* tree-vect-loop-manip.c (vect_do_peeling): Do not use
[official-gcc.git] / gcc / ada / sem_util.adb
blob136505f23d583de132084e0e0372a39140b9809c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Treepr; -- ???For debugging code below
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Casing; use Casing;
31 with Checks; use Checks;
32 with Debug; use Debug;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Erroutc; use Erroutc;
36 with Exp_Ch11; use Exp_Ch11;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Lib; use Lib;
42 with Lib.Xref; use Lib.Xref;
43 with Namet.Sp; use Namet.Sp;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Output; use Output;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sem; use Sem;
51 with Sem_Aux; use Sem_Aux;
52 with Sem_Attr; use Sem_Attr;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Disp; use Sem_Disp;
56 with Sem_Elab; use Sem_Elab;
57 with Sem_Eval; use Sem_Eval;
58 with Sem_Prag; use Sem_Prag;
59 with Sem_Res; use Sem_Res;
60 with Sem_Warn; use Sem_Warn;
61 with Sem_Type; use Sem_Type;
62 with Sinfo; use Sinfo;
63 with Sinput; use Sinput;
64 with Stand; use Stand;
65 with Style;
66 with Stringt; use Stringt;
67 with Targparm; use Targparm;
68 with Tbuild; use Tbuild;
69 with Ttypes; use Ttypes;
70 with Uname; use Uname;
72 with GNAT.HTable; use GNAT.HTable;
74 package body Sem_Util is
76 -----------------------
77 -- Local Subprograms --
78 -----------------------
80 function Build_Component_Subtype
81 (C : List_Id;
82 Loc : Source_Ptr;
83 T : Entity_Id) return Node_Id;
84 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
85 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
86 -- Loc is the source location, T is the original subtype.
88 function Has_Enabled_Property
89 (Item_Id : Entity_Id;
90 Property : Name_Id) return Boolean;
91 -- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
92 -- Determine whether an abstract state or a variable denoted by entity
93 -- Item_Id has enabled property Property.
95 function Has_Null_Extension (T : Entity_Id) return Boolean;
96 -- T is a derived tagged type. Check whether the type extension is null.
97 -- If the parent type is fully initialized, T can be treated as such.
99 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
100 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
101 -- with discriminants whose default values are static, examine only the
102 -- components in the selected variant to determine whether all of them
103 -- have a default.
105 type Null_Status_Kind is
106 (Is_Null,
107 -- This value indicates that a subexpression is known to have a null
108 -- value at compile time.
110 Is_Non_Null,
111 -- This value indicates that a subexpression is known to have a non-null
112 -- value at compile time.
114 Unknown);
115 -- This value indicates that it cannot be determined at compile time
116 -- whether a subexpression yields a null or non-null value.
118 function Null_Status (N : Node_Id) return Null_Status_Kind;
119 -- Determine whether subexpression N of an access type yields a null value,
120 -- a non-null value, or the value cannot be determined at compile time. The
121 -- routine does not take simple flow diagnostics into account, it relies on
122 -- static facts such as the presence of null exclusions.
124 function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
125 function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
126 -- ???We retain the old and new algorithms for Requires_Transient_Scope for
127 -- the time being. New_Requires_Transient_Scope is used by default; the
128 -- debug switch -gnatdQ can be used to do Old_Requires_Transient_Scope
129 -- instead. The intent is to use this temporarily to measure before/after
130 -- efficiency. Note: when this temporary code is removed, the documentation
131 -- of dQ in debug.adb should be removed.
133 procedure Results_Differ
134 (Id : Entity_Id;
135 Old_Val : Boolean;
136 New_Val : Boolean);
137 -- ???Debugging code. Called when the Old_Val and New_Val differ. This
138 -- routine will be removed eventially when New_Requires_Transient_Scope
139 -- becomes Requires_Transient_Scope and Old_Requires_Transient_Scope is
140 -- eliminated.
142 function Subprogram_Name (N : Node_Id) return String;
143 -- Return the fully qualified name of the enclosing subprogram for the
144 -- given node N, with file:line:col information appended, e.g.
145 -- "subp:file:line:col", corresponding to the source location of the
146 -- body of the subprogram.
148 ------------------------------
149 -- Abstract_Interface_List --
150 ------------------------------
152 function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
153 Nod : Node_Id;
155 begin
156 if Is_Concurrent_Type (Typ) then
158 -- If we are dealing with a synchronized subtype, go to the base
159 -- type, whose declaration has the interface list.
161 -- Shouldn't this be Declaration_Node???
163 Nod := Parent (Base_Type (Typ));
165 if Nkind (Nod) = N_Full_Type_Declaration then
166 return Empty_List;
167 end if;
169 elsif Ekind (Typ) = E_Record_Type_With_Private then
170 if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
171 Nod := Type_Definition (Parent (Typ));
173 elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
174 if Present (Full_View (Typ))
175 and then
176 Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration
177 then
178 Nod := Type_Definition (Parent (Full_View (Typ)));
180 -- If the full-view is not available we cannot do anything else
181 -- here (the source has errors).
183 else
184 return Empty_List;
185 end if;
187 -- Support for generic formals with interfaces is still missing ???
189 elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
190 return Empty_List;
192 else
193 pragma Assert
194 (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
195 Nod := Parent (Typ);
196 end if;
198 elsif Ekind (Typ) = E_Record_Subtype then
199 Nod := Type_Definition (Parent (Etype (Typ)));
201 elsif Ekind (Typ) = E_Record_Subtype_With_Private then
203 -- Recurse, because parent may still be a private extension. Also
204 -- note that the full view of the subtype or the full view of its
205 -- base type may (both) be unavailable.
207 return Abstract_Interface_List (Etype (Typ));
209 elsif Ekind (Typ) = E_Record_Type then
210 if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
211 Nod := Formal_Type_Definition (Parent (Typ));
212 else
213 Nod := Type_Definition (Parent (Typ));
214 end if;
216 -- Otherwise the type is of a kind which does not implement interfaces
218 else
219 return Empty_List;
220 end if;
222 return Interface_List (Nod);
223 end Abstract_Interface_List;
225 --------------------------------
226 -- Add_Access_Type_To_Process --
227 --------------------------------
229 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
230 L : Elist_Id;
232 begin
233 Ensure_Freeze_Node (E);
234 L := Access_Types_To_Process (Freeze_Node (E));
236 if No (L) then
237 L := New_Elmt_List;
238 Set_Access_Types_To_Process (Freeze_Node (E), L);
239 end if;
241 Append_Elmt (A, L);
242 end Add_Access_Type_To_Process;
244 --------------------------
245 -- Add_Block_Identifier --
246 --------------------------
248 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id) is
249 Loc : constant Source_Ptr := Sloc (N);
251 begin
252 pragma Assert (Nkind (N) = N_Block_Statement);
254 -- The block already has a label, return its entity
256 if Present (Identifier (N)) then
257 Id := Entity (Identifier (N));
259 -- Create a new block label and set its attributes
261 else
262 Id := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
263 Set_Etype (Id, Standard_Void_Type);
264 Set_Parent (Id, N);
266 Set_Identifier (N, New_Occurrence_Of (Id, Loc));
267 Set_Block_Node (Id, Identifier (N));
268 end if;
269 end Add_Block_Identifier;
271 ----------------------------
272 -- Add_Global_Declaration --
273 ----------------------------
275 procedure Add_Global_Declaration (N : Node_Id) is
276 Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
278 begin
279 if No (Declarations (Aux_Node)) then
280 Set_Declarations (Aux_Node, New_List);
281 end if;
283 Append_To (Declarations (Aux_Node), N);
284 Analyze (N);
285 end Add_Global_Declaration;
287 --------------------------------
288 -- Address_Integer_Convert_OK --
289 --------------------------------
291 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean is
292 begin
293 if Allow_Integer_Address
294 and then ((Is_Descendant_Of_Address (T1)
295 and then Is_Private_Type (T1)
296 and then Is_Integer_Type (T2))
297 or else
298 (Is_Descendant_Of_Address (T2)
299 and then Is_Private_Type (T2)
300 and then Is_Integer_Type (T1)))
301 then
302 return True;
303 else
304 return False;
305 end if;
306 end Address_Integer_Convert_OK;
308 -------------------
309 -- Address_Value --
310 -------------------
312 function Address_Value (N : Node_Id) return Node_Id is
313 Expr : Node_Id := N;
315 begin
316 loop
317 -- For constant, get constant expression
319 if Is_Entity_Name (Expr)
320 and then Ekind (Entity (Expr)) = E_Constant
321 then
322 Expr := Constant_Value (Entity (Expr));
324 -- For unchecked conversion, get result to convert
326 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
327 Expr := Expression (Expr);
329 -- For (common case) of To_Address call, get argument
331 elsif Nkind (Expr) = N_Function_Call
332 and then Is_Entity_Name (Name (Expr))
333 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
334 then
335 Expr := First (Parameter_Associations (Expr));
337 if Nkind (Expr) = N_Parameter_Association then
338 Expr := Explicit_Actual_Parameter (Expr);
339 end if;
341 -- We finally have the real expression
343 else
344 exit;
345 end if;
346 end loop;
348 return Expr;
349 end Address_Value;
351 -----------------
352 -- Addressable --
353 -----------------
355 -- For now, just 8/16/32/64
357 function Addressable (V : Uint) return Boolean is
358 begin
359 return V = Uint_8 or else
360 V = Uint_16 or else
361 V = Uint_32 or else
362 V = Uint_64;
363 end Addressable;
365 function Addressable (V : Int) return Boolean is
366 begin
367 return V = 8 or else
368 V = 16 or else
369 V = 32 or else
370 V = 64;
371 end Addressable;
373 ---------------------------------
374 -- Aggregate_Constraint_Checks --
375 ---------------------------------
377 procedure Aggregate_Constraint_Checks
378 (Exp : Node_Id;
379 Check_Typ : Entity_Id)
381 Exp_Typ : constant Entity_Id := Etype (Exp);
383 begin
384 if Raises_Constraint_Error (Exp) then
385 return;
386 end if;
388 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
389 -- component's type to force the appropriate accessibility checks.
391 -- Ada 2005 (AI-231): Generate conversion to the null-excluding type to
392 -- force the corresponding run-time check
394 if Is_Access_Type (Check_Typ)
395 and then Is_Local_Anonymous_Access (Check_Typ)
396 then
397 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
398 Analyze_And_Resolve (Exp, Check_Typ);
399 Check_Unset_Reference (Exp);
400 end if;
402 -- What follows is really expansion activity, so check that expansion
403 -- is on and is allowed. In GNATprove mode, we also want check flags to
404 -- be added in the tree, so that the formal verification can rely on
405 -- those to be present. In GNATprove mode for formal verification, some
406 -- treatment typically only done during expansion needs to be performed
407 -- on the tree, but it should not be applied inside generics. Otherwise,
408 -- this breaks the name resolution mechanism for generic instances.
410 if not Expander_Active
411 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
412 then
413 return;
414 end if;
416 if Is_Access_Type (Check_Typ)
417 and then Can_Never_Be_Null (Check_Typ)
418 and then not Can_Never_Be_Null (Exp_Typ)
419 then
420 Install_Null_Excluding_Check (Exp);
421 end if;
423 -- First check if we have to insert discriminant checks
425 if Has_Discriminants (Exp_Typ) then
426 Apply_Discriminant_Check (Exp, Check_Typ);
428 -- Next emit length checks for array aggregates
430 elsif Is_Array_Type (Exp_Typ) then
431 Apply_Length_Check (Exp, Check_Typ);
433 -- Finally emit scalar and string checks. If we are dealing with a
434 -- scalar literal we need to check by hand because the Etype of
435 -- literals is not necessarily correct.
437 elsif Is_Scalar_Type (Exp_Typ)
438 and then Compile_Time_Known_Value (Exp)
439 then
440 if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
441 Apply_Compile_Time_Constraint_Error
442 (Exp, "value not in range of}??", CE_Range_Check_Failed,
443 Ent => Base_Type (Check_Typ),
444 Typ => Base_Type (Check_Typ));
446 elsif Is_Out_Of_Range (Exp, Check_Typ) then
447 Apply_Compile_Time_Constraint_Error
448 (Exp, "value not in range of}??", CE_Range_Check_Failed,
449 Ent => Check_Typ,
450 Typ => Check_Typ);
452 elsif not Range_Checks_Suppressed (Check_Typ) then
453 Apply_Scalar_Range_Check (Exp, Check_Typ);
454 end if;
456 -- Verify that target type is also scalar, to prevent view anomalies
457 -- in instantiations.
459 elsif (Is_Scalar_Type (Exp_Typ)
460 or else Nkind (Exp) = N_String_Literal)
461 and then Is_Scalar_Type (Check_Typ)
462 and then Exp_Typ /= Check_Typ
463 then
464 if Is_Entity_Name (Exp)
465 and then Ekind (Entity (Exp)) = E_Constant
466 then
467 -- If expression is a constant, it is worthwhile checking whether
468 -- it is a bound of the type.
470 if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
471 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
472 or else
473 (Is_Entity_Name (Type_High_Bound (Check_Typ))
474 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
475 then
476 return;
478 else
479 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
480 Analyze_And_Resolve (Exp, Check_Typ);
481 Check_Unset_Reference (Exp);
482 end if;
484 -- Could use a comment on this case ???
486 else
487 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
488 Analyze_And_Resolve (Exp, Check_Typ);
489 Check_Unset_Reference (Exp);
490 end if;
492 end if;
493 end Aggregate_Constraint_Checks;
495 -----------------------
496 -- Alignment_In_Bits --
497 -----------------------
499 function Alignment_In_Bits (E : Entity_Id) return Uint is
500 begin
501 return Alignment (E) * System_Storage_Unit;
502 end Alignment_In_Bits;
504 --------------------------------------
505 -- All_Composite_Constraints_Static --
506 --------------------------------------
508 function All_Composite_Constraints_Static
509 (Constr : Node_Id) return Boolean
511 begin
512 if No (Constr) or else Error_Posted (Constr) then
513 return True;
514 end if;
516 case Nkind (Constr) is
517 when N_Subexpr =>
518 if Nkind (Constr) in N_Has_Entity
519 and then Present (Entity (Constr))
520 then
521 if Is_Type (Entity (Constr)) then
522 return
523 not Is_Discrete_Type (Entity (Constr))
524 or else Is_OK_Static_Subtype (Entity (Constr));
525 end if;
527 elsif Nkind (Constr) = N_Range then
528 return
529 Is_OK_Static_Expression (Low_Bound (Constr))
530 and then
531 Is_OK_Static_Expression (High_Bound (Constr));
533 elsif Nkind (Constr) = N_Attribute_Reference
534 and then Attribute_Name (Constr) = Name_Range
535 then
536 return
537 Is_OK_Static_Expression
538 (Type_Low_Bound (Etype (Prefix (Constr))))
539 and then
540 Is_OK_Static_Expression
541 (Type_High_Bound (Etype (Prefix (Constr))));
542 end if;
544 return
545 not Present (Etype (Constr)) -- previous error
546 or else not Is_Discrete_Type (Etype (Constr))
547 or else Is_OK_Static_Expression (Constr);
549 when N_Discriminant_Association =>
550 return All_Composite_Constraints_Static (Expression (Constr));
552 when N_Range_Constraint =>
553 return
554 All_Composite_Constraints_Static (Range_Expression (Constr));
556 when N_Index_Or_Discriminant_Constraint =>
557 declare
558 One_Cstr : Entity_Id;
559 begin
560 One_Cstr := First (Constraints (Constr));
561 while Present (One_Cstr) loop
562 if not All_Composite_Constraints_Static (One_Cstr) then
563 return False;
564 end if;
566 Next (One_Cstr);
567 end loop;
568 end;
570 return True;
572 when N_Subtype_Indication =>
573 return
574 All_Composite_Constraints_Static (Subtype_Mark (Constr))
575 and then
576 All_Composite_Constraints_Static (Constraint (Constr));
578 when others =>
579 raise Program_Error;
580 end case;
581 end All_Composite_Constraints_Static;
583 ------------------------
584 -- Append_Entity_Name --
585 ------------------------
587 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id) is
588 Temp : Bounded_String;
590 procedure Inner (E : Entity_Id);
591 -- Inner recursive routine, keep outer routine nonrecursive to ease
592 -- debugging when we get strange results from this routine.
594 -----------
595 -- Inner --
596 -----------
598 procedure Inner (E : Entity_Id) is
599 Scop : Node_Id;
601 begin
602 -- If entity has an internal name, skip by it, and print its scope.
603 -- Note that we strip a final R from the name before the test; this
604 -- is needed for some cases of instantiations.
606 declare
607 E_Name : Bounded_String;
609 begin
610 Append (E_Name, Chars (E));
612 if E_Name.Chars (E_Name.Length) = 'R' then
613 E_Name.Length := E_Name.Length - 1;
614 end if;
616 if Is_Internal_Name (E_Name) then
617 Inner (Scope (E));
618 return;
619 end if;
620 end;
622 Scop := Scope (E);
624 -- Just print entity name if its scope is at the outer level
626 if Scop = Standard_Standard then
627 null;
629 -- If scope comes from source, write scope and entity
631 elsif Comes_From_Source (Scop) then
632 Append_Entity_Name (Temp, Scop);
633 Append (Temp, '.');
635 -- If in wrapper package skip past it
637 elsif Present (Scop) and then Is_Wrapper_Package (Scop) then
638 Append_Entity_Name (Temp, Scope (Scop));
639 Append (Temp, '.');
641 -- Otherwise nothing to output (happens in unnamed block statements)
643 else
644 null;
645 end if;
647 -- Output the name
649 declare
650 E_Name : Bounded_String;
652 begin
653 Append_Unqualified_Decoded (E_Name, Chars (E));
655 -- Remove trailing upper-case letters from the name (useful for
656 -- dealing with some cases of internal names generated in the case
657 -- of references from within a generic).
659 while E_Name.Length > 1
660 and then E_Name.Chars (E_Name.Length) in 'A' .. 'Z'
661 loop
662 E_Name.Length := E_Name.Length - 1;
663 end loop;
665 -- Adjust casing appropriately (gets name from source if possible)
667 Adjust_Name_Case (E_Name, Sloc (E));
668 Append (Temp, E_Name);
669 end;
670 end Inner;
672 -- Start of processing for Append_Entity_Name
674 begin
675 Inner (E);
676 Append (Buf, Temp);
677 end Append_Entity_Name;
679 ---------------------------------
680 -- Append_Inherited_Subprogram --
681 ---------------------------------
683 procedure Append_Inherited_Subprogram (S : Entity_Id) is
684 Par : constant Entity_Id := Alias (S);
685 -- The parent subprogram
687 Scop : constant Entity_Id := Scope (Par);
688 -- The scope of definition of the parent subprogram
690 Typ : constant Entity_Id := Defining_Entity (Parent (S));
691 -- The derived type of which S is a primitive operation
693 Decl : Node_Id;
694 Next_E : Entity_Id;
696 begin
697 if Ekind (Current_Scope) = E_Package
698 and then In_Private_Part (Current_Scope)
699 and then Has_Private_Declaration (Typ)
700 and then Is_Tagged_Type (Typ)
701 and then Scop = Current_Scope
702 then
703 -- The inherited operation is available at the earliest place after
704 -- the derived type declaration ( RM 7.3.1 (6/1)). This is only
705 -- relevant for type extensions. If the parent operation appears
706 -- after the type extension, the operation is not visible.
708 Decl := First
709 (Visible_Declarations
710 (Package_Specification (Current_Scope)));
711 while Present (Decl) loop
712 if Nkind (Decl) = N_Private_Extension_Declaration
713 and then Defining_Entity (Decl) = Typ
714 then
715 if Sloc (Decl) > Sloc (Par) then
716 Next_E := Next_Entity (Par);
717 Set_Next_Entity (Par, S);
718 Set_Next_Entity (S, Next_E);
719 return;
721 else
722 exit;
723 end if;
724 end if;
726 Next (Decl);
727 end loop;
728 end if;
730 -- If partial view is not a type extension, or it appears before the
731 -- subprogram declaration, insert normally at end of entity list.
733 Append_Entity (S, Current_Scope);
734 end Append_Inherited_Subprogram;
736 -----------------------------------------
737 -- Apply_Compile_Time_Constraint_Error --
738 -----------------------------------------
740 procedure Apply_Compile_Time_Constraint_Error
741 (N : Node_Id;
742 Msg : String;
743 Reason : RT_Exception_Code;
744 Ent : Entity_Id := Empty;
745 Typ : Entity_Id := Empty;
746 Loc : Source_Ptr := No_Location;
747 Rep : Boolean := True;
748 Warn : Boolean := False)
750 Stat : constant Boolean := Is_Static_Expression (N);
751 R_Stat : constant Node_Id :=
752 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
753 Rtyp : Entity_Id;
755 begin
756 if No (Typ) then
757 Rtyp := Etype (N);
758 else
759 Rtyp := Typ;
760 end if;
762 Discard_Node
763 (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
765 -- In GNATprove mode, do not replace the node with an exception raised.
766 -- In such a case, either the call to Compile_Time_Constraint_Error
767 -- issues an error which stops analysis, or it issues a warning in
768 -- a few cases where a suitable check flag is set for GNATprove to
769 -- generate a check message.
771 if not Rep or GNATprove_Mode then
772 return;
773 end if;
775 -- Now we replace the node by an N_Raise_Constraint_Error node
776 -- This does not need reanalyzing, so set it as analyzed now.
778 Rewrite (N, R_Stat);
779 Set_Analyzed (N, True);
781 Set_Etype (N, Rtyp);
782 Set_Raises_Constraint_Error (N);
784 -- Now deal with possible local raise handling
786 Possible_Local_Raise (N, Standard_Constraint_Error);
788 -- If the original expression was marked as static, the result is
789 -- still marked as static, but the Raises_Constraint_Error flag is
790 -- always set so that further static evaluation is not attempted.
792 if Stat then
793 Set_Is_Static_Expression (N);
794 end if;
795 end Apply_Compile_Time_Constraint_Error;
797 ---------------------------
798 -- Async_Readers_Enabled --
799 ---------------------------
801 function Async_Readers_Enabled (Id : Entity_Id) return Boolean is
802 begin
803 return Has_Enabled_Property (Id, Name_Async_Readers);
804 end Async_Readers_Enabled;
806 ---------------------------
807 -- Async_Writers_Enabled --
808 ---------------------------
810 function Async_Writers_Enabled (Id : Entity_Id) return Boolean is
811 begin
812 return Has_Enabled_Property (Id, Name_Async_Writers);
813 end Async_Writers_Enabled;
815 --------------------------------------
816 -- Available_Full_View_Of_Component --
817 --------------------------------------
819 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
820 ST : constant Entity_Id := Scope (T);
821 SCT : constant Entity_Id := Scope (Component_Type (T));
822 begin
823 return In_Open_Scopes (ST)
824 and then In_Open_Scopes (SCT)
825 and then Scope_Depth (ST) >= Scope_Depth (SCT);
826 end Available_Full_View_Of_Component;
828 -------------------
829 -- Bad_Attribute --
830 -------------------
832 procedure Bad_Attribute
833 (N : Node_Id;
834 Nam : Name_Id;
835 Warn : Boolean := False)
837 begin
838 Error_Msg_Warn := Warn;
839 Error_Msg_N ("unrecognized attribute&<<", N);
841 -- Check for possible misspelling
843 Error_Msg_Name_1 := First_Attribute_Name;
844 while Error_Msg_Name_1 <= Last_Attribute_Name loop
845 if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
846 Error_Msg_N -- CODEFIX
847 ("\possible misspelling of %<<", N);
848 exit;
849 end if;
851 Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
852 end loop;
853 end Bad_Attribute;
855 --------------------------------
856 -- Bad_Predicated_Subtype_Use --
857 --------------------------------
859 procedure Bad_Predicated_Subtype_Use
860 (Msg : String;
861 N : Node_Id;
862 Typ : Entity_Id;
863 Suggest_Static : Boolean := False)
865 Gen : Entity_Id;
867 begin
868 -- Avoid cascaded errors
870 if Error_Posted (N) then
871 return;
872 end if;
874 if Inside_A_Generic then
875 Gen := Current_Scope;
876 while Present (Gen) and then Ekind (Gen) /= E_Generic_Package loop
877 Gen := Scope (Gen);
878 end loop;
880 if No (Gen) then
881 return;
882 end if;
884 if Is_Generic_Formal (Typ) and then Is_Discrete_Type (Typ) then
885 Set_No_Predicate_On_Actual (Typ);
886 end if;
888 elsif Has_Predicates (Typ) then
889 if Is_Generic_Actual_Type (Typ) then
891 -- The restriction on loop parameters is only that the type
892 -- should have no dynamic predicates.
894 if Nkind (Parent (N)) = N_Loop_Parameter_Specification
895 and then not Has_Dynamic_Predicate_Aspect (Typ)
896 and then Is_OK_Static_Subtype (Typ)
897 then
898 return;
899 end if;
901 Gen := Current_Scope;
902 while not Is_Generic_Instance (Gen) loop
903 Gen := Scope (Gen);
904 end loop;
906 pragma Assert (Present (Gen));
908 if Ekind (Gen) = E_Package and then In_Package_Body (Gen) then
909 Error_Msg_Warn := SPARK_Mode /= On;
910 Error_Msg_FE (Msg & "<<", N, Typ);
911 Error_Msg_F ("\Program_Error [<<", N);
913 Insert_Action (N,
914 Make_Raise_Program_Error (Sloc (N),
915 Reason => PE_Bad_Predicated_Generic_Type));
917 else
918 Error_Msg_FE (Msg & "<<", N, Typ);
919 end if;
921 else
922 Error_Msg_FE (Msg, N, Typ);
923 end if;
925 -- Emit an optional suggestion on how to remedy the error if the
926 -- context warrants it.
928 if Suggest_Static and then Has_Static_Predicate (Typ) then
929 Error_Msg_FE ("\predicate of & should be marked static", N, Typ);
930 end if;
931 end if;
932 end Bad_Predicated_Subtype_Use;
934 -----------------------------------------
935 -- Bad_Unordered_Enumeration_Reference --
936 -----------------------------------------
938 function Bad_Unordered_Enumeration_Reference
939 (N : Node_Id;
940 T : Entity_Id) return Boolean
942 begin
943 return Is_Enumeration_Type (T)
944 and then Warn_On_Unordered_Enumeration_Type
945 and then not Is_Generic_Type (T)
946 and then Comes_From_Source (N)
947 and then not Has_Pragma_Ordered (T)
948 and then not In_Same_Extended_Unit (N, T);
949 end Bad_Unordered_Enumeration_Reference;
951 ----------------------------
952 -- Begin_Keyword_Location --
953 ----------------------------
955 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr is
956 HSS : Node_Id;
958 begin
959 pragma Assert (Nkind_In (N, N_Block_Statement,
960 N_Entry_Body,
961 N_Package_Body,
962 N_Subprogram_Body,
963 N_Task_Body));
965 HSS := Handled_Statement_Sequence (N);
967 -- When the handled sequence of statements comes from source, the
968 -- location of the "begin" keyword is that of the sequence itself.
969 -- Note that an internal construct may inherit a source sequence.
971 if Comes_From_Source (HSS) then
972 return Sloc (HSS);
974 -- The parser generates an internal handled sequence of statements to
975 -- capture the location of the "begin" keyword if present in the source.
976 -- Since there are no source statements, the location of the "begin"
977 -- keyword is effectively that of the "end" keyword.
979 elsif Comes_From_Source (N) then
980 return Sloc (HSS);
982 -- Otherwise the construct is internal and should carry the location of
983 -- the original construct which prompted its creation.
985 else
986 return Sloc (N);
987 end if;
988 end Begin_Keyword_Location;
990 --------------------------
991 -- Build_Actual_Subtype --
992 --------------------------
994 function Build_Actual_Subtype
995 (T : Entity_Id;
996 N : Node_Or_Entity_Id) return Node_Id
998 Loc : Source_Ptr;
999 -- Normally Sloc (N), but may point to corresponding body in some cases
1001 Constraints : List_Id;
1002 Decl : Node_Id;
1003 Discr : Entity_Id;
1004 Hi : Node_Id;
1005 Lo : Node_Id;
1006 Subt : Entity_Id;
1007 Disc_Type : Entity_Id;
1008 Obj : Node_Id;
1010 begin
1011 Loc := Sloc (N);
1013 if Nkind (N) = N_Defining_Identifier then
1014 Obj := New_Occurrence_Of (N, Loc);
1016 -- If this is a formal parameter of a subprogram declaration, and
1017 -- we are compiling the body, we want the declaration for the
1018 -- actual subtype to carry the source position of the body, to
1019 -- prevent anomalies in gdb when stepping through the code.
1021 if Is_Formal (N) then
1022 declare
1023 Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
1024 begin
1025 if Nkind (Decl) = N_Subprogram_Declaration
1026 and then Present (Corresponding_Body (Decl))
1027 then
1028 Loc := Sloc (Corresponding_Body (Decl));
1029 end if;
1030 end;
1031 end if;
1033 else
1034 Obj := N;
1035 end if;
1037 if Is_Array_Type (T) then
1038 Constraints := New_List;
1039 for J in 1 .. Number_Dimensions (T) loop
1041 -- Build an array subtype declaration with the nominal subtype and
1042 -- the bounds of the actual. Add the declaration in front of the
1043 -- local declarations for the subprogram, for analysis before any
1044 -- reference to the formal in the body.
1046 Lo :=
1047 Make_Attribute_Reference (Loc,
1048 Prefix =>
1049 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
1050 Attribute_Name => Name_First,
1051 Expressions => New_List (
1052 Make_Integer_Literal (Loc, J)));
1054 Hi :=
1055 Make_Attribute_Reference (Loc,
1056 Prefix =>
1057 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
1058 Attribute_Name => Name_Last,
1059 Expressions => New_List (
1060 Make_Integer_Literal (Loc, J)));
1062 Append (Make_Range (Loc, Lo, Hi), Constraints);
1063 end loop;
1065 -- If the type has unknown discriminants there is no constrained
1066 -- subtype to build. This is never called for a formal or for a
1067 -- lhs, so returning the type is ok ???
1069 elsif Has_Unknown_Discriminants (T) then
1070 return T;
1072 else
1073 Constraints := New_List;
1075 -- Type T is a generic derived type, inherit the discriminants from
1076 -- the parent type.
1078 if Is_Private_Type (T)
1079 and then No (Full_View (T))
1081 -- T was flagged as an error if it was declared as a formal
1082 -- derived type with known discriminants. In this case there
1083 -- is no need to look at the parent type since T already carries
1084 -- its own discriminants.
1086 and then not Error_Posted (T)
1087 then
1088 Disc_Type := Etype (Base_Type (T));
1089 else
1090 Disc_Type := T;
1091 end if;
1093 Discr := First_Discriminant (Disc_Type);
1094 while Present (Discr) loop
1095 Append_To (Constraints,
1096 Make_Selected_Component (Loc,
1097 Prefix =>
1098 Duplicate_Subexpr_No_Checks (Obj),
1099 Selector_Name => New_Occurrence_Of (Discr, Loc)));
1100 Next_Discriminant (Discr);
1101 end loop;
1102 end if;
1104 Subt := Make_Temporary (Loc, 'S', Related_Node => N);
1105 Set_Is_Internal (Subt);
1107 Decl :=
1108 Make_Subtype_Declaration (Loc,
1109 Defining_Identifier => Subt,
1110 Subtype_Indication =>
1111 Make_Subtype_Indication (Loc,
1112 Subtype_Mark => New_Occurrence_Of (T, Loc),
1113 Constraint =>
1114 Make_Index_Or_Discriminant_Constraint (Loc,
1115 Constraints => Constraints)));
1117 Mark_Rewrite_Insertion (Decl);
1118 return Decl;
1119 end Build_Actual_Subtype;
1121 ---------------------------------------
1122 -- Build_Actual_Subtype_Of_Component --
1123 ---------------------------------------
1125 function Build_Actual_Subtype_Of_Component
1126 (T : Entity_Id;
1127 N : Node_Id) return Node_Id
1129 Loc : constant Source_Ptr := Sloc (N);
1130 P : constant Node_Id := Prefix (N);
1131 D : Elmt_Id;
1132 Id : Node_Id;
1133 Index_Typ : Entity_Id;
1135 Desig_Typ : Entity_Id;
1136 -- This is either a copy of T, or if T is an access type, then it is
1137 -- the directly designated type of this access type.
1139 function Build_Actual_Array_Constraint return List_Id;
1140 -- If one or more of the bounds of the component depends on
1141 -- discriminants, build actual constraint using the discriminants
1142 -- of the prefix.
1144 function Build_Actual_Record_Constraint return List_Id;
1145 -- Similar to previous one, for discriminated components constrained
1146 -- by the discriminant of the enclosing object.
1148 -----------------------------------
1149 -- Build_Actual_Array_Constraint --
1150 -----------------------------------
1152 function Build_Actual_Array_Constraint return List_Id is
1153 Constraints : constant List_Id := New_List;
1154 Indx : Node_Id;
1155 Hi : Node_Id;
1156 Lo : Node_Id;
1157 Old_Hi : Node_Id;
1158 Old_Lo : Node_Id;
1160 begin
1161 Indx := First_Index (Desig_Typ);
1162 while Present (Indx) loop
1163 Old_Lo := Type_Low_Bound (Etype (Indx));
1164 Old_Hi := Type_High_Bound (Etype (Indx));
1166 if Denotes_Discriminant (Old_Lo) then
1167 Lo :=
1168 Make_Selected_Component (Loc,
1169 Prefix => New_Copy_Tree (P),
1170 Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
1172 else
1173 Lo := New_Copy_Tree (Old_Lo);
1175 -- The new bound will be reanalyzed in the enclosing
1176 -- declaration. For literal bounds that come from a type
1177 -- declaration, the type of the context must be imposed, so
1178 -- insure that analysis will take place. For non-universal
1179 -- types this is not strictly necessary.
1181 Set_Analyzed (Lo, False);
1182 end if;
1184 if Denotes_Discriminant (Old_Hi) then
1185 Hi :=
1186 Make_Selected_Component (Loc,
1187 Prefix => New_Copy_Tree (P),
1188 Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
1190 else
1191 Hi := New_Copy_Tree (Old_Hi);
1192 Set_Analyzed (Hi, False);
1193 end if;
1195 Append (Make_Range (Loc, Lo, Hi), Constraints);
1196 Next_Index (Indx);
1197 end loop;
1199 return Constraints;
1200 end Build_Actual_Array_Constraint;
1202 ------------------------------------
1203 -- Build_Actual_Record_Constraint --
1204 ------------------------------------
1206 function Build_Actual_Record_Constraint return List_Id is
1207 Constraints : constant List_Id := New_List;
1208 D : Elmt_Id;
1209 D_Val : Node_Id;
1211 begin
1212 D := First_Elmt (Discriminant_Constraint (Desig_Typ));
1213 while Present (D) loop
1214 if Denotes_Discriminant (Node (D)) then
1215 D_Val := Make_Selected_Component (Loc,
1216 Prefix => New_Copy_Tree (P),
1217 Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
1219 else
1220 D_Val := New_Copy_Tree (Node (D));
1221 end if;
1223 Append (D_Val, Constraints);
1224 Next_Elmt (D);
1225 end loop;
1227 return Constraints;
1228 end Build_Actual_Record_Constraint;
1230 -- Start of processing for Build_Actual_Subtype_Of_Component
1232 begin
1233 -- Why the test for Spec_Expression mode here???
1235 if In_Spec_Expression then
1236 return Empty;
1238 -- More comments for the rest of this body would be good ???
1240 elsif Nkind (N) = N_Explicit_Dereference then
1241 if Is_Composite_Type (T)
1242 and then not Is_Constrained (T)
1243 and then not (Is_Class_Wide_Type (T)
1244 and then Is_Constrained (Root_Type (T)))
1245 and then not Has_Unknown_Discriminants (T)
1246 then
1247 -- If the type of the dereference is already constrained, it is an
1248 -- actual subtype.
1250 if Is_Array_Type (Etype (N))
1251 and then Is_Constrained (Etype (N))
1252 then
1253 return Empty;
1254 else
1255 Remove_Side_Effects (P);
1256 return Build_Actual_Subtype (T, N);
1257 end if;
1258 else
1259 return Empty;
1260 end if;
1261 end if;
1263 if Ekind (T) = E_Access_Subtype then
1264 Desig_Typ := Designated_Type (T);
1265 else
1266 Desig_Typ := T;
1267 end if;
1269 if Ekind (Desig_Typ) = E_Array_Subtype then
1270 Id := First_Index (Desig_Typ);
1271 while Present (Id) loop
1272 Index_Typ := Underlying_Type (Etype (Id));
1274 if Denotes_Discriminant (Type_Low_Bound (Index_Typ))
1275 or else
1276 Denotes_Discriminant (Type_High_Bound (Index_Typ))
1277 then
1278 Remove_Side_Effects (P);
1279 return
1280 Build_Component_Subtype
1281 (Build_Actual_Array_Constraint, Loc, Base_Type (T));
1282 end if;
1284 Next_Index (Id);
1285 end loop;
1287 elsif Is_Composite_Type (Desig_Typ)
1288 and then Has_Discriminants (Desig_Typ)
1289 and then not Has_Unknown_Discriminants (Desig_Typ)
1290 then
1291 if Is_Private_Type (Desig_Typ)
1292 and then No (Discriminant_Constraint (Desig_Typ))
1293 then
1294 Desig_Typ := Full_View (Desig_Typ);
1295 end if;
1297 D := First_Elmt (Discriminant_Constraint (Desig_Typ));
1298 while Present (D) loop
1299 if Denotes_Discriminant (Node (D)) then
1300 Remove_Side_Effects (P);
1301 return
1302 Build_Component_Subtype (
1303 Build_Actual_Record_Constraint, Loc, Base_Type (T));
1304 end if;
1306 Next_Elmt (D);
1307 end loop;
1308 end if;
1310 -- If none of the above, the actual and nominal subtypes are the same
1312 return Empty;
1313 end Build_Actual_Subtype_Of_Component;
1315 ---------------------------------
1316 -- Build_Class_Wide_Clone_Body --
1317 ---------------------------------
1319 procedure Build_Class_Wide_Clone_Body
1320 (Spec_Id : Entity_Id;
1321 Bod : Node_Id)
1323 Loc : constant Source_Ptr := Sloc (Bod);
1324 Clone_Id : constant Entity_Id := Class_Wide_Clone (Spec_Id);
1325 Clone_Body : Node_Id;
1327 begin
1328 -- The declaration of the class-wide clone was created when the
1329 -- corresponding class-wide condition was analyzed.
1331 Clone_Body :=
1332 Make_Subprogram_Body (Loc,
1333 Specification =>
1334 Copy_Subprogram_Spec (Parent (Clone_Id)),
1335 Declarations => Declarations (Bod),
1336 Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
1338 -- The new operation is internal and overriding indicators do not apply
1339 -- (the original primitive may have carried one).
1341 Set_Must_Override (Specification (Clone_Body), False);
1342 Insert_Before (Bod, Clone_Body);
1343 Analyze (Clone_Body);
1344 end Build_Class_Wide_Clone_Body;
1346 ---------------------------------
1347 -- Build_Class_Wide_Clone_Call --
1348 ---------------------------------
1350 function Build_Class_Wide_Clone_Call
1351 (Loc : Source_Ptr;
1352 Decls : List_Id;
1353 Spec_Id : Entity_Id;
1354 Spec : Node_Id) return Node_Id
1356 Clone_Id : constant Entity_Id := Class_Wide_Clone (Spec_Id);
1357 Par_Type : constant Entity_Id := Find_Dispatching_Type (Spec_Id);
1359 Actuals : List_Id;
1360 Call : Node_Id;
1361 Formal : Entity_Id;
1362 New_Body : Node_Id;
1363 New_F_Spec : Entity_Id;
1364 New_Formal : Entity_Id;
1366 begin
1367 Actuals := Empty_List;
1368 Formal := First_Formal (Spec_Id);
1369 New_F_Spec := First (Parameter_Specifications (Spec));
1371 -- Build parameter association for call to class-wide clone.
1373 while Present (Formal) loop
1374 New_Formal := Defining_Identifier (New_F_Spec);
1376 -- If controlling argument and operation is inherited, add conversion
1377 -- to parent type for the call.
1379 if Etype (Formal) = Par_Type
1380 and then not Is_Empty_List (Decls)
1381 then
1382 Append_To (Actuals,
1383 Make_Type_Conversion (Loc,
1384 New_Occurrence_Of (Par_Type, Loc),
1385 New_Occurrence_Of (New_Formal, Loc)));
1387 else
1388 Append_To (Actuals, New_Occurrence_Of (New_Formal, Loc));
1389 end if;
1391 Next_Formal (Formal);
1392 Next (New_F_Spec);
1393 end loop;
1395 if Ekind (Spec_Id) = E_Procedure then
1396 Call :=
1397 Make_Procedure_Call_Statement (Loc,
1398 Name => New_Occurrence_Of (Clone_Id, Loc),
1399 Parameter_Associations => Actuals);
1400 else
1401 Call :=
1402 Make_Simple_Return_Statement (Loc,
1403 Expression =>
1404 Make_Function_Call (Loc,
1405 Name => New_Occurrence_Of (Clone_Id, Loc),
1406 Parameter_Associations => Actuals));
1407 end if;
1409 New_Body :=
1410 Make_Subprogram_Body (Loc,
1411 Specification =>
1412 Copy_Subprogram_Spec (Spec),
1413 Declarations => Decls,
1414 Handled_Statement_Sequence =>
1415 Make_Handled_Sequence_Of_Statements (Loc,
1416 Statements => New_List (Call),
1417 End_Label => Make_Identifier (Loc, Chars (Spec_Id))));
1419 return New_Body;
1420 end Build_Class_Wide_Clone_Call;
1422 ---------------------------------
1423 -- Build_Class_Wide_Clone_Decl --
1424 ---------------------------------
1426 procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id) is
1427 Loc : constant Source_Ptr := Sloc (Spec_Id);
1428 Clone_Id : constant Entity_Id :=
1429 Make_Defining_Identifier (Loc,
1430 New_External_Name (Chars (Spec_Id), Suffix => "CL"));
1432 Decl : Node_Id;
1433 Spec : Node_Id;
1435 begin
1436 Spec := Copy_Subprogram_Spec (Parent (Spec_Id));
1437 Set_Must_Override (Spec, False);
1438 Set_Must_Not_Override (Spec, False);
1439 Set_Defining_Unit_Name (Spec, Clone_Id);
1441 Decl := Make_Subprogram_Declaration (Loc, Spec);
1442 Append (Decl, List_Containing (Unit_Declaration_Node (Spec_Id)));
1444 -- Link clone to original subprogram, for use when building body and
1445 -- wrapper call to inherited operation.
1447 Set_Class_Wide_Clone (Spec_Id, Clone_Id);
1448 end Build_Class_Wide_Clone_Decl;
1450 -----------------------------
1451 -- Build_Component_Subtype --
1452 -----------------------------
1454 function Build_Component_Subtype
1455 (C : List_Id;
1456 Loc : Source_Ptr;
1457 T : Entity_Id) return Node_Id
1459 Subt : Entity_Id;
1460 Decl : Node_Id;
1462 begin
1463 -- Unchecked_Union components do not require component subtypes
1465 if Is_Unchecked_Union (T) then
1466 return Empty;
1467 end if;
1469 Subt := Make_Temporary (Loc, 'S');
1470 Set_Is_Internal (Subt);
1472 Decl :=
1473 Make_Subtype_Declaration (Loc,
1474 Defining_Identifier => Subt,
1475 Subtype_Indication =>
1476 Make_Subtype_Indication (Loc,
1477 Subtype_Mark => New_Occurrence_Of (Base_Type (T), Loc),
1478 Constraint =>
1479 Make_Index_Or_Discriminant_Constraint (Loc,
1480 Constraints => C)));
1482 Mark_Rewrite_Insertion (Decl);
1483 return Decl;
1484 end Build_Component_Subtype;
1486 ---------------------------
1487 -- Build_Default_Subtype --
1488 ---------------------------
1490 function Build_Default_Subtype
1491 (T : Entity_Id;
1492 N : Node_Id) return Entity_Id
1494 Loc : constant Source_Ptr := Sloc (N);
1495 Disc : Entity_Id;
1497 Bas : Entity_Id;
1498 -- The base type that is to be constrained by the defaults
1500 begin
1501 if not Has_Discriminants (T) or else Is_Constrained (T) then
1502 return T;
1503 end if;
1505 Bas := Base_Type (T);
1507 -- If T is non-private but its base type is private, this is the
1508 -- completion of a subtype declaration whose parent type is private
1509 -- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
1510 -- are to be found in the full view of the base. Check that the private
1511 -- status of T and its base differ.
1513 if Is_Private_Type (Bas)
1514 and then not Is_Private_Type (T)
1515 and then Present (Full_View (Bas))
1516 then
1517 Bas := Full_View (Bas);
1518 end if;
1520 Disc := First_Discriminant (T);
1522 if No (Discriminant_Default_Value (Disc)) then
1523 return T;
1524 end if;
1526 declare
1527 Act : constant Entity_Id := Make_Temporary (Loc, 'S');
1528 Constraints : constant List_Id := New_List;
1529 Decl : Node_Id;
1531 begin
1532 while Present (Disc) loop
1533 Append_To (Constraints,
1534 New_Copy_Tree (Discriminant_Default_Value (Disc)));
1535 Next_Discriminant (Disc);
1536 end loop;
1538 Decl :=
1539 Make_Subtype_Declaration (Loc,
1540 Defining_Identifier => Act,
1541 Subtype_Indication =>
1542 Make_Subtype_Indication (Loc,
1543 Subtype_Mark => New_Occurrence_Of (Bas, Loc),
1544 Constraint =>
1545 Make_Index_Or_Discriminant_Constraint (Loc,
1546 Constraints => Constraints)));
1548 Insert_Action (N, Decl);
1550 -- If the context is a component declaration the subtype declaration
1551 -- will be analyzed when the enclosing type is frozen, otherwise do
1552 -- it now.
1554 if Ekind (Current_Scope) /= E_Record_Type then
1555 Analyze (Decl);
1556 end if;
1558 return Act;
1559 end;
1560 end Build_Default_Subtype;
1562 --------------------------------------------
1563 -- Build_Discriminal_Subtype_Of_Component --
1564 --------------------------------------------
1566 function Build_Discriminal_Subtype_Of_Component
1567 (T : Entity_Id) return Node_Id
1569 Loc : constant Source_Ptr := Sloc (T);
1570 D : Elmt_Id;
1571 Id : Node_Id;
1573 function Build_Discriminal_Array_Constraint return List_Id;
1574 -- If one or more of the bounds of the component depends on
1575 -- discriminants, build actual constraint using the discriminants
1576 -- of the prefix.
1578 function Build_Discriminal_Record_Constraint return List_Id;
1579 -- Similar to previous one, for discriminated components constrained by
1580 -- the discriminant of the enclosing object.
1582 ----------------------------------------
1583 -- Build_Discriminal_Array_Constraint --
1584 ----------------------------------------
1586 function Build_Discriminal_Array_Constraint return List_Id is
1587 Constraints : constant List_Id := New_List;
1588 Indx : Node_Id;
1589 Hi : Node_Id;
1590 Lo : Node_Id;
1591 Old_Hi : Node_Id;
1592 Old_Lo : Node_Id;
1594 begin
1595 Indx := First_Index (T);
1596 while Present (Indx) loop
1597 Old_Lo := Type_Low_Bound (Etype (Indx));
1598 Old_Hi := Type_High_Bound (Etype (Indx));
1600 if Denotes_Discriminant (Old_Lo) then
1601 Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
1603 else
1604 Lo := New_Copy_Tree (Old_Lo);
1605 end if;
1607 if Denotes_Discriminant (Old_Hi) then
1608 Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
1610 else
1611 Hi := New_Copy_Tree (Old_Hi);
1612 end if;
1614 Append (Make_Range (Loc, Lo, Hi), Constraints);
1615 Next_Index (Indx);
1616 end loop;
1618 return Constraints;
1619 end Build_Discriminal_Array_Constraint;
1621 -----------------------------------------
1622 -- Build_Discriminal_Record_Constraint --
1623 -----------------------------------------
1625 function Build_Discriminal_Record_Constraint return List_Id is
1626 Constraints : constant List_Id := New_List;
1627 D : Elmt_Id;
1628 D_Val : Node_Id;
1630 begin
1631 D := First_Elmt (Discriminant_Constraint (T));
1632 while Present (D) loop
1633 if Denotes_Discriminant (Node (D)) then
1634 D_Val :=
1635 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
1636 else
1637 D_Val := New_Copy_Tree (Node (D));
1638 end if;
1640 Append (D_Val, Constraints);
1641 Next_Elmt (D);
1642 end loop;
1644 return Constraints;
1645 end Build_Discriminal_Record_Constraint;
1647 -- Start of processing for Build_Discriminal_Subtype_Of_Component
1649 begin
1650 if Ekind (T) = E_Array_Subtype then
1651 Id := First_Index (T);
1652 while Present (Id) loop
1653 if Denotes_Discriminant (Type_Low_Bound (Etype (Id)))
1654 or else
1655 Denotes_Discriminant (Type_High_Bound (Etype (Id)))
1656 then
1657 return Build_Component_Subtype
1658 (Build_Discriminal_Array_Constraint, Loc, T);
1659 end if;
1661 Next_Index (Id);
1662 end loop;
1664 elsif Ekind (T) = E_Record_Subtype
1665 and then Has_Discriminants (T)
1666 and then not Has_Unknown_Discriminants (T)
1667 then
1668 D := First_Elmt (Discriminant_Constraint (T));
1669 while Present (D) loop
1670 if Denotes_Discriminant (Node (D)) then
1671 return Build_Component_Subtype
1672 (Build_Discriminal_Record_Constraint, Loc, T);
1673 end if;
1675 Next_Elmt (D);
1676 end loop;
1677 end if;
1679 -- If none of the above, the actual and nominal subtypes are the same
1681 return Empty;
1682 end Build_Discriminal_Subtype_Of_Component;
1684 ------------------------------
1685 -- Build_Elaboration_Entity --
1686 ------------------------------
1688 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
1689 Loc : constant Source_Ptr := Sloc (N);
1690 Decl : Node_Id;
1691 Elab_Ent : Entity_Id;
1693 procedure Set_Package_Name (Ent : Entity_Id);
1694 -- Given an entity, sets the fully qualified name of the entity in
1695 -- Name_Buffer, with components separated by double underscores. This
1696 -- is a recursive routine that climbs the scope chain to Standard.
1698 ----------------------
1699 -- Set_Package_Name --
1700 ----------------------
1702 procedure Set_Package_Name (Ent : Entity_Id) is
1703 begin
1704 if Scope (Ent) /= Standard_Standard then
1705 Set_Package_Name (Scope (Ent));
1707 declare
1708 Nam : constant String := Get_Name_String (Chars (Ent));
1709 begin
1710 Name_Buffer (Name_Len + 1) := '_';
1711 Name_Buffer (Name_Len + 2) := '_';
1712 Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
1713 Name_Len := Name_Len + Nam'Length + 2;
1714 end;
1716 else
1717 Get_Name_String (Chars (Ent));
1718 end if;
1719 end Set_Package_Name;
1721 -- Start of processing for Build_Elaboration_Entity
1723 begin
1724 -- Ignore call if already constructed
1726 if Present (Elaboration_Entity (Spec_Id)) then
1727 return;
1729 -- Ignore in ASIS mode, elaboration entity is not in source and plays
1730 -- no role in analysis.
1732 elsif ASIS_Mode then
1733 return;
1735 -- Do not generate an elaboration entity in GNATprove move because the
1736 -- elaboration counter is a form of expansion.
1738 elsif GNATprove_Mode then
1739 return;
1741 -- See if we need elaboration entity
1743 -- We always need an elaboration entity when preserving control flow, as
1744 -- we want to remain explicit about the unit's elaboration order.
1746 elsif Opt.Suppress_Control_Flow_Optimizations then
1747 null;
1749 -- We always need an elaboration entity for the dynamic elaboration
1750 -- model, since it is needed to properly generate the PE exception for
1751 -- access before elaboration.
1753 elsif Dynamic_Elaboration_Checks then
1754 null;
1756 -- For the static model, we don't need the elaboration counter if this
1757 -- unit is sure to have no elaboration code, since that means there
1758 -- is no elaboration unit to be called. Note that we can't just decide
1759 -- after the fact by looking to see whether there was elaboration code,
1760 -- because that's too late to make this decision.
1762 elsif Restriction_Active (No_Elaboration_Code) then
1763 return;
1765 -- Similarly, for the static model, we can skip the elaboration counter
1766 -- if we have the No_Multiple_Elaboration restriction, since for the
1767 -- static model, that's the only purpose of the counter (to avoid
1768 -- multiple elaboration).
1770 elsif Restriction_Active (No_Multiple_Elaboration) then
1771 return;
1772 end if;
1774 -- Here we need the elaboration entity
1776 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
1777 -- name with dots replaced by double underscore. We have to manually
1778 -- construct this name, since it will be elaborated in the outer scope,
1779 -- and thus will not have the unit name automatically prepended.
1781 Set_Package_Name (Spec_Id);
1782 Add_Str_To_Name_Buffer ("_E");
1784 -- Create elaboration counter
1786 Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
1787 Set_Elaboration_Entity (Spec_Id, Elab_Ent);
1789 Decl :=
1790 Make_Object_Declaration (Loc,
1791 Defining_Identifier => Elab_Ent,
1792 Object_Definition =>
1793 New_Occurrence_Of (Standard_Short_Integer, Loc),
1794 Expression => Make_Integer_Literal (Loc, Uint_0));
1796 Push_Scope (Standard_Standard);
1797 Add_Global_Declaration (Decl);
1798 Pop_Scope;
1800 -- Reset True_Constant indication, since we will indeed assign a value
1801 -- to the variable in the binder main. We also kill the Current_Value
1802 -- and Last_Assignment fields for the same reason.
1804 Set_Is_True_Constant (Elab_Ent, False);
1805 Set_Current_Value (Elab_Ent, Empty);
1806 Set_Last_Assignment (Elab_Ent, Empty);
1808 -- We do not want any further qualification of the name (if we did not
1809 -- do this, we would pick up the name of the generic package in the case
1810 -- of a library level generic instantiation).
1812 Set_Has_Qualified_Name (Elab_Ent);
1813 Set_Has_Fully_Qualified_Name (Elab_Ent);
1814 end Build_Elaboration_Entity;
1816 --------------------------------
1817 -- Build_Explicit_Dereference --
1818 --------------------------------
1820 procedure Build_Explicit_Dereference
1821 (Expr : Node_Id;
1822 Disc : Entity_Id)
1824 Loc : constant Source_Ptr := Sloc (Expr);
1825 I : Interp_Index;
1826 It : Interp;
1828 begin
1829 -- An entity of a type with a reference aspect is overloaded with
1830 -- both interpretations: with and without the dereference. Now that
1831 -- the dereference is made explicit, set the type of the node properly,
1832 -- to prevent anomalies in the backend. Same if the expression is an
1833 -- overloaded function call whose return type has a reference aspect.
1835 if Is_Entity_Name (Expr) then
1836 Set_Etype (Expr, Etype (Entity (Expr)));
1838 -- The designated entity will not be examined again when resolving
1839 -- the dereference, so generate a reference to it now.
1841 Generate_Reference (Entity (Expr), Expr);
1843 elsif Nkind (Expr) = N_Function_Call then
1845 -- If the name of the indexing function is overloaded, locate the one
1846 -- whose return type has an implicit dereference on the desired
1847 -- discriminant, and set entity and type of function call.
1849 if Is_Overloaded (Name (Expr)) then
1850 Get_First_Interp (Name (Expr), I, It);
1852 while Present (It.Nam) loop
1853 if Ekind ((It.Typ)) = E_Record_Type
1854 and then First_Entity ((It.Typ)) = Disc
1855 then
1856 Set_Entity (Name (Expr), It.Nam);
1857 Set_Etype (Name (Expr), Etype (It.Nam));
1858 exit;
1859 end if;
1861 Get_Next_Interp (I, It);
1862 end loop;
1863 end if;
1865 -- Set type of call from resolved function name.
1867 Set_Etype (Expr, Etype (Name (Expr)));
1868 end if;
1870 Set_Is_Overloaded (Expr, False);
1872 -- The expression will often be a generalized indexing that yields a
1873 -- container element that is then dereferenced, in which case the
1874 -- generalized indexing call is also non-overloaded.
1876 if Nkind (Expr) = N_Indexed_Component
1877 and then Present (Generalized_Indexing (Expr))
1878 then
1879 Set_Is_Overloaded (Generalized_Indexing (Expr), False);
1880 end if;
1882 Rewrite (Expr,
1883 Make_Explicit_Dereference (Loc,
1884 Prefix =>
1885 Make_Selected_Component (Loc,
1886 Prefix => Relocate_Node (Expr),
1887 Selector_Name => New_Occurrence_Of (Disc, Loc))));
1888 Set_Etype (Prefix (Expr), Etype (Disc));
1889 Set_Etype (Expr, Designated_Type (Etype (Disc)));
1890 end Build_Explicit_Dereference;
1892 ---------------------------
1893 -- Build_Overriding_Spec --
1894 ---------------------------
1896 function Build_Overriding_Spec
1897 (Op : Entity_Id;
1898 Typ : Entity_Id) return Node_Id
1900 Loc : constant Source_Ptr := Sloc (Typ);
1901 Par_Typ : constant Entity_Id := Find_Dispatching_Type (Op);
1902 Spec : constant Node_Id := Specification (Unit_Declaration_Node (Op));
1904 Formal_Spec : Node_Id;
1905 Formal_Type : Node_Id;
1906 New_Spec : Node_Id;
1908 begin
1909 New_Spec := Copy_Subprogram_Spec (Spec);
1911 Formal_Spec := First (Parameter_Specifications (New_Spec));
1912 while Present (Formal_Spec) loop
1913 Formal_Type := Parameter_Type (Formal_Spec);
1915 if Is_Entity_Name (Formal_Type)
1916 and then Entity (Formal_Type) = Par_Typ
1917 then
1918 Rewrite (Formal_Type, New_Occurrence_Of (Typ, Loc));
1919 end if;
1921 -- Nothing needs to be done for access parameters
1923 Next (Formal_Spec);
1924 end loop;
1926 return New_Spec;
1927 end Build_Overriding_Spec;
1929 -----------------------------------
1930 -- Cannot_Raise_Constraint_Error --
1931 -----------------------------------
1933 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
1934 begin
1935 if Compile_Time_Known_Value (Expr) then
1936 return True;
1938 elsif Do_Range_Check (Expr) then
1939 return False;
1941 elsif Raises_Constraint_Error (Expr) then
1942 return False;
1944 else
1945 case Nkind (Expr) is
1946 when N_Identifier =>
1947 return True;
1949 when N_Expanded_Name =>
1950 return True;
1952 when N_Selected_Component =>
1953 return not Do_Discriminant_Check (Expr);
1955 when N_Attribute_Reference =>
1956 if Do_Overflow_Check (Expr) then
1957 return False;
1959 elsif No (Expressions (Expr)) then
1960 return True;
1962 else
1963 declare
1964 N : Node_Id;
1966 begin
1967 N := First (Expressions (Expr));
1968 while Present (N) loop
1969 if Cannot_Raise_Constraint_Error (N) then
1970 Next (N);
1971 else
1972 return False;
1973 end if;
1974 end loop;
1976 return True;
1977 end;
1978 end if;
1980 when N_Type_Conversion =>
1981 if Do_Overflow_Check (Expr)
1982 or else Do_Length_Check (Expr)
1983 or else Do_Tag_Check (Expr)
1984 then
1985 return False;
1986 else
1987 return Cannot_Raise_Constraint_Error (Expression (Expr));
1988 end if;
1990 when N_Unchecked_Type_Conversion =>
1991 return Cannot_Raise_Constraint_Error (Expression (Expr));
1993 when N_Unary_Op =>
1994 if Do_Overflow_Check (Expr) then
1995 return False;
1996 else
1997 return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1998 end if;
2000 when N_Op_Divide
2001 | N_Op_Mod
2002 | N_Op_Rem
2004 if Do_Division_Check (Expr)
2005 or else
2006 Do_Overflow_Check (Expr)
2007 then
2008 return False;
2009 else
2010 return
2011 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
2012 and then
2013 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
2014 end if;
2016 when N_Op_Add
2017 | N_Op_And
2018 | N_Op_Concat
2019 | N_Op_Eq
2020 | N_Op_Expon
2021 | N_Op_Ge
2022 | N_Op_Gt
2023 | N_Op_Le
2024 | N_Op_Lt
2025 | N_Op_Multiply
2026 | N_Op_Ne
2027 | N_Op_Or
2028 | N_Op_Rotate_Left
2029 | N_Op_Rotate_Right
2030 | N_Op_Shift_Left
2031 | N_Op_Shift_Right
2032 | N_Op_Shift_Right_Arithmetic
2033 | N_Op_Subtract
2034 | N_Op_Xor
2036 if Do_Overflow_Check (Expr) then
2037 return False;
2038 else
2039 return
2040 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
2041 and then
2042 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
2043 end if;
2045 when others =>
2046 return False;
2047 end case;
2048 end if;
2049 end Cannot_Raise_Constraint_Error;
2051 -----------------------------------------
2052 -- Check_Dynamically_Tagged_Expression --
2053 -----------------------------------------
2055 procedure Check_Dynamically_Tagged_Expression
2056 (Expr : Node_Id;
2057 Typ : Entity_Id;
2058 Related_Nod : Node_Id)
2060 begin
2061 pragma Assert (Is_Tagged_Type (Typ));
2063 -- In order to avoid spurious errors when analyzing the expanded code,
2064 -- this check is done only for nodes that come from source and for
2065 -- actuals of generic instantiations.
2067 if (Comes_From_Source (Related_Nod)
2068 or else In_Generic_Actual (Expr))
2069 and then (Is_Class_Wide_Type (Etype (Expr))
2070 or else Is_Dynamically_Tagged (Expr))
2071 and then not Is_Class_Wide_Type (Typ)
2072 then
2073 Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
2074 end if;
2075 end Check_Dynamically_Tagged_Expression;
2077 --------------------------
2078 -- Check_Fully_Declared --
2079 --------------------------
2081 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
2082 begin
2083 if Ekind (T) = E_Incomplete_Type then
2085 -- Ada 2005 (AI-50217): If the type is available through a limited
2086 -- with_clause, verify that its full view has been analyzed.
2088 if From_Limited_With (T)
2089 and then Present (Non_Limited_View (T))
2090 and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
2091 then
2092 -- The non-limited view is fully declared
2094 null;
2096 else
2097 Error_Msg_NE
2098 ("premature usage of incomplete}", N, First_Subtype (T));
2099 end if;
2101 -- Need comments for these tests ???
2103 elsif Has_Private_Component (T)
2104 and then not Is_Generic_Type (Root_Type (T))
2105 and then not In_Spec_Expression
2106 then
2107 -- Special case: if T is the anonymous type created for a single
2108 -- task or protected object, use the name of the source object.
2110 if Is_Concurrent_Type (T)
2111 and then not Comes_From_Source (T)
2112 and then Nkind (N) = N_Object_Declaration
2113 then
2114 Error_Msg_NE
2115 ("type of& has incomplete component",
2116 N, Defining_Identifier (N));
2117 else
2118 Error_Msg_NE
2119 ("premature usage of incomplete}",
2120 N, First_Subtype (T));
2121 end if;
2122 end if;
2123 end Check_Fully_Declared;
2125 -------------------------------------------
2126 -- Check_Function_With_Address_Parameter --
2127 -------------------------------------------
2129 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id) is
2130 F : Entity_Id;
2131 T : Entity_Id;
2133 begin
2134 F := First_Formal (Subp_Id);
2135 while Present (F) loop
2136 T := Etype (F);
2138 if Is_Private_Type (T) and then Present (Full_View (T)) then
2139 T := Full_View (T);
2140 end if;
2142 if Is_Descendant_Of_Address (T) or else Is_Limited_Type (T) then
2143 Set_Is_Pure (Subp_Id, False);
2144 exit;
2145 end if;
2147 Next_Formal (F);
2148 end loop;
2149 end Check_Function_With_Address_Parameter;
2151 -------------------------------------
2152 -- Check_Function_Writable_Actuals --
2153 -------------------------------------
2155 procedure Check_Function_Writable_Actuals (N : Node_Id) is
2156 Writable_Actuals_List : Elist_Id := No_Elist;
2157 Identifiers_List : Elist_Id := No_Elist;
2158 Aggr_Error_Node : Node_Id := Empty;
2159 Error_Node : Node_Id := Empty;
2161 procedure Collect_Identifiers (N : Node_Id);
2162 -- In a single traversal of subtree N collect in Writable_Actuals_List
2163 -- all the actuals of functions with writable actuals, and in the list
2164 -- Identifiers_List collect all the identifiers that are not actuals of
2165 -- functions with writable actuals. If a writable actual is referenced
2166 -- twice as writable actual then Error_Node is set to reference its
2167 -- second occurrence, the error is reported, and the tree traversal
2168 -- is abandoned.
2170 procedure Preanalyze_Without_Errors (N : Node_Id);
2171 -- Preanalyze N without reporting errors. Very dubious, you can't just
2172 -- go analyzing things more than once???
2174 -------------------------
2175 -- Collect_Identifiers --
2176 -------------------------
2178 procedure Collect_Identifiers (N : Node_Id) is
2180 function Check_Node (N : Node_Id) return Traverse_Result;
2181 -- Process a single node during the tree traversal to collect the
2182 -- writable actuals of functions and all the identifiers which are
2183 -- not writable actuals of functions.
2185 function Contains (List : Elist_Id; N : Node_Id) return Boolean;
2186 -- Returns True if List has a node whose Entity is Entity (N)
2188 ----------------
2189 -- Check_Node --
2190 ----------------
2192 function Check_Node (N : Node_Id) return Traverse_Result is
2193 Is_Writable_Actual : Boolean := False;
2194 Id : Entity_Id;
2196 begin
2197 if Nkind (N) = N_Identifier then
2199 -- No analysis possible if the entity is not decorated
2201 if No (Entity (N)) then
2202 return Skip;
2204 -- Don't collect identifiers of packages, called functions, etc
2206 elsif Ekind_In (Entity (N), E_Package,
2207 E_Function,
2208 E_Procedure,
2209 E_Entry)
2210 then
2211 return Skip;
2213 -- For rewritten nodes, continue the traversal in the original
2214 -- subtree. Needed to handle aggregates in original expressions
2215 -- extracted from the tree by Remove_Side_Effects.
2217 elsif Is_Rewrite_Substitution (N) then
2218 Collect_Identifiers (Original_Node (N));
2219 return Skip;
2221 -- For now we skip aggregate discriminants, since they require
2222 -- performing the analysis in two phases to identify conflicts:
2223 -- first one analyzing discriminants and second one analyzing
2224 -- the rest of components (since at run time, discriminants are
2225 -- evaluated prior to components): too much computation cost
2226 -- to identify a corner case???
2228 elsif Nkind (Parent (N)) = N_Component_Association
2229 and then Nkind_In (Parent (Parent (N)),
2230 N_Aggregate,
2231 N_Extension_Aggregate)
2232 then
2233 declare
2234 Choice : constant Node_Id := First (Choices (Parent (N)));
2236 begin
2237 if Ekind (Entity (N)) = E_Discriminant then
2238 return Skip;
2240 elsif Expression (Parent (N)) = N
2241 and then Nkind (Choice) = N_Identifier
2242 and then Ekind (Entity (Choice)) = E_Discriminant
2243 then
2244 return Skip;
2245 end if;
2246 end;
2248 -- Analyze if N is a writable actual of a function
2250 elsif Nkind (Parent (N)) = N_Function_Call then
2251 declare
2252 Call : constant Node_Id := Parent (N);
2253 Actual : Node_Id;
2254 Formal : Node_Id;
2256 begin
2257 Id := Get_Called_Entity (Call);
2259 -- In case of previous error, no check is possible
2261 if No (Id) then
2262 return Abandon;
2263 end if;
2265 if Ekind_In (Id, E_Function, E_Generic_Function)
2266 and then Has_Out_Or_In_Out_Parameter (Id)
2267 then
2268 Formal := First_Formal (Id);
2269 Actual := First_Actual (Call);
2270 while Present (Actual) and then Present (Formal) loop
2271 if Actual = N then
2272 if Ekind_In (Formal, E_Out_Parameter,
2273 E_In_Out_Parameter)
2274 then
2275 Is_Writable_Actual := True;
2276 end if;
2278 exit;
2279 end if;
2281 Next_Formal (Formal);
2282 Next_Actual (Actual);
2283 end loop;
2284 end if;
2285 end;
2286 end if;
2288 if Is_Writable_Actual then
2290 -- Skip checking the error in non-elementary types since
2291 -- RM 6.4.1(6.15/3) is restricted to elementary types, but
2292 -- store this actual in Writable_Actuals_List since it is
2293 -- needed to perform checks on other constructs that have
2294 -- arbitrary order of evaluation (for example, aggregates).
2296 if not Is_Elementary_Type (Etype (N)) then
2297 if not Contains (Writable_Actuals_List, N) then
2298 Append_New_Elmt (N, To => Writable_Actuals_List);
2299 end if;
2301 -- Second occurrence of an elementary type writable actual
2303 elsif Contains (Writable_Actuals_List, N) then
2305 -- Report the error on the second occurrence of the
2306 -- identifier. We cannot assume that N is the second
2307 -- occurrence (according to their location in the
2308 -- sources), since Traverse_Func walks through Field2
2309 -- last (see comment in the body of Traverse_Func).
2311 declare
2312 Elmt : Elmt_Id;
2314 begin
2315 Elmt := First_Elmt (Writable_Actuals_List);
2316 while Present (Elmt)
2317 and then Entity (Node (Elmt)) /= Entity (N)
2318 loop
2319 Next_Elmt (Elmt);
2320 end loop;
2322 if Sloc (N) > Sloc (Node (Elmt)) then
2323 Error_Node := N;
2324 else
2325 Error_Node := Node (Elmt);
2326 end if;
2328 Error_Msg_NE
2329 ("value may be affected by call to & "
2330 & "because order of evaluation is arbitrary",
2331 Error_Node, Id);
2332 return Abandon;
2333 end;
2335 -- First occurrence of a elementary type writable actual
2337 else
2338 Append_New_Elmt (N, To => Writable_Actuals_List);
2339 end if;
2341 else
2342 if Identifiers_List = No_Elist then
2343 Identifiers_List := New_Elmt_List;
2344 end if;
2346 Append_Unique_Elmt (N, Identifiers_List);
2347 end if;
2348 end if;
2350 return OK;
2351 end Check_Node;
2353 --------------
2354 -- Contains --
2355 --------------
2357 function Contains
2358 (List : Elist_Id;
2359 N : Node_Id) return Boolean
2361 pragma Assert (Nkind (N) in N_Has_Entity);
2363 Elmt : Elmt_Id;
2365 begin
2366 if List = No_Elist then
2367 return False;
2368 end if;
2370 Elmt := First_Elmt (List);
2371 while Present (Elmt) loop
2372 if Entity (Node (Elmt)) = Entity (N) then
2373 return True;
2374 else
2375 Next_Elmt (Elmt);
2376 end if;
2377 end loop;
2379 return False;
2380 end Contains;
2382 ------------------
2383 -- Do_Traversal --
2384 ------------------
2386 procedure Do_Traversal is new Traverse_Proc (Check_Node);
2387 -- The traversal procedure
2389 -- Start of processing for Collect_Identifiers
2391 begin
2392 if Present (Error_Node) then
2393 return;
2394 end if;
2396 if Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
2397 return;
2398 end if;
2400 Do_Traversal (N);
2401 end Collect_Identifiers;
2403 -------------------------------
2404 -- Preanalyze_Without_Errors --
2405 -------------------------------
2407 procedure Preanalyze_Without_Errors (N : Node_Id) is
2408 Status : constant Boolean := Get_Ignore_Errors;
2409 begin
2410 Set_Ignore_Errors (True);
2411 Preanalyze (N);
2412 Set_Ignore_Errors (Status);
2413 end Preanalyze_Without_Errors;
2415 -- Start of processing for Check_Function_Writable_Actuals
2417 begin
2418 -- The check only applies to Ada 2012 code on which Check_Actuals has
2419 -- been set, and only to constructs that have multiple constituents
2420 -- whose order of evaluation is not specified by the language.
2422 if Ada_Version < Ada_2012
2423 or else not Check_Actuals (N)
2424 or else (not (Nkind (N) in N_Op)
2425 and then not (Nkind (N) in N_Membership_Test)
2426 and then not Nkind_In (N, N_Range,
2427 N_Aggregate,
2428 N_Extension_Aggregate,
2429 N_Full_Type_Declaration,
2430 N_Function_Call,
2431 N_Procedure_Call_Statement,
2432 N_Entry_Call_Statement))
2433 or else (Nkind (N) = N_Full_Type_Declaration
2434 and then not Is_Record_Type (Defining_Identifier (N)))
2436 -- In addition, this check only applies to source code, not to code
2437 -- generated by constraint checks.
2439 or else not Comes_From_Source (N)
2440 then
2441 return;
2442 end if;
2444 -- If a construct C has two or more direct constituents that are names
2445 -- or expressions whose evaluation may occur in an arbitrary order, at
2446 -- least one of which contains a function call with an in out or out
2447 -- parameter, then the construct is legal only if: for each name N that
2448 -- is passed as a parameter of mode in out or out to some inner function
2449 -- call C2 (not including the construct C itself), there is no other
2450 -- name anywhere within a direct constituent of the construct C other
2451 -- than the one containing C2, that is known to refer to the same
2452 -- object (RM 6.4.1(6.17/3)).
2454 case Nkind (N) is
2455 when N_Range =>
2456 Collect_Identifiers (Low_Bound (N));
2457 Collect_Identifiers (High_Bound (N));
2459 when N_Membership_Test
2460 | N_Op
2462 declare
2463 Expr : Node_Id;
2465 begin
2466 Collect_Identifiers (Left_Opnd (N));
2468 if Present (Right_Opnd (N)) then
2469 Collect_Identifiers (Right_Opnd (N));
2470 end if;
2472 if Nkind_In (N, N_In, N_Not_In)
2473 and then Present (Alternatives (N))
2474 then
2475 Expr := First (Alternatives (N));
2476 while Present (Expr) loop
2477 Collect_Identifiers (Expr);
2479 Next (Expr);
2480 end loop;
2481 end if;
2482 end;
2484 when N_Full_Type_Declaration =>
2485 declare
2486 function Get_Record_Part (N : Node_Id) return Node_Id;
2487 -- Return the record part of this record type definition
2489 function Get_Record_Part (N : Node_Id) return Node_Id is
2490 Type_Def : constant Node_Id := Type_Definition (N);
2491 begin
2492 if Nkind (Type_Def) = N_Derived_Type_Definition then
2493 return Record_Extension_Part (Type_Def);
2494 else
2495 return Type_Def;
2496 end if;
2497 end Get_Record_Part;
2499 Comp : Node_Id;
2500 Def_Id : Entity_Id := Defining_Identifier (N);
2501 Rec : Node_Id := Get_Record_Part (N);
2503 begin
2504 -- No need to perform any analysis if the record has no
2505 -- components
2507 if No (Rec) or else No (Component_List (Rec)) then
2508 return;
2509 end if;
2511 -- Collect the identifiers starting from the deepest
2512 -- derivation. Done to report the error in the deepest
2513 -- derivation.
2515 loop
2516 if Present (Component_List (Rec)) then
2517 Comp := First (Component_Items (Component_List (Rec)));
2518 while Present (Comp) loop
2519 if Nkind (Comp) = N_Component_Declaration
2520 and then Present (Expression (Comp))
2521 then
2522 Collect_Identifiers (Expression (Comp));
2523 end if;
2525 Next (Comp);
2526 end loop;
2527 end if;
2529 exit when No (Underlying_Type (Etype (Def_Id)))
2530 or else Base_Type (Underlying_Type (Etype (Def_Id)))
2531 = Def_Id;
2533 Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
2534 Rec := Get_Record_Part (Parent (Def_Id));
2535 end loop;
2536 end;
2538 when N_Entry_Call_Statement
2539 | N_Subprogram_Call
2541 declare
2542 Id : constant Entity_Id := Get_Called_Entity (N);
2543 Formal : Node_Id;
2544 Actual : Node_Id;
2546 begin
2547 Formal := First_Formal (Id);
2548 Actual := First_Actual (N);
2549 while Present (Actual) and then Present (Formal) loop
2550 if Ekind_In (Formal, E_Out_Parameter,
2551 E_In_Out_Parameter)
2552 then
2553 Collect_Identifiers (Actual);
2554 end if;
2556 Next_Formal (Formal);
2557 Next_Actual (Actual);
2558 end loop;
2559 end;
2561 when N_Aggregate
2562 | N_Extension_Aggregate
2564 declare
2565 Assoc : Node_Id;
2566 Choice : Node_Id;
2567 Comp_Expr : Node_Id;
2569 begin
2570 -- Handle the N_Others_Choice of array aggregates with static
2571 -- bounds. There is no need to perform this analysis in
2572 -- aggregates without static bounds since we cannot evaluate
2573 -- if the N_Others_Choice covers several elements. There is
2574 -- no need to handle the N_Others choice of record aggregates
2575 -- since at this stage it has been already expanded by
2576 -- Resolve_Record_Aggregate.
2578 if Is_Array_Type (Etype (N))
2579 and then Nkind (N) = N_Aggregate
2580 and then Present (Aggregate_Bounds (N))
2581 and then Compile_Time_Known_Bounds (Etype (N))
2582 and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
2584 Expr_Value (Low_Bound (Aggregate_Bounds (N)))
2585 then
2586 declare
2587 Count_Components : Uint := Uint_0;
2588 Num_Components : Uint;
2589 Others_Assoc : Node_Id;
2590 Others_Choice : Node_Id := Empty;
2591 Others_Box_Present : Boolean := False;
2593 begin
2594 -- Count positional associations
2596 if Present (Expressions (N)) then
2597 Comp_Expr := First (Expressions (N));
2598 while Present (Comp_Expr) loop
2599 Count_Components := Count_Components + 1;
2600 Next (Comp_Expr);
2601 end loop;
2602 end if;
2604 -- Count the rest of elements and locate the N_Others
2605 -- choice (if any)
2607 Assoc := First (Component_Associations (N));
2608 while Present (Assoc) loop
2609 Choice := First (Choices (Assoc));
2610 while Present (Choice) loop
2611 if Nkind (Choice) = N_Others_Choice then
2612 Others_Assoc := Assoc;
2613 Others_Choice := Choice;
2614 Others_Box_Present := Box_Present (Assoc);
2616 -- Count several components
2618 elsif Nkind_In (Choice, N_Range,
2619 N_Subtype_Indication)
2620 or else (Is_Entity_Name (Choice)
2621 and then Is_Type (Entity (Choice)))
2622 then
2623 declare
2624 L, H : Node_Id;
2625 begin
2626 Get_Index_Bounds (Choice, L, H);
2627 pragma Assert
2628 (Compile_Time_Known_Value (L)
2629 and then Compile_Time_Known_Value (H));
2630 Count_Components :=
2631 Count_Components
2632 + Expr_Value (H) - Expr_Value (L) + 1;
2633 end;
2635 -- Count single component. No other case available
2636 -- since we are handling an aggregate with static
2637 -- bounds.
2639 else
2640 pragma Assert (Is_OK_Static_Expression (Choice)
2641 or else Nkind (Choice) = N_Identifier
2642 or else Nkind (Choice) = N_Integer_Literal);
2644 Count_Components := Count_Components + 1;
2645 end if;
2647 Next (Choice);
2648 end loop;
2650 Next (Assoc);
2651 end loop;
2653 Num_Components :=
2654 Expr_Value (High_Bound (Aggregate_Bounds (N))) -
2655 Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;
2657 pragma Assert (Count_Components <= Num_Components);
2659 -- Handle the N_Others choice if it covers several
2660 -- components
2662 if Present (Others_Choice)
2663 and then (Num_Components - Count_Components) > 1
2664 then
2665 if not Others_Box_Present then
2667 -- At this stage, if expansion is active, the
2668 -- expression of the others choice has not been
2669 -- analyzed. Hence we generate a duplicate and
2670 -- we analyze it silently to have available the
2671 -- minimum decoration required to collect the
2672 -- identifiers.
2674 if not Expander_Active then
2675 Comp_Expr := Expression (Others_Assoc);
2676 else
2677 Comp_Expr :=
2678 New_Copy_Tree (Expression (Others_Assoc));
2679 Preanalyze_Without_Errors (Comp_Expr);
2680 end if;
2682 Collect_Identifiers (Comp_Expr);
2684 if Writable_Actuals_List /= No_Elist then
2686 -- As suggested by Robert, at current stage we
2687 -- report occurrences of this case as warnings.
2689 Error_Msg_N
2690 ("writable function parameter may affect "
2691 & "value in other component because order "
2692 & "of evaluation is unspecified??",
2693 Node (First_Elmt (Writable_Actuals_List)));
2694 end if;
2695 end if;
2696 end if;
2697 end;
2699 -- For an array aggregate, a discrete_choice_list that has
2700 -- a nonstatic range is considered as two or more separate
2701 -- occurrences of the expression (RM 6.4.1(20/3)).
2703 elsif Is_Array_Type (Etype (N))
2704 and then Nkind (N) = N_Aggregate
2705 and then Present (Aggregate_Bounds (N))
2706 and then not Compile_Time_Known_Bounds (Etype (N))
2707 then
2708 -- Collect identifiers found in the dynamic bounds
2710 declare
2711 Count_Components : Natural := 0;
2712 Low, High : Node_Id;
2714 begin
2715 Assoc := First (Component_Associations (N));
2716 while Present (Assoc) loop
2717 Choice := First (Choices (Assoc));
2718 while Present (Choice) loop
2719 if Nkind_In (Choice, N_Range,
2720 N_Subtype_Indication)
2721 or else (Is_Entity_Name (Choice)
2722 and then Is_Type (Entity (Choice)))
2723 then
2724 Get_Index_Bounds (Choice, Low, High);
2726 if not Compile_Time_Known_Value (Low) then
2727 Collect_Identifiers (Low);
2729 if No (Aggr_Error_Node) then
2730 Aggr_Error_Node := Low;
2731 end if;
2732 end if;
2734 if not Compile_Time_Known_Value (High) then
2735 Collect_Identifiers (High);
2737 if No (Aggr_Error_Node) then
2738 Aggr_Error_Node := High;
2739 end if;
2740 end if;
2742 -- The RM rule is violated if there is more than
2743 -- a single choice in a component association.
2745 else
2746 Count_Components := Count_Components + 1;
2748 if No (Aggr_Error_Node)
2749 and then Count_Components > 1
2750 then
2751 Aggr_Error_Node := Choice;
2752 end if;
2754 if not Compile_Time_Known_Value (Choice) then
2755 Collect_Identifiers (Choice);
2756 end if;
2757 end if;
2759 Next (Choice);
2760 end loop;
2762 Next (Assoc);
2763 end loop;
2764 end;
2765 end if;
2767 -- Handle ancestor part of extension aggregates
2769 if Nkind (N) = N_Extension_Aggregate then
2770 Collect_Identifiers (Ancestor_Part (N));
2771 end if;
2773 -- Handle positional associations
2775 if Present (Expressions (N)) then
2776 Comp_Expr := First (Expressions (N));
2777 while Present (Comp_Expr) loop
2778 if not Is_OK_Static_Expression (Comp_Expr) then
2779 Collect_Identifiers (Comp_Expr);
2780 end if;
2782 Next (Comp_Expr);
2783 end loop;
2784 end if;
2786 -- Handle discrete associations
2788 if Present (Component_Associations (N)) then
2789 Assoc := First (Component_Associations (N));
2790 while Present (Assoc) loop
2792 if not Box_Present (Assoc) then
2793 Choice := First (Choices (Assoc));
2794 while Present (Choice) loop
2796 -- For now we skip discriminants since it requires
2797 -- performing the analysis in two phases: first one
2798 -- analyzing discriminants and second one analyzing
2799 -- the rest of components since discriminants are
2800 -- evaluated prior to components: too much extra
2801 -- work to detect a corner case???
2803 if Nkind (Choice) in N_Has_Entity
2804 and then Present (Entity (Choice))
2805 and then Ekind (Entity (Choice)) = E_Discriminant
2806 then
2807 null;
2809 elsif Box_Present (Assoc) then
2810 null;
2812 else
2813 if not Analyzed (Expression (Assoc)) then
2814 Comp_Expr :=
2815 New_Copy_Tree (Expression (Assoc));
2816 Set_Parent (Comp_Expr, Parent (N));
2817 Preanalyze_Without_Errors (Comp_Expr);
2818 else
2819 Comp_Expr := Expression (Assoc);
2820 end if;
2822 Collect_Identifiers (Comp_Expr);
2823 end if;
2825 Next (Choice);
2826 end loop;
2827 end if;
2829 Next (Assoc);
2830 end loop;
2831 end if;
2832 end;
2834 when others =>
2835 return;
2836 end case;
2838 -- No further action needed if we already reported an error
2840 if Present (Error_Node) then
2841 return;
2842 end if;
2844 -- Check violation of RM 6.20/3 in aggregates
2846 if Present (Aggr_Error_Node)
2847 and then Writable_Actuals_List /= No_Elist
2848 then
2849 Error_Msg_N
2850 ("value may be affected by call in other component because they "
2851 & "are evaluated in unspecified order",
2852 Node (First_Elmt (Writable_Actuals_List)));
2853 return;
2854 end if;
2856 -- Check if some writable argument of a function is referenced
2858 if Writable_Actuals_List /= No_Elist
2859 and then Identifiers_List /= No_Elist
2860 then
2861 declare
2862 Elmt_1 : Elmt_Id;
2863 Elmt_2 : Elmt_Id;
2865 begin
2866 Elmt_1 := First_Elmt (Writable_Actuals_List);
2867 while Present (Elmt_1) loop
2868 Elmt_2 := First_Elmt (Identifiers_List);
2869 while Present (Elmt_2) loop
2870 if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
2871 case Nkind (Parent (Node (Elmt_2))) is
2872 when N_Aggregate
2873 | N_Component_Association
2874 | N_Component_Declaration
2876 Error_Msg_N
2877 ("value may be affected by call in other "
2878 & "component because they are evaluated "
2879 & "in unspecified order",
2880 Node (Elmt_2));
2882 when N_In
2883 | N_Not_In
2885 Error_Msg_N
2886 ("value may be affected by call in other "
2887 & "alternative because they are evaluated "
2888 & "in unspecified order",
2889 Node (Elmt_2));
2891 when others =>
2892 Error_Msg_N
2893 ("value of actual may be affected by call in "
2894 & "other actual because they are evaluated "
2895 & "in unspecified order",
2896 Node (Elmt_2));
2897 end case;
2898 end if;
2900 Next_Elmt (Elmt_2);
2901 end loop;
2903 Next_Elmt (Elmt_1);
2904 end loop;
2905 end;
2906 end if;
2907 end Check_Function_Writable_Actuals;
2909 --------------------------------
2910 -- Check_Implicit_Dereference --
2911 --------------------------------
2913 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id) is
2914 Disc : Entity_Id;
2915 Desig : Entity_Id;
2916 Nam : Node_Id;
2918 begin
2919 if Nkind (N) = N_Indexed_Component
2920 and then Present (Generalized_Indexing (N))
2921 then
2922 Nam := Generalized_Indexing (N);
2923 else
2924 Nam := N;
2925 end if;
2927 if Ada_Version < Ada_2012
2928 or else not Has_Implicit_Dereference (Base_Type (Typ))
2929 then
2930 return;
2932 elsif not Comes_From_Source (N)
2933 and then Nkind (N) /= N_Indexed_Component
2934 then
2935 return;
2937 elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then
2938 null;
2940 else
2941 Disc := First_Discriminant (Typ);
2942 while Present (Disc) loop
2943 if Has_Implicit_Dereference (Disc) then
2944 Desig := Designated_Type (Etype (Disc));
2945 Add_One_Interp (Nam, Disc, Desig);
2947 -- If the node is a generalized indexing, add interpretation
2948 -- to that node as well, for subsequent resolution.
2950 if Nkind (N) = N_Indexed_Component then
2951 Add_One_Interp (N, Disc, Desig);
2952 end if;
2954 -- If the operation comes from a generic unit and the context
2955 -- is a selected component, the selector name may be global
2956 -- and set in the instance already. Remove the entity to
2957 -- force resolution of the selected component, and the
2958 -- generation of an explicit dereference if needed.
2960 if In_Instance
2961 and then Nkind (Parent (Nam)) = N_Selected_Component
2962 then
2963 Set_Entity (Selector_Name (Parent (Nam)), Empty);
2964 end if;
2966 exit;
2967 end if;
2969 Next_Discriminant (Disc);
2970 end loop;
2971 end if;
2972 end Check_Implicit_Dereference;
2974 ----------------------------------
2975 -- Check_Internal_Protected_Use --
2976 ----------------------------------
2978 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
2979 S : Entity_Id;
2980 Prot : Entity_Id;
2982 begin
2983 Prot := Empty;
2985 S := Current_Scope;
2986 while Present (S) loop
2987 if S = Standard_Standard then
2988 exit;
2990 elsif Ekind (S) = E_Function
2991 and then Ekind (Scope (S)) = E_Protected_Type
2992 then
2993 Prot := Scope (S);
2994 exit;
2995 end if;
2997 S := Scope (S);
2998 end loop;
3000 if Present (Prot)
3001 and then Scope (Nam) = Prot
3002 and then Ekind (Nam) /= E_Function
3003 then
3004 -- An indirect function call (e.g. a callback within a protected
3005 -- function body) is not statically illegal. If the access type is
3006 -- anonymous and is the type of an access parameter, the scope of Nam
3007 -- will be the protected type, but it is not a protected operation.
3009 if Ekind (Nam) = E_Subprogram_Type
3010 and then Nkind (Associated_Node_For_Itype (Nam)) =
3011 N_Function_Specification
3012 then
3013 null;
3015 elsif Nkind (N) = N_Subprogram_Renaming_Declaration then
3016 Error_Msg_N
3017 ("within protected function cannot use protected procedure in "
3018 & "renaming or as generic actual", N);
3020 elsif Nkind (N) = N_Attribute_Reference then
3021 Error_Msg_N
3022 ("within protected function cannot take access of protected "
3023 & "procedure", N);
3025 else
3026 Error_Msg_N
3027 ("within protected function, protected object is constant", N);
3028 Error_Msg_N
3029 ("\cannot call operation that may modify it", N);
3030 end if;
3031 end if;
3033 -- Verify that an internal call does not appear within a precondition
3034 -- of a protected operation. This implements AI12-0166.
3035 -- The precondition aspect has been rewritten as a pragma Precondition
3036 -- and we check whether the scope of the called subprogram is the same
3037 -- as that of the entity to which the aspect applies.
3039 if Convention (Nam) = Convention_Protected then
3040 declare
3041 P : Node_Id;
3043 begin
3044 P := Parent (N);
3045 while Present (P) loop
3046 if Nkind (P) = N_Pragma
3047 and then Chars (Pragma_Identifier (P)) = Name_Precondition
3048 and then From_Aspect_Specification (P)
3049 and then
3050 Scope (Entity (Corresponding_Aspect (P))) = Scope (Nam)
3051 then
3052 Error_Msg_N
3053 ("internal call cannot appear in precondition of "
3054 & "protected operation", N);
3055 return;
3057 elsif Nkind (P) = N_Pragma
3058 and then Chars (Pragma_Identifier (P)) = Name_Contract_Cases
3059 then
3060 -- Check whether call is in a case guard. It is legal in a
3061 -- consequence.
3063 P := N;
3064 while Present (P) loop
3065 if Nkind (Parent (P)) = N_Component_Association
3066 and then P /= Expression (Parent (P))
3067 then
3068 Error_Msg_N
3069 ("internal call cannot appear in case guard in a "
3070 & "contract case", N);
3071 end if;
3073 P := Parent (P);
3074 end loop;
3076 return;
3078 elsif Nkind (P) = N_Parameter_Specification
3079 and then Scope (Current_Scope) = Scope (Nam)
3080 and then Nkind_In (Parent (P), N_Entry_Declaration,
3081 N_Subprogram_Declaration)
3082 then
3083 Error_Msg_N
3084 ("internal call cannot appear in default for formal of "
3085 & "protected operation", N);
3086 return;
3087 end if;
3089 P := Parent (P);
3090 end loop;
3091 end;
3092 end if;
3093 end Check_Internal_Protected_Use;
3095 ---------------------------------------
3096 -- Check_Later_Vs_Basic_Declarations --
3097 ---------------------------------------
3099 procedure Check_Later_Vs_Basic_Declarations
3100 (Decls : List_Id;
3101 During_Parsing : Boolean)
3103 Body_Sloc : Source_Ptr;
3104 Decl : Node_Id;
3106 function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
3107 -- Return whether Decl is considered as a declarative item.
3108 -- When During_Parsing is True, the semantics of Ada 83 is followed.
3109 -- When During_Parsing is False, the semantics of SPARK is followed.
3111 -------------------------------
3112 -- Is_Later_Declarative_Item --
3113 -------------------------------
3115 function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
3116 begin
3117 if Nkind (Decl) in N_Later_Decl_Item then
3118 return True;
3120 elsif Nkind (Decl) = N_Pragma then
3121 return True;
3123 elsif During_Parsing then
3124 return False;
3126 -- In SPARK, a package declaration is not considered as a later
3127 -- declarative item.
3129 elsif Nkind (Decl) = N_Package_Declaration then
3130 return False;
3132 -- In SPARK, a renaming is considered as a later declarative item
3134 elsif Nkind (Decl) in N_Renaming_Declaration then
3135 return True;
3137 else
3138 return False;
3139 end if;
3140 end Is_Later_Declarative_Item;
3142 -- Start of processing for Check_Later_Vs_Basic_Declarations
3144 begin
3145 Decl := First (Decls);
3147 -- Loop through sequence of basic declarative items
3149 Outer : while Present (Decl) loop
3150 if not Nkind_In (Decl, N_Subprogram_Body, N_Package_Body, N_Task_Body)
3151 and then Nkind (Decl) not in N_Body_Stub
3152 then
3153 Next (Decl);
3155 -- Once a body is encountered, we only allow later declarative
3156 -- items. The inner loop checks the rest of the list.
3158 else
3159 Body_Sloc := Sloc (Decl);
3161 Inner : while Present (Decl) loop
3162 if not Is_Later_Declarative_Item (Decl) then
3163 if During_Parsing then
3164 if Ada_Version = Ada_83 then
3165 Error_Msg_Sloc := Body_Sloc;
3166 Error_Msg_N
3167 ("(Ada 83) decl cannot appear after body#", Decl);
3168 end if;
3169 else
3170 Error_Msg_Sloc := Body_Sloc;
3171 Check_SPARK_05_Restriction
3172 ("decl cannot appear after body#", Decl);
3173 end if;
3174 end if;
3176 Next (Decl);
3177 end loop Inner;
3178 end if;
3179 end loop Outer;
3180 end Check_Later_Vs_Basic_Declarations;
3182 ---------------------------
3183 -- Check_No_Hidden_State --
3184 ---------------------------
3186 procedure Check_No_Hidden_State (Id : Entity_Id) is
3187 Context : Entity_Id := Empty;
3188 Not_Visible : Boolean := False;
3189 Scop : Entity_Id;
3191 begin
3192 pragma Assert (Ekind_In (Id, E_Abstract_State, E_Variable));
3194 -- Find the proper context where the object or state appears
3196 Scop := Scope (Id);
3197 while Present (Scop) loop
3198 Context := Scop;
3200 -- Keep track of the context's visibility
3202 Not_Visible := Not_Visible or else In_Private_Part (Context);
3204 -- Prevent the search from going too far
3206 if Context = Standard_Standard then
3207 return;
3209 -- Objects and states that appear immediately within a subprogram or
3210 -- inside a construct nested within a subprogram do not introduce a
3211 -- hidden state. They behave as local variable declarations.
3213 elsif Is_Subprogram (Context) then
3214 return;
3216 -- When examining a package body, use the entity of the spec as it
3217 -- carries the abstract state declarations.
3219 elsif Ekind (Context) = E_Package_Body then
3220 Context := Spec_Entity (Context);
3221 end if;
3223 -- Stop the traversal when a package subject to a null abstract state
3224 -- has been found.
3226 if Ekind_In (Context, E_Generic_Package, E_Package)
3227 and then Has_Null_Abstract_State (Context)
3228 then
3229 exit;
3230 end if;
3232 Scop := Scope (Scop);
3233 end loop;
3235 -- At this point we know that there is at least one package with a null
3236 -- abstract state in visibility. Emit an error message unconditionally
3237 -- if the entity being processed is a state because the placement of the
3238 -- related package is irrelevant. This is not the case for objects as
3239 -- the intermediate context matters.
3241 if Present (Context)
3242 and then (Ekind (Id) = E_Abstract_State or else Not_Visible)
3243 then
3244 Error_Msg_N ("cannot introduce hidden state &", Id);
3245 Error_Msg_NE ("\package & has null abstract state", Id, Context);
3246 end if;
3247 end Check_No_Hidden_State;
3249 ----------------------------------------
3250 -- Check_Nonvolatile_Function_Profile --
3251 ----------------------------------------
3253 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id) is
3254 Formal : Entity_Id;
3256 begin
3257 -- Inspect all formal parameters
3259 Formal := First_Formal (Func_Id);
3260 while Present (Formal) loop
3261 if Is_Effectively_Volatile (Etype (Formal)) then
3262 Error_Msg_NE
3263 ("nonvolatile function & cannot have a volatile parameter",
3264 Formal, Func_Id);
3265 end if;
3267 Next_Formal (Formal);
3268 end loop;
3270 -- Inspect the return type
3272 if Is_Effectively_Volatile (Etype (Func_Id)) then
3273 Error_Msg_NE
3274 ("nonvolatile function & cannot have a volatile return type",
3275 Result_Definition (Parent (Func_Id)), Func_Id);
3276 end if;
3277 end Check_Nonvolatile_Function_Profile;
3279 -----------------------------
3280 -- Check_Part_Of_Reference --
3281 -----------------------------
3283 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id) is
3284 Conc_Obj : constant Entity_Id := Encapsulating_State (Var_Id);
3285 Decl : Node_Id;
3286 OK_Use : Boolean := False;
3287 Par : Node_Id;
3288 Prag_Nam : Name_Id;
3289 Spec_Id : Entity_Id;
3291 begin
3292 -- Traverse the parent chain looking for a suitable context for the
3293 -- reference to the concurrent constituent.
3295 Par := Parent (Ref);
3296 while Present (Par) loop
3297 if Nkind (Par) = N_Pragma then
3298 Prag_Nam := Pragma_Name (Par);
3300 -- A concurrent constituent is allowed to appear in pragmas
3301 -- Initial_Condition and Initializes as this is part of the
3302 -- elaboration checks for the constituent (SPARK RM 9.3).
3304 if Nam_In (Prag_Nam, Name_Initial_Condition, Name_Initializes) then
3305 OK_Use := True;
3306 exit;
3308 -- When the reference appears within pragma Depends or Global,
3309 -- check whether the pragma applies to a single task type. Note
3310 -- that the pragma is not encapsulated by the type definition,
3311 -- but this is still a valid context.
3313 elsif Nam_In (Prag_Nam, Name_Depends, Name_Global) then
3314 Decl := Find_Related_Declaration_Or_Body (Par);
3316 if Nkind (Decl) = N_Object_Declaration
3317 and then Defining_Entity (Decl) = Conc_Obj
3318 then
3319 OK_Use := True;
3320 exit;
3321 end if;
3322 end if;
3324 -- The reference appears somewhere in the definition of the single
3325 -- protected/task type (SPARK RM 9.3).
3327 elsif Nkind_In (Par, N_Single_Protected_Declaration,
3328 N_Single_Task_Declaration)
3329 and then Defining_Entity (Par) = Conc_Obj
3330 then
3331 OK_Use := True;
3332 exit;
3334 -- The reference appears within the expanded declaration or the body
3335 -- of the single protected/task type (SPARK RM 9.3).
3337 elsif Nkind_In (Par, N_Protected_Body,
3338 N_Protected_Type_Declaration,
3339 N_Task_Body,
3340 N_Task_Type_Declaration)
3341 then
3342 Spec_Id := Unique_Defining_Entity (Par);
3344 if Present (Anonymous_Object (Spec_Id))
3345 and then Anonymous_Object (Spec_Id) = Conc_Obj
3346 then
3347 OK_Use := True;
3348 exit;
3349 end if;
3351 -- The reference has been relocated within an internally generated
3352 -- package or subprogram. Assume that the reference is legal as the
3353 -- real check was already performed in the original context of the
3354 -- reference.
3356 elsif Nkind_In (Par, N_Package_Body,
3357 N_Package_Declaration,
3358 N_Subprogram_Body,
3359 N_Subprogram_Declaration)
3360 and then not Comes_From_Source (Par)
3361 then
3362 -- Continue to examine the context if the reference appears in a
3363 -- subprogram body which was previously an expression function,
3364 -- unless this is during preanalysis (when In_Spec_Expression is
3365 -- True), as the body may not yet be inserted in the tree.
3367 if Nkind (Par) = N_Subprogram_Body
3368 and then Was_Expression_Function (Par)
3369 and then not In_Spec_Expression
3370 then
3371 null;
3373 -- Otherwise the reference is legal
3375 else
3376 OK_Use := True;
3377 exit;
3378 end if;
3380 -- The reference has been relocated to an inlined body for GNATprove.
3381 -- Assume that the reference is legal as the real check was already
3382 -- performed in the original context of the reference.
3384 elsif GNATprove_Mode
3385 and then Nkind (Par) = N_Subprogram_Body
3386 and then Chars (Defining_Entity (Par)) = Name_uParent
3387 then
3388 OK_Use := True;
3389 exit;
3390 end if;
3392 Par := Parent (Par);
3393 end loop;
3395 -- The reference is illegal as it appears outside the definition or
3396 -- body of the single protected/task type.
3398 if not OK_Use then
3399 Error_Msg_NE
3400 ("reference to variable & cannot appear in this context",
3401 Ref, Var_Id);
3402 Error_Msg_Name_1 := Chars (Var_Id);
3404 if Is_Single_Protected_Object (Conc_Obj) then
3405 Error_Msg_NE
3406 ("\% is constituent of single protected type &", Ref, Conc_Obj);
3408 else
3409 Error_Msg_NE
3410 ("\% is constituent of single task type &", Ref, Conc_Obj);
3411 end if;
3412 end if;
3413 end Check_Part_Of_Reference;
3415 ------------------------------------------
3416 -- Check_Potentially_Blocking_Operation --
3417 ------------------------------------------
3419 procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
3420 S : Entity_Id;
3422 begin
3423 -- N is one of the potentially blocking operations listed in 9.5.1(8).
3424 -- When pragma Detect_Blocking is active, the run time will raise
3425 -- Program_Error. Here we only issue a warning, since we generally
3426 -- support the use of potentially blocking operations in the absence
3427 -- of the pragma.
3429 -- Indirect blocking through a subprogram call cannot be diagnosed
3430 -- statically without interprocedural analysis, so we do not attempt
3431 -- to do it here.
3433 S := Scope (Current_Scope);
3434 while Present (S) and then S /= Standard_Standard loop
3435 if Is_Protected_Type (S) then
3436 Error_Msg_N
3437 ("potentially blocking operation in protected operation??", N);
3438 return;
3439 end if;
3441 S := Scope (S);
3442 end loop;
3443 end Check_Potentially_Blocking_Operation;
3445 ------------------------------------
3446 -- Check_Previous_Null_Procedure --
3447 ------------------------------------
3449 procedure Check_Previous_Null_Procedure
3450 (Decl : Node_Id;
3451 Prev : Entity_Id)
3453 begin
3454 if Ekind (Prev) = E_Procedure
3455 and then Nkind (Parent (Prev)) = N_Procedure_Specification
3456 and then Null_Present (Parent (Prev))
3457 then
3458 Error_Msg_Sloc := Sloc (Prev);
3459 Error_Msg_N
3460 ("declaration cannot complete previous null procedure#", Decl);
3461 end if;
3462 end Check_Previous_Null_Procedure;
3464 ---------------------------------
3465 -- Check_Result_And_Post_State --
3466 ---------------------------------
3468 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id) is
3469 procedure Check_Result_And_Post_State_In_Pragma
3470 (Prag : Node_Id;
3471 Result_Seen : in out Boolean);
3472 -- Determine whether pragma Prag mentions attribute 'Result and whether
3473 -- the pragma contains an expression that evaluates differently in pre-
3474 -- and post-state. Prag is a [refined] postcondition or a contract-cases
3475 -- pragma. Result_Seen is set when the pragma mentions attribute 'Result
3477 function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean;
3478 -- Determine whether subprogram Subp_Id contains at least one IN OUT
3479 -- formal parameter.
3481 -------------------------------------------
3482 -- Check_Result_And_Post_State_In_Pragma --
3483 -------------------------------------------
3485 procedure Check_Result_And_Post_State_In_Pragma
3486 (Prag : Node_Id;
3487 Result_Seen : in out Boolean)
3489 procedure Check_Conjunct (Expr : Node_Id);
3490 -- Check an individual conjunct in a conjunction of Boolean
3491 -- expressions, connected by "and" or "and then" operators.
3493 procedure Check_Conjuncts (Expr : Node_Id);
3494 -- Apply the post-state check to every conjunct in an expression, in
3495 -- case this is a conjunction of Boolean expressions. Otherwise apply
3496 -- it to the expression as a whole.
3498 procedure Check_Expression (Expr : Node_Id);
3499 -- Perform the 'Result and post-state checks on a given expression
3501 function Is_Function_Result (N : Node_Id) return Traverse_Result;
3502 -- Attempt to find attribute 'Result in a subtree denoted by N
3504 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
3505 -- Determine whether source node N denotes "True" or "False"
3507 function Mentions_Post_State (N : Node_Id) return Boolean;
3508 -- Determine whether a subtree denoted by N mentions any construct
3509 -- that denotes a post-state.
3511 procedure Check_Function_Result is
3512 new Traverse_Proc (Is_Function_Result);
3514 --------------------
3515 -- Check_Conjunct --
3516 --------------------
3518 procedure Check_Conjunct (Expr : Node_Id) is
3519 function Adjust_Message (Msg : String) return String;
3520 -- Prepend a prefix to the input message Msg denoting that the
3521 -- message applies to a conjunct in the expression, when this
3522 -- is the case.
3524 function Applied_On_Conjunct return Boolean;
3525 -- Returns True if the message applies to a conjunct in the
3526 -- expression, instead of the whole expression.
3528 function Has_Global_Output (Subp : Entity_Id) return Boolean;
3529 -- Returns True if Subp has an output in its Global contract
3531 function Has_No_Output (Subp : Entity_Id) return Boolean;
3532 -- Returns True if Subp has no declared output: no function
3533 -- result, no output parameter, and no output in its Global
3534 -- contract.
3536 --------------------
3537 -- Adjust_Message --
3538 --------------------
3540 function Adjust_Message (Msg : String) return String is
3541 begin
3542 if Applied_On_Conjunct then
3543 return "conjunct in " & Msg;
3544 else
3545 return Msg;
3546 end if;
3547 end Adjust_Message;
3549 -------------------------
3550 -- Applied_On_Conjunct --
3551 -------------------------
3553 function Applied_On_Conjunct return Boolean is
3554 begin
3555 -- Expr is the conjunct of an enclosing "and" expression
3557 return Nkind (Parent (Expr)) in N_Subexpr
3559 -- or Expr is a conjunct of an enclosing "and then"
3560 -- expression in a postcondition aspect that was split into
3561 -- multiple pragmas. The first conjunct has the "and then"
3562 -- expression as Original_Node, and other conjuncts have
3563 -- Split_PCC set to True.
3565 or else Nkind (Original_Node (Expr)) = N_And_Then
3566 or else Split_PPC (Prag);
3567 end Applied_On_Conjunct;
3569 -----------------------
3570 -- Has_Global_Output --
3571 -----------------------
3573 function Has_Global_Output (Subp : Entity_Id) return Boolean is
3574 Global : constant Node_Id := Get_Pragma (Subp, Pragma_Global);
3575 List : Node_Id;
3576 Assoc : Node_Id;
3578 begin
3579 if No (Global) then
3580 return False;
3581 end if;
3583 List := Expression (Get_Argument (Global, Subp));
3585 -- Empty list (no global items) or single global item
3586 -- declaration (only input items).
3588 if Nkind_In (List, N_Null,
3589 N_Expanded_Name,
3590 N_Identifier,
3591 N_Selected_Component)
3592 then
3593 return False;
3595 -- Simple global list (only input items) or moded global list
3596 -- declaration.
3598 elsif Nkind (List) = N_Aggregate then
3599 if Present (Expressions (List)) then
3600 return False;
3602 else
3603 Assoc := First (Component_Associations (List));
3604 while Present (Assoc) loop
3605 if Chars (First (Choices (Assoc))) /= Name_Input then
3606 return True;
3607 end if;
3609 Next (Assoc);
3610 end loop;
3612 return False;
3613 end if;
3615 -- To accommodate partial decoration of disabled SPARK
3616 -- features, this routine may be called with illegal input.
3617 -- If this is the case, do not raise Program_Error.
3619 else
3620 return False;
3621 end if;
3622 end Has_Global_Output;
3624 -------------------
3625 -- Has_No_Output --
3626 -------------------
3628 function Has_No_Output (Subp : Entity_Id) return Boolean is
3629 Param : Node_Id;
3631 begin
3632 -- A function has its result as output
3634 if Ekind (Subp) = E_Function then
3635 return False;
3636 end if;
3638 -- An OUT or IN OUT parameter is an output
3640 Param := First_Formal (Subp);
3641 while Present (Param) loop
3642 if Ekind_In (Param, E_Out_Parameter, E_In_Out_Parameter) then
3643 return False;
3644 end if;
3646 Next_Formal (Param);
3647 end loop;
3649 -- An item of mode Output or In_Out in the Global contract is
3650 -- an output.
3652 if Has_Global_Output (Subp) then
3653 return False;
3654 end if;
3656 return True;
3657 end Has_No_Output;
3659 -- Local variables
3661 Err_Node : Node_Id;
3662 -- Error node when reporting a warning on a (refined)
3663 -- postcondition.
3665 -- Start of processing for Check_Conjunct
3667 begin
3668 if Applied_On_Conjunct then
3669 Err_Node := Expr;
3670 else
3671 Err_Node := Prag;
3672 end if;
3674 -- Do not report missing reference to outcome in postcondition if
3675 -- either the postcondition is trivially True or False, or if the
3676 -- subprogram is ghost and has no declared output.
3678 if not Is_Trivial_Boolean (Expr)
3679 and then not Mentions_Post_State (Expr)
3680 and then not (Is_Ghost_Entity (Subp_Id)
3681 and then Has_No_Output (Subp_Id))
3682 then
3683 if Pragma_Name (Prag) = Name_Contract_Cases then
3684 Error_Msg_NE (Adjust_Message
3685 ("contract case does not check the outcome of calling "
3686 & "&?T?"), Expr, Subp_Id);
3688 elsif Pragma_Name (Prag) = Name_Refined_Post then
3689 Error_Msg_NE (Adjust_Message
3690 ("refined postcondition does not check the outcome of "
3691 & "calling &?T?"), Err_Node, Subp_Id);
3693 else
3694 Error_Msg_NE (Adjust_Message
3695 ("postcondition does not check the outcome of calling "
3696 & "&?T?"), Err_Node, Subp_Id);
3697 end if;
3698 end if;
3699 end Check_Conjunct;
3701 ---------------------
3702 -- Check_Conjuncts --
3703 ---------------------
3705 procedure Check_Conjuncts (Expr : Node_Id) is
3706 begin
3707 if Nkind_In (Expr, N_Op_And, N_And_Then) then
3708 Check_Conjuncts (Left_Opnd (Expr));
3709 Check_Conjuncts (Right_Opnd (Expr));
3710 else
3711 Check_Conjunct (Expr);
3712 end if;
3713 end Check_Conjuncts;
3715 ----------------------
3716 -- Check_Expression --
3717 ----------------------
3719 procedure Check_Expression (Expr : Node_Id) is
3720 begin
3721 if not Is_Trivial_Boolean (Expr) then
3722 Check_Function_Result (Expr);
3723 Check_Conjuncts (Expr);
3724 end if;
3725 end Check_Expression;
3727 ------------------------
3728 -- Is_Function_Result --
3729 ------------------------
3731 function Is_Function_Result (N : Node_Id) return Traverse_Result is
3732 begin
3733 if Is_Attribute_Result (N) then
3734 Result_Seen := True;
3735 return Abandon;
3737 -- Continue the traversal
3739 else
3740 return OK;
3741 end if;
3742 end Is_Function_Result;
3744 ------------------------
3745 -- Is_Trivial_Boolean --
3746 ------------------------
3748 function Is_Trivial_Boolean (N : Node_Id) return Boolean is
3749 begin
3750 return
3751 Comes_From_Source (N)
3752 and then Is_Entity_Name (N)
3753 and then (Entity (N) = Standard_True
3754 or else
3755 Entity (N) = Standard_False);
3756 end Is_Trivial_Boolean;
3758 -------------------------
3759 -- Mentions_Post_State --
3760 -------------------------
3762 function Mentions_Post_State (N : Node_Id) return Boolean is
3763 Post_State_Seen : Boolean := False;
3765 function Is_Post_State (N : Node_Id) return Traverse_Result;
3766 -- Attempt to find a construct that denotes a post-state. If this
3767 -- is the case, set flag Post_State_Seen.
3769 -------------------
3770 -- Is_Post_State --
3771 -------------------
3773 function Is_Post_State (N : Node_Id) return Traverse_Result is
3774 Ent : Entity_Id;
3776 begin
3777 if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
3778 Post_State_Seen := True;
3779 return Abandon;
3781 elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
3782 Ent := Entity (N);
3784 -- Treat an undecorated reference as OK
3786 if No (Ent)
3788 -- A reference to an assignable entity is considered a
3789 -- change in the post-state of a subprogram.
3791 or else Ekind_In (Ent, E_Generic_In_Out_Parameter,
3792 E_In_Out_Parameter,
3793 E_Out_Parameter,
3794 E_Variable)
3796 -- The reference may be modified through a dereference
3798 or else (Is_Access_Type (Etype (Ent))
3799 and then Nkind (Parent (N)) =
3800 N_Selected_Component)
3801 then
3802 Post_State_Seen := True;
3803 return Abandon;
3804 end if;
3806 elsif Nkind (N) = N_Attribute_Reference then
3807 if Attribute_Name (N) = Name_Old then
3808 return Skip;
3810 elsif Attribute_Name (N) = Name_Result then
3811 Post_State_Seen := True;
3812 return Abandon;
3813 end if;
3814 end if;
3816 return OK;
3817 end Is_Post_State;
3819 procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
3821 -- Start of processing for Mentions_Post_State
3823 begin
3824 Find_Post_State (N);
3826 return Post_State_Seen;
3827 end Mentions_Post_State;
3829 -- Local variables
3831 Expr : constant Node_Id :=
3832 Get_Pragma_Arg
3833 (First (Pragma_Argument_Associations (Prag)));
3834 Nam : constant Name_Id := Pragma_Name (Prag);
3835 CCase : Node_Id;
3837 -- Start of processing for Check_Result_And_Post_State_In_Pragma
3839 begin
3840 -- Examine all consequences
3842 if Nam = Name_Contract_Cases then
3843 CCase := First (Component_Associations (Expr));
3844 while Present (CCase) loop
3845 Check_Expression (Expression (CCase));
3847 Next (CCase);
3848 end loop;
3850 -- Examine the expression of a postcondition
3852 else pragma Assert (Nam_In (Nam, Name_Postcondition,
3853 Name_Refined_Post));
3854 Check_Expression (Expr);
3855 end if;
3856 end Check_Result_And_Post_State_In_Pragma;
3858 --------------------------
3859 -- Has_In_Out_Parameter --
3860 --------------------------
3862 function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean is
3863 Formal : Entity_Id;
3865 begin
3866 -- Traverse the formals looking for an IN OUT parameter
3868 Formal := First_Formal (Subp_Id);
3869 while Present (Formal) loop
3870 if Ekind (Formal) = E_In_Out_Parameter then
3871 return True;
3872 end if;
3874 Next_Formal (Formal);
3875 end loop;
3877 return False;
3878 end Has_In_Out_Parameter;
3880 -- Local variables
3882 Items : constant Node_Id := Contract (Subp_Id);
3883 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
3884 Case_Prag : Node_Id := Empty;
3885 Post_Prag : Node_Id := Empty;
3886 Prag : Node_Id;
3887 Seen_In_Case : Boolean := False;
3888 Seen_In_Post : Boolean := False;
3889 Spec_Id : Entity_Id;
3891 -- Start of processing for Check_Result_And_Post_State
3893 begin
3894 -- The lack of attribute 'Result or a post-state is classified as a
3895 -- suspicious contract. Do not perform the check if the corresponding
3896 -- swich is not set.
3898 if not Warn_On_Suspicious_Contract then
3899 return;
3901 -- Nothing to do if there is no contract
3903 elsif No (Items) then
3904 return;
3905 end if;
3907 -- Retrieve the entity of the subprogram spec (if any)
3909 if Nkind (Subp_Decl) = N_Subprogram_Body
3910 and then Present (Corresponding_Spec (Subp_Decl))
3911 then
3912 Spec_Id := Corresponding_Spec (Subp_Decl);
3914 elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
3915 and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
3916 then
3917 Spec_Id := Corresponding_Spec_Of_Stub (Subp_Decl);
3919 else
3920 Spec_Id := Subp_Id;
3921 end if;
3923 -- Examine all postconditions for attribute 'Result and a post-state
3925 Prag := Pre_Post_Conditions (Items);
3926 while Present (Prag) loop
3927 if Nam_In (Pragma_Name_Unmapped (Prag),
3928 Name_Postcondition, Name_Refined_Post)
3929 and then not Error_Posted (Prag)
3930 then
3931 Post_Prag := Prag;
3932 Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Post);
3933 end if;
3935 Prag := Next_Pragma (Prag);
3936 end loop;
3938 -- Examine the contract cases of the subprogram for attribute 'Result
3939 -- and a post-state.
3941 Prag := Contract_Test_Cases (Items);
3942 while Present (Prag) loop
3943 if Pragma_Name (Prag) = Name_Contract_Cases
3944 and then not Error_Posted (Prag)
3945 then
3946 Case_Prag := Prag;
3947 Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Case);
3948 end if;
3950 Prag := Next_Pragma (Prag);
3951 end loop;
3953 -- Do not emit any errors if the subprogram is not a function
3955 if not Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
3956 null;
3958 -- Regardless of whether the function has postconditions or contract
3959 -- cases, or whether they mention attribute 'Result, an IN OUT formal
3960 -- parameter is always treated as a result.
3962 elsif Has_In_Out_Parameter (Spec_Id) then
3963 null;
3965 -- The function has both a postcondition and contract cases and they do
3966 -- not mention attribute 'Result.
3968 elsif Present (Case_Prag)
3969 and then not Seen_In_Case
3970 and then Present (Post_Prag)
3971 and then not Seen_In_Post
3972 then
3973 Error_Msg_N
3974 ("neither postcondition nor contract cases mention function "
3975 & "result?T?", Post_Prag);
3977 -- The function has contract cases only and they do not mention
3978 -- attribute 'Result.
3980 elsif Present (Case_Prag) and then not Seen_In_Case then
3981 Error_Msg_N ("contract cases do not mention result?T?", Case_Prag);
3983 -- The function has postconditions only and they do not mention
3984 -- attribute 'Result.
3986 elsif Present (Post_Prag) and then not Seen_In_Post then
3987 Error_Msg_N
3988 ("postcondition does not mention function result?T?", Post_Prag);
3989 end if;
3990 end Check_Result_And_Post_State;
3992 -----------------------------
3993 -- Check_State_Refinements --
3994 -----------------------------
3996 procedure Check_State_Refinements
3997 (Context : Node_Id;
3998 Is_Main_Unit : Boolean := False)
4000 procedure Check_Package (Pack : Node_Id);
4001 -- Verify that all abstract states of a [generic] package denoted by its
4002 -- declarative node Pack have proper refinement. Recursively verify the
4003 -- visible and private declarations of the [generic] package for other
4004 -- nested packages.
4006 procedure Check_Packages_In (Decls : List_Id);
4007 -- Seek out [generic] package declarations within declarative list Decls
4008 -- and verify the status of their abstract state refinement.
4010 function SPARK_Mode_Is_Off (N : Node_Id) return Boolean;
4011 -- Determine whether construct N is subject to pragma SPARK_Mode Off
4013 -------------------
4014 -- Check_Package --
4015 -------------------
4017 procedure Check_Package (Pack : Node_Id) is
4018 Body_Id : constant Entity_Id := Corresponding_Body (Pack);
4019 Spec : constant Node_Id := Specification (Pack);
4020 States : constant Elist_Id :=
4021 Abstract_States (Defining_Entity (Pack));
4023 State_Elmt : Elmt_Id;
4024 State_Id : Entity_Id;
4026 begin
4027 -- Do not verify proper state refinement when the package is subject
4028 -- to pragma SPARK_Mode Off because this disables the requirement for
4029 -- state refinement.
4031 if SPARK_Mode_Is_Off (Pack) then
4032 null;
4034 -- State refinement can only occur in a completing package body. Do
4035 -- not verify proper state refinement when the body is subject to
4036 -- pragma SPARK_Mode Off because this disables the requirement for
4037 -- state refinement.
4039 elsif Present (Body_Id)
4040 and then SPARK_Mode_Is_Off (Unit_Declaration_Node (Body_Id))
4041 then
4042 null;
4044 -- Do not verify proper state refinement when the package is an
4045 -- instance as this check was already performed in the generic.
4047 elsif Present (Generic_Parent (Spec)) then
4048 null;
4050 -- Otherwise examine the contents of the package
4052 else
4053 if Present (States) then
4054 State_Elmt := First_Elmt (States);
4055 while Present (State_Elmt) loop
4056 State_Id := Node (State_Elmt);
4058 -- Emit an error when a non-null state lacks any form of
4059 -- refinement.
4061 if not Is_Null_State (State_Id)
4062 and then not Has_Null_Refinement (State_Id)
4063 and then not Has_Non_Null_Refinement (State_Id)
4064 then
4065 Error_Msg_N ("state & requires refinement", State_Id);
4066 end if;
4068 Next_Elmt (State_Elmt);
4069 end loop;
4070 end if;
4072 Check_Packages_In (Visible_Declarations (Spec));
4073 Check_Packages_In (Private_Declarations (Spec));
4074 end if;
4075 end Check_Package;
4077 -----------------------
4078 -- Check_Packages_In --
4079 -----------------------
4081 procedure Check_Packages_In (Decls : List_Id) is
4082 Decl : Node_Id;
4084 begin
4085 if Present (Decls) then
4086 Decl := First (Decls);
4087 while Present (Decl) loop
4088 if Nkind_In (Decl, N_Generic_Package_Declaration,
4089 N_Package_Declaration)
4090 then
4091 Check_Package (Decl);
4092 end if;
4094 Next (Decl);
4095 end loop;
4096 end if;
4097 end Check_Packages_In;
4099 -----------------------
4100 -- SPARK_Mode_Is_Off --
4101 -----------------------
4103 function SPARK_Mode_Is_Off (N : Node_Id) return Boolean is
4104 Id : constant Entity_Id := Defining_Entity (N);
4105 Prag : constant Node_Id := SPARK_Pragma (Id);
4107 begin
4108 -- Default the mode to "off" when the context is an instance and all
4109 -- SPARK_Mode pragmas found within are to be ignored.
4111 if Ignore_SPARK_Mode_Pragmas (Id) then
4112 return True;
4114 else
4115 return
4116 Present (Prag)
4117 and then Get_SPARK_Mode_From_Annotation (Prag) = Off;
4118 end if;
4119 end SPARK_Mode_Is_Off;
4121 -- Start of processing for Check_State_Refinements
4123 begin
4124 -- A block may declare a nested package
4126 if Nkind (Context) = N_Block_Statement then
4127 Check_Packages_In (Declarations (Context));
4129 -- An entry, protected, subprogram, or task body may declare a nested
4130 -- package.
4132 elsif Nkind_In (Context, N_Entry_Body,
4133 N_Protected_Body,
4134 N_Subprogram_Body,
4135 N_Task_Body)
4136 then
4137 -- Do not verify proper state refinement when the body is subject to
4138 -- pragma SPARK_Mode Off because this disables the requirement for
4139 -- state refinement.
4141 if not SPARK_Mode_Is_Off (Context) then
4142 Check_Packages_In (Declarations (Context));
4143 end if;
4145 -- A package body may declare a nested package
4147 elsif Nkind (Context) = N_Package_Body then
4148 Check_Package (Unit_Declaration_Node (Corresponding_Spec (Context)));
4150 -- Do not verify proper state refinement when the body is subject to
4151 -- pragma SPARK_Mode Off because this disables the requirement for
4152 -- state refinement.
4154 if not SPARK_Mode_Is_Off (Context) then
4155 Check_Packages_In (Declarations (Context));
4156 end if;
4158 -- A library level [generic] package may declare a nested package
4160 elsif Nkind_In (Context, N_Generic_Package_Declaration,
4161 N_Package_Declaration)
4162 and then Is_Main_Unit
4163 then
4164 Check_Package (Context);
4165 end if;
4166 end Check_State_Refinements;
4168 ------------------------------
4169 -- Check_Unprotected_Access --
4170 ------------------------------
4172 procedure Check_Unprotected_Access
4173 (Context : Node_Id;
4174 Expr : Node_Id)
4176 Cont_Encl_Typ : Entity_Id;
4177 Pref_Encl_Typ : Entity_Id;
4179 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
4180 -- Check whether Obj is a private component of a protected object.
4181 -- Return the protected type where the component resides, Empty
4182 -- otherwise.
4184 function Is_Public_Operation return Boolean;
4185 -- Verify that the enclosing operation is callable from outside the
4186 -- protected object, to minimize false positives.
4188 ------------------------------
4189 -- Enclosing_Protected_Type --
4190 ------------------------------
4192 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
4193 begin
4194 if Is_Entity_Name (Obj) then
4195 declare
4196 Ent : Entity_Id := Entity (Obj);
4198 begin
4199 -- The object can be a renaming of a private component, use
4200 -- the original record component.
4202 if Is_Prival (Ent) then
4203 Ent := Prival_Link (Ent);
4204 end if;
4206 if Is_Protected_Type (Scope (Ent)) then
4207 return Scope (Ent);
4208 end if;
4209 end;
4210 end if;
4212 -- For indexed and selected components, recursively check the prefix
4214 if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
4215 return Enclosing_Protected_Type (Prefix (Obj));
4217 -- The object does not denote a protected component
4219 else
4220 return Empty;
4221 end if;
4222 end Enclosing_Protected_Type;
4224 -------------------------
4225 -- Is_Public_Operation --
4226 -------------------------
4228 function Is_Public_Operation return Boolean is
4229 S : Entity_Id;
4230 E : Entity_Id;
4232 begin
4233 S := Current_Scope;
4234 while Present (S) and then S /= Pref_Encl_Typ loop
4235 if Scope (S) = Pref_Encl_Typ then
4236 E := First_Entity (Pref_Encl_Typ);
4237 while Present (E)
4238 and then E /= First_Private_Entity (Pref_Encl_Typ)
4239 loop
4240 if E = S then
4241 return True;
4242 end if;
4244 Next_Entity (E);
4245 end loop;
4246 end if;
4248 S := Scope (S);
4249 end loop;
4251 return False;
4252 end Is_Public_Operation;
4254 -- Start of processing for Check_Unprotected_Access
4256 begin
4257 if Nkind (Expr) = N_Attribute_Reference
4258 and then Attribute_Name (Expr) = Name_Unchecked_Access
4259 then
4260 Cont_Encl_Typ := Enclosing_Protected_Type (Context);
4261 Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
4263 -- Check whether we are trying to export a protected component to a
4264 -- context with an equal or lower access level.
4266 if Present (Pref_Encl_Typ)
4267 and then No (Cont_Encl_Typ)
4268 and then Is_Public_Operation
4269 and then Scope_Depth (Pref_Encl_Typ) >=
4270 Object_Access_Level (Context)
4271 then
4272 Error_Msg_N
4273 ("??possible unprotected access to protected data", Expr);
4274 end if;
4275 end if;
4276 end Check_Unprotected_Access;
4278 ------------------------------
4279 -- Check_Unused_Body_States --
4280 ------------------------------
4282 procedure Check_Unused_Body_States (Body_Id : Entity_Id) is
4283 procedure Process_Refinement_Clause
4284 (Clause : Node_Id;
4285 States : Elist_Id);
4286 -- Inspect all constituents of refinement clause Clause and remove any
4287 -- matches from body state list States.
4289 procedure Report_Unused_Body_States (States : Elist_Id);
4290 -- Emit errors for each abstract state or object found in list States
4292 -------------------------------
4293 -- Process_Refinement_Clause --
4294 -------------------------------
4296 procedure Process_Refinement_Clause
4297 (Clause : Node_Id;
4298 States : Elist_Id)
4300 procedure Process_Constituent (Constit : Node_Id);
4301 -- Remove constituent Constit from body state list States
4303 -------------------------
4304 -- Process_Constituent --
4305 -------------------------
4307 procedure Process_Constituent (Constit : Node_Id) is
4308 Constit_Id : Entity_Id;
4310 begin
4311 -- Guard against illegal constituents. Only abstract states and
4312 -- objects can appear on the right hand side of a refinement.
4314 if Is_Entity_Name (Constit) then
4315 Constit_Id := Entity_Of (Constit);
4317 if Present (Constit_Id)
4318 and then Ekind_In (Constit_Id, E_Abstract_State,
4319 E_Constant,
4320 E_Variable)
4321 then
4322 Remove (States, Constit_Id);
4323 end if;
4324 end if;
4325 end Process_Constituent;
4327 -- Local variables
4329 Constit : Node_Id;
4331 -- Start of processing for Process_Refinement_Clause
4333 begin
4334 if Nkind (Clause) = N_Component_Association then
4335 Constit := Expression (Clause);
4337 -- Multiple constituents appear as an aggregate
4339 if Nkind (Constit) = N_Aggregate then
4340 Constit := First (Expressions (Constit));
4341 while Present (Constit) loop
4342 Process_Constituent (Constit);
4343 Next (Constit);
4344 end loop;
4346 -- Various forms of a single constituent
4348 else
4349 Process_Constituent (Constit);
4350 end if;
4351 end if;
4352 end Process_Refinement_Clause;
4354 -------------------------------
4355 -- Report_Unused_Body_States --
4356 -------------------------------
4358 procedure Report_Unused_Body_States (States : Elist_Id) is
4359 Posted : Boolean := False;
4360 State_Elmt : Elmt_Id;
4361 State_Id : Entity_Id;
4363 begin
4364 if Present (States) then
4365 State_Elmt := First_Elmt (States);
4366 while Present (State_Elmt) loop
4367 State_Id := Node (State_Elmt);
4369 -- Constants are part of the hidden state of a package, but the
4370 -- compiler cannot determine whether they have variable input
4371 -- (SPARK RM 7.1.1(2)) and cannot classify them properly as a
4372 -- hidden state. Do not emit an error when a constant does not
4373 -- participate in a state refinement, even though it acts as a
4374 -- hidden state.
4376 if Ekind (State_Id) = E_Constant then
4377 null;
4379 -- Generate an error message of the form:
4381 -- body of package ... has unused hidden states
4382 -- abstract state ... defined at ...
4383 -- variable ... defined at ...
4385 else
4386 if not Posted then
4387 Posted := True;
4388 SPARK_Msg_N
4389 ("body of package & has unused hidden states", Body_Id);
4390 end if;
4392 Error_Msg_Sloc := Sloc (State_Id);
4394 if Ekind (State_Id) = E_Abstract_State then
4395 SPARK_Msg_NE
4396 ("\abstract state & defined #", Body_Id, State_Id);
4398 else
4399 SPARK_Msg_NE ("\variable & defined #", Body_Id, State_Id);
4400 end if;
4401 end if;
4403 Next_Elmt (State_Elmt);
4404 end loop;
4405 end if;
4406 end Report_Unused_Body_States;
4408 -- Local variables
4410 Prag : constant Node_Id := Get_Pragma (Body_Id, Pragma_Refined_State);
4411 Spec_Id : constant Entity_Id := Spec_Entity (Body_Id);
4412 Clause : Node_Id;
4413 States : Elist_Id;
4415 -- Start of processing for Check_Unused_Body_States
4417 begin
4418 -- Inspect the clauses of pragma Refined_State and determine whether all
4419 -- visible states declared within the package body participate in the
4420 -- refinement.
4422 if Present (Prag) then
4423 Clause := Expression (Get_Argument (Prag, Spec_Id));
4424 States := Collect_Body_States (Body_Id);
4426 -- Multiple non-null state refinements appear as an aggregate
4428 if Nkind (Clause) = N_Aggregate then
4429 Clause := First (Component_Associations (Clause));
4430 while Present (Clause) loop
4431 Process_Refinement_Clause (Clause, States);
4432 Next (Clause);
4433 end loop;
4435 -- Various forms of a single state refinement
4437 else
4438 Process_Refinement_Clause (Clause, States);
4439 end if;
4441 -- Ensure that all abstract states and objects declared in the
4442 -- package body state space are utilized as constituents.
4444 Report_Unused_Body_States (States);
4445 end if;
4446 end Check_Unused_Body_States;
4448 -----------------
4449 -- Choice_List --
4450 -----------------
4452 function Choice_List (N : Node_Id) return List_Id is
4453 begin
4454 if Nkind (N) = N_Iterated_Component_Association then
4455 return Discrete_Choices (N);
4456 else
4457 return Choices (N);
4458 end if;
4459 end Choice_List;
4461 -------------------------
4462 -- Collect_Body_States --
4463 -------------------------
4465 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id is
4466 function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean;
4467 -- Determine whether object Obj_Id is a suitable visible state of a
4468 -- package body.
4470 procedure Collect_Visible_States
4471 (Pack_Id : Entity_Id;
4472 States : in out Elist_Id);
4473 -- Gather the entities of all abstract states and objects declared in
4474 -- the visible state space of package Pack_Id.
4476 ----------------------------
4477 -- Collect_Visible_States --
4478 ----------------------------
4480 procedure Collect_Visible_States
4481 (Pack_Id : Entity_Id;
4482 States : in out Elist_Id)
4484 Item_Id : Entity_Id;
4486 begin
4487 -- Traverse the entity chain of the package and inspect all visible
4488 -- items.
4490 Item_Id := First_Entity (Pack_Id);
4491 while Present (Item_Id) and then not In_Private_Part (Item_Id) loop
4493 -- Do not consider internally generated items as those cannot be
4494 -- named and participate in refinement.
4496 if not Comes_From_Source (Item_Id) then
4497 null;
4499 elsif Ekind (Item_Id) = E_Abstract_State then
4500 Append_New_Elmt (Item_Id, States);
4502 elsif Ekind_In (Item_Id, E_Constant, E_Variable)
4503 and then Is_Visible_Object (Item_Id)
4504 then
4505 Append_New_Elmt (Item_Id, States);
4507 -- Recursively gather the visible states of a nested package
4509 elsif Ekind (Item_Id) = E_Package then
4510 Collect_Visible_States (Item_Id, States);
4511 end if;
4513 Next_Entity (Item_Id);
4514 end loop;
4515 end Collect_Visible_States;
4517 -----------------------
4518 -- Is_Visible_Object --
4519 -----------------------
4521 function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean is
4522 begin
4523 -- Objects that map generic formals to their actuals are not visible
4524 -- from outside the generic instantiation.
4526 if Present (Corresponding_Generic_Association
4527 (Declaration_Node (Obj_Id)))
4528 then
4529 return False;
4531 -- Constituents of a single protected/task type act as components of
4532 -- the type and are not visible from outside the type.
4534 elsif Ekind (Obj_Id) = E_Variable
4535 and then Present (Encapsulating_State (Obj_Id))
4536 and then Is_Single_Concurrent_Object (Encapsulating_State (Obj_Id))
4537 then
4538 return False;
4540 else
4541 return True;
4542 end if;
4543 end Is_Visible_Object;
4545 -- Local variables
4547 Body_Decl : constant Node_Id := Unit_Declaration_Node (Body_Id);
4548 Decl : Node_Id;
4549 Item_Id : Entity_Id;
4550 States : Elist_Id := No_Elist;
4552 -- Start of processing for Collect_Body_States
4554 begin
4555 -- Inspect the declarations of the body looking for source objects,
4556 -- packages and package instantiations. Note that even though this
4557 -- processing is very similar to Collect_Visible_States, a package
4558 -- body does not have a First/Next_Entity list.
4560 Decl := First (Declarations (Body_Decl));
4561 while Present (Decl) loop
4563 -- Capture source objects as internally generated temporaries cannot
4564 -- be named and participate in refinement.
4566 if Nkind (Decl) = N_Object_Declaration then
4567 Item_Id := Defining_Entity (Decl);
4569 if Comes_From_Source (Item_Id)
4570 and then Is_Visible_Object (Item_Id)
4571 then
4572 Append_New_Elmt (Item_Id, States);
4573 end if;
4575 -- Capture the visible abstract states and objects of a source
4576 -- package [instantiation].
4578 elsif Nkind (Decl) = N_Package_Declaration then
4579 Item_Id := Defining_Entity (Decl);
4581 if Comes_From_Source (Item_Id) then
4582 Collect_Visible_States (Item_Id, States);
4583 end if;
4584 end if;
4586 Next (Decl);
4587 end loop;
4589 return States;
4590 end Collect_Body_States;
4592 ------------------------
4593 -- Collect_Interfaces --
4594 ------------------------
4596 procedure Collect_Interfaces
4597 (T : Entity_Id;
4598 Ifaces_List : out Elist_Id;
4599 Exclude_Parents : Boolean := False;
4600 Use_Full_View : Boolean := True)
4602 procedure Collect (Typ : Entity_Id);
4603 -- Subsidiary subprogram used to traverse the whole list
4604 -- of directly and indirectly implemented interfaces
4606 -------------
4607 -- Collect --
4608 -------------
4610 procedure Collect (Typ : Entity_Id) is
4611 Ancestor : Entity_Id;
4612 Full_T : Entity_Id;
4613 Id : Node_Id;
4614 Iface : Entity_Id;
4616 begin
4617 Full_T := Typ;
4619 -- Handle private types and subtypes
4621 if Use_Full_View
4622 and then Is_Private_Type (Typ)
4623 and then Present (Full_View (Typ))
4624 then
4625 Full_T := Full_View (Typ);
4627 if Ekind (Full_T) = E_Record_Subtype then
4628 Full_T := Etype (Typ);
4630 if Present (Full_View (Full_T)) then
4631 Full_T := Full_View (Full_T);
4632 end if;
4633 end if;
4634 end if;
4636 -- Include the ancestor if we are generating the whole list of
4637 -- abstract interfaces.
4639 if Etype (Full_T) /= Typ
4641 -- Protect the frontend against wrong sources. For example:
4643 -- package P is
4644 -- type A is tagged null record;
4645 -- type B is new A with private;
4646 -- type C is new A with private;
4647 -- private
4648 -- type B is new C with null record;
4649 -- type C is new B with null record;
4650 -- end P;
4652 and then Etype (Full_T) /= T
4653 then
4654 Ancestor := Etype (Full_T);
4655 Collect (Ancestor);
4657 if Is_Interface (Ancestor) and then not Exclude_Parents then
4658 Append_Unique_Elmt (Ancestor, Ifaces_List);
4659 end if;
4660 end if;
4662 -- Traverse the graph of ancestor interfaces
4664 if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
4665 Id := First (Abstract_Interface_List (Full_T));
4666 while Present (Id) loop
4667 Iface := Etype (Id);
4669 -- Protect against wrong uses. For example:
4670 -- type I is interface;
4671 -- type O is tagged null record;
4672 -- type Wrong is new I and O with null record; -- ERROR
4674 if Is_Interface (Iface) then
4675 if Exclude_Parents
4676 and then Etype (T) /= T
4677 and then Interface_Present_In_Ancestor (Etype (T), Iface)
4678 then
4679 null;
4680 else
4681 Collect (Iface);
4682 Append_Unique_Elmt (Iface, Ifaces_List);
4683 end if;
4684 end if;
4686 Next (Id);
4687 end loop;
4688 end if;
4689 end Collect;
4691 -- Start of processing for Collect_Interfaces
4693 begin
4694 pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
4695 Ifaces_List := New_Elmt_List;
4696 Collect (T);
4697 end Collect_Interfaces;
4699 ----------------------------------
4700 -- Collect_Interface_Components --
4701 ----------------------------------
4703 procedure Collect_Interface_Components
4704 (Tagged_Type : Entity_Id;
4705 Components_List : out Elist_Id)
4707 procedure Collect (Typ : Entity_Id);
4708 -- Subsidiary subprogram used to climb to the parents
4710 -------------
4711 -- Collect --
4712 -------------
4714 procedure Collect (Typ : Entity_Id) is
4715 Tag_Comp : Entity_Id;
4716 Parent_Typ : Entity_Id;
4718 begin
4719 -- Handle private types
4721 if Present (Full_View (Etype (Typ))) then
4722 Parent_Typ := Full_View (Etype (Typ));
4723 else
4724 Parent_Typ := Etype (Typ);
4725 end if;
4727 if Parent_Typ /= Typ
4729 -- Protect the frontend against wrong sources. For example:
4731 -- package P is
4732 -- type A is tagged null record;
4733 -- type B is new A with private;
4734 -- type C is new A with private;
4735 -- private
4736 -- type B is new C with null record;
4737 -- type C is new B with null record;
4738 -- end P;
4740 and then Parent_Typ /= Tagged_Type
4741 then
4742 Collect (Parent_Typ);
4743 end if;
4745 -- Collect the components containing tags of secondary dispatch
4746 -- tables.
4748 Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
4749 while Present (Tag_Comp) loop
4750 pragma Assert (Present (Related_Type (Tag_Comp)));
4751 Append_Elmt (Tag_Comp, Components_List);
4753 Tag_Comp := Next_Tag_Component (Tag_Comp);
4754 end loop;
4755 end Collect;
4757 -- Start of processing for Collect_Interface_Components
4759 begin
4760 pragma Assert (Ekind (Tagged_Type) = E_Record_Type
4761 and then Is_Tagged_Type (Tagged_Type));
4763 Components_List := New_Elmt_List;
4764 Collect (Tagged_Type);
4765 end Collect_Interface_Components;
4767 -----------------------------
4768 -- Collect_Interfaces_Info --
4769 -----------------------------
4771 procedure Collect_Interfaces_Info
4772 (T : Entity_Id;
4773 Ifaces_List : out Elist_Id;
4774 Components_List : out Elist_Id;
4775 Tags_List : out Elist_Id)
4777 Comps_List : Elist_Id;
4778 Comp_Elmt : Elmt_Id;
4779 Comp_Iface : Entity_Id;
4780 Iface_Elmt : Elmt_Id;
4781 Iface : Entity_Id;
4783 function Search_Tag (Iface : Entity_Id) return Entity_Id;
4784 -- Search for the secondary tag associated with the interface type
4785 -- Iface that is implemented by T.
4787 ----------------
4788 -- Search_Tag --
4789 ----------------
4791 function Search_Tag (Iface : Entity_Id) return Entity_Id is
4792 ADT : Elmt_Id;
4793 begin
4794 if not Is_CPP_Class (T) then
4795 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
4796 else
4797 ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
4798 end if;
4800 while Present (ADT)
4801 and then Is_Tag (Node (ADT))
4802 and then Related_Type (Node (ADT)) /= Iface
4803 loop
4804 -- Skip secondary dispatch table referencing thunks to user
4805 -- defined primitives covered by this interface.
4807 pragma Assert (Has_Suffix (Node (ADT), 'P'));
4808 Next_Elmt (ADT);
4810 -- Skip secondary dispatch tables of Ada types
4812 if not Is_CPP_Class (T) then
4814 -- Skip secondary dispatch table referencing thunks to
4815 -- predefined primitives.
4817 pragma Assert (Has_Suffix (Node (ADT), 'Y'));
4818 Next_Elmt (ADT);
4820 -- Skip secondary dispatch table referencing user-defined
4821 -- primitives covered by this interface.
4823 pragma Assert (Has_Suffix (Node (ADT), 'D'));
4824 Next_Elmt (ADT);
4826 -- Skip secondary dispatch table referencing predefined
4827 -- primitives.
4829 pragma Assert (Has_Suffix (Node (ADT), 'Z'));
4830 Next_Elmt (ADT);
4831 end if;
4832 end loop;
4834 pragma Assert (Is_Tag (Node (ADT)));
4835 return Node (ADT);
4836 end Search_Tag;
4838 -- Start of processing for Collect_Interfaces_Info
4840 begin
4841 Collect_Interfaces (T, Ifaces_List);
4842 Collect_Interface_Components (T, Comps_List);
4844 -- Search for the record component and tag associated with each
4845 -- interface type of T.
4847 Components_List := New_Elmt_List;
4848 Tags_List := New_Elmt_List;
4850 Iface_Elmt := First_Elmt (Ifaces_List);
4851 while Present (Iface_Elmt) loop
4852 Iface := Node (Iface_Elmt);
4854 -- Associate the primary tag component and the primary dispatch table
4855 -- with all the interfaces that are parents of T
4857 if Is_Ancestor (Iface, T, Use_Full_View => True) then
4858 Append_Elmt (First_Tag_Component (T), Components_List);
4859 Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
4861 -- Otherwise search for the tag component and secondary dispatch
4862 -- table of Iface
4864 else
4865 Comp_Elmt := First_Elmt (Comps_List);
4866 while Present (Comp_Elmt) loop
4867 Comp_Iface := Related_Type (Node (Comp_Elmt));
4869 if Comp_Iface = Iface
4870 or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
4871 then
4872 Append_Elmt (Node (Comp_Elmt), Components_List);
4873 Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
4874 exit;
4875 end if;
4877 Next_Elmt (Comp_Elmt);
4878 end loop;
4879 pragma Assert (Present (Comp_Elmt));
4880 end if;
4882 Next_Elmt (Iface_Elmt);
4883 end loop;
4884 end Collect_Interfaces_Info;
4886 ---------------------
4887 -- Collect_Parents --
4888 ---------------------
4890 procedure Collect_Parents
4891 (T : Entity_Id;
4892 List : out Elist_Id;
4893 Use_Full_View : Boolean := True)
4895 Current_Typ : Entity_Id := T;
4896 Parent_Typ : Entity_Id;
4898 begin
4899 List := New_Elmt_List;
4901 -- No action if the if the type has no parents
4903 if T = Etype (T) then
4904 return;
4905 end if;
4907 loop
4908 Parent_Typ := Etype (Current_Typ);
4910 if Is_Private_Type (Parent_Typ)
4911 and then Present (Full_View (Parent_Typ))
4912 and then Use_Full_View
4913 then
4914 Parent_Typ := Full_View (Base_Type (Parent_Typ));
4915 end if;
4917 Append_Elmt (Parent_Typ, List);
4919 exit when Parent_Typ = Current_Typ;
4920 Current_Typ := Parent_Typ;
4921 end loop;
4922 end Collect_Parents;
4924 ----------------------------------
4925 -- Collect_Primitive_Operations --
4926 ----------------------------------
4928 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
4929 B_Type : constant Entity_Id := Base_Type (T);
4930 B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
4931 B_Scope : Entity_Id := Scope (B_Type);
4932 Op_List : Elist_Id;
4933 Formal : Entity_Id;
4934 Is_Prim : Boolean;
4935 Is_Type_In_Pkg : Boolean;
4936 Formal_Derived : Boolean := False;
4937 Id : Entity_Id;
4939 function Match (E : Entity_Id) return Boolean;
4940 -- True if E's base type is B_Type, or E is of an anonymous access type
4941 -- and the base type of its designated type is B_Type.
4943 -----------
4944 -- Match --
4945 -----------
4947 function Match (E : Entity_Id) return Boolean is
4948 Etyp : Entity_Id := Etype (E);
4950 begin
4951 if Ekind (Etyp) = E_Anonymous_Access_Type then
4952 Etyp := Designated_Type (Etyp);
4953 end if;
4955 -- In Ada 2012 a primitive operation may have a formal of an
4956 -- incomplete view of the parent type.
4958 return Base_Type (Etyp) = B_Type
4959 or else
4960 (Ada_Version >= Ada_2012
4961 and then Ekind (Etyp) = E_Incomplete_Type
4962 and then Full_View (Etyp) = B_Type);
4963 end Match;
4965 -- Start of processing for Collect_Primitive_Operations
4967 begin
4968 -- For tagged types, the primitive operations are collected as they
4969 -- are declared, and held in an explicit list which is simply returned.
4971 if Is_Tagged_Type (B_Type) then
4972 return Primitive_Operations (B_Type);
4974 -- An untagged generic type that is a derived type inherits the
4975 -- primitive operations of its parent type. Other formal types only
4976 -- have predefined operators, which are not explicitly represented.
4978 elsif Is_Generic_Type (B_Type) then
4979 if Nkind (B_Decl) = N_Formal_Type_Declaration
4980 and then Nkind (Formal_Type_Definition (B_Decl)) =
4981 N_Formal_Derived_Type_Definition
4982 then
4983 Formal_Derived := True;
4984 else
4985 return New_Elmt_List;
4986 end if;
4987 end if;
4989 Op_List := New_Elmt_List;
4991 if B_Scope = Standard_Standard then
4992 if B_Type = Standard_String then
4993 Append_Elmt (Standard_Op_Concat, Op_List);
4995 elsif B_Type = Standard_Wide_String then
4996 Append_Elmt (Standard_Op_Concatw, Op_List);
4998 else
4999 null;
5000 end if;
5002 -- Locate the primitive subprograms of the type
5004 else
5005 -- The primitive operations appear after the base type, except
5006 -- if the derivation happens within the private part of B_Scope
5007 -- and the type is a private type, in which case both the type
5008 -- and some primitive operations may appear before the base
5009 -- type, and the list of candidates starts after the type.
5011 if In_Open_Scopes (B_Scope)
5012 and then Scope (T) = B_Scope
5013 and then In_Private_Part (B_Scope)
5014 then
5015 Id := Next_Entity (T);
5017 -- In Ada 2012, If the type has an incomplete partial view, there
5018 -- may be primitive operations declared before the full view, so
5019 -- we need to start scanning from the incomplete view, which is
5020 -- earlier on the entity chain.
5022 elsif Nkind (Parent (B_Type)) = N_Full_Type_Declaration
5023 and then Present (Incomplete_View (Parent (B_Type)))
5024 then
5025 Id := Defining_Entity (Incomplete_View (Parent (B_Type)));
5027 -- If T is a derived from a type with an incomplete view declared
5028 -- elsewhere, that incomplete view is irrelevant, we want the
5029 -- operations in the scope of T.
5031 if Scope (Id) /= Scope (B_Type) then
5032 Id := Next_Entity (B_Type);
5033 end if;
5035 else
5036 Id := Next_Entity (B_Type);
5037 end if;
5039 -- Set flag if this is a type in a package spec
5041 Is_Type_In_Pkg :=
5042 Is_Package_Or_Generic_Package (B_Scope)
5043 and then
5044 Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
5045 N_Package_Body;
5047 while Present (Id) loop
5049 -- Test whether the result type or any of the parameter types of
5050 -- each subprogram following the type match that type when the
5051 -- type is declared in a package spec, is a derived type, or the
5052 -- subprogram is marked as primitive. (The Is_Primitive test is
5053 -- needed to find primitives of nonderived types in declarative
5054 -- parts that happen to override the predefined "=" operator.)
5056 -- Note that generic formal subprograms are not considered to be
5057 -- primitive operations and thus are never inherited.
5059 if Is_Overloadable (Id)
5060 and then (Is_Type_In_Pkg
5061 or else Is_Derived_Type (B_Type)
5062 or else Is_Primitive (Id))
5063 and then Nkind (Parent (Parent (Id)))
5064 not in N_Formal_Subprogram_Declaration
5065 then
5066 Is_Prim := False;
5068 if Match (Id) then
5069 Is_Prim := True;
5071 else
5072 Formal := First_Formal (Id);
5073 while Present (Formal) loop
5074 if Match (Formal) then
5075 Is_Prim := True;
5076 exit;
5077 end if;
5079 Next_Formal (Formal);
5080 end loop;
5081 end if;
5083 -- For a formal derived type, the only primitives are the ones
5084 -- inherited from the parent type. Operations appearing in the
5085 -- package declaration are not primitive for it.
5087 if Is_Prim
5088 and then (not Formal_Derived or else Present (Alias (Id)))
5089 then
5090 -- In the special case of an equality operator aliased to
5091 -- an overriding dispatching equality belonging to the same
5092 -- type, we don't include it in the list of primitives.
5093 -- This avoids inheriting multiple equality operators when
5094 -- deriving from untagged private types whose full type is
5095 -- tagged, which can otherwise cause ambiguities. Note that
5096 -- this should only happen for this kind of untagged parent
5097 -- type, since normally dispatching operations are inherited
5098 -- using the type's Primitive_Operations list.
5100 if Chars (Id) = Name_Op_Eq
5101 and then Is_Dispatching_Operation (Id)
5102 and then Present (Alias (Id))
5103 and then Present (Overridden_Operation (Alias (Id)))
5104 and then Base_Type (Etype (First_Entity (Id))) =
5105 Base_Type (Etype (First_Entity (Alias (Id))))
5106 then
5107 null;
5109 -- Include the subprogram in the list of primitives
5111 else
5112 Append_Elmt (Id, Op_List);
5113 end if;
5114 end if;
5115 end if;
5117 Next_Entity (Id);
5119 -- For a type declared in System, some of its operations may
5120 -- appear in the target-specific extension to System.
5122 if No (Id)
5123 and then B_Scope = RTU_Entity (System)
5124 and then Present_System_Aux
5125 then
5126 B_Scope := System_Aux_Id;
5127 Id := First_Entity (System_Aux_Id);
5128 end if;
5129 end loop;
5130 end if;
5132 return Op_List;
5133 end Collect_Primitive_Operations;
5135 -----------------------------------
5136 -- Compile_Time_Constraint_Error --
5137 -----------------------------------
5139 function Compile_Time_Constraint_Error
5140 (N : Node_Id;
5141 Msg : String;
5142 Ent : Entity_Id := Empty;
5143 Loc : Source_Ptr := No_Location;
5144 Warn : Boolean := False) return Node_Id
5146 Msgc : String (1 .. Msg'Length + 3);
5147 -- Copy of message, with room for possible ?? or << and ! at end
5149 Msgl : Natural;
5150 Wmsg : Boolean;
5151 Eloc : Source_Ptr;
5153 -- Start of processing for Compile_Time_Constraint_Error
5155 begin
5156 -- If this is a warning, convert it into an error if we are in code
5157 -- subject to SPARK_Mode being set On, unless Warn is True to force a
5158 -- warning. The rationale is that a compile-time constraint error should
5159 -- lead to an error instead of a warning when SPARK_Mode is On, but in
5160 -- a few cases we prefer to issue a warning and generate both a suitable
5161 -- run-time error in GNAT and a suitable check message in GNATprove.
5162 -- Those cases are those that likely correspond to deactivated SPARK
5163 -- code, so that this kind of code can be compiled and analyzed instead
5164 -- of being rejected.
5166 Error_Msg_Warn := Warn or SPARK_Mode /= On;
5168 -- A static constraint error in an instance body is not a fatal error.
5169 -- we choose to inhibit the message altogether, because there is no
5170 -- obvious node (for now) on which to post it. On the other hand the
5171 -- offending node must be replaced with a constraint_error in any case.
5173 -- No messages are generated if we already posted an error on this node
5175 if not Error_Posted (N) then
5176 if Loc /= No_Location then
5177 Eloc := Loc;
5178 else
5179 Eloc := Sloc (N);
5180 end if;
5182 -- Copy message to Msgc, converting any ? in the message into <
5183 -- instead, so that we have an error in GNATprove mode.
5185 Msgl := Msg'Length;
5187 for J in 1 .. Msgl loop
5188 if Msg (J) = '?' and then (J = 1 or else Msg (J - 1) /= ''') then
5189 Msgc (J) := '<';
5190 else
5191 Msgc (J) := Msg (J);
5192 end if;
5193 end loop;
5195 -- Message is a warning, even in Ada 95 case
5197 if Msg (Msg'Last) = '?' or else Msg (Msg'Last) = '<' then
5198 Wmsg := True;
5200 -- In Ada 83, all messages are warnings. In the private part and the
5201 -- body of an instance, constraint_checks are only warnings. We also
5202 -- make this a warning if the Warn parameter is set.
5204 elsif Warn
5205 or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
5206 or else In_Instance_Not_Visible
5207 then
5208 Msgl := Msgl + 1;
5209 Msgc (Msgl) := '<';
5210 Msgl := Msgl + 1;
5211 Msgc (Msgl) := '<';
5212 Wmsg := True;
5214 -- Otherwise we have a real error message (Ada 95 static case) and we
5215 -- make this an unconditional message. Note that in the warning case
5216 -- we do not make the message unconditional, it seems reasonable to
5217 -- delete messages like this (about exceptions that will be raised)
5218 -- in dead code.
5220 else
5221 Wmsg := False;
5222 Msgl := Msgl + 1;
5223 Msgc (Msgl) := '!';
5224 end if;
5226 -- One more test, skip the warning if the related expression is
5227 -- statically unevaluated, since we don't want to warn about what
5228 -- will happen when something is evaluated if it never will be
5229 -- evaluated.
5231 if not Is_Statically_Unevaluated (N) then
5232 if Present (Ent) then
5233 Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
5234 else
5235 Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
5236 end if;
5238 if Wmsg then
5240 -- Check whether the context is an Init_Proc
5242 if Inside_Init_Proc then
5243 declare
5244 Conc_Typ : constant Entity_Id :=
5245 Corresponding_Concurrent_Type
5246 (Entity (Parameter_Type (First
5247 (Parameter_Specifications
5248 (Parent (Current_Scope))))));
5250 begin
5251 -- Don't complain if the corresponding concurrent type
5252 -- doesn't come from source (i.e. a single task/protected
5253 -- object).
5255 if Present (Conc_Typ)
5256 and then not Comes_From_Source (Conc_Typ)
5257 then
5258 Error_Msg_NEL
5259 ("\& [<<", N, Standard_Constraint_Error, Eloc);
5261 else
5262 if GNATprove_Mode then
5263 Error_Msg_NEL
5264 ("\& would have been raised for objects of this "
5265 & "type", N, Standard_Constraint_Error, Eloc);
5266 else
5267 Error_Msg_NEL
5268 ("\& will be raised for objects of this type??",
5269 N, Standard_Constraint_Error, Eloc);
5270 end if;
5271 end if;
5272 end;
5274 else
5275 Error_Msg_NEL ("\& [<<", N, Standard_Constraint_Error, Eloc);
5276 end if;
5278 else
5279 Error_Msg ("\static expression fails Constraint_Check", Eloc);
5280 Set_Error_Posted (N);
5281 end if;
5282 end if;
5283 end if;
5285 return N;
5286 end Compile_Time_Constraint_Error;
5288 -----------------------
5289 -- Conditional_Delay --
5290 -----------------------
5292 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
5293 begin
5294 if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
5295 Set_Has_Delayed_Freeze (New_Ent);
5296 end if;
5297 end Conditional_Delay;
5299 ----------------------------
5300 -- Contains_Refined_State --
5301 ----------------------------
5303 function Contains_Refined_State (Prag : Node_Id) return Boolean is
5304 function Has_State_In_Dependency (List : Node_Id) return Boolean;
5305 -- Determine whether a dependency list mentions a state with a visible
5306 -- refinement.
5308 function Has_State_In_Global (List : Node_Id) return Boolean;
5309 -- Determine whether a global list mentions a state with a visible
5310 -- refinement.
5312 function Is_Refined_State (Item : Node_Id) return Boolean;
5313 -- Determine whether Item is a reference to an abstract state with a
5314 -- visible refinement.
5316 -----------------------------
5317 -- Has_State_In_Dependency --
5318 -----------------------------
5320 function Has_State_In_Dependency (List : Node_Id) return Boolean is
5321 Clause : Node_Id;
5322 Output : Node_Id;
5324 begin
5325 -- A null dependency list does not mention any states
5327 if Nkind (List) = N_Null then
5328 return False;
5330 -- Dependency clauses appear as component associations of an
5331 -- aggregate.
5333 elsif Nkind (List) = N_Aggregate
5334 and then Present (Component_Associations (List))
5335 then
5336 Clause := First (Component_Associations (List));
5337 while Present (Clause) loop
5339 -- Inspect the outputs of a dependency clause
5341 Output := First (Choices (Clause));
5342 while Present (Output) loop
5343 if Is_Refined_State (Output) then
5344 return True;
5345 end if;
5347 Next (Output);
5348 end loop;
5350 -- Inspect the outputs of a dependency clause
5352 if Is_Refined_State (Expression (Clause)) then
5353 return True;
5354 end if;
5356 Next (Clause);
5357 end loop;
5359 -- If we get here, then none of the dependency clauses mention a
5360 -- state with visible refinement.
5362 return False;
5364 -- An illegal pragma managed to sneak in
5366 else
5367 raise Program_Error;
5368 end if;
5369 end Has_State_In_Dependency;
5371 -------------------------
5372 -- Has_State_In_Global --
5373 -------------------------
5375 function Has_State_In_Global (List : Node_Id) return Boolean is
5376 Item : Node_Id;
5378 begin
5379 -- A null global list does not mention any states
5381 if Nkind (List) = N_Null then
5382 return False;
5384 -- Simple global list or moded global list declaration
5386 elsif Nkind (List) = N_Aggregate then
5388 -- The declaration of a simple global list appear as a collection
5389 -- of expressions.
5391 if Present (Expressions (List)) then
5392 Item := First (Expressions (List));
5393 while Present (Item) loop
5394 if Is_Refined_State (Item) then
5395 return True;
5396 end if;
5398 Next (Item);
5399 end loop;
5401 -- The declaration of a moded global list appears as a collection
5402 -- of component associations where individual choices denote
5403 -- modes.
5405 else
5406 Item := First (Component_Associations (List));
5407 while Present (Item) loop
5408 if Has_State_In_Global (Expression (Item)) then
5409 return True;
5410 end if;
5412 Next (Item);
5413 end loop;
5414 end if;
5416 -- If we get here, then the simple/moded global list did not
5417 -- mention any states with a visible refinement.
5419 return False;
5421 -- Single global item declaration
5423 elsif Is_Entity_Name (List) then
5424 return Is_Refined_State (List);
5426 -- An illegal pragma managed to sneak in
5428 else
5429 raise Program_Error;
5430 end if;
5431 end Has_State_In_Global;
5433 ----------------------
5434 -- Is_Refined_State --
5435 ----------------------
5437 function Is_Refined_State (Item : Node_Id) return Boolean is
5438 Elmt : Node_Id;
5439 Item_Id : Entity_Id;
5441 begin
5442 if Nkind (Item) = N_Null then
5443 return False;
5445 -- States cannot be subject to attribute 'Result. This case arises
5446 -- in dependency relations.
5448 elsif Nkind (Item) = N_Attribute_Reference
5449 and then Attribute_Name (Item) = Name_Result
5450 then
5451 return False;
5453 -- Multiple items appear as an aggregate. This case arises in
5454 -- dependency relations.
5456 elsif Nkind (Item) = N_Aggregate
5457 and then Present (Expressions (Item))
5458 then
5459 Elmt := First (Expressions (Item));
5460 while Present (Elmt) loop
5461 if Is_Refined_State (Elmt) then
5462 return True;
5463 end if;
5465 Next (Elmt);
5466 end loop;
5468 -- If we get here, then none of the inputs or outputs reference a
5469 -- state with visible refinement.
5471 return False;
5473 -- Single item
5475 else
5476 Item_Id := Entity_Of (Item);
5478 return
5479 Present (Item_Id)
5480 and then Ekind (Item_Id) = E_Abstract_State
5481 and then Has_Visible_Refinement (Item_Id);
5482 end if;
5483 end Is_Refined_State;
5485 -- Local variables
5487 Arg : constant Node_Id :=
5488 Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
5489 Nam : constant Name_Id := Pragma_Name (Prag);
5491 -- Start of processing for Contains_Refined_State
5493 begin
5494 if Nam = Name_Depends then
5495 return Has_State_In_Dependency (Arg);
5497 else pragma Assert (Nam = Name_Global);
5498 return Has_State_In_Global (Arg);
5499 end if;
5500 end Contains_Refined_State;
5502 -------------------------
5503 -- Copy_Component_List --
5504 -------------------------
5506 function Copy_Component_List
5507 (R_Typ : Entity_Id;
5508 Loc : Source_Ptr) return List_Id
5510 Comp : Node_Id;
5511 Comps : constant List_Id := New_List;
5513 begin
5514 Comp := First_Component (Underlying_Type (R_Typ));
5515 while Present (Comp) loop
5516 if Comes_From_Source (Comp) then
5517 declare
5518 Comp_Decl : constant Node_Id := Declaration_Node (Comp);
5519 begin
5520 Append_To (Comps,
5521 Make_Component_Declaration (Loc,
5522 Defining_Identifier =>
5523 Make_Defining_Identifier (Loc, Chars (Comp)),
5524 Component_Definition =>
5525 New_Copy_Tree
5526 (Component_Definition (Comp_Decl), New_Sloc => Loc)));
5527 end;
5528 end if;
5530 Next_Component (Comp);
5531 end loop;
5533 return Comps;
5534 end Copy_Component_List;
5536 -------------------------
5537 -- Copy_Parameter_List --
5538 -------------------------
5540 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
5541 Loc : constant Source_Ptr := Sloc (Subp_Id);
5542 Plist : List_Id;
5543 Formal : Entity_Id;
5545 begin
5546 if No (First_Formal (Subp_Id)) then
5547 return No_List;
5548 else
5549 Plist := New_List;
5550 Formal := First_Formal (Subp_Id);
5551 while Present (Formal) loop
5552 Append_To (Plist,
5553 Make_Parameter_Specification (Loc,
5554 Defining_Identifier =>
5555 Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
5556 In_Present => In_Present (Parent (Formal)),
5557 Out_Present => Out_Present (Parent (Formal)),
5558 Parameter_Type =>
5559 New_Occurrence_Of (Etype (Formal), Loc),
5560 Expression =>
5561 New_Copy_Tree (Expression (Parent (Formal)))));
5563 Next_Formal (Formal);
5564 end loop;
5565 end if;
5567 return Plist;
5568 end Copy_Parameter_List;
5570 ----------------------------
5571 -- Copy_SPARK_Mode_Aspect --
5572 ----------------------------
5574 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id) is
5575 pragma Assert (not Has_Aspects (To));
5576 Asp : Node_Id;
5578 begin
5579 if Has_Aspects (From) then
5580 Asp := Find_Aspect (Defining_Entity (From), Aspect_SPARK_Mode);
5582 if Present (Asp) then
5583 Set_Aspect_Specifications (To, New_List (New_Copy_Tree (Asp)));
5584 Set_Has_Aspects (To, True);
5585 end if;
5586 end if;
5587 end Copy_SPARK_Mode_Aspect;
5589 --------------------------
5590 -- Copy_Subprogram_Spec --
5591 --------------------------
5593 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id is
5594 Def_Id : Node_Id;
5595 Formal_Spec : Node_Id;
5596 Result : Node_Id;
5598 begin
5599 -- The structure of the original tree must be replicated without any
5600 -- alterations. Use New_Copy_Tree for this purpose.
5602 Result := New_Copy_Tree (Spec);
5604 -- However, the spec of a null procedure carries the corresponding null
5605 -- statement of the body (created by the parser), and this cannot be
5606 -- shared with the new subprogram spec.
5608 if Nkind (Result) = N_Procedure_Specification then
5609 Set_Null_Statement (Result, Empty);
5610 end if;
5612 -- Create a new entity for the defining unit name
5614 Def_Id := Defining_Unit_Name (Result);
5615 Set_Defining_Unit_Name (Result,
5616 Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
5618 -- Create new entities for the formal parameters
5620 if Present (Parameter_Specifications (Result)) then
5621 Formal_Spec := First (Parameter_Specifications (Result));
5622 while Present (Formal_Spec) loop
5623 Def_Id := Defining_Identifier (Formal_Spec);
5624 Set_Defining_Identifier (Formal_Spec,
5625 Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
5627 Next (Formal_Spec);
5628 end loop;
5629 end if;
5631 return Result;
5632 end Copy_Subprogram_Spec;
5634 --------------------------------
5635 -- Corresponding_Generic_Type --
5636 --------------------------------
5638 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
5639 Inst : Entity_Id;
5640 Gen : Entity_Id;
5641 Typ : Entity_Id;
5643 begin
5644 if not Is_Generic_Actual_Type (T) then
5645 return Any_Type;
5647 -- If the actual is the actual of an enclosing instance, resolution
5648 -- was correct in the generic.
5650 elsif Nkind (Parent (T)) = N_Subtype_Declaration
5651 and then Is_Entity_Name (Subtype_Indication (Parent (T)))
5652 and then
5653 Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
5654 then
5655 return Any_Type;
5657 else
5658 Inst := Scope (T);
5660 if Is_Wrapper_Package (Inst) then
5661 Inst := Related_Instance (Inst);
5662 end if;
5664 Gen :=
5665 Generic_Parent
5666 (Specification (Unit_Declaration_Node (Inst)));
5668 -- Generic actual has the same name as the corresponding formal
5670 Typ := First_Entity (Gen);
5671 while Present (Typ) loop
5672 if Chars (Typ) = Chars (T) then
5673 return Typ;
5674 end if;
5676 Next_Entity (Typ);
5677 end loop;
5679 return Any_Type;
5680 end if;
5681 end Corresponding_Generic_Type;
5683 --------------------
5684 -- Current_Entity --
5685 --------------------
5687 -- The currently visible definition for a given identifier is the
5688 -- one most chained at the start of the visibility chain, i.e. the
5689 -- one that is referenced by the Node_Id value of the name of the
5690 -- given identifier.
5692 function Current_Entity (N : Node_Id) return Entity_Id is
5693 begin
5694 return Get_Name_Entity_Id (Chars (N));
5695 end Current_Entity;
5697 -----------------------------
5698 -- Current_Entity_In_Scope --
5699 -----------------------------
5701 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
5702 E : Entity_Id;
5703 CS : constant Entity_Id := Current_Scope;
5705 Transient_Case : constant Boolean := Scope_Is_Transient;
5707 begin
5708 E := Get_Name_Entity_Id (Chars (N));
5709 while Present (E)
5710 and then Scope (E) /= CS
5711 and then (not Transient_Case or else Scope (E) /= Scope (CS))
5712 loop
5713 E := Homonym (E);
5714 end loop;
5716 return E;
5717 end Current_Entity_In_Scope;
5719 -------------------
5720 -- Current_Scope --
5721 -------------------
5723 function Current_Scope return Entity_Id is
5724 begin
5725 if Scope_Stack.Last = -1 then
5726 return Standard_Standard;
5727 else
5728 declare
5729 C : constant Entity_Id :=
5730 Scope_Stack.Table (Scope_Stack.Last).Entity;
5731 begin
5732 if Present (C) then
5733 return C;
5734 else
5735 return Standard_Standard;
5736 end if;
5737 end;
5738 end if;
5739 end Current_Scope;
5741 ----------------------------
5742 -- Current_Scope_No_Loops --
5743 ----------------------------
5745 function Current_Scope_No_Loops return Entity_Id is
5746 S : Entity_Id;
5748 begin
5749 -- Examine the scope stack starting from the current scope and skip any
5750 -- internally generated loops.
5752 S := Current_Scope;
5753 while Present (S) and then S /= Standard_Standard loop
5754 if Ekind (S) = E_Loop and then not Comes_From_Source (S) then
5755 S := Scope (S);
5756 else
5757 exit;
5758 end if;
5759 end loop;
5761 return S;
5762 end Current_Scope_No_Loops;
5764 ------------------------
5765 -- Current_Subprogram --
5766 ------------------------
5768 function Current_Subprogram return Entity_Id is
5769 Scop : constant Entity_Id := Current_Scope;
5770 begin
5771 if Is_Subprogram_Or_Generic_Subprogram (Scop) then
5772 return Scop;
5773 else
5774 return Enclosing_Subprogram (Scop);
5775 end if;
5776 end Current_Subprogram;
5778 ----------------------------------
5779 -- Deepest_Type_Access_Level --
5780 ----------------------------------
5782 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
5783 begin
5784 if Ekind (Typ) = E_Anonymous_Access_Type
5785 and then not Is_Local_Anonymous_Access (Typ)
5786 and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
5787 then
5788 -- Typ is the type of an Ada 2012 stand-alone object of an anonymous
5789 -- access type.
5791 return
5792 Scope_Depth (Enclosing_Dynamic_Scope
5793 (Defining_Identifier
5794 (Associated_Node_For_Itype (Typ))));
5796 -- For generic formal type, return Int'Last (infinite).
5797 -- See comment preceding Is_Generic_Type call in Type_Access_Level.
5799 elsif Is_Generic_Type (Root_Type (Typ)) then
5800 return UI_From_Int (Int'Last);
5802 else
5803 return Type_Access_Level (Typ);
5804 end if;
5805 end Deepest_Type_Access_Level;
5807 ---------------------
5808 -- Defining_Entity --
5809 ---------------------
5811 function Defining_Entity
5812 (N : Node_Id;
5813 Empty_On_Errors : Boolean := False;
5814 Concurrent_Subunit : Boolean := False) return Entity_Id
5816 begin
5817 case Nkind (N) is
5818 when N_Abstract_Subprogram_Declaration
5819 | N_Expression_Function
5820 | N_Formal_Subprogram_Declaration
5821 | N_Generic_Package_Declaration
5822 | N_Generic_Subprogram_Declaration
5823 | N_Package_Declaration
5824 | N_Subprogram_Body
5825 | N_Subprogram_Body_Stub
5826 | N_Subprogram_Declaration
5827 | N_Subprogram_Renaming_Declaration
5829 return Defining_Entity (Specification (N));
5831 when N_Component_Declaration
5832 | N_Defining_Program_Unit_Name
5833 | N_Discriminant_Specification
5834 | N_Entry_Body
5835 | N_Entry_Declaration
5836 | N_Entry_Index_Specification
5837 | N_Exception_Declaration
5838 | N_Exception_Renaming_Declaration
5839 | N_Formal_Object_Declaration
5840 | N_Formal_Package_Declaration
5841 | N_Formal_Type_Declaration
5842 | N_Full_Type_Declaration
5843 | N_Implicit_Label_Declaration
5844 | N_Incomplete_Type_Declaration
5845 | N_Iterator_Specification
5846 | N_Loop_Parameter_Specification
5847 | N_Number_Declaration
5848 | N_Object_Declaration
5849 | N_Object_Renaming_Declaration
5850 | N_Package_Body_Stub
5851 | N_Parameter_Specification
5852 | N_Private_Extension_Declaration
5853 | N_Private_Type_Declaration
5854 | N_Protected_Body
5855 | N_Protected_Body_Stub
5856 | N_Protected_Type_Declaration
5857 | N_Single_Protected_Declaration
5858 | N_Single_Task_Declaration
5859 | N_Subtype_Declaration
5860 | N_Task_Body
5861 | N_Task_Body_Stub
5862 | N_Task_Type_Declaration
5864 return Defining_Identifier (N);
5866 when N_Subunit =>
5867 declare
5868 Bod : constant Node_Id := Proper_Body (N);
5869 Orig_Bod : constant Node_Id := Original_Node (Bod);
5871 begin
5872 -- Retrieve the entity of the original protected or task body
5873 -- if requested by the caller.
5875 if Concurrent_Subunit
5876 and then Nkind (Bod) = N_Null_Statement
5877 and then Nkind_In (Orig_Bod, N_Protected_Body, N_Task_Body)
5878 then
5879 return Defining_Entity (Orig_Bod);
5880 else
5881 return Defining_Entity (Bod);
5882 end if;
5883 end;
5885 when N_Function_Instantiation
5886 | N_Function_Specification
5887 | N_Generic_Function_Renaming_Declaration
5888 | N_Generic_Package_Renaming_Declaration
5889 | N_Generic_Procedure_Renaming_Declaration
5890 | N_Package_Body
5891 | N_Package_Instantiation
5892 | N_Package_Renaming_Declaration
5893 | N_Package_Specification
5894 | N_Procedure_Instantiation
5895 | N_Procedure_Specification
5897 declare
5898 Nam : constant Node_Id := Defining_Unit_Name (N);
5899 Err : Entity_Id := Empty;
5901 begin
5902 if Nkind (Nam) in N_Entity then
5903 return Nam;
5905 -- For Error, make up a name and attach to declaration so we
5906 -- can continue semantic analysis.
5908 elsif Nam = Error then
5909 if Empty_On_Errors then
5910 return Empty;
5911 else
5912 Err := Make_Temporary (Sloc (N), 'T');
5913 Set_Defining_Unit_Name (N, Err);
5915 return Err;
5916 end if;
5918 -- If not an entity, get defining identifier
5920 else
5921 return Defining_Identifier (Nam);
5922 end if;
5923 end;
5925 when N_Block_Statement
5926 | N_Loop_Statement
5928 return Entity (Identifier (N));
5930 when others =>
5931 if Empty_On_Errors then
5932 return Empty;
5933 else
5934 raise Program_Error;
5935 end if;
5936 end case;
5937 end Defining_Entity;
5939 --------------------------
5940 -- Denotes_Discriminant --
5941 --------------------------
5943 function Denotes_Discriminant
5944 (N : Node_Id;
5945 Check_Concurrent : Boolean := False) return Boolean
5947 E : Entity_Id;
5949 begin
5950 if not Is_Entity_Name (N) or else No (Entity (N)) then
5951 return False;
5952 else
5953 E := Entity (N);
5954 end if;
5956 -- If we are checking for a protected type, the discriminant may have
5957 -- been rewritten as the corresponding discriminal of the original type
5958 -- or of the corresponding concurrent record, depending on whether we
5959 -- are in the spec or body of the protected type.
5961 return Ekind (E) = E_Discriminant
5962 or else
5963 (Check_Concurrent
5964 and then Ekind (E) = E_In_Parameter
5965 and then Present (Discriminal_Link (E))
5966 and then
5967 (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
5968 or else
5969 Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
5970 end Denotes_Discriminant;
5972 -------------------------
5973 -- Denotes_Same_Object --
5974 -------------------------
5976 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
5977 Obj1 : Node_Id := A1;
5978 Obj2 : Node_Id := A2;
5980 function Has_Prefix (N : Node_Id) return Boolean;
5981 -- Return True if N has attribute Prefix
5983 function Is_Renaming (N : Node_Id) return Boolean;
5984 -- Return true if N names a renaming entity
5986 function Is_Valid_Renaming (N : Node_Id) return Boolean;
5987 -- For renamings, return False if the prefix of any dereference within
5988 -- the renamed object_name is a variable, or any expression within the
5989 -- renamed object_name contains references to variables or calls on
5990 -- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
5992 ----------------
5993 -- Has_Prefix --
5994 ----------------
5996 function Has_Prefix (N : Node_Id) return Boolean is
5997 begin
5998 return
5999 Nkind_In (N,
6000 N_Attribute_Reference,
6001 N_Expanded_Name,
6002 N_Explicit_Dereference,
6003 N_Indexed_Component,
6004 N_Reference,
6005 N_Selected_Component,
6006 N_Slice);
6007 end Has_Prefix;
6009 -----------------
6010 -- Is_Renaming --
6011 -----------------
6013 function Is_Renaming (N : Node_Id) return Boolean is
6014 begin
6015 return Is_Entity_Name (N)
6016 and then Present (Renamed_Entity (Entity (N)));
6017 end Is_Renaming;
6019 -----------------------
6020 -- Is_Valid_Renaming --
6021 -----------------------
6023 function Is_Valid_Renaming (N : Node_Id) return Boolean is
6025 function Check_Renaming (N : Node_Id) return Boolean;
6026 -- Recursive function used to traverse all the prefixes of N
6028 function Check_Renaming (N : Node_Id) return Boolean is
6029 begin
6030 if Is_Renaming (N)
6031 and then not Check_Renaming (Renamed_Entity (Entity (N)))
6032 then
6033 return False;
6034 end if;
6036 if Nkind (N) = N_Indexed_Component then
6037 declare
6038 Indx : Node_Id;
6040 begin
6041 Indx := First (Expressions (N));
6042 while Present (Indx) loop
6043 if not Is_OK_Static_Expression (Indx) then
6044 return False;
6045 end if;
6047 Next_Index (Indx);
6048 end loop;
6049 end;
6050 end if;
6052 if Has_Prefix (N) then
6053 declare
6054 P : constant Node_Id := Prefix (N);
6056 begin
6057 if Nkind (N) = N_Explicit_Dereference
6058 and then Is_Variable (P)
6059 then
6060 return False;
6062 elsif Is_Entity_Name (P)
6063 and then Ekind (Entity (P)) = E_Function
6064 then
6065 return False;
6067 elsif Nkind (P) = N_Function_Call then
6068 return False;
6069 end if;
6071 -- Recursion to continue traversing the prefix of the
6072 -- renaming expression
6074 return Check_Renaming (P);
6075 end;
6076 end if;
6078 return True;
6079 end Check_Renaming;
6081 -- Start of processing for Is_Valid_Renaming
6083 begin
6084 return Check_Renaming (N);
6085 end Is_Valid_Renaming;
6087 -- Start of processing for Denotes_Same_Object
6089 begin
6090 -- Both names statically denote the same stand-alone object or parameter
6091 -- (RM 6.4.1(6.5/3))
6093 if Is_Entity_Name (Obj1)
6094 and then Is_Entity_Name (Obj2)
6095 and then Entity (Obj1) = Entity (Obj2)
6096 then
6097 return True;
6098 end if;
6100 -- For renamings, the prefix of any dereference within the renamed
6101 -- object_name is not a variable, and any expression within the
6102 -- renamed object_name contains no references to variables nor
6103 -- calls on nonstatic functions (RM 6.4.1(6.10/3)).
6105 if Is_Renaming (Obj1) then
6106 if Is_Valid_Renaming (Obj1) then
6107 Obj1 := Renamed_Entity (Entity (Obj1));
6108 else
6109 return False;
6110 end if;
6111 end if;
6113 if Is_Renaming (Obj2) then
6114 if Is_Valid_Renaming (Obj2) then
6115 Obj2 := Renamed_Entity (Entity (Obj2));
6116 else
6117 return False;
6118 end if;
6119 end if;
6121 -- No match if not same node kind (such cases are handled by
6122 -- Denotes_Same_Prefix)
6124 if Nkind (Obj1) /= Nkind (Obj2) then
6125 return False;
6127 -- After handling valid renamings, one of the two names statically
6128 -- denoted a renaming declaration whose renamed object_name is known
6129 -- to denote the same object as the other (RM 6.4.1(6.10/3))
6131 elsif Is_Entity_Name (Obj1) then
6132 if Is_Entity_Name (Obj2) then
6133 return Entity (Obj1) = Entity (Obj2);
6134 else
6135 return False;
6136 end if;
6138 -- Both names are selected_components, their prefixes are known to
6139 -- denote the same object, and their selector_names denote the same
6140 -- component (RM 6.4.1(6.6/3)).
6142 elsif Nkind (Obj1) = N_Selected_Component then
6143 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
6144 and then
6145 Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
6147 -- Both names are dereferences and the dereferenced names are known to
6148 -- denote the same object (RM 6.4.1(6.7/3))
6150 elsif Nkind (Obj1) = N_Explicit_Dereference then
6151 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
6153 -- Both names are indexed_components, their prefixes are known to denote
6154 -- the same object, and each of the pairs of corresponding index values
6155 -- are either both static expressions with the same static value or both
6156 -- names that are known to denote the same object (RM 6.4.1(6.8/3))
6158 elsif Nkind (Obj1) = N_Indexed_Component then
6159 if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
6160 return False;
6161 else
6162 declare
6163 Indx1 : Node_Id;
6164 Indx2 : Node_Id;
6166 begin
6167 Indx1 := First (Expressions (Obj1));
6168 Indx2 := First (Expressions (Obj2));
6169 while Present (Indx1) loop
6171 -- Indexes must denote the same static value or same object
6173 if Is_OK_Static_Expression (Indx1) then
6174 if not Is_OK_Static_Expression (Indx2) then
6175 return False;
6177 elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
6178 return False;
6179 end if;
6181 elsif not Denotes_Same_Object (Indx1, Indx2) then
6182 return False;
6183 end if;
6185 Next (Indx1);
6186 Next (Indx2);
6187 end loop;
6189 return True;
6190 end;
6191 end if;
6193 -- Both names are slices, their prefixes are known to denote the same
6194 -- object, and the two slices have statically matching index constraints
6195 -- (RM 6.4.1(6.9/3))
6197 elsif Nkind (Obj1) = N_Slice
6198 and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
6199 then
6200 declare
6201 Lo1, Lo2, Hi1, Hi2 : Node_Id;
6203 begin
6204 Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
6205 Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
6207 -- Check whether bounds are statically identical. There is no
6208 -- attempt to detect partial overlap of slices.
6210 return Denotes_Same_Object (Lo1, Lo2)
6211 and then
6212 Denotes_Same_Object (Hi1, Hi2);
6213 end;
6215 -- In the recursion, literals appear as indexes
6217 elsif Nkind (Obj1) = N_Integer_Literal
6218 and then
6219 Nkind (Obj2) = N_Integer_Literal
6220 then
6221 return Intval (Obj1) = Intval (Obj2);
6223 else
6224 return False;
6225 end if;
6226 end Denotes_Same_Object;
6228 -------------------------
6229 -- Denotes_Same_Prefix --
6230 -------------------------
6232 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
6233 begin
6234 if Is_Entity_Name (A1) then
6235 if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
6236 and then not Is_Access_Type (Etype (A1))
6237 then
6238 return Denotes_Same_Object (A1, Prefix (A2))
6239 or else Denotes_Same_Prefix (A1, Prefix (A2));
6240 else
6241 return False;
6242 end if;
6244 elsif Is_Entity_Name (A2) then
6245 return Denotes_Same_Prefix (A1 => A2, A2 => A1);
6247 elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
6248 and then
6249 Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
6250 then
6251 declare
6252 Root1, Root2 : Node_Id;
6253 Depth1, Depth2 : Nat := 0;
6255 begin
6256 Root1 := Prefix (A1);
6257 while not Is_Entity_Name (Root1) loop
6258 if not Nkind_In
6259 (Root1, N_Selected_Component, N_Indexed_Component)
6260 then
6261 return False;
6262 else
6263 Root1 := Prefix (Root1);
6264 end if;
6266 Depth1 := Depth1 + 1;
6267 end loop;
6269 Root2 := Prefix (A2);
6270 while not Is_Entity_Name (Root2) loop
6271 if not Nkind_In (Root2, N_Selected_Component,
6272 N_Indexed_Component)
6273 then
6274 return False;
6275 else
6276 Root2 := Prefix (Root2);
6277 end if;
6279 Depth2 := Depth2 + 1;
6280 end loop;
6282 -- If both have the same depth and they do not denote the same
6283 -- object, they are disjoint and no warning is needed.
6285 if Depth1 = Depth2 then
6286 return False;
6288 elsif Depth1 > Depth2 then
6289 Root1 := Prefix (A1);
6290 for J in 1 .. Depth1 - Depth2 - 1 loop
6291 Root1 := Prefix (Root1);
6292 end loop;
6294 return Denotes_Same_Object (Root1, A2);
6296 else
6297 Root2 := Prefix (A2);
6298 for J in 1 .. Depth2 - Depth1 - 1 loop
6299 Root2 := Prefix (Root2);
6300 end loop;
6302 return Denotes_Same_Object (A1, Root2);
6303 end if;
6304 end;
6306 else
6307 return False;
6308 end if;
6309 end Denotes_Same_Prefix;
6311 ----------------------
6312 -- Denotes_Variable --
6313 ----------------------
6315 function Denotes_Variable (N : Node_Id) return Boolean is
6316 begin
6317 return Is_Variable (N) and then Paren_Count (N) = 0;
6318 end Denotes_Variable;
6320 -----------------------------
6321 -- Depends_On_Discriminant --
6322 -----------------------------
6324 function Depends_On_Discriminant (N : Node_Id) return Boolean is
6325 L : Node_Id;
6326 H : Node_Id;
6328 begin
6329 Get_Index_Bounds (N, L, H);
6330 return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
6331 end Depends_On_Discriminant;
6333 -------------------------
6334 -- Designate_Same_Unit --
6335 -------------------------
6337 function Designate_Same_Unit
6338 (Name1 : Node_Id;
6339 Name2 : Node_Id) return Boolean
6341 K1 : constant Node_Kind := Nkind (Name1);
6342 K2 : constant Node_Kind := Nkind (Name2);
6344 function Prefix_Node (N : Node_Id) return Node_Id;
6345 -- Returns the parent unit name node of a defining program unit name
6346 -- or the prefix if N is a selected component or an expanded name.
6348 function Select_Node (N : Node_Id) return Node_Id;
6349 -- Returns the defining identifier node of a defining program unit
6350 -- name or the selector node if N is a selected component or an
6351 -- expanded name.
6353 -----------------
6354 -- Prefix_Node --
6355 -----------------
6357 function Prefix_Node (N : Node_Id) return Node_Id is
6358 begin
6359 if Nkind (N) = N_Defining_Program_Unit_Name then
6360 return Name (N);
6361 else
6362 return Prefix (N);
6363 end if;
6364 end Prefix_Node;
6366 -----------------
6367 -- Select_Node --
6368 -----------------
6370 function Select_Node (N : Node_Id) return Node_Id is
6371 begin
6372 if Nkind (N) = N_Defining_Program_Unit_Name then
6373 return Defining_Identifier (N);
6374 else
6375 return Selector_Name (N);
6376 end if;
6377 end Select_Node;
6379 -- Start of processing for Designate_Same_Unit
6381 begin
6382 if Nkind_In (K1, N_Identifier, N_Defining_Identifier)
6383 and then
6384 Nkind_In (K2, N_Identifier, N_Defining_Identifier)
6385 then
6386 return Chars (Name1) = Chars (Name2);
6388 elsif Nkind_In (K1, N_Expanded_Name,
6389 N_Selected_Component,
6390 N_Defining_Program_Unit_Name)
6391 and then
6392 Nkind_In (K2, N_Expanded_Name,
6393 N_Selected_Component,
6394 N_Defining_Program_Unit_Name)
6395 then
6396 return
6397 (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
6398 and then
6399 Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
6401 else
6402 return False;
6403 end if;
6404 end Designate_Same_Unit;
6406 ---------------------------------------------
6407 -- Diagnose_Iterated_Component_Association --
6408 ---------------------------------------------
6410 procedure Diagnose_Iterated_Component_Association (N : Node_Id) is
6411 Def_Id : constant Entity_Id := Defining_Identifier (N);
6412 Aggr : Node_Id;
6414 begin
6415 -- Determine whether the iterated component association appears within
6416 -- an aggregate. If this is the case, raise Program_Error because the
6417 -- iterated component association cannot be left in the tree as is and
6418 -- must always be processed by the related aggregate.
6420 Aggr := N;
6421 while Present (Aggr) loop
6422 if Nkind (Aggr) = N_Aggregate then
6423 raise Program_Error;
6425 -- Prevent the search from going too far
6427 elsif Is_Body_Or_Package_Declaration (Aggr) then
6428 exit;
6429 end if;
6431 Aggr := Parent (Aggr);
6432 end loop;
6434 -- At this point it is known that the iterated component association is
6435 -- not within an aggregate. This is really a quantified expression with
6436 -- a missing "all" or "some" quantifier.
6438 Error_Msg_N ("missing quantifier", Def_Id);
6440 -- Rewrite the iterated component association as True to prevent any
6441 -- cascaded errors.
6443 Rewrite (N, New_Occurrence_Of (Standard_True, Sloc (N)));
6444 Analyze (N);
6445 end Diagnose_Iterated_Component_Association;
6447 ---------------------------------
6448 -- Dynamic_Accessibility_Level --
6449 ---------------------------------
6451 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is
6452 Loc : constant Source_Ptr := Sloc (Expr);
6454 function Make_Level_Literal (Level : Uint) return Node_Id;
6455 -- Construct an integer literal representing an accessibility level
6456 -- with its type set to Natural.
6458 ------------------------
6459 -- Make_Level_Literal --
6460 ------------------------
6462 function Make_Level_Literal (Level : Uint) return Node_Id is
6463 Result : constant Node_Id := Make_Integer_Literal (Loc, Level);
6465 begin
6466 Set_Etype (Result, Standard_Natural);
6467 return Result;
6468 end Make_Level_Literal;
6470 -- Local variables
6472 E : Entity_Id;
6474 -- Start of processing for Dynamic_Accessibility_Level
6476 begin
6477 if Is_Entity_Name (Expr) then
6478 E := Entity (Expr);
6480 if Present (Renamed_Object (E)) then
6481 return Dynamic_Accessibility_Level (Renamed_Object (E));
6482 end if;
6484 if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then
6485 if Present (Extra_Accessibility (E)) then
6486 return New_Occurrence_Of (Extra_Accessibility (E), Loc);
6487 end if;
6488 end if;
6489 end if;
6491 -- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
6493 case Nkind (Expr) is
6495 -- For access discriminant, the level of the enclosing object
6497 when N_Selected_Component =>
6498 if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
6499 and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
6500 E_Anonymous_Access_Type
6501 then
6502 return Make_Level_Literal (Object_Access_Level (Expr));
6503 end if;
6505 when N_Attribute_Reference =>
6506 case Get_Attribute_Id (Attribute_Name (Expr)) is
6508 -- For X'Access, the level of the prefix X
6510 when Attribute_Access =>
6511 return Make_Level_Literal
6512 (Object_Access_Level (Prefix (Expr)));
6514 -- Treat the unchecked attributes as library-level
6516 when Attribute_Unchecked_Access
6517 | Attribute_Unrestricted_Access
6519 return Make_Level_Literal (Scope_Depth (Standard_Standard));
6521 -- No other access-valued attributes
6523 when others =>
6524 raise Program_Error;
6525 end case;
6527 when N_Allocator =>
6529 -- Unimplemented: depends on context. As an actual parameter where
6530 -- formal type is anonymous, use
6531 -- Scope_Depth (Current_Scope) + 1.
6532 -- For other cases, see 3.10.2(14/3) and following. ???
6534 null;
6536 when N_Type_Conversion =>
6537 if not Is_Local_Anonymous_Access (Etype (Expr)) then
6539 -- Handle type conversions introduced for a rename of an
6540 -- Ada 2012 stand-alone object of an anonymous access type.
6542 return Dynamic_Accessibility_Level (Expression (Expr));
6543 end if;
6545 when others =>
6546 null;
6547 end case;
6549 return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
6550 end Dynamic_Accessibility_Level;
6552 ------------------------
6553 -- Discriminated_Size --
6554 ------------------------
6556 function Discriminated_Size (Comp : Entity_Id) return Boolean is
6557 function Non_Static_Bound (Bound : Node_Id) return Boolean;
6558 -- Check whether the bound of an index is non-static and does denote
6559 -- a discriminant, in which case any object of the type (protected or
6560 -- otherwise) will have a non-static size.
6562 ----------------------
6563 -- Non_Static_Bound --
6564 ----------------------
6566 function Non_Static_Bound (Bound : Node_Id) return Boolean is
6567 begin
6568 if Is_OK_Static_Expression (Bound) then
6569 return False;
6571 -- If the bound is given by a discriminant it is non-static
6572 -- (A static constraint replaces the reference with the value).
6573 -- In an protected object the discriminant has been replaced by
6574 -- the corresponding discriminal within the protected operation.
6576 elsif Is_Entity_Name (Bound)
6577 and then
6578 (Ekind (Entity (Bound)) = E_Discriminant
6579 or else Present (Discriminal_Link (Entity (Bound))))
6580 then
6581 return False;
6583 else
6584 return True;
6585 end if;
6586 end Non_Static_Bound;
6588 -- Local variables
6590 Typ : constant Entity_Id := Etype (Comp);
6591 Index : Node_Id;
6593 -- Start of processing for Discriminated_Size
6595 begin
6596 if not Is_Array_Type (Typ) then
6597 return False;
6598 end if;
6600 if Ekind (Typ) = E_Array_Subtype then
6601 Index := First_Index (Typ);
6602 while Present (Index) loop
6603 if Non_Static_Bound (Low_Bound (Index))
6604 or else Non_Static_Bound (High_Bound (Index))
6605 then
6606 return False;
6607 end if;
6609 Next_Index (Index);
6610 end loop;
6612 return True;
6613 end if;
6615 return False;
6616 end Discriminated_Size;
6618 -----------------------------------
6619 -- Effective_Extra_Accessibility --
6620 -----------------------------------
6622 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
6623 begin
6624 if Present (Renamed_Object (Id))
6625 and then Is_Entity_Name (Renamed_Object (Id))
6626 then
6627 return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
6628 else
6629 return Extra_Accessibility (Id);
6630 end if;
6631 end Effective_Extra_Accessibility;
6633 -----------------------------
6634 -- Effective_Reads_Enabled --
6635 -----------------------------
6637 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean is
6638 begin
6639 return Has_Enabled_Property (Id, Name_Effective_Reads);
6640 end Effective_Reads_Enabled;
6642 ------------------------------
6643 -- Effective_Writes_Enabled --
6644 ------------------------------
6646 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean is
6647 begin
6648 return Has_Enabled_Property (Id, Name_Effective_Writes);
6649 end Effective_Writes_Enabled;
6651 ------------------------------
6652 -- Enclosing_Comp_Unit_Node --
6653 ------------------------------
6655 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
6656 Current_Node : Node_Id;
6658 begin
6659 Current_Node := N;
6660 while Present (Current_Node)
6661 and then Nkind (Current_Node) /= N_Compilation_Unit
6662 loop
6663 Current_Node := Parent (Current_Node);
6664 end loop;
6666 if Nkind (Current_Node) /= N_Compilation_Unit then
6667 return Empty;
6668 else
6669 return Current_Node;
6670 end if;
6671 end Enclosing_Comp_Unit_Node;
6673 --------------------------
6674 -- Enclosing_CPP_Parent --
6675 --------------------------
6677 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
6678 Parent_Typ : Entity_Id := Typ;
6680 begin
6681 while not Is_CPP_Class (Parent_Typ)
6682 and then Etype (Parent_Typ) /= Parent_Typ
6683 loop
6684 Parent_Typ := Etype (Parent_Typ);
6686 if Is_Private_Type (Parent_Typ) then
6687 Parent_Typ := Full_View (Base_Type (Parent_Typ));
6688 end if;
6689 end loop;
6691 pragma Assert (Is_CPP_Class (Parent_Typ));
6692 return Parent_Typ;
6693 end Enclosing_CPP_Parent;
6695 ---------------------------
6696 -- Enclosing_Declaration --
6697 ---------------------------
6699 function Enclosing_Declaration (N : Node_Id) return Node_Id is
6700 Decl : Node_Id := N;
6702 begin
6703 while Present (Decl)
6704 and then not (Nkind (Decl) in N_Declaration
6705 or else
6706 Nkind (Decl) in N_Later_Decl_Item)
6707 loop
6708 Decl := Parent (Decl);
6709 end loop;
6711 return Decl;
6712 end Enclosing_Declaration;
6714 ----------------------------
6715 -- Enclosing_Generic_Body --
6716 ----------------------------
6718 function Enclosing_Generic_Body
6719 (N : Node_Id) return Node_Id
6721 P : Node_Id;
6722 Decl : Node_Id;
6723 Spec : Node_Id;
6725 begin
6726 P := Parent (N);
6727 while Present (P) loop
6728 if Nkind (P) = N_Package_Body
6729 or else Nkind (P) = N_Subprogram_Body
6730 then
6731 Spec := Corresponding_Spec (P);
6733 if Present (Spec) then
6734 Decl := Unit_Declaration_Node (Spec);
6736 if Nkind (Decl) = N_Generic_Package_Declaration
6737 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
6738 then
6739 return P;
6740 end if;
6741 end if;
6742 end if;
6744 P := Parent (P);
6745 end loop;
6747 return Empty;
6748 end Enclosing_Generic_Body;
6750 ----------------------------
6751 -- Enclosing_Generic_Unit --
6752 ----------------------------
6754 function Enclosing_Generic_Unit
6755 (N : Node_Id) return Node_Id
6757 P : Node_Id;
6758 Decl : Node_Id;
6759 Spec : Node_Id;
6761 begin
6762 P := Parent (N);
6763 while Present (P) loop
6764 if Nkind (P) = N_Generic_Package_Declaration
6765 or else Nkind (P) = N_Generic_Subprogram_Declaration
6766 then
6767 return P;
6769 elsif Nkind (P) = N_Package_Body
6770 or else Nkind (P) = N_Subprogram_Body
6771 then
6772 Spec := Corresponding_Spec (P);
6774 if Present (Spec) then
6775 Decl := Unit_Declaration_Node (Spec);
6777 if Nkind (Decl) = N_Generic_Package_Declaration
6778 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
6779 then
6780 return Decl;
6781 end if;
6782 end if;
6783 end if;
6785 P := Parent (P);
6786 end loop;
6788 return Empty;
6789 end Enclosing_Generic_Unit;
6791 -------------------------------
6792 -- Enclosing_Lib_Unit_Entity --
6793 -------------------------------
6795 function Enclosing_Lib_Unit_Entity
6796 (E : Entity_Id := Current_Scope) return Entity_Id
6798 Unit_Entity : Entity_Id;
6800 begin
6801 -- Look for enclosing library unit entity by following scope links.
6802 -- Equivalent to, but faster than indexing through the scope stack.
6804 Unit_Entity := E;
6805 while (Present (Scope (Unit_Entity))
6806 and then Scope (Unit_Entity) /= Standard_Standard)
6807 and not Is_Child_Unit (Unit_Entity)
6808 loop
6809 Unit_Entity := Scope (Unit_Entity);
6810 end loop;
6812 return Unit_Entity;
6813 end Enclosing_Lib_Unit_Entity;
6815 -----------------------------
6816 -- Enclosing_Lib_Unit_Node --
6817 -----------------------------
6819 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
6820 Encl_Unit : Node_Id;
6822 begin
6823 Encl_Unit := Enclosing_Comp_Unit_Node (N);
6824 while Present (Encl_Unit)
6825 and then Nkind (Unit (Encl_Unit)) = N_Subunit
6826 loop
6827 Encl_Unit := Library_Unit (Encl_Unit);
6828 end loop;
6830 pragma Assert (Nkind (Encl_Unit) = N_Compilation_Unit);
6831 return Encl_Unit;
6832 end Enclosing_Lib_Unit_Node;
6834 -----------------------
6835 -- Enclosing_Package --
6836 -----------------------
6838 function Enclosing_Package (E : Entity_Id) return Entity_Id is
6839 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
6841 begin
6842 if Dynamic_Scope = Standard_Standard then
6843 return Standard_Standard;
6845 elsif Dynamic_Scope = Empty then
6846 return Empty;
6848 elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body,
6849 E_Generic_Package)
6850 then
6851 return Dynamic_Scope;
6853 else
6854 return Enclosing_Package (Dynamic_Scope);
6855 end if;
6856 end Enclosing_Package;
6858 -------------------------------------
6859 -- Enclosing_Package_Or_Subprogram --
6860 -------------------------------------
6862 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id is
6863 S : Entity_Id;
6865 begin
6866 S := Scope (E);
6867 while Present (S) loop
6868 if Is_Package_Or_Generic_Package (S)
6869 or else Ekind (S) = E_Package_Body
6870 then
6871 return S;
6873 elsif Is_Subprogram_Or_Generic_Subprogram (S)
6874 or else Ekind (S) = E_Subprogram_Body
6875 then
6876 return S;
6878 else
6879 S := Scope (S);
6880 end if;
6881 end loop;
6883 return Empty;
6884 end Enclosing_Package_Or_Subprogram;
6886 --------------------------
6887 -- Enclosing_Subprogram --
6888 --------------------------
6890 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
6891 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
6893 begin
6894 if Dynamic_Scope = Standard_Standard then
6895 return Empty;
6897 elsif Dynamic_Scope = Empty then
6898 return Empty;
6900 elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
6901 return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
6903 elsif Ekind (Dynamic_Scope) = E_Block
6904 or else Ekind (Dynamic_Scope) = E_Return_Statement
6905 then
6906 return Enclosing_Subprogram (Dynamic_Scope);
6908 elsif Ekind (Dynamic_Scope) = E_Task_Type then
6909 return Get_Task_Body_Procedure (Dynamic_Scope);
6911 elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
6912 and then Present (Full_View (Dynamic_Scope))
6913 and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
6914 then
6915 return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
6917 -- No body is generated if the protected operation is eliminated
6919 elsif Convention (Dynamic_Scope) = Convention_Protected
6920 and then not Is_Eliminated (Dynamic_Scope)
6921 and then Present (Protected_Body_Subprogram (Dynamic_Scope))
6922 then
6923 return Protected_Body_Subprogram (Dynamic_Scope);
6925 else
6926 return Dynamic_Scope;
6927 end if;
6928 end Enclosing_Subprogram;
6930 --------------------------
6931 -- End_Keyword_Location --
6932 --------------------------
6934 function End_Keyword_Location (N : Node_Id) return Source_Ptr is
6935 function End_Label_Loc (Nod : Node_Id) return Source_Ptr;
6936 -- Return the source location of Nod's end label according to the
6937 -- following precedence rules:
6939 -- 1) If the end label exists, return its location
6940 -- 2) If Nod exists, return its location
6941 -- 3) Return the location of N
6943 -------------------
6944 -- End_Label_Loc --
6945 -------------------
6947 function End_Label_Loc (Nod : Node_Id) return Source_Ptr is
6948 Label : Node_Id;
6950 begin
6951 if Present (Nod) then
6952 Label := End_Label (Nod);
6954 if Present (Label) then
6955 return Sloc (Label);
6956 else
6957 return Sloc (Nod);
6958 end if;
6960 else
6961 return Sloc (N);
6962 end if;
6963 end End_Label_Loc;
6965 -- Local variables
6967 Owner : Node_Id;
6969 -- Start of processing for End_Keyword_Location
6971 begin
6972 if Nkind_In (N, N_Block_Statement,
6973 N_Entry_Body,
6974 N_Package_Body,
6975 N_Subprogram_Body,
6976 N_Task_Body)
6977 then
6978 Owner := Handled_Statement_Sequence (N);
6980 elsif Nkind (N) = N_Package_Declaration then
6981 Owner := Specification (N);
6983 elsif Nkind (N) = N_Protected_Body then
6984 Owner := N;
6986 elsif Nkind_In (N, N_Protected_Type_Declaration,
6987 N_Single_Protected_Declaration)
6988 then
6989 Owner := Protected_Definition (N);
6991 elsif Nkind_In (N, N_Single_Task_Declaration,
6992 N_Task_Type_Declaration)
6993 then
6994 Owner := Task_Definition (N);
6996 -- This routine should not be called with other contexts
6998 else
6999 pragma Assert (False);
7000 null;
7001 end if;
7003 return End_Label_Loc (Owner);
7004 end End_Keyword_Location;
7006 ------------------------
7007 -- Ensure_Freeze_Node --
7008 ------------------------
7010 procedure Ensure_Freeze_Node (E : Entity_Id) is
7011 FN : Node_Id;
7012 begin
7013 if No (Freeze_Node (E)) then
7014 FN := Make_Freeze_Entity (Sloc (E));
7015 Set_Has_Delayed_Freeze (E);
7016 Set_Freeze_Node (E, FN);
7017 Set_Access_Types_To_Process (FN, No_Elist);
7018 Set_TSS_Elist (FN, No_Elist);
7019 Set_Entity (FN, E);
7020 end if;
7021 end Ensure_Freeze_Node;
7023 ----------------
7024 -- Enter_Name --
7025 ----------------
7027 procedure Enter_Name (Def_Id : Entity_Id) is
7028 C : constant Entity_Id := Current_Entity (Def_Id);
7029 E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
7030 S : constant Entity_Id := Current_Scope;
7032 begin
7033 Generate_Definition (Def_Id);
7035 -- Add new name to current scope declarations. Check for duplicate
7036 -- declaration, which may or may not be a genuine error.
7038 if Present (E) then
7040 -- Case of previous entity entered because of a missing declaration
7041 -- or else a bad subtype indication. Best is to use the new entity,
7042 -- and make the previous one invisible.
7044 if Etype (E) = Any_Type then
7045 Set_Is_Immediately_Visible (E, False);
7047 -- Case of renaming declaration constructed for package instances.
7048 -- if there is an explicit declaration with the same identifier,
7049 -- the renaming is not immediately visible any longer, but remains
7050 -- visible through selected component notation.
7052 elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
7053 and then not Comes_From_Source (E)
7054 then
7055 Set_Is_Immediately_Visible (E, False);
7057 -- The new entity may be the package renaming, which has the same
7058 -- same name as a generic formal which has been seen already.
7060 elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
7061 and then not Comes_From_Source (Def_Id)
7062 then
7063 Set_Is_Immediately_Visible (E, False);
7065 -- For a fat pointer corresponding to a remote access to subprogram,
7066 -- we use the same identifier as the RAS type, so that the proper
7067 -- name appears in the stub. This type is only retrieved through
7068 -- the RAS type and never by visibility, and is not added to the
7069 -- visibility list (see below).
7071 elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
7072 and then Ekind (Def_Id) = E_Record_Type
7073 and then Present (Corresponding_Remote_Type (Def_Id))
7074 then
7075 null;
7077 -- Case of an implicit operation or derived literal. The new entity
7078 -- hides the implicit one, which is removed from all visibility,
7079 -- i.e. the entity list of its scope, and homonym chain of its name.
7081 elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
7082 or else Is_Internal (E)
7083 then
7084 declare
7085 Decl : constant Node_Id := Parent (E);
7086 Prev : Entity_Id;
7087 Prev_Vis : Entity_Id;
7089 begin
7090 -- If E is an implicit declaration, it cannot be the first
7091 -- entity in the scope.
7093 Prev := First_Entity (Current_Scope);
7094 while Present (Prev) and then Next_Entity (Prev) /= E loop
7095 Next_Entity (Prev);
7096 end loop;
7098 if No (Prev) then
7100 -- If E is not on the entity chain of the current scope,
7101 -- it is an implicit declaration in the generic formal
7102 -- part of a generic subprogram. When analyzing the body,
7103 -- the generic formals are visible but not on the entity
7104 -- chain of the subprogram. The new entity will become
7105 -- the visible one in the body.
7107 pragma Assert
7108 (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
7109 null;
7111 else
7112 Set_Next_Entity (Prev, Next_Entity (E));
7114 if No (Next_Entity (Prev)) then
7115 Set_Last_Entity (Current_Scope, Prev);
7116 end if;
7118 if E = Current_Entity (E) then
7119 Prev_Vis := Empty;
7121 else
7122 Prev_Vis := Current_Entity (E);
7123 while Homonym (Prev_Vis) /= E loop
7124 Prev_Vis := Homonym (Prev_Vis);
7125 end loop;
7126 end if;
7128 if Present (Prev_Vis) then
7130 -- Skip E in the visibility chain
7132 Set_Homonym (Prev_Vis, Homonym (E));
7134 else
7135 Set_Name_Entity_Id (Chars (E), Homonym (E));
7136 end if;
7137 end if;
7138 end;
7140 -- This section of code could use a comment ???
7142 elsif Present (Etype (E))
7143 and then Is_Concurrent_Type (Etype (E))
7144 and then E = Def_Id
7145 then
7146 return;
7148 -- If the homograph is a protected component renaming, it should not
7149 -- be hiding the current entity. Such renamings are treated as weak
7150 -- declarations.
7152 elsif Is_Prival (E) then
7153 Set_Is_Immediately_Visible (E, False);
7155 -- In this case the current entity is a protected component renaming.
7156 -- Perform minimal decoration by setting the scope and return since
7157 -- the prival should not be hiding other visible entities.
7159 elsif Is_Prival (Def_Id) then
7160 Set_Scope (Def_Id, Current_Scope);
7161 return;
7163 -- Analogous to privals, the discriminal generated for an entry index
7164 -- parameter acts as a weak declaration. Perform minimal decoration
7165 -- to avoid bogus errors.
7167 elsif Is_Discriminal (Def_Id)
7168 and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
7169 then
7170 Set_Scope (Def_Id, Current_Scope);
7171 return;
7173 -- In the body or private part of an instance, a type extension may
7174 -- introduce a component with the same name as that of an actual. The
7175 -- legality rule is not enforced, but the semantics of the full type
7176 -- with two components of same name are not clear at this point???
7178 elsif In_Instance_Not_Visible then
7179 null;
7181 -- When compiling a package body, some child units may have become
7182 -- visible. They cannot conflict with local entities that hide them.
7184 elsif Is_Child_Unit (E)
7185 and then In_Open_Scopes (Scope (E))
7186 and then not Is_Immediately_Visible (E)
7187 then
7188 null;
7190 -- Conversely, with front-end inlining we may compile the parent body
7191 -- first, and a child unit subsequently. The context is now the
7192 -- parent spec, and body entities are not visible.
7194 elsif Is_Child_Unit (Def_Id)
7195 and then Is_Package_Body_Entity (E)
7196 and then not In_Package_Body (Current_Scope)
7197 then
7198 null;
7200 -- Case of genuine duplicate declaration
7202 else
7203 Error_Msg_Sloc := Sloc (E);
7205 -- If the previous declaration is an incomplete type declaration
7206 -- this may be an attempt to complete it with a private type. The
7207 -- following avoids confusing cascaded errors.
7209 if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
7210 and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
7211 then
7212 Error_Msg_N
7213 ("incomplete type cannot be completed with a private " &
7214 "declaration", Parent (Def_Id));
7215 Set_Is_Immediately_Visible (E, False);
7216 Set_Full_View (E, Def_Id);
7218 -- An inherited component of a record conflicts with a new
7219 -- discriminant. The discriminant is inserted first in the scope,
7220 -- but the error should be posted on it, not on the component.
7222 elsif Ekind (E) = E_Discriminant
7223 and then Present (Scope (Def_Id))
7224 and then Scope (Def_Id) /= Current_Scope
7225 then
7226 Error_Msg_Sloc := Sloc (Def_Id);
7227 Error_Msg_N ("& conflicts with declaration#", E);
7228 return;
7230 -- If the name of the unit appears in its own context clause, a
7231 -- dummy package with the name has already been created, and the
7232 -- error emitted. Try to continue quietly.
7234 elsif Error_Posted (E)
7235 and then Sloc (E) = No_Location
7236 and then Nkind (Parent (E)) = N_Package_Specification
7237 and then Current_Scope = Standard_Standard
7238 then
7239 Set_Scope (Def_Id, Current_Scope);
7240 return;
7242 else
7243 Error_Msg_N ("& conflicts with declaration#", Def_Id);
7245 -- Avoid cascaded messages with duplicate components in
7246 -- derived types.
7248 if Ekind_In (E, E_Component, E_Discriminant) then
7249 return;
7250 end if;
7251 end if;
7253 if Nkind (Parent (Parent (Def_Id))) =
7254 N_Generic_Subprogram_Declaration
7255 and then Def_Id =
7256 Defining_Entity (Specification (Parent (Parent (Def_Id))))
7257 then
7258 Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
7259 end if;
7261 -- If entity is in standard, then we are in trouble, because it
7262 -- means that we have a library package with a duplicated name.
7263 -- That's hard to recover from, so abort.
7265 if S = Standard_Standard then
7266 raise Unrecoverable_Error;
7268 -- Otherwise we continue with the declaration. Having two
7269 -- identical declarations should not cause us too much trouble.
7271 else
7272 null;
7273 end if;
7274 end if;
7275 end if;
7277 -- If we fall through, declaration is OK, at least OK enough to continue
7279 -- If Def_Id is a discriminant or a record component we are in the midst
7280 -- of inheriting components in a derived record definition. Preserve
7281 -- their Ekind and Etype.
7283 if Ekind_In (Def_Id, E_Discriminant, E_Component) then
7284 null;
7286 -- If a type is already set, leave it alone (happens when a type
7287 -- declaration is reanalyzed following a call to the optimizer).
7289 elsif Present (Etype (Def_Id)) then
7290 null;
7292 -- Otherwise, the kind E_Void insures that premature uses of the entity
7293 -- will be detected. Any_Type insures that no cascaded errors will occur
7295 else
7296 Set_Ekind (Def_Id, E_Void);
7297 Set_Etype (Def_Id, Any_Type);
7298 end if;
7300 -- Inherited discriminants and components in derived record types are
7301 -- immediately visible. Itypes are not.
7303 -- Unless the Itype is for a record type with a corresponding remote
7304 -- type (what is that about, it was not commented ???)
7306 if Ekind_In (Def_Id, E_Discriminant, E_Component)
7307 or else
7308 ((not Is_Record_Type (Def_Id)
7309 or else No (Corresponding_Remote_Type (Def_Id)))
7310 and then not Is_Itype (Def_Id))
7311 then
7312 Set_Is_Immediately_Visible (Def_Id);
7313 Set_Current_Entity (Def_Id);
7314 end if;
7316 Set_Homonym (Def_Id, C);
7317 Append_Entity (Def_Id, S);
7318 Set_Public_Status (Def_Id);
7320 -- Declaring a homonym is not allowed in SPARK ...
7322 if Present (C) and then Restriction_Check_Required (SPARK_05) then
7323 declare
7324 Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id);
7325 Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id);
7326 Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C);
7328 begin
7329 -- ... unless the new declaration is in a subprogram, and the
7330 -- visible declaration is a variable declaration or a parameter
7331 -- specification outside that subprogram.
7333 if Present (Enclosing_Subp)
7334 and then Nkind_In (Parent (C), N_Object_Declaration,
7335 N_Parameter_Specification)
7336 and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp)
7337 then
7338 null;
7340 -- ... or the new declaration is in a package, and the visible
7341 -- declaration occurs outside that package.
7343 elsif Present (Enclosing_Pack)
7344 and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack)
7345 then
7346 null;
7348 -- ... or the new declaration is a component declaration in a
7349 -- record type definition.
7351 elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then
7352 null;
7354 -- Don't issue error for non-source entities
7356 elsif Comes_From_Source (Def_Id)
7357 and then Comes_From_Source (C)
7358 then
7359 Error_Msg_Sloc := Sloc (C);
7360 Check_SPARK_05_Restriction
7361 ("redeclaration of identifier &#", Def_Id);
7362 end if;
7363 end;
7364 end if;
7366 -- Warn if new entity hides an old one
7368 if Warn_On_Hiding and then Present (C)
7370 -- Don't warn for record components since they always have a well
7371 -- defined scope which does not confuse other uses. Note that in
7372 -- some cases, Ekind has not been set yet.
7374 and then Ekind (C) /= E_Component
7375 and then Ekind (C) /= E_Discriminant
7376 and then Nkind (Parent (C)) /= N_Component_Declaration
7377 and then Ekind (Def_Id) /= E_Component
7378 and then Ekind (Def_Id) /= E_Discriminant
7379 and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
7381 -- Don't warn for one character variables. It is too common to use
7382 -- such variables as locals and will just cause too many false hits.
7384 and then Length_Of_Name (Chars (C)) /= 1
7386 -- Don't warn for non-source entities
7388 and then Comes_From_Source (C)
7389 and then Comes_From_Source (Def_Id)
7391 -- Don't warn unless entity in question is in extended main source
7393 and then In_Extended_Main_Source_Unit (Def_Id)
7395 -- Finally, the hidden entity must be either immediately visible or
7396 -- use visible (i.e. from a used package).
7398 and then
7399 (Is_Immediately_Visible (C)
7400 or else
7401 Is_Potentially_Use_Visible (C))
7402 then
7403 Error_Msg_Sloc := Sloc (C);
7404 Error_Msg_N ("declaration hides &#?h?", Def_Id);
7405 end if;
7406 end Enter_Name;
7408 ---------------
7409 -- Entity_Of --
7410 ---------------
7412 function Entity_Of (N : Node_Id) return Entity_Id is
7413 Id : Entity_Id;
7414 Ren : Node_Id;
7416 begin
7417 -- Assume that the arbitrary node does not have an entity
7419 Id := Empty;
7421 if Is_Entity_Name (N) then
7422 Id := Entity (N);
7424 -- Follow a possible chain of renamings to reach the earliest renamed
7425 -- source object.
7427 while Present (Id)
7428 and then Is_Object (Id)
7429 and then Present (Renamed_Object (Id))
7430 loop
7431 Ren := Renamed_Object (Id);
7433 -- The reference renames an abstract state or a whole object
7435 -- Obj : ...;
7436 -- Ren : ... renames Obj;
7438 if Is_Entity_Name (Ren) then
7439 Id := Entity (Ren);
7441 -- The reference renames a function result. Check the original
7442 -- node in case expansion relocates the function call.
7444 -- Ren : ... renames Func_Call;
7446 elsif Nkind (Original_Node (Ren)) = N_Function_Call then
7447 exit;
7449 -- Otherwise the reference renames something which does not yield
7450 -- an abstract state or a whole object. Treat the reference as not
7451 -- having a proper entity for SPARK legality purposes.
7453 else
7454 Id := Empty;
7455 exit;
7456 end if;
7457 end loop;
7458 end if;
7460 return Id;
7461 end Entity_Of;
7463 --------------------------
7464 -- Explain_Limited_Type --
7465 --------------------------
7467 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
7468 C : Entity_Id;
7470 begin
7471 -- For array, component type must be limited
7473 if Is_Array_Type (T) then
7474 Error_Msg_Node_2 := T;
7475 Error_Msg_NE
7476 ("\component type& of type& is limited", N, Component_Type (T));
7477 Explain_Limited_Type (Component_Type (T), N);
7479 elsif Is_Record_Type (T) then
7481 -- No need for extra messages if explicit limited record
7483 if Is_Limited_Record (Base_Type (T)) then
7484 return;
7485 end if;
7487 -- Otherwise find a limited component. Check only components that
7488 -- come from source, or inherited components that appear in the
7489 -- source of the ancestor.
7491 C := First_Component (T);
7492 while Present (C) loop
7493 if Is_Limited_Type (Etype (C))
7494 and then
7495 (Comes_From_Source (C)
7496 or else
7497 (Present (Original_Record_Component (C))
7498 and then
7499 Comes_From_Source (Original_Record_Component (C))))
7500 then
7501 Error_Msg_Node_2 := T;
7502 Error_Msg_NE ("\component& of type& has limited type", N, C);
7503 Explain_Limited_Type (Etype (C), N);
7504 return;
7505 end if;
7507 Next_Component (C);
7508 end loop;
7510 -- The type may be declared explicitly limited, even if no component
7511 -- of it is limited, in which case we fall out of the loop.
7512 return;
7513 end if;
7514 end Explain_Limited_Type;
7516 ---------------------------------------
7517 -- Expression_Of_Expression_Function --
7518 ---------------------------------------
7520 function Expression_Of_Expression_Function
7521 (Subp : Entity_Id) return Node_Id
7523 Expr_Func : Node_Id;
7525 begin
7526 pragma Assert (Is_Expression_Function_Or_Completion (Subp));
7528 if Nkind (Original_Node (Subprogram_Spec (Subp))) =
7529 N_Expression_Function
7530 then
7531 Expr_Func := Original_Node (Subprogram_Spec (Subp));
7533 elsif Nkind (Original_Node (Subprogram_Body (Subp))) =
7534 N_Expression_Function
7535 then
7536 Expr_Func := Original_Node (Subprogram_Body (Subp));
7538 else
7539 pragma Assert (False);
7540 null;
7541 end if;
7543 return Original_Node (Expression (Expr_Func));
7544 end Expression_Of_Expression_Function;
7546 -------------------------------
7547 -- Extensions_Visible_Status --
7548 -------------------------------
7550 function Extensions_Visible_Status
7551 (Id : Entity_Id) return Extensions_Visible_Mode
7553 Arg : Node_Id;
7554 Decl : Node_Id;
7555 Expr : Node_Id;
7556 Prag : Node_Id;
7557 Subp : Entity_Id;
7559 begin
7560 -- When a formal parameter is subject to Extensions_Visible, the pragma
7561 -- is stored in the contract of related subprogram.
7563 if Is_Formal (Id) then
7564 Subp := Scope (Id);
7566 elsif Is_Subprogram_Or_Generic_Subprogram (Id) then
7567 Subp := Id;
7569 -- No other construct carries this pragma
7571 else
7572 return Extensions_Visible_None;
7573 end if;
7575 Prag := Get_Pragma (Subp, Pragma_Extensions_Visible);
7577 -- In certain cases analysis may request the Extensions_Visible status
7578 -- of an expression function before the pragma has been analyzed yet.
7579 -- Inspect the declarative items after the expression function looking
7580 -- for the pragma (if any).
7582 if No (Prag) and then Is_Expression_Function (Subp) then
7583 Decl := Next (Unit_Declaration_Node (Subp));
7584 while Present (Decl) loop
7585 if Nkind (Decl) = N_Pragma
7586 and then Pragma_Name (Decl) = Name_Extensions_Visible
7587 then
7588 Prag := Decl;
7589 exit;
7591 -- A source construct ends the region where Extensions_Visible may
7592 -- appear, stop the traversal. An expanded expression function is
7593 -- no longer a source construct, but it must still be recognized.
7595 elsif Comes_From_Source (Decl)
7596 or else
7597 (Nkind_In (Decl, N_Subprogram_Body,
7598 N_Subprogram_Declaration)
7599 and then Is_Expression_Function (Defining_Entity (Decl)))
7600 then
7601 exit;
7602 end if;
7604 Next (Decl);
7605 end loop;
7606 end if;
7608 -- Extract the value from the Boolean expression (if any)
7610 if Present (Prag) then
7611 Arg := First (Pragma_Argument_Associations (Prag));
7613 if Present (Arg) then
7614 Expr := Get_Pragma_Arg (Arg);
7616 -- When the associated subprogram is an expression function, the
7617 -- argument of the pragma may not have been analyzed.
7619 if not Analyzed (Expr) then
7620 Preanalyze_And_Resolve (Expr, Standard_Boolean);
7621 end if;
7623 -- Guard against cascading errors when the argument of pragma
7624 -- Extensions_Visible is not a valid static Boolean expression.
7626 if Error_Posted (Expr) then
7627 return Extensions_Visible_None;
7629 elsif Is_True (Expr_Value (Expr)) then
7630 return Extensions_Visible_True;
7632 else
7633 return Extensions_Visible_False;
7634 end if;
7636 -- Otherwise the aspect or pragma defaults to True
7638 else
7639 return Extensions_Visible_True;
7640 end if;
7642 -- Otherwise aspect or pragma Extensions_Visible is not inherited or
7643 -- directly specified. In SPARK code, its value defaults to "False".
7645 elsif SPARK_Mode = On then
7646 return Extensions_Visible_False;
7648 -- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
7649 -- "True".
7651 else
7652 return Extensions_Visible_True;
7653 end if;
7654 end Extensions_Visible_Status;
7656 -----------------
7657 -- Find_Actual --
7658 -----------------
7660 procedure Find_Actual
7661 (N : Node_Id;
7662 Formal : out Entity_Id;
7663 Call : out Node_Id)
7665 Context : constant Node_Id := Parent (N);
7666 Actual : Node_Id;
7667 Call_Nam : Node_Id;
7669 begin
7670 if Nkind_In (Context, N_Indexed_Component, N_Selected_Component)
7671 and then N = Prefix (Context)
7672 then
7673 Find_Actual (Context, Formal, Call);
7674 return;
7676 elsif Nkind (Context) = N_Parameter_Association
7677 and then N = Explicit_Actual_Parameter (Context)
7678 then
7679 Call := Parent (Context);
7681 elsif Nkind_In (Context, N_Entry_Call_Statement,
7682 N_Function_Call,
7683 N_Procedure_Call_Statement)
7684 then
7685 Call := Context;
7687 else
7688 Formal := Empty;
7689 Call := Empty;
7690 return;
7691 end if;
7693 -- If we have a call to a subprogram look for the parameter. Note that
7694 -- we exclude overloaded calls, since we don't know enough to be sure
7695 -- of giving the right answer in this case.
7697 if Nkind_In (Call, N_Entry_Call_Statement,
7698 N_Function_Call,
7699 N_Procedure_Call_Statement)
7700 then
7701 Call_Nam := Name (Call);
7703 -- A call to a protected or task entry appears as a selected
7704 -- component rather than an expanded name.
7706 if Nkind (Call_Nam) = N_Selected_Component then
7707 Call_Nam := Selector_Name (Call_Nam);
7708 end if;
7710 if Is_Entity_Name (Call_Nam)
7711 and then Present (Entity (Call_Nam))
7712 and then Is_Overloadable (Entity (Call_Nam))
7713 and then not Is_Overloaded (Call_Nam)
7714 then
7715 -- If node is name in call it is not an actual
7717 if N = Call_Nam then
7718 Formal := Empty;
7719 Call := Empty;
7720 return;
7721 end if;
7723 -- Fall here if we are definitely a parameter
7725 Actual := First_Actual (Call);
7726 Formal := First_Formal (Entity (Call_Nam));
7727 while Present (Formal) and then Present (Actual) loop
7728 if Actual = N then
7729 return;
7731 -- An actual that is the prefix in a prefixed call may have
7732 -- been rewritten in the call, after the deferred reference
7733 -- was collected. Check if sloc and kinds and names match.
7735 elsif Sloc (Actual) = Sloc (N)
7736 and then Nkind (Actual) = N_Identifier
7737 and then Nkind (Actual) = Nkind (N)
7738 and then Chars (Actual) = Chars (N)
7739 then
7740 return;
7742 else
7743 Actual := Next_Actual (Actual);
7744 Formal := Next_Formal (Formal);
7745 end if;
7746 end loop;
7747 end if;
7748 end if;
7750 -- Fall through here if we did not find matching actual
7752 Formal := Empty;
7753 Call := Empty;
7754 end Find_Actual;
7756 ---------------------------
7757 -- Find_Body_Discriminal --
7758 ---------------------------
7760 function Find_Body_Discriminal
7761 (Spec_Discriminant : Entity_Id) return Entity_Id
7763 Tsk : Entity_Id;
7764 Disc : Entity_Id;
7766 begin
7767 -- If expansion is suppressed, then the scope can be the concurrent type
7768 -- itself rather than a corresponding concurrent record type.
7770 if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
7771 Tsk := Scope (Spec_Discriminant);
7773 else
7774 pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
7776 Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
7777 end if;
7779 -- Find discriminant of original concurrent type, and use its current
7780 -- discriminal, which is the renaming within the task/protected body.
7782 Disc := First_Discriminant (Tsk);
7783 while Present (Disc) loop
7784 if Chars (Disc) = Chars (Spec_Discriminant) then
7785 return Discriminal (Disc);
7786 end if;
7788 Next_Discriminant (Disc);
7789 end loop;
7791 -- That loop should always succeed in finding a matching entry and
7792 -- returning. Fatal error if not.
7794 raise Program_Error;
7795 end Find_Body_Discriminal;
7797 -------------------------------------
7798 -- Find_Corresponding_Discriminant --
7799 -------------------------------------
7801 function Find_Corresponding_Discriminant
7802 (Id : Node_Id;
7803 Typ : Entity_Id) return Entity_Id
7805 Par_Disc : Entity_Id;
7806 Old_Disc : Entity_Id;
7807 New_Disc : Entity_Id;
7809 begin
7810 Par_Disc := Original_Record_Component (Original_Discriminant (Id));
7812 -- The original type may currently be private, and the discriminant
7813 -- only appear on its full view.
7815 if Is_Private_Type (Scope (Par_Disc))
7816 and then not Has_Discriminants (Scope (Par_Disc))
7817 and then Present (Full_View (Scope (Par_Disc)))
7818 then
7819 Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
7820 else
7821 Old_Disc := First_Discriminant (Scope (Par_Disc));
7822 end if;
7824 if Is_Class_Wide_Type (Typ) then
7825 New_Disc := First_Discriminant (Root_Type (Typ));
7826 else
7827 New_Disc := First_Discriminant (Typ);
7828 end if;
7830 while Present (Old_Disc) and then Present (New_Disc) loop
7831 if Old_Disc = Par_Disc then
7832 return New_Disc;
7833 end if;
7835 Next_Discriminant (Old_Disc);
7836 Next_Discriminant (New_Disc);
7837 end loop;
7839 -- Should always find it
7841 raise Program_Error;
7842 end Find_Corresponding_Discriminant;
7844 -------------------
7845 -- Find_DIC_Type --
7846 -------------------
7848 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id is
7849 Curr_Typ : Entity_Id;
7850 -- The current type being examined in the parent hierarchy traversal
7852 DIC_Typ : Entity_Id;
7853 -- The type which carries the DIC pragma. This variable denotes the
7854 -- partial view when private types are involved.
7856 Par_Typ : Entity_Id;
7857 -- The parent type of the current type. This variable denotes the full
7858 -- view when private types are involved.
7860 begin
7861 -- The input type defines its own DIC pragma, therefore it is the owner
7863 if Has_Own_DIC (Typ) then
7864 DIC_Typ := Typ;
7866 -- Otherwise the DIC pragma is inherited from a parent type
7868 else
7869 pragma Assert (Has_Inherited_DIC (Typ));
7871 -- Climb the parent chain
7873 Curr_Typ := Typ;
7874 loop
7875 -- Inspect the parent type. Do not consider subtypes as they
7876 -- inherit the DIC attributes from their base types.
7878 DIC_Typ := Base_Type (Etype (Curr_Typ));
7880 -- Look at the full view of a private type because the type may
7881 -- have a hidden parent introduced in the full view.
7883 Par_Typ := DIC_Typ;
7885 if Is_Private_Type (Par_Typ)
7886 and then Present (Full_View (Par_Typ))
7887 then
7888 Par_Typ := Full_View (Par_Typ);
7889 end if;
7891 -- Stop the climb once the nearest parent type which defines a DIC
7892 -- pragma of its own is encountered or when the root of the parent
7893 -- chain is reached.
7895 exit when Has_Own_DIC (DIC_Typ) or else Curr_Typ = Par_Typ;
7897 Curr_Typ := Par_Typ;
7898 end loop;
7899 end if;
7901 return DIC_Typ;
7902 end Find_DIC_Type;
7904 ----------------------------------
7905 -- Find_Enclosing_Iterator_Loop --
7906 ----------------------------------
7908 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id is
7909 Constr : Node_Id;
7910 S : Entity_Id;
7912 begin
7913 -- Traverse the scope chain looking for an iterator loop. Such loops are
7914 -- usually transformed into blocks, hence the use of Original_Node.
7916 S := Id;
7917 while Present (S) and then S /= Standard_Standard loop
7918 if Ekind (S) = E_Loop
7919 and then Nkind (Parent (S)) = N_Implicit_Label_Declaration
7920 then
7921 Constr := Original_Node (Label_Construct (Parent (S)));
7923 if Nkind (Constr) = N_Loop_Statement
7924 and then Present (Iteration_Scheme (Constr))
7925 and then Nkind (Iterator_Specification
7926 (Iteration_Scheme (Constr))) =
7927 N_Iterator_Specification
7928 then
7929 return S;
7930 end if;
7931 end if;
7933 S := Scope (S);
7934 end loop;
7936 return Empty;
7937 end Find_Enclosing_Iterator_Loop;
7939 --------------------------
7940 -- Find_Enclosing_Scope --
7941 --------------------------
7943 function Find_Enclosing_Scope (N : Node_Id) return Entity_Id is
7944 Par : Node_Id;
7945 Spec_Id : Entity_Id;
7947 begin
7948 -- Examine the parent chain looking for a construct which defines a
7949 -- scope.
7951 Par := Parent (N);
7952 while Present (Par) loop
7953 case Nkind (Par) is
7955 -- The construct denotes a declaration, the proper scope is its
7956 -- entity.
7958 when N_Entry_Declaration
7959 | N_Expression_Function
7960 | N_Full_Type_Declaration
7961 | N_Generic_Package_Declaration
7962 | N_Generic_Subprogram_Declaration
7963 | N_Package_Declaration
7964 | N_Private_Extension_Declaration
7965 | N_Protected_Type_Declaration
7966 | N_Single_Protected_Declaration
7967 | N_Single_Task_Declaration
7968 | N_Subprogram_Declaration
7969 | N_Task_Type_Declaration
7971 return Defining_Entity (Par);
7973 -- The construct denotes a body, the proper scope is the entity of
7974 -- the corresponding spec.
7976 when N_Entry_Body
7977 | N_Package_Body
7978 | N_Protected_Body
7979 | N_Subprogram_Body
7980 | N_Task_Body
7982 Spec_Id := Corresponding_Spec (Par);
7984 -- The defining entity of a stand-alone subprogram body defines
7985 -- a scope.
7987 if Nkind (Par) = N_Subprogram_Body and then No (Spec_Id) then
7988 return Defining_Entity (Par);
7990 -- Otherwise there should be corresponding spec which defines a
7991 -- scope.
7993 else
7994 pragma Assert (Present (Spec_Id));
7996 return Spec_Id;
7997 end if;
7999 -- Special cases
8001 -- Blocks carry either a source or an internally-generated scope,
8002 -- unless the block is a byproduct of exception handling.
8004 when N_Block_Statement =>
8005 if not Exception_Junk (Par) then
8006 return Entity (Identifier (Par));
8007 end if;
8009 -- Loops carry an internally-generated scope
8011 when N_Loop_Statement =>
8012 return Entity (Identifier (Par));
8014 -- Extended return statements carry an internally-generated scope
8016 when N_Extended_Return_Statement =>
8017 return Return_Statement_Entity (Par);
8019 -- A traversal from a subunit continues via the corresponding stub
8021 when N_Subunit =>
8022 Par := Corresponding_Stub (Par);
8024 when others =>
8025 null;
8026 end case;
8028 Par := Parent (Par);
8029 end loop;
8031 return Standard_Standard;
8032 end Find_Enclosing_Scope;
8034 ------------------------------------
8035 -- Find_Loop_In_Conditional_Block --
8036 ------------------------------------
8038 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id is
8039 Stmt : Node_Id;
8041 begin
8042 Stmt := N;
8044 if Nkind (Stmt) = N_If_Statement then
8045 Stmt := First (Then_Statements (Stmt));
8046 end if;
8048 pragma Assert (Nkind (Stmt) = N_Block_Statement);
8050 -- Inspect the statements of the conditional block. In general the loop
8051 -- should be the first statement in the statement sequence of the block,
8052 -- but the finalization machinery may have introduced extra object
8053 -- declarations.
8055 Stmt := First (Statements (Handled_Statement_Sequence (Stmt)));
8056 while Present (Stmt) loop
8057 if Nkind (Stmt) = N_Loop_Statement then
8058 return Stmt;
8059 end if;
8061 Next (Stmt);
8062 end loop;
8064 -- The expansion of attribute 'Loop_Entry produced a malformed block
8066 raise Program_Error;
8067 end Find_Loop_In_Conditional_Block;
8069 --------------------------
8070 -- Find_Overlaid_Entity --
8071 --------------------------
8073 procedure Find_Overlaid_Entity
8074 (N : Node_Id;
8075 Ent : out Entity_Id;
8076 Off : out Boolean)
8078 Expr : Node_Id;
8080 begin
8081 -- We are looking for one of the two following forms:
8083 -- for X'Address use Y'Address
8085 -- or
8087 -- Const : constant Address := expr;
8088 -- ...
8089 -- for X'Address use Const;
8091 -- In the second case, the expr is either Y'Address, or recursively a
8092 -- constant that eventually references Y'Address.
8094 Ent := Empty;
8095 Off := False;
8097 if Nkind (N) = N_Attribute_Definition_Clause
8098 and then Chars (N) = Name_Address
8099 then
8100 Expr := Expression (N);
8102 -- This loop checks the form of the expression for Y'Address,
8103 -- using recursion to deal with intermediate constants.
8105 loop
8106 -- Check for Y'Address
8108 if Nkind (Expr) = N_Attribute_Reference
8109 and then Attribute_Name (Expr) = Name_Address
8110 then
8111 Expr := Prefix (Expr);
8112 exit;
8114 -- Check for Const where Const is a constant entity
8116 elsif Is_Entity_Name (Expr)
8117 and then Ekind (Entity (Expr)) = E_Constant
8118 then
8119 Expr := Constant_Value (Entity (Expr));
8121 -- Anything else does not need checking
8123 else
8124 return;
8125 end if;
8126 end loop;
8128 -- This loop checks the form of the prefix for an entity, using
8129 -- recursion to deal with intermediate components.
8131 loop
8132 -- Check for Y where Y is an entity
8134 if Is_Entity_Name (Expr) then
8135 Ent := Entity (Expr);
8136 return;
8138 -- Check for components
8140 elsif
8141 Nkind_In (Expr, N_Selected_Component, N_Indexed_Component)
8142 then
8143 Expr := Prefix (Expr);
8144 Off := True;
8146 -- Anything else does not need checking
8148 else
8149 return;
8150 end if;
8151 end loop;
8152 end if;
8153 end Find_Overlaid_Entity;
8155 -------------------------
8156 -- Find_Parameter_Type --
8157 -------------------------
8159 function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
8160 begin
8161 if Nkind (Param) /= N_Parameter_Specification then
8162 return Empty;
8164 -- For an access parameter, obtain the type from the formal entity
8165 -- itself, because access to subprogram nodes do not carry a type.
8166 -- Shouldn't we always use the formal entity ???
8168 elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
8169 return Etype (Defining_Identifier (Param));
8171 else
8172 return Etype (Parameter_Type (Param));
8173 end if;
8174 end Find_Parameter_Type;
8176 -----------------------------------
8177 -- Find_Placement_In_State_Space --
8178 -----------------------------------
8180 procedure Find_Placement_In_State_Space
8181 (Item_Id : Entity_Id;
8182 Placement : out State_Space_Kind;
8183 Pack_Id : out Entity_Id)
8185 Context : Entity_Id;
8187 begin
8188 -- Assume that the item does not appear in the state space of a package
8190 Placement := Not_In_Package;
8191 Pack_Id := Empty;
8193 -- Climb the scope stack and examine the enclosing context
8195 Context := Scope (Item_Id);
8196 while Present (Context) and then Context /= Standard_Standard loop
8197 if Is_Package_Or_Generic_Package (Context) then
8198 Pack_Id := Context;
8200 -- A package body is a cut off point for the traversal as the item
8201 -- cannot be visible to the outside from this point on. Note that
8202 -- this test must be done first as a body is also classified as a
8203 -- private part.
8205 if In_Package_Body (Context) then
8206 Placement := Body_State_Space;
8207 return;
8209 -- The private part of a package is a cut off point for the
8210 -- traversal as the item cannot be visible to the outside from
8211 -- this point on.
8213 elsif In_Private_Part (Context) then
8214 Placement := Private_State_Space;
8215 return;
8217 -- When the item appears in the visible state space of a package,
8218 -- continue to climb the scope stack as this may not be the final
8219 -- state space.
8221 else
8222 Placement := Visible_State_Space;
8224 -- The visible state space of a child unit acts as the proper
8225 -- placement of an item.
8227 if Is_Child_Unit (Context) then
8228 return;
8229 end if;
8230 end if;
8232 -- The item or its enclosing package appear in a construct that has
8233 -- no state space.
8235 else
8236 Placement := Not_In_Package;
8237 return;
8238 end if;
8240 Context := Scope (Context);
8241 end loop;
8242 end Find_Placement_In_State_Space;
8244 ------------------------
8245 -- Find_Specific_Type --
8246 ------------------------
8248 function Find_Specific_Type (CW : Entity_Id) return Entity_Id is
8249 Typ : Entity_Id := Root_Type (CW);
8251 begin
8252 if Ekind (Typ) = E_Incomplete_Type then
8253 if From_Limited_With (Typ) then
8254 Typ := Non_Limited_View (Typ);
8255 else
8256 Typ := Full_View (Typ);
8257 end if;
8258 end if;
8260 if Is_Private_Type (Typ)
8261 and then not Is_Tagged_Type (Typ)
8262 and then Present (Full_View (Typ))
8263 then
8264 return Full_View (Typ);
8265 else
8266 return Typ;
8267 end if;
8268 end Find_Specific_Type;
8270 -----------------------------
8271 -- Find_Static_Alternative --
8272 -----------------------------
8274 function Find_Static_Alternative (N : Node_Id) return Node_Id is
8275 Expr : constant Node_Id := Expression (N);
8276 Val : constant Uint := Expr_Value (Expr);
8277 Alt : Node_Id;
8278 Choice : Node_Id;
8280 begin
8281 Alt := First (Alternatives (N));
8283 Search : loop
8284 if Nkind (Alt) /= N_Pragma then
8285 Choice := First (Discrete_Choices (Alt));
8286 while Present (Choice) loop
8288 -- Others choice, always matches
8290 if Nkind (Choice) = N_Others_Choice then
8291 exit Search;
8293 -- Range, check if value is in the range
8295 elsif Nkind (Choice) = N_Range then
8296 exit Search when
8297 Val >= Expr_Value (Low_Bound (Choice))
8298 and then
8299 Val <= Expr_Value (High_Bound (Choice));
8301 -- Choice is a subtype name. Note that we know it must
8302 -- be a static subtype, since otherwise it would have
8303 -- been diagnosed as illegal.
8305 elsif Is_Entity_Name (Choice)
8306 and then Is_Type (Entity (Choice))
8307 then
8308 exit Search when Is_In_Range (Expr, Etype (Choice),
8309 Assume_Valid => False);
8311 -- Choice is a subtype indication
8313 elsif Nkind (Choice) = N_Subtype_Indication then
8314 declare
8315 C : constant Node_Id := Constraint (Choice);
8316 R : constant Node_Id := Range_Expression (C);
8318 begin
8319 exit Search when
8320 Val >= Expr_Value (Low_Bound (R))
8321 and then
8322 Val <= Expr_Value (High_Bound (R));
8323 end;
8325 -- Choice is a simple expression
8327 else
8328 exit Search when Val = Expr_Value (Choice);
8329 end if;
8331 Next (Choice);
8332 end loop;
8333 end if;
8335 Next (Alt);
8336 pragma Assert (Present (Alt));
8337 end loop Search;
8339 -- The above loop *must* terminate by finding a match, since we know the
8340 -- case statement is valid, and the value of the expression is known at
8341 -- compile time. When we fall out of the loop, Alt points to the
8342 -- alternative that we know will be selected at run time.
8344 return Alt;
8345 end Find_Static_Alternative;
8347 ------------------
8348 -- First_Actual --
8349 ------------------
8351 function First_Actual (Node : Node_Id) return Node_Id is
8352 N : Node_Id;
8354 begin
8355 if No (Parameter_Associations (Node)) then
8356 return Empty;
8357 end if;
8359 N := First (Parameter_Associations (Node));
8361 if Nkind (N) = N_Parameter_Association then
8362 return First_Named_Actual (Node);
8363 else
8364 return N;
8365 end if;
8366 end First_Actual;
8368 ------------------
8369 -- First_Global --
8370 ------------------
8372 function First_Global
8373 (Subp : Entity_Id;
8374 Global_Mode : Name_Id;
8375 Refined : Boolean := False) return Node_Id
8377 function First_From_Global_List
8378 (List : Node_Id;
8379 Global_Mode : Name_Id := Name_Input) return Entity_Id;
8380 -- Get the first item with suitable mode from List
8382 ----------------------------
8383 -- First_From_Global_List --
8384 ----------------------------
8386 function First_From_Global_List
8387 (List : Node_Id;
8388 Global_Mode : Name_Id := Name_Input) return Entity_Id
8390 Assoc : Node_Id;
8392 begin
8393 -- Empty list (no global items)
8395 if Nkind (List) = N_Null then
8396 return Empty;
8398 -- Single global item declaration (only input items)
8400 elsif Nkind_In (List, N_Expanded_Name,
8401 N_Identifier,
8402 N_Selected_Component)
8403 then
8404 if Global_Mode = Name_Input then
8405 return List;
8406 else
8407 return Empty;
8408 end if;
8410 -- Simple global list (only input items) or moded global list
8411 -- declaration.
8413 elsif Nkind (List) = N_Aggregate then
8414 if Present (Expressions (List)) then
8415 if Global_Mode = Name_Input then
8416 return First (Expressions (List));
8417 else
8418 return Empty;
8419 end if;
8421 else
8422 Assoc := First (Component_Associations (List));
8423 while Present (Assoc) loop
8425 -- When we find the desired mode in an association, call
8426 -- recursively First_From_Global_List as if the mode was
8427 -- Name_Input, in order to reuse the existing machinery
8428 -- for the other cases.
8430 if Chars (First (Choices (Assoc))) = Global_Mode then
8431 return First_From_Global_List (Expression (Assoc));
8432 end if;
8434 Next (Assoc);
8435 end loop;
8437 return Empty;
8438 end if;
8440 -- To accommodate partial decoration of disabled SPARK features,
8441 -- this routine may be called with illegal input. If this is the
8442 -- case, do not raise Program_Error.
8444 else
8445 return Empty;
8446 end if;
8447 end First_From_Global_List;
8449 -- Local variables
8451 Global : Node_Id := Empty;
8452 Body_Id : Entity_Id;
8454 begin
8455 pragma Assert (Global_Mode = Name_Input
8456 or else Global_Mode = Name_Output
8457 or else Global_Mode = Name_In_Out
8458 or else Global_Mode = Name_Proof_In);
8460 -- Retrieve the suitable pragma Global or Refined_Global. In the second
8461 -- case, it can only be located on the body entity.
8463 if Refined then
8464 Body_Id := Subprogram_Body_Entity (Subp);
8465 if Present (Body_Id) then
8466 Global := Get_Pragma (Body_Id, Pragma_Refined_Global);
8467 end if;
8468 else
8469 Global := Get_Pragma (Subp, Pragma_Global);
8470 end if;
8472 -- No corresponding global if pragma is not present
8474 if No (Global) then
8475 return Empty;
8477 -- Otherwise retrieve the corresponding list of items depending on the
8478 -- Global_Mode.
8480 else
8481 return First_From_Global_List
8482 (Expression (Get_Argument (Global, Subp)), Global_Mode);
8483 end if;
8484 end First_Global;
8486 -------------
8487 -- Fix_Msg --
8488 -------------
8490 function Fix_Msg (Id : Entity_Id; Msg : String) return String is
8491 Is_Task : constant Boolean :=
8492 Ekind_In (Id, E_Task_Body, E_Task_Type)
8493 or else Is_Single_Task_Object (Id);
8494 Msg_Last : constant Natural := Msg'Last;
8495 Msg_Index : Natural;
8496 Res : String (Msg'Range) := (others => ' ');
8497 Res_Index : Natural;
8499 begin
8500 -- Copy all characters from the input message Msg to result Res with
8501 -- suitable replacements.
8503 Msg_Index := Msg'First;
8504 Res_Index := Res'First;
8505 while Msg_Index <= Msg_Last loop
8507 -- Replace "subprogram" with a different word
8509 if Msg_Index <= Msg_Last - 10
8510 and then Msg (Msg_Index .. Msg_Index + 9) = "subprogram"
8511 then
8512 if Ekind_In (Id, E_Entry, E_Entry_Family) then
8513 Res (Res_Index .. Res_Index + 4) := "entry";
8514 Res_Index := Res_Index + 5;
8516 elsif Is_Task then
8517 Res (Res_Index .. Res_Index + 8) := "task type";
8518 Res_Index := Res_Index + 9;
8520 else
8521 Res (Res_Index .. Res_Index + 9) := "subprogram";
8522 Res_Index := Res_Index + 10;
8523 end if;
8525 Msg_Index := Msg_Index + 10;
8527 -- Replace "protected" with a different word
8529 elsif Msg_Index <= Msg_Last - 9
8530 and then Msg (Msg_Index .. Msg_Index + 8) = "protected"
8531 and then Is_Task
8532 then
8533 Res (Res_Index .. Res_Index + 3) := "task";
8534 Res_Index := Res_Index + 4;
8535 Msg_Index := Msg_Index + 9;
8537 -- Otherwise copy the character
8539 else
8540 Res (Res_Index) := Msg (Msg_Index);
8541 Msg_Index := Msg_Index + 1;
8542 Res_Index := Res_Index + 1;
8543 end if;
8544 end loop;
8546 return Res (Res'First .. Res_Index - 1);
8547 end Fix_Msg;
8549 -------------------------
8550 -- From_Nested_Package --
8551 -------------------------
8553 function From_Nested_Package (T : Entity_Id) return Boolean is
8554 Pack : constant Entity_Id := Scope (T);
8556 begin
8557 return
8558 Ekind (Pack) = E_Package
8559 and then not Is_Frozen (Pack)
8560 and then not Scope_Within_Or_Same (Current_Scope, Pack)
8561 and then In_Open_Scopes (Scope (Pack));
8562 end From_Nested_Package;
8564 -----------------------
8565 -- Gather_Components --
8566 -----------------------
8568 procedure Gather_Components
8569 (Typ : Entity_Id;
8570 Comp_List : Node_Id;
8571 Governed_By : List_Id;
8572 Into : Elist_Id;
8573 Report_Errors : out Boolean)
8575 Assoc : Node_Id;
8576 Variant : Node_Id;
8577 Discrete_Choice : Node_Id;
8578 Comp_Item : Node_Id;
8580 Discrim : Entity_Id;
8581 Discrim_Name : Node_Id;
8582 Discrim_Value : Node_Id;
8584 begin
8585 Report_Errors := False;
8587 if No (Comp_List) or else Null_Present (Comp_List) then
8588 return;
8590 elsif Present (Component_Items (Comp_List)) then
8591 Comp_Item := First (Component_Items (Comp_List));
8593 else
8594 Comp_Item := Empty;
8595 end if;
8597 while Present (Comp_Item) loop
8599 -- Skip the tag of a tagged record, the interface tags, as well
8600 -- as all items that are not user components (anonymous types,
8601 -- rep clauses, Parent field, controller field).
8603 if Nkind (Comp_Item) = N_Component_Declaration then
8604 declare
8605 Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
8606 begin
8607 if not Is_Tag (Comp) and then Chars (Comp) /= Name_uParent then
8608 Append_Elmt (Comp, Into);
8609 end if;
8610 end;
8611 end if;
8613 Next (Comp_Item);
8614 end loop;
8616 if No (Variant_Part (Comp_List)) then
8617 return;
8618 else
8619 Discrim_Name := Name (Variant_Part (Comp_List));
8620 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
8621 end if;
8623 -- Look for the discriminant that governs this variant part.
8624 -- The discriminant *must* be in the Governed_By List
8626 Assoc := First (Governed_By);
8627 Find_Constraint : loop
8628 Discrim := First (Choices (Assoc));
8629 exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
8630 or else (Present (Corresponding_Discriminant (Entity (Discrim)))
8631 and then
8632 Chars (Corresponding_Discriminant (Entity (Discrim))) =
8633 Chars (Discrim_Name))
8634 or else Chars (Original_Record_Component (Entity (Discrim)))
8635 = Chars (Discrim_Name);
8637 if No (Next (Assoc)) then
8638 if not Is_Constrained (Typ)
8639 and then Is_Derived_Type (Typ)
8640 and then Present (Stored_Constraint (Typ))
8641 then
8642 -- If the type is a tagged type with inherited discriminants,
8643 -- use the stored constraint on the parent in order to find
8644 -- the values of discriminants that are otherwise hidden by an
8645 -- explicit constraint. Renamed discriminants are handled in
8646 -- the code above.
8648 -- If several parent discriminants are renamed by a single
8649 -- discriminant of the derived type, the call to obtain the
8650 -- Corresponding_Discriminant field only retrieves the last
8651 -- of them. We recover the constraint on the others from the
8652 -- Stored_Constraint as well.
8654 declare
8655 D : Entity_Id;
8656 C : Elmt_Id;
8658 begin
8659 D := First_Discriminant (Etype (Typ));
8660 C := First_Elmt (Stored_Constraint (Typ));
8661 while Present (D) and then Present (C) loop
8662 if Chars (Discrim_Name) = Chars (D) then
8663 if Is_Entity_Name (Node (C))
8664 and then Entity (Node (C)) = Entity (Discrim)
8665 then
8666 -- D is renamed by Discrim, whose value is given in
8667 -- Assoc.
8669 null;
8671 else
8672 Assoc :=
8673 Make_Component_Association (Sloc (Typ),
8674 New_List
8675 (New_Occurrence_Of (D, Sloc (Typ))),
8676 Duplicate_Subexpr_No_Checks (Node (C)));
8677 end if;
8678 exit Find_Constraint;
8679 end if;
8681 Next_Discriminant (D);
8682 Next_Elmt (C);
8683 end loop;
8684 end;
8685 end if;
8686 end if;
8688 if No (Next (Assoc)) then
8689 Error_Msg_NE (" missing value for discriminant&",
8690 First (Governed_By), Discrim_Name);
8691 Report_Errors := True;
8692 return;
8693 end if;
8695 Next (Assoc);
8696 end loop Find_Constraint;
8698 Discrim_Value := Expression (Assoc);
8700 if not Is_OK_Static_Expression (Discrim_Value) then
8702 -- If the variant part is governed by a discriminant of the type
8703 -- this is an error. If the variant part and the discriminant are
8704 -- inherited from an ancestor this is legal (AI05-120) unless the
8705 -- components are being gathered for an aggregate, in which case
8706 -- the caller must check Report_Errors.
8708 if Scope (Original_Record_Component
8709 ((Entity (First (Choices (Assoc)))))) = Typ
8710 then
8711 Error_Msg_FE
8712 ("value for discriminant & must be static!",
8713 Discrim_Value, Discrim);
8714 Why_Not_Static (Discrim_Value);
8715 end if;
8717 Report_Errors := True;
8718 return;
8719 end if;
8721 Search_For_Discriminant_Value : declare
8722 Low : Node_Id;
8723 High : Node_Id;
8725 UI_High : Uint;
8726 UI_Low : Uint;
8727 UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
8729 begin
8730 Find_Discrete_Value : while Present (Variant) loop
8731 Discrete_Choice := First (Discrete_Choices (Variant));
8732 while Present (Discrete_Choice) loop
8733 exit Find_Discrete_Value when
8734 Nkind (Discrete_Choice) = N_Others_Choice;
8736 Get_Index_Bounds (Discrete_Choice, Low, High);
8738 UI_Low := Expr_Value (Low);
8739 UI_High := Expr_Value (High);
8741 exit Find_Discrete_Value when
8742 UI_Low <= UI_Discrim_Value
8743 and then
8744 UI_High >= UI_Discrim_Value;
8746 Next (Discrete_Choice);
8747 end loop;
8749 Next_Non_Pragma (Variant);
8750 end loop Find_Discrete_Value;
8751 end Search_For_Discriminant_Value;
8753 -- The case statement must include a variant that corresponds to the
8754 -- value of the discriminant, unless the discriminant type has a
8755 -- static predicate. In that case the absence of an others_choice that
8756 -- would cover this value becomes a run-time error (3.8,1 (21.1/2)).
8758 if No (Variant)
8759 and then not Has_Static_Predicate (Etype (Discrim_Name))
8760 then
8761 Error_Msg_NE
8762 ("value of discriminant & is out of range", Discrim_Value, Discrim);
8763 Report_Errors := True;
8764 return;
8765 end if;
8767 -- If we have found the corresponding choice, recursively add its
8768 -- components to the Into list. The nested components are part of
8769 -- the same record type.
8771 if Present (Variant) then
8772 Gather_Components
8773 (Typ, Component_List (Variant), Governed_By, Into, Report_Errors);
8774 end if;
8775 end Gather_Components;
8777 ------------------------
8778 -- Get_Actual_Subtype --
8779 ------------------------
8781 function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
8782 Typ : constant Entity_Id := Etype (N);
8783 Utyp : Entity_Id := Underlying_Type (Typ);
8784 Decl : Node_Id;
8785 Atyp : Entity_Id;
8787 begin
8788 if No (Utyp) then
8789 Utyp := Typ;
8790 end if;
8792 -- If what we have is an identifier that references a subprogram
8793 -- formal, or a variable or constant object, then we get the actual
8794 -- subtype from the referenced entity if one has been built.
8796 if Nkind (N) = N_Identifier
8797 and then
8798 (Is_Formal (Entity (N))
8799 or else Ekind (Entity (N)) = E_Constant
8800 or else Ekind (Entity (N)) = E_Variable)
8801 and then Present (Actual_Subtype (Entity (N)))
8802 then
8803 return Actual_Subtype (Entity (N));
8805 -- Actual subtype of unchecked union is always itself. We never need
8806 -- the "real" actual subtype. If we did, we couldn't get it anyway
8807 -- because the discriminant is not available. The restrictions on
8808 -- Unchecked_Union are designed to make sure that this is OK.
8810 elsif Is_Unchecked_Union (Base_Type (Utyp)) then
8811 return Typ;
8813 -- Here for the unconstrained case, we must find actual subtype
8814 -- No actual subtype is available, so we must build it on the fly.
8816 -- Checking the type, not the underlying type, for constrainedness
8817 -- seems to be necessary. Maybe all the tests should be on the type???
8819 elsif (not Is_Constrained (Typ))
8820 and then (Is_Array_Type (Utyp)
8821 or else (Is_Record_Type (Utyp)
8822 and then Has_Discriminants (Utyp)))
8823 and then not Has_Unknown_Discriminants (Utyp)
8824 and then not (Ekind (Utyp) = E_String_Literal_Subtype)
8825 then
8826 -- Nothing to do if in spec expression (why not???)
8828 if In_Spec_Expression then
8829 return Typ;
8831 elsif Is_Private_Type (Typ) and then not Has_Discriminants (Typ) then
8833 -- If the type has no discriminants, there is no subtype to
8834 -- build, even if the underlying type is discriminated.
8836 return Typ;
8838 -- Else build the actual subtype
8840 else
8841 Decl := Build_Actual_Subtype (Typ, N);
8842 Atyp := Defining_Identifier (Decl);
8844 -- If Build_Actual_Subtype generated a new declaration then use it
8846 if Atyp /= Typ then
8848 -- The actual subtype is an Itype, so analyze the declaration,
8849 -- but do not attach it to the tree, to get the type defined.
8851 Set_Parent (Decl, N);
8852 Set_Is_Itype (Atyp);
8853 Analyze (Decl, Suppress => All_Checks);
8854 Set_Associated_Node_For_Itype (Atyp, N);
8855 Set_Has_Delayed_Freeze (Atyp, False);
8857 -- We need to freeze the actual subtype immediately. This is
8858 -- needed, because otherwise this Itype will not get frozen
8859 -- at all, and it is always safe to freeze on creation because
8860 -- any associated types must be frozen at this point.
8862 Freeze_Itype (Atyp, N);
8863 return Atyp;
8865 -- Otherwise we did not build a declaration, so return original
8867 else
8868 return Typ;
8869 end if;
8870 end if;
8872 -- For all remaining cases, the actual subtype is the same as
8873 -- the nominal type.
8875 else
8876 return Typ;
8877 end if;
8878 end Get_Actual_Subtype;
8880 -------------------------------------
8881 -- Get_Actual_Subtype_If_Available --
8882 -------------------------------------
8884 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
8885 Typ : constant Entity_Id := Etype (N);
8887 begin
8888 -- If what we have is an identifier that references a subprogram
8889 -- formal, or a variable or constant object, then we get the actual
8890 -- subtype from the referenced entity if one has been built.
8892 if Nkind (N) = N_Identifier
8893 and then
8894 (Is_Formal (Entity (N))
8895 or else Ekind (Entity (N)) = E_Constant
8896 or else Ekind (Entity (N)) = E_Variable)
8897 and then Present (Actual_Subtype (Entity (N)))
8898 then
8899 return Actual_Subtype (Entity (N));
8901 -- Otherwise the Etype of N is returned unchanged
8903 else
8904 return Typ;
8905 end if;
8906 end Get_Actual_Subtype_If_Available;
8908 ------------------------
8909 -- Get_Body_From_Stub --
8910 ------------------------
8912 function Get_Body_From_Stub (N : Node_Id) return Node_Id is
8913 begin
8914 return Proper_Body (Unit (Library_Unit (N)));
8915 end Get_Body_From_Stub;
8917 ---------------------
8918 -- Get_Cursor_Type --
8919 ---------------------
8921 function Get_Cursor_Type
8922 (Aspect : Node_Id;
8923 Typ : Entity_Id) return Entity_Id
8925 Assoc : Node_Id;
8926 Func : Entity_Id;
8927 First_Op : Entity_Id;
8928 Cursor : Entity_Id;
8930 begin
8931 -- If error already detected, return
8933 if Error_Posted (Aspect) then
8934 return Any_Type;
8935 end if;
8937 -- The cursor type for an Iterable aspect is the return type of a
8938 -- non-overloaded First primitive operation. Locate association for
8939 -- First.
8941 Assoc := First (Component_Associations (Expression (Aspect)));
8942 First_Op := Any_Id;
8943 while Present (Assoc) loop
8944 if Chars (First (Choices (Assoc))) = Name_First then
8945 First_Op := Expression (Assoc);
8946 exit;
8947 end if;
8949 Next (Assoc);
8950 end loop;
8952 if First_Op = Any_Id then
8953 Error_Msg_N ("aspect Iterable must specify First operation", Aspect);
8954 return Any_Type;
8955 end if;
8957 Cursor := Any_Type;
8959 -- Locate function with desired name and profile in scope of type
8960 -- In the rare case where the type is an integer type, a base type
8961 -- is created for it, check that the base type of the first formal
8962 -- of First matches the base type of the domain.
8964 Func := First_Entity (Scope (Typ));
8965 while Present (Func) loop
8966 if Chars (Func) = Chars (First_Op)
8967 and then Ekind (Func) = E_Function
8968 and then Present (First_Formal (Func))
8969 and then Base_Type (Etype (First_Formal (Func))) = Base_Type (Typ)
8970 and then No (Next_Formal (First_Formal (Func)))
8971 then
8972 if Cursor /= Any_Type then
8973 Error_Msg_N
8974 ("Operation First for iterable type must be unique", Aspect);
8975 return Any_Type;
8976 else
8977 Cursor := Etype (Func);
8978 end if;
8979 end if;
8981 Next_Entity (Func);
8982 end loop;
8984 -- If not found, no way to resolve remaining primitives.
8986 if Cursor = Any_Type then
8987 Error_Msg_N
8988 ("No legal primitive operation First for Iterable type", Aspect);
8989 end if;
8991 return Cursor;
8992 end Get_Cursor_Type;
8994 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
8995 begin
8996 return Etype (Get_Iterable_Type_Primitive (Typ, Name_First));
8997 end Get_Cursor_Type;
8999 -------------------------------
9000 -- Get_Default_External_Name --
9001 -------------------------------
9003 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
9004 begin
9005 Get_Decoded_Name_String (Chars (E));
9007 if Opt.External_Name_Imp_Casing = Uppercase then
9008 Set_Casing (All_Upper_Case);
9009 else
9010 Set_Casing (All_Lower_Case);
9011 end if;
9013 return
9014 Make_String_Literal (Sloc (E),
9015 Strval => String_From_Name_Buffer);
9016 end Get_Default_External_Name;
9018 --------------------------
9019 -- Get_Enclosing_Object --
9020 --------------------------
9022 function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
9023 begin
9024 if Is_Entity_Name (N) then
9025 return Entity (N);
9026 else
9027 case Nkind (N) is
9028 when N_Indexed_Component
9029 | N_Selected_Component
9030 | N_Slice
9032 -- If not generating code, a dereference may be left implicit.
9033 -- In thoses cases, return Empty.
9035 if Is_Access_Type (Etype (Prefix (N))) then
9036 return Empty;
9037 else
9038 return Get_Enclosing_Object (Prefix (N));
9039 end if;
9041 when N_Type_Conversion =>
9042 return Get_Enclosing_Object (Expression (N));
9044 when others =>
9045 return Empty;
9046 end case;
9047 end if;
9048 end Get_Enclosing_Object;
9050 ---------------------------
9051 -- Get_Enum_Lit_From_Pos --
9052 ---------------------------
9054 function Get_Enum_Lit_From_Pos
9055 (T : Entity_Id;
9056 Pos : Uint;
9057 Loc : Source_Ptr) return Node_Id
9059 Btyp : Entity_Id := Base_Type (T);
9060 Lit : Node_Id;
9061 LLoc : Source_Ptr;
9063 begin
9064 -- In the case where the literal is of type Character, Wide_Character
9065 -- or Wide_Wide_Character or of a type derived from them, there needs
9066 -- to be some special handling since there is no explicit chain of
9067 -- literals to search. Instead, an N_Character_Literal node is created
9068 -- with the appropriate Char_Code and Chars fields.
9070 if Is_Standard_Character_Type (T) then
9071 Set_Character_Literal_Name (UI_To_CC (Pos));
9073 return
9074 Make_Character_Literal (Loc,
9075 Chars => Name_Find,
9076 Char_Literal_Value => Pos);
9078 -- For all other cases, we have a complete table of literals, and
9079 -- we simply iterate through the chain of literal until the one
9080 -- with the desired position value is found.
9082 else
9083 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
9084 Btyp := Full_View (Btyp);
9085 end if;
9087 Lit := First_Literal (Btyp);
9088 for J in 1 .. UI_To_Int (Pos) loop
9089 Next_Literal (Lit);
9091 -- If Lit is Empty, Pos is not in range, so raise Constraint_Error
9092 -- inside the loop to avoid calling Next_Literal on Empty.
9094 if No (Lit) then
9095 raise Constraint_Error;
9096 end if;
9097 end loop;
9099 -- Create a new node from Lit, with source location provided by Loc
9100 -- if not equal to No_Location, or by copying the source location of
9101 -- Lit otherwise.
9103 LLoc := Loc;
9105 if LLoc = No_Location then
9106 LLoc := Sloc (Lit);
9107 end if;
9109 return New_Occurrence_Of (Lit, LLoc);
9110 end if;
9111 end Get_Enum_Lit_From_Pos;
9113 ------------------------
9114 -- Get_Generic_Entity --
9115 ------------------------
9117 function Get_Generic_Entity (N : Node_Id) return Entity_Id is
9118 Ent : constant Entity_Id := Entity (Name (N));
9119 begin
9120 if Present (Renamed_Object (Ent)) then
9121 return Renamed_Object (Ent);
9122 else
9123 return Ent;
9124 end if;
9125 end Get_Generic_Entity;
9127 -------------------------------------
9128 -- Get_Incomplete_View_Of_Ancestor --
9129 -------------------------------------
9131 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id is
9132 Cur_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
9133 Par_Scope : Entity_Id;
9134 Par_Type : Entity_Id;
9136 begin
9137 -- The incomplete view of an ancestor is only relevant for private
9138 -- derived types in child units.
9140 if not Is_Derived_Type (E)
9141 or else not Is_Child_Unit (Cur_Unit)
9142 then
9143 return Empty;
9145 else
9146 Par_Scope := Scope (Cur_Unit);
9147 if No (Par_Scope) then
9148 return Empty;
9149 end if;
9151 Par_Type := Etype (Base_Type (E));
9153 -- Traverse list of ancestor types until we find one declared in
9154 -- a parent or grandparent unit (two levels seem sufficient).
9156 while Present (Par_Type) loop
9157 if Scope (Par_Type) = Par_Scope
9158 or else Scope (Par_Type) = Scope (Par_Scope)
9159 then
9160 return Par_Type;
9162 elsif not Is_Derived_Type (Par_Type) then
9163 return Empty;
9165 else
9166 Par_Type := Etype (Base_Type (Par_Type));
9167 end if;
9168 end loop;
9170 -- If none found, there is no relevant ancestor type.
9172 return Empty;
9173 end if;
9174 end Get_Incomplete_View_Of_Ancestor;
9176 ----------------------
9177 -- Get_Index_Bounds --
9178 ----------------------
9180 procedure Get_Index_Bounds
9181 (N : Node_Id;
9182 L : out Node_Id;
9183 H : out Node_Id;
9184 Use_Full_View : Boolean := False)
9186 function Scalar_Range_Of_Type (Typ : Entity_Id) return Node_Id;
9187 -- Obtain the scalar range of type Typ. If flag Use_Full_View is set and
9188 -- Typ qualifies, the scalar range is obtained from the full view of the
9189 -- type.
9191 --------------------------
9192 -- Scalar_Range_Of_Type --
9193 --------------------------
9195 function Scalar_Range_Of_Type (Typ : Entity_Id) return Node_Id is
9196 T : Entity_Id := Typ;
9198 begin
9199 if Use_Full_View and then Present (Full_View (T)) then
9200 T := Full_View (T);
9201 end if;
9203 return Scalar_Range (T);
9204 end Scalar_Range_Of_Type;
9206 -- Local variables
9208 Kind : constant Node_Kind := Nkind (N);
9209 Rng : Node_Id;
9211 -- Start of processing for Get_Index_Bounds
9213 begin
9214 if Kind = N_Range then
9215 L := Low_Bound (N);
9216 H := High_Bound (N);
9218 elsif Kind = N_Subtype_Indication then
9219 Rng := Range_Expression (Constraint (N));
9221 if Rng = Error then
9222 L := Error;
9223 H := Error;
9224 return;
9226 else
9227 L := Low_Bound (Range_Expression (Constraint (N)));
9228 H := High_Bound (Range_Expression (Constraint (N)));
9229 end if;
9231 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
9232 Rng := Scalar_Range_Of_Type (Entity (N));
9234 if Error_Posted (Rng) then
9235 L := Error;
9236 H := Error;
9238 elsif Nkind (Rng) = N_Subtype_Indication then
9239 Get_Index_Bounds (Rng, L, H);
9241 else
9242 L := Low_Bound (Rng);
9243 H := High_Bound (Rng);
9244 end if;
9246 else
9247 -- N is an expression, indicating a range with one value
9249 L := N;
9250 H := N;
9251 end if;
9252 end Get_Index_Bounds;
9254 -----------------------------
9255 -- Get_Interfacing_Aspects --
9256 -----------------------------
9258 procedure Get_Interfacing_Aspects
9259 (Iface_Asp : Node_Id;
9260 Conv_Asp : out Node_Id;
9261 EN_Asp : out Node_Id;
9262 Expo_Asp : out Node_Id;
9263 Imp_Asp : out Node_Id;
9264 LN_Asp : out Node_Id;
9265 Do_Checks : Boolean := False)
9267 procedure Save_Or_Duplication_Error
9268 (Asp : Node_Id;
9269 To : in out Node_Id);
9270 -- Save the value of aspect Asp in node To. If To already has a value,
9271 -- then this is considered a duplicate use of aspect. Emit an error if
9272 -- flag Do_Checks is set.
9274 -------------------------------
9275 -- Save_Or_Duplication_Error --
9276 -------------------------------
9278 procedure Save_Or_Duplication_Error
9279 (Asp : Node_Id;
9280 To : in out Node_Id)
9282 begin
9283 -- Detect an extra aspect and issue an error
9285 if Present (To) then
9286 if Do_Checks then
9287 Error_Msg_Name_1 := Chars (Identifier (Asp));
9288 Error_Msg_Sloc := Sloc (To);
9289 Error_Msg_N ("aspect % previously given #", Asp);
9290 end if;
9292 -- Otherwise capture the aspect
9294 else
9295 To := Asp;
9296 end if;
9297 end Save_Or_Duplication_Error;
9299 -- Local variables
9301 Asp : Node_Id;
9302 Asp_Id : Aspect_Id;
9304 -- The following variables capture each individual aspect
9306 Conv : Node_Id := Empty;
9307 EN : Node_Id := Empty;
9308 Expo : Node_Id := Empty;
9309 Imp : Node_Id := Empty;
9310 LN : Node_Id := Empty;
9312 -- Start of processing for Get_Interfacing_Aspects
9314 begin
9315 -- The input interfacing aspect should reside in an aspect specification
9316 -- list.
9318 pragma Assert (Is_List_Member (Iface_Asp));
9320 -- Examine the aspect specifications of the related entity. Find and
9321 -- capture all interfacing aspects. Detect duplicates and emit errors
9322 -- if applicable.
9324 Asp := First (List_Containing (Iface_Asp));
9325 while Present (Asp) loop
9326 Asp_Id := Get_Aspect_Id (Asp);
9328 if Asp_Id = Aspect_Convention then
9329 Save_Or_Duplication_Error (Asp, Conv);
9331 elsif Asp_Id = Aspect_External_Name then
9332 Save_Or_Duplication_Error (Asp, EN);
9334 elsif Asp_Id = Aspect_Export then
9335 Save_Or_Duplication_Error (Asp, Expo);
9337 elsif Asp_Id = Aspect_Import then
9338 Save_Or_Duplication_Error (Asp, Imp);
9340 elsif Asp_Id = Aspect_Link_Name then
9341 Save_Or_Duplication_Error (Asp, LN);
9342 end if;
9344 Next (Asp);
9345 end loop;
9347 Conv_Asp := Conv;
9348 EN_Asp := EN;
9349 Expo_Asp := Expo;
9350 Imp_Asp := Imp;
9351 LN_Asp := LN;
9352 end Get_Interfacing_Aspects;
9354 ---------------------------------
9355 -- Get_Iterable_Type_Primitive --
9356 ---------------------------------
9358 function Get_Iterable_Type_Primitive
9359 (Typ : Entity_Id;
9360 Nam : Name_Id) return Entity_Id
9362 Funcs : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Iterable);
9363 Assoc : Node_Id;
9365 begin
9366 if No (Funcs) then
9367 return Empty;
9369 else
9370 Assoc := First (Component_Associations (Funcs));
9371 while Present (Assoc) loop
9372 if Chars (First (Choices (Assoc))) = Nam then
9373 return Entity (Expression (Assoc));
9374 end if;
9376 Assoc := Next (Assoc);
9377 end loop;
9379 return Empty;
9380 end if;
9381 end Get_Iterable_Type_Primitive;
9383 ----------------------------------
9384 -- Get_Library_Unit_Name_string --
9385 ----------------------------------
9387 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
9388 Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
9390 begin
9391 Get_Unit_Name_String (Unit_Name_Id);
9393 -- Remove seven last character (" (spec)" or " (body)")
9395 Name_Len := Name_Len - 7;
9396 pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
9397 end Get_Library_Unit_Name_String;
9399 --------------------------
9400 -- Get_Max_Queue_Length --
9401 --------------------------
9403 function Get_Max_Queue_Length (Id : Entity_Id) return Uint is
9404 pragma Assert (Is_Entry (Id));
9405 Prag : constant Entity_Id := Get_Pragma (Id, Pragma_Max_Queue_Length);
9407 begin
9408 -- A value of 0 represents no maximum specified, and entries and entry
9409 -- families with no Max_Queue_Length aspect or pragma default to it.
9411 if not Present (Prag) then
9412 return Uint_0;
9413 end if;
9415 return Intval (Expression (First (Pragma_Argument_Associations (Prag))));
9416 end Get_Max_Queue_Length;
9418 ------------------------
9419 -- Get_Name_Entity_Id --
9420 ------------------------
9422 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
9423 begin
9424 return Entity_Id (Get_Name_Table_Int (Id));
9425 end Get_Name_Entity_Id;
9427 ------------------------------
9428 -- Get_Name_From_CTC_Pragma --
9429 ------------------------------
9431 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
9432 Arg : constant Node_Id :=
9433 Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
9434 begin
9435 return Strval (Expr_Value_S (Arg));
9436 end Get_Name_From_CTC_Pragma;
9438 -----------------------
9439 -- Get_Parent_Entity --
9440 -----------------------
9442 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id is
9443 begin
9444 if Nkind (Unit) = N_Package_Body
9445 and then Nkind (Original_Node (Unit)) = N_Package_Instantiation
9446 then
9447 return Defining_Entity
9448 (Specification (Instance_Spec (Original_Node (Unit))));
9449 elsif Nkind (Unit) = N_Package_Instantiation then
9450 return Defining_Entity (Specification (Instance_Spec (Unit)));
9451 else
9452 return Defining_Entity (Unit);
9453 end if;
9454 end Get_Parent_Entity;
9456 -------------------
9457 -- Get_Pragma_Id --
9458 -------------------
9460 function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
9461 begin
9462 return Get_Pragma_Id (Pragma_Name_Unmapped (N));
9463 end Get_Pragma_Id;
9465 ------------------------
9466 -- Get_Qualified_Name --
9467 ------------------------
9469 function Get_Qualified_Name
9470 (Id : Entity_Id;
9471 Suffix : Entity_Id := Empty) return Name_Id
9473 Suffix_Nam : Name_Id := No_Name;
9475 begin
9476 if Present (Suffix) then
9477 Suffix_Nam := Chars (Suffix);
9478 end if;
9480 return Get_Qualified_Name (Chars (Id), Suffix_Nam, Scope (Id));
9481 end Get_Qualified_Name;
9483 function Get_Qualified_Name
9484 (Nam : Name_Id;
9485 Suffix : Name_Id := No_Name;
9486 Scop : Entity_Id := Current_Scope) return Name_Id
9488 procedure Add_Scope (S : Entity_Id);
9489 -- Add the fully qualified form of scope S to the name buffer. The
9490 -- format is:
9491 -- s-1__s__
9493 ---------------
9494 -- Add_Scope --
9495 ---------------
9497 procedure Add_Scope (S : Entity_Id) is
9498 begin
9499 if S = Empty then
9500 null;
9502 elsif S = Standard_Standard then
9503 null;
9505 else
9506 Add_Scope (Scope (S));
9507 Get_Name_String_And_Append (Chars (S));
9508 Add_Str_To_Name_Buffer ("__");
9509 end if;
9510 end Add_Scope;
9512 -- Start of processing for Get_Qualified_Name
9514 begin
9515 Name_Len := 0;
9516 Add_Scope (Scop);
9518 -- Append the base name after all scopes have been chained
9520 Get_Name_String_And_Append (Nam);
9522 -- Append the suffix (if present)
9524 if Suffix /= No_Name then
9525 Add_Str_To_Name_Buffer ("__");
9526 Get_Name_String_And_Append (Suffix);
9527 end if;
9529 return Name_Find;
9530 end Get_Qualified_Name;
9532 -----------------------
9533 -- Get_Reason_String --
9534 -----------------------
9536 procedure Get_Reason_String (N : Node_Id) is
9537 begin
9538 if Nkind (N) = N_String_Literal then
9539 Store_String_Chars (Strval (N));
9541 elsif Nkind (N) = N_Op_Concat then
9542 Get_Reason_String (Left_Opnd (N));
9543 Get_Reason_String (Right_Opnd (N));
9545 -- If not of required form, error
9547 else
9548 Error_Msg_N
9549 ("Reason for pragma Warnings has wrong form", N);
9550 Error_Msg_N
9551 ("\must be string literal or concatenation of string literals", N);
9552 return;
9553 end if;
9554 end Get_Reason_String;
9556 --------------------------------
9557 -- Get_Reference_Discriminant --
9558 --------------------------------
9560 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id is
9561 D : Entity_Id;
9563 begin
9564 D := First_Discriminant (Typ);
9565 while Present (D) loop
9566 if Has_Implicit_Dereference (D) then
9567 return D;
9568 end if;
9569 Next_Discriminant (D);
9570 end loop;
9572 return Empty;
9573 end Get_Reference_Discriminant;
9575 ---------------------------
9576 -- Get_Referenced_Object --
9577 ---------------------------
9579 function Get_Referenced_Object (N : Node_Id) return Node_Id is
9580 R : Node_Id;
9582 begin
9583 R := N;
9584 while Is_Entity_Name (R)
9585 and then Present (Renamed_Object (Entity (R)))
9586 loop
9587 R := Renamed_Object (Entity (R));
9588 end loop;
9590 return R;
9591 end Get_Referenced_Object;
9593 ------------------------
9594 -- Get_Renamed_Entity --
9595 ------------------------
9597 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
9598 R : Entity_Id;
9600 begin
9601 R := E;
9602 while Present (Renamed_Entity (R)) loop
9603 R := Renamed_Entity (R);
9604 end loop;
9606 return R;
9607 end Get_Renamed_Entity;
9609 -----------------------
9610 -- Get_Return_Object --
9611 -----------------------
9613 function Get_Return_Object (N : Node_Id) return Entity_Id is
9614 Decl : Node_Id;
9616 begin
9617 Decl := First (Return_Object_Declarations (N));
9618 while Present (Decl) loop
9619 exit when Nkind (Decl) = N_Object_Declaration
9620 and then Is_Return_Object (Defining_Identifier (Decl));
9621 Next (Decl);
9622 end loop;
9624 pragma Assert (Present (Decl));
9625 return Defining_Identifier (Decl);
9626 end Get_Return_Object;
9628 ---------------------------
9629 -- Get_Subprogram_Entity --
9630 ---------------------------
9632 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
9633 Subp : Node_Id;
9634 Subp_Id : Entity_Id;
9636 begin
9637 if Nkind (Nod) = N_Accept_Statement then
9638 Subp := Entry_Direct_Name (Nod);
9640 elsif Nkind (Nod) = N_Slice then
9641 Subp := Prefix (Nod);
9643 else
9644 Subp := Name (Nod);
9645 end if;
9647 -- Strip the subprogram call
9649 loop
9650 if Nkind_In (Subp, N_Explicit_Dereference,
9651 N_Indexed_Component,
9652 N_Selected_Component)
9653 then
9654 Subp := Prefix (Subp);
9656 elsif Nkind_In (Subp, N_Type_Conversion,
9657 N_Unchecked_Type_Conversion)
9658 then
9659 Subp := Expression (Subp);
9661 else
9662 exit;
9663 end if;
9664 end loop;
9666 -- Extract the entity of the subprogram call
9668 if Is_Entity_Name (Subp) then
9669 Subp_Id := Entity (Subp);
9671 if Ekind (Subp_Id) = E_Access_Subprogram_Type then
9672 Subp_Id := Directly_Designated_Type (Subp_Id);
9673 end if;
9675 if Is_Subprogram (Subp_Id) then
9676 return Subp_Id;
9677 else
9678 return Empty;
9679 end if;
9681 -- The search did not find a construct that denotes a subprogram
9683 else
9684 return Empty;
9685 end if;
9686 end Get_Subprogram_Entity;
9688 -----------------------------
9689 -- Get_Task_Body_Procedure --
9690 -----------------------------
9692 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id is
9693 begin
9694 -- Note: A task type may be the completion of a private type with
9695 -- discriminants. When performing elaboration checks on a task
9696 -- declaration, the current view of the type may be the private one,
9697 -- and the procedure that holds the body of the task is held in its
9698 -- underlying type.
9700 -- This is an odd function, why not have Task_Body_Procedure do
9701 -- the following digging???
9703 return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
9704 end Get_Task_Body_Procedure;
9706 -------------------------
9707 -- Get_User_Defined_Eq --
9708 -------------------------
9710 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id is
9711 Prim : Elmt_Id;
9712 Op : Entity_Id;
9714 begin
9715 Prim := First_Elmt (Collect_Primitive_Operations (E));
9716 while Present (Prim) loop
9717 Op := Node (Prim);
9719 if Chars (Op) = Name_Op_Eq
9720 and then Etype (Op) = Standard_Boolean
9721 and then Etype (First_Formal (Op)) = E
9722 and then Etype (Next_Formal (First_Formal (Op))) = E
9723 then
9724 return Op;
9725 end if;
9727 Next_Elmt (Prim);
9728 end loop;
9730 return Empty;
9731 end Get_User_Defined_Eq;
9733 ---------------
9734 -- Get_Views --
9735 ---------------
9737 procedure Get_Views
9738 (Typ : Entity_Id;
9739 Priv_Typ : out Entity_Id;
9740 Full_Typ : out Entity_Id;
9741 Full_Base : out Entity_Id;
9742 CRec_Typ : out Entity_Id)
9744 IP_View : Entity_Id;
9746 begin
9747 -- Assume that none of the views can be recovered
9749 Priv_Typ := Empty;
9750 Full_Typ := Empty;
9751 Full_Base := Empty;
9752 CRec_Typ := Empty;
9754 -- The input type is the corresponding record type of a protected or a
9755 -- task type.
9757 if Ekind (Typ) = E_Record_Type
9758 and then Is_Concurrent_Record_Type (Typ)
9759 then
9760 CRec_Typ := Typ;
9761 Full_Typ := Corresponding_Concurrent_Type (CRec_Typ);
9762 Full_Base := Base_Type (Full_Typ);
9763 Priv_Typ := Incomplete_Or_Partial_View (Full_Typ);
9765 -- Otherwise the input type denotes an arbitrary type
9767 else
9768 IP_View := Incomplete_Or_Partial_View (Typ);
9770 -- The input type denotes the full view of a private type
9772 if Present (IP_View) then
9773 Priv_Typ := IP_View;
9774 Full_Typ := Typ;
9776 -- The input type is a private type
9778 elsif Is_Private_Type (Typ) then
9779 Priv_Typ := Typ;
9780 Full_Typ := Full_View (Priv_Typ);
9782 -- Otherwise the input type does not have any views
9784 else
9785 Full_Typ := Typ;
9786 end if;
9788 if Present (Full_Typ) then
9789 Full_Base := Base_Type (Full_Typ);
9791 if Ekind_In (Full_Typ, E_Protected_Type, E_Task_Type) then
9792 CRec_Typ := Corresponding_Record_Type (Full_Typ);
9793 end if;
9794 end if;
9795 end if;
9796 end Get_Views;
9798 -----------------------
9799 -- Has_Access_Values --
9800 -----------------------
9802 function Has_Access_Values (T : Entity_Id) return Boolean is
9803 Typ : constant Entity_Id := Underlying_Type (T);
9805 begin
9806 -- Case of a private type which is not completed yet. This can only
9807 -- happen in the case of a generic format type appearing directly, or
9808 -- as a component of the type to which this function is being applied
9809 -- at the top level. Return False in this case, since we certainly do
9810 -- not know that the type contains access types.
9812 if No (Typ) then
9813 return False;
9815 elsif Is_Access_Type (Typ) then
9816 return True;
9818 elsif Is_Array_Type (Typ) then
9819 return Has_Access_Values (Component_Type (Typ));
9821 elsif Is_Record_Type (Typ) then
9822 declare
9823 Comp : Entity_Id;
9825 begin
9826 -- Loop to Check components
9828 Comp := First_Component_Or_Discriminant (Typ);
9829 while Present (Comp) loop
9831 -- Check for access component, tag field does not count, even
9832 -- though it is implemented internally using an access type.
9834 if Has_Access_Values (Etype (Comp))
9835 and then Chars (Comp) /= Name_uTag
9836 then
9837 return True;
9838 end if;
9840 Next_Component_Or_Discriminant (Comp);
9841 end loop;
9842 end;
9844 return False;
9846 else
9847 return False;
9848 end if;
9849 end Has_Access_Values;
9851 ------------------------------
9852 -- Has_Compatible_Alignment --
9853 ------------------------------
9855 function Has_Compatible_Alignment
9856 (Obj : Entity_Id;
9857 Expr : Node_Id;
9858 Layout_Done : Boolean) return Alignment_Result
9860 function Has_Compatible_Alignment_Internal
9861 (Obj : Entity_Id;
9862 Expr : Node_Id;
9863 Layout_Done : Boolean;
9864 Default : Alignment_Result) return Alignment_Result;
9865 -- This is the internal recursive function that actually does the work.
9866 -- There is one additional parameter, which says what the result should
9867 -- be if no alignment information is found, and there is no definite
9868 -- indication of compatible alignments. At the outer level, this is set
9869 -- to Unknown, but for internal recursive calls in the case where types
9870 -- are known to be correct, it is set to Known_Compatible.
9872 ---------------------------------------
9873 -- Has_Compatible_Alignment_Internal --
9874 ---------------------------------------
9876 function Has_Compatible_Alignment_Internal
9877 (Obj : Entity_Id;
9878 Expr : Node_Id;
9879 Layout_Done : Boolean;
9880 Default : Alignment_Result) return Alignment_Result
9882 Result : Alignment_Result := Known_Compatible;
9883 -- Holds the current status of the result. Note that once a value of
9884 -- Known_Incompatible is set, it is sticky and does not get changed
9885 -- to Unknown (the value in Result only gets worse as we go along,
9886 -- never better).
9888 Offs : Uint := No_Uint;
9889 -- Set to a factor of the offset from the base object when Expr is a
9890 -- selected or indexed component, based on Component_Bit_Offset and
9891 -- Component_Size respectively. A negative value is used to represent
9892 -- a value which is not known at compile time.
9894 procedure Check_Prefix;
9895 -- Checks the prefix recursively in the case where the expression
9896 -- is an indexed or selected component.
9898 procedure Set_Result (R : Alignment_Result);
9899 -- If R represents a worse outcome (unknown instead of known
9900 -- compatible, or known incompatible), then set Result to R.
9902 ------------------
9903 -- Check_Prefix --
9904 ------------------
9906 procedure Check_Prefix is
9907 begin
9908 -- The subtlety here is that in doing a recursive call to check
9909 -- the prefix, we have to decide what to do in the case where we
9910 -- don't find any specific indication of an alignment problem.
9912 -- At the outer level, we normally set Unknown as the result in
9913 -- this case, since we can only set Known_Compatible if we really
9914 -- know that the alignment value is OK, but for the recursive
9915 -- call, in the case where the types match, and we have not
9916 -- specified a peculiar alignment for the object, we are only
9917 -- concerned about suspicious rep clauses, the default case does
9918 -- not affect us, since the compiler will, in the absence of such
9919 -- rep clauses, ensure that the alignment is correct.
9921 if Default = Known_Compatible
9922 or else
9923 (Etype (Obj) = Etype (Expr)
9924 and then (Unknown_Alignment (Obj)
9925 or else
9926 Alignment (Obj) = Alignment (Etype (Obj))))
9927 then
9928 Set_Result
9929 (Has_Compatible_Alignment_Internal
9930 (Obj, Prefix (Expr), Layout_Done, Known_Compatible));
9932 -- In all other cases, we need a full check on the prefix
9934 else
9935 Set_Result
9936 (Has_Compatible_Alignment_Internal
9937 (Obj, Prefix (Expr), Layout_Done, Unknown));
9938 end if;
9939 end Check_Prefix;
9941 ----------------
9942 -- Set_Result --
9943 ----------------
9945 procedure Set_Result (R : Alignment_Result) is
9946 begin
9947 if R > Result then
9948 Result := R;
9949 end if;
9950 end Set_Result;
9952 -- Start of processing for Has_Compatible_Alignment_Internal
9954 begin
9955 -- If Expr is a selected component, we must make sure there is no
9956 -- potentially troublesome component clause and that the record is
9957 -- not packed if the layout is not done.
9959 if Nkind (Expr) = N_Selected_Component then
9961 -- Packing generates unknown alignment if layout is not done
9963 if Is_Packed (Etype (Prefix (Expr))) and then not Layout_Done then
9964 Set_Result (Unknown);
9965 end if;
9967 -- Check prefix and component offset
9969 Check_Prefix;
9970 Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
9972 -- If Expr is an indexed component, we must make sure there is no
9973 -- potentially troublesome Component_Size clause and that the array
9974 -- is not bit-packed if the layout is not done.
9976 elsif Nkind (Expr) = N_Indexed_Component then
9977 declare
9978 Typ : constant Entity_Id := Etype (Prefix (Expr));
9980 begin
9981 -- Packing generates unknown alignment if layout is not done
9983 if Is_Bit_Packed_Array (Typ) and then not Layout_Done then
9984 Set_Result (Unknown);
9985 end if;
9987 -- Check prefix and component offset (or at least size)
9989 Check_Prefix;
9990 Offs := Indexed_Component_Bit_Offset (Expr);
9991 if Offs = No_Uint then
9992 Offs := Component_Size (Typ);
9993 end if;
9994 end;
9995 end if;
9997 -- If we have a null offset, the result is entirely determined by
9998 -- the base object and has already been computed recursively.
10000 if Offs = Uint_0 then
10001 null;
10003 -- Case where we know the alignment of the object
10005 elsif Known_Alignment (Obj) then
10006 declare
10007 ObjA : constant Uint := Alignment (Obj);
10008 ExpA : Uint := No_Uint;
10009 SizA : Uint := No_Uint;
10011 begin
10012 -- If alignment of Obj is 1, then we are always OK
10014 if ObjA = 1 then
10015 Set_Result (Known_Compatible);
10017 -- Alignment of Obj is greater than 1, so we need to check
10019 else
10020 -- If we have an offset, see if it is compatible
10022 if Offs /= No_Uint and Offs > Uint_0 then
10023 if Offs mod (System_Storage_Unit * ObjA) /= 0 then
10024 Set_Result (Known_Incompatible);
10025 end if;
10027 -- See if Expr is an object with known alignment
10029 elsif Is_Entity_Name (Expr)
10030 and then Known_Alignment (Entity (Expr))
10031 then
10032 ExpA := Alignment (Entity (Expr));
10034 -- Otherwise, we can use the alignment of the type of
10035 -- Expr given that we already checked for
10036 -- discombobulating rep clauses for the cases of indexed
10037 -- and selected components above.
10039 elsif Known_Alignment (Etype (Expr)) then
10040 ExpA := Alignment (Etype (Expr));
10042 -- Otherwise the alignment is unknown
10044 else
10045 Set_Result (Default);
10046 end if;
10048 -- If we got an alignment, see if it is acceptable
10050 if ExpA /= No_Uint and then ExpA < ObjA then
10051 Set_Result (Known_Incompatible);
10052 end if;
10054 -- If Expr is not a piece of a larger object, see if size
10055 -- is given. If so, check that it is not too small for the
10056 -- required alignment.
10058 if Offs /= No_Uint then
10059 null;
10061 -- See if Expr is an object with known size
10063 elsif Is_Entity_Name (Expr)
10064 and then Known_Static_Esize (Entity (Expr))
10065 then
10066 SizA := Esize (Entity (Expr));
10068 -- Otherwise, we check the object size of the Expr type
10070 elsif Known_Static_Esize (Etype (Expr)) then
10071 SizA := Esize (Etype (Expr));
10072 end if;
10074 -- If we got a size, see if it is a multiple of the Obj
10075 -- alignment, if not, then the alignment cannot be
10076 -- acceptable, since the size is always a multiple of the
10077 -- alignment.
10079 if SizA /= No_Uint then
10080 if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
10081 Set_Result (Known_Incompatible);
10082 end if;
10083 end if;
10084 end if;
10085 end;
10087 -- If we do not know required alignment, any non-zero offset is a
10088 -- potential problem (but certainly may be OK, so result is unknown).
10090 elsif Offs /= No_Uint then
10091 Set_Result (Unknown);
10093 -- If we can't find the result by direct comparison of alignment
10094 -- values, then there is still one case that we can determine known
10095 -- result, and that is when we can determine that the types are the
10096 -- same, and no alignments are specified. Then we known that the
10097 -- alignments are compatible, even if we don't know the alignment
10098 -- value in the front end.
10100 elsif Etype (Obj) = Etype (Expr) then
10102 -- Types are the same, but we have to check for possible size
10103 -- and alignments on the Expr object that may make the alignment
10104 -- different, even though the types are the same.
10106 if Is_Entity_Name (Expr) then
10108 -- First check alignment of the Expr object. Any alignment less
10109 -- than Maximum_Alignment is worrisome since this is the case
10110 -- where we do not know the alignment of Obj.
10112 if Known_Alignment (Entity (Expr))
10113 and then UI_To_Int (Alignment (Entity (Expr))) <
10114 Ttypes.Maximum_Alignment
10115 then
10116 Set_Result (Unknown);
10118 -- Now check size of Expr object. Any size that is not an
10119 -- even multiple of Maximum_Alignment is also worrisome
10120 -- since it may cause the alignment of the object to be less
10121 -- than the alignment of the type.
10123 elsif Known_Static_Esize (Entity (Expr))
10124 and then
10125 (UI_To_Int (Esize (Entity (Expr))) mod
10126 (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
10127 /= 0
10128 then
10129 Set_Result (Unknown);
10131 -- Otherwise same type is decisive
10133 else
10134 Set_Result (Known_Compatible);
10135 end if;
10136 end if;
10138 -- Another case to deal with is when there is an explicit size or
10139 -- alignment clause when the types are not the same. If so, then the
10140 -- result is Unknown. We don't need to do this test if the Default is
10141 -- Unknown, since that result will be set in any case.
10143 elsif Default /= Unknown
10144 and then (Has_Size_Clause (Etype (Expr))
10145 or else
10146 Has_Alignment_Clause (Etype (Expr)))
10147 then
10148 Set_Result (Unknown);
10150 -- If no indication found, set default
10152 else
10153 Set_Result (Default);
10154 end if;
10156 -- Return worst result found
10158 return Result;
10159 end Has_Compatible_Alignment_Internal;
10161 -- Start of processing for Has_Compatible_Alignment
10163 begin
10164 -- If Obj has no specified alignment, then set alignment from the type
10165 -- alignment. Perhaps we should always do this, but for sure we should
10166 -- do it when there is an address clause since we can do more if the
10167 -- alignment is known.
10169 if Unknown_Alignment (Obj) then
10170 Set_Alignment (Obj, Alignment (Etype (Obj)));
10171 end if;
10173 -- Now do the internal call that does all the work
10175 return
10176 Has_Compatible_Alignment_Internal (Obj, Expr, Layout_Done, Unknown);
10177 end Has_Compatible_Alignment;
10179 ----------------------
10180 -- Has_Declarations --
10181 ----------------------
10183 function Has_Declarations (N : Node_Id) return Boolean is
10184 begin
10185 return Nkind_In (Nkind (N), N_Accept_Statement,
10186 N_Block_Statement,
10187 N_Compilation_Unit_Aux,
10188 N_Entry_Body,
10189 N_Package_Body,
10190 N_Protected_Body,
10191 N_Subprogram_Body,
10192 N_Task_Body,
10193 N_Package_Specification);
10194 end Has_Declarations;
10196 ---------------------------------
10197 -- Has_Defaulted_Discriminants --
10198 ---------------------------------
10200 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
10201 begin
10202 return Has_Discriminants (Typ)
10203 and then Present (First_Discriminant (Typ))
10204 and then Present (Discriminant_Default_Value
10205 (First_Discriminant (Typ)));
10206 end Has_Defaulted_Discriminants;
10208 -------------------
10209 -- Has_Denormals --
10210 -------------------
10212 function Has_Denormals (E : Entity_Id) return Boolean is
10213 begin
10214 return Is_Floating_Point_Type (E) and then Denorm_On_Target;
10215 end Has_Denormals;
10217 -------------------------------------------
10218 -- Has_Discriminant_Dependent_Constraint --
10219 -------------------------------------------
10221 function Has_Discriminant_Dependent_Constraint
10222 (Comp : Entity_Id) return Boolean
10224 Comp_Decl : constant Node_Id := Parent (Comp);
10225 Subt_Indic : Node_Id;
10226 Constr : Node_Id;
10227 Assn : Node_Id;
10229 begin
10230 -- Discriminants can't depend on discriminants
10232 if Ekind (Comp) = E_Discriminant then
10233 return False;
10235 else
10236 Subt_Indic := Subtype_Indication (Component_Definition (Comp_Decl));
10238 if Nkind (Subt_Indic) = N_Subtype_Indication then
10239 Constr := Constraint (Subt_Indic);
10241 if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
10242 Assn := First (Constraints (Constr));
10243 while Present (Assn) loop
10244 case Nkind (Assn) is
10245 when N_Identifier
10246 | N_Range
10247 | N_Subtype_Indication
10249 if Depends_On_Discriminant (Assn) then
10250 return True;
10251 end if;
10253 when N_Discriminant_Association =>
10254 if Depends_On_Discriminant (Expression (Assn)) then
10255 return True;
10256 end if;
10258 when others =>
10259 null;
10260 end case;
10262 Next (Assn);
10263 end loop;
10264 end if;
10265 end if;
10266 end if;
10268 return False;
10269 end Has_Discriminant_Dependent_Constraint;
10271 --------------------------------------
10272 -- Has_Effectively_Volatile_Profile --
10273 --------------------------------------
10275 function Has_Effectively_Volatile_Profile
10276 (Subp_Id : Entity_Id) return Boolean
10278 Formal : Entity_Id;
10280 begin
10281 -- Inspect the formal parameters looking for an effectively volatile
10282 -- type.
10284 Formal := First_Formal (Subp_Id);
10285 while Present (Formal) loop
10286 if Is_Effectively_Volatile (Etype (Formal)) then
10287 return True;
10288 end if;
10290 Next_Formal (Formal);
10291 end loop;
10293 -- Inspect the return type of functions
10295 if Ekind_In (Subp_Id, E_Function, E_Generic_Function)
10296 and then Is_Effectively_Volatile (Etype (Subp_Id))
10297 then
10298 return True;
10299 end if;
10301 return False;
10302 end Has_Effectively_Volatile_Profile;
10304 --------------------------
10305 -- Has_Enabled_Property --
10306 --------------------------
10308 function Has_Enabled_Property
10309 (Item_Id : Entity_Id;
10310 Property : Name_Id) return Boolean
10312 function Protected_Object_Has_Enabled_Property return Boolean;
10313 -- Determine whether a protected object denoted by Item_Id has the
10314 -- property enabled.
10316 function State_Has_Enabled_Property return Boolean;
10317 -- Determine whether a state denoted by Item_Id has the property enabled
10319 function Variable_Has_Enabled_Property return Boolean;
10320 -- Determine whether a variable denoted by Item_Id has the property
10321 -- enabled.
10323 -------------------------------------------
10324 -- Protected_Object_Has_Enabled_Property --
10325 -------------------------------------------
10327 function Protected_Object_Has_Enabled_Property return Boolean is
10328 Constits : constant Elist_Id := Part_Of_Constituents (Item_Id);
10329 Constit_Elmt : Elmt_Id;
10330 Constit_Id : Entity_Id;
10332 begin
10333 -- Protected objects always have the properties Async_Readers and
10334 -- Async_Writers (SPARK RM 7.1.2(16)).
10336 if Property = Name_Async_Readers
10337 or else Property = Name_Async_Writers
10338 then
10339 return True;
10341 -- Protected objects that have Part_Of components also inherit their
10342 -- properties Effective_Reads and Effective_Writes
10343 -- (SPARK RM 7.1.2(16)).
10345 elsif Present (Constits) then
10346 Constit_Elmt := First_Elmt (Constits);
10347 while Present (Constit_Elmt) loop
10348 Constit_Id := Node (Constit_Elmt);
10350 if Has_Enabled_Property (Constit_Id, Property) then
10351 return True;
10352 end if;
10354 Next_Elmt (Constit_Elmt);
10355 end loop;
10356 end if;
10358 return False;
10359 end Protected_Object_Has_Enabled_Property;
10361 --------------------------------
10362 -- State_Has_Enabled_Property --
10363 --------------------------------
10365 function State_Has_Enabled_Property return Boolean is
10366 Decl : constant Node_Id := Parent (Item_Id);
10367 Opt : Node_Id;
10368 Opt_Nam : Node_Id;
10369 Prop : Node_Id;
10370 Prop_Nam : Node_Id;
10371 Props : Node_Id;
10373 begin
10374 -- The declaration of an external abstract state appears as an
10375 -- extension aggregate. If this is not the case, properties can never
10376 -- be set.
10378 if Nkind (Decl) /= N_Extension_Aggregate then
10379 return False;
10380 end if;
10382 -- When External appears as a simple option, it automatically enables
10383 -- all properties.
10385 Opt := First (Expressions (Decl));
10386 while Present (Opt) loop
10387 if Nkind (Opt) = N_Identifier
10388 and then Chars (Opt) = Name_External
10389 then
10390 return True;
10391 end if;
10393 Next (Opt);
10394 end loop;
10396 -- When External specifies particular properties, inspect those and
10397 -- find the desired one (if any).
10399 Opt := First (Component_Associations (Decl));
10400 while Present (Opt) loop
10401 Opt_Nam := First (Choices (Opt));
10403 if Nkind (Opt_Nam) = N_Identifier
10404 and then Chars (Opt_Nam) = Name_External
10405 then
10406 Props := Expression (Opt);
10408 -- Multiple properties appear as an aggregate
10410 if Nkind (Props) = N_Aggregate then
10412 -- Simple property form
10414 Prop := First (Expressions (Props));
10415 while Present (Prop) loop
10416 if Chars (Prop) = Property then
10417 return True;
10418 end if;
10420 Next (Prop);
10421 end loop;
10423 -- Property with expression form
10425 Prop := First (Component_Associations (Props));
10426 while Present (Prop) loop
10427 Prop_Nam := First (Choices (Prop));
10429 -- The property can be represented in two ways:
10430 -- others => <value>
10431 -- <property> => <value>
10433 if Nkind (Prop_Nam) = N_Others_Choice
10434 or else (Nkind (Prop_Nam) = N_Identifier
10435 and then Chars (Prop_Nam) = Property)
10436 then
10437 return Is_True (Expr_Value (Expression (Prop)));
10438 end if;
10440 Next (Prop);
10441 end loop;
10443 -- Single property
10445 else
10446 return Chars (Props) = Property;
10447 end if;
10448 end if;
10450 Next (Opt);
10451 end loop;
10453 return False;
10454 end State_Has_Enabled_Property;
10456 -----------------------------------
10457 -- Variable_Has_Enabled_Property --
10458 -----------------------------------
10460 function Variable_Has_Enabled_Property return Boolean is
10461 function Is_Enabled (Prag : Node_Id) return Boolean;
10462 -- Determine whether property pragma Prag (if present) denotes an
10463 -- enabled property.
10465 ----------------
10466 -- Is_Enabled --
10467 ----------------
10469 function Is_Enabled (Prag : Node_Id) return Boolean is
10470 Arg1 : Node_Id;
10472 begin
10473 if Present (Prag) then
10474 Arg1 := First (Pragma_Argument_Associations (Prag));
10476 -- The pragma has an optional Boolean expression, the related
10477 -- property is enabled only when the expression evaluates to
10478 -- True.
10480 if Present (Arg1) then
10481 return Is_True (Expr_Value (Get_Pragma_Arg (Arg1)));
10483 -- Otherwise the lack of expression enables the property by
10484 -- default.
10486 else
10487 return True;
10488 end if;
10490 -- The property was never set in the first place
10492 else
10493 return False;
10494 end if;
10495 end Is_Enabled;
10497 -- Local variables
10499 AR : constant Node_Id :=
10500 Get_Pragma (Item_Id, Pragma_Async_Readers);
10501 AW : constant Node_Id :=
10502 Get_Pragma (Item_Id, Pragma_Async_Writers);
10503 ER : constant Node_Id :=
10504 Get_Pragma (Item_Id, Pragma_Effective_Reads);
10505 EW : constant Node_Id :=
10506 Get_Pragma (Item_Id, Pragma_Effective_Writes);
10508 -- Start of processing for Variable_Has_Enabled_Property
10510 begin
10511 -- A non-effectively volatile object can never possess external
10512 -- properties.
10514 if not Is_Effectively_Volatile (Item_Id) then
10515 return False;
10517 -- External properties related to variables come in two flavors -
10518 -- explicit and implicit. The explicit case is characterized by the
10519 -- presence of a property pragma with an optional Boolean flag. The
10520 -- property is enabled when the flag evaluates to True or the flag is
10521 -- missing altogether.
10523 elsif Property = Name_Async_Readers and then Is_Enabled (AR) then
10524 return True;
10526 elsif Property = Name_Async_Writers and then Is_Enabled (AW) then
10527 return True;
10529 elsif Property = Name_Effective_Reads and then Is_Enabled (ER) then
10530 return True;
10532 elsif Property = Name_Effective_Writes and then Is_Enabled (EW) then
10533 return True;
10535 -- The implicit case lacks all property pragmas
10537 elsif No (AR) and then No (AW) and then No (ER) and then No (EW) then
10538 if Is_Protected_Type (Etype (Item_Id)) then
10539 return Protected_Object_Has_Enabled_Property;
10540 else
10541 return True;
10542 end if;
10544 else
10545 return False;
10546 end if;
10547 end Variable_Has_Enabled_Property;
10549 -- Start of processing for Has_Enabled_Property
10551 begin
10552 -- Abstract states and variables have a flexible scheme of specifying
10553 -- external properties.
10555 if Ekind (Item_Id) = E_Abstract_State then
10556 return State_Has_Enabled_Property;
10558 elsif Ekind (Item_Id) = E_Variable then
10559 return Variable_Has_Enabled_Property;
10561 -- By default, protected objects only have the properties Async_Readers
10562 -- and Async_Writers. If they have Part_Of components, they also inherit
10563 -- their properties Effective_Reads and Effective_Writes
10564 -- (SPARK RM 7.1.2(16)).
10566 elsif Ekind (Item_Id) = E_Protected_Object then
10567 return Protected_Object_Has_Enabled_Property;
10569 -- Otherwise a property is enabled when the related item is effectively
10570 -- volatile.
10572 else
10573 return Is_Effectively_Volatile (Item_Id);
10574 end if;
10575 end Has_Enabled_Property;
10577 -------------------------------------
10578 -- Has_Full_Default_Initialization --
10579 -------------------------------------
10581 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean is
10582 Comp : Entity_Id;
10583 Prag : Node_Id;
10585 begin
10586 -- A type subject to pragma Default_Initial_Condition is fully default
10587 -- initialized when the pragma appears with a non-null argument. Since
10588 -- any type may act as the full view of a private type, this check must
10589 -- be performed prior to the specialized tests below.
10591 if Has_DIC (Typ) then
10592 Prag := Get_Pragma (Typ, Pragma_Default_Initial_Condition);
10593 pragma Assert (Present (Prag));
10595 return Is_Verifiable_DIC_Pragma (Prag);
10596 end if;
10598 -- A scalar type is fully default initialized if it is subject to aspect
10599 -- Default_Value.
10601 if Is_Scalar_Type (Typ) then
10602 return Has_Default_Aspect (Typ);
10604 -- An array type is fully default initialized if its element type is
10605 -- scalar and the array type carries aspect Default_Component_Value or
10606 -- the element type is fully default initialized.
10608 elsif Is_Array_Type (Typ) then
10609 return
10610 Has_Default_Aspect (Typ)
10611 or else Has_Full_Default_Initialization (Component_Type (Typ));
10613 -- A protected type, record type, or type extension is fully default
10614 -- initialized if all its components either carry an initialization
10615 -- expression or have a type that is fully default initialized. The
10616 -- parent type of a type extension must be fully default initialized.
10618 elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
10620 -- Inspect all entities defined in the scope of the type, looking for
10621 -- uninitialized components.
10623 Comp := First_Entity (Typ);
10624 while Present (Comp) loop
10625 if Ekind (Comp) = E_Component
10626 and then Comes_From_Source (Comp)
10627 and then No (Expression (Parent (Comp)))
10628 and then not Has_Full_Default_Initialization (Etype (Comp))
10629 then
10630 return False;
10631 end if;
10633 Next_Entity (Comp);
10634 end loop;
10636 -- Ensure that the parent type of a type extension is fully default
10637 -- initialized.
10639 if Etype (Typ) /= Typ
10640 and then not Has_Full_Default_Initialization (Etype (Typ))
10641 then
10642 return False;
10643 end if;
10645 -- If we get here, then all components and parent portion are fully
10646 -- default initialized.
10648 return True;
10650 -- A task type is fully default initialized by default
10652 elsif Is_Task_Type (Typ) then
10653 return True;
10655 -- Otherwise the type is not fully default initialized
10657 else
10658 return False;
10659 end if;
10660 end Has_Full_Default_Initialization;
10662 --------------------
10663 -- Has_Infinities --
10664 --------------------
10666 function Has_Infinities (E : Entity_Id) return Boolean is
10667 begin
10668 return
10669 Is_Floating_Point_Type (E)
10670 and then Nkind (Scalar_Range (E)) = N_Range
10671 and then Includes_Infinities (Scalar_Range (E));
10672 end Has_Infinities;
10674 --------------------
10675 -- Has_Interfaces --
10676 --------------------
10678 function Has_Interfaces
10679 (T : Entity_Id;
10680 Use_Full_View : Boolean := True) return Boolean
10682 Typ : Entity_Id := Base_Type (T);
10684 begin
10685 -- Handle concurrent types
10687 if Is_Concurrent_Type (Typ) then
10688 Typ := Corresponding_Record_Type (Typ);
10689 end if;
10691 if not Present (Typ)
10692 or else not Is_Record_Type (Typ)
10693 or else not Is_Tagged_Type (Typ)
10694 then
10695 return False;
10696 end if;
10698 -- Handle private types
10700 if Use_Full_View and then Present (Full_View (Typ)) then
10701 Typ := Full_View (Typ);
10702 end if;
10704 -- Handle concurrent record types
10706 if Is_Concurrent_Record_Type (Typ)
10707 and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
10708 then
10709 return True;
10710 end if;
10712 loop
10713 if Is_Interface (Typ)
10714 or else
10715 (Is_Record_Type (Typ)
10716 and then Present (Interfaces (Typ))
10717 and then not Is_Empty_Elmt_List (Interfaces (Typ)))
10718 then
10719 return True;
10720 end if;
10722 exit when Etype (Typ) = Typ
10724 -- Handle private types
10726 or else (Present (Full_View (Etype (Typ)))
10727 and then Full_View (Etype (Typ)) = Typ)
10729 -- Protect frontend against wrong sources with cyclic derivations
10731 or else Etype (Typ) = T;
10733 -- Climb to the ancestor type handling private types
10735 if Present (Full_View (Etype (Typ))) then
10736 Typ := Full_View (Etype (Typ));
10737 else
10738 Typ := Etype (Typ);
10739 end if;
10740 end loop;
10742 return False;
10743 end Has_Interfaces;
10745 --------------------------
10746 -- Has_Max_Queue_Length --
10747 --------------------------
10749 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean is
10750 begin
10751 return
10752 Ekind (Id) = E_Entry
10753 and then Present (Get_Pragma (Id, Pragma_Max_Queue_Length));
10754 end Has_Max_Queue_Length;
10756 ---------------------------------
10757 -- Has_No_Obvious_Side_Effects --
10758 ---------------------------------
10760 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean is
10761 begin
10762 -- For now handle literals, constants, and non-volatile variables and
10763 -- expressions combining these with operators or short circuit forms.
10765 if Nkind (N) in N_Numeric_Or_String_Literal then
10766 return True;
10768 elsif Nkind (N) = N_Character_Literal then
10769 return True;
10771 elsif Nkind (N) in N_Unary_Op then
10772 return Has_No_Obvious_Side_Effects (Right_Opnd (N));
10774 elsif Nkind (N) in N_Binary_Op or else Nkind (N) in N_Short_Circuit then
10775 return Has_No_Obvious_Side_Effects (Left_Opnd (N))
10776 and then
10777 Has_No_Obvious_Side_Effects (Right_Opnd (N));
10779 elsif Nkind (N) = N_Expression_With_Actions
10780 and then Is_Empty_List (Actions (N))
10781 then
10782 return Has_No_Obvious_Side_Effects (Expression (N));
10784 elsif Nkind (N) in N_Has_Entity then
10785 return Present (Entity (N))
10786 and then Ekind_In (Entity (N), E_Variable,
10787 E_Constant,
10788 E_Enumeration_Literal,
10789 E_In_Parameter,
10790 E_Out_Parameter,
10791 E_In_Out_Parameter)
10792 and then not Is_Volatile (Entity (N));
10794 else
10795 return False;
10796 end if;
10797 end Has_No_Obvious_Side_Effects;
10799 -----------------------------
10800 -- Has_Non_Null_Refinement --
10801 -----------------------------
10803 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean is
10804 Constits : Elist_Id;
10806 begin
10807 pragma Assert (Ekind (Id) = E_Abstract_State);
10808 Constits := Refinement_Constituents (Id);
10810 -- For a refinement to be non-null, the first constituent must be
10811 -- anything other than null.
10813 return
10814 Present (Constits)
10815 and then Nkind (Node (First_Elmt (Constits))) /= N_Null;
10816 end Has_Non_Null_Refinement;
10818 ----------------------------------
10819 -- Has_Non_Trivial_Precondition --
10820 ----------------------------------
10822 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean is
10823 Pre : constant Node_Id := Find_Aspect (Subp, Aspect_Pre);
10825 begin
10826 return
10827 Present (Pre)
10828 and then Class_Present (Pre)
10829 and then not Is_Entity_Name (Expression (Pre));
10830 end Has_Non_Trivial_Precondition;
10832 -------------------
10833 -- Has_Null_Body --
10834 -------------------
10836 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
10837 Body_Id : Entity_Id;
10838 Decl : Node_Id;
10839 Spec : Node_Id;
10840 Stmt1 : Node_Id;
10841 Stmt2 : Node_Id;
10843 begin
10844 Spec := Parent (Proc_Id);
10845 Decl := Parent (Spec);
10847 -- Retrieve the entity of the procedure body (e.g. invariant proc).
10849 if Nkind (Spec) = N_Procedure_Specification
10850 and then Nkind (Decl) = N_Subprogram_Declaration
10851 then
10852 Body_Id := Corresponding_Body (Decl);
10854 -- The body acts as a spec
10856 else
10857 Body_Id := Proc_Id;
10858 end if;
10860 -- The body will be generated later
10862 if No (Body_Id) then
10863 return False;
10864 end if;
10866 Spec := Parent (Body_Id);
10867 Decl := Parent (Spec);
10869 pragma Assert
10870 (Nkind (Spec) = N_Procedure_Specification
10871 and then Nkind (Decl) = N_Subprogram_Body);
10873 Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
10875 -- Look for a null statement followed by an optional return
10876 -- statement.
10878 if Nkind (Stmt1) = N_Null_Statement then
10879 Stmt2 := Next (Stmt1);
10881 if Present (Stmt2) then
10882 return Nkind (Stmt2) = N_Simple_Return_Statement;
10883 else
10884 return True;
10885 end if;
10886 end if;
10888 return False;
10889 end Has_Null_Body;
10891 ------------------------
10892 -- Has_Null_Exclusion --
10893 ------------------------
10895 function Has_Null_Exclusion (N : Node_Id) return Boolean is
10896 begin
10897 case Nkind (N) is
10898 when N_Access_Definition
10899 | N_Access_Function_Definition
10900 | N_Access_Procedure_Definition
10901 | N_Access_To_Object_Definition
10902 | N_Allocator
10903 | N_Derived_Type_Definition
10904 | N_Function_Specification
10905 | N_Subtype_Declaration
10907 return Null_Exclusion_Present (N);
10909 when N_Component_Definition
10910 | N_Formal_Object_Declaration
10911 | N_Object_Renaming_Declaration
10913 if Present (Subtype_Mark (N)) then
10914 return Null_Exclusion_Present (N);
10915 else pragma Assert (Present (Access_Definition (N)));
10916 return Null_Exclusion_Present (Access_Definition (N));
10917 end if;
10919 when N_Discriminant_Specification =>
10920 if Nkind (Discriminant_Type (N)) = N_Access_Definition then
10921 return Null_Exclusion_Present (Discriminant_Type (N));
10922 else
10923 return Null_Exclusion_Present (N);
10924 end if;
10926 when N_Object_Declaration =>
10927 if Nkind (Object_Definition (N)) = N_Access_Definition then
10928 return Null_Exclusion_Present (Object_Definition (N));
10929 else
10930 return Null_Exclusion_Present (N);
10931 end if;
10933 when N_Parameter_Specification =>
10934 if Nkind (Parameter_Type (N)) = N_Access_Definition then
10935 return Null_Exclusion_Present (Parameter_Type (N));
10936 else
10937 return Null_Exclusion_Present (N);
10938 end if;
10940 when others =>
10941 return False;
10942 end case;
10943 end Has_Null_Exclusion;
10945 ------------------------
10946 -- Has_Null_Extension --
10947 ------------------------
10949 function Has_Null_Extension (T : Entity_Id) return Boolean is
10950 B : constant Entity_Id := Base_Type (T);
10951 Comps : Node_Id;
10952 Ext : Node_Id;
10954 begin
10955 if Nkind (Parent (B)) = N_Full_Type_Declaration
10956 and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
10957 then
10958 Ext := Record_Extension_Part (Type_Definition (Parent (B)));
10960 if Present (Ext) then
10961 if Null_Present (Ext) then
10962 return True;
10963 else
10964 Comps := Component_List (Ext);
10966 -- The null component list is rewritten during analysis to
10967 -- include the parent component. Any other component indicates
10968 -- that the extension was not originally null.
10970 return Null_Present (Comps)
10971 or else No (Next (First (Component_Items (Comps))));
10972 end if;
10973 else
10974 return False;
10975 end if;
10977 else
10978 return False;
10979 end if;
10980 end Has_Null_Extension;
10982 -------------------------
10983 -- Has_Null_Refinement --
10984 -------------------------
10986 function Has_Null_Refinement (Id : Entity_Id) return Boolean is
10987 Constits : Elist_Id;
10989 begin
10990 pragma Assert (Ekind (Id) = E_Abstract_State);
10991 Constits := Refinement_Constituents (Id);
10993 -- For a refinement to be null, the state's sole constituent must be a
10994 -- null.
10996 return
10997 Present (Constits)
10998 and then Nkind (Node (First_Elmt (Constits))) = N_Null;
10999 end Has_Null_Refinement;
11001 -------------------------------
11002 -- Has_Overriding_Initialize --
11003 -------------------------------
11005 function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
11006 BT : constant Entity_Id := Base_Type (T);
11007 P : Elmt_Id;
11009 begin
11010 if Is_Controlled (BT) then
11011 if Is_RTU (Scope (BT), Ada_Finalization) then
11012 return False;
11014 elsif Present (Primitive_Operations (BT)) then
11015 P := First_Elmt (Primitive_Operations (BT));
11016 while Present (P) loop
11017 declare
11018 Init : constant Entity_Id := Node (P);
11019 Formal : constant Entity_Id := First_Formal (Init);
11020 begin
11021 if Ekind (Init) = E_Procedure
11022 and then Chars (Init) = Name_Initialize
11023 and then Comes_From_Source (Init)
11024 and then Present (Formal)
11025 and then Etype (Formal) = BT
11026 and then No (Next_Formal (Formal))
11027 and then (Ada_Version < Ada_2012
11028 or else not Null_Present (Parent (Init)))
11029 then
11030 return True;
11031 end if;
11032 end;
11034 Next_Elmt (P);
11035 end loop;
11036 end if;
11038 -- Here if type itself does not have a non-null Initialize operation:
11039 -- check immediate ancestor.
11041 if Is_Derived_Type (BT)
11042 and then Has_Overriding_Initialize (Etype (BT))
11043 then
11044 return True;
11045 end if;
11046 end if;
11048 return False;
11049 end Has_Overriding_Initialize;
11051 --------------------------------------
11052 -- Has_Preelaborable_Initialization --
11053 --------------------------------------
11055 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
11056 Has_PE : Boolean;
11058 procedure Check_Components (E : Entity_Id);
11059 -- Check component/discriminant chain, sets Has_PE False if a component
11060 -- or discriminant does not meet the preelaborable initialization rules.
11062 ----------------------
11063 -- Check_Components --
11064 ----------------------
11066 procedure Check_Components (E : Entity_Id) is
11067 Ent : Entity_Id;
11068 Exp : Node_Id;
11070 begin
11071 -- Loop through entities of record or protected type
11073 Ent := E;
11074 while Present (Ent) loop
11076 -- We are interested only in components and discriminants
11078 Exp := Empty;
11080 case Ekind (Ent) is
11081 when E_Component =>
11083 -- Get default expression if any. If there is no declaration
11084 -- node, it means we have an internal entity. The parent and
11085 -- tag fields are examples of such entities. For such cases,
11086 -- we just test the type of the entity.
11088 if Present (Declaration_Node (Ent)) then
11089 Exp := Expression (Declaration_Node (Ent));
11090 end if;
11092 when E_Discriminant =>
11094 -- Note: for a renamed discriminant, the Declaration_Node
11095 -- may point to the one from the ancestor, and have a
11096 -- different expression, so use the proper attribute to
11097 -- retrieve the expression from the derived constraint.
11099 Exp := Discriminant_Default_Value (Ent);
11101 when others =>
11102 goto Check_Next_Entity;
11103 end case;
11105 -- A component has PI if it has no default expression and the
11106 -- component type has PI.
11108 if No (Exp) then
11109 if not Has_Preelaborable_Initialization (Etype (Ent)) then
11110 Has_PE := False;
11111 exit;
11112 end if;
11114 -- Require the default expression to be preelaborable
11116 elsif not Is_Preelaborable_Construct (Exp) then
11117 Has_PE := False;
11118 exit;
11119 end if;
11121 <<Check_Next_Entity>>
11122 Next_Entity (Ent);
11123 end loop;
11124 end Check_Components;
11126 -- Start of processing for Has_Preelaborable_Initialization
11128 begin
11129 -- Immediate return if already marked as known preelaborable init. This
11130 -- covers types for which this function has already been called once
11131 -- and returned True (in which case the result is cached), and also
11132 -- types to which a pragma Preelaborable_Initialization applies.
11134 if Known_To_Have_Preelab_Init (E) then
11135 return True;
11136 end if;
11138 -- If the type is a subtype representing a generic actual type, then
11139 -- test whether its base type has preelaborable initialization since
11140 -- the subtype representing the actual does not inherit this attribute
11141 -- from the actual or formal. (but maybe it should???)
11143 if Is_Generic_Actual_Type (E) then
11144 return Has_Preelaborable_Initialization (Base_Type (E));
11145 end if;
11147 -- All elementary types have preelaborable initialization
11149 if Is_Elementary_Type (E) then
11150 Has_PE := True;
11152 -- Array types have PI if the component type has PI
11154 elsif Is_Array_Type (E) then
11155 Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
11157 -- A derived type has preelaborable initialization if its parent type
11158 -- has preelaborable initialization and (in the case of a derived record
11159 -- extension) if the non-inherited components all have preelaborable
11160 -- initialization. However, a user-defined controlled type with an
11161 -- overriding Initialize procedure does not have preelaborable
11162 -- initialization.
11164 elsif Is_Derived_Type (E) then
11166 -- If the derived type is a private extension then it doesn't have
11167 -- preelaborable initialization.
11169 if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
11170 return False;
11171 end if;
11173 -- First check whether ancestor type has preelaborable initialization
11175 Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
11177 -- If OK, check extension components (if any)
11179 if Has_PE and then Is_Record_Type (E) then
11180 Check_Components (First_Entity (E));
11181 end if;
11183 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
11184 -- with a user defined Initialize procedure does not have PI. If
11185 -- the type is untagged, the control primitives come from a component
11186 -- that has already been checked.
11188 if Has_PE
11189 and then Is_Controlled (E)
11190 and then Is_Tagged_Type (E)
11191 and then Has_Overriding_Initialize (E)
11192 then
11193 Has_PE := False;
11194 end if;
11196 -- Private types not derived from a type having preelaborable init and
11197 -- that are not marked with pragma Preelaborable_Initialization do not
11198 -- have preelaborable initialization.
11200 elsif Is_Private_Type (E) then
11201 return False;
11203 -- Record type has PI if it is non private and all components have PI
11205 elsif Is_Record_Type (E) then
11206 Has_PE := True;
11207 Check_Components (First_Entity (E));
11209 -- Protected types must not have entries, and components must meet
11210 -- same set of rules as for record components.
11212 elsif Is_Protected_Type (E) then
11213 if Has_Entries (E) then
11214 Has_PE := False;
11215 else
11216 Has_PE := True;
11217 Check_Components (First_Entity (E));
11218 Check_Components (First_Private_Entity (E));
11219 end if;
11221 -- Type System.Address always has preelaborable initialization
11223 elsif Is_RTE (E, RE_Address) then
11224 Has_PE := True;
11226 -- In all other cases, type does not have preelaborable initialization
11228 else
11229 return False;
11230 end if;
11232 -- If type has preelaborable initialization, cache result
11234 if Has_PE then
11235 Set_Known_To_Have_Preelab_Init (E);
11236 end if;
11238 return Has_PE;
11239 end Has_Preelaborable_Initialization;
11241 ---------------------------
11242 -- Has_Private_Component --
11243 ---------------------------
11245 function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
11246 Btype : Entity_Id := Base_Type (Type_Id);
11247 Component : Entity_Id;
11249 begin
11250 if Error_Posted (Type_Id)
11251 or else Error_Posted (Btype)
11252 then
11253 return False;
11254 end if;
11256 if Is_Class_Wide_Type (Btype) then
11257 Btype := Root_Type (Btype);
11258 end if;
11260 if Is_Private_Type (Btype) then
11261 declare
11262 UT : constant Entity_Id := Underlying_Type (Btype);
11263 begin
11264 if No (UT) then
11265 if No (Full_View (Btype)) then
11266 return not Is_Generic_Type (Btype)
11267 and then
11268 not Is_Generic_Type (Root_Type (Btype));
11269 else
11270 return not Is_Generic_Type (Root_Type (Full_View (Btype)));
11271 end if;
11272 else
11273 return not Is_Frozen (UT) and then Has_Private_Component (UT);
11274 end if;
11275 end;
11277 elsif Is_Array_Type (Btype) then
11278 return Has_Private_Component (Component_Type (Btype));
11280 elsif Is_Record_Type (Btype) then
11281 Component := First_Component (Btype);
11282 while Present (Component) loop
11283 if Has_Private_Component (Etype (Component)) then
11284 return True;
11285 end if;
11287 Next_Component (Component);
11288 end loop;
11290 return False;
11292 elsif Is_Protected_Type (Btype)
11293 and then Present (Corresponding_Record_Type (Btype))
11294 then
11295 return Has_Private_Component (Corresponding_Record_Type (Btype));
11297 else
11298 return False;
11299 end if;
11300 end Has_Private_Component;
11302 ----------------------
11303 -- Has_Signed_Zeros --
11304 ----------------------
11306 function Has_Signed_Zeros (E : Entity_Id) return Boolean is
11307 begin
11308 return Is_Floating_Point_Type (E) and then Signed_Zeros_On_Target;
11309 end Has_Signed_Zeros;
11311 ------------------------------
11312 -- Has_Significant_Contract --
11313 ------------------------------
11315 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean is
11316 Subp_Nam : constant Name_Id := Chars (Subp_Id);
11318 begin
11319 -- _Finalizer procedure
11321 if Subp_Nam = Name_uFinalizer then
11322 return False;
11324 -- _Postconditions procedure
11326 elsif Subp_Nam = Name_uPostconditions then
11327 return False;
11329 -- Predicate function
11331 elsif Ekind (Subp_Id) = E_Function
11332 and then Is_Predicate_Function (Subp_Id)
11333 then
11334 return False;
11336 -- TSS subprogram
11338 elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
11339 return False;
11341 else
11342 return True;
11343 end if;
11344 end Has_Significant_Contract;
11346 -----------------------------
11347 -- Has_Static_Array_Bounds --
11348 -----------------------------
11350 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
11351 Ndims : constant Nat := Number_Dimensions (Typ);
11353 Index : Node_Id;
11354 Low : Node_Id;
11355 High : Node_Id;
11357 begin
11358 -- Unconstrained types do not have static bounds
11360 if not Is_Constrained (Typ) then
11361 return False;
11362 end if;
11364 -- First treat string literals specially, as the lower bound and length
11365 -- of string literals are not stored like those of arrays.
11367 -- A string literal always has static bounds
11369 if Ekind (Typ) = E_String_Literal_Subtype then
11370 return True;
11371 end if;
11373 -- Treat all dimensions in turn
11375 Index := First_Index (Typ);
11376 for Indx in 1 .. Ndims loop
11378 -- In case of an illegal index which is not a discrete type, return
11379 -- that the type is not static.
11381 if not Is_Discrete_Type (Etype (Index))
11382 or else Etype (Index) = Any_Type
11383 then
11384 return False;
11385 end if;
11387 Get_Index_Bounds (Index, Low, High);
11389 if Error_Posted (Low) or else Error_Posted (High) then
11390 return False;
11391 end if;
11393 if Is_OK_Static_Expression (Low)
11394 and then
11395 Is_OK_Static_Expression (High)
11396 then
11397 null;
11398 else
11399 return False;
11400 end if;
11402 Next (Index);
11403 end loop;
11405 -- If we fall through the loop, all indexes matched
11407 return True;
11408 end Has_Static_Array_Bounds;
11410 ----------------
11411 -- Has_Stream --
11412 ----------------
11414 function Has_Stream (T : Entity_Id) return Boolean is
11415 E : Entity_Id;
11417 begin
11418 if No (T) then
11419 return False;
11421 elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
11422 return True;
11424 elsif Is_Array_Type (T) then
11425 return Has_Stream (Component_Type (T));
11427 elsif Is_Record_Type (T) then
11428 E := First_Component (T);
11429 while Present (E) loop
11430 if Has_Stream (Etype (E)) then
11431 return True;
11432 else
11433 Next_Component (E);
11434 end if;
11435 end loop;
11437 return False;
11439 elsif Is_Private_Type (T) then
11440 return Has_Stream (Underlying_Type (T));
11442 else
11443 return False;
11444 end if;
11445 end Has_Stream;
11447 ----------------
11448 -- Has_Suffix --
11449 ----------------
11451 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
11452 begin
11453 Get_Name_String (Chars (E));
11454 return Name_Buffer (Name_Len) = Suffix;
11455 end Has_Suffix;
11457 ----------------
11458 -- Add_Suffix --
11459 ----------------
11461 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
11462 begin
11463 Get_Name_String (Chars (E));
11464 Add_Char_To_Name_Buffer (Suffix);
11465 return Name_Find;
11466 end Add_Suffix;
11468 -------------------
11469 -- Remove_Suffix --
11470 -------------------
11472 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
11473 begin
11474 pragma Assert (Has_Suffix (E, Suffix));
11475 Get_Name_String (Chars (E));
11476 Name_Len := Name_Len - 1;
11477 return Name_Find;
11478 end Remove_Suffix;
11480 ----------------------------------
11481 -- Replace_Null_By_Null_Address --
11482 ----------------------------------
11484 procedure Replace_Null_By_Null_Address (N : Node_Id) is
11485 procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id);
11486 -- Replace operand Op with a reference to Null_Address when the operand
11487 -- denotes a null Address. Other_Op denotes the other operand.
11489 --------------------------
11490 -- Replace_Null_Operand --
11491 --------------------------
11493 procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id) is
11494 begin
11495 -- Check the type of the complementary operand since the N_Null node
11496 -- has not been decorated yet.
11498 if Nkind (Op) = N_Null
11499 and then Is_Descendant_Of_Address (Etype (Other_Op))
11500 then
11501 Rewrite (Op, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (Op)));
11502 end if;
11503 end Replace_Null_Operand;
11505 -- Start of processing for Replace_Null_By_Null_Address
11507 begin
11508 pragma Assert (Relaxed_RM_Semantics);
11509 pragma Assert (Nkind_In (N, N_Null,
11510 N_Op_Eq,
11511 N_Op_Ge,
11512 N_Op_Gt,
11513 N_Op_Le,
11514 N_Op_Lt,
11515 N_Op_Ne));
11517 if Nkind (N) = N_Null then
11518 Rewrite (N, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
11520 else
11521 declare
11522 L : constant Node_Id := Left_Opnd (N);
11523 R : constant Node_Id := Right_Opnd (N);
11525 begin
11526 Replace_Null_Operand (L, Other_Op => R);
11527 Replace_Null_Operand (R, Other_Op => L);
11528 end;
11529 end if;
11530 end Replace_Null_By_Null_Address;
11532 --------------------------
11533 -- Has_Tagged_Component --
11534 --------------------------
11536 function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
11537 Comp : Entity_Id;
11539 begin
11540 if Is_Private_Type (Typ) and then Present (Underlying_Type (Typ)) then
11541 return Has_Tagged_Component (Underlying_Type (Typ));
11543 elsif Is_Array_Type (Typ) then
11544 return Has_Tagged_Component (Component_Type (Typ));
11546 elsif Is_Tagged_Type (Typ) then
11547 return True;
11549 elsif Is_Record_Type (Typ) then
11550 Comp := First_Component (Typ);
11551 while Present (Comp) loop
11552 if Has_Tagged_Component (Etype (Comp)) then
11553 return True;
11554 end if;
11556 Next_Component (Comp);
11557 end loop;
11559 return False;
11561 else
11562 return False;
11563 end if;
11564 end Has_Tagged_Component;
11566 -----------------------------
11567 -- Has_Undefined_Reference --
11568 -----------------------------
11570 function Has_Undefined_Reference (Expr : Node_Id) return Boolean is
11571 Has_Undef_Ref : Boolean := False;
11572 -- Flag set when expression Expr contains at least one undefined
11573 -- reference.
11575 function Is_Undefined_Reference (N : Node_Id) return Traverse_Result;
11576 -- Determine whether N denotes a reference and if it does, whether it is
11577 -- undefined.
11579 ----------------------------
11580 -- Is_Undefined_Reference --
11581 ----------------------------
11583 function Is_Undefined_Reference (N : Node_Id) return Traverse_Result is
11584 begin
11585 if Is_Entity_Name (N)
11586 and then Present (Entity (N))
11587 and then Entity (N) = Any_Id
11588 then
11589 Has_Undef_Ref := True;
11590 return Abandon;
11591 end if;
11593 return OK;
11594 end Is_Undefined_Reference;
11596 procedure Find_Undefined_References is
11597 new Traverse_Proc (Is_Undefined_Reference);
11599 -- Start of processing for Has_Undefined_Reference
11601 begin
11602 Find_Undefined_References (Expr);
11604 return Has_Undef_Ref;
11605 end Has_Undefined_Reference;
11607 ----------------------------
11608 -- Has_Volatile_Component --
11609 ----------------------------
11611 function Has_Volatile_Component (Typ : Entity_Id) return Boolean is
11612 Comp : Entity_Id;
11614 begin
11615 if Has_Volatile_Components (Typ) then
11616 return True;
11618 elsif Is_Array_Type (Typ) then
11619 return Is_Volatile (Component_Type (Typ));
11621 elsif Is_Record_Type (Typ) then
11622 Comp := First_Component (Typ);
11623 while Present (Comp) loop
11624 if Is_Volatile_Object (Comp) then
11625 return True;
11626 end if;
11628 Comp := Next_Component (Comp);
11629 end loop;
11630 end if;
11632 return False;
11633 end Has_Volatile_Component;
11635 -------------------------
11636 -- Implementation_Kind --
11637 -------------------------
11639 function Implementation_Kind (Subp : Entity_Id) return Name_Id is
11640 Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
11641 Arg : Node_Id;
11642 begin
11643 pragma Assert (Present (Impl_Prag));
11644 Arg := Last (Pragma_Argument_Associations (Impl_Prag));
11645 return Chars (Get_Pragma_Arg (Arg));
11646 end Implementation_Kind;
11648 --------------------------
11649 -- Implements_Interface --
11650 --------------------------
11652 function Implements_Interface
11653 (Typ_Ent : Entity_Id;
11654 Iface_Ent : Entity_Id;
11655 Exclude_Parents : Boolean := False) return Boolean
11657 Ifaces_List : Elist_Id;
11658 Elmt : Elmt_Id;
11659 Iface : Entity_Id := Base_Type (Iface_Ent);
11660 Typ : Entity_Id := Base_Type (Typ_Ent);
11662 begin
11663 if Is_Class_Wide_Type (Typ) then
11664 Typ := Root_Type (Typ);
11665 end if;
11667 if not Has_Interfaces (Typ) then
11668 return False;
11669 end if;
11671 if Is_Class_Wide_Type (Iface) then
11672 Iface := Root_Type (Iface);
11673 end if;
11675 Collect_Interfaces (Typ, Ifaces_List);
11677 Elmt := First_Elmt (Ifaces_List);
11678 while Present (Elmt) loop
11679 if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
11680 and then Exclude_Parents
11681 then
11682 null;
11684 elsif Node (Elmt) = Iface then
11685 return True;
11686 end if;
11688 Next_Elmt (Elmt);
11689 end loop;
11691 return False;
11692 end Implements_Interface;
11694 ------------------------------------
11695 -- In_Assertion_Expression_Pragma --
11696 ------------------------------------
11698 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean is
11699 Par : Node_Id;
11700 Prag : Node_Id := Empty;
11702 begin
11703 -- Climb the parent chain looking for an enclosing pragma
11705 Par := N;
11706 while Present (Par) loop
11707 if Nkind (Par) = N_Pragma then
11708 Prag := Par;
11709 exit;
11711 -- Precondition-like pragmas are expanded into if statements, check
11712 -- the original node instead.
11714 elsif Nkind (Original_Node (Par)) = N_Pragma then
11715 Prag := Original_Node (Par);
11716 exit;
11718 -- The expansion of attribute 'Old generates a constant to capture
11719 -- the result of the prefix. If the parent traversal reaches
11720 -- one of these constants, then the node technically came from a
11721 -- postcondition-like pragma. Note that the Ekind is not tested here
11722 -- because N may be the expression of an object declaration which is
11723 -- currently being analyzed. Such objects carry Ekind of E_Void.
11725 elsif Nkind (Par) = N_Object_Declaration
11726 and then Constant_Present (Par)
11727 and then Stores_Attribute_Old_Prefix (Defining_Entity (Par))
11728 then
11729 return True;
11731 -- Prevent the search from going too far
11733 elsif Is_Body_Or_Package_Declaration (Par) then
11734 return False;
11735 end if;
11737 Par := Parent (Par);
11738 end loop;
11740 return
11741 Present (Prag)
11742 and then Assertion_Expression_Pragma (Get_Pragma_Id (Prag));
11743 end In_Assertion_Expression_Pragma;
11745 ----------------------
11746 -- In_Generic_Scope --
11747 ----------------------
11749 function In_Generic_Scope (E : Entity_Id) return Boolean is
11750 S : Entity_Id;
11752 begin
11753 S := Scope (E);
11754 while Present (S) and then S /= Standard_Standard loop
11755 if Is_Generic_Unit (S) then
11756 return True;
11757 end if;
11759 S := Scope (S);
11760 end loop;
11762 return False;
11763 end In_Generic_Scope;
11765 -----------------
11766 -- In_Instance --
11767 -----------------
11769 function In_Instance return Boolean is
11770 Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
11771 S : Entity_Id;
11773 begin
11774 S := Current_Scope;
11775 while Present (S) and then S /= Standard_Standard loop
11776 if Is_Generic_Instance (S) then
11778 -- A child instance is always compiled in the context of a parent
11779 -- instance. Nevertheless, the actuals are not analyzed in an
11780 -- instance context. We detect this case by examining the current
11781 -- compilation unit, which must be a child instance, and checking
11782 -- that it is not currently on the scope stack.
11784 if Is_Child_Unit (Curr_Unit)
11785 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
11786 N_Package_Instantiation
11787 and then not In_Open_Scopes (Curr_Unit)
11788 then
11789 return False;
11790 else
11791 return True;
11792 end if;
11793 end if;
11795 S := Scope (S);
11796 end loop;
11798 return False;
11799 end In_Instance;
11801 ----------------------
11802 -- In_Instance_Body --
11803 ----------------------
11805 function In_Instance_Body return Boolean is
11806 S : Entity_Id;
11808 begin
11809 S := Current_Scope;
11810 while Present (S) and then S /= Standard_Standard loop
11811 if Ekind_In (S, E_Function, E_Procedure)
11812 and then Is_Generic_Instance (S)
11813 then
11814 return True;
11816 elsif Ekind (S) = E_Package
11817 and then In_Package_Body (S)
11818 and then Is_Generic_Instance (S)
11819 then
11820 return True;
11821 end if;
11823 S := Scope (S);
11824 end loop;
11826 return False;
11827 end In_Instance_Body;
11829 -----------------------------
11830 -- In_Instance_Not_Visible --
11831 -----------------------------
11833 function In_Instance_Not_Visible return Boolean is
11834 S : Entity_Id;
11836 begin
11837 S := Current_Scope;
11838 while Present (S) and then S /= Standard_Standard loop
11839 if Ekind_In (S, E_Function, E_Procedure)
11840 and then Is_Generic_Instance (S)
11841 then
11842 return True;
11844 elsif Ekind (S) = E_Package
11845 and then (In_Package_Body (S) or else In_Private_Part (S))
11846 and then Is_Generic_Instance (S)
11847 then
11848 return True;
11849 end if;
11851 S := Scope (S);
11852 end loop;
11854 return False;
11855 end In_Instance_Not_Visible;
11857 ------------------------------
11858 -- In_Instance_Visible_Part --
11859 ------------------------------
11861 function In_Instance_Visible_Part
11862 (Id : Entity_Id := Current_Scope) return Boolean
11864 Inst : Entity_Id;
11866 begin
11867 Inst := Id;
11868 while Present (Inst) and then Inst /= Standard_Standard loop
11869 if Ekind (Inst) = E_Package
11870 and then Is_Generic_Instance (Inst)
11871 and then not In_Package_Body (Inst)
11872 and then not In_Private_Part (Inst)
11873 then
11874 return True;
11875 end if;
11877 Inst := Scope (Inst);
11878 end loop;
11880 return False;
11881 end In_Instance_Visible_Part;
11883 ---------------------
11884 -- In_Package_Body --
11885 ---------------------
11887 function In_Package_Body return Boolean is
11888 S : Entity_Id;
11890 begin
11891 S := Current_Scope;
11892 while Present (S) and then S /= Standard_Standard loop
11893 if Ekind (S) = E_Package and then In_Package_Body (S) then
11894 return True;
11895 else
11896 S := Scope (S);
11897 end if;
11898 end loop;
11900 return False;
11901 end In_Package_Body;
11903 --------------------------
11904 -- In_Pragma_Expression --
11905 --------------------------
11907 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean is
11908 P : Node_Id;
11909 begin
11910 P := Parent (N);
11911 loop
11912 if No (P) then
11913 return False;
11914 elsif Nkind (P) = N_Pragma and then Pragma_Name (P) = Nam then
11915 return True;
11916 else
11917 P := Parent (P);
11918 end if;
11919 end loop;
11920 end In_Pragma_Expression;
11922 ---------------------------
11923 -- In_Pre_Post_Condition --
11924 ---------------------------
11926 function In_Pre_Post_Condition (N : Node_Id) return Boolean is
11927 Par : Node_Id;
11928 Prag : Node_Id := Empty;
11929 Prag_Id : Pragma_Id;
11931 begin
11932 -- Climb the parent chain looking for an enclosing pragma
11934 Par := N;
11935 while Present (Par) loop
11936 if Nkind (Par) = N_Pragma then
11937 Prag := Par;
11938 exit;
11940 -- Prevent the search from going too far
11942 elsif Is_Body_Or_Package_Declaration (Par) then
11943 exit;
11944 end if;
11946 Par := Parent (Par);
11947 end loop;
11949 if Present (Prag) then
11950 Prag_Id := Get_Pragma_Id (Prag);
11952 return
11953 Prag_Id = Pragma_Post
11954 or else Prag_Id = Pragma_Post_Class
11955 or else Prag_Id = Pragma_Postcondition
11956 or else Prag_Id = Pragma_Pre
11957 or else Prag_Id = Pragma_Pre_Class
11958 or else Prag_Id = Pragma_Precondition;
11960 -- Otherwise the node is not enclosed by a pre/postcondition pragma
11962 else
11963 return False;
11964 end if;
11965 end In_Pre_Post_Condition;
11967 -------------------------------------
11968 -- In_Reverse_Storage_Order_Object --
11969 -------------------------------------
11971 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
11972 Pref : Node_Id;
11973 Btyp : Entity_Id := Empty;
11975 begin
11976 -- Climb up indexed components
11978 Pref := N;
11979 loop
11980 case Nkind (Pref) is
11981 when N_Selected_Component =>
11982 Pref := Prefix (Pref);
11983 exit;
11985 when N_Indexed_Component =>
11986 Pref := Prefix (Pref);
11988 when others =>
11989 Pref := Empty;
11990 exit;
11991 end case;
11992 end loop;
11994 if Present (Pref) then
11995 Btyp := Base_Type (Etype (Pref));
11996 end if;
11998 return Present (Btyp)
11999 and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
12000 and then Reverse_Storage_Order (Btyp);
12001 end In_Reverse_Storage_Order_Object;
12003 --------------------------------------
12004 -- In_Subprogram_Or_Concurrent_Unit --
12005 --------------------------------------
12007 function In_Subprogram_Or_Concurrent_Unit return Boolean is
12008 E : Entity_Id;
12009 K : Entity_Kind;
12011 begin
12012 -- Use scope chain to check successively outer scopes
12014 E := Current_Scope;
12015 loop
12016 K := Ekind (E);
12018 if K in Subprogram_Kind
12019 or else K in Concurrent_Kind
12020 or else K in Generic_Subprogram_Kind
12021 then
12022 return True;
12024 elsif E = Standard_Standard then
12025 return False;
12026 end if;
12028 E := Scope (E);
12029 end loop;
12030 end In_Subprogram_Or_Concurrent_Unit;
12032 ----------------
12033 -- In_Subtree --
12034 ----------------
12036 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean is
12037 Curr : Node_Id;
12039 begin
12040 Curr := N;
12041 while Present (Curr) loop
12042 if Curr = Root then
12043 return True;
12044 end if;
12046 Curr := Parent (Curr);
12047 end loop;
12049 return False;
12050 end In_Subtree;
12052 ----------------
12053 -- In_Subtree --
12054 ----------------
12056 function In_Subtree
12057 (N : Node_Id;
12058 Root1 : Node_Id;
12059 Root2 : Node_Id) return Boolean
12061 Curr : Node_Id;
12063 begin
12064 Curr := N;
12065 while Present (Curr) loop
12066 if Curr = Root1 or else Curr = Root2 then
12067 return True;
12068 end if;
12070 Curr := Parent (Curr);
12071 end loop;
12073 return False;
12074 end In_Subtree;
12076 ---------------------
12077 -- In_Visible_Part --
12078 ---------------------
12080 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
12081 begin
12082 return Is_Package_Or_Generic_Package (Scope_Id)
12083 and then In_Open_Scopes (Scope_Id)
12084 and then not In_Package_Body (Scope_Id)
12085 and then not In_Private_Part (Scope_Id);
12086 end In_Visible_Part;
12088 --------------------------------
12089 -- Incomplete_Or_Partial_View --
12090 --------------------------------
12092 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id is
12093 function Inspect_Decls
12094 (Decls : List_Id;
12095 Taft : Boolean := False) return Entity_Id;
12096 -- Check whether a declarative region contains the incomplete or partial
12097 -- view of Id.
12099 -------------------
12100 -- Inspect_Decls --
12101 -------------------
12103 function Inspect_Decls
12104 (Decls : List_Id;
12105 Taft : Boolean := False) return Entity_Id
12107 Decl : Node_Id;
12108 Match : Node_Id;
12110 begin
12111 Decl := First (Decls);
12112 while Present (Decl) loop
12113 Match := Empty;
12115 -- The partial view of a Taft-amendment type is an incomplete
12116 -- type.
12118 if Taft then
12119 if Nkind (Decl) = N_Incomplete_Type_Declaration then
12120 Match := Defining_Identifier (Decl);
12121 end if;
12123 -- Otherwise look for a private type whose full view matches the
12124 -- input type. Note that this checks full_type_declaration nodes
12125 -- to account for derivations from a private type where the type
12126 -- declaration hold the partial view and the full view is an
12127 -- itype.
12129 elsif Nkind_In (Decl, N_Full_Type_Declaration,
12130 N_Private_Extension_Declaration,
12131 N_Private_Type_Declaration)
12132 then
12133 Match := Defining_Identifier (Decl);
12134 end if;
12136 -- Guard against unanalyzed entities
12138 if Present (Match)
12139 and then Is_Type (Match)
12140 and then Present (Full_View (Match))
12141 and then Full_View (Match) = Id
12142 then
12143 return Match;
12144 end if;
12146 Next (Decl);
12147 end loop;
12149 return Empty;
12150 end Inspect_Decls;
12152 -- Local variables
12154 Prev : Entity_Id;
12156 -- Start of processing for Incomplete_Or_Partial_View
12158 begin
12159 -- Deferred constant or incomplete type case
12161 Prev := Current_Entity_In_Scope (Id);
12163 if Present (Prev)
12164 and then (Is_Incomplete_Type (Prev) or else Ekind (Prev) = E_Constant)
12165 and then Present (Full_View (Prev))
12166 and then Full_View (Prev) = Id
12167 then
12168 return Prev;
12169 end if;
12171 -- Private or Taft amendment type case
12173 declare
12174 Pkg : constant Entity_Id := Scope (Id);
12175 Pkg_Decl : Node_Id := Pkg;
12177 begin
12178 if Present (Pkg)
12179 and then Ekind_In (Pkg, E_Generic_Package, E_Package)
12180 then
12181 while Nkind (Pkg_Decl) /= N_Package_Specification loop
12182 Pkg_Decl := Parent (Pkg_Decl);
12183 end loop;
12185 -- It is knows that Typ has a private view, look for it in the
12186 -- visible declarations of the enclosing scope. A special case
12187 -- of this is when the two views have been exchanged - the full
12188 -- appears earlier than the private.
12190 if Has_Private_Declaration (Id) then
12191 Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));
12193 -- Exchanged view case, look in the private declarations
12195 if No (Prev) then
12196 Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
12197 end if;
12199 return Prev;
12201 -- Otherwise if this is the package body, then Typ is a potential
12202 -- Taft amendment type. The incomplete view should be located in
12203 -- the private declarations of the enclosing scope.
12205 elsif In_Package_Body (Pkg) then
12206 return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
12207 end if;
12208 end if;
12209 end;
12211 -- The type has no incomplete or private view
12213 return Empty;
12214 end Incomplete_Or_Partial_View;
12216 ---------------------------------------
12217 -- Incomplete_View_From_Limited_With --
12218 ---------------------------------------
12220 function Incomplete_View_From_Limited_With
12221 (Typ : Entity_Id) return Entity_Id is
12222 begin
12223 -- It might make sense to make this an attribute in Einfo, and set it
12224 -- in Sem_Ch10 in Build_Shadow_Entity. However, we're running short on
12225 -- slots for new attributes, and it seems a bit simpler to just search
12226 -- the Limited_View (if it exists) for an incomplete type whose
12227 -- Non_Limited_View is Typ.
12229 if Ekind (Scope (Typ)) = E_Package
12230 and then Present (Limited_View (Scope (Typ)))
12231 then
12232 declare
12233 Ent : Entity_Id := First_Entity (Limited_View (Scope (Typ)));
12234 begin
12235 while Present (Ent) loop
12236 if Ekind (Ent) in Incomplete_Kind
12237 and then Non_Limited_View (Ent) = Typ
12238 then
12239 return Ent;
12240 end if;
12242 Ent := Next_Entity (Ent);
12243 end loop;
12244 end;
12245 end if;
12247 return Typ;
12248 end Incomplete_View_From_Limited_With;
12250 ----------------------------------
12251 -- Indexed_Component_Bit_Offset --
12252 ----------------------------------
12254 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint is
12255 Exp : constant Node_Id := First (Expressions (N));
12256 Typ : constant Entity_Id := Etype (Prefix (N));
12257 Off : constant Uint := Component_Size (Typ);
12258 Ind : Node_Id;
12260 begin
12261 -- Return early if the component size is not known or variable
12263 if Off = No_Uint or else Off < Uint_0 then
12264 return No_Uint;
12265 end if;
12267 -- Deal with the degenerate case of an empty component
12269 if Off = Uint_0 then
12270 return Off;
12271 end if;
12273 -- Check that both the index value and the low bound are known
12275 if not Compile_Time_Known_Value (Exp) then
12276 return No_Uint;
12277 end if;
12279 Ind := First_Index (Typ);
12280 if No (Ind) then
12281 return No_Uint;
12282 end if;
12284 if Nkind (Ind) = N_Subtype_Indication then
12285 Ind := Constraint (Ind);
12287 if Nkind (Ind) = N_Range_Constraint then
12288 Ind := Range_Expression (Ind);
12289 end if;
12290 end if;
12292 if Nkind (Ind) /= N_Range
12293 or else not Compile_Time_Known_Value (Low_Bound (Ind))
12294 then
12295 return No_Uint;
12296 end if;
12298 -- Return the scaled offset
12300 return Off * (Expr_Value (Exp) - Expr_Value (Low_Bound ((Ind))));
12301 end Indexed_Component_Bit_Offset;
12303 ----------------------------
12304 -- Inherit_Rep_Item_Chain --
12305 ----------------------------
12307 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id) is
12308 Item : Node_Id;
12309 Next_Item : Node_Id;
12311 begin
12312 -- There are several inheritance scenarios to consider depending on
12313 -- whether both types have rep item chains and whether the destination
12314 -- type already inherits part of the source type's rep item chain.
12316 -- 1) The source type lacks a rep item chain
12317 -- From_Typ ---> Empty
12319 -- Typ --------> Item (or Empty)
12321 -- In this case inheritance cannot take place because there are no items
12322 -- to inherit.
12324 -- 2) The destination type lacks a rep item chain
12325 -- From_Typ ---> Item ---> ...
12327 -- Typ --------> Empty
12329 -- Inheritance takes place by setting the First_Rep_Item of the
12330 -- destination type to the First_Rep_Item of the source type.
12331 -- From_Typ ---> Item ---> ...
12332 -- ^
12333 -- Typ -----------+
12335 -- 3.1) Both source and destination types have at least one rep item.
12336 -- The destination type does NOT inherit a rep item from the source
12337 -- type.
12338 -- From_Typ ---> Item ---> Item
12340 -- Typ --------> Item ---> Item
12342 -- Inheritance takes place by setting the Next_Rep_Item of the last item
12343 -- of the destination type to the First_Rep_Item of the source type.
12344 -- From_Typ -------------------> Item ---> Item
12345 -- ^
12346 -- Typ --------> Item ---> Item --+
12348 -- 3.2) Both source and destination types have at least one rep item.
12349 -- The destination type DOES inherit part of the rep item chain of the
12350 -- source type.
12351 -- From_Typ ---> Item ---> Item ---> Item
12352 -- ^
12353 -- Typ --------> Item ------+
12355 -- This rare case arises when the full view of a private extension must
12356 -- inherit the rep item chain from the full view of its parent type and
12357 -- the full view of the parent type contains extra rep items. Currently
12358 -- only invariants may lead to such form of inheritance.
12360 -- type From_Typ is tagged private
12361 -- with Type_Invariant'Class => Item_2;
12363 -- type Typ is new From_Typ with private
12364 -- with Type_Invariant => Item_4;
12366 -- At this point the rep item chains contain the following items
12368 -- From_Typ -----------> Item_2 ---> Item_3
12369 -- ^
12370 -- Typ --------> Item_4 --+
12372 -- The full views of both types may introduce extra invariants
12374 -- type From_Typ is tagged null record
12375 -- with Type_Invariant => Item_1;
12377 -- type Typ is new From_Typ with null record;
12379 -- The full view of Typ would have to inherit any new rep items added to
12380 -- the full view of From_Typ.
12382 -- From_Typ -----------> Item_1 ---> Item_2 ---> Item_3
12383 -- ^
12384 -- Typ --------> Item_4 --+
12386 -- To achieve this form of inheritance, the destination type must first
12387 -- sever the link between its own rep chain and that of the source type,
12388 -- then inheritance 3.1 takes place.
12390 -- Case 1: The source type lacks a rep item chain
12392 if No (First_Rep_Item (From_Typ)) then
12393 return;
12395 -- Case 2: The destination type lacks a rep item chain
12397 elsif No (First_Rep_Item (Typ)) then
12398 Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
12400 -- Case 3: Both the source and destination types have at least one rep
12401 -- item. Traverse the rep item chain of the destination type to find the
12402 -- last rep item.
12404 else
12405 Item := Empty;
12406 Next_Item := First_Rep_Item (Typ);
12407 while Present (Next_Item) loop
12409 -- Detect a link between the destination type's rep chain and that
12410 -- of the source type. There are two possibilities:
12412 -- Variant 1
12413 -- Next_Item
12414 -- V
12415 -- From_Typ ---> Item_1 --->
12416 -- ^
12417 -- Typ -----------+
12419 -- Item is Empty
12421 -- Variant 2
12422 -- Next_Item
12423 -- V
12424 -- From_Typ ---> Item_1 ---> Item_2 --->
12425 -- ^
12426 -- Typ --------> Item_3 ------+
12427 -- ^
12428 -- Item
12430 if Has_Rep_Item (From_Typ, Next_Item) then
12431 exit;
12432 end if;
12434 Item := Next_Item;
12435 Next_Item := Next_Rep_Item (Next_Item);
12436 end loop;
12438 -- Inherit the source type's rep item chain
12440 if Present (Item) then
12441 Set_Next_Rep_Item (Item, First_Rep_Item (From_Typ));
12442 else
12443 Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
12444 end if;
12445 end if;
12446 end Inherit_Rep_Item_Chain;
12448 ---------------------------------
12449 -- Insert_Explicit_Dereference --
12450 ---------------------------------
12452 procedure Insert_Explicit_Dereference (N : Node_Id) is
12453 New_Prefix : constant Node_Id := Relocate_Node (N);
12454 Ent : Entity_Id := Empty;
12455 Pref : Node_Id;
12456 I : Interp_Index;
12457 It : Interp;
12458 T : Entity_Id;
12460 begin
12461 Save_Interps (N, New_Prefix);
12463 Rewrite (N,
12464 Make_Explicit_Dereference (Sloc (Parent (N)),
12465 Prefix => New_Prefix));
12467 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
12469 if Is_Overloaded (New_Prefix) then
12471 -- The dereference is also overloaded, and its interpretations are
12472 -- the designated types of the interpretations of the original node.
12474 Set_Etype (N, Any_Type);
12476 Get_First_Interp (New_Prefix, I, It);
12477 while Present (It.Nam) loop
12478 T := It.Typ;
12480 if Is_Access_Type (T) then
12481 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
12482 end if;
12484 Get_Next_Interp (I, It);
12485 end loop;
12487 End_Interp_List;
12489 else
12490 -- Prefix is unambiguous: mark the original prefix (which might
12491 -- Come_From_Source) as a reference, since the new (relocated) one
12492 -- won't be taken into account.
12494 if Is_Entity_Name (New_Prefix) then
12495 Ent := Entity (New_Prefix);
12496 Pref := New_Prefix;
12498 -- For a retrieval of a subcomponent of some composite object,
12499 -- retrieve the ultimate entity if there is one.
12501 elsif Nkind_In (New_Prefix, N_Selected_Component,
12502 N_Indexed_Component)
12503 then
12504 Pref := Prefix (New_Prefix);
12505 while Present (Pref)
12506 and then Nkind_In (Pref, N_Selected_Component,
12507 N_Indexed_Component)
12508 loop
12509 Pref := Prefix (Pref);
12510 end loop;
12512 if Present (Pref) and then Is_Entity_Name (Pref) then
12513 Ent := Entity (Pref);
12514 end if;
12515 end if;
12517 -- Place the reference on the entity node
12519 if Present (Ent) then
12520 Generate_Reference (Ent, Pref);
12521 end if;
12522 end if;
12523 end Insert_Explicit_Dereference;
12525 ------------------------------------------
12526 -- Inspect_Deferred_Constant_Completion --
12527 ------------------------------------------
12529 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
12530 Decl : Node_Id;
12532 begin
12533 Decl := First (Decls);
12534 while Present (Decl) loop
12536 -- Deferred constant signature
12538 if Nkind (Decl) = N_Object_Declaration
12539 and then Constant_Present (Decl)
12540 and then No (Expression (Decl))
12542 -- No need to check internally generated constants
12544 and then Comes_From_Source (Decl)
12546 -- The constant is not completed. A full object declaration or a
12547 -- pragma Import complete a deferred constant.
12549 and then not Has_Completion (Defining_Identifier (Decl))
12550 then
12551 Error_Msg_N
12552 ("constant declaration requires initialization expression",
12553 Defining_Identifier (Decl));
12554 end if;
12556 Decl := Next (Decl);
12557 end loop;
12558 end Inspect_Deferred_Constant_Completion;
12560 -----------------------------
12561 -- Install_Generic_Formals --
12562 -----------------------------
12564 procedure Install_Generic_Formals (Subp_Id : Entity_Id) is
12565 E : Entity_Id;
12567 begin
12568 pragma Assert (Is_Generic_Subprogram (Subp_Id));
12570 E := First_Entity (Subp_Id);
12571 while Present (E) loop
12572 Install_Entity (E);
12573 Next_Entity (E);
12574 end loop;
12575 end Install_Generic_Formals;
12577 ------------------------
12578 -- Install_SPARK_Mode --
12579 ------------------------
12581 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id) is
12582 begin
12583 SPARK_Mode := Mode;
12584 SPARK_Mode_Pragma := Prag;
12585 end Install_SPARK_Mode;
12587 -----------------------------
12588 -- Is_Actual_Out_Parameter --
12589 -----------------------------
12591 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
12592 Formal : Entity_Id;
12593 Call : Node_Id;
12594 begin
12595 Find_Actual (N, Formal, Call);
12596 return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
12597 end Is_Actual_Out_Parameter;
12599 -------------------------
12600 -- Is_Actual_Parameter --
12601 -------------------------
12603 function Is_Actual_Parameter (N : Node_Id) return Boolean is
12604 PK : constant Node_Kind := Nkind (Parent (N));
12606 begin
12607 case PK is
12608 when N_Parameter_Association =>
12609 return N = Explicit_Actual_Parameter (Parent (N));
12611 when N_Subprogram_Call =>
12612 return Is_List_Member (N)
12613 and then
12614 List_Containing (N) = Parameter_Associations (Parent (N));
12616 when others =>
12617 return False;
12618 end case;
12619 end Is_Actual_Parameter;
12621 --------------------------------
12622 -- Is_Actual_Tagged_Parameter --
12623 --------------------------------
12625 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
12626 Formal : Entity_Id;
12627 Call : Node_Id;
12628 begin
12629 Find_Actual (N, Formal, Call);
12630 return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
12631 end Is_Actual_Tagged_Parameter;
12633 ---------------------
12634 -- Is_Aliased_View --
12635 ---------------------
12637 function Is_Aliased_View (Obj : Node_Id) return Boolean is
12638 E : Entity_Id;
12640 begin
12641 if Is_Entity_Name (Obj) then
12642 E := Entity (Obj);
12644 return
12645 (Is_Object (E)
12646 and then
12647 (Is_Aliased (E)
12648 or else (Present (Renamed_Object (E))
12649 and then Is_Aliased_View (Renamed_Object (E)))))
12651 or else ((Is_Formal (E) or else Is_Formal_Object (E))
12652 and then Is_Tagged_Type (Etype (E)))
12654 or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))
12656 -- Current instance of type, either directly or as rewritten
12657 -- reference to the current object.
12659 or else (Is_Entity_Name (Original_Node (Obj))
12660 and then Present (Entity (Original_Node (Obj)))
12661 and then Is_Type (Entity (Original_Node (Obj))))
12663 or else (Is_Type (E) and then E = Current_Scope)
12665 or else (Is_Incomplete_Or_Private_Type (E)
12666 and then Full_View (E) = Current_Scope)
12668 -- Ada 2012 AI05-0053: the return object of an extended return
12669 -- statement is aliased if its type is immutably limited.
12671 or else (Is_Return_Object (E)
12672 and then Is_Limited_View (Etype (E)));
12674 elsif Nkind (Obj) = N_Selected_Component then
12675 return Is_Aliased (Entity (Selector_Name (Obj)));
12677 elsif Nkind (Obj) = N_Indexed_Component then
12678 return Has_Aliased_Components (Etype (Prefix (Obj)))
12679 or else
12680 (Is_Access_Type (Etype (Prefix (Obj)))
12681 and then Has_Aliased_Components
12682 (Designated_Type (Etype (Prefix (Obj)))));
12684 elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then
12685 return Is_Tagged_Type (Etype (Obj))
12686 and then Is_Aliased_View (Expression (Obj));
12688 elsif Nkind (Obj) = N_Explicit_Dereference then
12689 return Nkind (Original_Node (Obj)) /= N_Function_Call;
12691 else
12692 return False;
12693 end if;
12694 end Is_Aliased_View;
12696 -------------------------
12697 -- Is_Ancestor_Package --
12698 -------------------------
12700 function Is_Ancestor_Package
12701 (E1 : Entity_Id;
12702 E2 : Entity_Id) return Boolean
12704 Par : Entity_Id;
12706 begin
12707 Par := E2;
12708 while Present (Par) and then Par /= Standard_Standard loop
12709 if Par = E1 then
12710 return True;
12711 end if;
12713 Par := Scope (Par);
12714 end loop;
12716 return False;
12717 end Is_Ancestor_Package;
12719 ----------------------
12720 -- Is_Atomic_Object --
12721 ----------------------
12723 function Is_Atomic_Object (N : Node_Id) return Boolean is
12725 function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
12726 -- Determines if given object has atomic components
12728 function Is_Atomic_Prefix (N : Node_Id) return Boolean;
12729 -- If prefix is an implicit dereference, examine designated type
12731 ----------------------
12732 -- Is_Atomic_Prefix --
12733 ----------------------
12735 function Is_Atomic_Prefix (N : Node_Id) return Boolean is
12736 begin
12737 if Is_Access_Type (Etype (N)) then
12738 return
12739 Has_Atomic_Components (Designated_Type (Etype (N)));
12740 else
12741 return Object_Has_Atomic_Components (N);
12742 end if;
12743 end Is_Atomic_Prefix;
12745 ----------------------------------
12746 -- Object_Has_Atomic_Components --
12747 ----------------------------------
12749 function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
12750 begin
12751 if Has_Atomic_Components (Etype (N))
12752 or else Is_Atomic (Etype (N))
12753 then
12754 return True;
12756 elsif Is_Entity_Name (N)
12757 and then (Has_Atomic_Components (Entity (N))
12758 or else Is_Atomic (Entity (N)))
12759 then
12760 return True;
12762 elsif Nkind (N) = N_Selected_Component
12763 and then Is_Atomic (Entity (Selector_Name (N)))
12764 then
12765 return True;
12767 elsif Nkind (N) = N_Indexed_Component
12768 or else Nkind (N) = N_Selected_Component
12769 then
12770 return Is_Atomic_Prefix (Prefix (N));
12772 else
12773 return False;
12774 end if;
12775 end Object_Has_Atomic_Components;
12777 -- Start of processing for Is_Atomic_Object
12779 begin
12780 -- Predicate is not relevant to subprograms
12782 if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
12783 return False;
12785 elsif Is_Atomic (Etype (N))
12786 or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
12787 then
12788 return True;
12790 elsif Nkind (N) = N_Selected_Component
12791 and then Is_Atomic (Entity (Selector_Name (N)))
12792 then
12793 return True;
12795 elsif Nkind (N) = N_Indexed_Component
12796 or else Nkind (N) = N_Selected_Component
12797 then
12798 return Is_Atomic_Prefix (Prefix (N));
12800 else
12801 return False;
12802 end if;
12803 end Is_Atomic_Object;
12805 -----------------------------
12806 -- Is_Atomic_Or_VFA_Object --
12807 -----------------------------
12809 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean is
12810 begin
12811 return Is_Atomic_Object (N)
12812 or else (Is_Object_Reference (N)
12813 and then Is_Entity_Name (N)
12814 and then (Is_Volatile_Full_Access (Entity (N))
12815 or else
12816 Is_Volatile_Full_Access (Etype (Entity (N)))));
12817 end Is_Atomic_Or_VFA_Object;
12819 -------------------------
12820 -- Is_Attribute_Result --
12821 -------------------------
12823 function Is_Attribute_Result (N : Node_Id) return Boolean is
12824 begin
12825 return Nkind (N) = N_Attribute_Reference
12826 and then Attribute_Name (N) = Name_Result;
12827 end Is_Attribute_Result;
12829 -------------------------
12830 -- Is_Attribute_Update --
12831 -------------------------
12833 function Is_Attribute_Update (N : Node_Id) return Boolean is
12834 begin
12835 return Nkind (N) = N_Attribute_Reference
12836 and then Attribute_Name (N) = Name_Update;
12837 end Is_Attribute_Update;
12839 ------------------------------------
12840 -- Is_Body_Or_Package_Declaration --
12841 ------------------------------------
12843 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean is
12844 begin
12845 return Nkind_In (N, N_Entry_Body,
12846 N_Package_Body,
12847 N_Package_Declaration,
12848 N_Protected_Body,
12849 N_Subprogram_Body,
12850 N_Task_Body);
12851 end Is_Body_Or_Package_Declaration;
12853 -----------------------
12854 -- Is_Bounded_String --
12855 -----------------------
12857 function Is_Bounded_String (T : Entity_Id) return Boolean is
12858 Under : constant Entity_Id := Underlying_Type (Root_Type (T));
12860 begin
12861 -- Check whether T is ultimately derived from Ada.Strings.Superbounded.
12862 -- Super_String, or one of the [Wide_]Wide_ versions. This will
12863 -- be True for all the Bounded_String types in instances of the
12864 -- Generic_Bounded_Length generics, and for types derived from those.
12866 return Present (Under)
12867 and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
12868 Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
12869 Is_RTE (Root_Type (Under), RO_WW_Super_String));
12870 end Is_Bounded_String;
12872 ---------------------
12873 -- Is_CCT_Instance --
12874 ---------------------
12876 function Is_CCT_Instance
12877 (Ref_Id : Entity_Id;
12878 Context_Id : Entity_Id) return Boolean
12880 begin
12881 pragma Assert (Ekind_In (Ref_Id, E_Protected_Type, E_Task_Type));
12883 if Is_Single_Task_Object (Context_Id) then
12884 return Scope_Within_Or_Same (Etype (Context_Id), Ref_Id);
12886 else
12887 pragma Assert (Ekind_In (Context_Id, E_Entry,
12888 E_Entry_Family,
12889 E_Function,
12890 E_Package,
12891 E_Procedure,
12892 E_Protected_Type,
12893 E_Task_Type)
12894 or else
12895 Is_Record_Type (Context_Id));
12896 return Scope_Within_Or_Same (Context_Id, Ref_Id);
12897 end if;
12898 end Is_CCT_Instance;
12900 -------------------------
12901 -- Is_Child_Or_Sibling --
12902 -------------------------
12904 function Is_Child_Or_Sibling
12905 (Pack_1 : Entity_Id;
12906 Pack_2 : Entity_Id) return Boolean
12908 function Distance_From_Standard (Pack : Entity_Id) return Nat;
12909 -- Given an arbitrary package, return the number of "climbs" necessary
12910 -- to reach scope Standard_Standard.
12912 procedure Equalize_Depths
12913 (Pack : in out Entity_Id;
12914 Depth : in out Nat;
12915 Depth_To_Reach : Nat);
12916 -- Given an arbitrary package, its depth and a target depth to reach,
12917 -- climb the scope chain until the said depth is reached. The pointer
12918 -- to the package and its depth a modified during the climb.
12920 ----------------------------
12921 -- Distance_From_Standard --
12922 ----------------------------
12924 function Distance_From_Standard (Pack : Entity_Id) return Nat is
12925 Dist : Nat;
12926 Scop : Entity_Id;
12928 begin
12929 Dist := 0;
12930 Scop := Pack;
12931 while Present (Scop) and then Scop /= Standard_Standard loop
12932 Dist := Dist + 1;
12933 Scop := Scope (Scop);
12934 end loop;
12936 return Dist;
12937 end Distance_From_Standard;
12939 ---------------------
12940 -- Equalize_Depths --
12941 ---------------------
12943 procedure Equalize_Depths
12944 (Pack : in out Entity_Id;
12945 Depth : in out Nat;
12946 Depth_To_Reach : Nat)
12948 begin
12949 -- The package must be at a greater or equal depth
12951 if Depth < Depth_To_Reach then
12952 raise Program_Error;
12953 end if;
12955 -- Climb the scope chain until the desired depth is reached
12957 while Present (Pack) and then Depth /= Depth_To_Reach loop
12958 Pack := Scope (Pack);
12959 Depth := Depth - 1;
12960 end loop;
12961 end Equalize_Depths;
12963 -- Local variables
12965 P_1 : Entity_Id := Pack_1;
12966 P_1_Child : Boolean := False;
12967 P_1_Depth : Nat := Distance_From_Standard (P_1);
12968 P_2 : Entity_Id := Pack_2;
12969 P_2_Child : Boolean := False;
12970 P_2_Depth : Nat := Distance_From_Standard (P_2);
12972 -- Start of processing for Is_Child_Or_Sibling
12974 begin
12975 pragma Assert
12976 (Ekind (Pack_1) = E_Package and then Ekind (Pack_2) = E_Package);
12978 -- Both packages denote the same entity, therefore they cannot be
12979 -- children or siblings.
12981 if P_1 = P_2 then
12982 return False;
12984 -- One of the packages is at a deeper level than the other. Note that
12985 -- both may still come from different hierarchies.
12987 -- (root) P_2
12988 -- / \ :
12989 -- X P_2 or X
12990 -- : :
12991 -- P_1 P_1
12993 elsif P_1_Depth > P_2_Depth then
12994 Equalize_Depths
12995 (Pack => P_1,
12996 Depth => P_1_Depth,
12997 Depth_To_Reach => P_2_Depth);
12998 P_1_Child := True;
13000 -- (root) P_1
13001 -- / \ :
13002 -- P_1 X or X
13003 -- : :
13004 -- P_2 P_2
13006 elsif P_2_Depth > P_1_Depth then
13007 Equalize_Depths
13008 (Pack => P_2,
13009 Depth => P_2_Depth,
13010 Depth_To_Reach => P_1_Depth);
13011 P_2_Child := True;
13012 end if;
13014 -- At this stage the package pointers have been elevated to the same
13015 -- depth. If the related entities are the same, then one package is a
13016 -- potential child of the other:
13018 -- P_1
13019 -- :
13020 -- X became P_1 P_2 or vice versa
13021 -- :
13022 -- P_2
13024 if P_1 = P_2 then
13025 if P_1_Child then
13026 return Is_Child_Unit (Pack_1);
13028 else pragma Assert (P_2_Child);
13029 return Is_Child_Unit (Pack_2);
13030 end if;
13032 -- The packages may come from the same package chain or from entirely
13033 -- different hierarcies. To determine this, climb the scope stack until
13034 -- a common root is found.
13036 -- (root) (root 1) (root 2)
13037 -- / \ | |
13038 -- P_1 P_2 P_1 P_2
13040 else
13041 while Present (P_1) and then Present (P_2) loop
13043 -- The two packages may be siblings
13045 if P_1 = P_2 then
13046 return Is_Child_Unit (Pack_1) and then Is_Child_Unit (Pack_2);
13047 end if;
13049 P_1 := Scope (P_1);
13050 P_2 := Scope (P_2);
13051 end loop;
13052 end if;
13054 return False;
13055 end Is_Child_Or_Sibling;
13057 -----------------------------
13058 -- Is_Concurrent_Interface --
13059 -----------------------------
13061 function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
13062 begin
13063 return Is_Interface (T)
13064 and then
13065 (Is_Protected_Interface (T)
13066 or else Is_Synchronized_Interface (T)
13067 or else Is_Task_Interface (T));
13068 end Is_Concurrent_Interface;
13070 -----------------------
13071 -- Is_Constant_Bound --
13072 -----------------------
13074 function Is_Constant_Bound (Exp : Node_Id) return Boolean is
13075 begin
13076 if Compile_Time_Known_Value (Exp) then
13077 return True;
13079 elsif Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
13080 return Is_Constant_Object (Entity (Exp))
13081 or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
13083 elsif Nkind (Exp) in N_Binary_Op then
13084 return Is_Constant_Bound (Left_Opnd (Exp))
13085 and then Is_Constant_Bound (Right_Opnd (Exp))
13086 and then Scope (Entity (Exp)) = Standard_Standard;
13088 else
13089 return False;
13090 end if;
13091 end Is_Constant_Bound;
13093 ---------------------------
13094 -- Is_Container_Element --
13095 ---------------------------
13097 function Is_Container_Element (Exp : Node_Id) return Boolean is
13098 Loc : constant Source_Ptr := Sloc (Exp);
13099 Pref : constant Node_Id := Prefix (Exp);
13101 Call : Node_Id;
13102 -- Call to an indexing aspect
13104 Cont_Typ : Entity_Id;
13105 -- The type of the container being accessed
13107 Elem_Typ : Entity_Id;
13108 -- Its element type
13110 Indexing : Entity_Id;
13111 Is_Const : Boolean;
13112 -- Indicates that constant indexing is used, and the element is thus
13113 -- a constant.
13115 Ref_Typ : Entity_Id;
13116 -- The reference type returned by the indexing operation
13118 begin
13119 -- If C is a container, in a context that imposes the element type of
13120 -- that container, the indexing notation C (X) is rewritten as:
13122 -- Indexing (C, X).Discr.all
13124 -- where Indexing is one of the indexing aspects of the container.
13125 -- If the context does not require a reference, the construct can be
13126 -- rewritten as
13128 -- Element (C, X)
13130 -- First, verify that the construct has the proper form
13132 if not Expander_Active then
13133 return False;
13135 elsif Nkind (Pref) /= N_Selected_Component then
13136 return False;
13138 elsif Nkind (Prefix (Pref)) /= N_Function_Call then
13139 return False;
13141 else
13142 Call := Prefix (Pref);
13143 Ref_Typ := Etype (Call);
13144 end if;
13146 if not Has_Implicit_Dereference (Ref_Typ)
13147 or else No (First (Parameter_Associations (Call)))
13148 or else not Is_Entity_Name (Name (Call))
13149 then
13150 return False;
13151 end if;
13153 -- Retrieve type of container object, and its iterator aspects
13155 Cont_Typ := Etype (First (Parameter_Associations (Call)));
13156 Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Constant_Indexing);
13157 Is_Const := False;
13159 if No (Indexing) then
13161 -- Container should have at least one indexing operation
13163 return False;
13165 elsif Entity (Name (Call)) /= Entity (Indexing) then
13167 -- This may be a variable indexing operation
13169 Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Variable_Indexing);
13171 if No (Indexing)
13172 or else Entity (Name (Call)) /= Entity (Indexing)
13173 then
13174 return False;
13175 end if;
13177 else
13178 Is_Const := True;
13179 end if;
13181 Elem_Typ := Find_Value_Of_Aspect (Cont_Typ, Aspect_Iterator_Element);
13183 if No (Elem_Typ) or else Entity (Elem_Typ) /= Etype (Exp) then
13184 return False;
13185 end if;
13187 -- Check that the expression is not the target of an assignment, in
13188 -- which case the rewriting is not possible.
13190 if not Is_Const then
13191 declare
13192 Par : Node_Id;
13194 begin
13195 Par := Exp;
13196 while Present (Par)
13197 loop
13198 if Nkind (Parent (Par)) = N_Assignment_Statement
13199 and then Par = Name (Parent (Par))
13200 then
13201 return False;
13203 -- A renaming produces a reference, and the transformation
13204 -- does not apply.
13206 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
13207 return False;
13209 elsif Nkind_In
13210 (Nkind (Parent (Par)), N_Function_Call,
13211 N_Procedure_Call_Statement,
13212 N_Entry_Call_Statement)
13213 then
13214 -- Check that the element is not part of an actual for an
13215 -- in-out parameter.
13217 declare
13218 F : Entity_Id;
13219 A : Node_Id;
13221 begin
13222 F := First_Formal (Entity (Name (Parent (Par))));
13223 A := First (Parameter_Associations (Parent (Par)));
13224 while Present (F) loop
13225 if A = Par and then Ekind (F) /= E_In_Parameter then
13226 return False;
13227 end if;
13229 Next_Formal (F);
13230 Next (A);
13231 end loop;
13232 end;
13234 -- E_In_Parameter in a call: element is not modified.
13236 exit;
13237 end if;
13239 Par := Parent (Par);
13240 end loop;
13241 end;
13242 end if;
13244 -- The expression has the proper form and the context requires the
13245 -- element type. Retrieve the Element function of the container and
13246 -- rewrite the construct as a call to it.
13248 declare
13249 Op : Elmt_Id;
13251 begin
13252 Op := First_Elmt (Primitive_Operations (Cont_Typ));
13253 while Present (Op) loop
13254 exit when Chars (Node (Op)) = Name_Element;
13255 Next_Elmt (Op);
13256 end loop;
13258 if No (Op) then
13259 return False;
13261 else
13262 Rewrite (Exp,
13263 Make_Function_Call (Loc,
13264 Name => New_Occurrence_Of (Node (Op), Loc),
13265 Parameter_Associations => Parameter_Associations (Call)));
13266 Analyze_And_Resolve (Exp, Entity (Elem_Typ));
13267 return True;
13268 end if;
13269 end;
13270 end Is_Container_Element;
13272 ----------------------------
13273 -- Is_Contract_Annotation --
13274 ----------------------------
13276 function Is_Contract_Annotation (Item : Node_Id) return Boolean is
13277 begin
13278 return Is_Package_Contract_Annotation (Item)
13279 or else
13280 Is_Subprogram_Contract_Annotation (Item);
13281 end Is_Contract_Annotation;
13283 --------------------------------------
13284 -- Is_Controlling_Limited_Procedure --
13285 --------------------------------------
13287 function Is_Controlling_Limited_Procedure
13288 (Proc_Nam : Entity_Id) return Boolean
13290 Param : Node_Id;
13291 Param_Typ : Entity_Id := Empty;
13293 begin
13294 if Ekind (Proc_Nam) = E_Procedure
13295 and then Present (Parameter_Specifications (Parent (Proc_Nam)))
13296 then
13297 Param :=
13298 Parameter_Type
13299 (First (Parameter_Specifications (Parent (Proc_Nam))));
13301 -- The formal may be an anonymous access type
13303 if Nkind (Param) = N_Access_Definition then
13304 Param_Typ := Entity (Subtype_Mark (Param));
13305 else
13306 Param_Typ := Etype (Param);
13307 end if;
13309 -- In the case where an Itype was created for a dispatchin call, the
13310 -- procedure call has been rewritten. The actual may be an access to
13311 -- interface type in which case it is the designated type that is the
13312 -- controlling type.
13314 elsif Present (Associated_Node_For_Itype (Proc_Nam))
13315 and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
13316 and then
13317 Present (Parameter_Associations
13318 (Associated_Node_For_Itype (Proc_Nam)))
13319 then
13320 Param_Typ :=
13321 Etype (First (Parameter_Associations
13322 (Associated_Node_For_Itype (Proc_Nam))));
13324 if Ekind (Param_Typ) = E_Anonymous_Access_Type then
13325 Param_Typ := Directly_Designated_Type (Param_Typ);
13326 end if;
13327 end if;
13329 if Present (Param_Typ) then
13330 return
13331 Is_Interface (Param_Typ)
13332 and then Is_Limited_Record (Param_Typ);
13333 end if;
13335 return False;
13336 end Is_Controlling_Limited_Procedure;
13338 -----------------------------
13339 -- Is_CPP_Constructor_Call --
13340 -----------------------------
13342 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
13343 begin
13344 return Nkind (N) = N_Function_Call
13345 and then Is_CPP_Class (Etype (Etype (N)))
13346 and then Is_Constructor (Entity (Name (N)))
13347 and then Is_Imported (Entity (Name (N)));
13348 end Is_CPP_Constructor_Call;
13350 -------------------------
13351 -- Is_Current_Instance --
13352 -------------------------
13354 function Is_Current_Instance (N : Node_Id) return Boolean is
13355 Typ : constant Entity_Id := Entity (N);
13356 P : Node_Id;
13358 begin
13359 -- Simplest case: entity is a concurrent type and we are currently
13360 -- inside the body. This will eventually be expanded into a
13361 -- call to Self (for tasks) or _object (for protected objects).
13363 if Is_Concurrent_Type (Typ) and then In_Open_Scopes (Typ) then
13364 return True;
13366 else
13367 -- Check whether the context is a (sub)type declaration for the
13368 -- type entity.
13370 P := Parent (N);
13371 while Present (P) loop
13372 if Nkind_In (P, N_Full_Type_Declaration,
13373 N_Private_Type_Declaration,
13374 N_Subtype_Declaration)
13375 and then Comes_From_Source (P)
13376 and then Defining_Entity (P) = Typ
13377 then
13378 return True;
13380 -- A subtype name may appear in an aspect specification for a
13381 -- Predicate_Failure aspect, for which we do not construct a
13382 -- wrapper procedure. The subtype will be replaced by the
13383 -- expression being tested when the corresponding predicate
13384 -- check is expanded.
13386 elsif Nkind (P) = N_Aspect_Specification
13387 and then Nkind (Parent (P)) = N_Subtype_Declaration
13388 then
13389 return True;
13391 elsif Nkind (P) = N_Pragma
13392 and then
13393 Get_Pragma_Id (P) = Pragma_Predicate_Failure
13394 then
13395 return True;
13396 end if;
13398 P := Parent (P);
13399 end loop;
13400 end if;
13402 -- In any other context this is not a current occurrence
13404 return False;
13405 end Is_Current_Instance;
13407 --------------------
13408 -- Is_Declaration --
13409 --------------------
13411 function Is_Declaration (N : Node_Id) return Boolean is
13412 begin
13413 return
13414 Is_Declaration_Other_Than_Renaming (N)
13415 or else Is_Renaming_Declaration (N);
13416 end Is_Declaration;
13418 ----------------------------------------
13419 -- Is_Declaration_Other_Than_Renaming --
13420 ----------------------------------------
13422 function Is_Declaration_Other_Than_Renaming (N : Node_Id) return Boolean is
13423 begin
13424 case Nkind (N) is
13425 when N_Abstract_Subprogram_Declaration
13426 | N_Exception_Declaration
13427 | N_Expression_Function
13428 | N_Full_Type_Declaration
13429 | N_Generic_Package_Declaration
13430 | N_Generic_Subprogram_Declaration
13431 | N_Number_Declaration
13432 | N_Object_Declaration
13433 | N_Package_Declaration
13434 | N_Private_Extension_Declaration
13435 | N_Private_Type_Declaration
13436 | N_Subprogram_Declaration
13437 | N_Subtype_Declaration
13439 return True;
13441 when others =>
13442 return False;
13443 end case;
13444 end Is_Declaration_Other_Than_Renaming;
13446 --------------------------------
13447 -- Is_Declared_Within_Variant --
13448 --------------------------------
13450 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
13451 Comp_Decl : constant Node_Id := Parent (Comp);
13452 Comp_List : constant Node_Id := Parent (Comp_Decl);
13453 begin
13454 return Nkind (Parent (Comp_List)) = N_Variant;
13455 end Is_Declared_Within_Variant;
13457 ----------------------------------------------
13458 -- Is_Dependent_Component_Of_Mutable_Object --
13459 ----------------------------------------------
13461 function Is_Dependent_Component_Of_Mutable_Object
13462 (Object : Node_Id) return Boolean
13464 P : Node_Id;
13465 Prefix_Type : Entity_Id;
13466 P_Aliased : Boolean := False;
13467 Comp : Entity_Id;
13469 Deref : Node_Id := Object;
13470 -- Dereference node, in something like X.all.Y(2)
13472 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
13474 begin
13475 -- Find the dereference node if any
13477 while Nkind_In (Deref, N_Indexed_Component,
13478 N_Selected_Component,
13479 N_Slice)
13480 loop
13481 Deref := Prefix (Deref);
13482 end loop;
13484 -- Ada 2005: If we have a component or slice of a dereference,
13485 -- something like X.all.Y (2), and the type of X is access-to-constant,
13486 -- Is_Variable will return False, because it is indeed a constant
13487 -- view. But it might be a view of a variable object, so we want the
13488 -- following condition to be True in that case.
13490 if Is_Variable (Object)
13491 or else (Ada_Version >= Ada_2005
13492 and then Nkind (Deref) = N_Explicit_Dereference)
13493 then
13494 if Nkind (Object) = N_Selected_Component then
13495 P := Prefix (Object);
13496 Prefix_Type := Etype (P);
13498 if Is_Entity_Name (P) then
13499 if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
13500 Prefix_Type := Base_Type (Prefix_Type);
13501 end if;
13503 if Is_Aliased (Entity (P)) then
13504 P_Aliased := True;
13505 end if;
13507 -- A discriminant check on a selected component may be expanded
13508 -- into a dereference when removing side effects. Recover the
13509 -- original node and its type, which may be unconstrained.
13511 elsif Nkind (P) = N_Explicit_Dereference
13512 and then not (Comes_From_Source (P))
13513 then
13514 P := Original_Node (P);
13515 Prefix_Type := Etype (P);
13517 else
13518 -- Check for prefix being an aliased component???
13520 null;
13522 end if;
13524 -- A heap object is constrained by its initial value
13526 -- Ada 2005 (AI-363): Always assume the object could be mutable in
13527 -- the dereferenced case, since the access value might denote an
13528 -- unconstrained aliased object, whereas in Ada 95 the designated
13529 -- object is guaranteed to be constrained. A worst-case assumption
13530 -- has to apply in Ada 2005 because we can't tell at compile
13531 -- time whether the object is "constrained by its initial value",
13532 -- despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
13533 -- rules (these rules are acknowledged to need fixing). We don't
13534 -- impose this more stringent checking for earlier Ada versions or
13535 -- when Relaxed_RM_Semantics applies (the latter for CodePeer's
13536 -- benefit, though it's unclear on why using -gnat95 would not be
13537 -- sufficient???).
13539 if Ada_Version < Ada_2005 or else Relaxed_RM_Semantics then
13540 if Is_Access_Type (Prefix_Type)
13541 or else Nkind (P) = N_Explicit_Dereference
13542 then
13543 return False;
13544 end if;
13546 else pragma Assert (Ada_Version >= Ada_2005);
13547 if Is_Access_Type (Prefix_Type) then
13549 -- If the access type is pool-specific, and there is no
13550 -- constrained partial view of the designated type, then the
13551 -- designated object is known to be constrained.
13553 if Ekind (Prefix_Type) = E_Access_Type
13554 and then not Object_Type_Has_Constrained_Partial_View
13555 (Typ => Designated_Type (Prefix_Type),
13556 Scop => Current_Scope)
13557 then
13558 return False;
13560 -- Otherwise (general access type, or there is a constrained
13561 -- partial view of the designated type), we need to check
13562 -- based on the designated type.
13564 else
13565 Prefix_Type := Designated_Type (Prefix_Type);
13566 end if;
13567 end if;
13568 end if;
13570 Comp :=
13571 Original_Record_Component (Entity (Selector_Name (Object)));
13573 -- As per AI-0017, the renaming is illegal in a generic body, even
13574 -- if the subtype is indefinite.
13576 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
13578 if not Is_Constrained (Prefix_Type)
13579 and then (Is_Definite_Subtype (Prefix_Type)
13580 or else
13581 (Is_Generic_Type (Prefix_Type)
13582 and then Ekind (Current_Scope) = E_Generic_Package
13583 and then In_Package_Body (Current_Scope)))
13585 and then (Is_Declared_Within_Variant (Comp)
13586 or else Has_Discriminant_Dependent_Constraint (Comp))
13587 and then (not P_Aliased or else Ada_Version >= Ada_2005)
13588 then
13589 return True;
13591 -- If the prefix is of an access type at this point, then we want
13592 -- to return False, rather than calling this function recursively
13593 -- on the access object (which itself might be a discriminant-
13594 -- dependent component of some other object, but that isn't
13595 -- relevant to checking the object passed to us). This avoids
13596 -- issuing wrong errors when compiling with -gnatc, where there
13597 -- can be implicit dereferences that have not been expanded.
13599 elsif Is_Access_Type (Etype (Prefix (Object))) then
13600 return False;
13602 else
13603 return
13604 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
13605 end if;
13607 elsif Nkind (Object) = N_Indexed_Component
13608 or else Nkind (Object) = N_Slice
13609 then
13610 return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
13612 -- A type conversion that Is_Variable is a view conversion:
13613 -- go back to the denoted object.
13615 elsif Nkind (Object) = N_Type_Conversion then
13616 return
13617 Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
13618 end if;
13619 end if;
13621 return False;
13622 end Is_Dependent_Component_Of_Mutable_Object;
13624 ---------------------
13625 -- Is_Dereferenced --
13626 ---------------------
13628 function Is_Dereferenced (N : Node_Id) return Boolean is
13629 P : constant Node_Id := Parent (N);
13630 begin
13631 return Nkind_In (P, N_Selected_Component,
13632 N_Explicit_Dereference,
13633 N_Indexed_Component,
13634 N_Slice)
13635 and then Prefix (P) = N;
13636 end Is_Dereferenced;
13638 ----------------------
13639 -- Is_Descendant_Of --
13640 ----------------------
13642 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
13643 T : Entity_Id;
13644 Etyp : Entity_Id;
13646 begin
13647 pragma Assert (Nkind (T1) in N_Entity);
13648 pragma Assert (Nkind (T2) in N_Entity);
13650 T := Base_Type (T1);
13652 -- Immediate return if the types match
13654 if T = T2 then
13655 return True;
13657 -- Comment needed here ???
13659 elsif Ekind (T) = E_Class_Wide_Type then
13660 return Etype (T) = T2;
13662 -- All other cases
13664 else
13665 loop
13666 Etyp := Etype (T);
13668 -- Done if we found the type we are looking for
13670 if Etyp = T2 then
13671 return True;
13673 -- Done if no more derivations to check
13675 elsif T = T1
13676 or else T = Etyp
13677 then
13678 return False;
13680 -- Following test catches error cases resulting from prev errors
13682 elsif No (Etyp) then
13683 return False;
13685 elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
13686 return False;
13688 elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
13689 return False;
13690 end if;
13692 T := Base_Type (Etyp);
13693 end loop;
13694 end if;
13695 end Is_Descendant_Of;
13697 ----------------------------------------
13698 -- Is_Descendant_Of_Suspension_Object --
13699 ----------------------------------------
13701 function Is_Descendant_Of_Suspension_Object
13702 (Typ : Entity_Id) return Boolean
13704 Cur_Typ : Entity_Id;
13705 Par_Typ : Entity_Id;
13707 begin
13708 -- Climb the type derivation chain checking each parent type against
13709 -- Suspension_Object.
13711 Cur_Typ := Base_Type (Typ);
13712 while Present (Cur_Typ) loop
13713 Par_Typ := Etype (Cur_Typ);
13715 -- The current type is a match
13717 if Is_Suspension_Object (Cur_Typ) then
13718 return True;
13720 -- Stop the traversal once the root of the derivation chain has been
13721 -- reached. In that case the current type is its own base type.
13723 elsif Cur_Typ = Par_Typ then
13724 exit;
13725 end if;
13727 Cur_Typ := Base_Type (Par_Typ);
13728 end loop;
13730 return False;
13731 end Is_Descendant_Of_Suspension_Object;
13733 ---------------------------------------------
13734 -- Is_Double_Precision_Floating_Point_Type --
13735 ---------------------------------------------
13737 function Is_Double_Precision_Floating_Point_Type
13738 (E : Entity_Id) return Boolean is
13739 begin
13740 return Is_Floating_Point_Type (E)
13741 and then Machine_Radix_Value (E) = Uint_2
13742 and then Machine_Mantissa_Value (E) = UI_From_Int (53)
13743 and then Machine_Emax_Value (E) = Uint_2 ** Uint_10
13744 and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_10);
13745 end Is_Double_Precision_Floating_Point_Type;
13747 -----------------------------
13748 -- Is_Effectively_Volatile --
13749 -----------------------------
13751 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean is
13752 begin
13753 if Is_Type (Id) then
13755 -- An arbitrary type is effectively volatile when it is subject to
13756 -- pragma Atomic or Volatile.
13758 if Is_Volatile (Id) then
13759 return True;
13761 -- An array type is effectively volatile when it is subject to pragma
13762 -- Atomic_Components or Volatile_Components or its component type is
13763 -- effectively volatile.
13765 elsif Is_Array_Type (Id) then
13766 declare
13767 Anc : Entity_Id := Base_Type (Id);
13768 begin
13769 if Is_Private_Type (Anc) then
13770 Anc := Full_View (Anc);
13771 end if;
13773 -- Test for presence of ancestor, as the full view of a private
13774 -- type may be missing in case of error.
13776 return
13777 Has_Volatile_Components (Id)
13778 or else
13779 (Present (Anc)
13780 and then Is_Effectively_Volatile (Component_Type (Anc)));
13781 end;
13783 -- A protected type is always volatile
13785 elsif Is_Protected_Type (Id) then
13786 return True;
13788 -- A descendant of Ada.Synchronous_Task_Control.Suspension_Object is
13789 -- automatically volatile.
13791 elsif Is_Descendant_Of_Suspension_Object (Id) then
13792 return True;
13794 -- Otherwise the type is not effectively volatile
13796 else
13797 return False;
13798 end if;
13800 -- Otherwise Id denotes an object
13802 else
13803 return
13804 Is_Volatile (Id)
13805 or else Has_Volatile_Components (Id)
13806 or else Is_Effectively_Volatile (Etype (Id));
13807 end if;
13808 end Is_Effectively_Volatile;
13810 ------------------------------------
13811 -- Is_Effectively_Volatile_Object --
13812 ------------------------------------
13814 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean is
13815 begin
13816 if Is_Entity_Name (N) then
13817 return Is_Effectively_Volatile (Entity (N));
13819 elsif Nkind (N) = N_Indexed_Component then
13820 return Is_Effectively_Volatile_Object (Prefix (N));
13822 elsif Nkind (N) = N_Selected_Component then
13823 return
13824 Is_Effectively_Volatile_Object (Prefix (N))
13825 or else
13826 Is_Effectively_Volatile_Object (Selector_Name (N));
13828 else
13829 return False;
13830 end if;
13831 end Is_Effectively_Volatile_Object;
13833 -------------------
13834 -- Is_Entry_Body --
13835 -------------------
13837 function Is_Entry_Body (Id : Entity_Id) return Boolean is
13838 begin
13839 return
13840 Ekind_In (Id, E_Entry, E_Entry_Family)
13841 and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Body;
13842 end Is_Entry_Body;
13844 --------------------------
13845 -- Is_Entry_Declaration --
13846 --------------------------
13848 function Is_Entry_Declaration (Id : Entity_Id) return Boolean is
13849 begin
13850 return
13851 Ekind_In (Id, E_Entry, E_Entry_Family)
13852 and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Declaration;
13853 end Is_Entry_Declaration;
13855 ------------------------------------
13856 -- Is_Expanded_Priority_Attribute --
13857 ------------------------------------
13859 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean is
13860 begin
13861 return
13862 Nkind (E) = N_Function_Call
13863 and then not Configurable_Run_Time_Mode
13864 and then (Entity (Name (E)) = RTE (RE_Get_Ceiling)
13865 or else Entity (Name (E)) = RTE (RO_PE_Get_Ceiling));
13866 end Is_Expanded_Priority_Attribute;
13868 ----------------------------
13869 -- Is_Expression_Function --
13870 ----------------------------
13872 function Is_Expression_Function (Subp : Entity_Id) return Boolean is
13873 begin
13874 if Ekind_In (Subp, E_Function, E_Subprogram_Body) then
13875 return
13876 Nkind (Original_Node (Unit_Declaration_Node (Subp))) =
13877 N_Expression_Function;
13878 else
13879 return False;
13880 end if;
13881 end Is_Expression_Function;
13883 ------------------------------------------
13884 -- Is_Expression_Function_Or_Completion --
13885 ------------------------------------------
13887 function Is_Expression_Function_Or_Completion
13888 (Subp : Entity_Id) return Boolean
13890 Subp_Decl : Node_Id;
13892 begin
13893 if Ekind (Subp) = E_Function then
13894 Subp_Decl := Unit_Declaration_Node (Subp);
13896 -- The function declaration is either an expression function or is
13897 -- completed by an expression function body.
13899 return
13900 Is_Expression_Function (Subp)
13901 or else (Nkind (Subp_Decl) = N_Subprogram_Declaration
13902 and then Present (Corresponding_Body (Subp_Decl))
13903 and then Is_Expression_Function
13904 (Corresponding_Body (Subp_Decl)));
13906 elsif Ekind (Subp) = E_Subprogram_Body then
13907 return Is_Expression_Function (Subp);
13909 else
13910 return False;
13911 end if;
13912 end Is_Expression_Function_Or_Completion;
13914 -----------------------
13915 -- Is_EVF_Expression --
13916 -----------------------
13918 function Is_EVF_Expression (N : Node_Id) return Boolean is
13919 Orig_N : constant Node_Id := Original_Node (N);
13920 Alt : Node_Id;
13921 Expr : Node_Id;
13922 Id : Entity_Id;
13924 begin
13925 -- Detect a reference to a formal parameter of a specific tagged type
13926 -- whose related subprogram is subject to pragma Expresions_Visible with
13927 -- value "False".
13929 if Is_Entity_Name (N) and then Present (Entity (N)) then
13930 Id := Entity (N);
13932 return
13933 Is_Formal (Id)
13934 and then Is_Specific_Tagged_Type (Etype (Id))
13935 and then Extensions_Visible_Status (Id) =
13936 Extensions_Visible_False;
13938 -- A case expression is an EVF expression when it contains at least one
13939 -- EVF dependent_expression. Note that a case expression may have been
13940 -- expanded, hence the use of Original_Node.
13942 elsif Nkind (Orig_N) = N_Case_Expression then
13943 Alt := First (Alternatives (Orig_N));
13944 while Present (Alt) loop
13945 if Is_EVF_Expression (Expression (Alt)) then
13946 return True;
13947 end if;
13949 Next (Alt);
13950 end loop;
13952 -- An if expression is an EVF expression when it contains at least one
13953 -- EVF dependent_expression. Note that an if expression may have been
13954 -- expanded, hence the use of Original_Node.
13956 elsif Nkind (Orig_N) = N_If_Expression then
13957 Expr := Next (First (Expressions (Orig_N)));
13958 while Present (Expr) loop
13959 if Is_EVF_Expression (Expr) then
13960 return True;
13961 end if;
13963 Next (Expr);
13964 end loop;
13966 -- A qualified expression or a type conversion is an EVF expression when
13967 -- its operand is an EVF expression.
13969 elsif Nkind_In (N, N_Qualified_Expression,
13970 N_Unchecked_Type_Conversion,
13971 N_Type_Conversion)
13972 then
13973 return Is_EVF_Expression (Expression (N));
13975 -- Attributes 'Loop_Entry, 'Old, and 'Update are EVF expressions when
13976 -- their prefix denotes an EVF expression.
13978 elsif Nkind (N) = N_Attribute_Reference
13979 and then Nam_In (Attribute_Name (N), Name_Loop_Entry,
13980 Name_Old,
13981 Name_Update)
13982 then
13983 return Is_EVF_Expression (Prefix (N));
13984 end if;
13986 return False;
13987 end Is_EVF_Expression;
13989 --------------
13990 -- Is_False --
13991 --------------
13993 function Is_False (U : Uint) return Boolean is
13994 begin
13995 return (U = 0);
13996 end Is_False;
13998 ---------------------------
13999 -- Is_Fixed_Model_Number --
14000 ---------------------------
14002 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
14003 S : constant Ureal := Small_Value (T);
14004 M : Urealp.Save_Mark;
14005 R : Boolean;
14007 begin
14008 M := Urealp.Mark;
14009 R := (U = UR_Trunc (U / S) * S);
14010 Urealp.Release (M);
14011 return R;
14012 end Is_Fixed_Model_Number;
14014 -------------------------------
14015 -- Is_Fully_Initialized_Type --
14016 -------------------------------
14018 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
14019 begin
14020 -- Scalar types
14022 if Is_Scalar_Type (Typ) then
14024 -- A scalar type with an aspect Default_Value is fully initialized
14026 -- Note: Iniitalize/Normalize_Scalars also ensure full initialization
14027 -- of a scalar type, but we don't take that into account here, since
14028 -- we don't want these to affect warnings.
14030 return Has_Default_Aspect (Typ);
14032 elsif Is_Access_Type (Typ) then
14033 return True;
14035 elsif Is_Array_Type (Typ) then
14036 if Is_Fully_Initialized_Type (Component_Type (Typ))
14037 or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
14038 then
14039 return True;
14040 end if;
14042 -- An interesting case, if we have a constrained type one of whose
14043 -- bounds is known to be null, then there are no elements to be
14044 -- initialized, so all the elements are initialized.
14046 if Is_Constrained (Typ) then
14047 declare
14048 Indx : Node_Id;
14049 Indx_Typ : Entity_Id;
14050 Lbd, Hbd : Node_Id;
14052 begin
14053 Indx := First_Index (Typ);
14054 while Present (Indx) loop
14055 if Etype (Indx) = Any_Type then
14056 return False;
14058 -- If index is a range, use directly
14060 elsif Nkind (Indx) = N_Range then
14061 Lbd := Low_Bound (Indx);
14062 Hbd := High_Bound (Indx);
14064 else
14065 Indx_Typ := Etype (Indx);
14067 if Is_Private_Type (Indx_Typ) then
14068 Indx_Typ := Full_View (Indx_Typ);
14069 end if;
14071 if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
14072 return False;
14073 else
14074 Lbd := Type_Low_Bound (Indx_Typ);
14075 Hbd := Type_High_Bound (Indx_Typ);
14076 end if;
14077 end if;
14079 if Compile_Time_Known_Value (Lbd)
14080 and then
14081 Compile_Time_Known_Value (Hbd)
14082 then
14083 if Expr_Value (Hbd) < Expr_Value (Lbd) then
14084 return True;
14085 end if;
14086 end if;
14088 Next_Index (Indx);
14089 end loop;
14090 end;
14091 end if;
14093 -- If no null indexes, then type is not fully initialized
14095 return False;
14097 -- Record types
14099 elsif Is_Record_Type (Typ) then
14100 if Has_Discriminants (Typ)
14101 and then
14102 Present (Discriminant_Default_Value (First_Discriminant (Typ)))
14103 and then Is_Fully_Initialized_Variant (Typ)
14104 then
14105 return True;
14106 end if;
14108 -- We consider bounded string types to be fully initialized, because
14109 -- otherwise we get false alarms when the Data component is not
14110 -- default-initialized.
14112 if Is_Bounded_String (Typ) then
14113 return True;
14114 end if;
14116 -- Controlled records are considered to be fully initialized if
14117 -- there is a user defined Initialize routine. This may not be
14118 -- entirely correct, but as the spec notes, we are guessing here
14119 -- what is best from the point of view of issuing warnings.
14121 if Is_Controlled (Typ) then
14122 declare
14123 Utyp : constant Entity_Id := Underlying_Type (Typ);
14125 begin
14126 if Present (Utyp) then
14127 declare
14128 Init : constant Entity_Id :=
14129 (Find_Optional_Prim_Op
14130 (Underlying_Type (Typ), Name_Initialize));
14132 begin
14133 if Present (Init)
14134 and then Comes_From_Source (Init)
14135 and then not In_Predefined_Unit (Init)
14136 then
14137 return True;
14139 elsif Has_Null_Extension (Typ)
14140 and then
14141 Is_Fully_Initialized_Type
14142 (Etype (Base_Type (Typ)))
14143 then
14144 return True;
14145 end if;
14146 end;
14147 end if;
14148 end;
14149 end if;
14151 -- Otherwise see if all record components are initialized
14153 declare
14154 Ent : Entity_Id;
14156 begin
14157 Ent := First_Entity (Typ);
14158 while Present (Ent) loop
14159 if Ekind (Ent) = E_Component
14160 and then (No (Parent (Ent))
14161 or else No (Expression (Parent (Ent))))
14162 and then not Is_Fully_Initialized_Type (Etype (Ent))
14164 -- Special VM case for tag components, which need to be
14165 -- defined in this case, but are never initialized as VMs
14166 -- are using other dispatching mechanisms. Ignore this
14167 -- uninitialized case. Note that this applies both to the
14168 -- uTag entry and the main vtable pointer (CPP_Class case).
14170 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
14171 then
14172 return False;
14173 end if;
14175 Next_Entity (Ent);
14176 end loop;
14177 end;
14179 -- No uninitialized components, so type is fully initialized.
14180 -- Note that this catches the case of no components as well.
14182 return True;
14184 elsif Is_Concurrent_Type (Typ) then
14185 return True;
14187 elsif Is_Private_Type (Typ) then
14188 declare
14189 U : constant Entity_Id := Underlying_Type (Typ);
14191 begin
14192 if No (U) then
14193 return False;
14194 else
14195 return Is_Fully_Initialized_Type (U);
14196 end if;
14197 end;
14199 else
14200 return False;
14201 end if;
14202 end Is_Fully_Initialized_Type;
14204 ----------------------------------
14205 -- Is_Fully_Initialized_Variant --
14206 ----------------------------------
14208 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
14209 Loc : constant Source_Ptr := Sloc (Typ);
14210 Constraints : constant List_Id := New_List;
14211 Components : constant Elist_Id := New_Elmt_List;
14212 Comp_Elmt : Elmt_Id;
14213 Comp_Id : Node_Id;
14214 Comp_List : Node_Id;
14215 Discr : Entity_Id;
14216 Discr_Val : Node_Id;
14218 Report_Errors : Boolean;
14219 pragma Warnings (Off, Report_Errors);
14221 begin
14222 if Serious_Errors_Detected > 0 then
14223 return False;
14224 end if;
14226 if Is_Record_Type (Typ)
14227 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14228 and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
14229 then
14230 Comp_List := Component_List (Type_Definition (Parent (Typ)));
14232 Discr := First_Discriminant (Typ);
14233 while Present (Discr) loop
14234 if Nkind (Parent (Discr)) = N_Discriminant_Specification then
14235 Discr_Val := Expression (Parent (Discr));
14237 if Present (Discr_Val)
14238 and then Is_OK_Static_Expression (Discr_Val)
14239 then
14240 Append_To (Constraints,
14241 Make_Component_Association (Loc,
14242 Choices => New_List (New_Occurrence_Of (Discr, Loc)),
14243 Expression => New_Copy (Discr_Val)));
14244 else
14245 return False;
14246 end if;
14247 else
14248 return False;
14249 end if;
14251 Next_Discriminant (Discr);
14252 end loop;
14254 Gather_Components
14255 (Typ => Typ,
14256 Comp_List => Comp_List,
14257 Governed_By => Constraints,
14258 Into => Components,
14259 Report_Errors => Report_Errors);
14261 -- Check that each component present is fully initialized
14263 Comp_Elmt := First_Elmt (Components);
14264 while Present (Comp_Elmt) loop
14265 Comp_Id := Node (Comp_Elmt);
14267 if Ekind (Comp_Id) = E_Component
14268 and then (No (Parent (Comp_Id))
14269 or else No (Expression (Parent (Comp_Id))))
14270 and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
14271 then
14272 return False;
14273 end if;
14275 Next_Elmt (Comp_Elmt);
14276 end loop;
14278 return True;
14280 elsif Is_Private_Type (Typ) then
14281 declare
14282 U : constant Entity_Id := Underlying_Type (Typ);
14284 begin
14285 if No (U) then
14286 return False;
14287 else
14288 return Is_Fully_Initialized_Variant (U);
14289 end if;
14290 end;
14292 else
14293 return False;
14294 end if;
14295 end Is_Fully_Initialized_Variant;
14297 ------------------------------------
14298 -- Is_Generic_Declaration_Or_Body --
14299 ------------------------------------
14301 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean is
14302 Spec_Decl : Node_Id;
14304 begin
14305 -- Package/subprogram body
14307 if Nkind_In (Decl, N_Package_Body, N_Subprogram_Body)
14308 and then Present (Corresponding_Spec (Decl))
14309 then
14310 Spec_Decl := Unit_Declaration_Node (Corresponding_Spec (Decl));
14312 -- Package/subprogram body stub
14314 elsif Nkind_In (Decl, N_Package_Body_Stub, N_Subprogram_Body_Stub)
14315 and then Present (Corresponding_Spec_Of_Stub (Decl))
14316 then
14317 Spec_Decl :=
14318 Unit_Declaration_Node (Corresponding_Spec_Of_Stub (Decl));
14320 -- All other cases
14322 else
14323 Spec_Decl := Decl;
14324 end if;
14326 -- Rather than inspecting the defining entity of the spec declaration,
14327 -- look at its Nkind. This takes care of the case where the analysis of
14328 -- a generic body modifies the Ekind of its spec to allow for recursive
14329 -- calls.
14331 return
14332 Nkind_In (Spec_Decl, N_Generic_Package_Declaration,
14333 N_Generic_Subprogram_Declaration);
14334 end Is_Generic_Declaration_Or_Body;
14336 ----------------------------
14337 -- Is_Inherited_Operation --
14338 ----------------------------
14340 function Is_Inherited_Operation (E : Entity_Id) return Boolean is
14341 pragma Assert (Is_Overloadable (E));
14342 Kind : constant Node_Kind := Nkind (Parent (E));
14343 begin
14344 return Kind = N_Full_Type_Declaration
14345 or else Kind = N_Private_Extension_Declaration
14346 or else Kind = N_Subtype_Declaration
14347 or else (Ekind (E) = E_Enumeration_Literal
14348 and then Is_Derived_Type (Etype (E)));
14349 end Is_Inherited_Operation;
14351 -------------------------------------
14352 -- Is_Inherited_Operation_For_Type --
14353 -------------------------------------
14355 function Is_Inherited_Operation_For_Type
14356 (E : Entity_Id;
14357 Typ : Entity_Id) return Boolean
14359 begin
14360 -- Check that the operation has been created by the type declaration
14362 return Is_Inherited_Operation (E)
14363 and then Defining_Identifier (Parent (E)) = Typ;
14364 end Is_Inherited_Operation_For_Type;
14366 --------------------------------------
14367 -- Is_Inlinable_Expression_Function --
14368 --------------------------------------
14370 function Is_Inlinable_Expression_Function
14371 (Subp : Entity_Id) return Boolean
14373 Return_Expr : Node_Id;
14375 begin
14376 if Is_Expression_Function_Or_Completion (Subp)
14377 and then Has_Pragma_Inline_Always (Subp)
14378 and then Needs_No_Actuals (Subp)
14379 and then No (Contract (Subp))
14380 and then not Is_Dispatching_Operation (Subp)
14381 and then Needs_Finalization (Etype (Subp))
14382 and then not Is_Class_Wide_Type (Etype (Subp))
14383 and then not (Has_Invariants (Etype (Subp)))
14384 and then Present (Subprogram_Body (Subp))
14385 and then Was_Expression_Function (Subprogram_Body (Subp))
14386 then
14387 Return_Expr := Expression_Of_Expression_Function (Subp);
14389 -- The returned object must not have a qualified expression and its
14390 -- nominal subtype must be statically compatible with the result
14391 -- subtype of the expression function.
14393 return
14394 Nkind (Return_Expr) = N_Identifier
14395 and then Etype (Return_Expr) = Etype (Subp);
14396 end if;
14398 return False;
14399 end Is_Inlinable_Expression_Function;
14401 -----------------
14402 -- Is_Iterator --
14403 -----------------
14405 function Is_Iterator (Typ : Entity_Id) return Boolean is
14406 function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean;
14407 -- Determine whether type Iter_Typ is a predefined forward or reversible
14408 -- iterator.
14410 ----------------------
14411 -- Denotes_Iterator --
14412 ----------------------
14414 function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean is
14415 begin
14416 -- Check that the name matches, and that the ultimate ancestor is in
14417 -- a predefined unit, i.e the one that declares iterator interfaces.
14419 return
14420 Nam_In (Chars (Iter_Typ), Name_Forward_Iterator,
14421 Name_Reversible_Iterator)
14422 and then In_Predefined_Unit (Root_Type (Iter_Typ));
14423 end Denotes_Iterator;
14425 -- Local variables
14427 Iface_Elmt : Elmt_Id;
14428 Ifaces : Elist_Id;
14430 -- Start of processing for Is_Iterator
14432 begin
14433 -- The type may be a subtype of a descendant of the proper instance of
14434 -- the predefined interface type, so we must use the root type of the
14435 -- given type. The same is done for Is_Reversible_Iterator.
14437 if Is_Class_Wide_Type (Typ)
14438 and then Denotes_Iterator (Root_Type (Typ))
14439 then
14440 return True;
14442 elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
14443 return False;
14445 elsif Present (Find_Value_Of_Aspect (Typ, Aspect_Iterable)) then
14446 return True;
14448 else
14449 Collect_Interfaces (Typ, Ifaces);
14451 Iface_Elmt := First_Elmt (Ifaces);
14452 while Present (Iface_Elmt) loop
14453 if Denotes_Iterator (Node (Iface_Elmt)) then
14454 return True;
14455 end if;
14457 Next_Elmt (Iface_Elmt);
14458 end loop;
14460 return False;
14461 end if;
14462 end Is_Iterator;
14464 ----------------------------
14465 -- Is_Iterator_Over_Array --
14466 ----------------------------
14468 function Is_Iterator_Over_Array (N : Node_Id) return Boolean is
14469 Container : constant Node_Id := Name (N);
14470 Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
14471 begin
14472 return Is_Array_Type (Container_Typ);
14473 end Is_Iterator_Over_Array;
14475 ------------
14476 -- Is_LHS --
14477 ------------
14479 -- We seem to have a lot of overlapping functions that do similar things
14480 -- (testing for left hand sides or lvalues???).
14482 function Is_LHS (N : Node_Id) return Is_LHS_Result is
14483 P : constant Node_Id := Parent (N);
14485 begin
14486 -- Return True if we are the left hand side of an assignment statement
14488 if Nkind (P) = N_Assignment_Statement then
14489 if Name (P) = N then
14490 return Yes;
14491 else
14492 return No;
14493 end if;
14495 -- Case of prefix of indexed or selected component or slice
14497 elsif Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice)
14498 and then N = Prefix (P)
14499 then
14500 -- Here we have the case where the parent P is N.Q or N(Q .. R).
14501 -- If P is an LHS, then N is also effectively an LHS, but there
14502 -- is an important exception. If N is of an access type, then
14503 -- what we really have is N.all.Q (or N.all(Q .. R)). In either
14504 -- case this makes N.all a left hand side but not N itself.
14506 -- If we don't know the type yet, this is the case where we return
14507 -- Unknown, since the answer depends on the type which is unknown.
14509 if No (Etype (N)) then
14510 return Unknown;
14512 -- We have an Etype set, so we can check it
14514 elsif Is_Access_Type (Etype (N)) then
14515 return No;
14517 -- OK, not access type case, so just test whole expression
14519 else
14520 return Is_LHS (P);
14521 end if;
14523 -- All other cases are not left hand sides
14525 else
14526 return No;
14527 end if;
14528 end Is_LHS;
14530 -----------------------------
14531 -- Is_Library_Level_Entity --
14532 -----------------------------
14534 function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
14535 begin
14536 -- The following is a small optimization, and it also properly handles
14537 -- discriminals, which in task bodies might appear in expressions before
14538 -- the corresponding procedure has been created, and which therefore do
14539 -- not have an assigned scope.
14541 if Is_Formal (E) then
14542 return False;
14543 end if;
14545 -- Normal test is simply that the enclosing dynamic scope is Standard
14547 return Enclosing_Dynamic_Scope (E) = Standard_Standard;
14548 end Is_Library_Level_Entity;
14550 --------------------------------
14551 -- Is_Limited_Class_Wide_Type --
14552 --------------------------------
14554 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
14555 begin
14556 return
14557 Is_Class_Wide_Type (Typ)
14558 and then (Is_Limited_Type (Typ) or else From_Limited_With (Typ));
14559 end Is_Limited_Class_Wide_Type;
14561 ---------------------------------
14562 -- Is_Local_Variable_Reference --
14563 ---------------------------------
14565 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
14566 begin
14567 if not Is_Entity_Name (Expr) then
14568 return False;
14570 else
14571 declare
14572 Ent : constant Entity_Id := Entity (Expr);
14573 Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
14574 begin
14575 if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
14576 return False;
14577 else
14578 return Present (Sub) and then Sub = Current_Subprogram;
14579 end if;
14580 end;
14581 end if;
14582 end Is_Local_Variable_Reference;
14584 -----------------------
14585 -- Is_Name_Reference --
14586 -----------------------
14588 function Is_Name_Reference (N : Node_Id) return Boolean is
14589 begin
14590 if Is_Entity_Name (N) then
14591 return Present (Entity (N)) and then Is_Object (Entity (N));
14592 end if;
14594 case Nkind (N) is
14595 when N_Indexed_Component
14596 | N_Slice
14598 return
14599 Is_Name_Reference (Prefix (N))
14600 or else Is_Access_Type (Etype (Prefix (N)));
14602 -- Attributes 'Input, 'Old and 'Result produce objects
14604 when N_Attribute_Reference =>
14605 return
14606 Nam_In (Attribute_Name (N), Name_Input, Name_Old, Name_Result);
14608 when N_Selected_Component =>
14609 return
14610 Is_Name_Reference (Selector_Name (N))
14611 and then
14612 (Is_Name_Reference (Prefix (N))
14613 or else Is_Access_Type (Etype (Prefix (N))));
14615 when N_Explicit_Dereference =>
14616 return True;
14618 -- A view conversion of a tagged name is a name reference
14620 when N_Type_Conversion =>
14621 return
14622 Is_Tagged_Type (Etype (Subtype_Mark (N)))
14623 and then Is_Tagged_Type (Etype (Expression (N)))
14624 and then Is_Name_Reference (Expression (N));
14626 -- An unchecked type conversion is considered to be a name if the
14627 -- operand is a name (this construction arises only as a result of
14628 -- expansion activities).
14630 when N_Unchecked_Type_Conversion =>
14631 return Is_Name_Reference (Expression (N));
14633 when others =>
14634 return False;
14635 end case;
14636 end Is_Name_Reference;
14638 ------------------------------------
14639 -- Is_Non_Preelaborable_Construct --
14640 ------------------------------------
14642 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean is
14644 -- NOTE: the routines within Is_Non_Preelaborable_Construct are
14645 -- intentionally unnested to avoid deep indentation of code.
14647 Non_Preelaborable : exception;
14648 -- This exception is raised when the construct violates preelaborability
14649 -- to terminate the recursion.
14651 procedure Visit (Nod : Node_Id);
14652 -- Semantically inspect construct Nod to determine whether it violates
14653 -- preelaborability. This routine raises Non_Preelaborable.
14655 procedure Visit_List (List : List_Id);
14656 pragma Inline (Visit_List);
14657 -- Invoke Visit on each element of list List. This routine raises
14658 -- Non_Preelaborable.
14660 procedure Visit_Pragma (Prag : Node_Id);
14661 pragma Inline (Visit_Pragma);
14662 -- Semantically inspect pragma Prag to determine whether it violates
14663 -- preelaborability. This routine raises Non_Preelaborable.
14665 procedure Visit_Subexpression (Expr : Node_Id);
14666 pragma Inline (Visit_Subexpression);
14667 -- Semantically inspect expression Expr to determine whether it violates
14668 -- preelaborability. This routine raises Non_Preelaborable.
14670 -----------
14671 -- Visit --
14672 -----------
14674 procedure Visit (Nod : Node_Id) is
14675 begin
14676 case Nkind (Nod) is
14678 -- Declarations
14680 when N_Component_Declaration =>
14682 -- Defining_Identifier is left out because it is not relevant
14683 -- for preelaborability.
14685 Visit (Component_Definition (Nod));
14686 Visit (Expression (Nod));
14688 when N_Derived_Type_Definition =>
14690 -- Interface_List is left out because it is not relevant for
14691 -- preelaborability.
14693 Visit (Record_Extension_Part (Nod));
14694 Visit (Subtype_Indication (Nod));
14696 when N_Entry_Declaration =>
14698 -- A protected type with at leat one entry is not preelaborable
14699 -- while task types are never preelaborable. This renders entry
14700 -- declarations non-preelaborable.
14702 raise Non_Preelaborable;
14704 when N_Full_Type_Declaration =>
14706 -- Defining_Identifier and Discriminant_Specifications are left
14707 -- out because they are not relevant for preelaborability.
14709 Visit (Type_Definition (Nod));
14711 when N_Function_Instantiation
14712 | N_Package_Instantiation
14713 | N_Procedure_Instantiation
14715 -- Defining_Unit_Name and Name are left out because they are
14716 -- not relevant for preelaborability.
14718 Visit_List (Generic_Associations (Nod));
14720 when N_Object_Declaration =>
14722 -- Defining_Identifier is left out because it is not relevant
14723 -- for preelaborability.
14725 Visit (Object_Definition (Nod));
14727 if Has_Init_Expression (Nod) then
14728 Visit (Expression (Nod));
14730 elsif not Has_Preelaborable_Initialization
14731 (Etype (Defining_Entity (Nod)))
14732 then
14733 raise Non_Preelaborable;
14734 end if;
14736 when N_Private_Extension_Declaration
14737 | N_Subtype_Declaration
14739 -- Defining_Identifier, Discriminant_Specifications, and
14740 -- Interface_List are left out because they are not relevant
14741 -- for preelaborability.
14743 Visit (Subtype_Indication (Nod));
14745 when N_Protected_Type_Declaration
14746 | N_Single_Protected_Declaration
14748 -- Defining_Identifier, Discriminant_Specifications, and
14749 -- Interface_List are left out because they are not relevant
14750 -- for preelaborability.
14752 Visit (Protected_Definition (Nod));
14754 -- A [single] task type is never preelaborable
14756 when N_Single_Task_Declaration
14757 | N_Task_Type_Declaration
14759 raise Non_Preelaborable;
14761 -- Pragmas
14763 when N_Pragma =>
14764 Visit_Pragma (Nod);
14766 -- Statements
14768 when N_Statement_Other_Than_Procedure_Call =>
14769 if Nkind (Nod) /= N_Null_Statement then
14770 raise Non_Preelaborable;
14771 end if;
14773 -- Subexpressions
14775 when N_Subexpr =>
14776 Visit_Subexpression (Nod);
14778 -- Special
14780 when N_Access_To_Object_Definition =>
14781 Visit (Subtype_Indication (Nod));
14783 when N_Case_Expression_Alternative =>
14784 Visit (Expression (Nod));
14785 Visit_List (Discrete_Choices (Nod));
14787 when N_Component_Definition =>
14788 Visit (Access_Definition (Nod));
14789 Visit (Subtype_Indication (Nod));
14791 when N_Component_List =>
14792 Visit_List (Component_Items (Nod));
14793 Visit (Variant_Part (Nod));
14795 when N_Constrained_Array_Definition =>
14796 Visit_List (Discrete_Subtype_Definitions (Nod));
14797 Visit (Component_Definition (Nod));
14799 when N_Delta_Constraint
14800 | N_Digits_Constraint
14802 -- Delta_Expression and Digits_Expression are left out because
14803 -- they are not relevant for preelaborability.
14805 Visit (Range_Constraint (Nod));
14807 when N_Discriminant_Specification =>
14809 -- Defining_Identifier and Expression are left out because they
14810 -- are not relevant for preelaborability.
14812 Visit (Discriminant_Type (Nod));
14814 when N_Generic_Association =>
14816 -- Selector_Name is left out because it is not relevant for
14817 -- preelaborability.
14819 Visit (Explicit_Generic_Actual_Parameter (Nod));
14821 when N_Index_Or_Discriminant_Constraint =>
14822 Visit_List (Constraints (Nod));
14824 when N_Iterator_Specification =>
14826 -- Defining_Identifier is left out because it is not relevant
14827 -- for preelaborability.
14829 Visit (Name (Nod));
14830 Visit (Subtype_Indication (Nod));
14832 when N_Loop_Parameter_Specification =>
14834 -- Defining_Identifier is left out because it is not relevant
14835 -- for preelaborability.
14837 Visit (Discrete_Subtype_Definition (Nod));
14839 when N_Protected_Definition =>
14841 -- End_Label is left out because it is not relevant for
14842 -- preelaborability.
14844 Visit_List (Private_Declarations (Nod));
14845 Visit_List (Visible_Declarations (Nod));
14847 when N_Range_Constraint =>
14848 Visit (Range_Expression (Nod));
14850 when N_Record_Definition
14851 | N_Variant
14853 -- End_Label, Discrete_Choices, and Interface_List are left out
14854 -- because they are not relevant for preelaborability.
14856 Visit (Component_List (Nod));
14858 when N_Subtype_Indication =>
14860 -- Subtype_Mark is left out because it is not relevant for
14861 -- preelaborability.
14863 Visit (Constraint (Nod));
14865 when N_Unconstrained_Array_Definition =>
14867 -- Subtype_Marks is left out because it is not relevant for
14868 -- preelaborability.
14870 Visit (Component_Definition (Nod));
14872 when N_Variant_Part =>
14874 -- Name is left out because it is not relevant for
14875 -- preelaborability.
14877 Visit_List (Variants (Nod));
14879 -- Default
14881 when others =>
14882 null;
14883 end case;
14884 end Visit;
14886 ----------------
14887 -- Visit_List --
14888 ----------------
14890 procedure Visit_List (List : List_Id) is
14891 Nod : Node_Id;
14893 begin
14894 if Present (List) then
14895 Nod := First (List);
14896 while Present (Nod) loop
14897 Visit (Nod);
14898 Next (Nod);
14899 end loop;
14900 end if;
14901 end Visit_List;
14903 ------------------
14904 -- Visit_Pragma --
14905 ------------------
14907 procedure Visit_Pragma (Prag : Node_Id) is
14908 begin
14909 case Get_Pragma_Id (Prag) is
14910 when Pragma_Assert
14911 | Pragma_Assert_And_Cut
14912 | Pragma_Assume
14913 | Pragma_Async_Readers
14914 | Pragma_Async_Writers
14915 | Pragma_Attribute_Definition
14916 | Pragma_Check
14917 | Pragma_Constant_After_Elaboration
14918 | Pragma_CPU
14919 | Pragma_Deadline_Floor
14920 | Pragma_Dispatching_Domain
14921 | Pragma_Effective_Reads
14922 | Pragma_Effective_Writes
14923 | Pragma_Extensions_Visible
14924 | Pragma_Ghost
14925 | Pragma_Secondary_Stack_Size
14926 | Pragma_Task_Name
14927 | Pragma_Volatile_Function
14929 Visit_List (Pragma_Argument_Associations (Prag));
14931 -- Default
14933 when others =>
14934 null;
14935 end case;
14936 end Visit_Pragma;
14938 -------------------------
14939 -- Visit_Subexpression --
14940 -------------------------
14942 procedure Visit_Subexpression (Expr : Node_Id) is
14943 procedure Visit_Aggregate (Aggr : Node_Id);
14944 pragma Inline (Visit_Aggregate);
14945 -- Semantically inspect aggregate Aggr to determine whether it
14946 -- violates preelaborability.
14948 ---------------------
14949 -- Visit_Aggregate --
14950 ---------------------
14952 procedure Visit_Aggregate (Aggr : Node_Id) is
14953 begin
14954 if not Is_Preelaborable_Aggregate (Aggr) then
14955 raise Non_Preelaborable;
14956 end if;
14957 end Visit_Aggregate;
14959 -- Start of processing for Visit_Subexpression
14961 begin
14962 case Nkind (Expr) is
14963 when N_Allocator
14964 | N_Qualified_Expression
14965 | N_Type_Conversion
14966 | N_Unchecked_Expression
14967 | N_Unchecked_Type_Conversion
14969 -- Subpool_Handle_Name and Subtype_Mark are left out because
14970 -- they are not relevant for preelaborability.
14972 Visit (Expression (Expr));
14974 when N_Aggregate
14975 | N_Extension_Aggregate
14977 Visit_Aggregate (Expr);
14979 when N_Attribute_Reference
14980 | N_Explicit_Dereference
14981 | N_Reference
14983 -- Attribute_Name and Expressions are left out because they are
14984 -- not relevant for preelaborability.
14986 Visit (Prefix (Expr));
14988 when N_Case_Expression =>
14990 -- End_Span is left out because it is not relevant for
14991 -- preelaborability.
14993 Visit_List (Alternatives (Expr));
14994 Visit (Expression (Expr));
14996 when N_Delta_Aggregate =>
14997 Visit_Aggregate (Expr);
14998 Visit (Expression (Expr));
15000 when N_Expression_With_Actions =>
15001 Visit_List (Actions (Expr));
15002 Visit (Expression (Expr));
15004 when N_If_Expression =>
15005 Visit_List (Expressions (Expr));
15007 when N_Quantified_Expression =>
15008 Visit (Condition (Expr));
15009 Visit (Iterator_Specification (Expr));
15010 Visit (Loop_Parameter_Specification (Expr));
15012 when N_Range =>
15013 Visit (High_Bound (Expr));
15014 Visit (Low_Bound (Expr));
15016 when N_Slice =>
15017 Visit (Discrete_Range (Expr));
15018 Visit (Prefix (Expr));
15020 -- Default
15022 when others =>
15024 -- The evaluation of an object name is not preelaborable,
15025 -- unless the name is a static expression (checked further
15026 -- below), or statically denotes a discriminant.
15028 if Is_Entity_Name (Expr) then
15029 Object_Name : declare
15030 Id : constant Entity_Id := Entity (Expr);
15032 begin
15033 if Is_Object (Id) then
15034 if Ekind (Id) = E_Discriminant then
15035 null;
15037 elsif Ekind_In (Id, E_Constant, E_In_Parameter)
15038 and then Present (Discriminal_Link (Id))
15039 then
15040 null;
15042 else
15043 raise Non_Preelaborable;
15044 end if;
15045 end if;
15046 end Object_Name;
15048 -- A non-static expression is not preelaborable
15050 elsif not Is_OK_Static_Expression (Expr) then
15051 raise Non_Preelaborable;
15052 end if;
15053 end case;
15054 end Visit_Subexpression;
15056 -- Start of processing for Is_Non_Preelaborable_Construct
15058 begin
15059 Visit (N);
15061 -- At this point it is known that the construct is preelaborable
15063 return False;
15065 exception
15067 -- The elaboration of the construct performs an action which violates
15068 -- preelaborability.
15070 when Non_Preelaborable =>
15071 return True;
15072 end Is_Non_Preelaborable_Construct;
15074 ---------------------------------
15075 -- Is_Nontrivial_DIC_Procedure --
15076 ---------------------------------
15078 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean is
15079 Body_Decl : Node_Id;
15080 Stmt : Node_Id;
15082 begin
15083 if Ekind (Id) = E_Procedure and then Is_DIC_Procedure (Id) then
15084 Body_Decl :=
15085 Unit_Declaration_Node
15086 (Corresponding_Body (Unit_Declaration_Node (Id)));
15088 -- The body of the Default_Initial_Condition procedure must contain
15089 -- at least one statement, otherwise the generation of the subprogram
15090 -- body failed.
15092 pragma Assert (Present (Handled_Statement_Sequence (Body_Decl)));
15094 -- To qualify as nontrivial, the first statement of the procedure
15095 -- must be a check in the form of an if statement. If the original
15096 -- Default_Initial_Condition expression was folded, then the first
15097 -- statement is not a check.
15099 Stmt := First (Statements (Handled_Statement_Sequence (Body_Decl)));
15101 return
15102 Nkind (Stmt) = N_If_Statement
15103 and then Nkind (Original_Node (Stmt)) = N_Pragma;
15104 end if;
15106 return False;
15107 end Is_Nontrivial_DIC_Procedure;
15109 -------------------------
15110 -- Is_Null_Record_Type --
15111 -------------------------
15113 function Is_Null_Record_Type (T : Entity_Id) return Boolean is
15114 Decl : constant Node_Id := Parent (T);
15115 begin
15116 return Nkind (Decl) = N_Full_Type_Declaration
15117 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
15118 and then
15119 (No (Component_List (Type_Definition (Decl)))
15120 or else Null_Present (Component_List (Type_Definition (Decl))));
15121 end Is_Null_Record_Type;
15123 ---------------------
15124 -- Is_Object_Image --
15125 ---------------------
15127 function Is_Object_Image (Prefix : Node_Id) return Boolean is
15128 begin
15129 -- When the type of the prefix is not scalar, then the prefix is not
15130 -- valid in any scenario.
15132 if not Is_Scalar_Type (Etype (Prefix)) then
15133 return False;
15134 end if;
15136 -- Here we test for the case that the prefix is not a type and assume
15137 -- if it is not then it must be a named value or an object reference.
15138 -- This is because the parser always checks that prefixes of attributes
15139 -- are named.
15141 return not (Is_Entity_Name (Prefix) and then Is_Type (Entity (Prefix)));
15142 end Is_Object_Image;
15144 -------------------------
15145 -- Is_Object_Reference --
15146 -------------------------
15148 function Is_Object_Reference (N : Node_Id) return Boolean is
15149 function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean;
15150 -- Determine whether N is the name of an internally-generated renaming
15152 --------------------------------------
15153 -- Is_Internally_Generated_Renaming --
15154 --------------------------------------
15156 function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean is
15157 P : Node_Id;
15159 begin
15160 P := N;
15161 while Present (P) loop
15162 if Nkind (P) = N_Object_Renaming_Declaration then
15163 return not Comes_From_Source (P);
15164 elsif Is_List_Member (P) then
15165 return False;
15166 end if;
15168 P := Parent (P);
15169 end loop;
15171 return False;
15172 end Is_Internally_Generated_Renaming;
15174 -- Start of processing for Is_Object_Reference
15176 begin
15177 if Is_Entity_Name (N) then
15178 return Present (Entity (N)) and then Is_Object (Entity (N));
15180 else
15181 case Nkind (N) is
15182 when N_Indexed_Component
15183 | N_Slice
15185 return
15186 Is_Object_Reference (Prefix (N))
15187 or else Is_Access_Type (Etype (Prefix (N)));
15189 -- In Ada 95, a function call is a constant object; a procedure
15190 -- call is not.
15192 -- Note that predefined operators are functions as well, and so
15193 -- are attributes that are (can be renamed as) functions.
15195 when N_Binary_Op
15196 | N_Function_Call
15197 | N_Unary_Op
15199 return Etype (N) /= Standard_Void_Type;
15201 -- Attributes references 'Loop_Entry, 'Old, and 'Result yield
15202 -- objects, even though they are not functions.
15204 when N_Attribute_Reference =>
15205 return
15206 Nam_In (Attribute_Name (N), Name_Loop_Entry,
15207 Name_Old,
15208 Name_Result)
15209 or else Is_Function_Attribute_Name (Attribute_Name (N));
15211 when N_Selected_Component =>
15212 return
15213 Is_Object_Reference (Selector_Name (N))
15214 and then
15215 (Is_Object_Reference (Prefix (N))
15216 or else Is_Access_Type (Etype (Prefix (N))));
15218 -- An explicit dereference denotes an object, except that a
15219 -- conditional expression gets turned into an explicit dereference
15220 -- in some cases, and conditional expressions are not object
15221 -- names.
15223 when N_Explicit_Dereference =>
15224 return not Nkind_In (Original_Node (N), N_Case_Expression,
15225 N_If_Expression);
15227 -- A view conversion of a tagged object is an object reference
15229 when N_Type_Conversion =>
15230 return Is_Tagged_Type (Etype (Subtype_Mark (N)))
15231 and then Is_Tagged_Type (Etype (Expression (N)))
15232 and then Is_Object_Reference (Expression (N));
15234 -- An unchecked type conversion is considered to be an object if
15235 -- the operand is an object (this construction arises only as a
15236 -- result of expansion activities).
15238 when N_Unchecked_Type_Conversion =>
15239 return True;
15241 -- Allow string literals to act as objects as long as they appear
15242 -- in internally-generated renamings. The expansion of iterators
15243 -- may generate such renamings when the range involves a string
15244 -- literal.
15246 when N_String_Literal =>
15247 return Is_Internally_Generated_Renaming (Parent (N));
15249 -- AI05-0003: In Ada 2012 a qualified expression is a name.
15250 -- This allows disambiguation of function calls and the use
15251 -- of aggregates in more contexts.
15253 when N_Qualified_Expression =>
15254 if Ada_Version < Ada_2012 then
15255 return False;
15256 else
15257 return Is_Object_Reference (Expression (N))
15258 or else Nkind (Expression (N)) = N_Aggregate;
15259 end if;
15261 when others =>
15262 return False;
15263 end case;
15264 end if;
15265 end Is_Object_Reference;
15267 -----------------------------------
15268 -- Is_OK_Variable_For_Out_Formal --
15269 -----------------------------------
15271 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
15272 begin
15273 Note_Possible_Modification (AV, Sure => True);
15275 -- We must reject parenthesized variable names. Comes_From_Source is
15276 -- checked because there are currently cases where the compiler violates
15277 -- this rule (e.g. passing a task object to its controlled Initialize
15278 -- routine). This should be properly documented in sinfo???
15280 if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
15281 return False;
15283 -- A variable is always allowed
15285 elsif Is_Variable (AV) then
15286 return True;
15288 -- Generalized indexing operations are rewritten as explicit
15289 -- dereferences, and it is only during resolution that we can
15290 -- check whether the context requires an access_to_variable type.
15292 elsif Nkind (AV) = N_Explicit_Dereference
15293 and then Ada_Version >= Ada_2012
15294 and then Nkind (Original_Node (AV)) = N_Indexed_Component
15295 and then Present (Etype (Original_Node (AV)))
15296 and then Has_Implicit_Dereference (Etype (Original_Node (AV)))
15297 then
15298 return not Is_Access_Constant (Etype (Prefix (AV)));
15300 -- Unchecked conversions are allowed only if they come from the
15301 -- generated code, which sometimes uses unchecked conversions for out
15302 -- parameters in cases where code generation is unaffected. We tell
15303 -- source unchecked conversions by seeing if they are rewrites of
15304 -- an original Unchecked_Conversion function call, or of an explicit
15305 -- conversion of a function call or an aggregate (as may happen in the
15306 -- expansion of a packed array aggregate).
15308 elsif Nkind (AV) = N_Unchecked_Type_Conversion then
15309 if Nkind_In (Original_Node (AV), N_Function_Call, N_Aggregate) then
15310 return False;
15312 elsif Comes_From_Source (AV)
15313 and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
15314 then
15315 return False;
15317 elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
15318 return Is_OK_Variable_For_Out_Formal (Expression (AV));
15320 else
15321 return True;
15322 end if;
15324 -- Normal type conversions are allowed if argument is a variable
15326 elsif Nkind (AV) = N_Type_Conversion then
15327 if Is_Variable (Expression (AV))
15328 and then Paren_Count (Expression (AV)) = 0
15329 then
15330 Note_Possible_Modification (Expression (AV), Sure => True);
15331 return True;
15333 -- We also allow a non-parenthesized expression that raises
15334 -- constraint error if it rewrites what used to be a variable
15336 elsif Raises_Constraint_Error (Expression (AV))
15337 and then Paren_Count (Expression (AV)) = 0
15338 and then Is_Variable (Original_Node (Expression (AV)))
15339 then
15340 return True;
15342 -- Type conversion of something other than a variable
15344 else
15345 return False;
15346 end if;
15348 -- If this node is rewritten, then test the original form, if that is
15349 -- OK, then we consider the rewritten node OK (for example, if the
15350 -- original node is a conversion, then Is_Variable will not be true
15351 -- but we still want to allow the conversion if it converts a variable).
15353 elsif Original_Node (AV) /= AV then
15355 -- In Ada 2012, the explicit dereference may be a rewritten call to a
15356 -- Reference function.
15358 if Ada_Version >= Ada_2012
15359 and then Nkind (Original_Node (AV)) = N_Function_Call
15360 and then
15361 Has_Implicit_Dereference (Etype (Name (Original_Node (AV))))
15362 then
15364 -- Check that this is not a constant reference.
15366 return not Is_Access_Constant (Etype (Prefix (AV)));
15368 elsif Has_Implicit_Dereference (Etype (Original_Node (AV))) then
15369 return
15370 not Is_Access_Constant (Etype
15371 (Get_Reference_Discriminant (Etype (Original_Node (AV)))));
15373 else
15374 return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
15375 end if;
15377 -- All other non-variables are rejected
15379 else
15380 return False;
15381 end if;
15382 end Is_OK_Variable_For_Out_Formal;
15384 ----------------------------
15385 -- Is_OK_Volatile_Context --
15386 ----------------------------
15388 function Is_OK_Volatile_Context
15389 (Context : Node_Id;
15390 Obj_Ref : Node_Id) return Boolean
15392 function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean;
15393 -- Determine whether an arbitrary node denotes a call to a protected
15394 -- entry, function, or procedure in prefixed form where the prefix is
15395 -- Obj_Ref.
15397 function Within_Check (Nod : Node_Id) return Boolean;
15398 -- Determine whether an arbitrary node appears in a check node
15400 function Within_Volatile_Function (Id : Entity_Id) return Boolean;
15401 -- Determine whether an arbitrary entity appears in a volatile function
15403 ---------------------------------
15404 -- Is_Protected_Operation_Call --
15405 ---------------------------------
15407 function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean is
15408 Pref : Node_Id;
15409 Subp : Node_Id;
15411 begin
15412 -- A call to a protected operations retains its selected component
15413 -- form as opposed to other prefixed calls that are transformed in
15414 -- expanded names.
15416 if Nkind (Nod) = N_Selected_Component then
15417 Pref := Prefix (Nod);
15418 Subp := Selector_Name (Nod);
15420 return
15421 Pref = Obj_Ref
15422 and then Present (Etype (Pref))
15423 and then Is_Protected_Type (Etype (Pref))
15424 and then Is_Entity_Name (Subp)
15425 and then Present (Entity (Subp))
15426 and then Ekind_In (Entity (Subp), E_Entry,
15427 E_Entry_Family,
15428 E_Function,
15429 E_Procedure);
15430 else
15431 return False;
15432 end if;
15433 end Is_Protected_Operation_Call;
15435 ------------------
15436 -- Within_Check --
15437 ------------------
15439 function Within_Check (Nod : Node_Id) return Boolean is
15440 Par : Node_Id;
15442 begin
15443 -- Climb the parent chain looking for a check node
15445 Par := Nod;
15446 while Present (Par) loop
15447 if Nkind (Par) in N_Raise_xxx_Error then
15448 return True;
15450 -- Prevent the search from going too far
15452 elsif Is_Body_Or_Package_Declaration (Par) then
15453 exit;
15454 end if;
15456 Par := Parent (Par);
15457 end loop;
15459 return False;
15460 end Within_Check;
15462 ------------------------------
15463 -- Within_Volatile_Function --
15464 ------------------------------
15466 function Within_Volatile_Function (Id : Entity_Id) return Boolean is
15467 Func_Id : Entity_Id;
15469 begin
15470 -- Traverse the scope stack looking for a [generic] function
15472 Func_Id := Id;
15473 while Present (Func_Id) and then Func_Id /= Standard_Standard loop
15474 if Ekind_In (Func_Id, E_Function, E_Generic_Function) then
15475 return Is_Volatile_Function (Func_Id);
15476 end if;
15478 Func_Id := Scope (Func_Id);
15479 end loop;
15481 return False;
15482 end Within_Volatile_Function;
15484 -- Local variables
15486 Obj_Id : Entity_Id;
15488 -- Start of processing for Is_OK_Volatile_Context
15490 begin
15491 -- The volatile object appears on either side of an assignment
15493 if Nkind (Context) = N_Assignment_Statement then
15494 return True;
15496 -- The volatile object is part of the initialization expression of
15497 -- another object.
15499 elsif Nkind (Context) = N_Object_Declaration
15500 and then Present (Expression (Context))
15501 and then Expression (Context) = Obj_Ref
15502 then
15503 Obj_Id := Defining_Entity (Context);
15505 -- The volatile object acts as the initialization expression of an
15506 -- extended return statement. This is valid context as long as the
15507 -- function is volatile.
15509 if Is_Return_Object (Obj_Id) then
15510 return Within_Volatile_Function (Obj_Id);
15512 -- Otherwise this is a normal object initialization
15514 else
15515 return True;
15516 end if;
15518 -- The volatile object acts as the name of a renaming declaration
15520 elsif Nkind (Context) = N_Object_Renaming_Declaration
15521 and then Name (Context) = Obj_Ref
15522 then
15523 return True;
15525 -- The volatile object appears as an actual parameter in a call to an
15526 -- instance of Unchecked_Conversion whose result is renamed.
15528 elsif Nkind (Context) = N_Function_Call
15529 and then Is_Entity_Name (Name (Context))
15530 and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
15531 and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
15532 then
15533 return True;
15535 -- The volatile object is actually the prefix in a protected entry,
15536 -- function, or procedure call.
15538 elsif Is_Protected_Operation_Call (Context) then
15539 return True;
15541 -- The volatile object appears as the expression of a simple return
15542 -- statement that applies to a volatile function.
15544 elsif Nkind (Context) = N_Simple_Return_Statement
15545 and then Expression (Context) = Obj_Ref
15546 then
15547 return
15548 Within_Volatile_Function (Return_Statement_Entity (Context));
15550 -- The volatile object appears as the prefix of a name occurring in a
15551 -- non-interfering context.
15553 elsif Nkind_In (Context, N_Attribute_Reference,
15554 N_Explicit_Dereference,
15555 N_Indexed_Component,
15556 N_Selected_Component,
15557 N_Slice)
15558 and then Prefix (Context) = Obj_Ref
15559 and then Is_OK_Volatile_Context
15560 (Context => Parent (Context),
15561 Obj_Ref => Context)
15562 then
15563 return True;
15565 -- The volatile object appears as the prefix of attributes Address,
15566 -- Alignment, Component_Size, First_Bit, Last_Bit, Position, Size,
15567 -- Storage_Size.
15569 elsif Nkind (Context) = N_Attribute_Reference
15570 and then Prefix (Context) = Obj_Ref
15571 and then Nam_In (Attribute_Name (Context), Name_Address,
15572 Name_Alignment,
15573 Name_Component_Size,
15574 Name_First_Bit,
15575 Name_Last_Bit,
15576 Name_Position,
15577 Name_Size,
15578 Name_Storage_Size)
15579 then
15580 return True;
15582 -- The volatile object appears as the expression of a type conversion
15583 -- occurring in a non-interfering context.
15585 elsif Nkind_In (Context, N_Type_Conversion,
15586 N_Unchecked_Type_Conversion)
15587 and then Expression (Context) = Obj_Ref
15588 and then Is_OK_Volatile_Context
15589 (Context => Parent (Context),
15590 Obj_Ref => Context)
15591 then
15592 return True;
15594 -- The volatile object appears as the expression in a delay statement
15596 elsif Nkind (Context) in N_Delay_Statement then
15597 return True;
15599 -- Allow references to volatile objects in various checks. This is not a
15600 -- direct SPARK 2014 requirement.
15602 elsif Within_Check (Context) then
15603 return True;
15605 -- Assume that references to effectively volatile objects that appear
15606 -- as actual parameters in a subprogram call are always legal. A full
15607 -- legality check is done when the actuals are resolved (see routine
15608 -- Resolve_Actuals).
15610 elsif Within_Subprogram_Call (Context) then
15611 return True;
15613 -- Otherwise the context is not suitable for an effectively volatile
15614 -- object.
15616 else
15617 return False;
15618 end if;
15619 end Is_OK_Volatile_Context;
15621 ------------------------------------
15622 -- Is_Package_Contract_Annotation --
15623 ------------------------------------
15625 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean is
15626 Nam : Name_Id;
15628 begin
15629 if Nkind (Item) = N_Aspect_Specification then
15630 Nam := Chars (Identifier (Item));
15632 else pragma Assert (Nkind (Item) = N_Pragma);
15633 Nam := Pragma_Name (Item);
15634 end if;
15636 return Nam = Name_Abstract_State
15637 or else Nam = Name_Initial_Condition
15638 or else Nam = Name_Initializes
15639 or else Nam = Name_Refined_State;
15640 end Is_Package_Contract_Annotation;
15642 -----------------------------------
15643 -- Is_Partially_Initialized_Type --
15644 -----------------------------------
15646 function Is_Partially_Initialized_Type
15647 (Typ : Entity_Id;
15648 Include_Implicit : Boolean := True) return Boolean
15650 begin
15651 if Is_Scalar_Type (Typ) then
15652 return False;
15654 elsif Is_Access_Type (Typ) then
15655 return Include_Implicit;
15657 elsif Is_Array_Type (Typ) then
15659 -- If component type is partially initialized, so is array type
15661 if Is_Partially_Initialized_Type
15662 (Component_Type (Typ), Include_Implicit)
15663 then
15664 return True;
15666 -- Otherwise we are only partially initialized if we are fully
15667 -- initialized (this is the empty array case, no point in us
15668 -- duplicating that code here).
15670 else
15671 return Is_Fully_Initialized_Type (Typ);
15672 end if;
15674 elsif Is_Record_Type (Typ) then
15676 -- A discriminated type is always partially initialized if in
15677 -- all mode
15679 if Has_Discriminants (Typ) and then Include_Implicit then
15680 return True;
15682 -- A tagged type is always partially initialized
15684 elsif Is_Tagged_Type (Typ) then
15685 return True;
15687 -- Case of non-discriminated record
15689 else
15690 declare
15691 Ent : Entity_Id;
15693 Component_Present : Boolean := False;
15694 -- Set True if at least one component is present. If no
15695 -- components are present, then record type is fully
15696 -- initialized (another odd case, like the null array).
15698 begin
15699 -- Loop through components
15701 Ent := First_Entity (Typ);
15702 while Present (Ent) loop
15703 if Ekind (Ent) = E_Component then
15704 Component_Present := True;
15706 -- If a component has an initialization expression then
15707 -- the enclosing record type is partially initialized
15709 if Present (Parent (Ent))
15710 and then Present (Expression (Parent (Ent)))
15711 then
15712 return True;
15714 -- If a component is of a type which is itself partially
15715 -- initialized, then the enclosing record type is also.
15717 elsif Is_Partially_Initialized_Type
15718 (Etype (Ent), Include_Implicit)
15719 then
15720 return True;
15721 end if;
15722 end if;
15724 Next_Entity (Ent);
15725 end loop;
15727 -- No initialized components found. If we found any components
15728 -- they were all uninitialized so the result is false.
15730 if Component_Present then
15731 return False;
15733 -- But if we found no components, then all the components are
15734 -- initialized so we consider the type to be initialized.
15736 else
15737 return True;
15738 end if;
15739 end;
15740 end if;
15742 -- Concurrent types are always fully initialized
15744 elsif Is_Concurrent_Type (Typ) then
15745 return True;
15747 -- For a private type, go to underlying type. If there is no underlying
15748 -- type then just assume this partially initialized. Not clear if this
15749 -- can happen in a non-error case, but no harm in testing for this.
15751 elsif Is_Private_Type (Typ) then
15752 declare
15753 U : constant Entity_Id := Underlying_Type (Typ);
15754 begin
15755 if No (U) then
15756 return True;
15757 else
15758 return Is_Partially_Initialized_Type (U, Include_Implicit);
15759 end if;
15760 end;
15762 -- For any other type (are there any?) assume partially initialized
15764 else
15765 return True;
15766 end if;
15767 end Is_Partially_Initialized_Type;
15769 ------------------------------------
15770 -- Is_Potentially_Persistent_Type --
15771 ------------------------------------
15773 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
15774 Comp : Entity_Id;
15775 Indx : Node_Id;
15777 begin
15778 -- For private type, test corresponding full type
15780 if Is_Private_Type (T) then
15781 return Is_Potentially_Persistent_Type (Full_View (T));
15783 -- Scalar types are potentially persistent
15785 elsif Is_Scalar_Type (T) then
15786 return True;
15788 -- Record type is potentially persistent if not tagged and the types of
15789 -- all it components are potentially persistent, and no component has
15790 -- an initialization expression.
15792 elsif Is_Record_Type (T)
15793 and then not Is_Tagged_Type (T)
15794 and then not Is_Partially_Initialized_Type (T)
15795 then
15796 Comp := First_Component (T);
15797 while Present (Comp) loop
15798 if not Is_Potentially_Persistent_Type (Etype (Comp)) then
15799 return False;
15800 else
15801 Next_Entity (Comp);
15802 end if;
15803 end loop;
15805 return True;
15807 -- Array type is potentially persistent if its component type is
15808 -- potentially persistent and if all its constraints are static.
15810 elsif Is_Array_Type (T) then
15811 if not Is_Potentially_Persistent_Type (Component_Type (T)) then
15812 return False;
15813 end if;
15815 Indx := First_Index (T);
15816 while Present (Indx) loop
15817 if not Is_OK_Static_Subtype (Etype (Indx)) then
15818 return False;
15819 else
15820 Next_Index (Indx);
15821 end if;
15822 end loop;
15824 return True;
15826 -- All other types are not potentially persistent
15828 else
15829 return False;
15830 end if;
15831 end Is_Potentially_Persistent_Type;
15833 --------------------------------
15834 -- Is_Potentially_Unevaluated --
15835 --------------------------------
15837 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean is
15838 Par : Node_Id;
15839 Expr : Node_Id;
15841 begin
15842 Expr := N;
15843 Par := Parent (N);
15845 -- A postcondition whose expression is a short-circuit is broken down
15846 -- into individual aspects for better exception reporting. The original
15847 -- short-circuit expression is rewritten as the second operand, and an
15848 -- occurrence of 'Old in that operand is potentially unevaluated.
15849 -- See Sem_ch13.adb for details of this transformation.
15851 if Nkind (Original_Node (Par)) = N_And_Then then
15852 return True;
15853 end if;
15855 while not Nkind_In (Par, N_If_Expression,
15856 N_Case_Expression,
15857 N_And_Then,
15858 N_Or_Else,
15859 N_In,
15860 N_Not_In,
15861 N_Quantified_Expression)
15862 loop
15863 Expr := Par;
15864 Par := Parent (Par);
15866 -- If the context is not an expression, or if is the result of
15867 -- expansion of an enclosing construct (such as another attribute)
15868 -- the predicate does not apply.
15870 if Nkind (Par) = N_Case_Expression_Alternative then
15871 null;
15873 elsif Nkind (Par) not in N_Subexpr
15874 or else not Comes_From_Source (Par)
15875 then
15876 return False;
15877 end if;
15878 end loop;
15880 if Nkind (Par) = N_If_Expression then
15881 return Is_Elsif (Par) or else Expr /= First (Expressions (Par));
15883 elsif Nkind (Par) = N_Case_Expression then
15884 return Expr /= Expression (Par);
15886 elsif Nkind_In (Par, N_And_Then, N_Or_Else) then
15887 return Expr = Right_Opnd (Par);
15889 elsif Nkind_In (Par, N_In, N_Not_In) then
15891 -- If the membership includes several alternatives, only the first is
15892 -- definitely evaluated.
15894 if Present (Alternatives (Par)) then
15895 return Expr /= First (Alternatives (Par));
15897 -- If this is a range membership both bounds are evaluated
15899 else
15900 return False;
15901 end if;
15903 elsif Nkind (Par) = N_Quantified_Expression then
15904 return Expr = Condition (Par);
15906 else
15907 return False;
15908 end if;
15909 end Is_Potentially_Unevaluated;
15911 --------------------------------
15912 -- Is_Preelaborable_Aggregate --
15913 --------------------------------
15915 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean is
15916 Aggr_Typ : constant Entity_Id := Etype (Aggr);
15917 Array_Aggr : constant Boolean := Is_Array_Type (Aggr_Typ);
15919 Anc_Part : Node_Id;
15920 Assoc : Node_Id;
15921 Choice : Node_Id;
15922 Comp_Typ : Entity_Id := Empty; -- init to avoid warning
15923 Expr : Node_Id;
15925 begin
15926 if Array_Aggr then
15927 Comp_Typ := Component_Type (Aggr_Typ);
15928 end if;
15930 -- Inspect the ancestor part
15932 if Nkind (Aggr) = N_Extension_Aggregate then
15933 Anc_Part := Ancestor_Part (Aggr);
15935 -- The ancestor denotes a subtype mark
15937 if Is_Entity_Name (Anc_Part)
15938 and then Is_Type (Entity (Anc_Part))
15939 then
15940 if not Has_Preelaborable_Initialization (Entity (Anc_Part)) then
15941 return False;
15942 end if;
15944 -- Otherwise the ancestor denotes an expression
15946 elsif not Is_Preelaborable_Construct (Anc_Part) then
15947 return False;
15948 end if;
15949 end if;
15951 -- Inspect the positional associations
15953 Expr := First (Expressions (Aggr));
15954 while Present (Expr) loop
15955 if not Is_Preelaborable_Construct (Expr) then
15956 return False;
15957 end if;
15959 Next (Expr);
15960 end loop;
15962 -- Inspect the named associations
15964 Assoc := First (Component_Associations (Aggr));
15965 while Present (Assoc) loop
15967 -- Inspect the choices of the current named association
15969 Choice := First (Choices (Assoc));
15970 while Present (Choice) loop
15971 if Array_Aggr then
15973 -- For a choice to be preelaborable, it must denote either a
15974 -- static range or a static expression.
15976 if Nkind (Choice) = N_Others_Choice then
15977 null;
15979 elsif Nkind (Choice) = N_Range then
15980 if not Is_OK_Static_Range (Choice) then
15981 return False;
15982 end if;
15984 elsif not Is_OK_Static_Expression (Choice) then
15985 return False;
15986 end if;
15988 else
15989 Comp_Typ := Etype (Choice);
15990 end if;
15992 Next (Choice);
15993 end loop;
15995 -- The type of the choice must have preelaborable initialization if
15996 -- the association carries a <>.
15998 pragma Assert (Present (Comp_Typ));
15999 if Box_Present (Assoc) then
16000 if not Has_Preelaborable_Initialization (Comp_Typ) then
16001 return False;
16002 end if;
16004 -- The type of the expression must have preelaborable initialization
16006 elsif not Is_Preelaborable_Construct (Expression (Assoc)) then
16007 return False;
16008 end if;
16010 Next (Assoc);
16011 end loop;
16013 -- At this point the aggregate is preelaborable
16015 return True;
16016 end Is_Preelaborable_Aggregate;
16018 --------------------------------
16019 -- Is_Preelaborable_Construct --
16020 --------------------------------
16022 function Is_Preelaborable_Construct (N : Node_Id) return Boolean is
16023 begin
16024 -- Aggregates
16026 if Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
16027 return Is_Preelaborable_Aggregate (N);
16029 -- Attributes are allowed in general, even if their prefix is a formal
16030 -- type. It seems that certain attributes known not to be static might
16031 -- not be allowed, but there are no rules to prevent them.
16033 elsif Nkind (N) = N_Attribute_Reference then
16034 return True;
16036 -- Expressions
16038 elsif Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
16039 return True;
16041 elsif Nkind (N) = N_Qualified_Expression then
16042 return Is_Preelaborable_Construct (Expression (N));
16044 -- Names are preelaborable when they denote a discriminant of an
16045 -- enclosing type. Discriminals are also considered for this check.
16047 elsif Is_Entity_Name (N)
16048 and then Present (Entity (N))
16049 and then
16050 (Ekind (Entity (N)) = E_Discriminant
16051 or else (Ekind_In (Entity (N), E_Constant, E_In_Parameter)
16052 and then Present (Discriminal_Link (Entity (N)))))
16053 then
16054 return True;
16056 -- Statements
16058 elsif Nkind (N) = N_Null then
16059 return True;
16061 -- Otherwise the construct is not preelaborable
16063 else
16064 return False;
16065 end if;
16066 end Is_Preelaborable_Construct;
16068 ---------------------------------
16069 -- Is_Protected_Self_Reference --
16070 ---------------------------------
16072 function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
16074 function In_Access_Definition (N : Node_Id) return Boolean;
16075 -- Returns true if N belongs to an access definition
16077 --------------------------
16078 -- In_Access_Definition --
16079 --------------------------
16081 function In_Access_Definition (N : Node_Id) return Boolean is
16082 P : Node_Id;
16084 begin
16085 P := Parent (N);
16086 while Present (P) loop
16087 if Nkind (P) = N_Access_Definition then
16088 return True;
16089 end if;
16091 P := Parent (P);
16092 end loop;
16094 return False;
16095 end In_Access_Definition;
16097 -- Start of processing for Is_Protected_Self_Reference
16099 begin
16100 -- Verify that prefix is analyzed and has the proper form. Note that
16101 -- the attributes Elab_Spec, Elab_Body, and Elab_Subp_Body, which also
16102 -- produce the address of an entity, do not analyze their prefix
16103 -- because they denote entities that are not necessarily visible.
16104 -- Neither of them can apply to a protected type.
16106 return Ada_Version >= Ada_2005
16107 and then Is_Entity_Name (N)
16108 and then Present (Entity (N))
16109 and then Is_Protected_Type (Entity (N))
16110 and then In_Open_Scopes (Entity (N))
16111 and then not In_Access_Definition (N);
16112 end Is_Protected_Self_Reference;
16114 -----------------------------
16115 -- Is_RCI_Pkg_Spec_Or_Body --
16116 -----------------------------
16118 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
16120 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
16121 -- Return True if the unit of Cunit is an RCI package declaration
16123 ---------------------------
16124 -- Is_RCI_Pkg_Decl_Cunit --
16125 ---------------------------
16127 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
16128 The_Unit : constant Node_Id := Unit (Cunit);
16130 begin
16131 if Nkind (The_Unit) /= N_Package_Declaration then
16132 return False;
16133 end if;
16135 return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
16136 end Is_RCI_Pkg_Decl_Cunit;
16138 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
16140 begin
16141 return Is_RCI_Pkg_Decl_Cunit (Cunit)
16142 or else
16143 (Nkind (Unit (Cunit)) = N_Package_Body
16144 and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
16145 end Is_RCI_Pkg_Spec_Or_Body;
16147 -----------------------------------------
16148 -- Is_Remote_Access_To_Class_Wide_Type --
16149 -----------------------------------------
16151 function Is_Remote_Access_To_Class_Wide_Type
16152 (E : Entity_Id) return Boolean
16154 begin
16155 -- A remote access to class-wide type is a general access to object type
16156 -- declared in the visible part of a Remote_Types or Remote_Call_
16157 -- Interface unit.
16159 return Ekind (E) = E_General_Access_Type
16160 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
16161 end Is_Remote_Access_To_Class_Wide_Type;
16163 -----------------------------------------
16164 -- Is_Remote_Access_To_Subprogram_Type --
16165 -----------------------------------------
16167 function Is_Remote_Access_To_Subprogram_Type
16168 (E : Entity_Id) return Boolean
16170 begin
16171 return (Ekind (E) = E_Access_Subprogram_Type
16172 or else (Ekind (E) = E_Record_Type
16173 and then Present (Corresponding_Remote_Type (E))))
16174 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
16175 end Is_Remote_Access_To_Subprogram_Type;
16177 --------------------
16178 -- Is_Remote_Call --
16179 --------------------
16181 function Is_Remote_Call (N : Node_Id) return Boolean is
16182 begin
16183 if Nkind (N) not in N_Subprogram_Call then
16185 -- An entry call cannot be remote
16187 return False;
16189 elsif Nkind (Name (N)) in N_Has_Entity
16190 and then Is_Remote_Call_Interface (Entity (Name (N)))
16191 then
16192 -- A subprogram declared in the spec of a RCI package is remote
16194 return True;
16196 elsif Nkind (Name (N)) = N_Explicit_Dereference
16197 and then Is_Remote_Access_To_Subprogram_Type
16198 (Etype (Prefix (Name (N))))
16199 then
16200 -- The dereference of a RAS is a remote call
16202 return True;
16204 elsif Present (Controlling_Argument (N))
16205 and then Is_Remote_Access_To_Class_Wide_Type
16206 (Etype (Controlling_Argument (N)))
16207 then
16208 -- Any primitive operation call with a controlling argument of
16209 -- a RACW type is a remote call.
16211 return True;
16212 end if;
16214 -- All other calls are local calls
16216 return False;
16217 end Is_Remote_Call;
16219 ----------------------
16220 -- Is_Renamed_Entry --
16221 ----------------------
16223 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
16224 Orig_Node : Node_Id := Empty;
16225 Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
16227 function Is_Entry (Nam : Node_Id) return Boolean;
16228 -- Determine whether Nam is an entry. Traverse selectors if there are
16229 -- nested selected components.
16231 --------------
16232 -- Is_Entry --
16233 --------------
16235 function Is_Entry (Nam : Node_Id) return Boolean is
16236 begin
16237 if Nkind (Nam) = N_Selected_Component then
16238 return Is_Entry (Selector_Name (Nam));
16239 end if;
16241 return Ekind (Entity (Nam)) = E_Entry;
16242 end Is_Entry;
16244 -- Start of processing for Is_Renamed_Entry
16246 begin
16247 if Present (Alias (Proc_Nam)) then
16248 Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
16249 end if;
16251 -- Look for a rewritten subprogram renaming declaration
16253 if Nkind (Subp_Decl) = N_Subprogram_Declaration
16254 and then Present (Original_Node (Subp_Decl))
16255 then
16256 Orig_Node := Original_Node (Subp_Decl);
16257 end if;
16259 -- The rewritten subprogram is actually an entry
16261 if Present (Orig_Node)
16262 and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
16263 and then Is_Entry (Name (Orig_Node))
16264 then
16265 return True;
16266 end if;
16268 return False;
16269 end Is_Renamed_Entry;
16271 -----------------------------
16272 -- Is_Renaming_Declaration --
16273 -----------------------------
16275 function Is_Renaming_Declaration (N : Node_Id) return Boolean is
16276 begin
16277 case Nkind (N) is
16278 when N_Exception_Renaming_Declaration
16279 | N_Generic_Function_Renaming_Declaration
16280 | N_Generic_Package_Renaming_Declaration
16281 | N_Generic_Procedure_Renaming_Declaration
16282 | N_Object_Renaming_Declaration
16283 | N_Package_Renaming_Declaration
16284 | N_Subprogram_Renaming_Declaration
16286 return True;
16288 when others =>
16289 return False;
16290 end case;
16291 end Is_Renaming_Declaration;
16293 ----------------------------
16294 -- Is_Reversible_Iterator --
16295 ----------------------------
16297 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
16298 Ifaces_List : Elist_Id;
16299 Iface_Elmt : Elmt_Id;
16300 Iface : Entity_Id;
16302 begin
16303 if Is_Class_Wide_Type (Typ)
16304 and then Chars (Root_Type (Typ)) = Name_Reversible_Iterator
16305 and then In_Predefined_Unit (Root_Type (Typ))
16306 then
16307 return True;
16309 elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
16310 return False;
16312 else
16313 Collect_Interfaces (Typ, Ifaces_List);
16315 Iface_Elmt := First_Elmt (Ifaces_List);
16316 while Present (Iface_Elmt) loop
16317 Iface := Node (Iface_Elmt);
16318 if Chars (Iface) = Name_Reversible_Iterator
16319 and then In_Predefined_Unit (Iface)
16320 then
16321 return True;
16322 end if;
16324 Next_Elmt (Iface_Elmt);
16325 end loop;
16326 end if;
16328 return False;
16329 end Is_Reversible_Iterator;
16331 ----------------------
16332 -- Is_Selector_Name --
16333 ----------------------
16335 function Is_Selector_Name (N : Node_Id) return Boolean is
16336 begin
16337 if not Is_List_Member (N) then
16338 declare
16339 P : constant Node_Id := Parent (N);
16340 begin
16341 return Nkind_In (P, N_Expanded_Name,
16342 N_Generic_Association,
16343 N_Parameter_Association,
16344 N_Selected_Component)
16345 and then Selector_Name (P) = N;
16346 end;
16348 else
16349 declare
16350 L : constant List_Id := List_Containing (N);
16351 P : constant Node_Id := Parent (L);
16352 begin
16353 return (Nkind (P) = N_Discriminant_Association
16354 and then Selector_Names (P) = L)
16355 or else
16356 (Nkind (P) = N_Component_Association
16357 and then Choices (P) = L);
16358 end;
16359 end if;
16360 end Is_Selector_Name;
16362 ---------------------------------
16363 -- Is_Single_Concurrent_Object --
16364 ---------------------------------
16366 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean is
16367 begin
16368 return
16369 Is_Single_Protected_Object (Id) or else Is_Single_Task_Object (Id);
16370 end Is_Single_Concurrent_Object;
16372 -------------------------------
16373 -- Is_Single_Concurrent_Type --
16374 -------------------------------
16376 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean is
16377 begin
16378 return
16379 Ekind_In (Id, E_Protected_Type, E_Task_Type)
16380 and then Is_Single_Concurrent_Type_Declaration
16381 (Declaration_Node (Id));
16382 end Is_Single_Concurrent_Type;
16384 -------------------------------------------
16385 -- Is_Single_Concurrent_Type_Declaration --
16386 -------------------------------------------
16388 function Is_Single_Concurrent_Type_Declaration
16389 (N : Node_Id) return Boolean
16391 begin
16392 return Nkind_In (Original_Node (N), N_Single_Protected_Declaration,
16393 N_Single_Task_Declaration);
16394 end Is_Single_Concurrent_Type_Declaration;
16396 ---------------------------------------------
16397 -- Is_Single_Precision_Floating_Point_Type --
16398 ---------------------------------------------
16400 function Is_Single_Precision_Floating_Point_Type
16401 (E : Entity_Id) return Boolean is
16402 begin
16403 return Is_Floating_Point_Type (E)
16404 and then Machine_Radix_Value (E) = Uint_2
16405 and then Machine_Mantissa_Value (E) = Uint_24
16406 and then Machine_Emax_Value (E) = Uint_2 ** Uint_7
16407 and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_7);
16408 end Is_Single_Precision_Floating_Point_Type;
16410 --------------------------------
16411 -- Is_Single_Protected_Object --
16412 --------------------------------
16414 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean is
16415 begin
16416 return
16417 Ekind (Id) = E_Variable
16418 and then Ekind (Etype (Id)) = E_Protected_Type
16419 and then Is_Single_Concurrent_Type (Etype (Id));
16420 end Is_Single_Protected_Object;
16422 ---------------------------
16423 -- Is_Single_Task_Object --
16424 ---------------------------
16426 function Is_Single_Task_Object (Id : Entity_Id) return Boolean is
16427 begin
16428 return
16429 Ekind (Id) = E_Variable
16430 and then Ekind (Etype (Id)) = E_Task_Type
16431 and then Is_Single_Concurrent_Type (Etype (Id));
16432 end Is_Single_Task_Object;
16434 -------------------------------------
16435 -- Is_SPARK_05_Initialization_Expr --
16436 -------------------------------------
16438 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean is
16439 Is_Ok : Boolean;
16440 Expr : Node_Id;
16441 Comp_Assn : Node_Id;
16442 Orig_N : constant Node_Id := Original_Node (N);
16444 begin
16445 Is_Ok := True;
16447 if not Comes_From_Source (Orig_N) then
16448 goto Done;
16449 end if;
16451 pragma Assert (Nkind (Orig_N) in N_Subexpr);
16453 case Nkind (Orig_N) is
16454 when N_Character_Literal
16455 | N_Integer_Literal
16456 | N_Real_Literal
16457 | N_String_Literal
16459 null;
16461 when N_Expanded_Name
16462 | N_Identifier
16464 if Is_Entity_Name (Orig_N)
16465 and then Present (Entity (Orig_N)) -- needed in some cases
16466 then
16467 case Ekind (Entity (Orig_N)) is
16468 when E_Constant
16469 | E_Enumeration_Literal
16470 | E_Named_Integer
16471 | E_Named_Real
16473 null;
16475 when others =>
16476 if Is_Type (Entity (Orig_N)) then
16477 null;
16478 else
16479 Is_Ok := False;
16480 end if;
16481 end case;
16482 end if;
16484 when N_Qualified_Expression
16485 | N_Type_Conversion
16487 Is_Ok := Is_SPARK_05_Initialization_Expr (Expression (Orig_N));
16489 when N_Unary_Op =>
16490 Is_Ok := Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
16492 when N_Binary_Op
16493 | N_Membership_Test
16494 | N_Short_Circuit
16496 Is_Ok := Is_SPARK_05_Initialization_Expr (Left_Opnd (Orig_N))
16497 and then
16498 Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
16500 when N_Aggregate
16501 | N_Extension_Aggregate
16503 if Nkind (Orig_N) = N_Extension_Aggregate then
16504 Is_Ok :=
16505 Is_SPARK_05_Initialization_Expr (Ancestor_Part (Orig_N));
16506 end if;
16508 Expr := First (Expressions (Orig_N));
16509 while Present (Expr) loop
16510 if not Is_SPARK_05_Initialization_Expr (Expr) then
16511 Is_Ok := False;
16512 goto Done;
16513 end if;
16515 Next (Expr);
16516 end loop;
16518 Comp_Assn := First (Component_Associations (Orig_N));
16519 while Present (Comp_Assn) loop
16520 Expr := Expression (Comp_Assn);
16522 -- Note: test for Present here needed for box assocation
16524 if Present (Expr)
16525 and then not Is_SPARK_05_Initialization_Expr (Expr)
16526 then
16527 Is_Ok := False;
16528 goto Done;
16529 end if;
16531 Next (Comp_Assn);
16532 end loop;
16534 when N_Attribute_Reference =>
16535 if Nkind (Prefix (Orig_N)) in N_Subexpr then
16536 Is_Ok := Is_SPARK_05_Initialization_Expr (Prefix (Orig_N));
16537 end if;
16539 Expr := First (Expressions (Orig_N));
16540 while Present (Expr) loop
16541 if not Is_SPARK_05_Initialization_Expr (Expr) then
16542 Is_Ok := False;
16543 goto Done;
16544 end if;
16546 Next (Expr);
16547 end loop;
16549 -- Selected components might be expanded named not yet resolved, so
16550 -- default on the safe side. (Eg on sparklex.ads)
16552 when N_Selected_Component =>
16553 null;
16555 when others =>
16556 Is_Ok := False;
16557 end case;
16559 <<Done>>
16560 return Is_Ok;
16561 end Is_SPARK_05_Initialization_Expr;
16563 ----------------------------------
16564 -- Is_SPARK_05_Object_Reference --
16565 ----------------------------------
16567 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean is
16568 begin
16569 if Is_Entity_Name (N) then
16570 return Present (Entity (N))
16571 and then
16572 (Ekind_In (Entity (N), E_Constant, E_Variable)
16573 or else Ekind (Entity (N)) in Formal_Kind);
16575 else
16576 case Nkind (N) is
16577 when N_Selected_Component =>
16578 return Is_SPARK_05_Object_Reference (Prefix (N));
16580 when others =>
16581 return False;
16582 end case;
16583 end if;
16584 end Is_SPARK_05_Object_Reference;
16586 -----------------------------
16587 -- Is_Specific_Tagged_Type --
16588 -----------------------------
16590 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean is
16591 Full_Typ : Entity_Id;
16593 begin
16594 -- Handle private types
16596 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
16597 Full_Typ := Full_View (Typ);
16598 else
16599 Full_Typ := Typ;
16600 end if;
16602 -- A specific tagged type is a non-class-wide tagged type
16604 return Is_Tagged_Type (Full_Typ) and not Is_Class_Wide_Type (Full_Typ);
16605 end Is_Specific_Tagged_Type;
16607 ------------------
16608 -- Is_Statement --
16609 ------------------
16611 function Is_Statement (N : Node_Id) return Boolean is
16612 begin
16613 return
16614 Nkind (N) in N_Statement_Other_Than_Procedure_Call
16615 or else Nkind (N) = N_Procedure_Call_Statement;
16616 end Is_Statement;
16618 ---------------------------------------
16619 -- Is_Subprogram_Contract_Annotation --
16620 ---------------------------------------
16622 function Is_Subprogram_Contract_Annotation
16623 (Item : Node_Id) return Boolean
16625 Nam : Name_Id;
16627 begin
16628 if Nkind (Item) = N_Aspect_Specification then
16629 Nam := Chars (Identifier (Item));
16631 else pragma Assert (Nkind (Item) = N_Pragma);
16632 Nam := Pragma_Name (Item);
16633 end if;
16635 return Nam = Name_Contract_Cases
16636 or else Nam = Name_Depends
16637 or else Nam = Name_Extensions_Visible
16638 or else Nam = Name_Global
16639 or else Nam = Name_Post
16640 or else Nam = Name_Post_Class
16641 or else Nam = Name_Postcondition
16642 or else Nam = Name_Pre
16643 or else Nam = Name_Pre_Class
16644 or else Nam = Name_Precondition
16645 or else Nam = Name_Refined_Depends
16646 or else Nam = Name_Refined_Global
16647 or else Nam = Name_Refined_Post
16648 or else Nam = Name_Test_Case;
16649 end Is_Subprogram_Contract_Annotation;
16651 --------------------------------------------------
16652 -- Is_Subprogram_Stub_Without_Prior_Declaration --
16653 --------------------------------------------------
16655 function Is_Subprogram_Stub_Without_Prior_Declaration
16656 (N : Node_Id) return Boolean
16658 begin
16659 -- A subprogram stub without prior declaration serves as declaration for
16660 -- the actual subprogram body. As such, it has an attached defining
16661 -- entity of E_[Generic_]Function or E_[Generic_]Procedure.
16663 return Nkind (N) = N_Subprogram_Body_Stub
16664 and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body;
16665 end Is_Subprogram_Stub_Without_Prior_Declaration;
16667 --------------------------
16668 -- Is_Suspension_Object --
16669 --------------------------
16671 function Is_Suspension_Object (Id : Entity_Id) return Boolean is
16672 begin
16673 -- This approach does an exact name match rather than to rely on
16674 -- RTSfind. Routine Is_Effectively_Volatile is used by clients of the
16675 -- front end at point where all auxiliary tables are locked and any
16676 -- modifications to them are treated as violations. Do not tamper with
16677 -- the tables, instead examine the Chars fields of all the scopes of Id.
16679 return
16680 Chars (Id) = Name_Suspension_Object
16681 and then Present (Scope (Id))
16682 and then Chars (Scope (Id)) = Name_Synchronous_Task_Control
16683 and then Present (Scope (Scope (Id)))
16684 and then Chars (Scope (Scope (Id))) = Name_Ada
16685 and then Present (Scope (Scope (Scope (Id))))
16686 and then Scope (Scope (Scope (Id))) = Standard_Standard;
16687 end Is_Suspension_Object;
16689 ----------------------------
16690 -- Is_Synchronized_Object --
16691 ----------------------------
16693 function Is_Synchronized_Object (Id : Entity_Id) return Boolean is
16694 Prag : Node_Id;
16696 begin
16697 if Is_Object (Id) then
16699 -- The object is synchronized if it is of a type that yields a
16700 -- synchronized object.
16702 if Yields_Synchronized_Object (Etype (Id)) then
16703 return True;
16705 -- The object is synchronized if it is atomic and Async_Writers is
16706 -- enabled.
16708 elsif Is_Atomic (Id) and then Async_Writers_Enabled (Id) then
16709 return True;
16711 -- A constant is a synchronized object by default
16713 elsif Ekind (Id) = E_Constant then
16714 return True;
16716 -- A variable is a synchronized object if it is subject to pragma
16717 -- Constant_After_Elaboration.
16719 elsif Ekind (Id) = E_Variable then
16720 Prag := Get_Pragma (Id, Pragma_Constant_After_Elaboration);
16722 return Present (Prag) and then Is_Enabled_Pragma (Prag);
16723 end if;
16724 end if;
16726 -- Otherwise the input is not an object or it does not qualify as a
16727 -- synchronized object.
16729 return False;
16730 end Is_Synchronized_Object;
16732 ---------------------------------
16733 -- Is_Synchronized_Tagged_Type --
16734 ---------------------------------
16736 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
16737 Kind : constant Entity_Kind := Ekind (Base_Type (E));
16739 begin
16740 -- A task or protected type derived from an interface is a tagged type.
16741 -- Such a tagged type is called a synchronized tagged type, as are
16742 -- synchronized interfaces and private extensions whose declaration
16743 -- includes the reserved word synchronized.
16745 return (Is_Tagged_Type (E)
16746 and then (Kind = E_Task_Type
16747 or else
16748 Kind = E_Protected_Type))
16749 or else
16750 (Is_Interface (E)
16751 and then Is_Synchronized_Interface (E))
16752 or else
16753 (Ekind (E) = E_Record_Type_With_Private
16754 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
16755 and then (Synchronized_Present (Parent (E))
16756 or else Is_Synchronized_Interface (Etype (E))));
16757 end Is_Synchronized_Tagged_Type;
16759 -----------------
16760 -- Is_Transfer --
16761 -----------------
16763 function Is_Transfer (N : Node_Id) return Boolean is
16764 Kind : constant Node_Kind := Nkind (N);
16766 begin
16767 if Kind = N_Simple_Return_Statement
16768 or else
16769 Kind = N_Extended_Return_Statement
16770 or else
16771 Kind = N_Goto_Statement
16772 or else
16773 Kind = N_Raise_Statement
16774 or else
16775 Kind = N_Requeue_Statement
16776 then
16777 return True;
16779 elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
16780 and then No (Condition (N))
16781 then
16782 return True;
16784 elsif Kind = N_Procedure_Call_Statement
16785 and then Is_Entity_Name (Name (N))
16786 and then Present (Entity (Name (N)))
16787 and then No_Return (Entity (Name (N)))
16788 then
16789 return True;
16791 elsif Nkind (Original_Node (N)) = N_Raise_Statement then
16792 return True;
16794 else
16795 return False;
16796 end if;
16797 end Is_Transfer;
16799 -------------
16800 -- Is_True --
16801 -------------
16803 function Is_True (U : Uint) return Boolean is
16804 begin
16805 return (U /= 0);
16806 end Is_True;
16808 --------------------------------------
16809 -- Is_Unchecked_Conversion_Instance --
16810 --------------------------------------
16812 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean is
16813 Par : Node_Id;
16815 begin
16816 -- Look for a function whose generic parent is the predefined intrinsic
16817 -- function Unchecked_Conversion, or for one that renames such an
16818 -- instance.
16820 if Ekind (Id) = E_Function then
16821 Par := Parent (Id);
16823 if Nkind (Par) = N_Function_Specification then
16824 Par := Generic_Parent (Par);
16826 if Present (Par) then
16827 return
16828 Chars (Par) = Name_Unchecked_Conversion
16829 and then Is_Intrinsic_Subprogram (Par)
16830 and then In_Predefined_Unit (Par);
16831 else
16832 return
16833 Present (Alias (Id))
16834 and then Is_Unchecked_Conversion_Instance (Alias (Id));
16835 end if;
16836 end if;
16837 end if;
16839 return False;
16840 end Is_Unchecked_Conversion_Instance;
16842 -------------------------------
16843 -- Is_Universal_Numeric_Type --
16844 -------------------------------
16846 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
16847 begin
16848 return T = Universal_Integer or else T = Universal_Real;
16849 end Is_Universal_Numeric_Type;
16851 ------------------------------
16852 -- Is_User_Defined_Equality --
16853 ------------------------------
16855 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
16856 begin
16857 return Ekind (Id) = E_Function
16858 and then Chars (Id) = Name_Op_Eq
16859 and then Comes_From_Source (Id)
16861 -- Internally generated equalities have a full type declaration
16862 -- as their parent.
16864 and then Nkind (Parent (Id)) = N_Function_Specification;
16865 end Is_User_Defined_Equality;
16867 --------------------------------------
16868 -- Is_Validation_Variable_Reference --
16869 --------------------------------------
16871 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean is
16872 Var : constant Node_Id := Unqual_Conv (N);
16873 Var_Id : Entity_Id;
16875 begin
16876 Var_Id := Empty;
16878 if Is_Entity_Name (Var) then
16879 Var_Id := Entity (Var);
16880 end if;
16882 return
16883 Present (Var_Id)
16884 and then Ekind (Var_Id) = E_Variable
16885 and then Present (Validated_Object (Var_Id));
16886 end Is_Validation_Variable_Reference;
16888 ----------------------------
16889 -- Is_Variable_Size_Array --
16890 ----------------------------
16892 function Is_Variable_Size_Array (E : Entity_Id) return Boolean is
16893 Idx : Node_Id;
16895 begin
16896 pragma Assert (Is_Array_Type (E));
16898 -- Check if some index is initialized with a non-constant value
16900 Idx := First_Index (E);
16901 while Present (Idx) loop
16902 if Nkind (Idx) = N_Range then
16903 if not Is_Constant_Bound (Low_Bound (Idx))
16904 or else not Is_Constant_Bound (High_Bound (Idx))
16905 then
16906 return True;
16907 end if;
16908 end if;
16910 Idx := Next_Index (Idx);
16911 end loop;
16913 return False;
16914 end Is_Variable_Size_Array;
16916 -----------------------------
16917 -- Is_Variable_Size_Record --
16918 -----------------------------
16920 function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
16921 Comp : Entity_Id;
16922 Comp_Typ : Entity_Id;
16924 begin
16925 pragma Assert (Is_Record_Type (E));
16927 Comp := First_Entity (E);
16928 while Present (Comp) loop
16929 Comp_Typ := Etype (Comp);
16931 -- Recursive call if the record type has discriminants
16933 if Is_Record_Type (Comp_Typ)
16934 and then Has_Discriminants (Comp_Typ)
16935 and then Is_Variable_Size_Record (Comp_Typ)
16936 then
16937 return True;
16939 elsif Is_Array_Type (Comp_Typ)
16940 and then Is_Variable_Size_Array (Comp_Typ)
16941 then
16942 return True;
16943 end if;
16945 Next_Entity (Comp);
16946 end loop;
16948 return False;
16949 end Is_Variable_Size_Record;
16951 -----------------
16952 -- Is_Variable --
16953 -----------------
16955 function Is_Variable
16956 (N : Node_Id;
16957 Use_Original_Node : Boolean := True) return Boolean
16959 Orig_Node : Node_Id;
16961 function In_Protected_Function (E : Entity_Id) return Boolean;
16962 -- Within a protected function, the private components of the enclosing
16963 -- protected type are constants. A function nested within a (protected)
16964 -- procedure is not itself protected. Within the body of a protected
16965 -- function the current instance of the protected type is a constant.
16967 function Is_Variable_Prefix (P : Node_Id) return Boolean;
16968 -- Prefixes can involve implicit dereferences, in which case we must
16969 -- test for the case of a reference of a constant access type, which can
16970 -- can never be a variable.
16972 ---------------------------
16973 -- In_Protected_Function --
16974 ---------------------------
16976 function In_Protected_Function (E : Entity_Id) return Boolean is
16977 Prot : Entity_Id;
16978 S : Entity_Id;
16980 begin
16981 -- E is the current instance of a type
16983 if Is_Type (E) then
16984 Prot := E;
16986 -- E is an object
16988 else
16989 Prot := Scope (E);
16990 end if;
16992 if not Is_Protected_Type (Prot) then
16993 return False;
16995 else
16996 S := Current_Scope;
16997 while Present (S) and then S /= Prot loop
16998 if Ekind (S) = E_Function and then Scope (S) = Prot then
16999 return True;
17000 end if;
17002 S := Scope (S);
17003 end loop;
17005 return False;
17006 end if;
17007 end In_Protected_Function;
17009 ------------------------
17010 -- Is_Variable_Prefix --
17011 ------------------------
17013 function Is_Variable_Prefix (P : Node_Id) return Boolean is
17014 begin
17015 if Is_Access_Type (Etype (P)) then
17016 return not Is_Access_Constant (Root_Type (Etype (P)));
17018 -- For the case of an indexed component whose prefix has a packed
17019 -- array type, the prefix has been rewritten into a type conversion.
17020 -- Determine variable-ness from the converted expression.
17022 elsif Nkind (P) = N_Type_Conversion
17023 and then not Comes_From_Source (P)
17024 and then Is_Array_Type (Etype (P))
17025 and then Is_Packed (Etype (P))
17026 then
17027 return Is_Variable (Expression (P));
17029 else
17030 return Is_Variable (P);
17031 end if;
17032 end Is_Variable_Prefix;
17034 -- Start of processing for Is_Variable
17036 begin
17037 -- Special check, allow x'Deref(expr) as a variable
17039 if Nkind (N) = N_Attribute_Reference
17040 and then Attribute_Name (N) = Name_Deref
17041 then
17042 return True;
17043 end if;
17045 -- Check if we perform the test on the original node since this may be a
17046 -- test of syntactic categories which must not be disturbed by whatever
17047 -- rewriting might have occurred. For example, an aggregate, which is
17048 -- certainly NOT a variable, could be turned into a variable by
17049 -- expansion.
17051 if Use_Original_Node then
17052 Orig_Node := Original_Node (N);
17053 else
17054 Orig_Node := N;
17055 end if;
17057 -- Definitely OK if Assignment_OK is set. Since this is something that
17058 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
17060 if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
17061 return True;
17063 -- Normally we go to the original node, but there is one exception where
17064 -- we use the rewritten node, namely when it is an explicit dereference.
17065 -- The generated code may rewrite a prefix which is an access type with
17066 -- an explicit dereference. The dereference is a variable, even though
17067 -- the original node may not be (since it could be a constant of the
17068 -- access type).
17070 -- In Ada 2005 we have a further case to consider: the prefix may be a
17071 -- function call given in prefix notation. The original node appears to
17072 -- be a selected component, but we need to examine the call.
17074 elsif Nkind (N) = N_Explicit_Dereference
17075 and then Nkind (Orig_Node) /= N_Explicit_Dereference
17076 and then Present (Etype (Orig_Node))
17077 and then Is_Access_Type (Etype (Orig_Node))
17078 then
17079 -- Note that if the prefix is an explicit dereference that does not
17080 -- come from source, we must check for a rewritten function call in
17081 -- prefixed notation before other forms of rewriting, to prevent a
17082 -- compiler crash.
17084 return
17085 (Nkind (Orig_Node) = N_Function_Call
17086 and then not Is_Access_Constant (Etype (Prefix (N))))
17087 or else
17088 Is_Variable_Prefix (Original_Node (Prefix (N)));
17090 -- in Ada 2012, the dereference may have been added for a type with
17091 -- a declared implicit dereference aspect. Check that it is not an
17092 -- access to constant.
17094 elsif Nkind (N) = N_Explicit_Dereference
17095 and then Present (Etype (Orig_Node))
17096 and then Ada_Version >= Ada_2012
17097 and then Has_Implicit_Dereference (Etype (Orig_Node))
17098 then
17099 return not Is_Access_Constant (Etype (Prefix (N)));
17101 -- A function call is never a variable
17103 elsif Nkind (N) = N_Function_Call then
17104 return False;
17106 -- All remaining checks use the original node
17108 elsif Is_Entity_Name (Orig_Node)
17109 and then Present (Entity (Orig_Node))
17110 then
17111 declare
17112 E : constant Entity_Id := Entity (Orig_Node);
17113 K : constant Entity_Kind := Ekind (E);
17115 begin
17116 return (K = E_Variable
17117 and then Nkind (Parent (E)) /= N_Exception_Handler)
17118 or else (K = E_Component
17119 and then not In_Protected_Function (E))
17120 or else K = E_Out_Parameter
17121 or else K = E_In_Out_Parameter
17122 or else K = E_Generic_In_Out_Parameter
17124 -- Current instance of type. If this is a protected type, check
17125 -- we are not within the body of one of its protected functions.
17127 or else (Is_Type (E)
17128 and then In_Open_Scopes (E)
17129 and then not In_Protected_Function (E))
17131 or else (Is_Incomplete_Or_Private_Type (E)
17132 and then In_Open_Scopes (Full_View (E)));
17133 end;
17135 else
17136 case Nkind (Orig_Node) is
17137 when N_Indexed_Component
17138 | N_Slice
17140 return Is_Variable_Prefix (Prefix (Orig_Node));
17142 when N_Selected_Component =>
17143 return (Is_Variable (Selector_Name (Orig_Node))
17144 and then Is_Variable_Prefix (Prefix (Orig_Node)))
17145 or else
17146 (Nkind (N) = N_Expanded_Name
17147 and then Scope (Entity (N)) = Entity (Prefix (N)));
17149 -- For an explicit dereference, the type of the prefix cannot
17150 -- be an access to constant or an access to subprogram.
17152 when N_Explicit_Dereference =>
17153 declare
17154 Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
17155 begin
17156 return Is_Access_Type (Typ)
17157 and then not Is_Access_Constant (Root_Type (Typ))
17158 and then Ekind (Typ) /= E_Access_Subprogram_Type;
17159 end;
17161 -- The type conversion is the case where we do not deal with the
17162 -- context dependent special case of an actual parameter. Thus
17163 -- the type conversion is only considered a variable for the
17164 -- purposes of this routine if the target type is tagged. However,
17165 -- a type conversion is considered to be a variable if it does not
17166 -- come from source (this deals for example with the conversions
17167 -- of expressions to their actual subtypes).
17169 when N_Type_Conversion =>
17170 return Is_Variable (Expression (Orig_Node))
17171 and then
17172 (not Comes_From_Source (Orig_Node)
17173 or else
17174 (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
17175 and then
17176 Is_Tagged_Type (Etype (Expression (Orig_Node)))));
17178 -- GNAT allows an unchecked type conversion as a variable. This
17179 -- only affects the generation of internal expanded code, since
17180 -- calls to instantiations of Unchecked_Conversion are never
17181 -- considered variables (since they are function calls).
17183 when N_Unchecked_Type_Conversion =>
17184 return Is_Variable (Expression (Orig_Node));
17186 when others =>
17187 return False;
17188 end case;
17189 end if;
17190 end Is_Variable;
17192 ------------------------------
17193 -- Is_Verifiable_DIC_Pragma --
17194 ------------------------------
17196 function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean is
17197 Args : constant List_Id := Pragma_Argument_Associations (Prag);
17199 begin
17200 -- To qualify as verifiable, a DIC pragma must have a non-null argument
17202 return
17203 Present (Args)
17204 and then Nkind (Get_Pragma_Arg (First (Args))) /= N_Null;
17205 end Is_Verifiable_DIC_Pragma;
17207 ---------------------------
17208 -- Is_Visibly_Controlled --
17209 ---------------------------
17211 function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
17212 Root : constant Entity_Id := Root_Type (T);
17213 begin
17214 return Chars (Scope (Root)) = Name_Finalization
17215 and then Chars (Scope (Scope (Root))) = Name_Ada
17216 and then Scope (Scope (Scope (Root))) = Standard_Standard;
17217 end Is_Visibly_Controlled;
17219 --------------------------
17220 -- Is_Volatile_Function --
17221 --------------------------
17223 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean is
17224 begin
17225 pragma Assert (Ekind_In (Func_Id, E_Function, E_Generic_Function));
17227 -- A function declared within a protected type is volatile
17229 if Is_Protected_Type (Scope (Func_Id)) then
17230 return True;
17232 -- An instance of Ada.Unchecked_Conversion is a volatile function if
17233 -- either the source or the target are effectively volatile.
17235 elsif Is_Unchecked_Conversion_Instance (Func_Id)
17236 and then Has_Effectively_Volatile_Profile (Func_Id)
17237 then
17238 return True;
17240 -- Otherwise the function is treated as volatile if it is subject to
17241 -- enabled pragma Volatile_Function.
17243 else
17244 return
17245 Is_Enabled_Pragma (Get_Pragma (Func_Id, Pragma_Volatile_Function));
17246 end if;
17247 end Is_Volatile_Function;
17249 ------------------------
17250 -- Is_Volatile_Object --
17251 ------------------------
17253 function Is_Volatile_Object (N : Node_Id) return Boolean is
17254 function Is_Volatile_Prefix (N : Node_Id) return Boolean;
17255 -- If prefix is an implicit dereference, examine designated type
17257 function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
17258 -- Determines if given object has volatile components
17260 ------------------------
17261 -- Is_Volatile_Prefix --
17262 ------------------------
17264 function Is_Volatile_Prefix (N : Node_Id) return Boolean is
17265 Typ : constant Entity_Id := Etype (N);
17267 begin
17268 if Is_Access_Type (Typ) then
17269 declare
17270 Dtyp : constant Entity_Id := Designated_Type (Typ);
17272 begin
17273 return Is_Volatile (Dtyp)
17274 or else Has_Volatile_Components (Dtyp);
17275 end;
17277 else
17278 return Object_Has_Volatile_Components (N);
17279 end if;
17280 end Is_Volatile_Prefix;
17282 ------------------------------------
17283 -- Object_Has_Volatile_Components --
17284 ------------------------------------
17286 function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
17287 Typ : constant Entity_Id := Etype (N);
17289 begin
17290 if Is_Volatile (Typ)
17291 or else Has_Volatile_Components (Typ)
17292 then
17293 return True;
17295 elsif Is_Entity_Name (N)
17296 and then (Has_Volatile_Components (Entity (N))
17297 or else Is_Volatile (Entity (N)))
17298 then
17299 return True;
17301 elsif Nkind (N) = N_Indexed_Component
17302 or else Nkind (N) = N_Selected_Component
17303 then
17304 return Is_Volatile_Prefix (Prefix (N));
17306 else
17307 return False;
17308 end if;
17309 end Object_Has_Volatile_Components;
17311 -- Start of processing for Is_Volatile_Object
17313 begin
17314 if Nkind (N) = N_Defining_Identifier then
17315 return Is_Volatile (N) or else Is_Volatile (Etype (N));
17317 elsif Nkind (N) = N_Expanded_Name then
17318 return Is_Volatile_Object (Entity (N));
17320 elsif Is_Volatile (Etype (N))
17321 or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
17322 then
17323 return True;
17325 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component)
17326 and then Is_Volatile_Prefix (Prefix (N))
17327 then
17328 return True;
17330 elsif Nkind (N) = N_Selected_Component
17331 and then Is_Volatile (Entity (Selector_Name (N)))
17332 then
17333 return True;
17335 else
17336 return False;
17337 end if;
17338 end Is_Volatile_Object;
17340 -----------------------------
17341 -- Iterate_Call_Parameters --
17342 -----------------------------
17344 procedure Iterate_Call_Parameters (Call : Node_Id) is
17345 Formal : Entity_Id := First_Formal (Get_Called_Entity (Call));
17346 Actual : Node_Id := First_Actual (Call);
17348 begin
17349 while Present (Formal) and then Present (Actual) loop
17350 Handle_Parameter (Formal, Actual);
17351 Formal := Next_Formal (Formal);
17352 Actual := Next_Actual (Actual);
17353 end loop;
17354 end Iterate_Call_Parameters;
17356 ---------------------------
17357 -- Itype_Has_Declaration --
17358 ---------------------------
17360 function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
17361 begin
17362 pragma Assert (Is_Itype (Id));
17363 return Present (Parent (Id))
17364 and then Nkind_In (Parent (Id), N_Full_Type_Declaration,
17365 N_Subtype_Declaration)
17366 and then Defining_Entity (Parent (Id)) = Id;
17367 end Itype_Has_Declaration;
17369 -------------------------
17370 -- Kill_Current_Values --
17371 -------------------------
17373 procedure Kill_Current_Values
17374 (Ent : Entity_Id;
17375 Last_Assignment_Only : Boolean := False)
17377 begin
17378 if Is_Assignable (Ent) then
17379 Set_Last_Assignment (Ent, Empty);
17380 end if;
17382 if Is_Object (Ent) then
17383 if not Last_Assignment_Only then
17384 Kill_Checks (Ent);
17385 Set_Current_Value (Ent, Empty);
17387 -- Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
17388 -- for a constant. Once the constant is elaborated, its value is
17389 -- not changed, therefore the associated flags that describe the
17390 -- value should not be modified either.
17392 if Ekind (Ent) = E_Constant then
17393 null;
17395 -- Non-constant entities
17397 else
17398 if not Can_Never_Be_Null (Ent) then
17399 Set_Is_Known_Non_Null (Ent, False);
17400 end if;
17402 Set_Is_Known_Null (Ent, False);
17404 -- Reset the Is_Known_Valid flag unless the type is always
17405 -- valid. This does not apply to a loop parameter because its
17406 -- bounds are defined by the loop header and therefore always
17407 -- valid.
17409 if not Is_Known_Valid (Etype (Ent))
17410 and then Ekind (Ent) /= E_Loop_Parameter
17411 then
17412 Set_Is_Known_Valid (Ent, False);
17413 end if;
17414 end if;
17415 end if;
17416 end if;
17417 end Kill_Current_Values;
17419 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
17420 S : Entity_Id;
17422 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
17423 -- Clear current value for entity E and all entities chained to E
17425 ------------------------------------------
17426 -- Kill_Current_Values_For_Entity_Chain --
17427 ------------------------------------------
17429 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
17430 Ent : Entity_Id;
17431 begin
17432 Ent := E;
17433 while Present (Ent) loop
17434 Kill_Current_Values (Ent, Last_Assignment_Only);
17435 Next_Entity (Ent);
17436 end loop;
17437 end Kill_Current_Values_For_Entity_Chain;
17439 -- Start of processing for Kill_Current_Values
17441 begin
17442 -- Kill all saved checks, a special case of killing saved values
17444 if not Last_Assignment_Only then
17445 Kill_All_Checks;
17446 end if;
17448 -- Loop through relevant scopes, which includes the current scope and
17449 -- any parent scopes if the current scope is a block or a package.
17451 S := Current_Scope;
17452 Scope_Loop : loop
17454 -- Clear current values of all entities in current scope
17456 Kill_Current_Values_For_Entity_Chain (First_Entity (S));
17458 -- If scope is a package, also clear current values of all private
17459 -- entities in the scope.
17461 if Is_Package_Or_Generic_Package (S)
17462 or else Is_Concurrent_Type (S)
17463 then
17464 Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
17465 end if;
17467 -- If this is a not a subprogram, deal with parents
17469 if not Is_Subprogram (S) then
17470 S := Scope (S);
17471 exit Scope_Loop when S = Standard_Standard;
17472 else
17473 exit Scope_Loop;
17474 end if;
17475 end loop Scope_Loop;
17476 end Kill_Current_Values;
17478 --------------------------
17479 -- Kill_Size_Check_Code --
17480 --------------------------
17482 procedure Kill_Size_Check_Code (E : Entity_Id) is
17483 begin
17484 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
17485 and then Present (Size_Check_Code (E))
17486 then
17487 Remove (Size_Check_Code (E));
17488 Set_Size_Check_Code (E, Empty);
17489 end if;
17490 end Kill_Size_Check_Code;
17492 --------------------
17493 -- Known_Non_Null --
17494 --------------------
17496 function Known_Non_Null (N : Node_Id) return Boolean is
17497 Status : constant Null_Status_Kind := Null_Status (N);
17499 Id : Entity_Id;
17500 Op : Node_Kind;
17501 Val : Node_Id;
17503 begin
17504 -- The expression yields a non-null value ignoring simple flow analysis
17506 if Status = Is_Non_Null then
17507 return True;
17509 -- Otherwise check whether N is a reference to an entity that appears
17510 -- within a conditional construct.
17512 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
17514 -- First check if we are in decisive conditional
17516 Get_Current_Value_Condition (N, Op, Val);
17518 if Known_Null (Val) then
17519 if Op = N_Op_Eq then
17520 return False;
17521 elsif Op = N_Op_Ne then
17522 return True;
17523 end if;
17524 end if;
17526 -- If OK to do replacement, test Is_Known_Non_Null flag
17528 Id := Entity (N);
17530 if OK_To_Do_Constant_Replacement (Id) then
17531 return Is_Known_Non_Null (Id);
17532 end if;
17533 end if;
17535 -- Otherwise it is not possible to determine whether N yields a non-null
17536 -- value.
17538 return False;
17539 end Known_Non_Null;
17541 ----------------
17542 -- Known_Null --
17543 ----------------
17545 function Known_Null (N : Node_Id) return Boolean is
17546 Status : constant Null_Status_Kind := Null_Status (N);
17548 Id : Entity_Id;
17549 Op : Node_Kind;
17550 Val : Node_Id;
17552 begin
17553 -- The expression yields a null value ignoring simple flow analysis
17555 if Status = Is_Null then
17556 return True;
17558 -- Otherwise check whether N is a reference to an entity that appears
17559 -- within a conditional construct.
17561 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
17563 -- First check if we are in decisive conditional
17565 Get_Current_Value_Condition (N, Op, Val);
17567 if Known_Null (Val) then
17568 if Op = N_Op_Eq then
17569 return True;
17570 elsif Op = N_Op_Ne then
17571 return False;
17572 end if;
17573 end if;
17575 -- If OK to do replacement, test Is_Known_Null flag
17577 Id := Entity (N);
17579 if OK_To_Do_Constant_Replacement (Id) then
17580 return Is_Known_Null (Id);
17581 end if;
17582 end if;
17584 -- Otherwise it is not possible to determine whether N yields a null
17585 -- value.
17587 return False;
17588 end Known_Null;
17590 --------------------------
17591 -- Known_To_Be_Assigned --
17592 --------------------------
17594 function Known_To_Be_Assigned (N : Node_Id) return Boolean is
17595 P : constant Node_Id := Parent (N);
17597 begin
17598 case Nkind (P) is
17600 -- Test left side of assignment
17602 when N_Assignment_Statement =>
17603 return N = Name (P);
17605 -- Function call arguments are never lvalues
17607 when N_Function_Call =>
17608 return False;
17610 -- Positional parameter for procedure or accept call
17612 when N_Accept_Statement
17613 | N_Procedure_Call_Statement
17615 declare
17616 Proc : Entity_Id;
17617 Form : Entity_Id;
17618 Act : Node_Id;
17620 begin
17621 Proc := Get_Subprogram_Entity (P);
17623 if No (Proc) then
17624 return False;
17625 end if;
17627 -- If we are not a list member, something is strange, so
17628 -- be conservative and return False.
17630 if not Is_List_Member (N) then
17631 return False;
17632 end if;
17634 -- We are going to find the right formal by stepping forward
17635 -- through the formals, as we step backwards in the actuals.
17637 Form := First_Formal (Proc);
17638 Act := N;
17639 loop
17640 -- If no formal, something is weird, so be conservative
17641 -- and return False.
17643 if No (Form) then
17644 return False;
17645 end if;
17647 Prev (Act);
17648 exit when No (Act);
17649 Next_Formal (Form);
17650 end loop;
17652 return Ekind (Form) /= E_In_Parameter;
17653 end;
17655 -- Named parameter for procedure or accept call
17657 when N_Parameter_Association =>
17658 declare
17659 Proc : Entity_Id;
17660 Form : Entity_Id;
17662 begin
17663 Proc := Get_Subprogram_Entity (Parent (P));
17665 if No (Proc) then
17666 return False;
17667 end if;
17669 -- Loop through formals to find the one that matches
17671 Form := First_Formal (Proc);
17672 loop
17673 -- If no matching formal, that's peculiar, some kind of
17674 -- previous error, so return False to be conservative.
17675 -- Actually this also happens in legal code in the case
17676 -- where P is a parameter association for an Extra_Formal???
17678 if No (Form) then
17679 return False;
17680 end if;
17682 -- Else test for match
17684 if Chars (Form) = Chars (Selector_Name (P)) then
17685 return Ekind (Form) /= E_In_Parameter;
17686 end if;
17688 Next_Formal (Form);
17689 end loop;
17690 end;
17692 -- Test for appearing in a conversion that itself appears
17693 -- in an lvalue context, since this should be an lvalue.
17695 when N_Type_Conversion =>
17696 return Known_To_Be_Assigned (P);
17698 -- All other references are definitely not known to be modifications
17700 when others =>
17701 return False;
17702 end case;
17703 end Known_To_Be_Assigned;
17705 ---------------------------
17706 -- Last_Source_Statement --
17707 ---------------------------
17709 function Last_Source_Statement (HSS : Node_Id) return Node_Id is
17710 N : Node_Id;
17712 begin
17713 N := Last (Statements (HSS));
17714 while Present (N) loop
17715 exit when Comes_From_Source (N);
17716 Prev (N);
17717 end loop;
17719 return N;
17720 end Last_Source_Statement;
17722 -----------------------
17723 -- Mark_Coextensions --
17724 -----------------------
17726 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
17727 Is_Dynamic : Boolean;
17728 -- Indicates whether the context causes nested coextensions to be
17729 -- dynamic or static
17731 function Mark_Allocator (N : Node_Id) return Traverse_Result;
17732 -- Recognize an allocator node and label it as a dynamic coextension
17734 --------------------
17735 -- Mark_Allocator --
17736 --------------------
17738 function Mark_Allocator (N : Node_Id) return Traverse_Result is
17739 begin
17740 if Nkind (N) = N_Allocator then
17741 if Is_Dynamic then
17742 Set_Is_Dynamic_Coextension (N);
17744 -- If the allocator expression is potentially dynamic, it may
17745 -- be expanded out of order and require dynamic allocation
17746 -- anyway, so we treat the coextension itself as dynamic.
17747 -- Potential optimization ???
17749 elsif Nkind (Expression (N)) = N_Qualified_Expression
17750 and then Nkind (Expression (Expression (N))) = N_Op_Concat
17751 then
17752 Set_Is_Dynamic_Coextension (N);
17753 else
17754 Set_Is_Static_Coextension (N);
17755 end if;
17756 end if;
17758 return OK;
17759 end Mark_Allocator;
17761 procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
17763 -- Start of processing for Mark_Coextensions
17765 begin
17766 -- An allocator that appears on the right-hand side of an assignment is
17767 -- treated as a potentially dynamic coextension when the right-hand side
17768 -- is an allocator or a qualified expression.
17770 -- Obj := new ...'(new Coextension ...);
17772 if Nkind (Context_Nod) = N_Assignment_Statement then
17773 Is_Dynamic :=
17774 Nkind_In (Expression (Context_Nod), N_Allocator,
17775 N_Qualified_Expression);
17777 -- An allocator that appears within the expression of a simple return
17778 -- statement is treated as a potentially dynamic coextension when the
17779 -- expression is either aggregate, allocator, or qualified expression.
17781 -- return (new Coextension ...);
17782 -- return new ...'(new Coextension ...);
17784 elsif Nkind (Context_Nod) = N_Simple_Return_Statement then
17785 Is_Dynamic :=
17786 Nkind_In (Expression (Context_Nod), N_Aggregate,
17787 N_Allocator,
17788 N_Qualified_Expression);
17790 -- An alloctor that appears within the initialization expression of an
17791 -- object declaration is considered a potentially dynamic coextension
17792 -- when the initialization expression is an allocator or a qualified
17793 -- expression.
17795 -- Obj : ... := new ...'(new Coextension ...);
17797 -- A similar case arises when the object declaration is part of an
17798 -- extended return statement.
17800 -- return Obj : ... := new ...'(new Coextension ...);
17801 -- return Obj : ... := (new Coextension ...);
17803 elsif Nkind (Context_Nod) = N_Object_Declaration then
17804 Is_Dynamic :=
17805 Nkind_In (Root_Nod, N_Allocator, N_Qualified_Expression)
17806 or else
17807 Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;
17809 -- This routine should not be called with constructs that cannot contain
17810 -- coextensions.
17812 else
17813 raise Program_Error;
17814 end if;
17816 Mark_Allocators (Root_Nod);
17817 end Mark_Coextensions;
17819 ---------------------------------
17820 -- Mark_Elaboration_Attributes --
17821 ---------------------------------
17823 procedure Mark_Elaboration_Attributes
17824 (N_Id : Node_Or_Entity_Id;
17825 Checks : Boolean := False;
17826 Level : Boolean := False;
17827 Modes : Boolean := False)
17829 function Elaboration_Checks_OK
17830 (Target_Id : Entity_Id;
17831 Context_Id : Entity_Id) return Boolean;
17832 -- Determine whether elaboration checks are enabled for target Target_Id
17833 -- which resides within context Context_Id.
17835 procedure Mark_Elaboration_Attributes_Id (Id : Entity_Id);
17836 -- Preserve relevant attributes of the context in arbitrary entity Id
17838 procedure Mark_Elaboration_Attributes_Node (N : Node_Id);
17839 -- Preserve relevant attributes of the context in arbitrary node N
17841 ---------------------------
17842 -- Elaboration_Checks_OK --
17843 ---------------------------
17845 function Elaboration_Checks_OK
17846 (Target_Id : Entity_Id;
17847 Context_Id : Entity_Id) return Boolean
17849 Encl_Scop : Entity_Id;
17851 begin
17852 -- Elaboration checks are suppressed for the target
17854 if Elaboration_Checks_Suppressed (Target_Id) then
17855 return False;
17856 end if;
17858 -- Otherwise elaboration checks are OK for the target, but may be
17859 -- suppressed for the context where the target is declared.
17861 Encl_Scop := Context_Id;
17862 while Present (Encl_Scop) and then Encl_Scop /= Standard_Standard loop
17863 if Elaboration_Checks_Suppressed (Encl_Scop) then
17864 return False;
17865 end if;
17867 Encl_Scop := Scope (Encl_Scop);
17868 end loop;
17870 -- Neither the target nor its declarative context have elaboration
17871 -- checks suppressed.
17873 return True;
17874 end Elaboration_Checks_OK;
17876 ------------------------------------
17877 -- Mark_Elaboration_Attributes_Id --
17878 ------------------------------------
17880 procedure Mark_Elaboration_Attributes_Id (Id : Entity_Id) is
17881 begin
17882 -- Mark the status of elaboration checks in effect. Do not reset the
17883 -- status in case the entity is reanalyzed with checks suppressed.
17885 if Checks and then not Is_Elaboration_Checks_OK_Id (Id) then
17886 Set_Is_Elaboration_Checks_OK_Id (Id,
17887 Elaboration_Checks_OK
17888 (Target_Id => Id,
17889 Context_Id => Scope (Id)));
17891 -- Entities do not need to capture their enclosing level. The Ghost
17892 -- and SPARK modes in effect are already marked during analysis.
17894 else
17895 null;
17896 end if;
17897 end Mark_Elaboration_Attributes_Id;
17899 --------------------------------------
17900 -- Mark_Elaboration_Attributes_Node --
17901 --------------------------------------
17903 procedure Mark_Elaboration_Attributes_Node (N : Node_Id) is
17904 function Extract_Name (N : Node_Id) return Node_Id;
17905 -- Obtain the Name attribute of call or instantiation N
17907 ------------------
17908 -- Extract_Name --
17909 ------------------
17911 function Extract_Name (N : Node_Id) return Node_Id is
17912 Nam : Node_Id;
17914 begin
17915 Nam := Name (N);
17917 -- A call to an entry family appears in indexed form
17919 if Nkind (Nam) = N_Indexed_Component then
17920 Nam := Prefix (Nam);
17921 end if;
17923 -- The name may also appear in qualified form
17925 if Nkind (Nam) = N_Selected_Component then
17926 Nam := Selector_Name (Nam);
17927 end if;
17929 return Nam;
17930 end Extract_Name;
17932 -- Local variables
17934 Context_Id : Entity_Id;
17935 Nam : Node_Id;
17937 -- Start of processing for Mark_Elaboration_Attributes_Node
17939 begin
17940 -- Mark the status of elaboration checks in effect. Do not reset the
17941 -- status in case the node is reanalyzed with checks suppressed.
17943 if Checks and then not Is_Elaboration_Checks_OK_Node (N) then
17945 -- Assignments, attribute references, and variable references do
17946 -- not have a "declarative" context.
17948 Context_Id := Empty;
17950 -- The status of elaboration checks for calls and instantiations
17951 -- depends on the most recent pragma Suppress/Unsuppress, as well
17952 -- as the suppression status of the context where the target is
17953 -- defined.
17955 -- package Pack is
17956 -- function Func ...;
17957 -- end Pack;
17959 -- with Pack;
17960 -- procedure Main is
17961 -- pragma Suppress (Elaboration_Checks, Pack);
17962 -- X : ... := Pack.Func;
17963 -- ...
17965 -- In the example above, the call to Func has elaboration checks
17966 -- enabled because there is no active general purpose suppression
17967 -- pragma, however the elaboration checks of Pack are explicitly
17968 -- suppressed. As a result the elaboration checks of the call must
17969 -- be disabled in order to preserve this dependency.
17971 if Nkind_In (N, N_Entry_Call_Statement,
17972 N_Function_Call,
17973 N_Function_Instantiation,
17974 N_Package_Instantiation,
17975 N_Procedure_Call_Statement,
17976 N_Procedure_Instantiation)
17977 then
17978 Nam := Extract_Name (N);
17980 if Is_Entity_Name (Nam) and then Present (Entity (Nam)) then
17981 Context_Id := Scope (Entity (Nam));
17982 end if;
17983 end if;
17985 Set_Is_Elaboration_Checks_OK_Node (N,
17986 Elaboration_Checks_OK
17987 (Target_Id => Empty,
17988 Context_Id => Context_Id));
17989 end if;
17991 -- Mark the enclosing level of the node. Do not reset the status in
17992 -- case the node is relocated and reanalyzed.
17994 if Level and then not Is_Declaration_Level_Node (N) then
17995 Set_Is_Declaration_Level_Node (N,
17996 Find_Enclosing_Level (N) = Declaration_Level);
17997 end if;
17999 -- Mark the Ghost and SPARK mode in effect
18001 if Modes then
18002 if Ghost_Mode = Ignore then
18003 Set_Is_Ignored_Ghost_Node (N);
18004 end if;
18006 if SPARK_Mode = On then
18007 Set_Is_SPARK_Mode_On_Node (N);
18008 end if;
18009 end if;
18010 end Mark_Elaboration_Attributes_Node;
18012 -- Start of processing for Mark_Elaboration_Attributes
18014 begin
18015 if Nkind (N_Id) in N_Entity then
18016 Mark_Elaboration_Attributes_Id (N_Id);
18017 else
18018 Mark_Elaboration_Attributes_Node (N_Id);
18019 end if;
18020 end Mark_Elaboration_Attributes;
18022 ----------------------------------
18023 -- Matching_Static_Array_Bounds --
18024 ----------------------------------
18026 function Matching_Static_Array_Bounds
18027 (L_Typ : Node_Id;
18028 R_Typ : Node_Id) return Boolean
18030 L_Ndims : constant Nat := Number_Dimensions (L_Typ);
18031 R_Ndims : constant Nat := Number_Dimensions (R_Typ);
18033 L_Index : Node_Id := Empty; -- init to ...
18034 R_Index : Node_Id := Empty; -- ...avoid warnings
18035 L_Low : Node_Id;
18036 L_High : Node_Id;
18037 L_Len : Uint;
18038 R_Low : Node_Id;
18039 R_High : Node_Id;
18040 R_Len : Uint;
18042 begin
18043 if L_Ndims /= R_Ndims then
18044 return False;
18045 end if;
18047 -- Unconstrained types do not have static bounds
18049 if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then
18050 return False;
18051 end if;
18053 -- First treat specially the first dimension, as the lower bound and
18054 -- length of string literals are not stored like those of arrays.
18056 if Ekind (L_Typ) = E_String_Literal_Subtype then
18057 L_Low := String_Literal_Low_Bound (L_Typ);
18058 L_Len := String_Literal_Length (L_Typ);
18059 else
18060 L_Index := First_Index (L_Typ);
18061 Get_Index_Bounds (L_Index, L_Low, L_High);
18063 if Is_OK_Static_Expression (L_Low)
18064 and then
18065 Is_OK_Static_Expression (L_High)
18066 then
18067 if Expr_Value (L_High) < Expr_Value (L_Low) then
18068 L_Len := Uint_0;
18069 else
18070 L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1;
18071 end if;
18072 else
18073 return False;
18074 end if;
18075 end if;
18077 if Ekind (R_Typ) = E_String_Literal_Subtype then
18078 R_Low := String_Literal_Low_Bound (R_Typ);
18079 R_Len := String_Literal_Length (R_Typ);
18080 else
18081 R_Index := First_Index (R_Typ);
18082 Get_Index_Bounds (R_Index, R_Low, R_High);
18084 if Is_OK_Static_Expression (R_Low)
18085 and then
18086 Is_OK_Static_Expression (R_High)
18087 then
18088 if Expr_Value (R_High) < Expr_Value (R_Low) then
18089 R_Len := Uint_0;
18090 else
18091 R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1;
18092 end if;
18093 else
18094 return False;
18095 end if;
18096 end if;
18098 if (Is_OK_Static_Expression (L_Low)
18099 and then
18100 Is_OK_Static_Expression (R_Low))
18101 and then Expr_Value (L_Low) = Expr_Value (R_Low)
18102 and then L_Len = R_Len
18103 then
18104 null;
18105 else
18106 return False;
18107 end if;
18109 -- Then treat all other dimensions
18111 for Indx in 2 .. L_Ndims loop
18112 Next (L_Index);
18113 Next (R_Index);
18115 Get_Index_Bounds (L_Index, L_Low, L_High);
18116 Get_Index_Bounds (R_Index, R_Low, R_High);
18118 if (Is_OK_Static_Expression (L_Low) and then
18119 Is_OK_Static_Expression (L_High) and then
18120 Is_OK_Static_Expression (R_Low) and then
18121 Is_OK_Static_Expression (R_High))
18122 and then (Expr_Value (L_Low) = Expr_Value (R_Low)
18123 and then
18124 Expr_Value (L_High) = Expr_Value (R_High))
18125 then
18126 null;
18127 else
18128 return False;
18129 end if;
18130 end loop;
18132 -- If we fall through the loop, all indexes matched
18134 return True;
18135 end Matching_Static_Array_Bounds;
18137 -------------------
18138 -- May_Be_Lvalue --
18139 -------------------
18141 function May_Be_Lvalue (N : Node_Id) return Boolean is
18142 P : constant Node_Id := Parent (N);
18144 begin
18145 case Nkind (P) is
18147 -- Test left side of assignment
18149 when N_Assignment_Statement =>
18150 return N = Name (P);
18152 -- Test prefix of component or attribute. Note that the prefix of an
18153 -- explicit or implicit dereference cannot be an l-value. In the case
18154 -- of a 'Read attribute, the reference can be an actual in the
18155 -- argument list of the attribute.
18157 when N_Attribute_Reference =>
18158 return (N = Prefix (P)
18159 and then Name_Implies_Lvalue_Prefix (Attribute_Name (P)))
18160 or else
18161 Attribute_Name (P) = Name_Read;
18163 -- For an expanded name, the name is an lvalue if the expanded name
18164 -- is an lvalue, but the prefix is never an lvalue, since it is just
18165 -- the scope where the name is found.
18167 when N_Expanded_Name =>
18168 if N = Prefix (P) then
18169 return May_Be_Lvalue (P);
18170 else
18171 return False;
18172 end if;
18174 -- For a selected component A.B, A is certainly an lvalue if A.B is.
18175 -- B is a little interesting, if we have A.B := 3, there is some
18176 -- discussion as to whether B is an lvalue or not, we choose to say
18177 -- it is. Note however that A is not an lvalue if it is of an access
18178 -- type since this is an implicit dereference.
18180 when N_Selected_Component =>
18181 if N = Prefix (P)
18182 and then Present (Etype (N))
18183 and then Is_Access_Type (Etype (N))
18184 then
18185 return False;
18186 else
18187 return May_Be_Lvalue (P);
18188 end if;
18190 -- For an indexed component or slice, the index or slice bounds is
18191 -- never an lvalue. The prefix is an lvalue if the indexed component
18192 -- or slice is an lvalue, except if it is an access type, where we
18193 -- have an implicit dereference.
18195 when N_Indexed_Component
18196 | N_Slice
18198 if N /= Prefix (P)
18199 or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
18200 then
18201 return False;
18202 else
18203 return May_Be_Lvalue (P);
18204 end if;
18206 -- Prefix of a reference is an lvalue if the reference is an lvalue
18208 when N_Reference =>
18209 return May_Be_Lvalue (P);
18211 -- Prefix of explicit dereference is never an lvalue
18213 when N_Explicit_Dereference =>
18214 return False;
18216 -- Positional parameter for subprogram, entry, or accept call.
18217 -- In older versions of Ada function call arguments are never
18218 -- lvalues. In Ada 2012 functions can have in-out parameters.
18220 when N_Accept_Statement
18221 | N_Entry_Call_Statement
18222 | N_Subprogram_Call
18224 if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then
18225 return False;
18226 end if;
18228 -- The following mechanism is clumsy and fragile. A single flag
18229 -- set in Resolve_Actuals would be preferable ???
18231 declare
18232 Proc : Entity_Id;
18233 Form : Entity_Id;
18234 Act : Node_Id;
18236 begin
18237 Proc := Get_Subprogram_Entity (P);
18239 if No (Proc) then
18240 return True;
18241 end if;
18243 -- If we are not a list member, something is strange, so be
18244 -- conservative and return True.
18246 if not Is_List_Member (N) then
18247 return True;
18248 end if;
18250 -- We are going to find the right formal by stepping forward
18251 -- through the formals, as we step backwards in the actuals.
18253 Form := First_Formal (Proc);
18254 Act := N;
18255 loop
18256 -- If no formal, something is weird, so be conservative and
18257 -- return True.
18259 if No (Form) then
18260 return True;
18261 end if;
18263 Prev (Act);
18264 exit when No (Act);
18265 Next_Formal (Form);
18266 end loop;
18268 return Ekind (Form) /= E_In_Parameter;
18269 end;
18271 -- Named parameter for procedure or accept call
18273 when N_Parameter_Association =>
18274 declare
18275 Proc : Entity_Id;
18276 Form : Entity_Id;
18278 begin
18279 Proc := Get_Subprogram_Entity (Parent (P));
18281 if No (Proc) then
18282 return True;
18283 end if;
18285 -- Loop through formals to find the one that matches
18287 Form := First_Formal (Proc);
18288 loop
18289 -- If no matching formal, that's peculiar, some kind of
18290 -- previous error, so return True to be conservative.
18291 -- Actually happens with legal code for an unresolved call
18292 -- where we may get the wrong homonym???
18294 if No (Form) then
18295 return True;
18296 end if;
18298 -- Else test for match
18300 if Chars (Form) = Chars (Selector_Name (P)) then
18301 return Ekind (Form) /= E_In_Parameter;
18302 end if;
18304 Next_Formal (Form);
18305 end loop;
18306 end;
18308 -- Test for appearing in a conversion that itself appears in an
18309 -- lvalue context, since this should be an lvalue.
18311 when N_Type_Conversion =>
18312 return May_Be_Lvalue (P);
18314 -- Test for appearance in object renaming declaration
18316 when N_Object_Renaming_Declaration =>
18317 return True;
18319 -- All other references are definitely not lvalues
18321 when others =>
18322 return False;
18323 end case;
18324 end May_Be_Lvalue;
18326 -----------------
18327 -- Might_Raise --
18328 -----------------
18330 function Might_Raise (N : Node_Id) return Boolean is
18331 Result : Boolean := False;
18333 function Process (N : Node_Id) return Traverse_Result;
18334 -- Set Result to True if we find something that could raise an exception
18336 -------------
18337 -- Process --
18338 -------------
18340 function Process (N : Node_Id) return Traverse_Result is
18341 begin
18342 if Nkind_In (N, N_Procedure_Call_Statement,
18343 N_Function_Call,
18344 N_Raise_Statement,
18345 N_Raise_Constraint_Error,
18346 N_Raise_Program_Error,
18347 N_Raise_Storage_Error)
18348 then
18349 Result := True;
18350 return Abandon;
18351 else
18352 return OK;
18353 end if;
18354 end Process;
18356 procedure Set_Result is new Traverse_Proc (Process);
18358 -- Start of processing for Might_Raise
18360 begin
18361 -- False if exceptions can't be propagated
18363 if No_Exception_Handlers_Set then
18364 return False;
18365 end if;
18367 -- If the checks handled by the back end are not disabled, we cannot
18368 -- ensure that no exception will be raised.
18370 if not Access_Checks_Suppressed (Empty)
18371 or else not Discriminant_Checks_Suppressed (Empty)
18372 or else not Range_Checks_Suppressed (Empty)
18373 or else not Index_Checks_Suppressed (Empty)
18374 or else Opt.Stack_Checking_Enabled
18375 then
18376 return True;
18377 end if;
18379 Set_Result (N);
18380 return Result;
18381 end Might_Raise;
18383 --------------------------------
18384 -- Nearest_Enclosing_Instance --
18385 --------------------------------
18387 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id is
18388 Inst : Entity_Id;
18390 begin
18391 Inst := Scope (E);
18392 while Present (Inst) and then Inst /= Standard_Standard loop
18393 if Is_Generic_Instance (Inst) then
18394 return Inst;
18395 end if;
18397 Inst := Scope (Inst);
18398 end loop;
18400 return Empty;
18401 end Nearest_Enclosing_Instance;
18403 ----------------------
18404 -- Needs_One_Actual --
18405 ----------------------
18407 function Needs_One_Actual (E : Entity_Id) return Boolean is
18408 Formal : Entity_Id;
18410 begin
18411 -- Ada 2005 or later, and formals present. The first formal must be
18412 -- of a type that supports prefix notation: a controlling argument,
18413 -- a class-wide type, or an access to such.
18415 if Ada_Version >= Ada_2005
18416 and then Present (First_Formal (E))
18417 and then No (Default_Value (First_Formal (E)))
18418 and then
18419 (Is_Controlling_Formal (First_Formal (E))
18420 or else Is_Class_Wide_Type (Etype (First_Formal (E)))
18421 or else Is_Anonymous_Access_Type (Etype (First_Formal (E))))
18422 then
18423 Formal := Next_Formal (First_Formal (E));
18424 while Present (Formal) loop
18425 if No (Default_Value (Formal)) then
18426 return False;
18427 end if;
18429 Next_Formal (Formal);
18430 end loop;
18432 return True;
18434 -- Ada 83/95 or no formals
18436 else
18437 return False;
18438 end if;
18439 end Needs_One_Actual;
18441 ------------------------
18442 -- New_Copy_List_Tree --
18443 ------------------------
18445 function New_Copy_List_Tree (List : List_Id) return List_Id is
18446 NL : List_Id;
18447 E : Node_Id;
18449 begin
18450 if List = No_List then
18451 return No_List;
18453 else
18454 NL := New_List;
18455 E := First (List);
18457 while Present (E) loop
18458 Append (New_Copy_Tree (E), NL);
18459 E := Next (E);
18460 end loop;
18462 return NL;
18463 end if;
18464 end New_Copy_List_Tree;
18466 -------------------
18467 -- New_Copy_Tree --
18468 -------------------
18470 -- The following tables play a key role in replicating entities and Itypes.
18471 -- They are intentionally declared at the library level rather than within
18472 -- New_Copy_Tree to avoid elaborating them on each call. This performance
18473 -- optimization saves up to 2% of the entire compilation time spent in the
18474 -- front end. Care should be taken to reset the tables on each new call to
18475 -- New_Copy_Tree.
18477 NCT_Table_Max : constant := 511;
18479 subtype NCT_Table_Index is Nat range 0 .. NCT_Table_Max - 1;
18481 function NCT_Table_Hash (Key : Node_Or_Entity_Id) return NCT_Table_Index;
18482 -- Obtain the hash value of node or entity Key
18484 --------------------
18485 -- NCT_Table_Hash --
18486 --------------------
18488 function NCT_Table_Hash (Key : Node_Or_Entity_Id) return NCT_Table_Index is
18489 begin
18490 return NCT_Table_Index (Key mod NCT_Table_Max);
18491 end NCT_Table_Hash;
18493 ----------------------
18494 -- NCT_New_Entities --
18495 ----------------------
18497 -- The following table maps old entities and Itypes to their corresponding
18498 -- new entities and Itypes.
18500 -- Aaa -> Xxx
18502 package NCT_New_Entities is new Simple_HTable (
18503 Header_Num => NCT_Table_Index,
18504 Element => Entity_Id,
18505 No_Element => Empty,
18506 Key => Entity_Id,
18507 Hash => NCT_Table_Hash,
18508 Equal => "=");
18510 ------------------------
18511 -- NCT_Pending_Itypes --
18512 ------------------------
18514 -- The following table maps old Associated_Node_For_Itype nodes to a set of
18515 -- new itypes. Given a set of old Itypes Aaa, Bbb, and Ccc, where all three
18516 -- have the same Associated_Node_For_Itype Ppp, and their corresponding new
18517 -- Itypes Xxx, Yyy, Zzz, the table contains the following mapping:
18519 -- Ppp -> (Xxx, Yyy, Zzz)
18521 -- The set is expressed as an Elist
18523 package NCT_Pending_Itypes is new Simple_HTable (
18524 Header_Num => NCT_Table_Index,
18525 Element => Elist_Id,
18526 No_Element => No_Elist,
18527 Key => Node_Id,
18528 Hash => NCT_Table_Hash,
18529 Equal => "=");
18531 NCT_Tables_In_Use : Boolean := False;
18532 -- This flag keeps track of whether the two tables NCT_New_Entities and
18533 -- NCT_Pending_Itypes are in use. The flag is part of an optimization
18534 -- where certain operations are not performed if the tables are not in
18535 -- use. This saves up to 8% of the entire compilation time spent in the
18536 -- front end.
18538 -------------------
18539 -- New_Copy_Tree --
18540 -------------------
18542 function New_Copy_Tree
18543 (Source : Node_Id;
18544 Map : Elist_Id := No_Elist;
18545 New_Sloc : Source_Ptr := No_Location;
18546 New_Scope : Entity_Id := Empty) return Node_Id
18548 -- This routine performs low-level tree manipulations and needs access
18549 -- to the internals of the tree.
18551 use Atree.Unchecked_Access;
18552 use Atree_Private_Part;
18554 EWA_Level : Nat := 0;
18555 -- This counter keeps track of how many N_Expression_With_Actions nodes
18556 -- are encountered during a depth-first traversal of the subtree. These
18557 -- nodes may define new entities in their Actions lists and thus require
18558 -- special processing.
18560 EWA_Inner_Scope_Level : Nat := 0;
18561 -- This counter keeps track of how many scoping constructs appear within
18562 -- an N_Expression_With_Actions node.
18564 procedure Add_New_Entity (Old_Id : Entity_Id; New_Id : Entity_Id);
18565 pragma Inline (Add_New_Entity);
18566 -- Add an entry in the NCT_New_Entities table which maps key Old_Id to
18567 -- value New_Id. Old_Id is an entity which appears within the Actions
18568 -- list of an N_Expression_With_Actions node, or within an entity map.
18569 -- New_Id is the corresponding new entity generated during Phase 1.
18571 procedure Add_Pending_Itype (Assoc_Nod : Node_Id; Itype : Entity_Id);
18572 pragma Inline (Add_New_Entity);
18573 -- Add an entry in the NCT_Pending_Itypes which maps key Assoc_Nod to
18574 -- value Itype. Assoc_Nod is the associated node of an itype. Itype is
18575 -- an itype.
18577 procedure Build_NCT_Tables (Entity_Map : Elist_Id);
18578 pragma Inline (Build_NCT_Tables);
18579 -- Populate tables NCT_New_Entities and NCT_Pending_Itypes with the
18580 -- information supplied in entity map Entity_Map. The format of the
18581 -- entity map must be as follows:
18583 -- Old_Id1, New_Id1, Old_Id2, New_Id2, .., Old_IdN, New_IdN
18585 function Copy_Any_Node_With_Replacement
18586 (N : Node_Or_Entity_Id) return Node_Or_Entity_Id;
18587 pragma Inline (Copy_Any_Node_With_Replacement);
18588 -- Replicate entity or node N by invoking one of the following routines:
18590 -- Copy_Node_With_Replacement
18591 -- Corresponding_Entity
18593 function Copy_Elist_With_Replacement (List : Elist_Id) return Elist_Id;
18594 -- Replicate the elements of entity list List
18596 function Copy_Field_With_Replacement
18597 (Field : Union_Id;
18598 Old_Par : Node_Id := Empty;
18599 New_Par : Node_Id := Empty;
18600 Semantic : Boolean := False) return Union_Id;
18601 -- Replicate field Field by invoking one of the following routines:
18603 -- Copy_Elist_With_Replacement
18604 -- Copy_List_With_Replacement
18605 -- Copy_Node_With_Replacement
18606 -- Corresponding_Entity
18608 -- If the field is not an entity list, entity, itype, syntactic list,
18609 -- or node, then the field is returned unchanged. The routine always
18610 -- replicates entities, itypes, and valid syntactic fields. Old_Par is
18611 -- the expected parent of a syntactic field. New_Par is the new parent
18612 -- associated with a replicated syntactic field. Flag Semantic should
18613 -- be set when the input is a semantic field.
18615 function Copy_List_With_Replacement (List : List_Id) return List_Id;
18616 -- Replicate the elements of syntactic list List
18618 function Copy_Node_With_Replacement (N : Node_Id) return Node_Id;
18619 -- Replicate node N
18621 function Corresponding_Entity (Id : Entity_Id) return Entity_Id;
18622 pragma Inline (Corresponding_Entity);
18623 -- Return the corresponding new entity of Id generated during Phase 1.
18624 -- If there is no such entity, return Id.
18626 function In_Entity_Map
18627 (Id : Entity_Id;
18628 Entity_Map : Elist_Id) return Boolean;
18629 pragma Inline (In_Entity_Map);
18630 -- Determine whether entity Id is one of the old ids specified in entity
18631 -- map Entity_Map. The format of the entity map must be as follows:
18633 -- Old_Id1, New_Id1, Old_Id2, New_Id2, .., Old_IdN, New_IdN
18635 procedure Update_CFS_Sloc (N : Node_Or_Entity_Id);
18636 pragma Inline (Update_CFS_Sloc);
18637 -- Update the Comes_From_Source and Sloc attributes of node or entity N
18639 procedure Update_First_Real_Statement
18640 (Old_HSS : Node_Id;
18641 New_HSS : Node_Id);
18642 pragma Inline (Update_First_Real_Statement);
18643 -- Update semantic attribute First_Real_Statement of handled sequence of
18644 -- statements New_HSS based on handled sequence of statements Old_HSS.
18646 procedure Update_Named_Associations
18647 (Old_Call : Node_Id;
18648 New_Call : Node_Id);
18649 pragma Inline (Update_Named_Associations);
18650 -- Update semantic chain First/Next_Named_Association of call New_call
18651 -- based on call Old_Call.
18653 procedure Update_New_Entities (Entity_Map : Elist_Id);
18654 pragma Inline (Update_New_Entities);
18655 -- Update the semantic attributes of all new entities generated during
18656 -- Phase 1 that do not appear in entity map Entity_Map. The format of
18657 -- the entity map must be as follows:
18659 -- Old_Id1, New_Id1, Old_Id2, New_Id2, .., Old_IdN, New_IdN
18661 procedure Update_Pending_Itypes
18662 (Old_Assoc : Node_Id;
18663 New_Assoc : Node_Id);
18664 pragma Inline (Update_Pending_Itypes);
18665 -- Update semantic attribute Associated_Node_For_Itype to refer to node
18666 -- New_Assoc for all itypes whose associated node is Old_Assoc.
18668 procedure Update_Semantic_Fields (Id : Entity_Id);
18669 pragma Inline (Update_Semantic_Fields);
18670 -- Subsidiary to Update_New_Entities. Update semantic fields of entity
18671 -- or itype Id.
18673 procedure Visit_Any_Node (N : Node_Or_Entity_Id);
18674 pragma Inline (Visit_Any_Node);
18675 -- Visit entity of node N by invoking one of the following routines:
18677 -- Visit_Entity
18678 -- Visit_Itype
18679 -- Visit_Node
18681 procedure Visit_Elist (List : Elist_Id);
18682 -- Visit the elements of entity list List
18684 procedure Visit_Entity (Id : Entity_Id);
18685 -- Visit entity Id. This action may create a new entity of Id and save
18686 -- it in table NCT_New_Entities.
18688 procedure Visit_Field
18689 (Field : Union_Id;
18690 Par_Nod : Node_Id := Empty;
18691 Semantic : Boolean := False);
18692 -- Visit field Field by invoking one of the following routines:
18694 -- Visit_Elist
18695 -- Visit_Entity
18696 -- Visit_Itype
18697 -- Visit_List
18698 -- Visit_Node
18700 -- If the field is not an entity list, entity, itype, syntactic list,
18701 -- or node, then the field is not visited. The routine always visits
18702 -- valid syntactic fields. Par_Nod is the expected parent of the
18703 -- syntactic field. Flag Semantic should be set when the input is a
18704 -- semantic field.
18706 procedure Visit_Itype (Itype : Entity_Id);
18707 -- Visit itype Itype. This action may create a new entity for Itype and
18708 -- save it in table NCT_New_Entities. In addition, the routine may map
18709 -- the associated node of Itype to the new itype in NCT_Pending_Itypes.
18711 procedure Visit_List (List : List_Id);
18712 -- Visit the elements of syntactic list List
18714 procedure Visit_Node (N : Node_Id);
18715 -- Visit node N
18717 procedure Visit_Semantic_Fields (Id : Entity_Id);
18718 pragma Inline (Visit_Semantic_Fields);
18719 -- Subsidiary to Visit_Entity and Visit_Itype. Visit common semantic
18720 -- fields of entity or itype Id.
18722 --------------------
18723 -- Add_New_Entity --
18724 --------------------
18726 procedure Add_New_Entity (Old_Id : Entity_Id; New_Id : Entity_Id) is
18727 begin
18728 pragma Assert (Present (Old_Id));
18729 pragma Assert (Present (New_Id));
18730 pragma Assert (Nkind (Old_Id) in N_Entity);
18731 pragma Assert (Nkind (New_Id) in N_Entity);
18733 NCT_Tables_In_Use := True;
18735 -- Sanity check the NCT_New_Entities table. No previous mapping with
18736 -- key Old_Id should exist.
18738 pragma Assert (No (NCT_New_Entities.Get (Old_Id)));
18740 -- Establish the mapping
18742 -- Old_Id -> New_Id
18744 NCT_New_Entities.Set (Old_Id, New_Id);
18745 end Add_New_Entity;
18747 -----------------------
18748 -- Add_Pending_Itype --
18749 -----------------------
18751 procedure Add_Pending_Itype (Assoc_Nod : Node_Id; Itype : Entity_Id) is
18752 Itypes : Elist_Id;
18754 begin
18755 pragma Assert (Present (Assoc_Nod));
18756 pragma Assert (Present (Itype));
18757 pragma Assert (Nkind (Itype) in N_Entity);
18758 pragma Assert (Is_Itype (Itype));
18760 NCT_Tables_In_Use := True;
18762 -- It is not possible to sanity check the NCT_Pendint_Itypes table
18763 -- directly because a single node may act as the associated node for
18764 -- multiple itypes.
18766 Itypes := NCT_Pending_Itypes.Get (Assoc_Nod);
18768 if No (Itypes) then
18769 Itypes := New_Elmt_List;
18770 NCT_Pending_Itypes.Set (Assoc_Nod, Itypes);
18771 end if;
18773 -- Establish the mapping
18775 -- Assoc_Nod -> (Itype, ...)
18777 -- Avoid inserting the same itype multiple times. This involves a
18778 -- linear search, however the set of itypes with the same associated
18779 -- node is very small.
18781 Append_Unique_Elmt (Itype, Itypes);
18782 end Add_Pending_Itype;
18784 ----------------------
18785 -- Build_NCT_Tables --
18786 ----------------------
18788 procedure Build_NCT_Tables (Entity_Map : Elist_Id) is
18789 Elmt : Elmt_Id;
18790 Old_Id : Entity_Id;
18791 New_Id : Entity_Id;
18793 begin
18794 -- Nothing to do when there is no entity map
18796 if No (Entity_Map) then
18797 return;
18798 end if;
18800 Elmt := First_Elmt (Entity_Map);
18801 while Present (Elmt) loop
18803 -- Extract the (Old_Id, New_Id) pair from the entity map
18805 Old_Id := Node (Elmt);
18806 Next_Elmt (Elmt);
18808 New_Id := Node (Elmt);
18809 Next_Elmt (Elmt);
18811 -- Establish the following mapping within table NCT_New_Entities
18813 -- Old_Id -> New_Id
18815 Add_New_Entity (Old_Id, New_Id);
18817 -- Establish the following mapping within table NCT_Pending_Itypes
18818 -- when the new entity is an itype.
18820 -- Assoc_Nod -> (New_Id, ...)
18822 -- IMPORTANT: the associated node is that of the old itype because
18823 -- the node will be replicated in Phase 2.
18825 if Is_Itype (Old_Id) then
18826 Add_Pending_Itype
18827 (Assoc_Nod => Associated_Node_For_Itype (Old_Id),
18828 Itype => New_Id);
18829 end if;
18830 end loop;
18831 end Build_NCT_Tables;
18833 ------------------------------------
18834 -- Copy_Any_Node_With_Replacement --
18835 ------------------------------------
18837 function Copy_Any_Node_With_Replacement
18838 (N : Node_Or_Entity_Id) return Node_Or_Entity_Id
18840 begin
18841 if Nkind (N) in N_Entity then
18842 return Corresponding_Entity (N);
18843 else
18844 return Copy_Node_With_Replacement (N);
18845 end if;
18846 end Copy_Any_Node_With_Replacement;
18848 ---------------------------------
18849 -- Copy_Elist_With_Replacement --
18850 ---------------------------------
18852 function Copy_Elist_With_Replacement (List : Elist_Id) return Elist_Id is
18853 Elmt : Elmt_Id;
18854 Result : Elist_Id;
18856 begin
18857 -- Copy the contents of the old list. Note that the list itself may
18858 -- be empty, in which case the routine returns a new empty list. This
18859 -- avoids sharing lists between subtrees. The element of an entity
18860 -- list could be an entity or a node, hence the invocation of routine
18861 -- Copy_Any_Node_With_Replacement.
18863 if Present (List) then
18864 Result := New_Elmt_List;
18866 Elmt := First_Elmt (List);
18867 while Present (Elmt) loop
18868 Append_Elmt
18869 (Copy_Any_Node_With_Replacement (Node (Elmt)), Result);
18871 Next_Elmt (Elmt);
18872 end loop;
18874 -- Otherwise the list does not exist
18876 else
18877 Result := No_Elist;
18878 end if;
18880 return Result;
18881 end Copy_Elist_With_Replacement;
18883 ---------------------------------
18884 -- Copy_Field_With_Replacement --
18885 ---------------------------------
18887 function Copy_Field_With_Replacement
18888 (Field : Union_Id;
18889 Old_Par : Node_Id := Empty;
18890 New_Par : Node_Id := Empty;
18891 Semantic : Boolean := False) return Union_Id
18893 begin
18894 -- The field is empty
18896 if Field = Union_Id (Empty) then
18897 return Field;
18899 -- The field is an entity/itype/node
18901 elsif Field in Node_Range then
18902 declare
18903 Old_N : constant Node_Id := Node_Id (Field);
18904 Syntactic : constant Boolean := Parent (Old_N) = Old_Par;
18906 New_N : Node_Id;
18908 begin
18909 -- The field is an entity/itype
18911 if Nkind (Old_N) in N_Entity then
18913 -- An entity/itype is always replicated
18915 New_N := Corresponding_Entity (Old_N);
18917 -- Update the parent pointer when the entity is a syntactic
18918 -- field. Note that itypes do not have parent pointers.
18920 if Syntactic and then New_N /= Old_N then
18921 Set_Parent (New_N, New_Par);
18922 end if;
18924 -- The field is a node
18926 else
18927 -- A node is replicated when it is either a syntactic field
18928 -- or when the caller treats it as a semantic attribute.
18930 if Syntactic or else Semantic then
18931 New_N := Copy_Node_With_Replacement (Old_N);
18933 -- Update the parent pointer when the node is a syntactic
18934 -- field.
18936 if Syntactic and then New_N /= Old_N then
18937 Set_Parent (New_N, New_Par);
18938 end if;
18940 -- Otherwise the node is returned unchanged
18942 else
18943 New_N := Old_N;
18944 end if;
18945 end if;
18947 return Union_Id (New_N);
18948 end;
18950 -- The field is an entity list
18952 elsif Field in Elist_Range then
18953 return Union_Id (Copy_Elist_With_Replacement (Elist_Id (Field)));
18955 -- The field is a syntactic list
18957 elsif Field in List_Range then
18958 declare
18959 Old_List : constant List_Id := List_Id (Field);
18960 Syntactic : constant Boolean := Parent (Old_List) = Old_Par;
18962 New_List : List_Id;
18964 begin
18965 -- A list is replicated when it is either a syntactic field or
18966 -- when the caller treats it as a semantic attribute.
18968 if Syntactic or else Semantic then
18969 New_List := Copy_List_With_Replacement (Old_List);
18971 -- Update the parent pointer when the list is a syntactic
18972 -- field.
18974 if Syntactic and then New_List /= Old_List then
18975 Set_Parent (New_List, New_Par);
18976 end if;
18978 -- Otherwise the list is returned unchanged
18980 else
18981 New_List := Old_List;
18982 end if;
18984 return Union_Id (New_List);
18985 end;
18987 -- Otherwise the field denotes an attribute that does not need to be
18988 -- replicated (Chars, literals, etc).
18990 else
18991 return Field;
18992 end if;
18993 end Copy_Field_With_Replacement;
18995 --------------------------------
18996 -- Copy_List_With_Replacement --
18997 --------------------------------
18999 function Copy_List_With_Replacement (List : List_Id) return List_Id is
19000 Elmt : Node_Id;
19001 Result : List_Id;
19003 begin
19004 -- Copy the contents of the old list. Note that the list itself may
19005 -- be empty, in which case the routine returns a new empty list. This
19006 -- avoids sharing lists between subtrees. The element of a syntactic
19007 -- list is always a node, never an entity or itype, hence the call to
19008 -- routine Copy_Node_With_Replacement.
19010 if Present (List) then
19011 Result := New_List;
19013 Elmt := First (List);
19014 while Present (Elmt) loop
19015 Append (Copy_Node_With_Replacement (Elmt), Result);
19017 Next (Elmt);
19018 end loop;
19020 -- Otherwise the list does not exist
19022 else
19023 Result := No_List;
19024 end if;
19026 return Result;
19027 end Copy_List_With_Replacement;
19029 --------------------------------
19030 -- Copy_Node_With_Replacement --
19031 --------------------------------
19033 function Copy_Node_With_Replacement (N : Node_Id) return Node_Id is
19034 Result : Node_Id;
19036 begin
19037 -- Assume that the node must be returned unchanged
19039 Result := N;
19041 if N > Empty_Or_Error then
19042 pragma Assert (Nkind (N) not in N_Entity);
19044 Result := New_Copy (N);
19046 Set_Field1 (Result,
19047 Copy_Field_With_Replacement
19048 (Field => Field1 (Result),
19049 Old_Par => N,
19050 New_Par => Result));
19052 Set_Field2 (Result,
19053 Copy_Field_With_Replacement
19054 (Field => Field2 (Result),
19055 Old_Par => N,
19056 New_Par => Result));
19058 Set_Field3 (Result,
19059 Copy_Field_With_Replacement
19060 (Field => Field3 (Result),
19061 Old_Par => N,
19062 New_Par => Result));
19064 Set_Field4 (Result,
19065 Copy_Field_With_Replacement
19066 (Field => Field4 (Result),
19067 Old_Par => N,
19068 New_Par => Result));
19070 Set_Field5 (Result,
19071 Copy_Field_With_Replacement
19072 (Field => Field5 (Result),
19073 Old_Par => N,
19074 New_Par => Result));
19076 -- Update the Comes_From_Source and Sloc attributes of the node
19077 -- in case the caller has supplied new values.
19079 Update_CFS_Sloc (Result);
19081 -- Update the Associated_Node_For_Itype attribute of all itypes
19082 -- created during Phase 1 whose associated node is N. As a result
19083 -- the Associated_Node_For_Itype refers to the replicated node.
19084 -- No action needs to be taken when the Associated_Node_For_Itype
19085 -- refers to an entity because this was already handled during
19086 -- Phase 1, in Visit_Itype.
19088 Update_Pending_Itypes
19089 (Old_Assoc => N,
19090 New_Assoc => Result);
19092 -- Update the First/Next_Named_Association chain for a replicated
19093 -- call.
19095 if Nkind_In (N, N_Entry_Call_Statement,
19096 N_Function_Call,
19097 N_Procedure_Call_Statement)
19098 then
19099 Update_Named_Associations
19100 (Old_Call => N,
19101 New_Call => Result);
19103 -- Update the Renamed_Object attribute of a replicated object
19104 -- declaration.
19106 elsif Nkind (N) = N_Object_Renaming_Declaration then
19107 Set_Renamed_Object (Defining_Entity (Result), Name (Result));
19109 -- Update the First_Real_Statement attribute of a replicated
19110 -- handled sequence of statements.
19112 elsif Nkind (N) = N_Handled_Sequence_Of_Statements then
19113 Update_First_Real_Statement
19114 (Old_HSS => N,
19115 New_HSS => Result);
19116 end if;
19117 end if;
19119 return Result;
19120 end Copy_Node_With_Replacement;
19122 --------------------------
19123 -- Corresponding_Entity --
19124 --------------------------
19126 function Corresponding_Entity (Id : Entity_Id) return Entity_Id is
19127 New_Id : Entity_Id;
19128 Result : Entity_Id;
19130 begin
19131 -- Assume that the entity must be returned unchanged
19133 Result := Id;
19135 if Id > Empty_Or_Error then
19136 pragma Assert (Nkind (Id) in N_Entity);
19138 -- Determine whether the entity has a corresponding new entity
19139 -- generated during Phase 1 and if it does, use it.
19141 if NCT_Tables_In_Use then
19142 New_Id := NCT_New_Entities.Get (Id);
19144 if Present (New_Id) then
19145 Result := New_Id;
19146 end if;
19147 end if;
19148 end if;
19150 return Result;
19151 end Corresponding_Entity;
19153 -------------------
19154 -- In_Entity_Map --
19155 -------------------
19157 function In_Entity_Map
19158 (Id : Entity_Id;
19159 Entity_Map : Elist_Id) return Boolean
19161 Elmt : Elmt_Id;
19162 Old_Id : Entity_Id;
19164 begin
19165 -- The entity map contains pairs (Old_Id, New_Id). The advancement
19166 -- step always skips the New_Id portion of the pair.
19168 if Present (Entity_Map) then
19169 Elmt := First_Elmt (Entity_Map);
19170 while Present (Elmt) loop
19171 Old_Id := Node (Elmt);
19173 if Old_Id = Id then
19174 return True;
19175 end if;
19177 Next_Elmt (Elmt);
19178 Next_Elmt (Elmt);
19179 end loop;
19180 end if;
19182 return False;
19183 end In_Entity_Map;
19185 ---------------------
19186 -- Update_CFS_Sloc --
19187 ---------------------
19189 procedure Update_CFS_Sloc (N : Node_Or_Entity_Id) is
19190 begin
19191 -- A new source location defaults the Comes_From_Source attribute
19193 if New_Sloc /= No_Location then
19194 Set_Comes_From_Source (N, Default_Node.Comes_From_Source);
19195 Set_Sloc (N, New_Sloc);
19196 end if;
19197 end Update_CFS_Sloc;
19199 ---------------------------------
19200 -- Update_First_Real_Statement --
19201 ---------------------------------
19203 procedure Update_First_Real_Statement
19204 (Old_HSS : Node_Id;
19205 New_HSS : Node_Id)
19207 Old_First_Stmt : constant Node_Id := First_Real_Statement (Old_HSS);
19209 New_Stmt : Node_Id;
19210 Old_Stmt : Node_Id;
19212 begin
19213 -- Recreate the First_Real_Statement attribute of a handled sequence
19214 -- of statements by traversing the statement lists of both sequences
19215 -- in parallel.
19217 if Present (Old_First_Stmt) then
19218 New_Stmt := First (Statements (New_HSS));
19219 Old_Stmt := First (Statements (Old_HSS));
19220 while Present (Old_Stmt) and then Old_Stmt /= Old_First_Stmt loop
19221 Next (New_Stmt);
19222 Next (Old_Stmt);
19223 end loop;
19225 pragma Assert (Present (New_Stmt));
19226 pragma Assert (Present (Old_Stmt));
19228 Set_First_Real_Statement (New_HSS, New_Stmt);
19229 end if;
19230 end Update_First_Real_Statement;
19232 -------------------------------
19233 -- Update_Named_Associations --
19234 -------------------------------
19236 procedure Update_Named_Associations
19237 (Old_Call : Node_Id;
19238 New_Call : Node_Id)
19240 New_Act : Node_Id;
19241 New_Next : Node_Id;
19242 Old_Act : Node_Id;
19243 Old_Next : Node_Id;
19245 begin
19246 -- Recreate the First/Next_Named_Actual chain of a call by traversing
19247 -- the chains of both the old and new calls in parallel.
19249 New_Act := First (Parameter_Associations (New_Call));
19250 Old_Act := First (Parameter_Associations (Old_Call));
19251 while Present (Old_Act) loop
19252 if Nkind (Old_Act) = N_Parameter_Association
19253 and then Present (Next_Named_Actual (Old_Act))
19254 then
19255 if First_Named_Actual (Old_Call) =
19256 Explicit_Actual_Parameter (Old_Act)
19257 then
19258 Set_First_Named_Actual (New_Call,
19259 Explicit_Actual_Parameter (New_Act));
19260 end if;
19262 -- Scan the actual parameter list to find the next suitable
19263 -- named actual. Note that the list may be out of order.
19265 New_Next := First (Parameter_Associations (New_Call));
19266 Old_Next := First (Parameter_Associations (Old_Call));
19267 while Nkind (Old_Next) /= N_Parameter_Association
19268 or else Explicit_Actual_Parameter (Old_Next) /=
19269 Next_Named_Actual (Old_Act)
19270 loop
19271 Next (New_Next);
19272 Next (Old_Next);
19273 end loop;
19275 Set_Next_Named_Actual (New_Act,
19276 Explicit_Actual_Parameter (New_Next));
19277 end if;
19279 Next (New_Act);
19280 Next (Old_Act);
19281 end loop;
19282 end Update_Named_Associations;
19284 -------------------------
19285 -- Update_New_Entities --
19286 -------------------------
19288 procedure Update_New_Entities (Entity_Map : Elist_Id) is
19289 New_Id : Entity_Id := Empty;
19290 Old_Id : Entity_Id := Empty;
19292 begin
19293 if NCT_Tables_In_Use then
19294 NCT_New_Entities.Get_First (Old_Id, New_Id);
19296 -- Update the semantic fields of all new entities created during
19297 -- Phase 1 which were not supplied via an entity map.
19298 -- ??? Is there a better way of distinguishing those?
19300 while Present (Old_Id) and then Present (New_Id) loop
19301 if not (Present (Entity_Map)
19302 and then In_Entity_Map (Old_Id, Entity_Map))
19303 then
19304 Update_Semantic_Fields (New_Id);
19305 end if;
19307 NCT_New_Entities.Get_Next (Old_Id, New_Id);
19308 end loop;
19309 end if;
19310 end Update_New_Entities;
19312 ---------------------------
19313 -- Update_Pending_Itypes --
19314 ---------------------------
19316 procedure Update_Pending_Itypes
19317 (Old_Assoc : Node_Id;
19318 New_Assoc : Node_Id)
19320 Item : Elmt_Id;
19321 Itypes : Elist_Id;
19323 begin
19324 if NCT_Tables_In_Use then
19325 Itypes := NCT_Pending_Itypes.Get (Old_Assoc);
19327 -- Update the Associated_Node_For_Itype attribute for all itypes
19328 -- which originally refer to Old_Assoc to designate New_Assoc.
19330 if Present (Itypes) then
19331 Item := First_Elmt (Itypes);
19332 while Present (Item) loop
19333 Set_Associated_Node_For_Itype (Node (Item), New_Assoc);
19335 Next_Elmt (Item);
19336 end loop;
19337 end if;
19338 end if;
19339 end Update_Pending_Itypes;
19341 ----------------------------
19342 -- Update_Semantic_Fields --
19343 ----------------------------
19345 procedure Update_Semantic_Fields (Id : Entity_Id) is
19346 begin
19347 -- Discriminant_Constraint
19349 if Has_Discriminants (Base_Type (Id)) then
19350 Set_Discriminant_Constraint (Id, Elist_Id (
19351 Copy_Field_With_Replacement
19352 (Field => Union_Id (Discriminant_Constraint (Id)),
19353 Semantic => True)));
19354 end if;
19356 -- Etype
19358 Set_Etype (Id, Node_Id (
19359 Copy_Field_With_Replacement
19360 (Field => Union_Id (Etype (Id)),
19361 Semantic => True)));
19363 -- First_Index
19364 -- Packed_Array_Impl_Type
19366 if Is_Array_Type (Id) then
19367 if Present (First_Index (Id)) then
19368 Set_First_Index (Id, First (List_Id (
19369 Copy_Field_With_Replacement
19370 (Field => Union_Id (List_Containing (First_Index (Id))),
19371 Semantic => True))));
19372 end if;
19374 if Is_Packed (Id) then
19375 Set_Packed_Array_Impl_Type (Id, Node_Id (
19376 Copy_Field_With_Replacement
19377 (Field => Union_Id (Packed_Array_Impl_Type (Id)),
19378 Semantic => True)));
19379 end if;
19380 end if;
19382 -- Next_Entity
19384 Set_Next_Entity (Id, Node_Id (
19385 Copy_Field_With_Replacement
19386 (Field => Union_Id (Next_Entity (Id)),
19387 Semantic => True)));
19389 -- Scalar_Range
19391 if Is_Discrete_Type (Id) then
19392 Set_Scalar_Range (Id, Node_Id (
19393 Copy_Field_With_Replacement
19394 (Field => Union_Id (Scalar_Range (Id)),
19395 Semantic => True)));
19396 end if;
19398 -- Scope
19400 -- Update the scope when the caller specified an explicit one
19402 if Present (New_Scope) then
19403 Set_Scope (Id, New_Scope);
19404 else
19405 Set_Scope (Id, Node_Id (
19406 Copy_Field_With_Replacement
19407 (Field => Union_Id (Scope (Id)),
19408 Semantic => True)));
19409 end if;
19410 end Update_Semantic_Fields;
19412 --------------------
19413 -- Visit_Any_Node --
19414 --------------------
19416 procedure Visit_Any_Node (N : Node_Or_Entity_Id) is
19417 begin
19418 if Nkind (N) in N_Entity then
19419 if Is_Itype (N) then
19420 Visit_Itype (N);
19421 else
19422 Visit_Entity (N);
19423 end if;
19424 else
19425 Visit_Node (N);
19426 end if;
19427 end Visit_Any_Node;
19429 -----------------
19430 -- Visit_Elist --
19431 -----------------
19433 procedure Visit_Elist (List : Elist_Id) is
19434 Elmt : Elmt_Id;
19436 begin
19437 -- The element of an entity list could be an entity, itype, or a
19438 -- node, hence the call to Visit_Any_Node.
19440 if Present (List) then
19441 Elmt := First_Elmt (List);
19442 while Present (Elmt) loop
19443 Visit_Any_Node (Node (Elmt));
19445 Next_Elmt (Elmt);
19446 end loop;
19447 end if;
19448 end Visit_Elist;
19450 ------------------
19451 -- Visit_Entity --
19452 ------------------
19454 procedure Visit_Entity (Id : Entity_Id) is
19455 New_Id : Entity_Id;
19457 begin
19458 pragma Assert (Nkind (Id) in N_Entity);
19459 pragma Assert (not Is_Itype (Id));
19461 -- Nothing to do if the entity is not defined in the Actions list of
19462 -- an N_Expression_With_Actions node.
19464 if EWA_Level = 0 then
19465 return;
19467 -- Nothing to do if the entity is defined within a scoping construct
19468 -- of an N_Expression_With_Actions node.
19470 elsif EWA_Inner_Scope_Level > 0 then
19471 return;
19473 -- Nothing to do if the entity is not an object or a type. Relaxing
19474 -- this restriction leads to a performance penalty.
19476 elsif not Ekind_In (Id, E_Constant, E_Variable)
19477 and then not Is_Type (Id)
19478 then
19479 return;
19481 -- Nothing to do if the entity was already visited
19483 elsif NCT_Tables_In_Use
19484 and then Present (NCT_New_Entities.Get (Id))
19485 then
19486 return;
19488 -- Nothing to do if the declaration node of the entity is not within
19489 -- the subtree being replicated.
19491 elsif not In_Subtree
19492 (N => Declaration_Node (Id),
19493 Root => Source)
19494 then
19495 return;
19496 end if;
19498 -- Create a new entity by directly copying the old entity. This
19499 -- action causes all attributes of the old entity to be inherited.
19501 New_Id := New_Copy (Id);
19503 -- Create a new name for the new entity because the back end needs
19504 -- distinct names for debugging purposes.
19506 Set_Chars (New_Id, New_Internal_Name ('T'));
19508 -- Update the Comes_From_Source and Sloc attributes of the entity in
19509 -- case the caller has supplied new values.
19511 Update_CFS_Sloc (New_Id);
19513 -- Establish the following mapping within table NCT_New_Entities:
19515 -- Id -> New_Id
19517 Add_New_Entity (Id, New_Id);
19519 -- Deal with the semantic fields of entities. The fields are visited
19520 -- because they may mention entities which reside within the subtree
19521 -- being copied.
19523 Visit_Semantic_Fields (Id);
19524 end Visit_Entity;
19526 -----------------
19527 -- Visit_Field --
19528 -----------------
19530 procedure Visit_Field
19531 (Field : Union_Id;
19532 Par_Nod : Node_Id := Empty;
19533 Semantic : Boolean := False)
19535 begin
19536 -- The field is empty
19538 if Field = Union_Id (Empty) then
19539 return;
19541 -- The field is an entity/itype/node
19543 elsif Field in Node_Range then
19544 declare
19545 N : constant Node_Id := Node_Id (Field);
19547 begin
19548 -- The field is an entity/itype
19550 if Nkind (N) in N_Entity then
19552 -- Itypes are always visited
19554 if Is_Itype (N) then
19555 Visit_Itype (N);
19557 -- An entity is visited when it is either a syntactic field
19558 -- or when the caller treats it as a semantic attribute.
19560 elsif Parent (N) = Par_Nod or else Semantic then
19561 Visit_Entity (N);
19562 end if;
19564 -- The field is a node
19566 else
19567 -- A node is visited when it is either a syntactic field or
19568 -- when the caller treats it as a semantic attribute.
19570 if Parent (N) = Par_Nod or else Semantic then
19571 Visit_Node (N);
19572 end if;
19573 end if;
19574 end;
19576 -- The field is an entity list
19578 elsif Field in Elist_Range then
19579 Visit_Elist (Elist_Id (Field));
19581 -- The field is a syntax list
19583 elsif Field in List_Range then
19584 declare
19585 List : constant List_Id := List_Id (Field);
19587 begin
19588 -- A syntax list is visited when it is either a syntactic field
19589 -- or when the caller treats it as a semantic attribute.
19591 if Parent (List) = Par_Nod or else Semantic then
19592 Visit_List (List);
19593 end if;
19594 end;
19596 -- Otherwise the field denotes information which does not need to be
19597 -- visited (chars, literals, etc.).
19599 else
19600 null;
19601 end if;
19602 end Visit_Field;
19604 -----------------
19605 -- Visit_Itype --
19606 -----------------
19608 procedure Visit_Itype (Itype : Entity_Id) is
19609 New_Assoc : Node_Id;
19610 New_Itype : Entity_Id;
19611 Old_Assoc : Node_Id;
19613 begin
19614 pragma Assert (Nkind (Itype) in N_Entity);
19615 pragma Assert (Is_Itype (Itype));
19617 -- Itypes that describe the designated type of access to subprograms
19618 -- have the structure of subprogram declarations, with signatures,
19619 -- etc. Either we duplicate the signatures completely, or choose to
19620 -- share such itypes, which is fine because their elaboration will
19621 -- have no side effects.
19623 if Ekind (Itype) = E_Subprogram_Type then
19624 return;
19626 -- Nothing to do if the itype was already visited
19628 elsif NCT_Tables_In_Use
19629 and then Present (NCT_New_Entities.Get (Itype))
19630 then
19631 return;
19633 -- Nothing to do if the associated node of the itype is not within
19634 -- the subtree being replicated.
19636 elsif not In_Subtree
19637 (N => Associated_Node_For_Itype (Itype),
19638 Root => Source)
19639 then
19640 return;
19641 end if;
19643 -- Create a new itype by directly copying the old itype. This action
19644 -- causes all attributes of the old itype to be inherited.
19646 New_Itype := New_Copy (Itype);
19648 -- Create a new name for the new itype because the back end requires
19649 -- distinct names for debugging purposes.
19651 Set_Chars (New_Itype, New_Internal_Name ('T'));
19653 -- Update the Comes_From_Source and Sloc attributes of the itype in
19654 -- case the caller has supplied new values.
19656 Update_CFS_Sloc (New_Itype);
19658 -- Establish the following mapping within table NCT_New_Entities:
19660 -- Itype -> New_Itype
19662 Add_New_Entity (Itype, New_Itype);
19664 -- The new itype must be unfrozen because the resulting subtree may
19665 -- be inserted anywhere and cause an earlier or later freezing.
19667 if Present (Freeze_Node (New_Itype)) then
19668 Set_Freeze_Node (New_Itype, Empty);
19669 Set_Is_Frozen (New_Itype, False);
19670 end if;
19672 -- If a record subtype is simply copied, the entity list will be
19673 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
19674 -- ??? What does this do?
19676 if Ekind_In (Itype, E_Class_Wide_Subtype, E_Record_Subtype) then
19677 Set_Cloned_Subtype (New_Itype, Itype);
19678 end if;
19680 -- The associated node may denote an entity, in which case it may
19681 -- already have a new corresponding entity created during a prior
19682 -- call to Visit_Entity or Visit_Itype for the same subtree.
19684 -- Given
19685 -- Old_Assoc ---------> New_Assoc
19687 -- Created by Visit_Itype
19688 -- Itype -------------> New_Itype
19689 -- ANFI = Old_Assoc ANFI = Old_Assoc < must be updated
19691 -- In the example above, Old_Assoc is an arbitrary entity that was
19692 -- already visited for the same subtree and has a corresponding new
19693 -- entity New_Assoc. Old_Assoc was inherited by New_Itype by virtue
19694 -- of copying entities, however it must be updated to New_Assoc.
19696 Old_Assoc := Associated_Node_For_Itype (Itype);
19698 if Nkind (Old_Assoc) in N_Entity then
19699 if NCT_Tables_In_Use then
19700 New_Assoc := NCT_New_Entities.Get (Old_Assoc);
19702 if Present (New_Assoc) then
19703 Set_Associated_Node_For_Itype (New_Itype, New_Assoc);
19704 end if;
19705 end if;
19707 -- Otherwise the associated node denotes a node. Postpone the update
19708 -- until Phase 2 when the node is replicated. Establish the following
19709 -- mapping within table NCT_Pending_Itypes:
19711 -- Old_Assoc -> (New_Type, ...)
19713 else
19714 Add_Pending_Itype (Old_Assoc, New_Itype);
19715 end if;
19717 -- Deal with the semantic fields of itypes. The fields are visited
19718 -- because they may mention entities that reside within the subtree
19719 -- being copied.
19721 Visit_Semantic_Fields (Itype);
19722 end Visit_Itype;
19724 ----------------
19725 -- Visit_List --
19726 ----------------
19728 procedure Visit_List (List : List_Id) is
19729 Elmt : Node_Id;
19731 begin
19732 -- Note that the element of a syntactic list is always a node, never
19733 -- an entity or itype, hence the call to Visit_Node.
19735 if Present (List) then
19736 Elmt := First (List);
19737 while Present (Elmt) loop
19738 Visit_Node (Elmt);
19740 Next (Elmt);
19741 end loop;
19742 end if;
19743 end Visit_List;
19745 ----------------
19746 -- Visit_Node --
19747 ----------------
19749 procedure Visit_Node (N : Node_Or_Entity_Id) is
19750 begin
19751 pragma Assert (Nkind (N) not in N_Entity);
19753 if Nkind (N) = N_Expression_With_Actions then
19754 EWA_Level := EWA_Level + 1;
19756 elsif EWA_Level > 0
19757 and then Nkind_In (N, N_Block_Statement,
19758 N_Subprogram_Body,
19759 N_Subprogram_Declaration)
19760 then
19761 EWA_Inner_Scope_Level := EWA_Inner_Scope_Level + 1;
19762 end if;
19764 Visit_Field
19765 (Field => Field1 (N),
19766 Par_Nod => N);
19768 Visit_Field
19769 (Field => Field2 (N),
19770 Par_Nod => N);
19772 Visit_Field
19773 (Field => Field3 (N),
19774 Par_Nod => N);
19776 Visit_Field
19777 (Field => Field4 (N),
19778 Par_Nod => N);
19780 Visit_Field
19781 (Field => Field5 (N),
19782 Par_Nod => N);
19784 if EWA_Level > 0
19785 and then Nkind_In (N, N_Block_Statement,
19786 N_Subprogram_Body,
19787 N_Subprogram_Declaration)
19788 then
19789 EWA_Inner_Scope_Level := EWA_Inner_Scope_Level - 1;
19791 elsif Nkind (N) = N_Expression_With_Actions then
19792 EWA_Level := EWA_Level - 1;
19793 end if;
19794 end Visit_Node;
19796 ---------------------------
19797 -- Visit_Semantic_Fields --
19798 ---------------------------
19800 procedure Visit_Semantic_Fields (Id : Entity_Id) is
19801 begin
19802 pragma Assert (Nkind (Id) in N_Entity);
19804 -- Discriminant_Constraint
19806 if Has_Discriminants (Base_Type (Id)) then
19807 Visit_Field
19808 (Field => Union_Id (Discriminant_Constraint (Id)),
19809 Semantic => True);
19810 end if;
19812 -- Etype
19814 Visit_Field
19815 (Field => Union_Id (Etype (Id)),
19816 Semantic => True);
19818 -- First_Index
19819 -- Packed_Array_Impl_Type
19821 if Is_Array_Type (Id) then
19822 if Present (First_Index (Id)) then
19823 Visit_Field
19824 (Field => Union_Id (List_Containing (First_Index (Id))),
19825 Semantic => True);
19826 end if;
19828 if Is_Packed (Id) then
19829 Visit_Field
19830 (Field => Union_Id (Packed_Array_Impl_Type (Id)),
19831 Semantic => True);
19832 end if;
19833 end if;
19835 -- Scalar_Range
19837 if Is_Discrete_Type (Id) then
19838 Visit_Field
19839 (Field => Union_Id (Scalar_Range (Id)),
19840 Semantic => True);
19841 end if;
19842 end Visit_Semantic_Fields;
19844 -- Start of processing for New_Copy_Tree
19846 begin
19847 -- Routine New_Copy_Tree performs a deep copy of a subtree by creating
19848 -- shallow copies for each node within, and then updating the child and
19849 -- parent pointers accordingly. This process is straightforward, however
19850 -- the routine must deal with the following complications:
19852 -- * Entities defined within N_Expression_With_Actions nodes must be
19853 -- replicated rather than shared to avoid introducing two identical
19854 -- symbols within the same scope. Note that no other expression can
19855 -- currently define entities.
19857 -- do
19858 -- Source_Low : ...;
19859 -- Source_High : ...;
19861 -- <reference to Source_Low>
19862 -- <reference to Source_High>
19863 -- in ... end;
19865 -- New_Copy_Tree handles this case by first creating new entities
19866 -- and then updating all existing references to point to these new
19867 -- entities.
19869 -- do
19870 -- New_Low : ...;
19871 -- New_High : ...;
19873 -- <reference to New_Low>
19874 -- <reference to New_High>
19875 -- in ... end;
19877 -- * Itypes defined within the subtree must be replicated to avoid any
19878 -- dependencies on invalid or inaccessible data.
19880 -- subtype Source_Itype is ... range Source_Low .. Source_High;
19882 -- New_Copy_Tree handles this case by first creating a new itype in
19883 -- the same fashion as entities, and then updating various relevant
19884 -- constraints.
19886 -- subtype New_Itype is ... range New_Low .. New_High;
19888 -- * The Associated_Node_For_Itype field of itypes must be updated to
19889 -- reference the proper replicated entity or node.
19891 -- * Semantic fields of entities such as Etype and Scope must be
19892 -- updated to reference the proper replicated entities.
19894 -- * Semantic fields of nodes such as First_Real_Statement must be
19895 -- updated to reference the proper replicated nodes.
19897 -- To meet all these demands, routine New_Copy_Tree is split into two
19898 -- phases.
19900 -- Phase 1 traverses the tree in order to locate entities and itypes
19901 -- defined within the subtree. New entities are generated and saved in
19902 -- table NCT_New_Entities. The semantic fields of all new entities and
19903 -- itypes are then updated accordingly.
19905 -- Phase 2 traverses the tree in order to replicate each node. Various
19906 -- semantic fields of nodes and entities are updated accordingly.
19908 -- Preparatory phase. Clear the contents of tables NCT_New_Entities and
19909 -- NCT_Pending_Itypes in case a previous call to New_Copy_Tree left some
19910 -- data inside.
19912 if NCT_Tables_In_Use then
19913 NCT_Tables_In_Use := False;
19915 NCT_New_Entities.Reset;
19916 NCT_Pending_Itypes.Reset;
19917 end if;
19919 -- Populate tables NCT_New_Entities and NCT_Pending_Itypes with data
19920 -- supplied by a linear entity map. The tables offer faster access to
19921 -- the same data.
19923 Build_NCT_Tables (Map);
19925 -- Execute Phase 1. Traverse the subtree and generate new entities for
19926 -- the following cases:
19928 -- * An entity defined within an N_Expression_With_Actions node
19930 -- * An itype referenced within the subtree where the associated node
19931 -- is also in the subtree.
19933 -- All new entities are accessible via table NCT_New_Entities, which
19934 -- contains mappings of the form:
19936 -- Old_Entity -> New_Entity
19937 -- Old_Itype -> New_Itype
19939 -- In addition, the associated nodes of all new itypes are mapped in
19940 -- table NCT_Pending_Itypes:
19942 -- Assoc_Nod -> (New_Itype1, New_Itype2, .., New_ItypeN)
19944 Visit_Any_Node (Source);
19946 -- Update the semantic attributes of all new entities generated during
19947 -- Phase 1 before starting Phase 2. The updates could be performed in
19948 -- routine Corresponding_Entity, however this may cause the same entity
19949 -- to be updated multiple times, effectively generating useless nodes.
19950 -- Keeping the updates separates from Phase 2 ensures that only one set
19951 -- of attributes is generated for an entity at any one time.
19953 Update_New_Entities (Map);
19955 -- Execute Phase 2. Replicate the source subtree one node at a time.
19956 -- The following transformations take place:
19958 -- * References to entities and itypes are updated to refer to the
19959 -- new entities and itypes generated during Phase 1.
19961 -- * All Associated_Node_For_Itype attributes of itypes are updated
19962 -- to refer to the new replicated Associated_Node_For_Itype.
19964 return Copy_Node_With_Replacement (Source);
19965 end New_Copy_Tree;
19967 -------------------------
19968 -- New_External_Entity --
19969 -------------------------
19971 function New_External_Entity
19972 (Kind : Entity_Kind;
19973 Scope_Id : Entity_Id;
19974 Sloc_Value : Source_Ptr;
19975 Related_Id : Entity_Id;
19976 Suffix : Character;
19977 Suffix_Index : Nat := 0;
19978 Prefix : Character := ' ') return Entity_Id
19980 N : constant Entity_Id :=
19981 Make_Defining_Identifier (Sloc_Value,
19982 New_External_Name
19983 (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
19985 begin
19986 Set_Ekind (N, Kind);
19987 Set_Is_Internal (N, True);
19988 Append_Entity (N, Scope_Id);
19989 Set_Public_Status (N);
19991 if Kind in Type_Kind then
19992 Init_Size_Align (N);
19993 end if;
19995 return N;
19996 end New_External_Entity;
19998 -------------------------
19999 -- New_Internal_Entity --
20000 -------------------------
20002 function New_Internal_Entity
20003 (Kind : Entity_Kind;
20004 Scope_Id : Entity_Id;
20005 Sloc_Value : Source_Ptr;
20006 Id_Char : Character) return Entity_Id
20008 N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
20010 begin
20011 Set_Ekind (N, Kind);
20012 Set_Is_Internal (N, True);
20013 Append_Entity (N, Scope_Id);
20015 if Kind in Type_Kind then
20016 Init_Size_Align (N);
20017 end if;
20019 return N;
20020 end New_Internal_Entity;
20022 -----------------
20023 -- Next_Actual --
20024 -----------------
20026 function Next_Actual (Actual_Id : Node_Id) return Node_Id is
20027 N : Node_Id;
20029 begin
20030 -- If we are pointing at a positional parameter, it is a member of a
20031 -- node list (the list of parameters), and the next parameter is the
20032 -- next node on the list, unless we hit a parameter association, then
20033 -- we shift to using the chain whose head is the First_Named_Actual in
20034 -- the parent, and then is threaded using the Next_Named_Actual of the
20035 -- Parameter_Association. All this fiddling is because the original node
20036 -- list is in the textual call order, and what we need is the
20037 -- declaration order.
20039 if Is_List_Member (Actual_Id) then
20040 N := Next (Actual_Id);
20042 if Nkind (N) = N_Parameter_Association then
20044 -- In case of a build-in-place call, the call will no longer be a
20045 -- call; it will have been rewritten.
20047 if Nkind_In (Parent (Actual_Id), N_Entry_Call_Statement,
20048 N_Function_Call,
20049 N_Procedure_Call_Statement)
20050 then
20051 return First_Named_Actual (Parent (Actual_Id));
20052 else
20053 return Empty;
20054 end if;
20055 else
20056 return N;
20057 end if;
20059 else
20060 return Next_Named_Actual (Parent (Actual_Id));
20061 end if;
20062 end Next_Actual;
20064 procedure Next_Actual (Actual_Id : in out Node_Id) is
20065 begin
20066 Actual_Id := Next_Actual (Actual_Id);
20067 end Next_Actual;
20069 -----------------
20070 -- Next_Global --
20071 -----------------
20073 function Next_Global (Node : Node_Id) return Node_Id is
20074 begin
20075 -- The global item may either be in a list, or by itself, in which case
20076 -- there is no next global item with the same mode.
20078 if Is_List_Member (Node) then
20079 return Next (Node);
20080 else
20081 return Empty;
20082 end if;
20083 end Next_Global;
20085 procedure Next_Global (Node : in out Node_Id) is
20086 begin
20087 Node := Next_Global (Node);
20088 end Next_Global;
20090 ----------------------------------
20091 -- New_Requires_Transient_Scope --
20092 ----------------------------------
20094 function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
20095 function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean;
20096 -- This is called for untagged records and protected types, with
20097 -- nondefaulted discriminants. Returns True if the size of function
20098 -- results is known at the call site, False otherwise. Returns False
20099 -- if there is a variant part that depends on the discriminants of
20100 -- this type, or if there is an array constrained by the discriminants
20101 -- of this type. ???Currently, this is overly conservative (the array
20102 -- could be nested inside some other record that is constrained by
20103 -- nondiscriminants). That is, the recursive calls are too conservative.
20105 function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean;
20106 -- Returns True if Typ is a nonlimited record with defaulted
20107 -- discriminants whose max size makes it unsuitable for allocating on
20108 -- the primary stack.
20110 ------------------------------
20111 -- Caller_Known_Size_Record --
20112 ------------------------------
20114 function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean is
20115 pragma Assert (Typ = Underlying_Type (Typ));
20117 begin
20118 if Has_Variant_Part (Typ) and then not Is_Definite_Subtype (Typ) then
20119 return False;
20120 end if;
20122 declare
20123 Comp : Entity_Id;
20125 begin
20126 Comp := First_Entity (Typ);
20127 while Present (Comp) loop
20129 -- Only look at E_Component entities. No need to look at
20130 -- E_Discriminant entities, and we must ignore internal
20131 -- subtypes generated for constrained components.
20133 if Ekind (Comp) = E_Component then
20134 declare
20135 Comp_Type : constant Entity_Id :=
20136 Underlying_Type (Etype (Comp));
20138 begin
20139 if Is_Record_Type (Comp_Type)
20140 or else
20141 Is_Protected_Type (Comp_Type)
20142 then
20143 if not Caller_Known_Size_Record (Comp_Type) then
20144 return False;
20145 end if;
20147 elsif Is_Array_Type (Comp_Type) then
20148 if Size_Depends_On_Discriminant (Comp_Type) then
20149 return False;
20150 end if;
20151 end if;
20152 end;
20153 end if;
20155 Next_Entity (Comp);
20156 end loop;
20157 end;
20159 return True;
20160 end Caller_Known_Size_Record;
20162 ------------------------------
20163 -- Large_Max_Size_Mutable --
20164 ------------------------------
20166 function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean is
20167 pragma Assert (Typ = Underlying_Type (Typ));
20169 function Is_Large_Discrete_Type (T : Entity_Id) return Boolean;
20170 -- Returns true if the discrete type T has a large range
20172 ----------------------------
20173 -- Is_Large_Discrete_Type --
20174 ----------------------------
20176 function Is_Large_Discrete_Type (T : Entity_Id) return Boolean is
20177 Threshold : constant Int := 16;
20178 -- Arbitrary threshold above which we consider it "large". We want
20179 -- a fairly large threshold, because these large types really
20180 -- shouldn't have default discriminants in the first place, in
20181 -- most cases.
20183 begin
20184 return UI_To_Int (RM_Size (T)) > Threshold;
20185 end Is_Large_Discrete_Type;
20187 -- Start of processing for Large_Max_Size_Mutable
20189 begin
20190 if Is_Record_Type (Typ)
20191 and then not Is_Limited_View (Typ)
20192 and then Has_Defaulted_Discriminants (Typ)
20193 then
20194 -- Loop through the components, looking for an array whose upper
20195 -- bound(s) depends on discriminants, where both the subtype of
20196 -- the discriminant and the index subtype are too large.
20198 declare
20199 Comp : Entity_Id;
20201 begin
20202 Comp := First_Entity (Typ);
20203 while Present (Comp) loop
20204 if Ekind (Comp) = E_Component then
20205 declare
20206 Comp_Type : constant Entity_Id :=
20207 Underlying_Type (Etype (Comp));
20209 Hi : Node_Id;
20210 Indx : Node_Id;
20211 Ityp : Entity_Id;
20213 begin
20214 if Is_Array_Type (Comp_Type) then
20215 Indx := First_Index (Comp_Type);
20217 while Present (Indx) loop
20218 Ityp := Etype (Indx);
20219 Hi := Type_High_Bound (Ityp);
20221 if Nkind (Hi) = N_Identifier
20222 and then Ekind (Entity (Hi)) = E_Discriminant
20223 and then Is_Large_Discrete_Type (Ityp)
20224 and then Is_Large_Discrete_Type
20225 (Etype (Entity (Hi)))
20226 then
20227 return True;
20228 end if;
20230 Next_Index (Indx);
20231 end loop;
20232 end if;
20233 end;
20234 end if;
20236 Next_Entity (Comp);
20237 end loop;
20238 end;
20239 end if;
20241 return False;
20242 end Large_Max_Size_Mutable;
20244 -- Local declarations
20246 Typ : constant Entity_Id := Underlying_Type (Id);
20248 -- Start of processing for New_Requires_Transient_Scope
20250 begin
20251 -- This is a private type which is not completed yet. This can only
20252 -- happen in a default expression (of a formal parameter or of a
20253 -- record component). Do not expand transient scope in this case.
20255 if No (Typ) then
20256 return False;
20258 -- Do not expand transient scope for non-existent procedure return or
20259 -- string literal types.
20261 elsif Typ = Standard_Void_Type
20262 or else Ekind (Typ) = E_String_Literal_Subtype
20263 then
20264 return False;
20266 -- If Typ is a generic formal incomplete type, then we want to look at
20267 -- the actual type.
20269 elsif Ekind (Typ) = E_Record_Subtype
20270 and then Present (Cloned_Subtype (Typ))
20271 then
20272 return New_Requires_Transient_Scope (Cloned_Subtype (Typ));
20274 -- Functions returning specific tagged types may dispatch on result, so
20275 -- their returned value is allocated on the secondary stack, even in the
20276 -- definite case. We must treat nondispatching functions the same way,
20277 -- because access-to-function types can point at both, so the calling
20278 -- conventions must be compatible. Is_Tagged_Type includes controlled
20279 -- types and class-wide types. Controlled type temporaries need
20280 -- finalization.
20282 -- ???It's not clear why we need to return noncontrolled types with
20283 -- controlled components on the secondary stack.
20285 elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
20286 return True;
20288 -- Untagged definite subtypes are known size. This includes all
20289 -- elementary [sub]types. Tasks are known size even if they have
20290 -- discriminants. So we return False here, with one exception:
20291 -- For a type like:
20292 -- type T (Last : Natural := 0) is
20293 -- X : String (1 .. Last);
20294 -- end record;
20295 -- we return True. That's because for "P(F(...));", where F returns T,
20296 -- we don't know the size of the result at the call site, so if we
20297 -- allocated it on the primary stack, we would have to allocate the
20298 -- maximum size, which is way too big.
20300 elsif Is_Definite_Subtype (Typ) or else Is_Task_Type (Typ) then
20301 return Large_Max_Size_Mutable (Typ);
20303 -- Indefinite (discriminated) untagged record or protected type
20305 elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
20306 return not Caller_Known_Size_Record (Typ);
20308 -- Unconstrained array
20310 else
20311 pragma Assert (Is_Array_Type (Typ) and not Is_Definite_Subtype (Typ));
20312 return True;
20313 end if;
20314 end New_Requires_Transient_Scope;
20316 --------------------------
20317 -- No_Heap_Finalization --
20318 --------------------------
20320 function No_Heap_Finalization (Typ : Entity_Id) return Boolean is
20321 begin
20322 if Ekind_In (Typ, E_Access_Type, E_General_Access_Type)
20323 and then Is_Library_Level_Entity (Typ)
20324 then
20325 -- A global No_Heap_Finalization pragma applies to all library-level
20326 -- named access-to-object types.
20328 if Present (No_Heap_Finalization_Pragma) then
20329 return True;
20331 -- The library-level named access-to-object type itself is subject to
20332 -- pragma No_Heap_Finalization.
20334 elsif Present (Get_Pragma (Typ, Pragma_No_Heap_Finalization)) then
20335 return True;
20336 end if;
20337 end if;
20339 return False;
20340 end No_Heap_Finalization;
20342 -----------------------
20343 -- Normalize_Actuals --
20344 -----------------------
20346 -- Chain actuals according to formals of subprogram. If there are no named
20347 -- associations, the chain is simply the list of Parameter Associations,
20348 -- since the order is the same as the declaration order. If there are named
20349 -- associations, then the First_Named_Actual field in the N_Function_Call
20350 -- or N_Procedure_Call_Statement node points to the Parameter_Association
20351 -- node for the parameter that comes first in declaration order. The
20352 -- remaining named parameters are then chained in declaration order using
20353 -- Next_Named_Actual.
20355 -- This routine also verifies that the number of actuals is compatible with
20356 -- the number and default values of formals, but performs no type checking
20357 -- (type checking is done by the caller).
20359 -- If the matching succeeds, Success is set to True and the caller proceeds
20360 -- with type-checking. If the match is unsuccessful, then Success is set to
20361 -- False, and the caller attempts a different interpretation, if there is
20362 -- one.
20364 -- If the flag Report is on, the call is not overloaded, and a failure to
20365 -- match can be reported here, rather than in the caller.
20367 procedure Normalize_Actuals
20368 (N : Node_Id;
20369 S : Entity_Id;
20370 Report : Boolean;
20371 Success : out Boolean)
20373 Actuals : constant List_Id := Parameter_Associations (N);
20374 Actual : Node_Id := Empty;
20375 Formal : Entity_Id;
20376 Last : Node_Id := Empty;
20377 First_Named : Node_Id := Empty;
20378 Found : Boolean;
20380 Formals_To_Match : Integer := 0;
20381 Actuals_To_Match : Integer := 0;
20383 procedure Chain (A : Node_Id);
20384 -- Add named actual at the proper place in the list, using the
20385 -- Next_Named_Actual link.
20387 function Reporting return Boolean;
20388 -- Determines if an error is to be reported. To report an error, we
20389 -- need Report to be True, and also we do not report errors caused
20390 -- by calls to init procs that occur within other init procs. Such
20391 -- errors must always be cascaded errors, since if all the types are
20392 -- declared correctly, the compiler will certainly build decent calls.
20394 -----------
20395 -- Chain --
20396 -----------
20398 procedure Chain (A : Node_Id) is
20399 begin
20400 if No (Last) then
20402 -- Call node points to first actual in list
20404 Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
20406 else
20407 Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
20408 end if;
20410 Last := A;
20411 Set_Next_Named_Actual (Last, Empty);
20412 end Chain;
20414 ---------------
20415 -- Reporting --
20416 ---------------
20418 function Reporting return Boolean is
20419 begin
20420 if not Report then
20421 return False;
20423 elsif not Within_Init_Proc then
20424 return True;
20426 elsif Is_Init_Proc (Entity (Name (N))) then
20427 return False;
20429 else
20430 return True;
20431 end if;
20432 end Reporting;
20434 -- Start of processing for Normalize_Actuals
20436 begin
20437 if Is_Access_Type (S) then
20439 -- The name in the call is a function call that returns an access
20440 -- to subprogram. The designated type has the list of formals.
20442 Formal := First_Formal (Designated_Type (S));
20443 else
20444 Formal := First_Formal (S);
20445 end if;
20447 while Present (Formal) loop
20448 Formals_To_Match := Formals_To_Match + 1;
20449 Next_Formal (Formal);
20450 end loop;
20452 -- Find if there is a named association, and verify that no positional
20453 -- associations appear after named ones.
20455 if Present (Actuals) then
20456 Actual := First (Actuals);
20457 end if;
20459 while Present (Actual)
20460 and then Nkind (Actual) /= N_Parameter_Association
20461 loop
20462 Actuals_To_Match := Actuals_To_Match + 1;
20463 Next (Actual);
20464 end loop;
20466 if No (Actual) and Actuals_To_Match = Formals_To_Match then
20468 -- Most common case: positional notation, no defaults
20470 Success := True;
20471 return;
20473 elsif Actuals_To_Match > Formals_To_Match then
20475 -- Too many actuals: will not work
20477 if Reporting then
20478 if Is_Entity_Name (Name (N)) then
20479 Error_Msg_N ("too many arguments in call to&", Name (N));
20480 else
20481 Error_Msg_N ("too many arguments in call", N);
20482 end if;
20483 end if;
20485 Success := False;
20486 return;
20487 end if;
20489 First_Named := Actual;
20491 while Present (Actual) loop
20492 if Nkind (Actual) /= N_Parameter_Association then
20493 Error_Msg_N
20494 ("positional parameters not allowed after named ones", Actual);
20495 Success := False;
20496 return;
20498 else
20499 Actuals_To_Match := Actuals_To_Match + 1;
20500 end if;
20502 Next (Actual);
20503 end loop;
20505 if Present (Actuals) then
20506 Actual := First (Actuals);
20507 end if;
20509 Formal := First_Formal (S);
20510 while Present (Formal) loop
20512 -- Match the formals in order. If the corresponding actual is
20513 -- positional, nothing to do. Else scan the list of named actuals
20514 -- to find the one with the right name.
20516 if Present (Actual)
20517 and then Nkind (Actual) /= N_Parameter_Association
20518 then
20519 Next (Actual);
20520 Actuals_To_Match := Actuals_To_Match - 1;
20521 Formals_To_Match := Formals_To_Match - 1;
20523 else
20524 -- For named parameters, search the list of actuals to find
20525 -- one that matches the next formal name.
20527 Actual := First_Named;
20528 Found := False;
20529 while Present (Actual) loop
20530 if Chars (Selector_Name (Actual)) = Chars (Formal) then
20531 Found := True;
20532 Chain (Actual);
20533 Actuals_To_Match := Actuals_To_Match - 1;
20534 Formals_To_Match := Formals_To_Match - 1;
20535 exit;
20536 end if;
20538 Next (Actual);
20539 end loop;
20541 if not Found then
20542 if Ekind (Formal) /= E_In_Parameter
20543 or else No (Default_Value (Formal))
20544 then
20545 if Reporting then
20546 if (Comes_From_Source (S)
20547 or else Sloc (S) = Standard_Location)
20548 and then Is_Overloadable (S)
20549 then
20550 if No (Actuals)
20551 and then
20552 Nkind_In (Parent (N), N_Procedure_Call_Statement,
20553 N_Function_Call,
20554 N_Parameter_Association)
20555 and then Ekind (S) /= E_Function
20556 then
20557 Set_Etype (N, Etype (S));
20559 else
20560 Error_Msg_Name_1 := Chars (S);
20561 Error_Msg_Sloc := Sloc (S);
20562 Error_Msg_NE
20563 ("missing argument for parameter & "
20564 & "in call to % declared #", N, Formal);
20565 end if;
20567 elsif Is_Overloadable (S) then
20568 Error_Msg_Name_1 := Chars (S);
20570 -- Point to type derivation that generated the
20571 -- operation.
20573 Error_Msg_Sloc := Sloc (Parent (S));
20575 Error_Msg_NE
20576 ("missing argument for parameter & "
20577 & "in call to % (inherited) #", N, Formal);
20579 else
20580 Error_Msg_NE
20581 ("missing argument for parameter &", N, Formal);
20582 end if;
20583 end if;
20585 Success := False;
20586 return;
20588 else
20589 Formals_To_Match := Formals_To_Match - 1;
20590 end if;
20591 end if;
20592 end if;
20594 Next_Formal (Formal);
20595 end loop;
20597 if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
20598 Success := True;
20599 return;
20601 else
20602 if Reporting then
20604 -- Find some superfluous named actual that did not get
20605 -- attached to the list of associations.
20607 Actual := First (Actuals);
20608 while Present (Actual) loop
20609 if Nkind (Actual) = N_Parameter_Association
20610 and then Actual /= Last
20611 and then No (Next_Named_Actual (Actual))
20612 then
20613 -- A validity check may introduce a copy of a call that
20614 -- includes an extra actual (for example for an unrelated
20615 -- accessibility check). Check that the extra actual matches
20616 -- some extra formal, which must exist already because
20617 -- subprogram must be frozen at this point.
20619 if Present (Extra_Formals (S))
20620 and then not Comes_From_Source (Actual)
20621 and then Nkind (Actual) = N_Parameter_Association
20622 and then Chars (Extra_Formals (S)) =
20623 Chars (Selector_Name (Actual))
20624 then
20625 null;
20626 else
20627 Error_Msg_N
20628 ("unmatched actual & in call", Selector_Name (Actual));
20629 exit;
20630 end if;
20631 end if;
20633 Next (Actual);
20634 end loop;
20635 end if;
20637 Success := False;
20638 return;
20639 end if;
20640 end Normalize_Actuals;
20642 --------------------------------
20643 -- Note_Possible_Modification --
20644 --------------------------------
20646 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
20647 Modification_Comes_From_Source : constant Boolean :=
20648 Comes_From_Source (Parent (N));
20650 Ent : Entity_Id;
20651 Exp : Node_Id;
20653 begin
20654 -- Loop to find referenced entity, if there is one
20656 Exp := N;
20657 loop
20658 Ent := Empty;
20660 if Is_Entity_Name (Exp) then
20661 Ent := Entity (Exp);
20663 -- If the entity is missing, it is an undeclared identifier,
20664 -- and there is nothing to annotate.
20666 if No (Ent) then
20667 return;
20668 end if;
20670 elsif Nkind (Exp) = N_Explicit_Dereference then
20671 declare
20672 P : constant Node_Id := Prefix (Exp);
20674 begin
20675 -- In formal verification mode, keep track of all reads and
20676 -- writes through explicit dereferences.
20678 if GNATprove_Mode then
20679 SPARK_Specific.Generate_Dereference (N, 'm');
20680 end if;
20682 if Nkind (P) = N_Selected_Component
20683 and then Present (Entry_Formal (Entity (Selector_Name (P))))
20684 then
20685 -- Case of a reference to an entry formal
20687 Ent := Entry_Formal (Entity (Selector_Name (P)));
20689 elsif Nkind (P) = N_Identifier
20690 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
20691 and then Present (Expression (Parent (Entity (P))))
20692 and then Nkind (Expression (Parent (Entity (P)))) =
20693 N_Reference
20694 then
20695 -- Case of a reference to a value on which side effects have
20696 -- been removed.
20698 Exp := Prefix (Expression (Parent (Entity (P))));
20699 goto Continue;
20701 else
20702 return;
20703 end if;
20704 end;
20706 elsif Nkind_In (Exp, N_Type_Conversion,
20707 N_Unchecked_Type_Conversion)
20708 then
20709 Exp := Expression (Exp);
20710 goto Continue;
20712 elsif Nkind_In (Exp, N_Slice,
20713 N_Indexed_Component,
20714 N_Selected_Component)
20715 then
20716 -- Special check, if the prefix is an access type, then return
20717 -- since we are modifying the thing pointed to, not the prefix.
20718 -- When we are expanding, most usually the prefix is replaced
20719 -- by an explicit dereference, and this test is not needed, but
20720 -- in some cases (notably -gnatc mode and generics) when we do
20721 -- not do full expansion, we need this special test.
20723 if Is_Access_Type (Etype (Prefix (Exp))) then
20724 return;
20726 -- Otherwise go to prefix and keep going
20728 else
20729 Exp := Prefix (Exp);
20730 goto Continue;
20731 end if;
20733 -- All other cases, not a modification
20735 else
20736 return;
20737 end if;
20739 -- Now look for entity being referenced
20741 if Present (Ent) then
20742 if Is_Object (Ent) then
20743 if Comes_From_Source (Exp)
20744 or else Modification_Comes_From_Source
20745 then
20746 -- Give warning if pragma unmodified is given and we are
20747 -- sure this is a modification.
20749 if Has_Pragma_Unmodified (Ent) and then Sure then
20751 -- Note that the entity may be present only as a result
20752 -- of pragma Unused.
20754 if Has_Pragma_Unused (Ent) then
20755 Error_Msg_NE ("??pragma Unused given for &!", N, Ent);
20756 else
20757 Error_Msg_NE
20758 ("??pragma Unmodified given for &!", N, Ent);
20759 end if;
20760 end if;
20762 Set_Never_Set_In_Source (Ent, False);
20763 end if;
20765 Set_Is_True_Constant (Ent, False);
20766 Set_Current_Value (Ent, Empty);
20767 Set_Is_Known_Null (Ent, False);
20769 if not Can_Never_Be_Null (Ent) then
20770 Set_Is_Known_Non_Null (Ent, False);
20771 end if;
20773 -- Follow renaming chain
20775 if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
20776 and then Present (Renamed_Object (Ent))
20777 then
20778 Exp := Renamed_Object (Ent);
20780 -- If the entity is the loop variable in an iteration over
20781 -- a container, retrieve container expression to indicate
20782 -- possible modification.
20784 if Present (Related_Expression (Ent))
20785 and then Nkind (Parent (Related_Expression (Ent))) =
20786 N_Iterator_Specification
20787 then
20788 Exp := Original_Node (Related_Expression (Ent));
20789 end if;
20791 goto Continue;
20793 -- The expression may be the renaming of a subcomponent of an
20794 -- array or container. The assignment to the subcomponent is
20795 -- a modification of the container.
20797 elsif Comes_From_Source (Original_Node (Exp))
20798 and then Nkind_In (Original_Node (Exp), N_Selected_Component,
20799 N_Indexed_Component)
20800 then
20801 Exp := Prefix (Original_Node (Exp));
20802 goto Continue;
20803 end if;
20805 -- Generate a reference only if the assignment comes from
20806 -- source. This excludes, for example, calls to a dispatching
20807 -- assignment operation when the left-hand side is tagged. In
20808 -- GNATprove mode, we need those references also on generated
20809 -- code, as these are used to compute the local effects of
20810 -- subprograms.
20812 if Modification_Comes_From_Source or GNATprove_Mode then
20813 Generate_Reference (Ent, Exp, 'm');
20815 -- If the target of the assignment is the bound variable
20816 -- in an iterator, indicate that the corresponding array
20817 -- or container is also modified.
20819 if Ada_Version >= Ada_2012
20820 and then Nkind (Parent (Ent)) = N_Iterator_Specification
20821 then
20822 declare
20823 Domain : constant Node_Id := Name (Parent (Ent));
20825 begin
20826 -- TBD : in the full version of the construct, the
20827 -- domain of iteration can be given by an expression.
20829 if Is_Entity_Name (Domain) then
20830 Generate_Reference (Entity (Domain), Exp, 'm');
20831 Set_Is_True_Constant (Entity (Domain), False);
20832 Set_Never_Set_In_Source (Entity (Domain), False);
20833 end if;
20834 end;
20835 end if;
20836 end if;
20837 end if;
20839 Kill_Checks (Ent);
20841 -- If we are sure this is a modification from source, and we know
20842 -- this modifies a constant, then give an appropriate warning.
20844 if Sure
20845 and then Modification_Comes_From_Source
20846 and then Overlays_Constant (Ent)
20847 and then Address_Clause_Overlay_Warnings
20848 then
20849 declare
20850 Addr : constant Node_Id := Address_Clause (Ent);
20851 O_Ent : Entity_Id;
20852 Off : Boolean;
20854 begin
20855 Find_Overlaid_Entity (Addr, O_Ent, Off);
20857 Error_Msg_Sloc := Sloc (Addr);
20858 Error_Msg_NE
20859 ("??constant& may be modified via address clause#",
20860 N, O_Ent);
20861 end;
20862 end if;
20864 return;
20865 end if;
20867 <<Continue>>
20868 null;
20869 end loop;
20870 end Note_Possible_Modification;
20872 -----------------
20873 -- Null_Status --
20874 -----------------
20876 function Null_Status (N : Node_Id) return Null_Status_Kind is
20877 function Is_Null_Excluding_Def (Def : Node_Id) return Boolean;
20878 -- Determine whether definition Def carries a null exclusion
20880 function Null_Status_Of_Entity (Id : Entity_Id) return Null_Status_Kind;
20881 -- Determine the null status of arbitrary entity Id
20883 function Null_Status_Of_Type (Typ : Entity_Id) return Null_Status_Kind;
20884 -- Determine the null status of type Typ
20886 ---------------------------
20887 -- Is_Null_Excluding_Def --
20888 ---------------------------
20890 function Is_Null_Excluding_Def (Def : Node_Id) return Boolean is
20891 begin
20892 return
20893 Nkind_In (Def, N_Access_Definition,
20894 N_Access_Function_Definition,
20895 N_Access_Procedure_Definition,
20896 N_Access_To_Object_Definition,
20897 N_Component_Definition,
20898 N_Derived_Type_Definition)
20899 and then Null_Exclusion_Present (Def);
20900 end Is_Null_Excluding_Def;
20902 ---------------------------
20903 -- Null_Status_Of_Entity --
20904 ---------------------------
20906 function Null_Status_Of_Entity
20907 (Id : Entity_Id) return Null_Status_Kind
20909 Decl : constant Node_Id := Declaration_Node (Id);
20910 Def : Node_Id;
20912 begin
20913 -- The value of an imported or exported entity may be set externally
20914 -- regardless of a null exclusion. As a result, the value cannot be
20915 -- determined statically.
20917 if Is_Imported (Id) or else Is_Exported (Id) then
20918 return Unknown;
20920 elsif Nkind_In (Decl, N_Component_Declaration,
20921 N_Discriminant_Specification,
20922 N_Formal_Object_Declaration,
20923 N_Object_Declaration,
20924 N_Object_Renaming_Declaration,
20925 N_Parameter_Specification)
20926 then
20927 -- A component declaration yields a non-null value when either
20928 -- its component definition or access definition carries a null
20929 -- exclusion.
20931 if Nkind (Decl) = N_Component_Declaration then
20932 Def := Component_Definition (Decl);
20934 if Is_Null_Excluding_Def (Def) then
20935 return Is_Non_Null;
20936 end if;
20938 Def := Access_Definition (Def);
20940 if Present (Def) and then Is_Null_Excluding_Def (Def) then
20941 return Is_Non_Null;
20942 end if;
20944 -- A formal object declaration yields a non-null value if its
20945 -- access definition carries a null exclusion. If the object is
20946 -- default initialized, then the value depends on the expression.
20948 elsif Nkind (Decl) = N_Formal_Object_Declaration then
20949 Def := Access_Definition (Decl);
20951 if Present (Def) and then Is_Null_Excluding_Def (Def) then
20952 return Is_Non_Null;
20953 end if;
20955 -- A constant may yield a null or non-null value depending on its
20956 -- initialization expression.
20958 elsif Ekind (Id) = E_Constant then
20959 return Null_Status (Constant_Value (Id));
20961 -- The construct yields a non-null value when it has a null
20962 -- exclusion.
20964 elsif Null_Exclusion_Present (Decl) then
20965 return Is_Non_Null;
20967 -- An object renaming declaration yields a non-null value if its
20968 -- access definition carries a null exclusion. Otherwise the value
20969 -- depends on the renamed name.
20971 elsif Nkind (Decl) = N_Object_Renaming_Declaration then
20972 Def := Access_Definition (Decl);
20974 if Present (Def) and then Is_Null_Excluding_Def (Def) then
20975 return Is_Non_Null;
20977 else
20978 return Null_Status (Name (Decl));
20979 end if;
20980 end if;
20981 end if;
20983 -- At this point the declaration of the entity does not carry a null
20984 -- exclusion and lacks an initialization expression. Check the status
20985 -- of its type.
20987 return Null_Status_Of_Type (Etype (Id));
20988 end Null_Status_Of_Entity;
20990 -------------------------
20991 -- Null_Status_Of_Type --
20992 -------------------------
20994 function Null_Status_Of_Type (Typ : Entity_Id) return Null_Status_Kind is
20995 Curr : Entity_Id;
20996 Decl : Node_Id;
20998 begin
20999 -- Traverse the type chain looking for types with null exclusion
21001 Curr := Typ;
21002 while Present (Curr) and then Etype (Curr) /= Curr loop
21003 Decl := Parent (Curr);
21005 -- Guard against itypes which do not always have declarations. A
21006 -- type yields a non-null value if it carries a null exclusion.
21008 if Present (Decl) then
21009 if Nkind (Decl) = N_Full_Type_Declaration
21010 and then Is_Null_Excluding_Def (Type_Definition (Decl))
21011 then
21012 return Is_Non_Null;
21014 elsif Nkind (Decl) = N_Subtype_Declaration
21015 and then Null_Exclusion_Present (Decl)
21016 then
21017 return Is_Non_Null;
21018 end if;
21019 end if;
21021 Curr := Etype (Curr);
21022 end loop;
21024 -- The type chain does not contain any null excluding types
21026 return Unknown;
21027 end Null_Status_Of_Type;
21029 -- Start of processing for Null_Status
21031 begin
21032 -- An allocator always creates a non-null value
21034 if Nkind (N) = N_Allocator then
21035 return Is_Non_Null;
21037 -- Taking the 'Access of something yields a non-null value
21039 elsif Nkind (N) = N_Attribute_Reference
21040 and then Nam_In (Attribute_Name (N), Name_Access,
21041 Name_Unchecked_Access,
21042 Name_Unrestricted_Access)
21043 then
21044 return Is_Non_Null;
21046 -- "null" yields null
21048 elsif Nkind (N) = N_Null then
21049 return Is_Null;
21051 -- Check the status of the operand of a type conversion
21053 elsif Nkind (N) = N_Type_Conversion then
21054 return Null_Status (Expression (N));
21056 -- The input denotes a reference to an entity. Determine whether the
21057 -- entity or its type yields a null or non-null value.
21059 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
21060 return Null_Status_Of_Entity (Entity (N));
21061 end if;
21063 -- Otherwise it is not possible to determine the null status of the
21064 -- subexpression at compile time without resorting to simple flow
21065 -- analysis.
21067 return Unknown;
21068 end Null_Status;
21070 --------------------------------------
21071 -- Null_To_Null_Address_Convert_OK --
21072 --------------------------------------
21074 function Null_To_Null_Address_Convert_OK
21075 (N : Node_Id;
21076 Typ : Entity_Id := Empty) return Boolean
21078 begin
21079 if not Relaxed_RM_Semantics then
21080 return False;
21081 end if;
21083 if Nkind (N) = N_Null then
21084 return Present (Typ) and then Is_Descendant_Of_Address (Typ);
21086 elsif Nkind_In (N, N_Op_Eq, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt, N_Op_Ne)
21087 then
21088 declare
21089 L : constant Node_Id := Left_Opnd (N);
21090 R : constant Node_Id := Right_Opnd (N);
21092 begin
21093 -- We check the Etype of the complementary operand since the
21094 -- N_Null node is not decorated at this stage.
21096 return
21097 ((Nkind (L) = N_Null
21098 and then Is_Descendant_Of_Address (Etype (R)))
21099 or else
21100 (Nkind (R) = N_Null
21101 and then Is_Descendant_Of_Address (Etype (L))));
21102 end;
21103 end if;
21105 return False;
21106 end Null_To_Null_Address_Convert_OK;
21108 ---------------------------------
21109 -- Number_Of_Elements_In_Array --
21110 ---------------------------------
21112 function Number_Of_Elements_In_Array (T : Entity_Id) return Int is
21113 Indx : Node_Id;
21114 Typ : Entity_Id;
21115 Low : Node_Id;
21116 High : Node_Id;
21117 Num : Int := 1;
21119 begin
21120 pragma Assert (Is_Array_Type (T));
21122 Indx := First_Index (T);
21123 while Present (Indx) loop
21124 Typ := Underlying_Type (Etype (Indx));
21126 -- Never look at junk bounds of a generic type
21128 if Is_Generic_Type (Typ) then
21129 return 0;
21130 end if;
21132 -- Check the array bounds are known at compile time and return zero
21133 -- if they are not.
21135 Low := Type_Low_Bound (Typ);
21136 High := Type_High_Bound (Typ);
21138 if not Compile_Time_Known_Value (Low) then
21139 return 0;
21140 elsif not Compile_Time_Known_Value (High) then
21141 return 0;
21142 else
21143 Num :=
21144 Num * UI_To_Int ((Expr_Value (High) - Expr_Value (Low) + 1));
21145 end if;
21147 Next_Index (Indx);
21148 end loop;
21150 return Num;
21151 end Number_Of_Elements_In_Array;
21153 -------------------------
21154 -- Object_Access_Level --
21155 -------------------------
21157 -- Returns the static accessibility level of the view denoted by Obj. Note
21158 -- that the value returned is the result of a call to Scope_Depth. Only
21159 -- scope depths associated with dynamic scopes can actually be returned.
21160 -- Since only relative levels matter for accessibility checking, the fact
21161 -- that the distance between successive levels of accessibility is not
21162 -- always one is immaterial (invariant: if level(E2) is deeper than
21163 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
21165 function Object_Access_Level (Obj : Node_Id) return Uint is
21166 function Is_Interface_Conversion (N : Node_Id) return Boolean;
21167 -- Determine whether N is a construct of the form
21168 -- Some_Type (Operand._tag'Address)
21169 -- This construct appears in the context of dispatching calls.
21171 function Reference_To (Obj : Node_Id) return Node_Id;
21172 -- An explicit dereference is created when removing side effects from
21173 -- expressions for constraint checking purposes. In this case a local
21174 -- access type is created for it. The correct access level is that of
21175 -- the original source node. We detect this case by noting that the
21176 -- prefix of the dereference is created by an object declaration whose
21177 -- initial expression is a reference.
21179 -----------------------------
21180 -- Is_Interface_Conversion --
21181 -----------------------------
21183 function Is_Interface_Conversion (N : Node_Id) return Boolean is
21184 begin
21185 return Nkind (N) = N_Unchecked_Type_Conversion
21186 and then Nkind (Expression (N)) = N_Attribute_Reference
21187 and then Attribute_Name (Expression (N)) = Name_Address;
21188 end Is_Interface_Conversion;
21190 ------------------
21191 -- Reference_To --
21192 ------------------
21194 function Reference_To (Obj : Node_Id) return Node_Id is
21195 Pref : constant Node_Id := Prefix (Obj);
21196 begin
21197 if Is_Entity_Name (Pref)
21198 and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
21199 and then Present (Expression (Parent (Entity (Pref))))
21200 and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
21201 then
21202 return (Prefix (Expression (Parent (Entity (Pref)))));
21203 else
21204 return Empty;
21205 end if;
21206 end Reference_To;
21208 -- Local variables
21210 E : Entity_Id;
21212 -- Start of processing for Object_Access_Level
21214 begin
21215 if Nkind (Obj) = N_Defining_Identifier
21216 or else Is_Entity_Name (Obj)
21217 then
21218 if Nkind (Obj) = N_Defining_Identifier then
21219 E := Obj;
21220 else
21221 E := Entity (Obj);
21222 end if;
21224 if Is_Prival (E) then
21225 E := Prival_Link (E);
21226 end if;
21228 -- If E is a type then it denotes a current instance. For this case
21229 -- we add one to the normal accessibility level of the type to ensure
21230 -- that current instances are treated as always being deeper than
21231 -- than the level of any visible named access type (see 3.10.2(21)).
21233 if Is_Type (E) then
21234 return Type_Access_Level (E) + 1;
21236 elsif Present (Renamed_Object (E)) then
21237 return Object_Access_Level (Renamed_Object (E));
21239 -- Similarly, if E is a component of the current instance of a
21240 -- protected type, any instance of it is assumed to be at a deeper
21241 -- level than the type. For a protected object (whose type is an
21242 -- anonymous protected type) its components are at the same level
21243 -- as the type itself.
21245 elsif not Is_Overloadable (E)
21246 and then Ekind (Scope (E)) = E_Protected_Type
21247 and then Comes_From_Source (Scope (E))
21248 then
21249 return Type_Access_Level (Scope (E)) + 1;
21251 else
21252 -- Aliased formals of functions take their access level from the
21253 -- point of call, i.e. require a dynamic check. For static check
21254 -- purposes, this is smaller than the level of the subprogram
21255 -- itself. For procedures the aliased makes no difference.
21257 if Is_Formal (E)
21258 and then Is_Aliased (E)
21259 and then Ekind (Scope (E)) = E_Function
21260 then
21261 return Type_Access_Level (Etype (E));
21263 else
21264 return Scope_Depth (Enclosing_Dynamic_Scope (E));
21265 end if;
21266 end if;
21268 elsif Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
21269 if Is_Access_Type (Etype (Prefix (Obj))) then
21270 return Type_Access_Level (Etype (Prefix (Obj)));
21271 else
21272 return Object_Access_Level (Prefix (Obj));
21273 end if;
21275 elsif Nkind (Obj) = N_Explicit_Dereference then
21277 -- If the prefix is a selected access discriminant then we make a
21278 -- recursive call on the prefix, which will in turn check the level
21279 -- of the prefix object of the selected discriminant.
21281 -- In Ada 2012, if the discriminant has implicit dereference and
21282 -- the context is a selected component, treat this as an object of
21283 -- unknown scope (see below). This is necessary in compile-only mode;
21284 -- otherwise expansion will already have transformed the prefix into
21285 -- a temporary.
21287 if Nkind (Prefix (Obj)) = N_Selected_Component
21288 and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
21289 and then
21290 Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
21291 and then
21292 (not Has_Implicit_Dereference
21293 (Entity (Selector_Name (Prefix (Obj))))
21294 or else Nkind (Parent (Obj)) /= N_Selected_Component)
21295 then
21296 return Object_Access_Level (Prefix (Obj));
21298 -- Detect an interface conversion in the context of a dispatching
21299 -- call. Use the original form of the conversion to find the access
21300 -- level of the operand.
21302 elsif Is_Interface (Etype (Obj))
21303 and then Is_Interface_Conversion (Prefix (Obj))
21304 and then Nkind (Original_Node (Obj)) = N_Type_Conversion
21305 then
21306 return Object_Access_Level (Original_Node (Obj));
21308 elsif not Comes_From_Source (Obj) then
21309 declare
21310 Ref : constant Node_Id := Reference_To (Obj);
21311 begin
21312 if Present (Ref) then
21313 return Object_Access_Level (Ref);
21314 else
21315 return Type_Access_Level (Etype (Prefix (Obj)));
21316 end if;
21317 end;
21319 else
21320 return Type_Access_Level (Etype (Prefix (Obj)));
21321 end if;
21323 elsif Nkind_In (Obj, N_Type_Conversion, N_Unchecked_Type_Conversion) then
21324 return Object_Access_Level (Expression (Obj));
21326 elsif Nkind (Obj) = N_Function_Call then
21328 -- Function results are objects, so we get either the access level of
21329 -- the function or, in the case of an indirect call, the level of the
21330 -- access-to-subprogram type. (This code is used for Ada 95, but it
21331 -- looks wrong, because it seems that we should be checking the level
21332 -- of the call itself, even for Ada 95. However, using the Ada 2005
21333 -- version of the code causes regressions in several tests that are
21334 -- compiled with -gnat95. ???)
21336 if Ada_Version < Ada_2005 then
21337 if Is_Entity_Name (Name (Obj)) then
21338 return Subprogram_Access_Level (Entity (Name (Obj)));
21339 else
21340 return Type_Access_Level (Etype (Prefix (Name (Obj))));
21341 end if;
21343 -- For Ada 2005, the level of the result object of a function call is
21344 -- defined to be the level of the call's innermost enclosing master.
21345 -- We determine that by querying the depth of the innermost enclosing
21346 -- dynamic scope.
21348 else
21349 Return_Master_Scope_Depth_Of_Call : declare
21350 function Innermost_Master_Scope_Depth
21351 (N : Node_Id) return Uint;
21352 -- Returns the scope depth of the given node's innermost
21353 -- enclosing dynamic scope (effectively the accessibility
21354 -- level of the innermost enclosing master).
21356 ----------------------------------
21357 -- Innermost_Master_Scope_Depth --
21358 ----------------------------------
21360 function Innermost_Master_Scope_Depth
21361 (N : Node_Id) return Uint
21363 Node_Par : Node_Id := Parent (N);
21365 begin
21366 -- Locate the nearest enclosing node (by traversing Parents)
21367 -- that Defining_Entity can be applied to, and return the
21368 -- depth of that entity's nearest enclosing dynamic scope.
21370 while Present (Node_Par) loop
21371 case Nkind (Node_Par) is
21372 when N_Abstract_Subprogram_Declaration
21373 | N_Block_Statement
21374 | N_Body_Stub
21375 | N_Component_Declaration
21376 | N_Entry_Body
21377 | N_Entry_Declaration
21378 | N_Exception_Declaration
21379 | N_Formal_Object_Declaration
21380 | N_Formal_Package_Declaration
21381 | N_Formal_Subprogram_Declaration
21382 | N_Formal_Type_Declaration
21383 | N_Full_Type_Declaration
21384 | N_Function_Specification
21385 | N_Generic_Declaration
21386 | N_Generic_Instantiation
21387 | N_Implicit_Label_Declaration
21388 | N_Incomplete_Type_Declaration
21389 | N_Loop_Parameter_Specification
21390 | N_Number_Declaration
21391 | N_Object_Declaration
21392 | N_Package_Declaration
21393 | N_Package_Specification
21394 | N_Parameter_Specification
21395 | N_Private_Extension_Declaration
21396 | N_Private_Type_Declaration
21397 | N_Procedure_Specification
21398 | N_Proper_Body
21399 | N_Protected_Type_Declaration
21400 | N_Renaming_Declaration
21401 | N_Single_Protected_Declaration
21402 | N_Single_Task_Declaration
21403 | N_Subprogram_Declaration
21404 | N_Subtype_Declaration
21405 | N_Subunit
21406 | N_Task_Type_Declaration
21408 return Scope_Depth
21409 (Nearest_Dynamic_Scope
21410 (Defining_Entity (Node_Par)));
21412 -- For a return statement within a function, return
21413 -- the depth of the function itself. This is not just
21414 -- a small optimization, but matters when analyzing
21415 -- the expression in an expression function before
21416 -- the body is created.
21418 when N_Simple_Return_Statement =>
21419 if Ekind (Current_Scope) = E_Function then
21420 return Scope_Depth (Current_Scope);
21421 end if;
21423 when others =>
21424 null;
21425 end case;
21427 Node_Par := Parent (Node_Par);
21428 end loop;
21430 pragma Assert (False);
21432 -- Should never reach the following return
21434 return Scope_Depth (Current_Scope) + 1;
21435 end Innermost_Master_Scope_Depth;
21437 -- Start of processing for Return_Master_Scope_Depth_Of_Call
21439 begin
21440 return Innermost_Master_Scope_Depth (Obj);
21441 end Return_Master_Scope_Depth_Of_Call;
21442 end if;
21444 -- For convenience we handle qualified expressions, even though they
21445 -- aren't technically object names.
21447 elsif Nkind (Obj) = N_Qualified_Expression then
21448 return Object_Access_Level (Expression (Obj));
21450 -- Ditto for aggregates. They have the level of the temporary that
21451 -- will hold their value.
21453 elsif Nkind (Obj) = N_Aggregate then
21454 return Object_Access_Level (Current_Scope);
21456 -- Otherwise return the scope level of Standard. (If there are cases
21457 -- that fall through to this point they will be treated as having
21458 -- global accessibility for now. ???)
21460 else
21461 return Scope_Depth (Standard_Standard);
21462 end if;
21463 end Object_Access_Level;
21465 ----------------------------------
21466 -- Old_Requires_Transient_Scope --
21467 ----------------------------------
21469 function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
21470 Typ : constant Entity_Id := Underlying_Type (Id);
21472 begin
21473 -- This is a private type which is not completed yet. This can only
21474 -- happen in a default expression (of a formal parameter or of a
21475 -- record component). Do not expand transient scope in this case.
21477 if No (Typ) then
21478 return False;
21480 -- Do not expand transient scope for non-existent procedure return
21482 elsif Typ = Standard_Void_Type then
21483 return False;
21485 -- Elementary types do not require a transient scope
21487 elsif Is_Elementary_Type (Typ) then
21488 return False;
21490 -- Generally, indefinite subtypes require a transient scope, since the
21491 -- back end cannot generate temporaries, since this is not a valid type
21492 -- for declaring an object. It might be possible to relax this in the
21493 -- future, e.g. by declaring the maximum possible space for the type.
21495 elsif not Is_Definite_Subtype (Typ) then
21496 return True;
21498 -- Functions returning tagged types may dispatch on result so their
21499 -- returned value is allocated on the secondary stack. Controlled
21500 -- type temporaries need finalization.
21502 elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
21503 return True;
21505 -- Record type
21507 elsif Is_Record_Type (Typ) then
21508 declare
21509 Comp : Entity_Id;
21511 begin
21512 Comp := First_Entity (Typ);
21513 while Present (Comp) loop
21514 if Ekind (Comp) = E_Component then
21516 -- ???It's not clear we need a full recursive call to
21517 -- Old_Requires_Transient_Scope here. Note that the
21518 -- following can't happen.
21520 pragma Assert (Is_Definite_Subtype (Etype (Comp)));
21521 pragma Assert (not Has_Controlled_Component (Etype (Comp)));
21523 if Old_Requires_Transient_Scope (Etype (Comp)) then
21524 return True;
21525 end if;
21526 end if;
21528 Next_Entity (Comp);
21529 end loop;
21530 end;
21532 return False;
21534 -- String literal types never require transient scope
21536 elsif Ekind (Typ) = E_String_Literal_Subtype then
21537 return False;
21539 -- Array type. Note that we already know that this is a constrained
21540 -- array, since unconstrained arrays will fail the indefinite test.
21542 elsif Is_Array_Type (Typ) then
21544 -- If component type requires a transient scope, the array does too
21546 if Old_Requires_Transient_Scope (Component_Type (Typ)) then
21547 return True;
21549 -- Otherwise, we only need a transient scope if the size depends on
21550 -- the value of one or more discriminants.
21552 else
21553 return Size_Depends_On_Discriminant (Typ);
21554 end if;
21556 -- All other cases do not require a transient scope
21558 else
21559 pragma Assert (Is_Protected_Type (Typ) or else Is_Task_Type (Typ));
21560 return False;
21561 end if;
21562 end Old_Requires_Transient_Scope;
21564 ---------------------------------
21565 -- Original_Aspect_Pragma_Name --
21566 ---------------------------------
21568 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id is
21569 Item : Node_Id;
21570 Item_Nam : Name_Id;
21572 begin
21573 pragma Assert (Nkind_In (N, N_Aspect_Specification, N_Pragma));
21575 Item := N;
21577 -- The pragma was generated to emulate an aspect, use the original
21578 -- aspect specification.
21580 if Nkind (Item) = N_Pragma and then From_Aspect_Specification (Item) then
21581 Item := Corresponding_Aspect (Item);
21582 end if;
21584 -- Retrieve the name of the aspect/pragma. Note that Pre, Pre_Class,
21585 -- Post and Post_Class rewrite their pragma identifier to preserve the
21586 -- original name.
21587 -- ??? this is kludgey
21589 if Nkind (Item) = N_Pragma then
21590 Item_Nam := Chars (Original_Node (Pragma_Identifier (Item)));
21592 else
21593 pragma Assert (Nkind (Item) = N_Aspect_Specification);
21594 Item_Nam := Chars (Identifier (Item));
21595 end if;
21597 -- Deal with 'Class by converting the name to its _XXX form
21599 if Class_Present (Item) then
21600 if Item_Nam = Name_Invariant then
21601 Item_Nam := Name_uInvariant;
21603 elsif Item_Nam = Name_Post then
21604 Item_Nam := Name_uPost;
21606 elsif Item_Nam = Name_Pre then
21607 Item_Nam := Name_uPre;
21609 elsif Nam_In (Item_Nam, Name_Type_Invariant,
21610 Name_Type_Invariant_Class)
21611 then
21612 Item_Nam := Name_uType_Invariant;
21614 -- Nothing to do for other cases (e.g. a Check that derived from
21615 -- Pre_Class and has the flag set). Also we do nothing if the name
21616 -- is already in special _xxx form.
21618 end if;
21619 end if;
21621 return Item_Nam;
21622 end Original_Aspect_Pragma_Name;
21624 --------------------------------------
21625 -- Original_Corresponding_Operation --
21626 --------------------------------------
21628 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
21630 Typ : constant Entity_Id := Find_Dispatching_Type (S);
21632 begin
21633 -- If S is an inherited primitive S2 the original corresponding
21634 -- operation of S is the original corresponding operation of S2
21636 if Present (Alias (S))
21637 and then Find_Dispatching_Type (Alias (S)) /= Typ
21638 then
21639 return Original_Corresponding_Operation (Alias (S));
21641 -- If S overrides an inherited subprogram S2 the original corresponding
21642 -- operation of S is the original corresponding operation of S2
21644 elsif Present (Overridden_Operation (S)) then
21645 return Original_Corresponding_Operation (Overridden_Operation (S));
21647 -- otherwise it is S itself
21649 else
21650 return S;
21651 end if;
21652 end Original_Corresponding_Operation;
21654 -------------------
21655 -- Output_Entity --
21656 -------------------
21658 procedure Output_Entity (Id : Entity_Id) is
21659 Scop : Entity_Id;
21661 begin
21662 Scop := Scope (Id);
21664 -- The entity may lack a scope when it is in the process of being
21665 -- analyzed. Use the current scope as an approximation.
21667 if No (Scop) then
21668 Scop := Current_Scope;
21669 end if;
21671 Output_Name (Chars (Id), Scop);
21672 end Output_Entity;
21674 -----------------
21675 -- Output_Name --
21676 -----------------
21678 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope) is
21679 begin
21680 Write_Str
21681 (Get_Name_String
21682 (Get_Qualified_Name
21683 (Nam => Nam,
21684 Suffix => No_Name,
21685 Scop => Scop)));
21686 Write_Eol;
21687 end Output_Name;
21689 ----------------------
21690 -- Policy_In_Effect --
21691 ----------------------
21693 function Policy_In_Effect (Policy : Name_Id) return Name_Id is
21694 function Policy_In_List (List : Node_Id) return Name_Id;
21695 -- Determine the mode of a policy in a N_Pragma list
21697 --------------------
21698 -- Policy_In_List --
21699 --------------------
21701 function Policy_In_List (List : Node_Id) return Name_Id is
21702 Arg1 : Node_Id;
21703 Arg2 : Node_Id;
21704 Prag : Node_Id;
21706 begin
21707 Prag := List;
21708 while Present (Prag) loop
21709 Arg1 := First (Pragma_Argument_Associations (Prag));
21710 Arg2 := Next (Arg1);
21712 Arg1 := Get_Pragma_Arg (Arg1);
21713 Arg2 := Get_Pragma_Arg (Arg2);
21715 -- The current Check_Policy pragma matches the requested policy or
21716 -- appears in the single argument form (Assertion, policy_id).
21718 if Nam_In (Chars (Arg1), Name_Assertion, Policy) then
21719 return Chars (Arg2);
21720 end if;
21722 Prag := Next_Pragma (Prag);
21723 end loop;
21725 return No_Name;
21726 end Policy_In_List;
21728 -- Local variables
21730 Kind : Name_Id;
21732 -- Start of processing for Policy_In_Effect
21734 begin
21735 if not Is_Valid_Assertion_Kind (Policy) then
21736 raise Program_Error;
21737 end if;
21739 -- Inspect all policy pragmas that appear within scopes (if any)
21741 Kind := Policy_In_List (Check_Policy_List);
21743 -- Inspect all configuration policy pragmas (if any)
21745 if Kind = No_Name then
21746 Kind := Policy_In_List (Check_Policy_List_Config);
21747 end if;
21749 -- The context lacks policy pragmas, determine the mode based on whether
21750 -- assertions are enabled at the configuration level. This ensures that
21751 -- the policy is preserved when analyzing generics.
21753 if Kind = No_Name then
21754 if Assertions_Enabled_Config then
21755 Kind := Name_Check;
21756 else
21757 Kind := Name_Ignore;
21758 end if;
21759 end if;
21761 return Kind;
21762 end Policy_In_Effect;
21764 ----------------------------------
21765 -- Predicate_Tests_On_Arguments --
21766 ----------------------------------
21768 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean is
21769 begin
21770 -- Always test predicates on indirect call
21772 if Ekind (Subp) = E_Subprogram_Type then
21773 return True;
21775 -- Do not test predicates on call to generated default Finalize, since
21776 -- we are not interested in whether something we are finalizing (and
21777 -- typically destroying) satisfies its predicates.
21779 elsif Chars (Subp) = Name_Finalize
21780 and then not Comes_From_Source (Subp)
21781 then
21782 return False;
21784 -- Do not test predicates on any internally generated routines
21786 elsif Is_Internal_Name (Chars (Subp)) then
21787 return False;
21789 -- Do not test predicates on call to Init_Proc, since if needed the
21790 -- predicate test will occur at some other point.
21792 elsif Is_Init_Proc (Subp) then
21793 return False;
21795 -- Do not test predicates on call to predicate function, since this
21796 -- would cause infinite recursion.
21798 elsif Ekind (Subp) = E_Function
21799 and then (Is_Predicate_Function (Subp)
21800 or else
21801 Is_Predicate_Function_M (Subp))
21802 then
21803 return False;
21805 -- For now, no other exceptions
21807 else
21808 return True;
21809 end if;
21810 end Predicate_Tests_On_Arguments;
21812 -----------------------
21813 -- Private_Component --
21814 -----------------------
21816 function Private_Component (Type_Id : Entity_Id) return Entity_Id is
21817 Ancestor : constant Entity_Id := Base_Type (Type_Id);
21819 function Trace_Components
21820 (T : Entity_Id;
21821 Check : Boolean) return Entity_Id;
21822 -- Recursive function that does the work, and checks against circular
21823 -- definition for each subcomponent type.
21825 ----------------------
21826 -- Trace_Components --
21827 ----------------------
21829 function Trace_Components
21830 (T : Entity_Id;
21831 Check : Boolean) return Entity_Id
21833 Btype : constant Entity_Id := Base_Type (T);
21834 Component : Entity_Id;
21835 P : Entity_Id;
21836 Candidate : Entity_Id := Empty;
21838 begin
21839 if Check and then Btype = Ancestor then
21840 Error_Msg_N ("circular type definition", Type_Id);
21841 return Any_Type;
21842 end if;
21844 if Is_Private_Type (Btype) and then not Is_Generic_Type (Btype) then
21845 if Present (Full_View (Btype))
21846 and then Is_Record_Type (Full_View (Btype))
21847 and then not Is_Frozen (Btype)
21848 then
21849 -- To indicate that the ancestor depends on a private type, the
21850 -- current Btype is sufficient. However, to check for circular
21851 -- definition we must recurse on the full view.
21853 Candidate := Trace_Components (Full_View (Btype), True);
21855 if Candidate = Any_Type then
21856 return Any_Type;
21857 else
21858 return Btype;
21859 end if;
21861 else
21862 return Btype;
21863 end if;
21865 elsif Is_Array_Type (Btype) then
21866 return Trace_Components (Component_Type (Btype), True);
21868 elsif Is_Record_Type (Btype) then
21869 Component := First_Entity (Btype);
21870 while Present (Component)
21871 and then Comes_From_Source (Component)
21872 loop
21873 -- Skip anonymous types generated by constrained components
21875 if not Is_Type (Component) then
21876 P := Trace_Components (Etype (Component), True);
21878 if Present (P) then
21879 if P = Any_Type then
21880 return P;
21881 else
21882 Candidate := P;
21883 end if;
21884 end if;
21885 end if;
21887 Next_Entity (Component);
21888 end loop;
21890 return Candidate;
21892 else
21893 return Empty;
21894 end if;
21895 end Trace_Components;
21897 -- Start of processing for Private_Component
21899 begin
21900 return Trace_Components (Type_Id, False);
21901 end Private_Component;
21903 ---------------------------
21904 -- Primitive_Names_Match --
21905 ---------------------------
21907 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
21908 function Non_Internal_Name (E : Entity_Id) return Name_Id;
21909 -- Given an internal name, returns the corresponding non-internal name
21911 ------------------------
21912 -- Non_Internal_Name --
21913 ------------------------
21915 function Non_Internal_Name (E : Entity_Id) return Name_Id is
21916 begin
21917 Get_Name_String (Chars (E));
21918 Name_Len := Name_Len - 1;
21919 return Name_Find;
21920 end Non_Internal_Name;
21922 -- Start of processing for Primitive_Names_Match
21924 begin
21925 pragma Assert (Present (E1) and then Present (E2));
21927 return Chars (E1) = Chars (E2)
21928 or else
21929 (not Is_Internal_Name (Chars (E1))
21930 and then Is_Internal_Name (Chars (E2))
21931 and then Non_Internal_Name (E2) = Chars (E1))
21932 or else
21933 (not Is_Internal_Name (Chars (E2))
21934 and then Is_Internal_Name (Chars (E1))
21935 and then Non_Internal_Name (E1) = Chars (E2))
21936 or else
21937 (Is_Predefined_Dispatching_Operation (E1)
21938 and then Is_Predefined_Dispatching_Operation (E2)
21939 and then Same_TSS (E1, E2))
21940 or else
21941 (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
21942 end Primitive_Names_Match;
21944 -----------------------
21945 -- Process_End_Label --
21946 -----------------------
21948 procedure Process_End_Label
21949 (N : Node_Id;
21950 Typ : Character;
21951 Ent : Entity_Id)
21953 Loc : Source_Ptr;
21954 Nam : Node_Id;
21955 Scop : Entity_Id;
21957 Label_Ref : Boolean;
21958 -- Set True if reference to end label itself is required
21960 Endl : Node_Id;
21961 -- Gets set to the operator symbol or identifier that references the
21962 -- entity Ent. For the child unit case, this is the identifier from the
21963 -- designator. For other cases, this is simply Endl.
21965 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
21966 -- N is an identifier node that appears as a parent unit reference in
21967 -- the case where Ent is a child unit. This procedure generates an
21968 -- appropriate cross-reference entry. E is the corresponding entity.
21970 -------------------------
21971 -- Generate_Parent_Ref --
21972 -------------------------
21974 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
21975 begin
21976 -- If names do not match, something weird, skip reference
21978 if Chars (E) = Chars (N) then
21980 -- Generate the reference. We do NOT consider this as a reference
21981 -- for unreferenced symbol purposes.
21983 Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
21985 if Style_Check then
21986 Style.Check_Identifier (N, E);
21987 end if;
21988 end if;
21989 end Generate_Parent_Ref;
21991 -- Start of processing for Process_End_Label
21993 begin
21994 -- If no node, ignore. This happens in some error situations, and
21995 -- also for some internally generated structures where no end label
21996 -- references are required in any case.
21998 if No (N) then
21999 return;
22000 end if;
22002 -- Nothing to do if no End_Label, happens for internally generated
22003 -- constructs where we don't want an end label reference anyway. Also
22004 -- nothing to do if Endl is a string literal, which means there was
22005 -- some prior error (bad operator symbol)
22007 Endl := End_Label (N);
22009 if No (Endl) or else Nkind (Endl) = N_String_Literal then
22010 return;
22011 end if;
22013 -- Reference node is not in extended main source unit
22015 if not In_Extended_Main_Source_Unit (N) then
22017 -- Generally we do not collect references except for the extended
22018 -- main source unit. The one exception is the 'e' entry for a
22019 -- package spec, where it is useful for a client to have the
22020 -- ending information to define scopes.
22022 if Typ /= 'e' then
22023 return;
22025 else
22026 Label_Ref := False;
22028 -- For this case, we can ignore any parent references, but we
22029 -- need the package name itself for the 'e' entry.
22031 if Nkind (Endl) = N_Designator then
22032 Endl := Identifier (Endl);
22033 end if;
22034 end if;
22036 -- Reference is in extended main source unit
22038 else
22039 Label_Ref := True;
22041 -- For designator, generate references for the parent entries
22043 if Nkind (Endl) = N_Designator then
22045 -- Generate references for the prefix if the END line comes from
22046 -- source (otherwise we do not need these references) We climb the
22047 -- scope stack to find the expected entities.
22049 if Comes_From_Source (Endl) then
22050 Nam := Name (Endl);
22051 Scop := Current_Scope;
22052 while Nkind (Nam) = N_Selected_Component loop
22053 Scop := Scope (Scop);
22054 exit when No (Scop);
22055 Generate_Parent_Ref (Selector_Name (Nam), Scop);
22056 Nam := Prefix (Nam);
22057 end loop;
22059 if Present (Scop) then
22060 Generate_Parent_Ref (Nam, Scope (Scop));
22061 end if;
22062 end if;
22064 Endl := Identifier (Endl);
22065 end if;
22066 end if;
22068 -- If the end label is not for the given entity, then either we have
22069 -- some previous error, or this is a generic instantiation for which
22070 -- we do not need to make a cross-reference in this case anyway. In
22071 -- either case we simply ignore the call.
22073 if Chars (Ent) /= Chars (Endl) then
22074 return;
22075 end if;
22077 -- If label was really there, then generate a normal reference and then
22078 -- adjust the location in the end label to point past the name (which
22079 -- should almost always be the semicolon).
22081 Loc := Sloc (Endl);
22083 if Comes_From_Source (Endl) then
22085 -- If a label reference is required, then do the style check and
22086 -- generate an l-type cross-reference entry for the label
22088 if Label_Ref then
22089 if Style_Check then
22090 Style.Check_Identifier (Endl, Ent);
22091 end if;
22093 Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
22094 end if;
22096 -- Set the location to point past the label (normally this will
22097 -- mean the semicolon immediately following the label). This is
22098 -- done for the sake of the 'e' or 't' entry generated below.
22100 Get_Decoded_Name_String (Chars (Endl));
22101 Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
22103 else
22104 -- In SPARK mode, no missing label is allowed for packages and
22105 -- subprogram bodies. Detect those cases by testing whether
22106 -- Process_End_Label was called for a body (Typ = 't') or a package.
22108 if Restriction_Check_Required (SPARK_05)
22109 and then (Typ = 't' or else Ekind (Ent) = E_Package)
22110 then
22111 Error_Msg_Node_1 := Endl;
22112 Check_SPARK_05_Restriction
22113 ("`END &` required", Endl, Force => True);
22114 end if;
22115 end if;
22117 -- Now generate the e/t reference
22119 Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
22121 -- Restore Sloc, in case modified above, since we have an identifier
22122 -- and the normal Sloc should be left set in the tree.
22124 Set_Sloc (Endl, Loc);
22125 end Process_End_Label;
22127 --------------------------------
22128 -- Propagate_Concurrent_Flags --
22129 --------------------------------
22131 procedure Propagate_Concurrent_Flags
22132 (Typ : Entity_Id;
22133 Comp_Typ : Entity_Id)
22135 begin
22136 if Has_Task (Comp_Typ) then
22137 Set_Has_Task (Typ);
22138 end if;
22140 if Has_Protected (Comp_Typ) then
22141 Set_Has_Protected (Typ);
22142 end if;
22144 if Has_Timing_Event (Comp_Typ) then
22145 Set_Has_Timing_Event (Typ);
22146 end if;
22147 end Propagate_Concurrent_Flags;
22149 ------------------------------
22150 -- Propagate_DIC_Attributes --
22151 ------------------------------
22153 procedure Propagate_DIC_Attributes
22154 (Typ : Entity_Id;
22155 From_Typ : Entity_Id)
22157 DIC_Proc : Entity_Id;
22159 begin
22160 if Present (Typ) and then Present (From_Typ) then
22161 pragma Assert (Is_Type (Typ) and then Is_Type (From_Typ));
22163 -- Nothing to do if both the source and the destination denote the
22164 -- same type.
22166 if From_Typ = Typ then
22167 return;
22168 end if;
22170 DIC_Proc := DIC_Procedure (From_Typ);
22172 -- The setting of the attributes is intentionally conservative. This
22173 -- prevents accidental clobbering of enabled attributes.
22175 if Has_Inherited_DIC (From_Typ)
22176 and then not Has_Inherited_DIC (Typ)
22177 then
22178 Set_Has_Inherited_DIC (Typ);
22179 end if;
22181 if Has_Own_DIC (From_Typ) and then not Has_Own_DIC (Typ) then
22182 Set_Has_Own_DIC (Typ);
22183 end if;
22185 if Present (DIC_Proc) and then No (DIC_Procedure (Typ)) then
22186 Set_DIC_Procedure (Typ, DIC_Proc);
22187 end if;
22188 end if;
22189 end Propagate_DIC_Attributes;
22191 ------------------------------------
22192 -- Propagate_Invariant_Attributes --
22193 ------------------------------------
22195 procedure Propagate_Invariant_Attributes
22196 (Typ : Entity_Id;
22197 From_Typ : Entity_Id)
22199 Full_IP : Entity_Id;
22200 Part_IP : Entity_Id;
22202 begin
22203 if Present (Typ) and then Present (From_Typ) then
22204 pragma Assert (Is_Type (Typ) and then Is_Type (From_Typ));
22206 -- Nothing to do if both the source and the destination denote the
22207 -- same type.
22209 if From_Typ = Typ then
22210 return;
22211 end if;
22213 Full_IP := Invariant_Procedure (From_Typ);
22214 Part_IP := Partial_Invariant_Procedure (From_Typ);
22216 -- The setting of the attributes is intentionally conservative. This
22217 -- prevents accidental clobbering of enabled attributes.
22219 if Has_Inheritable_Invariants (From_Typ)
22220 and then not Has_Inheritable_Invariants (Typ)
22221 then
22222 Set_Has_Inheritable_Invariants (Typ, True);
22223 end if;
22225 if Has_Inherited_Invariants (From_Typ)
22226 and then not Has_Inherited_Invariants (Typ)
22227 then
22228 Set_Has_Inherited_Invariants (Typ, True);
22229 end if;
22231 if Has_Own_Invariants (From_Typ)
22232 and then not Has_Own_Invariants (Typ)
22233 then
22234 Set_Has_Own_Invariants (Typ, True);
22235 end if;
22237 if Present (Full_IP) and then No (Invariant_Procedure (Typ)) then
22238 Set_Invariant_Procedure (Typ, Full_IP);
22239 end if;
22241 if Present (Part_IP) and then No (Partial_Invariant_Procedure (Typ))
22242 then
22243 Set_Partial_Invariant_Procedure (Typ, Part_IP);
22244 end if;
22245 end if;
22246 end Propagate_Invariant_Attributes;
22248 ---------------------------------------
22249 -- Record_Possible_Part_Of_Reference --
22250 ---------------------------------------
22252 procedure Record_Possible_Part_Of_Reference
22253 (Var_Id : Entity_Id;
22254 Ref : Node_Id)
22256 Encap : constant Entity_Id := Encapsulating_State (Var_Id);
22257 Refs : Elist_Id;
22259 begin
22260 -- The variable is a constituent of a single protected/task type. Such
22261 -- a variable acts as a component of the type and must appear within a
22262 -- specific region (SPARK RM 9.3). Instead of recording the reference,
22263 -- verify its legality now.
22265 if Present (Encap) and then Is_Single_Concurrent_Object (Encap) then
22266 Check_Part_Of_Reference (Var_Id, Ref);
22268 -- The variable is subject to pragma Part_Of and may eventually become a
22269 -- constituent of a single protected/task type. Record the reference to
22270 -- verify its placement when the contract of the variable is analyzed.
22272 elsif Present (Get_Pragma (Var_Id, Pragma_Part_Of)) then
22273 Refs := Part_Of_References (Var_Id);
22275 if No (Refs) then
22276 Refs := New_Elmt_List;
22277 Set_Part_Of_References (Var_Id, Refs);
22278 end if;
22280 Append_Elmt (Ref, Refs);
22281 end if;
22282 end Record_Possible_Part_Of_Reference;
22284 ----------------
22285 -- Referenced --
22286 ----------------
22288 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean is
22289 Seen : Boolean := False;
22291 function Is_Reference (N : Node_Id) return Traverse_Result;
22292 -- Determine whether node N denotes a reference to Id. If this is the
22293 -- case, set global flag Seen to True and stop the traversal.
22295 ------------------
22296 -- Is_Reference --
22297 ------------------
22299 function Is_Reference (N : Node_Id) return Traverse_Result is
22300 begin
22301 if Is_Entity_Name (N)
22302 and then Present (Entity (N))
22303 and then Entity (N) = Id
22304 then
22305 Seen := True;
22306 return Abandon;
22307 else
22308 return OK;
22309 end if;
22310 end Is_Reference;
22312 procedure Inspect_Expression is new Traverse_Proc (Is_Reference);
22314 -- Start of processing for Referenced
22316 begin
22317 Inspect_Expression (Expr);
22318 return Seen;
22319 end Referenced;
22321 ------------------------------------
22322 -- References_Generic_Formal_Type --
22323 ------------------------------------
22325 function References_Generic_Formal_Type (N : Node_Id) return Boolean is
22327 function Process (N : Node_Id) return Traverse_Result;
22328 -- Process one node in search for generic formal type
22330 -------------
22331 -- Process --
22332 -------------
22334 function Process (N : Node_Id) return Traverse_Result is
22335 begin
22336 if Nkind (N) in N_Has_Entity then
22337 declare
22338 E : constant Entity_Id := Entity (N);
22339 begin
22340 if Present (E) then
22341 if Is_Generic_Type (E) then
22342 return Abandon;
22343 elsif Present (Etype (E))
22344 and then Is_Generic_Type (Etype (E))
22345 then
22346 return Abandon;
22347 end if;
22348 end if;
22349 end;
22350 end if;
22352 return Atree.OK;
22353 end Process;
22355 function Traverse is new Traverse_Func (Process);
22356 -- Traverse tree to look for generic type
22358 begin
22359 if Inside_A_Generic then
22360 return Traverse (N) = Abandon;
22361 else
22362 return False;
22363 end if;
22364 end References_Generic_Formal_Type;
22366 -------------------
22367 -- Remove_Entity --
22368 -------------------
22370 procedure Remove_Entity (Id : Entity_Id) is
22371 Scop : constant Entity_Id := Scope (Id);
22372 Prev_Id : Entity_Id;
22374 begin
22375 -- Remove the entity from the homonym chain. When the entity is the
22376 -- head of the chain, associate the entry in the name table with its
22377 -- homonym effectively making it the new head of the chain.
22379 if Current_Entity (Id) = Id then
22380 Set_Name_Entity_Id (Chars (Id), Homonym (Id));
22382 -- Otherwise link the previous and next homonyms
22384 else
22385 Prev_Id := Current_Entity (Id);
22386 while Present (Prev_Id) and then Homonym (Prev_Id) /= Id loop
22387 Prev_Id := Homonym (Prev_Id);
22388 end loop;
22390 Set_Homonym (Prev_Id, Homonym (Id));
22391 end if;
22393 -- Remove the entity from the scope entity chain. When the entity is
22394 -- the head of the chain, set the next entity as the new head of the
22395 -- chain.
22397 if First_Entity (Scop) = Id then
22398 Prev_Id := Empty;
22399 Set_First_Entity (Scop, Next_Entity (Id));
22401 -- Otherwise the entity is either in the middle of the chain or it acts
22402 -- as its tail. Traverse and link the previous and next entities.
22404 else
22405 Prev_Id := First_Entity (Scop);
22406 while Present (Prev_Id) and then Next_Entity (Prev_Id) /= Id loop
22407 Next_Entity (Prev_Id);
22408 end loop;
22410 Set_Next_Entity (Prev_Id, Next_Entity (Id));
22411 end if;
22413 -- Handle the case where the entity acts as the tail of the scope entity
22414 -- chain.
22416 if Last_Entity (Scop) = Id then
22417 Set_Last_Entity (Scop, Prev_Id);
22418 end if;
22419 end Remove_Entity;
22421 --------------------
22422 -- Remove_Homonym --
22423 --------------------
22425 procedure Remove_Homonym (E : Entity_Id) is
22426 Prev : Entity_Id := Empty;
22427 H : Entity_Id;
22429 begin
22430 if E = Current_Entity (E) then
22431 if Present (Homonym (E)) then
22432 Set_Current_Entity (Homonym (E));
22433 else
22434 Set_Name_Entity_Id (Chars (E), Empty);
22435 end if;
22437 else
22438 H := Current_Entity (E);
22439 while Present (H) and then H /= E loop
22440 Prev := H;
22441 H := Homonym (H);
22442 end loop;
22444 -- If E is not on the homonym chain, nothing to do
22446 if Present (H) then
22447 Set_Homonym (Prev, Homonym (E));
22448 end if;
22449 end if;
22450 end Remove_Homonym;
22452 ------------------------------
22453 -- Remove_Overloaded_Entity --
22454 ------------------------------
22456 procedure Remove_Overloaded_Entity (Id : Entity_Id) is
22457 procedure Remove_Primitive_Of (Typ : Entity_Id);
22458 -- Remove primitive subprogram Id from the list of primitives that
22459 -- belong to type Typ.
22461 -------------------------
22462 -- Remove_Primitive_Of --
22463 -------------------------
22465 procedure Remove_Primitive_Of (Typ : Entity_Id) is
22466 Prims : Elist_Id;
22468 begin
22469 if Is_Tagged_Type (Typ) then
22470 Prims := Direct_Primitive_Operations (Typ);
22472 if Present (Prims) then
22473 Remove (Prims, Id);
22474 end if;
22475 end if;
22476 end Remove_Primitive_Of;
22478 -- Local variables
22480 Formal : Entity_Id;
22482 -- Start of processing for Remove_Overloaded_Entity
22484 begin
22485 -- Remove the entity from both the homonym and scope chains
22487 Remove_Entity (Id);
22489 -- The entity denotes a primitive subprogram. Remove it from the list of
22490 -- primitives of the associated controlling type.
22492 if Ekind_In (Id, E_Function, E_Procedure) and then Is_Primitive (Id) then
22493 Formal := First_Formal (Id);
22494 while Present (Formal) loop
22495 if Is_Controlling_Formal (Formal) then
22496 Remove_Primitive_Of (Etype (Formal));
22497 exit;
22498 end if;
22500 Next_Formal (Formal);
22501 end loop;
22503 if Ekind (Id) = E_Function and then Has_Controlling_Result (Id) then
22504 Remove_Primitive_Of (Etype (Id));
22505 end if;
22506 end if;
22507 end Remove_Overloaded_Entity;
22509 ---------------------
22510 -- Rep_To_Pos_Flag --
22511 ---------------------
22513 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
22514 begin
22515 return New_Occurrence_Of
22516 (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
22517 end Rep_To_Pos_Flag;
22519 --------------------
22520 -- Require_Entity --
22521 --------------------
22523 procedure Require_Entity (N : Node_Id) is
22524 begin
22525 if Is_Entity_Name (N) and then No (Entity (N)) then
22526 if Total_Errors_Detected /= 0 then
22527 Set_Entity (N, Any_Id);
22528 else
22529 raise Program_Error;
22530 end if;
22531 end if;
22532 end Require_Entity;
22534 ------------------------------
22535 -- Requires_Transient_Scope --
22536 ------------------------------
22538 -- A transient scope is required when variable-sized temporaries are
22539 -- allocated on the secondary stack, or when finalization actions must be
22540 -- generated before the next instruction.
22542 function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
22543 Old_Result : constant Boolean := Old_Requires_Transient_Scope (Id);
22545 begin
22546 if Debug_Flag_QQ then
22547 return Old_Result;
22548 end if;
22550 declare
22551 New_Result : constant Boolean := New_Requires_Transient_Scope (Id);
22553 begin
22554 -- Assert that we're not putting things on the secondary stack if we
22555 -- didn't before; we are trying to AVOID secondary stack when
22556 -- possible.
22558 if not Old_Result then
22559 pragma Assert (not New_Result);
22560 null;
22561 end if;
22563 if New_Result /= Old_Result then
22564 Results_Differ (Id, Old_Result, New_Result);
22565 end if;
22567 return New_Result;
22568 end;
22569 end Requires_Transient_Scope;
22571 --------------------
22572 -- Results_Differ --
22573 --------------------
22575 procedure Results_Differ
22576 (Id : Entity_Id;
22577 Old_Val : Boolean;
22578 New_Val : Boolean)
22580 begin
22581 if False then -- False to disable; True for debugging
22582 Treepr.Print_Tree_Node (Id);
22584 if Old_Val = New_Val then
22585 raise Program_Error;
22586 end if;
22587 end if;
22588 end Results_Differ;
22590 --------------------------
22591 -- Reset_Analyzed_Flags --
22592 --------------------------
22594 procedure Reset_Analyzed_Flags (N : Node_Id) is
22595 function Clear_Analyzed (N : Node_Id) return Traverse_Result;
22596 -- Function used to reset Analyzed flags in tree. Note that we do
22597 -- not reset Analyzed flags in entities, since there is no need to
22598 -- reanalyze entities, and indeed, it is wrong to do so, since it
22599 -- can result in generating auxiliary stuff more than once.
22601 --------------------
22602 -- Clear_Analyzed --
22603 --------------------
22605 function Clear_Analyzed (N : Node_Id) return Traverse_Result is
22606 begin
22607 if Nkind (N) not in N_Entity then
22608 Set_Analyzed (N, False);
22609 end if;
22611 return OK;
22612 end Clear_Analyzed;
22614 procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
22616 -- Start of processing for Reset_Analyzed_Flags
22618 begin
22619 Reset_Analyzed (N);
22620 end Reset_Analyzed_Flags;
22622 ------------------------
22623 -- Restore_SPARK_Mode --
22624 ------------------------
22626 procedure Restore_SPARK_Mode
22627 (Mode : SPARK_Mode_Type;
22628 Prag : Node_Id)
22630 begin
22631 SPARK_Mode := Mode;
22632 SPARK_Mode_Pragma := Prag;
22633 end Restore_SPARK_Mode;
22635 --------------------------------
22636 -- Returns_Unconstrained_Type --
22637 --------------------------------
22639 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean is
22640 begin
22641 return Ekind (Subp) = E_Function
22642 and then not Is_Scalar_Type (Etype (Subp))
22643 and then not Is_Access_Type (Etype (Subp))
22644 and then not Is_Constrained (Etype (Subp));
22645 end Returns_Unconstrained_Type;
22647 ----------------------------
22648 -- Root_Type_Of_Full_View --
22649 ----------------------------
22651 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id is
22652 Rtyp : constant Entity_Id := Root_Type (T);
22654 begin
22655 -- The root type of the full view may itself be a private type. Keep
22656 -- looking for the ultimate derivation parent.
22658 if Is_Private_Type (Rtyp) and then Present (Full_View (Rtyp)) then
22659 return Root_Type_Of_Full_View (Full_View (Rtyp));
22660 else
22661 return Rtyp;
22662 end if;
22663 end Root_Type_Of_Full_View;
22665 ---------------------------
22666 -- Safe_To_Capture_Value --
22667 ---------------------------
22669 function Safe_To_Capture_Value
22670 (N : Node_Id;
22671 Ent : Entity_Id;
22672 Cond : Boolean := False) return Boolean
22674 begin
22675 -- The only entities for which we track constant values are variables
22676 -- which are not renamings, constants, out parameters, and in out
22677 -- parameters, so check if we have this case.
22679 -- Note: it may seem odd to track constant values for constants, but in
22680 -- fact this routine is used for other purposes than simply capturing
22681 -- the value. In particular, the setting of Known[_Non]_Null.
22683 if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
22684 or else
22685 Ekind_In (Ent, E_Constant, E_Out_Parameter, E_In_Out_Parameter)
22686 then
22687 null;
22689 -- For conditionals, we also allow loop parameters and all formals,
22690 -- including in parameters.
22692 elsif Cond and then Ekind_In (Ent, E_Loop_Parameter, E_In_Parameter) then
22693 null;
22695 -- For all other cases, not just unsafe, but impossible to capture
22696 -- Current_Value, since the above are the only entities which have
22697 -- Current_Value fields.
22699 else
22700 return False;
22701 end if;
22703 -- Skip if volatile or aliased, since funny things might be going on in
22704 -- these cases which we cannot necessarily track. Also skip any variable
22705 -- for which an address clause is given, or whose address is taken. Also
22706 -- never capture value of library level variables (an attempt to do so
22707 -- can occur in the case of package elaboration code).
22709 if Treat_As_Volatile (Ent)
22710 or else Is_Aliased (Ent)
22711 or else Present (Address_Clause (Ent))
22712 or else Address_Taken (Ent)
22713 or else (Is_Library_Level_Entity (Ent)
22714 and then Ekind (Ent) = E_Variable)
22715 then
22716 return False;
22717 end if;
22719 -- OK, all above conditions are met. We also require that the scope of
22720 -- the reference be the same as the scope of the entity, not counting
22721 -- packages and blocks and loops.
22723 declare
22724 E_Scope : constant Entity_Id := Scope (Ent);
22725 R_Scope : Entity_Id;
22727 begin
22728 R_Scope := Current_Scope;
22729 while R_Scope /= Standard_Standard loop
22730 exit when R_Scope = E_Scope;
22732 if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
22733 return False;
22734 else
22735 R_Scope := Scope (R_Scope);
22736 end if;
22737 end loop;
22738 end;
22740 -- We also require that the reference does not appear in a context
22741 -- where it is not sure to be executed (i.e. a conditional context
22742 -- or an exception handler). We skip this if Cond is True, since the
22743 -- capturing of values from conditional tests handles this ok.
22745 if Cond then
22746 return True;
22747 end if;
22749 declare
22750 Desc : Node_Id;
22751 P : Node_Id;
22753 begin
22754 Desc := N;
22756 -- Seems dubious that case expressions are not handled here ???
22758 P := Parent (N);
22759 while Present (P) loop
22760 if Nkind (P) = N_If_Statement
22761 or else Nkind (P) = N_Case_Statement
22762 or else (Nkind (P) in N_Short_Circuit
22763 and then Desc = Right_Opnd (P))
22764 or else (Nkind (P) = N_If_Expression
22765 and then Desc /= First (Expressions (P)))
22766 or else Nkind (P) = N_Exception_Handler
22767 or else Nkind (P) = N_Selective_Accept
22768 or else Nkind (P) = N_Conditional_Entry_Call
22769 or else Nkind (P) = N_Timed_Entry_Call
22770 or else Nkind (P) = N_Asynchronous_Select
22771 then
22772 return False;
22774 else
22775 Desc := P;
22776 P := Parent (P);
22778 -- A special Ada 2012 case: the original node may be part
22779 -- of the else_actions of a conditional expression, in which
22780 -- case it might not have been expanded yet, and appears in
22781 -- a non-syntactic list of actions. In that case it is clearly
22782 -- not safe to save a value.
22784 if No (P)
22785 and then Is_List_Member (Desc)
22786 and then No (Parent (List_Containing (Desc)))
22787 then
22788 return False;
22789 end if;
22790 end if;
22791 end loop;
22792 end;
22794 -- OK, looks safe to set value
22796 return True;
22797 end Safe_To_Capture_Value;
22799 ---------------
22800 -- Same_Name --
22801 ---------------
22803 function Same_Name (N1, N2 : Node_Id) return Boolean is
22804 K1 : constant Node_Kind := Nkind (N1);
22805 K2 : constant Node_Kind := Nkind (N2);
22807 begin
22808 if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
22809 and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
22810 then
22811 return Chars (N1) = Chars (N2);
22813 elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
22814 and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
22815 then
22816 return Same_Name (Selector_Name (N1), Selector_Name (N2))
22817 and then Same_Name (Prefix (N1), Prefix (N2));
22819 else
22820 return False;
22821 end if;
22822 end Same_Name;
22824 -----------------
22825 -- Same_Object --
22826 -----------------
22828 function Same_Object (Node1, Node2 : Node_Id) return Boolean is
22829 N1 : constant Node_Id := Original_Node (Node1);
22830 N2 : constant Node_Id := Original_Node (Node2);
22831 -- We do the tests on original nodes, since we are most interested
22832 -- in the original source, not any expansion that got in the way.
22834 K1 : constant Node_Kind := Nkind (N1);
22835 K2 : constant Node_Kind := Nkind (N2);
22837 begin
22838 -- First case, both are entities with same entity
22840 if K1 in N_Has_Entity and then K2 in N_Has_Entity then
22841 declare
22842 EN1 : constant Entity_Id := Entity (N1);
22843 EN2 : constant Entity_Id := Entity (N2);
22844 begin
22845 if Present (EN1) and then Present (EN2)
22846 and then (Ekind_In (EN1, E_Variable, E_Constant)
22847 or else Is_Formal (EN1))
22848 and then EN1 = EN2
22849 then
22850 return True;
22851 end if;
22852 end;
22853 end if;
22855 -- Second case, selected component with same selector, same record
22857 if K1 = N_Selected_Component
22858 and then K2 = N_Selected_Component
22859 and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
22860 then
22861 return Same_Object (Prefix (N1), Prefix (N2));
22863 -- Third case, indexed component with same subscripts, same array
22865 elsif K1 = N_Indexed_Component
22866 and then K2 = N_Indexed_Component
22867 and then Same_Object (Prefix (N1), Prefix (N2))
22868 then
22869 declare
22870 E1, E2 : Node_Id;
22871 begin
22872 E1 := First (Expressions (N1));
22873 E2 := First (Expressions (N2));
22874 while Present (E1) loop
22875 if not Same_Value (E1, E2) then
22876 return False;
22877 else
22878 Next (E1);
22879 Next (E2);
22880 end if;
22881 end loop;
22883 return True;
22884 end;
22886 -- Fourth case, slice of same array with same bounds
22888 elsif K1 = N_Slice
22889 and then K2 = N_Slice
22890 and then Nkind (Discrete_Range (N1)) = N_Range
22891 and then Nkind (Discrete_Range (N2)) = N_Range
22892 and then Same_Value (Low_Bound (Discrete_Range (N1)),
22893 Low_Bound (Discrete_Range (N2)))
22894 and then Same_Value (High_Bound (Discrete_Range (N1)),
22895 High_Bound (Discrete_Range (N2)))
22896 then
22897 return Same_Name (Prefix (N1), Prefix (N2));
22899 -- All other cases, not clearly the same object
22901 else
22902 return False;
22903 end if;
22904 end Same_Object;
22906 ---------------
22907 -- Same_Type --
22908 ---------------
22910 function Same_Type (T1, T2 : Entity_Id) return Boolean is
22911 begin
22912 if T1 = T2 then
22913 return True;
22915 elsif not Is_Constrained (T1)
22916 and then not Is_Constrained (T2)
22917 and then Base_Type (T1) = Base_Type (T2)
22918 then
22919 return True;
22921 -- For now don't bother with case of identical constraints, to be
22922 -- fiddled with later on perhaps (this is only used for optimization
22923 -- purposes, so it is not critical to do a best possible job)
22925 else
22926 return False;
22927 end if;
22928 end Same_Type;
22930 ----------------
22931 -- Same_Value --
22932 ----------------
22934 function Same_Value (Node1, Node2 : Node_Id) return Boolean is
22935 begin
22936 if Compile_Time_Known_Value (Node1)
22937 and then Compile_Time_Known_Value (Node2)
22938 then
22939 -- Handle properly compile-time expressions that are not
22940 -- scalar.
22942 if Is_String_Type (Etype (Node1)) then
22943 return Expr_Value_S (Node1) = Expr_Value_S (Node2);
22945 else
22946 return Expr_Value (Node1) = Expr_Value (Node2);
22947 end if;
22949 elsif Same_Object (Node1, Node2) then
22950 return True;
22951 else
22952 return False;
22953 end if;
22954 end Same_Value;
22956 --------------------
22957 -- Set_SPARK_Mode --
22958 --------------------
22960 procedure Set_SPARK_Mode (Context : Entity_Id) is
22961 begin
22962 -- Do not consider illegal or partially decorated constructs
22964 if Ekind (Context) = E_Void or else Error_Posted (Context) then
22965 null;
22967 elsif Present (SPARK_Pragma (Context)) then
22968 Install_SPARK_Mode
22969 (Mode => Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Context)),
22970 Prag => SPARK_Pragma (Context));
22971 end if;
22972 end Set_SPARK_Mode;
22974 -------------------------
22975 -- Scalar_Part_Present --
22976 -------------------------
22978 function Scalar_Part_Present (T : Entity_Id) return Boolean is
22979 C : Entity_Id;
22981 begin
22982 if Is_Scalar_Type (T) then
22983 return True;
22985 elsif Is_Array_Type (T) then
22986 return Scalar_Part_Present (Component_Type (T));
22988 elsif Is_Record_Type (T) or else Has_Discriminants (T) then
22989 C := First_Component_Or_Discriminant (T);
22990 while Present (C) loop
22991 if Scalar_Part_Present (Etype (C)) then
22992 return True;
22993 else
22994 Next_Component_Or_Discriminant (C);
22995 end if;
22996 end loop;
22997 end if;
22999 return False;
23000 end Scalar_Part_Present;
23002 ------------------------
23003 -- Scope_Is_Transient --
23004 ------------------------
23006 function Scope_Is_Transient return Boolean is
23007 begin
23008 return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
23009 end Scope_Is_Transient;
23011 ------------------
23012 -- Scope_Within --
23013 ------------------
23015 function Scope_Within
23016 (Inner : Entity_Id;
23017 Outer : Entity_Id) return Boolean
23019 Curr : Entity_Id;
23021 begin
23022 Curr := Inner;
23023 while Present (Curr) and then Curr /= Standard_Standard loop
23024 Curr := Scope (Curr);
23026 if Curr = Outer then
23027 return True;
23028 end if;
23029 end loop;
23031 return False;
23032 end Scope_Within;
23034 --------------------------
23035 -- Scope_Within_Or_Same --
23036 --------------------------
23038 function Scope_Within_Or_Same
23039 (Inner : Entity_Id;
23040 Outer : Entity_Id) return Boolean
23042 Curr : Entity_Id;
23044 begin
23045 Curr := Inner;
23046 while Present (Curr) and then Curr /= Standard_Standard loop
23047 if Curr = Outer then
23048 return True;
23049 end if;
23051 Curr := Scope (Curr);
23052 end loop;
23054 return False;
23055 end Scope_Within_Or_Same;
23057 --------------------
23058 -- Set_Convention --
23059 --------------------
23061 procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
23062 begin
23063 Basic_Set_Convention (E, Val);
23065 if Is_Type (E)
23066 and then Is_Access_Subprogram_Type (Base_Type (E))
23067 and then Has_Foreign_Convention (E)
23068 then
23070 -- A pragma Convention in an instance may apply to the subtype
23071 -- created for a formal, in which case we have already verified
23072 -- that conventions of actual and formal match and there is nothing
23073 -- to flag on the subtype.
23075 if In_Instance then
23076 null;
23077 else
23078 Set_Can_Use_Internal_Rep (E, False);
23079 end if;
23080 end if;
23082 -- If E is an object, including a component, and the type of E is an
23083 -- anonymous access type with no convention set, then also set the
23084 -- convention of the anonymous access type. We do not do this for
23085 -- anonymous protected types, since protected types always have the
23086 -- default convention.
23088 if Present (Etype (E))
23089 and then (Is_Object (E)
23091 -- Allow E_Void (happens for pragma Convention appearing
23092 -- in the middle of a record applying to a component)
23094 or else Ekind (E) = E_Void)
23095 then
23096 declare
23097 Typ : constant Entity_Id := Etype (E);
23099 begin
23100 if Ekind_In (Typ, E_Anonymous_Access_Type,
23101 E_Anonymous_Access_Subprogram_Type)
23102 and then not Has_Convention_Pragma (Typ)
23103 then
23104 Basic_Set_Convention (Typ, Val);
23105 Set_Has_Convention_Pragma (Typ);
23107 -- And for the access subprogram type, deal similarly with the
23108 -- designated E_Subprogram_Type, which is always internal.
23110 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
23111 declare
23112 Dtype : constant Entity_Id := Designated_Type (Typ);
23113 begin
23114 if Ekind (Dtype) = E_Subprogram_Type
23115 and then not Has_Convention_Pragma (Dtype)
23116 then
23117 Basic_Set_Convention (Dtype, Val);
23118 Set_Has_Convention_Pragma (Dtype);
23119 end if;
23120 end;
23121 end if;
23122 end if;
23123 end;
23124 end if;
23125 end Set_Convention;
23127 ------------------------
23128 -- Set_Current_Entity --
23129 ------------------------
23131 -- The given entity is to be set as the currently visible definition of its
23132 -- associated name (i.e. the Node_Id associated with its name). All we have
23133 -- to do is to get the name from the identifier, and then set the
23134 -- associated Node_Id to point to the given entity.
23136 procedure Set_Current_Entity (E : Entity_Id) is
23137 begin
23138 Set_Name_Entity_Id (Chars (E), E);
23139 end Set_Current_Entity;
23141 ---------------------------
23142 -- Set_Debug_Info_Needed --
23143 ---------------------------
23145 procedure Set_Debug_Info_Needed (T : Entity_Id) is
23147 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
23148 pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
23149 -- Used to set debug info in a related node if not set already
23151 --------------------------------------
23152 -- Set_Debug_Info_Needed_If_Not_Set --
23153 --------------------------------------
23155 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
23156 begin
23157 if Present (E) and then not Needs_Debug_Info (E) then
23158 Set_Debug_Info_Needed (E);
23160 -- For a private type, indicate that the full view also needs
23161 -- debug information.
23163 if Is_Type (E)
23164 and then Is_Private_Type (E)
23165 and then Present (Full_View (E))
23166 then
23167 Set_Debug_Info_Needed (Full_View (E));
23168 end if;
23169 end if;
23170 end Set_Debug_Info_Needed_If_Not_Set;
23172 -- Start of processing for Set_Debug_Info_Needed
23174 begin
23175 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
23176 -- indicates that Debug_Info_Needed is never required for the entity.
23177 -- Nothing to do if entity comes from a predefined file. Library files
23178 -- are compiled without debug information, but inlined bodies of these
23179 -- routines may appear in user code, and debug information on them ends
23180 -- up complicating debugging the user code.
23182 if No (T)
23183 or else Debug_Info_Off (T)
23184 then
23185 return;
23187 elsif In_Inlined_Body and then In_Predefined_Unit (T) then
23188 Set_Needs_Debug_Info (T, False);
23189 end if;
23191 -- Set flag in entity itself. Note that we will go through the following
23192 -- circuitry even if the flag is already set on T. That's intentional,
23193 -- it makes sure that the flag will be set in subsidiary entities.
23195 Set_Needs_Debug_Info (T);
23197 -- Set flag on subsidiary entities if not set already
23199 if Is_Object (T) then
23200 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
23202 elsif Is_Type (T) then
23203 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
23205 if Is_Record_Type (T) then
23206 declare
23207 Ent : Entity_Id := First_Entity (T);
23208 begin
23209 while Present (Ent) loop
23210 Set_Debug_Info_Needed_If_Not_Set (Ent);
23211 Next_Entity (Ent);
23212 end loop;
23213 end;
23215 -- For a class wide subtype, we also need debug information
23216 -- for the equivalent type.
23218 if Ekind (T) = E_Class_Wide_Subtype then
23219 Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
23220 end if;
23222 elsif Is_Array_Type (T) then
23223 Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
23225 declare
23226 Indx : Node_Id := First_Index (T);
23227 begin
23228 while Present (Indx) loop
23229 Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
23230 Indx := Next_Index (Indx);
23231 end loop;
23232 end;
23234 -- For a packed array type, we also need debug information for
23235 -- the type used to represent the packed array. Conversely, we
23236 -- also need it for the former if we need it for the latter.
23238 if Is_Packed (T) then
23239 Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Impl_Type (T));
23240 end if;
23242 if Is_Packed_Array_Impl_Type (T) then
23243 Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T));
23244 end if;
23246 elsif Is_Access_Type (T) then
23247 Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
23249 elsif Is_Private_Type (T) then
23250 declare
23251 FV : constant Entity_Id := Full_View (T);
23253 begin
23254 Set_Debug_Info_Needed_If_Not_Set (FV);
23256 -- If the full view is itself a derived private type, we need
23257 -- debug information on its underlying type.
23259 if Present (FV)
23260 and then Is_Private_Type (FV)
23261 and then Present (Underlying_Full_View (FV))
23262 then
23263 Set_Needs_Debug_Info (Underlying_Full_View (FV));
23264 end if;
23265 end;
23267 elsif Is_Protected_Type (T) then
23268 Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
23270 elsif Is_Scalar_Type (T) then
23272 -- If the subrange bounds are materialized by dedicated constant
23273 -- objects, also include them in the debug info to make sure the
23274 -- debugger can properly use them.
23276 if Present (Scalar_Range (T))
23277 and then Nkind (Scalar_Range (T)) = N_Range
23278 then
23279 declare
23280 Low_Bnd : constant Node_Id := Type_Low_Bound (T);
23281 High_Bnd : constant Node_Id := Type_High_Bound (T);
23283 begin
23284 if Is_Entity_Name (Low_Bnd) then
23285 Set_Debug_Info_Needed_If_Not_Set (Entity (Low_Bnd));
23286 end if;
23288 if Is_Entity_Name (High_Bnd) then
23289 Set_Debug_Info_Needed_If_Not_Set (Entity (High_Bnd));
23290 end if;
23291 end;
23292 end if;
23293 end if;
23294 end if;
23295 end Set_Debug_Info_Needed;
23297 ----------------------------
23298 -- Set_Entity_With_Checks --
23299 ----------------------------
23301 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id) is
23302 Val_Actual : Entity_Id;
23303 Nod : Node_Id;
23304 Post_Node : Node_Id;
23306 begin
23307 -- Unconditionally set the entity
23309 Set_Entity (N, Val);
23311 -- The node to post on is the selector in the case of an expanded name,
23312 -- and otherwise the node itself.
23314 if Nkind (N) = N_Expanded_Name then
23315 Post_Node := Selector_Name (N);
23316 else
23317 Post_Node := N;
23318 end if;
23320 -- Check for violation of No_Fixed_IO
23322 if Restriction_Check_Required (No_Fixed_IO)
23323 and then
23324 ((RTU_Loaded (Ada_Text_IO)
23325 and then (Is_RTE (Val, RE_Decimal_IO)
23326 or else
23327 Is_RTE (Val, RE_Fixed_IO)))
23329 or else
23330 (RTU_Loaded (Ada_Wide_Text_IO)
23331 and then (Is_RTE (Val, RO_WT_Decimal_IO)
23332 or else
23333 Is_RTE (Val, RO_WT_Fixed_IO)))
23335 or else
23336 (RTU_Loaded (Ada_Wide_Wide_Text_IO)
23337 and then (Is_RTE (Val, RO_WW_Decimal_IO)
23338 or else
23339 Is_RTE (Val, RO_WW_Fixed_IO))))
23341 -- A special extra check, don't complain about a reference from within
23342 -- the Ada.Interrupts package itself!
23344 and then not In_Same_Extended_Unit (N, Val)
23345 then
23346 Check_Restriction (No_Fixed_IO, Post_Node);
23347 end if;
23349 -- Remaining checks are only done on source nodes. Note that we test
23350 -- for violation of No_Fixed_IO even on non-source nodes, because the
23351 -- cases for checking violations of this restriction are instantiations
23352 -- where the reference in the instance has Comes_From_Source False.
23354 if not Comes_From_Source (N) then
23355 return;
23356 end if;
23358 -- Check for violation of No_Abort_Statements, which is triggered by
23359 -- call to Ada.Task_Identification.Abort_Task.
23361 if Restriction_Check_Required (No_Abort_Statements)
23362 and then (Is_RTE (Val, RE_Abort_Task))
23364 -- A special extra check, don't complain about a reference from within
23365 -- the Ada.Task_Identification package itself!
23367 and then not In_Same_Extended_Unit (N, Val)
23368 then
23369 Check_Restriction (No_Abort_Statements, Post_Node);
23370 end if;
23372 if Val = Standard_Long_Long_Integer then
23373 Check_Restriction (No_Long_Long_Integers, Post_Node);
23374 end if;
23376 -- Check for violation of No_Dynamic_Attachment
23378 if Restriction_Check_Required (No_Dynamic_Attachment)
23379 and then RTU_Loaded (Ada_Interrupts)
23380 and then (Is_RTE (Val, RE_Is_Reserved) or else
23381 Is_RTE (Val, RE_Is_Attached) or else
23382 Is_RTE (Val, RE_Current_Handler) or else
23383 Is_RTE (Val, RE_Attach_Handler) or else
23384 Is_RTE (Val, RE_Exchange_Handler) or else
23385 Is_RTE (Val, RE_Detach_Handler) or else
23386 Is_RTE (Val, RE_Reference))
23388 -- A special extra check, don't complain about a reference from within
23389 -- the Ada.Interrupts package itself!
23391 and then not In_Same_Extended_Unit (N, Val)
23392 then
23393 Check_Restriction (No_Dynamic_Attachment, Post_Node);
23394 end if;
23396 -- Check for No_Implementation_Identifiers
23398 if Restriction_Check_Required (No_Implementation_Identifiers) then
23400 -- We have an implementation defined entity if it is marked as
23401 -- implementation defined, or is defined in a package marked as
23402 -- implementation defined. However, library packages themselves
23403 -- are excluded (we don't want to flag Interfaces itself, just
23404 -- the entities within it).
23406 if (Is_Implementation_Defined (Val)
23407 or else
23408 (Present (Scope (Val))
23409 and then Is_Implementation_Defined (Scope (Val))))
23410 and then not (Ekind_In (Val, E_Package, E_Generic_Package)
23411 and then Is_Library_Level_Entity (Val))
23412 then
23413 Check_Restriction (No_Implementation_Identifiers, Post_Node);
23414 end if;
23415 end if;
23417 -- Do the style check
23419 if Style_Check
23420 and then not Suppress_Style_Checks (Val)
23421 and then not In_Instance
23422 then
23423 if Nkind (N) = N_Identifier then
23424 Nod := N;
23425 elsif Nkind (N) = N_Expanded_Name then
23426 Nod := Selector_Name (N);
23427 else
23428 return;
23429 end if;
23431 -- A special situation arises for derived operations, where we want
23432 -- to do the check against the parent (since the Sloc of the derived
23433 -- operation points to the derived type declaration itself).
23435 Val_Actual := Val;
23436 while not Comes_From_Source (Val_Actual)
23437 and then Nkind (Val_Actual) in N_Entity
23438 and then (Ekind (Val_Actual) = E_Enumeration_Literal
23439 or else Is_Subprogram_Or_Generic_Subprogram (Val_Actual))
23440 and then Present (Alias (Val_Actual))
23441 loop
23442 Val_Actual := Alias (Val_Actual);
23443 end loop;
23445 -- Renaming declarations for generic actuals do not come from source,
23446 -- and have a different name from that of the entity they rename, so
23447 -- there is no style check to perform here.
23449 if Chars (Nod) = Chars (Val_Actual) then
23450 Style.Check_Identifier (Nod, Val_Actual);
23451 end if;
23452 end if;
23454 Set_Entity (N, Val);
23455 end Set_Entity_With_Checks;
23457 ------------------------
23458 -- Set_Name_Entity_Id --
23459 ------------------------
23461 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
23462 begin
23463 Set_Name_Table_Int (Id, Int (Val));
23464 end Set_Name_Entity_Id;
23466 ---------------------
23467 -- Set_Next_Actual --
23468 ---------------------
23470 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
23471 begin
23472 if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
23473 Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
23474 end if;
23475 end Set_Next_Actual;
23477 ----------------------------------
23478 -- Set_Optimize_Alignment_Flags --
23479 ----------------------------------
23481 procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
23482 begin
23483 if Optimize_Alignment = 'S' then
23484 Set_Optimize_Alignment_Space (E);
23485 elsif Optimize_Alignment = 'T' then
23486 Set_Optimize_Alignment_Time (E);
23487 end if;
23488 end Set_Optimize_Alignment_Flags;
23490 -----------------------
23491 -- Set_Public_Status --
23492 -----------------------
23494 procedure Set_Public_Status (Id : Entity_Id) is
23495 S : constant Entity_Id := Current_Scope;
23497 function Within_HSS_Or_If (E : Entity_Id) return Boolean;
23498 -- Determines if E is defined within handled statement sequence or
23499 -- an if statement, returns True if so, False otherwise.
23501 ----------------------
23502 -- Within_HSS_Or_If --
23503 ----------------------
23505 function Within_HSS_Or_If (E : Entity_Id) return Boolean is
23506 N : Node_Id;
23507 begin
23508 N := Declaration_Node (E);
23509 loop
23510 N := Parent (N);
23512 if No (N) then
23513 return False;
23515 elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
23516 N_If_Statement)
23517 then
23518 return True;
23519 end if;
23520 end loop;
23521 end Within_HSS_Or_If;
23523 -- Start of processing for Set_Public_Status
23525 begin
23526 -- Everything in the scope of Standard is public
23528 if S = Standard_Standard then
23529 Set_Is_Public (Id);
23531 -- Entity is definitely not public if enclosing scope is not public
23533 elsif not Is_Public (S) then
23534 return;
23536 -- An object or function declaration that occurs in a handled sequence
23537 -- of statements or within an if statement is the declaration for a
23538 -- temporary object or local subprogram generated by the expander. It
23539 -- never needs to be made public and furthermore, making it public can
23540 -- cause back end problems.
23542 elsif Nkind_In (Parent (Id), N_Object_Declaration,
23543 N_Function_Specification)
23544 and then Within_HSS_Or_If (Id)
23545 then
23546 return;
23548 -- Entities in public packages or records are public
23550 elsif Ekind (S) = E_Package or Is_Record_Type (S) then
23551 Set_Is_Public (Id);
23553 -- The bounds of an entry family declaration can generate object
23554 -- declarations that are visible to the back-end, e.g. in the
23555 -- the declaration of a composite type that contains tasks.
23557 elsif Is_Concurrent_Type (S)
23558 and then not Has_Completion (S)
23559 and then Nkind (Parent (Id)) = N_Object_Declaration
23560 then
23561 Set_Is_Public (Id);
23562 end if;
23563 end Set_Public_Status;
23565 -----------------------------
23566 -- Set_Referenced_Modified --
23567 -----------------------------
23569 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
23570 Pref : Node_Id;
23572 begin
23573 -- Deal with indexed or selected component where prefix is modified
23575 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
23576 Pref := Prefix (N);
23578 -- If prefix is access type, then it is the designated object that is
23579 -- being modified, which means we have no entity to set the flag on.
23581 if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
23582 return;
23584 -- Otherwise chase the prefix
23586 else
23587 Set_Referenced_Modified (Pref, Out_Param);
23588 end if;
23590 -- Otherwise see if we have an entity name (only other case to process)
23592 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
23593 Set_Referenced_As_LHS (Entity (N), not Out_Param);
23594 Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
23595 end if;
23596 end Set_Referenced_Modified;
23598 ------------------
23599 -- Set_Rep_Info --
23600 ------------------
23602 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id) is
23603 begin
23604 Set_Is_Atomic (T1, Is_Atomic (T2));
23605 Set_Is_Independent (T1, Is_Independent (T2));
23606 Set_Is_Volatile_Full_Access (T1, Is_Volatile_Full_Access (T2));
23608 if Is_Base_Type (T1) then
23609 Set_Is_Volatile (T1, Is_Volatile (T2));
23610 end if;
23611 end Set_Rep_Info;
23613 ----------------------------
23614 -- Set_Scope_Is_Transient --
23615 ----------------------------
23617 procedure Set_Scope_Is_Transient (V : Boolean := True) is
23618 begin
23619 Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
23620 end Set_Scope_Is_Transient;
23622 -------------------
23623 -- Set_Size_Info --
23624 -------------------
23626 procedure Set_Size_Info (T1, T2 : Entity_Id) is
23627 begin
23628 -- We copy Esize, but not RM_Size, since in general RM_Size is
23629 -- subtype specific and does not get inherited by all subtypes.
23631 Set_Esize (T1, Esize (T2));
23632 Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
23634 if Is_Discrete_Or_Fixed_Point_Type (T1)
23635 and then
23636 Is_Discrete_Or_Fixed_Point_Type (T2)
23637 then
23638 Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
23639 end if;
23641 Set_Alignment (T1, Alignment (T2));
23642 end Set_Size_Info;
23644 ------------------------------
23645 -- Should_Ignore_Pragma_Par --
23646 ------------------------------
23648 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean is
23649 pragma Assert (Compiler_State = Parsing);
23650 -- This one can't work during semantic analysis, because we don't have a
23651 -- correct Current_Source_File.
23653 Result : constant Boolean :=
23654 Get_Name_Table_Boolean3 (Prag_Name)
23655 and then not Is_Internal_File_Name
23656 (File_Name (Current_Source_File));
23657 begin
23658 return Result;
23659 end Should_Ignore_Pragma_Par;
23661 ------------------------------
23662 -- Should_Ignore_Pragma_Sem --
23663 ------------------------------
23665 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean is
23666 pragma Assert (Compiler_State = Analyzing);
23667 Prag_Name : constant Name_Id := Pragma_Name (N);
23668 Result : constant Boolean :=
23669 Get_Name_Table_Boolean3 (Prag_Name)
23670 and then not In_Internal_Unit (N);
23672 begin
23673 return Result;
23674 end Should_Ignore_Pragma_Sem;
23676 --------------------
23677 -- Static_Boolean --
23678 --------------------
23680 function Static_Boolean (N : Node_Id) return Uint is
23681 begin
23682 Analyze_And_Resolve (N, Standard_Boolean);
23684 if N = Error
23685 or else Error_Posted (N)
23686 or else Etype (N) = Any_Type
23687 then
23688 return No_Uint;
23689 end if;
23691 if Is_OK_Static_Expression (N) then
23692 if not Raises_Constraint_Error (N) then
23693 return Expr_Value (N);
23694 else
23695 return No_Uint;
23696 end if;
23698 elsif Etype (N) = Any_Type then
23699 return No_Uint;
23701 else
23702 Flag_Non_Static_Expr
23703 ("static boolean expression required here", N);
23704 return No_Uint;
23705 end if;
23706 end Static_Boolean;
23708 --------------------
23709 -- Static_Integer --
23710 --------------------
23712 function Static_Integer (N : Node_Id) return Uint is
23713 begin
23714 Analyze_And_Resolve (N, Any_Integer);
23716 if N = Error
23717 or else Error_Posted (N)
23718 or else Etype (N) = Any_Type
23719 then
23720 return No_Uint;
23721 end if;
23723 if Is_OK_Static_Expression (N) then
23724 if not Raises_Constraint_Error (N) then
23725 return Expr_Value (N);
23726 else
23727 return No_Uint;
23728 end if;
23730 elsif Etype (N) = Any_Type then
23731 return No_Uint;
23733 else
23734 Flag_Non_Static_Expr
23735 ("static integer expression required here", N);
23736 return No_Uint;
23737 end if;
23738 end Static_Integer;
23740 --------------------------
23741 -- Statically_Different --
23742 --------------------------
23744 function Statically_Different (E1, E2 : Node_Id) return Boolean is
23745 R1 : constant Node_Id := Get_Referenced_Object (E1);
23746 R2 : constant Node_Id := Get_Referenced_Object (E2);
23747 begin
23748 return Is_Entity_Name (R1)
23749 and then Is_Entity_Name (R2)
23750 and then Entity (R1) /= Entity (R2)
23751 and then not Is_Formal (Entity (R1))
23752 and then not Is_Formal (Entity (R2));
23753 end Statically_Different;
23755 --------------------------------------
23756 -- Subject_To_Loop_Entry_Attributes --
23757 --------------------------------------
23759 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean is
23760 Stmt : Node_Id;
23762 begin
23763 Stmt := N;
23765 -- The expansion mechanism transform a loop subject to at least one
23766 -- 'Loop_Entry attribute into a conditional block. Infinite loops lack
23767 -- the conditional part.
23769 if Nkind_In (Stmt, N_Block_Statement, N_If_Statement)
23770 and then Nkind (Original_Node (N)) = N_Loop_Statement
23771 then
23772 Stmt := Original_Node (N);
23773 end if;
23775 return
23776 Nkind (Stmt) = N_Loop_Statement
23777 and then Present (Identifier (Stmt))
23778 and then Present (Entity (Identifier (Stmt)))
23779 and then Has_Loop_Entry_Attributes (Entity (Identifier (Stmt)));
23780 end Subject_To_Loop_Entry_Attributes;
23782 -----------------------------
23783 -- Subprogram_Access_Level --
23784 -----------------------------
23786 function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
23787 begin
23788 if Present (Alias (Subp)) then
23789 return Subprogram_Access_Level (Alias (Subp));
23790 else
23791 return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
23792 end if;
23793 end Subprogram_Access_Level;
23795 ---------------------
23796 -- Subprogram_Name --
23797 ---------------------
23799 function Subprogram_Name (N : Node_Id) return String is
23800 Buf : Bounded_String;
23801 Ent : Node_Id := N;
23802 Nod : Node_Id;
23804 begin
23805 while Present (Ent) loop
23806 case Nkind (Ent) is
23807 when N_Subprogram_Body =>
23808 Ent := Defining_Unit_Name (Specification (Ent));
23809 exit;
23811 when N_Subprogram_Declaration =>
23812 Nod := Corresponding_Body (Ent);
23814 if Present (Nod) then
23815 Ent := Nod;
23816 else
23817 Ent := Defining_Unit_Name (Specification (Ent));
23818 end if;
23820 exit;
23822 when N_Subprogram_Instantiation
23823 | N_Package_Body
23824 | N_Package_Specification
23826 Ent := Defining_Unit_Name (Ent);
23827 exit;
23829 when N_Protected_Type_Declaration =>
23830 Ent := Corresponding_Body (Ent);
23831 exit;
23833 when N_Protected_Body
23834 | N_Task_Body
23836 Ent := Defining_Identifier (Ent);
23837 exit;
23839 when others =>
23840 null;
23841 end case;
23843 Ent := Parent (Ent);
23844 end loop;
23846 if No (Ent) then
23847 return "unknown subprogram:unknown file:0:0";
23848 end if;
23850 -- If the subprogram is a child unit, use its simple name to start the
23851 -- construction of the fully qualified name.
23853 if Nkind (Ent) = N_Defining_Program_Unit_Name then
23854 Ent := Defining_Identifier (Ent);
23855 end if;
23857 Append_Entity_Name (Buf, Ent);
23859 -- Append homonym number if needed
23861 if Nkind (N) in N_Entity and then Has_Homonym (N) then
23862 declare
23863 H : Entity_Id := Homonym (N);
23864 Nr : Nat := 1;
23866 begin
23867 while Present (H) loop
23868 if Scope (H) = Scope (N) then
23869 Nr := Nr + 1;
23870 end if;
23872 H := Homonym (H);
23873 end loop;
23875 if Nr > 1 then
23876 Append (Buf, '#');
23877 Append (Buf, Nr);
23878 end if;
23879 end;
23880 end if;
23882 -- Append source location of Ent to Buf so that the string will
23883 -- look like "subp:file:line:col".
23885 declare
23886 Loc : constant Source_Ptr := Sloc (Ent);
23887 begin
23888 Append (Buf, ':');
23889 Append (Buf, Reference_Name (Get_Source_File_Index (Loc)));
23890 Append (Buf, ':');
23891 Append (Buf, Nat (Get_Logical_Line_Number (Loc)));
23892 Append (Buf, ':');
23893 Append (Buf, Nat (Get_Column_Number (Loc)));
23894 end;
23896 return +Buf;
23897 end Subprogram_Name;
23899 -------------------------------
23900 -- Support_Atomic_Primitives --
23901 -------------------------------
23903 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean is
23904 Size : Int;
23906 begin
23907 -- Verify the alignment of Typ is known
23909 if not Known_Alignment (Typ) then
23910 return False;
23911 end if;
23913 if Known_Static_Esize (Typ) then
23914 Size := UI_To_Int (Esize (Typ));
23916 -- If the Esize (Object_Size) is unknown at compile time, look at the
23917 -- RM_Size (Value_Size) which may have been set by an explicit rep item.
23919 elsif Known_Static_RM_Size (Typ) then
23920 Size := UI_To_Int (RM_Size (Typ));
23922 -- Otherwise, the size is considered to be unknown.
23924 else
23925 return False;
23926 end if;
23928 -- Check that the size of the component is 8, 16, 32, or 64 bits and
23929 -- that Typ is properly aligned.
23931 case Size is
23932 when 8 | 16 | 32 | 64 =>
23933 return Size = UI_To_Int (Alignment (Typ)) * 8;
23935 when others =>
23936 return False;
23937 end case;
23938 end Support_Atomic_Primitives;
23940 -----------------
23941 -- Trace_Scope --
23942 -----------------
23944 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
23945 begin
23946 if Debug_Flag_W then
23947 for J in 0 .. Scope_Stack.Last loop
23948 Write_Str (" ");
23949 end loop;
23951 Write_Str (Msg);
23952 Write_Name (Chars (E));
23953 Write_Str (" from ");
23954 Write_Location (Sloc (N));
23955 Write_Eol;
23956 end if;
23957 end Trace_Scope;
23959 -----------------------
23960 -- Transfer_Entities --
23961 -----------------------
23963 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
23964 procedure Set_Public_Status_Of (Id : Entity_Id);
23965 -- Set the Is_Public attribute of arbitrary entity Id by calling routine
23966 -- Set_Public_Status. If successful and Id denotes a record type, set
23967 -- the Is_Public attribute of its fields.
23969 --------------------------
23970 -- Set_Public_Status_Of --
23971 --------------------------
23973 procedure Set_Public_Status_Of (Id : Entity_Id) is
23974 Field : Entity_Id;
23976 begin
23977 if not Is_Public (Id) then
23978 Set_Public_Status (Id);
23980 -- When the input entity is a public record type, ensure that all
23981 -- its internal fields are also exposed to the linker. The fields
23982 -- of a class-wide type are never made public.
23984 if Is_Public (Id)
23985 and then Is_Record_Type (Id)
23986 and then not Is_Class_Wide_Type (Id)
23987 then
23988 Field := First_Entity (Id);
23989 while Present (Field) loop
23990 Set_Is_Public (Field);
23991 Next_Entity (Field);
23992 end loop;
23993 end if;
23994 end if;
23995 end Set_Public_Status_Of;
23997 -- Local variables
23999 Full_Id : Entity_Id;
24000 Id : Entity_Id;
24002 -- Start of processing for Transfer_Entities
24004 begin
24005 Id := First_Entity (From);
24007 if Present (Id) then
24009 -- Merge the entity chain of the source scope with that of the
24010 -- destination scope.
24012 if Present (Last_Entity (To)) then
24013 Set_Next_Entity (Last_Entity (To), Id);
24014 else
24015 Set_First_Entity (To, Id);
24016 end if;
24018 Set_Last_Entity (To, Last_Entity (From));
24020 -- Inspect the entities of the source scope and update their Scope
24021 -- attribute.
24023 while Present (Id) loop
24024 Set_Scope (Id, To);
24025 Set_Public_Status_Of (Id);
24027 -- Handle an internally generated full view for a private type
24029 if Is_Private_Type (Id)
24030 and then Present (Full_View (Id))
24031 and then Is_Itype (Full_View (Id))
24032 then
24033 Full_Id := Full_View (Id);
24035 Set_Scope (Full_Id, To);
24036 Set_Public_Status_Of (Full_Id);
24037 end if;
24039 Next_Entity (Id);
24040 end loop;
24042 Set_First_Entity (From, Empty);
24043 Set_Last_Entity (From, Empty);
24044 end if;
24045 end Transfer_Entities;
24047 -----------------------
24048 -- Type_Access_Level --
24049 -----------------------
24051 function Type_Access_Level (Typ : Entity_Id) return Uint is
24052 Btyp : Entity_Id;
24054 begin
24055 Btyp := Base_Type (Typ);
24057 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
24058 -- simply use the level where the type is declared. This is true for
24059 -- stand-alone object declarations, and for anonymous access types
24060 -- associated with components the level is the same as that of the
24061 -- enclosing composite type. However, special treatment is needed for
24062 -- the cases of access parameters, return objects of an anonymous access
24063 -- type, and, in Ada 95, access discriminants of limited types.
24065 if Is_Access_Type (Btyp) then
24066 if Ekind (Btyp) = E_Anonymous_Access_Type then
24068 -- If the type is a nonlocal anonymous access type (such as for
24069 -- an access parameter) we treat it as being declared at the
24070 -- library level to ensure that names such as X.all'access don't
24071 -- fail static accessibility checks.
24073 if not Is_Local_Anonymous_Access (Typ) then
24074 return Scope_Depth (Standard_Standard);
24076 -- If this is a return object, the accessibility level is that of
24077 -- the result subtype of the enclosing function. The test here is
24078 -- little complicated, because we have to account for extended
24079 -- return statements that have been rewritten as blocks, in which
24080 -- case we have to find and the Is_Return_Object attribute of the
24081 -- itype's associated object. It would be nice to find a way to
24082 -- simplify this test, but it doesn't seem worthwhile to add a new
24083 -- flag just for purposes of this test. ???
24085 elsif Ekind (Scope (Btyp)) = E_Return_Statement
24086 or else
24087 (Is_Itype (Btyp)
24088 and then Nkind (Associated_Node_For_Itype (Btyp)) =
24089 N_Object_Declaration
24090 and then Is_Return_Object
24091 (Defining_Identifier
24092 (Associated_Node_For_Itype (Btyp))))
24093 then
24094 declare
24095 Scop : Entity_Id;
24097 begin
24098 Scop := Scope (Scope (Btyp));
24099 while Present (Scop) loop
24100 exit when Ekind (Scop) = E_Function;
24101 Scop := Scope (Scop);
24102 end loop;
24104 -- Treat the return object's type as having the level of the
24105 -- function's result subtype (as per RM05-6.5(5.3/2)).
24107 return Type_Access_Level (Etype (Scop));
24108 end;
24109 end if;
24110 end if;
24112 Btyp := Root_Type (Btyp);
24114 -- The accessibility level of anonymous access types associated with
24115 -- discriminants is that of the current instance of the type, and
24116 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
24118 -- AI-402: access discriminants have accessibility based on the
24119 -- object rather than the type in Ada 2005, so the above paragraph
24120 -- doesn't apply.
24122 -- ??? Needs completion with rules from AI-416
24124 if Ada_Version <= Ada_95
24125 and then Ekind (Typ) = E_Anonymous_Access_Type
24126 and then Present (Associated_Node_For_Itype (Typ))
24127 and then Nkind (Associated_Node_For_Itype (Typ)) =
24128 N_Discriminant_Specification
24129 then
24130 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
24131 end if;
24132 end if;
24134 -- Return library level for a generic formal type. This is done because
24135 -- RM(10.3.2) says that "The statically deeper relationship does not
24136 -- apply to ... a descendant of a generic formal type". Rather than
24137 -- checking at each point where a static accessibility check is
24138 -- performed to see if we are dealing with a formal type, this rule is
24139 -- implemented by having Type_Access_Level and Deepest_Type_Access_Level
24140 -- return extreme values for a formal type; Deepest_Type_Access_Level
24141 -- returns Int'Last. By calling the appropriate function from among the
24142 -- two, we ensure that the static accessibility check will pass if we
24143 -- happen to run into a formal type. More specifically, we should call
24144 -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
24145 -- call occurs as part of a static accessibility check and the error
24146 -- case is the case where the type's level is too shallow (as opposed
24147 -- to too deep).
24149 if Is_Generic_Type (Root_Type (Btyp)) then
24150 return Scope_Depth (Standard_Standard);
24151 end if;
24153 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
24154 end Type_Access_Level;
24156 ------------------------------------
24157 -- Type_Without_Stream_Operation --
24158 ------------------------------------
24160 function Type_Without_Stream_Operation
24161 (T : Entity_Id;
24162 Op : TSS_Name_Type := TSS_Null) return Entity_Id
24164 BT : constant Entity_Id := Base_Type (T);
24165 Op_Missing : Boolean;
24167 begin
24168 if not Restriction_Active (No_Default_Stream_Attributes) then
24169 return Empty;
24170 end if;
24172 if Is_Elementary_Type (T) then
24173 if Op = TSS_Null then
24174 Op_Missing :=
24175 No (TSS (BT, TSS_Stream_Read))
24176 or else No (TSS (BT, TSS_Stream_Write));
24178 else
24179 Op_Missing := No (TSS (BT, Op));
24180 end if;
24182 if Op_Missing then
24183 return T;
24184 else
24185 return Empty;
24186 end if;
24188 elsif Is_Array_Type (T) then
24189 return Type_Without_Stream_Operation (Component_Type (T), Op);
24191 elsif Is_Record_Type (T) then
24192 declare
24193 Comp : Entity_Id;
24194 C_Typ : Entity_Id;
24196 begin
24197 Comp := First_Component (T);
24198 while Present (Comp) loop
24199 C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op);
24201 if Present (C_Typ) then
24202 return C_Typ;
24203 end if;
24205 Next_Component (Comp);
24206 end loop;
24208 return Empty;
24209 end;
24211 elsif Is_Private_Type (T) and then Present (Full_View (T)) then
24212 return Type_Without_Stream_Operation (Full_View (T), Op);
24213 else
24214 return Empty;
24215 end if;
24216 end Type_Without_Stream_Operation;
24218 ----------------------------
24219 -- Unique_Defining_Entity --
24220 ----------------------------
24222 function Unique_Defining_Entity (N : Node_Id) return Entity_Id is
24223 begin
24224 return Unique_Entity (Defining_Entity (N));
24225 end Unique_Defining_Entity;
24227 -------------------
24228 -- Unique_Entity --
24229 -------------------
24231 function Unique_Entity (E : Entity_Id) return Entity_Id is
24232 U : Entity_Id := E;
24233 P : Node_Id;
24235 begin
24236 case Ekind (E) is
24237 when E_Constant =>
24238 if Present (Full_View (E)) then
24239 U := Full_View (E);
24240 end if;
24242 when Entry_Kind =>
24243 if Nkind (Parent (E)) = N_Entry_Body then
24244 declare
24245 Prot_Item : Entity_Id;
24246 Prot_Type : Entity_Id;
24248 begin
24249 if Ekind (E) = E_Entry then
24250 Prot_Type := Scope (E);
24252 -- Bodies of entry families are nested within an extra scope
24253 -- that contains an entry index declaration.
24255 else
24256 Prot_Type := Scope (Scope (E));
24257 end if;
24259 -- A protected type may be declared as a private type, in
24260 -- which case we need to get its full view.
24262 if Is_Private_Type (Prot_Type) then
24263 Prot_Type := Full_View (Prot_Type);
24264 end if;
24266 -- Full view may not be present on error, in which case
24267 -- return E by default.
24269 if Present (Prot_Type) then
24270 pragma Assert (Ekind (Prot_Type) = E_Protected_Type);
24272 -- Traverse the entity list of the protected type and
24273 -- locate an entry declaration which matches the entry
24274 -- body.
24276 Prot_Item := First_Entity (Prot_Type);
24277 while Present (Prot_Item) loop
24278 if Ekind (Prot_Item) in Entry_Kind
24279 and then Corresponding_Body (Parent (Prot_Item)) = E
24280 then
24281 U := Prot_Item;
24282 exit;
24283 end if;
24285 Next_Entity (Prot_Item);
24286 end loop;
24287 end if;
24288 end;
24289 end if;
24291 when Formal_Kind =>
24292 if Present (Spec_Entity (E)) then
24293 U := Spec_Entity (E);
24294 end if;
24296 when E_Package_Body =>
24297 P := Parent (E);
24299 if Nkind (P) = N_Defining_Program_Unit_Name then
24300 P := Parent (P);
24301 end if;
24303 if Nkind (P) = N_Package_Body
24304 and then Present (Corresponding_Spec (P))
24305 then
24306 U := Corresponding_Spec (P);
24308 elsif Nkind (P) = N_Package_Body_Stub
24309 and then Present (Corresponding_Spec_Of_Stub (P))
24310 then
24311 U := Corresponding_Spec_Of_Stub (P);
24312 end if;
24314 when E_Protected_Body =>
24315 P := Parent (E);
24317 if Nkind (P) = N_Protected_Body
24318 and then Present (Corresponding_Spec (P))
24319 then
24320 U := Corresponding_Spec (P);
24322 elsif Nkind (P) = N_Protected_Body_Stub
24323 and then Present (Corresponding_Spec_Of_Stub (P))
24324 then
24325 U := Corresponding_Spec_Of_Stub (P);
24327 if Is_Single_Protected_Object (U) then
24328 U := Etype (U);
24329 end if;
24330 end if;
24332 if Is_Private_Type (U) then
24333 U := Full_View (U);
24334 end if;
24336 when E_Subprogram_Body =>
24337 P := Parent (E);
24339 if Nkind (P) = N_Defining_Program_Unit_Name then
24340 P := Parent (P);
24341 end if;
24343 P := Parent (P);
24345 if Nkind (P) = N_Subprogram_Body
24346 and then Present (Corresponding_Spec (P))
24347 then
24348 U := Corresponding_Spec (P);
24350 elsif Nkind (P) = N_Subprogram_Body_Stub
24351 and then Present (Corresponding_Spec_Of_Stub (P))
24352 then
24353 U := Corresponding_Spec_Of_Stub (P);
24355 elsif Nkind (P) = N_Subprogram_Renaming_Declaration then
24356 U := Corresponding_Spec (P);
24357 end if;
24359 when E_Task_Body =>
24360 P := Parent (E);
24362 if Nkind (P) = N_Task_Body
24363 and then Present (Corresponding_Spec (P))
24364 then
24365 U := Corresponding_Spec (P);
24367 elsif Nkind (P) = N_Task_Body_Stub
24368 and then Present (Corresponding_Spec_Of_Stub (P))
24369 then
24370 U := Corresponding_Spec_Of_Stub (P);
24372 if Is_Single_Task_Object (U) then
24373 U := Etype (U);
24374 end if;
24375 end if;
24377 if Is_Private_Type (U) then
24378 U := Full_View (U);
24379 end if;
24381 when Type_Kind =>
24382 if Present (Full_View (E)) then
24383 U := Full_View (E);
24384 end if;
24386 when others =>
24387 null;
24388 end case;
24390 return U;
24391 end Unique_Entity;
24393 -----------------
24394 -- Unique_Name --
24395 -----------------
24397 function Unique_Name (E : Entity_Id) return String is
24399 -- Names in E_Subprogram_Body or E_Package_Body entities are not
24400 -- reliable, as they may not include the overloading suffix. Instead,
24401 -- when looking for the name of E or one of its enclosing scope, we get
24402 -- the name of the corresponding Unique_Entity.
24404 U : constant Entity_Id := Unique_Entity (E);
24406 function This_Name return String;
24408 ---------------
24409 -- This_Name --
24410 ---------------
24412 function This_Name return String is
24413 begin
24414 return Get_Name_String (Chars (U));
24415 end This_Name;
24417 -- Start of processing for Unique_Name
24419 begin
24420 if E = Standard_Standard
24421 or else Has_Fully_Qualified_Name (E)
24422 then
24423 return This_Name;
24425 elsif Ekind (E) = E_Enumeration_Literal then
24426 return Unique_Name (Etype (E)) & "__" & This_Name;
24428 else
24429 declare
24430 S : constant Entity_Id := Scope (U);
24431 pragma Assert (Present (S));
24433 begin
24434 -- Prefix names of predefined types with standard__, but leave
24435 -- names of user-defined packages and subprograms without prefix
24436 -- (even if technically they are nested in the Standard package).
24438 if S = Standard_Standard then
24439 if Ekind (U) = E_Package or else Is_Subprogram (U) then
24440 return This_Name;
24441 else
24442 return Unique_Name (S) & "__" & This_Name;
24443 end if;
24445 -- For intances of generic subprograms use the name of the related
24446 -- instace and skip the scope of its wrapper package.
24448 elsif Is_Wrapper_Package (S) then
24449 pragma Assert (Scope (S) = Scope (Related_Instance (S)));
24450 -- Wrapper package and the instantiation are in the same scope
24452 declare
24453 Enclosing_Name : constant String :=
24454 Unique_Name (Scope (S)) & "__" &
24455 Get_Name_String (Chars (Related_Instance (S)));
24457 begin
24458 if Is_Subprogram (U)
24459 and then not Is_Generic_Actual_Subprogram (U)
24460 then
24461 return Enclosing_Name;
24462 else
24463 return Enclosing_Name & "__" & This_Name;
24464 end if;
24465 end;
24467 else
24468 return Unique_Name (S) & "__" & This_Name;
24469 end if;
24470 end;
24471 end if;
24472 end Unique_Name;
24474 ---------------------
24475 -- Unit_Is_Visible --
24476 ---------------------
24478 function Unit_Is_Visible (U : Entity_Id) return Boolean is
24479 Curr : constant Node_Id := Cunit (Current_Sem_Unit);
24480 Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
24482 function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean;
24483 -- For a child unit, check whether unit appears in a with_clause
24484 -- of a parent.
24486 function Unit_In_Context (Comp_Unit : Node_Id) return Boolean;
24487 -- Scan the context clause of one compilation unit looking for a
24488 -- with_clause for the unit in question.
24490 ----------------------------
24491 -- Unit_In_Parent_Context --
24492 ----------------------------
24494 function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is
24495 begin
24496 if Unit_In_Context (Par_Unit) then
24497 return True;
24499 elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then
24500 return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit)));
24502 else
24503 return False;
24504 end if;
24505 end Unit_In_Parent_Context;
24507 ---------------------
24508 -- Unit_In_Context --
24509 ---------------------
24511 function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is
24512 Clause : Node_Id;
24514 begin
24515 Clause := First (Context_Items (Comp_Unit));
24516 while Present (Clause) loop
24517 if Nkind (Clause) = N_With_Clause then
24518 if Library_Unit (Clause) = U then
24519 return True;
24521 -- The with_clause may denote a renaming of the unit we are
24522 -- looking for, eg. Text_IO which renames Ada.Text_IO.
24524 elsif
24525 Renamed_Entity (Entity (Name (Clause))) =
24526 Defining_Entity (Unit (U))
24527 then
24528 return True;
24529 end if;
24530 end if;
24532 Next (Clause);
24533 end loop;
24535 return False;
24536 end Unit_In_Context;
24538 -- Start of processing for Unit_Is_Visible
24540 begin
24541 -- The currrent unit is directly visible
24543 if Curr = U then
24544 return True;
24546 elsif Unit_In_Context (Curr) then
24547 return True;
24549 -- If the current unit is a body, check the context of the spec
24551 elsif Nkind (Unit (Curr)) = N_Package_Body
24552 or else
24553 (Nkind (Unit (Curr)) = N_Subprogram_Body
24554 and then not Acts_As_Spec (Unit (Curr)))
24555 then
24556 if Unit_In_Context (Library_Unit (Curr)) then
24557 return True;
24558 end if;
24559 end if;
24561 -- If the spec is a child unit, examine the parents
24563 if Is_Child_Unit (Curr_Entity) then
24564 if Nkind (Unit (Curr)) in N_Unit_Body then
24565 return
24566 Unit_In_Parent_Context
24567 (Parent_Spec (Unit (Library_Unit (Curr))));
24568 else
24569 return Unit_In_Parent_Context (Parent_Spec (Unit (Curr)));
24570 end if;
24572 else
24573 return False;
24574 end if;
24575 end Unit_Is_Visible;
24577 ------------------------------
24578 -- Universal_Interpretation --
24579 ------------------------------
24581 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
24582 Index : Interp_Index;
24583 It : Interp;
24585 begin
24586 -- The argument may be a formal parameter of an operator or subprogram
24587 -- with multiple interpretations, or else an expression for an actual.
24589 if Nkind (Opnd) = N_Defining_Identifier
24590 or else not Is_Overloaded (Opnd)
24591 then
24592 if Etype (Opnd) = Universal_Integer
24593 or else Etype (Opnd) = Universal_Real
24594 then
24595 return Etype (Opnd);
24596 else
24597 return Empty;
24598 end if;
24600 else
24601 Get_First_Interp (Opnd, Index, It);
24602 while Present (It.Typ) loop
24603 if It.Typ = Universal_Integer
24604 or else It.Typ = Universal_Real
24605 then
24606 return It.Typ;
24607 end if;
24609 Get_Next_Interp (Index, It);
24610 end loop;
24612 return Empty;
24613 end if;
24614 end Universal_Interpretation;
24616 ---------------
24617 -- Unqualify --
24618 ---------------
24620 function Unqualify (Expr : Node_Id) return Node_Id is
24621 begin
24622 -- Recurse to handle unlikely case of multiple levels of qualification
24624 if Nkind (Expr) = N_Qualified_Expression then
24625 return Unqualify (Expression (Expr));
24627 -- Normal case, not a qualified expression
24629 else
24630 return Expr;
24631 end if;
24632 end Unqualify;
24634 -----------------
24635 -- Unqual_Conv --
24636 -----------------
24638 function Unqual_Conv (Expr : Node_Id) return Node_Id is
24639 begin
24640 -- Recurse to handle unlikely case of multiple levels of qualification
24641 -- and/or conversion.
24643 if Nkind_In (Expr, N_Qualified_Expression,
24644 N_Type_Conversion,
24645 N_Unchecked_Type_Conversion)
24646 then
24647 return Unqual_Conv (Expression (Expr));
24649 -- Normal case, not a qualified expression
24651 else
24652 return Expr;
24653 end if;
24654 end Unqual_Conv;
24656 -----------------------
24657 -- Visible_Ancestors --
24658 -----------------------
24660 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
24661 List_1 : Elist_Id;
24662 List_2 : Elist_Id;
24663 Elmt : Elmt_Id;
24665 begin
24666 pragma Assert (Is_Record_Type (Typ) and then Is_Tagged_Type (Typ));
24668 -- Collect all the parents and progenitors of Typ. If the full-view of
24669 -- private parents and progenitors is available then it is used to
24670 -- generate the list of visible ancestors; otherwise their partial
24671 -- view is added to the resulting list.
24673 Collect_Parents
24674 (T => Typ,
24675 List => List_1,
24676 Use_Full_View => True);
24678 Collect_Interfaces
24679 (T => Typ,
24680 Ifaces_List => List_2,
24681 Exclude_Parents => True,
24682 Use_Full_View => True);
24684 -- Join the two lists. Avoid duplications because an interface may
24685 -- simultaneously be parent and progenitor of a type.
24687 Elmt := First_Elmt (List_2);
24688 while Present (Elmt) loop
24689 Append_Unique_Elmt (Node (Elmt), List_1);
24690 Next_Elmt (Elmt);
24691 end loop;
24693 return List_1;
24694 end Visible_Ancestors;
24696 ----------------------
24697 -- Within_Init_Proc --
24698 ----------------------
24700 function Within_Init_Proc return Boolean is
24701 S : Entity_Id;
24703 begin
24704 S := Current_Scope;
24705 while not Is_Overloadable (S) loop
24706 if S = Standard_Standard then
24707 return False;
24708 else
24709 S := Scope (S);
24710 end if;
24711 end loop;
24713 return Is_Init_Proc (S);
24714 end Within_Init_Proc;
24716 ---------------------------
24717 -- Within_Protected_Type --
24718 ---------------------------
24720 function Within_Protected_Type (E : Entity_Id) return Boolean is
24721 Scop : Entity_Id := Scope (E);
24723 begin
24724 while Present (Scop) loop
24725 if Ekind (Scop) = E_Protected_Type then
24726 return True;
24727 end if;
24729 Scop := Scope (Scop);
24730 end loop;
24732 return False;
24733 end Within_Protected_Type;
24735 ------------------
24736 -- Within_Scope --
24737 ------------------
24739 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean is
24740 begin
24741 return Scope_Within_Or_Same (Scope (E), S);
24742 end Within_Scope;
24744 ----------------------------
24745 -- Within_Subprogram_Call --
24746 ----------------------------
24748 function Within_Subprogram_Call (N : Node_Id) return Boolean is
24749 Par : Node_Id;
24751 begin
24752 -- Climb the parent chain looking for a function or procedure call
24754 Par := N;
24755 while Present (Par) loop
24756 if Nkind_In (Par, N_Entry_Call_Statement,
24757 N_Function_Call,
24758 N_Procedure_Call_Statement)
24759 then
24760 return True;
24762 -- Prevent the search from going too far
24764 elsif Is_Body_Or_Package_Declaration (Par) then
24765 exit;
24766 end if;
24768 Par := Parent (Par);
24769 end loop;
24771 return False;
24772 end Within_Subprogram_Call;
24774 ----------------
24775 -- Wrong_Type --
24776 ----------------
24778 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
24779 Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
24780 Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
24782 Matching_Field : Entity_Id;
24783 -- Entity to give a more precise suggestion on how to write a one-
24784 -- element positional aggregate.
24786 function Has_One_Matching_Field return Boolean;
24787 -- Determines if Expec_Type is a record type with a single component or
24788 -- discriminant whose type matches the found type or is one dimensional
24789 -- array whose component type matches the found type. In the case of
24790 -- one discriminant, we ignore the variant parts. That's not accurate,
24791 -- but good enough for the warning.
24793 ----------------------------
24794 -- Has_One_Matching_Field --
24795 ----------------------------
24797 function Has_One_Matching_Field return Boolean is
24798 E : Entity_Id;
24800 begin
24801 Matching_Field := Empty;
24803 if Is_Array_Type (Expec_Type)
24804 and then Number_Dimensions (Expec_Type) = 1
24805 and then Covers (Etype (Component_Type (Expec_Type)), Found_Type)
24806 then
24807 -- Use type name if available. This excludes multidimensional
24808 -- arrays and anonymous arrays.
24810 if Comes_From_Source (Expec_Type) then
24811 Matching_Field := Expec_Type;
24813 -- For an assignment, use name of target
24815 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
24816 and then Is_Entity_Name (Name (Parent (Expr)))
24817 then
24818 Matching_Field := Entity (Name (Parent (Expr)));
24819 end if;
24821 return True;
24823 elsif not Is_Record_Type (Expec_Type) then
24824 return False;
24826 else
24827 E := First_Entity (Expec_Type);
24828 loop
24829 if No (E) then
24830 return False;
24832 elsif not Ekind_In (E, E_Discriminant, E_Component)
24833 or else Nam_In (Chars (E), Name_uTag, Name_uParent)
24834 then
24835 Next_Entity (E);
24837 else
24838 exit;
24839 end if;
24840 end loop;
24842 if not Covers (Etype (E), Found_Type) then
24843 return False;
24845 elsif Present (Next_Entity (E))
24846 and then (Ekind (E) = E_Component
24847 or else Ekind (Next_Entity (E)) = E_Discriminant)
24848 then
24849 return False;
24851 else
24852 Matching_Field := E;
24853 return True;
24854 end if;
24855 end if;
24856 end Has_One_Matching_Field;
24858 -- Start of processing for Wrong_Type
24860 begin
24861 -- Don't output message if either type is Any_Type, or if a message
24862 -- has already been posted for this node. We need to do the latter
24863 -- check explicitly (it is ordinarily done in Errout), because we
24864 -- are using ! to force the output of the error messages.
24866 if Expec_Type = Any_Type
24867 or else Found_Type = Any_Type
24868 or else Error_Posted (Expr)
24869 then
24870 return;
24872 -- If one of the types is a Taft-Amendment type and the other it its
24873 -- completion, it must be an illegal use of a TAT in the spec, for
24874 -- which an error was already emitted. Avoid cascaded errors.
24876 elsif Is_Incomplete_Type (Expec_Type)
24877 and then Has_Completion_In_Body (Expec_Type)
24878 and then Full_View (Expec_Type) = Etype (Expr)
24879 then
24880 return;
24882 elsif Is_Incomplete_Type (Etype (Expr))
24883 and then Has_Completion_In_Body (Etype (Expr))
24884 and then Full_View (Etype (Expr)) = Expec_Type
24885 then
24886 return;
24888 -- In an instance, there is an ongoing problem with completion of
24889 -- type derived from private types. Their structure is what Gigi
24890 -- expects, but the Etype is the parent type rather than the
24891 -- derived private type itself. Do not flag error in this case. The
24892 -- private completion is an entity without a parent, like an Itype.
24893 -- Similarly, full and partial views may be incorrect in the instance.
24894 -- There is no simple way to insure that it is consistent ???
24896 -- A similar view discrepancy can happen in an inlined body, for the
24897 -- same reason: inserted body may be outside of the original package
24898 -- and only partial views are visible at the point of insertion.
24900 elsif In_Instance or else In_Inlined_Body then
24901 if Etype (Etype (Expr)) = Etype (Expected_Type)
24902 and then
24903 (Has_Private_Declaration (Expected_Type)
24904 or else Has_Private_Declaration (Etype (Expr)))
24905 and then No (Parent (Expected_Type))
24906 then
24907 return;
24909 elsif Nkind (Parent (Expr)) = N_Qualified_Expression
24910 and then Entity (Subtype_Mark (Parent (Expr))) = Expected_Type
24911 then
24912 return;
24914 elsif Is_Private_Type (Expected_Type)
24915 and then Present (Full_View (Expected_Type))
24916 and then Covers (Full_View (Expected_Type), Etype (Expr))
24917 then
24918 return;
24920 -- Conversely, type of expression may be the private one
24922 elsif Is_Private_Type (Base_Type (Etype (Expr)))
24923 and then Full_View (Base_Type (Etype (Expr))) = Expected_Type
24924 then
24925 return;
24926 end if;
24927 end if;
24929 -- An interesting special check. If the expression is parenthesized
24930 -- and its type corresponds to the type of the sole component of the
24931 -- expected record type, or to the component type of the expected one
24932 -- dimensional array type, then assume we have a bad aggregate attempt.
24934 if Nkind (Expr) in N_Subexpr
24935 and then Paren_Count (Expr) /= 0
24936 and then Has_One_Matching_Field
24937 then
24938 Error_Msg_N ("positional aggregate cannot have one component", Expr);
24940 if Present (Matching_Field) then
24941 if Is_Array_Type (Expec_Type) then
24942 Error_Msg_NE
24943 ("\write instead `&''First ='> ...`", Expr, Matching_Field);
24944 else
24945 Error_Msg_NE
24946 ("\write instead `& ='> ...`", Expr, Matching_Field);
24947 end if;
24948 end if;
24950 -- Another special check, if we are looking for a pool-specific access
24951 -- type and we found an E_Access_Attribute_Type, then we have the case
24952 -- of an Access attribute being used in a context which needs a pool-
24953 -- specific type, which is never allowed. The one extra check we make
24954 -- is that the expected designated type covers the Found_Type.
24956 elsif Is_Access_Type (Expec_Type)
24957 and then Ekind (Found_Type) = E_Access_Attribute_Type
24958 and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
24959 and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
24960 and then Covers
24961 (Designated_Type (Expec_Type), Designated_Type (Found_Type))
24962 then
24963 Error_Msg_N -- CODEFIX
24964 ("result must be general access type!", Expr);
24965 Error_Msg_NE -- CODEFIX
24966 ("add ALL to }!", Expr, Expec_Type);
24968 -- Another special check, if the expected type is an integer type,
24969 -- but the expression is of type System.Address, and the parent is
24970 -- an addition or subtraction operation whose left operand is the
24971 -- expression in question and whose right operand is of an integral
24972 -- type, then this is an attempt at address arithmetic, so give
24973 -- appropriate message.
24975 elsif Is_Integer_Type (Expec_Type)
24976 and then Is_RTE (Found_Type, RE_Address)
24977 and then Nkind_In (Parent (Expr), N_Op_Add, N_Op_Subtract)
24978 and then Expr = Left_Opnd (Parent (Expr))
24979 and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
24980 then
24981 Error_Msg_N
24982 ("address arithmetic not predefined in package System",
24983 Parent (Expr));
24984 Error_Msg_N
24985 ("\possible missing with/use of System.Storage_Elements",
24986 Parent (Expr));
24987 return;
24989 -- If the expected type is an anonymous access type, as for access
24990 -- parameters and discriminants, the error is on the designated types.
24992 elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
24993 if Comes_From_Source (Expec_Type) then
24994 Error_Msg_NE ("expected}!", Expr, Expec_Type);
24995 else
24996 Error_Msg_NE
24997 ("expected an access type with designated}",
24998 Expr, Designated_Type (Expec_Type));
24999 end if;
25001 if Is_Access_Type (Found_Type)
25002 and then not Comes_From_Source (Found_Type)
25003 then
25004 Error_Msg_NE
25005 ("\\found an access type with designated}!",
25006 Expr, Designated_Type (Found_Type));
25007 else
25008 if From_Limited_With (Found_Type) then
25009 Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
25010 Error_Msg_Qual_Level := 99;
25011 Error_Msg_NE -- CODEFIX
25012 ("\\missing `WITH &;", Expr, Scope (Found_Type));
25013 Error_Msg_Qual_Level := 0;
25014 else
25015 Error_Msg_NE ("found}!", Expr, Found_Type);
25016 end if;
25017 end if;
25019 -- Normal case of one type found, some other type expected
25021 else
25022 -- If the names of the two types are the same, see if some number
25023 -- of levels of qualification will help. Don't try more than three
25024 -- levels, and if we get to standard, it's no use (and probably
25025 -- represents an error in the compiler) Also do not bother with
25026 -- internal scope names.
25028 declare
25029 Expec_Scope : Entity_Id;
25030 Found_Scope : Entity_Id;
25032 begin
25033 Expec_Scope := Expec_Type;
25034 Found_Scope := Found_Type;
25036 for Levels in Nat range 0 .. 3 loop
25037 if Chars (Expec_Scope) /= Chars (Found_Scope) then
25038 Error_Msg_Qual_Level := Levels;
25039 exit;
25040 end if;
25042 Expec_Scope := Scope (Expec_Scope);
25043 Found_Scope := Scope (Found_Scope);
25045 exit when Expec_Scope = Standard_Standard
25046 or else Found_Scope = Standard_Standard
25047 or else not Comes_From_Source (Expec_Scope)
25048 or else not Comes_From_Source (Found_Scope);
25049 end loop;
25050 end;
25052 if Is_Record_Type (Expec_Type)
25053 and then Present (Corresponding_Remote_Type (Expec_Type))
25054 then
25055 Error_Msg_NE ("expected}!", Expr,
25056 Corresponding_Remote_Type (Expec_Type));
25057 else
25058 Error_Msg_NE ("expected}!", Expr, Expec_Type);
25059 end if;
25061 if Is_Entity_Name (Expr)
25062 and then Is_Package_Or_Generic_Package (Entity (Expr))
25063 then
25064 Error_Msg_N ("\\found package name!", Expr);
25066 elsif Is_Entity_Name (Expr)
25067 and then Ekind_In (Entity (Expr), E_Procedure, E_Generic_Procedure)
25068 then
25069 if Ekind (Expec_Type) = E_Access_Subprogram_Type then
25070 Error_Msg_N
25071 ("found procedure name, possibly missing Access attribute!",
25072 Expr);
25073 else
25074 Error_Msg_N
25075 ("\\found procedure name instead of function!", Expr);
25076 end if;
25078 elsif Nkind (Expr) = N_Function_Call
25079 and then Ekind (Expec_Type) = E_Access_Subprogram_Type
25080 and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
25081 and then No (Parameter_Associations (Expr))
25082 then
25083 Error_Msg_N
25084 ("found function name, possibly missing Access attribute!",
25085 Expr);
25087 -- Catch common error: a prefix or infix operator which is not
25088 -- directly visible because the type isn't.
25090 elsif Nkind (Expr) in N_Op
25091 and then Is_Overloaded (Expr)
25092 and then not Is_Immediately_Visible (Expec_Type)
25093 and then not Is_Potentially_Use_Visible (Expec_Type)
25094 and then not In_Use (Expec_Type)
25095 and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
25096 then
25097 Error_Msg_N
25098 ("operator of the type is not directly visible!", Expr);
25100 elsif Ekind (Found_Type) = E_Void
25101 and then Present (Parent (Found_Type))
25102 and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
25103 then
25104 Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
25106 else
25107 Error_Msg_NE ("\\found}!", Expr, Found_Type);
25108 end if;
25110 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
25111 -- of the same modular type, and (M1 and M2) = 0 was intended.
25113 if Expec_Type = Standard_Boolean
25114 and then Is_Modular_Integer_Type (Found_Type)
25115 and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
25116 and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
25117 then
25118 declare
25119 Op : constant Node_Id := Right_Opnd (Parent (Expr));
25120 L : constant Node_Id := Left_Opnd (Op);
25121 R : constant Node_Id := Right_Opnd (Op);
25123 begin
25124 -- The case for the message is when the left operand of the
25125 -- comparison is the same modular type, or when it is an
25126 -- integer literal (or other universal integer expression),
25127 -- which would have been typed as the modular type if the
25128 -- parens had been there.
25130 if (Etype (L) = Found_Type
25131 or else
25132 Etype (L) = Universal_Integer)
25133 and then Is_Integer_Type (Etype (R))
25134 then
25135 Error_Msg_N
25136 ("\\possible missing parens for modular operation", Expr);
25137 end if;
25138 end;
25139 end if;
25141 -- Reset error message qualification indication
25143 Error_Msg_Qual_Level := 0;
25144 end if;
25145 end Wrong_Type;
25147 --------------------------------
25148 -- Yields_Synchronized_Object --
25149 --------------------------------
25151 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean is
25152 Has_Sync_Comp : Boolean := False;
25153 Id : Entity_Id;
25155 begin
25156 -- An array type yields a synchronized object if its component type
25157 -- yields a synchronized object.
25159 if Is_Array_Type (Typ) then
25160 return Yields_Synchronized_Object (Component_Type (Typ));
25162 -- A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
25163 -- yields a synchronized object by default.
25165 elsif Is_Descendant_Of_Suspension_Object (Typ) then
25166 return True;
25168 -- A protected type yields a synchronized object by default
25170 elsif Is_Protected_Type (Typ) then
25171 return True;
25173 -- A record type or type extension yields a synchronized object when its
25174 -- discriminants (if any) lack default values and all components are of
25175 -- a type that yelds a synchronized object.
25177 elsif Is_Record_Type (Typ) then
25179 -- Inspect all entities defined in the scope of the type, looking for
25180 -- components of a type that does not yeld a synchronized object or
25181 -- for discriminants with default values.
25183 Id := First_Entity (Typ);
25184 while Present (Id) loop
25185 if Comes_From_Source (Id) then
25186 if Ekind (Id) = E_Component then
25187 if Yields_Synchronized_Object (Etype (Id)) then
25188 Has_Sync_Comp := True;
25190 -- The component does not yield a synchronized object
25192 else
25193 return False;
25194 end if;
25196 elsif Ekind (Id) = E_Discriminant
25197 and then Present (Expression (Parent (Id)))
25198 then
25199 return False;
25200 end if;
25201 end if;
25203 Next_Entity (Id);
25204 end loop;
25206 -- Ensure that the parent type of a type extension yields a
25207 -- synchronized object.
25209 if Etype (Typ) /= Typ
25210 and then not Yields_Synchronized_Object (Etype (Typ))
25211 then
25212 return False;
25213 end if;
25215 -- If we get here, then all discriminants lack default values and all
25216 -- components are of a type that yields a synchronized object.
25218 return Has_Sync_Comp;
25220 -- A synchronized interface type yields a synchronized object by default
25222 elsif Is_Synchronized_Interface (Typ) then
25223 return True;
25225 -- A task type yelds a synchronized object by default
25227 elsif Is_Task_Type (Typ) then
25228 return True;
25230 -- Otherwise the type does not yield a synchronized object
25232 else
25233 return False;
25234 end if;
25235 end Yields_Synchronized_Object;
25237 ---------------------------
25238 -- Yields_Universal_Type --
25239 ---------------------------
25241 function Yields_Universal_Type (N : Node_Id) return Boolean is
25242 begin
25243 -- Integer and real literals are of a universal type
25245 if Nkind_In (N, N_Integer_Literal, N_Real_Literal) then
25246 return True;
25248 -- The values of certain attributes are of a universal type
25250 elsif Nkind (N) = N_Attribute_Reference then
25251 return
25252 Universal_Type_Attribute (Get_Attribute_Id (Attribute_Name (N)));
25254 -- ??? There are possibly other cases to consider
25256 else
25257 return False;
25258 end if;
25259 end Yields_Universal_Type;
25261 begin
25262 Erroutc.Subprogram_Name_Ptr := Subprogram_Name'Access;
25263 end Sem_Util;