1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains various simple utilities to analyze the CFG. */
24 #include "coretypes.h"
30 /* Store the data structures necessary for depth-first search. */
31 struct depth_first_search_ds
{
32 /* stack for backtracking during the algorithm */
35 /* number of edges in the stack. That is, positions 0, ..., sp-1
39 /* record of basic blocks already seen by depth-first search */
40 sbitmap visited_blocks
;
43 static void flow_dfs_compute_reverse_init (depth_first_search_ds
*);
44 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds
*,
46 static basic_block
flow_dfs_compute_reverse_execute (depth_first_search_ds
*,
48 static void flow_dfs_compute_reverse_finish (depth_first_search_ds
*);
50 /* Mark the back edges in DFS traversal.
51 Return nonzero if a loop (natural or otherwise) is present.
52 Inspired by Depth_First_Search_PP described in:
54 Advanced Compiler Design and Implementation
58 and heavily borrowed from pre_and_rev_post_order_compute. */
61 mark_dfs_back_edges (void)
72 /* Allocate the preorder and postorder number arrays. */
73 pre
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
74 post
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
76 /* Allocate stack for back-tracking up CFG. */
77 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
80 /* Allocate bitmap to track nodes that have been visited. */
81 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
83 /* None of the nodes in the CFG have been visited yet. */
84 bitmap_clear (visited
);
86 /* Push the first edge on to the stack. */
87 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
95 /* Look at the edge on the top of the stack. */
97 src
= ei_edge (ei
)->src
;
98 dest
= ei_edge (ei
)->dest
;
99 ei_edge (ei
)->flags
&= ~EDGE_DFS_BACK
;
101 /* Check if the edge destination has been visited yet. */
102 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
) && ! bitmap_bit_p (visited
,
105 /* Mark that we have visited the destination. */
106 bitmap_set_bit (visited
, dest
->index
);
108 pre
[dest
->index
] = prenum
++;
109 if (EDGE_COUNT (dest
->succs
) > 0)
111 /* Since the DEST node has been visited for the first
112 time, check its successors. */
113 stack
[sp
++] = ei_start (dest
->succs
);
116 post
[dest
->index
] = postnum
++;
120 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
121 && src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
122 && pre
[src
->index
] >= pre
[dest
->index
]
123 && post
[dest
->index
] == 0)
124 ei_edge (ei
)->flags
|= EDGE_DFS_BACK
, found
= true;
126 if (ei_one_before_end_p (ei
)
127 && src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
128 post
[src
->index
] = postnum
++;
130 if (!ei_one_before_end_p (ei
))
131 ei_next (&stack
[sp
- 1]);
140 sbitmap_free (visited
);
145 /* Find unreachable blocks. An unreachable block will have 0 in
146 the reachable bit in block->flags. A nonzero value indicates the
147 block is reachable. */
150 find_unreachable_blocks (void)
154 basic_block
*tos
, *worklist
, bb
;
156 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
158 /* Clear all the reachability flags. */
160 FOR_EACH_BB_FN (bb
, cfun
)
161 bb
->flags
&= ~BB_REACHABLE
;
163 /* Add our starting points to the worklist. Almost always there will
164 be only one. It isn't inconceivable that we might one day directly
165 support Fortran alternate entry points. */
167 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
171 /* Mark the block reachable. */
172 e
->dest
->flags
|= BB_REACHABLE
;
175 /* Iterate: find everything reachable from what we've already seen. */
177 while (tos
!= worklist
)
179 basic_block b
= *--tos
;
181 FOR_EACH_EDGE (e
, ei
, b
->succs
)
183 basic_block dest
= e
->dest
;
185 if (!(dest
->flags
& BB_REACHABLE
))
188 dest
->flags
|= BB_REACHABLE
;
196 /* Verify that there are no unreachable blocks in the current function. */
199 verify_no_unreachable_blocks (void)
201 find_unreachable_blocks ();
204 FOR_EACH_BB_FN (bb
, cfun
)
205 gcc_assert ((bb
->flags
& BB_REACHABLE
) != 0);
209 /* Functions to access an edge list with a vector representation.
210 Enough data is kept such that given an index number, the
211 pred and succ that edge represents can be determined, or
212 given a pred and a succ, its index number can be returned.
213 This allows algorithms which consume a lot of memory to
214 represent the normally full matrix of edge (pred,succ) with a
215 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
216 wasted space in the client code due to sparse flow graphs. */
218 /* This functions initializes the edge list. Basically the entire
219 flowgraph is processed, and all edges are assigned a number,
220 and the data structure is filled in. */
223 create_edge_list (void)
225 struct edge_list
*elist
;
231 /* Determine the number of edges in the flow graph by counting successor
232 edges on each basic block. */
234 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
235 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
237 num_edges
+= EDGE_COUNT (bb
->succs
);
240 elist
= XNEW (struct edge_list
);
241 elist
->num_edges
= num_edges
;
242 elist
->index_to_edge
= XNEWVEC (edge
, num_edges
);
246 /* Follow successors of blocks, and register these edges. */
247 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
248 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
249 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
250 elist
->index_to_edge
[num_edges
++] = e
;
255 /* This function free's memory associated with an edge list. */
258 free_edge_list (struct edge_list
*elist
)
262 free (elist
->index_to_edge
);
267 /* This function provides debug output showing an edge list. */
270 print_edge_list (FILE *f
, struct edge_list
*elist
)
274 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
275 n_basic_blocks_for_fn (cfun
), elist
->num_edges
);
277 for (x
= 0; x
< elist
->num_edges
; x
++)
279 fprintf (f
, " %-4d - edge(", x
);
280 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
281 fprintf (f
, "entry,");
283 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
285 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
286 fprintf (f
, "exit)\n");
288 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
292 /* This function provides an internal consistency check of an edge list,
293 verifying that all edges are present, and that there are no
297 verify_edge_list (FILE *f
, struct edge_list
*elist
)
299 int pred
, succ
, index
;
301 basic_block bb
, p
, s
;
304 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
305 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
307 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
309 pred
= e
->src
->index
;
310 succ
= e
->dest
->index
;
311 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
312 if (index
== EDGE_INDEX_NO_EDGE
)
314 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
318 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
319 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
320 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
321 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
322 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
323 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
327 /* We've verified that all the edges are in the list, now lets make sure
328 there are no spurious edges in the list. This is an expensive check! */
330 FOR_BB_BETWEEN (p
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
331 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
332 FOR_BB_BETWEEN (s
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
, NULL
, next_bb
)
336 FOR_EACH_EDGE (e
, ei
, p
->succs
)
343 FOR_EACH_EDGE (e
, ei
, s
->preds
)
350 if (EDGE_INDEX (elist
, p
, s
)
351 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
352 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
354 if (EDGE_INDEX (elist
, p
, s
)
355 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
356 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
357 p
->index
, s
->index
, EDGE_INDEX (elist
, p
, s
));
362 /* Functions to compute control dependences. */
364 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
366 control_dependences::set_control_dependence_map_bit (basic_block bb
,
369 if (bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
371 gcc_assert (bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
));
372 bitmap_set_bit (control_dependence_map
[bb
->index
], edge_index
);
375 /* Clear all control dependences for block BB. */
377 control_dependences::clear_control_dependence_bitmap (basic_block bb
)
379 bitmap_clear (control_dependence_map
[bb
->index
]);
382 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
383 This function is necessary because some blocks have negative numbers. */
385 static inline basic_block
386 find_pdom (basic_block block
)
388 gcc_assert (block
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
));
390 if (block
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
391 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
394 basic_block bb
= get_immediate_dominator (CDI_POST_DOMINATORS
, block
);
396 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
401 /* Determine all blocks' control dependences on the given edge with edge_list
402 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
405 control_dependences::find_control_dependence (int edge_index
)
407 basic_block current_block
;
408 basic_block ending_block
;
410 gcc_assert (INDEX_EDGE_PRED_BB (m_el
, edge_index
)
411 != EXIT_BLOCK_PTR_FOR_FN (cfun
));
413 if (INDEX_EDGE_PRED_BB (m_el
, edge_index
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
414 ending_block
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
416 ending_block
= find_pdom (INDEX_EDGE_PRED_BB (m_el
, edge_index
));
418 for (current_block
= INDEX_EDGE_SUCC_BB (m_el
, edge_index
);
419 current_block
!= ending_block
420 && current_block
!= EXIT_BLOCK_PTR_FOR_FN (cfun
);
421 current_block
= find_pdom (current_block
))
423 edge e
= INDEX_EDGE (m_el
, edge_index
);
425 /* For abnormal edges, we don't make current_block control
426 dependent because instructions that throw are always necessary
428 if (e
->flags
& EDGE_ABNORMAL
)
431 set_control_dependence_map_bit (current_block
, edge_index
);
435 /* Record all blocks' control dependences on all edges in the edge
436 list EL, ala Morgan, Section 3.6. */
438 control_dependences::control_dependences (struct edge_list
*edges
)
441 timevar_push (TV_CONTROL_DEPENDENCES
);
442 control_dependence_map
.create (last_basic_block_for_fn (cfun
));
443 for (int i
= 0; i
< last_basic_block_for_fn (cfun
); ++i
)
444 control_dependence_map
.quick_push (BITMAP_ALLOC (NULL
));
445 for (int i
= 0; i
< NUM_EDGES (m_el
); ++i
)
446 find_control_dependence (i
);
447 timevar_pop (TV_CONTROL_DEPENDENCES
);
450 /* Free control dependences and the associated edge list. */
452 control_dependences::~control_dependences ()
454 for (unsigned i
= 0; i
< control_dependence_map
.length (); ++i
)
455 BITMAP_FREE (control_dependence_map
[i
]);
456 control_dependence_map
.release ();
457 free_edge_list (m_el
);
460 /* Returns the bitmap of edges the basic-block I is dependent on. */
463 control_dependences::get_edges_dependent_on (int i
)
465 return control_dependence_map
[i
];
468 /* Returns the edge with index I from the edge list. */
471 control_dependences::get_edge (int i
)
473 return INDEX_EDGE (m_el
, i
);
477 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
478 If no such edge exists, return NULL. */
481 find_edge (basic_block pred
, basic_block succ
)
486 if (EDGE_COUNT (pred
->succs
) <= EDGE_COUNT (succ
->preds
))
488 FOR_EACH_EDGE (e
, ei
, pred
->succs
)
494 FOR_EACH_EDGE (e
, ei
, succ
->preds
)
502 /* This routine will determine what, if any, edge there is between
503 a specified predecessor and successor. */
506 find_edge_index (struct edge_list
*edge_list
, basic_block pred
, basic_block succ
)
510 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
511 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
512 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
515 return (EDGE_INDEX_NO_EDGE
);
518 /* This routine will remove any fake predecessor edges for a basic block.
519 When the edge is removed, it is also removed from whatever successor
523 remove_fake_predecessors (basic_block bb
)
528 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
530 if ((e
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
537 /* This routine will remove all fake edges from the flow graph. If
538 we remove all fake successors, it will automatically remove all
539 fake predecessors. */
542 remove_fake_edges (void)
546 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
, NULL
, next_bb
)
547 remove_fake_predecessors (bb
);
550 /* This routine will remove all fake edges to the EXIT_BLOCK. */
553 remove_fake_exit_edges (void)
555 remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun
));
559 /* This function will add a fake edge between any block which has no
560 successors, and the exit block. Some data flow equations require these
564 add_noreturn_fake_exit_edges (void)
568 FOR_EACH_BB_FN (bb
, cfun
)
569 if (EDGE_COUNT (bb
->succs
) == 0)
570 make_single_succ_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
573 /* This function adds a fake edge between any infinite loops to the
574 exit block. Some optimizations require a path from each node to
577 See also Morgan, Figure 3.10, pp. 82-83.
579 The current implementation is ugly, not attempting to minimize the
580 number of inserted fake edges. To reduce the number of fake edges
581 to insert, add fake edges from _innermost_ loops containing only
582 nodes not reachable from the exit block. */
585 connect_infinite_loops_to_exit (void)
587 basic_block unvisited_block
= EXIT_BLOCK_PTR_FOR_FN (cfun
);
588 basic_block deadend_block
;
589 depth_first_search_ds dfs_ds
;
591 /* Perform depth-first search in the reverse graph to find nodes
592 reachable from the exit block. */
593 flow_dfs_compute_reverse_init (&dfs_ds
);
594 flow_dfs_compute_reverse_add_bb (&dfs_ds
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
596 /* Repeatedly add fake edges, updating the unreachable nodes. */
599 unvisited_block
= flow_dfs_compute_reverse_execute (&dfs_ds
,
601 if (!unvisited_block
)
604 deadend_block
= dfs_find_deadend (unvisited_block
);
605 make_edge (deadend_block
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
606 flow_dfs_compute_reverse_add_bb (&dfs_ds
, deadend_block
);
609 flow_dfs_compute_reverse_finish (&dfs_ds
);
613 /* Compute reverse top sort order. This is computing a post order
614 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
615 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
616 true, unreachable blocks are deleted. */
619 post_order_compute (int *post_order
, bool include_entry_exit
,
620 bool delete_unreachable
)
622 edge_iterator
*stack
;
624 int post_order_num
= 0;
628 if (include_entry_exit
)
629 post_order
[post_order_num
++] = EXIT_BLOCK
;
631 /* Allocate stack for back-tracking up CFG. */
632 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
635 /* Allocate bitmap to track nodes that have been visited. */
636 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
638 /* None of the nodes in the CFG have been visited yet. */
639 bitmap_clear (visited
);
641 /* Push the first edge on to the stack. */
642 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
650 /* Look at the edge on the top of the stack. */
652 src
= ei_edge (ei
)->src
;
653 dest
= ei_edge (ei
)->dest
;
655 /* Check if the edge destination has been visited yet. */
656 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
657 && ! bitmap_bit_p (visited
, dest
->index
))
659 /* Mark that we have visited the destination. */
660 bitmap_set_bit (visited
, dest
->index
);
662 if (EDGE_COUNT (dest
->succs
) > 0)
663 /* Since the DEST node has been visited for the first
664 time, check its successors. */
665 stack
[sp
++] = ei_start (dest
->succs
);
667 post_order
[post_order_num
++] = dest
->index
;
671 if (ei_one_before_end_p (ei
)
672 && src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
673 post_order
[post_order_num
++] = src
->index
;
675 if (!ei_one_before_end_p (ei
))
676 ei_next (&stack
[sp
- 1]);
682 if (include_entry_exit
)
684 post_order
[post_order_num
++] = ENTRY_BLOCK
;
685 count
= post_order_num
;
688 count
= post_order_num
+ 2;
690 /* Delete the unreachable blocks if some were found and we are
691 supposed to do it. */
692 if (delete_unreachable
&& (count
!= n_basic_blocks_for_fn (cfun
)))
696 for (b
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
; b
697 != EXIT_BLOCK_PTR_FOR_FN (cfun
); b
= next_bb
)
699 next_bb
= b
->next_bb
;
701 if (!(bitmap_bit_p (visited
, b
->index
)))
702 delete_basic_block (b
);
705 tidy_fallthru_edges ();
709 sbitmap_free (visited
);
710 return post_order_num
;
714 /* Helper routine for inverted_post_order_compute
715 flow_dfs_compute_reverse_execute, and the reverse-CFG
716 deapth first search in dominance.c.
717 BB has to belong to a region of CFG
718 unreachable by inverted traversal from the exit.
719 i.e. there's no control flow path from ENTRY to EXIT
720 that contains this BB.
721 This can happen in two cases - if there's an infinite loop
722 or if there's a block that has no successor
723 (call to a function with no return).
724 Some RTL passes deal with this condition by
725 calling connect_infinite_loops_to_exit () and/or
726 add_noreturn_fake_exit_edges ().
727 However, those methods involve modifying the CFG itself
728 which may not be desirable.
729 Hence, we deal with the infinite loop/no return cases
730 by identifying a unique basic block that can reach all blocks
731 in such a region by inverted traversal.
732 This function returns a basic block that guarantees
733 that all blocks in the region are reachable
734 by starting an inverted traversal from the returned block. */
737 dfs_find_deadend (basic_block bb
)
739 bitmap visited
= BITMAP_ALLOC (NULL
);
743 if (EDGE_COUNT (bb
->succs
) == 0
744 || ! bitmap_set_bit (visited
, bb
->index
))
746 BITMAP_FREE (visited
);
750 bb
= EDGE_SUCC (bb
, 0)->dest
;
757 /* Compute the reverse top sort order of the inverted CFG
758 i.e. starting from the exit block and following the edges backward
759 (from successors to predecessors).
760 This ordering can be used for forward dataflow problems among others.
762 Optionally if START_POINTS is specified, start from exit block and all
763 basic blocks in START_POINTS. This is used by CD-DCE.
765 This function assumes that all blocks in the CFG are reachable
766 from the ENTRY (but not necessarily from EXIT).
768 If there's an infinite loop,
769 a simple inverted traversal starting from the blocks
770 with no successors can't visit all blocks.
771 To solve this problem, we first do inverted traversal
772 starting from the blocks with no successor.
773 And if there's any block left that's not visited by the regular
774 inverted traversal from EXIT,
775 those blocks are in such problematic region.
776 Among those, we find one block that has
777 any visited predecessor (which is an entry into such a region),
778 and start looking for a "dead end" from that block
779 and do another inverted traversal from that block. */
782 inverted_post_order_compute (int *post_order
,
783 sbitmap
*start_points
)
786 edge_iterator
*stack
;
788 int post_order_num
= 0;
792 verify_no_unreachable_blocks ();
794 /* Allocate stack for back-tracking up CFG. */
795 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
798 /* Allocate bitmap to track nodes that have been visited. */
799 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
801 /* None of the nodes in the CFG have been visited yet. */
802 bitmap_clear (visited
);
806 FOR_ALL_BB_FN (bb
, cfun
)
807 if (bitmap_bit_p (*start_points
, bb
->index
)
808 && EDGE_COUNT (bb
->preds
) > 0)
810 stack
[sp
++] = ei_start (bb
->preds
);
811 bitmap_set_bit (visited
, bb
->index
);
813 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
))
815 stack
[sp
++] = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
816 bitmap_set_bit (visited
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->index
);
820 /* Put all blocks that have no successor into the initial work list. */
821 FOR_ALL_BB_FN (bb
, cfun
)
822 if (EDGE_COUNT (bb
->succs
) == 0)
824 /* Push the initial edge on to the stack. */
825 if (EDGE_COUNT (bb
->preds
) > 0)
827 stack
[sp
++] = ei_start (bb
->preds
);
828 bitmap_set_bit (visited
, bb
->index
);
834 bool has_unvisited_bb
= false;
836 /* The inverted traversal loop. */
842 /* Look at the edge on the top of the stack. */
844 bb
= ei_edge (ei
)->dest
;
845 pred
= ei_edge (ei
)->src
;
847 /* Check if the predecessor has been visited yet. */
848 if (! bitmap_bit_p (visited
, pred
->index
))
850 /* Mark that we have visited the destination. */
851 bitmap_set_bit (visited
, pred
->index
);
853 if (EDGE_COUNT (pred
->preds
) > 0)
854 /* Since the predecessor node has been visited for the first
855 time, check its predecessors. */
856 stack
[sp
++] = ei_start (pred
->preds
);
858 post_order
[post_order_num
++] = pred
->index
;
862 if (bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
863 && ei_one_before_end_p (ei
))
864 post_order
[post_order_num
++] = bb
->index
;
866 if (!ei_one_before_end_p (ei
))
867 ei_next (&stack
[sp
- 1]);
873 /* Detect any infinite loop and activate the kludge.
874 Note that this doesn't check EXIT_BLOCK itself
875 since EXIT_BLOCK is always added after the outer do-while loop. */
876 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
877 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
878 if (!bitmap_bit_p (visited
, bb
->index
))
880 has_unvisited_bb
= true;
882 if (EDGE_COUNT (bb
->preds
) > 0)
886 basic_block visited_pred
= NULL
;
888 /* Find an already visited predecessor. */
889 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
891 if (bitmap_bit_p (visited
, e
->src
->index
))
892 visited_pred
= e
->src
;
897 basic_block be
= dfs_find_deadend (bb
);
898 gcc_assert (be
!= NULL
);
899 bitmap_set_bit (visited
, be
->index
);
900 stack
[sp
++] = ei_start (be
->preds
);
906 if (has_unvisited_bb
&& sp
== 0)
908 /* No blocks are reachable from EXIT at all.
909 Find a dead-end from the ENTRY, and restart the iteration. */
910 basic_block be
= dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
911 gcc_assert (be
!= NULL
);
912 bitmap_set_bit (visited
, be
->index
);
913 stack
[sp
++] = ei_start (be
->preds
);
916 /* The only case the below while fires is
917 when there's an infinite loop. */
921 /* EXIT_BLOCK is always included. */
922 post_order
[post_order_num
++] = EXIT_BLOCK
;
925 sbitmap_free (visited
);
926 return post_order_num
;
929 /* Compute the depth first search order of FN and store in the array
930 PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the
931 reverse completion number for each node. Returns the number of nodes
932 visited. A depth first search tries to get as far away from the starting
933 point as quickly as possible.
935 In case the function has unreachable blocks the number of nodes
936 visited does not include them.
938 pre_order is a really a preorder numbering of the graph.
939 rev_post_order is really a reverse postorder numbering of the graph. */
942 pre_and_rev_post_order_compute_fn (struct function
*fn
,
943 int *pre_order
, int *rev_post_order
,
944 bool include_entry_exit
)
946 edge_iterator
*stack
;
948 int pre_order_num
= 0;
949 int rev_post_order_num
= n_basic_blocks_for_fn (cfun
) - 1;
952 /* Allocate stack for back-tracking up CFG. */
953 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
956 if (include_entry_exit
)
959 pre_order
[pre_order_num
] = ENTRY_BLOCK
;
962 rev_post_order
[rev_post_order_num
--] = EXIT_BLOCK
;
965 rev_post_order_num
-= NUM_FIXED_BLOCKS
;
967 /* Allocate bitmap to track nodes that have been visited. */
968 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
970 /* None of the nodes in the CFG have been visited yet. */
971 bitmap_clear (visited
);
973 /* Push the first edge on to the stack. */
974 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn
)->succs
);
982 /* Look at the edge on the top of the stack. */
984 src
= ei_edge (ei
)->src
;
985 dest
= ei_edge (ei
)->dest
;
987 /* Check if the edge destination has been visited yet. */
988 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (fn
)
989 && ! bitmap_bit_p (visited
, dest
->index
))
991 /* Mark that we have visited the destination. */
992 bitmap_set_bit (visited
, dest
->index
);
995 pre_order
[pre_order_num
] = dest
->index
;
999 if (EDGE_COUNT (dest
->succs
) > 0)
1000 /* Since the DEST node has been visited for the first
1001 time, check its successors. */
1002 stack
[sp
++] = ei_start (dest
->succs
);
1003 else if (rev_post_order
)
1004 /* There are no successors for the DEST node so assign
1005 its reverse completion number. */
1006 rev_post_order
[rev_post_order_num
--] = dest
->index
;
1010 if (ei_one_before_end_p (ei
)
1011 && src
!= ENTRY_BLOCK_PTR_FOR_FN (fn
)
1013 /* There are no more successors for the SRC node
1014 so assign its reverse completion number. */
1015 rev_post_order
[rev_post_order_num
--] = src
->index
;
1017 if (!ei_one_before_end_p (ei
))
1018 ei_next (&stack
[sp
- 1]);
1025 sbitmap_free (visited
);
1027 if (include_entry_exit
)
1030 pre_order
[pre_order_num
] = EXIT_BLOCK
;
1033 rev_post_order
[rev_post_order_num
--] = ENTRY_BLOCK
;
1036 return pre_order_num
;
1039 /* Like pre_and_rev_post_order_compute_fn but operating on the
1040 current function and asserting that all nodes were visited. */
1043 pre_and_rev_post_order_compute (int *pre_order
, int *rev_post_order
,
1044 bool include_entry_exit
)
1047 = pre_and_rev_post_order_compute_fn (cfun
, pre_order
, rev_post_order
,
1048 include_entry_exit
);
1049 if (include_entry_exit
)
1050 /* The number of nodes visited should be the number of blocks. */
1051 gcc_assert (pre_order_num
== n_basic_blocks_for_fn (cfun
));
1053 /* The number of nodes visited should be the number of blocks minus
1054 the entry and exit blocks which are not visited here. */
1055 gcc_assert (pre_order_num
1056 == (n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
));
1058 return pre_order_num
;
1061 /* Compute the depth first search order on the _reverse_ graph and
1062 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1063 Returns the number of nodes visited.
1065 The computation is split into three pieces:
1067 flow_dfs_compute_reverse_init () creates the necessary data
1070 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1071 structures. The block will start the search.
1073 flow_dfs_compute_reverse_execute () continues (or starts) the
1074 search using the block on the top of the stack, stopping when the
1077 flow_dfs_compute_reverse_finish () destroys the necessary data
1080 Thus, the user will probably call ..._init(), call ..._add_bb() to
1081 add a beginning basic block to the stack, call ..._execute(),
1082 possibly add another bb to the stack and again call ..._execute(),
1083 ..., and finally call _finish(). */
1085 /* Initialize the data structures used for depth-first search on the
1086 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1087 added to the basic block stack. DATA is the current depth-first
1088 search context. If INITIALIZE_STACK is nonzero, there is an
1089 element on the stack. */
1092 flow_dfs_compute_reverse_init (depth_first_search_ds
*data
)
1094 /* Allocate stack for back-tracking up CFG. */
1095 data
->stack
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
1098 /* Allocate bitmap to track nodes that have been visited. */
1099 data
->visited_blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
1101 /* None of the nodes in the CFG have been visited yet. */
1102 bitmap_clear (data
->visited_blocks
);
1107 /* Add the specified basic block to the top of the dfs data
1108 structures. When the search continues, it will start at the
1112 flow_dfs_compute_reverse_add_bb (depth_first_search_ds
*data
, basic_block bb
)
1114 data
->stack
[data
->sp
++] = bb
;
1115 bitmap_set_bit (data
->visited_blocks
, bb
->index
);
1118 /* Continue the depth-first search through the reverse graph starting with the
1119 block at the stack's top and ending when the stack is empty. Visited nodes
1120 are marked. Returns an unvisited basic block, or NULL if there is none
1124 flow_dfs_compute_reverse_execute (depth_first_search_ds
*data
,
1125 basic_block last_unvisited
)
1131 while (data
->sp
> 0)
1133 bb
= data
->stack
[--data
->sp
];
1135 /* Perform depth-first search on adjacent vertices. */
1136 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1137 if (!bitmap_bit_p (data
->visited_blocks
, e
->src
->index
))
1138 flow_dfs_compute_reverse_add_bb (data
, e
->src
);
1141 /* Determine if there are unvisited basic blocks. */
1142 FOR_BB_BETWEEN (bb
, last_unvisited
, NULL
, prev_bb
)
1143 if (!bitmap_bit_p (data
->visited_blocks
, bb
->index
))
1149 /* Destroy the data structures needed for depth-first search on the
1153 flow_dfs_compute_reverse_finish (depth_first_search_ds
*data
)
1156 sbitmap_free (data
->visited_blocks
);
1159 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1160 if REVERSE, go against direction of edges. Returns number of blocks
1161 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1163 dfs_enumerate_from (basic_block bb
, int reverse
,
1164 bool (*predicate
) (const_basic_block
, const void *),
1165 basic_block
*rslt
, int rslt_max
, const void *data
)
1167 basic_block
*st
, lbb
;
1171 /* A bitmap to keep track of visited blocks. Allocating it each time
1172 this function is called is not possible, since dfs_enumerate_from
1173 is often used on small (almost) disjoint parts of cfg (bodies of
1174 loops), and allocating a large sbitmap would lead to quadratic
1176 static sbitmap visited
;
1177 static unsigned v_size
;
1179 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1180 #define UNMARK_VISITED(BB) (bitmap_clear_bit (visited, (BB)->index))
1181 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1183 /* Resize the VISITED sbitmap if necessary. */
1184 size
= last_basic_block_for_fn (cfun
);
1191 visited
= sbitmap_alloc (size
);
1192 bitmap_clear (visited
);
1195 else if (v_size
< size
)
1197 /* Ensure that we increase the size of the sbitmap exponentially. */
1198 if (2 * v_size
> size
)
1201 visited
= sbitmap_resize (visited
, size
, 0);
1205 st
= XNEWVEC (basic_block
, rslt_max
);
1206 rslt
[tv
++] = st
[sp
++] = bb
;
1215 FOR_EACH_EDGE (e
, ei
, lbb
->preds
)
1216 if (!VISITED_P (e
->src
) && predicate (e
->src
, data
))
1218 gcc_assert (tv
!= rslt_max
);
1219 rslt
[tv
++] = st
[sp
++] = e
->src
;
1220 MARK_VISITED (e
->src
);
1225 FOR_EACH_EDGE (e
, ei
, lbb
->succs
)
1226 if (!VISITED_P (e
->dest
) && predicate (e
->dest
, data
))
1228 gcc_assert (tv
!= rslt_max
);
1229 rslt
[tv
++] = st
[sp
++] = e
->dest
;
1230 MARK_VISITED (e
->dest
);
1235 for (sp
= 0; sp
< tv
; sp
++)
1236 UNMARK_VISITED (rslt
[sp
]);
1239 #undef UNMARK_VISITED
1244 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1246 This algorithm can be found in Timothy Harvey's PhD thesis, at
1247 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1248 dominance algorithms.
1250 First, we identify each join point, j (any node with more than one
1251 incoming edge is a join point).
1253 We then examine each predecessor, p, of j and walk up the dominator tree
1256 We stop the walk when we reach j's immediate dominator - j is in the
1257 dominance frontier of each of the nodes in the walk, except for j's
1258 immediate dominator. Intuitively, all of the rest of j's dominators are
1259 shared by j's predecessors as well.
1260 Since they dominate j, they will not have j in their dominance frontiers.
1262 The number of nodes touched by this algorithm is equal to the size
1263 of the dominance frontiers, no more, no less.
1268 compute_dominance_frontiers_1 (bitmap_head
*frontiers
)
1273 FOR_EACH_BB_FN (b
, cfun
)
1275 if (EDGE_COUNT (b
->preds
) >= 2)
1277 FOR_EACH_EDGE (p
, ei
, b
->preds
)
1279 basic_block runner
= p
->src
;
1281 if (runner
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1284 domsb
= get_immediate_dominator (CDI_DOMINATORS
, b
);
1285 while (runner
!= domsb
)
1287 if (!bitmap_set_bit (&frontiers
[runner
->index
],
1290 runner
= get_immediate_dominator (CDI_DOMINATORS
,
1300 compute_dominance_frontiers (bitmap_head
*frontiers
)
1302 timevar_push (TV_DOM_FRONTIERS
);
1304 compute_dominance_frontiers_1 (frontiers
);
1306 timevar_pop (TV_DOM_FRONTIERS
);
1309 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1310 return a bitmap with all the blocks in the iterated dominance
1311 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1312 frontier information as returned by compute_dominance_frontiers.
1314 The resulting set of blocks are the potential sites where PHI nodes
1315 are needed. The caller is responsible for freeing the memory
1316 allocated for the return value. */
1319 compute_idf (bitmap def_blocks
, bitmap_head
*dfs
)
1322 unsigned bb_index
, i
;
1323 bitmap phi_insertion_points
;
1325 /* Each block can appear at most twice on the work-stack. */
1326 auto_vec
<int> work_stack (2 * n_basic_blocks_for_fn (cfun
));
1327 phi_insertion_points
= BITMAP_ALLOC (NULL
);
1329 /* Seed the work list with all the blocks in DEF_BLOCKS. We use
1330 vec::quick_push here for speed. This is safe because we know that
1331 the number of definition blocks is no greater than the number of
1332 basic blocks, which is the initial capacity of WORK_STACK. */
1333 EXECUTE_IF_SET_IN_BITMAP (def_blocks
, 0, bb_index
, bi
)
1334 work_stack
.quick_push (bb_index
);
1336 /* Pop a block off the worklist, add every block that appears in
1337 the original block's DF that we have not already processed to
1338 the worklist. Iterate until the worklist is empty. Blocks
1339 which are added to the worklist are potential sites for
1341 while (work_stack
.length () > 0)
1343 bb_index
= work_stack
.pop ();
1345 /* Since the registration of NEW -> OLD name mappings is done
1346 separately from the call to update_ssa, when updating the SSA
1347 form, the basic blocks where new and/or old names are defined
1348 may have disappeared by CFG cleanup calls. In this case,
1349 we may pull a non-existing block from the work stack. */
1350 gcc_checking_assert (bb_index
1351 < (unsigned) last_basic_block_for_fn (cfun
));
1353 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs
[bb_index
], phi_insertion_points
,
1356 work_stack
.quick_push (i
);
1357 bitmap_set_bit (phi_insertion_points
, i
);
1361 return phi_insertion_points
;
1364 /* Intersection and union of preds/succs for sbitmap based data flow
1365 solvers. All four functions defined below take the same arguments:
1366 B is the basic block to perform the operation for. DST is the
1367 target sbitmap, i.e. the result. SRC is an sbitmap vector of size
1368 last_basic_block so that it can be indexed with basic block indices.
1369 DST may be (but does not have to be) SRC[B->index]. */
1371 /* Set the bitmap DST to the intersection of SRC of successors of
1375 bitmap_intersection_of_succs (sbitmap dst
, sbitmap
*src
, basic_block b
)
1377 unsigned int set_size
= dst
->size
;
1381 gcc_assert (!dst
->popcount
);
1383 for (e
= NULL
, ix
= 0; ix
< EDGE_COUNT (b
->succs
); ix
++)
1385 e
= EDGE_SUCC (b
, ix
);
1386 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1389 bitmap_copy (dst
, src
[e
->dest
->index
]);
1396 for (++ix
; ix
< EDGE_COUNT (b
->succs
); ix
++)
1399 SBITMAP_ELT_TYPE
*p
, *r
;
1401 e
= EDGE_SUCC (b
, ix
);
1402 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1405 p
= src
[e
->dest
->index
]->elms
;
1407 for (i
= 0; i
< set_size
; i
++)
1412 /* Set the bitmap DST to the intersection of SRC of predecessors of
1416 bitmap_intersection_of_preds (sbitmap dst
, sbitmap
*src
, basic_block b
)
1418 unsigned int set_size
= dst
->size
;
1422 gcc_assert (!dst
->popcount
);
1424 for (e
= NULL
, ix
= 0; ix
< EDGE_COUNT (b
->preds
); ix
++)
1426 e
= EDGE_PRED (b
, ix
);
1427 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1430 bitmap_copy (dst
, src
[e
->src
->index
]);
1437 for (++ix
; ix
< EDGE_COUNT (b
->preds
); ix
++)
1440 SBITMAP_ELT_TYPE
*p
, *r
;
1442 e
= EDGE_PRED (b
, ix
);
1443 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1446 p
= src
[e
->src
->index
]->elms
;
1448 for (i
= 0; i
< set_size
; i
++)
1453 /* Set the bitmap DST to the union of SRC of successors of
1457 bitmap_union_of_succs (sbitmap dst
, sbitmap
*src
, basic_block b
)
1459 unsigned int set_size
= dst
->size
;
1463 gcc_assert (!dst
->popcount
);
1465 for (ix
= 0; ix
< EDGE_COUNT (b
->succs
); ix
++)
1467 e
= EDGE_SUCC (b
, ix
);
1468 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1471 bitmap_copy (dst
, src
[e
->dest
->index
]);
1475 if (ix
== EDGE_COUNT (b
->succs
))
1478 for (ix
++; ix
< EDGE_COUNT (b
->succs
); ix
++)
1481 SBITMAP_ELT_TYPE
*p
, *r
;
1483 e
= EDGE_SUCC (b
, ix
);
1484 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1487 p
= src
[e
->dest
->index
]->elms
;
1489 for (i
= 0; i
< set_size
; i
++)
1494 /* Set the bitmap DST to the union of SRC of predecessors of
1498 bitmap_union_of_preds (sbitmap dst
, sbitmap
*src
, basic_block b
)
1500 unsigned int set_size
= dst
->size
;
1504 gcc_assert (!dst
->popcount
);
1506 for (ix
= 0; ix
< EDGE_COUNT (b
->preds
); ix
++)
1508 e
= EDGE_PRED (b
, ix
);
1509 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1512 bitmap_copy (dst
, src
[e
->src
->index
]);
1516 if (ix
== EDGE_COUNT (b
->preds
))
1519 for (ix
++; ix
< EDGE_COUNT (b
->preds
); ix
++)
1522 SBITMAP_ELT_TYPE
*p
, *r
;
1524 e
= EDGE_PRED (b
, ix
);
1525 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1528 p
= src
[e
->src
->index
]->elms
;
1530 for (i
= 0; i
< set_size
; i
++)
1535 /* Returns the list of basic blocks in the function in an order that guarantees
1536 that if a block X has just a single predecessor Y, then Y is after X in the
1540 single_pred_before_succ_order (void)
1543 basic_block
*order
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
1544 unsigned n
= n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
;
1546 sbitmap visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
1548 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1549 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1551 bitmap_clear (visited
);
1553 MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
1554 FOR_EACH_BB_FN (x
, cfun
)
1559 /* Walk the predecessors of x as long as they have precisely one
1560 predecessor and add them to the list, so that they get stored
1563 single_pred_p (y
) && !VISITED_P (single_pred (y
));
1564 y
= single_pred (y
))
1566 for (y
= x
, i
= n
- np
;
1567 single_pred_p (y
) && !VISITED_P (single_pred (y
));
1568 y
= single_pred (y
), i
++)
1576 gcc_assert (i
== n
- 1);
1580 sbitmap_free (visited
);
1581 gcc_assert (n
== 0);