1 /* Subroutines needed for unwinding stack frames for exception handling. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1997 Free Software Foundation, Inc.
4 Contributed by Jason Merrill <jason@cygnus.com>.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* As a special exception, if you link this library with other files,
24 some of which are compiled with GCC, to produce an executable,
25 this library does not by itself cause the resulting executable
26 to be covered by the GNU General Public License.
27 This exception does not however invalidate any other reasons why
28 the executable file might be covered by the GNU General Public License. */
30 /* It is incorrect to include config.h here, because this file is being
31 compiled for the target, and hence definitions concerning only the host
36 /* We disable this when inhibit_libc, so that gcc can still be built without
37 needing header files first. */
38 /* ??? This is not a good solution, since prototypes may be required in
39 some cases for correct code. See also libgcc2.c. */
41 /* fixproto guarantees these system headers exist. */
48 #ifdef DWARF2_UNWIND_INFO
49 #include "gansidecl.h"
55 #ifdef __GTHREAD_MUTEX_INIT
56 static __gthread_mutex_t object_mutex
= __GTHREAD_MUTEX_INIT
;
58 static __gthread_mutex_t object_mutex
;
61 /* Don't use `fancy_abort' here even if config.h says to use it. */
66 /* Some types used by the DWARF 2 spec. */
68 typedef int sword
__attribute__ ((mode (SI
)));
69 typedef unsigned int uword
__attribute__ ((mode (SI
)));
70 typedef unsigned int uaddr
__attribute__ ((mode (pointer
)));
71 typedef int saddr
__attribute__ ((mode (pointer
)));
72 typedef unsigned char ubyte
;
74 /* The first few fields of a CIE. The CIE_id field is 0 for a CIE,
75 to distinguish it from a valid FDE. FDEs are aligned to an addressing
76 unit boundary, but the fields within are unaligned. */
83 } __attribute__ ((packed
, aligned (__alignof__ (void *))));
85 /* The first few fields of an FDE. */
92 } __attribute__ ((packed
, aligned (__alignof__ (void *))));
94 typedef struct dwarf_fde fde
;
96 /* Objects to be searched for frame unwind info. */
98 static struct object
*objects
;
100 /* The information we care about from a CIE. */
110 /* The current unwind state, plus a saved copy for DW_CFA_remember_state. */
112 struct frame_state_internal
114 struct frame_state s
;
115 struct frame_state_internal
*saved_state
;
118 /* Decode the unsigned LEB128 constant at BUF into the variable pointed to
119 by R, and return the new value of BUF. */
122 decode_uleb128 (unsigned char *buf
, unsigned *r
)
129 unsigned byte
= *buf
++;
130 result
|= (byte
& 0x7f) << shift
;
131 if ((byte
& 0x80) == 0)
139 /* Decode the signed LEB128 constant at BUF into the variable pointed to
140 by R, and return the new value of BUF. */
143 decode_sleb128 (unsigned char *buf
, int *r
)
152 result
|= (byte
& 0x7f) << shift
;
154 if ((byte
& 0x80) == 0)
157 if (shift
< (sizeof (*r
) * 8) && (byte
& 0x40) != 0)
158 result
|= - (1 << shift
);
164 /* Read unaligned data from the instruction buffer. */
168 unsigned b2
__attribute__ ((mode (HI
)));
169 unsigned b4
__attribute__ ((mode (SI
)));
170 unsigned b8
__attribute__ ((mode (DI
)));
171 } __attribute__ ((packed
));
173 read_pointer (void *p
)
174 { union unaligned
*up
= p
; return up
->p
; }
175 static inline unsigned
177 { return *(unsigned char *)p
; }
178 static inline unsigned
180 { union unaligned
*up
= p
; return up
->b2
; }
181 static inline unsigned
183 { union unaligned
*up
= p
; return up
->b4
; }
184 static inline unsigned long
186 { union unaligned
*up
= p
; return up
->b8
; }
188 /* Ordering function for FDEs. Functions can't overlap, so we just compare
189 their starting addresses. */
192 fde_compare (fde
*x
, fde
*y
)
194 return (saddr
)x
->pc_begin
- (saddr
)y
->pc_begin
;
197 /* Return the address of the FDE after P. */
202 return (fde
*)(((char *)p
) + p
->length
+ sizeof (p
->length
));
205 /* Sorting an array of FDEs by address.
206 (Ideally we would have the linker sort the FDEs so we don't have to do
207 it at run time. But the linkers are not yet prepared for this.) */
209 /* This is a special mix of insertion sort and heap sort, optimized for
210 the data sets that actually occur. They look like
211 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
212 I.e. a linearly increasing sequence (coming from functions in the text
213 section), with additionally a few unordered elements (coming from functions
214 in gnu_linkonce sections) whose values are higher than the values in the
215 surrounding linear sequence (but not necessarily higher than the values
216 at the end of the linear sequence!).
217 The worst-case total run time is O(N) + O(n log (n)), where N is the
218 total number of FDEs and n is the number of erratic ones. */
220 typedef struct fde_vector
226 typedef struct fde_accumulator
233 start_fde_sort (fde_accumulator
*accu
, size_t count
)
235 accu
->linear
.array
= (fde
**) malloc (sizeof (fde
*) * count
);
236 accu
->erratic
.array
= (fde
**) malloc (sizeof (fde
*) * count
);
237 accu
->linear
.count
= 0;
238 accu
->erratic
.count
= 0;
242 fde_insert (fde_accumulator
*accu
, fde
*this_fde
)
244 accu
->linear
.array
[accu
->linear
.count
++] = this_fde
;
247 /* Split LINEAR into a linear sequence with low values and an erratic
248 sequence with high values, put the linear one (of longest possible
249 length) into LINEAR and the erratic one into ERRATIC. This is O(N). */
251 fde_split (fde_vector
*linear
, fde_vector
*erratic
)
253 size_t count
= linear
->count
;
254 size_t linear_max
= (size_t) -1;
255 size_t previous_max
[count
];
258 for (i
= 0; i
< count
; i
++)
262 && fde_compare (linear
->array
[i
], linear
->array
[j
]) < 0;
265 erratic
->array
[erratic
->count
++] = linear
->array
[j
];
266 linear
->array
[j
] = (fde
*) NULL
;
272 for (i
= 0, j
= 0; i
< count
; i
++)
273 if (linear
->array
[i
] != (fde
*) NULL
)
274 linear
->array
[j
++] = linear
->array
[i
];
278 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
279 use a name that does not conflict. */
281 frame_heapsort (fde_vector
*erratic
)
283 /* For a description of this algorithm, see:
284 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
286 fde
** a
= erratic
->array
;
287 /* A portion of the array is called a "heap" if for all i>=0:
288 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
289 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
290 #define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
291 size_t n
= erratic
->count
;
297 /* Invariant: a[m..n-1] is a heap. */
299 for (i
= m
; 2*i
+1 < n
; )
302 && fde_compare (a
[2*i
+2], a
[2*i
+1]) > 0
303 && fde_compare (a
[2*i
+2], a
[i
]) > 0)
305 SWAP (a
[i
], a
[2*i
+2]);
308 else if (fde_compare (a
[2*i
+1], a
[i
]) > 0)
310 SWAP (a
[i
], a
[2*i
+1]);
319 /* Invariant: a[0..n-1] is a heap. */
322 for (i
= 0; 2*i
+1 < n
; )
325 && fde_compare (a
[2*i
+2], a
[2*i
+1]) > 0
326 && fde_compare (a
[2*i
+2], a
[i
]) > 0)
328 SWAP (a
[i
], a
[2*i
+2]);
331 else if (fde_compare (a
[2*i
+1], a
[i
]) > 0)
333 SWAP (a
[i
], a
[2*i
+1]);
343 /* Merge V1 and V2, both sorted, and put the result into V1. */
345 fde_merge (fde_vector
*v1
, const fde_vector
*v2
)
356 fde2
= v2
->array
[i2
];
357 while (i1
> 0 && fde_compare (v1
->array
[i1
-1], fde2
) > 0)
359 v1
->array
[i1
+i2
] = v1
->array
[i1
-1];
362 v1
->array
[i1
+i2
] = fde2
;
364 v1
->count
+= v2
->count
;
369 end_fde_sort (fde_accumulator
*accu
, size_t count
)
371 if (accu
->linear
.count
!= count
)
373 fde_split (&accu
->linear
, &accu
->erratic
);
374 if (accu
->linear
.count
+ accu
->erratic
.count
!= count
)
376 frame_heapsort (&accu
->erratic
);
377 fde_merge (&accu
->linear
, &accu
->erratic
);
378 free (accu
->erratic
.array
);
379 return accu
->linear
.array
;
383 count_fdes (fde
*this_fde
)
387 for (count
= 0; this_fde
->length
!= 0; this_fde
= next_fde (this_fde
))
389 /* Skip CIEs and linked once FDE entries. */
390 if (this_fde
->CIE_delta
== 0 || this_fde
->pc_begin
== 0)
400 add_fdes (fde
*this_fde
, fde_accumulator
*accu
, void **beg_ptr
, void **end_ptr
)
402 void *pc_begin
= *beg_ptr
;
403 void *pc_end
= *end_ptr
;
405 for (; this_fde
->length
!= 0; this_fde
= next_fde (this_fde
))
407 /* Skip CIEs and linked once FDE entries. */
408 if (this_fde
->CIE_delta
== 0 || this_fde
->pc_begin
== 0)
411 fde_insert (accu
, this_fde
);
413 if (this_fde
->pc_begin
< pc_begin
)
414 pc_begin
= this_fde
->pc_begin
;
415 if (this_fde
->pc_begin
+ this_fde
->pc_range
> pc_end
)
416 pc_end
= this_fde
->pc_begin
+ this_fde
->pc_range
;
423 /* Set up a sorted array of pointers to FDEs for a loaded object. We
424 count up the entries before allocating the array because it's likely to
428 frame_init (struct object
* ob
)
431 fde_accumulator accu
;
432 void *pc_begin
, *pc_end
;
436 fde
**p
= ob
->fde_array
;
437 for (count
= 0; *p
; ++p
)
438 count
+= count_fdes (*p
);
441 count
= count_fdes (ob
->fde_begin
);
445 start_fde_sort (&accu
, count
);
446 pc_begin
= (void*)(uaddr
)-1;
451 fde
**p
= ob
->fde_array
;
453 add_fdes (*p
, &accu
, &pc_begin
, &pc_end
);
456 add_fdes (ob
->fde_begin
, &accu
, &pc_begin
, &pc_end
);
458 ob
->fde_array
= end_fde_sort (&accu
, count
);
459 ob
->pc_begin
= pc_begin
;
463 /* Return a pointer to the FDE for the function containing PC. */
471 __gthread_mutex_lock (&object_mutex
);
473 for (ob
= objects
; ob
; ob
= ob
->next
)
475 if (ob
->pc_begin
== 0)
477 if (pc
>= ob
->pc_begin
&& pc
< ob
->pc_end
)
481 __gthread_mutex_unlock (&object_mutex
);
486 /* Standard binary search algorithm. */
487 for (lo
= 0, hi
= ob
->count
; lo
< hi
; )
489 size_t i
= (lo
+ hi
) / 2;
490 fde
*f
= ob
->fde_array
[i
];
492 if (pc
< f
->pc_begin
)
494 else if (pc
>= f
->pc_begin
+ f
->pc_range
)
503 static inline struct dwarf_cie
*
506 return ((void *)&f
->CIE_delta
) - f
->CIE_delta
;
509 /* Extract any interesting information from the CIE for the translation
510 unit F belongs to. */
513 extract_cie_info (fde
*f
, struct cie_info
*c
)
518 c
->augmentation
= get_cie (f
)->augmentation
;
520 if (strcmp (c
->augmentation
, "") != 0
521 && strcmp (c
->augmentation
, "eh") != 0
522 && c
->augmentation
[0] != 'z')
525 p
= c
->augmentation
+ strlen (c
->augmentation
) + 1;
527 if (strcmp (c
->augmentation
, "eh") == 0)
529 c
->eh_ptr
= read_pointer (p
);
530 p
+= sizeof (void *);
535 p
= decode_uleb128 (p
, &c
->code_align
);
536 p
= decode_sleb128 (p
, &c
->data_align
);
537 c
->ra_regno
= *(unsigned char *)p
++;
539 /* If the augmentation starts with 'z', we now see the length of the
540 augmentation fields. */
541 if (c
->augmentation
[0] == 'z')
543 p
= decode_uleb128 (p
, &i
);
550 /* Decode one instruction's worth of DWARF 2 call frame information.
551 Used by __frame_state_for. Takes pointers P to the instruction to
552 decode, STATE to the current register unwind information, INFO to the
553 current CIE information, and PC to the current PC value. Returns a
554 pointer to the next instruction. */
557 execute_cfa_insn (void *p
, struct frame_state_internal
*state
,
558 struct cie_info
*info
, void **pc
)
560 unsigned insn
= *(unsigned char *)p
++;
564 if (insn
& DW_CFA_advance_loc
)
565 *pc
+= ((insn
& 0x3f) * info
->code_align
);
566 else if (insn
& DW_CFA_offset
)
569 p
= decode_uleb128 (p
, &offset
);
570 offset
*= info
->data_align
;
571 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
572 state
->s
.reg_or_offset
[reg
] = offset
;
574 else if (insn
& DW_CFA_restore
)
577 state
->s
.saved
[reg
] = REG_UNSAVED
;
582 *pc
= read_pointer (p
);
583 p
+= sizeof (void *);
585 case DW_CFA_advance_loc1
:
586 *pc
+= read_1byte (p
);
589 case DW_CFA_advance_loc2
:
590 *pc
+= read_2byte (p
);
593 case DW_CFA_advance_loc4
:
594 *pc
+= read_4byte (p
);
598 case DW_CFA_offset_extended
:
599 p
= decode_uleb128 (p
, ®
);
600 p
= decode_uleb128 (p
, &offset
);
601 offset
*= info
->data_align
;
602 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
603 state
->s
.reg_or_offset
[reg
] = offset
;
605 case DW_CFA_restore_extended
:
606 p
= decode_uleb128 (p
, ®
);
607 state
->s
.saved
[reg
] = REG_UNSAVED
;
610 case DW_CFA_undefined
:
611 case DW_CFA_same_value
:
615 case DW_CFA_register
:
618 p
= decode_uleb128 (p
, ®
);
619 p
= decode_uleb128 (p
, ®2
);
620 state
->s
.saved
[reg
] = REG_SAVED_REG
;
621 state
->s
.reg_or_offset
[reg
] = reg2
;
626 p
= decode_uleb128 (p
, ®
);
627 p
= decode_uleb128 (p
, &offset
);
628 state
->s
.cfa_reg
= reg
;
629 state
->s
.cfa_offset
= offset
;
631 case DW_CFA_def_cfa_register
:
632 p
= decode_uleb128 (p
, ®
);
633 state
->s
.cfa_reg
= reg
;
635 case DW_CFA_def_cfa_offset
:
636 p
= decode_uleb128 (p
, &offset
);
637 state
->s
.cfa_offset
= offset
;
640 case DW_CFA_remember_state
:
642 struct frame_state_internal
*save
=
643 (struct frame_state_internal
*)
644 malloc (sizeof (struct frame_state_internal
));
645 memcpy (save
, state
, sizeof (struct frame_state_internal
));
646 state
->saved_state
= save
;
649 case DW_CFA_restore_state
:
651 struct frame_state_internal
*save
= state
->saved_state
;
652 memcpy (state
, save
, sizeof (struct frame_state_internal
));
657 /* FIXME: Hardcoded for SPARC register window configuration. */
658 case DW_CFA_GNU_window_save
:
659 for (reg
= 16; reg
< 32; ++reg
)
661 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
662 state
->s
.reg_or_offset
[reg
] = (reg
- 16) * sizeof (void *);
666 case DW_CFA_GNU_args_size
:
667 p
= decode_uleb128 (p
, &offset
);
668 state
->s
.args_size
= offset
;
677 /* Called from crtbegin.o to register the unwind info for an object. */
680 __register_frame_info (void *begin
, struct object
*ob
)
682 ob
->fde_begin
= begin
;
684 ob
->pc_begin
= ob
->pc_end
= 0;
688 __gthread_mutex_lock (&object_mutex
);
693 __gthread_mutex_unlock (&object_mutex
);
697 __register_frame (void *begin
)
699 struct object
*ob
= (struct object
*) malloc (sizeof (struct object
));
700 __register_frame_info (begin
, ob
);
703 /* Similar, but BEGIN is actually a pointer to a table of unwind entries
704 for different translation units. Called from the file generated by
708 __register_frame_info_table (void *begin
, struct object
*ob
)
710 ob
->fde_begin
= begin
;
711 ob
->fde_array
= begin
;
713 ob
->pc_begin
= ob
->pc_end
= 0;
716 __gthread_mutex_lock (&object_mutex
);
721 __gthread_mutex_unlock (&object_mutex
);
725 __register_frame_table (void *begin
)
727 struct object
*ob
= (struct object
*) malloc (sizeof (struct object
));
728 __register_frame_info_table (begin
, ob
);
731 /* Called from crtbegin.o to deregister the unwind info for an object. */
734 __deregister_frame_info (void *begin
)
738 __gthread_mutex_lock (&object_mutex
);
743 if ((*p
)->fde_begin
== begin
)
745 struct object
*ob
= *p
;
748 /* If we've run init_frame for this object, free the FDE array. */
750 free (ob
->fde_array
);
752 __gthread_mutex_unlock (&object_mutex
);
758 __gthread_mutex_unlock (&object_mutex
);
763 __deregister_frame (void *begin
)
765 free (__deregister_frame_info (begin
));
768 /* Called from __throw to find the registers to restore for a given
769 PC_TARGET. The caller should allocate a local variable of `struct
770 frame_state' (declared in frame.h) and pass its address to STATE_IN. */
773 __frame_state_for (void *pc_target
, struct frame_state
*state_in
)
776 void *insn
, *end
, *pc
;
777 struct cie_info info
;
778 struct frame_state_internal state
;
780 f
= find_fde (pc_target
);
784 insn
= extract_cie_info (f
, &info
);
788 memset (&state
, 0, sizeof (state
));
789 state
.s
.retaddr_column
= info
.ra_regno
;
790 state
.s
.eh_ptr
= info
.eh_ptr
;
792 /* First decode all the insns in the CIE. */
793 end
= next_fde ((fde
*) get_cie (f
));
795 insn
= execute_cfa_insn (insn
, &state
, &info
, 0);
797 insn
= ((fde
*)f
) + 1;
799 if (info
.augmentation
[0] == 'z')
802 insn
= decode_uleb128 (insn
, &i
);
806 /* Then the insns in the FDE up to our target PC. */
809 while (insn
< end
&& pc
<= pc_target
)
810 insn
= execute_cfa_insn (insn
, &state
, &info
, &pc
);
812 memcpy (state_in
, &state
.s
, sizeof (state
.s
));
815 #endif /* DWARF2_UNWIND_INFO */