* tree-vect-loop-manip.c (vect_do_peeling): Do not use
[official-gcc.git] / gcc / ada / libgnat / a-cfinve.adb
blob8a9d11dccc076db67929f87ac7dccda5fe250197
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.FORMAL_INDEFINITE_VECTORS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2010-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 ------------------------------------------------------------------------------
28 with Ada.Containers.Generic_Array_Sort;
29 with Ada.Unchecked_Deallocation;
31 with System; use type System.Address;
33 package body Ada.Containers.Formal_Indefinite_Vectors with
34 SPARK_Mode => Off
36 function H (New_Item : Element_Type) return Holder renames To_Holder;
37 function E (Container : Holder) return Element_Type renames Get;
39 Growth_Factor : constant := 2;
40 -- When growing a container, multiply current capacity by this. Doubling
41 -- leads to amortized linear-time copying.
43 type Int is range System.Min_Int .. System.Max_Int;
45 procedure Free is
46 new Ada.Unchecked_Deallocation (Elements_Array, Elements_Array_Ptr);
48 type Maximal_Array_Ptr is access all Elements_Array (Array_Index)
49 with Storage_Size => 0;
50 type Maximal_Array_Ptr_Const is access constant Elements_Array (Array_Index)
51 with Storage_Size => 0;
53 function Elems (Container : in out Vector) return Maximal_Array_Ptr;
54 function Elemsc
55 (Container : Vector) return Maximal_Array_Ptr_Const;
56 -- Returns a pointer to the Elements array currently in use -- either
57 -- Container.Elements_Ptr or a pointer to Container.Elements. We work with
58 -- pointers to a bogus array subtype that is constrained with the maximum
59 -- possible bounds. This means that the pointer is a thin pointer. This is
60 -- necessary because 'Unrestricted_Access doesn't work when it produces
61 -- access-to-unconstrained and is returned from a function.
63 -- Note that this is dangerous: make sure calls to this use an indexed
64 -- component or slice that is within the bounds 1 .. Length (Container).
66 function Get_Element
67 (Container : Vector;
68 Position : Capacity_Range) return Element_Type;
70 function To_Array_Index (Index : Index_Type'Base) return Count_Type'Base;
72 function Current_Capacity (Container : Vector) return Capacity_Range;
74 procedure Insert_Space
75 (Container : in out Vector;
76 Before : Extended_Index;
77 Count : Count_Type := 1);
79 ---------
80 -- "=" --
81 ---------
83 function "=" (Left : Vector; Right : Vector) return Boolean is
84 begin
85 if Left'Address = Right'Address then
86 return True;
87 end if;
89 if Length (Left) /= Length (Right) then
90 return False;
91 end if;
93 for J in 1 .. Length (Left) loop
94 if Get_Element (Left, J) /= Get_Element (Right, J) then
95 return False;
96 end if;
97 end loop;
99 return True;
100 end "=";
102 ------------
103 -- Append --
104 ------------
106 procedure Append (Container : in out Vector; New_Item : Vector) is
107 begin
108 if Is_Empty (New_Item) then
109 return;
110 end if;
112 if Container.Last >= Index_Type'Last then
113 raise Constraint_Error with "vector is already at its maximum length";
114 end if;
116 Insert (Container, Container.Last + 1, New_Item);
117 end Append;
119 procedure Append (Container : in out Vector; New_Item : Element_Type) is
120 begin
121 Append (Container, New_Item, 1);
122 end Append;
124 procedure Append
125 (Container : in out Vector;
126 New_Item : Element_Type;
127 Count : Count_Type)
129 begin
130 if Count = 0 then
131 return;
132 end if;
134 if Container.Last >= Index_Type'Last then
135 raise Constraint_Error with "vector is already at its maximum length";
136 end if;
138 Insert (Container, Container.Last + 1, New_Item, Count);
139 end Append;
141 ------------
142 -- Assign --
143 ------------
145 procedure Assign (Target : in out Vector; Source : Vector) is
146 LS : constant Capacity_Range := Length (Source);
148 begin
149 if Target'Address = Source'Address then
150 return;
151 end if;
153 if Bounded and then Target.Capacity < LS then
154 raise Constraint_Error;
155 end if;
157 Clear (Target);
158 Append (Target, Source);
159 end Assign;
161 --------------
162 -- Capacity --
163 --------------
165 function Capacity (Container : Vector) return Capacity_Range is
166 begin
167 return
168 (if Bounded then
169 Container.Capacity
170 else
171 Capacity_Range'Last);
172 end Capacity;
174 -----------
175 -- Clear --
176 -----------
178 procedure Clear (Container : in out Vector) is
179 begin
180 Container.Last := No_Index;
182 -- Free element, note that this is OK if Elements_Ptr is null
184 Free (Container.Elements_Ptr);
185 end Clear;
187 --------------
188 -- Contains --
189 --------------
191 function Contains
192 (Container : Vector;
193 Item : Element_Type) return Boolean
195 begin
196 return Find_Index (Container, Item) /= No_Index;
197 end Contains;
199 ----------
200 -- Copy --
201 ----------
203 function Copy
204 (Source : Vector;
205 Capacity : Capacity_Range := 0) return Vector
207 LS : constant Capacity_Range := Length (Source);
208 C : Capacity_Range;
210 begin
211 if Capacity = 0 then
212 C := LS;
213 elsif Capacity >= LS then
214 C := Capacity;
215 else
216 raise Capacity_Error;
217 end if;
219 return Target : Vector (C) do
220 Elems (Target) (1 .. LS) := Elemsc (Source) (1 .. LS);
221 Target.Last := Source.Last;
222 end return;
223 end Copy;
225 ----------------------
226 -- Current_Capacity --
227 ----------------------
229 function Current_Capacity (Container : Vector) return Capacity_Range is
230 begin
231 return
232 (if Container.Elements_Ptr = null then
233 Container.Elements'Length
234 else
235 Container.Elements_Ptr.all'Length);
236 end Current_Capacity;
238 ------------
239 -- Delete --
240 ------------
242 procedure Delete (Container : in out Vector; Index : Extended_Index) is
243 begin
244 Delete (Container, Index, 1);
245 end Delete;
247 procedure Delete
248 (Container : in out Vector;
249 Index : Extended_Index;
250 Count : Count_Type)
252 Old_Last : constant Index_Type'Base := Container.Last;
253 Old_Len : constant Count_Type := Length (Container);
254 New_Last : Index_Type'Base;
255 Count2 : Count_Type'Base; -- count of items from Index to Old_Last
256 Off : Count_Type'Base; -- Index expressed as offset from IT'First
258 begin
259 -- Delete removes items from the vector, the number of which is the
260 -- minimum of the specified Count and the items (if any) that exist from
261 -- Index to Container.Last. There are no constraints on the specified
262 -- value of Count (it can be larger than what's available at this
263 -- position in the vector, for example), but there are constraints on
264 -- the allowed values of the Index.
266 -- As a precondition on the generic actual Index_Type, the base type
267 -- must include Index_Type'Pred (Index_Type'First); this is the value
268 -- that Container.Last assumes when the vector is empty. However, we do
269 -- not allow that as the value for Index when specifying which items
270 -- should be deleted, so we must manually check. (That the user is
271 -- allowed to specify the value at all here is a consequence of the
272 -- declaration of the Extended_Index subtype, which includes the values
273 -- in the base range that immediately precede and immediately follow the
274 -- values in the Index_Type.)
276 if Index < Index_Type'First then
277 raise Constraint_Error with "Index is out of range (too small)";
278 end if;
280 -- We do allow a value greater than Container.Last to be specified as
281 -- the Index, but only if it's immediately greater. This allows the
282 -- corner case of deleting no items from the back end of the vector to
283 -- be treated as a no-op. (It is assumed that specifying an index value
284 -- greater than Last + 1 indicates some deeper flaw in the caller's
285 -- algorithm, so that case is treated as a proper error.)
287 if Index > Old_Last then
288 if Index > Old_Last + 1 then
289 raise Constraint_Error with "Index is out of range (too large)";
290 end if;
292 return;
293 end if;
295 if Count = 0 then
296 return;
297 end if;
299 -- We first calculate what's available for deletion starting at
300 -- Index. Here and elsewhere we use the wider of Index_Type'Base and
301 -- Count_Type'Base as the type for intermediate values. (See function
302 -- Length for more information.)
304 if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
305 Count2 := Count_Type'Base (Old_Last) - Count_Type'Base (Index) + 1;
306 else
307 Count2 := Count_Type'Base (Old_Last - Index + 1);
308 end if;
310 -- If more elements are requested (Count) for deletion than are
311 -- available (Count2) for deletion beginning at Index, then everything
312 -- from Index is deleted. There are no elements to slide down, and so
313 -- all we need to do is set the value of Container.Last.
315 if Count >= Count2 then
316 Container.Last := Index - 1;
317 return;
318 end if;
320 -- There are some elements that aren't being deleted (the requested
321 -- count was less than the available count), so we must slide them down
322 -- to Index. We first calculate the index values of the respective array
323 -- slices, using the wider of Index_Type'Base and Count_Type'Base as the
324 -- type for intermediate calculations.
326 if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
327 Off := Count_Type'Base (Index - Index_Type'First);
328 New_Last := Old_Last - Index_Type'Base (Count);
329 else
330 Off := Count_Type'Base (Index) - Count_Type'Base (Index_Type'First);
331 New_Last := Index_Type'Base (Count_Type'Base (Old_Last) - Count);
332 end if;
334 -- The array index values for each slice have already been determined,
335 -- so we just slide down to Index the elements that weren't deleted.
337 declare
338 EA : Maximal_Array_Ptr renames Elems (Container);
339 Idx : constant Count_Type := EA'First + Off;
341 begin
342 EA (Idx .. Old_Len - Count) := EA (Idx + Count .. Old_Len);
343 Container.Last := New_Last;
344 end;
345 end Delete;
347 ------------------
348 -- Delete_First --
349 ------------------
351 procedure Delete_First (Container : in out Vector) is
352 begin
353 Delete_First (Container, 1);
354 end Delete_First;
356 procedure Delete_First (Container : in out Vector; Count : Count_Type) is
357 begin
358 if Count = 0 then
359 return;
361 elsif Count >= Length (Container) then
362 Clear (Container);
363 return;
365 else
366 Delete (Container, Index_Type'First, Count);
367 end if;
368 end Delete_First;
370 -----------------
371 -- Delete_Last --
372 -----------------
374 procedure Delete_Last (Container : in out Vector) is
375 begin
376 Delete_Last (Container, 1);
377 end Delete_Last;
379 procedure Delete_Last (Container : in out Vector; Count : Count_Type) is
380 begin
381 if Count = 0 then
382 return;
383 end if;
385 -- There is no restriction on how large Count can be when deleting
386 -- items. If it is equal or greater than the current length, then this
387 -- is equivalent to clearing the vector. (In particular, there's no need
388 -- for us to actually calculate the new value for Last.)
390 -- If the requested count is less than the current length, then we must
391 -- calculate the new value for Last. For the type we use the widest of
392 -- Index_Type'Base and Count_Type'Base for the intermediate values of
393 -- our calculation. (See the comments in Length for more information.)
395 if Count >= Length (Container) then
396 Container.Last := No_Index;
398 elsif Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
399 Container.Last := Container.Last - Index_Type'Base (Count);
401 else
402 Container.Last :=
403 Index_Type'Base (Count_Type'Base (Container.Last) - Count);
404 end if;
405 end Delete_Last;
407 -------------
408 -- Element --
409 -------------
411 function Element
412 (Container : Vector;
413 Index : Index_Type) return Element_Type
415 begin
416 if Index > Container.Last then
417 raise Constraint_Error with "Index is out of range";
418 end if;
420 declare
421 II : constant Int'Base := Int (Index) - Int (No_Index);
422 I : constant Capacity_Range := Capacity_Range (II);
424 begin
425 return Get_Element (Container, I);
426 end;
427 end Element;
429 --------------
430 -- Elements --
431 --------------
433 function Elems (Container : in out Vector) return Maximal_Array_Ptr is
434 begin
435 return
436 (if Container.Elements_Ptr = null then
437 Container.Elements'Unrestricted_Access
438 else
439 Container.Elements_Ptr.all'Unrestricted_Access);
440 end Elems;
442 function Elemsc (Container : Vector) return Maximal_Array_Ptr_Const is
443 begin
444 return
445 (if Container.Elements_Ptr = null then
446 Container.Elements'Unrestricted_Access
447 else
448 Container.Elements_Ptr.all'Unrestricted_Access);
449 end Elemsc;
451 ----------------
452 -- Find_Index --
453 ----------------
455 function Find_Index
456 (Container : Vector;
457 Item : Element_Type;
458 Index : Index_Type := Index_Type'First) return Extended_Index
460 K : Capacity_Range;
461 Last : constant Index_Type := Last_Index (Container);
463 begin
464 K := Capacity_Range (Int (Index) - Int (No_Index));
465 for Indx in Index .. Last loop
466 if Get_Element (Container, K) = Item then
467 return Indx;
468 end if;
470 K := K + 1;
471 end loop;
473 return No_Index;
474 end Find_Index;
476 -------------------
477 -- First_Element --
478 -------------------
480 function First_Element (Container : Vector) return Element_Type is
481 begin
482 if Is_Empty (Container) then
483 raise Constraint_Error with "Container is empty";
484 else
485 return Get_Element (Container, 1);
486 end if;
487 end First_Element;
489 -----------------
490 -- First_Index --
491 -----------------
493 function First_Index (Container : Vector) return Index_Type is
494 pragma Unreferenced (Container);
495 begin
496 return Index_Type'First;
497 end First_Index;
499 ------------------
500 -- Formal_Model --
501 ------------------
503 package body Formal_Model is
505 -------------------------
506 -- M_Elements_In_Union --
507 -------------------------
509 function M_Elements_In_Union
510 (Container : M.Sequence;
511 Left : M.Sequence;
512 Right : M.Sequence) return Boolean
514 begin
515 for Index in Index_Type'First .. M.Last (Container) loop
516 declare
517 Elem : constant Element_Type := Element (Container, Index);
518 begin
519 if not M.Contains (Left, Index_Type'First, M.Last (Left), Elem)
520 and then
521 not M.Contains
522 (Right, Index_Type'First, M.Last (Right), Elem)
523 then
524 return False;
525 end if;
526 end;
527 end loop;
529 return True;
530 end M_Elements_In_Union;
532 -------------------------
533 -- M_Elements_Included --
534 -------------------------
536 function M_Elements_Included
537 (Left : M.Sequence;
538 L_Fst : Index_Type := Index_Type'First;
539 L_Lst : Extended_Index;
540 Right : M.Sequence;
541 R_Fst : Index_Type := Index_Type'First;
542 R_Lst : Extended_Index) return Boolean
544 begin
545 for I in L_Fst .. L_Lst loop
546 declare
547 Found : Boolean := False;
548 J : Extended_Index := R_Fst - 1;
550 begin
551 while not Found and J < R_Lst loop
552 J := J + 1;
553 if Element (Left, I) = Element (Right, J) then
554 Found := True;
555 end if;
556 end loop;
558 if not Found then
559 return False;
560 end if;
561 end;
562 end loop;
564 return True;
565 end M_Elements_Included;
567 -------------------------
568 -- M_Elements_Reversed --
569 -------------------------
571 function M_Elements_Reversed
572 (Left : M.Sequence;
573 Right : M.Sequence) return Boolean
575 L : constant Index_Type := M.Last (Left);
577 begin
578 if L /= M.Last (Right) then
579 return False;
580 end if;
582 for I in Index_Type'First .. L loop
583 if Element (Left, I) /= Element (Right, L - I + 1)
584 then
585 return False;
586 end if;
587 end loop;
589 return True;
590 end M_Elements_Reversed;
592 ------------------------
593 -- M_Elements_Swapted --
594 ------------------------
596 function M_Elements_Swapped
597 (Left : M.Sequence;
598 Right : M.Sequence;
599 X : Index_Type;
600 Y : Index_Type) return Boolean
602 begin
603 if M.Length (Left) /= M.Length (Right)
604 or else Element (Left, X) /= Element (Right, Y)
605 or else Element (Left, Y) /= Element (Right, X)
606 then
607 return False;
608 end if;
610 for I in Index_Type'First .. M.Last (Left) loop
611 if I /= X and then I /= Y
612 and then Element (Left, I) /= Element (Right, I)
613 then
614 return False;
615 end if;
616 end loop;
618 return True;
619 end M_Elements_Swapped;
621 -----------
622 -- Model --
623 -----------
625 function Model (Container : Vector) return M.Sequence is
626 R : M.Sequence;
628 begin
629 for Position in 1 .. Length (Container) loop
630 R := M.Add (R, E (Elemsc (Container) (Position)));
631 end loop;
633 return R;
634 end Model;
636 end Formal_Model;
638 ---------------------
639 -- Generic_Sorting --
640 ---------------------
642 package body Generic_Sorting with SPARK_Mode => Off is
644 ------------------
645 -- Formal_Model --
646 ------------------
648 package body Formal_Model is
650 -----------------------
651 -- M_Elements_Sorted --
652 -----------------------
654 function M_Elements_Sorted (Container : M.Sequence) return Boolean is
655 begin
656 if M.Length (Container) = 0 then
657 return True;
658 end if;
660 declare
661 E1 : Element_Type := Element (Container, Index_Type'First);
663 begin
664 for I in Index_Type'First + 1 .. M.Last (Container) loop
665 declare
666 E2 : constant Element_Type := Element (Container, I);
668 begin
669 if E2 < E1 then
670 return False;
671 end if;
673 E1 := E2;
674 end;
675 end loop;
676 end;
678 return True;
679 end M_Elements_Sorted;
681 end Formal_Model;
683 ---------------
684 -- Is_Sorted --
685 ---------------
687 function Is_Sorted (Container : Vector) return Boolean is
688 L : constant Capacity_Range := Length (Container);
690 begin
691 for J in 1 .. L - 1 loop
692 if Get_Element (Container, J + 1) < Get_Element (Container, J) then
693 return False;
694 end if;
695 end loop;
697 return True;
698 end Is_Sorted;
700 ----------
701 -- Sort --
702 ----------
704 procedure Sort (Container : in out Vector) is
705 function "<" (Left : Holder; Right : Holder) return Boolean is
706 (E (Left) < E (Right));
708 procedure Sort is new Generic_Array_Sort
709 (Index_Type => Array_Index,
710 Element_Type => Holder,
711 Array_Type => Elements_Array,
712 "<" => "<");
714 Len : constant Capacity_Range := Length (Container);
716 begin
717 if Container.Last <= Index_Type'First then
718 return;
719 else
720 Sort (Elems (Container) (1 .. Len));
721 end if;
722 end Sort;
724 -----------
725 -- Merge --
726 -----------
728 procedure Merge (Target : in out Vector; Source : in out Vector) is
729 I : Count_Type;
730 J : Count_Type;
732 begin
733 if Target'Address = Source'Address then
734 raise Program_Error with "Target and Source denote same container";
735 end if;
737 if Length (Source) = 0 then
738 return;
739 end if;
741 if Length (Target) = 0 then
742 Move (Target => Target, Source => Source);
743 return;
744 end if;
746 I := Length (Target);
748 declare
749 New_Length : constant Count_Type := I + Length (Source);
751 begin
752 if not Bounded
753 and then Current_Capacity (Target) < Capacity_Range (New_Length)
754 then
755 Reserve_Capacity
756 (Target,
757 Capacity_Range'Max
758 (Current_Capacity (Target) * Growth_Factor,
759 Capacity_Range (New_Length)));
760 end if;
762 if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
763 Target.Last := No_Index + Index_Type'Base (New_Length);
765 else
766 Target.Last :=
767 Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
768 end if;
769 end;
771 declare
772 TA : Maximal_Array_Ptr renames Elems (Target);
773 SA : Maximal_Array_Ptr renames Elems (Source);
775 begin
776 J := Length (Target);
777 while Length (Source) /= 0 loop
778 if I = 0 then
779 TA (1 .. J) := SA (1 .. Length (Source));
780 Source.Last := No_Index;
781 exit;
782 end if;
784 if E (SA (Length (Source))) < E (TA (I)) then
785 TA (J) := TA (I);
786 I := I - 1;
788 else
789 TA (J) := SA (Length (Source));
790 Source.Last := Source.Last - 1;
791 end if;
793 J := J - 1;
794 end loop;
795 end;
796 end Merge;
798 end Generic_Sorting;
800 -----------------
801 -- Get_Element --
802 -----------------
804 function Get_Element
805 (Container : Vector;
806 Position : Capacity_Range) return Element_Type
808 begin
809 return E (Elemsc (Container) (Position));
810 end Get_Element;
812 -----------------
813 -- Has_Element --
814 -----------------
816 function Has_Element
817 (Container : Vector;
818 Position : Extended_Index) return Boolean
820 begin
821 return Position in First_Index (Container) .. Last_Index (Container);
822 end Has_Element;
824 ------------
825 -- Insert --
826 ------------
828 procedure Insert
829 (Container : in out Vector;
830 Before : Extended_Index;
831 New_Item : Element_Type)
833 begin
834 Insert (Container, Before, New_Item, 1);
835 end Insert;
837 procedure Insert
838 (Container : in out Vector;
839 Before : Extended_Index;
840 New_Item : Element_Type;
841 Count : Count_Type)
843 J : Count_Type'Base; -- scratch
845 begin
846 -- Use Insert_Space to create the "hole" (the destination slice)
848 Insert_Space (Container, Before, Count);
850 J := To_Array_Index (Before);
852 Elems (Container) (J .. J - 1 + Count) := (others => H (New_Item));
853 end Insert;
855 procedure Insert
856 (Container : in out Vector;
857 Before : Extended_Index;
858 New_Item : Vector)
860 N : constant Count_Type := Length (New_Item);
861 B : Count_Type; -- index Before converted to Count_Type
863 begin
864 if Container'Address = New_Item'Address then
865 raise Program_Error with
866 "Container and New_Item denote same container";
867 end if;
869 -- Use Insert_Space to create the "hole" (the destination slice) into
870 -- which we copy the source items.
872 Insert_Space (Container, Before, Count => N);
874 if N = 0 then
875 -- There's nothing else to do here (vetting of parameters was
876 -- performed already in Insert_Space), so we simply return.
878 return;
879 end if;
881 B := To_Array_Index (Before);
883 Elems (Container) (B .. B + N - 1) := Elemsc (New_Item) (1 .. N);
884 end Insert;
886 ------------------
887 -- Insert_Space --
888 ------------------
890 procedure Insert_Space
891 (Container : in out Vector;
892 Before : Extended_Index;
893 Count : Count_Type := 1)
895 Old_Length : constant Count_Type := Length (Container);
897 Max_Length : Count_Type'Base; -- determined from range of Index_Type
898 New_Length : Count_Type'Base; -- sum of current length and Count
900 Index : Index_Type'Base; -- scratch for intermediate values
901 J : Count_Type'Base; -- scratch
903 begin
904 -- As a precondition on the generic actual Index_Type, the base type
905 -- must include Index_Type'Pred (Index_Type'First); this is the value
906 -- that Container.Last assumes when the vector is empty. However, we do
907 -- not allow that as the value for Index when specifying where the new
908 -- items should be inserted, so we must manually check. (That the user
909 -- is allowed to specify the value at all here is a consequence of the
910 -- declaration of the Extended_Index subtype, which includes the values
911 -- in the base range that immediately precede and immediately follow the
912 -- values in the Index_Type.)
914 if Before < Index_Type'First then
915 raise Constraint_Error with
916 "Before index is out of range (too small)";
917 end if;
919 -- We do allow a value greater than Container.Last to be specified as
920 -- the Index, but only if it's immediately greater. This allows for the
921 -- case of appending items to the back end of the vector. (It is assumed
922 -- that specifying an index value greater than Last + 1 indicates some
923 -- deeper flaw in the caller's algorithm, so that case is treated as a
924 -- proper error.)
926 if Before > Container.Last
927 and then Before - 1 > Container.Last
928 then
929 raise Constraint_Error with
930 "Before index is out of range (too large)";
931 end if;
933 -- We treat inserting 0 items into the container as a no-op, so we
934 -- simply return.
936 if Count = 0 then
937 return;
938 end if;
940 -- There are two constraints we need to satisfy. The first constraint is
941 -- that a container cannot have more than Count_Type'Last elements, so
942 -- we must check the sum of the current length and the insertion
943 -- count. Note that we cannot simply add these values, because of the
944 -- possibility of overflow.
946 if Old_Length > Count_Type'Last - Count then
947 raise Constraint_Error with "Count is out of range";
948 end if;
950 -- It is now safe compute the length of the new vector, without fear of
951 -- overflow.
953 New_Length := Old_Length + Count;
955 -- The second constraint is that the new Last index value cannot exceed
956 -- Index_Type'Last. In each branch below, we calculate the maximum
957 -- length (computed from the range of values in Index_Type), and then
958 -- compare the new length to the maximum length. If the new length is
959 -- acceptable, then we compute the new last index from that.
961 if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
963 -- We have to handle the case when there might be more values in the
964 -- range of Index_Type than in the range of Count_Type.
966 if Index_Type'First <= 0 then
968 -- We know that No_Index (the same as Index_Type'First - 1) is
969 -- less than 0, so it is safe to compute the following sum without
970 -- fear of overflow.
972 Index := No_Index + Index_Type'Base (Count_Type'Last);
974 if Index <= Index_Type'Last then
976 -- We have determined that range of Index_Type has at least as
977 -- many values as in Count_Type, so Count_Type'Last is the
978 -- maximum number of items that are allowed.
980 Max_Length := Count_Type'Last;
982 else
983 -- The range of Index_Type has fewer values than in Count_Type,
984 -- so the maximum number of items is computed from the range of
985 -- the Index_Type.
987 Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
988 end if;
990 else
991 -- No_Index is equal or greater than 0, so we can safely compute
992 -- the difference without fear of overflow (which we would have to
993 -- worry about if No_Index were less than 0, but that case is
994 -- handled above).
996 if Index_Type'Last - No_Index >= Count_Type'Pos (Count_Type'Last)
997 then
998 -- We have determined that range of Index_Type has at least as
999 -- many values as in Count_Type, so Count_Type'Last is the
1000 -- maximum number of items that are allowed.
1002 Max_Length := Count_Type'Last;
1004 else
1005 -- The range of Index_Type has fewer values than in Count_Type,
1006 -- so the maximum number of items is computed from the range of
1007 -- the Index_Type.
1009 Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
1010 end if;
1011 end if;
1013 elsif Index_Type'First <= 0 then
1015 -- We know that No_Index (the same as Index_Type'First - 1) is less
1016 -- than 0, so it is safe to compute the following sum without fear of
1017 -- overflow.
1019 J := Count_Type'Base (No_Index) + Count_Type'Last;
1021 if J <= Count_Type'Base (Index_Type'Last) then
1023 -- We have determined that range of Index_Type has at least as
1024 -- many values as in Count_Type, so Count_Type'Last is the maximum
1025 -- number of items that are allowed.
1027 Max_Length := Count_Type'Last;
1029 else
1030 -- The range of Index_Type has fewer values than Count_Type does,
1031 -- so the maximum number of items is computed from the range of
1032 -- the Index_Type.
1034 Max_Length :=
1035 Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
1036 end if;
1038 else
1039 -- No_Index is equal or greater than 0, so we can safely compute the
1040 -- difference without fear of overflow (which we would have to worry
1041 -- about if No_Index were less than 0, but that case is handled
1042 -- above).
1044 Max_Length :=
1045 Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
1046 end if;
1048 -- We have just computed the maximum length (number of items). We must
1049 -- now compare the requested length to the maximum length, as we do not
1050 -- allow a vector expand beyond the maximum (because that would create
1051 -- an internal array with a last index value greater than
1052 -- Index_Type'Last, with no way to index those elements).
1054 if New_Length > Max_Length then
1055 raise Constraint_Error with "Count is out of range";
1056 end if;
1058 J := To_Array_Index (Before);
1060 -- Increase the capacity of container if needed
1062 if not Bounded
1063 and then Current_Capacity (Container) < Capacity_Range (New_Length)
1064 then
1065 Reserve_Capacity
1066 (Container,
1067 Capacity_Range'Max
1068 (Current_Capacity (Container) * Growth_Factor,
1069 Capacity_Range (New_Length)));
1070 end if;
1072 declare
1073 EA : Maximal_Array_Ptr renames Elems (Container);
1075 begin
1076 if Before <= Container.Last then
1078 -- The new items are being inserted before some existing
1079 -- elements, so we must slide the existing elements up to their
1080 -- new home.
1082 EA (J + Count .. New_Length) := EA (J .. Old_Length);
1083 end if;
1084 end;
1086 if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
1087 Container.Last := No_Index + Index_Type'Base (New_Length);
1089 else
1090 Container.Last :=
1091 Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
1092 end if;
1093 end Insert_Space;
1095 --------------
1096 -- Is_Empty --
1097 --------------
1099 function Is_Empty (Container : Vector) return Boolean is
1100 begin
1101 return Last_Index (Container) < Index_Type'First;
1102 end Is_Empty;
1104 ------------------
1105 -- Last_Element --
1106 ------------------
1108 function Last_Element (Container : Vector) return Element_Type is
1109 begin
1110 if Is_Empty (Container) then
1111 raise Constraint_Error with "Container is empty";
1112 else
1113 return Get_Element (Container, Length (Container));
1114 end if;
1115 end Last_Element;
1117 ----------------
1118 -- Last_Index --
1119 ----------------
1121 function Last_Index (Container : Vector) return Extended_Index is
1122 begin
1123 return Container.Last;
1124 end Last_Index;
1126 ------------
1127 -- Length --
1128 ------------
1130 function Length (Container : Vector) return Capacity_Range is
1131 L : constant Int := Int (Container.Last);
1132 F : constant Int := Int (Index_Type'First);
1133 N : constant Int'Base := L - F + 1;
1135 begin
1136 return Capacity_Range (N);
1137 end Length;
1139 ----------
1140 -- Move --
1141 ----------
1143 procedure Move (Target : in out Vector; Source : in out Vector) is
1144 LS : constant Capacity_Range := Length (Source);
1146 begin
1147 if Target'Address = Source'Address then
1148 return;
1149 end if;
1151 if Bounded and then Target.Capacity < LS then
1152 raise Constraint_Error;
1153 end if;
1155 Clear (Target);
1156 Append (Target, Source);
1157 Clear (Source);
1158 end Move;
1160 ------------
1161 -- Prepend --
1162 ------------
1164 procedure Prepend (Container : in out Vector; New_Item : Vector) is
1165 begin
1166 Insert (Container, Index_Type'First, New_Item);
1167 end Prepend;
1169 procedure Prepend (Container : in out Vector; New_Item : Element_Type) is
1170 begin
1171 Prepend (Container, New_Item, 1);
1172 end Prepend;
1174 procedure Prepend
1175 (Container : in out Vector;
1176 New_Item : Element_Type;
1177 Count : Count_Type)
1179 begin
1180 Insert (Container, Index_Type'First, New_Item, Count);
1181 end Prepend;
1183 ---------------------
1184 -- Replace_Element --
1185 ---------------------
1187 procedure Replace_Element
1188 (Container : in out Vector;
1189 Index : Index_Type;
1190 New_Item : Element_Type)
1192 begin
1193 if Index > Container.Last then
1194 raise Constraint_Error with "Index is out of range";
1195 end if;
1197 declare
1198 II : constant Int'Base := Int (Index) - Int (No_Index);
1199 I : constant Capacity_Range := Capacity_Range (II);
1201 begin
1202 Elems (Container) (I) := H (New_Item);
1203 end;
1204 end Replace_Element;
1206 ----------------------
1207 -- Reserve_Capacity --
1208 ----------------------
1210 procedure Reserve_Capacity
1211 (Container : in out Vector;
1212 Capacity : Capacity_Range)
1214 begin
1215 if Bounded then
1216 if Capacity > Container.Capacity then
1217 raise Constraint_Error with "Capacity is out of range";
1218 end if;
1220 else
1221 if Capacity > Current_Capacity (Container) then
1222 declare
1223 New_Elements : constant Elements_Array_Ptr :=
1224 new Elements_Array (1 .. Capacity);
1225 L : constant Capacity_Range := Length (Container);
1227 begin
1228 New_Elements (1 .. L) := Elemsc (Container) (1 .. L);
1229 Free (Container.Elements_Ptr);
1230 Container.Elements_Ptr := New_Elements;
1231 end;
1232 end if;
1233 end if;
1234 end Reserve_Capacity;
1236 ----------------------
1237 -- Reverse_Elements --
1238 ----------------------
1240 procedure Reverse_Elements (Container : in out Vector) is
1241 begin
1242 if Length (Container) <= 1 then
1243 return;
1244 end if;
1246 declare
1247 I : Capacity_Range;
1248 J : Capacity_Range;
1249 E : Elements_Array renames
1250 Elems (Container) (1 .. Length (Container));
1252 begin
1253 I := 1;
1254 J := Length (Container);
1255 while I < J loop
1256 declare
1257 EI : constant Holder := E (I);
1259 begin
1260 E (I) := E (J);
1261 E (J) := EI;
1262 end;
1264 I := I + 1;
1265 J := J - 1;
1266 end loop;
1267 end;
1268 end Reverse_Elements;
1270 ------------------------
1271 -- Reverse_Find_Index --
1272 ------------------------
1274 function Reverse_Find_Index
1275 (Container : Vector;
1276 Item : Element_Type;
1277 Index : Index_Type := Index_Type'Last) return Extended_Index
1279 Last : Index_Type'Base;
1280 K : Capacity_Range;
1282 begin
1283 if Index > Last_Index (Container) then
1284 Last := Last_Index (Container);
1285 else
1286 Last := Index;
1287 end if;
1289 K := Capacity_Range (Int (Last) - Int (No_Index));
1290 for Indx in reverse Index_Type'First .. Last loop
1291 if Get_Element (Container, K) = Item then
1292 return Indx;
1293 end if;
1295 K := K - 1;
1296 end loop;
1298 return No_Index;
1299 end Reverse_Find_Index;
1301 ----------
1302 -- Swap --
1303 ----------
1305 procedure Swap
1306 (Container : in out Vector;
1307 I : Index_Type;
1308 J : Index_Type)
1310 begin
1311 if I > Container.Last then
1312 raise Constraint_Error with "I index is out of range";
1313 end if;
1315 if J > Container.Last then
1316 raise Constraint_Error with "J index is out of range";
1317 end if;
1319 if I = J then
1320 return;
1321 end if;
1323 declare
1324 II : constant Int'Base := Int (I) - Int (No_Index);
1325 JJ : constant Int'Base := Int (J) - Int (No_Index);
1327 EI : Holder renames Elems (Container) (Capacity_Range (II));
1328 EJ : Holder renames Elems (Container) (Capacity_Range (JJ));
1330 EI_Copy : constant Holder := EI;
1332 begin
1333 EI := EJ;
1334 EJ := EI_Copy;
1335 end;
1336 end Swap;
1338 --------------------
1339 -- To_Array_Index --
1340 --------------------
1342 function To_Array_Index (Index : Index_Type'Base) return Count_Type'Base is
1343 Offset : Count_Type'Base;
1345 begin
1346 -- We know that
1347 -- Index >= Index_Type'First
1348 -- hence we also know that
1349 -- Index - Index_Type'First >= 0
1351 -- The issue is that even though 0 is guaranteed to be a value in the
1352 -- type Index_Type'Base, there's no guarantee that the difference is a
1353 -- value in that type. To prevent overflow we use the wider of
1354 -- Count_Type'Base and Index_Type'Base to perform intermediate
1355 -- calculations.
1357 if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
1358 Offset := Count_Type'Base (Index - Index_Type'First);
1360 else
1361 Offset := Count_Type'Base (Index) -
1362 Count_Type'Base (Index_Type'First);
1363 end if;
1365 -- The array index subtype for all container element arrays always
1366 -- starts with 1.
1368 return 1 + Offset;
1369 end To_Array_Index;
1371 ---------------
1372 -- To_Vector --
1373 ---------------
1375 function To_Vector
1376 (New_Item : Element_Type;
1377 Length : Capacity_Range) return Vector
1379 begin
1380 if Length = 0 then
1381 return Empty_Vector;
1382 end if;
1384 declare
1385 First : constant Int := Int (Index_Type'First);
1386 Last_As_Int : constant Int'Base := First + Int (Length) - 1;
1387 Last : Index_Type;
1389 begin
1390 if Last_As_Int > Index_Type'Pos (Index_Type'Last) then
1391 raise Constraint_Error with "Length is out of range"; -- ???
1392 end if;
1394 Last := Index_Type (Last_As_Int);
1396 return
1397 (Capacity => Length,
1398 Last => Last,
1399 Elements_Ptr => <>,
1400 Elements => (others => H (New_Item)));
1401 end;
1402 end To_Vector;
1404 end Ada.Containers.Formal_Indefinite_Vectors;