Add hppa-openbsd target
[official-gcc.git] / gcc / explow.c
blob1d2764064e1ee33641b4f4eaa92c95a4dae3242b
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "optabs.h"
33 #include "hard-reg-set.h"
34 #include "insn-config.h"
35 #include "ggc.h"
36 #include "recog.h"
37 #include "langhooks.h"
39 static rtx break_out_memory_refs PARAMS ((rtx));
40 static void emit_stack_probe PARAMS ((rtx));
43 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
45 HOST_WIDE_INT
46 trunc_int_for_mode (c, mode)
47 HOST_WIDE_INT c;
48 enum machine_mode mode;
50 int width = GET_MODE_BITSIZE (mode);
52 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
53 if (mode == BImode)
54 return c & 1 ? STORE_FLAG_VALUE : 0;
56 /* Sign-extend for the requested mode. */
58 if (width < HOST_BITS_PER_WIDE_INT)
60 HOST_WIDE_INT sign = 1;
61 sign <<= width - 1;
62 c &= (sign << 1) - 1;
63 c ^= sign;
64 c -= sign;
67 return c;
70 /* Return an rtx for the sum of X and the integer C.
72 This function should be used via the `plus_constant' macro. */
74 rtx
75 plus_constant_wide (x, c)
76 rtx x;
77 HOST_WIDE_INT c;
79 RTX_CODE code;
80 rtx y;
81 enum machine_mode mode;
82 rtx tem;
83 int all_constant = 0;
85 if (c == 0)
86 return x;
88 restart:
90 code = GET_CODE (x);
91 mode = GET_MODE (x);
92 y = x;
94 switch (code)
96 case CONST_INT:
97 return GEN_INT (INTVAL (x) + c);
99 case CONST_DOUBLE:
101 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
102 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
103 unsigned HOST_WIDE_INT l2 = c;
104 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
105 unsigned HOST_WIDE_INT lv;
106 HOST_WIDE_INT hv;
108 add_double (l1, h1, l2, h2, &lv, &hv);
110 return immed_double_const (lv, hv, VOIDmode);
113 case MEM:
114 /* If this is a reference to the constant pool, try replacing it with
115 a reference to a new constant. If the resulting address isn't
116 valid, don't return it because we have no way to validize it. */
117 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
118 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 = force_const_mem (GET_MODE (x),
122 plus_constant (get_pool_constant (XEXP (x, 0)),
123 c));
124 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
125 return tem;
127 break;
129 case CONST:
130 /* If adding to something entirely constant, set a flag
131 so that we can add a CONST around the result. */
132 x = XEXP (x, 0);
133 all_constant = 1;
134 goto restart;
136 case SYMBOL_REF:
137 case LABEL_REF:
138 all_constant = 1;
139 break;
141 case PLUS:
142 /* The interesting case is adding the integer to a sum.
143 Look for constant term in the sum and combine
144 with C. For an integer constant term, we make a combined
145 integer. For a constant term that is not an explicit integer,
146 we cannot really combine, but group them together anyway.
148 Restart or use a recursive call in case the remaining operand is
149 something that we handle specially, such as a SYMBOL_REF.
151 We may not immediately return from the recursive call here, lest
152 all_constant gets lost. */
154 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
156 c += INTVAL (XEXP (x, 1));
158 if (GET_MODE (x) != VOIDmode)
159 c = trunc_int_for_mode (c, GET_MODE (x));
161 x = XEXP (x, 0);
162 goto restart;
164 else if (CONSTANT_P (XEXP (x, 1)))
166 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
167 c = 0;
169 else if (find_constant_term_loc (&y))
171 /* We need to be careful since X may be shared and we can't
172 modify it in place. */
173 rtx copy = copy_rtx (x);
174 rtx *const_loc = find_constant_term_loc (&copy);
176 *const_loc = plus_constant (*const_loc, c);
177 x = copy;
178 c = 0;
180 break;
182 default:
183 break;
186 if (c != 0)
187 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
189 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
190 return x;
191 else if (all_constant)
192 return gen_rtx_CONST (mode, x);
193 else
194 return x;
197 /* If X is a sum, return a new sum like X but lacking any constant terms.
198 Add all the removed constant terms into *CONSTPTR.
199 X itself is not altered. The result != X if and only if
200 it is not isomorphic to X. */
203 eliminate_constant_term (x, constptr)
204 rtx x;
205 rtx *constptr;
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Returns the insn that next references REG after INSN, or 0
239 if REG is clobbered before next referenced or we cannot find
240 an insn that references REG in a straight-line piece of code. */
243 find_next_ref (reg, insn)
244 rtx reg;
245 rtx insn;
247 rtx next;
249 for (insn = NEXT_INSN (insn); insn; insn = next)
251 next = NEXT_INSN (insn);
252 if (GET_CODE (insn) == NOTE)
253 continue;
254 if (GET_CODE (insn) == CODE_LABEL
255 || GET_CODE (insn) == BARRIER)
256 return 0;
257 if (GET_CODE (insn) == INSN
258 || GET_CODE (insn) == JUMP_INSN
259 || GET_CODE (insn) == CALL_INSN)
261 if (reg_set_p (reg, insn))
262 return 0;
263 if (reg_mentioned_p (reg, PATTERN (insn)))
264 return insn;
265 if (GET_CODE (insn) == JUMP_INSN)
267 if (any_uncondjump_p (insn))
268 next = JUMP_LABEL (insn);
269 else
270 return 0;
272 if (GET_CODE (insn) == CALL_INSN
273 && REGNO (reg) < FIRST_PSEUDO_REGISTER
274 && call_used_regs[REGNO (reg)])
275 return 0;
277 else
278 abort ();
280 return 0;
283 /* Return an rtx for the size in bytes of the value of EXP. */
286 expr_size (exp)
287 tree exp;
289 tree size = (*lang_hooks.expr_size) (exp);
291 if (TREE_CODE (size) != INTEGER_CST
292 && contains_placeholder_p (size))
293 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
295 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
298 /* Return a wide integer for the size in bytes of the value of EXP, or -1
299 if the size can vary or is larger than an integer. */
301 HOST_WIDE_INT
302 int_expr_size (exp)
303 tree exp;
305 tree t = (*lang_hooks.expr_size) (exp);
307 if (t == 0
308 || TREE_CODE (t) != INTEGER_CST
309 || TREE_OVERFLOW (t)
310 || TREE_INT_CST_HIGH (t) != 0
311 /* If the result would appear negative, it's too big to represent. */
312 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
313 return -1;
315 return TREE_INT_CST_LOW (t);
318 /* Return a copy of X in which all memory references
319 and all constants that involve symbol refs
320 have been replaced with new temporary registers.
321 Also emit code to load the memory locations and constants
322 into those registers.
324 If X contains no such constants or memory references,
325 X itself (not a copy) is returned.
327 If a constant is found in the address that is not a legitimate constant
328 in an insn, it is left alone in the hope that it might be valid in the
329 address.
331 X may contain no arithmetic except addition, subtraction and multiplication.
332 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
334 static rtx
335 break_out_memory_refs (x)
336 rtx x;
338 if (GET_CODE (x) == MEM
339 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
340 && GET_MODE (x) != VOIDmode))
341 x = force_reg (GET_MODE (x), x);
342 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
343 || GET_CODE (x) == MULT)
345 rtx op0 = break_out_memory_refs (XEXP (x, 0));
346 rtx op1 = break_out_memory_refs (XEXP (x, 1));
348 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
349 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
352 return x;
355 #ifdef POINTERS_EXTEND_UNSIGNED
357 /* Given X, a memory address in ptr_mode, convert it to an address
358 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
359 the fact that pointers are not allowed to overflow by commuting arithmetic
360 operations over conversions so that address arithmetic insns can be
361 used. */
364 convert_memory_address (to_mode, x)
365 enum machine_mode to_mode;
366 rtx x;
368 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
369 rtx temp;
370 enum rtx_code code;
372 /* Here we handle some special cases. If none of them apply, fall through
373 to the default case. */
374 switch (GET_CODE (x))
376 case CONST_INT:
377 case CONST_DOUBLE:
378 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
379 code = TRUNCATE;
380 else if (POINTERS_EXTEND_UNSIGNED < 0)
381 break;
382 else if (POINTERS_EXTEND_UNSIGNED > 0)
383 code = ZERO_EXTEND;
384 else
385 code = SIGN_EXTEND;
386 temp = simplify_unary_operation (code, to_mode, x, from_mode);
387 if (temp)
388 return temp;
389 break;
391 case SUBREG:
392 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
393 && GET_MODE (SUBREG_REG (x)) == to_mode)
394 return SUBREG_REG (x);
395 break;
397 case LABEL_REF:
398 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
399 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
400 return temp;
401 break;
403 case SYMBOL_REF:
404 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
405 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
406 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
407 STRING_POOL_ADDRESS_P (temp) = STRING_POOL_ADDRESS_P (x);
408 return temp;
409 break;
411 case CONST:
412 return gen_rtx_CONST (to_mode,
413 convert_memory_address (to_mode, XEXP (x, 0)));
414 break;
416 case PLUS:
417 case MULT:
418 /* For addition we can safely permute the conversion and addition
419 operation if one operand is a constant and converting the constant
420 does not change it. We can always safely permute them if we are
421 making the address narrower. */
422 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
423 || (GET_CODE (x) == PLUS
424 && GET_CODE (XEXP (x, 1)) == CONST_INT
425 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
426 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
427 convert_memory_address (to_mode, XEXP (x, 0)),
428 XEXP (x, 1));
429 break;
431 default:
432 break;
435 return convert_modes (to_mode, from_mode,
436 x, POINTERS_EXTEND_UNSIGNED);
438 #endif
440 /* Given a memory address or facsimile X, construct a new address,
441 currently equivalent, that is stable: future stores won't change it.
443 X must be composed of constants, register and memory references
444 combined with addition, subtraction and multiplication:
445 in other words, just what you can get from expand_expr if sum_ok is 1.
447 Works by making copies of all regs and memory locations used
448 by X and combining them the same way X does.
449 You could also stabilize the reference to this address
450 by copying the address to a register with copy_to_reg;
451 but then you wouldn't get indexed addressing in the reference. */
454 copy_all_regs (x)
455 rtx x;
457 if (GET_CODE (x) == REG)
459 if (REGNO (x) != FRAME_POINTER_REGNUM
460 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
461 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
462 #endif
464 x = copy_to_reg (x);
466 else if (GET_CODE (x) == MEM)
467 x = copy_to_reg (x);
468 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
469 || GET_CODE (x) == MULT)
471 rtx op0 = copy_all_regs (XEXP (x, 0));
472 rtx op1 = copy_all_regs (XEXP (x, 1));
473 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
474 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
476 return x;
479 /* Return something equivalent to X but valid as a memory address
480 for something of mode MODE. When X is not itself valid, this
481 works by copying X or subexpressions of it into registers. */
484 memory_address (mode, x)
485 enum machine_mode mode;
486 rtx x;
488 rtx oldx = x;
490 if (GET_CODE (x) == ADDRESSOF)
491 return x;
493 #ifdef POINTERS_EXTEND_UNSIGNED
494 if (GET_MODE (x) != Pmode)
495 x = convert_memory_address (Pmode, x);
496 #endif
498 /* By passing constant addresses thru registers
499 we get a chance to cse them. */
500 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
501 x = force_reg (Pmode, x);
503 /* Accept a QUEUED that refers to a REG
504 even though that isn't a valid address.
505 On attempting to put this in an insn we will call protect_from_queue
506 which will turn it into a REG, which is valid. */
507 else if (GET_CODE (x) == QUEUED
508 && GET_CODE (QUEUED_VAR (x)) == REG)
511 /* We get better cse by rejecting indirect addressing at this stage.
512 Let the combiner create indirect addresses where appropriate.
513 For now, generate the code so that the subexpressions useful to share
514 are visible. But not if cse won't be done! */
515 else
517 if (! cse_not_expected && GET_CODE (x) != REG)
518 x = break_out_memory_refs (x);
520 /* At this point, any valid address is accepted. */
521 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
523 /* If it was valid before but breaking out memory refs invalidated it,
524 use it the old way. */
525 if (memory_address_p (mode, oldx))
526 goto win2;
528 /* Perform machine-dependent transformations on X
529 in certain cases. This is not necessary since the code
530 below can handle all possible cases, but machine-dependent
531 transformations can make better code. */
532 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
534 /* PLUS and MULT can appear in special ways
535 as the result of attempts to make an address usable for indexing.
536 Usually they are dealt with by calling force_operand, below.
537 But a sum containing constant terms is special
538 if removing them makes the sum a valid address:
539 then we generate that address in a register
540 and index off of it. We do this because it often makes
541 shorter code, and because the addresses thus generated
542 in registers often become common subexpressions. */
543 if (GET_CODE (x) == PLUS)
545 rtx constant_term = const0_rtx;
546 rtx y = eliminate_constant_term (x, &constant_term);
547 if (constant_term == const0_rtx
548 || ! memory_address_p (mode, y))
549 x = force_operand (x, NULL_RTX);
550 else
552 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
553 if (! memory_address_p (mode, y))
554 x = force_operand (x, NULL_RTX);
555 else
556 x = y;
560 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
561 x = force_operand (x, NULL_RTX);
563 /* If we have a register that's an invalid address,
564 it must be a hard reg of the wrong class. Copy it to a pseudo. */
565 else if (GET_CODE (x) == REG)
566 x = copy_to_reg (x);
568 /* Last resort: copy the value to a register, since
569 the register is a valid address. */
570 else
571 x = force_reg (Pmode, x);
573 goto done;
575 win2:
576 x = oldx;
577 win:
578 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
579 /* Don't copy an addr via a reg if it is one of our stack slots. */
580 && ! (GET_CODE (x) == PLUS
581 && (XEXP (x, 0) == virtual_stack_vars_rtx
582 || XEXP (x, 0) == virtual_incoming_args_rtx)))
584 if (general_operand (x, Pmode))
585 x = force_reg (Pmode, x);
586 else
587 x = force_operand (x, NULL_RTX);
591 done:
593 /* If we didn't change the address, we are done. Otherwise, mark
594 a reg as a pointer if we have REG or REG + CONST_INT. */
595 if (oldx == x)
596 return x;
597 else if (GET_CODE (x) == REG)
598 mark_reg_pointer (x, BITS_PER_UNIT);
599 else if (GET_CODE (x) == PLUS
600 && GET_CODE (XEXP (x, 0)) == REG
601 && GET_CODE (XEXP (x, 1)) == CONST_INT)
602 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
604 /* OLDX may have been the address on a temporary. Update the address
605 to indicate that X is now used. */
606 update_temp_slot_address (oldx, x);
608 return x;
611 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
614 memory_address_noforce (mode, x)
615 enum machine_mode mode;
616 rtx x;
618 int ambient_force_addr = flag_force_addr;
619 rtx val;
621 flag_force_addr = 0;
622 val = memory_address (mode, x);
623 flag_force_addr = ambient_force_addr;
624 return val;
627 /* Convert a mem ref into one with a valid memory address.
628 Pass through anything else unchanged. */
631 validize_mem (ref)
632 rtx ref;
634 if (GET_CODE (ref) != MEM)
635 return ref;
636 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
637 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
638 return ref;
640 /* Don't alter REF itself, since that is probably a stack slot. */
641 return replace_equiv_address (ref, XEXP (ref, 0));
644 /* Given REF, either a MEM or a REG, and T, either the type of X or
645 the expression corresponding to REF, set RTX_UNCHANGING_P if
646 appropriate. */
648 void
649 maybe_set_unchanging (ref, t)
650 rtx ref;
651 tree t;
653 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
654 initialization is only executed once, or whose initializer always
655 has the same value. Currently we simplify this to PARM_DECLs in the
656 first case, and decls with TREE_CONSTANT initializers in the second. */
657 if ((TREE_READONLY (t) && DECL_P (t)
658 && (TREE_CODE (t) == PARM_DECL
659 || DECL_INITIAL (t) == NULL_TREE
660 || TREE_CONSTANT (DECL_INITIAL (t))))
661 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
662 RTX_UNCHANGING_P (ref) = 1;
665 /* Return a modified copy of X with its memory address copied
666 into a temporary register to protect it from side effects.
667 If X is not a MEM, it is returned unchanged (and not copied).
668 Perhaps even if it is a MEM, if there is no need to change it. */
671 stabilize (x)
672 rtx x;
675 if (GET_CODE (x) != MEM
676 || ! rtx_unstable_p (XEXP (x, 0)))
677 return x;
679 return
680 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
683 /* Copy the value or contents of X to a new temp reg and return that reg. */
686 copy_to_reg (x)
687 rtx x;
689 rtx temp = gen_reg_rtx (GET_MODE (x));
691 /* If not an operand, must be an address with PLUS and MULT so
692 do the computation. */
693 if (! general_operand (x, VOIDmode))
694 x = force_operand (x, temp);
696 if (x != temp)
697 emit_move_insn (temp, x);
699 return temp;
702 /* Like copy_to_reg but always give the new register mode Pmode
703 in case X is a constant. */
706 copy_addr_to_reg (x)
707 rtx x;
709 return copy_to_mode_reg (Pmode, x);
712 /* Like copy_to_reg but always give the new register mode MODE
713 in case X is a constant. */
716 copy_to_mode_reg (mode, x)
717 enum machine_mode mode;
718 rtx x;
720 rtx temp = gen_reg_rtx (mode);
722 /* If not an operand, must be an address with PLUS and MULT so
723 do the computation. */
724 if (! general_operand (x, VOIDmode))
725 x = force_operand (x, temp);
727 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
728 abort ();
729 if (x != temp)
730 emit_move_insn (temp, x);
731 return temp;
734 /* Load X into a register if it is not already one.
735 Use mode MODE for the register.
736 X should be valid for mode MODE, but it may be a constant which
737 is valid for all integer modes; that's why caller must specify MODE.
739 The caller must not alter the value in the register we return,
740 since we mark it as a "constant" register. */
743 force_reg (mode, x)
744 enum machine_mode mode;
745 rtx x;
747 rtx temp, insn, set;
749 if (GET_CODE (x) == REG)
750 return x;
752 if (general_operand (x, mode))
754 temp = gen_reg_rtx (mode);
755 insn = emit_move_insn (temp, x);
757 else
759 temp = force_operand (x, NULL_RTX);
760 if (GET_CODE (temp) == REG)
761 insn = get_last_insn ();
762 else
764 rtx temp2 = gen_reg_rtx (mode);
765 insn = emit_move_insn (temp2, temp);
766 temp = temp2;
770 /* Let optimizers know that TEMP's value never changes
771 and that X can be substituted for it. Don't get confused
772 if INSN set something else (such as a SUBREG of TEMP). */
773 if (CONSTANT_P (x)
774 && (set = single_set (insn)) != 0
775 && SET_DEST (set) == temp)
776 set_unique_reg_note (insn, REG_EQUAL, x);
778 return temp;
781 /* If X is a memory ref, copy its contents to a new temp reg and return
782 that reg. Otherwise, return X. */
785 force_not_mem (x)
786 rtx x;
788 rtx temp;
790 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
791 return x;
793 temp = gen_reg_rtx (GET_MODE (x));
794 emit_move_insn (temp, x);
795 return temp;
798 /* Copy X to TARGET (if it's nonzero and a reg)
799 or to a new temp reg and return that reg.
800 MODE is the mode to use for X in case it is a constant. */
803 copy_to_suggested_reg (x, target, mode)
804 rtx x, target;
805 enum machine_mode mode;
807 rtx temp;
809 if (target && GET_CODE (target) == REG)
810 temp = target;
811 else
812 temp = gen_reg_rtx (mode);
814 emit_move_insn (temp, x);
815 return temp;
818 /* Return the mode to use to store a scalar of TYPE and MODE.
819 PUNSIGNEDP points to the signedness of the type and may be adjusted
820 to show what signedness to use on extension operations.
822 FOR_CALL is non-zero if this call is promoting args for a call. */
824 enum machine_mode
825 promote_mode (type, mode, punsignedp, for_call)
826 tree type;
827 enum machine_mode mode;
828 int *punsignedp;
829 int for_call ATTRIBUTE_UNUSED;
831 enum tree_code code = TREE_CODE (type);
832 int unsignedp = *punsignedp;
834 #ifdef PROMOTE_FOR_CALL_ONLY
835 if (! for_call)
836 return mode;
837 #endif
839 switch (code)
841 #ifdef PROMOTE_MODE
842 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
843 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
844 PROMOTE_MODE (mode, unsignedp, type);
845 break;
846 #endif
848 #ifdef POINTERS_EXTEND_UNSIGNED
849 case REFERENCE_TYPE:
850 case POINTER_TYPE:
851 mode = Pmode;
852 unsignedp = POINTERS_EXTEND_UNSIGNED;
853 break;
854 #endif
856 default:
857 break;
860 *punsignedp = unsignedp;
861 return mode;
864 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
865 This pops when ADJUST is positive. ADJUST need not be constant. */
867 void
868 adjust_stack (adjust)
869 rtx adjust;
871 rtx temp;
872 adjust = protect_from_queue (adjust, 0);
874 if (adjust == const0_rtx)
875 return;
877 /* We expect all variable sized adjustments to be multiple of
878 PREFERRED_STACK_BOUNDARY. */
879 if (GET_CODE (adjust) == CONST_INT)
880 stack_pointer_delta -= INTVAL (adjust);
882 temp = expand_binop (Pmode,
883 #ifdef STACK_GROWS_DOWNWARD
884 add_optab,
885 #else
886 sub_optab,
887 #endif
888 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
889 OPTAB_LIB_WIDEN);
891 if (temp != stack_pointer_rtx)
892 emit_move_insn (stack_pointer_rtx, temp);
895 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
896 This pushes when ADJUST is positive. ADJUST need not be constant. */
898 void
899 anti_adjust_stack (adjust)
900 rtx adjust;
902 rtx temp;
903 adjust = protect_from_queue (adjust, 0);
905 if (adjust == const0_rtx)
906 return;
908 /* We expect all variable sized adjustments to be multiple of
909 PREFERRED_STACK_BOUNDARY. */
910 if (GET_CODE (adjust) == CONST_INT)
911 stack_pointer_delta += INTVAL (adjust);
913 temp = expand_binop (Pmode,
914 #ifdef STACK_GROWS_DOWNWARD
915 sub_optab,
916 #else
917 add_optab,
918 #endif
919 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
920 OPTAB_LIB_WIDEN);
922 if (temp != stack_pointer_rtx)
923 emit_move_insn (stack_pointer_rtx, temp);
926 /* Round the size of a block to be pushed up to the boundary required
927 by this machine. SIZE is the desired size, which need not be constant. */
930 round_push (size)
931 rtx size;
933 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
934 if (align == 1)
935 return size;
936 if (GET_CODE (size) == CONST_INT)
938 int new = (INTVAL (size) + align - 1) / align * align;
939 if (INTVAL (size) != new)
940 size = GEN_INT (new);
942 else
944 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
945 but we know it can't. So add ourselves and then do
946 TRUNC_DIV_EXPR. */
947 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
948 NULL_RTX, 1, OPTAB_LIB_WIDEN);
949 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
950 NULL_RTX, 1);
951 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
953 return size;
956 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
957 to a previously-created save area. If no save area has been allocated,
958 this function will allocate one. If a save area is specified, it
959 must be of the proper mode.
961 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
962 are emitted at the current position. */
964 void
965 emit_stack_save (save_level, psave, after)
966 enum save_level save_level;
967 rtx *psave;
968 rtx after;
970 rtx sa = *psave;
971 /* The default is that we use a move insn and save in a Pmode object. */
972 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
973 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
975 /* See if this machine has anything special to do for this kind of save. */
976 switch (save_level)
978 #ifdef HAVE_save_stack_block
979 case SAVE_BLOCK:
980 if (HAVE_save_stack_block)
981 fcn = gen_save_stack_block;
982 break;
983 #endif
984 #ifdef HAVE_save_stack_function
985 case SAVE_FUNCTION:
986 if (HAVE_save_stack_function)
987 fcn = gen_save_stack_function;
988 break;
989 #endif
990 #ifdef HAVE_save_stack_nonlocal
991 case SAVE_NONLOCAL:
992 if (HAVE_save_stack_nonlocal)
993 fcn = gen_save_stack_nonlocal;
994 break;
995 #endif
996 default:
997 break;
1000 /* If there is no save area and we have to allocate one, do so. Otherwise
1001 verify the save area is the proper mode. */
1003 if (sa == 0)
1005 if (mode != VOIDmode)
1007 if (save_level == SAVE_NONLOCAL)
1008 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1009 else
1010 *psave = sa = gen_reg_rtx (mode);
1013 else
1015 if (mode == VOIDmode || GET_MODE (sa) != mode)
1016 abort ();
1019 if (after)
1021 rtx seq;
1023 start_sequence ();
1024 /* We must validize inside the sequence, to ensure that any instructions
1025 created by the validize call also get moved to the right place. */
1026 if (sa != 0)
1027 sa = validize_mem (sa);
1028 emit_insn (fcn (sa, stack_pointer_rtx));
1029 seq = get_insns ();
1030 end_sequence ();
1031 emit_insn_after (seq, after);
1033 else
1035 if (sa != 0)
1036 sa = validize_mem (sa);
1037 emit_insn (fcn (sa, stack_pointer_rtx));
1041 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1042 area made by emit_stack_save. If it is zero, we have nothing to do.
1044 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1045 current position. */
1047 void
1048 emit_stack_restore (save_level, sa, after)
1049 enum save_level save_level;
1050 rtx after;
1051 rtx sa;
1053 /* The default is that we use a move insn. */
1054 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1056 /* See if this machine has anything special to do for this kind of save. */
1057 switch (save_level)
1059 #ifdef HAVE_restore_stack_block
1060 case SAVE_BLOCK:
1061 if (HAVE_restore_stack_block)
1062 fcn = gen_restore_stack_block;
1063 break;
1064 #endif
1065 #ifdef HAVE_restore_stack_function
1066 case SAVE_FUNCTION:
1067 if (HAVE_restore_stack_function)
1068 fcn = gen_restore_stack_function;
1069 break;
1070 #endif
1071 #ifdef HAVE_restore_stack_nonlocal
1072 case SAVE_NONLOCAL:
1073 if (HAVE_restore_stack_nonlocal)
1074 fcn = gen_restore_stack_nonlocal;
1075 break;
1076 #endif
1077 default:
1078 break;
1081 if (sa != 0)
1082 sa = validize_mem (sa);
1084 if (after)
1086 rtx seq;
1088 start_sequence ();
1089 emit_insn (fcn (stack_pointer_rtx, sa));
1090 seq = get_insns ();
1091 end_sequence ();
1092 emit_insn_after (seq, after);
1094 else
1095 emit_insn (fcn (stack_pointer_rtx, sa));
1098 #ifdef SETJMP_VIA_SAVE_AREA
1099 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1100 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1101 platforms, the dynamic stack space used can corrupt the original
1102 frame, thus causing a crash if a longjmp unwinds to it. */
1104 void
1105 optimize_save_area_alloca (insns)
1106 rtx insns;
1108 rtx insn;
1110 for (insn = insns; insn; insn = NEXT_INSN(insn))
1112 rtx note;
1114 if (GET_CODE (insn) != INSN)
1115 continue;
1117 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1119 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1120 continue;
1122 if (!current_function_calls_setjmp)
1124 rtx pat = PATTERN (insn);
1126 /* If we do not see the note in a pattern matching
1127 these precise characteristics, we did something
1128 entirely wrong in allocate_dynamic_stack_space.
1130 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1131 was defined on a machine where stacks grow towards higher
1132 addresses.
1134 Right now only supported port with stack that grow upward
1135 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1136 if (GET_CODE (pat) != SET
1137 || SET_DEST (pat) != stack_pointer_rtx
1138 || GET_CODE (SET_SRC (pat)) != MINUS
1139 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1140 abort ();
1142 /* This will now be transformed into a (set REG REG)
1143 so we can just blow away all the other notes. */
1144 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1145 REG_NOTES (insn) = NULL_RTX;
1147 else
1149 /* setjmp was called, we must remove the REG_SAVE_AREA
1150 note so that later passes do not get confused by its
1151 presence. */
1152 if (note == REG_NOTES (insn))
1154 REG_NOTES (insn) = XEXP (note, 1);
1156 else
1158 rtx srch;
1160 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1161 if (XEXP (srch, 1) == note)
1162 break;
1164 if (srch == NULL_RTX)
1165 abort ();
1167 XEXP (srch, 1) = XEXP (note, 1);
1170 /* Once we've seen the note of interest, we need not look at
1171 the rest of them. */
1172 break;
1176 #endif /* SETJMP_VIA_SAVE_AREA */
1178 /* Return an rtx representing the address of an area of memory dynamically
1179 pushed on the stack. This region of memory is always aligned to
1180 a multiple of BIGGEST_ALIGNMENT.
1182 Any required stack pointer alignment is preserved.
1184 SIZE is an rtx representing the size of the area.
1185 TARGET is a place in which the address can be placed.
1187 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1190 allocate_dynamic_stack_space (size, target, known_align)
1191 rtx size;
1192 rtx target;
1193 int known_align;
1195 #ifdef SETJMP_VIA_SAVE_AREA
1196 rtx setjmpless_size = NULL_RTX;
1197 #endif
1199 /* If we're asking for zero bytes, it doesn't matter what we point
1200 to since we can't dereference it. But return a reasonable
1201 address anyway. */
1202 if (size == const0_rtx)
1203 return virtual_stack_dynamic_rtx;
1205 /* Otherwise, show we're calling alloca or equivalent. */
1206 current_function_calls_alloca = 1;
1208 /* Ensure the size is in the proper mode. */
1209 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1210 size = convert_to_mode (Pmode, size, 1);
1212 /* We can't attempt to minimize alignment necessary, because we don't
1213 know the final value of preferred_stack_boundary yet while executing
1214 this code. */
1215 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1217 /* We will need to ensure that the address we return is aligned to
1218 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1219 always know its final value at this point in the compilation (it
1220 might depend on the size of the outgoing parameter lists, for
1221 example), so we must align the value to be returned in that case.
1222 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1223 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1224 We must also do an alignment operation on the returned value if
1225 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1227 If we have to align, we must leave space in SIZE for the hole
1228 that might result from the alignment operation. */
1230 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1231 #define MUST_ALIGN 1
1232 #else
1233 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1234 #endif
1236 if (MUST_ALIGN)
1237 size
1238 = force_operand (plus_constant (size,
1239 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1240 NULL_RTX);
1242 #ifdef SETJMP_VIA_SAVE_AREA
1243 /* If setjmp restores regs from a save area in the stack frame,
1244 avoid clobbering the reg save area. Note that the offset of
1245 virtual_incoming_args_rtx includes the preallocated stack args space.
1246 It would be no problem to clobber that, but it's on the wrong side
1247 of the old save area. */
1249 rtx dynamic_offset
1250 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1251 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1253 if (!current_function_calls_setjmp)
1255 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1257 /* See optimize_save_area_alloca to understand what is being
1258 set up here. */
1260 /* ??? Code below assumes that the save area needs maximal
1261 alignment. This constraint may be too strong. */
1262 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1263 abort ();
1265 if (GET_CODE (size) == CONST_INT)
1267 HOST_WIDE_INT new = INTVAL (size) / align * align;
1269 if (INTVAL (size) != new)
1270 setjmpless_size = GEN_INT (new);
1271 else
1272 setjmpless_size = size;
1274 else
1276 /* Since we know overflow is not possible, we avoid using
1277 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1278 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1279 GEN_INT (align), NULL_RTX, 1);
1280 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1281 GEN_INT (align), NULL_RTX, 1);
1283 /* Our optimization works based upon being able to perform a simple
1284 transformation of this RTL into a (set REG REG) so make sure things
1285 did in fact end up in a REG. */
1286 if (!register_operand (setjmpless_size, Pmode))
1287 setjmpless_size = force_reg (Pmode, setjmpless_size);
1290 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1291 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1293 #endif /* SETJMP_VIA_SAVE_AREA */
1295 /* Round the size to a multiple of the required stack alignment.
1296 Since the stack if presumed to be rounded before this allocation,
1297 this will maintain the required alignment.
1299 If the stack grows downward, we could save an insn by subtracting
1300 SIZE from the stack pointer and then aligning the stack pointer.
1301 The problem with this is that the stack pointer may be unaligned
1302 between the execution of the subtraction and alignment insns and
1303 some machines do not allow this. Even on those that do, some
1304 signal handlers malfunction if a signal should occur between those
1305 insns. Since this is an extremely rare event, we have no reliable
1306 way of knowing which systems have this problem. So we avoid even
1307 momentarily mis-aligning the stack. */
1309 /* If we added a variable amount to SIZE,
1310 we can no longer assume it is aligned. */
1311 #if !defined (SETJMP_VIA_SAVE_AREA)
1312 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1313 #endif
1314 size = round_push (size);
1316 do_pending_stack_adjust ();
1318 /* We ought to be called always on the toplevel and stack ought to be aligned
1319 properly. */
1320 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1321 abort ();
1323 /* If needed, check that we have the required amount of stack. Take into
1324 account what has already been checked. */
1325 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1326 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1328 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1329 if (target == 0 || GET_CODE (target) != REG
1330 || REGNO (target) < FIRST_PSEUDO_REGISTER
1331 || GET_MODE (target) != Pmode)
1332 target = gen_reg_rtx (Pmode);
1334 mark_reg_pointer (target, known_align);
1336 /* Perform the required allocation from the stack. Some systems do
1337 this differently than simply incrementing/decrementing from the
1338 stack pointer, such as acquiring the space by calling malloc(). */
1339 #ifdef HAVE_allocate_stack
1340 if (HAVE_allocate_stack)
1342 enum machine_mode mode = STACK_SIZE_MODE;
1343 insn_operand_predicate_fn pred;
1345 /* We don't have to check against the predicate for operand 0 since
1346 TARGET is known to be a pseudo of the proper mode, which must
1347 be valid for the operand. For operand 1, convert to the
1348 proper mode and validate. */
1349 if (mode == VOIDmode)
1350 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1352 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1353 if (pred && ! ((*pred) (size, mode)))
1354 size = copy_to_mode_reg (mode, size);
1356 emit_insn (gen_allocate_stack (target, size));
1358 else
1359 #endif
1361 #ifndef STACK_GROWS_DOWNWARD
1362 emit_move_insn (target, virtual_stack_dynamic_rtx);
1363 #endif
1365 /* Check stack bounds if necessary. */
1366 if (current_function_limit_stack)
1368 rtx available;
1369 rtx space_available = gen_label_rtx ();
1370 #ifdef STACK_GROWS_DOWNWARD
1371 available = expand_binop (Pmode, sub_optab,
1372 stack_pointer_rtx, stack_limit_rtx,
1373 NULL_RTX, 1, OPTAB_WIDEN);
1374 #else
1375 available = expand_binop (Pmode, sub_optab,
1376 stack_limit_rtx, stack_pointer_rtx,
1377 NULL_RTX, 1, OPTAB_WIDEN);
1378 #endif
1379 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1380 space_available);
1381 #ifdef HAVE_trap
1382 if (HAVE_trap)
1383 emit_insn (gen_trap ());
1384 else
1385 #endif
1386 error ("stack limits not supported on this target");
1387 emit_barrier ();
1388 emit_label (space_available);
1391 anti_adjust_stack (size);
1392 #ifdef SETJMP_VIA_SAVE_AREA
1393 if (setjmpless_size != NULL_RTX)
1395 rtx note_target = get_last_insn ();
1397 REG_NOTES (note_target)
1398 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1399 REG_NOTES (note_target));
1401 #endif /* SETJMP_VIA_SAVE_AREA */
1403 #ifdef STACK_GROWS_DOWNWARD
1404 emit_move_insn (target, virtual_stack_dynamic_rtx);
1405 #endif
1408 if (MUST_ALIGN)
1410 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1411 but we know it can't. So add ourselves and then do
1412 TRUNC_DIV_EXPR. */
1413 target = expand_binop (Pmode, add_optab, target,
1414 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1415 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1416 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1417 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1418 NULL_RTX, 1);
1419 target = expand_mult (Pmode, target,
1420 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1421 NULL_RTX, 1);
1424 /* Some systems require a particular insn to refer to the stack
1425 to make the pages exist. */
1426 #ifdef HAVE_probe
1427 if (HAVE_probe)
1428 emit_insn (gen_probe ());
1429 #endif
1431 /* Record the new stack level for nonlocal gotos. */
1432 if (nonlocal_goto_handler_slots != 0)
1433 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1435 return target;
1438 /* A front end may want to override GCC's stack checking by providing a
1439 run-time routine to call to check the stack, so provide a mechanism for
1440 calling that routine. */
1442 static GTY(()) rtx stack_check_libfunc;
1444 void
1445 set_stack_check_libfunc (libfunc)
1446 rtx libfunc;
1448 stack_check_libfunc = libfunc;
1451 /* Emit one stack probe at ADDRESS, an address within the stack. */
1453 static void
1454 emit_stack_probe (address)
1455 rtx address;
1457 rtx memref = gen_rtx_MEM (word_mode, address);
1459 MEM_VOLATILE_P (memref) = 1;
1461 if (STACK_CHECK_PROBE_LOAD)
1462 emit_move_insn (gen_reg_rtx (word_mode), memref);
1463 else
1464 emit_move_insn (memref, const0_rtx);
1467 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1468 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1469 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1470 subtract from the stack. If SIZE is constant, this is done
1471 with a fixed number of probes. Otherwise, we must make a loop. */
1473 #ifdef STACK_GROWS_DOWNWARD
1474 #define STACK_GROW_OP MINUS
1475 #else
1476 #define STACK_GROW_OP PLUS
1477 #endif
1479 void
1480 probe_stack_range (first, size)
1481 HOST_WIDE_INT first;
1482 rtx size;
1484 /* First ensure SIZE is Pmode. */
1485 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1486 size = convert_to_mode (Pmode, size, 1);
1488 /* Next see if the front end has set up a function for us to call to
1489 check the stack. */
1490 if (stack_check_libfunc != 0)
1492 rtx addr = memory_address (QImode,
1493 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1494 stack_pointer_rtx,
1495 plus_constant (size, first)));
1497 #ifdef POINTERS_EXTEND_UNSIGNED
1498 if (GET_MODE (addr) != ptr_mode)
1499 addr = convert_memory_address (ptr_mode, addr);
1500 #endif
1502 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1503 ptr_mode);
1506 /* Next see if we have an insn to check the stack. Use it if so. */
1507 #ifdef HAVE_check_stack
1508 else if (HAVE_check_stack)
1510 insn_operand_predicate_fn pred;
1511 rtx last_addr
1512 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1513 stack_pointer_rtx,
1514 plus_constant (size, first)),
1515 NULL_RTX);
1517 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1518 if (pred && ! ((*pred) (last_addr, Pmode)))
1519 last_addr = copy_to_mode_reg (Pmode, last_addr);
1521 emit_insn (gen_check_stack (last_addr));
1523 #endif
1525 /* If we have to generate explicit probes, see if we have a constant
1526 small number of them to generate. If so, that's the easy case. */
1527 else if (GET_CODE (size) == CONST_INT
1528 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1530 HOST_WIDE_INT offset;
1532 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1533 for values of N from 1 until it exceeds LAST. If only one
1534 probe is needed, this will not generate any code. Then probe
1535 at LAST. */
1536 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1537 offset < INTVAL (size);
1538 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1539 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1540 stack_pointer_rtx,
1541 GEN_INT (offset)));
1543 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1544 stack_pointer_rtx,
1545 plus_constant (size, first)));
1548 /* In the variable case, do the same as above, but in a loop. We emit loop
1549 notes so that loop optimization can be done. */
1550 else
1552 rtx test_addr
1553 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1554 stack_pointer_rtx,
1555 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1556 NULL_RTX);
1557 rtx last_addr
1558 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1559 stack_pointer_rtx,
1560 plus_constant (size, first)),
1561 NULL_RTX);
1562 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1563 rtx loop_lab = gen_label_rtx ();
1564 rtx test_lab = gen_label_rtx ();
1565 rtx end_lab = gen_label_rtx ();
1566 rtx temp;
1568 if (GET_CODE (test_addr) != REG
1569 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1570 test_addr = force_reg (Pmode, test_addr);
1572 emit_note (NULL, NOTE_INSN_LOOP_BEG);
1573 emit_jump (test_lab);
1575 emit_label (loop_lab);
1576 emit_stack_probe (test_addr);
1578 emit_note (NULL, NOTE_INSN_LOOP_CONT);
1580 #ifdef STACK_GROWS_DOWNWARD
1581 #define CMP_OPCODE GTU
1582 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1583 1, OPTAB_WIDEN);
1584 #else
1585 #define CMP_OPCODE LTU
1586 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1587 1, OPTAB_WIDEN);
1588 #endif
1590 if (temp != test_addr)
1591 abort ();
1593 emit_label (test_lab);
1594 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1595 NULL_RTX, Pmode, 1, loop_lab);
1596 emit_jump (end_lab);
1597 emit_note (NULL, NOTE_INSN_LOOP_END);
1598 emit_label (end_lab);
1600 emit_stack_probe (last_addr);
1604 /* Return an rtx representing the register or memory location
1605 in which a scalar value of data type VALTYPE
1606 was returned by a function call to function FUNC.
1607 FUNC is a FUNCTION_DECL node if the precise function is known,
1608 otherwise 0.
1609 OUTGOING is 1 if on a machine with register windows this function
1610 should return the register in which the function will put its result
1611 and 0 otherwise. */
1614 hard_function_value (valtype, func, outgoing)
1615 tree valtype;
1616 tree func ATTRIBUTE_UNUSED;
1617 int outgoing ATTRIBUTE_UNUSED;
1619 rtx val;
1621 #ifdef FUNCTION_OUTGOING_VALUE
1622 if (outgoing)
1623 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1624 else
1625 #endif
1626 val = FUNCTION_VALUE (valtype, func);
1628 if (GET_CODE (val) == REG
1629 && GET_MODE (val) == BLKmode)
1631 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1632 enum machine_mode tmpmode;
1634 /* int_size_in_bytes can return -1. We don't need a check here
1635 since the value of bytes will be large enough that no mode
1636 will match and we will abort later in this function. */
1638 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1639 tmpmode != VOIDmode;
1640 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1642 /* Have we found a large enough mode? */
1643 if (GET_MODE_SIZE (tmpmode) >= bytes)
1644 break;
1647 /* No suitable mode found. */
1648 if (tmpmode == VOIDmode)
1649 abort ();
1651 PUT_MODE (val, tmpmode);
1653 return val;
1656 /* Return an rtx representing the register or memory location
1657 in which a scalar value of mode MODE was returned by a library call. */
1660 hard_libcall_value (mode)
1661 enum machine_mode mode;
1663 return LIBCALL_VALUE (mode);
1666 /* Look up the tree code for a given rtx code
1667 to provide the arithmetic operation for REAL_ARITHMETIC.
1668 The function returns an int because the caller may not know
1669 what `enum tree_code' means. */
1672 rtx_to_tree_code (code)
1673 enum rtx_code code;
1675 enum tree_code tcode;
1677 switch (code)
1679 case PLUS:
1680 tcode = PLUS_EXPR;
1681 break;
1682 case MINUS:
1683 tcode = MINUS_EXPR;
1684 break;
1685 case MULT:
1686 tcode = MULT_EXPR;
1687 break;
1688 case DIV:
1689 tcode = RDIV_EXPR;
1690 break;
1691 case SMIN:
1692 tcode = MIN_EXPR;
1693 break;
1694 case SMAX:
1695 tcode = MAX_EXPR;
1696 break;
1697 default:
1698 tcode = LAST_AND_UNUSED_TREE_CODE;
1699 break;
1701 return ((int) tcode);
1704 #include "gt-explow.h"