Add some insn names for (neg (abs)) code
[official-gcc.git] / gcc / explow.c
blobcd50563be526bd72213e101bc0b50c339a9f1da9
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 91, 94-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "expr.h"
28 #include "hard-reg-set.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "insn-flags.h"
32 #include "insn-codes.h"
34 static rtx break_out_memory_refs PROTO((rtx));
35 static void emit_stack_probe PROTO((rtx));
36 /* Return an rtx for the sum of X and the integer C.
38 This function should be used via the `plus_constant' macro. */
40 rtx
41 plus_constant_wide (x, c)
42 register rtx x;
43 register HOST_WIDE_INT c;
45 register RTX_CODE code;
46 register enum machine_mode mode;
47 register rtx tem;
48 int all_constant = 0;
50 if (c == 0)
51 return x;
53 restart:
55 code = GET_CODE (x);
56 mode = GET_MODE (x);
57 switch (code)
59 case CONST_INT:
60 return GEN_INT (INTVAL (x) + c);
62 case CONST_DOUBLE:
64 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
65 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
66 HOST_WIDE_INT l2 = c;
67 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
68 HOST_WIDE_INT lv, hv;
70 add_double (l1, h1, l2, h2, &lv, &hv);
72 return immed_double_const (lv, hv, VOIDmode);
75 case MEM:
76 /* If this is a reference to the constant pool, try replacing it with
77 a reference to a new constant. If the resulting address isn't
78 valid, don't return it because we have no way to validize it. */
79 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
80 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
82 /* Any rtl we create here must go in a saveable obstack, since
83 we might have been called from within combine. */
84 push_obstacks_nochange ();
85 rtl_in_saveable_obstack ();
86 tem
87 = force_const_mem (GET_MODE (x),
88 plus_constant (get_pool_constant (XEXP (x, 0)),
89 c));
90 pop_obstacks ();
91 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
92 return tem;
94 break;
96 case CONST:
97 /* If adding to something entirely constant, set a flag
98 so that we can add a CONST around the result. */
99 x = XEXP (x, 0);
100 all_constant = 1;
101 goto restart;
103 case SYMBOL_REF:
104 case LABEL_REF:
105 all_constant = 1;
106 break;
108 case PLUS:
109 /* The interesting case is adding the integer to a sum.
110 Look for constant term in the sum and combine
111 with C. For an integer constant term, we make a combined
112 integer. For a constant term that is not an explicit integer,
113 we cannot really combine, but group them together anyway.
115 Use a recursive call in case the remaining operand is something
116 that we handle specially, such as a SYMBOL_REF. */
118 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
119 return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
120 else if (CONSTANT_P (XEXP (x, 0)))
121 return gen_rtx_PLUS (mode,
122 plus_constant (XEXP (x, 0), c),
123 XEXP (x, 1));
124 else if (CONSTANT_P (XEXP (x, 1)))
125 return gen_rtx_PLUS (mode,
126 XEXP (x, 0),
127 plus_constant (XEXP (x, 1), c));
128 break;
130 default:
131 break;
134 if (c != 0)
135 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
137 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
138 return x;
139 else if (all_constant)
140 return gen_rtx_CONST (mode, x);
141 else
142 return x;
145 /* This is the same as `plus_constant', except that it handles LO_SUM.
147 This function should be used via the `plus_constant_for_output' macro. */
150 plus_constant_for_output_wide (x, c)
151 register rtx x;
152 register HOST_WIDE_INT c;
154 register enum machine_mode mode = GET_MODE (x);
156 if (GET_CODE (x) == LO_SUM)
157 return gen_rtx_LO_SUM (mode, XEXP (x, 0),
158 plus_constant_for_output (XEXP (x, 1), c));
160 else
161 return plus_constant (x, c);
164 /* If X is a sum, return a new sum like X but lacking any constant terms.
165 Add all the removed constant terms into *CONSTPTR.
166 X itself is not altered. The result != X if and only if
167 it is not isomorphic to X. */
170 eliminate_constant_term (x, constptr)
171 rtx x;
172 rtx *constptr;
174 register rtx x0, x1;
175 rtx tem;
177 if (GET_CODE (x) != PLUS)
178 return x;
180 /* First handle constants appearing at this level explicitly. */
181 if (GET_CODE (XEXP (x, 1)) == CONST_INT
182 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
183 XEXP (x, 1)))
184 && GET_CODE (tem) == CONST_INT)
186 *constptr = tem;
187 return eliminate_constant_term (XEXP (x, 0), constptr);
190 tem = const0_rtx;
191 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
192 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
193 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
194 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
195 *constptr, tem))
196 && GET_CODE (tem) == CONST_INT)
198 *constptr = tem;
199 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
202 return x;
205 /* Returns the insn that next references REG after INSN, or 0
206 if REG is clobbered before next referenced or we cannot find
207 an insn that references REG in a straight-line piece of code. */
210 find_next_ref (reg, insn)
211 rtx reg;
212 rtx insn;
214 rtx next;
216 for (insn = NEXT_INSN (insn); insn; insn = next)
218 next = NEXT_INSN (insn);
219 if (GET_CODE (insn) == NOTE)
220 continue;
221 if (GET_CODE (insn) == CODE_LABEL
222 || GET_CODE (insn) == BARRIER)
223 return 0;
224 if (GET_CODE (insn) == INSN
225 || GET_CODE (insn) == JUMP_INSN
226 || GET_CODE (insn) == CALL_INSN)
228 if (reg_set_p (reg, insn))
229 return 0;
230 if (reg_mentioned_p (reg, PATTERN (insn)))
231 return insn;
232 if (GET_CODE (insn) == JUMP_INSN)
234 if (simplejump_p (insn))
235 next = JUMP_LABEL (insn);
236 else
237 return 0;
239 if (GET_CODE (insn) == CALL_INSN
240 && REGNO (reg) < FIRST_PSEUDO_REGISTER
241 && call_used_regs[REGNO (reg)])
242 return 0;
244 else
245 abort ();
247 return 0;
250 /* Return an rtx for the size in bytes of the value of EXP. */
253 expr_size (exp)
254 tree exp;
256 tree size = size_in_bytes (TREE_TYPE (exp));
258 if (TREE_CODE (size) != INTEGER_CST
259 && contains_placeholder_p (size))
260 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
262 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
263 EXPAND_MEMORY_USE_BAD);
266 /* Return a copy of X in which all memory references
267 and all constants that involve symbol refs
268 have been replaced with new temporary registers.
269 Also emit code to load the memory locations and constants
270 into those registers.
272 If X contains no such constants or memory references,
273 X itself (not a copy) is returned.
275 If a constant is found in the address that is not a legitimate constant
276 in an insn, it is left alone in the hope that it might be valid in the
277 address.
279 X may contain no arithmetic except addition, subtraction and multiplication.
280 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
282 static rtx
283 break_out_memory_refs (x)
284 register rtx x;
286 if (GET_CODE (x) == MEM
287 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
288 && GET_MODE (x) != VOIDmode))
289 x = force_reg (GET_MODE (x), x);
290 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
291 || GET_CODE (x) == MULT)
293 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
294 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
296 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
297 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
300 return x;
303 #ifdef POINTERS_EXTEND_UNSIGNED
305 /* Given X, a memory address in ptr_mode, convert it to an address
306 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
307 the fact that pointers are not allowed to overflow by commuting arithmetic
308 operations over conversions so that address arithmetic insns can be
309 used. */
312 convert_memory_address (to_mode, x)
313 enum machine_mode to_mode;
314 rtx x;
316 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
317 rtx temp;
319 /* Here we handle some special cases. If none of them apply, fall through
320 to the default case. */
321 switch (GET_CODE (x))
323 case CONST_INT:
324 case CONST_DOUBLE:
325 return x;
327 case LABEL_REF:
328 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
329 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
330 return temp;
332 case SYMBOL_REF:
333 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
334 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
335 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
336 return temp;
338 case CONST:
339 return gen_rtx_CONST (to_mode,
340 convert_memory_address (to_mode, XEXP (x, 0)));
342 case PLUS:
343 case MULT:
344 /* For addition the second operand is a small constant, we can safely
345 permute the conversion and addition operation. We can always safely
346 permute them if we are making the address narrower. In addition,
347 always permute the operations if this is a constant. */
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
349 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
350 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
351 || CONSTANT_P (XEXP (x, 0)))))
352 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
353 convert_memory_address (to_mode, XEXP (x, 0)),
354 convert_memory_address (to_mode, XEXP (x, 1)));
355 break;
357 default:
358 break;
361 return convert_modes (to_mode, from_mode,
362 x, POINTERS_EXTEND_UNSIGNED);
364 #endif
366 /* Given a memory address or facsimile X, construct a new address,
367 currently equivalent, that is stable: future stores won't change it.
369 X must be composed of constants, register and memory references
370 combined with addition, subtraction and multiplication:
371 in other words, just what you can get from expand_expr if sum_ok is 1.
373 Works by making copies of all regs and memory locations used
374 by X and combining them the same way X does.
375 You could also stabilize the reference to this address
376 by copying the address to a register with copy_to_reg;
377 but then you wouldn't get indexed addressing in the reference. */
380 copy_all_regs (x)
381 register rtx x;
383 if (GET_CODE (x) == REG)
385 if (REGNO (x) != FRAME_POINTER_REGNUM
386 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
387 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
388 #endif
390 x = copy_to_reg (x);
392 else if (GET_CODE (x) == MEM)
393 x = copy_to_reg (x);
394 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
395 || GET_CODE (x) == MULT)
397 register rtx op0 = copy_all_regs (XEXP (x, 0));
398 register rtx op1 = copy_all_regs (XEXP (x, 1));
399 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
400 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
402 return x;
405 /* Return something equivalent to X but valid as a memory address
406 for something of mode MODE. When X is not itself valid, this
407 works by copying X or subexpressions of it into registers. */
410 memory_address (mode, x)
411 enum machine_mode mode;
412 register rtx x;
414 register rtx oldx = x;
416 if (GET_CODE (x) == ADDRESSOF)
417 return x;
419 #ifdef POINTERS_EXTEND_UNSIGNED
420 if (GET_MODE (x) == ptr_mode)
421 x = convert_memory_address (Pmode, x);
422 #endif
424 /* By passing constant addresses thru registers
425 we get a chance to cse them. */
426 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
427 x = force_reg (Pmode, x);
429 /* Accept a QUEUED that refers to a REG
430 even though that isn't a valid address.
431 On attempting to put this in an insn we will call protect_from_queue
432 which will turn it into a REG, which is valid. */
433 else if (GET_CODE (x) == QUEUED
434 && GET_CODE (QUEUED_VAR (x)) == REG)
437 /* We get better cse by rejecting indirect addressing at this stage.
438 Let the combiner create indirect addresses where appropriate.
439 For now, generate the code so that the subexpressions useful to share
440 are visible. But not if cse won't be done! */
441 else
443 if (! cse_not_expected && GET_CODE (x) != REG)
444 x = break_out_memory_refs (x);
446 /* At this point, any valid address is accepted. */
447 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
449 /* If it was valid before but breaking out memory refs invalidated it,
450 use it the old way. */
451 if (memory_address_p (mode, oldx))
452 goto win2;
454 /* Perform machine-dependent transformations on X
455 in certain cases. This is not necessary since the code
456 below can handle all possible cases, but machine-dependent
457 transformations can make better code. */
458 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
460 /* PLUS and MULT can appear in special ways
461 as the result of attempts to make an address usable for indexing.
462 Usually they are dealt with by calling force_operand, below.
463 But a sum containing constant terms is special
464 if removing them makes the sum a valid address:
465 then we generate that address in a register
466 and index off of it. We do this because it often makes
467 shorter code, and because the addresses thus generated
468 in registers often become common subexpressions. */
469 if (GET_CODE (x) == PLUS)
471 rtx constant_term = const0_rtx;
472 rtx y = eliminate_constant_term (x, &constant_term);
473 if (constant_term == const0_rtx
474 || ! memory_address_p (mode, y))
475 x = force_operand (x, NULL_RTX);
476 else
478 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
479 if (! memory_address_p (mode, y))
480 x = force_operand (x, NULL_RTX);
481 else
482 x = y;
486 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
487 x = force_operand (x, NULL_RTX);
489 /* If we have a register that's an invalid address,
490 it must be a hard reg of the wrong class. Copy it to a pseudo. */
491 else if (GET_CODE (x) == REG)
492 x = copy_to_reg (x);
494 /* Last resort: copy the value to a register, since
495 the register is a valid address. */
496 else
497 x = force_reg (Pmode, x);
499 goto done;
501 win2:
502 x = oldx;
503 win:
504 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
505 /* Don't copy an addr via a reg if it is one of our stack slots. */
506 && ! (GET_CODE (x) == PLUS
507 && (XEXP (x, 0) == virtual_stack_vars_rtx
508 || XEXP (x, 0) == virtual_incoming_args_rtx)))
510 if (general_operand (x, Pmode))
511 x = force_reg (Pmode, x);
512 else
513 x = force_operand (x, NULL_RTX);
517 done:
519 /* If we didn't change the address, we are done. Otherwise, mark
520 a reg as a pointer if we have REG or REG + CONST_INT. */
521 if (oldx == x)
522 return x;
523 else if (GET_CODE (x) == REG)
524 mark_reg_pointer (x, 1);
525 else if (GET_CODE (x) == PLUS
526 && GET_CODE (XEXP (x, 0)) == REG
527 && GET_CODE (XEXP (x, 1)) == CONST_INT)
528 mark_reg_pointer (XEXP (x, 0), 1);
530 /* OLDX may have been the address on a temporary. Update the address
531 to indicate that X is now used. */
532 update_temp_slot_address (oldx, x);
534 return x;
537 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
540 memory_address_noforce (mode, x)
541 enum machine_mode mode;
542 rtx x;
544 int ambient_force_addr = flag_force_addr;
545 rtx val;
547 flag_force_addr = 0;
548 val = memory_address (mode, x);
549 flag_force_addr = ambient_force_addr;
550 return val;
553 /* Convert a mem ref into one with a valid memory address.
554 Pass through anything else unchanged. */
557 validize_mem (ref)
558 rtx ref;
560 if (GET_CODE (ref) != MEM)
561 return ref;
562 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
563 return ref;
564 /* Don't alter REF itself, since that is probably a stack slot. */
565 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
568 /* Return a modified copy of X with its memory address copied
569 into a temporary register to protect it from side effects.
570 If X is not a MEM, it is returned unchanged (and not copied).
571 Perhaps even if it is a MEM, if there is no need to change it. */
574 stabilize (x)
575 rtx x;
577 register rtx addr;
578 if (GET_CODE (x) != MEM)
579 return x;
580 addr = XEXP (x, 0);
581 if (rtx_unstable_p (addr))
583 rtx temp = copy_all_regs (addr);
584 rtx mem;
585 if (GET_CODE (temp) != REG)
586 temp = copy_to_reg (temp);
587 mem = gen_rtx_MEM (GET_MODE (x), temp);
589 /* Mark returned memref with in_struct if it's in an array or
590 structure. Copy const and volatile from original memref. */
592 MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
593 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
594 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
596 /* Since the new MEM is just like the old X, it can alias only
597 the things that X could. */
598 MEM_ALIAS_SET (mem) = MEM_ALIAS_SET (x);
600 return mem;
602 return x;
605 /* Copy the value or contents of X to a new temp reg and return that reg. */
608 copy_to_reg (x)
609 rtx x;
611 register rtx temp = gen_reg_rtx (GET_MODE (x));
613 /* If not an operand, must be an address with PLUS and MULT so
614 do the computation. */
615 if (! general_operand (x, VOIDmode))
616 x = force_operand (x, temp);
618 if (x != temp)
619 emit_move_insn (temp, x);
621 return temp;
624 /* Like copy_to_reg but always give the new register mode Pmode
625 in case X is a constant. */
628 copy_addr_to_reg (x)
629 rtx x;
631 return copy_to_mode_reg (Pmode, x);
634 /* Like copy_to_reg but always give the new register mode MODE
635 in case X is a constant. */
638 copy_to_mode_reg (mode, x)
639 enum machine_mode mode;
640 rtx x;
642 register rtx temp = gen_reg_rtx (mode);
644 /* If not an operand, must be an address with PLUS and MULT so
645 do the computation. */
646 if (! general_operand (x, VOIDmode))
647 x = force_operand (x, temp);
649 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
650 abort ();
651 if (x != temp)
652 emit_move_insn (temp, x);
653 return temp;
656 /* Load X into a register if it is not already one.
657 Use mode MODE for the register.
658 X should be valid for mode MODE, but it may be a constant which
659 is valid for all integer modes; that's why caller must specify MODE.
661 The caller must not alter the value in the register we return,
662 since we mark it as a "constant" register. */
665 force_reg (mode, x)
666 enum machine_mode mode;
667 rtx x;
669 register rtx temp, insn, set;
671 if (GET_CODE (x) == REG)
672 return x;
673 temp = gen_reg_rtx (mode);
674 insn = emit_move_insn (temp, x);
676 /* Let optimizers know that TEMP's value never changes
677 and that X can be substituted for it. Don't get confused
678 if INSN set something else (such as a SUBREG of TEMP). */
679 if (CONSTANT_P (x)
680 && (set = single_set (insn)) != 0
681 && SET_DEST (set) == temp)
683 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
685 if (note)
686 XEXP (note, 0) = x;
687 else
688 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
690 return temp;
693 /* If X is a memory ref, copy its contents to a new temp reg and return
694 that reg. Otherwise, return X. */
697 force_not_mem (x)
698 rtx x;
700 register rtx temp;
701 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
702 return x;
703 temp = gen_reg_rtx (GET_MODE (x));
704 emit_move_insn (temp, x);
705 return temp;
708 /* Copy X to TARGET (if it's nonzero and a reg)
709 or to a new temp reg and return that reg.
710 MODE is the mode to use for X in case it is a constant. */
713 copy_to_suggested_reg (x, target, mode)
714 rtx x, target;
715 enum machine_mode mode;
717 register rtx temp;
719 if (target && GET_CODE (target) == REG)
720 temp = target;
721 else
722 temp = gen_reg_rtx (mode);
724 emit_move_insn (temp, x);
725 return temp;
728 /* Return the mode to use to store a scalar of TYPE and MODE.
729 PUNSIGNEDP points to the signedness of the type and may be adjusted
730 to show what signedness to use on extension operations.
732 FOR_CALL is non-zero if this call is promoting args for a call. */
734 enum machine_mode
735 promote_mode (type, mode, punsignedp, for_call)
736 tree type;
737 enum machine_mode mode;
738 int *punsignedp;
739 int for_call;
741 enum tree_code code = TREE_CODE (type);
742 int unsignedp = *punsignedp;
744 #ifdef PROMOTE_FOR_CALL_ONLY
745 if (! for_call)
746 return mode;
747 #endif
749 switch (code)
751 #ifdef PROMOTE_MODE
752 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
753 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
754 PROMOTE_MODE (mode, unsignedp, type);
755 break;
756 #endif
758 #ifdef POINTERS_EXTEND_UNSIGNED
759 case REFERENCE_TYPE:
760 case POINTER_TYPE:
761 mode = Pmode;
762 unsignedp = POINTERS_EXTEND_UNSIGNED;
763 break;
764 #endif
766 default:
767 break;
770 *punsignedp = unsignedp;
771 return mode;
774 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
775 This pops when ADJUST is positive. ADJUST need not be constant. */
777 void
778 adjust_stack (adjust)
779 rtx adjust;
781 rtx temp;
782 adjust = protect_from_queue (adjust, 0);
784 if (adjust == const0_rtx)
785 return;
787 temp = expand_binop (Pmode,
788 #ifdef STACK_GROWS_DOWNWARD
789 add_optab,
790 #else
791 sub_optab,
792 #endif
793 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
794 OPTAB_LIB_WIDEN);
796 if (temp != stack_pointer_rtx)
797 emit_move_insn (stack_pointer_rtx, temp);
800 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
801 This pushes when ADJUST is positive. ADJUST need not be constant. */
803 void
804 anti_adjust_stack (adjust)
805 rtx adjust;
807 rtx temp;
808 adjust = protect_from_queue (adjust, 0);
810 if (adjust == const0_rtx)
811 return;
813 temp = expand_binop (Pmode,
814 #ifdef STACK_GROWS_DOWNWARD
815 sub_optab,
816 #else
817 add_optab,
818 #endif
819 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
820 OPTAB_LIB_WIDEN);
822 if (temp != stack_pointer_rtx)
823 emit_move_insn (stack_pointer_rtx, temp);
826 /* Round the size of a block to be pushed up to the boundary required
827 by this machine. SIZE is the desired size, which need not be constant. */
830 round_push (size)
831 rtx size;
833 #ifdef STACK_BOUNDARY
834 int align = STACK_BOUNDARY / BITS_PER_UNIT;
835 if (align == 1)
836 return size;
837 if (GET_CODE (size) == CONST_INT)
839 int new = (INTVAL (size) + align - 1) / align * align;
840 if (INTVAL (size) != new)
841 size = GEN_INT (new);
843 else
845 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
846 but we know it can't. So add ourselves and then do
847 TRUNC_DIV_EXPR. */
848 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
849 NULL_RTX, 1, OPTAB_LIB_WIDEN);
850 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
851 NULL_RTX, 1);
852 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
854 #endif /* STACK_BOUNDARY */
855 return size;
858 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
859 to a previously-created save area. If no save area has been allocated,
860 this function will allocate one. If a save area is specified, it
861 must be of the proper mode.
863 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
864 are emitted at the current position. */
866 void
867 emit_stack_save (save_level, psave, after)
868 enum save_level save_level;
869 rtx *psave;
870 rtx after;
872 rtx sa = *psave;
873 /* The default is that we use a move insn and save in a Pmode object. */
874 rtx (*fcn) PROTO ((rtx, rtx)) = gen_move_insn;
875 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
877 /* See if this machine has anything special to do for this kind of save. */
878 switch (save_level)
880 #ifdef HAVE_save_stack_block
881 case SAVE_BLOCK:
882 if (HAVE_save_stack_block)
883 fcn = gen_save_stack_block;
884 break;
885 #endif
886 #ifdef HAVE_save_stack_function
887 case SAVE_FUNCTION:
888 if (HAVE_save_stack_function)
889 fcn = gen_save_stack_function;
890 break;
891 #endif
892 #ifdef HAVE_save_stack_nonlocal
893 case SAVE_NONLOCAL:
894 if (HAVE_save_stack_nonlocal)
895 fcn = gen_save_stack_nonlocal;
896 break;
897 #endif
898 default:
899 break;
902 /* If there is no save area and we have to allocate one, do so. Otherwise
903 verify the save area is the proper mode. */
905 if (sa == 0)
907 if (mode != VOIDmode)
909 if (save_level == SAVE_NONLOCAL)
910 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
911 else
912 *psave = sa = gen_reg_rtx (mode);
915 else
917 if (mode == VOIDmode || GET_MODE (sa) != mode)
918 abort ();
921 if (after)
923 rtx seq;
925 start_sequence ();
926 /* We must validize inside the sequence, to ensure that any instructions
927 created by the validize call also get moved to the right place. */
928 if (sa != 0)
929 sa = validize_mem (sa);
930 emit_insn (fcn (sa, stack_pointer_rtx));
931 seq = gen_sequence ();
932 end_sequence ();
933 emit_insn_after (seq, after);
935 else
937 if (sa != 0)
938 sa = validize_mem (sa);
939 emit_insn (fcn (sa, stack_pointer_rtx));
943 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
944 area made by emit_stack_save. If it is zero, we have nothing to do.
946 Put any emitted insns after insn AFTER, if nonzero, otherwise at
947 current position. */
949 void
950 emit_stack_restore (save_level, sa, after)
951 enum save_level save_level;
952 rtx after;
953 rtx sa;
955 /* The default is that we use a move insn. */
956 rtx (*fcn) PROTO ((rtx, rtx)) = gen_move_insn;
958 /* See if this machine has anything special to do for this kind of save. */
959 switch (save_level)
961 #ifdef HAVE_restore_stack_block
962 case SAVE_BLOCK:
963 if (HAVE_restore_stack_block)
964 fcn = gen_restore_stack_block;
965 break;
966 #endif
967 #ifdef HAVE_restore_stack_function
968 case SAVE_FUNCTION:
969 if (HAVE_restore_stack_function)
970 fcn = gen_restore_stack_function;
971 break;
972 #endif
973 #ifdef HAVE_restore_stack_nonlocal
974 case SAVE_NONLOCAL:
975 if (HAVE_restore_stack_nonlocal)
976 fcn = gen_restore_stack_nonlocal;
977 break;
978 #endif
979 default:
980 break;
983 if (sa != 0)
984 sa = validize_mem (sa);
986 if (after)
988 rtx seq;
990 start_sequence ();
991 emit_insn (fcn (stack_pointer_rtx, sa));
992 seq = gen_sequence ();
993 end_sequence ();
994 emit_insn_after (seq, after);
996 else
997 emit_insn (fcn (stack_pointer_rtx, sa));
1000 #ifdef SETJMP_VIA_SAVE_AREA
1001 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1002 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1003 platforms, the dynamic stack space used can corrupt the original
1004 frame, thus causing a crash if a longjmp unwinds to it. */
1006 void
1007 optimize_save_area_alloca (insns)
1008 rtx insns;
1010 rtx insn;
1012 for (insn = insns; insn; insn = NEXT_INSN(insn))
1014 rtx note;
1016 if (GET_CODE (insn) != INSN)
1017 continue;
1019 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1021 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1022 continue;
1024 if (!current_function_calls_setjmp)
1026 rtx pat = PATTERN (insn);
1028 /* If we do not see the note in a pattern matching
1029 these precise characteristics, we did something
1030 entirely wrong in allocate_dynamic_stack_space.
1032 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1033 was defined on a machine where stacks grow towards higher
1034 addresses.
1036 Right now only supported port with stack that grow upward
1037 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1038 if (GET_CODE (pat) != SET
1039 || SET_DEST (pat) != stack_pointer_rtx
1040 || GET_CODE (SET_SRC (pat)) != MINUS
1041 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1042 abort ();
1044 /* This will now be transformed into a (set REG REG)
1045 so we can just blow away all the other notes. */
1046 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1047 REG_NOTES (insn) = NULL_RTX;
1049 else
1051 /* setjmp was called, we must remove the REG_SAVE_AREA
1052 note so that later passes do not get confused by its
1053 presence. */
1054 if (note == REG_NOTES (insn))
1056 REG_NOTES (insn) = XEXP (note, 1);
1058 else
1060 rtx srch;
1062 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1063 if (XEXP (srch, 1) == note)
1064 break;
1066 if (srch == NULL_RTX)
1067 abort();
1069 XEXP (srch, 1) = XEXP (note, 1);
1072 /* Once we've seen the note of interest, we need not look at
1073 the rest of them. */
1074 break;
1078 #endif /* SETJMP_VIA_SAVE_AREA */
1080 /* Return an rtx representing the address of an area of memory dynamically
1081 pushed on the stack. This region of memory is always aligned to
1082 a multiple of BIGGEST_ALIGNMENT.
1084 Any required stack pointer alignment is preserved.
1086 SIZE is an rtx representing the size of the area.
1087 TARGET is a place in which the address can be placed.
1089 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1092 allocate_dynamic_stack_space (size, target, known_align)
1093 rtx size;
1094 rtx target;
1095 int known_align;
1097 #ifdef SETJMP_VIA_SAVE_AREA
1098 rtx setjmpless_size = NULL_RTX;
1099 #endif
1101 /* If we're asking for zero bytes, it doesn't matter what we point
1102 to since we can't dereference it. But return a reasonable
1103 address anyway. */
1104 if (size == const0_rtx)
1105 return virtual_stack_dynamic_rtx;
1107 /* Otherwise, show we're calling alloca or equivalent. */
1108 current_function_calls_alloca = 1;
1110 /* Ensure the size is in the proper mode. */
1111 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1112 size = convert_to_mode (Pmode, size, 1);
1114 /* We will need to ensure that the address we return is aligned to
1115 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1116 always know its final value at this point in the compilation (it
1117 might depend on the size of the outgoing parameter lists, for
1118 example), so we must align the value to be returned in that case.
1119 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1120 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1121 We must also do an alignment operation on the returned value if
1122 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1124 If we have to align, we must leave space in SIZE for the hole
1125 that might result from the alignment operation. */
1127 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (STACK_BOUNDARY)
1128 #define MUST_ALIGN 1
1129 #else
1130 #define MUST_ALIGN (STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1131 #endif
1133 if (MUST_ALIGN)
1135 if (GET_CODE (size) == CONST_INT)
1136 size = GEN_INT (INTVAL (size)
1137 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1138 else
1139 size = expand_binop (Pmode, add_optab, size,
1140 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1141 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1144 #ifdef SETJMP_VIA_SAVE_AREA
1145 /* If setjmp restores regs from a save area in the stack frame,
1146 avoid clobbering the reg save area. Note that the offset of
1147 virtual_incoming_args_rtx includes the preallocated stack args space.
1148 It would be no problem to clobber that, but it's on the wrong side
1149 of the old save area. */
1151 rtx dynamic_offset
1152 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1153 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1155 if (!current_function_calls_setjmp)
1157 int align = STACK_BOUNDARY / BITS_PER_UNIT;
1159 /* See optimize_save_area_alloca to understand what is being
1160 set up here. */
1162 #if !defined(STACK_BOUNDARY) || !defined(MUST_ALIGN) || (STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1163 /* If anyone creates a target with these characteristics, let them
1164 know that our optimization cannot work correctly in such a case. */
1165 abort();
1166 #endif
1168 if (GET_CODE (size) == CONST_INT)
1170 int new = INTVAL (size) / align * align;
1172 if (INTVAL (size) != new)
1173 setjmpless_size = GEN_INT (new);
1174 else
1175 setjmpless_size = size;
1177 else
1179 /* Since we know overflow is not possible, we avoid using
1180 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1181 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1182 GEN_INT (align), NULL_RTX, 1);
1183 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1184 GEN_INT (align), NULL_RTX, 1);
1186 /* Our optimization works based upon being able to perform a simple
1187 transformation of this RTL into a (set REG REG) so make sure things
1188 did in fact end up in a REG. */
1189 if (!arith_operand (setjmpless_size, Pmode))
1190 setjmpless_size = force_reg (Pmode, setjmpless_size);
1193 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1194 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1196 #endif /* SETJMP_VIA_SAVE_AREA */
1198 /* Round the size to a multiple of the required stack alignment.
1199 Since the stack if presumed to be rounded before this allocation,
1200 this will maintain the required alignment.
1202 If the stack grows downward, we could save an insn by subtracting
1203 SIZE from the stack pointer and then aligning the stack pointer.
1204 The problem with this is that the stack pointer may be unaligned
1205 between the execution of the subtraction and alignment insns and
1206 some machines do not allow this. Even on those that do, some
1207 signal handlers malfunction if a signal should occur between those
1208 insns. Since this is an extremely rare event, we have no reliable
1209 way of knowing which systems have this problem. So we avoid even
1210 momentarily mis-aligning the stack. */
1212 #ifdef STACK_BOUNDARY
1213 /* If we added a variable amount to SIZE,
1214 we can no longer assume it is aligned. */
1215 #if !defined (SETJMP_VIA_SAVE_AREA)
1216 if (MUST_ALIGN || known_align % STACK_BOUNDARY != 0)
1217 #endif
1218 size = round_push (size);
1219 #endif
1221 do_pending_stack_adjust ();
1223 /* If needed, check that we have the required amount of stack. Take into
1224 account what has already been checked. */
1225 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1226 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1228 /* Don't use a TARGET that isn't a pseudo. */
1229 if (target == 0 || GET_CODE (target) != REG
1230 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1231 target = gen_reg_rtx (Pmode);
1233 mark_reg_pointer (target, known_align / BITS_PER_UNIT);
1235 /* Perform the required allocation from the stack. Some systems do
1236 this differently than simply incrementing/decrementing from the
1237 stack pointer, such as acquiring the space by calling malloc(). */
1238 #ifdef HAVE_allocate_stack
1239 if (HAVE_allocate_stack)
1241 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1242 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1243 (target, Pmode)))
1244 target = copy_to_mode_reg (Pmode, target);
1245 size = convert_modes (Pmode, ptr_mode, size, 1);
1246 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][1]
1247 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][1])
1248 (size, Pmode)))
1249 size = copy_to_mode_reg (Pmode, size);
1251 emit_insn (gen_allocate_stack (target, size));
1253 else
1254 #endif
1256 #ifndef STACK_GROWS_DOWNWARD
1257 emit_move_insn (target, virtual_stack_dynamic_rtx);
1258 #endif
1259 size = convert_modes (Pmode, ptr_mode, size, 1);
1260 anti_adjust_stack (size);
1261 #ifdef SETJMP_VIA_SAVE_AREA
1262 if (setjmpless_size != NULL_RTX)
1264 rtx note_target = get_last_insn ();
1266 REG_NOTES (note_target)
1267 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1268 REG_NOTES (note_target));
1270 #endif /* SETJMP_VIA_SAVE_AREA */
1271 #ifdef STACK_GROWS_DOWNWARD
1272 emit_move_insn (target, virtual_stack_dynamic_rtx);
1273 #endif
1276 if (MUST_ALIGN)
1278 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1279 but we know it can't. So add ourselves and then do
1280 TRUNC_DIV_EXPR. */
1281 target = expand_binop (Pmode, add_optab, target,
1282 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1283 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1284 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1285 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1286 NULL_RTX, 1);
1287 target = expand_mult (Pmode, target,
1288 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1289 NULL_RTX, 1);
1292 /* Some systems require a particular insn to refer to the stack
1293 to make the pages exist. */
1294 #ifdef HAVE_probe
1295 if (HAVE_probe)
1296 emit_insn (gen_probe ());
1297 #endif
1299 /* Record the new stack level for nonlocal gotos. */
1300 if (nonlocal_goto_handler_slot != 0)
1301 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1303 return target;
1306 /* Emit one stack probe at ADDRESS, an address within the stack. */
1308 static void
1309 emit_stack_probe (address)
1310 rtx address;
1312 rtx memref = gen_rtx_MEM (word_mode, address);
1314 MEM_VOLATILE_P (memref) = 1;
1316 if (STACK_CHECK_PROBE_LOAD)
1317 emit_move_insn (gen_reg_rtx (word_mode), memref);
1318 else
1319 emit_move_insn (memref, const0_rtx);
1322 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1323 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1324 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1325 subtract from the stack. If SIZE is constant, this is done
1326 with a fixed number of probes. Otherwise, we must make a loop. */
1328 #ifdef STACK_GROWS_DOWNWARD
1329 #define STACK_GROW_OP MINUS
1330 #else
1331 #define STACK_GROW_OP PLUS
1332 #endif
1334 void
1335 probe_stack_range (first, size)
1336 HOST_WIDE_INT first;
1337 rtx size;
1339 /* First see if we have an insn to check the stack. Use it if so. */
1340 #ifdef HAVE_check_stack
1341 if (HAVE_check_stack)
1343 rtx last_addr
1344 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1345 stack_pointer_rtx,
1346 plus_constant (size, first)),
1347 NULL_RTX);
1349 if (insn_operand_predicate[(int) CODE_FOR_check_stack][0]
1350 && ! ((*insn_operand_predicate[(int) CODE_FOR_check_stack][0])
1351 (last_address, Pmode)))
1352 last_address = copy_to_mode_reg (Pmode, last_address);
1354 emit_insn (gen_check_stack (last_address));
1355 return;
1357 #endif
1359 /* If we have to generate explicit probes, see if we have a constant
1360 small number of them to generate. If so, that's the easy case. */
1361 if (GET_CODE (size) == CONST_INT
1362 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1364 HOST_WIDE_INT offset;
1366 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1367 for values of N from 1 until it exceeds LAST. If only one
1368 probe is needed, this will not generate any code. Then probe
1369 at LAST. */
1370 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1371 offset < INTVAL (size);
1372 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1373 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1374 stack_pointer_rtx,
1375 GEN_INT (offset)));
1377 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1378 stack_pointer_rtx,
1379 plus_constant (size, first)));
1382 /* In the variable case, do the same as above, but in a loop. We emit loop
1383 notes so that loop optimization can be done. */
1384 else
1386 rtx test_addr
1387 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1388 stack_pointer_rtx,
1389 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1390 NULL_RTX);
1391 rtx last_addr
1392 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1393 stack_pointer_rtx,
1394 plus_constant (size, first)),
1395 NULL_RTX);
1396 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1397 rtx loop_lab = gen_label_rtx ();
1398 rtx test_lab = gen_label_rtx ();
1399 rtx end_lab = gen_label_rtx ();
1400 rtx temp;
1402 if (GET_CODE (test_addr) != REG
1403 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1404 test_addr = force_reg (Pmode, test_addr);
1406 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1407 emit_jump (test_lab);
1409 emit_label (loop_lab);
1410 emit_stack_probe (test_addr);
1412 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1414 #ifdef STACK_GROWS_DOWNWARD
1415 #define CMP_OPCODE GTU
1416 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1417 1, OPTAB_WIDEN);
1418 #else
1419 #define CMP_OPCODE LTU
1420 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1421 1, OPTAB_WIDEN);
1422 #endif
1424 if (temp != test_addr)
1425 abort ();
1427 emit_label (test_lab);
1428 emit_cmp_insn (test_addr, last_addr, CMP_OPCODE, NULL_RTX, Pmode, 1, 0);
1429 emit_jump_insn ((*bcc_gen_fctn[(int) CMP_OPCODE]) (loop_lab));
1430 emit_jump (end_lab);
1431 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1432 emit_label (end_lab);
1434 /* If will be doing stupid optimization, show test_addr is still live. */
1435 if (obey_regdecls)
1436 emit_insn (gen_rtx_USE (VOIDmode, test_addr));
1438 emit_stack_probe (last_addr);
1442 /* Return an rtx representing the register or memory location
1443 in which a scalar value of data type VALTYPE
1444 was returned by a function call to function FUNC.
1445 FUNC is a FUNCTION_DECL node if the precise function is known,
1446 otherwise 0. */
1449 hard_function_value (valtype, func)
1450 tree valtype;
1451 tree func;
1453 rtx val = FUNCTION_VALUE (valtype, func);
1454 if (GET_CODE (val) == REG
1455 && GET_MODE (val) == BLKmode)
1457 int bytes = int_size_in_bytes (valtype);
1458 enum machine_mode tmpmode;
1459 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1460 tmpmode != MAX_MACHINE_MODE;
1461 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1463 /* Have we found a large enough mode? */
1464 if (GET_MODE_SIZE (tmpmode) >= bytes)
1465 break;
1468 /* No suitable mode found. */
1469 if (tmpmode == MAX_MACHINE_MODE)
1470 abort ();
1472 PUT_MODE (val, tmpmode);
1474 return val;
1477 /* Return an rtx representing the register or memory location
1478 in which a scalar value of mode MODE was returned by a library call. */
1481 hard_libcall_value (mode)
1482 enum machine_mode mode;
1484 return LIBCALL_VALUE (mode);
1487 /* Look up the tree code for a given rtx code
1488 to provide the arithmetic operation for REAL_ARITHMETIC.
1489 The function returns an int because the caller may not know
1490 what `enum tree_code' means. */
1493 rtx_to_tree_code (code)
1494 enum rtx_code code;
1496 enum tree_code tcode;
1498 switch (code)
1500 case PLUS:
1501 tcode = PLUS_EXPR;
1502 break;
1503 case MINUS:
1504 tcode = MINUS_EXPR;
1505 break;
1506 case MULT:
1507 tcode = MULT_EXPR;
1508 break;
1509 case DIV:
1510 tcode = RDIV_EXPR;
1511 break;
1512 case SMIN:
1513 tcode = MIN_EXPR;
1514 break;
1515 case SMAX:
1516 tcode = MAX_EXPR;
1517 break;
1518 default:
1519 tcode = LAST_AND_UNUSED_TREE_CODE;
1520 break;
1522 return ((int) tcode);