376 type, ind_levels, insn);
5378 else if (code0 == REG && code1 == REG)
5380 if (REG_OK_FOR_INDEX_P (op0)
5381 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5382 return 0;
5383 else if (REG_OK_FOR_INDEX_P (op1)
5384 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5385 return 0;
5386 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5387 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5388 type, ind_levels, insn);
5389 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5390 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5391 type, ind_levels, insn);
5392 else if (REG_OK_FOR_INDEX_P (op1))
5393 find_reloads_address_1 (mode, orig_op0, 2, &XEXP (x, 0), opnum,
5394 type, ind_levels, insn);
5395 else if (REG_OK_FOR_INDEX_P (op0))
5396 find_reloads_address_1 (mode, orig_op1, 2, &XEXP (x, 1), opnum,
5397 type, ind_levels, insn);
5398 else
5400 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5401 type, ind_levels, insn);
5402 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5403 type, ind_levels, insn);
5407 else if (code0 == REG)
5409 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5410 type, ind_levels, insn);
5411 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5412 type, ind_levels, insn);
5415 else if (code1 == REG)
5417 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5418 type, ind_levels, insn);
5419 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5420 type, ind_levels, insn);
5424 return 0;
5426 case POST_MODIFY:
5427 case PRE_MODIFY:
5429 rtx op0 = XEXP (x, 0);
5430 rtx op1 = XEXP (x, 1);
5431 int regno;
5432 int reloadnum;
5434 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5435 return 0;
5437 /* Currently, we only support {PRE,POST}_MODIFY constructs
5438 where a base register is {inc,dec}remented by the contents
5439 of another register or by a constant value. Thus, these
5440 operands must match. */
5441 gcc_assert (op0 == XEXP (op1, 0));
5443 /* Require index register (or constant). Let's just handle the
5444 register case in the meantime... If the target allows
5445 auto-modify by a constant then we could try replacing a pseudo
5446 register with its equivalent constant where applicable. */
5447 if (REG_P (XEXP (op1, 1)))
5448 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5449 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5450 opnum, type, ind_levels, insn);
5452 gcc_assert (REG_P (XEXP (op1, 0)));
5454 regno = REGNO (XEXP (op1, 0));
5456 /* A register that is incremented cannot be constant! */
5457 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5458 || reg_equiv_constant[regno] == 0);
5460 /* Handle a register that is equivalent to a memory location
5461 which cannot be addressed directly. */
5462 if (reg_equiv_memory_loc[regno] != 0
5463 && (reg_equiv_address[regno] != 0
5464 || num_not_at_initial_offset))
5466 rtx tem = make_memloc (XEXP (x, 0), regno);
5468 if (reg_equiv_address[regno]
5469 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5471 /* First reload the memory location's address.
5472 We can't use ADDR_TYPE (type) here, because we need to
5473 write back the value after reading it, hence we actually
5474 need two registers. */
5475 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5476 &XEXP (tem, 0), opnum,
5477 RELOAD_OTHER,
5478 ind_levels, insn);
5480 /* Then reload the memory location into a base
5481 register. */
5482 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5483 &XEXP (op1, 0),
5484 MODE_BASE_REG_CLASS (mode),
5485 GET_MODE (x), GET_MODE (x), 0,
5486 0, opnum, RELOAD_OTHER);
5488 update_auto_inc_notes (this_insn, regno, reloadnum);
5489 return 0;
5493 if (reg_renumber[regno] >= 0)
5494 regno = reg_renumber[regno];
5496 /* We require a base register here... */
5497 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5499 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5500 &XEXP (op1, 0), &XEXP (x, 0),
5501 MODE_BASE_REG_CLASS (mode),
5502 GET_MODE (x), GET_MODE (x), 0, 0,
5503 opnum, RELOAD_OTHER);
5505 update_auto_inc_notes (this_insn, regno, reloadnum);
5506 return 0;
5509 return 0;
5511 case POST_INC:
5512 case POST_DEC:
5513 case PRE_INC:
5514 case PRE_DEC:
5515 if (REG_P (XEXP (x, 0)))
5517 int regno = REGNO (XEXP (x, 0));
5518 int value = 0;
5519 rtx x_orig = x;
5521 /* A register that is incremented cannot be constant! */
5522 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5523 || reg_equiv_constant[regno] == 0);
5525 /* Handle a register that is equivalent to a memory location
5526 which cannot be addressed directly. */
5527 if (reg_equiv_memory_loc[regno] != 0
5528 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5530 rtx tem = make_memloc (XEXP (x, 0), regno);
5531 if (reg_equiv_address[regno]
5532 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5534 /* First reload the memory location's address.
5535 We can't use ADDR_TYPE (type) here, because we need to
5536 write back the value after reading it, hence we actually
5537 need two registers. */
5538 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5539 &XEXP (tem, 0), opnum, type,
5540 ind_levels, insn);
5541 /* Put this inside a new increment-expression. */
5542 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5543 /* Proceed to reload that, as if it contained a register. */
5547 /* If we have a hard register that is ok as an index,
5548 don't make a reload. If an autoincrement of a nice register
5549 isn't "valid", it must be that no autoincrement is "valid".
5550 If that is true and something made an autoincrement anyway,
5551 this must be a special context where one is allowed.
5552 (For example, a "push" instruction.)
5553 We can't improve this address, so leave it alone. */
5555 /* Otherwise, reload the autoincrement into a suitable hard reg
5556 and record how much to increment by. */
5558 if (reg_renumber[regno] >= 0)
5559 regno = reg_renumber[regno];
5560 if (regno >= FIRST_PSEUDO_REGISTER
5561 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5563 int reloadnum;
5565 /* If we can output the register afterwards, do so, this
5566 saves the extra update.
5567 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5568 CALL_INSN - and it does not set CC0.
5569 But don't do this if we cannot directly address the
5570 memory location, since this will make it harder to
5571 reuse address reloads, and increases register pressure.
5572 Also don't do this if we can probably update x directly. */
5573 rtx equiv = (MEM_P (XEXP (x, 0))
5574 ? XEXP (x, 0)
5575 : reg_equiv_mem[regno]);
5576 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5577 if (insn && NONJUMP_INSN_P (insn) && equiv
5578 && memory_operand (equiv, GET_MODE (equiv))
5579 #ifdef HAVE_cc0
5580 && ! sets_cc0_p (PATTERN (insn))
5581 #endif
5582 && ! (icode != CODE_FOR_nothing
5583 && ((*insn_data[icode].operand[0].predicate)
5584 (equiv, Pmode))
5585 && ((*insn_data[icode].operand[1].predicate)
5586 (equiv, Pmode))))
5588 /* We use the original pseudo for loc, so that
5589 emit_reload_insns() knows which pseudo this
5590 reload refers to and updates the pseudo rtx, not
5591 its equivalent memory location, as well as the
5592 corresponding entry in reg_last_reload_reg. */
5593 loc = &XEXP (x_orig, 0);
5594 x = XEXP (x, 0);
5595 reloadnum
5596 = push_reload (x, x, loc, loc,
5597 context_reg_class,
5598 GET_MODE (x), GET_MODE (x), 0, 0,
5599 opnum, RELOAD_OTHER);
5601 else
5603 reloadnum
5604 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5605 context_reg_class,
5606 GET_MODE (x), GET_MODE (x), 0, 0,
5607 opnum, type);
5608 rld[reloadnum].inc
5609 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5611 value = 1;
5614 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5615 reloadnum);
5617 return value;
5620 else if (MEM_P (XEXP (x, 0)))
5622 /* This is probably the result of a substitution, by eliminate_regs,
5623 of an equivalent address for a pseudo that was not allocated to a
5624 hard register. Verify that the specified address is valid and
5625 reload it into a register. */
5626 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5627 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5628 rtx link;
5629 int reloadnum;
5631 /* Since we know we are going to reload this item, don't decrement
5632 for the indirection level.
5634 Note that this is actually conservative: it would be slightly
5635 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5636 reload1.c here. */
5637 /* We can't use ADDR_TYPE (type) here, because we need to
5638 write back the value after reading it, hence we actually
5639 need two registers. */
5640 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5641 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5642 opnum, type, ind_levels, insn);
5644 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5645 context_reg_class,
5646 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5647 rld[reloadnum].inc
5648 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5650 link = FIND_REG_INC_NOTE (this_insn, tem);
5651 if (link != 0)
5652 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5654 return 1;
5656 return 0;
5658 case MEM:
5659 /* This is probably the result of a substitution, by eliminate_regs, of
5660 an equivalent address for a pseudo that was not allocated to a hard
5661 register. Verify that the specified address is valid and reload it
5662 into a register.
5664 Since we know we are going to reload this item, don't decrement for
5665 the indirection level.
5667 Note that this is actually conservative: it would be slightly more
5668 efficient to use the value of SPILL_INDIRECT_LEVELS from
5669 reload1.c here. */
5671 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5672 opnum, ADDR_TYPE (type), ind_levels, insn);
5673 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5674 context_reg_class,
5675 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5676 return 1;
5678 case REG:
5680 int regno = REGNO (x);
5682 if (reg_equiv_constant[regno] != 0)
5684 find_reloads_address_part (reg_equiv_constant[regno], loc,
5685 context_reg_class,
5686 GET_MODE (x), opnum, type, ind_levels);
5687 return 1;
5690 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5691 that feeds this insn. */
5692 if (reg_equiv_mem[regno] != 0)
5694 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5695 context_reg_class,
5696 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5697 return 1;
5699 #endif
5701 if (reg_equiv_memory_loc[regno]
5702 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5704 rtx tem = make_memloc (x, regno);
5705 if (reg_equiv_address[regno] != 0
5706 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5708 x = tem;
5709 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5710 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5711 ind_levels, insn);
5715 if (reg_renumber[regno] >= 0)
5716 regno = reg_renumber[regno];
5718 if (regno >= FIRST_PSEUDO_REGISTER
5719 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5721 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5722 context_reg_class,
5723 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5724 return 1;
5727 /* If a register appearing in an address is the subject of a CLOBBER
5728 in this insn, reload it into some other register to be safe.
5729 The CLOBBER is supposed to make the register unavailable
5730 from before this insn to after it. */
5731 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5733 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5734 context_reg_class,
5735 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5736 return 1;
5739 return 0;
5741 case SUBREG:
5742 if (REG_P (SUBREG_REG (x)))
5744 /* If this is a SUBREG of a hard register and the resulting register
5745 is of the wrong class, reload the whole SUBREG. This avoids
5746 needless copies if SUBREG_REG is multi-word. */
5747 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5749 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5751 if (! REG_OK_FOR_CONTEXT (context, regno, mode))
5753 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5754 context_reg_class,
5755 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5756 return 1;
5759 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5760 is larger than the class size, then reload the whole SUBREG. */
5761 else
5763 enum reg_class class = context_reg_class;
5764 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5765 > reg_class_size[class])
5767 x = find_reloads_subreg_address (x, 0, opnum, type,
5768 ind_levels, insn);
5769 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5770 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5771 return 1;
5775 break;
5777 default:
5778 break;
5782 const char *fmt = GET_RTX_FORMAT (code);
5783 int i;
5785 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5787 if (fmt[i] == 'e')
5788 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5789 opnum, type, ind_levels, insn);
5793 #undef REG_OK_FOR_CONTEXT
5794 return 0;
5797 /* X, which is found at *LOC, is a part of an address that needs to be
5798 reloaded into a register of class CLASS. If X is a constant, or if
5799 X is a PLUS that contains a constant, check that the constant is a
5800 legitimate operand and that we are supposed to be able to load
5801 it into the register.
5803 If not, force the constant into memory and reload the MEM instead.
5805 MODE is the mode to use, in case X is an integer constant.
5807 OPNUM and TYPE describe the purpose of any reloads made.
5809 IND_LEVELS says how many levels of indirect addressing this machine
5810 supports. */
5812 static void
5813 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5814 enum machine_mode mode, int opnum,
5815 enum reload_type type, int ind_levels)
5817 if (CONSTANT_P (x)
5818 && (! LEGITIMATE_CONSTANT_P (x)
5819 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5821 rtx tem;
5823 tem = x = force_const_mem (mode, x);
5824 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5825 opnum, type, ind_levels, 0);
5828 else if (GET_CODE (x) == PLUS
5829 && CONSTANT_P (XEXP (x, 1))
5830 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5831 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5833 rtx tem;
5835 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5836 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5837 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5838 opnum, type, ind_levels, 0);
5841 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5842 mode, VOIDmode, 0, 0, opnum, type);
5845 /* X, a subreg of a pseudo, is a part of an address that needs to be
5846 reloaded.
5848 If the pseudo is equivalent to a memory location that cannot be directly
5849 addressed, make the necessary address reloads.
5851 If address reloads have been necessary, or if the address is changed
5852 by register elimination, return the rtx of the memory location;
5853 otherwise, return X.
5855 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5856 memory location.
5858 OPNUM and TYPE identify the purpose of the reload.
5860 IND_LEVELS says how many levels of indirect addressing are
5861 supported at this point in the address.
5863 INSN, if nonzero, is the insn in which we do the reload. It is used
5864 to determine where to put USEs for pseudos that we have to replace with
5865 stack slots. */
5867 static rtx
5868 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5869 enum reload_type type, int ind_levels, rtx insn)
5871 int regno = REGNO (SUBREG_REG (x));
5873 if (reg_equiv_memory_loc[regno])
5875 /* If the address is not directly addressable, or if the address is not
5876 offsettable, then it must be replaced. */
5877 if (! force_replace
5878 && (reg_equiv_address[regno]
5879 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5880 force_replace = 1;
5882 if (force_replace || num_not_at_initial_offset)
5884 rtx tem = make_memloc (SUBREG_REG (x), regno);
5886 /* If the address changes because of register elimination, then
5887 it must be replaced. */
5888 if (force_replace
5889 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5891 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5892 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5893 int offset;
5895 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5896 hold the correct (negative) byte offset. */
5897 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5898 offset = inner_size - outer_size;
5899 else
5900 offset = SUBREG_BYTE (x);
5902 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5903 PUT_MODE (tem, GET_MODE (x));
5905 /* If this was a paradoxical subreg that we replaced, the
5906 resulting memory must be sufficiently aligned to allow
5907 us to widen the mode of the memory. */
5908 if (outer_size > inner_size && STRICT_ALIGNMENT)
5910 rtx base;
5912 base = XEXP (tem, 0);
5913 if (GET_CODE (base) == PLUS)
5915 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5916 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5917 return x;
5918 base = XEXP (base, 0);
5920 if (!REG_P (base)
5921 || (REGNO_POINTER_ALIGN (REGNO (base))
5922 < outer_size * BITS_PER_UNIT))
5923 return x;
5926 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5927 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5928 ind_levels, insn);
5930 /* If this is not a toplevel operand, find_reloads doesn't see
5931 this substitution. We have to emit a USE of the pseudo so
5932 that delete_output_reload can see it. */
5933 if (replace_reloads && recog_data.operand[opnum] != x)
5934 /* We mark the USE with QImode so that we recognize it
5935 as one that can be safely deleted at the end of
5936 reload. */
5937 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5938 SUBREG_REG (x)),
5939 insn), QImode);
5940 x = tem;
5944 return x;
5947 /* Substitute into the current INSN the registers into which we have reloaded
5948 the things that need reloading. The array `replacements'
5949 contains the locations of all pointers that must be changed
5950 and says what to replace them with.
5952 Return the rtx that X translates into; usually X, but modified. */
5954 void
5955 subst_reloads (rtx insn)
5957 int i;
5959 for (i = 0; i < n_replacements; i++)
5961 struct replacement *r = &replacements[i];
5962 rtx reloadreg = rld[r->what].reg_rtx;
5963 if (reloadreg)
5965 #ifdef ENABLE_CHECKING
5966 /* Internal consistency test. Check that we don't modify
5967 anything in the equivalence arrays. Whenever something from
5968 those arrays needs to be reloaded, it must be unshared before
5969 being substituted into; the equivalence must not be modified.
5970 Otherwise, if the equivalence is used after that, it will
5971 have been modified, and the thing substituted (probably a
5972 register) is likely overwritten and not a usable equivalence. */
5973 int check_regno;
5975 for (check_regno = 0; check_regno < max_regno; check_regno++)
5977 #define CHECK_MODF(ARRAY) \
5978 gcc_assert (!ARRAY[check_regno] \
5979 || !loc_mentioned_in_p (r->where, \
5980 ARRAY[check_regno]))
5982 CHECK_MODF (reg_equiv_constant);
5983 CHECK_MODF (reg_equiv_memory_loc);
5984 CHECK_MODF (reg_equiv_address);
5985 CHECK_MODF (reg_equiv_mem);
5986 #undef CHECK_MODF
5988 #endif /* ENABLE_CHECKING */
5990 /* If we're replacing a LABEL_REF with a register, add a
5991 REG_LABEL note to indicate to flow which label this
5992 register refers to. */
5993 if (GET_CODE (*r->where) == LABEL_REF
5994 && JUMP_P (insn))
5995 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5996 XEXP (*r->where, 0),
5997 REG_NOTES (insn));
5999 /* Encapsulate RELOADREG so its machine mode matches what
6000 used to be there. Note that gen_lowpart_common will
6001 do the wrong thing if RELOADREG is multi-word. RELOADREG
6002 will always be a REG here. */
6003 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6004 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6006 /* If we are putting this into a SUBREG and RELOADREG is a
6007 SUBREG, we would be making nested SUBREGs, so we have to fix
6008 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6010 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6012 if (GET_MODE (*r->subreg_loc)
6013 == GET_MODE (SUBREG_REG (reloadreg)))
6014 *r->subreg_loc = SUBREG_REG (reloadreg);
6015 else
6017 int final_offset =
6018 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6020 /* When working with SUBREGs the rule is that the byte
6021 offset must be a multiple of the SUBREG's mode. */
6022 final_offset = (final_offset /
6023 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6024 final_offset = (final_offset *
6025 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6027 *r->where = SUBREG_REG (reloadreg);
6028 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6031 else
6032 *r->where = reloadreg;
6034 /* If reload got no reg and isn't optional, something's wrong. */
6035 else
6036 gcc_assert (rld[r->what].optional);
6040 /* Make a copy of any replacements being done into X and move those
6041 copies to locations in Y, a copy of X. */
6043 void
6044 copy_replacements (rtx x, rtx y)
6046 /* We can't support X being a SUBREG because we might then need to know its
6047 location if something inside it was replaced. */
6048 gcc_assert (GET_CODE (x) != SUBREG);
6050 copy_replacements_1 (&x, &y, n_replacements);
6053 static void
6054 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6056 int i, j;
6057 rtx x, y;
6058 struct replacement *r;
6059 enum rtx_code code;
6060 const char *fmt;
6062 for (j = 0; j < orig_replacements; j++)
6064 if (replacements[j].subreg_loc == px)
6066 r = &replacements[n_replacements++];
6067 r->where = replacements[j].where;
6068 r->subreg_loc = py;
6069 r->what = replacements[j].what;
6070 r->mode = replacements[j].mode;
6072 else if (replacements[j].where == px)
6074 r = &replacements[n_replacements++];
6075 r->where = py;
6076 r->subreg_loc = 0;
6077 r->what = replacements[j].what;
6078 r->mode = replacements[j].mode;
6082 x = *px;
6083 y = *py;
6084 code = GET_CODE (x);
6085 fmt = GET_RTX_FORMAT (code);
6087 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6089 if (fmt[i] == 'e')
6090 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6091 else if (fmt[i] == 'E')
6092 for (j = XVECLEN (x, i); --j >= 0; )
6093 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6094 orig_replacements);
6098 /* Change any replacements being done to *X to be done to *Y. */
6100 void
6101 move_replacements (rtx *x, rtx *y)
6103 int i;
6105 for (i = 0; i < n_replacements; i++)
6106 if (replacements[i].subreg_loc == x)
6107 replacements[i].subreg_loc = y;
6108 else if (replacements[i].where == x)
6110 replacements[i].where = y;
6111 replacements[i].subreg_loc = 0;
6115 /* If LOC was scheduled to be replaced by something, return the replacement.
6116 Otherwise, return *LOC. */
6119 find_replacement (rtx *loc)
6121 struct replacement *r;
6123 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6125 rtx reloadreg = rld[r->what].reg_rtx;
6127 if (reloadreg && r->where == loc)
6129 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6130 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6132 return reloadreg;
6134 else if (reloadreg && r->subreg_loc == loc)
6136 /* RELOADREG must be either a REG or a SUBREG.
6138 ??? Is it actually still ever a SUBREG? If so, why? */
6140 if (REG_P (reloadreg))
6141 return gen_rtx_REG (GET_MODE (*loc),
6142 (REGNO (reloadreg) +
6143 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6144 GET_MODE (SUBREG_REG (*loc)),
6145 SUBREG_BYTE (*loc),
6146 GET_MODE (*loc))));
6147 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6148 return reloadreg;
6149 else
6151 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6153 /* When working with SUBREGs the rule is that the byte
6154 offset must be a multiple of the SUBREG's mode. */
6155 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6156 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6157 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6158 final_offset);
6163 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6164 what's inside and make a new rtl if so. */
6165 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6166 || GET_CODE (*loc) == MULT)
6168 rtx x = find_replacement (&XEXP (*loc, 0));
6169 rtx y = find_replacement (&XEXP (*loc, 1));
6171 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6172 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6175 return *loc;
6178 /* Return nonzero if register in range [REGNO, ENDREGNO)
6179 appears either explicitly or implicitly in X
6180 other than being stored into (except for earlyclobber operands).
6182 References contained within the substructure at LOC do not count.
6183 LOC may be zero, meaning don't ignore anything.
6185 This is similar to refers_to_regno_p in rtlanal.c except that we
6186 look at equivalences for pseudos that didn't get hard registers. */
6188 static int
6189 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6190 rtx x, rtx *loc)
6192 int i;
6193 unsigned int r;
6194 RTX_CODE code;
6195 const char *fmt;
6197 if (x == 0)
6198 return 0;
6200 repeat:
6201 code = GET_CODE (x);
6203 switch (code)
6205 case REG:
6206 r = REGNO (x);
6208 /* If this is a pseudo, a hard register must not have been allocated.
6209 X must therefore either be a constant or be in memory. */
6210 if (r >= FIRST_PSEUDO_REGISTER)
6212 if (reg_equiv_memory_loc[r])
6213 return refers_to_regno_for_reload_p (regno, endregno,
6214 reg_equiv_memory_loc[r],
6215 (rtx*) 0);
6217 gcc_assert (reg_equiv_constant[r]);
6218 return 0;
6221 return (endregno > r
6222 && regno < r + (r < FIRST_PSEUDO_REGISTER
6223 ? hard_regno_nregs[r][GET_MODE (x)]
6224 : 1));
6226 case SUBREG:
6227 /* If this is a SUBREG of a hard reg, we can see exactly which
6228 registers are being modified. Otherwise, handle normally. */
6229 if (REG_P (SUBREG_REG (x))
6230 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6232 unsigned int inner_regno = subreg_regno (x);
6233 unsigned int inner_endregno
6234 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6235 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6237 return endregno > inner_regno && regno < inner_endregno;
6239 break;
6241 case CLOBBER:
6242 case SET:
6243 if (&SET_DEST (x) != loc
6244 /* Note setting a SUBREG counts as referring to the REG it is in for
6245 a pseudo but not for hard registers since we can
6246 treat each word individually. */
6247 && ((GET_CODE (SET_DEST (x)) == SUBREG
6248 && loc != &SUBREG_REG (SET_DEST (x))
6249 && REG_P (SUBREG_REG (SET_DEST (x)))
6250 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6251 && refers_to_regno_for_reload_p (regno, endregno,
6252 SUBREG_REG (SET_DEST (x)),
6253 loc))
6254 /* If the output is an earlyclobber operand, this is
6255 a conflict. */
6256 || ((!REG_P (SET_DEST (x))
6257 || earlyclobber_operand_p (SET_DEST (x)))
6258 && refers_to_regno_for_reload_p (regno, endregno,
6259 SET_DEST (x), loc))))
6260 return 1;
6262 if (code == CLOBBER || loc == &SET_SRC (x))
6263 return 0;
6264 x = SET_SRC (x);
6265 goto repeat;
6267 default:
6268 break;
6271 /* X does not match, so try its subexpressions. */
6273 fmt = GET_RTX_FORMAT (code);
6274 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6276 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6278 if (i == 0)
6280 x = XEXP (x, 0);
6281 goto repeat;
6283 else
6284 if (refers_to_regno_for_reload_p (regno, endregno,
6285 XEXP (x, i), loc))
6286 return 1;
6288 else if (fmt[i] == 'E')
6290 int j;
6291 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6292 if (loc != &XVECEXP (x, i, j)
6293 && refers_to_regno_for_reload_p (regno, endregno,
6294 XVECEXP (x, i, j), loc))
6295 return 1;
6298 return 0;
6301 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6302 we check if any register number in X conflicts with the relevant register
6303 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6304 contains a MEM (we don't bother checking for memory addresses that can't
6305 conflict because we expect this to be a rare case.
6307 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6308 that we look at equivalences for pseudos that didn't get hard registers. */
6311 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6313 int regno, endregno;
6315 /* Overly conservative. */
6316 if (GET_CODE (x) == STRICT_LOW_PART
6317 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6318 x = XEXP (x, 0);
6320 /* If either argument is a constant, then modifying X can not affect IN. */
6321 if (CONSTANT_P (x) || CONSTANT_P (in))
6322 return 0;
6323 else if (GET_CODE (x) == SUBREG)
6325 regno = REGNO (SUBREG_REG (x));
6326 if (regno < FIRST_PSEUDO_REGISTER)
6327 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6328 GET_MODE (SUBREG_REG (x)),
6329 SUBREG_BYTE (x),
6330 GET_MODE (x));
6332 else if (REG_P (x))
6334 regno = REGNO (x);
6336 /* If this is a pseudo, it must not have been assigned a hard register.
6337 Therefore, it must either be in memory or be a constant. */
6339 if (regno >= FIRST_PSEUDO_REGISTER)
6341 if (reg_equiv_memory_loc[regno])
6342 return refers_to_mem_for_reload_p (in);
6343 gcc_assert (reg_equiv_constant[regno]);
6344 return 0;
6347 else if (MEM_P (x))
6348 return refers_to_mem_for_reload_p (in);
6349 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6350 || GET_CODE (x) == CC0)
6351 return reg_mentioned_p (x, in);
6352 else
6354 gcc_assert (GET_CODE (x) == PLUS);
6356 /* We actually want to know if X is mentioned somewhere inside IN.
6357 We must not say that (plus (sp) (const_int 124)) is in
6358 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6359 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6360 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6361 while (MEM_P (in))
6362 in = XEXP (in, 0);
6363 if (REG_P (in))
6364 return 0;
6365 else if (GET_CODE (in) == PLUS)
6366 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6367 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6368 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6369 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6372 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6373 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6375 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6378 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6379 registers. */
6381 static int
6382 refers_to_mem_for_reload_p (rtx x)
6384 const char *fmt;
6385 int i;
6387 if (MEM_P (x))
6388 return 1;
6390 if (REG_P (x))
6391 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6392 && reg_equiv_memory_loc[REGNO (x)]);
6394 fmt = GET_RTX_FORMAT (GET_CODE (x));
6395 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6396 if (fmt[i] == 'e'
6397 && (MEM_P (XEXP (x, i))
6398 || refers_to_mem_for_reload_p (XEXP (x, i))))
6399 return 1;
6401 return 0;
6404 /* Check the insns before INSN to see if there is a suitable register
6405 containing the same value as GOAL.
6406 If OTHER is -1, look for a register in class CLASS.
6407 Otherwise, just see if register number OTHER shares GOAL's value.
6409 Return an rtx for the register found, or zero if none is found.
6411 If RELOAD_REG_P is (short *)1,
6412 we reject any hard reg that appears in reload_reg_rtx
6413 because such a hard reg is also needed coming into this insn.
6415 If RELOAD_REG_P is any other nonzero value,
6416 it is a vector indexed by hard reg number
6417 and we reject any hard reg whose element in the vector is nonnegative
6418 as well as any that appears in reload_reg_rtx.
6420 If GOAL is zero, then GOALREG is a register number; we look
6421 for an equivalent for that register.
6423 MODE is the machine mode of the value we want an equivalence for.
6424 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6426 This function is used by jump.c as well as in the reload pass.
6428 If GOAL is the sum of the stack pointer and a constant, we treat it
6429 as if it were a constant except that sp is required to be unchanging. */
6432 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6433 short *reload_reg_p, int goalreg, enum machine_mode mode)
6435 rtx p = insn;
6436 rtx goaltry, valtry, value, where;
6437 rtx pat;
6438 int regno = -1;
6439 int valueno;
6440 int goal_mem = 0;
6441 int goal_const = 0;
6442 int goal_mem_addr_varies = 0;
6443 int need_stable_sp = 0;
6444 int nregs;
6445 int valuenregs;
6446 int num = 0;
6448 if (goal == 0)
6449 regno = goalreg;
6450 else if (REG_P (goal))
6451 regno = REGNO (goal);
6452 else if (MEM_P (goal))
6454 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6455 if (MEM_VOLATILE_P (goal))
6456 return 0;
6457 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6458 return 0;
6459 /* An address with side effects must be reexecuted. */
6460 switch (code)
6462 case POST_INC:
6463 case PRE_INC:
6464 case POST_DEC:
6465 case PRE_DEC:
6466 case POST_MODIFY:
6467 case PRE_MODIFY:
6468 return 0;
6469 default:
6470 break;
6472 goal_mem = 1;
6474 else if (CONSTANT_P (goal))
6475 goal_const = 1;
6476 else if (GET_CODE (goal) == PLUS
6477 && XEXP (goal, 0) == stack_pointer_rtx
6478 && CONSTANT_P (XEXP (goal, 1)))
6479 goal_const = need_stable_sp = 1;
6480 else if (GET_CODE (goal) == PLUS
6481 && XEXP (goal, 0) == frame_pointer_rtx
6482 && CONSTANT_P (XEXP (goal, 1)))
6483 goal_const = 1;
6484 else
6485 return 0;
6487 num = 0;
6488 /* Scan insns back from INSN, looking for one that copies
6489 a value into or out of GOAL.
6490 Stop and give up if we reach a label. */
6492 while (1)
6494 p = PREV_INSN (p);
6495 num++;
6496 if (p == 0 || LABEL_P (p)
6497 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6498 return 0;
6500 if (NONJUMP_INSN_P (p)
6501 /* If we don't want spill regs ... */
6502 && (! (reload_reg_p != 0
6503 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6504 /* ... then ignore insns introduced by reload; they aren't
6505 useful and can cause results in reload_as_needed to be
6506 different from what they were when calculating the need for
6507 spills. If we notice an input-reload insn here, we will
6508 reject it below, but it might hide a usable equivalent.
6509 That makes bad code. It may even abort: perhaps no reg was
6510 spilled for this insn because it was assumed we would find
6511 that equivalent. */
6512 || INSN_UID (p) < reload_first_uid))
6514 rtx tem;
6515 pat = single_set (p);
6517 /* First check for something that sets some reg equal to GOAL. */
6518 if (pat != 0
6519 && ((regno >= 0
6520 && true_regnum (SET_SRC (pat)) == regno
6521 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6523 (regno >= 0
6524 && true_regnum (SET_DEST (pat)) == regno
6525 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6527 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6528 /* When looking for stack pointer + const,
6529 make sure we don't use a stack adjust. */
6530 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6531 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6532 || (goal_mem
6533 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6534 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6535 || (goal_mem
6536 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6537 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6538 /* If we are looking for a constant,
6539 and something equivalent to that constant was copied
6540 into a reg, we can use that reg. */
6541 || (goal_const && REG_NOTES (p) != 0
6542 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6543 && ((rtx_equal_p (XEXP (tem, 0), goal)
6544 && (valueno
6545 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6546 || (REG_P (SET_DEST (pat))
6547 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6548 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6549 == MODE_FLOAT)
6550 && GET_CODE (goal) == CONST_INT
6551 && 0 != (goaltry
6552 = operand_subword (XEXP (tem, 0), 0, 0,
6553 VOIDmode))
6554 && rtx_equal_p (goal, goaltry)
6555 && (valtry
6556 = operand_subword (SET_DEST (pat), 0, 0,
6557 VOIDmode))
6558 && (valueno = true_regnum (valtry)) >= 0)))
6559 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6560 NULL_RTX))
6561 && REG_P (SET_DEST (pat))
6562 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6563 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6564 == MODE_FLOAT)
6565 && GET_CODE (goal) == CONST_INT
6566 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6567 VOIDmode))
6568 && rtx_equal_p (goal, goaltry)
6569 && (valtry
6570 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6571 && (valueno = true_regnum (valtry)) >= 0)))
6573 if (other >= 0)
6575 if (valueno != other)
6576 continue;
6578 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6579 continue;
6580 else
6582 int i;
6584 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6585 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6586 valueno + i))
6587 break;
6588 if (i >= 0)
6589 continue;
6591 value = valtry;
6592 where = p;
6593 break;
6598 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6599 (or copying VALUE into GOAL, if GOAL is also a register).
6600 Now verify that VALUE is really valid. */
6602 /* VALUENO is the register number of VALUE; a hard register. */
6604 /* Don't try to re-use something that is killed in this insn. We want
6605 to be able to trust REG_UNUSED notes. */
6606 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6607 return 0;
6609 /* If we propose to get the value from the stack pointer or if GOAL is
6610 a MEM based on the stack pointer, we need a stable SP. */
6611 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6612 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6613 goal)))
6614 need_stable_sp = 1;
6616 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6617 if (GET_MODE (value) != mode)
6618 return 0;
6620 /* Reject VALUE if it was loaded from GOAL
6621 and is also a register that appears in the address of GOAL. */
6623 if (goal_mem && value == SET_DEST (single_set (where))
6624 && refers_to_regno_for_reload_p (valueno,
6625 (valueno
6626 + hard_regno_nregs[valueno][mode]),
6627 goal, (rtx*) 0))
6628 return 0;
6630 /* Reject registers that overlap GOAL. */
6632 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6633 nregs = hard_regno_nregs[regno][mode];
6634 else
6635 nregs = 1;
6636 valuenregs = hard_regno_nregs[valueno][mode];
6638 if (!goal_mem && !goal_const
6639 && regno + nregs > valueno && regno < valueno + valuenregs)
6640 return 0;
6642 /* Reject VALUE if it is one of the regs reserved for reloads.
6643 Reload1 knows how to reuse them anyway, and it would get
6644 confused if we allocated one without its knowledge.
6645 (Now that insns introduced by reload are ignored above,
6646 this case shouldn't happen, but I'm not positive.) */
6648 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6650 int i;
6651 for (i = 0; i < valuenregs; ++i)
6652 if (reload_reg_p[valueno + i] >= 0)
6653 return 0;
6656 /* Reject VALUE if it is a register being used for an input reload
6657 even if it is not one of those reserved. */
6659 if (reload_reg_p != 0)
6661 int i;
6662 for (i = 0; i < n_reloads; i++)
6663 if (rld[i].reg_rtx != 0 && rld[i].in)
6665 int regno1 = REGNO (rld[i].reg_rtx);
6666 int nregs1 = hard_regno_nregs[regno1]
6667 [GET_MODE (rld[i].reg_rtx)];
6668 if (regno1 < valueno + valuenregs
6669 && regno1 + nregs1 > valueno)
6670 return 0;
6674 if (goal_mem)
6675 /* We must treat frame pointer as varying here,
6676 since it can vary--in a nonlocal goto as generated by expand_goto. */
6677 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6679 /* Now verify that the values of GOAL and VALUE remain unaltered
6680 until INSN is reached. */
6682 p = insn;
6683 while (1)
6685 p = PREV_INSN (p);
6686 if (p == where)
6687 return value;
6689 /* Don't trust the conversion past a function call
6690 if either of the two is in a call-clobbered register, or memory. */
6691 if (CALL_P (p))
6693 int i;
6695 if (goal_mem || need_stable_sp)
6696 return 0;
6698 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6699 for (i = 0; i < nregs; ++i)
6700 if (call_used_regs[regno + i])
6701 return 0;
6703 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6704 for (i = 0; i < valuenregs; ++i)
6705 if (call_used_regs[valueno + i])
6706 return 0;
6709 if (INSN_P (p))
6711 pat = PATTERN (p);
6713 /* Watch out for unspec_volatile, and volatile asms. */
6714 if (volatile_insn_p (pat))
6715 return 0;
6717 /* If this insn P stores in either GOAL or VALUE, return 0.
6718 If GOAL is a memory ref and this insn writes memory, return 0.
6719 If GOAL is a memory ref and its address is not constant,
6720 and this insn P changes a register used in GOAL, return 0. */
6722 if (GET_CODE (pat) == COND_EXEC)
6723 pat = COND_EXEC_CODE (pat);
6724 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6726 rtx dest = SET_DEST (pat);
6727 while (GET_CODE (dest) == SUBREG
6728 || GET_CODE (dest) == ZERO_EXTRACT
6729 || GET_CODE (dest) == SIGN_EXTRACT
6730 || GET_CODE (dest) == STRICT_LOW_PART)
6731 dest = XEXP (dest, 0);
6732 if (REG_P (dest))
6734 int xregno = REGNO (dest);
6735 int xnregs;
6736 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6737 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6738 else
6739 xnregs = 1;
6740 if (xregno < regno + nregs && xregno + xnregs > regno)
6741 return 0;
6742 if (xregno < valueno + valuenregs
6743 && xregno + xnregs > valueno)
6744 return 0;
6745 if (goal_mem_addr_varies
6746 && reg_overlap_mentioned_for_reload_p (dest, goal))
6747 return 0;
6748 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6749 return 0;
6751 else if (goal_mem && MEM_P (dest)
6752 && ! push_operand (dest, GET_MODE (dest)))
6753 return 0;
6754 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6755 && reg_equiv_memory_loc[regno] != 0)
6756 return 0;
6757 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6758 return 0;
6760 else if (GET_CODE (pat) == PARALLEL)
6762 int i;
6763 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6765 rtx v1 = XVECEXP (pat, 0, i);
6766 if (GET_CODE (v1) == COND_EXEC)
6767 v1 = COND_EXEC_CODE (v1);
6768 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6770 rtx dest = SET_DEST (v1);
6771 while (GET_CODE (dest) == SUBREG
6772 || GET_CODE (dest) == ZERO_EXTRACT
6773 || GET_CODE (dest) == SIGN_EXTRACT
6774 || GET_CODE (dest) == STRICT_LOW_PART)
6775 dest = XEXP (dest, 0);
6776 if (REG_P (dest))
6778 int xregno = REGNO (dest);
6779 int xnregs;
6780 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6781 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6782 else
6783 xnregs = 1;
6784 if (xregno < regno + nregs
6785 && xregno + xnregs > regno)
6786 return 0;
6787 if (xregno < valueno + valuenregs
6788 && xregno + xnregs > valueno)
6789 return 0;
6790 if (goal_mem_addr_varies
6791 && reg_overlap_mentioned_for_reload_p (dest,
6792 goal))
6793 return 0;
6794 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6795 return 0;
6797 else if (goal_mem && MEM_P (dest)
6798 && ! push_operand (dest, GET_MODE (dest)))
6799 return 0;
6800 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6801 && reg_equiv_memory_loc[regno] != 0)
6802 return 0;
6803 else if (need_stable_sp
6804 && push_operand (dest, GET_MODE (dest)))
6805 return 0;
6810 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6812 rtx link;
6814 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6815 link = XEXP (link, 1))
6817 pat = XEXP (link, 0);
6818 if (GET_CODE (pat) == CLOBBER)
6820 rtx dest = SET_DEST (pat);
6822 if (REG_P (dest))
6824 int xregno = REGNO (dest);
6825 int xnregs
6826 = hard_regno_nregs[xregno][GET_MODE (dest)];
6828 if (xregno < regno + nregs
6829 && xregno + xnregs > regno)
6830 return 0;
6831 else if (xregno < valueno + valuenregs
6832 && xregno + xnregs > valueno)
6833 return 0;
6834 else if (goal_mem_addr_varies
6835 && reg_overlap_mentioned_for_reload_p (dest,
6836 goal))
6837 return 0;
6840 else if (goal_mem && MEM_P (dest)
6841 && ! push_operand (dest, GET_MODE (dest)))
6842 return 0;
6843 else if (need_stable_sp
6844 && push_operand (dest, GET_MODE (dest)))
6845 return 0;
6850 #ifdef AUTO_INC_DEC
6851 /* If this insn auto-increments or auto-decrements
6852 either regno or valueno, return 0 now.
6853 If GOAL is a memory ref and its address is not constant,
6854 and this insn P increments a register used in GOAL, return 0. */
6856 rtx link;
6858 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6859 if (REG_NOTE_KIND (link) == REG_INC
6860 && REG_P (XEXP (link, 0)))
6862 int incno = REGNO (XEXP (link, 0));
6863 if (incno < regno + nregs && incno >= regno)
6864 return 0;
6865 if (incno < valueno + valuenregs && incno >= valueno)
6866 return 0;
6867 if (goal_mem_addr_varies
6868 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6869 goal))
6870 return 0;
6873 #endif
6878 /* Find a place where INCED appears in an increment or decrement operator
6879 within X, and return the amount INCED is incremented or decremented by.
6880 The value is always positive. */
6882 static int
6883 find_inc_amount (rtx x, rtx inced)
6885 enum rtx_code code = GET_CODE (x);
6886 const char *fmt;
6887 int i;
6889 if (code == MEM)
6891 rtx addr = XEXP (x, 0);
6892 if ((GET_CODE (addr) == PRE_DEC
6893 || GET_CODE (addr) == POST_DEC
6894 || GET_CODE (addr) == PRE_INC
6895 || GET_CODE (addr) == POST_INC)
6896 && XEXP (addr, 0) == inced)
6897 return GET_MODE_SIZE (GET_MODE (x));
6898 else if ((GET_CODE (addr) == PRE_MODIFY
6899 || GET_CODE (addr) == POST_MODIFY)
6900 && GET_CODE (XEXP (addr, 1)) == PLUS
6901 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6902 && XEXP (addr, 0) == inced
6903 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6905 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6906 return i < 0 ? -i : i;
6910 fmt = GET_RTX_FORMAT (code);
6911 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6913 if (fmt[i] == 'e')
6915 int tem = find_inc_amount (XEXP (x, i), inced);
6916 if (tem != 0)
6917 return tem;
6919 if (fmt[i] == 'E')
6921 int j;
6922 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6924 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6925 if (tem != 0)
6926 return tem;
6931 return 0;
6934 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6935 If SETS is nonzero, also consider SETs. */
6938 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6939 int sets)
6941 unsigned int nregs = hard_regno_nregs[regno][mode];
6942 unsigned int endregno = regno + nregs;
6944 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6945 || (sets && GET_CODE (PATTERN (insn)) == SET))
6946 && REG_P (XEXP (PATTERN (insn), 0)))
6948 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6950 return test >= regno && test < endregno;
6953 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6955 int i = XVECLEN (PATTERN (insn), 0) - 1;
6957 for (; i >= 0; i--)
6959 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6960 if ((GET_CODE (elt) == CLOBBER
6961 || (sets && GET_CODE (PATTERN (insn)) == SET))
6962 && REG_P (XEXP (elt, 0)))
6964 unsigned int test = REGNO (XEXP (elt, 0));
6966 if (test >= regno && test < endregno)
6967 return 1;
6972 return 0;
6975 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6977 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6979 int regno;
6981 if (GET_MODE (reloadreg) == mode)
6982 return reloadreg;
6984 regno = REGNO (reloadreg);
6986 if (WORDS_BIG_ENDIAN)
6987 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
6988 - (int) hard_regno_nregs[regno][mode];
6990 return gen_rtx_REG (mode, regno);
6993 static const char *const reload_when_needed_name[] =
6995 "RELOAD_FOR_INPUT",
6996 "RELOAD_FOR_OUTPUT",
6997 "RELOAD_FOR_INSN",
6998 "RELOAD_FOR_INPUT_ADDRESS",
6999 "RELOAD_FOR_INPADDR_ADDRESS",
7000 "RELOAD_FOR_OUTPUT_ADDRESS",
7001 "RELOAD_FOR_OUTADDR_ADDRESS",
7002 "RELOAD_FOR_OPERAND_ADDRESS",
7003 "RELOAD_FOR_OPADDR_ADDR",
7004 "RELOAD_OTHER",
7005 "RELOAD_FOR_OTHER_ADDRESS"
7008 static const char * const reg_class_names[] = REG_CLASS_NAMES;
7010 /* These functions are used to print the variables set by 'find_reloads' */
7012 void
7013 debug_reload_to_stream (FILE *f)
7015 int r;
7016 const char *prefix;
7018 if (! f)
7019 f = stderr;
7020 for (r = 0; r < n_reloads; r++)
7022 fprintf (f, "Reload %d: ", r);
7024 if (rld[r].in != 0)
7026 fprintf (f, "reload_in (%s) = ",
7027 GET_MODE_NAME (rld[r].inmode));
7028 print_inline_rtx (f, rld[r].in, 24);
7029 fprintf (f, "\n\t");
7032 if (rld[r].out != 0)
7034 fprintf (f, "reload_out (%s) = ",
7035 GET_MODE_NAME (rld[r].outmode));
7036 print_inline_rtx (f, rld[r].out, 24);
7037 fprintf (f, "\n\t");
7040 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7042 fprintf (f, "%s (opnum = %d)",
7043 reload_when_needed_name[(int) rld[r].when_needed],
7044 rld[r].opnum);
7046 if (rld[r].optional)
7047 fprintf (f, ", optional");
7049 if (rld[r].nongroup)
7050 fprintf (f, ", nongroup");
7052 if (rld[r].inc != 0)
7053 fprintf (f, ", inc by %d", rld[r].inc);
7055 if (rld[r].nocombine)
7056 fprintf (f, ", can't combine");
7058 if (rld[r].secondary_p)
7059 fprintf (f, ", secondary_reload_p");
7061 if (rld[r].in_reg != 0)
7063 fprintf (f, "\n\treload_in_reg: ");
7064 print_inline_rtx (f, rld[r].in_reg, 24);
7067 if (rld[r].out_reg != 0)
7069 fprintf (f, "\n\treload_out_reg: ");
7070 print_inline_rtx (f, rld[r].out_reg, 24);
7073 if (rld[r].reg_rtx != 0)
7075 fprintf (f, "\n\treload_reg_rtx: ");
7076 print_inline_rtx (f, rld[r].reg_rtx, 24);
7079 prefix = "\n\t";
7080 if (rld[r].secondary_in_reload != -1)
7082 fprintf (f, "%ssecondary_in_reload = %d",
7083 prefix, rld[r].secondary_in_reload);
7084 prefix = ", ";
7087 if (rld[r].secondary_out_reload != -1)
7088 fprintf (f, "%ssecondary_out_reload = %d\n",
7089 prefix, rld[r].secondary_out_reload);
7091 prefix = "\n\t";
7092 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7094 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7095 insn_data[rld[r].secondary_in_icode].name);
7096 prefix = ", ";
7099 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7100 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7101 insn_data[rld[r].secondary_out_icode].name);
7103 fprintf (f, "\n");
7107 void
7108 debug_reload (void)
7110 debug_reload_to_stream (stderr);