revert: match.pd: Add flag_unsafe_math_optimizations check before deciding on the...
[official-gcc.git] / gcc / ira.c
bloba4321d3b5af576cad45da426caf30e4c08c7a0f8
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA cannot assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
396 struct target_ira default_target_ira;
397 class target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 class target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
446 int i, m, hard_regno;
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
461 #define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
464 /* The function sets up the three arrays declared above. */
465 static void
466 setup_class_hard_regs (void)
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
474 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 #ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485 #else
486 hard_regno = i;
487 #endif
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515 #endif
516 no_unit_alloc_regs = fixed_nonglobal_reg_set;
517 if (! use_hard_frame_p)
518 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
519 setup_class_hard_regs ();
524 #define alloc_reg_class_subclasses \
525 (this_target_ira_int->x_alloc_reg_class_subclasses)
527 /* Initialize the table of subclasses of each reg class. */
528 static void
529 setup_reg_subclasses (void)
531 int i, j;
532 HARD_REG_SET temp_hard_regset2;
534 for (i = 0; i < N_REG_CLASSES; i++)
535 for (j = 0; j < N_REG_CLASSES; j++)
536 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538 for (i = 0; i < N_REG_CLASSES; i++)
540 if (i == (int) NO_REGS)
541 continue;
543 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
549 enum reg_class *p;
551 temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
552 if (! hard_reg_set_subset_p (temp_hard_regset,
553 temp_hard_regset2))
554 continue;
555 p = &alloc_reg_class_subclasses[j][0];
556 while (*p != LIM_REG_CLASSES) p++;
557 *p = (enum reg_class) i;
564 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
565 static void
566 setup_class_subset_and_memory_move_costs (void)
568 int cl, cl2, mode, cost;
569 HARD_REG_SET temp_hard_regset2;
571 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
572 ira_memory_move_cost[mode][NO_REGS][0]
573 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
574 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
576 if (cl != (int) NO_REGS)
577 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
579 ira_max_memory_move_cost[mode][cl][0]
580 = ira_memory_move_cost[mode][cl][0]
581 = memory_move_cost ((machine_mode) mode,
582 (reg_class_t) cl, false);
583 ira_max_memory_move_cost[mode][cl][1]
584 = ira_memory_move_cost[mode][cl][1]
585 = memory_move_cost ((machine_mode) mode,
586 (reg_class_t) cl, true);
587 /* Costs for NO_REGS are used in cost calculation on the
588 1st pass when the preferred register classes are not
589 known yet. In this case we take the best scenario. */
590 if (ira_memory_move_cost[mode][NO_REGS][0]
591 > ira_memory_move_cost[mode][cl][0])
592 ira_max_memory_move_cost[mode][NO_REGS][0]
593 = ira_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][cl][0];
595 if (ira_memory_move_cost[mode][NO_REGS][1]
596 > ira_memory_move_cost[mode][cl][1])
597 ira_max_memory_move_cost[mode][NO_REGS][1]
598 = ira_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][cl][1];
602 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
603 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
605 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
606 temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
607 ira_class_subset_p[cl][cl2]
608 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
609 if (! hard_reg_set_empty_p (temp_hard_regset2)
610 && hard_reg_set_subset_p (reg_class_contents[cl2],
611 reg_class_contents[cl]))
612 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
614 cost = ira_memory_move_cost[mode][cl2][0];
615 if (cost > ira_max_memory_move_cost[mode][cl][0])
616 ira_max_memory_move_cost[mode][cl][0] = cost;
617 cost = ira_memory_move_cost[mode][cl2][1];
618 if (cost > ira_max_memory_move_cost[mode][cl][1])
619 ira_max_memory_move_cost[mode][cl][1] = cost;
622 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
623 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
625 ira_memory_move_cost[mode][cl][0]
626 = ira_max_memory_move_cost[mode][cl][0];
627 ira_memory_move_cost[mode][cl][1]
628 = ira_max_memory_move_cost[mode][cl][1];
630 setup_reg_subclasses ();
635 /* Define the following macro if allocation through malloc if
636 preferable. */
637 #define IRA_NO_OBSTACK
639 #ifndef IRA_NO_OBSTACK
640 /* Obstack used for storing all dynamic data (except bitmaps) of the
641 IRA. */
642 static struct obstack ira_obstack;
643 #endif
645 /* Obstack used for storing all bitmaps of the IRA. */
646 static struct bitmap_obstack ira_bitmap_obstack;
648 /* Allocate memory of size LEN for IRA data. */
649 void *
650 ira_allocate (size_t len)
652 void *res;
654 #ifndef IRA_NO_OBSTACK
655 res = obstack_alloc (&ira_obstack, len);
656 #else
657 res = xmalloc (len);
658 #endif
659 return res;
662 /* Free memory ADDR allocated for IRA data. */
663 void
664 ira_free (void *addr ATTRIBUTE_UNUSED)
666 #ifndef IRA_NO_OBSTACK
667 /* do nothing */
668 #else
669 free (addr);
670 #endif
674 /* Allocate and returns bitmap for IRA. */
675 bitmap
676 ira_allocate_bitmap (void)
678 return BITMAP_ALLOC (&ira_bitmap_obstack);
681 /* Free bitmap B allocated for IRA. */
682 void
683 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
685 /* do nothing */
690 /* Output information about allocation of all allocnos (except for
691 caps) into file F. */
692 void
693 ira_print_disposition (FILE *f)
695 int i, n, max_regno;
696 ira_allocno_t a;
697 basic_block bb;
699 fprintf (f, "Disposition:");
700 max_regno = max_reg_num ();
701 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
702 for (a = ira_regno_allocno_map[i];
703 a != NULL;
704 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
706 if (n % 4 == 0)
707 fprintf (f, "\n");
708 n++;
709 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
710 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
711 fprintf (f, "b%-3d", bb->index);
712 else
713 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
714 if (ALLOCNO_HARD_REGNO (a) >= 0)
715 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
716 else
717 fprintf (f, " mem");
719 fprintf (f, "\n");
722 /* Outputs information about allocation of all allocnos into
723 stderr. */
724 void
725 ira_debug_disposition (void)
727 ira_print_disposition (stderr);
732 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
733 register class containing stack registers or NO_REGS if there are
734 no stack registers. To find this class, we iterate through all
735 register pressure classes and choose the first register pressure
736 class containing all the stack registers and having the biggest
737 size. */
738 static void
739 setup_stack_reg_pressure_class (void)
741 ira_stack_reg_pressure_class = NO_REGS;
742 #ifdef STACK_REGS
744 int i, best, size;
745 enum reg_class cl;
746 HARD_REG_SET temp_hard_regset2;
748 CLEAR_HARD_REG_SET (temp_hard_regset);
749 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
750 SET_HARD_REG_BIT (temp_hard_regset, i);
751 best = 0;
752 for (i = 0; i < ira_pressure_classes_num; i++)
754 cl = ira_pressure_classes[i];
755 temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
756 size = hard_reg_set_size (temp_hard_regset2);
757 if (best < size)
759 best = size;
760 ira_stack_reg_pressure_class = cl;
764 #endif
767 /* Find pressure classes which are register classes for which we
768 calculate register pressure in IRA, register pressure sensitive
769 insn scheduling, and register pressure sensitive loop invariant
770 motion.
772 To make register pressure calculation easy, we always use
773 non-intersected register pressure classes. A move of hard
774 registers from one register pressure class is not more expensive
775 than load and store of the hard registers. Most likely an allocno
776 class will be a subset of a register pressure class and in many
777 cases a register pressure class. That makes usage of register
778 pressure classes a good approximation to find a high register
779 pressure. */
780 static void
781 setup_pressure_classes (void)
783 int cost, i, n, curr;
784 int cl, cl2;
785 enum reg_class pressure_classes[N_REG_CLASSES];
786 int m;
787 HARD_REG_SET temp_hard_regset2;
788 bool insert_p;
790 if (targetm.compute_pressure_classes)
791 n = targetm.compute_pressure_classes (pressure_classes);
792 else
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 temp_hard_regset
814 = (reg_class_contents[cl]
815 & ~(no_unit_alloc_regs
816 | ira_prohibited_class_mode_regs[cl][m]));
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
825 if (m >= NUM_MACHINE_MODES)
826 continue;
828 curr = 0;
829 insert_p = true;
830 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
831 /* Remove so far added pressure classes which are subset of the
832 current candidate class. Prefer GENERAL_REGS as a pressure
833 register class to another class containing the same
834 allocatable hard registers. We do this because machine
835 dependent cost hooks might give wrong costs for the latter
836 class but always give the right cost for the former class
837 (GENERAL_REGS). */
838 for (i = 0; i < n; i++)
840 cl2 = pressure_classes[i];
841 temp_hard_regset2 = (reg_class_contents[cl2]
842 & ~no_unit_alloc_regs);
843 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
844 && (temp_hard_regset != temp_hard_regset2
845 || cl2 == (int) GENERAL_REGS))
847 pressure_classes[curr++] = (enum reg_class) cl2;
848 insert_p = false;
849 continue;
851 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
852 && (temp_hard_regset2 != temp_hard_regset
853 || cl == (int) GENERAL_REGS))
854 continue;
855 if (temp_hard_regset2 == temp_hard_regset)
856 insert_p = false;
857 pressure_classes[curr++] = (enum reg_class) cl2;
859 /* If the current candidate is a subset of a so far added
860 pressure class, don't add it to the list of the pressure
861 classes. */
862 if (insert_p)
863 pressure_classes[curr++] = (enum reg_class) cl;
864 n = curr;
867 #ifdef ENABLE_IRA_CHECKING
869 HARD_REG_SET ignore_hard_regs;
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 ignore_hard_regs = no_unit_alloc_regs;
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
887 ignore_hard_regs |= reg_class_contents[cl];
888 continue;
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 temp_hard_regset2 |= reg_class_contents[cl];
894 if (i < n)
895 temp_hard_regset |= reg_class_contents[cl];
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 temp_hard_regset &= ~ignore_hard_regs;
903 temp_hard_regset2 &= ~ignore_hard_regs;
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 setup_stack_reg_pressure_class ();
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
924 int i, cl, cl2, m;
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We cannot use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
948 if (m < NUM_MACHINE_MODES)
949 break;
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode cannot use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
995 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
996 for (j = 0; j < n; j++)
998 cl = classes[j];
999 temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
1000 if (temp_hard_regset == temp_hard_regset2)
1001 break;
1003 if (j >= n || targetm.additional_allocno_class_p (i))
1004 classes[n++] = (enum reg_class) i;
1005 else if (i == GENERAL_REGS)
1006 /* Prefer general regs. For i386 example, it means that
1007 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1008 (all of them consists of the same available hard
1009 registers). */
1010 classes[j] = (enum reg_class) i;
1012 classes[n] = LIM_REG_CLASSES;
1014 /* Set up classes which can be used for allocnos as classes
1015 containing non-empty unique sets of allocatable hard
1016 registers. */
1017 ira_allocno_classes_num = 0;
1018 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1019 if (ira_class_hard_regs_num[cl] > 0)
1020 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1021 ira_important_classes_num = 0;
1022 /* Add non-allocno classes containing to non-empty set of
1023 allocatable hard regs. */
1024 for (cl = 0; cl < N_REG_CLASSES; cl++)
1025 if (ira_class_hard_regs_num[cl] > 0)
1027 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1028 set_p = false;
1029 for (j = 0; j < ira_allocno_classes_num; j++)
1031 temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1032 & ~no_unit_alloc_regs);
1033 if ((enum reg_class) cl == ira_allocno_classes[j])
1034 break;
1035 else if (hard_reg_set_subset_p (temp_hard_regset,
1036 temp_hard_regset2))
1037 set_p = true;
1039 if (set_p && j >= ira_allocno_classes_num)
1040 ira_important_classes[ira_important_classes_num++]
1041 = (enum reg_class) cl;
1043 /* Now add allocno classes to the important classes. */
1044 for (j = 0; j < ira_allocno_classes_num; j++)
1045 ira_important_classes[ira_important_classes_num++]
1046 = ira_allocno_classes[j];
1047 for (cl = 0; cl < N_REG_CLASSES; cl++)
1049 ira_reg_allocno_class_p[cl] = false;
1050 ira_reg_pressure_class_p[cl] = false;
1052 for (j = 0; j < ira_allocno_classes_num; j++)
1053 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1054 setup_pressure_classes ();
1055 setup_uniform_class_p ();
1058 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1059 given by array CLASSES of length CLASSES_NUM. The function is used
1060 make translation any reg class to an allocno class or to an
1061 pressure class. This translation is necessary for some
1062 calculations when we can use only allocno or pressure classes and
1063 such translation represents an approximate representation of all
1064 classes.
1066 The translation in case when allocatable hard register set of a
1067 given class is subset of allocatable hard register set of a class
1068 in CLASSES is pretty simple. We use smallest classes from CLASSES
1069 containing a given class. If allocatable hard register set of a
1070 given class is not a subset of any corresponding set of a class
1071 from CLASSES, we use the cheapest (with load/store point of view)
1072 class from CLASSES whose set intersects with given class set. */
1073 static void
1074 setup_class_translate_array (enum reg_class *class_translate,
1075 int classes_num, enum reg_class *classes)
1077 int cl, mode;
1078 enum reg_class aclass, best_class, *cl_ptr;
1079 int i, cost, min_cost, best_cost;
1081 for (cl = 0; cl < N_REG_CLASSES; cl++)
1082 class_translate[cl] = NO_REGS;
1084 for (i = 0; i < classes_num; i++)
1086 aclass = classes[i];
1087 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1088 (cl = *cl_ptr) != LIM_REG_CLASSES;
1089 cl_ptr++)
1090 if (class_translate[cl] == NO_REGS)
1091 class_translate[cl] = aclass;
1092 class_translate[aclass] = aclass;
1094 /* For classes which are not fully covered by one of given classes
1095 (in other words covered by more one given class), use the
1096 cheapest class. */
1097 for (cl = 0; cl < N_REG_CLASSES; cl++)
1099 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1100 continue;
1101 best_class = NO_REGS;
1102 best_cost = INT_MAX;
1103 for (i = 0; i < classes_num; i++)
1105 aclass = classes[i];
1106 temp_hard_regset = (reg_class_contents[aclass]
1107 & reg_class_contents[cl]
1108 & ~no_unit_alloc_regs);
1109 if (! hard_reg_set_empty_p (temp_hard_regset))
1111 min_cost = INT_MAX;
1112 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1114 cost = (ira_memory_move_cost[mode][aclass][0]
1115 + ira_memory_move_cost[mode][aclass][1]);
1116 if (min_cost > cost)
1117 min_cost = cost;
1119 if (best_class == NO_REGS || best_cost > min_cost)
1121 best_class = aclass;
1122 best_cost = min_cost;
1126 class_translate[cl] = best_class;
1130 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1131 IRA_PRESSURE_CLASS_TRANSLATE. */
1132 static void
1133 setup_class_translate (void)
1135 setup_class_translate_array (ira_allocno_class_translate,
1136 ira_allocno_classes_num, ira_allocno_classes);
1137 setup_class_translate_array (ira_pressure_class_translate,
1138 ira_pressure_classes_num, ira_pressure_classes);
1141 /* Order numbers of allocno classes in original target allocno class
1142 array, -1 for non-allocno classes. */
1143 static int allocno_class_order[N_REG_CLASSES];
1145 /* The function used to sort the important classes. */
1146 static int
1147 comp_reg_classes_func (const void *v1p, const void *v2p)
1149 enum reg_class cl1 = *(const enum reg_class *) v1p;
1150 enum reg_class cl2 = *(const enum reg_class *) v2p;
1151 enum reg_class tcl1, tcl2;
1152 int diff;
1154 tcl1 = ira_allocno_class_translate[cl1];
1155 tcl2 = ira_allocno_class_translate[cl2];
1156 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1157 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1158 return diff;
1159 return (int) cl1 - (int) cl2;
1162 /* For correct work of function setup_reg_class_relation we need to
1163 reorder important classes according to the order of their allocno
1164 classes. It places important classes containing the same
1165 allocatable hard register set adjacent to each other and allocno
1166 class with the allocatable hard register set right after the other
1167 important classes with the same set.
1169 In example from comments of function
1170 setup_allocno_and_important_classes, it places LEGACY_REGS and
1171 GENERAL_REGS close to each other and GENERAL_REGS is after
1172 LEGACY_REGS. */
1173 static void
1174 reorder_important_classes (void)
1176 int i;
1178 for (i = 0; i < N_REG_CLASSES; i++)
1179 allocno_class_order[i] = -1;
1180 for (i = 0; i < ira_allocno_classes_num; i++)
1181 allocno_class_order[ira_allocno_classes[i]] = i;
1182 qsort (ira_important_classes, ira_important_classes_num,
1183 sizeof (enum reg_class), comp_reg_classes_func);
1184 for (i = 0; i < ira_important_classes_num; i++)
1185 ira_important_class_nums[ira_important_classes[i]] = i;
1188 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1189 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1190 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1191 please see corresponding comments in ira-int.h. */
1192 static void
1193 setup_reg_class_relations (void)
1195 int i, cl1, cl2, cl3;
1196 HARD_REG_SET intersection_set, union_set, temp_set2;
1197 bool important_class_p[N_REG_CLASSES];
1199 memset (important_class_p, 0, sizeof (important_class_p));
1200 for (i = 0; i < ira_important_classes_num; i++)
1201 important_class_p[ira_important_classes[i]] = true;
1202 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1204 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1205 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1207 ira_reg_classes_intersect_p[cl1][cl2] = false;
1208 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1209 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1210 temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1211 temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1212 if (hard_reg_set_empty_p (temp_hard_regset)
1213 && hard_reg_set_empty_p (temp_set2))
1215 /* The both classes have no allocatable hard registers
1216 -- take all class hard registers into account and use
1217 reg_class_subunion and reg_class_superunion. */
1218 for (i = 0;; i++)
1220 cl3 = reg_class_subclasses[cl1][i];
1221 if (cl3 == LIM_REG_CLASSES)
1222 break;
1223 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1224 (enum reg_class) cl3))
1225 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1227 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1228 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1229 continue;
1231 ira_reg_classes_intersect_p[cl1][cl2]
1232 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1233 if (important_class_p[cl1] && important_class_p[cl2]
1234 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1236 /* CL1 and CL2 are important classes and CL1 allocatable
1237 hard register set is inside of CL2 allocatable hard
1238 registers -- make CL1 a superset of CL2. */
1239 enum reg_class *p;
1241 p = &ira_reg_class_super_classes[cl1][0];
1242 while (*p != LIM_REG_CLASSES)
1243 p++;
1244 *p++ = (enum reg_class) cl2;
1245 *p = LIM_REG_CLASSES;
1247 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1248 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1249 intersection_set = (reg_class_contents[cl1]
1250 & reg_class_contents[cl2]
1251 & ~no_unit_alloc_regs);
1252 union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1253 & ~no_unit_alloc_regs);
1254 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1256 temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
1257 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1259 /* CL3 allocatable hard register set is inside of
1260 intersection of allocatable hard register sets
1261 of CL1 and CL2. */
1262 if (important_class_p[cl3])
1264 temp_set2
1265 = (reg_class_contents
1266 [ira_reg_class_intersect[cl1][cl2]]);
1267 temp_set2 &= ~no_unit_alloc_regs;
1268 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1269 /* If the allocatable hard register sets are
1270 the same, prefer GENERAL_REGS or the
1271 smallest class for debugging
1272 purposes. */
1273 || (temp_hard_regset == temp_set2
1274 && (cl3 == GENERAL_REGS
1275 || ((ira_reg_class_intersect[cl1][cl2]
1276 != GENERAL_REGS)
1277 && hard_reg_set_subset_p
1278 (reg_class_contents[cl3],
1279 reg_class_contents
1280 [(int)
1281 ira_reg_class_intersect[cl1][cl2]])))))
1282 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1284 temp_set2
1285 = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1286 & ~no_unit_alloc_regs);
1287 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1288 /* Ignore unavailable hard registers and prefer
1289 smallest class for debugging purposes. */
1290 || (temp_hard_regset == temp_set2
1291 && hard_reg_set_subset_p
1292 (reg_class_contents[cl3],
1293 reg_class_contents
1294 [(int) ira_reg_class_subset[cl1][cl2]])))
1295 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1297 if (important_class_p[cl3]
1298 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1300 /* CL3 allocatable hard register set is inside of
1301 union of allocatable hard register sets of CL1
1302 and CL2. */
1303 temp_set2
1304 = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1305 & ~no_unit_alloc_regs);
1306 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1307 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1309 && (temp_set2 != temp_hard_regset
1310 || cl3 == GENERAL_REGS
1311 /* If the allocatable hard register sets are the
1312 same, prefer GENERAL_REGS or the smallest
1313 class for debugging purposes. */
1314 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1315 && hard_reg_set_subset_p
1316 (reg_class_contents[cl3],
1317 reg_class_contents
1318 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1319 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1321 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1323 /* CL3 allocatable hard register set contains union
1324 of allocatable hard register sets of CL1 and
1325 CL2. */
1326 temp_set2
1327 = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1328 & ~no_unit_alloc_regs);
1329 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1330 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1332 && (temp_set2 != temp_hard_regset
1333 || cl3 == GENERAL_REGS
1334 /* If the allocatable hard register sets are the
1335 same, prefer GENERAL_REGS or the smallest
1336 class for debugging purposes. */
1337 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1338 && hard_reg_set_subset_p
1339 (reg_class_contents[cl3],
1340 reg_class_contents
1341 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1342 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1349 /* Output all uniform and important classes into file F. */
1350 static void
1351 print_uniform_and_important_classes (FILE *f)
1353 int i, cl;
1355 fprintf (f, "Uniform classes:\n");
1356 for (cl = 0; cl < N_REG_CLASSES; cl++)
1357 if (ira_uniform_class_p[cl])
1358 fprintf (f, " %s", reg_class_names[cl]);
1359 fprintf (f, "\nImportant classes:\n");
1360 for (i = 0; i < ira_important_classes_num; i++)
1361 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1362 fprintf (f, "\n");
1365 /* Output all possible allocno or pressure classes and their
1366 translation map into file F. */
1367 static void
1368 print_translated_classes (FILE *f, bool pressure_p)
1370 int classes_num = (pressure_p
1371 ? ira_pressure_classes_num : ira_allocno_classes_num);
1372 enum reg_class *classes = (pressure_p
1373 ? ira_pressure_classes : ira_allocno_classes);
1374 enum reg_class *class_translate = (pressure_p
1375 ? ira_pressure_class_translate
1376 : ira_allocno_class_translate);
1377 int i;
1379 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1380 for (i = 0; i < classes_num; i++)
1381 fprintf (f, " %s", reg_class_names[classes[i]]);
1382 fprintf (f, "\nClass translation:\n");
1383 for (i = 0; i < N_REG_CLASSES; i++)
1384 fprintf (f, " %s -> %s\n", reg_class_names[i],
1385 reg_class_names[class_translate[i]]);
1388 /* Output all possible allocno and translation classes and the
1389 translation maps into stderr. */
1390 void
1391 ira_debug_allocno_classes (void)
1393 print_uniform_and_important_classes (stderr);
1394 print_translated_classes (stderr, false);
1395 print_translated_classes (stderr, true);
1398 /* Set up different arrays concerning class subsets, allocno and
1399 important classes. */
1400 static void
1401 find_reg_classes (void)
1403 setup_allocno_and_important_classes ();
1404 setup_class_translate ();
1405 reorder_important_classes ();
1406 setup_reg_class_relations ();
1411 /* Set up the array above. */
1412 static void
1413 setup_hard_regno_aclass (void)
1415 int i;
1417 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1419 #if 1
1420 ira_hard_regno_allocno_class[i]
1421 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1422 ? NO_REGS
1423 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1424 #else
1425 int j;
1426 enum reg_class cl;
1427 ira_hard_regno_allocno_class[i] = NO_REGS;
1428 for (j = 0; j < ira_allocno_classes_num; j++)
1430 cl = ira_allocno_classes[j];
1431 if (ira_class_hard_reg_index[cl][i] >= 0)
1433 ira_hard_regno_allocno_class[i] = cl;
1434 break;
1437 #endif
1443 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1444 static void
1445 setup_reg_class_nregs (void)
1447 int i, cl, cl2, m;
1449 for (m = 0; m < MAX_MACHINE_MODE; m++)
1451 for (cl = 0; cl < N_REG_CLASSES; cl++)
1452 ira_reg_class_max_nregs[cl][m]
1453 = ira_reg_class_min_nregs[cl][m]
1454 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1455 for (cl = 0; cl < N_REG_CLASSES; cl++)
1456 for (i = 0;
1457 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1458 i++)
1459 if (ira_reg_class_min_nregs[cl2][m]
1460 < ira_reg_class_min_nregs[cl][m])
1461 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1467 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1468 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1469 static void
1470 setup_prohibited_class_mode_regs (void)
1472 int j, k, hard_regno, cl, last_hard_regno, count;
1474 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1476 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1477 for (j = 0; j < NUM_MACHINE_MODES; j++)
1479 count = 0;
1480 last_hard_regno = -1;
1481 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1482 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1484 hard_regno = ira_class_hard_regs[cl][k];
1485 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1486 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1487 hard_regno);
1488 else if (in_hard_reg_set_p (temp_hard_regset,
1489 (machine_mode) j, hard_regno))
1491 last_hard_regno = hard_regno;
1492 count++;
1495 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1500 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1501 spanning from one register pressure class to another one. It is
1502 called after defining the pressure classes. */
1503 static void
1504 clarify_prohibited_class_mode_regs (void)
1506 int j, k, hard_regno, cl, pclass, nregs;
1508 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1509 for (j = 0; j < NUM_MACHINE_MODES; j++)
1511 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1512 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1514 hard_regno = ira_class_hard_regs[cl][k];
1515 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1516 continue;
1517 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1518 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1520 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1521 hard_regno);
1522 continue;
1524 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1525 for (nregs-- ;nregs >= 0; nregs--)
1526 if (((enum reg_class) pclass
1527 != ira_pressure_class_translate[REGNO_REG_CLASS
1528 (hard_regno + nregs)]))
1530 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1531 hard_regno);
1532 break;
1534 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1535 hard_regno))
1536 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1537 (machine_mode) j, hard_regno);
1542 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1543 and IRA_MAY_MOVE_OUT_COST for MODE. */
1544 void
1545 ira_init_register_move_cost (machine_mode mode)
1547 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1548 bool all_match = true;
1549 unsigned int i, cl1, cl2;
1550 HARD_REG_SET ok_regs;
1552 ira_assert (ira_register_move_cost[mode] == NULL
1553 && ira_may_move_in_cost[mode] == NULL
1554 && ira_may_move_out_cost[mode] == NULL);
1555 CLEAR_HARD_REG_SET (ok_regs);
1556 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1557 if (targetm.hard_regno_mode_ok (i, mode))
1558 SET_HARD_REG_BIT (ok_regs, i);
1560 /* Note that we might be asked about the move costs of modes that
1561 cannot be stored in any hard register, for example if an inline
1562 asm tries to create a register operand with an impossible mode.
1563 We therefore can't assert have_regs_of_mode[mode] here. */
1564 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1565 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1567 int cost;
1568 if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1569 || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
1571 if ((ira_reg_class_max_nregs[cl1][mode]
1572 > ira_class_hard_regs_num[cl1])
1573 || (ira_reg_class_max_nregs[cl2][mode]
1574 > ira_class_hard_regs_num[cl2]))
1575 cost = 65535;
1576 else
1577 cost = (ira_memory_move_cost[mode][cl1][0]
1578 + ira_memory_move_cost[mode][cl2][1]) * 2;
1580 else
1582 cost = register_move_cost (mode, (enum reg_class) cl1,
1583 (enum reg_class) cl2);
1584 ira_assert (cost < 65535);
1586 all_match &= (last_move_cost[cl1][cl2] == cost);
1587 last_move_cost[cl1][cl2] = cost;
1589 if (all_match && last_mode_for_init_move_cost != -1)
1591 ira_register_move_cost[mode]
1592 = ira_register_move_cost[last_mode_for_init_move_cost];
1593 ira_may_move_in_cost[mode]
1594 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1595 ira_may_move_out_cost[mode]
1596 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1597 return;
1599 last_mode_for_init_move_cost = mode;
1600 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1601 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1602 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1603 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1604 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1606 int cost;
1607 enum reg_class *p1, *p2;
1609 if (last_move_cost[cl1][cl2] == 65535)
1611 ira_register_move_cost[mode][cl1][cl2] = 65535;
1612 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1613 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1615 else
1617 cost = last_move_cost[cl1][cl2];
1619 for (p2 = &reg_class_subclasses[cl2][0];
1620 *p2 != LIM_REG_CLASSES; p2++)
1621 if (ira_class_hard_regs_num[*p2] > 0
1622 && (ira_reg_class_max_nregs[*p2][mode]
1623 <= ira_class_hard_regs_num[*p2]))
1624 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1626 for (p1 = &reg_class_subclasses[cl1][0];
1627 *p1 != LIM_REG_CLASSES; p1++)
1628 if (ira_class_hard_regs_num[*p1] > 0
1629 && (ira_reg_class_max_nregs[*p1][mode]
1630 <= ira_class_hard_regs_num[*p1]))
1631 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1633 ira_assert (cost <= 65535);
1634 ira_register_move_cost[mode][cl1][cl2] = cost;
1636 if (ira_class_subset_p[cl1][cl2])
1637 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1638 else
1639 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1641 if (ira_class_subset_p[cl2][cl1])
1642 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1643 else
1644 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1651 /* This is called once during compiler work. It sets up
1652 different arrays whose values don't depend on the compiled
1653 function. */
1654 void
1655 ira_init_once (void)
1657 ira_init_costs_once ();
1658 lra_init_once ();
1660 ira_use_lra_p = targetm.lra_p ();
1663 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1664 ira_may_move_out_cost for each mode. */
1665 void
1666 target_ira_int::free_register_move_costs (void)
1668 int mode, i;
1670 /* Reset move_cost and friends, making sure we only free shared
1671 table entries once. */
1672 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1673 if (x_ira_register_move_cost[mode])
1675 for (i = 0;
1676 i < mode && (x_ira_register_move_cost[i]
1677 != x_ira_register_move_cost[mode]);
1678 i++)
1680 if (i == mode)
1682 free (x_ira_register_move_cost[mode]);
1683 free (x_ira_may_move_in_cost[mode]);
1684 free (x_ira_may_move_out_cost[mode]);
1687 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1688 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1689 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1690 last_mode_for_init_move_cost = -1;
1693 target_ira_int::~target_ira_int ()
1695 free_ira_costs ();
1696 free_register_move_costs ();
1699 /* This is called every time when register related information is
1700 changed. */
1701 void
1702 ira_init (void)
1704 this_target_ira_int->free_register_move_costs ();
1705 setup_reg_mode_hard_regset ();
1706 setup_alloc_regs (flag_omit_frame_pointer != 0);
1707 setup_class_subset_and_memory_move_costs ();
1708 setup_reg_class_nregs ();
1709 setup_prohibited_class_mode_regs ();
1710 find_reg_classes ();
1711 clarify_prohibited_class_mode_regs ();
1712 setup_hard_regno_aclass ();
1713 ira_init_costs ();
1717 #define ira_prohibited_mode_move_regs_initialized_p \
1718 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1720 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1721 static void
1722 setup_prohibited_mode_move_regs (void)
1724 int i, j;
1725 rtx test_reg1, test_reg2, move_pat;
1726 rtx_insn *move_insn;
1728 if (ira_prohibited_mode_move_regs_initialized_p)
1729 return;
1730 ira_prohibited_mode_move_regs_initialized_p = true;
1731 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1732 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1733 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1734 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1735 for (i = 0; i < NUM_MACHINE_MODES; i++)
1737 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1738 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1740 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1741 continue;
1742 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1743 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1744 INSN_CODE (move_insn) = -1;
1745 recog_memoized (move_insn);
1746 if (INSN_CODE (move_insn) < 0)
1747 continue;
1748 extract_insn (move_insn);
1749 /* We don't know whether the move will be in code that is optimized
1750 for size or speed, so consider all enabled alternatives. */
1751 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1752 continue;
1753 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1760 /* Extract INSN and return the set of alternatives that we should consider.
1761 This excludes any alternatives whose constraints are obviously impossible
1762 to meet (e.g. because the constraint requires a constant and the operand
1763 is nonconstant). It also excludes alternatives that are bound to need
1764 a spill or reload, as long as we have other alternatives that match
1765 exactly. */
1766 alternative_mask
1767 ira_setup_alts (rtx_insn *insn)
1769 int nop, nalt;
1770 bool curr_swapped;
1771 const char *p;
1772 int commutative = -1;
1774 extract_insn (insn);
1775 preprocess_constraints (insn);
1776 alternative_mask preferred = get_preferred_alternatives (insn);
1777 alternative_mask alts = 0;
1778 alternative_mask exact_alts = 0;
1779 /* Check that the hard reg set is enough for holding all
1780 alternatives. It is hard to imagine the situation when the
1781 assertion is wrong. */
1782 ira_assert (recog_data.n_alternatives
1783 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1784 FIRST_PSEUDO_REGISTER));
1785 for (nop = 0; nop < recog_data.n_operands; nop++)
1786 if (recog_data.constraints[nop][0] == '%')
1788 commutative = nop;
1789 break;
1791 for (curr_swapped = false;; curr_swapped = true)
1793 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1795 if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
1796 continue;
1798 const operand_alternative *op_alt
1799 = &recog_op_alt[nalt * recog_data.n_operands];
1800 int this_reject = 0;
1801 for (nop = 0; nop < recog_data.n_operands; nop++)
1803 int c, len;
1805 this_reject += op_alt[nop].reject;
1807 rtx op = recog_data.operand[nop];
1808 p = op_alt[nop].constraint;
1809 if (*p == 0 || *p == ',')
1810 continue;
1812 bool win_p = false;
1814 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1816 case '#':
1817 case ',':
1818 c = '\0';
1819 /* FALLTHRU */
1820 case '\0':
1821 len = 0;
1822 break;
1824 case '%':
1825 /* The commutative modifier is handled above. */
1826 break;
1828 case '0': case '1': case '2': case '3': case '4':
1829 case '5': case '6': case '7': case '8': case '9':
1831 rtx other = recog_data.operand[c - '0'];
1832 if (MEM_P (other)
1833 ? rtx_equal_p (other, op)
1834 : REG_P (op) || SUBREG_P (op))
1835 goto op_success;
1836 win_p = true;
1838 break;
1840 case 'g':
1841 goto op_success;
1842 break;
1844 default:
1846 enum constraint_num cn = lookup_constraint (p);
1847 switch (get_constraint_type (cn))
1849 case CT_REGISTER:
1850 if (reg_class_for_constraint (cn) != NO_REGS)
1852 if (REG_P (op) || SUBREG_P (op))
1853 goto op_success;
1854 win_p = true;
1856 break;
1858 case CT_CONST_INT:
1859 if (CONST_INT_P (op)
1860 && (insn_const_int_ok_for_constraint
1861 (INTVAL (op), cn)))
1862 goto op_success;
1863 break;
1865 case CT_ADDRESS:
1866 goto op_success;
1868 case CT_MEMORY:
1869 case CT_SPECIAL_MEMORY:
1870 if (MEM_P (op))
1871 goto op_success;
1872 win_p = true;
1873 break;
1875 case CT_FIXED_FORM:
1876 if (constraint_satisfied_p (op, cn))
1877 goto op_success;
1878 break;
1880 break;
1883 while (p += len, c);
1884 if (!win_p)
1885 break;
1886 /* We can make the alternative match by spilling a register
1887 to memory or loading something into a register. Count a
1888 cost of one reload (the equivalent of the '?' constraint). */
1889 this_reject += 6;
1890 op_success:
1894 if (nop >= recog_data.n_operands)
1896 alts |= ALTERNATIVE_BIT (nalt);
1897 if (this_reject == 0)
1898 exact_alts |= ALTERNATIVE_BIT (nalt);
1901 if (commutative < 0)
1902 break;
1903 /* Swap forth and back to avoid changing recog_data. */
1904 std::swap (recog_data.operand[commutative],
1905 recog_data.operand[commutative + 1]);
1906 if (curr_swapped)
1907 break;
1909 return exact_alts ? exact_alts : alts;
1912 /* Return the number of the output non-early clobber operand which
1913 should be the same in any case as operand with number OP_NUM (or
1914 negative value if there is no such operand). ALTS is the mask
1915 of alternatives that we should consider. */
1917 ira_get_dup_out_num (int op_num, alternative_mask alts)
1919 int curr_alt, c, original, dup;
1920 bool ignore_p, use_commut_op_p;
1921 const char *str;
1923 if (op_num < 0 || recog_data.n_alternatives == 0)
1924 return -1;
1925 /* We should find duplications only for input operands. */
1926 if (recog_data.operand_type[op_num] != OP_IN)
1927 return -1;
1928 str = recog_data.constraints[op_num];
1929 use_commut_op_p = false;
1930 for (;;)
1932 rtx op = recog_data.operand[op_num];
1934 for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
1935 original = -1;;)
1937 c = *str;
1938 if (c == '\0')
1939 break;
1940 if (c == '#')
1941 ignore_p = true;
1942 else if (c == ',')
1944 curr_alt++;
1945 ignore_p = !TEST_BIT (alts, curr_alt);
1947 else if (! ignore_p)
1948 switch (c)
1950 case 'g':
1951 goto fail;
1952 default:
1954 enum constraint_num cn = lookup_constraint (str);
1955 enum reg_class cl = reg_class_for_constraint (cn);
1956 if (cl != NO_REGS
1957 && !targetm.class_likely_spilled_p (cl))
1958 goto fail;
1959 if (constraint_satisfied_p (op, cn))
1960 goto fail;
1961 break;
1964 case '0': case '1': case '2': case '3': case '4':
1965 case '5': case '6': case '7': case '8': case '9':
1966 if (original != -1 && original != c)
1967 goto fail;
1968 original = c;
1969 break;
1971 str += CONSTRAINT_LEN (c, str);
1973 if (original == -1)
1974 goto fail;
1975 dup = original - '0';
1976 if (recog_data.operand_type[dup] == OP_OUT)
1977 return dup;
1978 fail:
1979 if (use_commut_op_p)
1980 break;
1981 use_commut_op_p = true;
1982 if (recog_data.constraints[op_num][0] == '%')
1983 str = recog_data.constraints[op_num + 1];
1984 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1985 str = recog_data.constraints[op_num - 1];
1986 else
1987 break;
1989 return -1;
1994 /* Search forward to see if the source register of a copy insn dies
1995 before either it or the destination register is modified, but don't
1996 scan past the end of the basic block. If so, we can replace the
1997 source with the destination and let the source die in the copy
1998 insn.
2000 This will reduce the number of registers live in that range and may
2001 enable the destination and the source coalescing, thus often saving
2002 one register in addition to a register-register copy. */
2004 static void
2005 decrease_live_ranges_number (void)
2007 basic_block bb;
2008 rtx_insn *insn;
2009 rtx set, src, dest, dest_death, note;
2010 rtx_insn *p, *q;
2011 int sregno, dregno;
2013 if (! flag_expensive_optimizations)
2014 return;
2016 if (ira_dump_file)
2017 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2019 FOR_EACH_BB_FN (bb, cfun)
2020 FOR_BB_INSNS (bb, insn)
2022 set = single_set (insn);
2023 if (! set)
2024 continue;
2025 src = SET_SRC (set);
2026 dest = SET_DEST (set);
2027 if (! REG_P (src) || ! REG_P (dest)
2028 || find_reg_note (insn, REG_DEAD, src))
2029 continue;
2030 sregno = REGNO (src);
2031 dregno = REGNO (dest);
2033 /* We don't want to mess with hard regs if register classes
2034 are small. */
2035 if (sregno == dregno
2036 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2037 && (sregno < FIRST_PSEUDO_REGISTER
2038 || dregno < FIRST_PSEUDO_REGISTER))
2039 /* We don't see all updates to SP if they are in an
2040 auto-inc memory reference, so we must disallow this
2041 optimization on them. */
2042 || sregno == STACK_POINTER_REGNUM
2043 || dregno == STACK_POINTER_REGNUM)
2044 continue;
2046 dest_death = NULL_RTX;
2048 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2050 if (! INSN_P (p))
2051 continue;
2052 if (BLOCK_FOR_INSN (p) != bb)
2053 break;
2055 if (reg_set_p (src, p) || reg_set_p (dest, p)
2056 /* If SRC is an asm-declared register, it must not be
2057 replaced in any asm. Unfortunately, the REG_EXPR
2058 tree for the asm variable may be absent in the SRC
2059 rtx, so we can't check the actual register
2060 declaration easily (the asm operand will have it,
2061 though). To avoid complicating the test for a rare
2062 case, we just don't perform register replacement
2063 for a hard reg mentioned in an asm. */
2064 || (sregno < FIRST_PSEUDO_REGISTER
2065 && asm_noperands (PATTERN (p)) >= 0
2066 && reg_overlap_mentioned_p (src, PATTERN (p)))
2067 /* Don't change hard registers used by a call. */
2068 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2069 && find_reg_fusage (p, USE, src))
2070 /* Don't change a USE of a register. */
2071 || (GET_CODE (PATTERN (p)) == USE
2072 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2073 break;
2075 /* See if all of SRC dies in P. This test is slightly
2076 more conservative than it needs to be. */
2077 if ((note = find_regno_note (p, REG_DEAD, sregno))
2078 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2080 int failed = 0;
2082 /* We can do the optimization. Scan forward from INSN
2083 again, replacing regs as we go. Set FAILED if a
2084 replacement can't be done. In that case, we can't
2085 move the death note for SRC. This should be
2086 rare. */
2088 /* Set to stop at next insn. */
2089 for (q = next_real_insn (insn);
2090 q != next_real_insn (p);
2091 q = next_real_insn (q))
2093 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2095 /* If SRC is a hard register, we might miss
2096 some overlapping registers with
2097 validate_replace_rtx, so we would have to
2098 undo it. We can't if DEST is present in
2099 the insn, so fail in that combination of
2100 cases. */
2101 if (sregno < FIRST_PSEUDO_REGISTER
2102 && reg_mentioned_p (dest, PATTERN (q)))
2103 failed = 1;
2105 /* Attempt to replace all uses. */
2106 else if (!validate_replace_rtx (src, dest, q))
2107 failed = 1;
2109 /* If this succeeded, but some part of the
2110 register is still present, undo the
2111 replacement. */
2112 else if (sregno < FIRST_PSEUDO_REGISTER
2113 && reg_overlap_mentioned_p (src, PATTERN (q)))
2115 validate_replace_rtx (dest, src, q);
2116 failed = 1;
2120 /* If DEST dies here, remove the death note and
2121 save it for later. Make sure ALL of DEST dies
2122 here; again, this is overly conservative. */
2123 if (! dest_death
2124 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2126 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2127 remove_note (q, dest_death);
2128 else
2130 failed = 1;
2131 dest_death = 0;
2136 if (! failed)
2138 /* Move death note of SRC from P to INSN. */
2139 remove_note (p, note);
2140 XEXP (note, 1) = REG_NOTES (insn);
2141 REG_NOTES (insn) = note;
2144 /* DEST is also dead if INSN has a REG_UNUSED note for
2145 DEST. */
2146 if (! dest_death
2147 && (dest_death
2148 = find_regno_note (insn, REG_UNUSED, dregno)))
2150 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2151 remove_note (insn, dest_death);
2154 /* Put death note of DEST on P if we saw it die. */
2155 if (dest_death)
2157 XEXP (dest_death, 1) = REG_NOTES (p);
2158 REG_NOTES (p) = dest_death;
2160 break;
2163 /* If SRC is a hard register which is set or killed in
2164 some other way, we can't do this optimization. */
2165 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2166 break;
2173 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2174 static bool
2175 ira_bad_reload_regno_1 (int regno, rtx x)
2177 int x_regno, n, i;
2178 ira_allocno_t a;
2179 enum reg_class pref;
2181 /* We only deal with pseudo regs. */
2182 if (! x || GET_CODE (x) != REG)
2183 return false;
2185 x_regno = REGNO (x);
2186 if (x_regno < FIRST_PSEUDO_REGISTER)
2187 return false;
2189 /* If the pseudo prefers REGNO explicitly, then do not consider
2190 REGNO a bad spill choice. */
2191 pref = reg_preferred_class (x_regno);
2192 if (reg_class_size[pref] == 1)
2193 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2195 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2196 poor choice for a reload regno. */
2197 a = ira_regno_allocno_map[x_regno];
2198 n = ALLOCNO_NUM_OBJECTS (a);
2199 for (i = 0; i < n; i++)
2201 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2202 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2203 return true;
2205 return false;
2208 /* Return nonzero if REGNO is a particularly bad choice for reloading
2209 IN or OUT. */
2210 bool
2211 ira_bad_reload_regno (int regno, rtx in, rtx out)
2213 return (ira_bad_reload_regno_1 (regno, in)
2214 || ira_bad_reload_regno_1 (regno, out));
2217 /* Add register clobbers from asm statements. */
2218 static void
2219 compute_regs_asm_clobbered (void)
2221 basic_block bb;
2223 FOR_EACH_BB_FN (bb, cfun)
2225 rtx_insn *insn;
2226 FOR_BB_INSNS_REVERSE (bb, insn)
2228 df_ref def;
2230 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2231 FOR_EACH_INSN_DEF (def, insn)
2233 unsigned int dregno = DF_REF_REGNO (def);
2234 if (HARD_REGISTER_NUM_P (dregno))
2235 add_to_hard_reg_set (&crtl->asm_clobbers,
2236 GET_MODE (DF_REF_REAL_REG (def)),
2237 dregno);
2244 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2245 REGS_EVER_LIVE. */
2246 void
2247 ira_setup_eliminable_regset (void)
2249 int i;
2250 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2252 /* Setup is_leaf as frame_pointer_required may use it. This function
2253 is called by sched_init before ira if scheduling is enabled. */
2254 crtl->is_leaf = leaf_function_p ();
2256 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2257 sp for alloca. So we can't eliminate the frame pointer in that
2258 case. At some point, we should improve this by emitting the
2259 sp-adjusting insns for this case. */
2260 frame_pointer_needed
2261 = (! flag_omit_frame_pointer
2262 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2263 /* We need the frame pointer to catch stack overflow exceptions if
2264 the stack pointer is moving (as for the alloca case just above). */
2265 || (STACK_CHECK_MOVING_SP
2266 && flag_stack_check
2267 && flag_exceptions
2268 && cfun->can_throw_non_call_exceptions)
2269 || crtl->accesses_prior_frames
2270 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2271 || targetm.frame_pointer_required ());
2273 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2274 RTL is very small. So if we use frame pointer for RA and RTL
2275 actually prevents this, we will spill pseudos assigned to the
2276 frame pointer in LRA. */
2278 if (frame_pointer_needed)
2279 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2281 ira_no_alloc_regs = no_unit_alloc_regs;
2282 CLEAR_HARD_REG_SET (eliminable_regset);
2284 compute_regs_asm_clobbered ();
2286 /* Build the regset of all eliminable registers and show we can't
2287 use those that we already know won't be eliminated. */
2288 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2290 bool cannot_elim
2291 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2292 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2294 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2296 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2298 if (cannot_elim)
2299 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2301 else if (cannot_elim)
2302 error ("%s cannot be used in %<asm%> here",
2303 reg_names[eliminables[i].from]);
2304 else
2305 df_set_regs_ever_live (eliminables[i].from, true);
2307 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2309 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2311 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2312 if (frame_pointer_needed)
2313 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2315 else if (frame_pointer_needed)
2316 error ("%s cannot be used in %<asm%> here",
2317 reg_names[HARD_FRAME_POINTER_REGNUM]);
2318 else
2319 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2325 /* Vector of substitutions of register numbers,
2326 used to map pseudo regs into hardware regs.
2327 This is set up as a result of register allocation.
2328 Element N is the hard reg assigned to pseudo reg N,
2329 or is -1 if no hard reg was assigned.
2330 If N is a hard reg number, element N is N. */
2331 short *reg_renumber;
2333 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2334 the allocation found by IRA. */
2335 static void
2336 setup_reg_renumber (void)
2338 int regno, hard_regno;
2339 ira_allocno_t a;
2340 ira_allocno_iterator ai;
2342 caller_save_needed = 0;
2343 FOR_EACH_ALLOCNO (a, ai)
2345 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2346 continue;
2347 /* There are no caps at this point. */
2348 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2349 if (! ALLOCNO_ASSIGNED_P (a))
2350 /* It can happen if A is not referenced but partially anticipated
2351 somewhere in a region. */
2352 ALLOCNO_ASSIGNED_P (a) = true;
2353 ira_free_allocno_updated_costs (a);
2354 hard_regno = ALLOCNO_HARD_REGNO (a);
2355 regno = ALLOCNO_REGNO (a);
2356 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2357 if (hard_regno >= 0)
2359 int i, nwords;
2360 enum reg_class pclass;
2361 ira_object_t obj;
2363 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2364 nwords = ALLOCNO_NUM_OBJECTS (a);
2365 for (i = 0; i < nwords; i++)
2367 obj = ALLOCNO_OBJECT (a, i);
2368 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2369 |= ~reg_class_contents[pclass];
2371 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2372 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2373 call_used_or_fixed_regs))
2375 ira_assert (!optimize || flag_caller_saves
2376 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2377 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2378 || regno >= ira_reg_equiv_len
2379 || ira_equiv_no_lvalue_p (regno));
2380 caller_save_needed = 1;
2386 /* Set up allocno assignment flags for further allocation
2387 improvements. */
2388 static void
2389 setup_allocno_assignment_flags (void)
2391 int hard_regno;
2392 ira_allocno_t a;
2393 ira_allocno_iterator ai;
2395 FOR_EACH_ALLOCNO (a, ai)
2397 if (! ALLOCNO_ASSIGNED_P (a))
2398 /* It can happen if A is not referenced but partially anticipated
2399 somewhere in a region. */
2400 ira_free_allocno_updated_costs (a);
2401 hard_regno = ALLOCNO_HARD_REGNO (a);
2402 /* Don't assign hard registers to allocnos which are destination
2403 of removed store at the end of loop. It has no sense to keep
2404 the same value in different hard registers. It is also
2405 impossible to assign hard registers correctly to such
2406 allocnos because the cost info and info about intersected
2407 calls are incorrect for them. */
2408 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2409 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2410 || (ALLOCNO_MEMORY_COST (a)
2411 - ALLOCNO_CLASS_COST (a)) < 0);
2412 ira_assert
2413 (hard_regno < 0
2414 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2415 reg_class_contents[ALLOCNO_CLASS (a)]));
2419 /* Evaluate overall allocation cost and the costs for using hard
2420 registers and memory for allocnos. */
2421 static void
2422 calculate_allocation_cost (void)
2424 int hard_regno, cost;
2425 ira_allocno_t a;
2426 ira_allocno_iterator ai;
2428 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2429 FOR_EACH_ALLOCNO (a, ai)
2431 hard_regno = ALLOCNO_HARD_REGNO (a);
2432 ira_assert (hard_regno < 0
2433 || (ira_hard_reg_in_set_p
2434 (hard_regno, ALLOCNO_MODE (a),
2435 reg_class_contents[ALLOCNO_CLASS (a)])));
2436 if (hard_regno < 0)
2438 cost = ALLOCNO_MEMORY_COST (a);
2439 ira_mem_cost += cost;
2441 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2443 cost = (ALLOCNO_HARD_REG_COSTS (a)
2444 [ira_class_hard_reg_index
2445 [ALLOCNO_CLASS (a)][hard_regno]]);
2446 ira_reg_cost += cost;
2448 else
2450 cost = ALLOCNO_CLASS_COST (a);
2451 ira_reg_cost += cost;
2453 ira_overall_cost += cost;
2456 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2458 fprintf (ira_dump_file,
2459 "+++Costs: overall %" PRId64
2460 ", reg %" PRId64
2461 ", mem %" PRId64
2462 ", ld %" PRId64
2463 ", st %" PRId64
2464 ", move %" PRId64,
2465 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2466 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2467 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2468 ira_move_loops_num, ira_additional_jumps_num);
2473 #ifdef ENABLE_IRA_CHECKING
2474 /* Check the correctness of the allocation. We do need this because
2475 of complicated code to transform more one region internal
2476 representation into one region representation. */
2477 static void
2478 check_allocation (void)
2480 ira_allocno_t a;
2481 int hard_regno, nregs, conflict_nregs;
2482 ira_allocno_iterator ai;
2484 FOR_EACH_ALLOCNO (a, ai)
2486 int n = ALLOCNO_NUM_OBJECTS (a);
2487 int i;
2489 if (ALLOCNO_CAP_MEMBER (a) != NULL
2490 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2491 continue;
2492 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2493 if (nregs == 1)
2494 /* We allocated a single hard register. */
2495 n = 1;
2496 else if (n > 1)
2497 /* We allocated multiple hard registers, and we will test
2498 conflicts in a granularity of single hard regs. */
2499 nregs = 1;
2501 for (i = 0; i < n; i++)
2503 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2504 ira_object_t conflict_obj;
2505 ira_object_conflict_iterator oci;
2506 int this_regno = hard_regno;
2507 if (n > 1)
2509 if (REG_WORDS_BIG_ENDIAN)
2510 this_regno += n - i - 1;
2511 else
2512 this_regno += i;
2514 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2516 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2517 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2518 if (conflict_hard_regno < 0)
2519 continue;
2521 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2522 ALLOCNO_MODE (conflict_a));
2524 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2525 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2527 if (REG_WORDS_BIG_ENDIAN)
2528 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2529 - OBJECT_SUBWORD (conflict_obj) - 1);
2530 else
2531 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2532 conflict_nregs = 1;
2535 if ((conflict_hard_regno <= this_regno
2536 && this_regno < conflict_hard_regno + conflict_nregs)
2537 || (this_regno <= conflict_hard_regno
2538 && conflict_hard_regno < this_regno + nregs))
2540 fprintf (stderr, "bad allocation for %d and %d\n",
2541 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2542 gcc_unreachable ();
2548 #endif
2550 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2551 be already calculated. */
2552 static void
2553 setup_reg_equiv_init (void)
2555 int i;
2556 int max_regno = max_reg_num ();
2558 for (i = 0; i < max_regno; i++)
2559 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2562 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2563 are insns which were generated for such movement. It is assumed
2564 that FROM_REGNO and TO_REGNO always have the same value at the
2565 point of any move containing such registers. This function is used
2566 to update equiv info for register shuffles on the region borders
2567 and for caller save/restore insns. */
2568 void
2569 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2571 rtx_insn *insn;
2572 rtx x, note;
2574 if (! ira_reg_equiv[from_regno].defined_p
2575 && (! ira_reg_equiv[to_regno].defined_p
2576 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2577 && ! MEM_READONLY_P (x))))
2578 return;
2579 insn = insns;
2580 if (NEXT_INSN (insn) != NULL_RTX)
2582 if (! ira_reg_equiv[to_regno].defined_p)
2584 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2585 return;
2587 ira_reg_equiv[to_regno].defined_p = false;
2588 ira_reg_equiv[to_regno].memory
2589 = ira_reg_equiv[to_regno].constant
2590 = ira_reg_equiv[to_regno].invariant
2591 = ira_reg_equiv[to_regno].init_insns = NULL;
2592 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2593 fprintf (ira_dump_file,
2594 " Invalidating equiv info for reg %d\n", to_regno);
2595 return;
2597 /* It is possible that FROM_REGNO still has no equivalence because
2598 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2599 insn was not processed yet. */
2600 if (ira_reg_equiv[from_regno].defined_p)
2602 ira_reg_equiv[to_regno].defined_p = true;
2603 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2605 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2606 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2607 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2608 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2609 ira_reg_equiv[to_regno].memory = x;
2610 if (! MEM_READONLY_P (x))
2611 /* We don't add the insn to insn init list because memory
2612 equivalence is just to say what memory is better to use
2613 when the pseudo is spilled. */
2614 return;
2616 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2618 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2619 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2620 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2621 ira_reg_equiv[to_regno].constant = x;
2623 else
2625 x = ira_reg_equiv[from_regno].invariant;
2626 ira_assert (x != NULL_RTX);
2627 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2628 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2629 ira_reg_equiv[to_regno].invariant = x;
2631 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2633 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2634 gcc_assert (note != NULL_RTX);
2635 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2637 fprintf (ira_dump_file,
2638 " Adding equiv note to insn %u for reg %d ",
2639 INSN_UID (insn), to_regno);
2640 dump_value_slim (ira_dump_file, x, 1);
2641 fprintf (ira_dump_file, "\n");
2645 ira_reg_equiv[to_regno].init_insns
2646 = gen_rtx_INSN_LIST (VOIDmode, insn,
2647 ira_reg_equiv[to_regno].init_insns);
2648 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2649 fprintf (ira_dump_file,
2650 " Adding equiv init move insn %u to reg %d\n",
2651 INSN_UID (insn), to_regno);
2654 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2655 by IRA. */
2656 static void
2657 fix_reg_equiv_init (void)
2659 int max_regno = max_reg_num ();
2660 int i, new_regno, max;
2661 rtx set;
2662 rtx_insn_list *x, *next, *prev;
2663 rtx_insn *insn;
2665 if (max_regno_before_ira < max_regno)
2667 max = vec_safe_length (reg_equivs);
2668 grow_reg_equivs ();
2669 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2670 for (prev = NULL, x = reg_equiv_init (i);
2671 x != NULL_RTX;
2672 x = next)
2674 next = x->next ();
2675 insn = x->insn ();
2676 set = single_set (insn);
2677 ira_assert (set != NULL_RTX
2678 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2679 if (REG_P (SET_DEST (set))
2680 && ((int) REGNO (SET_DEST (set)) == i
2681 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2682 new_regno = REGNO (SET_DEST (set));
2683 else if (REG_P (SET_SRC (set))
2684 && ((int) REGNO (SET_SRC (set)) == i
2685 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2686 new_regno = REGNO (SET_SRC (set));
2687 else
2688 gcc_unreachable ();
2689 if (new_regno == i)
2690 prev = x;
2691 else
2693 /* Remove the wrong list element. */
2694 if (prev == NULL_RTX)
2695 reg_equiv_init (i) = next;
2696 else
2697 XEXP (prev, 1) = next;
2698 XEXP (x, 1) = reg_equiv_init (new_regno);
2699 reg_equiv_init (new_regno) = x;
2705 #ifdef ENABLE_IRA_CHECKING
2706 /* Print redundant memory-memory copies. */
2707 static void
2708 print_redundant_copies (void)
2710 int hard_regno;
2711 ira_allocno_t a;
2712 ira_copy_t cp, next_cp;
2713 ira_allocno_iterator ai;
2715 FOR_EACH_ALLOCNO (a, ai)
2717 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2718 /* It is a cap. */
2719 continue;
2720 hard_regno = ALLOCNO_HARD_REGNO (a);
2721 if (hard_regno >= 0)
2722 continue;
2723 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2724 if (cp->first == a)
2725 next_cp = cp->next_first_allocno_copy;
2726 else
2728 next_cp = cp->next_second_allocno_copy;
2729 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2730 && cp->insn != NULL_RTX
2731 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2732 fprintf (ira_dump_file,
2733 " Redundant move from %d(freq %d):%d\n",
2734 INSN_UID (cp->insn), cp->freq, hard_regno);
2738 #endif
2740 /* Setup preferred and alternative classes for new pseudo-registers
2741 created by IRA starting with START. */
2742 static void
2743 setup_preferred_alternate_classes_for_new_pseudos (int start)
2745 int i, old_regno;
2746 int max_regno = max_reg_num ();
2748 for (i = start; i < max_regno; i++)
2750 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2751 ira_assert (i != old_regno);
2752 setup_reg_classes (i, reg_preferred_class (old_regno),
2753 reg_alternate_class (old_regno),
2754 reg_allocno_class (old_regno));
2755 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2756 fprintf (ira_dump_file,
2757 " New r%d: setting preferred %s, alternative %s\n",
2758 i, reg_class_names[reg_preferred_class (old_regno)],
2759 reg_class_names[reg_alternate_class (old_regno)]);
2764 /* The number of entries allocated in reg_info. */
2765 static int allocated_reg_info_size;
2767 /* Regional allocation can create new pseudo-registers. This function
2768 expands some arrays for pseudo-registers. */
2769 static void
2770 expand_reg_info (void)
2772 int i;
2773 int size = max_reg_num ();
2775 resize_reg_info ();
2776 for (i = allocated_reg_info_size; i < size; i++)
2777 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2778 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2779 allocated_reg_info_size = size;
2782 /* Return TRUE if there is too high register pressure in the function.
2783 It is used to decide when stack slot sharing is worth to do. */
2784 static bool
2785 too_high_register_pressure_p (void)
2787 int i;
2788 enum reg_class pclass;
2790 for (i = 0; i < ira_pressure_classes_num; i++)
2792 pclass = ira_pressure_classes[i];
2793 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2794 return true;
2796 return false;
2801 /* Indicate that hard register number FROM was eliminated and replaced with
2802 an offset from hard register number TO. The status of hard registers live
2803 at the start of a basic block is updated by replacing a use of FROM with
2804 a use of TO. */
2806 void
2807 mark_elimination (int from, int to)
2809 basic_block bb;
2810 bitmap r;
2812 FOR_EACH_BB_FN (bb, cfun)
2814 r = DF_LR_IN (bb);
2815 if (bitmap_bit_p (r, from))
2817 bitmap_clear_bit (r, from);
2818 bitmap_set_bit (r, to);
2820 if (! df_live)
2821 continue;
2822 r = DF_LIVE_IN (bb);
2823 if (bitmap_bit_p (r, from))
2825 bitmap_clear_bit (r, from);
2826 bitmap_set_bit (r, to);
2833 /* The length of the following array. */
2834 int ira_reg_equiv_len;
2836 /* Info about equiv. info for each register. */
2837 struct ira_reg_equiv_s *ira_reg_equiv;
2839 /* Expand ira_reg_equiv if necessary. */
2840 void
2841 ira_expand_reg_equiv (void)
2843 int old = ira_reg_equiv_len;
2845 if (ira_reg_equiv_len > max_reg_num ())
2846 return;
2847 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2848 ira_reg_equiv
2849 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2850 ira_reg_equiv_len
2851 * sizeof (struct ira_reg_equiv_s));
2852 gcc_assert (old < ira_reg_equiv_len);
2853 memset (ira_reg_equiv + old, 0,
2854 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2857 static void
2858 init_reg_equiv (void)
2860 ira_reg_equiv_len = 0;
2861 ira_reg_equiv = NULL;
2862 ira_expand_reg_equiv ();
2865 static void
2866 finish_reg_equiv (void)
2868 free (ira_reg_equiv);
2873 struct equivalence
2875 /* Set when a REG_EQUIV note is found or created. Use to
2876 keep track of what memory accesses might be created later,
2877 e.g. by reload. */
2878 rtx replacement;
2879 rtx *src_p;
2881 /* The list of each instruction which initializes this register.
2883 NULL indicates we know nothing about this register's equivalence
2884 properties.
2886 An INSN_LIST with a NULL insn indicates this pseudo is already
2887 known to not have a valid equivalence. */
2888 rtx_insn_list *init_insns;
2890 /* Loop depth is used to recognize equivalences which appear
2891 to be present within the same loop (or in an inner loop). */
2892 short loop_depth;
2893 /* Nonzero if this had a preexisting REG_EQUIV note. */
2894 unsigned char is_arg_equivalence : 1;
2895 /* Set when an attempt should be made to replace a register
2896 with the associated src_p entry. */
2897 unsigned char replace : 1;
2898 /* Set if this register has no known equivalence. */
2899 unsigned char no_equiv : 1;
2900 /* Set if this register is mentioned in a paradoxical subreg. */
2901 unsigned char pdx_subregs : 1;
2904 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2905 structure for that register. */
2906 static struct equivalence *reg_equiv;
2908 /* Used for communication between the following two functions. */
2909 struct equiv_mem_data
2911 /* A MEM that we wish to ensure remains unchanged. */
2912 rtx equiv_mem;
2914 /* Set true if EQUIV_MEM is modified. */
2915 bool equiv_mem_modified;
2918 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2919 Called via note_stores. */
2920 static void
2921 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2922 void *data)
2924 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2926 if ((REG_P (dest)
2927 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2928 || (MEM_P (dest)
2929 && anti_dependence (info->equiv_mem, dest)))
2930 info->equiv_mem_modified = true;
2933 enum valid_equiv { valid_none, valid_combine, valid_reload };
2935 /* Verify that no store between START and the death of REG invalidates
2936 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2937 by storing into an overlapping memory location, or with a non-const
2938 CALL_INSN.
2940 Return VALID_RELOAD if MEMREF remains valid for both reload and
2941 combine_and_move insns, VALID_COMBINE if only valid for
2942 combine_and_move_insns, and VALID_NONE otherwise. */
2943 static enum valid_equiv
2944 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2946 rtx_insn *insn;
2947 rtx note;
2948 struct equiv_mem_data info = { memref, false };
2949 enum valid_equiv ret = valid_reload;
2951 /* If the memory reference has side effects or is volatile, it isn't a
2952 valid equivalence. */
2953 if (side_effects_p (memref))
2954 return valid_none;
2956 for (insn = start; insn; insn = NEXT_INSN (insn))
2958 if (!INSN_P (insn))
2959 continue;
2961 if (find_reg_note (insn, REG_DEAD, reg))
2962 return ret;
2964 if (CALL_P (insn))
2966 /* We can combine a reg def from one insn into a reg use in
2967 another over a call if the memory is readonly or the call
2968 const/pure. However, we can't set reg_equiv notes up for
2969 reload over any call. The problem is the equivalent form
2970 may reference a pseudo which gets assigned a call
2971 clobbered hard reg. When we later replace REG with its
2972 equivalent form, the value in the call-clobbered reg has
2973 been changed and all hell breaks loose. */
2974 ret = valid_combine;
2975 if (!MEM_READONLY_P (memref)
2976 && !RTL_CONST_OR_PURE_CALL_P (insn))
2977 return valid_none;
2980 note_stores (insn, validate_equiv_mem_from_store, &info);
2981 if (info.equiv_mem_modified)
2982 return valid_none;
2984 /* If a register mentioned in MEMREF is modified via an
2985 auto-increment, we lose the equivalence. Do the same if one
2986 dies; although we could extend the life, it doesn't seem worth
2987 the trouble. */
2989 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2990 if ((REG_NOTE_KIND (note) == REG_INC
2991 || REG_NOTE_KIND (note) == REG_DEAD)
2992 && REG_P (XEXP (note, 0))
2993 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2994 return valid_none;
2997 return valid_none;
3000 /* Returns zero if X is known to be invariant. */
3001 static int
3002 equiv_init_varies_p (rtx x)
3004 RTX_CODE code = GET_CODE (x);
3005 int i;
3006 const char *fmt;
3008 switch (code)
3010 case MEM:
3011 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3013 case CONST:
3014 CASE_CONST_ANY:
3015 case SYMBOL_REF:
3016 case LABEL_REF:
3017 return 0;
3019 case REG:
3020 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3022 case ASM_OPERANDS:
3023 if (MEM_VOLATILE_P (x))
3024 return 1;
3026 /* Fall through. */
3028 default:
3029 break;
3032 fmt = GET_RTX_FORMAT (code);
3033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3034 if (fmt[i] == 'e')
3036 if (equiv_init_varies_p (XEXP (x, i)))
3037 return 1;
3039 else if (fmt[i] == 'E')
3041 int j;
3042 for (j = 0; j < XVECLEN (x, i); j++)
3043 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3044 return 1;
3047 return 0;
3050 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3051 X is only movable if the registers it uses have equivalent initializations
3052 which appear to be within the same loop (or in an inner loop) and movable
3053 or if they are not candidates for local_alloc and don't vary. */
3054 static int
3055 equiv_init_movable_p (rtx x, int regno)
3057 int i, j;
3058 const char *fmt;
3059 enum rtx_code code = GET_CODE (x);
3061 switch (code)
3063 case SET:
3064 return equiv_init_movable_p (SET_SRC (x), regno);
3066 case CC0:
3067 case CLOBBER:
3068 case CLOBBER_HIGH:
3069 return 0;
3071 case PRE_INC:
3072 case PRE_DEC:
3073 case POST_INC:
3074 case POST_DEC:
3075 case PRE_MODIFY:
3076 case POST_MODIFY:
3077 return 0;
3079 case REG:
3080 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3081 && reg_equiv[REGNO (x)].replace)
3082 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3083 && ! rtx_varies_p (x, 0)));
3085 case UNSPEC_VOLATILE:
3086 return 0;
3088 case ASM_OPERANDS:
3089 if (MEM_VOLATILE_P (x))
3090 return 0;
3092 /* Fall through. */
3094 default:
3095 break;
3098 fmt = GET_RTX_FORMAT (code);
3099 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3100 switch (fmt[i])
3102 case 'e':
3103 if (! equiv_init_movable_p (XEXP (x, i), regno))
3104 return 0;
3105 break;
3106 case 'E':
3107 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3108 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3109 return 0;
3110 break;
3113 return 1;
3116 static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3118 /* Auxiliary function for memref_referenced_p. Process setting X for
3119 MEMREF store. */
3120 static bool
3121 process_set_for_memref_referenced_p (rtx memref, rtx x)
3123 /* If we are setting a MEM, it doesn't count (its address does), but any
3124 other SET_DEST that has a MEM in it is referencing the MEM. */
3125 if (MEM_P (x))
3127 if (memref_referenced_p (memref, XEXP (x, 0), true))
3128 return true;
3130 else if (memref_referenced_p (memref, x, false))
3131 return true;
3133 return false;
3136 /* TRUE if X references a memory location (as a read if READ_P) that
3137 would be affected by a store to MEMREF. */
3138 static bool
3139 memref_referenced_p (rtx memref, rtx x, bool read_p)
3141 int i, j;
3142 const char *fmt;
3143 enum rtx_code code = GET_CODE (x);
3145 switch (code)
3147 case CONST:
3148 case LABEL_REF:
3149 case SYMBOL_REF:
3150 CASE_CONST_ANY:
3151 case PC:
3152 case CC0:
3153 case HIGH:
3154 case LO_SUM:
3155 return false;
3157 case REG:
3158 return (reg_equiv[REGNO (x)].replacement
3159 && memref_referenced_p (memref,
3160 reg_equiv[REGNO (x)].replacement, read_p));
3162 case MEM:
3163 /* Memory X might have another effective type than MEMREF. */
3164 if (read_p || true_dependence (memref, VOIDmode, x))
3165 return true;
3166 break;
3168 case SET:
3169 if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3170 return true;
3172 return memref_referenced_p (memref, SET_SRC (x), true);
3174 case CLOBBER:
3175 case CLOBBER_HIGH:
3176 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3177 return true;
3179 return false;
3181 case PRE_DEC:
3182 case POST_DEC:
3183 case PRE_INC:
3184 case POST_INC:
3185 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3186 return true;
3188 return memref_referenced_p (memref, XEXP (x, 0), true);
3190 case POST_MODIFY:
3191 case PRE_MODIFY:
3192 /* op0 = op0 + op1 */
3193 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3194 return true;
3196 if (memref_referenced_p (memref, XEXP (x, 0), true))
3197 return true;
3199 return memref_referenced_p (memref, XEXP (x, 1), true);
3201 default:
3202 break;
3205 fmt = GET_RTX_FORMAT (code);
3206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3207 switch (fmt[i])
3209 case 'e':
3210 if (memref_referenced_p (memref, XEXP (x, i), read_p))
3211 return true;
3212 break;
3213 case 'E':
3214 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3215 if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3216 return true;
3217 break;
3220 return false;
3223 /* TRUE if some insn in the range (START, END] references a memory location
3224 that would be affected by a store to MEMREF.
3226 Callers should not call this routine if START is after END in the
3227 RTL chain. */
3229 static int
3230 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3232 rtx_insn *insn;
3234 for (insn = NEXT_INSN (start);
3235 insn && insn != NEXT_INSN (end);
3236 insn = NEXT_INSN (insn))
3238 if (!NONDEBUG_INSN_P (insn))
3239 continue;
3241 if (memref_referenced_p (memref, PATTERN (insn), false))
3242 return 1;
3244 /* Nonconst functions may access memory. */
3245 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3246 return 1;
3249 gcc_assert (insn == NEXT_INSN (end));
3250 return 0;
3253 /* Mark REG as having no known equivalence.
3254 Some instructions might have been processed before and furnished
3255 with REG_EQUIV notes for this register; these notes will have to be
3256 removed.
3257 STORE is the piece of RTL that does the non-constant / conflicting
3258 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3259 but needs to be there because this function is called from note_stores. */
3260 static void
3261 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3262 void *data ATTRIBUTE_UNUSED)
3264 int regno;
3265 rtx_insn_list *list;
3267 if (!REG_P (reg))
3268 return;
3269 regno = REGNO (reg);
3270 reg_equiv[regno].no_equiv = 1;
3271 list = reg_equiv[regno].init_insns;
3272 if (list && list->insn () == NULL)
3273 return;
3274 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3275 reg_equiv[regno].replacement = NULL_RTX;
3276 /* This doesn't matter for equivalences made for argument registers, we
3277 should keep their initialization insns. */
3278 if (reg_equiv[regno].is_arg_equivalence)
3279 return;
3280 ira_reg_equiv[regno].defined_p = false;
3281 ira_reg_equiv[regno].init_insns = NULL;
3282 for (; list; list = list->next ())
3284 rtx_insn *insn = list->insn ();
3285 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3289 /* Check whether the SUBREG is a paradoxical subreg and set the result
3290 in PDX_SUBREGS. */
3292 static void
3293 set_paradoxical_subreg (rtx_insn *insn)
3295 subrtx_iterator::array_type array;
3296 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3298 const_rtx subreg = *iter;
3299 if (GET_CODE (subreg) == SUBREG)
3301 const_rtx reg = SUBREG_REG (subreg);
3302 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3303 reg_equiv[REGNO (reg)].pdx_subregs = true;
3308 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3309 equivalent replacement. */
3311 static rtx
3312 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3314 if (REG_P (loc))
3316 bitmap cleared_regs = (bitmap) data;
3317 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3318 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3319 NULL_RTX, adjust_cleared_regs, data);
3321 return NULL_RTX;
3324 /* Given register REGNO is set only once, return true if the defining
3325 insn dominates all uses. */
3327 static bool
3328 def_dominates_uses (int regno)
3330 df_ref def = DF_REG_DEF_CHAIN (regno);
3332 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3333 /* If this is an artificial def (eh handler regs, hard frame pointer
3334 for non-local goto, regs defined on function entry) then def_info
3335 is NULL and the reg is always live before any use. We might
3336 reasonably return true in that case, but since the only call
3337 of this function is currently here in ira.c when we are looking
3338 at a defining insn we can't have an artificial def as that would
3339 bump DF_REG_DEF_COUNT. */
3340 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3342 rtx_insn *def_insn = DF_REF_INSN (def);
3343 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3345 for (df_ref use = DF_REG_USE_CHAIN (regno);
3346 use;
3347 use = DF_REF_NEXT_REG (use))
3349 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3350 /* Only check real uses, not artificial ones. */
3351 if (use_info)
3353 rtx_insn *use_insn = DF_REF_INSN (use);
3354 if (!DEBUG_INSN_P (use_insn))
3356 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3357 if (use_bb != def_bb
3358 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3359 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3360 return false;
3364 return true;
3367 /* Find registers that are equivalent to a single value throughout the
3368 compilation (either because they can be referenced in memory or are
3369 set once from a single constant). Lower their priority for a
3370 register.
3372 If such a register is only referenced once, try substituting its
3373 value into the using insn. If it succeeds, we can eliminate the
3374 register completely.
3376 Initialize init_insns in ira_reg_equiv array. */
3377 static void
3378 update_equiv_regs (void)
3380 rtx_insn *insn;
3381 basic_block bb;
3383 /* Scan insns and set pdx_subregs if the reg is used in a
3384 paradoxical subreg. Don't set such reg equivalent to a mem,
3385 because lra will not substitute such equiv memory in order to
3386 prevent access beyond allocated memory for paradoxical memory subreg. */
3387 FOR_EACH_BB_FN (bb, cfun)
3388 FOR_BB_INSNS (bb, insn)
3389 if (NONDEBUG_INSN_P (insn))
3390 set_paradoxical_subreg (insn);
3392 /* Scan the insns and find which registers have equivalences. Do this
3393 in a separate scan of the insns because (due to -fcse-follow-jumps)
3394 a register can be set below its use. */
3395 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3396 FOR_EACH_BB_FN (bb, cfun)
3398 int loop_depth = bb_loop_depth (bb);
3400 for (insn = BB_HEAD (bb);
3401 insn != NEXT_INSN (BB_END (bb));
3402 insn = NEXT_INSN (insn))
3404 rtx note;
3405 rtx set;
3406 rtx dest, src;
3407 int regno;
3409 if (! INSN_P (insn))
3410 continue;
3412 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3413 if (REG_NOTE_KIND (note) == REG_INC)
3414 no_equiv (XEXP (note, 0), note, NULL);
3416 set = single_set (insn);
3418 /* If this insn contains more (or less) than a single SET,
3419 only mark all destinations as having no known equivalence. */
3420 if (set == NULL_RTX
3421 || side_effects_p (SET_SRC (set)))
3423 note_pattern_stores (PATTERN (insn), no_equiv, NULL);
3424 continue;
3426 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3428 int i;
3430 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3432 rtx part = XVECEXP (PATTERN (insn), 0, i);
3433 if (part != set)
3434 note_pattern_stores (part, no_equiv, NULL);
3438 dest = SET_DEST (set);
3439 src = SET_SRC (set);
3441 /* See if this is setting up the equivalence between an argument
3442 register and its stack slot. */
3443 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3444 if (note)
3446 gcc_assert (REG_P (dest));
3447 regno = REGNO (dest);
3449 /* Note that we don't want to clear init_insns in
3450 ira_reg_equiv even if there are multiple sets of this
3451 register. */
3452 reg_equiv[regno].is_arg_equivalence = 1;
3454 /* The insn result can have equivalence memory although
3455 the equivalence is not set up by the insn. We add
3456 this insn to init insns as it is a flag for now that
3457 regno has an equivalence. We will remove the insn
3458 from init insn list later. */
3459 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3460 ira_reg_equiv[regno].init_insns
3461 = gen_rtx_INSN_LIST (VOIDmode, insn,
3462 ira_reg_equiv[regno].init_insns);
3464 /* Continue normally in case this is a candidate for
3465 replacements. */
3468 if (!optimize)
3469 continue;
3471 /* We only handle the case of a pseudo register being set
3472 once, or always to the same value. */
3473 /* ??? The mn10200 port breaks if we add equivalences for
3474 values that need an ADDRESS_REGS register and set them equivalent
3475 to a MEM of a pseudo. The actual problem is in the over-conservative
3476 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3477 calculate_needs, but we traditionally work around this problem
3478 here by rejecting equivalences when the destination is in a register
3479 that's likely spilled. This is fragile, of course, since the
3480 preferred class of a pseudo depends on all instructions that set
3481 or use it. */
3483 if (!REG_P (dest)
3484 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3485 || (reg_equiv[regno].init_insns
3486 && reg_equiv[regno].init_insns->insn () == NULL)
3487 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3488 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3490 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3491 also set somewhere else to a constant. */
3492 note_pattern_stores (set, no_equiv, NULL);
3493 continue;
3496 /* Don't set reg mentioned in a paradoxical subreg
3497 equivalent to a mem. */
3498 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3500 note_pattern_stores (set, no_equiv, NULL);
3501 continue;
3504 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3506 /* cse sometimes generates function invariants, but doesn't put a
3507 REG_EQUAL note on the insn. Since this note would be redundant,
3508 there's no point creating it earlier than here. */
3509 if (! note && ! rtx_varies_p (src, 0))
3510 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3512 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3513 since it represents a function call. */
3514 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3515 note = NULL_RTX;
3517 if (DF_REG_DEF_COUNT (regno) != 1)
3519 bool equal_p = true;
3520 rtx_insn_list *list;
3522 /* If we have already processed this pseudo and determined it
3523 cannot have an equivalence, then honor that decision. */
3524 if (reg_equiv[regno].no_equiv)
3525 continue;
3527 if (! note
3528 || rtx_varies_p (XEXP (note, 0), 0)
3529 || (reg_equiv[regno].replacement
3530 && ! rtx_equal_p (XEXP (note, 0),
3531 reg_equiv[regno].replacement)))
3533 no_equiv (dest, set, NULL);
3534 continue;
3537 list = reg_equiv[regno].init_insns;
3538 for (; list; list = list->next ())
3540 rtx note_tmp;
3541 rtx_insn *insn_tmp;
3543 insn_tmp = list->insn ();
3544 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3545 gcc_assert (note_tmp);
3546 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3548 equal_p = false;
3549 break;
3553 if (! equal_p)
3555 no_equiv (dest, set, NULL);
3556 continue;
3560 /* Record this insn as initializing this register. */
3561 reg_equiv[regno].init_insns
3562 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3564 /* If this register is known to be equal to a constant, record that
3565 it is always equivalent to the constant.
3566 Note that it is possible to have a register use before
3567 the def in loops (see gcc.c-torture/execute/pr79286.c)
3568 where the reg is undefined on first use. If the def insn
3569 won't trap we can use it as an equivalence, effectively
3570 choosing the "undefined" value for the reg to be the
3571 same as the value set by the def. */
3572 if (DF_REG_DEF_COUNT (regno) == 1
3573 && note
3574 && !rtx_varies_p (XEXP (note, 0), 0)
3575 && (!may_trap_or_fault_p (XEXP (note, 0))
3576 || def_dominates_uses (regno)))
3578 rtx note_value = XEXP (note, 0);
3579 remove_note (insn, note);
3580 set_unique_reg_note (insn, REG_EQUIV, note_value);
3583 /* If this insn introduces a "constant" register, decrease the priority
3584 of that register. Record this insn if the register is only used once
3585 more and the equivalence value is the same as our source.
3587 The latter condition is checked for two reasons: First, it is an
3588 indication that it may be more efficient to actually emit the insn
3589 as written (if no registers are available, reload will substitute
3590 the equivalence). Secondly, it avoids problems with any registers
3591 dying in this insn whose death notes would be missed.
3593 If we don't have a REG_EQUIV note, see if this insn is loading
3594 a register used only in one basic block from a MEM. If so, and the
3595 MEM remains unchanged for the life of the register, add a REG_EQUIV
3596 note. */
3597 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3599 rtx replacement = NULL_RTX;
3600 if (note)
3601 replacement = XEXP (note, 0);
3602 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3603 && MEM_P (SET_SRC (set)))
3605 enum valid_equiv validity;
3606 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3607 if (validity != valid_none)
3609 replacement = copy_rtx (SET_SRC (set));
3610 if (validity == valid_reload)
3611 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3615 /* If we haven't done so, record for reload that this is an
3616 equivalencing insn. */
3617 if (note && !reg_equiv[regno].is_arg_equivalence)
3618 ira_reg_equiv[regno].init_insns
3619 = gen_rtx_INSN_LIST (VOIDmode, insn,
3620 ira_reg_equiv[regno].init_insns);
3622 if (replacement)
3624 reg_equiv[regno].replacement = replacement;
3625 reg_equiv[regno].src_p = &SET_SRC (set);
3626 reg_equiv[regno].loop_depth = (short) loop_depth;
3628 /* Don't mess with things live during setjmp. */
3629 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3631 /* If the register is referenced exactly twice, meaning it is
3632 set once and used once, indicate that the reference may be
3633 replaced by the equivalence we computed above. Do this
3634 even if the register is only used in one block so that
3635 dependencies can be handled where the last register is
3636 used in a different block (i.e. HIGH / LO_SUM sequences)
3637 and to reduce the number of registers alive across
3638 calls. */
3640 if (REG_N_REFS (regno) == 2
3641 && (rtx_equal_p (replacement, src)
3642 || ! equiv_init_varies_p (src))
3643 && NONJUMP_INSN_P (insn)
3644 && equiv_init_movable_p (PATTERN (insn), regno))
3645 reg_equiv[regno].replace = 1;
3652 /* For insns that set a MEM to the contents of a REG that is only used
3653 in a single basic block, see if the register is always equivalent
3654 to that memory location and if moving the store from INSN to the
3655 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3656 initializing insn. */
3657 static void
3658 add_store_equivs (void)
3660 auto_bitmap seen_insns;
3662 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3664 rtx set, src, dest;
3665 unsigned regno;
3666 rtx_insn *init_insn;
3668 bitmap_set_bit (seen_insns, INSN_UID (insn));
3670 if (! INSN_P (insn))
3671 continue;
3673 set = single_set (insn);
3674 if (! set)
3675 continue;
3677 dest = SET_DEST (set);
3678 src = SET_SRC (set);
3680 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3681 REG_EQUIV is likely more useful than the one we are adding. */
3682 if (MEM_P (dest) && REG_P (src)
3683 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3684 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3685 && DF_REG_DEF_COUNT (regno) == 1
3686 && ! reg_equiv[regno].pdx_subregs
3687 && reg_equiv[regno].init_insns != NULL
3688 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3689 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3690 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3691 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3692 && ! memref_used_between_p (dest, init_insn, insn)
3693 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3694 multiple sets. */
3695 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3697 /* This insn makes the equivalence, not the one initializing
3698 the register. */
3699 ira_reg_equiv[regno].init_insns
3700 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3701 df_notes_rescan (init_insn);
3702 if (dump_file)
3703 fprintf (dump_file,
3704 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3705 INSN_UID (init_insn),
3706 INSN_UID (insn));
3711 /* Scan all regs killed in an insn to see if any of them are registers
3712 only used that once. If so, see if we can replace the reference
3713 with the equivalent form. If we can, delete the initializing
3714 reference and this register will go away. If we can't replace the
3715 reference, and the initializing reference is within the same loop
3716 (or in an inner loop), then move the register initialization just
3717 before the use, so that they are in the same basic block. */
3718 static void
3719 combine_and_move_insns (void)
3721 auto_bitmap cleared_regs;
3722 int max = max_reg_num ();
3724 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3726 if (!reg_equiv[regno].replace)
3727 continue;
3729 rtx_insn *use_insn = 0;
3730 for (df_ref use = DF_REG_USE_CHAIN (regno);
3731 use;
3732 use = DF_REF_NEXT_REG (use))
3733 if (DF_REF_INSN_INFO (use))
3735 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3736 continue;
3737 gcc_assert (!use_insn);
3738 use_insn = DF_REF_INSN (use);
3740 gcc_assert (use_insn);
3742 /* Don't substitute into jumps. indirect_jump_optimize does
3743 this for anything we are prepared to handle. */
3744 if (JUMP_P (use_insn))
3745 continue;
3747 /* Also don't substitute into a conditional trap insn -- it can become
3748 an unconditional trap, and that is a flow control insn. */
3749 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3750 continue;
3752 df_ref def = DF_REG_DEF_CHAIN (regno);
3753 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3754 rtx_insn *def_insn = DF_REF_INSN (def);
3756 /* We may not move instructions that can throw, since that
3757 changes basic block boundaries and we are not prepared to
3758 adjust the CFG to match. */
3759 if (can_throw_internal (def_insn))
3760 continue;
3762 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3763 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3764 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3765 continue;
3767 if (asm_noperands (PATTERN (def_insn)) < 0
3768 && validate_replace_rtx (regno_reg_rtx[regno],
3769 *reg_equiv[regno].src_p, use_insn))
3771 rtx link;
3772 /* Append the REG_DEAD notes from def_insn. */
3773 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3775 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3777 *p = XEXP (link, 1);
3778 XEXP (link, 1) = REG_NOTES (use_insn);
3779 REG_NOTES (use_insn) = link;
3781 else
3782 p = &XEXP (link, 1);
3785 remove_death (regno, use_insn);
3786 SET_REG_N_REFS (regno, 0);
3787 REG_FREQ (regno) = 0;
3788 df_ref use;
3789 FOR_EACH_INSN_USE (use, def_insn)
3791 unsigned int use_regno = DF_REF_REGNO (use);
3792 if (!HARD_REGISTER_NUM_P (use_regno))
3793 reg_equiv[use_regno].replace = 0;
3796 delete_insn (def_insn);
3798 reg_equiv[regno].init_insns = NULL;
3799 ira_reg_equiv[regno].init_insns = NULL;
3800 bitmap_set_bit (cleared_regs, regno);
3803 /* Move the initialization of the register to just before
3804 USE_INSN. Update the flow information. */
3805 else if (prev_nondebug_insn (use_insn) != def_insn)
3807 rtx_insn *new_insn;
3809 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3810 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3811 REG_NOTES (def_insn) = 0;
3812 /* Rescan it to process the notes. */
3813 df_insn_rescan (new_insn);
3815 /* Make sure this insn is recognized before reload begins,
3816 otherwise eliminate_regs_in_insn will die. */
3817 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3819 delete_insn (def_insn);
3821 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3823 REG_BASIC_BLOCK (regno) = use_bb->index;
3824 REG_N_CALLS_CROSSED (regno) = 0;
3826 if (use_insn == BB_HEAD (use_bb))
3827 BB_HEAD (use_bb) = new_insn;
3829 /* We know regno dies in use_insn, but inside a loop
3830 REG_DEAD notes might be missing when def_insn was in
3831 another basic block. However, when we move def_insn into
3832 this bb we'll definitely get a REG_DEAD note and reload
3833 will see the death. It's possible that update_equiv_regs
3834 set up an equivalence referencing regno for a reg set by
3835 use_insn, when regno was seen as non-local. Now that
3836 regno is local to this block, and dies, such an
3837 equivalence is invalid. */
3838 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3840 rtx set = single_set (use_insn);
3841 if (set && REG_P (SET_DEST (set)))
3842 no_equiv (SET_DEST (set), set, NULL);
3845 ira_reg_equiv[regno].init_insns
3846 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3847 bitmap_set_bit (cleared_regs, regno);
3851 if (!bitmap_empty_p (cleared_regs))
3853 basic_block bb;
3855 FOR_EACH_BB_FN (bb, cfun)
3857 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3858 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3859 if (!df_live)
3860 continue;
3861 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3862 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3865 /* Last pass - adjust debug insns referencing cleared regs. */
3866 if (MAY_HAVE_DEBUG_BIND_INSNS)
3867 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3868 if (DEBUG_BIND_INSN_P (insn))
3870 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3871 INSN_VAR_LOCATION_LOC (insn)
3872 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3873 adjust_cleared_regs,
3874 (void *) cleared_regs);
3875 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3876 df_insn_rescan (insn);
3881 /* A pass over indirect jumps, converting simple cases to direct jumps.
3882 Combine does this optimization too, but only within a basic block. */
3883 static void
3884 indirect_jump_optimize (void)
3886 basic_block bb;
3887 bool rebuild_p = false;
3889 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3891 rtx_insn *insn = BB_END (bb);
3892 if (!JUMP_P (insn)
3893 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3894 continue;
3896 rtx x = pc_set (insn);
3897 if (!x || !REG_P (SET_SRC (x)))
3898 continue;
3900 int regno = REGNO (SET_SRC (x));
3901 if (DF_REG_DEF_COUNT (regno) == 1)
3903 df_ref def = DF_REG_DEF_CHAIN (regno);
3904 if (!DF_REF_IS_ARTIFICIAL (def))
3906 rtx_insn *def_insn = DF_REF_INSN (def);
3907 rtx lab = NULL_RTX;
3908 rtx set = single_set (def_insn);
3909 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3910 lab = SET_SRC (set);
3911 else
3913 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3914 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3915 lab = XEXP (eqnote, 0);
3917 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3918 rebuild_p = true;
3923 if (rebuild_p)
3925 timevar_push (TV_JUMP);
3926 rebuild_jump_labels (get_insns ());
3927 if (purge_all_dead_edges ())
3928 delete_unreachable_blocks ();
3929 timevar_pop (TV_JUMP);
3933 /* Set up fields memory, constant, and invariant from init_insns in
3934 the structures of array ira_reg_equiv. */
3935 static void
3936 setup_reg_equiv (void)
3938 int i;
3939 rtx_insn_list *elem, *prev_elem, *next_elem;
3940 rtx_insn *insn;
3941 rtx set, x;
3943 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3944 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3945 elem;
3946 prev_elem = elem, elem = next_elem)
3948 next_elem = elem->next ();
3949 insn = elem->insn ();
3950 set = single_set (insn);
3952 /* Init insns can set up equivalence when the reg is a destination or
3953 a source (in this case the destination is memory). */
3954 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3956 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3958 x = XEXP (x, 0);
3959 if (REG_P (SET_DEST (set))
3960 && REGNO (SET_DEST (set)) == (unsigned int) i
3961 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3963 /* This insn reporting the equivalence but
3964 actually not setting it. Remove it from the
3965 list. */
3966 if (prev_elem == NULL)
3967 ira_reg_equiv[i].init_insns = next_elem;
3968 else
3969 XEXP (prev_elem, 1) = next_elem;
3970 elem = prev_elem;
3973 else if (REG_P (SET_DEST (set))
3974 && REGNO (SET_DEST (set)) == (unsigned int) i)
3975 x = SET_SRC (set);
3976 else
3978 gcc_assert (REG_P (SET_SRC (set))
3979 && REGNO (SET_SRC (set)) == (unsigned int) i);
3980 x = SET_DEST (set);
3982 if (! function_invariant_p (x)
3983 || ! flag_pic
3984 /* A function invariant is often CONSTANT_P but may
3985 include a register. We promise to only pass
3986 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3987 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3989 /* It can happen that a REG_EQUIV note contains a MEM
3990 that is not a legitimate memory operand. As later
3991 stages of reload assume that all addresses found in
3992 the lra_regno_equiv_* arrays were originally
3993 legitimate, we ignore such REG_EQUIV notes. */
3994 if (memory_operand (x, VOIDmode))
3996 ira_reg_equiv[i].defined_p = true;
3997 ira_reg_equiv[i].memory = x;
3998 continue;
4000 else if (function_invariant_p (x))
4002 machine_mode mode;
4004 mode = GET_MODE (SET_DEST (set));
4005 if (GET_CODE (x) == PLUS
4006 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4007 /* This is PLUS of frame pointer and a constant,
4008 or fp, or argp. */
4009 ira_reg_equiv[i].invariant = x;
4010 else if (targetm.legitimate_constant_p (mode, x))
4011 ira_reg_equiv[i].constant = x;
4012 else
4014 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4015 if (ira_reg_equiv[i].memory == NULL_RTX)
4017 ira_reg_equiv[i].defined_p = false;
4018 ira_reg_equiv[i].init_insns = NULL;
4019 break;
4022 ira_reg_equiv[i].defined_p = true;
4023 continue;
4027 ira_reg_equiv[i].defined_p = false;
4028 ira_reg_equiv[i].init_insns = NULL;
4029 break;
4035 /* Print chain C to FILE. */
4036 static void
4037 print_insn_chain (FILE *file, class insn_chain *c)
4039 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4040 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4041 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4045 /* Print all reload_insn_chains to FILE. */
4046 static void
4047 print_insn_chains (FILE *file)
4049 class insn_chain *c;
4050 for (c = reload_insn_chain; c ; c = c->next)
4051 print_insn_chain (file, c);
4054 /* Return true if pseudo REGNO should be added to set live_throughout
4055 or dead_or_set of the insn chains for reload consideration. */
4056 static bool
4057 pseudo_for_reload_consideration_p (int regno)
4059 /* Consider spilled pseudos too for IRA because they still have a
4060 chance to get hard-registers in the reload when IRA is used. */
4061 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4064 /* Return true if we can track the individual bytes of subreg X.
4065 When returning true, set *OUTER_SIZE to the number of bytes in
4066 X itself, *INNER_SIZE to the number of bytes in the inner register
4067 and *START to the offset of the first byte. */
4068 static bool
4069 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4070 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4072 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4073 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4074 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4075 && SUBREG_BYTE (x).is_constant (start));
4078 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4079 a register with SIZE bytes, making the register live if INIT_VALUE. */
4080 static void
4081 init_live_subregs (bool init_value, sbitmap *live_subregs,
4082 bitmap live_subregs_used, int allocnum, int size)
4084 gcc_assert (size > 0);
4086 /* Been there, done that. */
4087 if (bitmap_bit_p (live_subregs_used, allocnum))
4088 return;
4090 /* Create a new one. */
4091 if (live_subregs[allocnum] == NULL)
4092 live_subregs[allocnum] = sbitmap_alloc (size);
4094 /* If the entire reg was live before blasting into subregs, we need
4095 to init all of the subregs to ones else init to 0. */
4096 if (init_value)
4097 bitmap_ones (live_subregs[allocnum]);
4098 else
4099 bitmap_clear (live_subregs[allocnum]);
4101 bitmap_set_bit (live_subregs_used, allocnum);
4104 /* Walk the insns of the current function and build reload_insn_chain,
4105 and record register life information. */
4106 static void
4107 build_insn_chain (void)
4109 unsigned int i;
4110 class insn_chain **p = &reload_insn_chain;
4111 basic_block bb;
4112 class insn_chain *c = NULL;
4113 class insn_chain *next = NULL;
4114 auto_bitmap live_relevant_regs;
4115 auto_bitmap elim_regset;
4116 /* live_subregs is a vector used to keep accurate information about
4117 which hardregs are live in multiword pseudos. live_subregs and
4118 live_subregs_used are indexed by pseudo number. The live_subreg
4119 entry for a particular pseudo is only used if the corresponding
4120 element is non zero in live_subregs_used. The sbitmap size of
4121 live_subreg[allocno] is number of bytes that the pseudo can
4122 occupy. */
4123 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4124 auto_bitmap live_subregs_used;
4126 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4127 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4128 bitmap_set_bit (elim_regset, i);
4129 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4131 bitmap_iterator bi;
4132 rtx_insn *insn;
4134 CLEAR_REG_SET (live_relevant_regs);
4135 bitmap_clear (live_subregs_used);
4137 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4139 if (i >= FIRST_PSEUDO_REGISTER)
4140 break;
4141 bitmap_set_bit (live_relevant_regs, i);
4144 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4145 FIRST_PSEUDO_REGISTER, i, bi)
4147 if (pseudo_for_reload_consideration_p (i))
4148 bitmap_set_bit (live_relevant_regs, i);
4151 FOR_BB_INSNS_REVERSE (bb, insn)
4153 if (!NOTE_P (insn) && !BARRIER_P (insn))
4155 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4156 df_ref def, use;
4158 c = new_insn_chain ();
4159 c->next = next;
4160 next = c;
4161 *p = c;
4162 p = &c->prev;
4164 c->insn = insn;
4165 c->block = bb->index;
4167 if (NONDEBUG_INSN_P (insn))
4168 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4170 unsigned int regno = DF_REF_REGNO (def);
4172 /* Ignore may clobbers because these are generated
4173 from calls. However, every other kind of def is
4174 added to dead_or_set. */
4175 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4177 if (regno < FIRST_PSEUDO_REGISTER)
4179 if (!fixed_regs[regno])
4180 bitmap_set_bit (&c->dead_or_set, regno);
4182 else if (pseudo_for_reload_consideration_p (regno))
4183 bitmap_set_bit (&c->dead_or_set, regno);
4186 if ((regno < FIRST_PSEUDO_REGISTER
4187 || reg_renumber[regno] >= 0
4188 || ira_conflicts_p)
4189 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4191 rtx reg = DF_REF_REG (def);
4192 HOST_WIDE_INT outer_size, inner_size, start;
4194 /* We can usually track the liveness of individual
4195 bytes within a subreg. The only exceptions are
4196 subregs wrapped in ZERO_EXTRACTs and subregs whose
4197 size is not known; in those cases we need to be
4198 conservative and treat the definition as a partial
4199 definition of the full register rather than a full
4200 definition of a specific part of the register. */
4201 if (GET_CODE (reg) == SUBREG
4202 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4203 && get_subreg_tracking_sizes (reg, &outer_size,
4204 &inner_size, &start))
4206 HOST_WIDE_INT last = start + outer_size;
4208 init_live_subregs
4209 (bitmap_bit_p (live_relevant_regs, regno),
4210 live_subregs, live_subregs_used, regno,
4211 inner_size);
4213 if (!DF_REF_FLAGS_IS_SET
4214 (def, DF_REF_STRICT_LOW_PART))
4216 /* Expand the range to cover entire words.
4217 Bytes added here are "don't care". */
4218 start
4219 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4220 last = ((last + UNITS_PER_WORD - 1)
4221 / UNITS_PER_WORD * UNITS_PER_WORD);
4224 /* Ignore the paradoxical bits. */
4225 if (last > SBITMAP_SIZE (live_subregs[regno]))
4226 last = SBITMAP_SIZE (live_subregs[regno]);
4228 while (start < last)
4230 bitmap_clear_bit (live_subregs[regno], start);
4231 start++;
4234 if (bitmap_empty_p (live_subregs[regno]))
4236 bitmap_clear_bit (live_subregs_used, regno);
4237 bitmap_clear_bit (live_relevant_regs, regno);
4239 else
4240 /* Set live_relevant_regs here because
4241 that bit has to be true to get us to
4242 look at the live_subregs fields. */
4243 bitmap_set_bit (live_relevant_regs, regno);
4245 else
4247 /* DF_REF_PARTIAL is generated for
4248 subregs, STRICT_LOW_PART, and
4249 ZERO_EXTRACT. We handle the subreg
4250 case above so here we have to keep from
4251 modeling the def as a killing def. */
4252 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4254 bitmap_clear_bit (live_subregs_used, regno);
4255 bitmap_clear_bit (live_relevant_regs, regno);
4261 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4262 bitmap_copy (&c->live_throughout, live_relevant_regs);
4264 if (NONDEBUG_INSN_P (insn))
4265 FOR_EACH_INSN_INFO_USE (use, insn_info)
4267 unsigned int regno = DF_REF_REGNO (use);
4268 rtx reg = DF_REF_REG (use);
4270 /* DF_REF_READ_WRITE on a use means that this use
4271 is fabricated from a def that is a partial set
4272 to a multiword reg. Here, we only model the
4273 subreg case that is not wrapped in ZERO_EXTRACT
4274 precisely so we do not need to look at the
4275 fabricated use. */
4276 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4277 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4278 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4279 continue;
4281 /* Add the last use of each var to dead_or_set. */
4282 if (!bitmap_bit_p (live_relevant_regs, regno))
4284 if (regno < FIRST_PSEUDO_REGISTER)
4286 if (!fixed_regs[regno])
4287 bitmap_set_bit (&c->dead_or_set, regno);
4289 else if (pseudo_for_reload_consideration_p (regno))
4290 bitmap_set_bit (&c->dead_or_set, regno);
4293 if (regno < FIRST_PSEUDO_REGISTER
4294 || pseudo_for_reload_consideration_p (regno))
4296 HOST_WIDE_INT outer_size, inner_size, start;
4297 if (GET_CODE (reg) == SUBREG
4298 && !DF_REF_FLAGS_IS_SET (use,
4299 DF_REF_SIGN_EXTRACT
4300 | DF_REF_ZERO_EXTRACT)
4301 && get_subreg_tracking_sizes (reg, &outer_size,
4302 &inner_size, &start))
4304 HOST_WIDE_INT last = start + outer_size;
4306 init_live_subregs
4307 (bitmap_bit_p (live_relevant_regs, regno),
4308 live_subregs, live_subregs_used, regno,
4309 inner_size);
4311 /* Ignore the paradoxical bits. */
4312 if (last > SBITMAP_SIZE (live_subregs[regno]))
4313 last = SBITMAP_SIZE (live_subregs[regno]);
4315 while (start < last)
4317 bitmap_set_bit (live_subregs[regno], start);
4318 start++;
4321 else
4322 /* Resetting the live_subregs_used is
4323 effectively saying do not use the subregs
4324 because we are reading the whole
4325 pseudo. */
4326 bitmap_clear_bit (live_subregs_used, regno);
4327 bitmap_set_bit (live_relevant_regs, regno);
4333 /* FIXME!! The following code is a disaster. Reload needs to see the
4334 labels and jump tables that are just hanging out in between
4335 the basic blocks. See pr33676. */
4336 insn = BB_HEAD (bb);
4338 /* Skip over the barriers and cruft. */
4339 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4340 || BLOCK_FOR_INSN (insn) == bb))
4341 insn = PREV_INSN (insn);
4343 /* While we add anything except barriers and notes, the focus is
4344 to get the labels and jump tables into the
4345 reload_insn_chain. */
4346 while (insn)
4348 if (!NOTE_P (insn) && !BARRIER_P (insn))
4350 if (BLOCK_FOR_INSN (insn))
4351 break;
4353 c = new_insn_chain ();
4354 c->next = next;
4355 next = c;
4356 *p = c;
4357 p = &c->prev;
4359 /* The block makes no sense here, but it is what the old
4360 code did. */
4361 c->block = bb->index;
4362 c->insn = insn;
4363 bitmap_copy (&c->live_throughout, live_relevant_regs);
4365 insn = PREV_INSN (insn);
4369 reload_insn_chain = c;
4370 *p = NULL;
4372 for (i = 0; i < (unsigned int) max_regno; i++)
4373 if (live_subregs[i] != NULL)
4374 sbitmap_free (live_subregs[i]);
4375 free (live_subregs);
4377 if (dump_file)
4378 print_insn_chains (dump_file);
4381 /* Examine the rtx found in *LOC, which is read or written to as determined
4382 by TYPE. Return false if we find a reason why an insn containing this
4383 rtx should not be moved (such as accesses to non-constant memory), true
4384 otherwise. */
4385 static bool
4386 rtx_moveable_p (rtx *loc, enum op_type type)
4388 const char *fmt;
4389 rtx x = *loc;
4390 int i, j;
4392 enum rtx_code code = GET_CODE (x);
4393 switch (code)
4395 case CONST:
4396 CASE_CONST_ANY:
4397 case SYMBOL_REF:
4398 case LABEL_REF:
4399 return true;
4401 case PC:
4402 return type == OP_IN;
4404 case CC0:
4405 return false;
4407 case REG:
4408 if (x == frame_pointer_rtx)
4409 return true;
4410 if (HARD_REGISTER_P (x))
4411 return false;
4413 return true;
4415 case MEM:
4416 if (type == OP_IN && MEM_READONLY_P (x))
4417 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4418 return false;
4420 case SET:
4421 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4422 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4424 case STRICT_LOW_PART:
4425 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4427 case ZERO_EXTRACT:
4428 case SIGN_EXTRACT:
4429 return (rtx_moveable_p (&XEXP (x, 0), type)
4430 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4431 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4433 case CLOBBER:
4434 case CLOBBER_HIGH:
4435 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4437 case UNSPEC_VOLATILE:
4438 /* It is a bad idea to consider insns with such rtl
4439 as moveable ones. The insn scheduler also considers them as barrier
4440 for a reason. */
4441 return false;
4443 case ASM_OPERANDS:
4444 /* The same is true for volatile asm: it has unknown side effects, it
4445 cannot be moved at will. */
4446 if (MEM_VOLATILE_P (x))
4447 return false;
4449 default:
4450 break;
4453 fmt = GET_RTX_FORMAT (code);
4454 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4456 if (fmt[i] == 'e')
4458 if (!rtx_moveable_p (&XEXP (x, i), type))
4459 return false;
4461 else if (fmt[i] == 'E')
4462 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4464 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4465 return false;
4468 return true;
4471 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4472 to give dominance relationships between two insns I1 and I2. */
4473 static bool
4474 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4476 basic_block bb1 = BLOCK_FOR_INSN (i1);
4477 basic_block bb2 = BLOCK_FOR_INSN (i2);
4479 if (bb1 == bb2)
4480 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4481 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4484 /* Record the range of register numbers added by find_moveable_pseudos. */
4485 int first_moveable_pseudo, last_moveable_pseudo;
4487 /* These two vectors hold data for every register added by
4488 find_movable_pseudos, with index 0 holding data for the
4489 first_moveable_pseudo. */
4490 /* The original home register. */
4491 static vec<rtx> pseudo_replaced_reg;
4493 /* Look for instances where we have an instruction that is known to increase
4494 register pressure, and whose result is not used immediately. If it is
4495 possible to move the instruction downwards to just before its first use,
4496 split its lifetime into two ranges. We create a new pseudo to compute the
4497 value, and emit a move instruction just before the first use. If, after
4498 register allocation, the new pseudo remains unallocated, the function
4499 move_unallocated_pseudos then deletes the move instruction and places
4500 the computation just before the first use.
4502 Such a move is safe and profitable if all the input registers remain live
4503 and unchanged between the original computation and its first use. In such
4504 a situation, the computation is known to increase register pressure, and
4505 moving it is known to at least not worsen it.
4507 We restrict moves to only those cases where a register remains unallocated,
4508 in order to avoid interfering too much with the instruction schedule. As
4509 an exception, we may move insns which only modify their input register
4510 (typically induction variables), as this increases the freedom for our
4511 intended transformation, and does not limit the second instruction
4512 scheduler pass. */
4514 static void
4515 find_moveable_pseudos (void)
4517 unsigned i;
4518 int max_regs = max_reg_num ();
4519 int max_uid = get_max_uid ();
4520 basic_block bb;
4521 int *uid_luid = XNEWVEC (int, max_uid);
4522 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4523 /* A set of registers which are live but not modified throughout a block. */
4524 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4525 last_basic_block_for_fn (cfun));
4526 /* A set of registers which only exist in a given basic block. */
4527 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4528 last_basic_block_for_fn (cfun));
4529 /* A set of registers which are set once, in an instruction that can be
4530 moved freely downwards, but are otherwise transparent to a block. */
4531 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4532 last_basic_block_for_fn (cfun));
4533 auto_bitmap live, used, set, interesting, unusable_as_input;
4534 bitmap_iterator bi;
4536 first_moveable_pseudo = max_regs;
4537 pseudo_replaced_reg.release ();
4538 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4540 df_analyze ();
4541 calculate_dominance_info (CDI_DOMINATORS);
4543 i = 0;
4544 FOR_EACH_BB_FN (bb, cfun)
4546 rtx_insn *insn;
4547 bitmap transp = bb_transp_live + bb->index;
4548 bitmap moveable = bb_moveable_reg_sets + bb->index;
4549 bitmap local = bb_local + bb->index;
4551 bitmap_initialize (local, 0);
4552 bitmap_initialize (transp, 0);
4553 bitmap_initialize (moveable, 0);
4554 bitmap_copy (live, df_get_live_out (bb));
4555 bitmap_and_into (live, df_get_live_in (bb));
4556 bitmap_copy (transp, live);
4557 bitmap_clear (moveable);
4558 bitmap_clear (live);
4559 bitmap_clear (used);
4560 bitmap_clear (set);
4561 FOR_BB_INSNS (bb, insn)
4562 if (NONDEBUG_INSN_P (insn))
4564 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4565 df_ref def, use;
4567 uid_luid[INSN_UID (insn)] = i++;
4569 def = df_single_def (insn_info);
4570 use = df_single_use (insn_info);
4571 if (use
4572 && def
4573 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4574 && !bitmap_bit_p (set, DF_REF_REGNO (use))
4575 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4577 unsigned regno = DF_REF_REGNO (use);
4578 bitmap_set_bit (moveable, regno);
4579 bitmap_set_bit (set, regno);
4580 bitmap_set_bit (used, regno);
4581 bitmap_clear_bit (transp, regno);
4582 continue;
4584 FOR_EACH_INSN_INFO_USE (use, insn_info)
4586 unsigned regno = DF_REF_REGNO (use);
4587 bitmap_set_bit (used, regno);
4588 if (bitmap_clear_bit (moveable, regno))
4589 bitmap_clear_bit (transp, regno);
4592 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4594 unsigned regno = DF_REF_REGNO (def);
4595 bitmap_set_bit (set, regno);
4596 bitmap_clear_bit (transp, regno);
4597 bitmap_clear_bit (moveable, regno);
4602 FOR_EACH_BB_FN (bb, cfun)
4604 bitmap local = bb_local + bb->index;
4605 rtx_insn *insn;
4607 FOR_BB_INSNS (bb, insn)
4608 if (NONDEBUG_INSN_P (insn))
4610 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4611 rtx_insn *def_insn;
4612 rtx closest_use, note;
4613 df_ref def, use;
4614 unsigned regno;
4615 bool all_dominated, all_local;
4616 machine_mode mode;
4618 def = df_single_def (insn_info);
4619 /* There must be exactly one def in this insn. */
4620 if (!def || !single_set (insn))
4621 continue;
4622 /* This must be the only definition of the reg. We also limit
4623 which modes we deal with so that we can assume we can generate
4624 move instructions. */
4625 regno = DF_REF_REGNO (def);
4626 mode = GET_MODE (DF_REF_REG (def));
4627 if (DF_REG_DEF_COUNT (regno) != 1
4628 || !DF_REF_INSN_INFO (def)
4629 || HARD_REGISTER_NUM_P (regno)
4630 || DF_REG_EQ_USE_COUNT (regno) > 0
4631 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4632 continue;
4633 def_insn = DF_REF_INSN (def);
4635 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4636 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4637 break;
4639 if (note)
4641 if (dump_file)
4642 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4643 regno);
4644 bitmap_set_bit (unusable_as_input, regno);
4645 continue;
4648 use = DF_REG_USE_CHAIN (regno);
4649 all_dominated = true;
4650 all_local = true;
4651 closest_use = NULL_RTX;
4652 for (; use; use = DF_REF_NEXT_REG (use))
4654 rtx_insn *insn;
4655 if (!DF_REF_INSN_INFO (use))
4657 all_dominated = false;
4658 all_local = false;
4659 break;
4661 insn = DF_REF_INSN (use);
4662 if (DEBUG_INSN_P (insn))
4663 continue;
4664 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4665 all_local = false;
4666 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4667 all_dominated = false;
4668 if (closest_use != insn && closest_use != const0_rtx)
4670 if (closest_use == NULL_RTX)
4671 closest_use = insn;
4672 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4673 closest_use = insn;
4674 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4675 closest_use = const0_rtx;
4678 if (!all_dominated)
4680 if (dump_file)
4681 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4682 regno);
4683 continue;
4685 if (all_local)
4686 bitmap_set_bit (local, regno);
4687 if (closest_use == const0_rtx || closest_use == NULL
4688 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4690 if (dump_file)
4691 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4692 closest_use == const0_rtx || closest_use == NULL
4693 ? " (no unique first use)" : "");
4694 continue;
4696 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4698 if (dump_file)
4699 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4700 regno);
4701 continue;
4704 bitmap_set_bit (interesting, regno);
4705 /* If we get here, we know closest_use is a non-NULL insn
4706 (as opposed to const_0_rtx). */
4707 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4709 if (dump_file && (all_local || all_dominated))
4711 fprintf (dump_file, "Reg %u:", regno);
4712 if (all_local)
4713 fprintf (dump_file, " local to bb %d", bb->index);
4714 if (all_dominated)
4715 fprintf (dump_file, " def dominates all uses");
4716 if (closest_use != const0_rtx)
4717 fprintf (dump_file, " has unique first use");
4718 fputs ("\n", dump_file);
4723 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4725 df_ref def = DF_REG_DEF_CHAIN (i);
4726 rtx_insn *def_insn = DF_REF_INSN (def);
4727 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4728 bitmap def_bb_local = bb_local + def_block->index;
4729 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4730 bitmap def_bb_transp = bb_transp_live + def_block->index;
4731 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4732 rtx_insn *use_insn = closest_uses[i];
4733 df_ref use;
4734 bool all_ok = true;
4735 bool all_transp = true;
4737 if (!REG_P (DF_REF_REG (def)))
4738 continue;
4740 if (!local_to_bb_p)
4742 if (dump_file)
4743 fprintf (dump_file, "Reg %u not local to one basic block\n",
4745 continue;
4747 if (reg_equiv_init (i) != NULL_RTX)
4749 if (dump_file)
4750 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4752 continue;
4754 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4756 if (dump_file)
4757 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4758 INSN_UID (def_insn), i);
4759 continue;
4761 if (dump_file)
4762 fprintf (dump_file, "Examining insn %d, def for %d\n",
4763 INSN_UID (def_insn), i);
4764 FOR_EACH_INSN_USE (use, def_insn)
4766 unsigned regno = DF_REF_REGNO (use);
4767 if (bitmap_bit_p (unusable_as_input, regno))
4769 all_ok = false;
4770 if (dump_file)
4771 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4772 break;
4774 if (!bitmap_bit_p (def_bb_transp, regno))
4776 if (bitmap_bit_p (def_bb_moveable, regno)
4777 && !control_flow_insn_p (use_insn)
4778 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4780 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4782 rtx_insn *x = NEXT_INSN (def_insn);
4783 while (!modified_in_p (DF_REF_REG (use), x))
4785 gcc_assert (x != use_insn);
4786 x = NEXT_INSN (x);
4788 if (dump_file)
4789 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4790 regno, INSN_UID (x));
4791 emit_insn_after (PATTERN (x), use_insn);
4792 set_insn_deleted (x);
4794 else
4796 if (dump_file)
4797 fprintf (dump_file, " input reg %u modified between def and use\n",
4798 regno);
4799 all_transp = false;
4802 else
4803 all_transp = false;
4806 if (!all_ok)
4807 continue;
4808 if (!dbg_cnt (ira_move))
4809 break;
4810 if (dump_file)
4811 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4813 if (all_transp)
4815 rtx def_reg = DF_REF_REG (def);
4816 rtx newreg = ira_create_new_reg (def_reg);
4817 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4819 unsigned nregno = REGNO (newreg);
4820 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4821 nregno -= max_regs;
4822 pseudo_replaced_reg[nregno] = def_reg;
4827 FOR_EACH_BB_FN (bb, cfun)
4829 bitmap_clear (bb_local + bb->index);
4830 bitmap_clear (bb_transp_live + bb->index);
4831 bitmap_clear (bb_moveable_reg_sets + bb->index);
4833 free (uid_luid);
4834 free (closest_uses);
4835 free (bb_local);
4836 free (bb_transp_live);
4837 free (bb_moveable_reg_sets);
4839 last_moveable_pseudo = max_reg_num ();
4841 fix_reg_equiv_init ();
4842 expand_reg_info ();
4843 regstat_free_n_sets_and_refs ();
4844 regstat_free_ri ();
4845 regstat_init_n_sets_and_refs ();
4846 regstat_compute_ri ();
4847 free_dominance_info (CDI_DOMINATORS);
4850 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4851 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4852 the destination. Otherwise return NULL. */
4854 static rtx
4855 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4857 rtx src = SET_SRC (set);
4858 rtx dest = SET_DEST (set);
4859 if (!REG_P (src) || !HARD_REGISTER_P (src)
4860 || !REG_P (dest) || HARD_REGISTER_P (dest)
4861 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4862 return NULL;
4863 return dest;
4866 /* If insn is interesting for parameter range-splitting shrink-wrapping
4867 preparation, i.e. it is a single set from a hard register to a pseudo, which
4868 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4869 parallel statement with only one such statement, return the destination.
4870 Otherwise return NULL. */
4872 static rtx
4873 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4875 if (!INSN_P (insn))
4876 return NULL;
4877 rtx pat = PATTERN (insn);
4878 if (GET_CODE (pat) == SET)
4879 return interesting_dest_for_shprep_1 (pat, call_dom);
4881 if (GET_CODE (pat) != PARALLEL)
4882 return NULL;
4883 rtx ret = NULL;
4884 for (int i = 0; i < XVECLEN (pat, 0); i++)
4886 rtx sub = XVECEXP (pat, 0, i);
4887 if (GET_CODE (sub) == USE
4888 || GET_CODE (sub) == CLOBBER
4889 || GET_CODE (sub) == CLOBBER_HIGH)
4890 continue;
4891 if (GET_CODE (sub) != SET
4892 || side_effects_p (sub))
4893 return NULL;
4894 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4895 if (dest && ret)
4896 return NULL;
4897 if (dest)
4898 ret = dest;
4900 return ret;
4903 /* Split live ranges of pseudos that are loaded from hard registers in the
4904 first BB in a BB that dominates all non-sibling call if such a BB can be
4905 found and is not in a loop. Return true if the function has made any
4906 changes. */
4908 static bool
4909 split_live_ranges_for_shrink_wrap (void)
4911 basic_block bb, call_dom = NULL;
4912 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4913 rtx_insn *insn, *last_interesting_insn = NULL;
4914 auto_bitmap need_new, reachable;
4915 vec<basic_block> queue;
4917 if (!SHRINK_WRAPPING_ENABLED)
4918 return false;
4920 queue.create (n_basic_blocks_for_fn (cfun));
4922 FOR_EACH_BB_FN (bb, cfun)
4923 FOR_BB_INSNS (bb, insn)
4924 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4926 if (bb == first)
4928 queue.release ();
4929 return false;
4932 bitmap_set_bit (need_new, bb->index);
4933 bitmap_set_bit (reachable, bb->index);
4934 queue.quick_push (bb);
4935 break;
4938 if (queue.is_empty ())
4940 queue.release ();
4941 return false;
4944 while (!queue.is_empty ())
4946 edge e;
4947 edge_iterator ei;
4949 bb = queue.pop ();
4950 FOR_EACH_EDGE (e, ei, bb->succs)
4951 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4952 && bitmap_set_bit (reachable, e->dest->index))
4953 queue.quick_push (e->dest);
4955 queue.release ();
4957 FOR_BB_INSNS (first, insn)
4959 rtx dest = interesting_dest_for_shprep (insn, NULL);
4960 if (!dest)
4961 continue;
4963 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4964 return false;
4966 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4967 use;
4968 use = DF_REF_NEXT_REG (use))
4970 int ubbi = DF_REF_BB (use)->index;
4971 if (bitmap_bit_p (reachable, ubbi))
4972 bitmap_set_bit (need_new, ubbi);
4974 last_interesting_insn = insn;
4977 if (!last_interesting_insn)
4978 return false;
4980 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
4981 if (call_dom == first)
4982 return false;
4984 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4985 while (bb_loop_depth (call_dom) > 0)
4986 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4987 loop_optimizer_finalize ();
4989 if (call_dom == first)
4990 return false;
4992 calculate_dominance_info (CDI_POST_DOMINATORS);
4993 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4995 free_dominance_info (CDI_POST_DOMINATORS);
4996 return false;
4998 free_dominance_info (CDI_POST_DOMINATORS);
5000 if (dump_file)
5001 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5002 call_dom->index);
5004 bool ret = false;
5005 FOR_BB_INSNS (first, insn)
5007 rtx dest = interesting_dest_for_shprep (insn, call_dom);
5008 if (!dest || dest == pic_offset_table_rtx)
5009 continue;
5011 bool need_newreg = false;
5012 df_ref use, next;
5013 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5015 rtx_insn *uin = DF_REF_INSN (use);
5016 next = DF_REF_NEXT_REG (use);
5018 if (DEBUG_INSN_P (uin))
5019 continue;
5021 basic_block ubb = BLOCK_FOR_INSN (uin);
5022 if (ubb == call_dom
5023 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5025 need_newreg = true;
5026 break;
5030 if (need_newreg)
5032 rtx newreg = ira_create_new_reg (dest);
5034 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5036 rtx_insn *uin = DF_REF_INSN (use);
5037 next = DF_REF_NEXT_REG (use);
5039 basic_block ubb = BLOCK_FOR_INSN (uin);
5040 if (ubb == call_dom
5041 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5042 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5045 rtx_insn *new_move = gen_move_insn (newreg, dest);
5046 emit_insn_after (new_move, bb_note (call_dom));
5047 if (dump_file)
5049 fprintf (dump_file, "Split live-range of register ");
5050 print_rtl_single (dump_file, dest);
5052 ret = true;
5055 if (insn == last_interesting_insn)
5056 break;
5058 apply_change_group ();
5059 return ret;
5062 /* Perform the second half of the transformation started in
5063 find_moveable_pseudos. We look for instances where the newly introduced
5064 pseudo remains unallocated, and remove it by moving the definition to
5065 just before its use, replacing the move instruction generated by
5066 find_moveable_pseudos. */
5067 static void
5068 move_unallocated_pseudos (void)
5070 int i;
5071 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5072 if (reg_renumber[i] < 0)
5074 int idx = i - first_moveable_pseudo;
5075 rtx other_reg = pseudo_replaced_reg[idx];
5076 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5077 /* The use must follow all definitions of OTHER_REG, so we can
5078 insert the new definition immediately after any of them. */
5079 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5080 rtx_insn *move_insn = DF_REF_INSN (other_def);
5081 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5082 rtx set;
5083 int success;
5085 if (dump_file)
5086 fprintf (dump_file, "moving def of %d (insn %d now) ",
5087 REGNO (other_reg), INSN_UID (def_insn));
5089 delete_insn (move_insn);
5090 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5091 delete_insn (DF_REF_INSN (other_def));
5092 delete_insn (def_insn);
5094 set = single_set (newinsn);
5095 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5096 gcc_assert (success);
5097 if (dump_file)
5098 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5099 INSN_UID (newinsn), i);
5100 SET_REG_N_REFS (i, 0);
5104 /* If the backend knows where to allocate pseudos for hard
5105 register initial values, register these allocations now. */
5106 static void
5107 allocate_initial_values (void)
5109 if (targetm.allocate_initial_value)
5111 rtx hreg, preg, x;
5112 int i, regno;
5114 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5116 if (! initial_value_entry (i, &hreg, &preg))
5117 break;
5119 x = targetm.allocate_initial_value (hreg);
5120 regno = REGNO (preg);
5121 if (x && REG_N_SETS (regno) <= 1)
5123 if (MEM_P (x))
5124 reg_equiv_memory_loc (regno) = x;
5125 else
5127 basic_block bb;
5128 int new_regno;
5130 gcc_assert (REG_P (x));
5131 new_regno = REGNO (x);
5132 reg_renumber[regno] = new_regno;
5133 /* Poke the regno right into regno_reg_rtx so that even
5134 fixed regs are accepted. */
5135 SET_REGNO (preg, new_regno);
5136 /* Update global register liveness information. */
5137 FOR_EACH_BB_FN (bb, cfun)
5139 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5140 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5141 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5142 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5148 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5149 &hreg, &preg));
5154 /* True when we use LRA instead of reload pass for the current
5155 function. */
5156 bool ira_use_lra_p;
5158 /* True if we have allocno conflicts. It is false for non-optimized
5159 mode or when the conflict table is too big. */
5160 bool ira_conflicts_p;
5162 /* Saved between IRA and reload. */
5163 static int saved_flag_ira_share_spill_slots;
5165 /* This is the main entry of IRA. */
5166 static void
5167 ira (FILE *f)
5169 bool loops_p;
5170 int ira_max_point_before_emit;
5171 bool saved_flag_caller_saves = flag_caller_saves;
5172 enum ira_region saved_flag_ira_region = flag_ira_region;
5173 unsigned int i;
5174 int num_used_regs = 0;
5176 clear_bb_flags ();
5178 /* Determine if the current function is a leaf before running IRA
5179 since this can impact optimizations done by the prologue and
5180 epilogue thus changing register elimination offsets.
5181 Other target callbacks may use crtl->is_leaf too, including
5182 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5183 crtl->is_leaf = leaf_function_p ();
5185 /* Perform target specific PIC register initialization. */
5186 targetm.init_pic_reg ();
5188 ira_conflicts_p = optimize > 0;
5190 /* Determine the number of pseudos actually requiring coloring. */
5191 for (i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5192 num_used_regs += !!(DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i));
5194 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5195 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5196 use simplified and faster algorithms in LRA. */
5197 lra_simple_p
5198 = (ira_use_lra_p
5199 && num_used_regs >= (1 << 26) / last_basic_block_for_fn (cfun));
5201 if (lra_simple_p)
5203 /* It permits to skip live range splitting in LRA. */
5204 flag_caller_saves = false;
5205 /* There is no sense to do regional allocation when we use
5206 simplified LRA. */
5207 flag_ira_region = IRA_REGION_ONE;
5208 ira_conflicts_p = false;
5211 #ifndef IRA_NO_OBSTACK
5212 gcc_obstack_init (&ira_obstack);
5213 #endif
5214 bitmap_obstack_initialize (&ira_bitmap_obstack);
5216 /* LRA uses its own infrastructure to handle caller save registers. */
5217 if (flag_caller_saves && !ira_use_lra_p)
5218 init_caller_save ();
5220 if (flag_ira_verbose < 10)
5222 internal_flag_ira_verbose = flag_ira_verbose;
5223 ira_dump_file = f;
5225 else
5227 internal_flag_ira_verbose = flag_ira_verbose - 10;
5228 ira_dump_file = stderr;
5231 setup_prohibited_mode_move_regs ();
5232 decrease_live_ranges_number ();
5233 df_note_add_problem ();
5235 /* DF_LIVE can't be used in the register allocator, too many other
5236 parts of the compiler depend on using the "classic" liveness
5237 interpretation of the DF_LR problem. See PR38711.
5238 Remove the problem, so that we don't spend time updating it in
5239 any of the df_analyze() calls during IRA/LRA. */
5240 if (optimize > 1)
5241 df_remove_problem (df_live);
5242 gcc_checking_assert (df_live == NULL);
5244 if (flag_checking)
5245 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5247 df_analyze ();
5249 init_reg_equiv ();
5250 if (ira_conflicts_p)
5252 calculate_dominance_info (CDI_DOMINATORS);
5254 if (split_live_ranges_for_shrink_wrap ())
5255 df_analyze ();
5257 free_dominance_info (CDI_DOMINATORS);
5260 df_clear_flags (DF_NO_INSN_RESCAN);
5262 indirect_jump_optimize ();
5263 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5264 df_analyze ();
5266 regstat_init_n_sets_and_refs ();
5267 regstat_compute_ri ();
5269 /* If we are not optimizing, then this is the only place before
5270 register allocation where dataflow is done. And that is needed
5271 to generate these warnings. */
5272 if (warn_clobbered)
5273 generate_setjmp_warnings ();
5275 if (resize_reg_info () && flag_ira_loop_pressure)
5276 ira_set_pseudo_classes (true, ira_dump_file);
5278 init_alias_analysis ();
5279 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5280 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5281 update_equiv_regs ();
5283 /* Don't move insns if live range shrinkage or register
5284 pressure-sensitive scheduling were done because it will not
5285 improve allocation but likely worsen insn scheduling. */
5286 if (optimize
5287 && !flag_live_range_shrinkage
5288 && !(flag_sched_pressure && flag_schedule_insns))
5289 combine_and_move_insns ();
5291 /* Gather additional equivalences with memory. */
5292 if (optimize)
5293 add_store_equivs ();
5295 loop_optimizer_finalize ();
5296 free_dominance_info (CDI_DOMINATORS);
5297 end_alias_analysis ();
5298 free (reg_equiv);
5300 setup_reg_equiv ();
5301 grow_reg_equivs ();
5302 setup_reg_equiv_init ();
5304 allocated_reg_info_size = max_reg_num ();
5306 /* It is not worth to do such improvement when we use a simple
5307 allocation because of -O0 usage or because the function is too
5308 big. */
5309 if (ira_conflicts_p)
5310 find_moveable_pseudos ();
5312 max_regno_before_ira = max_reg_num ();
5313 ira_setup_eliminable_regset ();
5315 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5316 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5317 ira_move_loops_num = ira_additional_jumps_num = 0;
5319 ira_assert (current_loops == NULL);
5320 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5321 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5323 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5324 fprintf (ira_dump_file, "Building IRA IR\n");
5325 loops_p = ira_build ();
5327 ira_assert (ira_conflicts_p || !loops_p);
5329 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5330 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5331 /* It is just wasting compiler's time to pack spilled pseudos into
5332 stack slots in this case -- prohibit it. We also do this if
5333 there is setjmp call because a variable not modified between
5334 setjmp and longjmp the compiler is required to preserve its
5335 value and sharing slots does not guarantee it. */
5336 flag_ira_share_spill_slots = FALSE;
5338 ira_color ();
5340 ira_max_point_before_emit = ira_max_point;
5342 ira_initiate_emit_data ();
5344 ira_emit (loops_p);
5346 max_regno = max_reg_num ();
5347 if (ira_conflicts_p)
5349 if (! loops_p)
5351 if (! ira_use_lra_p)
5352 ira_initiate_assign ();
5354 else
5356 expand_reg_info ();
5358 if (ira_use_lra_p)
5360 ira_allocno_t a;
5361 ira_allocno_iterator ai;
5363 FOR_EACH_ALLOCNO (a, ai)
5365 int old_regno = ALLOCNO_REGNO (a);
5366 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5368 ALLOCNO_REGNO (a) = new_regno;
5370 if (old_regno != new_regno)
5371 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5372 reg_alternate_class (old_regno),
5373 reg_allocno_class (old_regno));
5376 else
5378 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5379 fprintf (ira_dump_file, "Flattening IR\n");
5380 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5382 /* New insns were generated: add notes and recalculate live
5383 info. */
5384 df_analyze ();
5386 /* ??? Rebuild the loop tree, but why? Does the loop tree
5387 change if new insns were generated? Can that be handled
5388 by updating the loop tree incrementally? */
5389 loop_optimizer_finalize ();
5390 free_dominance_info (CDI_DOMINATORS);
5391 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5392 | LOOPS_HAVE_RECORDED_EXITS);
5394 if (! ira_use_lra_p)
5396 setup_allocno_assignment_flags ();
5397 ira_initiate_assign ();
5398 ira_reassign_conflict_allocnos (max_regno);
5403 ira_finish_emit_data ();
5405 setup_reg_renumber ();
5407 calculate_allocation_cost ();
5409 #ifdef ENABLE_IRA_CHECKING
5410 if (ira_conflicts_p && ! ira_use_lra_p)
5411 /* Opposite to reload pass, LRA does not use any conflict info
5412 from IRA. We don't rebuild conflict info for LRA (through
5413 ira_flattening call) and cannot use the check here. We could
5414 rebuild this info for LRA in the check mode but there is a risk
5415 that code generated with the check and without it will be a bit
5416 different. Calling ira_flattening in any mode would be a
5417 wasting CPU time. So do not check the allocation for LRA. */
5418 check_allocation ();
5419 #endif
5421 if (max_regno != max_regno_before_ira)
5423 regstat_free_n_sets_and_refs ();
5424 regstat_free_ri ();
5425 regstat_init_n_sets_and_refs ();
5426 regstat_compute_ri ();
5429 overall_cost_before = ira_overall_cost;
5430 if (! ira_conflicts_p)
5431 grow_reg_equivs ();
5432 else
5434 fix_reg_equiv_init ();
5436 #ifdef ENABLE_IRA_CHECKING
5437 print_redundant_copies ();
5438 #endif
5439 if (! ira_use_lra_p)
5441 ira_spilled_reg_stack_slots_num = 0;
5442 ira_spilled_reg_stack_slots
5443 = ((class ira_spilled_reg_stack_slot *)
5444 ira_allocate (max_regno
5445 * sizeof (class ira_spilled_reg_stack_slot)));
5446 memset ((void *)ira_spilled_reg_stack_slots, 0,
5447 max_regno * sizeof (class ira_spilled_reg_stack_slot));
5450 allocate_initial_values ();
5452 /* See comment for find_moveable_pseudos call. */
5453 if (ira_conflicts_p)
5454 move_unallocated_pseudos ();
5456 /* Restore original values. */
5457 if (lra_simple_p)
5459 flag_caller_saves = saved_flag_caller_saves;
5460 flag_ira_region = saved_flag_ira_region;
5464 static void
5465 do_reload (void)
5467 basic_block bb;
5468 bool need_dce;
5469 unsigned pic_offset_table_regno = INVALID_REGNUM;
5471 if (flag_ira_verbose < 10)
5472 ira_dump_file = dump_file;
5474 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5475 after reload to avoid possible wrong usages of hard reg assigned
5476 to it. */
5477 if (pic_offset_table_rtx
5478 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5479 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5481 timevar_push (TV_RELOAD);
5482 if (ira_use_lra_p)
5484 if (current_loops != NULL)
5486 loop_optimizer_finalize ();
5487 free_dominance_info (CDI_DOMINATORS);
5489 FOR_ALL_BB_FN (bb, cfun)
5490 bb->loop_father = NULL;
5491 current_loops = NULL;
5493 ira_destroy ();
5495 lra (ira_dump_file);
5496 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5497 LRA. */
5498 vec_free (reg_equivs);
5499 reg_equivs = NULL;
5500 need_dce = false;
5502 else
5504 df_set_flags (DF_NO_INSN_RESCAN);
5505 build_insn_chain ();
5507 need_dce = reload (get_insns (), ira_conflicts_p);
5510 timevar_pop (TV_RELOAD);
5512 timevar_push (TV_IRA);
5514 if (ira_conflicts_p && ! ira_use_lra_p)
5516 ira_free (ira_spilled_reg_stack_slots);
5517 ira_finish_assign ();
5520 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5521 && overall_cost_before != ira_overall_cost)
5522 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5523 ira_overall_cost);
5525 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5527 if (! ira_use_lra_p)
5529 ira_destroy ();
5530 if (current_loops != NULL)
5532 loop_optimizer_finalize ();
5533 free_dominance_info (CDI_DOMINATORS);
5535 FOR_ALL_BB_FN (bb, cfun)
5536 bb->loop_father = NULL;
5537 current_loops = NULL;
5539 regstat_free_ri ();
5540 regstat_free_n_sets_and_refs ();
5543 if (optimize)
5544 cleanup_cfg (CLEANUP_EXPENSIVE);
5546 finish_reg_equiv ();
5548 bitmap_obstack_release (&ira_bitmap_obstack);
5549 #ifndef IRA_NO_OBSTACK
5550 obstack_free (&ira_obstack, NULL);
5551 #endif
5553 /* The code after the reload has changed so much that at this point
5554 we might as well just rescan everything. Note that
5555 df_rescan_all_insns is not going to help here because it does not
5556 touch the artificial uses and defs. */
5557 df_finish_pass (true);
5558 df_scan_alloc (NULL);
5559 df_scan_blocks ();
5561 if (optimize > 1)
5563 df_live_add_problem ();
5564 df_live_set_all_dirty ();
5567 if (optimize)
5568 df_analyze ();
5570 if (need_dce && optimize)
5571 run_fast_dce ();
5573 /* Diagnose uses of the hard frame pointer when it is used as a global
5574 register. Often we can get away with letting the user appropriate
5575 the frame pointer, but we should let them know when code generation
5576 makes that impossible. */
5577 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5579 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5580 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5581 "frame pointer required, but reserved");
5582 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5585 /* If we are doing generic stack checking, give a warning if this
5586 function's frame size is larger than we expect. */
5587 if (flag_stack_check == GENERIC_STACK_CHECK)
5589 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5591 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5592 if (df_regs_ever_live_p (i)
5593 && !fixed_regs[i]
5594 && call_used_or_fixed_reg_p (i))
5595 size += UNITS_PER_WORD;
5597 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
5598 warning (0, "frame size too large for reliable stack checking");
5601 if (pic_offset_table_regno != INVALID_REGNUM)
5602 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5604 timevar_pop (TV_IRA);
5607 /* Run the integrated register allocator. */
5609 namespace {
5611 const pass_data pass_data_ira =
5613 RTL_PASS, /* type */
5614 "ira", /* name */
5615 OPTGROUP_NONE, /* optinfo_flags */
5616 TV_IRA, /* tv_id */
5617 0, /* properties_required */
5618 0, /* properties_provided */
5619 0, /* properties_destroyed */
5620 0, /* todo_flags_start */
5621 TODO_do_not_ggc_collect, /* todo_flags_finish */
5624 class pass_ira : public rtl_opt_pass
5626 public:
5627 pass_ira (gcc::context *ctxt)
5628 : rtl_opt_pass (pass_data_ira, ctxt)
5631 /* opt_pass methods: */
5632 virtual bool gate (function *)
5634 return !targetm.no_register_allocation;
5636 virtual unsigned int execute (function *)
5638 ira (dump_file);
5639 return 0;
5642 }; // class pass_ira
5644 } // anon namespace
5646 rtl_opt_pass *
5647 make_pass_ira (gcc::context *ctxt)
5649 return new pass_ira (ctxt);
5652 namespace {
5654 const pass_data pass_data_reload =
5656 RTL_PASS, /* type */
5657 "reload", /* name */
5658 OPTGROUP_NONE, /* optinfo_flags */
5659 TV_RELOAD, /* tv_id */
5660 0, /* properties_required */
5661 0, /* properties_provided */
5662 0, /* properties_destroyed */
5663 0, /* todo_flags_start */
5664 0, /* todo_flags_finish */
5667 class pass_reload : public rtl_opt_pass
5669 public:
5670 pass_reload (gcc::context *ctxt)
5671 : rtl_opt_pass (pass_data_reload, ctxt)
5674 /* opt_pass methods: */
5675 virtual bool gate (function *)
5677 return !targetm.no_register_allocation;
5679 virtual unsigned int execute (function *)
5681 do_reload ();
5682 return 0;
5685 }; // class pass_reload
5687 } // anon namespace
5689 rtl_opt_pass *
5690 make_pass_reload (gcc::context *ctxt)
5692 return new pass_reload (ctxt);