* combine.c (make_compound_operation) <SUBREG>: If force_to_mode
[official-gcc.git] / gcc / combine.c
blob3f39bc3b286a1193c0a30b47bcb535d71fb492dd
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
315 static rtx *uid_log_links;
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
320 /* Incremented for each basic block. */
322 static int label_tick;
324 /* Reset to label_tick for each label. */
326 static int label_tick_ebb_start;
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
331 static enum machine_mode nonzero_bits_mode;
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
339 static int nonzero_sign_valid;
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
347 struct undo
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
361 struct undobuf
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
368 static struct undobuf undobuf;
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
373 static int n_occurrences;
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
483 rtx ret;
484 unsigned int nregs;
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
509 switch (code)
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
536 return find_single_use_1 (dest, &SET_SRC (x));
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
542 default:
543 break;
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
552 if (fmt[i] == 'e')
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
567 else if (fmt[i] == 'E')
569 int j;
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
589 return result;
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
628 #endif
630 if (!REG_P (dest))
631 return 0;
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
643 if (link)
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
652 return 0;
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
661 static void
662 do_SUBST (rtx *into, rtx newval)
664 struct undo *buf;
665 rtx oldval = *into;
667 if (oldval == newval)
668 return;
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
705 buf->next = undobuf.undos, undobuf.undos = buf;
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
714 static void
715 do_SUBST_INT (int *into, int newval)
717 struct undo *buf;
718 int oldval = *into;
720 if (oldval == newval)
721 return;
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
733 buf->next = undobuf.undos, undobuf.undos = buf;
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
749 if (oldval == newval)
750 return;
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
762 buf->next = undobuf.undos, undobuf.undos = buf;
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
776 static bool
777 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
778 rtx newotherpat)
780 int i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
788 if (i1)
790 i1_cost = INSN_COST (i1);
791 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
792 ? i1_cost + i2_cost + i3_cost : 0;
794 else
796 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
797 i1_cost = 0;
800 /* Calculate the replacement insn_rtx_costs. */
801 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
802 if (newi2pat)
804 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
805 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
806 ? new_i2_cost + new_i3_cost : 0;
808 else
810 new_cost = new_i3_cost;
811 new_i2_cost = 0;
814 if (undobuf.other_insn)
816 int old_other_cost, new_other_cost;
818 old_other_cost = INSN_COST (undobuf.other_insn);
819 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
820 if (old_other_cost > 0 && new_other_cost > 0)
822 old_cost += old_other_cost;
823 new_cost += new_other_cost;
825 else
826 old_cost = 0;
829 /* Disallow this recombination if both new_cost and old_cost are
830 greater than zero, and new_cost is greater than old cost. */
831 if (old_cost > 0
832 && new_cost > old_cost)
834 if (dump_file)
836 if (i1)
838 fprintf (dump_file,
839 "rejecting combination of insns %d, %d and %d\n",
840 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
841 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
842 i1_cost, i2_cost, i3_cost, old_cost);
844 else
846 fprintf (dump_file,
847 "rejecting combination of insns %d and %d\n",
848 INSN_UID (i2), INSN_UID (i3));
849 fprintf (dump_file, "original costs %d + %d = %d\n",
850 i2_cost, i3_cost, old_cost);
853 if (newi2pat)
855 fprintf (dump_file, "replacement costs %d + %d = %d\n",
856 new_i2_cost, new_i3_cost, new_cost);
858 else
859 fprintf (dump_file, "replacement cost %d\n", new_cost);
862 return false;
865 /* Update the uid_insn_cost array with the replacement costs. */
866 INSN_COST (i2) = new_i2_cost;
867 INSN_COST (i3) = new_i3_cost;
868 if (i1)
869 INSN_COST (i1) = 0;
871 return true;
875 /* Delete any insns that copy a register to itself. */
877 static void
878 delete_noop_moves (void)
880 rtx insn, next;
881 basic_block bb;
883 FOR_EACH_BB (bb)
885 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
887 next = NEXT_INSN (insn);
888 if (INSN_P (insn) && noop_move_p (insn))
890 if (dump_file)
891 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
893 delete_insn_and_edges (insn);
900 /* Fill in log links field for all insns. */
902 static void
903 create_log_links (void)
905 basic_block bb;
906 rtx *next_use, insn;
907 df_ref *def_vec, *use_vec;
909 next_use = XCNEWVEC (rtx, max_reg_num ());
911 /* Pass through each block from the end, recording the uses of each
912 register and establishing log links when def is encountered.
913 Note that we do not clear next_use array in order to save time,
914 so we have to test whether the use is in the same basic block as def.
916 There are a few cases below when we do not consider the definition or
917 usage -- these are taken from original flow.c did. Don't ask me why it is
918 done this way; I don't know and if it works, I don't want to know. */
920 FOR_EACH_BB (bb)
922 FOR_BB_INSNS_REVERSE (bb, insn)
924 if (!INSN_P (insn))
925 continue;
927 /* Log links are created only once. */
928 gcc_assert (!LOG_LINKS (insn));
930 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
932 df_ref def = *def_vec;
933 int regno = DF_REF_REGNO (def);
934 rtx use_insn;
936 if (!next_use[regno])
937 continue;
939 /* Do not consider if it is pre/post modification in MEM. */
940 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
941 continue;
943 /* Do not make the log link for frame pointer. */
944 if ((regno == FRAME_POINTER_REGNUM
945 && (! reload_completed || frame_pointer_needed))
946 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
947 || (regno == HARD_FRAME_POINTER_REGNUM
948 && (! reload_completed || frame_pointer_needed))
949 #endif
950 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
951 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
952 #endif
954 continue;
956 use_insn = next_use[regno];
957 if (BLOCK_FOR_INSN (use_insn) == bb)
959 /* flow.c claimed:
961 We don't build a LOG_LINK for hard registers contained
962 in ASM_OPERANDs. If these registers get replaced,
963 we might wind up changing the semantics of the insn,
964 even if reload can make what appear to be valid
965 assignments later. */
966 if (regno >= FIRST_PSEUDO_REGISTER
967 || asm_noperands (PATTERN (use_insn)) < 0)
969 /* Don't add duplicate links between instructions. */
970 rtx links;
971 for (links = LOG_LINKS (use_insn); links;
972 links = XEXP (links, 1))
973 if (insn == XEXP (links, 0))
974 break;
976 if (!links)
977 LOG_LINKS (use_insn) =
978 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
981 next_use[regno] = NULL_RTX;
984 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
986 df_ref use = *use_vec;
987 int regno = DF_REF_REGNO (use);
989 /* Do not consider the usage of the stack pointer
990 by function call. */
991 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
992 continue;
994 next_use[regno] = insn;
999 free (next_use);
1002 /* Clear LOG_LINKS fields of insns. */
1004 static void
1005 clear_log_links (void)
1007 rtx insn;
1009 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1010 if (INSN_P (insn))
1011 free_INSN_LIST_list (&LOG_LINKS (insn));
1017 /* Main entry point for combiner. F is the first insn of the function.
1018 NREGS is the first unused pseudo-reg number.
1020 Return nonzero if the combiner has turned an indirect jump
1021 instruction into a direct jump. */
1022 static int
1023 combine_instructions (rtx f, unsigned int nregs)
1025 rtx insn, next;
1026 #ifdef HAVE_cc0
1027 rtx prev;
1028 #endif
1029 rtx links, nextlinks;
1030 rtx first;
1032 int new_direct_jump_p = 0;
1034 for (first = f; first && !INSN_P (first); )
1035 first = NEXT_INSN (first);
1036 if (!first)
1037 return 0;
1039 combine_attempts = 0;
1040 combine_merges = 0;
1041 combine_extras = 0;
1042 combine_successes = 0;
1044 rtl_hooks = combine_rtl_hooks;
1046 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1048 init_recog_no_volatile ();
1050 /* Allocate array for insn info. */
1051 max_uid_known = get_max_uid ();
1052 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1053 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1055 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1057 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1058 problems when, for example, we have j <<= 1 in a loop. */
1060 nonzero_sign_valid = 0;
1062 /* Scan all SETs and see if we can deduce anything about what
1063 bits are known to be zero for some registers and how many copies
1064 of the sign bit are known to exist for those registers.
1066 Also set any known values so that we can use it while searching
1067 for what bits are known to be set. */
1069 setup_incoming_promotions (first);
1071 create_log_links ();
1072 label_tick_ebb_start = ENTRY_BLOCK_PTR->index;
1073 FOR_EACH_BB (this_basic_block)
1075 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1076 last_call_luid = 0;
1077 mem_last_set = -1;
1078 label_tick = this_basic_block->index;
1079 if (!single_pred_p (this_basic_block)
1080 || single_pred (this_basic_block)->index != label_tick - 1)
1081 label_tick_ebb_start = label_tick;
1082 FOR_BB_INSNS (this_basic_block, insn)
1083 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1085 subst_low_luid = DF_INSN_LUID (insn);
1086 subst_insn = insn;
1088 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1089 insn);
1090 record_dead_and_set_regs (insn);
1092 #ifdef AUTO_INC_DEC
1093 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1094 if (REG_NOTE_KIND (links) == REG_INC)
1095 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1096 insn);
1097 #endif
1099 /* Record the current insn_rtx_cost of this instruction. */
1100 if (NONJUMP_INSN_P (insn))
1101 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1102 optimize_this_for_speed_p);
1103 if (dump_file)
1104 fprintf(dump_file, "insn_cost %d: %d\n",
1105 INSN_UID (insn), INSN_COST (insn));
1109 nonzero_sign_valid = 1;
1111 /* Now scan all the insns in forward order. */
1113 label_tick_ebb_start = ENTRY_BLOCK_PTR->index;
1114 init_reg_last ();
1115 setup_incoming_promotions (first);
1117 FOR_EACH_BB (this_basic_block)
1119 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1120 last_call_luid = 0;
1121 mem_last_set = -1;
1122 label_tick = this_basic_block->index;
1123 if (!single_pred_p (this_basic_block)
1124 || single_pred (this_basic_block)->index != label_tick - 1)
1125 label_tick_ebb_start = label_tick;
1126 rtl_profile_for_bb (this_basic_block);
1127 for (insn = BB_HEAD (this_basic_block);
1128 insn != NEXT_INSN (BB_END (this_basic_block));
1129 insn = next ? next : NEXT_INSN (insn))
1131 next = 0;
1132 if (INSN_P (insn))
1134 /* See if we know about function return values before this
1135 insn based upon SUBREG flags. */
1136 check_promoted_subreg (insn, PATTERN (insn));
1138 /* See if we can find hardregs and subreg of pseudos in
1139 narrower modes. This could help turning TRUNCATEs
1140 into SUBREGs. */
1141 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1143 /* Try this insn with each insn it links back to. */
1145 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1146 if ((next = try_combine (insn, XEXP (links, 0),
1147 NULL_RTX, &new_direct_jump_p)) != 0)
1148 goto retry;
1150 /* Try each sequence of three linked insns ending with this one. */
1152 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1154 rtx link = XEXP (links, 0);
1156 /* If the linked insn has been replaced by a note, then there
1157 is no point in pursuing this chain any further. */
1158 if (NOTE_P (link))
1159 continue;
1161 for (nextlinks = LOG_LINKS (link);
1162 nextlinks;
1163 nextlinks = XEXP (nextlinks, 1))
1164 if ((next = try_combine (insn, link,
1165 XEXP (nextlinks, 0),
1166 &new_direct_jump_p)) != 0)
1167 goto retry;
1170 #ifdef HAVE_cc0
1171 /* Try to combine a jump insn that uses CC0
1172 with a preceding insn that sets CC0, and maybe with its
1173 logical predecessor as well.
1174 This is how we make decrement-and-branch insns.
1175 We need this special code because data flow connections
1176 via CC0 do not get entered in LOG_LINKS. */
1178 if (JUMP_P (insn)
1179 && (prev = prev_nonnote_insn (insn)) != 0
1180 && NONJUMP_INSN_P (prev)
1181 && sets_cc0_p (PATTERN (prev)))
1183 if ((next = try_combine (insn, prev,
1184 NULL_RTX, &new_direct_jump_p)) != 0)
1185 goto retry;
1187 for (nextlinks = LOG_LINKS (prev); nextlinks;
1188 nextlinks = XEXP (nextlinks, 1))
1189 if ((next = try_combine (insn, prev,
1190 XEXP (nextlinks, 0),
1191 &new_direct_jump_p)) != 0)
1192 goto retry;
1195 /* Do the same for an insn that explicitly references CC0. */
1196 if (NONJUMP_INSN_P (insn)
1197 && (prev = prev_nonnote_insn (insn)) != 0
1198 && NONJUMP_INSN_P (prev)
1199 && sets_cc0_p (PATTERN (prev))
1200 && GET_CODE (PATTERN (insn)) == SET
1201 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1203 if ((next = try_combine (insn, prev,
1204 NULL_RTX, &new_direct_jump_p)) != 0)
1205 goto retry;
1207 for (nextlinks = LOG_LINKS (prev); nextlinks;
1208 nextlinks = XEXP (nextlinks, 1))
1209 if ((next = try_combine (insn, prev,
1210 XEXP (nextlinks, 0),
1211 &new_direct_jump_p)) != 0)
1212 goto retry;
1215 /* Finally, see if any of the insns that this insn links to
1216 explicitly references CC0. If so, try this insn, that insn,
1217 and its predecessor if it sets CC0. */
1218 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1219 if (NONJUMP_INSN_P (XEXP (links, 0))
1220 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1221 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1222 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1223 && NONJUMP_INSN_P (prev)
1224 && sets_cc0_p (PATTERN (prev))
1225 && (next = try_combine (insn, XEXP (links, 0),
1226 prev, &new_direct_jump_p)) != 0)
1227 goto retry;
1228 #endif
1230 /* Try combining an insn with two different insns whose results it
1231 uses. */
1232 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1233 for (nextlinks = XEXP (links, 1); nextlinks;
1234 nextlinks = XEXP (nextlinks, 1))
1235 if ((next = try_combine (insn, XEXP (links, 0),
1236 XEXP (nextlinks, 0),
1237 &new_direct_jump_p)) != 0)
1238 goto retry;
1240 /* Try this insn with each REG_EQUAL note it links back to. */
1241 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1243 rtx set, note;
1244 rtx temp = XEXP (links, 0);
1245 if ((set = single_set (temp)) != 0
1246 && (note = find_reg_equal_equiv_note (temp)) != 0
1247 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1248 /* Avoid using a register that may already been marked
1249 dead by an earlier instruction. */
1250 && ! unmentioned_reg_p (note, SET_SRC (set))
1251 && (GET_MODE (note) == VOIDmode
1252 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1253 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1255 /* Temporarily replace the set's source with the
1256 contents of the REG_EQUAL note. The insn will
1257 be deleted or recognized by try_combine. */
1258 rtx orig = SET_SRC (set);
1259 SET_SRC (set) = note;
1260 i2mod = temp;
1261 i2mod_old_rhs = copy_rtx (orig);
1262 i2mod_new_rhs = copy_rtx (note);
1263 next = try_combine (insn, i2mod, NULL_RTX,
1264 &new_direct_jump_p);
1265 i2mod = NULL_RTX;
1266 if (next)
1267 goto retry;
1268 SET_SRC (set) = orig;
1272 if (!NOTE_P (insn))
1273 record_dead_and_set_regs (insn);
1275 retry:
1281 default_rtl_profile ();
1282 clear_log_links ();
1283 clear_bb_flags ();
1284 new_direct_jump_p |= purge_all_dead_edges ();
1285 delete_noop_moves ();
1287 /* Clean up. */
1288 free (uid_log_links);
1289 free (uid_insn_cost);
1290 VEC_free (reg_stat_type, heap, reg_stat);
1293 struct undo *undo, *next;
1294 for (undo = undobuf.frees; undo; undo = next)
1296 next = undo->next;
1297 free (undo);
1299 undobuf.frees = 0;
1302 total_attempts += combine_attempts;
1303 total_merges += combine_merges;
1304 total_extras += combine_extras;
1305 total_successes += combine_successes;
1307 nonzero_sign_valid = 0;
1308 rtl_hooks = general_rtl_hooks;
1310 /* Make recognizer allow volatile MEMs again. */
1311 init_recog ();
1313 return new_direct_jump_p;
1316 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1318 static void
1319 init_reg_last (void)
1321 unsigned int i;
1322 reg_stat_type *p;
1324 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1325 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1328 /* Set up any promoted values for incoming argument registers. */
1330 static void
1331 setup_incoming_promotions (rtx first)
1333 tree arg;
1334 bool strictly_local = false;
1336 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1337 return;
1339 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1340 arg = TREE_CHAIN (arg))
1342 rtx reg = DECL_INCOMING_RTL (arg);
1343 int uns1, uns3;
1344 enum machine_mode mode1, mode2, mode3, mode4;
1346 /* Only continue if the incoming argument is in a register. */
1347 if (!REG_P (reg))
1348 continue;
1350 /* Determine, if possible, whether all call sites of the current
1351 function lie within the current compilation unit. (This does
1352 take into account the exporting of a function via taking its
1353 address, and so forth.) */
1354 strictly_local = cgraph_local_info (current_function_decl)->local;
1356 /* The mode and signedness of the argument before any promotions happen
1357 (equal to the mode of the pseudo holding it at that stage). */
1358 mode1 = TYPE_MODE (TREE_TYPE (arg));
1359 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1361 /* The mode and signedness of the argument after any source language and
1362 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1363 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1364 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1366 /* The mode and signedness of the argument as it is actually passed,
1367 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1368 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1370 /* The mode of the register in which the argument is being passed. */
1371 mode4 = GET_MODE (reg);
1373 /* Eliminate sign extensions in the callee when possible. Only
1374 do this when:
1375 (a) a mode promotion has occurred;
1376 (b) the mode of the register is the same as the mode of
1377 the argument as it is passed; and
1378 (c) the signedness does not change across any of the promotions; and
1379 (d) when no language-level promotions (which we cannot guarantee
1380 will have been done by an external caller) are necessary,
1381 unless we know that this function is only ever called from
1382 the current compilation unit -- all of whose call sites will
1383 do the mode1 --> mode2 promotion. */
1384 if (mode1 != mode3
1385 && mode3 == mode4
1386 && uns1 == uns3
1387 && (mode1 == mode2 || strictly_local))
1389 /* Record that the value was promoted from mode1 to mode3,
1390 so that any sign extension at the head of the current
1391 function may be eliminated. */
1392 rtx x;
1393 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1394 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1395 record_value_for_reg (reg, first, x);
1400 /* Called via note_stores. If X is a pseudo that is narrower than
1401 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1403 If we are setting only a portion of X and we can't figure out what
1404 portion, assume all bits will be used since we don't know what will
1405 be happening.
1407 Similarly, set how many bits of X are known to be copies of the sign bit
1408 at all locations in the function. This is the smallest number implied
1409 by any set of X. */
1411 static void
1412 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1414 rtx insn = (rtx) data;
1415 unsigned int num;
1417 if (REG_P (x)
1418 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1419 /* If this register is undefined at the start of the file, we can't
1420 say what its contents were. */
1421 && ! REGNO_REG_SET_P
1422 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1423 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1425 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1427 if (set == 0 || GET_CODE (set) == CLOBBER)
1429 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1430 rsp->sign_bit_copies = 1;
1431 return;
1434 /* If this register is being initialized using itself, and the
1435 register is uninitialized in this basic block, and there are
1436 no LOG_LINKS which set the register, then part of the
1437 register is uninitialized. In that case we can't assume
1438 anything about the number of nonzero bits.
1440 ??? We could do better if we checked this in
1441 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1442 could avoid making assumptions about the insn which initially
1443 sets the register, while still using the information in other
1444 insns. We would have to be careful to check every insn
1445 involved in the combination. */
1447 if (insn
1448 && reg_referenced_p (x, PATTERN (insn))
1449 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1450 REGNO (x)))
1452 rtx link;
1454 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1456 if (dead_or_set_p (XEXP (link, 0), x))
1457 break;
1459 if (!link)
1461 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1462 rsp->sign_bit_copies = 1;
1463 return;
1467 /* If this is a complex assignment, see if we can convert it into a
1468 simple assignment. */
1469 set = expand_field_assignment (set);
1471 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1472 set what we know about X. */
1474 if (SET_DEST (set) == x
1475 || (GET_CODE (SET_DEST (set)) == SUBREG
1476 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1477 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1478 && SUBREG_REG (SET_DEST (set)) == x))
1480 rtx src = SET_SRC (set);
1482 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1483 /* If X is narrower than a word and SRC is a non-negative
1484 constant that would appear negative in the mode of X,
1485 sign-extend it for use in reg_stat[].nonzero_bits because some
1486 machines (maybe most) will actually do the sign-extension
1487 and this is the conservative approach.
1489 ??? For 2.5, try to tighten up the MD files in this regard
1490 instead of this kludge. */
1492 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1493 && CONST_INT_P (src)
1494 && INTVAL (src) > 0
1495 && 0 != (INTVAL (src)
1496 & ((HOST_WIDE_INT) 1
1497 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1498 src = GEN_INT (INTVAL (src)
1499 | ((HOST_WIDE_INT) (-1)
1500 << GET_MODE_BITSIZE (GET_MODE (x))));
1501 #endif
1503 /* Don't call nonzero_bits if it cannot change anything. */
1504 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1505 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1506 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1507 if (rsp->sign_bit_copies == 0
1508 || rsp->sign_bit_copies > num)
1509 rsp->sign_bit_copies = num;
1511 else
1513 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1514 rsp->sign_bit_copies = 1;
1519 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1520 insns that were previously combined into I3 or that will be combined
1521 into the merger of INSN and I3.
1523 Return 0 if the combination is not allowed for any reason.
1525 If the combination is allowed, *PDEST will be set to the single
1526 destination of INSN and *PSRC to the single source, and this function
1527 will return 1. */
1529 static int
1530 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1531 rtx *pdest, rtx *psrc)
1533 int i;
1534 const_rtx set = 0;
1535 rtx src, dest;
1536 rtx p;
1537 #ifdef AUTO_INC_DEC
1538 rtx link;
1539 #endif
1540 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1541 && next_active_insn (succ) == i3)
1542 : next_active_insn (insn) == i3);
1544 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1545 or a PARALLEL consisting of such a SET and CLOBBERs.
1547 If INSN has CLOBBER parallel parts, ignore them for our processing.
1548 By definition, these happen during the execution of the insn. When it
1549 is merged with another insn, all bets are off. If they are, in fact,
1550 needed and aren't also supplied in I3, they may be added by
1551 recog_for_combine. Otherwise, it won't match.
1553 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1554 note.
1556 Get the source and destination of INSN. If more than one, can't
1557 combine. */
1559 if (GET_CODE (PATTERN (insn)) == SET)
1560 set = PATTERN (insn);
1561 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1562 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1564 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1566 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1567 rtx note;
1569 switch (GET_CODE (elt))
1571 /* This is important to combine floating point insns
1572 for the SH4 port. */
1573 case USE:
1574 /* Combining an isolated USE doesn't make sense.
1575 We depend here on combinable_i3pat to reject them. */
1576 /* The code below this loop only verifies that the inputs of
1577 the SET in INSN do not change. We call reg_set_between_p
1578 to verify that the REG in the USE does not change between
1579 I3 and INSN.
1580 If the USE in INSN was for a pseudo register, the matching
1581 insn pattern will likely match any register; combining this
1582 with any other USE would only be safe if we knew that the
1583 used registers have identical values, or if there was
1584 something to tell them apart, e.g. different modes. For
1585 now, we forgo such complicated tests and simply disallow
1586 combining of USES of pseudo registers with any other USE. */
1587 if (REG_P (XEXP (elt, 0))
1588 && GET_CODE (PATTERN (i3)) == PARALLEL)
1590 rtx i3pat = PATTERN (i3);
1591 int i = XVECLEN (i3pat, 0) - 1;
1592 unsigned int regno = REGNO (XEXP (elt, 0));
1596 rtx i3elt = XVECEXP (i3pat, 0, i);
1598 if (GET_CODE (i3elt) == USE
1599 && REG_P (XEXP (i3elt, 0))
1600 && (REGNO (XEXP (i3elt, 0)) == regno
1601 ? reg_set_between_p (XEXP (elt, 0),
1602 PREV_INSN (insn), i3)
1603 : regno >= FIRST_PSEUDO_REGISTER))
1604 return 0;
1606 while (--i >= 0);
1608 break;
1610 /* We can ignore CLOBBERs. */
1611 case CLOBBER:
1612 break;
1614 case SET:
1615 /* Ignore SETs whose result isn't used but not those that
1616 have side-effects. */
1617 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1618 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1619 || INTVAL (XEXP (note, 0)) <= 0)
1620 && ! side_effects_p (elt))
1621 break;
1623 /* If we have already found a SET, this is a second one and
1624 so we cannot combine with this insn. */
1625 if (set)
1626 return 0;
1628 set = elt;
1629 break;
1631 default:
1632 /* Anything else means we can't combine. */
1633 return 0;
1637 if (set == 0
1638 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1639 so don't do anything with it. */
1640 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1641 return 0;
1643 else
1644 return 0;
1646 if (set == 0)
1647 return 0;
1649 set = expand_field_assignment (set);
1650 src = SET_SRC (set), dest = SET_DEST (set);
1652 /* Don't eliminate a store in the stack pointer. */
1653 if (dest == stack_pointer_rtx
1654 /* Don't combine with an insn that sets a register to itself if it has
1655 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1656 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1657 /* Can't merge an ASM_OPERANDS. */
1658 || GET_CODE (src) == ASM_OPERANDS
1659 /* Can't merge a function call. */
1660 || GET_CODE (src) == CALL
1661 /* Don't eliminate a function call argument. */
1662 || (CALL_P (i3)
1663 && (find_reg_fusage (i3, USE, dest)
1664 || (REG_P (dest)
1665 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1666 && global_regs[REGNO (dest)])))
1667 /* Don't substitute into an incremented register. */
1668 || FIND_REG_INC_NOTE (i3, dest)
1669 || (succ && FIND_REG_INC_NOTE (succ, dest))
1670 /* Don't substitute into a non-local goto, this confuses CFG. */
1671 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1672 /* Make sure that DEST is not used after SUCC but before I3. */
1673 || (succ && ! all_adjacent
1674 && reg_used_between_p (dest, succ, i3))
1675 /* Make sure that the value that is to be substituted for the register
1676 does not use any registers whose values alter in between. However,
1677 If the insns are adjacent, a use can't cross a set even though we
1678 think it might (this can happen for a sequence of insns each setting
1679 the same destination; last_set of that register might point to
1680 a NOTE). If INSN has a REG_EQUIV note, the register is always
1681 equivalent to the memory so the substitution is valid even if there
1682 are intervening stores. Also, don't move a volatile asm or
1683 UNSPEC_VOLATILE across any other insns. */
1684 || (! all_adjacent
1685 && (((!MEM_P (src)
1686 || ! find_reg_note (insn, REG_EQUIV, src))
1687 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1688 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1689 || GET_CODE (src) == UNSPEC_VOLATILE))
1690 /* Don't combine across a CALL_INSN, because that would possibly
1691 change whether the life span of some REGs crosses calls or not,
1692 and it is a pain to update that information.
1693 Exception: if source is a constant, moving it later can't hurt.
1694 Accept that as a special case. */
1695 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1696 return 0;
1698 /* DEST must either be a REG or CC0. */
1699 if (REG_P (dest))
1701 /* If register alignment is being enforced for multi-word items in all
1702 cases except for parameters, it is possible to have a register copy
1703 insn referencing a hard register that is not allowed to contain the
1704 mode being copied and which would not be valid as an operand of most
1705 insns. Eliminate this problem by not combining with such an insn.
1707 Also, on some machines we don't want to extend the life of a hard
1708 register. */
1710 if (REG_P (src)
1711 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1712 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1713 /* Don't extend the life of a hard register unless it is
1714 user variable (if we have few registers) or it can't
1715 fit into the desired register (meaning something special
1716 is going on).
1717 Also avoid substituting a return register into I3, because
1718 reload can't handle a conflict with constraints of other
1719 inputs. */
1720 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1721 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1722 return 0;
1724 else if (GET_CODE (dest) != CC0)
1725 return 0;
1728 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1729 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1730 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1732 /* Don't substitute for a register intended as a clobberable
1733 operand. */
1734 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1735 if (rtx_equal_p (reg, dest))
1736 return 0;
1738 /* If the clobber represents an earlyclobber operand, we must not
1739 substitute an expression containing the clobbered register.
1740 As we do not analyze the constraint strings here, we have to
1741 make the conservative assumption. However, if the register is
1742 a fixed hard reg, the clobber cannot represent any operand;
1743 we leave it up to the machine description to either accept or
1744 reject use-and-clobber patterns. */
1745 if (!REG_P (reg)
1746 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1747 || !fixed_regs[REGNO (reg)])
1748 if (reg_overlap_mentioned_p (reg, src))
1749 return 0;
1752 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1753 or not), reject, unless nothing volatile comes between it and I3 */
1755 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1757 /* Make sure succ doesn't contain a volatile reference. */
1758 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1759 return 0;
1761 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1762 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1763 return 0;
1766 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1767 to be an explicit register variable, and was chosen for a reason. */
1769 if (GET_CODE (src) == ASM_OPERANDS
1770 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1771 return 0;
1773 /* If there are any volatile insns between INSN and I3, reject, because
1774 they might affect machine state. */
1776 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1777 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1778 return 0;
1780 /* If INSN contains an autoincrement or autodecrement, make sure that
1781 register is not used between there and I3, and not already used in
1782 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1783 Also insist that I3 not be a jump; if it were one
1784 and the incremented register were spilled, we would lose. */
1786 #ifdef AUTO_INC_DEC
1787 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1788 if (REG_NOTE_KIND (link) == REG_INC
1789 && (JUMP_P (i3)
1790 || reg_used_between_p (XEXP (link, 0), insn, i3)
1791 || (pred != NULL_RTX
1792 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1793 || (succ != NULL_RTX
1794 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1795 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1796 return 0;
1797 #endif
1799 #ifdef HAVE_cc0
1800 /* Don't combine an insn that follows a CC0-setting insn.
1801 An insn that uses CC0 must not be separated from the one that sets it.
1802 We do, however, allow I2 to follow a CC0-setting insn if that insn
1803 is passed as I1; in that case it will be deleted also.
1804 We also allow combining in this case if all the insns are adjacent
1805 because that would leave the two CC0 insns adjacent as well.
1806 It would be more logical to test whether CC0 occurs inside I1 or I2,
1807 but that would be much slower, and this ought to be equivalent. */
1809 p = prev_nonnote_insn (insn);
1810 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1811 && ! all_adjacent)
1812 return 0;
1813 #endif
1815 /* If we get here, we have passed all the tests and the combination is
1816 to be allowed. */
1818 *pdest = dest;
1819 *psrc = src;
1821 return 1;
1824 /* LOC is the location within I3 that contains its pattern or the component
1825 of a PARALLEL of the pattern. We validate that it is valid for combining.
1827 One problem is if I3 modifies its output, as opposed to replacing it
1828 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1829 so would produce an insn that is not equivalent to the original insns.
1831 Consider:
1833 (set (reg:DI 101) (reg:DI 100))
1834 (set (subreg:SI (reg:DI 101) 0) <foo>)
1836 This is NOT equivalent to:
1838 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1839 (set (reg:DI 101) (reg:DI 100))])
1841 Not only does this modify 100 (in which case it might still be valid
1842 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1844 We can also run into a problem if I2 sets a register that I1
1845 uses and I1 gets directly substituted into I3 (not via I2). In that
1846 case, we would be getting the wrong value of I2DEST into I3, so we
1847 must reject the combination. This case occurs when I2 and I1 both
1848 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1849 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1850 of a SET must prevent combination from occurring.
1852 Before doing the above check, we first try to expand a field assignment
1853 into a set of logical operations.
1855 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1856 we place a register that is both set and used within I3. If more than one
1857 such register is detected, we fail.
1859 Return 1 if the combination is valid, zero otherwise. */
1861 static int
1862 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1863 int i1_not_in_src, rtx *pi3dest_killed)
1865 rtx x = *loc;
1867 if (GET_CODE (x) == SET)
1869 rtx set = x ;
1870 rtx dest = SET_DEST (set);
1871 rtx src = SET_SRC (set);
1872 rtx inner_dest = dest;
1873 rtx subdest;
1875 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1876 || GET_CODE (inner_dest) == SUBREG
1877 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1878 inner_dest = XEXP (inner_dest, 0);
1880 /* Check for the case where I3 modifies its output, as discussed
1881 above. We don't want to prevent pseudos from being combined
1882 into the address of a MEM, so only prevent the combination if
1883 i1 or i2 set the same MEM. */
1884 if ((inner_dest != dest &&
1885 (!MEM_P (inner_dest)
1886 || rtx_equal_p (i2dest, inner_dest)
1887 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1888 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1889 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1891 /* This is the same test done in can_combine_p except we can't test
1892 all_adjacent; we don't have to, since this instruction will stay
1893 in place, thus we are not considering increasing the lifetime of
1894 INNER_DEST.
1896 Also, if this insn sets a function argument, combining it with
1897 something that might need a spill could clobber a previous
1898 function argument; the all_adjacent test in can_combine_p also
1899 checks this; here, we do a more specific test for this case. */
1901 || (REG_P (inner_dest)
1902 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1903 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1904 GET_MODE (inner_dest))))
1905 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1906 return 0;
1908 /* If DEST is used in I3, it is being killed in this insn, so
1909 record that for later. We have to consider paradoxical
1910 subregs here, since they kill the whole register, but we
1911 ignore partial subregs, STRICT_LOW_PART, etc.
1912 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1913 STACK_POINTER_REGNUM, since these are always considered to be
1914 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1915 subdest = dest;
1916 if (GET_CODE (subdest) == SUBREG
1917 && (GET_MODE_SIZE (GET_MODE (subdest))
1918 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1919 subdest = SUBREG_REG (subdest);
1920 if (pi3dest_killed
1921 && REG_P (subdest)
1922 && reg_referenced_p (subdest, PATTERN (i3))
1923 && REGNO (subdest) != FRAME_POINTER_REGNUM
1924 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1925 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1926 #endif
1927 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1928 && (REGNO (subdest) != ARG_POINTER_REGNUM
1929 || ! fixed_regs [REGNO (subdest)])
1930 #endif
1931 && REGNO (subdest) != STACK_POINTER_REGNUM)
1933 if (*pi3dest_killed)
1934 return 0;
1936 *pi3dest_killed = subdest;
1940 else if (GET_CODE (x) == PARALLEL)
1942 int i;
1944 for (i = 0; i < XVECLEN (x, 0); i++)
1945 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1946 i1_not_in_src, pi3dest_killed))
1947 return 0;
1950 return 1;
1953 /* Return 1 if X is an arithmetic expression that contains a multiplication
1954 and division. We don't count multiplications by powers of two here. */
1956 static int
1957 contains_muldiv (rtx x)
1959 switch (GET_CODE (x))
1961 case MOD: case DIV: case UMOD: case UDIV:
1962 return 1;
1964 case MULT:
1965 return ! (CONST_INT_P (XEXP (x, 1))
1966 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1967 default:
1968 if (BINARY_P (x))
1969 return contains_muldiv (XEXP (x, 0))
1970 || contains_muldiv (XEXP (x, 1));
1972 if (UNARY_P (x))
1973 return contains_muldiv (XEXP (x, 0));
1975 return 0;
1979 /* Determine whether INSN can be used in a combination. Return nonzero if
1980 not. This is used in try_combine to detect early some cases where we
1981 can't perform combinations. */
1983 static int
1984 cant_combine_insn_p (rtx insn)
1986 rtx set;
1987 rtx src, dest;
1989 /* If this isn't really an insn, we can't do anything.
1990 This can occur when flow deletes an insn that it has merged into an
1991 auto-increment address. */
1992 if (! INSN_P (insn))
1993 return 1;
1995 /* Never combine loads and stores involving hard regs that are likely
1996 to be spilled. The register allocator can usually handle such
1997 reg-reg moves by tying. If we allow the combiner to make
1998 substitutions of likely-spilled regs, reload might die.
1999 As an exception, we allow combinations involving fixed regs; these are
2000 not available to the register allocator so there's no risk involved. */
2002 set = single_set (insn);
2003 if (! set)
2004 return 0;
2005 src = SET_SRC (set);
2006 dest = SET_DEST (set);
2007 if (GET_CODE (src) == SUBREG)
2008 src = SUBREG_REG (src);
2009 if (GET_CODE (dest) == SUBREG)
2010 dest = SUBREG_REG (dest);
2011 if (REG_P (src) && REG_P (dest)
2012 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2013 && ! fixed_regs[REGNO (src)]
2014 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2015 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2016 && ! fixed_regs[REGNO (dest)]
2017 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2018 return 1;
2020 return 0;
2023 struct likely_spilled_retval_info
2025 unsigned regno, nregs;
2026 unsigned mask;
2029 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2030 hard registers that are known to be written to / clobbered in full. */
2031 static void
2032 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2034 struct likely_spilled_retval_info *const info =
2035 (struct likely_spilled_retval_info *) data;
2036 unsigned regno, nregs;
2037 unsigned new_mask;
2039 if (!REG_P (XEXP (set, 0)))
2040 return;
2041 regno = REGNO (x);
2042 if (regno >= info->regno + info->nregs)
2043 return;
2044 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2045 if (regno + nregs <= info->regno)
2046 return;
2047 new_mask = (2U << (nregs - 1)) - 1;
2048 if (regno < info->regno)
2049 new_mask >>= info->regno - regno;
2050 else
2051 new_mask <<= regno - info->regno;
2052 info->mask &= ~new_mask;
2055 /* Return nonzero iff part of the return value is live during INSN, and
2056 it is likely spilled. This can happen when more than one insn is needed
2057 to copy the return value, e.g. when we consider to combine into the
2058 second copy insn for a complex value. */
2060 static int
2061 likely_spilled_retval_p (rtx insn)
2063 rtx use = BB_END (this_basic_block);
2064 rtx reg, p;
2065 unsigned regno, nregs;
2066 /* We assume here that no machine mode needs more than
2067 32 hard registers when the value overlaps with a register
2068 for which FUNCTION_VALUE_REGNO_P is true. */
2069 unsigned mask;
2070 struct likely_spilled_retval_info info;
2072 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2073 return 0;
2074 reg = XEXP (PATTERN (use), 0);
2075 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2076 return 0;
2077 regno = REGNO (reg);
2078 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2079 if (nregs == 1)
2080 return 0;
2081 mask = (2U << (nregs - 1)) - 1;
2083 /* Disregard parts of the return value that are set later. */
2084 info.regno = regno;
2085 info.nregs = nregs;
2086 info.mask = mask;
2087 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2088 if (INSN_P (p))
2089 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2090 mask = info.mask;
2092 /* Check if any of the (probably) live return value registers is
2093 likely spilled. */
2094 nregs --;
2097 if ((mask & 1 << nregs)
2098 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2099 return 1;
2100 } while (nregs--);
2101 return 0;
2104 /* Adjust INSN after we made a change to its destination.
2106 Changing the destination can invalidate notes that say something about
2107 the results of the insn and a LOG_LINK pointing to the insn. */
2109 static void
2110 adjust_for_new_dest (rtx insn)
2112 /* For notes, be conservative and simply remove them. */
2113 remove_reg_equal_equiv_notes (insn);
2115 /* The new insn will have a destination that was previously the destination
2116 of an insn just above it. Call distribute_links to make a LOG_LINK from
2117 the next use of that destination. */
2118 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2120 df_insn_rescan (insn);
2123 /* Return TRUE if combine can reuse reg X in mode MODE.
2124 ADDED_SETS is nonzero if the original set is still required. */
2125 static bool
2126 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2128 unsigned int regno;
2130 if (!REG_P(x))
2131 return false;
2133 regno = REGNO (x);
2134 /* Allow hard registers if the new mode is legal, and occupies no more
2135 registers than the old mode. */
2136 if (regno < FIRST_PSEUDO_REGISTER)
2137 return (HARD_REGNO_MODE_OK (regno, mode)
2138 && (hard_regno_nregs[regno][GET_MODE (x)]
2139 >= hard_regno_nregs[regno][mode]));
2141 /* Or a pseudo that is only used once. */
2142 return (REG_N_SETS (regno) == 1 && !added_sets
2143 && !REG_USERVAR_P (x));
2147 /* Check whether X, the destination of a set, refers to part of
2148 the register specified by REG. */
2150 static bool
2151 reg_subword_p (rtx x, rtx reg)
2153 /* Check that reg is an integer mode register. */
2154 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2155 return false;
2157 if (GET_CODE (x) == STRICT_LOW_PART
2158 || GET_CODE (x) == ZERO_EXTRACT)
2159 x = XEXP (x, 0);
2161 return GET_CODE (x) == SUBREG
2162 && SUBREG_REG (x) == reg
2163 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2167 /* Delete the conditional jump INSN and adjust the CFG correspondingly.
2168 Note that the INSN should be deleted *after* removing dead edges, so
2169 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2170 but not for a (set (pc) (label_ref FOO)). */
2172 static void
2173 update_cfg_for_uncondjump (rtx insn)
2175 basic_block bb = BLOCK_FOR_INSN (insn);
2177 if (BB_END (bb) == insn)
2178 purge_dead_edges (bb);
2180 delete_insn (insn);
2181 if (EDGE_COUNT (bb->succs) == 1)
2182 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2186 /* Try to combine the insns I1 and I2 into I3.
2187 Here I1 and I2 appear earlier than I3.
2188 I1 can be zero; then we combine just I2 into I3.
2190 If we are combining three insns and the resulting insn is not recognized,
2191 try splitting it into two insns. If that happens, I2 and I3 are retained
2192 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2193 are pseudo-deleted.
2195 Return 0 if the combination does not work. Then nothing is changed.
2196 If we did the combination, return the insn at which combine should
2197 resume scanning.
2199 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2200 new direct jump instruction. */
2202 static rtx
2203 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2205 /* New patterns for I3 and I2, respectively. */
2206 rtx newpat, newi2pat = 0;
2207 rtvec newpat_vec_with_clobbers = 0;
2208 int substed_i2 = 0, substed_i1 = 0;
2209 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2210 int added_sets_1, added_sets_2;
2211 /* Total number of SETs to put into I3. */
2212 int total_sets;
2213 /* Nonzero if I2's body now appears in I3. */
2214 int i2_is_used;
2215 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2216 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2217 /* Contains I3 if the destination of I3 is used in its source, which means
2218 that the old life of I3 is being killed. If that usage is placed into
2219 I2 and not in I3, a REG_DEAD note must be made. */
2220 rtx i3dest_killed = 0;
2221 /* SET_DEST and SET_SRC of I2 and I1. */
2222 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2223 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2224 rtx i1pat = 0, i2pat = 0;
2225 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2226 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2227 int i2dest_killed = 0, i1dest_killed = 0;
2228 int i1_feeds_i3 = 0;
2229 /* Notes that must be added to REG_NOTES in I3 and I2. */
2230 rtx new_i3_notes, new_i2_notes;
2231 /* Notes that we substituted I3 into I2 instead of the normal case. */
2232 int i3_subst_into_i2 = 0;
2233 /* Notes that I1, I2 or I3 is a MULT operation. */
2234 int have_mult = 0;
2235 int swap_i2i3 = 0;
2236 int changed_i3_dest = 0;
2238 int maxreg;
2239 rtx temp;
2240 rtx link;
2241 rtx other_pat = 0;
2242 rtx new_other_notes;
2243 int i;
2245 /* Exit early if one of the insns involved can't be used for
2246 combinations. */
2247 if (cant_combine_insn_p (i3)
2248 || cant_combine_insn_p (i2)
2249 || (i1 && cant_combine_insn_p (i1))
2250 || likely_spilled_retval_p (i3))
2251 return 0;
2253 combine_attempts++;
2254 undobuf.other_insn = 0;
2256 /* Reset the hard register usage information. */
2257 CLEAR_HARD_REG_SET (newpat_used_regs);
2259 if (dump_file && (dump_flags & TDF_DETAILS))
2261 if (i1)
2262 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2263 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2264 else
2265 fprintf (dump_file, "\nTrying %d -> %d:\n",
2266 INSN_UID (i2), INSN_UID (i3));
2269 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2270 code below, set I1 to be the earlier of the two insns. */
2271 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2272 temp = i1, i1 = i2, i2 = temp;
2274 added_links_insn = 0;
2276 /* First check for one important special-case that the code below will
2277 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2278 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2279 we may be able to replace that destination with the destination of I3.
2280 This occurs in the common code where we compute both a quotient and
2281 remainder into a structure, in which case we want to do the computation
2282 directly into the structure to avoid register-register copies.
2284 Note that this case handles both multiple sets in I2 and also
2285 cases where I2 has a number of CLOBBER or PARALLELs.
2287 We make very conservative checks below and only try to handle the
2288 most common cases of this. For example, we only handle the case
2289 where I2 and I3 are adjacent to avoid making difficult register
2290 usage tests. */
2292 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2293 && REG_P (SET_SRC (PATTERN (i3)))
2294 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2295 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2296 && GET_CODE (PATTERN (i2)) == PARALLEL
2297 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2298 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2299 below would need to check what is inside (and reg_overlap_mentioned_p
2300 doesn't support those codes anyway). Don't allow those destinations;
2301 the resulting insn isn't likely to be recognized anyway. */
2302 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2303 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2304 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2305 SET_DEST (PATTERN (i3)))
2306 && next_real_insn (i2) == i3)
2308 rtx p2 = PATTERN (i2);
2310 /* Make sure that the destination of I3,
2311 which we are going to substitute into one output of I2,
2312 is not used within another output of I2. We must avoid making this:
2313 (parallel [(set (mem (reg 69)) ...)
2314 (set (reg 69) ...)])
2315 which is not well-defined as to order of actions.
2316 (Besides, reload can't handle output reloads for this.)
2318 The problem can also happen if the dest of I3 is a memory ref,
2319 if another dest in I2 is an indirect memory ref. */
2320 for (i = 0; i < XVECLEN (p2, 0); i++)
2321 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2322 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2323 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2324 SET_DEST (XVECEXP (p2, 0, i))))
2325 break;
2327 if (i == XVECLEN (p2, 0))
2328 for (i = 0; i < XVECLEN (p2, 0); i++)
2329 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2330 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2331 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2333 combine_merges++;
2335 subst_insn = i3;
2336 subst_low_luid = DF_INSN_LUID (i2);
2338 added_sets_2 = added_sets_1 = 0;
2339 i2dest = SET_SRC (PATTERN (i3));
2340 i2dest_killed = dead_or_set_p (i2, i2dest);
2342 /* Replace the dest in I2 with our dest and make the resulting
2343 insn the new pattern for I3. Then skip to where we
2344 validate the pattern. Everything was set up above. */
2345 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2346 SET_DEST (PATTERN (i3)));
2348 newpat = p2;
2349 i3_subst_into_i2 = 1;
2350 goto validate_replacement;
2354 /* If I2 is setting a pseudo to a constant and I3 is setting some
2355 sub-part of it to another constant, merge them by making a new
2356 constant. */
2357 if (i1 == 0
2358 && (temp = single_set (i2)) != 0
2359 && (CONST_INT_P (SET_SRC (temp))
2360 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2361 && GET_CODE (PATTERN (i3)) == SET
2362 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2363 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2364 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2366 rtx dest = SET_DEST (PATTERN (i3));
2367 int offset = -1;
2368 int width = 0;
2370 if (GET_CODE (dest) == ZERO_EXTRACT)
2372 if (CONST_INT_P (XEXP (dest, 1))
2373 && CONST_INT_P (XEXP (dest, 2)))
2375 width = INTVAL (XEXP (dest, 1));
2376 offset = INTVAL (XEXP (dest, 2));
2377 dest = XEXP (dest, 0);
2378 if (BITS_BIG_ENDIAN)
2379 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2382 else
2384 if (GET_CODE (dest) == STRICT_LOW_PART)
2385 dest = XEXP (dest, 0);
2386 width = GET_MODE_BITSIZE (GET_MODE (dest));
2387 offset = 0;
2390 if (offset >= 0)
2392 /* If this is the low part, we're done. */
2393 if (subreg_lowpart_p (dest))
2395 /* Handle the case where inner is twice the size of outer. */
2396 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2397 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2398 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2399 /* Otherwise give up for now. */
2400 else
2401 offset = -1;
2404 if (offset >= 0
2405 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2406 <= HOST_BITS_PER_WIDE_INT * 2))
2408 HOST_WIDE_INT mhi, ohi, ihi;
2409 HOST_WIDE_INT mlo, olo, ilo;
2410 rtx inner = SET_SRC (PATTERN (i3));
2411 rtx outer = SET_SRC (temp);
2413 if (CONST_INT_P (outer))
2415 olo = INTVAL (outer);
2416 ohi = olo < 0 ? -1 : 0;
2418 else
2420 olo = CONST_DOUBLE_LOW (outer);
2421 ohi = CONST_DOUBLE_HIGH (outer);
2424 if (CONST_INT_P (inner))
2426 ilo = INTVAL (inner);
2427 ihi = ilo < 0 ? -1 : 0;
2429 else
2431 ilo = CONST_DOUBLE_LOW (inner);
2432 ihi = CONST_DOUBLE_HIGH (inner);
2435 if (width < HOST_BITS_PER_WIDE_INT)
2437 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2438 mhi = 0;
2440 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2442 mhi = ((unsigned HOST_WIDE_INT) 1
2443 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2444 mlo = -1;
2446 else
2448 mlo = -1;
2449 mhi = -1;
2452 ilo &= mlo;
2453 ihi &= mhi;
2455 if (offset >= HOST_BITS_PER_WIDE_INT)
2457 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2458 mlo = 0;
2459 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2460 ilo = 0;
2462 else if (offset > 0)
2464 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2465 >> (HOST_BITS_PER_WIDE_INT - offset));
2466 mlo = mlo << offset;
2467 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2468 >> (HOST_BITS_PER_WIDE_INT - offset));
2469 ilo = ilo << offset;
2472 olo = (olo & ~mlo) | ilo;
2473 ohi = (ohi & ~mhi) | ihi;
2475 combine_merges++;
2476 subst_insn = i3;
2477 subst_low_luid = DF_INSN_LUID (i2);
2478 added_sets_2 = added_sets_1 = 0;
2479 i2dest = SET_DEST (temp);
2480 i2dest_killed = dead_or_set_p (i2, i2dest);
2482 SUBST (SET_SRC (temp),
2483 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2485 newpat = PATTERN (i2);
2486 goto validate_replacement;
2490 #ifndef HAVE_cc0
2491 /* If we have no I1 and I2 looks like:
2492 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2493 (set Y OP)])
2494 make up a dummy I1 that is
2495 (set Y OP)
2496 and change I2 to be
2497 (set (reg:CC X) (compare:CC Y (const_int 0)))
2499 (We can ignore any trailing CLOBBERs.)
2501 This undoes a previous combination and allows us to match a branch-and-
2502 decrement insn. */
2504 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2505 && XVECLEN (PATTERN (i2), 0) >= 2
2506 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2507 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2508 == MODE_CC)
2509 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2510 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2511 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2512 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2513 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2514 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2516 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2517 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2518 break;
2520 if (i == 1)
2522 /* We make I1 with the same INSN_UID as I2. This gives it
2523 the same DF_INSN_LUID for value tracking. Our fake I1 will
2524 never appear in the insn stream so giving it the same INSN_UID
2525 as I2 will not cause a problem. */
2527 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2528 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2529 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2531 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2532 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2533 SET_DEST (PATTERN (i1)));
2536 #endif
2538 /* Verify that I2 and I1 are valid for combining. */
2539 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2540 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2542 undo_all ();
2543 return 0;
2546 /* Record whether I2DEST is used in I2SRC and similarly for the other
2547 cases. Knowing this will help in register status updating below. */
2548 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2549 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2550 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2551 i2dest_killed = dead_or_set_p (i2, i2dest);
2552 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2554 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2555 in I2SRC. */
2556 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2558 /* Ensure that I3's pattern can be the destination of combines. */
2559 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2560 i1 && i2dest_in_i1src && i1_feeds_i3,
2561 &i3dest_killed))
2563 undo_all ();
2564 return 0;
2567 /* See if any of the insns is a MULT operation. Unless one is, we will
2568 reject a combination that is, since it must be slower. Be conservative
2569 here. */
2570 if (GET_CODE (i2src) == MULT
2571 || (i1 != 0 && GET_CODE (i1src) == MULT)
2572 || (GET_CODE (PATTERN (i3)) == SET
2573 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2574 have_mult = 1;
2576 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2577 We used to do this EXCEPT in one case: I3 has a post-inc in an
2578 output operand. However, that exception can give rise to insns like
2579 mov r3,(r3)+
2580 which is a famous insn on the PDP-11 where the value of r3 used as the
2581 source was model-dependent. Avoid this sort of thing. */
2583 #if 0
2584 if (!(GET_CODE (PATTERN (i3)) == SET
2585 && REG_P (SET_SRC (PATTERN (i3)))
2586 && MEM_P (SET_DEST (PATTERN (i3)))
2587 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2588 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2589 /* It's not the exception. */
2590 #endif
2591 #ifdef AUTO_INC_DEC
2592 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2593 if (REG_NOTE_KIND (link) == REG_INC
2594 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2595 || (i1 != 0
2596 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2598 undo_all ();
2599 return 0;
2601 #endif
2603 /* See if the SETs in I1 or I2 need to be kept around in the merged
2604 instruction: whenever the value set there is still needed past I3.
2605 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2607 For the SET in I1, we have two cases: If I1 and I2 independently
2608 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2609 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2610 in I1 needs to be kept around unless I1DEST dies or is set in either
2611 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2612 I1DEST. If so, we know I1 feeds into I2. */
2614 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2616 added_sets_1
2617 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2618 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2620 /* If the set in I2 needs to be kept around, we must make a copy of
2621 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2622 PATTERN (I2), we are only substituting for the original I1DEST, not into
2623 an already-substituted copy. This also prevents making self-referential
2624 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2625 I2DEST. */
2627 if (added_sets_2)
2629 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2630 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2631 else
2632 i2pat = copy_rtx (PATTERN (i2));
2635 if (added_sets_1)
2637 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2638 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2639 else
2640 i1pat = copy_rtx (PATTERN (i1));
2643 combine_merges++;
2645 /* Substitute in the latest insn for the regs set by the earlier ones. */
2647 maxreg = max_reg_num ();
2649 subst_insn = i3;
2651 #ifndef HAVE_cc0
2652 /* Many machines that don't use CC0 have insns that can both perform an
2653 arithmetic operation and set the condition code. These operations will
2654 be represented as a PARALLEL with the first element of the vector
2655 being a COMPARE of an arithmetic operation with the constant zero.
2656 The second element of the vector will set some pseudo to the result
2657 of the same arithmetic operation. If we simplify the COMPARE, we won't
2658 match such a pattern and so will generate an extra insn. Here we test
2659 for this case, where both the comparison and the operation result are
2660 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2661 I2SRC. Later we will make the PARALLEL that contains I2. */
2663 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2664 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2665 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2666 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2668 #ifdef SELECT_CC_MODE
2669 rtx *cc_use;
2670 enum machine_mode compare_mode;
2671 #endif
2673 newpat = PATTERN (i3);
2674 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2676 i2_is_used = 1;
2678 #ifdef SELECT_CC_MODE
2679 /* See if a COMPARE with the operand we substituted in should be done
2680 with the mode that is currently being used. If not, do the same
2681 processing we do in `subst' for a SET; namely, if the destination
2682 is used only once, try to replace it with a register of the proper
2683 mode and also replace the COMPARE. */
2684 if (undobuf.other_insn == 0
2685 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2686 &undobuf.other_insn))
2687 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2688 i2src, const0_rtx))
2689 != GET_MODE (SET_DEST (newpat))))
2691 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2692 compare_mode))
2694 unsigned int regno = REGNO (SET_DEST (newpat));
2695 rtx new_dest;
2697 if (regno < FIRST_PSEUDO_REGISTER)
2698 new_dest = gen_rtx_REG (compare_mode, regno);
2699 else
2701 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2702 new_dest = regno_reg_rtx[regno];
2705 SUBST (SET_DEST (newpat), new_dest);
2706 SUBST (XEXP (*cc_use, 0), new_dest);
2707 SUBST (SET_SRC (newpat),
2708 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2710 else
2711 undobuf.other_insn = 0;
2713 #endif
2715 else
2716 #endif
2718 /* It is possible that the source of I2 or I1 may be performing
2719 an unneeded operation, such as a ZERO_EXTEND of something
2720 that is known to have the high part zero. Handle that case
2721 by letting subst look at the innermost one of them.
2723 Another way to do this would be to have a function that tries
2724 to simplify a single insn instead of merging two or more
2725 insns. We don't do this because of the potential of infinite
2726 loops and because of the potential extra memory required.
2727 However, doing it the way we are is a bit of a kludge and
2728 doesn't catch all cases.
2730 But only do this if -fexpensive-optimizations since it slows
2731 things down and doesn't usually win.
2733 This is not done in the COMPARE case above because the
2734 unmodified I2PAT is used in the PARALLEL and so a pattern
2735 with a modified I2SRC would not match. */
2737 if (flag_expensive_optimizations)
2739 /* Pass pc_rtx so no substitutions are done, just
2740 simplifications. */
2741 if (i1)
2743 subst_low_luid = DF_INSN_LUID (i1);
2744 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2746 else
2748 subst_low_luid = DF_INSN_LUID (i2);
2749 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2753 n_occurrences = 0; /* `subst' counts here */
2755 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2756 need to make a unique copy of I2SRC each time we substitute it
2757 to avoid self-referential rtl. */
2759 subst_low_luid = DF_INSN_LUID (i2);
2760 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2761 ! i1_feeds_i3 && i1dest_in_i1src);
2762 substed_i2 = 1;
2764 /* Record whether i2's body now appears within i3's body. */
2765 i2_is_used = n_occurrences;
2768 /* If we already got a failure, don't try to do more. Otherwise,
2769 try to substitute in I1 if we have it. */
2771 if (i1 && GET_CODE (newpat) != CLOBBER)
2773 /* Check that an autoincrement side-effect on I1 has not been lost.
2774 This happens if I1DEST is mentioned in I2 and dies there, and
2775 has disappeared from the new pattern. */
2776 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2777 && !i1_feeds_i3
2778 && dead_or_set_p (i2, i1dest)
2779 && !reg_overlap_mentioned_p (i1dest, newpat))
2780 /* Before we can do this substitution, we must redo the test done
2781 above (see detailed comments there) that ensures that I1DEST
2782 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2783 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2785 undo_all ();
2786 return 0;
2789 n_occurrences = 0;
2790 subst_low_luid = DF_INSN_LUID (i1);
2791 newpat = subst (newpat, i1dest, i1src, 0, 0);
2792 substed_i1 = 1;
2795 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2796 to count all the ways that I2SRC and I1SRC can be used. */
2797 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2798 && i2_is_used + added_sets_2 > 1)
2799 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2800 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2801 > 1))
2802 /* Fail if we tried to make a new register. */
2803 || max_reg_num () != maxreg
2804 /* Fail if we couldn't do something and have a CLOBBER. */
2805 || GET_CODE (newpat) == CLOBBER
2806 /* Fail if this new pattern is a MULT and we didn't have one before
2807 at the outer level. */
2808 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2809 && ! have_mult))
2811 undo_all ();
2812 return 0;
2815 /* If the actions of the earlier insns must be kept
2816 in addition to substituting them into the latest one,
2817 we must make a new PARALLEL for the latest insn
2818 to hold additional the SETs. */
2820 if (added_sets_1 || added_sets_2)
2822 combine_extras++;
2824 if (GET_CODE (newpat) == PARALLEL)
2826 rtvec old = XVEC (newpat, 0);
2827 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2828 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2829 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2830 sizeof (old->elem[0]) * old->num_elem);
2832 else
2834 rtx old = newpat;
2835 total_sets = 1 + added_sets_1 + added_sets_2;
2836 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2837 XVECEXP (newpat, 0, 0) = old;
2840 if (added_sets_1)
2841 XVECEXP (newpat, 0, --total_sets) = i1pat;
2843 if (added_sets_2)
2845 /* If there is no I1, use I2's body as is. We used to also not do
2846 the subst call below if I2 was substituted into I3,
2847 but that could lose a simplification. */
2848 if (i1 == 0)
2849 XVECEXP (newpat, 0, --total_sets) = i2pat;
2850 else
2851 /* See comment where i2pat is assigned. */
2852 XVECEXP (newpat, 0, --total_sets)
2853 = subst (i2pat, i1dest, i1src, 0, 0);
2857 /* We come here when we are replacing a destination in I2 with the
2858 destination of I3. */
2859 validate_replacement:
2861 /* Note which hard regs this insn has as inputs. */
2862 mark_used_regs_combine (newpat);
2864 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2865 consider splitting this pattern, we might need these clobbers. */
2866 if (i1 && GET_CODE (newpat) == PARALLEL
2867 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2869 int len = XVECLEN (newpat, 0);
2871 newpat_vec_with_clobbers = rtvec_alloc (len);
2872 for (i = 0; i < len; i++)
2873 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2876 /* Is the result of combination a valid instruction? */
2877 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2879 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2880 the second SET's destination is a register that is unused and isn't
2881 marked as an instruction that might trap in an EH region. In that case,
2882 we just need the first SET. This can occur when simplifying a divmod
2883 insn. We *must* test for this case here because the code below that
2884 splits two independent SETs doesn't handle this case correctly when it
2885 updates the register status.
2887 It's pointless doing this if we originally had two sets, one from
2888 i3, and one from i2. Combining then splitting the parallel results
2889 in the original i2 again plus an invalid insn (which we delete).
2890 The net effect is only to move instructions around, which makes
2891 debug info less accurate.
2893 Also check the case where the first SET's destination is unused.
2894 That would not cause incorrect code, but does cause an unneeded
2895 insn to remain. */
2897 if (insn_code_number < 0
2898 && !(added_sets_2 && i1 == 0)
2899 && GET_CODE (newpat) == PARALLEL
2900 && XVECLEN (newpat, 0) == 2
2901 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2902 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2903 && asm_noperands (newpat) < 0)
2905 rtx set0 = XVECEXP (newpat, 0, 0);
2906 rtx set1 = XVECEXP (newpat, 0, 1);
2907 rtx note;
2909 if (((REG_P (SET_DEST (set1))
2910 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2911 || (GET_CODE (SET_DEST (set1)) == SUBREG
2912 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2913 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2914 || INTVAL (XEXP (note, 0)) <= 0)
2915 && ! side_effects_p (SET_SRC (set1)))
2917 newpat = set0;
2918 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2921 else if (((REG_P (SET_DEST (set0))
2922 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2923 || (GET_CODE (SET_DEST (set0)) == SUBREG
2924 && find_reg_note (i3, REG_UNUSED,
2925 SUBREG_REG (SET_DEST (set0)))))
2926 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2927 || INTVAL (XEXP (note, 0)) <= 0)
2928 && ! side_effects_p (SET_SRC (set0)))
2930 newpat = set1;
2931 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2933 if (insn_code_number >= 0)
2934 changed_i3_dest = 1;
2938 /* If we were combining three insns and the result is a simple SET
2939 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2940 insns. There are two ways to do this. It can be split using a
2941 machine-specific method (like when you have an addition of a large
2942 constant) or by combine in the function find_split_point. */
2944 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2945 && asm_noperands (newpat) < 0)
2947 rtx parallel, m_split, *split;
2949 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2950 use I2DEST as a scratch register will help. In the latter case,
2951 convert I2DEST to the mode of the source of NEWPAT if we can. */
2953 m_split = combine_split_insns (newpat, i3);
2955 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2956 inputs of NEWPAT. */
2958 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2959 possible to try that as a scratch reg. This would require adding
2960 more code to make it work though. */
2962 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2964 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2966 /* First try to split using the original register as a
2967 scratch register. */
2968 parallel = gen_rtx_PARALLEL (VOIDmode,
2969 gen_rtvec (2, newpat,
2970 gen_rtx_CLOBBER (VOIDmode,
2971 i2dest)));
2972 m_split = combine_split_insns (parallel, i3);
2974 /* If that didn't work, try changing the mode of I2DEST if
2975 we can. */
2976 if (m_split == 0
2977 && new_mode != GET_MODE (i2dest)
2978 && new_mode != VOIDmode
2979 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2981 enum machine_mode old_mode = GET_MODE (i2dest);
2982 rtx ni2dest;
2984 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2985 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2986 else
2988 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2989 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2992 parallel = (gen_rtx_PARALLEL
2993 (VOIDmode,
2994 gen_rtvec (2, newpat,
2995 gen_rtx_CLOBBER (VOIDmode,
2996 ni2dest))));
2997 m_split = combine_split_insns (parallel, i3);
2999 if (m_split == 0
3000 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3002 struct undo *buf;
3004 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3005 buf = undobuf.undos;
3006 undobuf.undos = buf->next;
3007 buf->next = undobuf.frees;
3008 undobuf.frees = buf;
3013 /* If recog_for_combine has discarded clobbers, try to use them
3014 again for the split. */
3015 if (m_split == 0 && newpat_vec_with_clobbers)
3017 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3018 m_split = combine_split_insns (parallel, i3);
3021 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3023 m_split = PATTERN (m_split);
3024 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3025 if (insn_code_number >= 0)
3026 newpat = m_split;
3028 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3029 && (next_real_insn (i2) == i3
3030 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3032 rtx i2set, i3set;
3033 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3034 newi2pat = PATTERN (m_split);
3036 i3set = single_set (NEXT_INSN (m_split));
3037 i2set = single_set (m_split);
3039 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3041 /* If I2 or I3 has multiple SETs, we won't know how to track
3042 register status, so don't use these insns. If I2's destination
3043 is used between I2 and I3, we also can't use these insns. */
3045 if (i2_code_number >= 0 && i2set && i3set
3046 && (next_real_insn (i2) == i3
3047 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3048 insn_code_number = recog_for_combine (&newi3pat, i3,
3049 &new_i3_notes);
3050 if (insn_code_number >= 0)
3051 newpat = newi3pat;
3053 /* It is possible that both insns now set the destination of I3.
3054 If so, we must show an extra use of it. */
3056 if (insn_code_number >= 0)
3058 rtx new_i3_dest = SET_DEST (i3set);
3059 rtx new_i2_dest = SET_DEST (i2set);
3061 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3062 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3063 || GET_CODE (new_i3_dest) == SUBREG)
3064 new_i3_dest = XEXP (new_i3_dest, 0);
3066 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3067 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3068 || GET_CODE (new_i2_dest) == SUBREG)
3069 new_i2_dest = XEXP (new_i2_dest, 0);
3071 if (REG_P (new_i3_dest)
3072 && REG_P (new_i2_dest)
3073 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3074 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3078 /* If we can split it and use I2DEST, go ahead and see if that
3079 helps things be recognized. Verify that none of the registers
3080 are set between I2 and I3. */
3081 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3082 #ifdef HAVE_cc0
3083 && REG_P (i2dest)
3084 #endif
3085 /* We need I2DEST in the proper mode. If it is a hard register
3086 or the only use of a pseudo, we can change its mode.
3087 Make sure we don't change a hard register to have a mode that
3088 isn't valid for it, or change the number of registers. */
3089 && (GET_MODE (*split) == GET_MODE (i2dest)
3090 || GET_MODE (*split) == VOIDmode
3091 || can_change_dest_mode (i2dest, added_sets_2,
3092 GET_MODE (*split)))
3093 && (next_real_insn (i2) == i3
3094 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3095 /* We can't overwrite I2DEST if its value is still used by
3096 NEWPAT. */
3097 && ! reg_referenced_p (i2dest, newpat))
3099 rtx newdest = i2dest;
3100 enum rtx_code split_code = GET_CODE (*split);
3101 enum machine_mode split_mode = GET_MODE (*split);
3102 bool subst_done = false;
3103 newi2pat = NULL_RTX;
3105 /* Get NEWDEST as a register in the proper mode. We have already
3106 validated that we can do this. */
3107 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3109 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3110 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3111 else
3113 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3114 newdest = regno_reg_rtx[REGNO (i2dest)];
3118 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3119 an ASHIFT. This can occur if it was inside a PLUS and hence
3120 appeared to be a memory address. This is a kludge. */
3121 if (split_code == MULT
3122 && CONST_INT_P (XEXP (*split, 1))
3123 && INTVAL (XEXP (*split, 1)) > 0
3124 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3126 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3127 XEXP (*split, 0), GEN_INT (i)));
3128 /* Update split_code because we may not have a multiply
3129 anymore. */
3130 split_code = GET_CODE (*split);
3133 #ifdef INSN_SCHEDULING
3134 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3135 be written as a ZERO_EXTEND. */
3136 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3138 #ifdef LOAD_EXTEND_OP
3139 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3140 what it really is. */
3141 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3142 == SIGN_EXTEND)
3143 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3144 SUBREG_REG (*split)));
3145 else
3146 #endif
3147 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3148 SUBREG_REG (*split)));
3150 #endif
3152 /* Attempt to split binary operators using arithmetic identities. */
3153 if (BINARY_P (SET_SRC (newpat))
3154 && split_mode == GET_MODE (SET_SRC (newpat))
3155 && ! side_effects_p (SET_SRC (newpat)))
3157 rtx setsrc = SET_SRC (newpat);
3158 enum machine_mode mode = GET_MODE (setsrc);
3159 enum rtx_code code = GET_CODE (setsrc);
3160 rtx src_op0 = XEXP (setsrc, 0);
3161 rtx src_op1 = XEXP (setsrc, 1);
3163 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3164 if (rtx_equal_p (src_op0, src_op1))
3166 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3167 SUBST (XEXP (setsrc, 0), newdest);
3168 SUBST (XEXP (setsrc, 1), newdest);
3169 subst_done = true;
3171 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3172 else if ((code == PLUS || code == MULT)
3173 && GET_CODE (src_op0) == code
3174 && GET_CODE (XEXP (src_op0, 0)) == code
3175 && (INTEGRAL_MODE_P (mode)
3176 || (FLOAT_MODE_P (mode)
3177 && flag_unsafe_math_optimizations)))
3179 rtx p = XEXP (XEXP (src_op0, 0), 0);
3180 rtx q = XEXP (XEXP (src_op0, 0), 1);
3181 rtx r = XEXP (src_op0, 1);
3182 rtx s = src_op1;
3184 /* Split both "((X op Y) op X) op Y" and
3185 "((X op Y) op Y) op X" as "T op T" where T is
3186 "X op Y". */
3187 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3188 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3190 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3191 XEXP (src_op0, 0));
3192 SUBST (XEXP (setsrc, 0), newdest);
3193 SUBST (XEXP (setsrc, 1), newdest);
3194 subst_done = true;
3196 /* Split "((X op X) op Y) op Y)" as "T op T" where
3197 T is "X op Y". */
3198 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3200 rtx tmp = simplify_gen_binary (code, mode, p, r);
3201 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3202 SUBST (XEXP (setsrc, 0), newdest);
3203 SUBST (XEXP (setsrc, 1), newdest);
3204 subst_done = true;
3209 if (!subst_done)
3211 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3212 SUBST (*split, newdest);
3215 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3217 /* recog_for_combine might have added CLOBBERs to newi2pat.
3218 Make sure NEWPAT does not depend on the clobbered regs. */
3219 if (GET_CODE (newi2pat) == PARALLEL)
3220 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3221 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3223 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3224 if (reg_overlap_mentioned_p (reg, newpat))
3226 undo_all ();
3227 return 0;
3231 /* If the split point was a MULT and we didn't have one before,
3232 don't use one now. */
3233 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3234 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3238 /* Check for a case where we loaded from memory in a narrow mode and
3239 then sign extended it, but we need both registers. In that case,
3240 we have a PARALLEL with both loads from the same memory location.
3241 We can split this into a load from memory followed by a register-register
3242 copy. This saves at least one insn, more if register allocation can
3243 eliminate the copy.
3245 We cannot do this if the destination of the first assignment is a
3246 condition code register or cc0. We eliminate this case by making sure
3247 the SET_DEST and SET_SRC have the same mode.
3249 We cannot do this if the destination of the second assignment is
3250 a register that we have already assumed is zero-extended. Similarly
3251 for a SUBREG of such a register. */
3253 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3254 && GET_CODE (newpat) == PARALLEL
3255 && XVECLEN (newpat, 0) == 2
3256 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3257 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3258 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3259 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3260 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3261 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3262 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3263 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3264 DF_INSN_LUID (i2))
3265 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3266 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3267 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3268 (REG_P (temp)
3269 && VEC_index (reg_stat_type, reg_stat,
3270 REGNO (temp))->nonzero_bits != 0
3271 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3272 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3273 && (VEC_index (reg_stat_type, reg_stat,
3274 REGNO (temp))->nonzero_bits
3275 != GET_MODE_MASK (word_mode))))
3276 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3277 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3278 (REG_P (temp)
3279 && VEC_index (reg_stat_type, reg_stat,
3280 REGNO (temp))->nonzero_bits != 0
3281 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3282 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3283 && (VEC_index (reg_stat_type, reg_stat,
3284 REGNO (temp))->nonzero_bits
3285 != GET_MODE_MASK (word_mode)))))
3286 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3287 SET_SRC (XVECEXP (newpat, 0, 1)))
3288 && ! find_reg_note (i3, REG_UNUSED,
3289 SET_DEST (XVECEXP (newpat, 0, 0))))
3291 rtx ni2dest;
3293 newi2pat = XVECEXP (newpat, 0, 0);
3294 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3295 newpat = XVECEXP (newpat, 0, 1);
3296 SUBST (SET_SRC (newpat),
3297 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3298 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3300 if (i2_code_number >= 0)
3301 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3303 if (insn_code_number >= 0)
3304 swap_i2i3 = 1;
3307 /* Similarly, check for a case where we have a PARALLEL of two independent
3308 SETs but we started with three insns. In this case, we can do the sets
3309 as two separate insns. This case occurs when some SET allows two
3310 other insns to combine, but the destination of that SET is still live. */
3312 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3313 && GET_CODE (newpat) == PARALLEL
3314 && XVECLEN (newpat, 0) == 2
3315 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3316 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3317 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3318 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3319 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3320 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3321 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3322 DF_INSN_LUID (i2))
3323 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3324 XVECEXP (newpat, 0, 0))
3325 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3326 XVECEXP (newpat, 0, 1))
3327 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3328 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3329 #ifdef HAVE_cc0
3330 /* We cannot split the parallel into two sets if both sets
3331 reference cc0. */
3332 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3333 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3334 #endif
3337 /* Normally, it doesn't matter which of the two is done first,
3338 but it does if one references cc0. In that case, it has to
3339 be first. */
3340 #ifdef HAVE_cc0
3341 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3343 newi2pat = XVECEXP (newpat, 0, 0);
3344 newpat = XVECEXP (newpat, 0, 1);
3346 else
3347 #endif
3349 newi2pat = XVECEXP (newpat, 0, 1);
3350 newpat = XVECEXP (newpat, 0, 0);
3353 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3355 if (i2_code_number >= 0)
3356 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3359 /* If it still isn't recognized, fail and change things back the way they
3360 were. */
3361 if ((insn_code_number < 0
3362 /* Is the result a reasonable ASM_OPERANDS? */
3363 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3365 undo_all ();
3366 return 0;
3369 /* If we had to change another insn, make sure it is valid also. */
3370 if (undobuf.other_insn)
3372 CLEAR_HARD_REG_SET (newpat_used_regs);
3374 other_pat = PATTERN (undobuf.other_insn);
3375 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3376 &new_other_notes);
3378 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3380 undo_all ();
3381 return 0;
3385 #ifdef HAVE_cc0
3386 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3387 they are adjacent to each other or not. */
3389 rtx p = prev_nonnote_insn (i3);
3390 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3391 && sets_cc0_p (newi2pat))
3393 undo_all ();
3394 return 0;
3397 #endif
3399 /* Only allow this combination if insn_rtx_costs reports that the
3400 replacement instructions are cheaper than the originals. */
3401 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3403 undo_all ();
3404 return 0;
3407 /* If we will be able to accept this, we have made a
3408 change to the destination of I3. This requires us to
3409 do a few adjustments. */
3411 if (changed_i3_dest)
3413 PATTERN (i3) = newpat;
3414 adjust_for_new_dest (i3);
3417 /* We now know that we can do this combination. Merge the insns and
3418 update the status of registers and LOG_LINKS. */
3420 if (undobuf.other_insn)
3422 rtx note, next;
3424 PATTERN (undobuf.other_insn) = other_pat;
3426 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3427 are still valid. Then add any non-duplicate notes added by
3428 recog_for_combine. */
3429 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3431 next = XEXP (note, 1);
3433 if (REG_NOTE_KIND (note) == REG_UNUSED
3434 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3435 remove_note (undobuf.other_insn, note);
3438 distribute_notes (new_other_notes, undobuf.other_insn,
3439 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3442 if (swap_i2i3)
3444 rtx insn;
3445 rtx link;
3446 rtx ni2dest;
3448 /* I3 now uses what used to be its destination and which is now
3449 I2's destination. This requires us to do a few adjustments. */
3450 PATTERN (i3) = newpat;
3451 adjust_for_new_dest (i3);
3453 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3454 so we still will.
3456 However, some later insn might be using I2's dest and have
3457 a LOG_LINK pointing at I3. We must remove this link.
3458 The simplest way to remove the link is to point it at I1,
3459 which we know will be a NOTE. */
3461 /* newi2pat is usually a SET here; however, recog_for_combine might
3462 have added some clobbers. */
3463 if (GET_CODE (newi2pat) == PARALLEL)
3464 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3465 else
3466 ni2dest = SET_DEST (newi2pat);
3468 for (insn = NEXT_INSN (i3);
3469 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3470 || insn != BB_HEAD (this_basic_block->next_bb));
3471 insn = NEXT_INSN (insn))
3473 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3475 for (link = LOG_LINKS (insn); link;
3476 link = XEXP (link, 1))
3477 if (XEXP (link, 0) == i3)
3478 XEXP (link, 0) = i1;
3480 break;
3486 rtx i3notes, i2notes, i1notes = 0;
3487 rtx i3links, i2links, i1links = 0;
3488 rtx midnotes = 0;
3489 unsigned int regno;
3490 /* Compute which registers we expect to eliminate. newi2pat may be setting
3491 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3492 same as i3dest, in which case newi2pat may be setting i1dest. */
3493 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3494 || i2dest_in_i2src || i2dest_in_i1src
3495 || !i2dest_killed
3496 ? 0 : i2dest);
3497 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3498 || (newi2pat && reg_set_p (i1dest, newi2pat))
3499 || !i1dest_killed
3500 ? 0 : i1dest);
3502 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3503 clear them. */
3504 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3505 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3506 if (i1)
3507 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3509 /* Ensure that we do not have something that should not be shared but
3510 occurs multiple times in the new insns. Check this by first
3511 resetting all the `used' flags and then copying anything is shared. */
3513 reset_used_flags (i3notes);
3514 reset_used_flags (i2notes);
3515 reset_used_flags (i1notes);
3516 reset_used_flags (newpat);
3517 reset_used_flags (newi2pat);
3518 if (undobuf.other_insn)
3519 reset_used_flags (PATTERN (undobuf.other_insn));
3521 i3notes = copy_rtx_if_shared (i3notes);
3522 i2notes = copy_rtx_if_shared (i2notes);
3523 i1notes = copy_rtx_if_shared (i1notes);
3524 newpat = copy_rtx_if_shared (newpat);
3525 newi2pat = copy_rtx_if_shared (newi2pat);
3526 if (undobuf.other_insn)
3527 reset_used_flags (PATTERN (undobuf.other_insn));
3529 INSN_CODE (i3) = insn_code_number;
3530 PATTERN (i3) = newpat;
3532 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3534 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3536 reset_used_flags (call_usage);
3537 call_usage = copy_rtx (call_usage);
3539 if (substed_i2)
3540 replace_rtx (call_usage, i2dest, i2src);
3542 if (substed_i1)
3543 replace_rtx (call_usage, i1dest, i1src);
3545 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3548 if (undobuf.other_insn)
3549 INSN_CODE (undobuf.other_insn) = other_code_number;
3551 /* We had one special case above where I2 had more than one set and
3552 we replaced a destination of one of those sets with the destination
3553 of I3. In that case, we have to update LOG_LINKS of insns later
3554 in this basic block. Note that this (expensive) case is rare.
3556 Also, in this case, we must pretend that all REG_NOTEs for I2
3557 actually came from I3, so that REG_UNUSED notes from I2 will be
3558 properly handled. */
3560 if (i3_subst_into_i2)
3562 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3563 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3564 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3565 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3566 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3567 && ! find_reg_note (i2, REG_UNUSED,
3568 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3569 for (temp = NEXT_INSN (i2);
3570 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3571 || BB_HEAD (this_basic_block) != temp);
3572 temp = NEXT_INSN (temp))
3573 if (temp != i3 && INSN_P (temp))
3574 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3575 if (XEXP (link, 0) == i2)
3576 XEXP (link, 0) = i3;
3578 if (i3notes)
3580 rtx link = i3notes;
3581 while (XEXP (link, 1))
3582 link = XEXP (link, 1);
3583 XEXP (link, 1) = i2notes;
3585 else
3586 i3notes = i2notes;
3587 i2notes = 0;
3590 LOG_LINKS (i3) = 0;
3591 REG_NOTES (i3) = 0;
3592 LOG_LINKS (i2) = 0;
3593 REG_NOTES (i2) = 0;
3595 if (newi2pat)
3597 INSN_CODE (i2) = i2_code_number;
3598 PATTERN (i2) = newi2pat;
3600 else
3601 SET_INSN_DELETED (i2);
3603 if (i1)
3605 LOG_LINKS (i1) = 0;
3606 REG_NOTES (i1) = 0;
3607 SET_INSN_DELETED (i1);
3610 /* Get death notes for everything that is now used in either I3 or
3611 I2 and used to die in a previous insn. If we built two new
3612 patterns, move from I1 to I2 then I2 to I3 so that we get the
3613 proper movement on registers that I2 modifies. */
3615 if (newi2pat)
3617 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3618 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3620 else
3621 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3622 i3, &midnotes);
3624 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3625 if (i3notes)
3626 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3627 elim_i2, elim_i1);
3628 if (i2notes)
3629 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3630 elim_i2, elim_i1);
3631 if (i1notes)
3632 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3633 elim_i2, elim_i1);
3634 if (midnotes)
3635 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3636 elim_i2, elim_i1);
3638 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3639 know these are REG_UNUSED and want them to go to the desired insn,
3640 so we always pass it as i3. */
3642 if (newi2pat && new_i2_notes)
3643 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3645 if (new_i3_notes)
3646 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3648 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3649 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3650 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3651 in that case, it might delete I2. Similarly for I2 and I1.
3652 Show an additional death due to the REG_DEAD note we make here. If
3653 we discard it in distribute_notes, we will decrement it again. */
3655 if (i3dest_killed)
3657 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3658 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3659 NULL_RTX),
3660 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3661 else
3662 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3663 NULL_RTX),
3664 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3665 elim_i2, elim_i1);
3668 if (i2dest_in_i2src)
3670 if (newi2pat && reg_set_p (i2dest, newi2pat))
3671 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3672 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3673 else
3674 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3675 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3676 NULL_RTX, NULL_RTX);
3679 if (i1dest_in_i1src)
3681 if (newi2pat && reg_set_p (i1dest, newi2pat))
3682 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3683 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3684 else
3685 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3686 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3687 NULL_RTX, NULL_RTX);
3690 distribute_links (i3links);
3691 distribute_links (i2links);
3692 distribute_links (i1links);
3694 if (REG_P (i2dest))
3696 rtx link;
3697 rtx i2_insn = 0, i2_val = 0, set;
3699 /* The insn that used to set this register doesn't exist, and
3700 this life of the register may not exist either. See if one of
3701 I3's links points to an insn that sets I2DEST. If it does,
3702 that is now the last known value for I2DEST. If we don't update
3703 this and I2 set the register to a value that depended on its old
3704 contents, we will get confused. If this insn is used, thing
3705 will be set correctly in combine_instructions. */
3707 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3708 if ((set = single_set (XEXP (link, 0))) != 0
3709 && rtx_equal_p (i2dest, SET_DEST (set)))
3710 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3712 record_value_for_reg (i2dest, i2_insn, i2_val);
3714 /* If the reg formerly set in I2 died only once and that was in I3,
3715 zero its use count so it won't make `reload' do any work. */
3716 if (! added_sets_2
3717 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3718 && ! i2dest_in_i2src)
3720 regno = REGNO (i2dest);
3721 INC_REG_N_SETS (regno, -1);
3725 if (i1 && REG_P (i1dest))
3727 rtx link;
3728 rtx i1_insn = 0, i1_val = 0, set;
3730 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3731 if ((set = single_set (XEXP (link, 0))) != 0
3732 && rtx_equal_p (i1dest, SET_DEST (set)))
3733 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3735 record_value_for_reg (i1dest, i1_insn, i1_val);
3737 regno = REGNO (i1dest);
3738 if (! added_sets_1 && ! i1dest_in_i1src)
3739 INC_REG_N_SETS (regno, -1);
3742 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3743 been made to this insn. The order of
3744 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3745 can affect nonzero_bits of newpat */
3746 if (newi2pat)
3747 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3748 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3751 if (undobuf.other_insn != NULL_RTX)
3753 if (dump_file)
3755 fprintf (dump_file, "modifying other_insn ");
3756 dump_insn_slim (dump_file, undobuf.other_insn);
3758 df_insn_rescan (undobuf.other_insn);
3761 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3763 if (dump_file)
3765 fprintf (dump_file, "modifying insn i1 ");
3766 dump_insn_slim (dump_file, i1);
3768 df_insn_rescan (i1);
3771 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3773 if (dump_file)
3775 fprintf (dump_file, "modifying insn i2 ");
3776 dump_insn_slim (dump_file, i2);
3778 df_insn_rescan (i2);
3781 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3783 if (dump_file)
3785 fprintf (dump_file, "modifying insn i3 ");
3786 dump_insn_slim (dump_file, i3);
3788 df_insn_rescan (i3);
3791 /* Set new_direct_jump_p if a new return or simple jump instruction
3792 has been created. Adjust the CFG accordingly. */
3794 if (returnjump_p (i3) || any_uncondjump_p (i3))
3796 *new_direct_jump_p = 1;
3797 mark_jump_label (PATTERN (i3), i3, 0);
3798 update_cfg_for_uncondjump (i3);
3801 if (undobuf.other_insn != NULL_RTX
3802 && (returnjump_p (undobuf.other_insn)
3803 || any_uncondjump_p (undobuf.other_insn)))
3805 *new_direct_jump_p = 1;
3806 update_cfg_for_uncondjump (undobuf.other_insn);
3809 /* A noop might also need cleaning up of CFG, if it comes from the
3810 simplification of a jump. */
3811 if (GET_CODE (newpat) == SET
3812 && SET_SRC (newpat) == pc_rtx
3813 && SET_DEST (newpat) == pc_rtx)
3815 *new_direct_jump_p = 1;
3816 update_cfg_for_uncondjump (i3);
3819 combine_successes++;
3820 undo_commit ();
3822 if (added_links_insn
3823 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3824 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3825 return added_links_insn;
3826 else
3827 return newi2pat ? i2 : i3;
3830 /* Undo all the modifications recorded in undobuf. */
3832 static void
3833 undo_all (void)
3835 struct undo *undo, *next;
3837 for (undo = undobuf.undos; undo; undo = next)
3839 next = undo->next;
3840 switch (undo->kind)
3842 case UNDO_RTX:
3843 *undo->where.r = undo->old_contents.r;
3844 break;
3845 case UNDO_INT:
3846 *undo->where.i = undo->old_contents.i;
3847 break;
3848 case UNDO_MODE:
3849 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3850 break;
3851 default:
3852 gcc_unreachable ();
3855 undo->next = undobuf.frees;
3856 undobuf.frees = undo;
3859 undobuf.undos = 0;
3862 /* We've committed to accepting the changes we made. Move all
3863 of the undos to the free list. */
3865 static void
3866 undo_commit (void)
3868 struct undo *undo, *next;
3870 for (undo = undobuf.undos; undo; undo = next)
3872 next = undo->next;
3873 undo->next = undobuf.frees;
3874 undobuf.frees = undo;
3876 undobuf.undos = 0;
3879 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3880 where we have an arithmetic expression and return that point. LOC will
3881 be inside INSN.
3883 try_combine will call this function to see if an insn can be split into
3884 two insns. */
3886 static rtx *
3887 find_split_point (rtx *loc, rtx insn)
3889 rtx x = *loc;
3890 enum rtx_code code = GET_CODE (x);
3891 rtx *split;
3892 unsigned HOST_WIDE_INT len = 0;
3893 HOST_WIDE_INT pos = 0;
3894 int unsignedp = 0;
3895 rtx inner = NULL_RTX;
3897 /* First special-case some codes. */
3898 switch (code)
3900 case SUBREG:
3901 #ifdef INSN_SCHEDULING
3902 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3903 point. */
3904 if (MEM_P (SUBREG_REG (x)))
3905 return loc;
3906 #endif
3907 return find_split_point (&SUBREG_REG (x), insn);
3909 case MEM:
3910 #ifdef HAVE_lo_sum
3911 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3912 using LO_SUM and HIGH. */
3913 if (GET_CODE (XEXP (x, 0)) == CONST
3914 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3916 SUBST (XEXP (x, 0),
3917 gen_rtx_LO_SUM (Pmode,
3918 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3919 XEXP (x, 0)));
3920 return &XEXP (XEXP (x, 0), 0);
3922 #endif
3924 /* If we have a PLUS whose second operand is a constant and the
3925 address is not valid, perhaps will can split it up using
3926 the machine-specific way to split large constants. We use
3927 the first pseudo-reg (one of the virtual regs) as a placeholder;
3928 it will not remain in the result. */
3929 if (GET_CODE (XEXP (x, 0)) == PLUS
3930 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
3931 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3933 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3934 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3935 XEXP (x, 0)),
3936 subst_insn);
3938 /* This should have produced two insns, each of which sets our
3939 placeholder. If the source of the second is a valid address,
3940 we can make put both sources together and make a split point
3941 in the middle. */
3943 if (seq
3944 && NEXT_INSN (seq) != NULL_RTX
3945 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3946 && NONJUMP_INSN_P (seq)
3947 && GET_CODE (PATTERN (seq)) == SET
3948 && SET_DEST (PATTERN (seq)) == reg
3949 && ! reg_mentioned_p (reg,
3950 SET_SRC (PATTERN (seq)))
3951 && NONJUMP_INSN_P (NEXT_INSN (seq))
3952 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3953 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3954 && memory_address_p (GET_MODE (x),
3955 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3957 rtx src1 = SET_SRC (PATTERN (seq));
3958 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3960 /* Replace the placeholder in SRC2 with SRC1. If we can
3961 find where in SRC2 it was placed, that can become our
3962 split point and we can replace this address with SRC2.
3963 Just try two obvious places. */
3965 src2 = replace_rtx (src2, reg, src1);
3966 split = 0;
3967 if (XEXP (src2, 0) == src1)
3968 split = &XEXP (src2, 0);
3969 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3970 && XEXP (XEXP (src2, 0), 0) == src1)
3971 split = &XEXP (XEXP (src2, 0), 0);
3973 if (split)
3975 SUBST (XEXP (x, 0), src2);
3976 return split;
3980 /* If that didn't work, perhaps the first operand is complex and
3981 needs to be computed separately, so make a split point there.
3982 This will occur on machines that just support REG + CONST
3983 and have a constant moved through some previous computation. */
3985 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3986 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3987 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3988 return &XEXP (XEXP (x, 0), 0);
3991 /* If we have a PLUS whose first operand is complex, try computing it
3992 separately by making a split there. */
3993 if (GET_CODE (XEXP (x, 0)) == PLUS
3994 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3995 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3996 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3997 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3998 return &XEXP (XEXP (x, 0), 0);
3999 break;
4001 case SET:
4002 #ifdef HAVE_cc0
4003 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4004 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4005 we need to put the operand into a register. So split at that
4006 point. */
4008 if (SET_DEST (x) == cc0_rtx
4009 && GET_CODE (SET_SRC (x)) != COMPARE
4010 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4011 && !OBJECT_P (SET_SRC (x))
4012 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4013 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4014 return &SET_SRC (x);
4015 #endif
4017 /* See if we can split SET_SRC as it stands. */
4018 split = find_split_point (&SET_SRC (x), insn);
4019 if (split && split != &SET_SRC (x))
4020 return split;
4022 /* See if we can split SET_DEST as it stands. */
4023 split = find_split_point (&SET_DEST (x), insn);
4024 if (split && split != &SET_DEST (x))
4025 return split;
4027 /* See if this is a bitfield assignment with everything constant. If
4028 so, this is an IOR of an AND, so split it into that. */
4029 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4030 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4031 <= HOST_BITS_PER_WIDE_INT)
4032 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4033 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4034 && CONST_INT_P (SET_SRC (x))
4035 && ((INTVAL (XEXP (SET_DEST (x), 1))
4036 + INTVAL (XEXP (SET_DEST (x), 2)))
4037 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4038 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4040 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4041 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4042 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4043 rtx dest = XEXP (SET_DEST (x), 0);
4044 enum machine_mode mode = GET_MODE (dest);
4045 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4046 rtx or_mask;
4048 if (BITS_BIG_ENDIAN)
4049 pos = GET_MODE_BITSIZE (mode) - len - pos;
4051 or_mask = gen_int_mode (src << pos, mode);
4052 if (src == mask)
4053 SUBST (SET_SRC (x),
4054 simplify_gen_binary (IOR, mode, dest, or_mask));
4055 else
4057 rtx negmask = gen_int_mode (~(mask << pos), mode);
4058 SUBST (SET_SRC (x),
4059 simplify_gen_binary (IOR, mode,
4060 simplify_gen_binary (AND, mode,
4061 dest, negmask),
4062 or_mask));
4065 SUBST (SET_DEST (x), dest);
4067 split = find_split_point (&SET_SRC (x), insn);
4068 if (split && split != &SET_SRC (x))
4069 return split;
4072 /* Otherwise, see if this is an operation that we can split into two.
4073 If so, try to split that. */
4074 code = GET_CODE (SET_SRC (x));
4076 switch (code)
4078 case AND:
4079 /* If we are AND'ing with a large constant that is only a single
4080 bit and the result is only being used in a context where we
4081 need to know if it is zero or nonzero, replace it with a bit
4082 extraction. This will avoid the large constant, which might
4083 have taken more than one insn to make. If the constant were
4084 not a valid argument to the AND but took only one insn to make,
4085 this is no worse, but if it took more than one insn, it will
4086 be better. */
4088 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4089 && REG_P (XEXP (SET_SRC (x), 0))
4090 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4091 && REG_P (SET_DEST (x))
4092 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4093 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4094 && XEXP (*split, 0) == SET_DEST (x)
4095 && XEXP (*split, 1) == const0_rtx)
4097 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4098 XEXP (SET_SRC (x), 0),
4099 pos, NULL_RTX, 1, 1, 0, 0);
4100 if (extraction != 0)
4102 SUBST (SET_SRC (x), extraction);
4103 return find_split_point (loc, insn);
4106 break;
4108 case NE:
4109 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4110 is known to be on, this can be converted into a NEG of a shift. */
4111 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4112 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4113 && 1 <= (pos = exact_log2
4114 (nonzero_bits (XEXP (SET_SRC (x), 0),
4115 GET_MODE (XEXP (SET_SRC (x), 0))))))
4117 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4119 SUBST (SET_SRC (x),
4120 gen_rtx_NEG (mode,
4121 gen_rtx_LSHIFTRT (mode,
4122 XEXP (SET_SRC (x), 0),
4123 GEN_INT (pos))));
4125 split = find_split_point (&SET_SRC (x), insn);
4126 if (split && split != &SET_SRC (x))
4127 return split;
4129 break;
4131 case SIGN_EXTEND:
4132 inner = XEXP (SET_SRC (x), 0);
4134 /* We can't optimize if either mode is a partial integer
4135 mode as we don't know how many bits are significant
4136 in those modes. */
4137 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4138 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4139 break;
4141 pos = 0;
4142 len = GET_MODE_BITSIZE (GET_MODE (inner));
4143 unsignedp = 0;
4144 break;
4146 case SIGN_EXTRACT:
4147 case ZERO_EXTRACT:
4148 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4149 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4151 inner = XEXP (SET_SRC (x), 0);
4152 len = INTVAL (XEXP (SET_SRC (x), 1));
4153 pos = INTVAL (XEXP (SET_SRC (x), 2));
4155 if (BITS_BIG_ENDIAN)
4156 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4157 unsignedp = (code == ZERO_EXTRACT);
4159 break;
4161 default:
4162 break;
4165 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4167 enum machine_mode mode = GET_MODE (SET_SRC (x));
4169 /* For unsigned, we have a choice of a shift followed by an
4170 AND or two shifts. Use two shifts for field sizes where the
4171 constant might be too large. We assume here that we can
4172 always at least get 8-bit constants in an AND insn, which is
4173 true for every current RISC. */
4175 if (unsignedp && len <= 8)
4177 SUBST (SET_SRC (x),
4178 gen_rtx_AND (mode,
4179 gen_rtx_LSHIFTRT
4180 (mode, gen_lowpart (mode, inner),
4181 GEN_INT (pos)),
4182 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4184 split = find_split_point (&SET_SRC (x), insn);
4185 if (split && split != &SET_SRC (x))
4186 return split;
4188 else
4190 SUBST (SET_SRC (x),
4191 gen_rtx_fmt_ee
4192 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4193 gen_rtx_ASHIFT (mode,
4194 gen_lowpart (mode, inner),
4195 GEN_INT (GET_MODE_BITSIZE (mode)
4196 - len - pos)),
4197 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4199 split = find_split_point (&SET_SRC (x), insn);
4200 if (split && split != &SET_SRC (x))
4201 return split;
4205 /* See if this is a simple operation with a constant as the second
4206 operand. It might be that this constant is out of range and hence
4207 could be used as a split point. */
4208 if (BINARY_P (SET_SRC (x))
4209 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4210 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4211 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4212 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4213 return &XEXP (SET_SRC (x), 1);
4215 /* Finally, see if this is a simple operation with its first operand
4216 not in a register. The operation might require this operand in a
4217 register, so return it as a split point. We can always do this
4218 because if the first operand were another operation, we would have
4219 already found it as a split point. */
4220 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4221 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4222 return &XEXP (SET_SRC (x), 0);
4224 return 0;
4226 case AND:
4227 case IOR:
4228 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4229 it is better to write this as (not (ior A B)) so we can split it.
4230 Similarly for IOR. */
4231 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4233 SUBST (*loc,
4234 gen_rtx_NOT (GET_MODE (x),
4235 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4236 GET_MODE (x),
4237 XEXP (XEXP (x, 0), 0),
4238 XEXP (XEXP (x, 1), 0))));
4239 return find_split_point (loc, insn);
4242 /* Many RISC machines have a large set of logical insns. If the
4243 second operand is a NOT, put it first so we will try to split the
4244 other operand first. */
4245 if (GET_CODE (XEXP (x, 1)) == NOT)
4247 rtx tem = XEXP (x, 0);
4248 SUBST (XEXP (x, 0), XEXP (x, 1));
4249 SUBST (XEXP (x, 1), tem);
4251 break;
4253 default:
4254 break;
4257 /* Otherwise, select our actions depending on our rtx class. */
4258 switch (GET_RTX_CLASS (code))
4260 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4261 case RTX_TERNARY:
4262 split = find_split_point (&XEXP (x, 2), insn);
4263 if (split)
4264 return split;
4265 /* ... fall through ... */
4266 case RTX_BIN_ARITH:
4267 case RTX_COMM_ARITH:
4268 case RTX_COMPARE:
4269 case RTX_COMM_COMPARE:
4270 split = find_split_point (&XEXP (x, 1), insn);
4271 if (split)
4272 return split;
4273 /* ... fall through ... */
4274 case RTX_UNARY:
4275 /* Some machines have (and (shift ...) ...) insns. If X is not
4276 an AND, but XEXP (X, 0) is, use it as our split point. */
4277 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4278 return &XEXP (x, 0);
4280 split = find_split_point (&XEXP (x, 0), insn);
4281 if (split)
4282 return split;
4283 return loc;
4285 default:
4286 /* Otherwise, we don't have a split point. */
4287 return 0;
4291 /* Throughout X, replace FROM with TO, and return the result.
4292 The result is TO if X is FROM;
4293 otherwise the result is X, but its contents may have been modified.
4294 If they were modified, a record was made in undobuf so that
4295 undo_all will (among other things) return X to its original state.
4297 If the number of changes necessary is too much to record to undo,
4298 the excess changes are not made, so the result is invalid.
4299 The changes already made can still be undone.
4300 undobuf.num_undo is incremented for such changes, so by testing that
4301 the caller can tell whether the result is valid.
4303 `n_occurrences' is incremented each time FROM is replaced.
4305 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4307 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4308 by copying if `n_occurrences' is nonzero. */
4310 static rtx
4311 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4313 enum rtx_code code = GET_CODE (x);
4314 enum machine_mode op0_mode = VOIDmode;
4315 const char *fmt;
4316 int len, i;
4317 rtx new_rtx;
4319 /* Two expressions are equal if they are identical copies of a shared
4320 RTX or if they are both registers with the same register number
4321 and mode. */
4323 #define COMBINE_RTX_EQUAL_P(X,Y) \
4324 ((X) == (Y) \
4325 || (REG_P (X) && REG_P (Y) \
4326 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4328 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4330 n_occurrences++;
4331 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4334 /* If X and FROM are the same register but different modes, they
4335 will not have been seen as equal above. However, the log links code
4336 will make a LOG_LINKS entry for that case. If we do nothing, we
4337 will try to rerecognize our original insn and, when it succeeds,
4338 we will delete the feeding insn, which is incorrect.
4340 So force this insn not to match in this (rare) case. */
4341 if (! in_dest && code == REG && REG_P (from)
4342 && reg_overlap_mentioned_p (x, from))
4343 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4345 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4346 of which may contain things that can be combined. */
4347 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4348 return x;
4350 /* It is possible to have a subexpression appear twice in the insn.
4351 Suppose that FROM is a register that appears within TO.
4352 Then, after that subexpression has been scanned once by `subst',
4353 the second time it is scanned, TO may be found. If we were
4354 to scan TO here, we would find FROM within it and create a
4355 self-referent rtl structure which is completely wrong. */
4356 if (COMBINE_RTX_EQUAL_P (x, to))
4357 return to;
4359 /* Parallel asm_operands need special attention because all of the
4360 inputs are shared across the arms. Furthermore, unsharing the
4361 rtl results in recognition failures. Failure to handle this case
4362 specially can result in circular rtl.
4364 Solve this by doing a normal pass across the first entry of the
4365 parallel, and only processing the SET_DESTs of the subsequent
4366 entries. Ug. */
4368 if (code == PARALLEL
4369 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4370 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4372 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4374 /* If this substitution failed, this whole thing fails. */
4375 if (GET_CODE (new_rtx) == CLOBBER
4376 && XEXP (new_rtx, 0) == const0_rtx)
4377 return new_rtx;
4379 SUBST (XVECEXP (x, 0, 0), new_rtx);
4381 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4383 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4385 if (!REG_P (dest)
4386 && GET_CODE (dest) != CC0
4387 && GET_CODE (dest) != PC)
4389 new_rtx = subst (dest, from, to, 0, unique_copy);
4391 /* If this substitution failed, this whole thing fails. */
4392 if (GET_CODE (new_rtx) == CLOBBER
4393 && XEXP (new_rtx, 0) == const0_rtx)
4394 return new_rtx;
4396 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4400 else
4402 len = GET_RTX_LENGTH (code);
4403 fmt = GET_RTX_FORMAT (code);
4405 /* We don't need to process a SET_DEST that is a register, CC0,
4406 or PC, so set up to skip this common case. All other cases
4407 where we want to suppress replacing something inside a
4408 SET_SRC are handled via the IN_DEST operand. */
4409 if (code == SET
4410 && (REG_P (SET_DEST (x))
4411 || GET_CODE (SET_DEST (x)) == CC0
4412 || GET_CODE (SET_DEST (x)) == PC))
4413 fmt = "ie";
4415 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4416 constant. */
4417 if (fmt[0] == 'e')
4418 op0_mode = GET_MODE (XEXP (x, 0));
4420 for (i = 0; i < len; i++)
4422 if (fmt[i] == 'E')
4424 int j;
4425 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4427 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4429 new_rtx = (unique_copy && n_occurrences
4430 ? copy_rtx (to) : to);
4431 n_occurrences++;
4433 else
4435 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4436 unique_copy);
4438 /* If this substitution failed, this whole thing
4439 fails. */
4440 if (GET_CODE (new_rtx) == CLOBBER
4441 && XEXP (new_rtx, 0) == const0_rtx)
4442 return new_rtx;
4445 SUBST (XVECEXP (x, i, j), new_rtx);
4448 else if (fmt[i] == 'e')
4450 /* If this is a register being set, ignore it. */
4451 new_rtx = XEXP (x, i);
4452 if (in_dest
4453 && i == 0
4454 && (((code == SUBREG || code == ZERO_EXTRACT)
4455 && REG_P (new_rtx))
4456 || code == STRICT_LOW_PART))
4459 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4461 /* In general, don't install a subreg involving two
4462 modes not tieable. It can worsen register
4463 allocation, and can even make invalid reload
4464 insns, since the reg inside may need to be copied
4465 from in the outside mode, and that may be invalid
4466 if it is an fp reg copied in integer mode.
4468 We allow two exceptions to this: It is valid if
4469 it is inside another SUBREG and the mode of that
4470 SUBREG and the mode of the inside of TO is
4471 tieable and it is valid if X is a SET that copies
4472 FROM to CC0. */
4474 if (GET_CODE (to) == SUBREG
4475 && ! MODES_TIEABLE_P (GET_MODE (to),
4476 GET_MODE (SUBREG_REG (to)))
4477 && ! (code == SUBREG
4478 && MODES_TIEABLE_P (GET_MODE (x),
4479 GET_MODE (SUBREG_REG (to))))
4480 #ifdef HAVE_cc0
4481 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4482 #endif
4484 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4486 #ifdef CANNOT_CHANGE_MODE_CLASS
4487 if (code == SUBREG
4488 && REG_P (to)
4489 && REGNO (to) < FIRST_PSEUDO_REGISTER
4490 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4491 GET_MODE (to),
4492 GET_MODE (x)))
4493 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4494 #endif
4496 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4497 n_occurrences++;
4499 else
4500 /* If we are in a SET_DEST, suppress most cases unless we
4501 have gone inside a MEM, in which case we want to
4502 simplify the address. We assume here that things that
4503 are actually part of the destination have their inner
4504 parts in the first expression. This is true for SUBREG,
4505 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4506 things aside from REG and MEM that should appear in a
4507 SET_DEST. */
4508 new_rtx = subst (XEXP (x, i), from, to,
4509 (((in_dest
4510 && (code == SUBREG || code == STRICT_LOW_PART
4511 || code == ZERO_EXTRACT))
4512 || code == SET)
4513 && i == 0), unique_copy);
4515 /* If we found that we will have to reject this combination,
4516 indicate that by returning the CLOBBER ourselves, rather than
4517 an expression containing it. This will speed things up as
4518 well as prevent accidents where two CLOBBERs are considered
4519 to be equal, thus producing an incorrect simplification. */
4521 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4522 return new_rtx;
4524 if (GET_CODE (x) == SUBREG
4525 && (CONST_INT_P (new_rtx)
4526 || GET_CODE (new_rtx) == CONST_DOUBLE))
4528 enum machine_mode mode = GET_MODE (x);
4530 x = simplify_subreg (GET_MODE (x), new_rtx,
4531 GET_MODE (SUBREG_REG (x)),
4532 SUBREG_BYTE (x));
4533 if (! x)
4534 x = gen_rtx_CLOBBER (mode, const0_rtx);
4536 else if (CONST_INT_P (new_rtx)
4537 && GET_CODE (x) == ZERO_EXTEND)
4539 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4540 new_rtx, GET_MODE (XEXP (x, 0)));
4541 gcc_assert (x);
4543 else
4544 SUBST (XEXP (x, i), new_rtx);
4549 /* Check if we are loading something from the constant pool via float
4550 extension; in this case we would undo compress_float_constant
4551 optimization and degenerate constant load to an immediate value. */
4552 if (GET_CODE (x) == FLOAT_EXTEND
4553 && MEM_P (XEXP (x, 0))
4554 && MEM_READONLY_P (XEXP (x, 0)))
4556 rtx tmp = avoid_constant_pool_reference (x);
4557 if (x != tmp)
4558 return x;
4561 /* Try to simplify X. If the simplification changed the code, it is likely
4562 that further simplification will help, so loop, but limit the number
4563 of repetitions that will be performed. */
4565 for (i = 0; i < 4; i++)
4567 /* If X is sufficiently simple, don't bother trying to do anything
4568 with it. */
4569 if (code != CONST_INT && code != REG && code != CLOBBER)
4570 x = combine_simplify_rtx (x, op0_mode, in_dest);
4572 if (GET_CODE (x) == code)
4573 break;
4575 code = GET_CODE (x);
4577 /* We no longer know the original mode of operand 0 since we
4578 have changed the form of X) */
4579 op0_mode = VOIDmode;
4582 return x;
4585 /* Simplify X, a piece of RTL. We just operate on the expression at the
4586 outer level; call `subst' to simplify recursively. Return the new
4587 expression.
4589 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4590 if we are inside a SET_DEST. */
4592 static rtx
4593 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4595 enum rtx_code code = GET_CODE (x);
4596 enum machine_mode mode = GET_MODE (x);
4597 rtx temp;
4598 int i;
4600 /* If this is a commutative operation, put a constant last and a complex
4601 expression first. We don't need to do this for comparisons here. */
4602 if (COMMUTATIVE_ARITH_P (x)
4603 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4605 temp = XEXP (x, 0);
4606 SUBST (XEXP (x, 0), XEXP (x, 1));
4607 SUBST (XEXP (x, 1), temp);
4610 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4611 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4612 things. Check for cases where both arms are testing the same
4613 condition.
4615 Don't do anything if all operands are very simple. */
4617 if ((BINARY_P (x)
4618 && ((!OBJECT_P (XEXP (x, 0))
4619 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4620 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4621 || (!OBJECT_P (XEXP (x, 1))
4622 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4623 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4624 || (UNARY_P (x)
4625 && (!OBJECT_P (XEXP (x, 0))
4626 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4627 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4629 rtx cond, true_rtx, false_rtx;
4631 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4632 if (cond != 0
4633 /* If everything is a comparison, what we have is highly unlikely
4634 to be simpler, so don't use it. */
4635 && ! (COMPARISON_P (x)
4636 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4638 rtx cop1 = const0_rtx;
4639 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4641 if (cond_code == NE && COMPARISON_P (cond))
4642 return x;
4644 /* Simplify the alternative arms; this may collapse the true and
4645 false arms to store-flag values. Be careful to use copy_rtx
4646 here since true_rtx or false_rtx might share RTL with x as a
4647 result of the if_then_else_cond call above. */
4648 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4649 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4651 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4652 is unlikely to be simpler. */
4653 if (general_operand (true_rtx, VOIDmode)
4654 && general_operand (false_rtx, VOIDmode))
4656 enum rtx_code reversed;
4658 /* Restarting if we generate a store-flag expression will cause
4659 us to loop. Just drop through in this case. */
4661 /* If the result values are STORE_FLAG_VALUE and zero, we can
4662 just make the comparison operation. */
4663 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4664 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4665 cond, cop1);
4666 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4667 && ((reversed = reversed_comparison_code_parts
4668 (cond_code, cond, cop1, NULL))
4669 != UNKNOWN))
4670 x = simplify_gen_relational (reversed, mode, VOIDmode,
4671 cond, cop1);
4673 /* Likewise, we can make the negate of a comparison operation
4674 if the result values are - STORE_FLAG_VALUE and zero. */
4675 else if (CONST_INT_P (true_rtx)
4676 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4677 && false_rtx == const0_rtx)
4678 x = simplify_gen_unary (NEG, mode,
4679 simplify_gen_relational (cond_code,
4680 mode, VOIDmode,
4681 cond, cop1),
4682 mode);
4683 else if (CONST_INT_P (false_rtx)
4684 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4685 && true_rtx == const0_rtx
4686 && ((reversed = reversed_comparison_code_parts
4687 (cond_code, cond, cop1, NULL))
4688 != UNKNOWN))
4689 x = simplify_gen_unary (NEG, mode,
4690 simplify_gen_relational (reversed,
4691 mode, VOIDmode,
4692 cond, cop1),
4693 mode);
4694 else
4695 return gen_rtx_IF_THEN_ELSE (mode,
4696 simplify_gen_relational (cond_code,
4697 mode,
4698 VOIDmode,
4699 cond,
4700 cop1),
4701 true_rtx, false_rtx);
4703 code = GET_CODE (x);
4704 op0_mode = VOIDmode;
4709 /* Try to fold this expression in case we have constants that weren't
4710 present before. */
4711 temp = 0;
4712 switch (GET_RTX_CLASS (code))
4714 case RTX_UNARY:
4715 if (op0_mode == VOIDmode)
4716 op0_mode = GET_MODE (XEXP (x, 0));
4717 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4718 break;
4719 case RTX_COMPARE:
4720 case RTX_COMM_COMPARE:
4722 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4723 if (cmp_mode == VOIDmode)
4725 cmp_mode = GET_MODE (XEXP (x, 1));
4726 if (cmp_mode == VOIDmode)
4727 cmp_mode = op0_mode;
4729 temp = simplify_relational_operation (code, mode, cmp_mode,
4730 XEXP (x, 0), XEXP (x, 1));
4732 break;
4733 case RTX_COMM_ARITH:
4734 case RTX_BIN_ARITH:
4735 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4736 break;
4737 case RTX_BITFIELD_OPS:
4738 case RTX_TERNARY:
4739 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4740 XEXP (x, 1), XEXP (x, 2));
4741 break;
4742 default:
4743 break;
4746 if (temp)
4748 x = temp;
4749 code = GET_CODE (temp);
4750 op0_mode = VOIDmode;
4751 mode = GET_MODE (temp);
4754 /* First see if we can apply the inverse distributive law. */
4755 if (code == PLUS || code == MINUS
4756 || code == AND || code == IOR || code == XOR)
4758 x = apply_distributive_law (x);
4759 code = GET_CODE (x);
4760 op0_mode = VOIDmode;
4763 /* If CODE is an associative operation not otherwise handled, see if we
4764 can associate some operands. This can win if they are constants or
4765 if they are logically related (i.e. (a & b) & a). */
4766 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4767 || code == AND || code == IOR || code == XOR
4768 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4769 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4770 || (flag_associative_math && FLOAT_MODE_P (mode))))
4772 if (GET_CODE (XEXP (x, 0)) == code)
4774 rtx other = XEXP (XEXP (x, 0), 0);
4775 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4776 rtx inner_op1 = XEXP (x, 1);
4777 rtx inner;
4779 /* Make sure we pass the constant operand if any as the second
4780 one if this is a commutative operation. */
4781 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4783 rtx tem = inner_op0;
4784 inner_op0 = inner_op1;
4785 inner_op1 = tem;
4787 inner = simplify_binary_operation (code == MINUS ? PLUS
4788 : code == DIV ? MULT
4789 : code,
4790 mode, inner_op0, inner_op1);
4792 /* For commutative operations, try the other pair if that one
4793 didn't simplify. */
4794 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4796 other = XEXP (XEXP (x, 0), 1);
4797 inner = simplify_binary_operation (code, mode,
4798 XEXP (XEXP (x, 0), 0),
4799 XEXP (x, 1));
4802 if (inner)
4803 return simplify_gen_binary (code, mode, other, inner);
4807 /* A little bit of algebraic simplification here. */
4808 switch (code)
4810 case MEM:
4811 /* Ensure that our address has any ASHIFTs converted to MULT in case
4812 address-recognizing predicates are called later. */
4813 temp = make_compound_operation (XEXP (x, 0), MEM);
4814 SUBST (XEXP (x, 0), temp);
4815 break;
4817 case SUBREG:
4818 if (op0_mode == VOIDmode)
4819 op0_mode = GET_MODE (SUBREG_REG (x));
4821 /* See if this can be moved to simplify_subreg. */
4822 if (CONSTANT_P (SUBREG_REG (x))
4823 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4824 /* Don't call gen_lowpart if the inner mode
4825 is VOIDmode and we cannot simplify it, as SUBREG without
4826 inner mode is invalid. */
4827 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4828 || gen_lowpart_common (mode, SUBREG_REG (x))))
4829 return gen_lowpart (mode, SUBREG_REG (x));
4831 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4832 break;
4834 rtx temp;
4835 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4836 SUBREG_BYTE (x));
4837 if (temp)
4838 return temp;
4841 /* Don't change the mode of the MEM if that would change the meaning
4842 of the address. */
4843 if (MEM_P (SUBREG_REG (x))
4844 && (MEM_VOLATILE_P (SUBREG_REG (x))
4845 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4846 return gen_rtx_CLOBBER (mode, const0_rtx);
4848 /* Note that we cannot do any narrowing for non-constants since
4849 we might have been counting on using the fact that some bits were
4850 zero. We now do this in the SET. */
4852 break;
4854 case NEG:
4855 temp = expand_compound_operation (XEXP (x, 0));
4857 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4858 replaced by (lshiftrt X C). This will convert
4859 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4861 if (GET_CODE (temp) == ASHIFTRT
4862 && CONST_INT_P (XEXP (temp, 1))
4863 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4864 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4865 INTVAL (XEXP (temp, 1)));
4867 /* If X has only a single bit that might be nonzero, say, bit I, convert
4868 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4869 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4870 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4871 or a SUBREG of one since we'd be making the expression more
4872 complex if it was just a register. */
4874 if (!REG_P (temp)
4875 && ! (GET_CODE (temp) == SUBREG
4876 && REG_P (SUBREG_REG (temp)))
4877 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4879 rtx temp1 = simplify_shift_const
4880 (NULL_RTX, ASHIFTRT, mode,
4881 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4882 GET_MODE_BITSIZE (mode) - 1 - i),
4883 GET_MODE_BITSIZE (mode) - 1 - i);
4885 /* If all we did was surround TEMP with the two shifts, we
4886 haven't improved anything, so don't use it. Otherwise,
4887 we are better off with TEMP1. */
4888 if (GET_CODE (temp1) != ASHIFTRT
4889 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4890 || XEXP (XEXP (temp1, 0), 0) != temp)
4891 return temp1;
4893 break;
4895 case TRUNCATE:
4896 /* We can't handle truncation to a partial integer mode here
4897 because we don't know the real bitsize of the partial
4898 integer mode. */
4899 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4900 break;
4902 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4903 SUBST (XEXP (x, 0),
4904 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4905 GET_MODE_MASK (mode), 0));
4907 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4908 whose value is a comparison can be replaced with a subreg if
4909 STORE_FLAG_VALUE permits. */
4910 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4911 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4912 && (temp = get_last_value (XEXP (x, 0)))
4913 && COMPARISON_P (temp))
4914 return gen_lowpart (mode, XEXP (x, 0));
4915 break;
4917 case CONST:
4918 /* (const (const X)) can become (const X). Do it this way rather than
4919 returning the inner CONST since CONST can be shared with a
4920 REG_EQUAL note. */
4921 if (GET_CODE (XEXP (x, 0)) == CONST)
4922 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4923 break;
4925 #ifdef HAVE_lo_sum
4926 case LO_SUM:
4927 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4928 can add in an offset. find_split_point will split this address up
4929 again if it doesn't match. */
4930 if (GET_CODE (XEXP (x, 0)) == HIGH
4931 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4932 return XEXP (x, 1);
4933 break;
4934 #endif
4936 case PLUS:
4937 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4938 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4939 bit-field and can be replaced by either a sign_extend or a
4940 sign_extract. The `and' may be a zero_extend and the two
4941 <c>, -<c> constants may be reversed. */
4942 if (GET_CODE (XEXP (x, 0)) == XOR
4943 && CONST_INT_P (XEXP (x, 1))
4944 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4945 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4946 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4947 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4948 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4949 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4950 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4951 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4952 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4953 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4954 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4955 == (unsigned int) i + 1))))
4956 return simplify_shift_const
4957 (NULL_RTX, ASHIFTRT, mode,
4958 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4959 XEXP (XEXP (XEXP (x, 0), 0), 0),
4960 GET_MODE_BITSIZE (mode) - (i + 1)),
4961 GET_MODE_BITSIZE (mode) - (i + 1));
4963 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4964 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4965 the bitsize of the mode - 1. This allows simplification of
4966 "a = (b & 8) == 0;" */
4967 if (XEXP (x, 1) == constm1_rtx
4968 && !REG_P (XEXP (x, 0))
4969 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4970 && REG_P (SUBREG_REG (XEXP (x, 0))))
4971 && nonzero_bits (XEXP (x, 0), mode) == 1)
4972 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4973 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4974 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4975 GET_MODE_BITSIZE (mode) - 1),
4976 GET_MODE_BITSIZE (mode) - 1);
4978 /* If we are adding two things that have no bits in common, convert
4979 the addition into an IOR. This will often be further simplified,
4980 for example in cases like ((a & 1) + (a & 2)), which can
4981 become a & 3. */
4983 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4984 && (nonzero_bits (XEXP (x, 0), mode)
4985 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4987 /* Try to simplify the expression further. */
4988 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4989 temp = combine_simplify_rtx (tor, mode, in_dest);
4991 /* If we could, great. If not, do not go ahead with the IOR
4992 replacement, since PLUS appears in many special purpose
4993 address arithmetic instructions. */
4994 if (GET_CODE (temp) != CLOBBER && temp != tor)
4995 return temp;
4997 break;
4999 case MINUS:
5000 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5001 (and <foo> (const_int pow2-1)) */
5002 if (GET_CODE (XEXP (x, 1)) == AND
5003 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5004 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5005 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5006 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5007 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5008 break;
5010 case MULT:
5011 /* If we have (mult (plus A B) C), apply the distributive law and then
5012 the inverse distributive law to see if things simplify. This
5013 occurs mostly in addresses, often when unrolling loops. */
5015 if (GET_CODE (XEXP (x, 0)) == PLUS)
5017 rtx result = distribute_and_simplify_rtx (x, 0);
5018 if (result)
5019 return result;
5022 /* Try simplify a*(b/c) as (a*b)/c. */
5023 if (FLOAT_MODE_P (mode) && flag_associative_math
5024 && GET_CODE (XEXP (x, 0)) == DIV)
5026 rtx tem = simplify_binary_operation (MULT, mode,
5027 XEXP (XEXP (x, 0), 0),
5028 XEXP (x, 1));
5029 if (tem)
5030 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5032 break;
5034 case UDIV:
5035 /* If this is a divide by a power of two, treat it as a shift if
5036 its first operand is a shift. */
5037 if (CONST_INT_P (XEXP (x, 1))
5038 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5039 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5040 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5041 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5042 || GET_CODE (XEXP (x, 0)) == ROTATE
5043 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5044 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5045 break;
5047 case EQ: case NE:
5048 case GT: case GTU: case GE: case GEU:
5049 case LT: case LTU: case LE: case LEU:
5050 case UNEQ: case LTGT:
5051 case UNGT: case UNGE:
5052 case UNLT: case UNLE:
5053 case UNORDERED: case ORDERED:
5054 /* If the first operand is a condition code, we can't do anything
5055 with it. */
5056 if (GET_CODE (XEXP (x, 0)) == COMPARE
5057 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5058 && ! CC0_P (XEXP (x, 0))))
5060 rtx op0 = XEXP (x, 0);
5061 rtx op1 = XEXP (x, 1);
5062 enum rtx_code new_code;
5064 if (GET_CODE (op0) == COMPARE)
5065 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5067 /* Simplify our comparison, if possible. */
5068 new_code = simplify_comparison (code, &op0, &op1);
5070 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5071 if only the low-order bit is possibly nonzero in X (such as when
5072 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5073 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5074 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5075 (plus X 1).
5077 Remove any ZERO_EXTRACT we made when thinking this was a
5078 comparison. It may now be simpler to use, e.g., an AND. If a
5079 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5080 the call to make_compound_operation in the SET case. */
5082 if (STORE_FLAG_VALUE == 1
5083 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5084 && op1 == const0_rtx
5085 && mode == GET_MODE (op0)
5086 && nonzero_bits (op0, mode) == 1)
5087 return gen_lowpart (mode,
5088 expand_compound_operation (op0));
5090 else if (STORE_FLAG_VALUE == 1
5091 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5092 && op1 == const0_rtx
5093 && mode == GET_MODE (op0)
5094 && (num_sign_bit_copies (op0, mode)
5095 == GET_MODE_BITSIZE (mode)))
5097 op0 = expand_compound_operation (op0);
5098 return simplify_gen_unary (NEG, mode,
5099 gen_lowpart (mode, op0),
5100 mode);
5103 else if (STORE_FLAG_VALUE == 1
5104 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5105 && op1 == const0_rtx
5106 && mode == GET_MODE (op0)
5107 && nonzero_bits (op0, mode) == 1)
5109 op0 = expand_compound_operation (op0);
5110 return simplify_gen_binary (XOR, mode,
5111 gen_lowpart (mode, op0),
5112 const1_rtx);
5115 else if (STORE_FLAG_VALUE == 1
5116 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5117 && op1 == const0_rtx
5118 && mode == GET_MODE (op0)
5119 && (num_sign_bit_copies (op0, mode)
5120 == GET_MODE_BITSIZE (mode)))
5122 op0 = expand_compound_operation (op0);
5123 return plus_constant (gen_lowpart (mode, op0), 1);
5126 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5127 those above. */
5128 if (STORE_FLAG_VALUE == -1
5129 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5130 && op1 == const0_rtx
5131 && (num_sign_bit_copies (op0, mode)
5132 == GET_MODE_BITSIZE (mode)))
5133 return gen_lowpart (mode,
5134 expand_compound_operation (op0));
5136 else if (STORE_FLAG_VALUE == -1
5137 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5138 && op1 == const0_rtx
5139 && mode == GET_MODE (op0)
5140 && nonzero_bits (op0, mode) == 1)
5142 op0 = expand_compound_operation (op0);
5143 return simplify_gen_unary (NEG, mode,
5144 gen_lowpart (mode, op0),
5145 mode);
5148 else if (STORE_FLAG_VALUE == -1
5149 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5150 && op1 == const0_rtx
5151 && mode == GET_MODE (op0)
5152 && (num_sign_bit_copies (op0, mode)
5153 == GET_MODE_BITSIZE (mode)))
5155 op0 = expand_compound_operation (op0);
5156 return simplify_gen_unary (NOT, mode,
5157 gen_lowpart (mode, op0),
5158 mode);
5161 /* If X is 0/1, (eq X 0) is X-1. */
5162 else if (STORE_FLAG_VALUE == -1
5163 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5164 && op1 == const0_rtx
5165 && mode == GET_MODE (op0)
5166 && nonzero_bits (op0, mode) == 1)
5168 op0 = expand_compound_operation (op0);
5169 return plus_constant (gen_lowpart (mode, op0), -1);
5172 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5173 one bit that might be nonzero, we can convert (ne x 0) to
5174 (ashift x c) where C puts the bit in the sign bit. Remove any
5175 AND with STORE_FLAG_VALUE when we are done, since we are only
5176 going to test the sign bit. */
5177 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5178 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5179 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5180 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5181 && op1 == const0_rtx
5182 && mode == GET_MODE (op0)
5183 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5185 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5186 expand_compound_operation (op0),
5187 GET_MODE_BITSIZE (mode) - 1 - i);
5188 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5189 return XEXP (x, 0);
5190 else
5191 return x;
5194 /* If the code changed, return a whole new comparison. */
5195 if (new_code != code)
5196 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5198 /* Otherwise, keep this operation, but maybe change its operands.
5199 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5200 SUBST (XEXP (x, 0), op0);
5201 SUBST (XEXP (x, 1), op1);
5203 break;
5205 case IF_THEN_ELSE:
5206 return simplify_if_then_else (x);
5208 case ZERO_EXTRACT:
5209 case SIGN_EXTRACT:
5210 case ZERO_EXTEND:
5211 case SIGN_EXTEND:
5212 /* If we are processing SET_DEST, we are done. */
5213 if (in_dest)
5214 return x;
5216 return expand_compound_operation (x);
5218 case SET:
5219 return simplify_set (x);
5221 case AND:
5222 case IOR:
5223 return simplify_logical (x);
5225 case ASHIFT:
5226 case LSHIFTRT:
5227 case ASHIFTRT:
5228 case ROTATE:
5229 case ROTATERT:
5230 /* If this is a shift by a constant amount, simplify it. */
5231 if (CONST_INT_P (XEXP (x, 1)))
5232 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5233 INTVAL (XEXP (x, 1)));
5235 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5236 SUBST (XEXP (x, 1),
5237 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5238 ((HOST_WIDE_INT) 1
5239 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5240 - 1,
5241 0));
5242 break;
5244 default:
5245 break;
5248 return x;
5251 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5253 static rtx
5254 simplify_if_then_else (rtx x)
5256 enum machine_mode mode = GET_MODE (x);
5257 rtx cond = XEXP (x, 0);
5258 rtx true_rtx = XEXP (x, 1);
5259 rtx false_rtx = XEXP (x, 2);
5260 enum rtx_code true_code = GET_CODE (cond);
5261 int comparison_p = COMPARISON_P (cond);
5262 rtx temp;
5263 int i;
5264 enum rtx_code false_code;
5265 rtx reversed;
5267 /* Simplify storing of the truth value. */
5268 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5269 return simplify_gen_relational (true_code, mode, VOIDmode,
5270 XEXP (cond, 0), XEXP (cond, 1));
5272 /* Also when the truth value has to be reversed. */
5273 if (comparison_p
5274 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5275 && (reversed = reversed_comparison (cond, mode)))
5276 return reversed;
5278 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5279 in it is being compared against certain values. Get the true and false
5280 comparisons and see if that says anything about the value of each arm. */
5282 if (comparison_p
5283 && ((false_code = reversed_comparison_code (cond, NULL))
5284 != UNKNOWN)
5285 && REG_P (XEXP (cond, 0)))
5287 HOST_WIDE_INT nzb;
5288 rtx from = XEXP (cond, 0);
5289 rtx true_val = XEXP (cond, 1);
5290 rtx false_val = true_val;
5291 int swapped = 0;
5293 /* If FALSE_CODE is EQ, swap the codes and arms. */
5295 if (false_code == EQ)
5297 swapped = 1, true_code = EQ, false_code = NE;
5298 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5301 /* If we are comparing against zero and the expression being tested has
5302 only a single bit that might be nonzero, that is its value when it is
5303 not equal to zero. Similarly if it is known to be -1 or 0. */
5305 if (true_code == EQ && true_val == const0_rtx
5306 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5308 false_code = EQ;
5309 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5311 else if (true_code == EQ && true_val == const0_rtx
5312 && (num_sign_bit_copies (from, GET_MODE (from))
5313 == GET_MODE_BITSIZE (GET_MODE (from))))
5315 false_code = EQ;
5316 false_val = constm1_rtx;
5319 /* Now simplify an arm if we know the value of the register in the
5320 branch and it is used in the arm. Be careful due to the potential
5321 of locally-shared RTL. */
5323 if (reg_mentioned_p (from, true_rtx))
5324 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5325 from, true_val),
5326 pc_rtx, pc_rtx, 0, 0);
5327 if (reg_mentioned_p (from, false_rtx))
5328 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5329 from, false_val),
5330 pc_rtx, pc_rtx, 0, 0);
5332 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5333 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5335 true_rtx = XEXP (x, 1);
5336 false_rtx = XEXP (x, 2);
5337 true_code = GET_CODE (cond);
5340 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5341 reversed, do so to avoid needing two sets of patterns for
5342 subtract-and-branch insns. Similarly if we have a constant in the true
5343 arm, the false arm is the same as the first operand of the comparison, or
5344 the false arm is more complicated than the true arm. */
5346 if (comparison_p
5347 && reversed_comparison_code (cond, NULL) != UNKNOWN
5348 && (true_rtx == pc_rtx
5349 || (CONSTANT_P (true_rtx)
5350 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5351 || true_rtx == const0_rtx
5352 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5353 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5354 && !OBJECT_P (false_rtx))
5355 || reg_mentioned_p (true_rtx, false_rtx)
5356 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5358 true_code = reversed_comparison_code (cond, NULL);
5359 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5360 SUBST (XEXP (x, 1), false_rtx);
5361 SUBST (XEXP (x, 2), true_rtx);
5363 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5364 cond = XEXP (x, 0);
5366 /* It is possible that the conditional has been simplified out. */
5367 true_code = GET_CODE (cond);
5368 comparison_p = COMPARISON_P (cond);
5371 /* If the two arms are identical, we don't need the comparison. */
5373 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5374 return true_rtx;
5376 /* Convert a == b ? b : a to "a". */
5377 if (true_code == EQ && ! side_effects_p (cond)
5378 && !HONOR_NANS (mode)
5379 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5380 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5381 return false_rtx;
5382 else if (true_code == NE && ! side_effects_p (cond)
5383 && !HONOR_NANS (mode)
5384 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5385 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5386 return true_rtx;
5388 /* Look for cases where we have (abs x) or (neg (abs X)). */
5390 if (GET_MODE_CLASS (mode) == MODE_INT
5391 && comparison_p
5392 && XEXP (cond, 1) == const0_rtx
5393 && GET_CODE (false_rtx) == NEG
5394 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5395 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5396 && ! side_effects_p (true_rtx))
5397 switch (true_code)
5399 case GT:
5400 case GE:
5401 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5402 case LT:
5403 case LE:
5404 return
5405 simplify_gen_unary (NEG, mode,
5406 simplify_gen_unary (ABS, mode, true_rtx, mode),
5407 mode);
5408 default:
5409 break;
5412 /* Look for MIN or MAX. */
5414 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5415 && comparison_p
5416 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5417 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5418 && ! side_effects_p (cond))
5419 switch (true_code)
5421 case GE:
5422 case GT:
5423 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5424 case LE:
5425 case LT:
5426 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5427 case GEU:
5428 case GTU:
5429 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5430 case LEU:
5431 case LTU:
5432 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5433 default:
5434 break;
5437 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5438 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5439 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5440 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5441 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5442 neither 1 or -1, but it isn't worth checking for. */
5444 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5445 && comparison_p
5446 && GET_MODE_CLASS (mode) == MODE_INT
5447 && ! side_effects_p (x))
5449 rtx t = make_compound_operation (true_rtx, SET);
5450 rtx f = make_compound_operation (false_rtx, SET);
5451 rtx cond_op0 = XEXP (cond, 0);
5452 rtx cond_op1 = XEXP (cond, 1);
5453 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5454 enum machine_mode m = mode;
5455 rtx z = 0, c1 = NULL_RTX;
5457 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5458 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5459 || GET_CODE (t) == ASHIFT
5460 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5461 && rtx_equal_p (XEXP (t, 0), f))
5462 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5464 /* If an identity-zero op is commutative, check whether there
5465 would be a match if we swapped the operands. */
5466 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5467 || GET_CODE (t) == XOR)
5468 && rtx_equal_p (XEXP (t, 1), f))
5469 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5470 else if (GET_CODE (t) == SIGN_EXTEND
5471 && (GET_CODE (XEXP (t, 0)) == PLUS
5472 || GET_CODE (XEXP (t, 0)) == MINUS
5473 || GET_CODE (XEXP (t, 0)) == IOR
5474 || GET_CODE (XEXP (t, 0)) == XOR
5475 || GET_CODE (XEXP (t, 0)) == ASHIFT
5476 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5477 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5478 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5479 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5480 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5481 && (num_sign_bit_copies (f, GET_MODE (f))
5482 > (unsigned int)
5483 (GET_MODE_BITSIZE (mode)
5484 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5486 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5487 extend_op = SIGN_EXTEND;
5488 m = GET_MODE (XEXP (t, 0));
5490 else if (GET_CODE (t) == SIGN_EXTEND
5491 && (GET_CODE (XEXP (t, 0)) == PLUS
5492 || GET_CODE (XEXP (t, 0)) == IOR
5493 || GET_CODE (XEXP (t, 0)) == XOR)
5494 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5495 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5496 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5497 && (num_sign_bit_copies (f, GET_MODE (f))
5498 > (unsigned int)
5499 (GET_MODE_BITSIZE (mode)
5500 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5502 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5503 extend_op = SIGN_EXTEND;
5504 m = GET_MODE (XEXP (t, 0));
5506 else if (GET_CODE (t) == ZERO_EXTEND
5507 && (GET_CODE (XEXP (t, 0)) == PLUS
5508 || GET_CODE (XEXP (t, 0)) == MINUS
5509 || GET_CODE (XEXP (t, 0)) == IOR
5510 || GET_CODE (XEXP (t, 0)) == XOR
5511 || GET_CODE (XEXP (t, 0)) == ASHIFT
5512 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5513 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5514 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5515 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5516 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5517 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5518 && ((nonzero_bits (f, GET_MODE (f))
5519 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5520 == 0))
5522 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5523 extend_op = ZERO_EXTEND;
5524 m = GET_MODE (XEXP (t, 0));
5526 else if (GET_CODE (t) == ZERO_EXTEND
5527 && (GET_CODE (XEXP (t, 0)) == PLUS
5528 || GET_CODE (XEXP (t, 0)) == IOR
5529 || GET_CODE (XEXP (t, 0)) == XOR)
5530 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5531 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5532 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5533 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5534 && ((nonzero_bits (f, GET_MODE (f))
5535 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5536 == 0))
5538 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5539 extend_op = ZERO_EXTEND;
5540 m = GET_MODE (XEXP (t, 0));
5543 if (z)
5545 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5546 cond_op0, cond_op1),
5547 pc_rtx, pc_rtx, 0, 0);
5548 temp = simplify_gen_binary (MULT, m, temp,
5549 simplify_gen_binary (MULT, m, c1,
5550 const_true_rtx));
5551 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5552 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5554 if (extend_op != UNKNOWN)
5555 temp = simplify_gen_unary (extend_op, mode, temp, m);
5557 return temp;
5561 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5562 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5563 negation of a single bit, we can convert this operation to a shift. We
5564 can actually do this more generally, but it doesn't seem worth it. */
5566 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5567 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5568 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5569 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5570 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5571 == GET_MODE_BITSIZE (mode))
5572 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5573 return
5574 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5575 gen_lowpart (mode, XEXP (cond, 0)), i);
5577 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5578 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5579 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5580 && GET_MODE (XEXP (cond, 0)) == mode
5581 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5582 == nonzero_bits (XEXP (cond, 0), mode)
5583 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5584 return XEXP (cond, 0);
5586 return x;
5589 /* Simplify X, a SET expression. Return the new expression. */
5591 static rtx
5592 simplify_set (rtx x)
5594 rtx src = SET_SRC (x);
5595 rtx dest = SET_DEST (x);
5596 enum machine_mode mode
5597 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5598 rtx other_insn;
5599 rtx *cc_use;
5601 /* (set (pc) (return)) gets written as (return). */
5602 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5603 return src;
5605 /* Now that we know for sure which bits of SRC we are using, see if we can
5606 simplify the expression for the object knowing that we only need the
5607 low-order bits. */
5609 if (GET_MODE_CLASS (mode) == MODE_INT
5610 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5612 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5613 SUBST (SET_SRC (x), src);
5616 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5617 the comparison result and try to simplify it unless we already have used
5618 undobuf.other_insn. */
5619 if ((GET_MODE_CLASS (mode) == MODE_CC
5620 || GET_CODE (src) == COMPARE
5621 || CC0_P (dest))
5622 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5623 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5624 && COMPARISON_P (*cc_use)
5625 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5627 enum rtx_code old_code = GET_CODE (*cc_use);
5628 enum rtx_code new_code;
5629 rtx op0, op1, tmp;
5630 int other_changed = 0;
5631 enum machine_mode compare_mode = GET_MODE (dest);
5633 if (GET_CODE (src) == COMPARE)
5634 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5635 else
5636 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5638 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5639 op0, op1);
5640 if (!tmp)
5641 new_code = old_code;
5642 else if (!CONSTANT_P (tmp))
5644 new_code = GET_CODE (tmp);
5645 op0 = XEXP (tmp, 0);
5646 op1 = XEXP (tmp, 1);
5648 else
5650 rtx pat = PATTERN (other_insn);
5651 undobuf.other_insn = other_insn;
5652 SUBST (*cc_use, tmp);
5654 /* Attempt to simplify CC user. */
5655 if (GET_CODE (pat) == SET)
5657 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5658 if (new_rtx != NULL_RTX)
5659 SUBST (SET_SRC (pat), new_rtx);
5662 /* Convert X into a no-op move. */
5663 SUBST (SET_DEST (x), pc_rtx);
5664 SUBST (SET_SRC (x), pc_rtx);
5665 return x;
5668 /* Simplify our comparison, if possible. */
5669 new_code = simplify_comparison (new_code, &op0, &op1);
5671 #ifdef SELECT_CC_MODE
5672 /* If this machine has CC modes other than CCmode, check to see if we
5673 need to use a different CC mode here. */
5674 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5675 compare_mode = GET_MODE (op0);
5676 else
5677 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5679 #ifndef HAVE_cc0
5680 /* If the mode changed, we have to change SET_DEST, the mode in the
5681 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5682 a hard register, just build new versions with the proper mode. If it
5683 is a pseudo, we lose unless it is only time we set the pseudo, in
5684 which case we can safely change its mode. */
5685 if (compare_mode != GET_MODE (dest))
5687 if (can_change_dest_mode (dest, 0, compare_mode))
5689 unsigned int regno = REGNO (dest);
5690 rtx new_dest;
5692 if (regno < FIRST_PSEUDO_REGISTER)
5693 new_dest = gen_rtx_REG (compare_mode, regno);
5694 else
5696 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5697 new_dest = regno_reg_rtx[regno];
5700 SUBST (SET_DEST (x), new_dest);
5701 SUBST (XEXP (*cc_use, 0), new_dest);
5702 other_changed = 1;
5704 dest = new_dest;
5707 #endif /* cc0 */
5708 #endif /* SELECT_CC_MODE */
5710 /* If the code changed, we have to build a new comparison in
5711 undobuf.other_insn. */
5712 if (new_code != old_code)
5714 int other_changed_previously = other_changed;
5715 unsigned HOST_WIDE_INT mask;
5716 rtx old_cc_use = *cc_use;
5718 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5719 dest, const0_rtx));
5720 other_changed = 1;
5722 /* If the only change we made was to change an EQ into an NE or
5723 vice versa, OP0 has only one bit that might be nonzero, and OP1
5724 is zero, check if changing the user of the condition code will
5725 produce a valid insn. If it won't, we can keep the original code
5726 in that insn by surrounding our operation with an XOR. */
5728 if (((old_code == NE && new_code == EQ)
5729 || (old_code == EQ && new_code == NE))
5730 && ! other_changed_previously && op1 == const0_rtx
5731 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5732 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5734 rtx pat = PATTERN (other_insn), note = 0;
5736 if ((recog_for_combine (&pat, other_insn, &note) < 0
5737 && ! check_asm_operands (pat)))
5739 *cc_use = old_cc_use;
5740 other_changed = 0;
5742 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5743 op0, GEN_INT (mask));
5748 if (other_changed)
5749 undobuf.other_insn = other_insn;
5751 /* Otherwise, if we didn't previously have a COMPARE in the
5752 correct mode, we need one. */
5753 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5755 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5756 src = SET_SRC (x);
5758 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5760 SUBST (SET_SRC (x), op0);
5761 src = SET_SRC (x);
5763 /* Otherwise, update the COMPARE if needed. */
5764 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5766 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5767 src = SET_SRC (x);
5770 else
5772 /* Get SET_SRC in a form where we have placed back any
5773 compound expressions. Then do the checks below. */
5774 src = make_compound_operation (src, SET);
5775 SUBST (SET_SRC (x), src);
5778 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5779 and X being a REG or (subreg (reg)), we may be able to convert this to
5780 (set (subreg:m2 x) (op)).
5782 We can always do this if M1 is narrower than M2 because that means that
5783 we only care about the low bits of the result.
5785 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5786 perform a narrower operation than requested since the high-order bits will
5787 be undefined. On machine where it is defined, this transformation is safe
5788 as long as M1 and M2 have the same number of words. */
5790 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5791 && !OBJECT_P (SUBREG_REG (src))
5792 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5793 / UNITS_PER_WORD)
5794 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5795 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5796 #ifndef WORD_REGISTER_OPERATIONS
5797 && (GET_MODE_SIZE (GET_MODE (src))
5798 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5799 #endif
5800 #ifdef CANNOT_CHANGE_MODE_CLASS
5801 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5802 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5803 GET_MODE (SUBREG_REG (src)),
5804 GET_MODE (src)))
5805 #endif
5806 && (REG_P (dest)
5807 || (GET_CODE (dest) == SUBREG
5808 && REG_P (SUBREG_REG (dest)))))
5810 SUBST (SET_DEST (x),
5811 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5812 dest));
5813 SUBST (SET_SRC (x), SUBREG_REG (src));
5815 src = SET_SRC (x), dest = SET_DEST (x);
5818 #ifdef HAVE_cc0
5819 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5820 in SRC. */
5821 if (dest == cc0_rtx
5822 && GET_CODE (src) == SUBREG
5823 && subreg_lowpart_p (src)
5824 && (GET_MODE_BITSIZE (GET_MODE (src))
5825 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5827 rtx inner = SUBREG_REG (src);
5828 enum machine_mode inner_mode = GET_MODE (inner);
5830 /* Here we make sure that we don't have a sign bit on. */
5831 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5832 && (nonzero_bits (inner, inner_mode)
5833 < ((unsigned HOST_WIDE_INT) 1
5834 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5836 SUBST (SET_SRC (x), inner);
5837 src = SET_SRC (x);
5840 #endif
5842 #ifdef LOAD_EXTEND_OP
5843 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5844 would require a paradoxical subreg. Replace the subreg with a
5845 zero_extend to avoid the reload that would otherwise be required. */
5847 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5848 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
5849 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5850 && SUBREG_BYTE (src) == 0
5851 && (GET_MODE_SIZE (GET_MODE (src))
5852 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5853 && MEM_P (SUBREG_REG (src)))
5855 SUBST (SET_SRC (x),
5856 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5857 GET_MODE (src), SUBREG_REG (src)));
5859 src = SET_SRC (x);
5861 #endif
5863 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5864 are comparing an item known to be 0 or -1 against 0, use a logical
5865 operation instead. Check for one of the arms being an IOR of the other
5866 arm with some value. We compute three terms to be IOR'ed together. In
5867 practice, at most two will be nonzero. Then we do the IOR's. */
5869 if (GET_CODE (dest) != PC
5870 && GET_CODE (src) == IF_THEN_ELSE
5871 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5872 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5873 && XEXP (XEXP (src, 0), 1) == const0_rtx
5874 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5875 #ifdef HAVE_conditional_move
5876 && ! can_conditionally_move_p (GET_MODE (src))
5877 #endif
5878 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5879 GET_MODE (XEXP (XEXP (src, 0), 0)))
5880 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5881 && ! side_effects_p (src))
5883 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5884 ? XEXP (src, 1) : XEXP (src, 2));
5885 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5886 ? XEXP (src, 2) : XEXP (src, 1));
5887 rtx term1 = const0_rtx, term2, term3;
5889 if (GET_CODE (true_rtx) == IOR
5890 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5891 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5892 else if (GET_CODE (true_rtx) == IOR
5893 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5894 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5895 else if (GET_CODE (false_rtx) == IOR
5896 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5897 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5898 else if (GET_CODE (false_rtx) == IOR
5899 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5900 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5902 term2 = simplify_gen_binary (AND, GET_MODE (src),
5903 XEXP (XEXP (src, 0), 0), true_rtx);
5904 term3 = simplify_gen_binary (AND, GET_MODE (src),
5905 simplify_gen_unary (NOT, GET_MODE (src),
5906 XEXP (XEXP (src, 0), 0),
5907 GET_MODE (src)),
5908 false_rtx);
5910 SUBST (SET_SRC (x),
5911 simplify_gen_binary (IOR, GET_MODE (src),
5912 simplify_gen_binary (IOR, GET_MODE (src),
5913 term1, term2),
5914 term3));
5916 src = SET_SRC (x);
5919 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5920 whole thing fail. */
5921 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5922 return src;
5923 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5924 return dest;
5925 else
5926 /* Convert this into a field assignment operation, if possible. */
5927 return make_field_assignment (x);
5930 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5931 result. */
5933 static rtx
5934 simplify_logical (rtx x)
5936 enum machine_mode mode = GET_MODE (x);
5937 rtx op0 = XEXP (x, 0);
5938 rtx op1 = XEXP (x, 1);
5940 switch (GET_CODE (x))
5942 case AND:
5943 /* We can call simplify_and_const_int only if we don't lose
5944 any (sign) bits when converting INTVAL (op1) to
5945 "unsigned HOST_WIDE_INT". */
5946 if (CONST_INT_P (op1)
5947 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5948 || INTVAL (op1) > 0))
5950 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5951 if (GET_CODE (x) != AND)
5952 return x;
5954 op0 = XEXP (x, 0);
5955 op1 = XEXP (x, 1);
5958 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5959 apply the distributive law and then the inverse distributive
5960 law to see if things simplify. */
5961 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5963 rtx result = distribute_and_simplify_rtx (x, 0);
5964 if (result)
5965 return result;
5967 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5969 rtx result = distribute_and_simplify_rtx (x, 1);
5970 if (result)
5971 return result;
5973 break;
5975 case IOR:
5976 /* If we have (ior (and A B) C), apply the distributive law and then
5977 the inverse distributive law to see if things simplify. */
5979 if (GET_CODE (op0) == AND)
5981 rtx result = distribute_and_simplify_rtx (x, 0);
5982 if (result)
5983 return result;
5986 if (GET_CODE (op1) == AND)
5988 rtx result = distribute_and_simplify_rtx (x, 1);
5989 if (result)
5990 return result;
5992 break;
5994 default:
5995 gcc_unreachable ();
5998 return x;
6001 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6002 operations" because they can be replaced with two more basic operations.
6003 ZERO_EXTEND is also considered "compound" because it can be replaced with
6004 an AND operation, which is simpler, though only one operation.
6006 The function expand_compound_operation is called with an rtx expression
6007 and will convert it to the appropriate shifts and AND operations,
6008 simplifying at each stage.
6010 The function make_compound_operation is called to convert an expression
6011 consisting of shifts and ANDs into the equivalent compound expression.
6012 It is the inverse of this function, loosely speaking. */
6014 static rtx
6015 expand_compound_operation (rtx x)
6017 unsigned HOST_WIDE_INT pos = 0, len;
6018 int unsignedp = 0;
6019 unsigned int modewidth;
6020 rtx tem;
6022 switch (GET_CODE (x))
6024 case ZERO_EXTEND:
6025 unsignedp = 1;
6026 case SIGN_EXTEND:
6027 /* We can't necessarily use a const_int for a multiword mode;
6028 it depends on implicitly extending the value.
6029 Since we don't know the right way to extend it,
6030 we can't tell whether the implicit way is right.
6032 Even for a mode that is no wider than a const_int,
6033 we can't win, because we need to sign extend one of its bits through
6034 the rest of it, and we don't know which bit. */
6035 if (CONST_INT_P (XEXP (x, 0)))
6036 return x;
6038 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6039 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6040 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6041 reloaded. If not for that, MEM's would very rarely be safe.
6043 Reject MODEs bigger than a word, because we might not be able
6044 to reference a two-register group starting with an arbitrary register
6045 (and currently gen_lowpart might crash for a SUBREG). */
6047 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6048 return x;
6050 /* Reject MODEs that aren't scalar integers because turning vector
6051 or complex modes into shifts causes problems. */
6053 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6054 return x;
6056 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6057 /* If the inner object has VOIDmode (the only way this can happen
6058 is if it is an ASM_OPERANDS), we can't do anything since we don't
6059 know how much masking to do. */
6060 if (len == 0)
6061 return x;
6063 break;
6065 case ZERO_EXTRACT:
6066 unsignedp = 1;
6068 /* ... fall through ... */
6070 case SIGN_EXTRACT:
6071 /* If the operand is a CLOBBER, just return it. */
6072 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6073 return XEXP (x, 0);
6075 if (!CONST_INT_P (XEXP (x, 1))
6076 || !CONST_INT_P (XEXP (x, 2))
6077 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6078 return x;
6080 /* Reject MODEs that aren't scalar integers because turning vector
6081 or complex modes into shifts causes problems. */
6083 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6084 return x;
6086 len = INTVAL (XEXP (x, 1));
6087 pos = INTVAL (XEXP (x, 2));
6089 /* This should stay within the object being extracted, fail otherwise. */
6090 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6091 return x;
6093 if (BITS_BIG_ENDIAN)
6094 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6096 break;
6098 default:
6099 return x;
6101 /* Convert sign extension to zero extension, if we know that the high
6102 bit is not set, as this is easier to optimize. It will be converted
6103 back to cheaper alternative in make_extraction. */
6104 if (GET_CODE (x) == SIGN_EXTEND
6105 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6106 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6107 & ~(((unsigned HOST_WIDE_INT)
6108 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6109 >> 1))
6110 == 0)))
6112 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6113 rtx temp2 = expand_compound_operation (temp);
6115 /* Make sure this is a profitable operation. */
6116 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6117 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6118 return temp2;
6119 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6120 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6121 return temp;
6122 else
6123 return x;
6126 /* We can optimize some special cases of ZERO_EXTEND. */
6127 if (GET_CODE (x) == ZERO_EXTEND)
6129 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6130 know that the last value didn't have any inappropriate bits
6131 set. */
6132 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6133 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6134 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6135 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6136 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6137 return XEXP (XEXP (x, 0), 0);
6139 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6140 if (GET_CODE (XEXP (x, 0)) == SUBREG
6141 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6142 && subreg_lowpart_p (XEXP (x, 0))
6143 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6144 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6145 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6146 return SUBREG_REG (XEXP (x, 0));
6148 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6149 is a comparison and STORE_FLAG_VALUE permits. This is like
6150 the first case, but it works even when GET_MODE (x) is larger
6151 than HOST_WIDE_INT. */
6152 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6153 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6154 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6155 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6156 <= HOST_BITS_PER_WIDE_INT)
6157 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6158 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6159 return XEXP (XEXP (x, 0), 0);
6161 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6162 if (GET_CODE (XEXP (x, 0)) == SUBREG
6163 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6164 && subreg_lowpart_p (XEXP (x, 0))
6165 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6166 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6167 <= HOST_BITS_PER_WIDE_INT)
6168 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6169 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6170 return SUBREG_REG (XEXP (x, 0));
6174 /* If we reach here, we want to return a pair of shifts. The inner
6175 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6176 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6177 logical depending on the value of UNSIGNEDP.
6179 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6180 converted into an AND of a shift.
6182 We must check for the case where the left shift would have a negative
6183 count. This can happen in a case like (x >> 31) & 255 on machines
6184 that can't shift by a constant. On those machines, we would first
6185 combine the shift with the AND to produce a variable-position
6186 extraction. Then the constant of 31 would be substituted in to produce
6187 a such a position. */
6189 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6190 if (modewidth + len >= pos)
6192 enum machine_mode mode = GET_MODE (x);
6193 tem = gen_lowpart (mode, XEXP (x, 0));
6194 if (!tem || GET_CODE (tem) == CLOBBER)
6195 return x;
6196 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6197 tem, modewidth - pos - len);
6198 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6199 mode, tem, modewidth - len);
6201 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6202 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6203 simplify_shift_const (NULL_RTX, LSHIFTRT,
6204 GET_MODE (x),
6205 XEXP (x, 0), pos),
6206 ((HOST_WIDE_INT) 1 << len) - 1);
6207 else
6208 /* Any other cases we can't handle. */
6209 return x;
6211 /* If we couldn't do this for some reason, return the original
6212 expression. */
6213 if (GET_CODE (tem) == CLOBBER)
6214 return x;
6216 return tem;
6219 /* X is a SET which contains an assignment of one object into
6220 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6221 or certain SUBREGS). If possible, convert it into a series of
6222 logical operations.
6224 We half-heartedly support variable positions, but do not at all
6225 support variable lengths. */
6227 static const_rtx
6228 expand_field_assignment (const_rtx x)
6230 rtx inner;
6231 rtx pos; /* Always counts from low bit. */
6232 int len;
6233 rtx mask, cleared, masked;
6234 enum machine_mode compute_mode;
6236 /* Loop until we find something we can't simplify. */
6237 while (1)
6239 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6240 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6242 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6243 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6244 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6246 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6247 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6249 inner = XEXP (SET_DEST (x), 0);
6250 len = INTVAL (XEXP (SET_DEST (x), 1));
6251 pos = XEXP (SET_DEST (x), 2);
6253 /* A constant position should stay within the width of INNER. */
6254 if (CONST_INT_P (pos)
6255 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6256 break;
6258 if (BITS_BIG_ENDIAN)
6260 if (CONST_INT_P (pos))
6261 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6262 - INTVAL (pos));
6263 else if (GET_CODE (pos) == MINUS
6264 && CONST_INT_P (XEXP (pos, 1))
6265 && (INTVAL (XEXP (pos, 1))
6266 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6267 /* If position is ADJUST - X, new position is X. */
6268 pos = XEXP (pos, 0);
6269 else
6270 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6271 GEN_INT (GET_MODE_BITSIZE (
6272 GET_MODE (inner))
6273 - len),
6274 pos);
6278 /* A SUBREG between two modes that occupy the same numbers of words
6279 can be done by moving the SUBREG to the source. */
6280 else if (GET_CODE (SET_DEST (x)) == SUBREG
6281 /* We need SUBREGs to compute nonzero_bits properly. */
6282 && nonzero_sign_valid
6283 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6284 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6285 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6286 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6288 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6289 gen_lowpart
6290 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6291 SET_SRC (x)));
6292 continue;
6294 else
6295 break;
6297 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6298 inner = SUBREG_REG (inner);
6300 compute_mode = GET_MODE (inner);
6302 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6303 if (! SCALAR_INT_MODE_P (compute_mode))
6305 enum machine_mode imode;
6307 /* Don't do anything for vector or complex integral types. */
6308 if (! FLOAT_MODE_P (compute_mode))
6309 break;
6311 /* Try to find an integral mode to pun with. */
6312 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6313 if (imode == BLKmode)
6314 break;
6316 compute_mode = imode;
6317 inner = gen_lowpart (imode, inner);
6320 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6321 if (len >= HOST_BITS_PER_WIDE_INT)
6322 break;
6324 /* Now compute the equivalent expression. Make a copy of INNER
6325 for the SET_DEST in case it is a MEM into which we will substitute;
6326 we don't want shared RTL in that case. */
6327 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6328 cleared = simplify_gen_binary (AND, compute_mode,
6329 simplify_gen_unary (NOT, compute_mode,
6330 simplify_gen_binary (ASHIFT,
6331 compute_mode,
6332 mask, pos),
6333 compute_mode),
6334 inner);
6335 masked = simplify_gen_binary (ASHIFT, compute_mode,
6336 simplify_gen_binary (
6337 AND, compute_mode,
6338 gen_lowpart (compute_mode, SET_SRC (x)),
6339 mask),
6340 pos);
6342 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6343 simplify_gen_binary (IOR, compute_mode,
6344 cleared, masked));
6347 return x;
6350 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6351 it is an RTX that represents a variable starting position; otherwise,
6352 POS is the (constant) starting bit position (counted from the LSB).
6354 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6355 signed reference.
6357 IN_DEST is nonzero if this is a reference in the destination of a
6358 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6359 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6360 be used.
6362 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6363 ZERO_EXTRACT should be built even for bits starting at bit 0.
6365 MODE is the desired mode of the result (if IN_DEST == 0).
6367 The result is an RTX for the extraction or NULL_RTX if the target
6368 can't handle it. */
6370 static rtx
6371 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6372 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6373 int in_dest, int in_compare)
6375 /* This mode describes the size of the storage area
6376 to fetch the overall value from. Within that, we
6377 ignore the POS lowest bits, etc. */
6378 enum machine_mode is_mode = GET_MODE (inner);
6379 enum machine_mode inner_mode;
6380 enum machine_mode wanted_inner_mode;
6381 enum machine_mode wanted_inner_reg_mode = word_mode;
6382 enum machine_mode pos_mode = word_mode;
6383 enum machine_mode extraction_mode = word_mode;
6384 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6385 rtx new_rtx = 0;
6386 rtx orig_pos_rtx = pos_rtx;
6387 HOST_WIDE_INT orig_pos;
6389 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6391 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6392 consider just the QI as the memory to extract from.
6393 The subreg adds or removes high bits; its mode is
6394 irrelevant to the meaning of this extraction,
6395 since POS and LEN count from the lsb. */
6396 if (MEM_P (SUBREG_REG (inner)))
6397 is_mode = GET_MODE (SUBREG_REG (inner));
6398 inner = SUBREG_REG (inner);
6400 else if (GET_CODE (inner) == ASHIFT
6401 && CONST_INT_P (XEXP (inner, 1))
6402 && pos_rtx == 0 && pos == 0
6403 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6405 /* We're extracting the least significant bits of an rtx
6406 (ashift X (const_int C)), where LEN > C. Extract the
6407 least significant (LEN - C) bits of X, giving an rtx
6408 whose mode is MODE, then shift it left C times. */
6409 new_rtx = make_extraction (mode, XEXP (inner, 0),
6410 0, 0, len - INTVAL (XEXP (inner, 1)),
6411 unsignedp, in_dest, in_compare);
6412 if (new_rtx != 0)
6413 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6416 inner_mode = GET_MODE (inner);
6418 if (pos_rtx && CONST_INT_P (pos_rtx))
6419 pos = INTVAL (pos_rtx), pos_rtx = 0;
6421 /* See if this can be done without an extraction. We never can if the
6422 width of the field is not the same as that of some integer mode. For
6423 registers, we can only avoid the extraction if the position is at the
6424 low-order bit and this is either not in the destination or we have the
6425 appropriate STRICT_LOW_PART operation available.
6427 For MEM, we can avoid an extract if the field starts on an appropriate
6428 boundary and we can change the mode of the memory reference. */
6430 if (tmode != BLKmode
6431 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6432 && !MEM_P (inner)
6433 && (inner_mode == tmode
6434 || !REG_P (inner)
6435 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6436 GET_MODE_BITSIZE (inner_mode))
6437 || reg_truncated_to_mode (tmode, inner))
6438 && (! in_dest
6439 || (REG_P (inner)
6440 && have_insn_for (STRICT_LOW_PART, tmode))))
6441 || (MEM_P (inner) && pos_rtx == 0
6442 && (pos
6443 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6444 : BITS_PER_UNIT)) == 0
6445 /* We can't do this if we are widening INNER_MODE (it
6446 may not be aligned, for one thing). */
6447 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6448 && (inner_mode == tmode
6449 || (! mode_dependent_address_p (XEXP (inner, 0))
6450 && ! MEM_VOLATILE_P (inner))))))
6452 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6453 field. If the original and current mode are the same, we need not
6454 adjust the offset. Otherwise, we do if bytes big endian.
6456 If INNER is not a MEM, get a piece consisting of just the field
6457 of interest (in this case POS % BITS_PER_WORD must be 0). */
6459 if (MEM_P (inner))
6461 HOST_WIDE_INT offset;
6463 /* POS counts from lsb, but make OFFSET count in memory order. */
6464 if (BYTES_BIG_ENDIAN)
6465 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6466 else
6467 offset = pos / BITS_PER_UNIT;
6469 new_rtx = adjust_address_nv (inner, tmode, offset);
6471 else if (REG_P (inner))
6473 if (tmode != inner_mode)
6475 /* We can't call gen_lowpart in a DEST since we
6476 always want a SUBREG (see below) and it would sometimes
6477 return a new hard register. */
6478 if (pos || in_dest)
6480 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6482 if (WORDS_BIG_ENDIAN
6483 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6484 final_word = ((GET_MODE_SIZE (inner_mode)
6485 - GET_MODE_SIZE (tmode))
6486 / UNITS_PER_WORD) - final_word;
6488 final_word *= UNITS_PER_WORD;
6489 if (BYTES_BIG_ENDIAN &&
6490 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6491 final_word += (GET_MODE_SIZE (inner_mode)
6492 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6494 /* Avoid creating invalid subregs, for example when
6495 simplifying (x>>32)&255. */
6496 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6497 return NULL_RTX;
6499 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6501 else
6502 new_rtx = gen_lowpart (tmode, inner);
6504 else
6505 new_rtx = inner;
6507 else
6508 new_rtx = force_to_mode (inner, tmode,
6509 len >= HOST_BITS_PER_WIDE_INT
6510 ? ~(unsigned HOST_WIDE_INT) 0
6511 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6514 /* If this extraction is going into the destination of a SET,
6515 make a STRICT_LOW_PART unless we made a MEM. */
6517 if (in_dest)
6518 return (MEM_P (new_rtx) ? new_rtx
6519 : (GET_CODE (new_rtx) != SUBREG
6520 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6521 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6523 if (mode == tmode)
6524 return new_rtx;
6526 if (CONST_INT_P (new_rtx))
6527 return gen_int_mode (INTVAL (new_rtx), mode);
6529 /* If we know that no extraneous bits are set, and that the high
6530 bit is not set, convert the extraction to the cheaper of
6531 sign and zero extension, that are equivalent in these cases. */
6532 if (flag_expensive_optimizations
6533 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6534 && ((nonzero_bits (new_rtx, tmode)
6535 & ~(((unsigned HOST_WIDE_INT)
6536 GET_MODE_MASK (tmode))
6537 >> 1))
6538 == 0)))
6540 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6541 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6543 /* Prefer ZERO_EXTENSION, since it gives more information to
6544 backends. */
6545 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6546 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6547 return temp;
6548 return temp1;
6551 /* Otherwise, sign- or zero-extend unless we already are in the
6552 proper mode. */
6554 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6555 mode, new_rtx));
6558 /* Unless this is a COMPARE or we have a funny memory reference,
6559 don't do anything with zero-extending field extracts starting at
6560 the low-order bit since they are simple AND operations. */
6561 if (pos_rtx == 0 && pos == 0 && ! in_dest
6562 && ! in_compare && unsignedp)
6563 return 0;
6565 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6566 if the position is not a constant and the length is not 1. In all
6567 other cases, we would only be going outside our object in cases when
6568 an original shift would have been undefined. */
6569 if (MEM_P (inner)
6570 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6571 || (pos_rtx != 0 && len != 1)))
6572 return 0;
6574 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6575 and the mode for the result. */
6576 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6578 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6579 pos_mode = mode_for_extraction (EP_insv, 2);
6580 extraction_mode = mode_for_extraction (EP_insv, 3);
6583 if (! in_dest && unsignedp
6584 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6586 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6587 pos_mode = mode_for_extraction (EP_extzv, 3);
6588 extraction_mode = mode_for_extraction (EP_extzv, 0);
6591 if (! in_dest && ! unsignedp
6592 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6594 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6595 pos_mode = mode_for_extraction (EP_extv, 3);
6596 extraction_mode = mode_for_extraction (EP_extv, 0);
6599 /* Never narrow an object, since that might not be safe. */
6601 if (mode != VOIDmode
6602 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6603 extraction_mode = mode;
6605 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6606 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6607 pos_mode = GET_MODE (pos_rtx);
6609 /* If this is not from memory, the desired mode is the preferred mode
6610 for an extraction pattern's first input operand, or word_mode if there
6611 is none. */
6612 if (!MEM_P (inner))
6613 wanted_inner_mode = wanted_inner_reg_mode;
6614 else
6616 /* Be careful not to go beyond the extracted object and maintain the
6617 natural alignment of the memory. */
6618 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6619 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6620 > GET_MODE_BITSIZE (wanted_inner_mode))
6622 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6623 gcc_assert (wanted_inner_mode != VOIDmode);
6626 /* If we have to change the mode of memory and cannot, the desired mode
6627 is EXTRACTION_MODE. */
6628 if (inner_mode != wanted_inner_mode
6629 && (mode_dependent_address_p (XEXP (inner, 0))
6630 || MEM_VOLATILE_P (inner)
6631 || pos_rtx))
6632 wanted_inner_mode = extraction_mode;
6635 orig_pos = pos;
6637 if (BITS_BIG_ENDIAN)
6639 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6640 BITS_BIG_ENDIAN style. If position is constant, compute new
6641 position. Otherwise, build subtraction.
6642 Note that POS is relative to the mode of the original argument.
6643 If it's a MEM we need to recompute POS relative to that.
6644 However, if we're extracting from (or inserting into) a register,
6645 we want to recompute POS relative to wanted_inner_mode. */
6646 int width = (MEM_P (inner)
6647 ? GET_MODE_BITSIZE (is_mode)
6648 : GET_MODE_BITSIZE (wanted_inner_mode));
6650 if (pos_rtx == 0)
6651 pos = width - len - pos;
6652 else
6653 pos_rtx
6654 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6655 /* POS may be less than 0 now, but we check for that below.
6656 Note that it can only be less than 0 if !MEM_P (inner). */
6659 /* If INNER has a wider mode, and this is a constant extraction, try to
6660 make it smaller and adjust the byte to point to the byte containing
6661 the value. */
6662 if (wanted_inner_mode != VOIDmode
6663 && inner_mode != wanted_inner_mode
6664 && ! pos_rtx
6665 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6666 && MEM_P (inner)
6667 && ! mode_dependent_address_p (XEXP (inner, 0))
6668 && ! MEM_VOLATILE_P (inner))
6670 int offset = 0;
6672 /* The computations below will be correct if the machine is big
6673 endian in both bits and bytes or little endian in bits and bytes.
6674 If it is mixed, we must adjust. */
6676 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6677 adjust OFFSET to compensate. */
6678 if (BYTES_BIG_ENDIAN
6679 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6680 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6682 /* We can now move to the desired byte. */
6683 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6684 * GET_MODE_SIZE (wanted_inner_mode);
6685 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6687 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6688 && is_mode != wanted_inner_mode)
6689 offset = (GET_MODE_SIZE (is_mode)
6690 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6692 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6695 /* If INNER is not memory, get it into the proper mode. If we are changing
6696 its mode, POS must be a constant and smaller than the size of the new
6697 mode. */
6698 else if (!MEM_P (inner))
6700 /* On the LHS, don't create paradoxical subregs implicitely truncating
6701 the register unless TRULY_NOOP_TRUNCATION. */
6702 if (in_dest
6703 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
6704 GET_MODE_BITSIZE (wanted_inner_mode)))
6705 return NULL_RTX;
6707 if (GET_MODE (inner) != wanted_inner_mode
6708 && (pos_rtx != 0
6709 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6710 return NULL_RTX;
6712 if (orig_pos < 0)
6713 return NULL_RTX;
6715 inner = force_to_mode (inner, wanted_inner_mode,
6716 pos_rtx
6717 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6718 ? ~(unsigned HOST_WIDE_INT) 0
6719 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6720 << orig_pos),
6724 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6725 have to zero extend. Otherwise, we can just use a SUBREG. */
6726 if (pos_rtx != 0
6727 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6729 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6731 /* If we know that no extraneous bits are set, and that the high
6732 bit is not set, convert extraction to cheaper one - either
6733 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6734 cases. */
6735 if (flag_expensive_optimizations
6736 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6737 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6738 & ~(((unsigned HOST_WIDE_INT)
6739 GET_MODE_MASK (GET_MODE (pos_rtx)))
6740 >> 1))
6741 == 0)))
6743 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6745 /* Prefer ZERO_EXTENSION, since it gives more information to
6746 backends. */
6747 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6748 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6749 temp = temp1;
6751 pos_rtx = temp;
6753 else if (pos_rtx != 0
6754 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6755 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6757 /* Make POS_RTX unless we already have it and it is correct. If we don't
6758 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6759 be a CONST_INT. */
6760 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6761 pos_rtx = orig_pos_rtx;
6763 else if (pos_rtx == 0)
6764 pos_rtx = GEN_INT (pos);
6766 /* Make the required operation. See if we can use existing rtx. */
6767 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6768 extraction_mode, inner, GEN_INT (len), pos_rtx);
6769 if (! in_dest)
6770 new_rtx = gen_lowpart (mode, new_rtx);
6772 return new_rtx;
6775 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6776 with any other operations in X. Return X without that shift if so. */
6778 static rtx
6779 extract_left_shift (rtx x, int count)
6781 enum rtx_code code = GET_CODE (x);
6782 enum machine_mode mode = GET_MODE (x);
6783 rtx tem;
6785 switch (code)
6787 case ASHIFT:
6788 /* This is the shift itself. If it is wide enough, we will return
6789 either the value being shifted if the shift count is equal to
6790 COUNT or a shift for the difference. */
6791 if (CONST_INT_P (XEXP (x, 1))
6792 && INTVAL (XEXP (x, 1)) >= count)
6793 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6794 INTVAL (XEXP (x, 1)) - count);
6795 break;
6797 case NEG: case NOT:
6798 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6799 return simplify_gen_unary (code, mode, tem, mode);
6801 break;
6803 case PLUS: case IOR: case XOR: case AND:
6804 /* If we can safely shift this constant and we find the inner shift,
6805 make a new operation. */
6806 if (CONST_INT_P (XEXP (x, 1))
6807 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6808 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6809 return simplify_gen_binary (code, mode, tem,
6810 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6812 break;
6814 default:
6815 break;
6818 return 0;
6821 /* Look at the expression rooted at X. Look for expressions
6822 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6823 Form these expressions.
6825 Return the new rtx, usually just X.
6827 Also, for machines like the VAX that don't have logical shift insns,
6828 try to convert logical to arithmetic shift operations in cases where
6829 they are equivalent. This undoes the canonicalizations to logical
6830 shifts done elsewhere.
6832 We try, as much as possible, to re-use rtl expressions to save memory.
6834 IN_CODE says what kind of expression we are processing. Normally, it is
6835 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6836 being kludges), it is MEM. When processing the arguments of a comparison
6837 or a COMPARE against zero, it is COMPARE. */
6839 static rtx
6840 make_compound_operation (rtx x, enum rtx_code in_code)
6842 enum rtx_code code = GET_CODE (x);
6843 enum machine_mode mode = GET_MODE (x);
6844 int mode_width = GET_MODE_BITSIZE (mode);
6845 rtx rhs, lhs;
6846 enum rtx_code next_code;
6847 int i, j;
6848 rtx new_rtx = 0;
6849 rtx tem;
6850 const char *fmt;
6852 /* Select the code to be used in recursive calls. Once we are inside an
6853 address, we stay there. If we have a comparison, set to COMPARE,
6854 but once inside, go back to our default of SET. */
6856 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6857 : ((code == COMPARE || COMPARISON_P (x))
6858 && XEXP (x, 1) == const0_rtx) ? COMPARE
6859 : in_code == COMPARE ? SET : in_code);
6861 /* Process depending on the code of this operation. If NEW is set
6862 nonzero, it will be returned. */
6864 switch (code)
6866 case ASHIFT:
6867 /* Convert shifts by constants into multiplications if inside
6868 an address. */
6869 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
6870 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6871 && INTVAL (XEXP (x, 1)) >= 0)
6873 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
6874 new_rtx = gen_rtx_MULT (mode, new_rtx,
6875 GEN_INT ((HOST_WIDE_INT) 1
6876 << INTVAL (XEXP (x, 1))));
6878 break;
6880 case AND:
6881 /* If the second operand is not a constant, we can't do anything
6882 with it. */
6883 if (!CONST_INT_P (XEXP (x, 1)))
6884 break;
6886 /* If the constant is a power of two minus one and the first operand
6887 is a logical right shift, make an extraction. */
6888 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6889 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6891 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6892 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
6893 0, in_code == COMPARE);
6896 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6897 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6898 && subreg_lowpart_p (XEXP (x, 0))
6899 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6900 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6902 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6903 next_code);
6904 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
6905 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6906 0, in_code == COMPARE);
6908 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6909 else if ((GET_CODE (XEXP (x, 0)) == XOR
6910 || GET_CODE (XEXP (x, 0)) == IOR)
6911 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6912 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6913 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6915 /* Apply the distributive law, and then try to make extractions. */
6916 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6917 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6918 XEXP (x, 1)),
6919 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6920 XEXP (x, 1)));
6921 new_rtx = make_compound_operation (new_rtx, in_code);
6924 /* If we are have (and (rotate X C) M) and C is larger than the number
6925 of bits in M, this is an extraction. */
6927 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6928 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6929 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6930 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6932 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6933 new_rtx = make_extraction (mode, new_rtx,
6934 (GET_MODE_BITSIZE (mode)
6935 - INTVAL (XEXP (XEXP (x, 0), 1))),
6936 NULL_RTX, i, 1, 0, in_code == COMPARE);
6939 /* On machines without logical shifts, if the operand of the AND is
6940 a logical shift and our mask turns off all the propagated sign
6941 bits, we can replace the logical shift with an arithmetic shift. */
6942 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6943 && !have_insn_for (LSHIFTRT, mode)
6944 && have_insn_for (ASHIFTRT, mode)
6945 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6946 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6947 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6948 && mode_width <= HOST_BITS_PER_WIDE_INT)
6950 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6952 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6953 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6954 SUBST (XEXP (x, 0),
6955 gen_rtx_ASHIFTRT (mode,
6956 make_compound_operation
6957 (XEXP (XEXP (x, 0), 0), next_code),
6958 XEXP (XEXP (x, 0), 1)));
6961 /* If the constant is one less than a power of two, this might be
6962 representable by an extraction even if no shift is present.
6963 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6964 we are in a COMPARE. */
6965 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6966 new_rtx = make_extraction (mode,
6967 make_compound_operation (XEXP (x, 0),
6968 next_code),
6969 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6971 /* If we are in a comparison and this is an AND with a power of two,
6972 convert this into the appropriate bit extract. */
6973 else if (in_code == COMPARE
6974 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6975 new_rtx = make_extraction (mode,
6976 make_compound_operation (XEXP (x, 0),
6977 next_code),
6978 i, NULL_RTX, 1, 1, 0, 1);
6980 break;
6982 case LSHIFTRT:
6983 /* If the sign bit is known to be zero, replace this with an
6984 arithmetic shift. */
6985 if (have_insn_for (ASHIFTRT, mode)
6986 && ! have_insn_for (LSHIFTRT, mode)
6987 && mode_width <= HOST_BITS_PER_WIDE_INT
6988 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6990 new_rtx = gen_rtx_ASHIFTRT (mode,
6991 make_compound_operation (XEXP (x, 0),
6992 next_code),
6993 XEXP (x, 1));
6994 break;
6997 /* ... fall through ... */
6999 case ASHIFTRT:
7000 lhs = XEXP (x, 0);
7001 rhs = XEXP (x, 1);
7003 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7004 this is a SIGN_EXTRACT. */
7005 if (CONST_INT_P (rhs)
7006 && GET_CODE (lhs) == ASHIFT
7007 && CONST_INT_P (XEXP (lhs, 1))
7008 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7009 && INTVAL (rhs) < mode_width)
7011 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7012 new_rtx = make_extraction (mode, new_rtx,
7013 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7014 NULL_RTX, mode_width - INTVAL (rhs),
7015 code == LSHIFTRT, 0, in_code == COMPARE);
7016 break;
7019 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7020 If so, try to merge the shifts into a SIGN_EXTEND. We could
7021 also do this for some cases of SIGN_EXTRACT, but it doesn't
7022 seem worth the effort; the case checked for occurs on Alpha. */
7024 if (!OBJECT_P (lhs)
7025 && ! (GET_CODE (lhs) == SUBREG
7026 && (OBJECT_P (SUBREG_REG (lhs))))
7027 && CONST_INT_P (rhs)
7028 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7029 && INTVAL (rhs) < mode_width
7030 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7031 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7032 0, NULL_RTX, mode_width - INTVAL (rhs),
7033 code == LSHIFTRT, 0, in_code == COMPARE);
7035 break;
7037 case SUBREG:
7038 /* Call ourselves recursively on the inner expression. If we are
7039 narrowing the object and it has a different RTL code from
7040 what it originally did, do this SUBREG as a force_to_mode. */
7042 tem = make_compound_operation (SUBREG_REG (x), in_code);
7045 rtx simplified;
7046 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7047 SUBREG_BYTE (x));
7049 if (simplified)
7050 tem = simplified;
7052 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7053 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7054 && subreg_lowpart_p (x))
7056 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7059 /* If we have something other than a SUBREG, we might have
7060 done an expansion, so rerun ourselves. */
7061 if (GET_CODE (newer) != SUBREG)
7062 newer = make_compound_operation (newer, in_code);
7064 /* force_to_mode can expand compounds. If it just re-expanded the
7065 compound use gen_lowpart instead to convert to the desired
7066 mode. */
7067 if (rtx_equal_p (newer, x))
7068 return gen_lowpart (GET_MODE (x), tem);
7070 return newer;
7073 if (simplified)
7074 return tem;
7076 break;
7078 default:
7079 break;
7082 if (new_rtx)
7084 x = gen_lowpart (mode, new_rtx);
7085 code = GET_CODE (x);
7088 /* Now recursively process each operand of this operation. */
7089 fmt = GET_RTX_FORMAT (code);
7090 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7091 if (fmt[i] == 'e')
7093 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7094 SUBST (XEXP (x, i), new_rtx);
7096 else if (fmt[i] == 'E')
7097 for (j = 0; j < XVECLEN (x, i); j++)
7099 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7100 SUBST (XVECEXP (x, i, j), new_rtx);
7103 /* If this is a commutative operation, the changes to the operands
7104 may have made it noncanonical. */
7105 if (COMMUTATIVE_ARITH_P (x)
7106 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7108 tem = XEXP (x, 0);
7109 SUBST (XEXP (x, 0), XEXP (x, 1));
7110 SUBST (XEXP (x, 1), tem);
7113 return x;
7116 /* Given M see if it is a value that would select a field of bits
7117 within an item, but not the entire word. Return -1 if not.
7118 Otherwise, return the starting position of the field, where 0 is the
7119 low-order bit.
7121 *PLEN is set to the length of the field. */
7123 static int
7124 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7126 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7127 int pos = exact_log2 (m & -m);
7128 int len = 0;
7130 if (pos >= 0)
7131 /* Now shift off the low-order zero bits and see if we have a
7132 power of two minus 1. */
7133 len = exact_log2 ((m >> pos) + 1);
7135 if (len <= 0)
7136 pos = -1;
7138 *plen = len;
7139 return pos;
7142 /* If X refers to a register that equals REG in value, replace these
7143 references with REG. */
7144 static rtx
7145 canon_reg_for_combine (rtx x, rtx reg)
7147 rtx op0, op1, op2;
7148 const char *fmt;
7149 int i;
7150 bool copied;
7152 enum rtx_code code = GET_CODE (x);
7153 switch (GET_RTX_CLASS (code))
7155 case RTX_UNARY:
7156 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7157 if (op0 != XEXP (x, 0))
7158 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7159 GET_MODE (reg));
7160 break;
7162 case RTX_BIN_ARITH:
7163 case RTX_COMM_ARITH:
7164 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7165 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7166 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7167 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7168 break;
7170 case RTX_COMPARE:
7171 case RTX_COMM_COMPARE:
7172 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7173 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7174 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7175 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7176 GET_MODE (op0), op0, op1);
7177 break;
7179 case RTX_TERNARY:
7180 case RTX_BITFIELD_OPS:
7181 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7182 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7183 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7184 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7185 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7186 GET_MODE (op0), op0, op1, op2);
7188 case RTX_OBJ:
7189 if (REG_P (x))
7191 if (rtx_equal_p (get_last_value (reg), x)
7192 || rtx_equal_p (reg, get_last_value (x)))
7193 return reg;
7194 else
7195 break;
7198 /* fall through */
7200 default:
7201 fmt = GET_RTX_FORMAT (code);
7202 copied = false;
7203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7204 if (fmt[i] == 'e')
7206 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7207 if (op != XEXP (x, i))
7209 if (!copied)
7211 copied = true;
7212 x = copy_rtx (x);
7214 XEXP (x, i) = op;
7217 else if (fmt[i] == 'E')
7219 int j;
7220 for (j = 0; j < XVECLEN (x, i); j++)
7222 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7223 if (op != XVECEXP (x, i, j))
7225 if (!copied)
7227 copied = true;
7228 x = copy_rtx (x);
7230 XVECEXP (x, i, j) = op;
7235 break;
7238 return x;
7241 /* Return X converted to MODE. If the value is already truncated to
7242 MODE we can just return a subreg even though in the general case we
7243 would need an explicit truncation. */
7245 static rtx
7246 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7248 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7249 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7250 GET_MODE_BITSIZE (GET_MODE (x)))
7251 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7252 return gen_lowpart (mode, x);
7253 else
7254 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7257 /* See if X can be simplified knowing that we will only refer to it in
7258 MODE and will only refer to those bits that are nonzero in MASK.
7259 If other bits are being computed or if masking operations are done
7260 that select a superset of the bits in MASK, they can sometimes be
7261 ignored.
7263 Return a possibly simplified expression, but always convert X to
7264 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7266 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7267 are all off in X. This is used when X will be complemented, by either
7268 NOT, NEG, or XOR. */
7270 static rtx
7271 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7272 int just_select)
7274 enum rtx_code code = GET_CODE (x);
7275 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7276 enum machine_mode op_mode;
7277 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7278 rtx op0, op1, temp;
7280 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7281 code below will do the wrong thing since the mode of such an
7282 expression is VOIDmode.
7284 Also do nothing if X is a CLOBBER; this can happen if X was
7285 the return value from a call to gen_lowpart. */
7286 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7287 return x;
7289 /* We want to perform the operation is its present mode unless we know
7290 that the operation is valid in MODE, in which case we do the operation
7291 in MODE. */
7292 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7293 && have_insn_for (code, mode))
7294 ? mode : GET_MODE (x));
7296 /* It is not valid to do a right-shift in a narrower mode
7297 than the one it came in with. */
7298 if ((code == LSHIFTRT || code == ASHIFTRT)
7299 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7300 op_mode = GET_MODE (x);
7302 /* Truncate MASK to fit OP_MODE. */
7303 if (op_mode)
7304 mask &= GET_MODE_MASK (op_mode);
7306 /* When we have an arithmetic operation, or a shift whose count we
7307 do not know, we need to assume that all bits up to the highest-order
7308 bit in MASK will be needed. This is how we form such a mask. */
7309 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7310 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7311 else
7312 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7313 - 1);
7315 /* Determine what bits of X are guaranteed to be (non)zero. */
7316 nonzero = nonzero_bits (x, mode);
7318 /* If none of the bits in X are needed, return a zero. */
7319 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7320 x = const0_rtx;
7322 /* If X is a CONST_INT, return a new one. Do this here since the
7323 test below will fail. */
7324 if (CONST_INT_P (x))
7326 if (SCALAR_INT_MODE_P (mode))
7327 return gen_int_mode (INTVAL (x) & mask, mode);
7328 else
7330 x = GEN_INT (INTVAL (x) & mask);
7331 return gen_lowpart_common (mode, x);
7335 /* If X is narrower than MODE and we want all the bits in X's mode, just
7336 get X in the proper mode. */
7337 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7338 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7339 return gen_lowpart (mode, x);
7341 /* The arithmetic simplifications here do the wrong thing on vector modes. */
7342 if (VECTOR_MODE_P (mode) || VECTOR_MODE_P (GET_MODE (x)))
7343 return gen_lowpart (mode, x);
7345 switch (code)
7347 case CLOBBER:
7348 /* If X is a (clobber (const_int)), return it since we know we are
7349 generating something that won't match. */
7350 return x;
7352 case SIGN_EXTEND:
7353 case ZERO_EXTEND:
7354 case ZERO_EXTRACT:
7355 case SIGN_EXTRACT:
7356 x = expand_compound_operation (x);
7357 if (GET_CODE (x) != code)
7358 return force_to_mode (x, mode, mask, next_select);
7359 break;
7361 case SUBREG:
7362 if (subreg_lowpart_p (x)
7363 /* We can ignore the effect of this SUBREG if it narrows the mode or
7364 if the constant masks to zero all the bits the mode doesn't
7365 have. */
7366 && ((GET_MODE_SIZE (GET_MODE (x))
7367 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7368 || (0 == (mask
7369 & GET_MODE_MASK (GET_MODE (x))
7370 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7371 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7372 break;
7374 case TRUNCATE:
7375 /* Similarly for a truncate. */
7376 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7378 case AND:
7379 /* If this is an AND with a constant, convert it into an AND
7380 whose constant is the AND of that constant with MASK. If it
7381 remains an AND of MASK, delete it since it is redundant. */
7383 if (CONST_INT_P (XEXP (x, 1)))
7385 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7386 mask & INTVAL (XEXP (x, 1)));
7388 /* If X is still an AND, see if it is an AND with a mask that
7389 is just some low-order bits. If so, and it is MASK, we don't
7390 need it. */
7392 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7393 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7394 == mask))
7395 x = XEXP (x, 0);
7397 /* If it remains an AND, try making another AND with the bits
7398 in the mode mask that aren't in MASK turned on. If the
7399 constant in the AND is wide enough, this might make a
7400 cheaper constant. */
7402 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7403 && GET_MODE_MASK (GET_MODE (x)) != mask
7404 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7406 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7407 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7408 int width = GET_MODE_BITSIZE (GET_MODE (x));
7409 rtx y;
7411 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7412 number, sign extend it. */
7413 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7414 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7415 cval |= (HOST_WIDE_INT) -1 << width;
7417 y = simplify_gen_binary (AND, GET_MODE (x),
7418 XEXP (x, 0), GEN_INT (cval));
7419 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7420 < rtx_cost (x, SET, optimize_this_for_speed_p))
7421 x = y;
7424 break;
7427 goto binop;
7429 case PLUS:
7430 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7431 low-order bits (as in an alignment operation) and FOO is already
7432 aligned to that boundary, mask C1 to that boundary as well.
7433 This may eliminate that PLUS and, later, the AND. */
7436 unsigned int width = GET_MODE_BITSIZE (mode);
7437 unsigned HOST_WIDE_INT smask = mask;
7439 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7440 number, sign extend it. */
7442 if (width < HOST_BITS_PER_WIDE_INT
7443 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7444 smask |= (HOST_WIDE_INT) -1 << width;
7446 if (CONST_INT_P (XEXP (x, 1))
7447 && exact_log2 (- smask) >= 0
7448 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7449 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7450 return force_to_mode (plus_constant (XEXP (x, 0),
7451 (INTVAL (XEXP (x, 1)) & smask)),
7452 mode, smask, next_select);
7455 /* ... fall through ... */
7457 case MULT:
7458 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7459 most significant bit in MASK since carries from those bits will
7460 affect the bits we are interested in. */
7461 mask = fuller_mask;
7462 goto binop;
7464 case MINUS:
7465 /* If X is (minus C Y) where C's least set bit is larger than any bit
7466 in the mask, then we may replace with (neg Y). */
7467 if (CONST_INT_P (XEXP (x, 0))
7468 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7469 & -INTVAL (XEXP (x, 0))))
7470 > mask))
7472 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7473 GET_MODE (x));
7474 return force_to_mode (x, mode, mask, next_select);
7477 /* Similarly, if C contains every bit in the fuller_mask, then we may
7478 replace with (not Y). */
7479 if (CONST_INT_P (XEXP (x, 0))
7480 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7481 == INTVAL (XEXP (x, 0))))
7483 x = simplify_gen_unary (NOT, GET_MODE (x),
7484 XEXP (x, 1), GET_MODE (x));
7485 return force_to_mode (x, mode, mask, next_select);
7488 mask = fuller_mask;
7489 goto binop;
7491 case IOR:
7492 case XOR:
7493 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7494 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7495 operation which may be a bitfield extraction. Ensure that the
7496 constant we form is not wider than the mode of X. */
7498 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7499 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7500 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7501 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7502 && CONST_INT_P (XEXP (x, 1))
7503 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7504 + floor_log2 (INTVAL (XEXP (x, 1))))
7505 < GET_MODE_BITSIZE (GET_MODE (x)))
7506 && (INTVAL (XEXP (x, 1))
7507 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7509 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7510 << INTVAL (XEXP (XEXP (x, 0), 1)));
7511 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7512 XEXP (XEXP (x, 0), 0), temp);
7513 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7514 XEXP (XEXP (x, 0), 1));
7515 return force_to_mode (x, mode, mask, next_select);
7518 binop:
7519 /* For most binary operations, just propagate into the operation and
7520 change the mode if we have an operation of that mode. */
7522 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
7523 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
7525 /* If we ended up truncating both operands, truncate the result of the
7526 operation instead. */
7527 if (GET_CODE (op0) == TRUNCATE
7528 && GET_CODE (op1) == TRUNCATE)
7530 op0 = XEXP (op0, 0);
7531 op1 = XEXP (op1, 0);
7534 op0 = gen_lowpart_or_truncate (op_mode, op0);
7535 op1 = gen_lowpart_or_truncate (op_mode, op1);
7537 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7538 x = simplify_gen_binary (code, op_mode, op0, op1);
7539 break;
7541 case ASHIFT:
7542 /* For left shifts, do the same, but just for the first operand.
7543 However, we cannot do anything with shifts where we cannot
7544 guarantee that the counts are smaller than the size of the mode
7545 because such a count will have a different meaning in a
7546 wider mode. */
7548 if (! (CONST_INT_P (XEXP (x, 1))
7549 && INTVAL (XEXP (x, 1)) >= 0
7550 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7551 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7552 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7553 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7554 break;
7556 /* If the shift count is a constant and we can do arithmetic in
7557 the mode of the shift, refine which bits we need. Otherwise, use the
7558 conservative form of the mask. */
7559 if (CONST_INT_P (XEXP (x, 1))
7560 && INTVAL (XEXP (x, 1)) >= 0
7561 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7562 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7563 mask >>= INTVAL (XEXP (x, 1));
7564 else
7565 mask = fuller_mask;
7567 op0 = gen_lowpart_or_truncate (op_mode,
7568 force_to_mode (XEXP (x, 0), op_mode,
7569 mask, next_select));
7571 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7572 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7573 break;
7575 case LSHIFTRT:
7576 /* Here we can only do something if the shift count is a constant,
7577 this shift constant is valid for the host, and we can do arithmetic
7578 in OP_MODE. */
7580 if (CONST_INT_P (XEXP (x, 1))
7581 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7582 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7584 rtx inner = XEXP (x, 0);
7585 unsigned HOST_WIDE_INT inner_mask;
7587 /* Select the mask of the bits we need for the shift operand. */
7588 inner_mask = mask << INTVAL (XEXP (x, 1));
7590 /* We can only change the mode of the shift if we can do arithmetic
7591 in the mode of the shift and INNER_MASK is no wider than the
7592 width of X's mode. */
7593 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7594 op_mode = GET_MODE (x);
7596 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7598 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7599 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7602 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7603 shift and AND produces only copies of the sign bit (C2 is one less
7604 than a power of two), we can do this with just a shift. */
7606 if (GET_CODE (x) == LSHIFTRT
7607 && CONST_INT_P (XEXP (x, 1))
7608 /* The shift puts one of the sign bit copies in the least significant
7609 bit. */
7610 && ((INTVAL (XEXP (x, 1))
7611 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7612 >= GET_MODE_BITSIZE (GET_MODE (x)))
7613 && exact_log2 (mask + 1) >= 0
7614 /* Number of bits left after the shift must be more than the mask
7615 needs. */
7616 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7617 <= GET_MODE_BITSIZE (GET_MODE (x)))
7618 /* Must be more sign bit copies than the mask needs. */
7619 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7620 >= exact_log2 (mask + 1)))
7621 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7622 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7623 - exact_log2 (mask + 1)));
7625 goto shiftrt;
7627 case ASHIFTRT:
7628 /* If we are just looking for the sign bit, we don't need this shift at
7629 all, even if it has a variable count. */
7630 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7631 && (mask == ((unsigned HOST_WIDE_INT) 1
7632 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7633 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7635 /* If this is a shift by a constant, get a mask that contains those bits
7636 that are not copies of the sign bit. We then have two cases: If
7637 MASK only includes those bits, this can be a logical shift, which may
7638 allow simplifications. If MASK is a single-bit field not within
7639 those bits, we are requesting a copy of the sign bit and hence can
7640 shift the sign bit to the appropriate location. */
7642 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
7643 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7645 int i;
7647 /* If the considered data is wider than HOST_WIDE_INT, we can't
7648 represent a mask for all its bits in a single scalar.
7649 But we only care about the lower bits, so calculate these. */
7651 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7653 nonzero = ~(HOST_WIDE_INT) 0;
7655 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7656 is the number of bits a full-width mask would have set.
7657 We need only shift if these are fewer than nonzero can
7658 hold. If not, we must keep all bits set in nonzero. */
7660 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7661 < HOST_BITS_PER_WIDE_INT)
7662 nonzero >>= INTVAL (XEXP (x, 1))
7663 + HOST_BITS_PER_WIDE_INT
7664 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7666 else
7668 nonzero = GET_MODE_MASK (GET_MODE (x));
7669 nonzero >>= INTVAL (XEXP (x, 1));
7672 if ((mask & ~nonzero) == 0)
7674 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7675 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7676 if (GET_CODE (x) != ASHIFTRT)
7677 return force_to_mode (x, mode, mask, next_select);
7680 else if ((i = exact_log2 (mask)) >= 0)
7682 x = simplify_shift_const
7683 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7684 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7686 if (GET_CODE (x) != ASHIFTRT)
7687 return force_to_mode (x, mode, mask, next_select);
7691 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7692 even if the shift count isn't a constant. */
7693 if (mask == 1)
7694 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7695 XEXP (x, 0), XEXP (x, 1));
7697 shiftrt:
7699 /* If this is a zero- or sign-extension operation that just affects bits
7700 we don't care about, remove it. Be sure the call above returned
7701 something that is still a shift. */
7703 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7704 && CONST_INT_P (XEXP (x, 1))
7705 && INTVAL (XEXP (x, 1)) >= 0
7706 && (INTVAL (XEXP (x, 1))
7707 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7708 && GET_CODE (XEXP (x, 0)) == ASHIFT
7709 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7710 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7711 next_select);
7713 break;
7715 case ROTATE:
7716 case ROTATERT:
7717 /* If the shift count is constant and we can do computations
7718 in the mode of X, compute where the bits we care about are.
7719 Otherwise, we can't do anything. Don't change the mode of
7720 the shift or propagate MODE into the shift, though. */
7721 if (CONST_INT_P (XEXP (x, 1))
7722 && INTVAL (XEXP (x, 1)) >= 0)
7724 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7725 GET_MODE (x), GEN_INT (mask),
7726 XEXP (x, 1));
7727 if (temp && CONST_INT_P (temp))
7728 SUBST (XEXP (x, 0),
7729 force_to_mode (XEXP (x, 0), GET_MODE (x),
7730 INTVAL (temp), next_select));
7732 break;
7734 case NEG:
7735 /* If we just want the low-order bit, the NEG isn't needed since it
7736 won't change the low-order bit. */
7737 if (mask == 1)
7738 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7740 /* We need any bits less significant than the most significant bit in
7741 MASK since carries from those bits will affect the bits we are
7742 interested in. */
7743 mask = fuller_mask;
7744 goto unop;
7746 case NOT:
7747 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7748 same as the XOR case above. Ensure that the constant we form is not
7749 wider than the mode of X. */
7751 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7752 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7753 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7754 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7755 < GET_MODE_BITSIZE (GET_MODE (x)))
7756 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7758 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7759 GET_MODE (x));
7760 temp = simplify_gen_binary (XOR, GET_MODE (x),
7761 XEXP (XEXP (x, 0), 0), temp);
7762 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7763 temp, XEXP (XEXP (x, 0), 1));
7765 return force_to_mode (x, mode, mask, next_select);
7768 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7769 use the full mask inside the NOT. */
7770 mask = fuller_mask;
7772 unop:
7773 op0 = gen_lowpart_or_truncate (op_mode,
7774 force_to_mode (XEXP (x, 0), mode, mask,
7775 next_select));
7776 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7777 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7778 break;
7780 case NE:
7781 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7782 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7783 which is equal to STORE_FLAG_VALUE. */
7784 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7785 && GET_MODE (XEXP (x, 0)) == mode
7786 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7787 && (nonzero_bits (XEXP (x, 0), mode)
7788 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7789 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7791 break;
7793 case IF_THEN_ELSE:
7794 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7795 written in a narrower mode. We play it safe and do not do so. */
7797 SUBST (XEXP (x, 1),
7798 gen_lowpart_or_truncate (GET_MODE (x),
7799 force_to_mode (XEXP (x, 1), mode,
7800 mask, next_select)));
7801 SUBST (XEXP (x, 2),
7802 gen_lowpart_or_truncate (GET_MODE (x),
7803 force_to_mode (XEXP (x, 2), mode,
7804 mask, next_select)));
7805 break;
7807 default:
7808 break;
7811 /* Ensure we return a value of the proper mode. */
7812 return gen_lowpart_or_truncate (mode, x);
7815 /* Return nonzero if X is an expression that has one of two values depending on
7816 whether some other value is zero or nonzero. In that case, we return the
7817 value that is being tested, *PTRUE is set to the value if the rtx being
7818 returned has a nonzero value, and *PFALSE is set to the other alternative.
7820 If we return zero, we set *PTRUE and *PFALSE to X. */
7822 static rtx
7823 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7825 enum machine_mode mode = GET_MODE (x);
7826 enum rtx_code code = GET_CODE (x);
7827 rtx cond0, cond1, true0, true1, false0, false1;
7828 unsigned HOST_WIDE_INT nz;
7830 /* If we are comparing a value against zero, we are done. */
7831 if ((code == NE || code == EQ)
7832 && XEXP (x, 1) == const0_rtx)
7834 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7835 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7836 return XEXP (x, 0);
7839 /* If this is a unary operation whose operand has one of two values, apply
7840 our opcode to compute those values. */
7841 else if (UNARY_P (x)
7842 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7844 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7845 *pfalse = simplify_gen_unary (code, mode, false0,
7846 GET_MODE (XEXP (x, 0)));
7847 return cond0;
7850 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7851 make can't possibly match and would suppress other optimizations. */
7852 else if (code == COMPARE)
7855 /* If this is a binary operation, see if either side has only one of two
7856 values. If either one does or if both do and they are conditional on
7857 the same value, compute the new true and false values. */
7858 else if (BINARY_P (x))
7860 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7861 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7863 if ((cond0 != 0 || cond1 != 0)
7864 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7866 /* If if_then_else_cond returned zero, then true/false are the
7867 same rtl. We must copy one of them to prevent invalid rtl
7868 sharing. */
7869 if (cond0 == 0)
7870 true0 = copy_rtx (true0);
7871 else if (cond1 == 0)
7872 true1 = copy_rtx (true1);
7874 if (COMPARISON_P (x))
7876 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7877 true0, true1);
7878 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7879 false0, false1);
7881 else
7883 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7884 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7887 return cond0 ? cond0 : cond1;
7890 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7891 operands is zero when the other is nonzero, and vice-versa,
7892 and STORE_FLAG_VALUE is 1 or -1. */
7894 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7895 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7896 || code == UMAX)
7897 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7899 rtx op0 = XEXP (XEXP (x, 0), 1);
7900 rtx op1 = XEXP (XEXP (x, 1), 1);
7902 cond0 = XEXP (XEXP (x, 0), 0);
7903 cond1 = XEXP (XEXP (x, 1), 0);
7905 if (COMPARISON_P (cond0)
7906 && COMPARISON_P (cond1)
7907 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7908 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7909 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7910 || ((swap_condition (GET_CODE (cond0))
7911 == reversed_comparison_code (cond1, NULL))
7912 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7913 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7914 && ! side_effects_p (x))
7916 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7917 *pfalse = simplify_gen_binary (MULT, mode,
7918 (code == MINUS
7919 ? simplify_gen_unary (NEG, mode,
7920 op1, mode)
7921 : op1),
7922 const_true_rtx);
7923 return cond0;
7927 /* Similarly for MULT, AND and UMIN, except that for these the result
7928 is always zero. */
7929 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7930 && (code == MULT || code == AND || code == UMIN)
7931 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7933 cond0 = XEXP (XEXP (x, 0), 0);
7934 cond1 = XEXP (XEXP (x, 1), 0);
7936 if (COMPARISON_P (cond0)
7937 && COMPARISON_P (cond1)
7938 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7939 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7940 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7941 || ((swap_condition (GET_CODE (cond0))
7942 == reversed_comparison_code (cond1, NULL))
7943 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7944 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7945 && ! side_effects_p (x))
7947 *ptrue = *pfalse = const0_rtx;
7948 return cond0;
7953 else if (code == IF_THEN_ELSE)
7955 /* If we have IF_THEN_ELSE already, extract the condition and
7956 canonicalize it if it is NE or EQ. */
7957 cond0 = XEXP (x, 0);
7958 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7959 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7960 return XEXP (cond0, 0);
7961 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7963 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7964 return XEXP (cond0, 0);
7966 else
7967 return cond0;
7970 /* If X is a SUBREG, we can narrow both the true and false values
7971 if the inner expression, if there is a condition. */
7972 else if (code == SUBREG
7973 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7974 &true0, &false0)))
7976 true0 = simplify_gen_subreg (mode, true0,
7977 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7978 false0 = simplify_gen_subreg (mode, false0,
7979 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7980 if (true0 && false0)
7982 *ptrue = true0;
7983 *pfalse = false0;
7984 return cond0;
7988 /* If X is a constant, this isn't special and will cause confusions
7989 if we treat it as such. Likewise if it is equivalent to a constant. */
7990 else if (CONSTANT_P (x)
7991 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7994 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7995 will be least confusing to the rest of the compiler. */
7996 else if (mode == BImode)
7998 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7999 return x;
8002 /* If X is known to be either 0 or -1, those are the true and
8003 false values when testing X. */
8004 else if (x == constm1_rtx || x == const0_rtx
8005 || (mode != VOIDmode
8006 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8008 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8009 return x;
8012 /* Likewise for 0 or a single bit. */
8013 else if (SCALAR_INT_MODE_P (mode)
8014 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8015 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8017 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8018 return x;
8021 /* Otherwise fail; show no condition with true and false values the same. */
8022 *ptrue = *pfalse = x;
8023 return 0;
8026 /* Return the value of expression X given the fact that condition COND
8027 is known to be true when applied to REG as its first operand and VAL
8028 as its second. X is known to not be shared and so can be modified in
8029 place.
8031 We only handle the simplest cases, and specifically those cases that
8032 arise with IF_THEN_ELSE expressions. */
8034 static rtx
8035 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8037 enum rtx_code code = GET_CODE (x);
8038 rtx temp;
8039 const char *fmt;
8040 int i, j;
8042 if (side_effects_p (x))
8043 return x;
8045 /* If either operand of the condition is a floating point value,
8046 then we have to avoid collapsing an EQ comparison. */
8047 if (cond == EQ
8048 && rtx_equal_p (x, reg)
8049 && ! FLOAT_MODE_P (GET_MODE (x))
8050 && ! FLOAT_MODE_P (GET_MODE (val)))
8051 return val;
8053 if (cond == UNEQ && rtx_equal_p (x, reg))
8054 return val;
8056 /* If X is (abs REG) and we know something about REG's relationship
8057 with zero, we may be able to simplify this. */
8059 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8060 switch (cond)
8062 case GE: case GT: case EQ:
8063 return XEXP (x, 0);
8064 case LT: case LE:
8065 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8066 XEXP (x, 0),
8067 GET_MODE (XEXP (x, 0)));
8068 default:
8069 break;
8072 /* The only other cases we handle are MIN, MAX, and comparisons if the
8073 operands are the same as REG and VAL. */
8075 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8077 if (rtx_equal_p (XEXP (x, 0), val))
8078 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8080 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8082 if (COMPARISON_P (x))
8084 if (comparison_dominates_p (cond, code))
8085 return const_true_rtx;
8087 code = reversed_comparison_code (x, NULL);
8088 if (code != UNKNOWN
8089 && comparison_dominates_p (cond, code))
8090 return const0_rtx;
8091 else
8092 return x;
8094 else if (code == SMAX || code == SMIN
8095 || code == UMIN || code == UMAX)
8097 int unsignedp = (code == UMIN || code == UMAX);
8099 /* Do not reverse the condition when it is NE or EQ.
8100 This is because we cannot conclude anything about
8101 the value of 'SMAX (x, y)' when x is not equal to y,
8102 but we can when x equals y. */
8103 if ((code == SMAX || code == UMAX)
8104 && ! (cond == EQ || cond == NE))
8105 cond = reverse_condition (cond);
8107 switch (cond)
8109 case GE: case GT:
8110 return unsignedp ? x : XEXP (x, 1);
8111 case LE: case LT:
8112 return unsignedp ? x : XEXP (x, 0);
8113 case GEU: case GTU:
8114 return unsignedp ? XEXP (x, 1) : x;
8115 case LEU: case LTU:
8116 return unsignedp ? XEXP (x, 0) : x;
8117 default:
8118 break;
8123 else if (code == SUBREG)
8125 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8126 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8128 if (SUBREG_REG (x) != r)
8130 /* We must simplify subreg here, before we lose track of the
8131 original inner_mode. */
8132 new_rtx = simplify_subreg (GET_MODE (x), r,
8133 inner_mode, SUBREG_BYTE (x));
8134 if (new_rtx)
8135 return new_rtx;
8136 else
8137 SUBST (SUBREG_REG (x), r);
8140 return x;
8142 /* We don't have to handle SIGN_EXTEND here, because even in the
8143 case of replacing something with a modeless CONST_INT, a
8144 CONST_INT is already (supposed to be) a valid sign extension for
8145 its narrower mode, which implies it's already properly
8146 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8147 story is different. */
8148 else if (code == ZERO_EXTEND)
8150 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8151 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8153 if (XEXP (x, 0) != r)
8155 /* We must simplify the zero_extend here, before we lose
8156 track of the original inner_mode. */
8157 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8158 r, inner_mode);
8159 if (new_rtx)
8160 return new_rtx;
8161 else
8162 SUBST (XEXP (x, 0), r);
8165 return x;
8168 fmt = GET_RTX_FORMAT (code);
8169 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8171 if (fmt[i] == 'e')
8172 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8173 else if (fmt[i] == 'E')
8174 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8175 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8176 cond, reg, val));
8179 return x;
8182 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8183 assignment as a field assignment. */
8185 static int
8186 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8188 if (x == y || rtx_equal_p (x, y))
8189 return 1;
8191 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8192 return 0;
8194 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8195 Note that all SUBREGs of MEM are paradoxical; otherwise they
8196 would have been rewritten. */
8197 if (MEM_P (x) && GET_CODE (y) == SUBREG
8198 && MEM_P (SUBREG_REG (y))
8199 && rtx_equal_p (SUBREG_REG (y),
8200 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8201 return 1;
8203 if (MEM_P (y) && GET_CODE (x) == SUBREG
8204 && MEM_P (SUBREG_REG (x))
8205 && rtx_equal_p (SUBREG_REG (x),
8206 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8207 return 1;
8209 /* We used to see if get_last_value of X and Y were the same but that's
8210 not correct. In one direction, we'll cause the assignment to have
8211 the wrong destination and in the case, we'll import a register into this
8212 insn that might have already have been dead. So fail if none of the
8213 above cases are true. */
8214 return 0;
8217 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8218 Return that assignment if so.
8220 We only handle the most common cases. */
8222 static rtx
8223 make_field_assignment (rtx x)
8225 rtx dest = SET_DEST (x);
8226 rtx src = SET_SRC (x);
8227 rtx assign;
8228 rtx rhs, lhs;
8229 HOST_WIDE_INT c1;
8230 HOST_WIDE_INT pos;
8231 unsigned HOST_WIDE_INT len;
8232 rtx other;
8233 enum machine_mode mode;
8235 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8236 a clear of a one-bit field. We will have changed it to
8237 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8238 for a SUBREG. */
8240 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8241 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8242 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8243 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8245 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8246 1, 1, 1, 0);
8247 if (assign != 0)
8248 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8249 return x;
8252 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8253 && subreg_lowpart_p (XEXP (src, 0))
8254 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8255 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8256 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8257 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8258 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8259 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8261 assign = make_extraction (VOIDmode, dest, 0,
8262 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8263 1, 1, 1, 0);
8264 if (assign != 0)
8265 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8266 return x;
8269 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8270 one-bit field. */
8271 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8272 && XEXP (XEXP (src, 0), 0) == const1_rtx
8273 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8275 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8276 1, 1, 1, 0);
8277 if (assign != 0)
8278 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8279 return x;
8282 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8283 SRC is an AND with all bits of that field set, then we can discard
8284 the AND. */
8285 if (GET_CODE (dest) == ZERO_EXTRACT
8286 && CONST_INT_P (XEXP (dest, 1))
8287 && GET_CODE (src) == AND
8288 && CONST_INT_P (XEXP (src, 1)))
8290 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8291 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8292 unsigned HOST_WIDE_INT ze_mask;
8294 if (width >= HOST_BITS_PER_WIDE_INT)
8295 ze_mask = -1;
8296 else
8297 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8299 /* Complete overlap. We can remove the source AND. */
8300 if ((and_mask & ze_mask) == ze_mask)
8301 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8303 /* Partial overlap. We can reduce the source AND. */
8304 if ((and_mask & ze_mask) != and_mask)
8306 mode = GET_MODE (src);
8307 src = gen_rtx_AND (mode, XEXP (src, 0),
8308 gen_int_mode (and_mask & ze_mask, mode));
8309 return gen_rtx_SET (VOIDmode, dest, src);
8313 /* The other case we handle is assignments into a constant-position
8314 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8315 a mask that has all one bits except for a group of zero bits and
8316 OTHER is known to have zeros where C1 has ones, this is such an
8317 assignment. Compute the position and length from C1. Shift OTHER
8318 to the appropriate position, force it to the required mode, and
8319 make the extraction. Check for the AND in both operands. */
8321 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8322 return x;
8324 rhs = expand_compound_operation (XEXP (src, 0));
8325 lhs = expand_compound_operation (XEXP (src, 1));
8327 if (GET_CODE (rhs) == AND
8328 && CONST_INT_P (XEXP (rhs, 1))
8329 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8330 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8331 else if (GET_CODE (lhs) == AND
8332 && CONST_INT_P (XEXP (lhs, 1))
8333 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8334 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8335 else
8336 return x;
8338 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8339 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8340 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8341 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8342 return x;
8344 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8345 if (assign == 0)
8346 return x;
8348 /* The mode to use for the source is the mode of the assignment, or of
8349 what is inside a possible STRICT_LOW_PART. */
8350 mode = (GET_CODE (assign) == STRICT_LOW_PART
8351 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8353 /* Shift OTHER right POS places and make it the source, restricting it
8354 to the proper length and mode. */
8356 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8357 GET_MODE (src),
8358 other, pos),
8359 dest);
8360 src = force_to_mode (src, mode,
8361 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8362 ? ~(unsigned HOST_WIDE_INT) 0
8363 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8366 /* If SRC is masked by an AND that does not make a difference in
8367 the value being stored, strip it. */
8368 if (GET_CODE (assign) == ZERO_EXTRACT
8369 && CONST_INT_P (XEXP (assign, 1))
8370 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8371 && GET_CODE (src) == AND
8372 && CONST_INT_P (XEXP (src, 1))
8373 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8374 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8375 src = XEXP (src, 0);
8377 return gen_rtx_SET (VOIDmode, assign, src);
8380 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8381 if so. */
8383 static rtx
8384 apply_distributive_law (rtx x)
8386 enum rtx_code code = GET_CODE (x);
8387 enum rtx_code inner_code;
8388 rtx lhs, rhs, other;
8389 rtx tem;
8391 /* Distributivity is not true for floating point as it can change the
8392 value. So we don't do it unless -funsafe-math-optimizations. */
8393 if (FLOAT_MODE_P (GET_MODE (x))
8394 && ! flag_unsafe_math_optimizations)
8395 return x;
8397 /* The outer operation can only be one of the following: */
8398 if (code != IOR && code != AND && code != XOR
8399 && code != PLUS && code != MINUS)
8400 return x;
8402 lhs = XEXP (x, 0);
8403 rhs = XEXP (x, 1);
8405 /* If either operand is a primitive we can't do anything, so get out
8406 fast. */
8407 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8408 return x;
8410 lhs = expand_compound_operation (lhs);
8411 rhs = expand_compound_operation (rhs);
8412 inner_code = GET_CODE (lhs);
8413 if (inner_code != GET_CODE (rhs))
8414 return x;
8416 /* See if the inner and outer operations distribute. */
8417 switch (inner_code)
8419 case LSHIFTRT:
8420 case ASHIFTRT:
8421 case AND:
8422 case IOR:
8423 /* These all distribute except over PLUS. */
8424 if (code == PLUS || code == MINUS)
8425 return x;
8426 break;
8428 case MULT:
8429 if (code != PLUS && code != MINUS)
8430 return x;
8431 break;
8433 case ASHIFT:
8434 /* This is also a multiply, so it distributes over everything. */
8435 break;
8437 case SUBREG:
8438 /* Non-paradoxical SUBREGs distributes over all operations,
8439 provided the inner modes and byte offsets are the same, this
8440 is an extraction of a low-order part, we don't convert an fp
8441 operation to int or vice versa, this is not a vector mode,
8442 and we would not be converting a single-word operation into a
8443 multi-word operation. The latter test is not required, but
8444 it prevents generating unneeded multi-word operations. Some
8445 of the previous tests are redundant given the latter test,
8446 but are retained because they are required for correctness.
8448 We produce the result slightly differently in this case. */
8450 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8451 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8452 || ! subreg_lowpart_p (lhs)
8453 || (GET_MODE_CLASS (GET_MODE (lhs))
8454 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8455 || (GET_MODE_SIZE (GET_MODE (lhs))
8456 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8457 || VECTOR_MODE_P (GET_MODE (lhs))
8458 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8459 /* Result might need to be truncated. Don't change mode if
8460 explicit truncation is needed. */
8461 || !TRULY_NOOP_TRUNCATION
8462 (GET_MODE_BITSIZE (GET_MODE (x)),
8463 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8464 return x;
8466 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8467 SUBREG_REG (lhs), SUBREG_REG (rhs));
8468 return gen_lowpart (GET_MODE (x), tem);
8470 default:
8471 return x;
8474 /* Set LHS and RHS to the inner operands (A and B in the example
8475 above) and set OTHER to the common operand (C in the example).
8476 There is only one way to do this unless the inner operation is
8477 commutative. */
8478 if (COMMUTATIVE_ARITH_P (lhs)
8479 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8480 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8481 else if (COMMUTATIVE_ARITH_P (lhs)
8482 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8483 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8484 else if (COMMUTATIVE_ARITH_P (lhs)
8485 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8486 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8487 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8488 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8489 else
8490 return x;
8492 /* Form the new inner operation, seeing if it simplifies first. */
8493 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8495 /* There is one exception to the general way of distributing:
8496 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8497 if (code == XOR && inner_code == IOR)
8499 inner_code = AND;
8500 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8503 /* We may be able to continuing distributing the result, so call
8504 ourselves recursively on the inner operation before forming the
8505 outer operation, which we return. */
8506 return simplify_gen_binary (inner_code, GET_MODE (x),
8507 apply_distributive_law (tem), other);
8510 /* See if X is of the form (* (+ A B) C), and if so convert to
8511 (+ (* A C) (* B C)) and try to simplify.
8513 Most of the time, this results in no change. However, if some of
8514 the operands are the same or inverses of each other, simplifications
8515 will result.
8517 For example, (and (ior A B) (not B)) can occur as the result of
8518 expanding a bit field assignment. When we apply the distributive
8519 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8520 which then simplifies to (and (A (not B))).
8522 Note that no checks happen on the validity of applying the inverse
8523 distributive law. This is pointless since we can do it in the
8524 few places where this routine is called.
8526 N is the index of the term that is decomposed (the arithmetic operation,
8527 i.e. (+ A B) in the first example above). !N is the index of the term that
8528 is distributed, i.e. of C in the first example above. */
8529 static rtx
8530 distribute_and_simplify_rtx (rtx x, int n)
8532 enum machine_mode mode;
8533 enum rtx_code outer_code, inner_code;
8534 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8536 decomposed = XEXP (x, n);
8537 if (!ARITHMETIC_P (decomposed))
8538 return NULL_RTX;
8540 mode = GET_MODE (x);
8541 outer_code = GET_CODE (x);
8542 distributed = XEXP (x, !n);
8544 inner_code = GET_CODE (decomposed);
8545 inner_op0 = XEXP (decomposed, 0);
8546 inner_op1 = XEXP (decomposed, 1);
8548 /* Special case (and (xor B C) (not A)), which is equivalent to
8549 (xor (ior A B) (ior A C)) */
8550 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8552 distributed = XEXP (distributed, 0);
8553 outer_code = IOR;
8556 if (n == 0)
8558 /* Distribute the second term. */
8559 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8560 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8562 else
8564 /* Distribute the first term. */
8565 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8566 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8569 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8570 new_op0, new_op1));
8571 if (GET_CODE (tmp) != outer_code
8572 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8573 < rtx_cost (x, SET, optimize_this_for_speed_p))
8574 return tmp;
8576 return NULL_RTX;
8579 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8580 in MODE. Return an equivalent form, if different from (and VAROP
8581 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8583 static rtx
8584 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8585 unsigned HOST_WIDE_INT constop)
8587 unsigned HOST_WIDE_INT nonzero;
8588 unsigned HOST_WIDE_INT orig_constop;
8589 rtx orig_varop;
8590 int i;
8592 orig_varop = varop;
8593 orig_constop = constop;
8594 if (GET_CODE (varop) == CLOBBER)
8595 return NULL_RTX;
8597 /* Simplify VAROP knowing that we will be only looking at some of the
8598 bits in it.
8600 Note by passing in CONSTOP, we guarantee that the bits not set in
8601 CONSTOP are not significant and will never be examined. We must
8602 ensure that is the case by explicitly masking out those bits
8603 before returning. */
8604 varop = force_to_mode (varop, mode, constop, 0);
8606 /* If VAROP is a CLOBBER, we will fail so return it. */
8607 if (GET_CODE (varop) == CLOBBER)
8608 return varop;
8610 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8611 to VAROP and return the new constant. */
8612 if (CONST_INT_P (varop))
8613 return gen_int_mode (INTVAL (varop) & constop, mode);
8615 /* See what bits may be nonzero in VAROP. Unlike the general case of
8616 a call to nonzero_bits, here we don't care about bits outside
8617 MODE. */
8619 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8621 /* Turn off all bits in the constant that are known to already be zero.
8622 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8623 which is tested below. */
8625 constop &= nonzero;
8627 /* If we don't have any bits left, return zero. */
8628 if (constop == 0)
8629 return const0_rtx;
8631 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8632 a power of two, we can replace this with an ASHIFT. */
8633 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8634 && (i = exact_log2 (constop)) >= 0)
8635 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8637 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8638 or XOR, then try to apply the distributive law. This may eliminate
8639 operations if either branch can be simplified because of the AND.
8640 It may also make some cases more complex, but those cases probably
8641 won't match a pattern either with or without this. */
8643 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8644 return
8645 gen_lowpart
8646 (mode,
8647 apply_distributive_law
8648 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8649 simplify_and_const_int (NULL_RTX,
8650 GET_MODE (varop),
8651 XEXP (varop, 0),
8652 constop),
8653 simplify_and_const_int (NULL_RTX,
8654 GET_MODE (varop),
8655 XEXP (varop, 1),
8656 constop))));
8658 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8659 the AND and see if one of the operands simplifies to zero. If so, we
8660 may eliminate it. */
8662 if (GET_CODE (varop) == PLUS
8663 && exact_log2 (constop + 1) >= 0)
8665 rtx o0, o1;
8667 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8668 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8669 if (o0 == const0_rtx)
8670 return o1;
8671 if (o1 == const0_rtx)
8672 return o0;
8675 /* Make a SUBREG if necessary. If we can't make it, fail. */
8676 varop = gen_lowpart (mode, varop);
8677 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8678 return NULL_RTX;
8680 /* If we are only masking insignificant bits, return VAROP. */
8681 if (constop == nonzero)
8682 return varop;
8684 if (varop == orig_varop && constop == orig_constop)
8685 return NULL_RTX;
8687 /* Otherwise, return an AND. */
8688 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8692 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8693 in MODE.
8695 Return an equivalent form, if different from X. Otherwise, return X. If
8696 X is zero, we are to always construct the equivalent form. */
8698 static rtx
8699 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8700 unsigned HOST_WIDE_INT constop)
8702 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8703 if (tem)
8704 return tem;
8706 if (!x)
8707 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8708 gen_int_mode (constop, mode));
8709 if (GET_MODE (x) != mode)
8710 x = gen_lowpart (mode, x);
8711 return x;
8714 /* Given a REG, X, compute which bits in X can be nonzero.
8715 We don't care about bits outside of those defined in MODE.
8717 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8718 a shift, AND, or zero_extract, we can do better. */
8720 static rtx
8721 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8722 const_rtx known_x ATTRIBUTE_UNUSED,
8723 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8724 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8725 unsigned HOST_WIDE_INT *nonzero)
8727 rtx tem;
8728 reg_stat_type *rsp;
8730 /* If X is a register whose nonzero bits value is current, use it.
8731 Otherwise, if X is a register whose value we can find, use that
8732 value. Otherwise, use the previously-computed global nonzero bits
8733 for this register. */
8735 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8736 if (rsp->last_set_value != 0
8737 && (rsp->last_set_mode == mode
8738 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8739 && GET_MODE_CLASS (mode) == MODE_INT))
8740 && ((rsp->last_set_label >= label_tick_ebb_start
8741 && rsp->last_set_label < label_tick)
8742 || (rsp->last_set_label == label_tick
8743 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8744 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8745 && REG_N_SETS (REGNO (x)) == 1
8746 && !REGNO_REG_SET_P
8747 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8749 *nonzero &= rsp->last_set_nonzero_bits;
8750 return NULL;
8753 tem = get_last_value (x);
8755 if (tem)
8757 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8758 /* If X is narrower than MODE and TEM is a non-negative
8759 constant that would appear negative in the mode of X,
8760 sign-extend it for use in reg_nonzero_bits because some
8761 machines (maybe most) will actually do the sign-extension
8762 and this is the conservative approach.
8764 ??? For 2.5, try to tighten up the MD files in this regard
8765 instead of this kludge. */
8767 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8768 && CONST_INT_P (tem)
8769 && INTVAL (tem) > 0
8770 && 0 != (INTVAL (tem)
8771 & ((HOST_WIDE_INT) 1
8772 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8773 tem = GEN_INT (INTVAL (tem)
8774 | ((HOST_WIDE_INT) (-1)
8775 << GET_MODE_BITSIZE (GET_MODE (x))));
8776 #endif
8777 return tem;
8779 else if (nonzero_sign_valid && rsp->nonzero_bits)
8781 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8783 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8784 /* We don't know anything about the upper bits. */
8785 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8786 *nonzero &= mask;
8789 return NULL;
8792 /* Return the number of bits at the high-order end of X that are known to
8793 be equal to the sign bit. X will be used in mode MODE; if MODE is
8794 VOIDmode, X will be used in its own mode. The returned value will always
8795 be between 1 and the number of bits in MODE. */
8797 static rtx
8798 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8799 const_rtx known_x ATTRIBUTE_UNUSED,
8800 enum machine_mode known_mode
8801 ATTRIBUTE_UNUSED,
8802 unsigned int known_ret ATTRIBUTE_UNUSED,
8803 unsigned int *result)
8805 rtx tem;
8806 reg_stat_type *rsp;
8808 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8809 if (rsp->last_set_value != 0
8810 && rsp->last_set_mode == mode
8811 && ((rsp->last_set_label >= label_tick_ebb_start
8812 && rsp->last_set_label < label_tick)
8813 || (rsp->last_set_label == label_tick
8814 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8815 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8816 && REG_N_SETS (REGNO (x)) == 1
8817 && !REGNO_REG_SET_P
8818 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8820 *result = rsp->last_set_sign_bit_copies;
8821 return NULL;
8824 tem = get_last_value (x);
8825 if (tem != 0)
8826 return tem;
8828 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8829 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8830 *result = rsp->sign_bit_copies;
8832 return NULL;
8835 /* Return the number of "extended" bits there are in X, when interpreted
8836 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8837 unsigned quantities, this is the number of high-order zero bits.
8838 For signed quantities, this is the number of copies of the sign bit
8839 minus 1. In both case, this function returns the number of "spare"
8840 bits. For example, if two quantities for which this function returns
8841 at least 1 are added, the addition is known not to overflow.
8843 This function will always return 0 unless called during combine, which
8844 implies that it must be called from a define_split. */
8846 unsigned int
8847 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8849 if (nonzero_sign_valid == 0)
8850 return 0;
8852 return (unsignedp
8853 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8854 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8855 - floor_log2 (nonzero_bits (x, mode)))
8856 : 0)
8857 : num_sign_bit_copies (x, mode) - 1);
8860 /* This function is called from `simplify_shift_const' to merge two
8861 outer operations. Specifically, we have already found that we need
8862 to perform operation *POP0 with constant *PCONST0 at the outermost
8863 position. We would now like to also perform OP1 with constant CONST1
8864 (with *POP0 being done last).
8866 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8867 the resulting operation. *PCOMP_P is set to 1 if we would need to
8868 complement the innermost operand, otherwise it is unchanged.
8870 MODE is the mode in which the operation will be done. No bits outside
8871 the width of this mode matter. It is assumed that the width of this mode
8872 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8874 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8875 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8876 result is simply *PCONST0.
8878 If the resulting operation cannot be expressed as one operation, we
8879 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8881 static int
8882 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8884 enum rtx_code op0 = *pop0;
8885 HOST_WIDE_INT const0 = *pconst0;
8887 const0 &= GET_MODE_MASK (mode);
8888 const1 &= GET_MODE_MASK (mode);
8890 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8891 if (op0 == AND)
8892 const1 &= const0;
8894 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8895 if OP0 is SET. */
8897 if (op1 == UNKNOWN || op0 == SET)
8898 return 1;
8900 else if (op0 == UNKNOWN)
8901 op0 = op1, const0 = const1;
8903 else if (op0 == op1)
8905 switch (op0)
8907 case AND:
8908 const0 &= const1;
8909 break;
8910 case IOR:
8911 const0 |= const1;
8912 break;
8913 case XOR:
8914 const0 ^= const1;
8915 break;
8916 case PLUS:
8917 const0 += const1;
8918 break;
8919 case NEG:
8920 op0 = UNKNOWN;
8921 break;
8922 default:
8923 break;
8927 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8928 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8929 return 0;
8931 /* If the two constants aren't the same, we can't do anything. The
8932 remaining six cases can all be done. */
8933 else if (const0 != const1)
8934 return 0;
8936 else
8937 switch (op0)
8939 case IOR:
8940 if (op1 == AND)
8941 /* (a & b) | b == b */
8942 op0 = SET;
8943 else /* op1 == XOR */
8944 /* (a ^ b) | b == a | b */
8946 break;
8948 case XOR:
8949 if (op1 == AND)
8950 /* (a & b) ^ b == (~a) & b */
8951 op0 = AND, *pcomp_p = 1;
8952 else /* op1 == IOR */
8953 /* (a | b) ^ b == a & ~b */
8954 op0 = AND, const0 = ~const0;
8955 break;
8957 case AND:
8958 if (op1 == IOR)
8959 /* (a | b) & b == b */
8960 op0 = SET;
8961 else /* op1 == XOR */
8962 /* (a ^ b) & b) == (~a) & b */
8963 *pcomp_p = 1;
8964 break;
8965 default:
8966 break;
8969 /* Check for NO-OP cases. */
8970 const0 &= GET_MODE_MASK (mode);
8971 if (const0 == 0
8972 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8973 op0 = UNKNOWN;
8974 else if (const0 == 0 && op0 == AND)
8975 op0 = SET;
8976 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8977 && op0 == AND)
8978 op0 = UNKNOWN;
8980 *pop0 = op0;
8982 /* ??? Slightly redundant with the above mask, but not entirely.
8983 Moving this above means we'd have to sign-extend the mode mask
8984 for the final test. */
8985 if (op0 != UNKNOWN && op0 != NEG)
8986 *pconst0 = trunc_int_for_mode (const0, mode);
8988 return 1;
8991 /* A helper to simplify_shift_const_1 to determine the mode we can perform
8992 the shift in. The original shift operation CODE is performed on OP in
8993 ORIG_MODE. Return the wider mode MODE if we can perform the operation
8994 in that mode. Return ORIG_MODE otherwise. We can also assume that the
8995 result of the shift is subject to operation OUTER_CODE with operand
8996 OUTER_CONST. */
8998 static enum machine_mode
8999 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9000 enum machine_mode orig_mode, enum machine_mode mode,
9001 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9003 if (orig_mode == mode)
9004 return mode;
9005 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9007 /* In general we can't perform in wider mode for right shift and rotate. */
9008 switch (code)
9010 case ASHIFTRT:
9011 /* We can still widen if the bits brought in from the left are identical
9012 to the sign bit of ORIG_MODE. */
9013 if (num_sign_bit_copies (op, mode)
9014 > (unsigned) (GET_MODE_BITSIZE (mode)
9015 - GET_MODE_BITSIZE (orig_mode)))
9016 return mode;
9017 return orig_mode;
9019 case LSHIFTRT:
9020 /* Similarly here but with zero bits. */
9021 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9022 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9023 return mode;
9025 /* We can also widen if the bits brought in will be masked off. This
9026 operation is performed in ORIG_MODE. */
9027 if (outer_code == AND
9028 && GET_MODE_BITSIZE (orig_mode) <= HOST_BITS_PER_WIDE_INT)
9030 int care_bits;
9032 outer_const &= GET_MODE_MASK (orig_mode);
9033 care_bits = exact_log2 (outer_const + 1);
9035 if (care_bits >= 0
9036 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9037 return mode;
9039 /* fall through */
9041 case ROTATE:
9042 return orig_mode;
9044 case ROTATERT:
9045 gcc_unreachable ();
9047 default:
9048 return mode;
9052 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9053 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9054 simplify it. Otherwise, return a simplified value.
9056 The shift is normally computed in the widest mode we find in VAROP, as
9057 long as it isn't a different number of words than RESULT_MODE. Exceptions
9058 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9060 static rtx
9061 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9062 rtx varop, int orig_count)
9064 enum rtx_code orig_code = code;
9065 rtx orig_varop = varop;
9066 int count;
9067 enum machine_mode mode = result_mode;
9068 enum machine_mode shift_mode, tmode;
9069 unsigned int mode_words
9070 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9071 /* We form (outer_op (code varop count) (outer_const)). */
9072 enum rtx_code outer_op = UNKNOWN;
9073 HOST_WIDE_INT outer_const = 0;
9074 int complement_p = 0;
9075 rtx new_rtx, x;
9077 /* Make sure and truncate the "natural" shift on the way in. We don't
9078 want to do this inside the loop as it makes it more difficult to
9079 combine shifts. */
9080 if (SHIFT_COUNT_TRUNCATED)
9081 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9083 /* If we were given an invalid count, don't do anything except exactly
9084 what was requested. */
9086 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9087 return NULL_RTX;
9089 count = orig_count;
9091 /* Unless one of the branches of the `if' in this loop does a `continue',
9092 we will `break' the loop after the `if'. */
9094 while (count != 0)
9096 /* If we have an operand of (clobber (const_int 0)), fail. */
9097 if (GET_CODE (varop) == CLOBBER)
9098 return NULL_RTX;
9100 /* Convert ROTATERT to ROTATE. */
9101 if (code == ROTATERT)
9103 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9104 code = ROTATE;
9105 if (VECTOR_MODE_P (result_mode))
9106 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9107 else
9108 count = bitsize - count;
9111 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9112 mode, outer_op, outer_const);
9114 /* Handle cases where the count is greater than the size of the mode
9115 minus 1. For ASHIFT, use the size minus one as the count (this can
9116 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9117 take the count modulo the size. For other shifts, the result is
9118 zero.
9120 Since these shifts are being produced by the compiler by combining
9121 multiple operations, each of which are defined, we know what the
9122 result is supposed to be. */
9124 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9126 if (code == ASHIFTRT)
9127 count = GET_MODE_BITSIZE (shift_mode) - 1;
9128 else if (code == ROTATE || code == ROTATERT)
9129 count %= GET_MODE_BITSIZE (shift_mode);
9130 else
9132 /* We can't simply return zero because there may be an
9133 outer op. */
9134 varop = const0_rtx;
9135 count = 0;
9136 break;
9140 /* If we discovered we had to complement VAROP, leave. Making a NOT
9141 here would cause an infinite loop. */
9142 if (complement_p)
9143 break;
9145 /* An arithmetic right shift of a quantity known to be -1 or 0
9146 is a no-op. */
9147 if (code == ASHIFTRT
9148 && (num_sign_bit_copies (varop, shift_mode)
9149 == GET_MODE_BITSIZE (shift_mode)))
9151 count = 0;
9152 break;
9155 /* If we are doing an arithmetic right shift and discarding all but
9156 the sign bit copies, this is equivalent to doing a shift by the
9157 bitsize minus one. Convert it into that shift because it will often
9158 allow other simplifications. */
9160 if (code == ASHIFTRT
9161 && (count + num_sign_bit_copies (varop, shift_mode)
9162 >= GET_MODE_BITSIZE (shift_mode)))
9163 count = GET_MODE_BITSIZE (shift_mode) - 1;
9165 /* We simplify the tests below and elsewhere by converting
9166 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9167 `make_compound_operation' will convert it to an ASHIFTRT for
9168 those machines (such as VAX) that don't have an LSHIFTRT. */
9169 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9170 && code == ASHIFTRT
9171 && ((nonzero_bits (varop, shift_mode)
9172 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9173 == 0))
9174 code = LSHIFTRT;
9176 if (((code == LSHIFTRT
9177 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9178 && !(nonzero_bits (varop, shift_mode) >> count))
9179 || (code == ASHIFT
9180 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9181 && !((nonzero_bits (varop, shift_mode) << count)
9182 & GET_MODE_MASK (shift_mode))))
9183 && !side_effects_p (varop))
9184 varop = const0_rtx;
9186 switch (GET_CODE (varop))
9188 case SIGN_EXTEND:
9189 case ZERO_EXTEND:
9190 case SIGN_EXTRACT:
9191 case ZERO_EXTRACT:
9192 new_rtx = expand_compound_operation (varop);
9193 if (new_rtx != varop)
9195 varop = new_rtx;
9196 continue;
9198 break;
9200 case MEM:
9201 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9202 minus the width of a smaller mode, we can do this with a
9203 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9204 if ((code == ASHIFTRT || code == LSHIFTRT)
9205 && ! mode_dependent_address_p (XEXP (varop, 0))
9206 && ! MEM_VOLATILE_P (varop)
9207 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9208 MODE_INT, 1)) != BLKmode)
9210 new_rtx = adjust_address_nv (varop, tmode,
9211 BYTES_BIG_ENDIAN ? 0
9212 : count / BITS_PER_UNIT);
9214 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9215 : ZERO_EXTEND, mode, new_rtx);
9216 count = 0;
9217 continue;
9219 break;
9221 case SUBREG:
9222 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9223 the same number of words as what we've seen so far. Then store
9224 the widest mode in MODE. */
9225 if (subreg_lowpart_p (varop)
9226 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9227 > GET_MODE_SIZE (GET_MODE (varop)))
9228 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9229 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9230 == mode_words)
9232 varop = SUBREG_REG (varop);
9233 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9234 mode = GET_MODE (varop);
9235 continue;
9237 break;
9239 case MULT:
9240 /* Some machines use MULT instead of ASHIFT because MULT
9241 is cheaper. But it is still better on those machines to
9242 merge two shifts into one. */
9243 if (CONST_INT_P (XEXP (varop, 1))
9244 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9246 varop
9247 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9248 XEXP (varop, 0),
9249 GEN_INT (exact_log2 (
9250 INTVAL (XEXP (varop, 1)))));
9251 continue;
9253 break;
9255 case UDIV:
9256 /* Similar, for when divides are cheaper. */
9257 if (CONST_INT_P (XEXP (varop, 1))
9258 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9260 varop
9261 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9262 XEXP (varop, 0),
9263 GEN_INT (exact_log2 (
9264 INTVAL (XEXP (varop, 1)))));
9265 continue;
9267 break;
9269 case ASHIFTRT:
9270 /* If we are extracting just the sign bit of an arithmetic
9271 right shift, that shift is not needed. However, the sign
9272 bit of a wider mode may be different from what would be
9273 interpreted as the sign bit in a narrower mode, so, if
9274 the result is narrower, don't discard the shift. */
9275 if (code == LSHIFTRT
9276 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9277 && (GET_MODE_BITSIZE (result_mode)
9278 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9280 varop = XEXP (varop, 0);
9281 continue;
9284 /* ... fall through ... */
9286 case LSHIFTRT:
9287 case ASHIFT:
9288 case ROTATE:
9289 /* Here we have two nested shifts. The result is usually the
9290 AND of a new shift with a mask. We compute the result below. */
9291 if (CONST_INT_P (XEXP (varop, 1))
9292 && INTVAL (XEXP (varop, 1)) >= 0
9293 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9294 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9295 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9296 && !VECTOR_MODE_P (result_mode))
9298 enum rtx_code first_code = GET_CODE (varop);
9299 unsigned int first_count = INTVAL (XEXP (varop, 1));
9300 unsigned HOST_WIDE_INT mask;
9301 rtx mask_rtx;
9303 /* We have one common special case. We can't do any merging if
9304 the inner code is an ASHIFTRT of a smaller mode. However, if
9305 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9306 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9307 we can convert it to
9308 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9309 This simplifies certain SIGN_EXTEND operations. */
9310 if (code == ASHIFT && first_code == ASHIFTRT
9311 && count == (GET_MODE_BITSIZE (result_mode)
9312 - GET_MODE_BITSIZE (GET_MODE (varop))))
9314 /* C3 has the low-order C1 bits zero. */
9316 mask = (GET_MODE_MASK (mode)
9317 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9319 varop = simplify_and_const_int (NULL_RTX, result_mode,
9320 XEXP (varop, 0), mask);
9321 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9322 varop, count);
9323 count = first_count;
9324 code = ASHIFTRT;
9325 continue;
9328 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9329 than C1 high-order bits equal to the sign bit, we can convert
9330 this to either an ASHIFT or an ASHIFTRT depending on the
9331 two counts.
9333 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9335 if (code == ASHIFTRT && first_code == ASHIFT
9336 && GET_MODE (varop) == shift_mode
9337 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9338 > first_count))
9340 varop = XEXP (varop, 0);
9341 count -= first_count;
9342 if (count < 0)
9344 count = -count;
9345 code = ASHIFT;
9348 continue;
9351 /* There are some cases we can't do. If CODE is ASHIFTRT,
9352 we can only do this if FIRST_CODE is also ASHIFTRT.
9354 We can't do the case when CODE is ROTATE and FIRST_CODE is
9355 ASHIFTRT.
9357 If the mode of this shift is not the mode of the outer shift,
9358 we can't do this if either shift is a right shift or ROTATE.
9360 Finally, we can't do any of these if the mode is too wide
9361 unless the codes are the same.
9363 Handle the case where the shift codes are the same
9364 first. */
9366 if (code == first_code)
9368 if (GET_MODE (varop) != result_mode
9369 && (code == ASHIFTRT || code == LSHIFTRT
9370 || code == ROTATE))
9371 break;
9373 count += first_count;
9374 varop = XEXP (varop, 0);
9375 continue;
9378 if (code == ASHIFTRT
9379 || (code == ROTATE && first_code == ASHIFTRT)
9380 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9381 || (GET_MODE (varop) != result_mode
9382 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9383 || first_code == ROTATE
9384 || code == ROTATE)))
9385 break;
9387 /* To compute the mask to apply after the shift, shift the
9388 nonzero bits of the inner shift the same way the
9389 outer shift will. */
9391 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9393 mask_rtx
9394 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9395 GEN_INT (count));
9397 /* Give up if we can't compute an outer operation to use. */
9398 if (mask_rtx == 0
9399 || !CONST_INT_P (mask_rtx)
9400 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9401 INTVAL (mask_rtx),
9402 result_mode, &complement_p))
9403 break;
9405 /* If the shifts are in the same direction, we add the
9406 counts. Otherwise, we subtract them. */
9407 if ((code == ASHIFTRT || code == LSHIFTRT)
9408 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9409 count += first_count;
9410 else
9411 count -= first_count;
9413 /* If COUNT is positive, the new shift is usually CODE,
9414 except for the two exceptions below, in which case it is
9415 FIRST_CODE. If the count is negative, FIRST_CODE should
9416 always be used */
9417 if (count > 0
9418 && ((first_code == ROTATE && code == ASHIFT)
9419 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9420 code = first_code;
9421 else if (count < 0)
9422 code = first_code, count = -count;
9424 varop = XEXP (varop, 0);
9425 continue;
9428 /* If we have (A << B << C) for any shift, we can convert this to
9429 (A << C << B). This wins if A is a constant. Only try this if
9430 B is not a constant. */
9432 else if (GET_CODE (varop) == code
9433 && CONST_INT_P (XEXP (varop, 0))
9434 && !CONST_INT_P (XEXP (varop, 1)))
9436 rtx new_rtx = simplify_const_binary_operation (code, mode,
9437 XEXP (varop, 0),
9438 GEN_INT (count));
9439 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9440 count = 0;
9441 continue;
9443 break;
9445 case NOT:
9446 if (VECTOR_MODE_P (mode))
9447 break;
9449 /* Make this fit the case below. */
9450 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9451 GEN_INT (GET_MODE_MASK (mode)));
9452 continue;
9454 case IOR:
9455 case AND:
9456 case XOR:
9457 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9458 with C the size of VAROP - 1 and the shift is logical if
9459 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9460 we have an (le X 0) operation. If we have an arithmetic shift
9461 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9462 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9464 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9465 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9466 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9467 && (code == LSHIFTRT || code == ASHIFTRT)
9468 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9469 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9471 count = 0;
9472 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9473 const0_rtx);
9475 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9476 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9478 continue;
9481 /* If we have (shift (logical)), move the logical to the outside
9482 to allow it to possibly combine with another logical and the
9483 shift to combine with another shift. This also canonicalizes to
9484 what a ZERO_EXTRACT looks like. Also, some machines have
9485 (and (shift)) insns. */
9487 if (CONST_INT_P (XEXP (varop, 1))
9488 /* We can't do this if we have (ashiftrt (xor)) and the
9489 constant has its sign bit set in shift_mode. */
9490 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9491 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9492 shift_mode))
9493 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9494 XEXP (varop, 1),
9495 GEN_INT (count))) != 0
9496 && CONST_INT_P (new_rtx)
9497 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9498 INTVAL (new_rtx), result_mode, &complement_p))
9500 varop = XEXP (varop, 0);
9501 continue;
9504 /* If we can't do that, try to simplify the shift in each arm of the
9505 logical expression, make a new logical expression, and apply
9506 the inverse distributive law. This also can't be done
9507 for some (ashiftrt (xor)). */
9508 if (CONST_INT_P (XEXP (varop, 1))
9509 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9510 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9511 shift_mode)))
9513 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9514 XEXP (varop, 0), count);
9515 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9516 XEXP (varop, 1), count);
9518 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9519 lhs, rhs);
9520 varop = apply_distributive_law (varop);
9522 count = 0;
9523 continue;
9525 break;
9527 case EQ:
9528 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9529 says that the sign bit can be tested, FOO has mode MODE, C is
9530 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9531 that may be nonzero. */
9532 if (code == LSHIFTRT
9533 && XEXP (varop, 1) == const0_rtx
9534 && GET_MODE (XEXP (varop, 0)) == result_mode
9535 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9536 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9537 && STORE_FLAG_VALUE == -1
9538 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9539 && merge_outer_ops (&outer_op, &outer_const, XOR,
9540 (HOST_WIDE_INT) 1, result_mode,
9541 &complement_p))
9543 varop = XEXP (varop, 0);
9544 count = 0;
9545 continue;
9547 break;
9549 case NEG:
9550 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9551 than the number of bits in the mode is equivalent to A. */
9552 if (code == LSHIFTRT
9553 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9554 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9556 varop = XEXP (varop, 0);
9557 count = 0;
9558 continue;
9561 /* NEG commutes with ASHIFT since it is multiplication. Move the
9562 NEG outside to allow shifts to combine. */
9563 if (code == ASHIFT
9564 && merge_outer_ops (&outer_op, &outer_const, NEG,
9565 (HOST_WIDE_INT) 0, result_mode,
9566 &complement_p))
9568 varop = XEXP (varop, 0);
9569 continue;
9571 break;
9573 case PLUS:
9574 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9575 is one less than the number of bits in the mode is
9576 equivalent to (xor A 1). */
9577 if (code == LSHIFTRT
9578 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9579 && XEXP (varop, 1) == constm1_rtx
9580 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9581 && merge_outer_ops (&outer_op, &outer_const, XOR,
9582 (HOST_WIDE_INT) 1, result_mode,
9583 &complement_p))
9585 count = 0;
9586 varop = XEXP (varop, 0);
9587 continue;
9590 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9591 that might be nonzero in BAR are those being shifted out and those
9592 bits are known zero in FOO, we can replace the PLUS with FOO.
9593 Similarly in the other operand order. This code occurs when
9594 we are computing the size of a variable-size array. */
9596 if ((code == ASHIFTRT || code == LSHIFTRT)
9597 && count < HOST_BITS_PER_WIDE_INT
9598 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9599 && (nonzero_bits (XEXP (varop, 1), result_mode)
9600 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9602 varop = XEXP (varop, 0);
9603 continue;
9605 else if ((code == ASHIFTRT || code == LSHIFTRT)
9606 && count < HOST_BITS_PER_WIDE_INT
9607 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9608 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9609 >> count)
9610 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9611 & nonzero_bits (XEXP (varop, 1),
9612 result_mode)))
9614 varop = XEXP (varop, 1);
9615 continue;
9618 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9619 if (code == ASHIFT
9620 && CONST_INT_P (XEXP (varop, 1))
9621 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9622 XEXP (varop, 1),
9623 GEN_INT (count))) != 0
9624 && CONST_INT_P (new_rtx)
9625 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9626 INTVAL (new_rtx), result_mode, &complement_p))
9628 varop = XEXP (varop, 0);
9629 continue;
9632 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9633 signbit', and attempt to change the PLUS to an XOR and move it to
9634 the outer operation as is done above in the AND/IOR/XOR case
9635 leg for shift(logical). See details in logical handling above
9636 for reasoning in doing so. */
9637 if (code == LSHIFTRT
9638 && CONST_INT_P (XEXP (varop, 1))
9639 && mode_signbit_p (result_mode, XEXP (varop, 1))
9640 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9641 XEXP (varop, 1),
9642 GEN_INT (count))) != 0
9643 && CONST_INT_P (new_rtx)
9644 && merge_outer_ops (&outer_op, &outer_const, XOR,
9645 INTVAL (new_rtx), result_mode, &complement_p))
9647 varop = XEXP (varop, 0);
9648 continue;
9651 break;
9653 case MINUS:
9654 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9655 with C the size of VAROP - 1 and the shift is logical if
9656 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9657 we have a (gt X 0) operation. If the shift is arithmetic with
9658 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9659 we have a (neg (gt X 0)) operation. */
9661 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9662 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9663 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9664 && (code == LSHIFTRT || code == ASHIFTRT)
9665 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9666 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9667 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9669 count = 0;
9670 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9671 const0_rtx);
9673 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9674 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9676 continue;
9678 break;
9680 case TRUNCATE:
9681 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9682 if the truncate does not affect the value. */
9683 if (code == LSHIFTRT
9684 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9685 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9686 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9687 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9688 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9690 rtx varop_inner = XEXP (varop, 0);
9692 varop_inner
9693 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9694 XEXP (varop_inner, 0),
9695 GEN_INT
9696 (count + INTVAL (XEXP (varop_inner, 1))));
9697 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9698 count = 0;
9699 continue;
9701 break;
9703 default:
9704 break;
9707 break;
9710 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
9711 outer_op, outer_const);
9713 /* We have now finished analyzing the shift. The result should be
9714 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9715 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9716 to the result of the shift. OUTER_CONST is the relevant constant,
9717 but we must turn off all bits turned off in the shift. */
9719 if (outer_op == UNKNOWN
9720 && orig_code == code && orig_count == count
9721 && varop == orig_varop
9722 && shift_mode == GET_MODE (varop))
9723 return NULL_RTX;
9725 /* Make a SUBREG if necessary. If we can't make it, fail. */
9726 varop = gen_lowpart (shift_mode, varop);
9727 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9728 return NULL_RTX;
9730 /* If we have an outer operation and we just made a shift, it is
9731 possible that we could have simplified the shift were it not
9732 for the outer operation. So try to do the simplification
9733 recursively. */
9735 if (outer_op != UNKNOWN)
9736 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9737 else
9738 x = NULL_RTX;
9740 if (x == NULL_RTX)
9741 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9743 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9744 turn off all the bits that the shift would have turned off. */
9745 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9746 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9747 GET_MODE_MASK (result_mode) >> orig_count);
9749 /* Do the remainder of the processing in RESULT_MODE. */
9750 x = gen_lowpart_or_truncate (result_mode, x);
9752 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9753 operation. */
9754 if (complement_p)
9755 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9757 if (outer_op != UNKNOWN)
9759 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
9760 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9761 outer_const = trunc_int_for_mode (outer_const, result_mode);
9763 if (outer_op == AND)
9764 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9765 else if (outer_op == SET)
9767 /* This means that we have determined that the result is
9768 equivalent to a constant. This should be rare. */
9769 if (!side_effects_p (x))
9770 x = GEN_INT (outer_const);
9772 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9773 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9774 else
9775 x = simplify_gen_binary (outer_op, result_mode, x,
9776 GEN_INT (outer_const));
9779 return x;
9782 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9783 The result of the shift is RESULT_MODE. If we cannot simplify it,
9784 return X or, if it is NULL, synthesize the expression with
9785 simplify_gen_binary. Otherwise, return a simplified value.
9787 The shift is normally computed in the widest mode we find in VAROP, as
9788 long as it isn't a different number of words than RESULT_MODE. Exceptions
9789 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9791 static rtx
9792 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9793 rtx varop, int count)
9795 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9796 if (tem)
9797 return tem;
9799 if (!x)
9800 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9801 if (GET_MODE (x) != result_mode)
9802 x = gen_lowpart (result_mode, x);
9803 return x;
9807 /* Like recog, but we receive the address of a pointer to a new pattern.
9808 We try to match the rtx that the pointer points to.
9809 If that fails, we may try to modify or replace the pattern,
9810 storing the replacement into the same pointer object.
9812 Modifications include deletion or addition of CLOBBERs.
9814 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9815 the CLOBBERs are placed.
9817 The value is the final insn code from the pattern ultimately matched,
9818 or -1. */
9820 static int
9821 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9823 rtx pat = *pnewpat;
9824 int insn_code_number;
9825 int num_clobbers_to_add = 0;
9826 int i;
9827 rtx notes = 0;
9828 rtx old_notes, old_pat;
9830 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9831 we use to indicate that something didn't match. If we find such a
9832 thing, force rejection. */
9833 if (GET_CODE (pat) == PARALLEL)
9834 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9835 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9836 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9837 return -1;
9839 old_pat = PATTERN (insn);
9840 old_notes = REG_NOTES (insn);
9841 PATTERN (insn) = pat;
9842 REG_NOTES (insn) = 0;
9844 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9845 if (dump_file && (dump_flags & TDF_DETAILS))
9847 if (insn_code_number < 0)
9848 fputs ("Failed to match this instruction:\n", dump_file);
9849 else
9850 fputs ("Successfully matched this instruction:\n", dump_file);
9851 print_rtl_single (dump_file, pat);
9854 /* If it isn't, there is the possibility that we previously had an insn
9855 that clobbered some register as a side effect, but the combined
9856 insn doesn't need to do that. So try once more without the clobbers
9857 unless this represents an ASM insn. */
9859 if (insn_code_number < 0 && ! check_asm_operands (pat)
9860 && GET_CODE (pat) == PARALLEL)
9862 int pos;
9864 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9865 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9867 if (i != pos)
9868 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9869 pos++;
9872 SUBST_INT (XVECLEN (pat, 0), pos);
9874 if (pos == 1)
9875 pat = XVECEXP (pat, 0, 0);
9877 PATTERN (insn) = pat;
9878 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9879 if (dump_file && (dump_flags & TDF_DETAILS))
9881 if (insn_code_number < 0)
9882 fputs ("Failed to match this instruction:\n", dump_file);
9883 else
9884 fputs ("Successfully matched this instruction:\n", dump_file);
9885 print_rtl_single (dump_file, pat);
9888 PATTERN (insn) = old_pat;
9889 REG_NOTES (insn) = old_notes;
9891 /* Recognize all noop sets, these will be killed by followup pass. */
9892 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9893 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9895 /* If we had any clobbers to add, make a new pattern than contains
9896 them. Then check to make sure that all of them are dead. */
9897 if (num_clobbers_to_add)
9899 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9900 rtvec_alloc (GET_CODE (pat) == PARALLEL
9901 ? (XVECLEN (pat, 0)
9902 + num_clobbers_to_add)
9903 : num_clobbers_to_add + 1));
9905 if (GET_CODE (pat) == PARALLEL)
9906 for (i = 0; i < XVECLEN (pat, 0); i++)
9907 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9908 else
9909 XVECEXP (newpat, 0, 0) = pat;
9911 add_clobbers (newpat, insn_code_number);
9913 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9914 i < XVECLEN (newpat, 0); i++)
9916 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9917 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9918 return -1;
9919 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9921 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9922 notes = alloc_reg_note (REG_UNUSED,
9923 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9926 pat = newpat;
9929 *pnewpat = pat;
9930 *pnotes = notes;
9932 return insn_code_number;
9935 /* Like gen_lowpart_general but for use by combine. In combine it
9936 is not possible to create any new pseudoregs. However, it is
9937 safe to create invalid memory addresses, because combine will
9938 try to recognize them and all they will do is make the combine
9939 attempt fail.
9941 If for some reason this cannot do its job, an rtx
9942 (clobber (const_int 0)) is returned.
9943 An insn containing that will not be recognized. */
9945 static rtx
9946 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9948 enum machine_mode imode = GET_MODE (x);
9949 unsigned int osize = GET_MODE_SIZE (omode);
9950 unsigned int isize = GET_MODE_SIZE (imode);
9951 rtx result;
9953 if (omode == imode)
9954 return x;
9956 /* Return identity if this is a CONST or symbolic reference. */
9957 if (omode == Pmode
9958 && (GET_CODE (x) == CONST
9959 || GET_CODE (x) == SYMBOL_REF
9960 || GET_CODE (x) == LABEL_REF))
9961 return x;
9963 /* We can only support MODE being wider than a word if X is a
9964 constant integer or has a mode the same size. */
9965 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9966 && ! ((imode == VOIDmode
9967 && (CONST_INT_P (x)
9968 || GET_CODE (x) == CONST_DOUBLE))
9969 || isize == osize))
9970 goto fail;
9972 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9973 won't know what to do. So we will strip off the SUBREG here and
9974 process normally. */
9975 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9977 x = SUBREG_REG (x);
9979 /* For use in case we fall down into the address adjustments
9980 further below, we need to adjust the known mode and size of
9981 x; imode and isize, since we just adjusted x. */
9982 imode = GET_MODE (x);
9984 if (imode == omode)
9985 return x;
9987 isize = GET_MODE_SIZE (imode);
9990 result = gen_lowpart_common (omode, x);
9992 if (result)
9993 return result;
9995 if (MEM_P (x))
9997 int offset = 0;
9999 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10000 address. */
10001 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10002 goto fail;
10004 /* If we want to refer to something bigger than the original memref,
10005 generate a paradoxical subreg instead. That will force a reload
10006 of the original memref X. */
10007 if (isize < osize)
10008 return gen_rtx_SUBREG (omode, x, 0);
10010 if (WORDS_BIG_ENDIAN)
10011 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10013 /* Adjust the address so that the address-after-the-data is
10014 unchanged. */
10015 if (BYTES_BIG_ENDIAN)
10016 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10018 return adjust_address_nv (x, omode, offset);
10021 /* If X is a comparison operator, rewrite it in a new mode. This
10022 probably won't match, but may allow further simplifications. */
10023 else if (COMPARISON_P (x))
10024 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10026 /* If we couldn't simplify X any other way, just enclose it in a
10027 SUBREG. Normally, this SUBREG won't match, but some patterns may
10028 include an explicit SUBREG or we may simplify it further in combine. */
10029 else
10031 int offset = 0;
10032 rtx res;
10034 offset = subreg_lowpart_offset (omode, imode);
10035 if (imode == VOIDmode)
10037 imode = int_mode_for_mode (omode);
10038 x = gen_lowpart_common (imode, x);
10039 if (x == NULL)
10040 goto fail;
10042 res = simplify_gen_subreg (omode, x, imode, offset);
10043 if (res)
10044 return res;
10047 fail:
10048 return gen_rtx_CLOBBER (omode, const0_rtx);
10051 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10052 comparison code that will be tested.
10054 The result is a possibly different comparison code to use. *POP0 and
10055 *POP1 may be updated.
10057 It is possible that we might detect that a comparison is either always
10058 true or always false. However, we do not perform general constant
10059 folding in combine, so this knowledge isn't useful. Such tautologies
10060 should have been detected earlier. Hence we ignore all such cases. */
10062 static enum rtx_code
10063 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10065 rtx op0 = *pop0;
10066 rtx op1 = *pop1;
10067 rtx tem, tem1;
10068 int i;
10069 enum machine_mode mode, tmode;
10071 /* Try a few ways of applying the same transformation to both operands. */
10072 while (1)
10074 #ifndef WORD_REGISTER_OPERATIONS
10075 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10076 so check specially. */
10077 if (code != GTU && code != GEU && code != LTU && code != LEU
10078 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10079 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10080 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10081 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10082 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10083 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10084 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10085 && CONST_INT_P (XEXP (op0, 1))
10086 && XEXP (op0, 1) == XEXP (op1, 1)
10087 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10088 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10089 && (INTVAL (XEXP (op0, 1))
10090 == (GET_MODE_BITSIZE (GET_MODE (op0))
10091 - (GET_MODE_BITSIZE
10092 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10094 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10095 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10097 #endif
10099 /* If both operands are the same constant shift, see if we can ignore the
10100 shift. We can if the shift is a rotate or if the bits shifted out of
10101 this shift are known to be zero for both inputs and if the type of
10102 comparison is compatible with the shift. */
10103 if (GET_CODE (op0) == GET_CODE (op1)
10104 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10105 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10106 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10107 && (code != GT && code != LT && code != GE && code != LE))
10108 || (GET_CODE (op0) == ASHIFTRT
10109 && (code != GTU && code != LTU
10110 && code != GEU && code != LEU)))
10111 && CONST_INT_P (XEXP (op0, 1))
10112 && INTVAL (XEXP (op0, 1)) >= 0
10113 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10114 && XEXP (op0, 1) == XEXP (op1, 1))
10116 enum machine_mode mode = GET_MODE (op0);
10117 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10118 int shift_count = INTVAL (XEXP (op0, 1));
10120 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10121 mask &= (mask >> shift_count) << shift_count;
10122 else if (GET_CODE (op0) == ASHIFT)
10123 mask = (mask & (mask << shift_count)) >> shift_count;
10125 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10126 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10127 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10128 else
10129 break;
10132 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10133 SUBREGs are of the same mode, and, in both cases, the AND would
10134 be redundant if the comparison was done in the narrower mode,
10135 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10136 and the operand's possibly nonzero bits are 0xffffff01; in that case
10137 if we only care about QImode, we don't need the AND). This case
10138 occurs if the output mode of an scc insn is not SImode and
10139 STORE_FLAG_VALUE == 1 (e.g., the 386).
10141 Similarly, check for a case where the AND's are ZERO_EXTEND
10142 operations from some narrower mode even though a SUBREG is not
10143 present. */
10145 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10146 && CONST_INT_P (XEXP (op0, 1))
10147 && CONST_INT_P (XEXP (op1, 1)))
10149 rtx inner_op0 = XEXP (op0, 0);
10150 rtx inner_op1 = XEXP (op1, 0);
10151 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10152 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10153 int changed = 0;
10155 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10156 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10157 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10158 && (GET_MODE (SUBREG_REG (inner_op0))
10159 == GET_MODE (SUBREG_REG (inner_op1)))
10160 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10161 <= HOST_BITS_PER_WIDE_INT)
10162 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10163 GET_MODE (SUBREG_REG (inner_op0)))))
10164 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10165 GET_MODE (SUBREG_REG (inner_op1))))))
10167 op0 = SUBREG_REG (inner_op0);
10168 op1 = SUBREG_REG (inner_op1);
10170 /* The resulting comparison is always unsigned since we masked
10171 off the original sign bit. */
10172 code = unsigned_condition (code);
10174 changed = 1;
10177 else if (c0 == c1)
10178 for (tmode = GET_CLASS_NARROWEST_MODE
10179 (GET_MODE_CLASS (GET_MODE (op0)));
10180 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10181 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10183 op0 = gen_lowpart (tmode, inner_op0);
10184 op1 = gen_lowpart (tmode, inner_op1);
10185 code = unsigned_condition (code);
10186 changed = 1;
10187 break;
10190 if (! changed)
10191 break;
10194 /* If both operands are NOT, we can strip off the outer operation
10195 and adjust the comparison code for swapped operands; similarly for
10196 NEG, except that this must be an equality comparison. */
10197 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10198 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10199 && (code == EQ || code == NE)))
10200 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10202 else
10203 break;
10206 /* If the first operand is a constant, swap the operands and adjust the
10207 comparison code appropriately, but don't do this if the second operand
10208 is already a constant integer. */
10209 if (swap_commutative_operands_p (op0, op1))
10211 tem = op0, op0 = op1, op1 = tem;
10212 code = swap_condition (code);
10215 /* We now enter a loop during which we will try to simplify the comparison.
10216 For the most part, we only are concerned with comparisons with zero,
10217 but some things may really be comparisons with zero but not start
10218 out looking that way. */
10220 while (CONST_INT_P (op1))
10222 enum machine_mode mode = GET_MODE (op0);
10223 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10224 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10225 int equality_comparison_p;
10226 int sign_bit_comparison_p;
10227 int unsigned_comparison_p;
10228 HOST_WIDE_INT const_op;
10230 /* We only want to handle integral modes. This catches VOIDmode,
10231 CCmode, and the floating-point modes. An exception is that we
10232 can handle VOIDmode if OP0 is a COMPARE or a comparison
10233 operation. */
10235 if (GET_MODE_CLASS (mode) != MODE_INT
10236 && ! (mode == VOIDmode
10237 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10238 break;
10240 /* Get the constant we are comparing against and turn off all bits
10241 not on in our mode. */
10242 const_op = INTVAL (op1);
10243 if (mode != VOIDmode)
10244 const_op = trunc_int_for_mode (const_op, mode);
10245 op1 = GEN_INT (const_op);
10247 /* If we are comparing against a constant power of two and the value
10248 being compared can only have that single bit nonzero (e.g., it was
10249 `and'ed with that bit), we can replace this with a comparison
10250 with zero. */
10251 if (const_op
10252 && (code == EQ || code == NE || code == GE || code == GEU
10253 || code == LT || code == LTU)
10254 && mode_width <= HOST_BITS_PER_WIDE_INT
10255 && exact_log2 (const_op) >= 0
10256 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10258 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10259 op1 = const0_rtx, const_op = 0;
10262 /* Similarly, if we are comparing a value known to be either -1 or
10263 0 with -1, change it to the opposite comparison against zero. */
10265 if (const_op == -1
10266 && (code == EQ || code == NE || code == GT || code == LE
10267 || code == GEU || code == LTU)
10268 && num_sign_bit_copies (op0, mode) == mode_width)
10270 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10271 op1 = const0_rtx, const_op = 0;
10274 /* Do some canonicalizations based on the comparison code. We prefer
10275 comparisons against zero and then prefer equality comparisons.
10276 If we can reduce the size of a constant, we will do that too. */
10278 switch (code)
10280 case LT:
10281 /* < C is equivalent to <= (C - 1) */
10282 if (const_op > 0)
10284 const_op -= 1;
10285 op1 = GEN_INT (const_op);
10286 code = LE;
10287 /* ... fall through to LE case below. */
10289 else
10290 break;
10292 case LE:
10293 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10294 if (const_op < 0)
10296 const_op += 1;
10297 op1 = GEN_INT (const_op);
10298 code = LT;
10301 /* If we are doing a <= 0 comparison on a value known to have
10302 a zero sign bit, we can replace this with == 0. */
10303 else if (const_op == 0
10304 && mode_width <= HOST_BITS_PER_WIDE_INT
10305 && (nonzero_bits (op0, mode)
10306 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10307 code = EQ;
10308 break;
10310 case GE:
10311 /* >= C is equivalent to > (C - 1). */
10312 if (const_op > 0)
10314 const_op -= 1;
10315 op1 = GEN_INT (const_op);
10316 code = GT;
10317 /* ... fall through to GT below. */
10319 else
10320 break;
10322 case GT:
10323 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10324 if (const_op < 0)
10326 const_op += 1;
10327 op1 = GEN_INT (const_op);
10328 code = GE;
10331 /* If we are doing a > 0 comparison on a value known to have
10332 a zero sign bit, we can replace this with != 0. */
10333 else if (const_op == 0
10334 && mode_width <= HOST_BITS_PER_WIDE_INT
10335 && (nonzero_bits (op0, mode)
10336 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10337 code = NE;
10338 break;
10340 case LTU:
10341 /* < C is equivalent to <= (C - 1). */
10342 if (const_op > 0)
10344 const_op -= 1;
10345 op1 = GEN_INT (const_op);
10346 code = LEU;
10347 /* ... fall through ... */
10350 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10351 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10352 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10354 const_op = 0, op1 = const0_rtx;
10355 code = GE;
10356 break;
10358 else
10359 break;
10361 case LEU:
10362 /* unsigned <= 0 is equivalent to == 0 */
10363 if (const_op == 0)
10364 code = EQ;
10366 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10367 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10368 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10370 const_op = 0, op1 = const0_rtx;
10371 code = GE;
10373 break;
10375 case GEU:
10376 /* >= C is equivalent to > (C - 1). */
10377 if (const_op > 1)
10379 const_op -= 1;
10380 op1 = GEN_INT (const_op);
10381 code = GTU;
10382 /* ... fall through ... */
10385 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10386 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10387 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10389 const_op = 0, op1 = const0_rtx;
10390 code = LT;
10391 break;
10393 else
10394 break;
10396 case GTU:
10397 /* unsigned > 0 is equivalent to != 0 */
10398 if (const_op == 0)
10399 code = NE;
10401 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10402 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10403 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10405 const_op = 0, op1 = const0_rtx;
10406 code = LT;
10408 break;
10410 default:
10411 break;
10414 /* Compute some predicates to simplify code below. */
10416 equality_comparison_p = (code == EQ || code == NE);
10417 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10418 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10419 || code == GEU);
10421 /* If this is a sign bit comparison and we can do arithmetic in
10422 MODE, say that we will only be needing the sign bit of OP0. */
10423 if (sign_bit_comparison_p
10424 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10425 op0 = force_to_mode (op0, mode,
10426 ((HOST_WIDE_INT) 1
10427 << (GET_MODE_BITSIZE (mode) - 1)),
10430 /* Now try cases based on the opcode of OP0. If none of the cases
10431 does a "continue", we exit this loop immediately after the
10432 switch. */
10434 switch (GET_CODE (op0))
10436 case ZERO_EXTRACT:
10437 /* If we are extracting a single bit from a variable position in
10438 a constant that has only a single bit set and are comparing it
10439 with zero, we can convert this into an equality comparison
10440 between the position and the location of the single bit. */
10441 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10442 have already reduced the shift count modulo the word size. */
10443 if (!SHIFT_COUNT_TRUNCATED
10444 && CONST_INT_P (XEXP (op0, 0))
10445 && XEXP (op0, 1) == const1_rtx
10446 && equality_comparison_p && const_op == 0
10447 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10449 if (BITS_BIG_ENDIAN)
10451 enum machine_mode new_mode
10452 = mode_for_extraction (EP_extzv, 1);
10453 if (new_mode == MAX_MACHINE_MODE)
10454 i = BITS_PER_WORD - 1 - i;
10455 else
10457 mode = new_mode;
10458 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10462 op0 = XEXP (op0, 2);
10463 op1 = GEN_INT (i);
10464 const_op = i;
10466 /* Result is nonzero iff shift count is equal to I. */
10467 code = reverse_condition (code);
10468 continue;
10471 /* ... fall through ... */
10473 case SIGN_EXTRACT:
10474 tem = expand_compound_operation (op0);
10475 if (tem != op0)
10477 op0 = tem;
10478 continue;
10480 break;
10482 case NOT:
10483 /* If testing for equality, we can take the NOT of the constant. */
10484 if (equality_comparison_p
10485 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10487 op0 = XEXP (op0, 0);
10488 op1 = tem;
10489 continue;
10492 /* If just looking at the sign bit, reverse the sense of the
10493 comparison. */
10494 if (sign_bit_comparison_p)
10496 op0 = XEXP (op0, 0);
10497 code = (code == GE ? LT : GE);
10498 continue;
10500 break;
10502 case NEG:
10503 /* If testing for equality, we can take the NEG of the constant. */
10504 if (equality_comparison_p
10505 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10507 op0 = XEXP (op0, 0);
10508 op1 = tem;
10509 continue;
10512 /* The remaining cases only apply to comparisons with zero. */
10513 if (const_op != 0)
10514 break;
10516 /* When X is ABS or is known positive,
10517 (neg X) is < 0 if and only if X != 0. */
10519 if (sign_bit_comparison_p
10520 && (GET_CODE (XEXP (op0, 0)) == ABS
10521 || (mode_width <= HOST_BITS_PER_WIDE_INT
10522 && (nonzero_bits (XEXP (op0, 0), mode)
10523 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10525 op0 = XEXP (op0, 0);
10526 code = (code == LT ? NE : EQ);
10527 continue;
10530 /* If we have NEG of something whose two high-order bits are the
10531 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10532 if (num_sign_bit_copies (op0, mode) >= 2)
10534 op0 = XEXP (op0, 0);
10535 code = swap_condition (code);
10536 continue;
10538 break;
10540 case ROTATE:
10541 /* If we are testing equality and our count is a constant, we
10542 can perform the inverse operation on our RHS. */
10543 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
10544 && (tem = simplify_binary_operation (ROTATERT, mode,
10545 op1, XEXP (op0, 1))) != 0)
10547 op0 = XEXP (op0, 0);
10548 op1 = tem;
10549 continue;
10552 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10553 a particular bit. Convert it to an AND of a constant of that
10554 bit. This will be converted into a ZERO_EXTRACT. */
10555 if (const_op == 0 && sign_bit_comparison_p
10556 && CONST_INT_P (XEXP (op0, 1))
10557 && mode_width <= HOST_BITS_PER_WIDE_INT)
10559 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10560 ((HOST_WIDE_INT) 1
10561 << (mode_width - 1
10562 - INTVAL (XEXP (op0, 1)))));
10563 code = (code == LT ? NE : EQ);
10564 continue;
10567 /* Fall through. */
10569 case ABS:
10570 /* ABS is ignorable inside an equality comparison with zero. */
10571 if (const_op == 0 && equality_comparison_p)
10573 op0 = XEXP (op0, 0);
10574 continue;
10576 break;
10578 case SIGN_EXTEND:
10579 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10580 (compare FOO CONST) if CONST fits in FOO's mode and we
10581 are either testing inequality or have an unsigned
10582 comparison with ZERO_EXTEND or a signed comparison with
10583 SIGN_EXTEND. But don't do it if we don't have a compare
10584 insn of the given mode, since we'd have to revert it
10585 later on, and then we wouldn't know whether to sign- or
10586 zero-extend. */
10587 mode = GET_MODE (XEXP (op0, 0));
10588 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10589 && ! unsigned_comparison_p
10590 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10591 && ((unsigned HOST_WIDE_INT) const_op
10592 < (((unsigned HOST_WIDE_INT) 1
10593 << (GET_MODE_BITSIZE (mode) - 1))))
10594 && have_insn_for (COMPARE, mode))
10596 op0 = XEXP (op0, 0);
10597 continue;
10599 break;
10601 case SUBREG:
10602 /* Check for the case where we are comparing A - C1 with C2, that is
10604 (subreg:MODE (plus (A) (-C1))) op (C2)
10606 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10607 comparison in the wider mode. One of the following two conditions
10608 must be true in order for this to be valid:
10610 1. The mode extension results in the same bit pattern being added
10611 on both sides and the comparison is equality or unsigned. As
10612 C2 has been truncated to fit in MODE, the pattern can only be
10613 all 0s or all 1s.
10615 2. The mode extension results in the sign bit being copied on
10616 each side.
10618 The difficulty here is that we have predicates for A but not for
10619 (A - C1) so we need to check that C1 is within proper bounds so
10620 as to perturbate A as little as possible. */
10622 if (mode_width <= HOST_BITS_PER_WIDE_INT
10623 && subreg_lowpart_p (op0)
10624 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10625 && GET_CODE (SUBREG_REG (op0)) == PLUS
10626 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
10628 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10629 rtx a = XEXP (SUBREG_REG (op0), 0);
10630 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10632 if ((c1 > 0
10633 && (unsigned HOST_WIDE_INT) c1
10634 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10635 && (equality_comparison_p || unsigned_comparison_p)
10636 /* (A - C1) zero-extends if it is positive and sign-extends
10637 if it is negative, C2 both zero- and sign-extends. */
10638 && ((0 == (nonzero_bits (a, inner_mode)
10639 & ~GET_MODE_MASK (mode))
10640 && const_op >= 0)
10641 /* (A - C1) sign-extends if it is positive and 1-extends
10642 if it is negative, C2 both sign- and 1-extends. */
10643 || (num_sign_bit_copies (a, inner_mode)
10644 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10645 - mode_width)
10646 && const_op < 0)))
10647 || ((unsigned HOST_WIDE_INT) c1
10648 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10649 /* (A - C1) always sign-extends, like C2. */
10650 && num_sign_bit_copies (a, inner_mode)
10651 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10652 - (mode_width - 1))))
10654 op0 = SUBREG_REG (op0);
10655 continue;
10659 /* If the inner mode is narrower and we are extracting the low part,
10660 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10661 if (subreg_lowpart_p (op0)
10662 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10663 /* Fall through */ ;
10664 else
10665 break;
10667 /* ... fall through ... */
10669 case ZERO_EXTEND:
10670 mode = GET_MODE (XEXP (op0, 0));
10671 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10672 && (unsigned_comparison_p || equality_comparison_p)
10673 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10674 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10675 && have_insn_for (COMPARE, mode))
10677 op0 = XEXP (op0, 0);
10678 continue;
10680 break;
10682 case PLUS:
10683 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10684 this for equality comparisons due to pathological cases involving
10685 overflows. */
10686 if (equality_comparison_p
10687 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10688 op1, XEXP (op0, 1))))
10690 op0 = XEXP (op0, 0);
10691 op1 = tem;
10692 continue;
10695 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10696 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10697 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10699 op0 = XEXP (XEXP (op0, 0), 0);
10700 code = (code == LT ? EQ : NE);
10701 continue;
10703 break;
10705 case MINUS:
10706 /* We used to optimize signed comparisons against zero, but that
10707 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10708 arrive here as equality comparisons, or (GEU, LTU) are
10709 optimized away. No need to special-case them. */
10711 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10712 (eq B (minus A C)), whichever simplifies. We can only do
10713 this for equality comparisons due to pathological cases involving
10714 overflows. */
10715 if (equality_comparison_p
10716 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10717 XEXP (op0, 1), op1)))
10719 op0 = XEXP (op0, 0);
10720 op1 = tem;
10721 continue;
10724 if (equality_comparison_p
10725 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10726 XEXP (op0, 0), op1)))
10728 op0 = XEXP (op0, 1);
10729 op1 = tem;
10730 continue;
10733 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10734 of bits in X minus 1, is one iff X > 0. */
10735 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10736 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
10737 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10738 == mode_width - 1
10739 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10741 op0 = XEXP (op0, 1);
10742 code = (code == GE ? LE : GT);
10743 continue;
10745 break;
10747 case XOR:
10748 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10749 if C is zero or B is a constant. */
10750 if (equality_comparison_p
10751 && 0 != (tem = simplify_binary_operation (XOR, mode,
10752 XEXP (op0, 1), op1)))
10754 op0 = XEXP (op0, 0);
10755 op1 = tem;
10756 continue;
10758 break;
10760 case EQ: case NE:
10761 case UNEQ: case LTGT:
10762 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10763 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10764 case UNORDERED: case ORDERED:
10765 /* We can't do anything if OP0 is a condition code value, rather
10766 than an actual data value. */
10767 if (const_op != 0
10768 || CC0_P (XEXP (op0, 0))
10769 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10770 break;
10772 /* Get the two operands being compared. */
10773 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10774 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10775 else
10776 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10778 /* Check for the cases where we simply want the result of the
10779 earlier test or the opposite of that result. */
10780 if (code == NE || code == EQ
10781 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10782 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10783 && (STORE_FLAG_VALUE
10784 & (((HOST_WIDE_INT) 1
10785 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10786 && (code == LT || code == GE)))
10788 enum rtx_code new_code;
10789 if (code == LT || code == NE)
10790 new_code = GET_CODE (op0);
10791 else
10792 new_code = reversed_comparison_code (op0, NULL);
10794 if (new_code != UNKNOWN)
10796 code = new_code;
10797 op0 = tem;
10798 op1 = tem1;
10799 continue;
10802 break;
10804 case IOR:
10805 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10806 iff X <= 0. */
10807 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10808 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10809 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10811 op0 = XEXP (op0, 1);
10812 code = (code == GE ? GT : LE);
10813 continue;
10815 break;
10817 case AND:
10818 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10819 will be converted to a ZERO_EXTRACT later. */
10820 if (const_op == 0 && equality_comparison_p
10821 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10822 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10824 op0 = simplify_and_const_int
10825 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10826 XEXP (op0, 1),
10827 XEXP (XEXP (op0, 0), 1)),
10828 (HOST_WIDE_INT) 1);
10829 continue;
10832 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10833 zero and X is a comparison and C1 and C2 describe only bits set
10834 in STORE_FLAG_VALUE, we can compare with X. */
10835 if (const_op == 0 && equality_comparison_p
10836 && mode_width <= HOST_BITS_PER_WIDE_INT
10837 && CONST_INT_P (XEXP (op0, 1))
10838 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10839 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
10840 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10841 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10843 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10844 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10845 if ((~STORE_FLAG_VALUE & mask) == 0
10846 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10847 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10848 && COMPARISON_P (tem))))
10850 op0 = XEXP (XEXP (op0, 0), 0);
10851 continue;
10855 /* If we are doing an equality comparison of an AND of a bit equal
10856 to the sign bit, replace this with a LT or GE comparison of
10857 the underlying value. */
10858 if (equality_comparison_p
10859 && const_op == 0
10860 && CONST_INT_P (XEXP (op0, 1))
10861 && mode_width <= HOST_BITS_PER_WIDE_INT
10862 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10863 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10865 op0 = XEXP (op0, 0);
10866 code = (code == EQ ? GE : LT);
10867 continue;
10870 /* If this AND operation is really a ZERO_EXTEND from a narrower
10871 mode, the constant fits within that mode, and this is either an
10872 equality or unsigned comparison, try to do this comparison in
10873 the narrower mode.
10875 Note that in:
10877 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10878 -> (ne:DI (reg:SI 4) (const_int 0))
10880 unless TRULY_NOOP_TRUNCATION allows it or the register is
10881 known to hold a value of the required mode the
10882 transformation is invalid. */
10883 if ((equality_comparison_p || unsigned_comparison_p)
10884 && CONST_INT_P (XEXP (op0, 1))
10885 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10886 & GET_MODE_MASK (mode))
10887 + 1)) >= 0
10888 && const_op >> i == 0
10889 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10890 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10891 GET_MODE_BITSIZE (GET_MODE (op0)))
10892 || (REG_P (XEXP (op0, 0))
10893 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10895 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10896 continue;
10899 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10900 fits in both M1 and M2 and the SUBREG is either paradoxical
10901 or represents the low part, permute the SUBREG and the AND
10902 and try again. */
10903 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10905 unsigned HOST_WIDE_INT c1;
10906 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10907 /* Require an integral mode, to avoid creating something like
10908 (AND:SF ...). */
10909 if (SCALAR_INT_MODE_P (tmode)
10910 /* It is unsafe to commute the AND into the SUBREG if the
10911 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10912 not defined. As originally written the upper bits
10913 have a defined value due to the AND operation.
10914 However, if we commute the AND inside the SUBREG then
10915 they no longer have defined values and the meaning of
10916 the code has been changed. */
10917 && (0
10918 #ifdef WORD_REGISTER_OPERATIONS
10919 || (mode_width > GET_MODE_BITSIZE (tmode)
10920 && mode_width <= BITS_PER_WORD)
10921 #endif
10922 || (mode_width <= GET_MODE_BITSIZE (tmode)
10923 && subreg_lowpart_p (XEXP (op0, 0))))
10924 && CONST_INT_P (XEXP (op0, 1))
10925 && mode_width <= HOST_BITS_PER_WIDE_INT
10926 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10927 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10928 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10929 && c1 != mask
10930 && c1 != GET_MODE_MASK (tmode))
10932 op0 = simplify_gen_binary (AND, tmode,
10933 SUBREG_REG (XEXP (op0, 0)),
10934 gen_int_mode (c1, tmode));
10935 op0 = gen_lowpart (mode, op0);
10936 continue;
10940 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10941 if (const_op == 0 && equality_comparison_p
10942 && XEXP (op0, 1) == const1_rtx
10943 && GET_CODE (XEXP (op0, 0)) == NOT)
10945 op0 = simplify_and_const_int
10946 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10947 code = (code == NE ? EQ : NE);
10948 continue;
10951 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10952 (eq (and (lshiftrt X) 1) 0).
10953 Also handle the case where (not X) is expressed using xor. */
10954 if (const_op == 0 && equality_comparison_p
10955 && XEXP (op0, 1) == const1_rtx
10956 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10958 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10959 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10961 if (GET_CODE (shift_op) == NOT
10962 || (GET_CODE (shift_op) == XOR
10963 && CONST_INT_P (XEXP (shift_op, 1))
10964 && CONST_INT_P (shift_count)
10965 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10966 && (INTVAL (XEXP (shift_op, 1))
10967 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10969 op0 = simplify_and_const_int
10970 (NULL_RTX, mode,
10971 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10972 (HOST_WIDE_INT) 1);
10973 code = (code == NE ? EQ : NE);
10974 continue;
10977 break;
10979 case ASHIFT:
10980 /* If we have (compare (ashift FOO N) (const_int C)) and
10981 the high order N bits of FOO (N+1 if an inequality comparison)
10982 are known to be zero, we can do this by comparing FOO with C
10983 shifted right N bits so long as the low-order N bits of C are
10984 zero. */
10985 if (CONST_INT_P (XEXP (op0, 1))
10986 && INTVAL (XEXP (op0, 1)) >= 0
10987 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10988 < HOST_BITS_PER_WIDE_INT)
10989 && ((const_op
10990 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10991 && mode_width <= HOST_BITS_PER_WIDE_INT
10992 && (nonzero_bits (XEXP (op0, 0), mode)
10993 & ~(mask >> (INTVAL (XEXP (op0, 1))
10994 + ! equality_comparison_p))) == 0)
10996 /* We must perform a logical shift, not an arithmetic one,
10997 as we want the top N bits of C to be zero. */
10998 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11000 temp >>= INTVAL (XEXP (op0, 1));
11001 op1 = gen_int_mode (temp, mode);
11002 op0 = XEXP (op0, 0);
11003 continue;
11006 /* If we are doing a sign bit comparison, it means we are testing
11007 a particular bit. Convert it to the appropriate AND. */
11008 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11009 && mode_width <= HOST_BITS_PER_WIDE_INT)
11011 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11012 ((HOST_WIDE_INT) 1
11013 << (mode_width - 1
11014 - INTVAL (XEXP (op0, 1)))));
11015 code = (code == LT ? NE : EQ);
11016 continue;
11019 /* If this an equality comparison with zero and we are shifting
11020 the low bit to the sign bit, we can convert this to an AND of the
11021 low-order bit. */
11022 if (const_op == 0 && equality_comparison_p
11023 && CONST_INT_P (XEXP (op0, 1))
11024 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11025 == mode_width - 1)
11027 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11028 (HOST_WIDE_INT) 1);
11029 continue;
11031 break;
11033 case ASHIFTRT:
11034 /* If this is an equality comparison with zero, we can do this
11035 as a logical shift, which might be much simpler. */
11036 if (equality_comparison_p && const_op == 0
11037 && CONST_INT_P (XEXP (op0, 1)))
11039 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11040 XEXP (op0, 0),
11041 INTVAL (XEXP (op0, 1)));
11042 continue;
11045 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11046 do the comparison in a narrower mode. */
11047 if (! unsigned_comparison_p
11048 && CONST_INT_P (XEXP (op0, 1))
11049 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11050 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11051 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11052 MODE_INT, 1)) != BLKmode
11053 && (((unsigned HOST_WIDE_INT) const_op
11054 + (GET_MODE_MASK (tmode) >> 1) + 1)
11055 <= GET_MODE_MASK (tmode)))
11057 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11058 continue;
11061 /* Likewise if OP0 is a PLUS of a sign extension with a
11062 constant, which is usually represented with the PLUS
11063 between the shifts. */
11064 if (! unsigned_comparison_p
11065 && CONST_INT_P (XEXP (op0, 1))
11066 && GET_CODE (XEXP (op0, 0)) == PLUS
11067 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11068 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11069 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11070 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11071 MODE_INT, 1)) != BLKmode
11072 && (((unsigned HOST_WIDE_INT) const_op
11073 + (GET_MODE_MASK (tmode) >> 1) + 1)
11074 <= GET_MODE_MASK (tmode)))
11076 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11077 rtx add_const = XEXP (XEXP (op0, 0), 1);
11078 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11079 add_const, XEXP (op0, 1));
11081 op0 = simplify_gen_binary (PLUS, tmode,
11082 gen_lowpart (tmode, inner),
11083 new_const);
11084 continue;
11087 /* ... fall through ... */
11088 case LSHIFTRT:
11089 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11090 the low order N bits of FOO are known to be zero, we can do this
11091 by comparing FOO with C shifted left N bits so long as no
11092 overflow occurs. */
11093 if (CONST_INT_P (XEXP (op0, 1))
11094 && INTVAL (XEXP (op0, 1)) >= 0
11095 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11096 && mode_width <= HOST_BITS_PER_WIDE_INT
11097 && (nonzero_bits (XEXP (op0, 0), mode)
11098 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11099 && (((unsigned HOST_WIDE_INT) const_op
11100 + (GET_CODE (op0) != LSHIFTRT
11101 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11102 + 1)
11103 : 0))
11104 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11106 /* If the shift was logical, then we must make the condition
11107 unsigned. */
11108 if (GET_CODE (op0) == LSHIFTRT)
11109 code = unsigned_condition (code);
11111 const_op <<= INTVAL (XEXP (op0, 1));
11112 op1 = GEN_INT (const_op);
11113 op0 = XEXP (op0, 0);
11114 continue;
11117 /* If we are using this shift to extract just the sign bit, we
11118 can replace this with an LT or GE comparison. */
11119 if (const_op == 0
11120 && (equality_comparison_p || sign_bit_comparison_p)
11121 && CONST_INT_P (XEXP (op0, 1))
11122 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11123 == mode_width - 1)
11125 op0 = XEXP (op0, 0);
11126 code = (code == NE || code == GT ? LT : GE);
11127 continue;
11129 break;
11131 default:
11132 break;
11135 break;
11138 /* Now make any compound operations involved in this comparison. Then,
11139 check for an outmost SUBREG on OP0 that is not doing anything or is
11140 paradoxical. The latter transformation must only be performed when
11141 it is known that the "extra" bits will be the same in op0 and op1 or
11142 that they don't matter. There are three cases to consider:
11144 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11145 care bits and we can assume they have any convenient value. So
11146 making the transformation is safe.
11148 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11149 In this case the upper bits of op0 are undefined. We should not make
11150 the simplification in that case as we do not know the contents of
11151 those bits.
11153 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11154 UNKNOWN. In that case we know those bits are zeros or ones. We must
11155 also be sure that they are the same as the upper bits of op1.
11157 We can never remove a SUBREG for a non-equality comparison because
11158 the sign bit is in a different place in the underlying object. */
11160 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11161 op1 = make_compound_operation (op1, SET);
11163 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11164 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11165 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11166 && (code == NE || code == EQ))
11168 if (GET_MODE_SIZE (GET_MODE (op0))
11169 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11171 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11172 implemented. */
11173 if (REG_P (SUBREG_REG (op0)))
11175 op0 = SUBREG_REG (op0);
11176 op1 = gen_lowpart (GET_MODE (op0), op1);
11179 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11180 <= HOST_BITS_PER_WIDE_INT)
11181 && (nonzero_bits (SUBREG_REG (op0),
11182 GET_MODE (SUBREG_REG (op0)))
11183 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11185 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11187 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11188 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11189 op0 = SUBREG_REG (op0), op1 = tem;
11193 /* We now do the opposite procedure: Some machines don't have compare
11194 insns in all modes. If OP0's mode is an integer mode smaller than a
11195 word and we can't do a compare in that mode, see if there is a larger
11196 mode for which we can do the compare. There are a number of cases in
11197 which we can use the wider mode. */
11199 mode = GET_MODE (op0);
11200 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11201 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11202 && ! have_insn_for (COMPARE, mode))
11203 for (tmode = GET_MODE_WIDER_MODE (mode);
11204 (tmode != VOIDmode
11205 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11206 tmode = GET_MODE_WIDER_MODE (tmode))
11207 if (have_insn_for (COMPARE, tmode))
11209 int zero_extended;
11211 /* If the only nonzero bits in OP0 and OP1 are those in the
11212 narrower mode and this is an equality or unsigned comparison,
11213 we can use the wider mode. Similarly for sign-extended
11214 values, in which case it is true for all comparisons. */
11215 zero_extended = ((code == EQ || code == NE
11216 || code == GEU || code == GTU
11217 || code == LEU || code == LTU)
11218 && (nonzero_bits (op0, tmode)
11219 & ~GET_MODE_MASK (mode)) == 0
11220 && ((CONST_INT_P (op1)
11221 || (nonzero_bits (op1, tmode)
11222 & ~GET_MODE_MASK (mode)) == 0)));
11224 if (zero_extended
11225 || ((num_sign_bit_copies (op0, tmode)
11226 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11227 - GET_MODE_BITSIZE (mode)))
11228 && (num_sign_bit_copies (op1, tmode)
11229 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11230 - GET_MODE_BITSIZE (mode)))))
11232 /* If OP0 is an AND and we don't have an AND in MODE either,
11233 make a new AND in the proper mode. */
11234 if (GET_CODE (op0) == AND
11235 && !have_insn_for (AND, mode))
11236 op0 = simplify_gen_binary (AND, tmode,
11237 gen_lowpart (tmode,
11238 XEXP (op0, 0)),
11239 gen_lowpart (tmode,
11240 XEXP (op0, 1)));
11242 op0 = gen_lowpart (tmode, op0);
11243 if (zero_extended && CONST_INT_P (op1))
11244 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11245 op1 = gen_lowpart (tmode, op1);
11246 break;
11249 /* If this is a test for negative, we can make an explicit
11250 test of the sign bit. */
11252 if (op1 == const0_rtx && (code == LT || code == GE)
11253 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11255 op0 = simplify_gen_binary (AND, tmode,
11256 gen_lowpart (tmode, op0),
11257 GEN_INT ((HOST_WIDE_INT) 1
11258 << (GET_MODE_BITSIZE (mode)
11259 - 1)));
11260 code = (code == LT) ? NE : EQ;
11261 break;
11265 #ifdef CANONICALIZE_COMPARISON
11266 /* If this machine only supports a subset of valid comparisons, see if we
11267 can convert an unsupported one into a supported one. */
11268 CANONICALIZE_COMPARISON (code, op0, op1);
11269 #endif
11271 *pop0 = op0;
11272 *pop1 = op1;
11274 return code;
11277 /* Utility function for record_value_for_reg. Count number of
11278 rtxs in X. */
11279 static int
11280 count_rtxs (rtx x)
11282 enum rtx_code code = GET_CODE (x);
11283 const char *fmt;
11284 int i, j, ret = 1;
11286 if (GET_RTX_CLASS (code) == '2'
11287 || GET_RTX_CLASS (code) == 'c')
11289 rtx x0 = XEXP (x, 0);
11290 rtx x1 = XEXP (x, 1);
11292 if (x0 == x1)
11293 return 1 + 2 * count_rtxs (x0);
11295 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11296 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11297 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11298 return 2 + 2 * count_rtxs (x0)
11299 + count_rtxs (x == XEXP (x1, 0)
11300 ? XEXP (x1, 1) : XEXP (x1, 0));
11302 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11303 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11304 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11305 return 2 + 2 * count_rtxs (x1)
11306 + count_rtxs (x == XEXP (x0, 0)
11307 ? XEXP (x0, 1) : XEXP (x0, 0));
11310 fmt = GET_RTX_FORMAT (code);
11311 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11312 if (fmt[i] == 'e')
11313 ret += count_rtxs (XEXP (x, i));
11314 else if (fmt[i] == 'E')
11315 for (j = 0; j < XVECLEN (x, i); j++)
11316 ret += count_rtxs (XVECEXP (x, i, j));
11318 return ret;
11321 /* Utility function for following routine. Called when X is part of a value
11322 being stored into last_set_value. Sets last_set_table_tick
11323 for each register mentioned. Similar to mention_regs in cse.c */
11325 static void
11326 update_table_tick (rtx x)
11328 enum rtx_code code = GET_CODE (x);
11329 const char *fmt = GET_RTX_FORMAT (code);
11330 int i, j;
11332 if (code == REG)
11334 unsigned int regno = REGNO (x);
11335 unsigned int endregno = END_REGNO (x);
11336 unsigned int r;
11338 for (r = regno; r < endregno; r++)
11340 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11341 rsp->last_set_table_tick = label_tick;
11344 return;
11347 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11348 if (fmt[i] == 'e')
11350 /* Check for identical subexpressions. If x contains
11351 identical subexpression we only have to traverse one of
11352 them. */
11353 if (i == 0 && ARITHMETIC_P (x))
11355 /* Note that at this point x1 has already been
11356 processed. */
11357 rtx x0 = XEXP (x, 0);
11358 rtx x1 = XEXP (x, 1);
11360 /* If x0 and x1 are identical then there is no need to
11361 process x0. */
11362 if (x0 == x1)
11363 break;
11365 /* If x0 is identical to a subexpression of x1 then while
11366 processing x1, x0 has already been processed. Thus we
11367 are done with x. */
11368 if (ARITHMETIC_P (x1)
11369 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11370 break;
11372 /* If x1 is identical to a subexpression of x0 then we
11373 still have to process the rest of x0. */
11374 if (ARITHMETIC_P (x0)
11375 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11377 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11378 break;
11382 update_table_tick (XEXP (x, i));
11384 else if (fmt[i] == 'E')
11385 for (j = 0; j < XVECLEN (x, i); j++)
11386 update_table_tick (XVECEXP (x, i, j));
11389 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11390 are saying that the register is clobbered and we no longer know its
11391 value. If INSN is zero, don't update reg_stat[].last_set; this is
11392 only permitted with VALUE also zero and is used to invalidate the
11393 register. */
11395 static void
11396 record_value_for_reg (rtx reg, rtx insn, rtx value)
11398 unsigned int regno = REGNO (reg);
11399 unsigned int endregno = END_REGNO (reg);
11400 unsigned int i;
11401 reg_stat_type *rsp;
11403 /* If VALUE contains REG and we have a previous value for REG, substitute
11404 the previous value. */
11405 if (value && insn && reg_overlap_mentioned_p (reg, value))
11407 rtx tem;
11409 /* Set things up so get_last_value is allowed to see anything set up to
11410 our insn. */
11411 subst_low_luid = DF_INSN_LUID (insn);
11412 tem = get_last_value (reg);
11414 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11415 it isn't going to be useful and will take a lot of time to process,
11416 so just use the CLOBBER. */
11418 if (tem)
11420 if (ARITHMETIC_P (tem)
11421 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11422 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11423 tem = XEXP (tem, 0);
11424 else if (count_occurrences (value, reg, 1) >= 2)
11426 /* If there are two or more occurrences of REG in VALUE,
11427 prevent the value from growing too much. */
11428 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11429 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11432 value = replace_rtx (copy_rtx (value), reg, tem);
11436 /* For each register modified, show we don't know its value, that
11437 we don't know about its bitwise content, that its value has been
11438 updated, and that we don't know the location of the death of the
11439 register. */
11440 for (i = regno; i < endregno; i++)
11442 rsp = VEC_index (reg_stat_type, reg_stat, i);
11444 if (insn)
11445 rsp->last_set = insn;
11447 rsp->last_set_value = 0;
11448 rsp->last_set_mode = VOIDmode;
11449 rsp->last_set_nonzero_bits = 0;
11450 rsp->last_set_sign_bit_copies = 0;
11451 rsp->last_death = 0;
11452 rsp->truncated_to_mode = VOIDmode;
11455 /* Mark registers that are being referenced in this value. */
11456 if (value)
11457 update_table_tick (value);
11459 /* Now update the status of each register being set.
11460 If someone is using this register in this block, set this register
11461 to invalid since we will get confused between the two lives in this
11462 basic block. This makes using this register always invalid. In cse, we
11463 scan the table to invalidate all entries using this register, but this
11464 is too much work for us. */
11466 for (i = regno; i < endregno; i++)
11468 rsp = VEC_index (reg_stat_type, reg_stat, i);
11469 rsp->last_set_label = label_tick;
11470 if (!insn
11471 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11472 rsp->last_set_invalid = 1;
11473 else
11474 rsp->last_set_invalid = 0;
11477 /* The value being assigned might refer to X (like in "x++;"). In that
11478 case, we must replace it with (clobber (const_int 0)) to prevent
11479 infinite loops. */
11480 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11481 if (value && ! get_last_value_validate (&value, insn,
11482 rsp->last_set_label, 0))
11484 value = copy_rtx (value);
11485 if (! get_last_value_validate (&value, insn,
11486 rsp->last_set_label, 1))
11487 value = 0;
11490 /* For the main register being modified, update the value, the mode, the
11491 nonzero bits, and the number of sign bit copies. */
11493 rsp->last_set_value = value;
11495 if (value)
11497 enum machine_mode mode = GET_MODE (reg);
11498 subst_low_luid = DF_INSN_LUID (insn);
11499 rsp->last_set_mode = mode;
11500 if (GET_MODE_CLASS (mode) == MODE_INT
11501 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11502 mode = nonzero_bits_mode;
11503 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11504 rsp->last_set_sign_bit_copies
11505 = num_sign_bit_copies (value, GET_MODE (reg));
11509 /* Called via note_stores from record_dead_and_set_regs to handle one
11510 SET or CLOBBER in an insn. DATA is the instruction in which the
11511 set is occurring. */
11513 static void
11514 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11516 rtx record_dead_insn = (rtx) data;
11518 if (GET_CODE (dest) == SUBREG)
11519 dest = SUBREG_REG (dest);
11521 if (!record_dead_insn)
11523 if (REG_P (dest))
11524 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11525 return;
11528 if (REG_P (dest))
11530 /* If we are setting the whole register, we know its value. Otherwise
11531 show that we don't know the value. We can handle SUBREG in
11532 some cases. */
11533 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11534 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11535 else if (GET_CODE (setter) == SET
11536 && GET_CODE (SET_DEST (setter)) == SUBREG
11537 && SUBREG_REG (SET_DEST (setter)) == dest
11538 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11539 && subreg_lowpart_p (SET_DEST (setter)))
11540 record_value_for_reg (dest, record_dead_insn,
11541 gen_lowpart (GET_MODE (dest),
11542 SET_SRC (setter)));
11543 else
11544 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11546 else if (MEM_P (dest)
11547 /* Ignore pushes, they clobber nothing. */
11548 && ! push_operand (dest, GET_MODE (dest)))
11549 mem_last_set = DF_INSN_LUID (record_dead_insn);
11552 /* Update the records of when each REG was most recently set or killed
11553 for the things done by INSN. This is the last thing done in processing
11554 INSN in the combiner loop.
11556 We update reg_stat[], in particular fields last_set, last_set_value,
11557 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11558 last_death, and also the similar information mem_last_set (which insn
11559 most recently modified memory) and last_call_luid (which insn was the
11560 most recent subroutine call). */
11562 static void
11563 record_dead_and_set_regs (rtx insn)
11565 rtx link;
11566 unsigned int i;
11568 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11570 if (REG_NOTE_KIND (link) == REG_DEAD
11571 && REG_P (XEXP (link, 0)))
11573 unsigned int regno = REGNO (XEXP (link, 0));
11574 unsigned int endregno = END_REGNO (XEXP (link, 0));
11576 for (i = regno; i < endregno; i++)
11578 reg_stat_type *rsp;
11580 rsp = VEC_index (reg_stat_type, reg_stat, i);
11581 rsp->last_death = insn;
11584 else if (REG_NOTE_KIND (link) == REG_INC)
11585 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11588 if (CALL_P (insn))
11590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11591 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11593 reg_stat_type *rsp;
11595 rsp = VEC_index (reg_stat_type, reg_stat, i);
11596 rsp->last_set_invalid = 1;
11597 rsp->last_set = insn;
11598 rsp->last_set_value = 0;
11599 rsp->last_set_mode = VOIDmode;
11600 rsp->last_set_nonzero_bits = 0;
11601 rsp->last_set_sign_bit_copies = 0;
11602 rsp->last_death = 0;
11603 rsp->truncated_to_mode = VOIDmode;
11606 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11608 /* We can't combine into a call pattern. Remember, though, that
11609 the return value register is set at this LUID. We could
11610 still replace a register with the return value from the
11611 wrong subroutine call! */
11612 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11614 else
11615 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11618 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11619 register present in the SUBREG, so for each such SUBREG go back and
11620 adjust nonzero and sign bit information of the registers that are
11621 known to have some zero/sign bits set.
11623 This is needed because when combine blows the SUBREGs away, the
11624 information on zero/sign bits is lost and further combines can be
11625 missed because of that. */
11627 static void
11628 record_promoted_value (rtx insn, rtx subreg)
11630 rtx links, set;
11631 unsigned int regno = REGNO (SUBREG_REG (subreg));
11632 enum machine_mode mode = GET_MODE (subreg);
11634 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11635 return;
11637 for (links = LOG_LINKS (insn); links;)
11639 reg_stat_type *rsp;
11641 insn = XEXP (links, 0);
11642 set = single_set (insn);
11644 if (! set || !REG_P (SET_DEST (set))
11645 || REGNO (SET_DEST (set)) != regno
11646 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11648 links = XEXP (links, 1);
11649 continue;
11652 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11653 if (rsp->last_set == insn)
11655 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11656 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11659 if (REG_P (SET_SRC (set)))
11661 regno = REGNO (SET_SRC (set));
11662 links = LOG_LINKS (insn);
11664 else
11665 break;
11669 /* Check if X, a register, is known to contain a value already
11670 truncated to MODE. In this case we can use a subreg to refer to
11671 the truncated value even though in the generic case we would need
11672 an explicit truncation. */
11674 static bool
11675 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11677 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11678 enum machine_mode truncated = rsp->truncated_to_mode;
11680 if (truncated == 0
11681 || rsp->truncation_label < label_tick_ebb_start)
11682 return false;
11683 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11684 return true;
11685 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11686 GET_MODE_BITSIZE (truncated)))
11687 return true;
11688 return false;
11691 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11692 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11693 might be able to turn a truncate into a subreg using this information.
11694 Return -1 if traversing *P is complete or 0 otherwise. */
11696 static int
11697 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11699 rtx x = *p;
11700 enum machine_mode truncated_mode;
11701 reg_stat_type *rsp;
11703 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11705 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11706 truncated_mode = GET_MODE (x);
11708 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11709 return -1;
11711 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11712 GET_MODE_BITSIZE (original_mode)))
11713 return -1;
11715 x = SUBREG_REG (x);
11717 /* ??? For hard-regs we now record everything. We might be able to
11718 optimize this using last_set_mode. */
11719 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11720 truncated_mode = GET_MODE (x);
11721 else
11722 return 0;
11724 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11725 if (rsp->truncated_to_mode == 0
11726 || rsp->truncation_label < label_tick_ebb_start
11727 || (GET_MODE_SIZE (truncated_mode)
11728 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11730 rsp->truncated_to_mode = truncated_mode;
11731 rsp->truncation_label = label_tick;
11734 return -1;
11737 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11738 the modes they are used in. This can help truning TRUNCATEs into
11739 SUBREGs. */
11741 static void
11742 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11744 for_each_rtx (x, record_truncated_value, NULL);
11747 /* Scan X for promoted SUBREGs. For each one found,
11748 note what it implies to the registers used in it. */
11750 static void
11751 check_promoted_subreg (rtx insn, rtx x)
11753 if (GET_CODE (x) == SUBREG
11754 && SUBREG_PROMOTED_VAR_P (x)
11755 && REG_P (SUBREG_REG (x)))
11756 record_promoted_value (insn, x);
11757 else
11759 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11760 int i, j;
11762 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11763 switch (format[i])
11765 case 'e':
11766 check_promoted_subreg (insn, XEXP (x, i));
11767 break;
11768 case 'V':
11769 case 'E':
11770 if (XVEC (x, i) != 0)
11771 for (j = 0; j < XVECLEN (x, i); j++)
11772 check_promoted_subreg (insn, XVECEXP (x, i, j));
11773 break;
11778 /* Utility routine for the following function. Verify that all the registers
11779 mentioned in *LOC are valid when *LOC was part of a value set when
11780 label_tick == TICK. Return 0 if some are not.
11782 If REPLACE is nonzero, replace the invalid reference with
11783 (clobber (const_int 0)) and return 1. This replacement is useful because
11784 we often can get useful information about the form of a value (e.g., if
11785 it was produced by a shift that always produces -1 or 0) even though
11786 we don't know exactly what registers it was produced from. */
11788 static int
11789 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11791 rtx x = *loc;
11792 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11793 int len = GET_RTX_LENGTH (GET_CODE (x));
11794 int i, j;
11796 if (REG_P (x))
11798 unsigned int regno = REGNO (x);
11799 unsigned int endregno = END_REGNO (x);
11800 unsigned int j;
11802 for (j = regno; j < endregno; j++)
11804 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11805 if (rsp->last_set_invalid
11806 /* If this is a pseudo-register that was only set once and not
11807 live at the beginning of the function, it is always valid. */
11808 || (! (regno >= FIRST_PSEUDO_REGISTER
11809 && REG_N_SETS (regno) == 1
11810 && (!REGNO_REG_SET_P
11811 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11812 && rsp->last_set_label > tick))
11814 if (replace)
11815 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11816 return replace;
11820 return 1;
11822 /* If this is a memory reference, make sure that there were
11823 no stores after it that might have clobbered the value. We don't
11824 have alias info, so we assume any store invalidates it. */
11825 else if (MEM_P (x) && !MEM_READONLY_P (x)
11826 && DF_INSN_LUID (insn) <= mem_last_set)
11828 if (replace)
11829 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11830 return replace;
11833 for (i = 0; i < len; i++)
11835 if (fmt[i] == 'e')
11837 /* Check for identical subexpressions. If x contains
11838 identical subexpression we only have to traverse one of
11839 them. */
11840 if (i == 1 && ARITHMETIC_P (x))
11842 /* Note that at this point x0 has already been checked
11843 and found valid. */
11844 rtx x0 = XEXP (x, 0);
11845 rtx x1 = XEXP (x, 1);
11847 /* If x0 and x1 are identical then x is also valid. */
11848 if (x0 == x1)
11849 return 1;
11851 /* If x1 is identical to a subexpression of x0 then
11852 while checking x0, x1 has already been checked. Thus
11853 it is valid and so as x. */
11854 if (ARITHMETIC_P (x0)
11855 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11856 return 1;
11858 /* If x0 is identical to a subexpression of x1 then x is
11859 valid iff the rest of x1 is valid. */
11860 if (ARITHMETIC_P (x1)
11861 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11862 return
11863 get_last_value_validate (&XEXP (x1,
11864 x0 == XEXP (x1, 0) ? 1 : 0),
11865 insn, tick, replace);
11868 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11869 replace) == 0)
11870 return 0;
11872 else if (fmt[i] == 'E')
11873 for (j = 0; j < XVECLEN (x, i); j++)
11874 if (get_last_value_validate (&XVECEXP (x, i, j),
11875 insn, tick, replace) == 0)
11876 return 0;
11879 /* If we haven't found a reason for it to be invalid, it is valid. */
11880 return 1;
11883 /* Get the last value assigned to X, if known. Some registers
11884 in the value may be replaced with (clobber (const_int 0)) if their value
11885 is known longer known reliably. */
11887 static rtx
11888 get_last_value (const_rtx x)
11890 unsigned int regno;
11891 rtx value;
11892 reg_stat_type *rsp;
11894 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11895 then convert it to the desired mode. If this is a paradoxical SUBREG,
11896 we cannot predict what values the "extra" bits might have. */
11897 if (GET_CODE (x) == SUBREG
11898 && subreg_lowpart_p (x)
11899 && (GET_MODE_SIZE (GET_MODE (x))
11900 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11901 && (value = get_last_value (SUBREG_REG (x))) != 0)
11902 return gen_lowpart (GET_MODE (x), value);
11904 if (!REG_P (x))
11905 return 0;
11907 regno = REGNO (x);
11908 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11909 value = rsp->last_set_value;
11911 /* If we don't have a value, or if it isn't for this basic block and
11912 it's either a hard register, set more than once, or it's a live
11913 at the beginning of the function, return 0.
11915 Because if it's not live at the beginning of the function then the reg
11916 is always set before being used (is never used without being set).
11917 And, if it's set only once, and it's always set before use, then all
11918 uses must have the same last value, even if it's not from this basic
11919 block. */
11921 if (value == 0
11922 || (rsp->last_set_label < label_tick_ebb_start
11923 && (regno < FIRST_PSEUDO_REGISTER
11924 || REG_N_SETS (regno) != 1
11925 || REGNO_REG_SET_P
11926 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11927 return 0;
11929 /* If the value was set in a later insn than the ones we are processing,
11930 we can't use it even if the register was only set once. */
11931 if (rsp->last_set_label == label_tick
11932 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11933 return 0;
11935 /* If the value has all its registers valid, return it. */
11936 if (get_last_value_validate (&value, rsp->last_set,
11937 rsp->last_set_label, 0))
11938 return value;
11940 /* Otherwise, make a copy and replace any invalid register with
11941 (clobber (const_int 0)). If that fails for some reason, return 0. */
11943 value = copy_rtx (value);
11944 if (get_last_value_validate (&value, rsp->last_set,
11945 rsp->last_set_label, 1))
11946 return value;
11948 return 0;
11951 /* Return nonzero if expression X refers to a REG or to memory
11952 that is set in an instruction more recent than FROM_LUID. */
11954 static int
11955 use_crosses_set_p (const_rtx x, int from_luid)
11957 const char *fmt;
11958 int i;
11959 enum rtx_code code = GET_CODE (x);
11961 if (code == REG)
11963 unsigned int regno = REGNO (x);
11964 unsigned endreg = END_REGNO (x);
11966 #ifdef PUSH_ROUNDING
11967 /* Don't allow uses of the stack pointer to be moved,
11968 because we don't know whether the move crosses a push insn. */
11969 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11970 return 1;
11971 #endif
11972 for (; regno < endreg; regno++)
11974 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11975 if (rsp->last_set
11976 && rsp->last_set_label == label_tick
11977 && DF_INSN_LUID (rsp->last_set) > from_luid)
11978 return 1;
11980 return 0;
11983 if (code == MEM && mem_last_set > from_luid)
11984 return 1;
11986 fmt = GET_RTX_FORMAT (code);
11988 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11990 if (fmt[i] == 'E')
11992 int j;
11993 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11994 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11995 return 1;
11997 else if (fmt[i] == 'e'
11998 && use_crosses_set_p (XEXP (x, i), from_luid))
11999 return 1;
12001 return 0;
12004 /* Define three variables used for communication between the following
12005 routines. */
12007 static unsigned int reg_dead_regno, reg_dead_endregno;
12008 static int reg_dead_flag;
12010 /* Function called via note_stores from reg_dead_at_p.
12012 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12013 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12015 static void
12016 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12018 unsigned int regno, endregno;
12020 if (!REG_P (dest))
12021 return;
12023 regno = REGNO (dest);
12024 endregno = END_REGNO (dest);
12025 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12026 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12029 /* Return nonzero if REG is known to be dead at INSN.
12031 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12032 referencing REG, it is dead. If we hit a SET referencing REG, it is
12033 live. Otherwise, see if it is live or dead at the start of the basic
12034 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12035 must be assumed to be always live. */
12037 static int
12038 reg_dead_at_p (rtx reg, rtx insn)
12040 basic_block block;
12041 unsigned int i;
12043 /* Set variables for reg_dead_at_p_1. */
12044 reg_dead_regno = REGNO (reg);
12045 reg_dead_endregno = END_REGNO (reg);
12047 reg_dead_flag = 0;
12049 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12050 we allow the machine description to decide whether use-and-clobber
12051 patterns are OK. */
12052 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12054 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12055 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12056 return 0;
12059 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12060 beginning of basic block. */
12061 block = BLOCK_FOR_INSN (insn);
12062 for (;;)
12064 if (INSN_P (insn))
12066 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12067 if (reg_dead_flag)
12068 return reg_dead_flag == 1 ? 1 : 0;
12070 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12071 return 1;
12074 if (insn == BB_HEAD (block))
12075 break;
12077 insn = PREV_INSN (insn);
12080 /* Look at live-in sets for the basic block that we were in. */
12081 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12082 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12083 return 0;
12085 return 1;
12088 /* Note hard registers in X that are used. */
12090 static void
12091 mark_used_regs_combine (rtx x)
12093 RTX_CODE code = GET_CODE (x);
12094 unsigned int regno;
12095 int i;
12097 switch (code)
12099 case LABEL_REF:
12100 case SYMBOL_REF:
12101 case CONST_INT:
12102 case CONST:
12103 case CONST_DOUBLE:
12104 case CONST_VECTOR:
12105 case PC:
12106 case ADDR_VEC:
12107 case ADDR_DIFF_VEC:
12108 case ASM_INPUT:
12109 #ifdef HAVE_cc0
12110 /* CC0 must die in the insn after it is set, so we don't need to take
12111 special note of it here. */
12112 case CC0:
12113 #endif
12114 return;
12116 case CLOBBER:
12117 /* If we are clobbering a MEM, mark any hard registers inside the
12118 address as used. */
12119 if (MEM_P (XEXP (x, 0)))
12120 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12121 return;
12123 case REG:
12124 regno = REGNO (x);
12125 /* A hard reg in a wide mode may really be multiple registers.
12126 If so, mark all of them just like the first. */
12127 if (regno < FIRST_PSEUDO_REGISTER)
12129 /* None of this applies to the stack, frame or arg pointers. */
12130 if (regno == STACK_POINTER_REGNUM
12131 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12132 || regno == HARD_FRAME_POINTER_REGNUM
12133 #endif
12134 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12135 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12136 #endif
12137 || regno == FRAME_POINTER_REGNUM)
12138 return;
12140 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12142 return;
12144 case SET:
12146 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12147 the address. */
12148 rtx testreg = SET_DEST (x);
12150 while (GET_CODE (testreg) == SUBREG
12151 || GET_CODE (testreg) == ZERO_EXTRACT
12152 || GET_CODE (testreg) == STRICT_LOW_PART)
12153 testreg = XEXP (testreg, 0);
12155 if (MEM_P (testreg))
12156 mark_used_regs_combine (XEXP (testreg, 0));
12158 mark_used_regs_combine (SET_SRC (x));
12160 return;
12162 default:
12163 break;
12166 /* Recursively scan the operands of this expression. */
12169 const char *fmt = GET_RTX_FORMAT (code);
12171 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12173 if (fmt[i] == 'e')
12174 mark_used_regs_combine (XEXP (x, i));
12175 else if (fmt[i] == 'E')
12177 int j;
12179 for (j = 0; j < XVECLEN (x, i); j++)
12180 mark_used_regs_combine (XVECEXP (x, i, j));
12186 /* Remove register number REGNO from the dead registers list of INSN.
12188 Return the note used to record the death, if there was one. */
12191 remove_death (unsigned int regno, rtx insn)
12193 rtx note = find_regno_note (insn, REG_DEAD, regno);
12195 if (note)
12196 remove_note (insn, note);
12198 return note;
12201 /* For each register (hardware or pseudo) used within expression X, if its
12202 death is in an instruction with luid between FROM_LUID (inclusive) and
12203 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12204 list headed by PNOTES.
12206 That said, don't move registers killed by maybe_kill_insn.
12208 This is done when X is being merged by combination into TO_INSN. These
12209 notes will then be distributed as needed. */
12211 static void
12212 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12213 rtx *pnotes)
12215 const char *fmt;
12216 int len, i;
12217 enum rtx_code code = GET_CODE (x);
12219 if (code == REG)
12221 unsigned int regno = REGNO (x);
12222 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12224 /* Don't move the register if it gets killed in between from and to. */
12225 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12226 && ! reg_referenced_p (x, maybe_kill_insn))
12227 return;
12229 if (where_dead
12230 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12231 && DF_INSN_LUID (where_dead) >= from_luid
12232 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12234 rtx note = remove_death (regno, where_dead);
12236 /* It is possible for the call above to return 0. This can occur
12237 when last_death points to I2 or I1 that we combined with.
12238 In that case make a new note.
12240 We must also check for the case where X is a hard register
12241 and NOTE is a death note for a range of hard registers
12242 including X. In that case, we must put REG_DEAD notes for
12243 the remaining registers in place of NOTE. */
12245 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12246 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12247 > GET_MODE_SIZE (GET_MODE (x))))
12249 unsigned int deadregno = REGNO (XEXP (note, 0));
12250 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12251 unsigned int ourend = END_HARD_REGNO (x);
12252 unsigned int i;
12254 for (i = deadregno; i < deadend; i++)
12255 if (i < regno || i >= ourend)
12256 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12259 /* If we didn't find any note, or if we found a REG_DEAD note that
12260 covers only part of the given reg, and we have a multi-reg hard
12261 register, then to be safe we must check for REG_DEAD notes
12262 for each register other than the first. They could have
12263 their own REG_DEAD notes lying around. */
12264 else if ((note == 0
12265 || (note != 0
12266 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12267 < GET_MODE_SIZE (GET_MODE (x)))))
12268 && regno < FIRST_PSEUDO_REGISTER
12269 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12271 unsigned int ourend = END_HARD_REGNO (x);
12272 unsigned int i, offset;
12273 rtx oldnotes = 0;
12275 if (note)
12276 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12277 else
12278 offset = 1;
12280 for (i = regno + offset; i < ourend; i++)
12281 move_deaths (regno_reg_rtx[i],
12282 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12285 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12287 XEXP (note, 1) = *pnotes;
12288 *pnotes = note;
12290 else
12291 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12294 return;
12297 else if (GET_CODE (x) == SET)
12299 rtx dest = SET_DEST (x);
12301 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12303 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12304 that accesses one word of a multi-word item, some
12305 piece of everything register in the expression is used by
12306 this insn, so remove any old death. */
12307 /* ??? So why do we test for equality of the sizes? */
12309 if (GET_CODE (dest) == ZERO_EXTRACT
12310 || GET_CODE (dest) == STRICT_LOW_PART
12311 || (GET_CODE (dest) == SUBREG
12312 && (((GET_MODE_SIZE (GET_MODE (dest))
12313 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12314 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12315 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12317 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12318 return;
12321 /* If this is some other SUBREG, we know it replaces the entire
12322 value, so use that as the destination. */
12323 if (GET_CODE (dest) == SUBREG)
12324 dest = SUBREG_REG (dest);
12326 /* If this is a MEM, adjust deaths of anything used in the address.
12327 For a REG (the only other possibility), the entire value is
12328 being replaced so the old value is not used in this insn. */
12330 if (MEM_P (dest))
12331 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12332 to_insn, pnotes);
12333 return;
12336 else if (GET_CODE (x) == CLOBBER)
12337 return;
12339 len = GET_RTX_LENGTH (code);
12340 fmt = GET_RTX_FORMAT (code);
12342 for (i = 0; i < len; i++)
12344 if (fmt[i] == 'E')
12346 int j;
12347 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12348 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12349 to_insn, pnotes);
12351 else if (fmt[i] == 'e')
12352 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12356 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12357 pattern of an insn. X must be a REG. */
12359 static int
12360 reg_bitfield_target_p (rtx x, rtx body)
12362 int i;
12364 if (GET_CODE (body) == SET)
12366 rtx dest = SET_DEST (body);
12367 rtx target;
12368 unsigned int regno, tregno, endregno, endtregno;
12370 if (GET_CODE (dest) == ZERO_EXTRACT)
12371 target = XEXP (dest, 0);
12372 else if (GET_CODE (dest) == STRICT_LOW_PART)
12373 target = SUBREG_REG (XEXP (dest, 0));
12374 else
12375 return 0;
12377 if (GET_CODE (target) == SUBREG)
12378 target = SUBREG_REG (target);
12380 if (!REG_P (target))
12381 return 0;
12383 tregno = REGNO (target), regno = REGNO (x);
12384 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12385 return target == x;
12387 endtregno = end_hard_regno (GET_MODE (target), tregno);
12388 endregno = end_hard_regno (GET_MODE (x), regno);
12390 return endregno > tregno && regno < endtregno;
12393 else if (GET_CODE (body) == PARALLEL)
12394 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12395 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12396 return 1;
12398 return 0;
12401 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12402 as appropriate. I3 and I2 are the insns resulting from the combination
12403 insns including FROM (I2 may be zero).
12405 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12406 not need REG_DEAD notes because they are being substituted for. This
12407 saves searching in the most common cases.
12409 Each note in the list is either ignored or placed on some insns, depending
12410 on the type of note. */
12412 static void
12413 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12414 rtx elim_i1)
12416 rtx note, next_note;
12417 rtx tem;
12419 for (note = notes; note; note = next_note)
12421 rtx place = 0, place2 = 0;
12423 next_note = XEXP (note, 1);
12424 switch (REG_NOTE_KIND (note))
12426 case REG_BR_PROB:
12427 case REG_BR_PRED:
12428 /* Doesn't matter much where we put this, as long as it's somewhere.
12429 It is preferable to keep these notes on branches, which is most
12430 likely to be i3. */
12431 place = i3;
12432 break;
12434 case REG_VALUE_PROFILE:
12435 /* Just get rid of this note, as it is unused later anyway. */
12436 break;
12438 case REG_NON_LOCAL_GOTO:
12439 if (JUMP_P (i3))
12440 place = i3;
12441 else
12443 gcc_assert (i2 && JUMP_P (i2));
12444 place = i2;
12446 break;
12448 case REG_EH_REGION:
12449 /* These notes must remain with the call or trapping instruction. */
12450 if (CALL_P (i3))
12451 place = i3;
12452 else if (i2 && CALL_P (i2))
12453 place = i2;
12454 else
12456 gcc_assert (flag_non_call_exceptions);
12457 if (may_trap_p (i3))
12458 place = i3;
12459 else if (i2 && may_trap_p (i2))
12460 place = i2;
12461 /* ??? Otherwise assume we've combined things such that we
12462 can now prove that the instructions can't trap. Drop the
12463 note in this case. */
12465 break;
12467 case REG_NORETURN:
12468 case REG_SETJMP:
12469 /* These notes must remain with the call. It should not be
12470 possible for both I2 and I3 to be a call. */
12471 if (CALL_P (i3))
12472 place = i3;
12473 else
12475 gcc_assert (i2 && CALL_P (i2));
12476 place = i2;
12478 break;
12480 case REG_UNUSED:
12481 /* Any clobbers for i3 may still exist, and so we must process
12482 REG_UNUSED notes from that insn.
12484 Any clobbers from i2 or i1 can only exist if they were added by
12485 recog_for_combine. In that case, recog_for_combine created the
12486 necessary REG_UNUSED notes. Trying to keep any original
12487 REG_UNUSED notes from these insns can cause incorrect output
12488 if it is for the same register as the original i3 dest.
12489 In that case, we will notice that the register is set in i3,
12490 and then add a REG_UNUSED note for the destination of i3, which
12491 is wrong. However, it is possible to have REG_UNUSED notes from
12492 i2 or i1 for register which were both used and clobbered, so
12493 we keep notes from i2 or i1 if they will turn into REG_DEAD
12494 notes. */
12496 /* If this register is set or clobbered in I3, put the note there
12497 unless there is one already. */
12498 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12500 if (from_insn != i3)
12501 break;
12503 if (! (REG_P (XEXP (note, 0))
12504 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12505 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12506 place = i3;
12508 /* Otherwise, if this register is used by I3, then this register
12509 now dies here, so we must put a REG_DEAD note here unless there
12510 is one already. */
12511 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12512 && ! (REG_P (XEXP (note, 0))
12513 ? find_regno_note (i3, REG_DEAD,
12514 REGNO (XEXP (note, 0)))
12515 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12517 PUT_REG_NOTE_KIND (note, REG_DEAD);
12518 place = i3;
12520 break;
12522 case REG_EQUAL:
12523 case REG_EQUIV:
12524 case REG_NOALIAS:
12525 /* These notes say something about results of an insn. We can
12526 only support them if they used to be on I3 in which case they
12527 remain on I3. Otherwise they are ignored.
12529 If the note refers to an expression that is not a constant, we
12530 must also ignore the note since we cannot tell whether the
12531 equivalence is still true. It might be possible to do
12532 slightly better than this (we only have a problem if I2DEST
12533 or I1DEST is present in the expression), but it doesn't
12534 seem worth the trouble. */
12536 if (from_insn == i3
12537 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12538 place = i3;
12539 break;
12541 case REG_INC:
12542 /* These notes say something about how a register is used. They must
12543 be present on any use of the register in I2 or I3. */
12544 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12545 place = i3;
12547 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12549 if (place)
12550 place2 = i2;
12551 else
12552 place = i2;
12554 break;
12556 case REG_LABEL_TARGET:
12557 case REG_LABEL_OPERAND:
12558 /* This can show up in several ways -- either directly in the
12559 pattern, or hidden off in the constant pool with (or without?)
12560 a REG_EQUAL note. */
12561 /* ??? Ignore the without-reg_equal-note problem for now. */
12562 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12563 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12564 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12565 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12566 place = i3;
12568 if (i2
12569 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12570 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12571 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12572 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12574 if (place)
12575 place2 = i2;
12576 else
12577 place = i2;
12580 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12581 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12582 there. */
12583 if (place && JUMP_P (place)
12584 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12585 && (JUMP_LABEL (place) == NULL
12586 || JUMP_LABEL (place) == XEXP (note, 0)))
12588 rtx label = JUMP_LABEL (place);
12590 if (!label)
12591 JUMP_LABEL (place) = XEXP (note, 0);
12592 else if (LABEL_P (label))
12593 LABEL_NUSES (label)--;
12596 if (place2 && JUMP_P (place2)
12597 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12598 && (JUMP_LABEL (place2) == NULL
12599 || JUMP_LABEL (place2) == XEXP (note, 0)))
12601 rtx label = JUMP_LABEL (place2);
12603 if (!label)
12604 JUMP_LABEL (place2) = XEXP (note, 0);
12605 else if (LABEL_P (label))
12606 LABEL_NUSES (label)--;
12607 place2 = 0;
12609 break;
12611 case REG_NONNEG:
12612 /* This note says something about the value of a register prior
12613 to the execution of an insn. It is too much trouble to see
12614 if the note is still correct in all situations. It is better
12615 to simply delete it. */
12616 break;
12618 case REG_DEAD:
12619 /* If we replaced the right hand side of FROM_INSN with a
12620 REG_EQUAL note, the original use of the dying register
12621 will not have been combined into I3 and I2. In such cases,
12622 FROM_INSN is guaranteed to be the first of the combined
12623 instructions, so we simply need to search back before
12624 FROM_INSN for the previous use or set of this register,
12625 then alter the notes there appropriately.
12627 If the register is used as an input in I3, it dies there.
12628 Similarly for I2, if it is nonzero and adjacent to I3.
12630 If the register is not used as an input in either I3 or I2
12631 and it is not one of the registers we were supposed to eliminate,
12632 there are two possibilities. We might have a non-adjacent I2
12633 or we might have somehow eliminated an additional register
12634 from a computation. For example, we might have had A & B where
12635 we discover that B will always be zero. In this case we will
12636 eliminate the reference to A.
12638 In both cases, we must search to see if we can find a previous
12639 use of A and put the death note there. */
12641 if (from_insn
12642 && from_insn == i2mod
12643 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12644 tem = from_insn;
12645 else
12647 if (from_insn
12648 && CALL_P (from_insn)
12649 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12650 place = from_insn;
12651 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12652 place = i3;
12653 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12654 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12655 place = i2;
12656 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12657 && !(i2mod
12658 && reg_overlap_mentioned_p (XEXP (note, 0),
12659 i2mod_old_rhs)))
12660 || rtx_equal_p (XEXP (note, 0), elim_i1))
12661 break;
12662 tem = i3;
12665 if (place == 0)
12667 basic_block bb = this_basic_block;
12669 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12671 if (! INSN_P (tem))
12673 if (tem == BB_HEAD (bb))
12674 break;
12675 continue;
12678 /* If the register is being set at TEM, see if that is all
12679 TEM is doing. If so, delete TEM. Otherwise, make this
12680 into a REG_UNUSED note instead. Don't delete sets to
12681 global register vars. */
12682 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12683 || !global_regs[REGNO (XEXP (note, 0))])
12684 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12686 rtx set = single_set (tem);
12687 rtx inner_dest = 0;
12688 #ifdef HAVE_cc0
12689 rtx cc0_setter = NULL_RTX;
12690 #endif
12692 if (set != 0)
12693 for (inner_dest = SET_DEST (set);
12694 (GET_CODE (inner_dest) == STRICT_LOW_PART
12695 || GET_CODE (inner_dest) == SUBREG
12696 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12697 inner_dest = XEXP (inner_dest, 0))
12700 /* Verify that it was the set, and not a clobber that
12701 modified the register.
12703 CC0 targets must be careful to maintain setter/user
12704 pairs. If we cannot delete the setter due to side
12705 effects, mark the user with an UNUSED note instead
12706 of deleting it. */
12708 if (set != 0 && ! side_effects_p (SET_SRC (set))
12709 && rtx_equal_p (XEXP (note, 0), inner_dest)
12710 #ifdef HAVE_cc0
12711 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12712 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12713 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12714 #endif
12717 /* Move the notes and links of TEM elsewhere.
12718 This might delete other dead insns recursively.
12719 First set the pattern to something that won't use
12720 any register. */
12721 rtx old_notes = REG_NOTES (tem);
12723 PATTERN (tem) = pc_rtx;
12724 REG_NOTES (tem) = NULL;
12726 distribute_notes (old_notes, tem, tem, NULL_RTX,
12727 NULL_RTX, NULL_RTX);
12728 distribute_links (LOG_LINKS (tem));
12730 SET_INSN_DELETED (tem);
12731 if (tem == i2)
12732 i2 = NULL_RTX;
12734 #ifdef HAVE_cc0
12735 /* Delete the setter too. */
12736 if (cc0_setter)
12738 PATTERN (cc0_setter) = pc_rtx;
12739 old_notes = REG_NOTES (cc0_setter);
12740 REG_NOTES (cc0_setter) = NULL;
12742 distribute_notes (old_notes, cc0_setter,
12743 cc0_setter, NULL_RTX,
12744 NULL_RTX, NULL_RTX);
12745 distribute_links (LOG_LINKS (cc0_setter));
12747 SET_INSN_DELETED (cc0_setter);
12748 if (cc0_setter == i2)
12749 i2 = NULL_RTX;
12751 #endif
12753 else
12755 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12757 /* If there isn't already a REG_UNUSED note, put one
12758 here. Do not place a REG_DEAD note, even if
12759 the register is also used here; that would not
12760 match the algorithm used in lifetime analysis
12761 and can cause the consistency check in the
12762 scheduler to fail. */
12763 if (! find_regno_note (tem, REG_UNUSED,
12764 REGNO (XEXP (note, 0))))
12765 place = tem;
12766 break;
12769 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12770 || (CALL_P (tem)
12771 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12773 place = tem;
12775 /* If we are doing a 3->2 combination, and we have a
12776 register which formerly died in i3 and was not used
12777 by i2, which now no longer dies in i3 and is used in
12778 i2 but does not die in i2, and place is between i2
12779 and i3, then we may need to move a link from place to
12780 i2. */
12781 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12782 && from_insn
12783 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12784 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12786 rtx links = LOG_LINKS (place);
12787 LOG_LINKS (place) = 0;
12788 distribute_links (links);
12790 break;
12793 if (tem == BB_HEAD (bb))
12794 break;
12799 /* If the register is set or already dead at PLACE, we needn't do
12800 anything with this note if it is still a REG_DEAD note.
12801 We check here if it is set at all, not if is it totally replaced,
12802 which is what `dead_or_set_p' checks, so also check for it being
12803 set partially. */
12805 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12807 unsigned int regno = REGNO (XEXP (note, 0));
12808 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12810 if (dead_or_set_p (place, XEXP (note, 0))
12811 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12813 /* Unless the register previously died in PLACE, clear
12814 last_death. [I no longer understand why this is
12815 being done.] */
12816 if (rsp->last_death != place)
12817 rsp->last_death = 0;
12818 place = 0;
12820 else
12821 rsp->last_death = place;
12823 /* If this is a death note for a hard reg that is occupying
12824 multiple registers, ensure that we are still using all
12825 parts of the object. If we find a piece of the object
12826 that is unused, we must arrange for an appropriate REG_DEAD
12827 note to be added for it. However, we can't just emit a USE
12828 and tag the note to it, since the register might actually
12829 be dead; so we recourse, and the recursive call then finds
12830 the previous insn that used this register. */
12832 if (place && regno < FIRST_PSEUDO_REGISTER
12833 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12835 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12836 int all_used = 1;
12837 unsigned int i;
12839 for (i = regno; i < endregno; i++)
12840 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12841 && ! find_regno_fusage (place, USE, i))
12842 || dead_or_set_regno_p (place, i))
12843 all_used = 0;
12845 if (! all_used)
12847 /* Put only REG_DEAD notes for pieces that are
12848 not already dead or set. */
12850 for (i = regno; i < endregno;
12851 i += hard_regno_nregs[i][reg_raw_mode[i]])
12853 rtx piece = regno_reg_rtx[i];
12854 basic_block bb = this_basic_block;
12856 if (! dead_or_set_p (place, piece)
12857 && ! reg_bitfield_target_p (piece,
12858 PATTERN (place)))
12860 rtx new_note = alloc_reg_note (REG_DEAD, piece,
12861 NULL_RTX);
12863 distribute_notes (new_note, place, place,
12864 NULL_RTX, NULL_RTX, NULL_RTX);
12866 else if (! refers_to_regno_p (i, i + 1,
12867 PATTERN (place), 0)
12868 && ! find_regno_fusage (place, USE, i))
12869 for (tem = PREV_INSN (place); ;
12870 tem = PREV_INSN (tem))
12872 if (! INSN_P (tem))
12874 if (tem == BB_HEAD (bb))
12875 break;
12876 continue;
12878 if (dead_or_set_p (tem, piece)
12879 || reg_bitfield_target_p (piece,
12880 PATTERN (tem)))
12882 add_reg_note (tem, REG_UNUSED, piece);
12883 break;
12889 place = 0;
12893 break;
12895 default:
12896 /* Any other notes should not be present at this point in the
12897 compilation. */
12898 gcc_unreachable ();
12901 if (place)
12903 XEXP (note, 1) = REG_NOTES (place);
12904 REG_NOTES (place) = note;
12907 if (place2)
12908 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
12912 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12913 I3, I2, and I1 to new locations. This is also called to add a link
12914 pointing at I3 when I3's destination is changed. */
12916 static void
12917 distribute_links (rtx links)
12919 rtx link, next_link;
12921 for (link = links; link; link = next_link)
12923 rtx place = 0;
12924 rtx insn;
12925 rtx set, reg;
12927 next_link = XEXP (link, 1);
12929 /* If the insn that this link points to is a NOTE or isn't a single
12930 set, ignore it. In the latter case, it isn't clear what we
12931 can do other than ignore the link, since we can't tell which
12932 register it was for. Such links wouldn't be used by combine
12933 anyway.
12935 It is not possible for the destination of the target of the link to
12936 have been changed by combine. The only potential of this is if we
12937 replace I3, I2, and I1 by I3 and I2. But in that case the
12938 destination of I2 also remains unchanged. */
12940 if (NOTE_P (XEXP (link, 0))
12941 || (set = single_set (XEXP (link, 0))) == 0)
12942 continue;
12944 reg = SET_DEST (set);
12945 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12946 || GET_CODE (reg) == STRICT_LOW_PART)
12947 reg = XEXP (reg, 0);
12949 /* A LOG_LINK is defined as being placed on the first insn that uses
12950 a register and points to the insn that sets the register. Start
12951 searching at the next insn after the target of the link and stop
12952 when we reach a set of the register or the end of the basic block.
12954 Note that this correctly handles the link that used to point from
12955 I3 to I2. Also note that not much searching is typically done here
12956 since most links don't point very far away. */
12958 for (insn = NEXT_INSN (XEXP (link, 0));
12959 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12960 || BB_HEAD (this_basic_block->next_bb) != insn));
12961 insn = NEXT_INSN (insn))
12962 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12964 if (reg_referenced_p (reg, PATTERN (insn)))
12965 place = insn;
12966 break;
12968 else if (CALL_P (insn)
12969 && find_reg_fusage (insn, USE, reg))
12971 place = insn;
12972 break;
12974 else if (INSN_P (insn) && reg_set_p (reg, insn))
12975 break;
12977 /* If we found a place to put the link, place it there unless there
12978 is already a link to the same insn as LINK at that point. */
12980 if (place)
12982 rtx link2;
12984 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12985 if (XEXP (link2, 0) == XEXP (link, 0))
12986 break;
12988 if (link2 == 0)
12990 XEXP (link, 1) = LOG_LINKS (place);
12991 LOG_LINKS (place) = link;
12993 /* Set added_links_insn to the earliest insn we added a
12994 link to. */
12995 if (added_links_insn == 0
12996 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12997 added_links_insn = place;
13003 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13004 Check whether the expression pointer to by LOC is a register or
13005 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13006 Otherwise return zero. */
13008 static int
13009 unmentioned_reg_p_1 (rtx *loc, void *expr)
13011 rtx x = *loc;
13013 if (x != NULL_RTX
13014 && (REG_P (x) || MEM_P (x))
13015 && ! reg_mentioned_p (x, (rtx) expr))
13016 return 1;
13017 return 0;
13020 /* Check for any register or memory mentioned in EQUIV that is not
13021 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13022 of EXPR where some registers may have been replaced by constants. */
13024 static bool
13025 unmentioned_reg_p (rtx equiv, rtx expr)
13027 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13030 void
13031 dump_combine_stats (FILE *file)
13033 fprintf
13034 (file,
13035 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13036 combine_attempts, combine_merges, combine_extras, combine_successes);
13039 void
13040 dump_combine_total_stats (FILE *file)
13042 fprintf
13043 (file,
13044 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13045 total_attempts, total_merges, total_extras, total_successes);
13048 static bool
13049 gate_handle_combine (void)
13051 return (optimize > 0);
13054 /* Try combining insns through substitution. */
13055 static unsigned int
13056 rest_of_handle_combine (void)
13058 int rebuild_jump_labels_after_combine;
13060 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13061 df_note_add_problem ();
13062 df_analyze ();
13064 regstat_init_n_sets_and_refs ();
13066 rebuild_jump_labels_after_combine
13067 = combine_instructions (get_insns (), max_reg_num ());
13069 /* Combining insns may have turned an indirect jump into a
13070 direct jump. Rebuild the JUMP_LABEL fields of jumping
13071 instructions. */
13072 if (rebuild_jump_labels_after_combine)
13074 timevar_push (TV_JUMP);
13075 rebuild_jump_labels (get_insns ());
13076 cleanup_cfg (0);
13077 timevar_pop (TV_JUMP);
13080 regstat_free_n_sets_and_refs ();
13081 return 0;
13084 struct rtl_opt_pass pass_combine =
13087 RTL_PASS,
13088 "combine", /* name */
13089 gate_handle_combine, /* gate */
13090 rest_of_handle_combine, /* execute */
13091 NULL, /* sub */
13092 NULL, /* next */
13093 0, /* static_pass_number */
13094 TV_COMBINE, /* tv_id */
13095 PROP_cfglayout, /* properties_required */
13096 0, /* properties_provided */
13097 0, /* properties_destroyed */
13098 0, /* todo_flags_start */
13099 TODO_dump_func |
13100 TODO_df_finish | TODO_verify_rtl_sharing |
13101 TODO_ggc_collect, /* todo_flags_finish */