gcc/
[official-gcc.git] / gcc / sel-sched.c
blob0c864acd7f79e9f66b8a30457c46259ab36e7809
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h"
44 #include "ira.h"
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 #include "sel-sched-dump.h"
49 #include "sel-sched.h"
50 #include "dbgcnt.h"
52 /* Implementation of selective scheduling approach.
53 The below implementation follows the original approach with the following
54 changes:
56 o the scheduler works after register allocation (but can be also tuned
57 to work before RA);
58 o some instructions are not copied or register renamed;
59 o conditional jumps are not moved with code duplication;
60 o several jumps in one parallel group are not supported;
61 o when pipelining outer loops, code motion through inner loops
62 is not supported;
63 o control and data speculation are supported;
64 o some improvements for better compile time/performance were made.
66 Terminology
67 ===========
69 A vinsn, or virtual insn, is an insn with additional data characterizing
70 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
71 Vinsns also act as smart pointers to save memory by reusing them in
72 different expressions. A vinsn is described by vinsn_t type.
74 An expression is a vinsn with additional data characterizing its properties
75 at some point in the control flow graph. The data may be its usefulness,
76 priority, speculative status, whether it was renamed/subsituted, etc.
77 An expression is described by expr_t type.
79 Availability set (av_set) is a set of expressions at a given control flow
80 point. It is represented as av_set_t. The expressions in av sets are kept
81 sorted in the terms of expr_greater_p function. It allows to truncate
82 the set while leaving the best expressions.
84 A fence is a point through which code motion is prohibited. On each step,
85 we gather a parallel group of insns at a fence. It is possible to have
86 multiple fences. A fence is represented via fence_t.
88 A boundary is the border between the fence group and the rest of the code.
89 Currently, we never have more than one boundary per fence, as we finalize
90 the fence group when a jump is scheduled. A boundary is represented
91 via bnd_t.
93 High-level overview
94 ===================
96 The scheduler finds regions to schedule, schedules each one, and finalizes.
97 The regions are formed starting from innermost loops, so that when the inner
98 loop is pipelined, its prologue can be scheduled together with yet unprocessed
99 outer loop. The rest of acyclic regions are found using extend_rgns:
100 the blocks that are not yet allocated to any regions are traversed in top-down
101 order, and a block is added to a region to which all its predecessors belong;
102 otherwise, the block starts its own region.
104 The main scheduling loop (sel_sched_region_2) consists of just
105 scheduling on each fence and updating fences. For each fence,
106 we fill a parallel group of insns (fill_insns) until some insns can be added.
107 First, we compute available exprs (av-set) at the boundary of the current
108 group. Second, we choose the best expression from it. If the stall is
109 required to schedule any of the expressions, we advance the current cycle
110 appropriately. So, the final group does not exactly correspond to a VLIW
111 word. Third, we move the chosen expression to the boundary (move_op)
112 and update the intermediate av sets and liveness sets. We quit fill_insns
113 when either no insns left for scheduling or we have scheduled enough insns
114 so we feel like advancing a scheduling point.
116 Computing available expressions
117 ===============================
119 The computation (compute_av_set) is a bottom-up traversal. At each insn,
120 we're moving the union of its successors' sets through it via
121 moveup_expr_set. The dependent expressions are removed. Local
122 transformations (substitution, speculation) are applied to move more
123 exprs. Then the expr corresponding to the current insn is added.
124 The result is saved on each basic block header.
126 When traversing the CFG, we're moving down for no more than max_ws insns.
127 Also, we do not move down to ineligible successors (is_ineligible_successor),
128 which include moving along a back-edge, moving to already scheduled code,
129 and moving to another fence. The first two restrictions are lifted during
130 pipelining, which allows us to move insns along a back-edge. We always have
131 an acyclic region for scheduling because we forbid motion through fences.
133 Choosing the best expression
134 ============================
136 We sort the final availability set via sel_rank_for_schedule, then we remove
137 expressions which are not yet ready (tick_check_p) or which dest registers
138 cannot be used. For some of them, we choose another register via
139 find_best_reg. To do this, we run find_used_regs to calculate the set of
140 registers which cannot be used. The find_used_regs function performs
141 a traversal of code motion paths for an expr. We consider for renaming
142 only registers which are from the same regclass as the original one and
143 using which does not interfere with any live ranges. Finally, we convert
144 the resulting set to the ready list format and use max_issue and reorder*
145 hooks similarly to the Haifa scheduler.
147 Scheduling the best expression
148 ==============================
150 We run the move_op routine to perform the same type of code motion paths
151 traversal as in find_used_regs. (These are working via the same driver,
152 code_motion_path_driver.) When moving down the CFG, we look for original
153 instruction that gave birth to a chosen expression. We undo
154 the transformations performed on an expression via the history saved in it.
155 When found, we remove the instruction or leave a reg-reg copy/speculation
156 check if needed. On a way up, we insert bookkeeping copies at each join
157 point. If a copy is not needed, it will be removed later during this
158 traversal. We update the saved av sets and liveness sets on the way up, too.
160 Finalizing the schedule
161 =======================
163 When pipelining, we reschedule the blocks from which insns were pipelined
164 to get a tighter schedule. On Itanium, we also perform bundling via
165 the same routine from ia64.c.
167 Dependence analysis changes
168 ===========================
170 We augmented the sched-deps.c with hooks that get called when a particular
171 dependence is found in a particular part of an insn. Using these hooks, we
172 can do several actions such as: determine whether an insn can be moved through
173 another (has_dependence_p, moveup_expr); find out whether an insn can be
174 scheduled on the current cycle (tick_check_p); find out registers that
175 are set/used/clobbered by an insn and find out all the strange stuff that
176 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
177 init_global_and_expr_for_insn).
179 Initialization changes
180 ======================
182 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
183 reused in all of the schedulers. We have split up the initialization of data
184 of such parts into different functions prefixed with scheduler type and
185 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
186 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
187 The same splitting is done with current_sched_info structure:
188 dependence-related parts are in sched_deps_info, common part is in
189 common_sched_info, and haifa/sel/etc part is in current_sched_info.
191 Target contexts
192 ===============
194 As we now have multiple-point scheduling, this would not work with backends
195 which save some of the scheduler state to use it in the target hooks.
196 For this purpose, we introduce a concept of target contexts, which
197 encapsulate such information. The backend should implement simple routines
198 of allocating/freeing/setting such a context. The scheduler calls these
199 as target hooks and handles the target context as an opaque pointer (similar
200 to the DFA state type, state_t).
202 Various speedups
203 ================
205 As the correct data dependence graph is not supported during scheduling (which
206 is to be changed in mid-term), we cache as much of the dependence analysis
207 results as possible to avoid reanalyzing. This includes: bitmap caches on
208 each insn in stream of the region saying yes/no for a query with a pair of
209 UIDs; hashtables with the previously done transformations on each insn in
210 stream; a vector keeping a history of transformations on each expr.
212 Also, we try to minimize the dependence context used on each fence to check
213 whether the given expression is ready for scheduling by removing from it
214 insns that are definitely completed the execution. The results of
215 tick_check_p checks are also cached in a vector on each fence.
217 We keep a valid liveness set on each insn in a region to avoid the high
218 cost of recomputation on large basic blocks.
220 Finally, we try to minimize the number of needed updates to the availability
221 sets. The updates happen in two cases: when fill_insns terminates,
222 we advance all fences and increase the stage number to show that the region
223 has changed and the sets are to be recomputed; and when the next iteration
224 of a loop in fill_insns happens (but this one reuses the saved av sets
225 on bb headers.) Thus, we try to break the fill_insns loop only when
226 "significant" number of insns from the current scheduling window was
227 scheduled. This should be made a target param.
230 TODO: correctly support the data dependence graph at all stages and get rid
231 of all caches. This should speed up the scheduler.
232 TODO: implement moving cond jumps with bookkeeping copies on both targets.
233 TODO: tune the scheduler before RA so it does not create too much pseudos.
236 References:
237 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
238 selective scheduling and software pipelining.
239 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
241 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
242 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
243 for GCC. In Proceedings of GCC Developers' Summit 2006.
245 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
246 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
247 http://rogue.colorado.edu/EPIC7/.
251 /* True when pipelining is enabled. */
252 bool pipelining_p;
254 /* True if bookkeeping is enabled. */
255 bool bookkeeping_p;
257 /* Maximum number of insns that are eligible for renaming. */
258 int max_insns_to_rename;
261 /* Definitions of local types and macros. */
263 /* Represents possible outcomes of moving an expression through an insn. */
264 enum MOVEUP_EXPR_CODE
266 /* The expression is not changed. */
267 MOVEUP_EXPR_SAME,
269 /* Not changed, but requires a new destination register. */
270 MOVEUP_EXPR_AS_RHS,
272 /* Cannot be moved. */
273 MOVEUP_EXPR_NULL,
275 /* Changed (substituted or speculated). */
276 MOVEUP_EXPR_CHANGED
279 /* The container to be passed into rtx search & replace functions. */
280 struct rtx_search_arg
282 /* What we are searching for. */
283 rtx x;
285 /* The occurrence counter. */
286 int n;
289 typedef struct rtx_search_arg *rtx_search_arg_p;
291 /* This struct contains precomputed hard reg sets that are needed when
292 computing registers available for renaming. */
293 struct hard_regs_data
295 /* For every mode, this stores registers available for use with
296 that mode. */
297 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
299 /* True when regs_for_mode[mode] is initialized. */
300 bool regs_for_mode_ok[NUM_MACHINE_MODES];
302 /* For every register, it has regs that are ok to rename into it.
303 The register in question is always set. If not, this means
304 that the whole set is not computed yet. */
305 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
307 /* For every mode, this stores registers not available due to
308 call clobbering. */
309 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
311 /* All registers that are used or call used. */
312 HARD_REG_SET regs_ever_used;
314 #ifdef STACK_REGS
315 /* Stack registers. */
316 HARD_REG_SET stack_regs;
317 #endif
320 /* Holds the results of computation of available for renaming and
321 unavailable hard registers. */
322 struct reg_rename
324 /* These are unavailable due to calls crossing, globalness, etc. */
325 HARD_REG_SET unavailable_hard_regs;
327 /* These are *available* for renaming. */
328 HARD_REG_SET available_for_renaming;
330 /* Whether this code motion path crosses a call. */
331 bool crosses_call;
334 /* A global structure that contains the needed information about harg
335 regs. */
336 static struct hard_regs_data sel_hrd;
339 /* This structure holds local data used in code_motion_path_driver hooks on
340 the same or adjacent levels of recursion. Here we keep those parameters
341 that are not used in code_motion_path_driver routine itself, but only in
342 its hooks. Moreover, all parameters that can be modified in hooks are
343 in this structure, so all other parameters passed explicitly to hooks are
344 read-only. */
345 struct cmpd_local_params
347 /* Local params used in move_op_* functions. */
349 /* Edges for bookkeeping generation. */
350 edge e1, e2;
352 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
353 expr_t c_expr_merged, c_expr_local;
355 /* Local params used in fur_* functions. */
356 /* Copy of the ORIGINAL_INSN list, stores the original insns already
357 found before entering the current level of code_motion_path_driver. */
358 def_list_t old_original_insns;
360 /* Local params used in move_op_* functions. */
361 /* True when we have removed last insn in the block which was
362 also a boundary. Do not update anything or create bookkeeping copies. */
363 BOOL_BITFIELD removed_last_insn : 1;
366 /* Stores the static parameters for move_op_* calls. */
367 struct moveop_static_params
369 /* Destination register. */
370 rtx dest;
372 /* Current C_EXPR. */
373 expr_t c_expr;
375 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
376 they are to be removed. */
377 int uid;
379 #ifdef ENABLE_CHECKING
380 /* This is initialized to the insn on which the driver stopped its traversal. */
381 insn_t failed_insn;
382 #endif
384 /* True if we scheduled an insn with different register. */
385 bool was_renamed;
388 /* Stores the static parameters for fur_* calls. */
389 struct fur_static_params
391 /* Set of registers unavailable on the code motion path. */
392 regset used_regs;
394 /* Pointer to the list of original insns definitions. */
395 def_list_t *original_insns;
397 /* True if a code motion path contains a CALL insn. */
398 bool crosses_call;
401 typedef struct fur_static_params *fur_static_params_p;
402 typedef struct cmpd_local_params *cmpd_local_params_p;
403 typedef struct moveop_static_params *moveop_static_params_p;
405 /* Set of hooks and parameters that determine behaviour specific to
406 move_op or find_used_regs functions. */
407 struct code_motion_path_driver_info_def
409 /* Called on enter to the basic block. */
410 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
412 /* Called when original expr is found. */
413 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
415 /* Called while descending current basic block if current insn is not
416 the original EXPR we're searching for. */
417 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
419 /* Function to merge C_EXPRes from different successors. */
420 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
422 /* Function to finalize merge from different successors and possibly
423 deallocate temporary data structures used for merging. */
424 void (*after_merge_succs) (cmpd_local_params_p, void *);
426 /* Called on the backward stage of recursion to do moveup_expr.
427 Used only with move_op_*. */
428 void (*ascend) (insn_t, void *);
430 /* Called on the ascending pass, before returning from the current basic
431 block or from the whole traversal. */
432 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
434 /* When processing successors in move_op we need only descend into
435 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
436 int succ_flags;
438 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
439 const char *routine_name;
442 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
443 FUR_HOOKS. */
444 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
446 /* Set of hooks for performing move_op and find_used_regs routines with
447 code_motion_path_driver. */
448 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
450 /* True if/when we want to emulate Haifa scheduler in the common code.
451 This is used in sched_rgn_local_init and in various places in
452 sched-deps.c. */
453 int sched_emulate_haifa_p;
455 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
456 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
457 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
458 scheduling window. */
459 int global_level;
461 /* Current fences. */
462 flist_t fences;
464 /* True when separable insns should be scheduled as RHSes. */
465 static bool enable_schedule_as_rhs_p;
467 /* Used in verify_target_availability to assert that target reg is reported
468 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
469 we haven't scheduled anything on the previous fence.
470 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
471 have more conservative value than the one returned by the
472 find_used_regs, thus we shouldn't assert that these values are equal. */
473 static bool scheduled_something_on_previous_fence;
475 /* All newly emitted insns will have their uids greater than this value. */
476 static int first_emitted_uid;
478 /* Set of basic blocks that are forced to start new ebbs. This is a subset
479 of all the ebb heads. */
480 static bitmap_head _forced_ebb_heads;
481 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
483 /* Blocks that need to be rescheduled after pipelining. */
484 bitmap blocks_to_reschedule = NULL;
486 /* True when the first lv set should be ignored when updating liveness. */
487 static bool ignore_first = false;
489 /* Number of insns max_issue has initialized data structures for. */
490 static int max_issue_size = 0;
492 /* Whether we can issue more instructions. */
493 static int can_issue_more;
495 /* Maximum software lookahead window size, reduced when rescheduling after
496 pipelining. */
497 static int max_ws;
499 /* Number of insns scheduled in current region. */
500 static int num_insns_scheduled;
502 /* A vector of expressions is used to be able to sort them. */
503 static vec<expr_t> vec_av_set = vNULL;
505 /* A vector of vinsns is used to hold temporary lists of vinsns. */
506 typedef vec<vinsn_t> vinsn_vec_t;
508 /* This vector has the exprs which may still present in av_sets, but actually
509 can't be moved up due to bookkeeping created during code motion to another
510 fence. See comment near the call to update_and_record_unavailable_insns
511 for the detailed explanations. */
512 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
514 /* This vector has vinsns which are scheduled with renaming on the first fence
515 and then seen on the second. For expressions with such vinsns, target
516 availability information may be wrong. */
517 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
519 /* Vector to store temporary nops inserted in move_op to prevent removal
520 of empty bbs. */
521 static vec<insn_t> vec_temp_moveop_nops = vNULL;
523 /* These bitmaps record original instructions scheduled on the current
524 iteration and bookkeeping copies created by them. */
525 static bitmap current_originators = NULL;
526 static bitmap current_copies = NULL;
528 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
529 visit them afterwards. */
530 static bitmap code_motion_visited_blocks = NULL;
532 /* Variables to accumulate different statistics. */
534 /* The number of bookkeeping copies created. */
535 static int stat_bookkeeping_copies;
537 /* The number of insns that required bookkeeiping for their scheduling. */
538 static int stat_insns_needed_bookkeeping;
540 /* The number of insns that got renamed. */
541 static int stat_renamed_scheduled;
543 /* The number of substitutions made during scheduling. */
544 static int stat_substitutions_total;
547 /* Forward declarations of static functions. */
548 static bool rtx_ok_for_substitution_p (rtx, rtx);
549 static int sel_rank_for_schedule (const void *, const void *);
550 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
551 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
553 static rtx get_dest_from_orig_ops (av_set_t);
554 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
555 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
556 def_list_t *);
557 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
558 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
559 cmpd_local_params_p, void *);
560 static void sel_sched_region_1 (void);
561 static void sel_sched_region_2 (int);
562 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
564 static void debug_state (state_t);
567 /* Functions that work with fences. */
569 /* Advance one cycle on FENCE. */
570 static void
571 advance_one_cycle (fence_t fence)
573 unsigned i;
574 int cycle;
575 rtx insn;
577 advance_state (FENCE_STATE (fence));
578 cycle = ++FENCE_CYCLE (fence);
579 FENCE_ISSUED_INSNS (fence) = 0;
580 FENCE_STARTS_CYCLE_P (fence) = 1;
581 can_issue_more = issue_rate;
582 FENCE_ISSUE_MORE (fence) = can_issue_more;
584 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
586 if (INSN_READY_CYCLE (insn) < cycle)
588 remove_from_deps (FENCE_DC (fence), insn);
589 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
590 continue;
592 i++;
594 if (sched_verbose >= 2)
596 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
597 debug_state (FENCE_STATE (fence));
601 /* Returns true when SUCC in a fallthru bb of INSN, possibly
602 skipping empty basic blocks. */
603 static bool
604 in_fallthru_bb_p (rtx insn, rtx succ)
606 basic_block bb = BLOCK_FOR_INSN (insn);
607 edge e;
609 if (bb == BLOCK_FOR_INSN (succ))
610 return true;
612 e = find_fallthru_edge_from (bb);
613 if (e)
614 bb = e->dest;
615 else
616 return false;
618 while (sel_bb_empty_p (bb))
619 bb = bb->next_bb;
621 return bb == BLOCK_FOR_INSN (succ);
624 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
625 When a successor will continue a ebb, transfer all parameters of a fence
626 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
627 of scheduling helping to distinguish between the old and the new code. */
628 static void
629 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
630 int orig_max_seqno)
632 bool was_here_p = false;
633 insn_t insn = NULL_RTX;
634 insn_t succ;
635 succ_iterator si;
636 ilist_iterator ii;
637 fence_t fence = FLIST_FENCE (old_fences);
638 basic_block bb;
640 /* Get the only element of FENCE_BNDS (fence). */
641 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
643 gcc_assert (!was_here_p);
644 was_here_p = true;
646 gcc_assert (was_here_p && insn != NULL_RTX);
648 /* When in the "middle" of the block, just move this fence
649 to the new list. */
650 bb = BLOCK_FOR_INSN (insn);
651 if (! sel_bb_end_p (insn)
652 || (single_succ_p (bb)
653 && single_pred_p (single_succ (bb))))
655 insn_t succ;
657 succ = (sel_bb_end_p (insn)
658 ? sel_bb_head (single_succ (bb))
659 : NEXT_INSN (insn));
661 if (INSN_SEQNO (succ) > 0
662 && INSN_SEQNO (succ) <= orig_max_seqno
663 && INSN_SCHED_TIMES (succ) <= 0)
665 FENCE_INSN (fence) = succ;
666 move_fence_to_fences (old_fences, new_fences);
668 if (sched_verbose >= 1)
669 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
670 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
672 return;
675 /* Otherwise copy fence's structures to (possibly) multiple successors. */
676 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
678 int seqno = INSN_SEQNO (succ);
680 if (0 < seqno && seqno <= orig_max_seqno
681 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
683 bool b = (in_same_ebb_p (insn, succ)
684 || in_fallthru_bb_p (insn, succ));
686 if (sched_verbose >= 1)
687 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
688 INSN_UID (insn), INSN_UID (succ),
689 BLOCK_NUM (succ), b ? "continue" : "reset");
691 if (b)
692 add_dirty_fence_to_fences (new_fences, succ, fence);
693 else
695 /* Mark block of the SUCC as head of the new ebb. */
696 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
697 add_clean_fence_to_fences (new_fences, succ, fence);
704 /* Functions to support substitution. */
706 /* Returns whether INSN with dependence status DS is eligible for
707 substitution, i.e. it's a copy operation x := y, and RHS that is
708 moved up through this insn should be substituted. */
709 static bool
710 can_substitute_through_p (insn_t insn, ds_t ds)
712 /* We can substitute only true dependencies. */
713 if ((ds & DEP_OUTPUT)
714 || (ds & DEP_ANTI)
715 || ! INSN_RHS (insn)
716 || ! INSN_LHS (insn))
717 return false;
719 /* Now we just need to make sure the INSN_RHS consists of only one
720 simple REG rtx. */
721 if (REG_P (INSN_LHS (insn))
722 && REG_P (INSN_RHS (insn)))
723 return true;
724 return false;
727 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
728 source (if INSN is eligible for substitution). Returns TRUE if
729 substitution was actually performed, FALSE otherwise. Substitution might
730 be not performed because it's either EXPR' vinsn doesn't contain INSN's
731 destination or the resulting insn is invalid for the target machine.
732 When UNDO is true, perform unsubstitution instead (the difference is in
733 the part of rtx on which validate_replace_rtx is called). */
734 static bool
735 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
737 rtx *where;
738 bool new_insn_valid;
739 vinsn_t *vi = &EXPR_VINSN (expr);
740 bool has_rhs = VINSN_RHS (*vi) != NULL;
741 rtx old, new_rtx;
743 /* Do not try to replace in SET_DEST. Although we'll choose new
744 register for the RHS, we don't want to change RHS' original reg.
745 If the insn is not SET, we may still be able to substitute something
746 in it, and if we're here (don't have deps), it doesn't write INSN's
747 dest. */
748 where = (has_rhs
749 ? &VINSN_RHS (*vi)
750 : &PATTERN (VINSN_INSN_RTX (*vi)));
751 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
753 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
754 if (rtx_ok_for_substitution_p (old, *where))
756 rtx new_insn;
757 rtx *where_replace;
759 /* We should copy these rtxes before substitution. */
760 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
761 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
763 /* Where we'll replace.
764 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
765 used instead of SET_SRC. */
766 where_replace = (has_rhs
767 ? &SET_SRC (PATTERN (new_insn))
768 : &PATTERN (new_insn));
770 new_insn_valid
771 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
772 new_insn);
774 /* ??? Actually, constrain_operands result depends upon choice of
775 destination register. E.g. if we allow single register to be an rhs,
776 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
777 in invalid insn dx=dx, so we'll loose this rhs here.
778 Just can't come up with significant testcase for this, so just
779 leaving it for now. */
780 if (new_insn_valid)
782 change_vinsn_in_expr (expr,
783 create_vinsn_from_insn_rtx (new_insn, false));
785 /* Do not allow clobbering the address register of speculative
786 insns. */
787 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
788 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
789 expr_dest_reg (expr)))
790 EXPR_TARGET_AVAILABLE (expr) = false;
792 return true;
794 else
795 return false;
797 else
798 return false;
801 /* Helper function for count_occurences_equiv. */
802 static int
803 count_occurrences_1 (rtx *cur_rtx, void *arg)
805 rtx_search_arg_p p = (rtx_search_arg_p) arg;
807 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
809 /* Bail out if mode is different or more than one register is used. */
810 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
811 || (HARD_REGISTER_P (*cur_rtx)
812 && hard_regno_nregs[REGNO (*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
814 p->n = 0;
815 return 1;
818 p->n++;
820 /* Do not traverse subexprs. */
821 return -1;
824 if (GET_CODE (*cur_rtx) == SUBREG
825 && (!REG_P (SUBREG_REG (*cur_rtx))
826 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
828 /* ??? Do not support substituting regs inside subregs. In that case,
829 simplify_subreg will be called by validate_replace_rtx, and
830 unsubstitution will fail later. */
831 p->n = 0;
832 return 1;
835 /* Continue search. */
836 return 0;
839 /* Return the number of places WHAT appears within WHERE.
840 Bail out when we found a reference occupying several hard registers. */
841 static int
842 count_occurrences_equiv (rtx what, rtx where)
844 struct rtx_search_arg arg;
846 gcc_assert (REG_P (what));
847 arg.x = what;
848 arg.n = 0;
850 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
852 return arg.n;
855 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
856 static bool
857 rtx_ok_for_substitution_p (rtx what, rtx where)
859 return (count_occurrences_equiv (what, where) > 0);
863 /* Functions to support register renaming. */
865 /* Substitute VI's set source with REGNO. Returns newly created pattern
866 that has REGNO as its source. */
867 static rtx
868 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
870 rtx lhs_rtx;
871 rtx pattern;
872 rtx insn_rtx;
874 lhs_rtx = copy_rtx (VINSN_LHS (vi));
876 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
877 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
879 return insn_rtx;
882 /* Returns whether INSN's src can be replaced with register number
883 NEW_SRC_REG. E.g. the following insn is valid for i386:
885 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
886 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
887 (reg:SI 0 ax [orig:770 c1 ] [770]))
888 (const_int 288 [0x120])) [0 str S1 A8])
889 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
890 (nil))
892 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
893 because of operand constraints:
895 (define_insn "*movqi_1"
896 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
897 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
900 So do constrain_operands here, before choosing NEW_SRC_REG as best
901 reg for rhs. */
903 static bool
904 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
906 vinsn_t vi = INSN_VINSN (insn);
907 enum machine_mode mode;
908 rtx dst_loc;
909 bool res;
911 gcc_assert (VINSN_SEPARABLE_P (vi));
913 get_dest_and_mode (insn, &dst_loc, &mode);
914 gcc_assert (mode == GET_MODE (new_src_reg));
916 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
917 return true;
919 /* See whether SET_SRC can be replaced with this register. */
920 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
921 res = verify_changes (0);
922 cancel_changes (0);
924 return res;
927 /* Returns whether INSN still be valid after replacing it's DEST with
928 register NEW_REG. */
929 static bool
930 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
932 vinsn_t vi = INSN_VINSN (insn);
933 bool res;
935 /* We should deal here only with separable insns. */
936 gcc_assert (VINSN_SEPARABLE_P (vi));
937 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
939 /* See whether SET_DEST can be replaced with this register. */
940 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
941 res = verify_changes (0);
942 cancel_changes (0);
944 return res;
947 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
948 static rtx
949 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
951 rtx rhs_rtx;
952 rtx pattern;
953 rtx insn_rtx;
955 rhs_rtx = copy_rtx (VINSN_RHS (vi));
957 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
958 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
960 return insn_rtx;
963 /* Substitute lhs in the given expression EXPR for the register with number
964 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
965 static void
966 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
968 rtx insn_rtx;
969 vinsn_t vinsn;
971 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
972 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
974 change_vinsn_in_expr (expr, vinsn);
975 EXPR_WAS_RENAMED (expr) = 1;
976 EXPR_TARGET_AVAILABLE (expr) = 1;
979 /* Returns whether VI writes either one of the USED_REGS registers or,
980 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
981 static bool
982 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
983 HARD_REG_SET unavailable_hard_regs)
985 unsigned regno;
986 reg_set_iterator rsi;
988 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
990 if (REGNO_REG_SET_P (used_regs, regno))
991 return true;
992 if (HARD_REGISTER_NUM_P (regno)
993 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
994 return true;
997 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
999 if (REGNO_REG_SET_P (used_regs, regno))
1000 return true;
1001 if (HARD_REGISTER_NUM_P (regno)
1002 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 return true;
1006 return false;
1009 /* Returns register class of the output register in INSN.
1010 Returns NO_REGS for call insns because some targets have constraints on
1011 destination register of a call insn.
1013 Code adopted from regrename.c::build_def_use. */
1014 static enum reg_class
1015 get_reg_class (rtx insn)
1017 int alt, i, n_ops;
1019 extract_insn (insn);
1020 if (! constrain_operands (1))
1021 fatal_insn_not_found (insn);
1022 preprocess_constraints ();
1023 alt = which_alternative;
1024 n_ops = recog_data.n_operands;
1026 for (i = 0; i < n_ops; ++i)
1028 int matches = recog_op_alt[i][alt].matches;
1029 if (matches >= 0)
1030 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1033 if (asm_noperands (PATTERN (insn)) > 0)
1035 for (i = 0; i < n_ops; i++)
1036 if (recog_data.operand_type[i] == OP_OUT)
1038 rtx *loc = recog_data.operand_loc[i];
1039 rtx op = *loc;
1040 enum reg_class cl = recog_op_alt[i][alt].cl;
1042 if (REG_P (op)
1043 && REGNO (op) == ORIGINAL_REGNO (op))
1044 continue;
1046 return cl;
1049 else if (!CALL_P (insn))
1051 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1053 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1054 enum reg_class cl = recog_op_alt[opn][alt].cl;
1056 if (recog_data.operand_type[opn] == OP_OUT ||
1057 recog_data.operand_type[opn] == OP_INOUT)
1058 return cl;
1062 /* Insns like
1063 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1064 may result in returning NO_REGS, cause flags is written implicitly through
1065 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1066 return NO_REGS;
1069 #ifdef HARD_REGNO_RENAME_OK
1070 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1071 static void
1072 init_hard_regno_rename (int regno)
1074 int cur_reg;
1076 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1078 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1080 /* We are not interested in renaming in other regs. */
1081 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1082 continue;
1084 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1085 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1088 #endif
1090 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1091 data first. */
1092 static inline bool
1093 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1095 #ifdef HARD_REGNO_RENAME_OK
1096 /* Check whether this is all calculated. */
1097 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1098 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1100 init_hard_regno_rename (from);
1102 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1103 #else
1104 return true;
1105 #endif
1108 /* Calculate set of registers that are capable of holding MODE. */
1109 static void
1110 init_regs_for_mode (enum machine_mode mode)
1112 int cur_reg;
1114 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1115 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1117 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1119 int nregs;
1120 int i;
1122 /* See whether it accepts all modes that occur in
1123 original insns. */
1124 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1125 continue;
1127 nregs = hard_regno_nregs[cur_reg][mode];
1129 for (i = nregs - 1; i >= 0; --i)
1130 if (fixed_regs[cur_reg + i]
1131 || global_regs[cur_reg + i]
1132 /* Can't use regs which aren't saved by
1133 the prologue. */
1134 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1135 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1136 it affects aliasing globally and invalidates all AV sets. */
1137 || get_reg_base_value (cur_reg + i)
1138 #ifdef LEAF_REGISTERS
1139 /* We can't use a non-leaf register if we're in a
1140 leaf function. */
1141 || (crtl->is_leaf
1142 && !LEAF_REGISTERS[cur_reg + i])
1143 #endif
1145 break;
1147 if (i >= 0)
1148 continue;
1150 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1151 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1152 cur_reg);
1154 /* If the CUR_REG passed all the checks above,
1155 then it's ok. */
1156 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1159 sel_hrd.regs_for_mode_ok[mode] = true;
1162 /* Init all register sets gathered in HRD. */
1163 static void
1164 init_hard_regs_data (void)
1166 int cur_reg = 0;
1167 int cur_mode = 0;
1169 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1170 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1171 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1172 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1174 /* Initialize registers that are valid based on mode when this is
1175 really needed. */
1176 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1177 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1179 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1180 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1181 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1183 #ifdef STACK_REGS
1184 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1186 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1187 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1188 #endif
1191 /* Mark hardware regs in REG_RENAME_P that are not suitable
1192 for renaming rhs in INSN due to hardware restrictions (register class,
1193 modes compatibility etc). This doesn't affect original insn's dest reg,
1194 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1195 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1196 Registers that are in used_regs are always marked in
1197 unavailable_hard_regs as well. */
1199 static void
1200 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1201 regset used_regs ATTRIBUTE_UNUSED)
1203 enum machine_mode mode;
1204 enum reg_class cl = NO_REGS;
1205 rtx orig_dest;
1206 unsigned cur_reg, regno;
1207 hard_reg_set_iterator hrsi;
1209 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1210 gcc_assert (reg_rename_p);
1212 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1214 /* We have decided not to rename 'mem = something;' insns, as 'something'
1215 is usually a register. */
1216 if (!REG_P (orig_dest))
1217 return;
1219 regno = REGNO (orig_dest);
1221 /* If before reload, don't try to work with pseudos. */
1222 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1223 return;
1225 if (reload_completed)
1226 cl = get_reg_class (def->orig_insn);
1228 /* Stop if the original register is one of the fixed_regs, global_regs or
1229 frame pointer, or we could not discover its class. */
1230 if (fixed_regs[regno]
1231 || global_regs[regno]
1232 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1233 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1234 #else
1235 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1236 #endif
1237 || (reload_completed && cl == NO_REGS))
1239 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1241 /* Give a chance for original register, if it isn't in used_regs. */
1242 if (!def->crosses_call)
1243 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1245 return;
1248 /* If something allocated on stack in this function, mark frame pointer
1249 register unavailable, considering also modes.
1250 FIXME: it is enough to do this once per all original defs. */
1251 if (frame_pointer_needed)
1253 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1254 Pmode, FRAME_POINTER_REGNUM);
1256 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1257 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1258 Pmode, HARD_FRAME_POINTER_REGNUM);
1261 #ifdef STACK_REGS
1262 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1263 is equivalent to as if all stack regs were in this set.
1264 I.e. no stack register can be renamed, and even if it's an original
1265 register here we make sure it won't be lifted over it's previous def
1266 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1267 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1268 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1269 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1270 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1271 sel_hrd.stack_regs);
1272 #endif
1274 /* If there's a call on this path, make regs from call_used_reg_set
1275 unavailable. */
1276 if (def->crosses_call)
1277 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1278 call_used_reg_set);
1280 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1281 but not register classes. */
1282 if (!reload_completed)
1283 return;
1285 /* Leave regs as 'available' only from the current
1286 register class. */
1287 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1288 reg_class_contents[cl]);
1290 mode = GET_MODE (orig_dest);
1292 /* Leave only registers available for this mode. */
1293 if (!sel_hrd.regs_for_mode_ok[mode])
1294 init_regs_for_mode (mode);
1295 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1296 sel_hrd.regs_for_mode[mode]);
1298 /* Exclude registers that are partially call clobbered. */
1299 if (def->crosses_call
1300 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1301 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1302 sel_hrd.regs_for_call_clobbered[mode]);
1304 /* Leave only those that are ok to rename. */
1305 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 0, cur_reg, hrsi)
1308 int nregs;
1309 int i;
1311 nregs = hard_regno_nregs[cur_reg][mode];
1312 gcc_assert (nregs > 0);
1314 for (i = nregs - 1; i >= 0; --i)
1315 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1316 break;
1318 if (i >= 0)
1319 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1320 cur_reg);
1323 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1324 reg_rename_p->unavailable_hard_regs);
1326 /* Regno is always ok from the renaming part of view, but it really
1327 could be in *unavailable_hard_regs already, so set it here instead
1328 of there. */
1329 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1332 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1333 best register more recently than REG2. */
1334 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1336 /* Indicates the number of times renaming happened before the current one. */
1337 static int reg_rename_this_tick;
1339 /* Choose the register among free, that is suitable for storing
1340 the rhs value.
1342 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1343 originally appears. There could be multiple original operations
1344 for single rhs since we moving it up and merging along different
1345 paths.
1347 Some code is adapted from regrename.c (regrename_optimize).
1348 If original register is available, function returns it.
1349 Otherwise it performs the checks, so the new register should
1350 comply with the following:
1351 - it should not violate any live ranges (such registers are in
1352 REG_RENAME_P->available_for_renaming set);
1353 - it should not be in the HARD_REGS_USED regset;
1354 - it should be in the class compatible with original uses;
1355 - it should not be clobbered through reference with different mode;
1356 - if we're in the leaf function, then the new register should
1357 not be in the LEAF_REGISTERS;
1358 - etc.
1360 If several registers meet the conditions, the register with smallest
1361 tick is returned to achieve more even register allocation.
1363 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1365 If no register satisfies the above conditions, NULL_RTX is returned. */
1366 static rtx
1367 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1368 struct reg_rename *reg_rename_p,
1369 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1371 int best_new_reg;
1372 unsigned cur_reg;
1373 enum machine_mode mode = VOIDmode;
1374 unsigned regno, i, n;
1375 hard_reg_set_iterator hrsi;
1376 def_list_iterator di;
1377 def_t def;
1379 /* If original register is available, return it. */
1380 *is_orig_reg_p_ptr = true;
1382 FOR_EACH_DEF (def, di, original_insns)
1384 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1386 gcc_assert (REG_P (orig_dest));
1388 /* Check that all original operations have the same mode.
1389 This is done for the next loop; if we'd return from this
1390 loop, we'd check only part of them, but in this case
1391 it doesn't matter. */
1392 if (mode == VOIDmode)
1393 mode = GET_MODE (orig_dest);
1394 gcc_assert (mode == GET_MODE (orig_dest));
1396 regno = REGNO (orig_dest);
1397 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1398 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1399 break;
1401 /* All hard registers are available. */
1402 if (i == n)
1404 gcc_assert (mode != VOIDmode);
1406 /* Hard registers should not be shared. */
1407 return gen_rtx_REG (mode, regno);
1411 *is_orig_reg_p_ptr = false;
1412 best_new_reg = -1;
1414 /* Among all available regs choose the register that was
1415 allocated earliest. */
1416 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1417 0, cur_reg, hrsi)
1418 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1420 /* Check that all hard regs for mode are available. */
1421 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1422 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1423 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1424 cur_reg + i))
1425 break;
1427 if (i < n)
1428 continue;
1430 /* All hard registers are available. */
1431 if (best_new_reg < 0
1432 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1434 best_new_reg = cur_reg;
1436 /* Return immediately when we know there's no better reg. */
1437 if (! reg_rename_tick[best_new_reg])
1438 break;
1442 if (best_new_reg >= 0)
1444 /* Use the check from the above loop. */
1445 gcc_assert (mode != VOIDmode);
1446 return gen_rtx_REG (mode, best_new_reg);
1449 return NULL_RTX;
1452 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1453 assumptions about available registers in the function. */
1454 static rtx
1455 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1456 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1458 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1459 original_insns, is_orig_reg_p_ptr);
1461 /* FIXME loop over hard_regno_nregs here. */
1462 gcc_assert (best_reg == NULL_RTX
1463 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1465 return best_reg;
1468 /* Choose the pseudo register for storing rhs value. As this is supposed
1469 to work before reload, we return either the original register or make
1470 the new one. The parameters are the same that in choose_nest_reg_1
1471 functions, except that USED_REGS may contain pseudos.
1472 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1474 TODO: take into account register pressure while doing this. Up to this
1475 moment, this function would never return NULL for pseudos, but we should
1476 not rely on this. */
1477 static rtx
1478 choose_best_pseudo_reg (regset used_regs,
1479 struct reg_rename *reg_rename_p,
1480 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1482 def_list_iterator i;
1483 def_t def;
1484 enum machine_mode mode = VOIDmode;
1485 bool bad_hard_regs = false;
1487 /* We should not use this after reload. */
1488 gcc_assert (!reload_completed);
1490 /* If original register is available, return it. */
1491 *is_orig_reg_p_ptr = true;
1493 FOR_EACH_DEF (def, i, original_insns)
1495 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1496 int orig_regno;
1498 gcc_assert (REG_P (dest));
1500 /* Check that all original operations have the same mode. */
1501 if (mode == VOIDmode)
1502 mode = GET_MODE (dest);
1503 else
1504 gcc_assert (mode == GET_MODE (dest));
1505 orig_regno = REGNO (dest);
1507 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1509 if (orig_regno < FIRST_PSEUDO_REGISTER)
1511 gcc_assert (df_regs_ever_live_p (orig_regno));
1513 /* For hard registers, we have to check hardware imposed
1514 limitations (frame/stack registers, calls crossed). */
1515 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1516 orig_regno))
1518 /* Don't let register cross a call if it doesn't already
1519 cross one. This condition is written in accordance with
1520 that in sched-deps.c sched_analyze_reg(). */
1521 if (!reg_rename_p->crosses_call
1522 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1523 return gen_rtx_REG (mode, orig_regno);
1526 bad_hard_regs = true;
1528 else
1529 return dest;
1533 *is_orig_reg_p_ptr = false;
1535 /* We had some original hard registers that couldn't be used.
1536 Those were likely special. Don't try to create a pseudo. */
1537 if (bad_hard_regs)
1538 return NULL_RTX;
1540 /* We haven't found a register from original operations. Get a new one.
1541 FIXME: control register pressure somehow. */
1543 rtx new_reg = gen_reg_rtx (mode);
1545 gcc_assert (mode != VOIDmode);
1547 max_regno = max_reg_num ();
1548 maybe_extend_reg_info_p ();
1549 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1551 return new_reg;
1555 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1556 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1557 static void
1558 verify_target_availability (expr_t expr, regset used_regs,
1559 struct reg_rename *reg_rename_p)
1561 unsigned n, i, regno;
1562 enum machine_mode mode;
1563 bool target_available, live_available, hard_available;
1565 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1566 return;
1568 regno = expr_dest_regno (expr);
1569 mode = GET_MODE (EXPR_LHS (expr));
1570 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1571 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1573 live_available = hard_available = true;
1574 for (i = 0; i < n; i++)
1576 if (bitmap_bit_p (used_regs, regno + i))
1577 live_available = false;
1578 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1579 hard_available = false;
1582 /* When target is not available, it may be due to hard register
1583 restrictions, e.g. crosses calls, so we check hard_available too. */
1584 if (target_available)
1585 gcc_assert (live_available);
1586 else
1587 /* Check only if we haven't scheduled something on the previous fence,
1588 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1589 and having more than one fence, we may end having targ_un in a block
1590 in which successors target register is actually available.
1592 The last condition handles the case when a dependence from a call insn
1593 was created in sched-deps.c for insns with destination registers that
1594 never crossed a call before, but do cross one after our code motion.
1596 FIXME: in the latter case, we just uselessly called find_used_regs,
1597 because we can't move this expression with any other register
1598 as well. */
1599 gcc_assert (scheduled_something_on_previous_fence || !live_available
1600 || !hard_available
1601 || (!reload_completed && reg_rename_p->crosses_call
1602 && REG_N_CALLS_CROSSED (regno) == 0));
1605 /* Collect unavailable registers due to liveness for EXPR from BNDS
1606 into USED_REGS. Save additional information about available
1607 registers and unavailable due to hardware restriction registers
1608 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1609 list. */
1610 static void
1611 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1612 struct reg_rename *reg_rename_p,
1613 def_list_t *original_insns)
1615 for (; bnds; bnds = BLIST_NEXT (bnds))
1617 bool res;
1618 av_set_t orig_ops = NULL;
1619 bnd_t bnd = BLIST_BND (bnds);
1621 /* If the chosen best expr doesn't belong to current boundary,
1622 skip it. */
1623 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1624 continue;
1626 /* Put in ORIG_OPS all exprs from this boundary that became
1627 RES on top. */
1628 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1630 /* Compute used regs and OR it into the USED_REGS. */
1631 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1632 reg_rename_p, original_insns);
1634 /* FIXME: the assert is true until we'd have several boundaries. */
1635 gcc_assert (res);
1636 av_set_clear (&orig_ops);
1640 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1641 If BEST_REG is valid, replace LHS of EXPR with it. */
1642 static bool
1643 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1645 /* Try whether we'll be able to generate the insn
1646 'dest := best_reg' at the place of the original operation. */
1647 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1649 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1651 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1653 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1654 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1655 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1656 return false;
1659 /* Make sure that EXPR has the right destination
1660 register. */
1661 if (expr_dest_regno (expr) != REGNO (best_reg))
1662 replace_dest_with_reg_in_expr (expr, best_reg);
1663 else
1664 EXPR_TARGET_AVAILABLE (expr) = 1;
1666 return true;
1669 /* Select and assign best register to EXPR searching from BNDS.
1670 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1671 Return FALSE if no register can be chosen, which could happen when:
1672 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1673 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1674 that are used on the moving path. */
1675 static bool
1676 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1678 static struct reg_rename reg_rename_data;
1680 regset used_regs;
1681 def_list_t original_insns = NULL;
1682 bool reg_ok;
1684 *is_orig_reg_p = false;
1686 /* Don't bother to do anything if this insn doesn't set any registers. */
1687 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1688 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1689 return true;
1691 used_regs = get_clear_regset_from_pool ();
1692 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1694 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1695 &original_insns);
1697 #ifdef ENABLE_CHECKING
1698 /* If after reload, make sure we're working with hard regs here. */
1699 if (reload_completed)
1701 reg_set_iterator rsi;
1702 unsigned i;
1704 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1705 gcc_unreachable ();
1707 #endif
1709 if (EXPR_SEPARABLE_P (expr))
1711 rtx best_reg = NULL_RTX;
1712 /* Check that we have computed availability of a target register
1713 correctly. */
1714 verify_target_availability (expr, used_regs, &reg_rename_data);
1716 /* Turn everything in hard regs after reload. */
1717 if (reload_completed)
1719 HARD_REG_SET hard_regs_used;
1720 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1722 /* Join hard registers unavailable due to register class
1723 restrictions and live range intersection. */
1724 IOR_HARD_REG_SET (hard_regs_used,
1725 reg_rename_data.unavailable_hard_regs);
1727 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1728 original_insns, is_orig_reg_p);
1730 else
1731 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1732 original_insns, is_orig_reg_p);
1734 if (!best_reg)
1735 reg_ok = false;
1736 else if (*is_orig_reg_p)
1738 /* In case of unification BEST_REG may be different from EXPR's LHS
1739 when EXPR's LHS is unavailable, and there is another LHS among
1740 ORIGINAL_INSNS. */
1741 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1743 else
1745 /* Forbid renaming of low-cost insns. */
1746 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1747 reg_ok = false;
1748 else
1749 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1752 else
1754 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1755 any of the HARD_REGS_USED set. */
1756 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1757 reg_rename_data.unavailable_hard_regs))
1759 reg_ok = false;
1760 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1762 else
1764 reg_ok = true;
1765 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1769 ilist_clear (&original_insns);
1770 return_regset_to_pool (used_regs);
1772 return reg_ok;
1776 /* Return true if dependence described by DS can be overcomed. */
1777 static bool
1778 can_speculate_dep_p (ds_t ds)
1780 if (spec_info == NULL)
1781 return false;
1783 /* Leave only speculative data. */
1784 ds &= SPECULATIVE;
1786 if (ds == 0)
1787 return false;
1790 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1791 that we can overcome. */
1792 ds_t spec_mask = spec_info->mask;
1794 if ((ds & spec_mask) != ds)
1795 return false;
1798 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1799 return false;
1801 return true;
1804 /* Get a speculation check instruction.
1805 C_EXPR is a speculative expression,
1806 CHECK_DS describes speculations that should be checked,
1807 ORIG_INSN is the original non-speculative insn in the stream. */
1808 static insn_t
1809 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1811 rtx check_pattern;
1812 rtx insn_rtx;
1813 insn_t insn;
1814 basic_block recovery_block;
1815 rtx label;
1817 /* Create a recovery block if target is going to emit branchy check, or if
1818 ORIG_INSN was speculative already. */
1819 if (targetm.sched.needs_block_p (check_ds)
1820 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1822 recovery_block = sel_create_recovery_block (orig_insn);
1823 label = BB_HEAD (recovery_block);
1825 else
1827 recovery_block = NULL;
1828 label = NULL_RTX;
1831 /* Get pattern of the check. */
1832 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1833 check_ds);
1835 gcc_assert (check_pattern != NULL);
1837 /* Emit check. */
1838 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1840 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1841 INSN_SEQNO (orig_insn), orig_insn);
1843 /* Make check to be non-speculative. */
1844 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1845 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1847 /* Decrease priority of check by difference of load/check instruction
1848 latencies. */
1849 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1850 - sel_vinsn_cost (INSN_VINSN (insn)));
1852 /* Emit copy of original insn (though with replaced target register,
1853 if needed) to the recovery block. */
1854 if (recovery_block != NULL)
1856 rtx twin_rtx;
1858 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1859 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1860 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1861 INSN_EXPR (orig_insn),
1862 INSN_SEQNO (insn),
1863 bb_note (recovery_block));
1866 /* If we've generated a data speculation check, make sure
1867 that all the bookkeeping instruction we'll create during
1868 this move_op () will allocate an ALAT entry so that the
1869 check won't fail.
1870 In case of control speculation we must convert C_EXPR to control
1871 speculative mode, because failing to do so will bring us an exception
1872 thrown by the non-control-speculative load. */
1873 check_ds = ds_get_max_dep_weak (check_ds);
1874 speculate_expr (c_expr, check_ds);
1876 return insn;
1879 /* True when INSN is a "regN = regN" copy. */
1880 static bool
1881 identical_copy_p (rtx insn)
1883 rtx lhs, rhs, pat;
1885 pat = PATTERN (insn);
1887 if (GET_CODE (pat) != SET)
1888 return false;
1890 lhs = SET_DEST (pat);
1891 if (!REG_P (lhs))
1892 return false;
1894 rhs = SET_SRC (pat);
1895 if (!REG_P (rhs))
1896 return false;
1898 return REGNO (lhs) == REGNO (rhs);
1901 /* Undo all transformations on *AV_PTR that were done when
1902 moving through INSN. */
1903 static void
1904 undo_transformations (av_set_t *av_ptr, rtx insn)
1906 av_set_iterator av_iter;
1907 expr_t expr;
1908 av_set_t new_set = NULL;
1910 /* First, kill any EXPR that uses registers set by an insn. This is
1911 required for correctness. */
1912 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1913 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1914 && bitmap_intersect_p (INSN_REG_SETS (insn),
1915 VINSN_REG_USES (EXPR_VINSN (expr)))
1916 /* When an insn looks like 'r1 = r1', we could substitute through
1917 it, but the above condition will still hold. This happened with
1918 gcc.c-torture/execute/961125-1.c. */
1919 && !identical_copy_p (insn))
1921 if (sched_verbose >= 6)
1922 sel_print ("Expr %d removed due to use/set conflict\n",
1923 INSN_UID (EXPR_INSN_RTX (expr)));
1924 av_set_iter_remove (&av_iter);
1927 /* Undo transformations looking at the history vector. */
1928 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1930 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1931 insn, EXPR_VINSN (expr), true);
1933 if (index >= 0)
1935 expr_history_def *phist;
1937 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1939 switch (phist->type)
1941 case TRANS_SPECULATION:
1943 ds_t old_ds, new_ds;
1945 /* Compute the difference between old and new speculative
1946 statuses: that's what we need to check.
1947 Earlier we used to assert that the status will really
1948 change. This no longer works because only the probability
1949 bits in the status may have changed during compute_av_set,
1950 and in the case of merging different probabilities of the
1951 same speculative status along different paths we do not
1952 record this in the history vector. */
1953 old_ds = phist->spec_ds;
1954 new_ds = EXPR_SPEC_DONE_DS (expr);
1956 old_ds &= SPECULATIVE;
1957 new_ds &= SPECULATIVE;
1958 new_ds &= ~old_ds;
1960 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1961 break;
1963 case TRANS_SUBSTITUTION:
1965 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1966 vinsn_t new_vi;
1967 bool add = true;
1969 new_vi = phist->old_expr_vinsn;
1971 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1972 == EXPR_SEPARABLE_P (expr));
1973 copy_expr (tmp_expr, expr);
1975 if (vinsn_equal_p (phist->new_expr_vinsn,
1976 EXPR_VINSN (tmp_expr)))
1977 change_vinsn_in_expr (tmp_expr, new_vi);
1978 else
1979 /* This happens when we're unsubstituting on a bookkeeping
1980 copy, which was in turn substituted. The history is wrong
1981 in this case. Do it the hard way. */
1982 add = substitute_reg_in_expr (tmp_expr, insn, true);
1983 if (add)
1984 av_set_add (&new_set, tmp_expr);
1985 clear_expr (tmp_expr);
1986 break;
1988 default:
1989 gcc_unreachable ();
1995 av_set_union_and_clear (av_ptr, &new_set, NULL);
1999 /* Moveup_* helpers for code motion and computing av sets. */
2001 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2002 The difference from the below function is that only substitution is
2003 performed. */
2004 static enum MOVEUP_EXPR_CODE
2005 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2007 vinsn_t vi = EXPR_VINSN (expr);
2008 ds_t *has_dep_p;
2009 ds_t full_ds;
2011 /* Do this only inside insn group. */
2012 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2014 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2015 if (full_ds == 0)
2016 return MOVEUP_EXPR_SAME;
2018 /* Substitution is the possible choice in this case. */
2019 if (has_dep_p[DEPS_IN_RHS])
2021 /* Can't substitute UNIQUE VINSNs. */
2022 gcc_assert (!VINSN_UNIQUE_P (vi));
2024 if (can_substitute_through_p (through_insn,
2025 has_dep_p[DEPS_IN_RHS])
2026 && substitute_reg_in_expr (expr, through_insn, false))
2028 EXPR_WAS_SUBSTITUTED (expr) = true;
2029 return MOVEUP_EXPR_CHANGED;
2032 /* Don't care about this, as even true dependencies may be allowed
2033 in an insn group. */
2034 return MOVEUP_EXPR_SAME;
2037 /* This can catch output dependencies in COND_EXECs. */
2038 if (has_dep_p[DEPS_IN_INSN])
2039 return MOVEUP_EXPR_NULL;
2041 /* This is either an output or an anti dependence, which usually have
2042 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2043 will fix this. */
2044 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2045 return MOVEUP_EXPR_AS_RHS;
2048 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2049 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2050 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2051 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2052 && !sel_insn_is_speculation_check (through_insn))
2054 /* True when a conflict on a target register was found during moveup_expr. */
2055 static bool was_target_conflict = false;
2057 /* Return true when moving a debug INSN across THROUGH_INSN will
2058 create a bookkeeping block. We don't want to create such blocks,
2059 for they would cause codegen differences between compilations with
2060 and without debug info. */
2062 static bool
2063 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2064 insn_t through_insn)
2066 basic_block bbi, bbt;
2067 edge e1, e2;
2068 edge_iterator ei1, ei2;
2070 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2072 if (sched_verbose >= 9)
2073 sel_print ("no bookkeeping required: ");
2074 return FALSE;
2077 bbi = BLOCK_FOR_INSN (insn);
2079 if (EDGE_COUNT (bbi->preds) == 1)
2081 if (sched_verbose >= 9)
2082 sel_print ("only one pred edge: ");
2083 return TRUE;
2086 bbt = BLOCK_FOR_INSN (through_insn);
2088 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2090 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2092 if (find_block_for_bookkeeping (e1, e2, TRUE))
2094 if (sched_verbose >= 9)
2095 sel_print ("found existing block: ");
2096 return FALSE;
2101 if (sched_verbose >= 9)
2102 sel_print ("would create bookkeeping block: ");
2104 return TRUE;
2107 /* Return true when the conflict with newly created implicit clobbers
2108 between EXPR and THROUGH_INSN is found because of renaming. */
2109 static bool
2110 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2112 HARD_REG_SET temp;
2113 rtx insn, reg, rhs, pat;
2114 hard_reg_set_iterator hrsi;
2115 unsigned regno;
2116 bool valid;
2118 /* Make a new pseudo register. */
2119 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2120 max_regno = max_reg_num ();
2121 maybe_extend_reg_info_p ();
2123 /* Validate a change and bail out early. */
2124 insn = EXPR_INSN_RTX (expr);
2125 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2126 valid = verify_changes (0);
2127 cancel_changes (0);
2128 if (!valid)
2130 if (sched_verbose >= 6)
2131 sel_print ("implicit clobbers failed validation, ");
2132 return true;
2135 /* Make a new insn with it. */
2136 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2137 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2138 start_sequence ();
2139 insn = emit_insn (pat);
2140 end_sequence ();
2142 /* Calculate implicit clobbers. */
2143 extract_insn (insn);
2144 preprocess_constraints ();
2145 ira_implicitly_set_insn_hard_regs (&temp);
2146 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2148 /* If any implicit clobber registers intersect with regular ones in
2149 through_insn, we have a dependency and thus bail out. */
2150 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2152 vinsn_t vi = INSN_VINSN (through_insn);
2153 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2154 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2155 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2156 return true;
2159 return false;
2162 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2163 performing necessary transformations. Record the type of transformation
2164 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2165 permit all dependencies except true ones, and try to remove those
2166 too via forward substitution. All cases when a non-eliminable
2167 non-zero cost dependency exists inside an insn group will be fixed
2168 in tick_check_p instead. */
2169 static enum MOVEUP_EXPR_CODE
2170 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2171 enum local_trans_type *ptrans_type)
2173 vinsn_t vi = EXPR_VINSN (expr);
2174 insn_t insn = VINSN_INSN_RTX (vi);
2175 bool was_changed = false;
2176 bool as_rhs = false;
2177 ds_t *has_dep_p;
2178 ds_t full_ds;
2180 /* ??? We use dependencies of non-debug insns on debug insns to
2181 indicate that the debug insns need to be reset if the non-debug
2182 insn is pulled ahead of it. It's hard to figure out how to
2183 introduce such a notion in sel-sched, but it already fails to
2184 support debug insns in other ways, so we just go ahead and
2185 let the deug insns go corrupt for now. */
2186 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2187 return MOVEUP_EXPR_SAME;
2189 /* When inside_insn_group, delegate to the helper. */
2190 if (inside_insn_group)
2191 return moveup_expr_inside_insn_group (expr, through_insn);
2193 /* Deal with unique insns and control dependencies. */
2194 if (VINSN_UNIQUE_P (vi))
2196 /* We can move jumps without side-effects or jumps that are
2197 mutually exclusive with instruction THROUGH_INSN (all in cases
2198 dependencies allow to do so and jump is not speculative). */
2199 if (control_flow_insn_p (insn))
2201 basic_block fallthru_bb;
2203 /* Do not move checks and do not move jumps through other
2204 jumps. */
2205 if (control_flow_insn_p (through_insn)
2206 || sel_insn_is_speculation_check (insn))
2207 return MOVEUP_EXPR_NULL;
2209 /* Don't move jumps through CFG joins. */
2210 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2211 return MOVEUP_EXPR_NULL;
2213 /* The jump should have a clear fallthru block, and
2214 this block should be in the current region. */
2215 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2216 || ! in_current_region_p (fallthru_bb))
2217 return MOVEUP_EXPR_NULL;
2219 /* And it should be mutually exclusive with through_insn. */
2220 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2221 && ! DEBUG_INSN_P (through_insn))
2222 return MOVEUP_EXPR_NULL;
2225 /* Don't move what we can't move. */
2226 if (EXPR_CANT_MOVE (expr)
2227 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2228 return MOVEUP_EXPR_NULL;
2230 /* Don't move SCHED_GROUP instruction through anything.
2231 If we don't force this, then it will be possible to start
2232 scheduling a sched_group before all its dependencies are
2233 resolved.
2234 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2235 as late as possible through rank_for_schedule. */
2236 if (SCHED_GROUP_P (insn))
2237 return MOVEUP_EXPR_NULL;
2239 else
2240 gcc_assert (!control_flow_insn_p (insn));
2242 /* Don't move debug insns if this would require bookkeeping. */
2243 if (DEBUG_INSN_P (insn)
2244 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2245 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2246 return MOVEUP_EXPR_NULL;
2248 /* Deal with data dependencies. */
2249 was_target_conflict = false;
2250 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2251 if (full_ds == 0)
2253 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2254 return MOVEUP_EXPR_SAME;
2256 else
2258 /* We can move UNIQUE insn up only as a whole and unchanged,
2259 so it shouldn't have any dependencies. */
2260 if (VINSN_UNIQUE_P (vi))
2261 return MOVEUP_EXPR_NULL;
2264 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2266 int res;
2268 res = speculate_expr (expr, full_ds);
2269 if (res >= 0)
2271 /* Speculation was successful. */
2272 full_ds = 0;
2273 was_changed = (res > 0);
2274 if (res == 2)
2275 was_target_conflict = true;
2276 if (ptrans_type)
2277 *ptrans_type = TRANS_SPECULATION;
2278 sel_clear_has_dependence ();
2282 if (has_dep_p[DEPS_IN_INSN])
2283 /* We have some dependency that cannot be discarded. */
2284 return MOVEUP_EXPR_NULL;
2286 if (has_dep_p[DEPS_IN_LHS])
2288 /* Only separable insns can be moved up with the new register.
2289 Anyways, we should mark that the original register is
2290 unavailable. */
2291 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2292 return MOVEUP_EXPR_NULL;
2294 /* When renaming a hard register to a pseudo before reload, extra
2295 dependencies can occur from the implicit clobbers of the insn.
2296 Filter out such cases here. */
2297 if (!reload_completed && REG_P (EXPR_LHS (expr))
2298 && HARD_REGISTER_P (EXPR_LHS (expr))
2299 && implicit_clobber_conflict_p (through_insn, expr))
2301 if (sched_verbose >= 6)
2302 sel_print ("implicit clobbers conflict detected, ");
2303 return MOVEUP_EXPR_NULL;
2305 EXPR_TARGET_AVAILABLE (expr) = false;
2306 was_target_conflict = true;
2307 as_rhs = true;
2310 /* At this point we have either separable insns, that will be lifted
2311 up only as RHSes, or non-separable insns with no dependency in lhs.
2312 If dependency is in RHS, then try to perform substitution and move up
2313 substituted RHS:
2315 Ex. 1: Ex.2
2316 y = x; y = x;
2317 z = y*2; y = y*2;
2319 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2320 moved above y=x assignment as z=x*2.
2322 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2323 side can be moved because of the output dependency. The operation was
2324 cropped to its rhs above. */
2325 if (has_dep_p[DEPS_IN_RHS])
2327 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2329 /* Can't substitute UNIQUE VINSNs. */
2330 gcc_assert (!VINSN_UNIQUE_P (vi));
2332 if (can_speculate_dep_p (*rhs_dsp))
2334 int res;
2336 res = speculate_expr (expr, *rhs_dsp);
2337 if (res >= 0)
2339 /* Speculation was successful. */
2340 *rhs_dsp = 0;
2341 was_changed = (res > 0);
2342 if (res == 2)
2343 was_target_conflict = true;
2344 if (ptrans_type)
2345 *ptrans_type = TRANS_SPECULATION;
2347 else
2348 return MOVEUP_EXPR_NULL;
2350 else if (can_substitute_through_p (through_insn,
2351 *rhs_dsp)
2352 && substitute_reg_in_expr (expr, through_insn, false))
2354 /* ??? We cannot perform substitution AND speculation on the same
2355 insn. */
2356 gcc_assert (!was_changed);
2357 was_changed = true;
2358 if (ptrans_type)
2359 *ptrans_type = TRANS_SUBSTITUTION;
2360 EXPR_WAS_SUBSTITUTED (expr) = true;
2362 else
2363 return MOVEUP_EXPR_NULL;
2366 /* Don't move trapping insns through jumps.
2367 This check should be at the end to give a chance to control speculation
2368 to perform its duties. */
2369 if (CANT_MOVE_TRAPPING (expr, through_insn))
2370 return MOVEUP_EXPR_NULL;
2372 return (was_changed
2373 ? MOVEUP_EXPR_CHANGED
2374 : (as_rhs
2375 ? MOVEUP_EXPR_AS_RHS
2376 : MOVEUP_EXPR_SAME));
2379 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2380 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2381 that can exist within a parallel group. Write to RES the resulting
2382 code for moveup_expr. */
2383 static bool
2384 try_bitmap_cache (expr_t expr, insn_t insn,
2385 bool inside_insn_group,
2386 enum MOVEUP_EXPR_CODE *res)
2388 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2390 /* First check whether we've analyzed this situation already. */
2391 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2393 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2395 if (sched_verbose >= 6)
2396 sel_print ("removed (cached)\n");
2397 *res = MOVEUP_EXPR_NULL;
2398 return true;
2400 else
2402 if (sched_verbose >= 6)
2403 sel_print ("unchanged (cached)\n");
2404 *res = MOVEUP_EXPR_SAME;
2405 return true;
2408 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2410 if (inside_insn_group)
2412 if (sched_verbose >= 6)
2413 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2414 *res = MOVEUP_EXPR_SAME;
2415 return true;
2418 else
2419 EXPR_TARGET_AVAILABLE (expr) = false;
2421 /* This is the only case when propagation result can change over time,
2422 as we can dynamically switch off scheduling as RHS. In this case,
2423 just check the flag to reach the correct decision. */
2424 if (enable_schedule_as_rhs_p)
2426 if (sched_verbose >= 6)
2427 sel_print ("unchanged (as RHS, cached)\n");
2428 *res = MOVEUP_EXPR_AS_RHS;
2429 return true;
2431 else
2433 if (sched_verbose >= 6)
2434 sel_print ("removed (cached as RHS, but renaming"
2435 " is now disabled)\n");
2436 *res = MOVEUP_EXPR_NULL;
2437 return true;
2441 return false;
2444 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2445 if successful. Write to RES the resulting code for moveup_expr. */
2446 static bool
2447 try_transformation_cache (expr_t expr, insn_t insn,
2448 enum MOVEUP_EXPR_CODE *res)
2450 struct transformed_insns *pti
2451 = (struct transformed_insns *)
2452 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2453 &EXPR_VINSN (expr),
2454 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2455 if (pti)
2457 /* This EXPR was already moved through this insn and was
2458 changed as a result. Fetch the proper data from
2459 the hashtable. */
2460 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2461 INSN_UID (insn), pti->type,
2462 pti->vinsn_old, pti->vinsn_new,
2463 EXPR_SPEC_DONE_DS (expr));
2465 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2466 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2467 change_vinsn_in_expr (expr, pti->vinsn_new);
2468 if (pti->was_target_conflict)
2469 EXPR_TARGET_AVAILABLE (expr) = false;
2470 if (pti->type == TRANS_SPECULATION)
2472 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2473 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2476 if (sched_verbose >= 6)
2478 sel_print ("changed (cached): ");
2479 dump_expr (expr);
2480 sel_print ("\n");
2483 *res = MOVEUP_EXPR_CHANGED;
2484 return true;
2487 return false;
2490 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2491 static void
2492 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2493 enum MOVEUP_EXPR_CODE res)
2495 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2497 /* Do not cache result of propagating jumps through an insn group,
2498 as it is always true, which is not useful outside the group. */
2499 if (inside_insn_group)
2500 return;
2502 if (res == MOVEUP_EXPR_NULL)
2504 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2505 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2507 else if (res == MOVEUP_EXPR_SAME)
2509 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2510 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2512 else if (res == MOVEUP_EXPR_AS_RHS)
2514 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2515 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2517 else
2518 gcc_unreachable ();
2521 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2522 and transformation type TRANS_TYPE. */
2523 static void
2524 update_transformation_cache (expr_t expr, insn_t insn,
2525 bool inside_insn_group,
2526 enum local_trans_type trans_type,
2527 vinsn_t expr_old_vinsn)
2529 struct transformed_insns *pti;
2531 if (inside_insn_group)
2532 return;
2534 pti = XNEW (struct transformed_insns);
2535 pti->vinsn_old = expr_old_vinsn;
2536 pti->vinsn_new = EXPR_VINSN (expr);
2537 pti->type = trans_type;
2538 pti->was_target_conflict = was_target_conflict;
2539 pti->ds = EXPR_SPEC_DONE_DS (expr);
2540 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2541 vinsn_attach (pti->vinsn_old);
2542 vinsn_attach (pti->vinsn_new);
2543 *((struct transformed_insns **)
2544 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2545 pti, VINSN_HASH_RTX (expr_old_vinsn),
2546 INSERT)) = pti;
2549 /* Same as moveup_expr, but first looks up the result of
2550 transformation in caches. */
2551 static enum MOVEUP_EXPR_CODE
2552 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2554 enum MOVEUP_EXPR_CODE res;
2555 bool got_answer = false;
2557 if (sched_verbose >= 6)
2559 sel_print ("Moving ");
2560 dump_expr (expr);
2561 sel_print (" through %d: ", INSN_UID (insn));
2564 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2565 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2566 == EXPR_INSN_RTX (expr)))
2567 /* Don't use cached information for debug insns that are heads of
2568 basic blocks. */;
2569 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2570 /* When inside insn group, we do not want remove stores conflicting
2571 with previosly issued loads. */
2572 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2573 else if (try_transformation_cache (expr, insn, &res))
2574 got_answer = true;
2576 if (! got_answer)
2578 /* Invoke moveup_expr and record the results. */
2579 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2580 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2581 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2582 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2583 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2585 /* ??? Invent something better than this. We can't allow old_vinsn
2586 to go, we need it for the history vector. */
2587 vinsn_attach (expr_old_vinsn);
2589 res = moveup_expr (expr, insn, inside_insn_group,
2590 &trans_type);
2591 switch (res)
2593 case MOVEUP_EXPR_NULL:
2594 update_bitmap_cache (expr, insn, inside_insn_group, res);
2595 if (sched_verbose >= 6)
2596 sel_print ("removed\n");
2597 break;
2599 case MOVEUP_EXPR_SAME:
2600 update_bitmap_cache (expr, insn, inside_insn_group, res);
2601 if (sched_verbose >= 6)
2602 sel_print ("unchanged\n");
2603 break;
2605 case MOVEUP_EXPR_AS_RHS:
2606 gcc_assert (!unique_p || inside_insn_group);
2607 update_bitmap_cache (expr, insn, inside_insn_group, res);
2608 if (sched_verbose >= 6)
2609 sel_print ("unchanged (as RHS)\n");
2610 break;
2612 case MOVEUP_EXPR_CHANGED:
2613 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2614 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2615 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2616 INSN_UID (insn), trans_type,
2617 expr_old_vinsn, EXPR_VINSN (expr),
2618 expr_old_spec_ds);
2619 update_transformation_cache (expr, insn, inside_insn_group,
2620 trans_type, expr_old_vinsn);
2621 if (sched_verbose >= 6)
2623 sel_print ("changed: ");
2624 dump_expr (expr);
2625 sel_print ("\n");
2627 break;
2628 default:
2629 gcc_unreachable ();
2632 vinsn_detach (expr_old_vinsn);
2635 return res;
2638 /* Moves an av set AVP up through INSN, performing necessary
2639 transformations. */
2640 static void
2641 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2643 av_set_iterator i;
2644 expr_t expr;
2646 FOR_EACH_EXPR_1 (expr, i, avp)
2649 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2651 case MOVEUP_EXPR_SAME:
2652 case MOVEUP_EXPR_AS_RHS:
2653 break;
2655 case MOVEUP_EXPR_NULL:
2656 av_set_iter_remove (&i);
2657 break;
2659 case MOVEUP_EXPR_CHANGED:
2660 expr = merge_with_other_exprs (avp, &i, expr);
2661 break;
2663 default:
2664 gcc_unreachable ();
2669 /* Moves AVP set along PATH. */
2670 static void
2671 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2673 int last_cycle;
2675 if (sched_verbose >= 6)
2676 sel_print ("Moving expressions up in the insn group...\n");
2677 if (! path)
2678 return;
2679 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2680 while (path
2681 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2683 moveup_set_expr (avp, ILIST_INSN (path), true);
2684 path = ILIST_NEXT (path);
2688 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2689 static bool
2690 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2692 expr_def _tmp, *tmp = &_tmp;
2693 int last_cycle;
2694 bool res = true;
2696 copy_expr_onside (tmp, expr);
2697 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2698 while (path
2699 && res
2700 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2702 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2703 != MOVEUP_EXPR_NULL);
2704 path = ILIST_NEXT (path);
2707 if (res)
2709 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2710 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2712 if (tmp_vinsn != expr_vliw_vinsn)
2713 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2716 clear_expr (tmp);
2717 return res;
2721 /* Functions that compute av and lv sets. */
2723 /* Returns true if INSN is not a downward continuation of the given path P in
2724 the current stage. */
2725 static bool
2726 is_ineligible_successor (insn_t insn, ilist_t p)
2728 insn_t prev_insn;
2730 /* Check if insn is not deleted. */
2731 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2732 gcc_unreachable ();
2733 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2734 gcc_unreachable ();
2736 /* If it's the first insn visited, then the successor is ok. */
2737 if (!p)
2738 return false;
2740 prev_insn = ILIST_INSN (p);
2742 if (/* a backward edge. */
2743 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2744 /* is already visited. */
2745 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2746 && (ilist_is_in_p (p, insn)
2747 /* We can reach another fence here and still seqno of insn
2748 would be equal to seqno of prev_insn. This is possible
2749 when prev_insn is a previously created bookkeeping copy.
2750 In that case it'd get a seqno of insn. Thus, check here
2751 whether insn is in current fence too. */
2752 || IN_CURRENT_FENCE_P (insn)))
2753 /* Was already scheduled on this round. */
2754 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2755 && IN_CURRENT_FENCE_P (insn))
2756 /* An insn from another fence could also be
2757 scheduled earlier even if this insn is not in
2758 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2759 || (!pipelining_p
2760 && INSN_SCHED_TIMES (insn) > 0))
2761 return true;
2762 else
2763 return false;
2766 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2767 of handling multiple successors and properly merging its av_sets. P is
2768 the current path traversed. WS is the size of lookahead window.
2769 Return the av set computed. */
2770 static av_set_t
2771 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2773 struct succs_info *sinfo;
2774 av_set_t expr_in_all_succ_branches = NULL;
2775 int is;
2776 insn_t succ, zero_succ = NULL;
2777 av_set_t av1 = NULL;
2779 gcc_assert (sel_bb_end_p (insn));
2781 /* Find different kind of successors needed for correct computing of
2782 SPEC and TARGET_AVAILABLE attributes. */
2783 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2785 /* Debug output. */
2786 if (sched_verbose >= 6)
2788 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2789 dump_insn_vector (sinfo->succs_ok);
2790 sel_print ("\n");
2791 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2792 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2795 /* Add insn to the tail of current path. */
2796 ilist_add (&p, insn);
2798 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2800 av_set_t succ_set;
2802 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2803 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2805 av_set_split_usefulness (succ_set,
2806 sinfo->probs_ok[is],
2807 sinfo->all_prob);
2809 if (sinfo->all_succs_n > 1)
2811 /* Find EXPR'es that came from *all* successors and save them
2812 into expr_in_all_succ_branches. This set will be used later
2813 for calculating speculation attributes of EXPR'es. */
2814 if (is == 0)
2816 expr_in_all_succ_branches = av_set_copy (succ_set);
2818 /* Remember the first successor for later. */
2819 zero_succ = succ;
2821 else
2823 av_set_iterator i;
2824 expr_t expr;
2826 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2827 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2828 av_set_iter_remove (&i);
2832 /* Union the av_sets. Check liveness restrictions on target registers
2833 in special case of two successors. */
2834 if (sinfo->succs_ok_n == 2 && is == 1)
2836 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2837 basic_block bb1 = BLOCK_FOR_INSN (succ);
2839 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2840 av_set_union_and_live (&av1, &succ_set,
2841 BB_LV_SET (bb0),
2842 BB_LV_SET (bb1),
2843 insn);
2845 else
2846 av_set_union_and_clear (&av1, &succ_set, insn);
2849 /* Check liveness restrictions via hard way when there are more than
2850 two successors. */
2851 if (sinfo->succs_ok_n > 2)
2852 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2854 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2856 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2857 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2858 BB_LV_SET (succ_bb));
2861 /* Finally, check liveness restrictions on paths leaving the region. */
2862 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2863 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2864 mark_unavailable_targets
2865 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2867 if (sinfo->all_succs_n > 1)
2869 av_set_iterator i;
2870 expr_t expr;
2872 /* Increase the spec attribute of all EXPR'es that didn't come
2873 from all successors. */
2874 FOR_EACH_EXPR (expr, i, av1)
2875 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2876 EXPR_SPEC (expr)++;
2878 av_set_clear (&expr_in_all_succ_branches);
2880 /* Do not move conditional branches through other
2881 conditional branches. So, remove all conditional
2882 branches from av_set if current operator is a conditional
2883 branch. */
2884 av_set_substract_cond_branches (&av1);
2887 ilist_remove (&p);
2888 free_succs_info (sinfo);
2890 if (sched_verbose >= 6)
2892 sel_print ("av_succs (%d): ", INSN_UID (insn));
2893 dump_av_set (av1);
2894 sel_print ("\n");
2897 return av1;
2900 /* This function computes av_set for the FIRST_INSN by dragging valid
2901 av_set through all basic block insns either from the end of basic block
2902 (computed using compute_av_set_at_bb_end) or from the insn on which
2903 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2904 below the basic block and handling conditional branches.
2905 FIRST_INSN - the basic block head, P - path consisting of the insns
2906 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2907 and bb ends are added to the path), WS - current window size,
2908 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2909 static av_set_t
2910 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2911 bool need_copy_p)
2913 insn_t cur_insn;
2914 int end_ws = ws;
2915 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2916 insn_t after_bb_end = NEXT_INSN (bb_end);
2917 insn_t last_insn;
2918 av_set_t av = NULL;
2919 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2921 /* Return NULL if insn is not on the legitimate downward path. */
2922 if (is_ineligible_successor (first_insn, p))
2924 if (sched_verbose >= 6)
2925 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2927 return NULL;
2930 /* If insn already has valid av(insn) computed, just return it. */
2931 if (AV_SET_VALID_P (first_insn))
2933 av_set_t av_set;
2935 if (sel_bb_head_p (first_insn))
2936 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2937 else
2938 av_set = NULL;
2940 if (sched_verbose >= 6)
2942 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2943 dump_av_set (av_set);
2944 sel_print ("\n");
2947 return need_copy_p ? av_set_copy (av_set) : av_set;
2950 ilist_add (&p, first_insn);
2952 /* As the result after this loop have completed, in LAST_INSN we'll
2953 have the insn which has valid av_set to start backward computation
2954 from: it either will be NULL because on it the window size was exceeded
2955 or other valid av_set as returned by compute_av_set for the last insn
2956 of the basic block. */
2957 for (last_insn = first_insn; last_insn != after_bb_end;
2958 last_insn = NEXT_INSN (last_insn))
2960 /* We may encounter valid av_set not only on bb_head, but also on
2961 those insns on which previously MAX_WS was exceeded. */
2962 if (AV_SET_VALID_P (last_insn))
2964 if (sched_verbose >= 6)
2965 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2966 break;
2969 /* The special case: the last insn of the BB may be an
2970 ineligible_successor due to its SEQ_NO that was set on
2971 it as a bookkeeping. */
2972 if (last_insn != first_insn
2973 && is_ineligible_successor (last_insn, p))
2975 if (sched_verbose >= 6)
2976 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2977 break;
2980 if (DEBUG_INSN_P (last_insn))
2981 continue;
2983 if (end_ws > max_ws)
2985 /* We can reach max lookahead size at bb_header, so clean av_set
2986 first. */
2987 INSN_WS_LEVEL (last_insn) = global_level;
2989 if (sched_verbose >= 6)
2990 sel_print ("Insn %d is beyond the software lookahead window size\n",
2991 INSN_UID (last_insn));
2992 break;
2995 end_ws++;
2998 /* Get the valid av_set into AV above the LAST_INSN to start backward
2999 computation from. It either will be empty av_set or av_set computed from
3000 the successors on the last insn of the current bb. */
3001 if (last_insn != after_bb_end)
3003 av = NULL;
3005 /* This is needed only to obtain av_sets that are identical to
3006 those computed by the old compute_av_set version. */
3007 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
3008 av_set_add (&av, INSN_EXPR (last_insn));
3010 else
3011 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
3012 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
3014 /* Compute av_set in AV starting from below the LAST_INSN up to
3015 location above the FIRST_INSN. */
3016 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
3017 cur_insn = PREV_INSN (cur_insn))
3018 if (!INSN_NOP_P (cur_insn))
3020 expr_t expr;
3022 moveup_set_expr (&av, cur_insn, false);
3024 /* If the expression for CUR_INSN is already in the set,
3025 replace it by the new one. */
3026 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3027 if (expr != NULL)
3029 clear_expr (expr);
3030 copy_expr (expr, INSN_EXPR (cur_insn));
3032 else
3033 av_set_add (&av, INSN_EXPR (cur_insn));
3036 /* Clear stale bb_av_set. */
3037 if (sel_bb_head_p (first_insn))
3039 av_set_clear (&BB_AV_SET (cur_bb));
3040 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3041 BB_AV_LEVEL (cur_bb) = global_level;
3044 if (sched_verbose >= 6)
3046 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3047 dump_av_set (av);
3048 sel_print ("\n");
3051 ilist_remove (&p);
3052 return av;
3055 /* Compute av set before INSN.
3056 INSN - the current operation (actual rtx INSN)
3057 P - the current path, which is list of insns visited so far
3058 WS - software lookahead window size.
3059 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3060 if we want to save computed av_set in s_i_d, we should make a copy of it.
3062 In the resulting set we will have only expressions that don't have delay
3063 stalls and nonsubstitutable dependences. */
3064 static av_set_t
3065 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3067 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3070 /* Propagate a liveness set LV through INSN. */
3071 static void
3072 propagate_lv_set (regset lv, insn_t insn)
3074 gcc_assert (INSN_P (insn));
3076 if (INSN_NOP_P (insn))
3077 return;
3079 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3082 /* Return livness set at the end of BB. */
3083 static regset
3084 compute_live_after_bb (basic_block bb)
3086 edge e;
3087 edge_iterator ei;
3088 regset lv = get_clear_regset_from_pool ();
3090 gcc_assert (!ignore_first);
3092 FOR_EACH_EDGE (e, ei, bb->succs)
3093 if (sel_bb_empty_p (e->dest))
3095 if (! BB_LV_SET_VALID_P (e->dest))
3097 gcc_unreachable ();
3098 gcc_assert (BB_LV_SET (e->dest) == NULL);
3099 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3100 BB_LV_SET_VALID_P (e->dest) = true;
3102 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3104 else
3105 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3107 return lv;
3110 /* Compute the set of all live registers at the point before INSN and save
3111 it at INSN if INSN is bb header. */
3112 regset
3113 compute_live (insn_t insn)
3115 basic_block bb = BLOCK_FOR_INSN (insn);
3116 insn_t final, temp;
3117 regset lv;
3119 /* Return the valid set if we're already on it. */
3120 if (!ignore_first)
3122 regset src = NULL;
3124 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3125 src = BB_LV_SET (bb);
3126 else
3128 gcc_assert (in_current_region_p (bb));
3129 if (INSN_LIVE_VALID_P (insn))
3130 src = INSN_LIVE (insn);
3133 if (src)
3135 lv = get_regset_from_pool ();
3136 COPY_REG_SET (lv, src);
3138 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3140 COPY_REG_SET (BB_LV_SET (bb), lv);
3141 BB_LV_SET_VALID_P (bb) = true;
3144 return_regset_to_pool (lv);
3145 return lv;
3149 /* We've skipped the wrong lv_set. Don't skip the right one. */
3150 ignore_first = false;
3151 gcc_assert (in_current_region_p (bb));
3153 /* Find a valid LV set in this block or below, if needed.
3154 Start searching from the next insn: either ignore_first is true, or
3155 INSN doesn't have a correct live set. */
3156 temp = NEXT_INSN (insn);
3157 final = NEXT_INSN (BB_END (bb));
3158 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3159 temp = NEXT_INSN (temp);
3160 if (temp == final)
3162 lv = compute_live_after_bb (bb);
3163 temp = PREV_INSN (temp);
3165 else
3167 lv = get_regset_from_pool ();
3168 COPY_REG_SET (lv, INSN_LIVE (temp));
3171 /* Put correct lv sets on the insns which have bad sets. */
3172 final = PREV_INSN (insn);
3173 while (temp != final)
3175 propagate_lv_set (lv, temp);
3176 COPY_REG_SET (INSN_LIVE (temp), lv);
3177 INSN_LIVE_VALID_P (temp) = true;
3178 temp = PREV_INSN (temp);
3181 /* Also put it in a BB. */
3182 if (sel_bb_head_p (insn))
3184 basic_block bb = BLOCK_FOR_INSN (insn);
3186 COPY_REG_SET (BB_LV_SET (bb), lv);
3187 BB_LV_SET_VALID_P (bb) = true;
3190 /* We return LV to the pool, but will not clear it there. Thus we can
3191 legimatelly use LV till the next use of regset_pool_get (). */
3192 return_regset_to_pool (lv);
3193 return lv;
3196 /* Update liveness sets for INSN. */
3197 static inline void
3198 update_liveness_on_insn (rtx insn)
3200 ignore_first = true;
3201 compute_live (insn);
3204 /* Compute liveness below INSN and write it into REGS. */
3205 static inline void
3206 compute_live_below_insn (rtx insn, regset regs)
3208 rtx succ;
3209 succ_iterator si;
3211 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3212 IOR_REG_SET (regs, compute_live (succ));
3215 /* Update the data gathered in av and lv sets starting from INSN. */
3216 static void
3217 update_data_sets (rtx insn)
3219 update_liveness_on_insn (insn);
3220 if (sel_bb_head_p (insn))
3222 gcc_assert (AV_LEVEL (insn) != 0);
3223 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3224 compute_av_set (insn, NULL, 0, 0);
3229 /* Helper for move_op () and find_used_regs ().
3230 Return speculation type for which a check should be created on the place
3231 of INSN. EXPR is one of the original ops we are searching for. */
3232 static ds_t
3233 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3235 ds_t to_check_ds;
3236 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3238 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3240 if (targetm.sched.get_insn_checked_ds)
3241 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3243 if (spec_info != NULL
3244 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3245 already_checked_ds |= BEGIN_CONTROL;
3247 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3249 to_check_ds &= ~already_checked_ds;
3251 return to_check_ds;
3254 /* Find the set of registers that are unavailable for storing expres
3255 while moving ORIG_OPS up on the path starting from INSN due to
3256 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3258 All the original operations found during the traversal are saved in the
3259 ORIGINAL_INSNS list.
3261 REG_RENAME_P denotes the set of hardware registers that
3262 can not be used with renaming due to the register class restrictions,
3263 mode restrictions and other (the register we'll choose should be
3264 compatible class with the original uses, shouldn't be in call_used_regs,
3265 should be HARD_REGNO_RENAME_OK etc).
3267 Returns TRUE if we've found all original insns, FALSE otherwise.
3269 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3270 to traverse the code motion paths. This helper function finds registers
3271 that are not available for storing expres while moving ORIG_OPS up on the
3272 path starting from INSN. A register considered as used on the moving path,
3273 if one of the following conditions is not satisfied:
3275 (1) a register not set or read on any path from xi to an instance of
3276 the original operation,
3277 (2) not among the live registers of the point immediately following the
3278 first original operation on a given downward path, except for the
3279 original target register of the operation,
3280 (3) not live on the other path of any conditional branch that is passed
3281 by the operation, in case original operations are not present on
3282 both paths of the conditional branch.
3284 All the original operations found during the traversal are saved in the
3285 ORIGINAL_INSNS list.
3287 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3288 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3289 to unavailable hard regs at the point original operation is found. */
3291 static bool
3292 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3293 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3295 def_list_iterator i;
3296 def_t def;
3297 int res;
3298 bool needs_spec_check_p = false;
3299 expr_t expr;
3300 av_set_iterator expr_iter;
3301 struct fur_static_params sparams;
3302 struct cmpd_local_params lparams;
3304 /* We haven't visited any blocks yet. */
3305 bitmap_clear (code_motion_visited_blocks);
3307 /* Init parameters for code_motion_path_driver. */
3308 sparams.crosses_call = false;
3309 sparams.original_insns = original_insns;
3310 sparams.used_regs = used_regs;
3312 /* Set the appropriate hooks and data. */
3313 code_motion_path_driver_info = &fur_hooks;
3315 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3317 reg_rename_p->crosses_call |= sparams.crosses_call;
3319 gcc_assert (res == 1);
3320 gcc_assert (original_insns && *original_insns);
3322 /* ??? We calculate whether an expression needs a check when computing
3323 av sets. This information is not as precise as it could be due to
3324 merging this bit in merge_expr. We can do better in find_used_regs,
3325 but we want to avoid multiple traversals of the same code motion
3326 paths. */
3327 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3328 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3330 /* Mark hardware regs in REG_RENAME_P that are not suitable
3331 for renaming expr in INSN due to hardware restrictions (register class,
3332 modes compatibility etc). */
3333 FOR_EACH_DEF (def, i, *original_insns)
3335 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3337 if (VINSN_SEPARABLE_P (vinsn))
3338 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3340 /* Do not allow clobbering of ld.[sa] address in case some of the
3341 original operations need a check. */
3342 if (needs_spec_check_p)
3343 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3346 return true;
3350 /* Functions to choose the best insn from available ones. */
3352 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3353 static int
3354 sel_target_adjust_priority (expr_t expr)
3356 int priority = EXPR_PRIORITY (expr);
3357 int new_priority;
3359 if (targetm.sched.adjust_priority)
3360 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3361 else
3362 new_priority = priority;
3364 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3365 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3367 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3369 if (sched_verbose >= 4)
3370 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3371 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3372 EXPR_PRIORITY_ADJ (expr), new_priority);
3374 return new_priority;
3377 /* Rank two available exprs for schedule. Never return 0 here. */
3378 static int
3379 sel_rank_for_schedule (const void *x, const void *y)
3381 expr_t tmp = *(const expr_t *) y;
3382 expr_t tmp2 = *(const expr_t *) x;
3383 insn_t tmp_insn, tmp2_insn;
3384 vinsn_t tmp_vinsn, tmp2_vinsn;
3385 int val;
3387 tmp_vinsn = EXPR_VINSN (tmp);
3388 tmp2_vinsn = EXPR_VINSN (tmp2);
3389 tmp_insn = EXPR_INSN_RTX (tmp);
3390 tmp2_insn = EXPR_INSN_RTX (tmp2);
3392 /* Schedule debug insns as early as possible. */
3393 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3394 return -1;
3395 else if (DEBUG_INSN_P (tmp2_insn))
3396 return 1;
3398 /* Prefer SCHED_GROUP_P insns to any others. */
3399 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3401 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3402 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3404 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3405 cannot be cloned. */
3406 if (VINSN_UNIQUE_P (tmp2_vinsn))
3407 return 1;
3408 return -1;
3411 /* Discourage scheduling of speculative checks. */
3412 val = (sel_insn_is_speculation_check (tmp_insn)
3413 - sel_insn_is_speculation_check (tmp2_insn));
3414 if (val)
3415 return val;
3417 /* Prefer not scheduled insn over scheduled one. */
3418 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3420 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3421 if (val)
3422 return val;
3425 /* Prefer jump over non-jump instruction. */
3426 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3427 return -1;
3428 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3429 return 1;
3431 /* Prefer an expr with greater priority. */
3432 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3434 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3435 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3437 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3439 else
3440 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3441 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3442 if (val)
3443 return val;
3445 if (spec_info != NULL && spec_info->mask != 0)
3446 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3448 ds_t ds1, ds2;
3449 dw_t dw1, dw2;
3450 int dw;
3452 ds1 = EXPR_SPEC_DONE_DS (tmp);
3453 if (ds1)
3454 dw1 = ds_weak (ds1);
3455 else
3456 dw1 = NO_DEP_WEAK;
3458 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3459 if (ds2)
3460 dw2 = ds_weak (ds2);
3461 else
3462 dw2 = NO_DEP_WEAK;
3464 dw = dw2 - dw1;
3465 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3466 return dw;
3469 /* Prefer an old insn to a bookkeeping insn. */
3470 if (INSN_UID (tmp_insn) < first_emitted_uid
3471 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3472 return -1;
3473 if (INSN_UID (tmp_insn) >= first_emitted_uid
3474 && INSN_UID (tmp2_insn) < first_emitted_uid)
3475 return 1;
3477 /* Prefer an insn with smaller UID, as a last resort.
3478 We can't safely use INSN_LUID as it is defined only for those insns
3479 that are in the stream. */
3480 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3483 /* Filter out expressions from av set pointed to by AV_PTR
3484 that are pipelined too many times. */
3485 static void
3486 process_pipelined_exprs (av_set_t *av_ptr)
3488 expr_t expr;
3489 av_set_iterator si;
3491 /* Don't pipeline already pipelined code as that would increase
3492 number of unnecessary register moves. */
3493 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3495 if (EXPR_SCHED_TIMES (expr)
3496 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3497 av_set_iter_remove (&si);
3501 /* Filter speculative insns from AV_PTR if we don't want them. */
3502 static void
3503 process_spec_exprs (av_set_t *av_ptr)
3505 expr_t expr;
3506 av_set_iterator si;
3508 if (spec_info == NULL)
3509 return;
3511 /* Scan *AV_PTR to find out if we want to consider speculative
3512 instructions for scheduling. */
3513 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3515 ds_t ds;
3517 ds = EXPR_SPEC_DONE_DS (expr);
3519 /* The probability of a success is too low - don't speculate. */
3520 if ((ds & SPECULATIVE)
3521 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3522 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3523 || (pipelining_p && false
3524 && (ds & DATA_SPEC)
3525 && (ds & CONTROL_SPEC))))
3527 av_set_iter_remove (&si);
3528 continue;
3533 /* Search for any use-like insns in AV_PTR and decide on scheduling
3534 them. Return one when found, and NULL otherwise.
3535 Note that we check here whether a USE could be scheduled to avoid
3536 an infinite loop later. */
3537 static expr_t
3538 process_use_exprs (av_set_t *av_ptr)
3540 expr_t expr;
3541 av_set_iterator si;
3542 bool uses_present_p = false;
3543 bool try_uses_p = true;
3545 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3547 /* This will also initialize INSN_CODE for later use. */
3548 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3550 /* If we have a USE in *AV_PTR that was not scheduled yet,
3551 do so because it will do good only. */
3552 if (EXPR_SCHED_TIMES (expr) <= 0)
3554 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3555 return expr;
3557 av_set_iter_remove (&si);
3559 else
3561 gcc_assert (pipelining_p);
3563 uses_present_p = true;
3566 else
3567 try_uses_p = false;
3570 if (uses_present_p)
3572 /* If we don't want to schedule any USEs right now and we have some
3573 in *AV_PTR, remove them, else just return the first one found. */
3574 if (!try_uses_p)
3576 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3577 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3578 av_set_iter_remove (&si);
3580 else
3582 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3584 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3586 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3587 return expr;
3589 av_set_iter_remove (&si);
3594 return NULL;
3597 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3598 EXPR's history of changes. */
3599 static bool
3600 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3602 vinsn_t vinsn, expr_vinsn;
3603 int n;
3604 unsigned i;
3606 /* Start with checking expr itself and then proceed with all the old forms
3607 of expr taken from its history vector. */
3608 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3609 expr_vinsn;
3610 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3611 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3612 : NULL))
3613 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3614 if (VINSN_SEPARABLE_P (vinsn))
3616 if (vinsn_equal_p (vinsn, expr_vinsn))
3617 return true;
3619 else
3621 /* For non-separable instructions, the blocking insn can have
3622 another pattern due to substitution, and we can't choose
3623 different register as in the above case. Check all registers
3624 being written instead. */
3625 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3626 VINSN_REG_SETS (expr_vinsn)))
3627 return true;
3630 return false;
3633 #ifdef ENABLE_CHECKING
3634 /* Return true if either of expressions from ORIG_OPS can be blocked
3635 by previously created bookkeeping code. STATIC_PARAMS points to static
3636 parameters of move_op. */
3637 static bool
3638 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3640 expr_t expr;
3641 av_set_iterator iter;
3642 moveop_static_params_p sparams;
3644 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3645 created while scheduling on another fence. */
3646 FOR_EACH_EXPR (expr, iter, orig_ops)
3647 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3648 return true;
3650 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3651 sparams = (moveop_static_params_p) static_params;
3653 /* Expressions can be also blocked by bookkeeping created during current
3654 move_op. */
3655 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3656 FOR_EACH_EXPR (expr, iter, orig_ops)
3657 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3658 return true;
3660 /* Expressions in ORIG_OPS may have wrong destination register due to
3661 renaming. Check with the right register instead. */
3662 if (sparams->dest && REG_P (sparams->dest))
3664 rtx reg = sparams->dest;
3665 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3667 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3668 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3669 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3670 return true;
3673 return false;
3675 #endif
3677 /* Clear VINSN_VEC and detach vinsns. */
3678 static void
3679 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3681 unsigned len = vinsn_vec->length ();
3682 if (len > 0)
3684 vinsn_t vinsn;
3685 int n;
3687 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3688 vinsn_detach (vinsn);
3689 vinsn_vec->block_remove (0, len);
3693 /* Add the vinsn of EXPR to the VINSN_VEC. */
3694 static void
3695 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3697 vinsn_attach (EXPR_VINSN (expr));
3698 vinsn_vec->safe_push (EXPR_VINSN (expr));
3701 /* Free the vector representing blocked expressions. */
3702 static void
3703 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3705 vinsn_vec.release ();
3708 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3710 void sel_add_to_insn_priority (rtx insn, int amount)
3712 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3714 if (sched_verbose >= 2)
3715 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3716 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3717 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3720 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3721 true if there is something to schedule. BNDS and FENCE are current
3722 boundaries and fence, respectively. If we need to stall for some cycles
3723 before an expr from AV would become available, write this number to
3724 *PNEED_STALL. */
3725 static bool
3726 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3727 int *pneed_stall)
3729 av_set_iterator si;
3730 expr_t expr;
3731 int sched_next_worked = 0, stalled, n;
3732 static int av_max_prio, est_ticks_till_branch;
3733 int min_need_stall = -1;
3734 deps_t dc = BND_DC (BLIST_BND (bnds));
3736 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3737 already scheduled. */
3738 if (av == NULL)
3739 return false;
3741 /* Empty vector from the previous stuff. */
3742 if (vec_av_set.length () > 0)
3743 vec_av_set.block_remove (0, vec_av_set.length ());
3745 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3746 for each insn. */
3747 gcc_assert (vec_av_set.is_empty ());
3748 FOR_EACH_EXPR (expr, si, av)
3750 vec_av_set.safe_push (expr);
3752 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3754 /* Adjust priority using target backend hook. */
3755 sel_target_adjust_priority (expr);
3758 /* Sort the vector. */
3759 vec_av_set.qsort (sel_rank_for_schedule);
3761 /* We record maximal priority of insns in av set for current instruction
3762 group. */
3763 if (FENCE_STARTS_CYCLE_P (fence))
3764 av_max_prio = est_ticks_till_branch = INT_MIN;
3766 /* Filter out inappropriate expressions. Loop's direction is reversed to
3767 visit "best" instructions first. We assume that vec::unordered_remove
3768 moves last element in place of one being deleted. */
3769 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3771 expr_t expr = vec_av_set[n];
3772 insn_t insn = EXPR_INSN_RTX (expr);
3773 signed char target_available;
3774 bool is_orig_reg_p = true;
3775 int need_cycles, new_prio;
3776 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3778 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3779 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3781 vec_av_set.unordered_remove (n);
3782 continue;
3785 /* Set number of sched_next insns (just in case there
3786 could be several). */
3787 if (FENCE_SCHED_NEXT (fence))
3788 sched_next_worked++;
3790 /* Check all liveness requirements and try renaming.
3791 FIXME: try to minimize calls to this. */
3792 target_available = EXPR_TARGET_AVAILABLE (expr);
3794 /* If insn was already scheduled on the current fence,
3795 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3796 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3797 && !fence_insn_p)
3798 target_available = -1;
3800 /* If the availability of the EXPR is invalidated by the insertion of
3801 bookkeeping earlier, make sure that we won't choose this expr for
3802 scheduling if it's not separable, and if it is separable, then
3803 we have to recompute the set of available registers for it. */
3804 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3806 vec_av_set.unordered_remove (n);
3807 if (sched_verbose >= 4)
3808 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3809 INSN_UID (insn));
3810 continue;
3813 if (target_available == true)
3815 /* Do nothing -- we can use an existing register. */
3816 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3818 else if (/* Non-separable instruction will never
3819 get another register. */
3820 (target_available == false
3821 && !EXPR_SEPARABLE_P (expr))
3822 /* Don't try to find a register for low-priority expression. */
3823 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3824 /* ??? FIXME: Don't try to rename data speculation. */
3825 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3826 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3828 vec_av_set.unordered_remove (n);
3829 if (sched_verbose >= 4)
3830 sel_print ("Expr %d has no suitable target register\n",
3831 INSN_UID (insn));
3833 /* A fence insn should not get here. */
3834 gcc_assert (!fence_insn_p);
3835 continue;
3838 /* At this point a fence insn should always be available. */
3839 gcc_assert (!fence_insn_p
3840 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3842 /* Filter expressions that need to be renamed or speculated when
3843 pipelining, because compensating register copies or speculation
3844 checks are likely to be placed near the beginning of the loop,
3845 causing a stall. */
3846 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3847 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3849 /* Estimation of number of cycles until loop branch for
3850 renaming/speculation to be successful. */
3851 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3853 if ((int) current_loop_nest->ninsns < 9)
3855 vec_av_set.unordered_remove (n);
3856 if (sched_verbose >= 4)
3857 sel_print ("Pipelining expr %d will likely cause stall\n",
3858 INSN_UID (insn));
3859 continue;
3862 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3863 < need_n_ticks_till_branch * issue_rate / 2
3864 && est_ticks_till_branch < need_n_ticks_till_branch)
3866 vec_av_set.unordered_remove (n);
3867 if (sched_verbose >= 4)
3868 sel_print ("Pipelining expr %d will likely cause stall\n",
3869 INSN_UID (insn));
3870 continue;
3874 /* We want to schedule speculation checks as late as possible. Discard
3875 them from av set if there are instructions with higher priority. */
3876 if (sel_insn_is_speculation_check (insn)
3877 && EXPR_PRIORITY (expr) < av_max_prio)
3879 stalled++;
3880 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3881 vec_av_set.unordered_remove (n);
3882 if (sched_verbose >= 4)
3883 sel_print ("Delaying speculation check %d until its first use\n",
3884 INSN_UID (insn));
3885 continue;
3888 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3889 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3890 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3892 /* Don't allow any insns whose data is not yet ready.
3893 Check first whether we've already tried them and failed. */
3894 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3896 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3897 - FENCE_CYCLE (fence));
3898 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3899 est_ticks_till_branch = MAX (est_ticks_till_branch,
3900 EXPR_PRIORITY (expr) + need_cycles);
3902 if (need_cycles > 0)
3904 stalled++;
3905 min_need_stall = (min_need_stall < 0
3906 ? need_cycles
3907 : MIN (min_need_stall, need_cycles));
3908 vec_av_set.unordered_remove (n);
3910 if (sched_verbose >= 4)
3911 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3912 INSN_UID (insn),
3913 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3914 continue;
3918 /* Now resort to dependence analysis to find whether EXPR might be
3919 stalled due to dependencies from FENCE's context. */
3920 need_cycles = tick_check_p (expr, dc, fence);
3921 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3923 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3924 est_ticks_till_branch = MAX (est_ticks_till_branch,
3925 new_prio);
3927 if (need_cycles > 0)
3929 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3931 int new_size = INSN_UID (insn) * 3 / 2;
3933 FENCE_READY_TICKS (fence)
3934 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3935 new_size, FENCE_READY_TICKS_SIZE (fence),
3936 sizeof (int));
3938 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3939 = FENCE_CYCLE (fence) + need_cycles;
3941 stalled++;
3942 min_need_stall = (min_need_stall < 0
3943 ? need_cycles
3944 : MIN (min_need_stall, need_cycles));
3946 vec_av_set.unordered_remove (n);
3948 if (sched_verbose >= 4)
3949 sel_print ("Expr %d is not ready yet until cycle %d\n",
3950 INSN_UID (insn),
3951 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3952 continue;
3955 if (sched_verbose >= 4)
3956 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3957 min_need_stall = 0;
3960 /* Clear SCHED_NEXT. */
3961 if (FENCE_SCHED_NEXT (fence))
3963 gcc_assert (sched_next_worked == 1);
3964 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3967 /* No need to stall if this variable was not initialized. */
3968 if (min_need_stall < 0)
3969 min_need_stall = 0;
3971 if (vec_av_set.is_empty ())
3973 /* We need to set *pneed_stall here, because later we skip this code
3974 when ready list is empty. */
3975 *pneed_stall = min_need_stall;
3976 return false;
3978 else
3979 gcc_assert (min_need_stall == 0);
3981 /* Sort the vector. */
3982 vec_av_set.qsort (sel_rank_for_schedule);
3984 if (sched_verbose >= 4)
3986 sel_print ("Total ready exprs: %d, stalled: %d\n",
3987 vec_av_set.length (), stalled);
3988 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3989 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3990 dump_expr (expr);
3991 sel_print ("\n");
3994 *pneed_stall = 0;
3995 return true;
3998 /* Convert a vectored and sorted av set to the ready list that
3999 the rest of the backend wants to see. */
4000 static void
4001 convert_vec_av_set_to_ready (void)
4003 int n;
4004 expr_t expr;
4006 /* Allocate and fill the ready list from the sorted vector. */
4007 ready.n_ready = vec_av_set.length ();
4008 ready.first = ready.n_ready - 1;
4010 gcc_assert (ready.n_ready > 0);
4012 if (ready.n_ready > max_issue_size)
4014 max_issue_size = ready.n_ready;
4015 sched_extend_ready_list (ready.n_ready);
4018 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4020 vinsn_t vi = EXPR_VINSN (expr);
4021 insn_t insn = VINSN_INSN_RTX (vi);
4023 ready_try[n] = 0;
4024 ready.vec[n] = insn;
4028 /* Initialize ready list from *AV_PTR for the max_issue () call.
4029 If any unrecognizable insn found in *AV_PTR, return it (and skip
4030 max_issue). BND and FENCE are current boundary and fence,
4031 respectively. If we need to stall for some cycles before an expr
4032 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4033 static expr_t
4034 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4035 int *pneed_stall)
4037 expr_t expr;
4039 /* We do not support multiple boundaries per fence. */
4040 gcc_assert (BLIST_NEXT (bnds) == NULL);
4042 /* Process expressions required special handling, i.e. pipelined,
4043 speculative and recog() < 0 expressions first. */
4044 process_pipelined_exprs (av_ptr);
4045 process_spec_exprs (av_ptr);
4047 /* A USE could be scheduled immediately. */
4048 expr = process_use_exprs (av_ptr);
4049 if (expr)
4051 *pneed_stall = 0;
4052 return expr;
4055 /* Turn the av set to a vector for sorting. */
4056 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4058 ready.n_ready = 0;
4059 return NULL;
4062 /* Build the final ready list. */
4063 convert_vec_av_set_to_ready ();
4064 return NULL;
4067 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4068 static bool
4069 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4071 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4072 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4073 : FENCE_CYCLE (fence) - 1;
4074 bool res = false;
4075 int sort_p = 0;
4077 if (!targetm.sched.dfa_new_cycle)
4078 return false;
4080 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4082 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4083 insn, last_scheduled_cycle,
4084 FENCE_CYCLE (fence), &sort_p))
4086 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4087 advance_one_cycle (fence);
4088 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4089 res = true;
4092 return res;
4095 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4096 we can issue. FENCE is the current fence. */
4097 static int
4098 invoke_reorder_hooks (fence_t fence)
4100 int issue_more;
4101 bool ran_hook = false;
4103 /* Call the reorder hook at the beginning of the cycle, and call
4104 the reorder2 hook in the middle of the cycle. */
4105 if (FENCE_ISSUED_INSNS (fence) == 0)
4107 if (targetm.sched.reorder
4108 && !SCHED_GROUP_P (ready_element (&ready, 0))
4109 && ready.n_ready > 1)
4111 /* Don't give reorder the most prioritized insn as it can break
4112 pipelining. */
4113 if (pipelining_p)
4114 --ready.n_ready;
4116 issue_more
4117 = targetm.sched.reorder (sched_dump, sched_verbose,
4118 ready_lastpos (&ready),
4119 &ready.n_ready, FENCE_CYCLE (fence));
4121 if (pipelining_p)
4122 ++ready.n_ready;
4124 ran_hook = true;
4126 else
4127 /* Initialize can_issue_more for variable_issue. */
4128 issue_more = issue_rate;
4130 else if (targetm.sched.reorder2
4131 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4133 if (ready.n_ready == 1)
4134 issue_more =
4135 targetm.sched.reorder2 (sched_dump, sched_verbose,
4136 ready_lastpos (&ready),
4137 &ready.n_ready, FENCE_CYCLE (fence));
4138 else
4140 if (pipelining_p)
4141 --ready.n_ready;
4143 issue_more =
4144 targetm.sched.reorder2 (sched_dump, sched_verbose,
4145 ready.n_ready
4146 ? ready_lastpos (&ready) : NULL,
4147 &ready.n_ready, FENCE_CYCLE (fence));
4149 if (pipelining_p)
4150 ++ready.n_ready;
4153 ran_hook = true;
4155 else
4156 issue_more = FENCE_ISSUE_MORE (fence);
4158 /* Ensure that ready list and vec_av_set are in line with each other,
4159 i.e. vec_av_set[i] == ready_element (&ready, i). */
4160 if (issue_more && ran_hook)
4162 int i, j, n;
4163 rtx *arr = ready.vec;
4164 expr_t *vec = vec_av_set.address ();
4166 for (i = 0, n = ready.n_ready; i < n; i++)
4167 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4169 expr_t tmp;
4171 for (j = i; j < n; j++)
4172 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4173 break;
4174 gcc_assert (j < n);
4176 tmp = vec[i];
4177 vec[i] = vec[j];
4178 vec[j] = tmp;
4182 return issue_more;
4185 /* Return an EXPR corresponding to INDEX element of ready list, if
4186 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4187 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4188 ready.vec otherwise. */
4189 static inline expr_t
4190 find_expr_for_ready (int index, bool follow_ready_element)
4192 expr_t expr;
4193 int real_index;
4195 real_index = follow_ready_element ? ready.first - index : index;
4197 expr = vec_av_set[real_index];
4198 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4200 return expr;
4203 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4204 of such insns found. */
4205 static int
4206 invoke_dfa_lookahead_guard (void)
4208 int i, n;
4209 bool have_hook
4210 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4212 if (sched_verbose >= 2)
4213 sel_print ("ready after reorder: ");
4215 for (i = 0, n = 0; i < ready.n_ready; i++)
4217 expr_t expr;
4218 insn_t insn;
4219 int r;
4221 /* In this loop insn is Ith element of the ready list given by
4222 ready_element, not Ith element of ready.vec. */
4223 insn = ready_element (&ready, i);
4225 if (! have_hook || i == 0)
4226 r = 0;
4227 else
4228 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4230 gcc_assert (INSN_CODE (insn) >= 0);
4232 /* Only insns with ready_try = 0 can get here
4233 from fill_ready_list. */
4234 gcc_assert (ready_try [i] == 0);
4235 ready_try[i] = r;
4236 if (!r)
4237 n++;
4239 expr = find_expr_for_ready (i, true);
4241 if (sched_verbose >= 2)
4243 dump_vinsn (EXPR_VINSN (expr));
4244 sel_print (":%d; ", ready_try[i]);
4248 if (sched_verbose >= 2)
4249 sel_print ("\n");
4250 return n;
4253 /* Calculate the number of privileged insns and return it. */
4254 static int
4255 calculate_privileged_insns (void)
4257 expr_t cur_expr, min_spec_expr = NULL;
4258 int privileged_n = 0, i;
4260 for (i = 0; i < ready.n_ready; i++)
4262 if (ready_try[i])
4263 continue;
4265 if (! min_spec_expr)
4266 min_spec_expr = find_expr_for_ready (i, true);
4268 cur_expr = find_expr_for_ready (i, true);
4270 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4271 break;
4273 ++privileged_n;
4276 if (i == ready.n_ready)
4277 privileged_n = 0;
4279 if (sched_verbose >= 2)
4280 sel_print ("privileged_n: %d insns with SPEC %d\n",
4281 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4282 return privileged_n;
4285 /* Call the rest of the hooks after the choice was made. Return
4286 the number of insns that still can be issued given that the current
4287 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4288 and the insn chosen for scheduling, respectively. */
4289 static int
4290 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4292 gcc_assert (INSN_P (best_insn));
4294 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4295 sel_dfa_new_cycle (best_insn, fence);
4297 if (targetm.sched.variable_issue)
4299 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4300 issue_more =
4301 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4302 issue_more);
4303 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4305 else if (GET_CODE (PATTERN (best_insn)) != USE
4306 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4307 issue_more--;
4309 return issue_more;
4312 /* Estimate the cost of issuing INSN on DFA state STATE. */
4313 static int
4314 estimate_insn_cost (rtx insn, state_t state)
4316 static state_t temp = NULL;
4317 int cost;
4319 if (!temp)
4320 temp = xmalloc (dfa_state_size);
4322 memcpy (temp, state, dfa_state_size);
4323 cost = state_transition (temp, insn);
4325 if (cost < 0)
4326 return 0;
4327 else if (cost == 0)
4328 return 1;
4329 return cost;
4332 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4333 This function properly handles ASMs, USEs etc. */
4334 static int
4335 get_expr_cost (expr_t expr, fence_t fence)
4337 rtx insn = EXPR_INSN_RTX (expr);
4339 if (recog_memoized (insn) < 0)
4341 if (!FENCE_STARTS_CYCLE_P (fence)
4342 && INSN_ASM_P (insn))
4343 /* This is asm insn which is tryed to be issued on the
4344 cycle not first. Issue it on the next cycle. */
4345 return 1;
4346 else
4347 /* A USE insn, or something else we don't need to
4348 understand. We can't pass these directly to
4349 state_transition because it will trigger a
4350 fatal error for unrecognizable insns. */
4351 return 0;
4353 else
4354 return estimate_insn_cost (insn, FENCE_STATE (fence));
4357 /* Find the best insn for scheduling, either via max_issue or just take
4358 the most prioritized available. */
4359 static int
4360 choose_best_insn (fence_t fence, int privileged_n, int *index)
4362 int can_issue = 0;
4364 if (dfa_lookahead > 0)
4366 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4367 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4368 can_issue = max_issue (&ready, privileged_n,
4369 FENCE_STATE (fence), true, index);
4370 if (sched_verbose >= 2)
4371 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4372 can_issue, FENCE_ISSUED_INSNS (fence));
4374 else
4376 /* We can't use max_issue; just return the first available element. */
4377 int i;
4379 for (i = 0; i < ready.n_ready; i++)
4381 expr_t expr = find_expr_for_ready (i, true);
4383 if (get_expr_cost (expr, fence) < 1)
4385 can_issue = can_issue_more;
4386 *index = i;
4388 if (sched_verbose >= 2)
4389 sel_print ("using %dth insn from the ready list\n", i + 1);
4391 break;
4395 if (i == ready.n_ready)
4397 can_issue = 0;
4398 *index = -1;
4402 return can_issue;
4405 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4406 BNDS and FENCE are current boundaries and scheduling fence respectively.
4407 Return the expr found and NULL if nothing can be issued atm.
4408 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4409 static expr_t
4410 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4411 int *pneed_stall)
4413 expr_t best;
4415 /* Choose the best insn for scheduling via:
4416 1) sorting the ready list based on priority;
4417 2) calling the reorder hook;
4418 3) calling max_issue. */
4419 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4420 if (best == NULL && ready.n_ready > 0)
4422 int privileged_n, index;
4424 can_issue_more = invoke_reorder_hooks (fence);
4425 if (can_issue_more > 0)
4427 /* Try choosing the best insn until we find one that is could be
4428 scheduled due to liveness restrictions on its destination register.
4429 In the future, we'd like to choose once and then just probe insns
4430 in the order of their priority. */
4431 invoke_dfa_lookahead_guard ();
4432 privileged_n = calculate_privileged_insns ();
4433 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4434 if (can_issue_more)
4435 best = find_expr_for_ready (index, true);
4437 /* We had some available insns, so if we can't issue them,
4438 we have a stall. */
4439 if (can_issue_more == 0)
4441 best = NULL;
4442 *pneed_stall = 1;
4446 if (best != NULL)
4448 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4449 can_issue_more);
4450 if (targetm.sched.variable_issue
4451 && can_issue_more == 0)
4452 *pneed_stall = 1;
4455 if (sched_verbose >= 2)
4457 if (best != NULL)
4459 sel_print ("Best expression (vliw form): ");
4460 dump_expr (best);
4461 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4463 else
4464 sel_print ("No best expr found!\n");
4467 return best;
4471 /* Functions that implement the core of the scheduler. */
4474 /* Emit an instruction from EXPR with SEQNO and VINSN after
4475 PLACE_TO_INSERT. */
4476 static insn_t
4477 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4478 insn_t place_to_insert)
4480 /* This assert fails when we have identical instructions
4481 one of which dominates the other. In this case move_op ()
4482 finds the first instruction and doesn't search for second one.
4483 The solution would be to compute av_set after the first found
4484 insn and, if insn present in that set, continue searching.
4485 For now we workaround this issue in move_op. */
4486 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4488 if (EXPR_WAS_RENAMED (expr))
4490 unsigned regno = expr_dest_regno (expr);
4492 if (HARD_REGISTER_NUM_P (regno))
4494 df_set_regs_ever_live (regno, true);
4495 reg_rename_tick[regno] = ++reg_rename_this_tick;
4499 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4500 place_to_insert);
4503 /* Return TRUE if BB can hold bookkeeping code. */
4504 static bool
4505 block_valid_for_bookkeeping_p (basic_block bb)
4507 insn_t bb_end = BB_END (bb);
4509 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4510 return false;
4512 if (INSN_P (bb_end))
4514 if (INSN_SCHED_TIMES (bb_end) > 0)
4515 return false;
4517 else
4518 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4520 return true;
4523 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4524 into E2->dest, except from E1->src (there may be a sequence of empty basic
4525 blocks between E1->src and E2->dest). Return found block, or NULL if new
4526 one must be created. If LAX holds, don't assume there is a simple path
4527 from E1->src to E2->dest. */
4528 static basic_block
4529 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4531 basic_block candidate_block = NULL;
4532 edge e;
4534 /* Loop over edges from E1 to E2, inclusive. */
4535 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4536 EDGE_SUCC (e->dest, 0))
4538 if (EDGE_COUNT (e->dest->preds) == 2)
4540 if (candidate_block == NULL)
4541 candidate_block = (EDGE_PRED (e->dest, 0) == e
4542 ? EDGE_PRED (e->dest, 1)->src
4543 : EDGE_PRED (e->dest, 0)->src);
4544 else
4545 /* Found additional edge leading to path from e1 to e2
4546 from aside. */
4547 return NULL;
4549 else if (EDGE_COUNT (e->dest->preds) > 2)
4550 /* Several edges leading to path from e1 to e2 from aside. */
4551 return NULL;
4553 if (e == e2)
4554 return ((!lax || candidate_block)
4555 && block_valid_for_bookkeeping_p (candidate_block)
4556 ? candidate_block
4557 : NULL);
4559 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4560 return NULL;
4563 if (lax)
4564 return NULL;
4566 gcc_unreachable ();
4569 /* Create new basic block for bookkeeping code for path(s) incoming into
4570 E2->dest, except from E1->src. Return created block. */
4571 static basic_block
4572 create_block_for_bookkeeping (edge e1, edge e2)
4574 basic_block new_bb, bb = e2->dest;
4576 /* Check that we don't spoil the loop structure. */
4577 if (current_loop_nest)
4579 basic_block latch = current_loop_nest->latch;
4581 /* We do not split header. */
4582 gcc_assert (e2->dest != current_loop_nest->header);
4584 /* We do not redirect the only edge to the latch block. */
4585 gcc_assert (e1->dest != latch
4586 || !single_pred_p (latch)
4587 || e1 != single_pred_edge (latch));
4590 /* Split BB to insert BOOK_INSN there. */
4591 new_bb = sched_split_block (bb, NULL);
4593 /* Move note_list from the upper bb. */
4594 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4595 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4596 BB_NOTE_LIST (bb) = NULL_RTX;
4598 gcc_assert (e2->dest == bb);
4600 /* Skip block for bookkeeping copy when leaving E1->src. */
4601 if (e1->flags & EDGE_FALLTHRU)
4602 sel_redirect_edge_and_branch_force (e1, new_bb);
4603 else
4604 sel_redirect_edge_and_branch (e1, new_bb);
4606 gcc_assert (e1->dest == new_bb);
4607 gcc_assert (sel_bb_empty_p (bb));
4609 /* To keep basic block numbers in sync between debug and non-debug
4610 compilations, we have to rotate blocks here. Consider that we
4611 started from (a,b)->d, (c,d)->e, and d contained only debug
4612 insns. It would have been removed before if the debug insns
4613 weren't there, so we'd have split e rather than d. So what we do
4614 now is to swap the block numbers of new_bb and
4615 single_succ(new_bb) == e, so that the insns that were in e before
4616 get the new block number. */
4618 if (MAY_HAVE_DEBUG_INSNS)
4620 basic_block succ;
4621 insn_t insn = sel_bb_head (new_bb);
4622 insn_t last;
4624 if (DEBUG_INSN_P (insn)
4625 && single_succ_p (new_bb)
4626 && (succ = single_succ (new_bb))
4627 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4628 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4630 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4631 insn = NEXT_INSN (insn);
4633 if (insn == last)
4635 sel_global_bb_info_def gbi;
4636 sel_region_bb_info_def rbi;
4637 int i;
4639 if (sched_verbose >= 2)
4640 sel_print ("Swapping block ids %i and %i\n",
4641 new_bb->index, succ->index);
4643 i = new_bb->index;
4644 new_bb->index = succ->index;
4645 succ->index = i;
4647 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4648 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4650 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4651 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4652 sizeof (gbi));
4653 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4655 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4656 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4657 sizeof (rbi));
4658 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4660 i = BLOCK_TO_BB (new_bb->index);
4661 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4662 BLOCK_TO_BB (succ->index) = i;
4664 i = CONTAINING_RGN (new_bb->index);
4665 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4666 CONTAINING_RGN (succ->index) = i;
4668 for (i = 0; i < current_nr_blocks; i++)
4669 if (BB_TO_BLOCK (i) == succ->index)
4670 BB_TO_BLOCK (i) = new_bb->index;
4671 else if (BB_TO_BLOCK (i) == new_bb->index)
4672 BB_TO_BLOCK (i) = succ->index;
4674 FOR_BB_INSNS (new_bb, insn)
4675 if (INSN_P (insn))
4676 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4678 FOR_BB_INSNS (succ, insn)
4679 if (INSN_P (insn))
4680 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4682 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4683 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4685 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4686 && LABEL_P (BB_HEAD (succ)));
4688 if (sched_verbose >= 4)
4689 sel_print ("Swapping code labels %i and %i\n",
4690 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4691 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4693 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4694 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4695 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4696 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4701 return bb;
4704 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4705 into E2->dest, except from E1->src. If the returned insn immediately
4706 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4707 static insn_t
4708 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4710 insn_t place_to_insert;
4711 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4712 create new basic block, but insert bookkeeping there. */
4713 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4715 if (book_block)
4717 place_to_insert = BB_END (book_block);
4719 /* Don't use a block containing only debug insns for
4720 bookkeeping, this causes scheduling differences between debug
4721 and non-debug compilations, for the block would have been
4722 removed already. */
4723 if (DEBUG_INSN_P (place_to_insert))
4725 rtx insn = sel_bb_head (book_block);
4727 while (insn != place_to_insert &&
4728 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4729 insn = NEXT_INSN (insn);
4731 if (insn == place_to_insert)
4732 book_block = NULL;
4736 if (!book_block)
4738 book_block = create_block_for_bookkeeping (e1, e2);
4739 place_to_insert = BB_END (book_block);
4740 if (sched_verbose >= 9)
4741 sel_print ("New block is %i, split from bookkeeping block %i\n",
4742 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4744 else
4746 if (sched_verbose >= 9)
4747 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4750 *fence_to_rewind = NULL;
4751 /* If basic block ends with a jump, insert bookkeeping code right before it.
4752 Notice if we are crossing a fence when taking PREV_INSN. */
4753 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4755 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4756 place_to_insert = PREV_INSN (place_to_insert);
4759 return place_to_insert;
4762 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4763 for JOIN_POINT. */
4764 static int
4765 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4767 int seqno;
4768 rtx next;
4770 /* Check if we are about to insert bookkeeping copy before a jump, and use
4771 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4772 next = NEXT_INSN (place_to_insert);
4773 if (INSN_P (next)
4774 && JUMP_P (next)
4775 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4777 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4778 seqno = INSN_SEQNO (next);
4780 else if (INSN_SEQNO (join_point) > 0)
4781 seqno = INSN_SEQNO (join_point);
4782 else
4784 seqno = get_seqno_by_preds (place_to_insert);
4786 /* Sometimes the fences can move in such a way that there will be
4787 no instructions with positive seqno around this bookkeeping.
4788 This means that there will be no way to get to it by a regular
4789 fence movement. Never mind because we pick up such pieces for
4790 rescheduling anyways, so any positive value will do for now. */
4791 if (seqno < 0)
4793 gcc_assert (pipelining_p);
4794 seqno = 1;
4798 gcc_assert (seqno > 0);
4799 return seqno;
4802 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4803 NEW_SEQNO to it. Return created insn. */
4804 static insn_t
4805 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4807 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4809 vinsn_t new_vinsn
4810 = create_vinsn_from_insn_rtx (new_insn_rtx,
4811 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4813 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4814 place_to_insert);
4816 INSN_SCHED_TIMES (new_insn) = 0;
4817 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4819 return new_insn;
4822 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4823 E2->dest, except from E1->src (there may be a sequence of empty blocks
4824 between E1->src and E2->dest). Return block containing the copy.
4825 All scheduler data is initialized for the newly created insn. */
4826 static basic_block
4827 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4829 insn_t join_point, place_to_insert, new_insn;
4830 int new_seqno;
4831 bool need_to_exchange_data_sets;
4832 fence_t fence_to_rewind;
4834 if (sched_verbose >= 4)
4835 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4836 e2->dest->index);
4838 join_point = sel_bb_head (e2->dest);
4839 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4840 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4841 need_to_exchange_data_sets
4842 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4844 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4846 if (fence_to_rewind)
4847 FENCE_INSN (fence_to_rewind) = new_insn;
4849 /* When inserting bookkeeping insn in new block, av sets should be
4850 following: old basic block (that now holds bookkeeping) data sets are
4851 the same as was before generation of bookkeeping, and new basic block
4852 (that now hold all other insns of old basic block) data sets are
4853 invalid. So exchange data sets for these basic blocks as sel_split_block
4854 mistakenly exchanges them in this case. Cannot do it earlier because
4855 when single instruction is added to new basic block it should hold NULL
4856 lv_set. */
4857 if (need_to_exchange_data_sets)
4858 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4859 BLOCK_FOR_INSN (join_point));
4861 stat_bookkeeping_copies++;
4862 return BLOCK_FOR_INSN (new_insn);
4865 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4866 on FENCE, but we are unable to copy them. */
4867 static void
4868 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4870 expr_t expr;
4871 av_set_iterator i;
4873 /* An expression does not need bookkeeping if it is available on all paths
4874 from current block to original block and current block dominates
4875 original block. We check availability on all paths by examining
4876 EXPR_SPEC; this is not equivalent, because it may be positive even
4877 if expr is available on all paths (but if expr is not available on
4878 any path, EXPR_SPEC will be positive). */
4880 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4882 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4883 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4884 && (EXPR_SPEC (expr)
4885 || !EXPR_ORIG_BB_INDEX (expr)
4886 || !dominated_by_p (CDI_DOMINATORS,
4887 BASIC_BLOCK_FOR_FN (cfun,
4888 EXPR_ORIG_BB_INDEX (expr)),
4889 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4891 if (sched_verbose >= 4)
4892 sel_print ("Expr %d removed because it would need bookkeeping, which "
4893 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4894 av_set_iter_remove (&i);
4899 /* Moving conditional jump through some instructions.
4901 Consider example:
4903 ... <- current scheduling point
4904 NOTE BASIC BLOCK: <- bb header
4905 (p8) add r14=r14+0x9;;
4906 (p8) mov [r14]=r23
4907 (!p8) jump L1;;
4908 NOTE BASIC BLOCK:
4911 We can schedule jump one cycle earlier, than mov, because they cannot be
4912 executed together as their predicates are mutually exclusive.
4914 This is done in this way: first, new fallthrough basic block is created
4915 after jump (it is always can be done, because there already should be a
4916 fallthrough block, where control flow goes in case of predicate being true -
4917 in our example; otherwise there should be a dependence between those
4918 instructions and jump and we cannot schedule jump right now);
4919 next, all instructions between jump and current scheduling point are moved
4920 to this new block. And the result is this:
4922 NOTE BASIC BLOCK:
4923 (!p8) jump L1 <- current scheduling point
4924 NOTE BASIC BLOCK: <- bb header
4925 (p8) add r14=r14+0x9;;
4926 (p8) mov [r14]=r23
4927 NOTE BASIC BLOCK:
4930 static void
4931 move_cond_jump (rtx insn, bnd_t bnd)
4933 edge ft_edge;
4934 basic_block block_from, block_next, block_new, block_bnd, bb;
4935 rtx next, prev, link, head;
4937 block_from = BLOCK_FOR_INSN (insn);
4938 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4939 prev = BND_TO (bnd);
4941 #ifdef ENABLE_CHECKING
4942 /* Moving of jump should not cross any other jumps or beginnings of new
4943 basic blocks. The only exception is when we move a jump through
4944 mutually exclusive insns along fallthru edges. */
4945 if (block_from != block_bnd)
4947 bb = block_from;
4948 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4949 link = PREV_INSN (link))
4951 if (INSN_P (link))
4952 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4953 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4955 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4956 bb = BLOCK_FOR_INSN (link);
4960 #endif
4962 /* Jump is moved to the boundary. */
4963 next = PREV_INSN (insn);
4964 BND_TO (bnd) = insn;
4966 ft_edge = find_fallthru_edge_from (block_from);
4967 block_next = ft_edge->dest;
4968 /* There must be a fallthrough block (or where should go
4969 control flow in case of false jump predicate otherwise?). */
4970 gcc_assert (block_next);
4972 /* Create new empty basic block after source block. */
4973 block_new = sel_split_edge (ft_edge);
4974 gcc_assert (block_new->next_bb == block_next
4975 && block_from->next_bb == block_new);
4977 /* Move all instructions except INSN to BLOCK_NEW. */
4978 bb = block_bnd;
4979 head = BB_HEAD (block_new);
4980 while (bb != block_from->next_bb)
4982 rtx from, to;
4983 from = bb == block_bnd ? prev : sel_bb_head (bb);
4984 to = bb == block_from ? next : sel_bb_end (bb);
4986 /* The jump being moved can be the first insn in the block.
4987 In this case we don't have to move anything in this block. */
4988 if (NEXT_INSN (to) != from)
4990 reorder_insns (from, to, head);
4992 for (link = to; link != head; link = PREV_INSN (link))
4993 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4994 head = to;
4997 /* Cleanup possibly empty blocks left. */
4998 block_next = bb->next_bb;
4999 if (bb != block_from)
5000 tidy_control_flow (bb, false);
5001 bb = block_next;
5004 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
5005 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
5007 gcc_assert (!sel_bb_empty_p (block_from)
5008 && !sel_bb_empty_p (block_new));
5010 /* Update data sets for BLOCK_NEW to represent that INSN and
5011 instructions from the other branch of INSN is no longer
5012 available at BLOCK_NEW. */
5013 BB_AV_LEVEL (block_new) = global_level;
5014 gcc_assert (BB_LV_SET (block_new) == NULL);
5015 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
5016 update_data_sets (sel_bb_head (block_new));
5018 /* INSN is a new basic block header - so prepare its data
5019 structures and update availability and liveness sets. */
5020 update_data_sets (insn);
5022 if (sched_verbose >= 4)
5023 sel_print ("Moving jump %d\n", INSN_UID (insn));
5026 /* Remove nops generated during move_op for preventing removal of empty
5027 basic blocks. */
5028 static void
5029 remove_temp_moveop_nops (bool full_tidying)
5031 int i;
5032 insn_t insn;
5034 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5036 gcc_assert (INSN_NOP_P (insn));
5037 return_nop_to_pool (insn, full_tidying);
5040 /* Empty the vector. */
5041 if (vec_temp_moveop_nops.length () > 0)
5042 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5045 /* Records the maximal UID before moving up an instruction. Used for
5046 distinguishing between bookkeeping copies and original insns. */
5047 static int max_uid_before_move_op = 0;
5049 /* Remove from AV_VLIW_P all instructions but next when debug counter
5050 tells us so. Next instruction is fetched from BNDS. */
5051 static void
5052 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5054 if (! dbg_cnt (sel_sched_insn_cnt))
5055 /* Leave only the next insn in av_vliw. */
5057 av_set_iterator av_it;
5058 expr_t expr;
5059 bnd_t bnd = BLIST_BND (bnds);
5060 insn_t next = BND_TO (bnd);
5062 gcc_assert (BLIST_NEXT (bnds) == NULL);
5064 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5065 if (EXPR_INSN_RTX (expr) != next)
5066 av_set_iter_remove (&av_it);
5070 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5071 the computed set to *AV_VLIW_P. */
5072 static void
5073 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5075 if (sched_verbose >= 2)
5077 sel_print ("Boundaries: ");
5078 dump_blist (bnds);
5079 sel_print ("\n");
5082 for (; bnds; bnds = BLIST_NEXT (bnds))
5084 bnd_t bnd = BLIST_BND (bnds);
5085 av_set_t av1_copy;
5086 insn_t bnd_to = BND_TO (bnd);
5088 /* Rewind BND->TO to the basic block header in case some bookkeeping
5089 instructions were inserted before BND->TO and it needs to be
5090 adjusted. */
5091 if (sel_bb_head_p (bnd_to))
5092 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5093 else
5094 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5096 bnd_to = PREV_INSN (bnd_to);
5097 if (sel_bb_head_p (bnd_to))
5098 break;
5101 if (BND_TO (bnd) != bnd_to)
5103 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5104 FENCE_INSN (fence) = bnd_to;
5105 BND_TO (bnd) = bnd_to;
5108 av_set_clear (&BND_AV (bnd));
5109 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5111 av_set_clear (&BND_AV1 (bnd));
5112 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5114 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5116 av1_copy = av_set_copy (BND_AV1 (bnd));
5117 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5120 if (sched_verbose >= 2)
5122 sel_print ("Available exprs (vliw form): ");
5123 dump_av_set (*av_vliw_p);
5124 sel_print ("\n");
5128 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5129 expression. When FOR_MOVEOP is true, also replace the register of
5130 expressions found with the register from EXPR_VLIW. */
5131 static av_set_t
5132 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5134 av_set_t expr_seq = NULL;
5135 expr_t expr;
5136 av_set_iterator i;
5138 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5140 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5142 if (for_moveop)
5144 /* The sequential expression has the right form to pass
5145 to move_op except when renaming happened. Put the
5146 correct register in EXPR then. */
5147 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5149 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5151 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5152 stat_renamed_scheduled++;
5154 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5155 This is needed when renaming came up with original
5156 register. */
5157 else if (EXPR_TARGET_AVAILABLE (expr)
5158 != EXPR_TARGET_AVAILABLE (expr_vliw))
5160 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5161 EXPR_TARGET_AVAILABLE (expr) = 1;
5164 if (EXPR_WAS_SUBSTITUTED (expr))
5165 stat_substitutions_total++;
5168 av_set_add (&expr_seq, expr);
5170 /* With substitution inside insn group, it is possible
5171 that more than one expression in expr_seq will correspond
5172 to expr_vliw. In this case, choose one as the attempt to
5173 move both leads to miscompiles. */
5174 break;
5178 if (for_moveop && sched_verbose >= 2)
5180 sel_print ("Best expression(s) (sequential form): ");
5181 dump_av_set (expr_seq);
5182 sel_print ("\n");
5185 return expr_seq;
5189 /* Move nop to previous block. */
5190 static void ATTRIBUTE_UNUSED
5191 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5193 insn_t prev_insn, next_insn, note;
5195 gcc_assert (sel_bb_head_p (nop)
5196 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5197 note = bb_note (BLOCK_FOR_INSN (nop));
5198 prev_insn = sel_bb_end (prev_bb);
5199 next_insn = NEXT_INSN (nop);
5200 gcc_assert (prev_insn != NULL_RTX
5201 && PREV_INSN (note) == prev_insn);
5203 NEXT_INSN (prev_insn) = nop;
5204 PREV_INSN (nop) = prev_insn;
5206 PREV_INSN (note) = nop;
5207 NEXT_INSN (note) = next_insn;
5209 NEXT_INSN (nop) = note;
5210 PREV_INSN (next_insn) = note;
5212 BB_END (prev_bb) = nop;
5213 BLOCK_FOR_INSN (nop) = prev_bb;
5216 /* Prepare a place to insert the chosen expression on BND. */
5217 static insn_t
5218 prepare_place_to_insert (bnd_t bnd)
5220 insn_t place_to_insert;
5222 /* Init place_to_insert before calling move_op, as the later
5223 can possibly remove BND_TO (bnd). */
5224 if (/* If this is not the first insn scheduled. */
5225 BND_PTR (bnd))
5227 /* Add it after last scheduled. */
5228 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5229 if (DEBUG_INSN_P (place_to_insert))
5231 ilist_t l = BND_PTR (bnd);
5232 while ((l = ILIST_NEXT (l)) &&
5233 DEBUG_INSN_P (ILIST_INSN (l)))
5235 if (!l)
5236 place_to_insert = NULL;
5239 else
5240 place_to_insert = NULL;
5242 if (!place_to_insert)
5244 /* Add it before BND_TO. The difference is in the
5245 basic block, where INSN will be added. */
5246 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5247 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5248 == BLOCK_FOR_INSN (BND_TO (bnd)));
5251 return place_to_insert;
5254 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5255 Return the expression to emit in C_EXPR. */
5256 static bool
5257 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5258 av_set_t expr_seq, expr_t c_expr)
5260 bool b, should_move;
5261 unsigned book_uid;
5262 bitmap_iterator bi;
5263 int n_bookkeeping_copies_before_moveop;
5265 /* Make a move. This call will remove the original operation,
5266 insert all necessary bookkeeping instructions and update the
5267 data sets. After that all we have to do is add the operation
5268 at before BND_TO (BND). */
5269 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5270 max_uid_before_move_op = get_max_uid ();
5271 bitmap_clear (current_copies);
5272 bitmap_clear (current_originators);
5274 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5275 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5277 /* We should be able to find the expression we've chosen for
5278 scheduling. */
5279 gcc_assert (b);
5281 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5282 stat_insns_needed_bookkeeping++;
5284 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5286 unsigned uid;
5287 bitmap_iterator bi;
5289 /* We allocate these bitmaps lazily. */
5290 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5291 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5293 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5294 current_originators);
5296 /* Transitively add all originators' originators. */
5297 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5298 if (INSN_ORIGINATORS_BY_UID (uid))
5299 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5300 INSN_ORIGINATORS_BY_UID (uid));
5303 return should_move;
5307 /* Debug a DFA state as an array of bytes. */
5308 static void
5309 debug_state (state_t state)
5311 unsigned char *p;
5312 unsigned int i, size = dfa_state_size;
5314 sel_print ("state (%u):", size);
5315 for (i = 0, p = (unsigned char *) state; i < size; i++)
5316 sel_print (" %d", p[i]);
5317 sel_print ("\n");
5320 /* Advance state on FENCE with INSN. Return true if INSN is
5321 an ASM, and we should advance state once more. */
5322 static bool
5323 advance_state_on_fence (fence_t fence, insn_t insn)
5325 bool asm_p;
5327 if (recog_memoized (insn) >= 0)
5329 int res;
5330 state_t temp_state = alloca (dfa_state_size);
5332 gcc_assert (!INSN_ASM_P (insn));
5333 asm_p = false;
5335 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5336 res = state_transition (FENCE_STATE (fence), insn);
5337 gcc_assert (res < 0);
5339 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5341 FENCE_ISSUED_INSNS (fence)++;
5343 /* We should never issue more than issue_rate insns. */
5344 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5345 gcc_unreachable ();
5348 else
5350 /* This could be an ASM insn which we'd like to schedule
5351 on the next cycle. */
5352 asm_p = INSN_ASM_P (insn);
5353 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5354 advance_one_cycle (fence);
5357 if (sched_verbose >= 2)
5358 debug_state (FENCE_STATE (fence));
5359 if (!DEBUG_INSN_P (insn))
5360 FENCE_STARTS_CYCLE_P (fence) = 0;
5361 FENCE_ISSUE_MORE (fence) = can_issue_more;
5362 return asm_p;
5365 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5366 is nonzero if we need to stall after issuing INSN. */
5367 static void
5368 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5370 bool asm_p;
5372 /* First, reflect that something is scheduled on this fence. */
5373 asm_p = advance_state_on_fence (fence, insn);
5374 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5375 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5376 if (SCHED_GROUP_P (insn))
5378 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5379 SCHED_GROUP_P (insn) = 0;
5381 else
5382 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5383 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5384 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5386 /* Set instruction scheduling info. This will be used in bundling,
5387 pipelining, tick computations etc. */
5388 ++INSN_SCHED_TIMES (insn);
5389 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5390 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5391 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5392 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5394 /* This does not account for adjust_cost hooks, just add the biggest
5395 constant the hook may add to the latency. TODO: make this
5396 a target dependent constant. */
5397 INSN_READY_CYCLE (insn)
5398 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5400 : maximal_insn_latency (insn) + 1);
5402 /* Change these fields last, as they're used above. */
5403 FENCE_AFTER_STALL_P (fence) = 0;
5404 if (asm_p || need_stall)
5405 advance_one_cycle (fence);
5407 /* Indicate that we've scheduled something on this fence. */
5408 FENCE_SCHEDULED_P (fence) = true;
5409 scheduled_something_on_previous_fence = true;
5411 /* Print debug information when insn's fields are updated. */
5412 if (sched_verbose >= 2)
5414 sel_print ("Scheduling insn: ");
5415 dump_insn_1 (insn, 1);
5416 sel_print ("\n");
5420 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5421 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5422 return it. */
5423 static blist_t *
5424 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5425 blist_t *bnds_tailp)
5427 succ_iterator si;
5428 insn_t succ;
5430 advance_deps_context (BND_DC (bnd), insn);
5431 FOR_EACH_SUCC_1 (succ, si, insn,
5432 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5434 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5436 ilist_add (&ptr, insn);
5438 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5439 && is_ineligible_successor (succ, ptr))
5441 ilist_clear (&ptr);
5442 continue;
5445 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5447 if (sched_verbose >= 9)
5448 sel_print ("Updating fence insn from %i to %i\n",
5449 INSN_UID (insn), INSN_UID (succ));
5450 FENCE_INSN (fence) = succ;
5452 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5453 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5456 blist_remove (bndsp);
5457 return bnds_tailp;
5460 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5461 static insn_t
5462 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5464 av_set_t expr_seq;
5465 expr_t c_expr = XALLOCA (expr_def);
5466 insn_t place_to_insert;
5467 insn_t insn;
5468 bool should_move;
5470 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5472 /* In case of scheduling a jump skipping some other instructions,
5473 prepare CFG. After this, jump is at the boundary and can be
5474 scheduled as usual insn by MOVE_OP. */
5475 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5477 insn = EXPR_INSN_RTX (expr_vliw);
5479 /* Speculative jumps are not handled. */
5480 if (insn != BND_TO (bnd)
5481 && !sel_insn_is_speculation_check (insn))
5482 move_cond_jump (insn, bnd);
5485 /* Find a place for C_EXPR to schedule. */
5486 place_to_insert = prepare_place_to_insert (bnd);
5487 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5488 clear_expr (c_expr);
5490 /* Add the instruction. The corner case to care about is when
5491 the expr_seq set has more than one expr, and we chose the one that
5492 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5493 we can't use it. Generate the new vinsn. */
5494 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5496 vinsn_t vinsn_new;
5498 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5499 change_vinsn_in_expr (expr_vliw, vinsn_new);
5500 should_move = false;
5502 if (should_move)
5503 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5504 else
5505 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5506 place_to_insert);
5508 /* Return the nops generated for preserving of data sets back
5509 into pool. */
5510 if (INSN_NOP_P (place_to_insert))
5511 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5512 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5514 av_set_clear (&expr_seq);
5516 /* Save the expression scheduled so to reset target availability if we'll
5517 meet it later on the same fence. */
5518 if (EXPR_WAS_RENAMED (expr_vliw))
5519 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5521 /* Check that the recent movement didn't destroyed loop
5522 structure. */
5523 gcc_assert (!pipelining_p
5524 || current_loop_nest == NULL
5525 || loop_latch_edge (current_loop_nest));
5526 return insn;
5529 /* Stall for N cycles on FENCE. */
5530 static void
5531 stall_for_cycles (fence_t fence, int n)
5533 int could_more;
5535 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5536 while (n--)
5537 advance_one_cycle (fence);
5538 if (could_more)
5539 FENCE_AFTER_STALL_P (fence) = 1;
5542 /* Gather a parallel group of insns at FENCE and assign their seqno
5543 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5544 list for later recalculation of seqnos. */
5545 static void
5546 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5548 blist_t bnds = NULL, *bnds_tailp;
5549 av_set_t av_vliw = NULL;
5550 insn_t insn = FENCE_INSN (fence);
5552 if (sched_verbose >= 2)
5553 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5554 INSN_UID (insn), FENCE_CYCLE (fence));
5556 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5557 bnds_tailp = &BLIST_NEXT (bnds);
5558 set_target_context (FENCE_TC (fence));
5559 can_issue_more = FENCE_ISSUE_MORE (fence);
5560 target_bb = INSN_BB (insn);
5562 /* Do while we can add any operation to the current group. */
5565 blist_t *bnds_tailp1, *bndsp;
5566 expr_t expr_vliw;
5567 int need_stall = false;
5568 int was_stall = 0, scheduled_insns = 0;
5569 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5570 int max_stall = pipelining_p ? 1 : 3;
5571 bool last_insn_was_debug = false;
5572 bool was_debug_bb_end_p = false;
5574 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5575 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5576 remove_insns_for_debug (bnds, &av_vliw);
5578 /* Return early if we have nothing to schedule. */
5579 if (av_vliw == NULL)
5580 break;
5582 /* Choose the best expression and, if needed, destination register
5583 for it. */
5586 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5587 if (! expr_vliw && need_stall)
5589 /* All expressions required a stall. Do not recompute av sets
5590 as we'll get the same answer (modulo the insns between
5591 the fence and its boundary, which will not be available for
5592 pipelining).
5593 If we are going to stall for too long, break to recompute av
5594 sets and bring more insns for pipelining. */
5595 was_stall++;
5596 if (need_stall <= 3)
5597 stall_for_cycles (fence, need_stall);
5598 else
5600 stall_for_cycles (fence, 1);
5601 break;
5605 while (! expr_vliw && need_stall);
5607 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5608 if (!expr_vliw)
5610 av_set_clear (&av_vliw);
5611 break;
5614 bndsp = &bnds;
5615 bnds_tailp1 = bnds_tailp;
5618 /* This code will be executed only once until we'd have several
5619 boundaries per fence. */
5621 bnd_t bnd = BLIST_BND (*bndsp);
5623 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5625 bndsp = &BLIST_NEXT (*bndsp);
5626 continue;
5629 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5630 last_insn_was_debug = DEBUG_INSN_P (insn);
5631 if (last_insn_was_debug)
5632 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5633 update_fence_and_insn (fence, insn, need_stall);
5634 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5636 /* Add insn to the list of scheduled on this cycle instructions. */
5637 ilist_add (*scheduled_insns_tailpp, insn);
5638 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5640 while (*bndsp != *bnds_tailp1);
5642 av_set_clear (&av_vliw);
5643 if (!last_insn_was_debug)
5644 scheduled_insns++;
5646 /* We currently support information about candidate blocks only for
5647 one 'target_bb' block. Hence we can't schedule after jump insn,
5648 as this will bring two boundaries and, hence, necessity to handle
5649 information for two or more blocks concurrently. */
5650 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5651 || (was_stall
5652 && (was_stall >= max_stall
5653 || scheduled_insns >= max_insns)))
5654 break;
5656 while (bnds);
5658 gcc_assert (!FENCE_BNDS (fence));
5660 /* Update boundaries of the FENCE. */
5661 while (bnds)
5663 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5665 if (ptr)
5667 insn = ILIST_INSN (ptr);
5669 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5670 ilist_add (&FENCE_BNDS (fence), insn);
5673 blist_remove (&bnds);
5676 /* Update target context on the fence. */
5677 reset_target_context (FENCE_TC (fence), false);
5680 /* All exprs in ORIG_OPS must have the same destination register or memory.
5681 Return that destination. */
5682 static rtx
5683 get_dest_from_orig_ops (av_set_t orig_ops)
5685 rtx dest = NULL_RTX;
5686 av_set_iterator av_it;
5687 expr_t expr;
5688 bool first_p = true;
5690 FOR_EACH_EXPR (expr, av_it, orig_ops)
5692 rtx x = EXPR_LHS (expr);
5694 if (first_p)
5696 first_p = false;
5697 dest = x;
5699 else
5700 gcc_assert (dest == x
5701 || (dest != NULL_RTX && x != NULL_RTX
5702 && rtx_equal_p (dest, x)));
5705 return dest;
5708 /* Update data sets for the bookkeeping block and record those expressions
5709 which become no longer available after inserting this bookkeeping. */
5710 static void
5711 update_and_record_unavailable_insns (basic_block book_block)
5713 av_set_iterator i;
5714 av_set_t old_av_set = NULL;
5715 expr_t cur_expr;
5716 rtx bb_end = sel_bb_end (book_block);
5718 /* First, get correct liveness in the bookkeeping block. The problem is
5719 the range between the bookeeping insn and the end of block. */
5720 update_liveness_on_insn (bb_end);
5721 if (control_flow_insn_p (bb_end))
5722 update_liveness_on_insn (PREV_INSN (bb_end));
5724 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5725 fence above, where we may choose to schedule an insn which is
5726 actually blocked from moving up with the bookkeeping we create here. */
5727 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5729 old_av_set = av_set_copy (BB_AV_SET (book_block));
5730 update_data_sets (sel_bb_head (book_block));
5732 /* Traverse all the expressions in the old av_set and check whether
5733 CUR_EXPR is in new AV_SET. */
5734 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5736 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5737 EXPR_VINSN (cur_expr));
5739 if (! new_expr
5740 /* In this case, we can just turn off the E_T_A bit, but we can't
5741 represent this information with the current vector. */
5742 || EXPR_TARGET_AVAILABLE (new_expr)
5743 != EXPR_TARGET_AVAILABLE (cur_expr))
5744 /* Unfortunately, the below code could be also fired up on
5745 separable insns, e.g. when moving insns through the new
5746 speculation check as in PR 53701. */
5747 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5750 av_set_clear (&old_av_set);
5754 /* The main effect of this function is that sparams->c_expr is merged
5755 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5756 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5757 lparams->c_expr_merged is copied back to sparams->c_expr after all
5758 successors has been traversed. lparams->c_expr_local is an expr allocated
5759 on stack in the caller function, and is used if there is more than one
5760 successor.
5762 SUCC is one of the SUCCS_NORMAL successors of INSN,
5763 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5764 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5765 static void
5766 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5767 insn_t succ ATTRIBUTE_UNUSED,
5768 int moveop_drv_call_res,
5769 cmpd_local_params_p lparams, void *static_params)
5771 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5773 /* Nothing to do, if original expr wasn't found below. */
5774 if (moveop_drv_call_res != 1)
5775 return;
5777 /* If this is a first successor. */
5778 if (!lparams->c_expr_merged)
5780 lparams->c_expr_merged = sparams->c_expr;
5781 sparams->c_expr = lparams->c_expr_local;
5783 else
5785 /* We must merge all found expressions to get reasonable
5786 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5787 do so then we can first find the expr with epsilon
5788 speculation success probability and only then with the
5789 good probability. As a result the insn will get epsilon
5790 probability and will never be scheduled because of
5791 weakness_cutoff in find_best_expr.
5793 We call merge_expr_data here instead of merge_expr
5794 because due to speculation C_EXPR and X may have the
5795 same insns with different speculation types. And as of
5796 now such insns are considered non-equal.
5798 However, EXPR_SCHED_TIMES is different -- we must get
5799 SCHED_TIMES from a real insn, not a bookkeeping copy.
5800 We force this here. Instead, we may consider merging
5801 SCHED_TIMES to the maximum instead of minimum in the
5802 below function. */
5803 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5805 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5806 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5807 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5809 clear_expr (sparams->c_expr);
5813 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5815 SUCC is one of the SUCCS_NORMAL successors of INSN,
5816 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5817 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5818 STATIC_PARAMS contain USED_REGS set. */
5819 static void
5820 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5821 int moveop_drv_call_res,
5822 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5823 void *static_params)
5825 regset succ_live;
5826 fur_static_params_p sparams = (fur_static_params_p) static_params;
5828 /* Here we compute live regsets only for branches that do not lie
5829 on the code motion paths. These branches correspond to value
5830 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5831 for such branches code_motion_path_driver is not called. */
5832 if (moveop_drv_call_res != 0)
5833 return;
5835 /* Mark all registers that do not meet the following condition:
5836 (3) not live on the other path of any conditional branch
5837 that is passed by the operation, in case original
5838 operations are not present on both paths of the
5839 conditional branch. */
5840 succ_live = compute_live (succ);
5841 IOR_REG_SET (sparams->used_regs, succ_live);
5844 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5845 into SP->CEXPR. */
5846 static void
5847 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5849 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5851 sp->c_expr = lp->c_expr_merged;
5854 /* Track bookkeeping copies created, insns scheduled, and blocks for
5855 rescheduling when INSN is found by move_op. */
5856 static void
5857 track_scheduled_insns_and_blocks (rtx insn)
5859 /* Even if this insn can be a copy that will be removed during current move_op,
5860 we still need to count it as an originator. */
5861 bitmap_set_bit (current_originators, INSN_UID (insn));
5863 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5865 /* Note that original block needs to be rescheduled, as we pulled an
5866 instruction out of it. */
5867 if (INSN_SCHED_TIMES (insn) > 0)
5868 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5869 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5870 num_insns_scheduled++;
5873 /* For instructions we must immediately remove insn from the
5874 stream, so subsequent update_data_sets () won't include this
5875 insn into av_set.
5876 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5877 if (INSN_UID (insn) > max_uid_before_move_op)
5878 stat_bookkeeping_copies--;
5881 /* Emit a register-register copy for INSN if needed. Return true if
5882 emitted one. PARAMS is the move_op static parameters. */
5883 static bool
5884 maybe_emit_renaming_copy (rtx insn,
5885 moveop_static_params_p params)
5887 bool insn_emitted = false;
5888 rtx cur_reg;
5890 /* Bail out early when expression can not be renamed at all. */
5891 if (!EXPR_SEPARABLE_P (params->c_expr))
5892 return false;
5894 cur_reg = expr_dest_reg (params->c_expr);
5895 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5897 /* If original operation has expr and the register chosen for
5898 that expr is not original operation's dest reg, substitute
5899 operation's right hand side with the register chosen. */
5900 if (REGNO (params->dest) != REGNO (cur_reg))
5902 insn_t reg_move_insn, reg_move_insn_rtx;
5904 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5905 params->dest);
5906 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5907 INSN_EXPR (insn),
5908 INSN_SEQNO (insn),
5909 insn);
5910 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5911 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5913 insn_emitted = true;
5914 params->was_renamed = true;
5917 return insn_emitted;
5920 /* Emit a speculative check for INSN speculated as EXPR if needed.
5921 Return true if we've emitted one. PARAMS is the move_op static
5922 parameters. */
5923 static bool
5924 maybe_emit_speculative_check (rtx insn, expr_t expr,
5925 moveop_static_params_p params)
5927 bool insn_emitted = false;
5928 insn_t x;
5929 ds_t check_ds;
5931 check_ds = get_spec_check_type_for_insn (insn, expr);
5932 if (check_ds != 0)
5934 /* A speculation check should be inserted. */
5935 x = create_speculation_check (params->c_expr, check_ds, insn);
5936 insn_emitted = true;
5938 else
5940 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5941 x = insn;
5944 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5945 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5946 return insn_emitted;
5949 /* Handle transformations that leave an insn in place of original
5950 insn such as renaming/speculation. Return true if one of such
5951 transformations actually happened, and we have emitted this insn. */
5952 static bool
5953 handle_emitting_transformations (rtx insn, expr_t expr,
5954 moveop_static_params_p params)
5956 bool insn_emitted = false;
5958 insn_emitted = maybe_emit_renaming_copy (insn, params);
5959 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5961 return insn_emitted;
5964 /* If INSN is the only insn in the basic block (not counting JUMP,
5965 which may be a jump to next insn, and DEBUG_INSNs), we want to
5966 leave a NOP there till the return to fill_insns. */
5968 static bool
5969 need_nop_to_preserve_insn_bb (rtx insn)
5971 insn_t bb_head, bb_end, bb_next, in_next;
5972 basic_block bb = BLOCK_FOR_INSN (insn);
5974 bb_head = sel_bb_head (bb);
5975 bb_end = sel_bb_end (bb);
5977 if (bb_head == bb_end)
5978 return true;
5980 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5981 bb_head = NEXT_INSN (bb_head);
5983 if (bb_head == bb_end)
5984 return true;
5986 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5987 bb_end = PREV_INSN (bb_end);
5989 if (bb_head == bb_end)
5990 return true;
5992 bb_next = NEXT_INSN (bb_head);
5993 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5994 bb_next = NEXT_INSN (bb_next);
5996 if (bb_next == bb_end && JUMP_P (bb_end))
5997 return true;
5999 in_next = NEXT_INSN (insn);
6000 while (DEBUG_INSN_P (in_next))
6001 in_next = NEXT_INSN (in_next);
6003 if (IN_CURRENT_FENCE_P (in_next))
6004 return true;
6006 return false;
6009 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
6010 is not removed but reused when INSN is re-emitted. */
6011 static void
6012 remove_insn_from_stream (rtx insn, bool only_disconnect)
6014 /* If there's only one insn in the BB, make sure that a nop is
6015 inserted into it, so the basic block won't disappear when we'll
6016 delete INSN below with sel_remove_insn. It should also survive
6017 till the return to fill_insns. */
6018 if (need_nop_to_preserve_insn_bb (insn))
6020 insn_t nop = get_nop_from_pool (insn);
6021 gcc_assert (INSN_NOP_P (nop));
6022 vec_temp_moveop_nops.safe_push (nop);
6025 sel_remove_insn (insn, only_disconnect, false);
6028 /* This function is called when original expr is found.
6029 INSN - current insn traversed, EXPR - the corresponding expr found.
6030 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6031 is static parameters of move_op. */
6032 static void
6033 move_op_orig_expr_found (insn_t insn, expr_t expr,
6034 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6035 void *static_params)
6037 bool only_disconnect;
6038 moveop_static_params_p params = (moveop_static_params_p) static_params;
6040 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6041 track_scheduled_insns_and_blocks (insn);
6042 handle_emitting_transformations (insn, expr, params);
6043 only_disconnect = params->uid == INSN_UID (insn);
6045 /* Mark that we've disconnected an insn. */
6046 if (only_disconnect)
6047 params->uid = -1;
6048 remove_insn_from_stream (insn, only_disconnect);
6051 /* The function is called when original expr is found.
6052 INSN - current insn traversed, EXPR - the corresponding expr found,
6053 crosses_call and original_insns in STATIC_PARAMS are updated. */
6054 static void
6055 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6056 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6057 void *static_params)
6059 fur_static_params_p params = (fur_static_params_p) static_params;
6060 regset tmp;
6062 if (CALL_P (insn))
6063 params->crosses_call = true;
6065 def_list_add (params->original_insns, insn, params->crosses_call);
6067 /* Mark the registers that do not meet the following condition:
6068 (2) not among the live registers of the point
6069 immediately following the first original operation on
6070 a given downward path, except for the original target
6071 register of the operation. */
6072 tmp = get_clear_regset_from_pool ();
6073 compute_live_below_insn (insn, tmp);
6074 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6075 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6076 IOR_REG_SET (params->used_regs, tmp);
6077 return_regset_to_pool (tmp);
6079 /* (*1) We need to add to USED_REGS registers that are read by
6080 INSN's lhs. This may lead to choosing wrong src register.
6081 E.g. (scheduling const expr enabled):
6083 429: ax=0x0 <- Can't use AX for this expr (0x0)
6084 433: dx=[bp-0x18]
6085 427: [ax+dx+0x1]=ax
6086 REG_DEAD: ax
6087 168: di=dx
6088 REG_DEAD: dx
6090 /* FIXME: see comment above and enable MEM_P
6091 in vinsn_separable_p. */
6092 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6093 || !MEM_P (INSN_LHS (insn)));
6096 /* This function is called on the ascending pass, before returning from
6097 current basic block. */
6098 static void
6099 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6100 void *static_params)
6102 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6103 basic_block book_block = NULL;
6105 /* When we have removed the boundary insn for scheduling, which also
6106 happened to be the end insn in its bb, we don't need to update sets. */
6107 if (!lparams->removed_last_insn
6108 && lparams->e1
6109 && sel_bb_head_p (insn))
6111 /* We should generate bookkeeping code only if we are not at the
6112 top level of the move_op. */
6113 if (sel_num_cfg_preds_gt_1 (insn))
6114 book_block = generate_bookkeeping_insn (sparams->c_expr,
6115 lparams->e1, lparams->e2);
6116 /* Update data sets for the current insn. */
6117 update_data_sets (insn);
6120 /* If bookkeeping code was inserted, we need to update av sets of basic
6121 block that received bookkeeping. After generation of bookkeeping insn,
6122 bookkeeping block does not contain valid av set because we are not following
6123 the original algorithm in every detail with regards to e.g. renaming
6124 simple reg-reg copies. Consider example:
6126 bookkeeping block scheduling fence
6128 \ join /
6129 ----------
6131 ----------
6134 r1 := r2 r1 := r3
6136 We try to schedule insn "r1 := r3" on the current
6137 scheduling fence. Also, note that av set of bookkeeping block
6138 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6139 been scheduled, the CFG is as follows:
6141 r1 := r3 r1 := r3
6142 bookkeeping block scheduling fence
6144 \ join /
6145 ----------
6147 ----------
6150 r1 := r2
6152 Here, insn "r1 := r3" was scheduled at the current scheduling point
6153 and bookkeeping code was generated at the bookeeping block. This
6154 way insn "r1 := r2" is no longer available as a whole instruction
6155 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6156 This situation is handled by calling update_data_sets.
6158 Since update_data_sets is called only on the bookkeeping block, and
6159 it also may have predecessors with av_sets, containing instructions that
6160 are no longer available, we save all such expressions that become
6161 unavailable during data sets update on the bookkeeping block in
6162 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6163 expressions for scheduling. This allows us to avoid recomputation of
6164 av_sets outside the code motion path. */
6166 if (book_block)
6167 update_and_record_unavailable_insns (book_block);
6169 /* If INSN was previously marked for deletion, it's time to do it. */
6170 if (lparams->removed_last_insn)
6171 insn = PREV_INSN (insn);
6173 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6174 kill a block with a single nop in which the insn should be emitted. */
6175 if (lparams->e1)
6176 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6179 /* This function is called on the ascending pass, before returning from the
6180 current basic block. */
6181 static void
6182 fur_at_first_insn (insn_t insn,
6183 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6184 void *static_params ATTRIBUTE_UNUSED)
6186 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6187 || AV_LEVEL (insn) == -1);
6190 /* Called on the backward stage of recursion to call moveup_expr for insn
6191 and sparams->c_expr. */
6192 static void
6193 move_op_ascend (insn_t insn, void *static_params)
6195 enum MOVEUP_EXPR_CODE res;
6196 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6198 if (! INSN_NOP_P (insn))
6200 res = moveup_expr_cached (sparams->c_expr, insn, false);
6201 gcc_assert (res != MOVEUP_EXPR_NULL);
6204 /* Update liveness for this insn as it was invalidated. */
6205 update_liveness_on_insn (insn);
6208 /* This function is called on enter to the basic block.
6209 Returns TRUE if this block already have been visited and
6210 code_motion_path_driver should return 1, FALSE otherwise. */
6211 static int
6212 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6213 void *static_params, bool visited_p)
6215 fur_static_params_p sparams = (fur_static_params_p) static_params;
6217 if (visited_p)
6219 /* If we have found something below this block, there should be at
6220 least one insn in ORIGINAL_INSNS. */
6221 gcc_assert (*sparams->original_insns);
6223 /* Adjust CROSSES_CALL, since we may have come to this block along
6224 different path. */
6225 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6226 |= sparams->crosses_call;
6228 else
6229 local_params->old_original_insns = *sparams->original_insns;
6231 return 1;
6234 /* Same as above but for move_op. */
6235 static int
6236 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6237 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6238 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6240 if (visited_p)
6241 return -1;
6242 return 1;
6245 /* This function is called while descending current basic block if current
6246 insn is not the original EXPR we're searching for.
6248 Return value: FALSE, if code_motion_path_driver should perform a local
6249 cleanup and return 0 itself;
6250 TRUE, if code_motion_path_driver should continue. */
6251 static bool
6252 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6253 void *static_params)
6255 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6257 #ifdef ENABLE_CHECKING
6258 sparams->failed_insn = insn;
6259 #endif
6261 /* If we're scheduling separate expr, in order to generate correct code
6262 we need to stop the search at bookkeeping code generated with the
6263 same destination register or memory. */
6264 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6265 return false;
6266 return true;
6269 /* This function is called while descending current basic block if current
6270 insn is not the original EXPR we're searching for.
6272 Return value: TRUE (code_motion_path_driver should continue). */
6273 static bool
6274 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6276 bool mutexed;
6277 expr_t r;
6278 av_set_iterator avi;
6279 fur_static_params_p sparams = (fur_static_params_p) static_params;
6281 if (CALL_P (insn))
6282 sparams->crosses_call = true;
6283 else if (DEBUG_INSN_P (insn))
6284 return true;
6286 /* If current insn we are looking at cannot be executed together
6287 with original insn, then we can skip it safely.
6289 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6290 INSN = (!p6) r14 = r14 + 1;
6292 Here we can schedule ORIG_OP with lhs = r14, though only
6293 looking at the set of used and set registers of INSN we must
6294 forbid it. So, add set/used in INSN registers to the
6295 untouchable set only if there is an insn in ORIG_OPS that can
6296 affect INSN. */
6297 mutexed = true;
6298 FOR_EACH_EXPR (r, avi, orig_ops)
6299 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6301 mutexed = false;
6302 break;
6305 /* Mark all registers that do not meet the following condition:
6306 (1) Not set or read on any path from xi to an instance of the
6307 original operation. */
6308 if (!mutexed)
6310 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6311 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6312 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6315 return true;
6318 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6319 struct code_motion_path_driver_info_def move_op_hooks = {
6320 move_op_on_enter,
6321 move_op_orig_expr_found,
6322 move_op_orig_expr_not_found,
6323 move_op_merge_succs,
6324 move_op_after_merge_succs,
6325 move_op_ascend,
6326 move_op_at_first_insn,
6327 SUCCS_NORMAL,
6328 "move_op"
6331 /* Hooks and data to perform find_used_regs operations
6332 with code_motion_path_driver. */
6333 struct code_motion_path_driver_info_def fur_hooks = {
6334 fur_on_enter,
6335 fur_orig_expr_found,
6336 fur_orig_expr_not_found,
6337 fur_merge_succs,
6338 NULL, /* fur_after_merge_succs */
6339 NULL, /* fur_ascend */
6340 fur_at_first_insn,
6341 SUCCS_ALL,
6342 "find_used_regs"
6345 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6346 code_motion_path_driver is called recursively. Original operation
6347 was found at least on one path that is starting with one of INSN's
6348 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6349 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6350 of either move_op or find_used_regs depending on the caller.
6352 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6353 know for sure at this point. */
6354 static int
6355 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6356 ilist_t path, void *static_params)
6358 int res = 0;
6359 succ_iterator succ_i;
6360 rtx succ;
6361 basic_block bb;
6362 int old_index;
6363 unsigned old_succs;
6365 struct cmpd_local_params lparams;
6366 expr_def _x;
6368 lparams.c_expr_local = &_x;
6369 lparams.c_expr_merged = NULL;
6371 /* We need to process only NORMAL succs for move_op, and collect live
6372 registers from ALL branches (including those leading out of the
6373 region) for find_used_regs.
6375 In move_op, there can be a case when insn's bb number has changed
6376 due to created bookkeeping. This happens very rare, as we need to
6377 move expression from the beginning to the end of the same block.
6378 Rescan successors in this case. */
6380 rescan:
6381 bb = BLOCK_FOR_INSN (insn);
6382 old_index = bb->index;
6383 old_succs = EDGE_COUNT (bb->succs);
6385 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6387 int b;
6389 lparams.e1 = succ_i.e1;
6390 lparams.e2 = succ_i.e2;
6392 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6393 current region). */
6394 if (succ_i.current_flags == SUCCS_NORMAL)
6395 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6396 static_params);
6397 else
6398 b = 0;
6400 /* Merge c_expres found or unify live register sets from different
6401 successors. */
6402 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6403 static_params);
6404 if (b == 1)
6405 res = b;
6406 else if (b == -1 && res != 1)
6407 res = b;
6409 /* We have simplified the control flow below this point. In this case,
6410 the iterator becomes invalid. We need to try again.
6411 If we have removed the insn itself, it could be only an
6412 unconditional jump. Thus, do not rescan but break immediately --
6413 we have already visited the only successor block. */
6414 if (!BLOCK_FOR_INSN (insn))
6416 if (sched_verbose >= 6)
6417 sel_print ("Not doing rescan: already visited the only successor"
6418 " of block %d\n", old_index);
6419 break;
6421 if (BLOCK_FOR_INSN (insn)->index != old_index
6422 || EDGE_COUNT (bb->succs) != old_succs)
6424 if (sched_verbose >= 6)
6425 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6426 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6427 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6428 goto rescan;
6432 #ifdef ENABLE_CHECKING
6433 /* Here, RES==1 if original expr was found at least for one of the
6434 successors. After the loop, RES may happen to have zero value
6435 only if at some point the expr searched is present in av_set, but is
6436 not found below. In most cases, this situation is an error.
6437 The exception is when the original operation is blocked by
6438 bookkeeping generated for another fence or for another path in current
6439 move_op. */
6440 gcc_assert (res == 1
6441 || (res == 0
6442 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6443 static_params))
6444 || res == -1);
6445 #endif
6447 /* Merge data, clean up, etc. */
6448 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6449 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6451 return res;
6455 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6456 is the pointer to the av set with expressions we were looking for,
6457 PATH_P is the pointer to the traversed path. */
6458 static inline void
6459 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6461 ilist_remove (path_p);
6462 av_set_clear (orig_ops_p);
6465 /* The driver function that implements move_op or find_used_regs
6466 functionality dependent whether code_motion_path_driver_INFO is set to
6467 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6468 of code (CFG traversal etc) that are shared among both functions. INSN
6469 is the insn we're starting the search from, ORIG_OPS are the expressions
6470 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6471 parameters of the driver, and STATIC_PARAMS are static parameters of
6472 the caller.
6474 Returns whether original instructions were found. Note that top-level
6475 code_motion_path_driver always returns true. */
6476 static int
6477 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6478 cmpd_local_params_p local_params_in,
6479 void *static_params)
6481 expr_t expr = NULL;
6482 basic_block bb = BLOCK_FOR_INSN (insn);
6483 insn_t first_insn, bb_tail, before_first;
6484 bool removed_last_insn = false;
6486 if (sched_verbose >= 6)
6488 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6489 dump_insn (insn);
6490 sel_print (",");
6491 dump_av_set (orig_ops);
6492 sel_print (")\n");
6495 gcc_assert (orig_ops);
6497 /* If no original operations exist below this insn, return immediately. */
6498 if (is_ineligible_successor (insn, path))
6500 if (sched_verbose >= 6)
6501 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6502 return false;
6505 /* The block can have invalid av set, in which case it was created earlier
6506 during move_op. Return immediately. */
6507 if (sel_bb_head_p (insn))
6509 if (! AV_SET_VALID_P (insn))
6511 if (sched_verbose >= 6)
6512 sel_print ("Returned from block %d as it had invalid av set\n",
6513 bb->index);
6514 return false;
6517 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6519 /* We have already found an original operation on this branch, do not
6520 go any further and just return TRUE here. If we don't stop here,
6521 function can have exponential behaviour even on the small code
6522 with many different paths (e.g. with data speculation and
6523 recovery blocks). */
6524 if (sched_verbose >= 6)
6525 sel_print ("Block %d already visited in this traversal\n", bb->index);
6526 if (code_motion_path_driver_info->on_enter)
6527 return code_motion_path_driver_info->on_enter (insn,
6528 local_params_in,
6529 static_params,
6530 true);
6534 if (code_motion_path_driver_info->on_enter)
6535 code_motion_path_driver_info->on_enter (insn, local_params_in,
6536 static_params, false);
6537 orig_ops = av_set_copy (orig_ops);
6539 /* Filter the orig_ops set. */
6540 if (AV_SET_VALID_P (insn))
6541 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6543 /* If no more original ops, return immediately. */
6544 if (!orig_ops)
6546 if (sched_verbose >= 6)
6547 sel_print ("No intersection with av set of block %d\n", bb->index);
6548 return false;
6551 /* For non-speculative insns we have to leave only one form of the
6552 original operation, because if we don't, we may end up with
6553 different C_EXPRes and, consequently, with bookkeepings for different
6554 expression forms along the same code motion path. That may lead to
6555 generation of incorrect code. So for each code motion we stick to
6556 the single form of the instruction, except for speculative insns
6557 which we need to keep in different forms with all speculation
6558 types. */
6559 av_set_leave_one_nonspec (&orig_ops);
6561 /* It is not possible that all ORIG_OPS are filtered out. */
6562 gcc_assert (orig_ops);
6564 /* It is enough to place only heads and tails of visited basic blocks into
6565 the PATH. */
6566 ilist_add (&path, insn);
6567 first_insn = insn;
6568 bb_tail = sel_bb_end (bb);
6570 /* Descend the basic block in search of the original expr; this part
6571 corresponds to the part of the original move_op procedure executed
6572 before the recursive call. */
6573 for (;;)
6575 /* Look at the insn and decide if it could be an ancestor of currently
6576 scheduling operation. If it is so, then the insn "dest = op" could
6577 either be replaced with "dest = reg", because REG now holds the result
6578 of OP, or just removed, if we've scheduled the insn as a whole.
6580 If this insn doesn't contain currently scheduling OP, then proceed
6581 with searching and look at its successors. Operations we're searching
6582 for could have changed when moving up through this insn via
6583 substituting. In this case, perform unsubstitution on them first.
6585 When traversing the DAG below this insn is finished, insert
6586 bookkeeping code, if the insn is a joint point, and remove
6587 leftovers. */
6589 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6590 if (expr)
6592 insn_t last_insn = PREV_INSN (insn);
6594 /* We have found the original operation. */
6595 if (sched_verbose >= 6)
6596 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6598 code_motion_path_driver_info->orig_expr_found
6599 (insn, expr, local_params_in, static_params);
6601 /* Step back, so on the way back we'll start traversing from the
6602 previous insn (or we'll see that it's bb_note and skip that
6603 loop). */
6604 if (insn == first_insn)
6606 first_insn = NEXT_INSN (last_insn);
6607 removed_last_insn = sel_bb_end_p (last_insn);
6609 insn = last_insn;
6610 break;
6612 else
6614 /* We haven't found the original expr, continue descending the basic
6615 block. */
6616 if (code_motion_path_driver_info->orig_expr_not_found
6617 (insn, orig_ops, static_params))
6619 /* Av set ops could have been changed when moving through this
6620 insn. To find them below it, we have to un-substitute them. */
6621 undo_transformations (&orig_ops, insn);
6623 else
6625 /* Clean up and return, if the hook tells us to do so. It may
6626 happen if we've encountered the previously created
6627 bookkeeping. */
6628 code_motion_path_driver_cleanup (&orig_ops, &path);
6629 return -1;
6632 gcc_assert (orig_ops);
6635 /* Stop at insn if we got to the end of BB. */
6636 if (insn == bb_tail)
6637 break;
6639 insn = NEXT_INSN (insn);
6642 /* Here INSN either points to the insn before the original insn (may be
6643 bb_note, if original insn was a bb_head) or to the bb_end. */
6644 if (!expr)
6646 int res;
6647 rtx last_insn = PREV_INSN (insn);
6648 bool added_to_path;
6650 gcc_assert (insn == sel_bb_end (bb));
6652 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6653 it's already in PATH then). */
6654 if (insn != first_insn)
6656 ilist_add (&path, insn);
6657 added_to_path = true;
6659 else
6660 added_to_path = false;
6662 /* Process_successors should be able to find at least one
6663 successor for which code_motion_path_driver returns TRUE. */
6664 res = code_motion_process_successors (insn, orig_ops,
6665 path, static_params);
6667 /* Jump in the end of basic block could have been removed or replaced
6668 during code_motion_process_successors, so recompute insn as the
6669 last insn in bb. */
6670 if (NEXT_INSN (last_insn) != insn)
6672 insn = sel_bb_end (bb);
6673 first_insn = sel_bb_head (bb);
6676 /* Remove bb tail from path. */
6677 if (added_to_path)
6678 ilist_remove (&path);
6680 if (res != 1)
6682 /* This is the case when one of the original expr is no longer available
6683 due to bookkeeping created on this branch with the same register.
6684 In the original algorithm, which doesn't have update_data_sets call
6685 on a bookkeeping block, it would simply result in returning
6686 FALSE when we've encountered a previously generated bookkeeping
6687 insn in moveop_orig_expr_not_found. */
6688 code_motion_path_driver_cleanup (&orig_ops, &path);
6689 return res;
6693 /* Don't need it any more. */
6694 av_set_clear (&orig_ops);
6696 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6697 the beginning of the basic block. */
6698 before_first = PREV_INSN (first_insn);
6699 while (insn != before_first)
6701 if (code_motion_path_driver_info->ascend)
6702 code_motion_path_driver_info->ascend (insn, static_params);
6704 insn = PREV_INSN (insn);
6707 /* Now we're at the bb head. */
6708 insn = first_insn;
6709 ilist_remove (&path);
6710 local_params_in->removed_last_insn = removed_last_insn;
6711 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6713 /* This should be the very last operation as at bb head we could change
6714 the numbering by creating bookkeeping blocks. */
6715 if (removed_last_insn)
6716 insn = PREV_INSN (insn);
6718 /* If we have simplified the control flow and removed the first jump insn,
6719 there's no point in marking this block in the visited blocks bitmap. */
6720 if (BLOCK_FOR_INSN (insn))
6721 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6722 return true;
6725 /* Move up the operations from ORIG_OPS set traversing the dag starting
6726 from INSN. PATH represents the edges traversed so far.
6727 DEST is the register chosen for scheduling the current expr. Insert
6728 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6729 C_EXPR is how it looks like at the given cfg point.
6730 Set *SHOULD_MOVE to indicate whether we have only disconnected
6731 one of the insns found.
6733 Returns whether original instructions were found, which is asserted
6734 to be true in the caller. */
6735 static bool
6736 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6737 rtx dest, expr_t c_expr, bool *should_move)
6739 struct moveop_static_params sparams;
6740 struct cmpd_local_params lparams;
6741 int res;
6743 /* Init params for code_motion_path_driver. */
6744 sparams.dest = dest;
6745 sparams.c_expr = c_expr;
6746 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6747 #ifdef ENABLE_CHECKING
6748 sparams.failed_insn = NULL;
6749 #endif
6750 sparams.was_renamed = false;
6751 lparams.e1 = NULL;
6753 /* We haven't visited any blocks yet. */
6754 bitmap_clear (code_motion_visited_blocks);
6756 /* Set appropriate hooks and data. */
6757 code_motion_path_driver_info = &move_op_hooks;
6758 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6760 gcc_assert (res != -1);
6762 if (sparams.was_renamed)
6763 EXPR_WAS_RENAMED (expr_vliw) = true;
6765 *should_move = (sparams.uid == -1);
6767 return res;
6771 /* Functions that work with regions. */
6773 /* Current number of seqno used in init_seqno and init_seqno_1. */
6774 static int cur_seqno;
6776 /* A helper for init_seqno. Traverse the region starting from BB and
6777 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6778 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6779 static void
6780 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6782 int bbi = BLOCK_TO_BB (bb->index);
6783 insn_t insn, note = bb_note (bb);
6784 insn_t succ_insn;
6785 succ_iterator si;
6787 bitmap_set_bit (visited_bbs, bbi);
6788 if (blocks_to_reschedule)
6789 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6791 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6792 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6794 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6795 int succ_bbi = BLOCK_TO_BB (succ->index);
6797 gcc_assert (in_current_region_p (succ));
6799 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6801 gcc_assert (succ_bbi > bbi);
6803 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6805 else if (blocks_to_reschedule)
6806 bitmap_set_bit (forced_ebb_heads, succ->index);
6809 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6810 INSN_SEQNO (insn) = cur_seqno--;
6813 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6814 blocks on which we're rescheduling when pipelining, FROM is the block where
6815 traversing region begins (it may not be the head of the region when
6816 pipelining, but the head of the loop instead).
6818 Returns the maximal seqno found. */
6819 static int
6820 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6822 sbitmap visited_bbs;
6823 bitmap_iterator bi;
6824 unsigned bbi;
6826 visited_bbs = sbitmap_alloc (current_nr_blocks);
6828 if (blocks_to_reschedule)
6830 bitmap_ones (visited_bbs);
6831 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6833 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6834 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6837 else
6839 bitmap_clear (visited_bbs);
6840 from = EBB_FIRST_BB (0);
6843 cur_seqno = sched_max_luid - 1;
6844 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6846 /* cur_seqno may be positive if the number of instructions is less than
6847 sched_max_luid - 1 (when rescheduling or if some instructions have been
6848 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6849 gcc_assert (cur_seqno >= 0);
6851 sbitmap_free (visited_bbs);
6852 return sched_max_luid - 1;
6855 /* Initialize scheduling parameters for current region. */
6856 static void
6857 sel_setup_region_sched_flags (void)
6859 enable_schedule_as_rhs_p = 1;
6860 bookkeeping_p = 1;
6861 pipelining_p = (bookkeeping_p
6862 && (flag_sel_sched_pipelining != 0)
6863 && current_loop_nest != NULL
6864 && loop_has_exit_edges (current_loop_nest));
6865 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6866 max_ws = MAX_WS;
6869 /* Return true if all basic blocks of current region are empty. */
6870 static bool
6871 current_region_empty_p (void)
6873 int i;
6874 for (i = 0; i < current_nr_blocks; i++)
6875 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6876 return false;
6878 return true;
6881 /* Prepare and verify loop nest for pipelining. */
6882 static void
6883 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6885 current_loop_nest = get_loop_nest_for_rgn (rgn);
6887 if (!current_loop_nest)
6888 return;
6890 /* If this loop has any saved loop preheaders from nested loops,
6891 add these basic blocks to the current region. */
6892 sel_add_loop_preheaders (bbs);
6894 /* Check that we're starting with a valid information. */
6895 gcc_assert (loop_latch_edge (current_loop_nest));
6896 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6899 /* Compute instruction priorities for current region. */
6900 static void
6901 sel_compute_priorities (int rgn)
6903 sched_rgn_compute_dependencies (rgn);
6905 /* Compute insn priorities in haifa style. Then free haifa style
6906 dependencies that we've calculated for this. */
6907 compute_priorities ();
6909 if (sched_verbose >= 5)
6910 debug_rgn_dependencies (0);
6912 free_rgn_deps ();
6915 /* Init scheduling data for RGN. Returns true when this region should not
6916 be scheduled. */
6917 static bool
6918 sel_region_init (int rgn)
6920 int i;
6921 bb_vec_t bbs;
6923 rgn_setup_region (rgn);
6925 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6926 do region initialization here so the region can be bundled correctly,
6927 but we'll skip the scheduling in sel_sched_region (). */
6928 if (current_region_empty_p ())
6929 return true;
6931 bbs.create (current_nr_blocks);
6933 for (i = 0; i < current_nr_blocks; i++)
6934 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6936 sel_init_bbs (bbs);
6938 if (flag_sel_sched_pipelining)
6939 setup_current_loop_nest (rgn, &bbs);
6941 sel_setup_region_sched_flags ();
6943 /* Initialize luids and dependence analysis which both sel-sched and haifa
6944 need. */
6945 sched_init_luids (bbs);
6946 sched_deps_init (false);
6948 /* Initialize haifa data. */
6949 rgn_setup_sched_infos ();
6950 sel_set_sched_flags ();
6951 haifa_init_h_i_d (bbs);
6953 sel_compute_priorities (rgn);
6954 init_deps_global ();
6956 /* Main initialization. */
6957 sel_setup_sched_infos ();
6958 sel_init_global_and_expr (bbs);
6960 bbs.release ();
6962 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6964 /* Init correct liveness sets on each instruction of a single-block loop.
6965 This is the only situation when we can't update liveness when calling
6966 compute_live for the first insn of the loop. */
6967 if (current_loop_nest)
6969 int header =
6970 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6972 : 0);
6974 if (current_nr_blocks == header + 1)
6975 update_liveness_on_insn
6976 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6979 /* Set hooks so that no newly generated insn will go out unnoticed. */
6980 sel_register_cfg_hooks ();
6982 /* !!! We call target.sched.init () for the whole region, but we invoke
6983 targetm.sched.finish () for every ebb. */
6984 if (targetm.sched.init)
6985 /* None of the arguments are actually used in any target. */
6986 targetm.sched.init (sched_dump, sched_verbose, -1);
6988 first_emitted_uid = get_max_uid () + 1;
6989 preheader_removed = false;
6991 /* Reset register allocation ticks array. */
6992 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6993 reg_rename_this_tick = 0;
6995 bitmap_initialize (forced_ebb_heads, 0);
6996 bitmap_clear (forced_ebb_heads);
6998 setup_nop_vinsn ();
6999 current_copies = BITMAP_ALLOC (NULL);
7000 current_originators = BITMAP_ALLOC (NULL);
7001 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
7003 return false;
7006 /* Simplify insns after the scheduling. */
7007 static void
7008 simplify_changed_insns (void)
7010 int i;
7012 for (i = 0; i < current_nr_blocks; i++)
7014 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
7015 rtx insn;
7017 FOR_BB_INSNS (bb, insn)
7018 if (INSN_P (insn))
7020 expr_t expr = INSN_EXPR (insn);
7022 if (EXPR_WAS_SUBSTITUTED (expr))
7023 validate_simplify_insn (insn);
7028 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7029 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7030 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7031 static void
7032 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7034 insn_t head, tail;
7035 basic_block bb1 = bb;
7036 if (sched_verbose >= 2)
7037 sel_print ("Finishing schedule in bbs: ");
7041 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7043 if (sched_verbose >= 2)
7044 sel_print ("%d; ", bb1->index);
7046 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7048 if (sched_verbose >= 2)
7049 sel_print ("\n");
7051 get_ebb_head_tail (bb, bb1, &head, &tail);
7053 current_sched_info->head = head;
7054 current_sched_info->tail = tail;
7055 current_sched_info->prev_head = PREV_INSN (head);
7056 current_sched_info->next_tail = NEXT_INSN (tail);
7059 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7060 static void
7061 reset_sched_cycles_in_current_ebb (void)
7063 int last_clock = 0;
7064 int haifa_last_clock = -1;
7065 int haifa_clock = 0;
7066 int issued_insns = 0;
7067 insn_t insn;
7069 if (targetm.sched.init)
7071 /* None of the arguments are actually used in any target.
7072 NB: We should have md_reset () hook for cases like this. */
7073 targetm.sched.init (sched_dump, sched_verbose, -1);
7076 state_reset (curr_state);
7077 advance_state (curr_state);
7079 for (insn = current_sched_info->head;
7080 insn != current_sched_info->next_tail;
7081 insn = NEXT_INSN (insn))
7083 int cost, haifa_cost;
7084 int sort_p;
7085 bool asm_p, real_insn, after_stall, all_issued;
7086 int clock;
7088 if (!INSN_P (insn))
7089 continue;
7091 asm_p = false;
7092 real_insn = recog_memoized (insn) >= 0;
7093 clock = INSN_SCHED_CYCLE (insn);
7095 cost = clock - last_clock;
7097 /* Initialize HAIFA_COST. */
7098 if (! real_insn)
7100 asm_p = INSN_ASM_P (insn);
7102 if (asm_p)
7103 /* This is asm insn which *had* to be scheduled first
7104 on the cycle. */
7105 haifa_cost = 1;
7106 else
7107 /* This is a use/clobber insn. It should not change
7108 cost. */
7109 haifa_cost = 0;
7111 else
7112 haifa_cost = estimate_insn_cost (insn, curr_state);
7114 /* Stall for whatever cycles we've stalled before. */
7115 after_stall = 0;
7116 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7118 haifa_cost = cost;
7119 after_stall = 1;
7121 all_issued = issued_insns == issue_rate;
7122 if (haifa_cost == 0 && all_issued)
7123 haifa_cost = 1;
7124 if (haifa_cost > 0)
7126 int i = 0;
7128 while (haifa_cost--)
7130 advance_state (curr_state);
7131 issued_insns = 0;
7132 i++;
7134 if (sched_verbose >= 2)
7136 sel_print ("advance_state (state_transition)\n");
7137 debug_state (curr_state);
7140 /* The DFA may report that e.g. insn requires 2 cycles to be
7141 issued, but on the next cycle it says that insn is ready
7142 to go. Check this here. */
7143 if (!after_stall
7144 && real_insn
7145 && haifa_cost > 0
7146 && estimate_insn_cost (insn, curr_state) == 0)
7147 break;
7149 /* When the data dependency stall is longer than the DFA stall,
7150 and when we have issued exactly issue_rate insns and stalled,
7151 it could be that after this longer stall the insn will again
7152 become unavailable to the DFA restrictions. Looks strange
7153 but happens e.g. on x86-64. So recheck DFA on the last
7154 iteration. */
7155 if ((after_stall || all_issued)
7156 && real_insn
7157 && haifa_cost == 0)
7158 haifa_cost = estimate_insn_cost (insn, curr_state);
7161 haifa_clock += i;
7162 if (sched_verbose >= 2)
7163 sel_print ("haifa clock: %d\n", haifa_clock);
7165 else
7166 gcc_assert (haifa_cost == 0);
7168 if (sched_verbose >= 2)
7169 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7171 if (targetm.sched.dfa_new_cycle)
7172 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7173 haifa_last_clock, haifa_clock,
7174 &sort_p))
7176 advance_state (curr_state);
7177 issued_insns = 0;
7178 haifa_clock++;
7179 if (sched_verbose >= 2)
7181 sel_print ("advance_state (dfa_new_cycle)\n");
7182 debug_state (curr_state);
7183 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7187 if (real_insn)
7189 static state_t temp = NULL;
7191 if (!temp)
7192 temp = xmalloc (dfa_state_size);
7193 memcpy (temp, curr_state, dfa_state_size);
7195 cost = state_transition (curr_state, insn);
7196 if (memcmp (temp, curr_state, dfa_state_size))
7197 issued_insns++;
7199 if (sched_verbose >= 2)
7201 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7202 haifa_clock + 1);
7203 debug_state (curr_state);
7205 gcc_assert (cost < 0);
7208 if (targetm.sched.variable_issue)
7209 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7211 INSN_SCHED_CYCLE (insn) = haifa_clock;
7213 last_clock = clock;
7214 haifa_last_clock = haifa_clock;
7218 /* Put TImode markers on insns starting a new issue group. */
7219 static void
7220 put_TImodes (void)
7222 int last_clock = -1;
7223 insn_t insn;
7225 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7226 insn = NEXT_INSN (insn))
7228 int cost, clock;
7230 if (!INSN_P (insn))
7231 continue;
7233 clock = INSN_SCHED_CYCLE (insn);
7234 cost = (last_clock == -1) ? 1 : clock - last_clock;
7236 gcc_assert (cost >= 0);
7238 if (issue_rate > 1
7239 && GET_CODE (PATTERN (insn)) != USE
7240 && GET_CODE (PATTERN (insn)) != CLOBBER)
7242 if (reload_completed && cost > 0)
7243 PUT_MODE (insn, TImode);
7245 last_clock = clock;
7248 if (sched_verbose >= 2)
7249 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7253 /* Perform MD_FINISH on EBBs comprising current region. When
7254 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7255 to produce correct sched cycles on insns. */
7256 static void
7257 sel_region_target_finish (bool reset_sched_cycles_p)
7259 int i;
7260 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7262 for (i = 0; i < current_nr_blocks; i++)
7264 if (bitmap_bit_p (scheduled_blocks, i))
7265 continue;
7267 /* While pipelining outer loops, skip bundling for loop
7268 preheaders. Those will be rescheduled in the outer loop. */
7269 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7270 continue;
7272 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7274 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7275 continue;
7277 if (reset_sched_cycles_p)
7278 reset_sched_cycles_in_current_ebb ();
7280 if (targetm.sched.init)
7281 targetm.sched.init (sched_dump, sched_verbose, -1);
7283 put_TImodes ();
7285 if (targetm.sched.finish)
7287 targetm.sched.finish (sched_dump, sched_verbose);
7289 /* Extend luids so that insns generated by the target will
7290 get zero luid. */
7291 sched_extend_luids ();
7295 BITMAP_FREE (scheduled_blocks);
7298 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7299 is true, make an additional pass emulating scheduler to get correct insn
7300 cycles for md_finish calls. */
7301 static void
7302 sel_region_finish (bool reset_sched_cycles_p)
7304 simplify_changed_insns ();
7305 sched_finish_ready_list ();
7306 free_nop_pool ();
7308 /* Free the vectors. */
7309 vec_av_set.release ();
7310 BITMAP_FREE (current_copies);
7311 BITMAP_FREE (current_originators);
7312 BITMAP_FREE (code_motion_visited_blocks);
7313 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7314 vinsn_vec_free (vec_target_unavailable_vinsns);
7316 /* If LV_SET of the region head should be updated, do it now because
7317 there will be no other chance. */
7319 succ_iterator si;
7320 insn_t insn;
7322 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7323 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7325 basic_block bb = BLOCK_FOR_INSN (insn);
7327 if (!BB_LV_SET_VALID_P (bb))
7328 compute_live (insn);
7332 /* Emulate the Haifa scheduler for bundling. */
7333 if (reload_completed)
7334 sel_region_target_finish (reset_sched_cycles_p);
7336 sel_finish_global_and_expr ();
7338 bitmap_clear (forced_ebb_heads);
7340 free_nop_vinsn ();
7342 finish_deps_global ();
7343 sched_finish_luids ();
7344 h_d_i_d.release ();
7346 sel_finish_bbs ();
7347 BITMAP_FREE (blocks_to_reschedule);
7349 sel_unregister_cfg_hooks ();
7351 max_issue_size = 0;
7355 /* Functions that implement the scheduler driver. */
7357 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7358 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7359 of insns scheduled -- these would be postprocessed later. */
7360 static void
7361 schedule_on_fences (flist_t fences, int max_seqno,
7362 ilist_t **scheduled_insns_tailpp)
7364 flist_t old_fences = fences;
7366 if (sched_verbose >= 1)
7368 sel_print ("\nScheduling on fences: ");
7369 dump_flist (fences);
7370 sel_print ("\n");
7373 scheduled_something_on_previous_fence = false;
7374 for (; fences; fences = FLIST_NEXT (fences))
7376 fence_t fence = NULL;
7377 int seqno = 0;
7378 flist_t fences2;
7379 bool first_p = true;
7381 /* Choose the next fence group to schedule.
7382 The fact that insn can be scheduled only once
7383 on the cycle is guaranteed by two properties:
7384 1. seqnos of parallel groups decrease with each iteration.
7385 2. If is_ineligible_successor () sees the larger seqno, it
7386 checks if candidate insn is_in_current_fence_p (). */
7387 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7389 fence_t f = FLIST_FENCE (fences2);
7391 if (!FENCE_PROCESSED_P (f))
7393 int i = INSN_SEQNO (FENCE_INSN (f));
7395 if (first_p || i > seqno)
7397 seqno = i;
7398 fence = f;
7399 first_p = false;
7401 else
7402 /* ??? Seqnos of different groups should be different. */
7403 gcc_assert (1 || i != seqno);
7407 gcc_assert (fence);
7409 /* As FENCE is nonnull, SEQNO is initialized. */
7410 seqno -= max_seqno + 1;
7411 fill_insns (fence, seqno, scheduled_insns_tailpp);
7412 FENCE_PROCESSED_P (fence) = true;
7415 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7416 don't need to keep bookkeeping-invalidated and target-unavailable
7417 vinsns any more. */
7418 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7419 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7422 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7423 static void
7424 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7426 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7428 /* The first element is already processed. */
7429 while ((fences = FLIST_NEXT (fences)))
7431 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7433 if (*min_seqno > seqno)
7434 *min_seqno = seqno;
7435 else if (*max_seqno < seqno)
7436 *max_seqno = seqno;
7440 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7441 static flist_t
7442 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7444 flist_t old_fences = fences;
7445 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7446 int max_time = 0;
7448 flist_tail_init (new_fences);
7449 for (; fences; fences = FLIST_NEXT (fences))
7451 fence_t fence = FLIST_FENCE (fences);
7452 insn_t insn;
7454 if (!FENCE_BNDS (fence))
7456 /* This fence doesn't have any successors. */
7457 if (!FENCE_SCHEDULED_P (fence))
7459 /* Nothing was scheduled on this fence. */
7460 int seqno;
7462 insn = FENCE_INSN (fence);
7463 seqno = INSN_SEQNO (insn);
7464 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7466 if (sched_verbose >= 1)
7467 sel_print ("Fence %d[%d] has not changed\n",
7468 INSN_UID (insn),
7469 BLOCK_NUM (insn));
7470 move_fence_to_fences (fences, new_fences);
7473 else
7474 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7475 max_time = MAX (max_time, FENCE_CYCLE (fence));
7478 flist_clear (&old_fences);
7479 *ptime = max_time;
7480 return FLIST_TAIL_HEAD (new_fences);
7483 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7484 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7485 the highest seqno used in a region. Return the updated highest seqno. */
7486 static int
7487 update_seqnos_and_stage (int min_seqno, int max_seqno,
7488 int highest_seqno_in_use,
7489 ilist_t *pscheduled_insns)
7491 int new_hs;
7492 ilist_iterator ii;
7493 insn_t insn;
7495 /* Actually, new_hs is the seqno of the instruction, that was
7496 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7497 if (*pscheduled_insns)
7499 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7500 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7501 gcc_assert (new_hs > highest_seqno_in_use);
7503 else
7504 new_hs = highest_seqno_in_use;
7506 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7508 gcc_assert (INSN_SEQNO (insn) < 0);
7509 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7510 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7512 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7513 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7514 require > 1GB of memory e.g. on limit-fnargs.c. */
7515 if (! pipelining_p)
7516 free_data_for_scheduled_insn (insn);
7519 ilist_clear (pscheduled_insns);
7520 global_level++;
7522 return new_hs;
7525 /* The main driver for scheduling a region. This function is responsible
7526 for correct propagation of fences (i.e. scheduling points) and creating
7527 a group of parallel insns at each of them. It also supports
7528 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7529 of scheduling. */
7530 static void
7531 sel_sched_region_2 (int orig_max_seqno)
7533 int highest_seqno_in_use = orig_max_seqno;
7534 int max_time = 0;
7536 stat_bookkeeping_copies = 0;
7537 stat_insns_needed_bookkeeping = 0;
7538 stat_renamed_scheduled = 0;
7539 stat_substitutions_total = 0;
7540 num_insns_scheduled = 0;
7542 while (fences)
7544 int min_seqno, max_seqno;
7545 ilist_t scheduled_insns = NULL;
7546 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7548 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7549 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7550 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7551 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7552 highest_seqno_in_use,
7553 &scheduled_insns);
7556 if (sched_verbose >= 1)
7558 sel_print ("Total scheduling time: %d cycles\n", max_time);
7559 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7560 "bookkeeping, %d insns renamed, %d insns substituted\n",
7561 stat_bookkeeping_copies,
7562 stat_insns_needed_bookkeeping,
7563 stat_renamed_scheduled,
7564 stat_substitutions_total);
7568 /* Schedule a region. When pipelining, search for possibly never scheduled
7569 bookkeeping code and schedule it. Reschedule pipelined code without
7570 pipelining after. */
7571 static void
7572 sel_sched_region_1 (void)
7574 int orig_max_seqno;
7576 /* Remove empty blocks that might be in the region from the beginning. */
7577 purge_empty_blocks ();
7579 orig_max_seqno = init_seqno (NULL, NULL);
7580 gcc_assert (orig_max_seqno >= 1);
7582 /* When pipelining outer loops, create fences on the loop header,
7583 not preheader. */
7584 fences = NULL;
7585 if (current_loop_nest)
7586 init_fences (BB_END (EBB_FIRST_BB (0)));
7587 else
7588 init_fences (bb_note (EBB_FIRST_BB (0)));
7589 global_level = 1;
7591 sel_sched_region_2 (orig_max_seqno);
7593 gcc_assert (fences == NULL);
7595 if (pipelining_p)
7597 int i;
7598 basic_block bb;
7599 struct flist_tail_def _new_fences;
7600 flist_tail_t new_fences = &_new_fences;
7601 bool do_p = true;
7603 pipelining_p = false;
7604 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7605 bookkeeping_p = false;
7606 enable_schedule_as_rhs_p = false;
7608 /* Schedule newly created code, that has not been scheduled yet. */
7609 do_p = true;
7611 while (do_p)
7613 do_p = false;
7615 for (i = 0; i < current_nr_blocks; i++)
7617 basic_block bb = EBB_FIRST_BB (i);
7619 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7621 if (! bb_ends_ebb_p (bb))
7622 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7623 if (sel_bb_empty_p (bb))
7625 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7626 continue;
7628 clear_outdated_rtx_info (bb);
7629 if (sel_insn_is_speculation_check (BB_END (bb))
7630 && JUMP_P (BB_END (bb)))
7631 bitmap_set_bit (blocks_to_reschedule,
7632 BRANCH_EDGE (bb)->dest->index);
7634 else if (! sel_bb_empty_p (bb)
7635 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7636 bitmap_set_bit (blocks_to_reschedule, bb->index);
7639 for (i = 0; i < current_nr_blocks; i++)
7641 bb = EBB_FIRST_BB (i);
7643 /* While pipelining outer loops, skip bundling for loop
7644 preheaders. Those will be rescheduled in the outer
7645 loop. */
7646 if (sel_is_loop_preheader_p (bb))
7648 clear_outdated_rtx_info (bb);
7649 continue;
7652 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7654 flist_tail_init (new_fences);
7656 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7658 /* Mark BB as head of the new ebb. */
7659 bitmap_set_bit (forced_ebb_heads, bb->index);
7661 gcc_assert (fences == NULL);
7663 init_fences (bb_note (bb));
7665 sel_sched_region_2 (orig_max_seqno);
7667 do_p = true;
7668 break;
7675 /* Schedule the RGN region. */
7676 void
7677 sel_sched_region (int rgn)
7679 bool schedule_p;
7680 bool reset_sched_cycles_p;
7682 if (sel_region_init (rgn))
7683 return;
7685 if (sched_verbose >= 1)
7686 sel_print ("Scheduling region %d\n", rgn);
7688 schedule_p = (!sched_is_disabled_for_current_region_p ()
7689 && dbg_cnt (sel_sched_region_cnt));
7690 reset_sched_cycles_p = pipelining_p;
7691 if (schedule_p)
7692 sel_sched_region_1 ();
7693 else
7694 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7695 reset_sched_cycles_p = true;
7697 sel_region_finish (reset_sched_cycles_p);
7700 /* Perform global init for the scheduler. */
7701 static void
7702 sel_global_init (void)
7704 calculate_dominance_info (CDI_DOMINATORS);
7705 alloc_sched_pools ();
7707 /* Setup the infos for sched_init. */
7708 sel_setup_sched_infos ();
7709 setup_sched_dump ();
7711 sched_rgn_init (false);
7712 sched_init ();
7714 sched_init_bbs ();
7715 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7716 after_recovery = 0;
7717 can_issue_more = issue_rate;
7719 sched_extend_target ();
7720 sched_deps_init (true);
7721 setup_nop_and_exit_insns ();
7722 sel_extend_global_bb_info ();
7723 init_lv_sets ();
7724 init_hard_regs_data ();
7727 /* Free the global data of the scheduler. */
7728 static void
7729 sel_global_finish (void)
7731 free_bb_note_pool ();
7732 free_lv_sets ();
7733 sel_finish_global_bb_info ();
7735 free_regset_pool ();
7736 free_nop_and_exit_insns ();
7738 sched_rgn_finish ();
7739 sched_deps_finish ();
7740 sched_finish ();
7742 if (current_loops)
7743 sel_finish_pipelining ();
7745 free_sched_pools ();
7746 free_dominance_info (CDI_DOMINATORS);
7749 /* Return true when we need to skip selective scheduling. Used for debugging. */
7750 bool
7751 maybe_skip_selective_scheduling (void)
7753 return ! dbg_cnt (sel_sched_cnt);
7756 /* The entry point. */
7757 void
7758 run_selective_scheduling (void)
7760 int rgn;
7762 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7763 return;
7765 sel_global_init ();
7767 for (rgn = 0; rgn < nr_regions; rgn++)
7768 sel_sched_region (rgn);
7770 sel_global_finish ();
7773 #endif