Add hppa-openbsd target
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob1e3021657b0b6a7d34d20a288570e99e15f5ae94
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- --
10 -- Copyright (C) 1992-2002, Free Software Foundation, Inc. --
11 -- --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 2, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
18 -- for more details. You should have received a copy of the GNU General --
19 -- Public License distributed with GNAT; see file COPYING. If not, write --
20 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
21 -- MA 02111-1307, USA. --
22 -- --
23 -- GNAT was originally developed by the GNAT team at New York University. --
24 -- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
25 -- --
26 ------------------------------------------------------------------------------
28 with Atree; use Atree;
29 with Checks; use Checks;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Dist; use Exp_Dist;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Itypes; use Itypes;
39 with Layout; use Layout;
40 with Lib; use Lib;
41 with Lib.Xref; use Lib.Xref;
42 with Namet; use Namet;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Case; use Sem_Case;
49 with Sem_Cat; use Sem_Cat;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch7; use Sem_Ch7;
52 with Sem_Ch8; use Sem_Ch8;
53 with Sem_Ch13; use Sem_Ch13;
54 with Sem_Disp; use Sem_Disp;
55 with Sem_Dist; use Sem_Dist;
56 with Sem_Elim; use Sem_Elim;
57 with Sem_Eval; use Sem_Eval;
58 with Sem_Mech; use Sem_Mech;
59 with Sem_Res; use Sem_Res;
60 with Sem_Smem; use Sem_Smem;
61 with Sem_Type; use Sem_Type;
62 with Sem_Util; use Sem_Util;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Snames; use Snames;
66 with Tbuild; use Tbuild;
67 with Ttypes; use Ttypes;
68 with Uintp; use Uintp;
69 with Urealp; use Urealp;
71 package body Sem_Ch3 is
73 -----------------------
74 -- Local Subprograms --
75 -----------------------
77 procedure Build_Derived_Type
78 (N : Node_Id;
79 Parent_Type : Entity_Id;
80 Derived_Type : Entity_Id;
81 Is_Completion : Boolean;
82 Derive_Subps : Boolean := True);
83 -- Create and decorate a Derived_Type given the Parent_Type entity.
84 -- N is the N_Full_Type_Declaration node containing the derived type
85 -- definition. Parent_Type is the entity for the parent type in the derived
86 -- type definition and Derived_Type the actual derived type. Is_Completion
87 -- must be set to False if Derived_Type is the N_Defining_Identifier node
88 -- in N (ie Derived_Type = Defining_Identifier (N)). In this case N is not
89 -- the completion of a private type declaration. If Is_Completion is
90 -- set to True, N is the completion of a private type declaration and
91 -- Derived_Type is different from the defining identifier inside N (i.e.
92 -- Derived_Type /= Defining_Identifier (N)). Derive_Subps indicates whether
93 -- the parent subprograms should be derived. The only case where this
94 -- parameter is False is when Build_Derived_Type is recursively called to
95 -- process an implicit derived full type for a type derived from a private
96 -- type (in that case the subprograms must only be derived for the private
97 -- view of the type).
98 -- ??? These flags need a bit of re-examination and re-documentation:
99 -- ??? are they both necessary (both seem related to the recursion)?
101 procedure Build_Derived_Access_Type
102 (N : Node_Id;
103 Parent_Type : Entity_Id;
104 Derived_Type : Entity_Id);
105 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
106 -- create an implicit base if the parent type is constrained or if the
107 -- subtype indication has a constraint.
109 procedure Build_Derived_Array_Type
110 (N : Node_Id;
111 Parent_Type : Entity_Id;
112 Derived_Type : Entity_Id);
113 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
114 -- create an implicit base if the parent type is constrained or if the
115 -- subtype indication has a constraint.
117 procedure Build_Derived_Concurrent_Type
118 (N : Node_Id;
119 Parent_Type : Entity_Id;
120 Derived_Type : Entity_Id);
121 -- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
122 -- tected type, inherit entries and protected subprograms, check legality
123 -- of discriminant constraints if any.
125 procedure Build_Derived_Enumeration_Type
126 (N : Node_Id;
127 Parent_Type : Entity_Id;
128 Derived_Type : Entity_Id);
129 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
130 -- type, we must create a new list of literals. Types derived from
131 -- Character and Wide_Character are special-cased.
133 procedure Build_Derived_Numeric_Type
134 (N : Node_Id;
135 Parent_Type : Entity_Id;
136 Derived_Type : Entity_Id);
137 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
138 -- an anonymous base type, and propagate constraint to subtype if needed.
140 procedure Build_Derived_Private_Type
141 (N : Node_Id;
142 Parent_Type : Entity_Id;
143 Derived_Type : Entity_Id;
144 Is_Completion : Boolean;
145 Derive_Subps : Boolean := True);
146 -- Substidiary procedure to Build_Derived_Type. This procedure is complex
147 -- because the parent may or may not have a completion, and the derivation
148 -- may itself be a completion.
150 procedure Build_Derived_Record_Type
151 (N : Node_Id;
152 Parent_Type : Entity_Id;
153 Derived_Type : Entity_Id;
154 Derive_Subps : Boolean := True);
155 -- Subsidiary procedure to Build_Derived_Type and
156 -- Analyze_Private_Extension_Declaration used for tagged and untagged
157 -- record types. All parameters are as in Build_Derived_Type except that
158 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
159 -- N_Private_Extension_Declaration node. See the definition of this routine
160 -- for much more info. Derive_Subps indicates whether subprograms should
161 -- be derived from the parent type. The only case where Derive_Subps is
162 -- False is for an implicit derived full type for a type derived from a
163 -- private type (see Build_Derived_Type).
165 function Inherit_Components
166 (N : Node_Id;
167 Parent_Base : Entity_Id;
168 Derived_Base : Entity_Id;
169 Is_Tagged : Boolean;
170 Inherit_Discr : Boolean;
171 Discs : Elist_Id)
172 return Elist_Id;
173 -- Called from Build_Derived_Record_Type to inherit the components of
174 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
175 -- For more information on derived types and component inheritance please
176 -- consult the comment above the body of Build_Derived_Record_Type.
178 -- N is the original derived type declaration.
179 -- Is_Tagged is set if we are dealing with tagged types.
180 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
181 -- Parent_Base, otherwise no discriminants are inherited.
182 -- Discs gives the list of constraints that apply to Parent_Base in the
183 -- derived type declaration. If Discs is set to No_Elist, then we have the
184 -- following situation:
186 -- type Parent (D1..Dn : ..) is [tagged] record ...;
187 -- type Derived is new Parent [with ...];
189 -- which gets treated as
191 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
193 -- For untagged types the returned value is an association list:
194 -- (Old_Component => New_Component), where Old_Component is the Entity_Id
195 -- of a component in Parent_Base and New_Component is the Entity_Id of the
196 -- corresponding component in Derived_Base. For untagged records, this
197 -- association list is needed when copying the record declaration for the
198 -- derived base. In the tagged case the value returned is irrelevant.
200 procedure Build_Discriminal (Discrim : Entity_Id);
201 -- Create the discriminal corresponding to discriminant Discrim, that is
202 -- the parameter corresponding to Discrim to be used in initialization
203 -- procedures for the type where Discrim is a discriminant. Discriminals
204 -- are not used during semantic analysis, and are not fully defined
205 -- entities until expansion. Thus they are not given a scope until
206 -- initialization procedures are built.
208 function Build_Discriminant_Constraints
209 (T : Entity_Id;
210 Def : Node_Id;
211 Derived_Def : Boolean := False)
212 return Elist_Id;
213 -- Validate discriminant constraints, and return the list of the
214 -- constraints in order of discriminant declarations. T is the
215 -- discriminated unconstrained type. Def is the N_Subtype_Indication
216 -- node where the discriminants constraints for T are specified.
217 -- Derived_Def is True if we are building the discriminant constraints
218 -- in a derived type definition of the form "type D (...) is new T (xxx)".
219 -- In this case T is the parent type and Def is the constraint "(xxx)" on
220 -- T and this routine sets the Corresponding_Discriminant field of the
221 -- discriminants in the derived type D to point to the corresponding
222 -- discriminants in the parent type T.
224 procedure Build_Discriminated_Subtype
225 (T : Entity_Id;
226 Def_Id : Entity_Id;
227 Elist : Elist_Id;
228 Related_Nod : Node_Id;
229 For_Access : Boolean := False);
230 -- Subsidiary procedure to Constrain_Discriminated_Type and to
231 -- Process_Incomplete_Dependents. Given
233 -- T (a possibly discriminated base type)
234 -- Def_Id (a very partially built subtype for T),
236 -- the call completes Def_Id to be the appropriate E_*_Subtype.
238 -- The Elist is the list of discriminant constraints if any (it is set to
239 -- No_Elist if T is not a discriminated type, and to an empty list if
240 -- T has discriminants but there are no discriminant constraints). The
241 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
242 -- The For_Access says whether or not this subtype is really constraining
243 -- an access type. That is its sole purpose is the designated type of an
244 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
245 -- is built to avoid freezing T when the access subtype is frozen.
247 function Build_Scalar_Bound
248 (Bound : Node_Id;
249 Par_T : Entity_Id;
250 Der_T : Entity_Id)
251 return Node_Id;
252 -- The bounds of a derived scalar type are conversions of the bounds of
253 -- the parent type. Optimize the representation if the bounds are literals.
254 -- Needs a more complete spec--what are the parameters exactly, and what
255 -- exactly is the returned value, and how is Bound affected???
257 procedure Build_Underlying_Full_View
258 (N : Node_Id;
259 Typ : Entity_Id;
260 Par : Entity_Id);
261 -- If the completion of a private type is itself derived from a private
262 -- type, or if the full view of a private subtype is itself private, the
263 -- back-end has no way to compute the actual size of this type. We build
264 -- an internal subtype declaration of the proper parent type to convey
265 -- this information. This extra mechanism is needed because a full
266 -- view cannot itself have a full view (it would get clobbered during
267 -- view exchanges).
269 procedure Check_Access_Discriminant_Requires_Limited
270 (D : Node_Id;
271 Loc : Node_Id);
272 -- Check the restriction that the type to which an access discriminant
273 -- belongs must be a concurrent type or a descendant of a type with
274 -- the reserved word 'limited' in its declaration.
276 procedure Check_Delta_Expression (E : Node_Id);
277 -- Check that the expression represented by E is suitable for use as
278 -- a delta expression, i.e. it is of real type and is static.
280 procedure Check_Digits_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as
282 -- a digits expression, i.e. it is of integer type, positive and static.
284 procedure Check_Incomplete (T : Entity_Id);
285 -- Called to verify that an incomplete type is not used prematurely
287 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
288 -- Validate the initialization of an object declaration. T is the
289 -- required type, and Exp is the initialization expression.
291 procedure Check_Or_Process_Discriminants (N : Node_Id; T : Entity_Id);
292 -- If T is the full declaration of an incomplete or private type, check
293 -- the conformance of the discriminants, otherwise process them.
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 procedure Convert_Scalar_Bounds
308 (N : Node_Id;
309 Parent_Type : Entity_Id;
310 Derived_Type : Entity_Id;
311 Loc : Source_Ptr);
312 -- For derived scalar types, convert the bounds in the type definition
313 -- to the derived type, and complete their analysis.
315 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
316 -- Copies attributes from array base type T2 to array base type T1.
317 -- Copies only attributes that apply to base types, but not subtypes.
319 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
320 -- Copies attributes from array subtype T2 to array subtype T1. Copies
321 -- attributes that apply to both subtypes and base types.
323 procedure Create_Constrained_Components
324 (Subt : Entity_Id;
325 Decl_Node : Node_Id;
326 Typ : Entity_Id;
327 Constraints : Elist_Id);
328 -- Build the list of entities for a constrained discriminated record
329 -- subtype. If a component depends on a discriminant, replace its subtype
330 -- using the discriminant values in the discriminant constraint.
331 -- Subt is the defining identifier for the subtype whose list of
332 -- constrained entities we will create. Decl_Node is the type declaration
333 -- node where we will attach all the itypes created. Typ is the base
334 -- discriminated type for the subtype Subt. Constraints is the list of
335 -- discriminant constraints for Typ.
337 function Constrain_Component_Type
338 (Compon_Type : Entity_Id;
339 Constrained_Typ : Entity_Id;
340 Related_Node : Node_Id;
341 Typ : Entity_Id;
342 Constraints : Elist_Id)
343 return Entity_Id;
344 -- Given a discriminated base type Typ, a list of discriminant constraint
345 -- Constraints for Typ and the type of a component of Typ, Compon_Type,
346 -- create and return the type corresponding to Compon_type where all
347 -- discriminant references are replaced with the corresponding
348 -- constraint. If no discriminant references occurr in Compon_Typ then
349 -- return it as is. Constrained_Typ is the final constrained subtype to
350 -- which the constrained Compon_Type belongs. Related_Node is the node
351 -- where we will attach all the itypes created.
353 procedure Constrain_Access
354 (Def_Id : in out Entity_Id;
355 S : Node_Id;
356 Related_Nod : Node_Id);
357 -- Apply a list of constraints to an access type. If Def_Id is empty,
358 -- it is an anonymous type created for a subtype indication. In that
359 -- case it is created in the procedure and attached to Related_Nod.
361 procedure Constrain_Array
362 (Def_Id : in out Entity_Id;
363 SI : Node_Id;
364 Related_Nod : Node_Id;
365 Related_Id : Entity_Id;
366 Suffix : Character);
367 -- Apply a list of index constraints to an unconstrained array type. The
368 -- first parameter is the entity for the resulting subtype. A value of
369 -- Empty for Def_Id indicates that an implicit type must be created, but
370 -- creation is delayed (and must be done by this procedure) because other
371 -- subsidiary implicit types must be created first (which is why Def_Id
372 -- is an in/out parameter). The second parameter is a subtype indication
373 -- node for the constrained array to be created (e.g. something of the
374 -- form string (1 .. 10)). Related_Nod gives the place where this type
375 -- has to be inserted in the tree. The Related_Id and Suffix parameters
376 -- are used to build the associated Implicit type name.
378 procedure Constrain_Concurrent
379 (Def_Id : in out Entity_Id;
380 SI : Node_Id;
381 Related_Nod : Node_Id;
382 Related_Id : Entity_Id;
383 Suffix : Character);
384 -- Apply list of discriminant constraints to an unconstrained concurrent
385 -- type.
387 -- SI is the N_Subtype_Indication node containing the constraint and
388 -- the unconstrained type to constrain.
390 -- Def_Id is the entity for the resulting constrained subtype. A
391 -- value of Empty for Def_Id indicates that an implicit type must be
392 -- created, but creation is delayed (and must be done by this procedure)
393 -- because other subsidiary implicit types must be created first (which
394 -- is why Def_Id is an in/out parameter).
396 -- Related_Nod gives the place where this type has to be inserted
397 -- in the tree
399 -- The last two arguments are used to create its external name if needed.
401 function Constrain_Corresponding_Record
402 (Prot_Subt : Entity_Id;
403 Corr_Rec : Entity_Id;
404 Related_Nod : Node_Id;
405 Related_Id : Entity_Id)
406 return Entity_Id;
407 -- When constraining a protected type or task type with discriminants,
408 -- constrain the corresponding record with the same discriminant values.
410 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
411 -- Constrain a decimal fixed point type with a digits constraint and/or a
412 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
414 procedure Constrain_Discriminated_Type
415 (Def_Id : Entity_Id;
416 S : Node_Id;
417 Related_Nod : Node_Id;
418 For_Access : Boolean := False);
419 -- Process discriminant constraints of composite type. Verify that values
420 -- have been provided for all discriminants, that the original type is
421 -- unconstrained, and that the types of the supplied expressions match
422 -- the discriminant types. The first three parameters are like in routine
423 -- Constrain_Concurrent. See Build_Discrimated_Subtype for an explanation
424 -- of For_Access.
426 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain an enumeration type with a range constraint. This is
428 -- identical to Constrain_Integer, but for the Ekind of the
429 -- resulting subtype.
431 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
432 -- Constrain a floating point type with either a digits constraint
433 -- and/or a range constraint, building a E_Floating_Point_Subtype.
435 procedure Constrain_Index
436 (Index : Node_Id;
437 S : Node_Id;
438 Related_Nod : Node_Id;
439 Related_Id : Entity_Id;
440 Suffix : Character;
441 Suffix_Index : Nat);
442 -- Process an index constraint in a constrained array declaration.
443 -- The constraint can be a subtype name, or a range with or without
444 -- an explicit subtype mark. The index is the corresponding index of the
445 -- unconstrained array. The Related_Id and Suffix parameters are used to
446 -- build the associated Implicit type name.
448 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
449 -- Build subtype of a signed or modular integer type.
451 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
452 -- Constrain an ordinary fixed point type with a range constraint, and
453 -- build an E_Ordinary_Fixed_Point_Subtype entity.
455 procedure Copy_And_Swap (Privat, Full : Entity_Id);
456 -- Copy the Privat entity into the entity of its full declaration
457 -- then swap the two entities in such a manner that the former private
458 -- type is now seen as a full type.
460 procedure Copy_Private_To_Full (Priv, Full : Entity_Id);
461 -- Initialize the full view declaration with the relevant fields
462 -- from the private view.
464 procedure Decimal_Fixed_Point_Type_Declaration
465 (T : Entity_Id;
466 Def : Node_Id);
467 -- Create a new decimal fixed point type, and apply the constraint to
468 -- obtain a subtype of this new type.
470 procedure Complete_Private_Subtype
471 (Priv : Entity_Id;
472 Full : Entity_Id;
473 Full_Base : Entity_Id;
474 Related_Nod : Node_Id);
475 -- Complete the implicit full view of a private subtype by setting
476 -- the appropriate semantic fields. If the full view of the parent is
477 -- a record type, build constrained components of subtype.
479 procedure Derived_Standard_Character
480 (N : Node_Id;
481 Parent_Type : Entity_Id;
482 Derived_Type : Entity_Id);
483 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
484 -- derivations from types Standard.Character and Standard.Wide_Character.
486 procedure Derived_Type_Declaration
487 (T : Entity_Id;
488 N : Node_Id;
489 Is_Completion : Boolean);
490 -- Process a derived type declaration. This routine will invoke
491 -- Build_Derived_Type to process the actual derived type definition.
492 -- Parameters N and Is_Completion have the same meaning as in
493 -- Build_Derived_Type. T is the N_Defining_Identifier for the entity
494 -- defined in the N_Full_Type_Declaration node N, that is T is the
495 -- derived type.
497 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id;
498 -- Given a subtype indication S (which is really an N_Subtype_Indication
499 -- node or a plain N_Identifier), find the type of the subtype mark.
501 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
502 -- Insert each literal in symbol table, as an overloadable identifier
503 -- Each enumeration type is mapped into a sequence of integers, and
504 -- each literal is defined as a constant with integer value. If any
505 -- of the literals are character literals, the type is a character
506 -- type, which means that strings are legal aggregates for arrays of
507 -- components of the type.
509 procedure Expand_Others_Choice
510 (Case_Table : Choice_Table_Type;
511 Others_Choice : Node_Id;
512 Choice_Type : Entity_Id);
513 -- In the case of a variant part of a record type that has an OTHERS
514 -- choice, this procedure expands the OTHERS into the actual choices
515 -- that it represents. This new list of choice nodes is attached to
516 -- the OTHERS node via the Others_Discrete_Choices field. The Case_Table
517 -- contains all choices that have been given explicitly in the variant.
519 function Find_Type_Of_Object
520 (Obj_Def : Node_Id;
521 Related_Nod : Node_Id)
522 return Entity_Id;
523 -- Get type entity for object referenced by Obj_Def, attaching the
524 -- implicit types generated to Related_Nod
526 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
527 -- Create a new float, and apply the constraint to obtain subtype of it
529 function Has_Range_Constraint (N : Node_Id) return Boolean;
530 -- Given an N_Subtype_Indication node N, return True if a range constraint
531 -- is present, either directly, or as part of a digits or delta constraint.
532 -- In addition, a digits constraint in the decimal case returns True, since
533 -- it establishes a default range if no explicit range is present.
535 function Is_Valid_Constraint_Kind
536 (T_Kind : Type_Kind;
537 Constraint_Kind : Node_Kind)
538 return Boolean;
539 -- Returns True if it is legal to apply the given kind of constraint
540 -- to the given kind of type (index constraint to an array type,
541 -- for example).
543 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
544 -- Create new modular type. Verify that modulus is in bounds and is
545 -- a power of two (implementation restriction).
547 procedure New_Binary_Operator (Op_Name : Name_Id; Typ : Entity_Id);
548 -- Create an abbreviated declaration for an operator in order to
549 -- materialize minimally operators on derived types.
551 procedure Ordinary_Fixed_Point_Type_Declaration
552 (T : Entity_Id;
553 Def : Node_Id);
554 -- Create a new ordinary fixed point type, and apply the constraint
555 -- to obtain subtype of it.
557 procedure Prepare_Private_Subtype_Completion
558 (Id : Entity_Id;
559 Related_Nod : Node_Id);
560 -- Id is a subtype of some private type. Creates the full declaration
561 -- associated with Id whenever possible, i.e. when the full declaration
562 -- of the base type is already known. Records each subtype into
563 -- Private_Dependents of the base type.
565 procedure Process_Incomplete_Dependents
566 (N : Node_Id;
567 Full_T : Entity_Id;
568 Inc_T : Entity_Id);
569 -- Process all entities that depend on an incomplete type. There include
570 -- subtypes, subprogram types that mention the incomplete type in their
571 -- profiles, and subprogram with access parameters that designate the
572 -- incomplete type.
574 -- Inc_T is the defining identifier of an incomplete type declaration, its
575 -- Ekind is E_Incomplete_Type.
577 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
579 -- Full_T is N's defining identifier.
581 -- Subtypes of incomplete types with discriminants are completed when the
582 -- parent type is. This is simpler than private subtypes, because they can
583 -- only appear in the same scope, and there is no need to exchange views.
584 -- Similarly, access_to_subprogram types may have a parameter or a return
585 -- type that is an incomplete type, and that must be replaced with the
586 -- full type.
588 -- If the full type is tagged, subprogram with access parameters that
589 -- designated the incomplete may be primitive operations of the full type,
590 -- and have to be processed accordingly.
592 procedure Process_Real_Range_Specification (Def : Node_Id);
593 -- Given the type definition for a real type, this procedure processes
594 -- and checks the real range specification of this type definition if
595 -- one is present. If errors are found, error messages are posted, and
596 -- the Real_Range_Specification of Def is reset to Empty.
598 procedure Record_Type_Declaration (T : Entity_Id; N : Node_Id);
599 -- Process a record type declaration (for both untagged and tagged
600 -- records). Parameters T and N are exactly like in procedure
601 -- Derived_Type_Declaration, except that no flag Is_Completion is
602 -- needed for this routine.
604 procedure Record_Type_Definition (Def : Node_Id; T : Entity_Id);
605 -- This routine is used to process the actual record type definition
606 -- (both for untagged and tagged records). Def is a record type
607 -- definition node. This procedure analyzes the components in this
608 -- record type definition. T is the entity for the enclosing record
609 -- type. It is provided so that its Has_Task flag can be set if any of
610 -- the component have Has_Task set.
612 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
613 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
614 -- build a copy of the declaration tree of the parent, and we create
615 -- independently the list of components for the derived type. Semantic
616 -- information uses the component entities, but record representation
617 -- clauses are validated on the declaration tree. This procedure replaces
618 -- discriminants and components in the declaration with those that have
619 -- been created by Inherit_Components.
621 procedure Set_Fixed_Range
622 (E : Entity_Id;
623 Loc : Source_Ptr;
624 Lo : Ureal;
625 Hi : Ureal);
626 -- Build a range node with the given bounds and set it as the Scalar_Range
627 -- of the given fixed-point type entity. Loc is the source location used
628 -- for the constructed range. See body for further details.
630 procedure Set_Scalar_Range_For_Subtype
631 (Def_Id : Entity_Id;
632 R : Node_Id;
633 Subt : Entity_Id);
634 -- This routine is used to set the scalar range field for a subtype
635 -- given Def_Id, the entity for the subtype, and R, the range expression
636 -- for the scalar range. Subt provides the parent subtype to be used
637 -- to analyze, resolve, and check the given range.
639 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
640 -- Create a new signed integer entity, and apply the constraint to obtain
641 -- the required first named subtype of this type.
643 -----------------------
644 -- Access_Definition --
645 -----------------------
647 function Access_Definition
648 (Related_Nod : Node_Id;
649 N : Node_Id)
650 return Entity_Id
652 Anon_Type : constant Entity_Id :=
653 Create_Itype (E_Anonymous_Access_Type, Related_Nod,
654 Scope_Id => Scope (Current_Scope));
655 Desig_Type : Entity_Id;
657 begin
658 if Is_Entry (Current_Scope)
659 and then Is_Task_Type (Etype (Scope (Current_Scope)))
660 then
661 Error_Msg_N ("task entries cannot have access parameters", N);
662 end if;
664 Find_Type (Subtype_Mark (N));
665 Desig_Type := Entity (Subtype_Mark (N));
667 Set_Directly_Designated_Type
668 (Anon_Type, Desig_Type);
669 Set_Etype (Anon_Type, Anon_Type);
670 Init_Size_Align (Anon_Type);
671 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
673 -- The anonymous access type is as public as the discriminated type or
674 -- subprogram that defines it. It is imported (for back-end purposes)
675 -- if the designated type is.
677 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
678 Set_From_With_Type (Anon_Type, From_With_Type (Desig_Type));
680 -- The context is either a subprogram declaration or an access
681 -- discriminant, in a private or a full type declaration. In
682 -- the case of a subprogram, If the designated type is incomplete,
683 -- the operation will be a primitive operation of the full type, to
684 -- be updated subsequently.
686 if Ekind (Desig_Type) = E_Incomplete_Type
687 and then Is_Overloadable (Current_Scope)
688 then
689 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
690 Set_Has_Delayed_Freeze (Current_Scope);
691 end if;
693 return Anon_Type;
694 end Access_Definition;
696 -----------------------------------
697 -- Access_Subprogram_Declaration --
698 -----------------------------------
700 procedure Access_Subprogram_Declaration
701 (T_Name : Entity_Id;
702 T_Def : Node_Id)
704 Formals : constant List_Id := Parameter_Specifications (T_Def);
705 Formal : Entity_Id;
706 Desig_Type : constant Entity_Id :=
707 Create_Itype (E_Subprogram_Type, Parent (T_Def));
709 begin
710 if Nkind (T_Def) = N_Access_Function_Definition then
711 Analyze (Subtype_Mark (T_Def));
712 Set_Etype (Desig_Type, Entity (Subtype_Mark (T_Def)));
713 else
714 Set_Etype (Desig_Type, Standard_Void_Type);
715 end if;
717 if Present (Formals) then
718 New_Scope (Desig_Type);
719 Process_Formals (Formals, Parent (T_Def));
721 -- A bit of a kludge here, End_Scope requires that the parent
722 -- pointer be set to something reasonable, but Itypes don't
723 -- have parent pointers. So we set it and then unset it ???
724 -- If and when Itypes have proper parent pointers to their
725 -- declarations, this kludge can be removed.
727 Set_Parent (Desig_Type, T_Name);
728 End_Scope;
729 Set_Parent (Desig_Type, Empty);
730 end if;
732 -- The return type and/or any parameter type may be incomplete. Mark
733 -- the subprogram_type as depending on the incomplete type, so that
734 -- it can be updated when the full type declaration is seen.
736 if Present (Formals) then
737 Formal := First_Formal (Desig_Type);
739 while Present (Formal) loop
741 if Ekind (Formal) /= E_In_Parameter
742 and then Nkind (T_Def) = N_Access_Function_Definition
743 then
744 Error_Msg_N ("functions can only have IN parameters", Formal);
745 end if;
747 if Ekind (Etype (Formal)) = E_Incomplete_Type then
748 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
749 Set_Has_Delayed_Freeze (Desig_Type);
750 end if;
752 Next_Formal (Formal);
753 end loop;
754 end if;
756 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
757 and then not Has_Delayed_Freeze (Desig_Type)
758 then
759 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
760 Set_Has_Delayed_Freeze (Desig_Type);
761 end if;
763 Check_Delayed_Subprogram (Desig_Type);
765 if Protected_Present (T_Def) then
766 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
767 Set_Convention (Desig_Type, Convention_Protected);
768 else
769 Set_Ekind (T_Name, E_Access_Subprogram_Type);
770 end if;
772 Set_Etype (T_Name, T_Name);
773 Init_Size_Align (T_Name);
774 Set_Directly_Designated_Type (T_Name, Desig_Type);
776 Check_Restriction (No_Access_Subprograms, T_Def);
777 end Access_Subprogram_Declaration;
779 ----------------------------
780 -- Access_Type_Declaration --
781 ----------------------------
783 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
784 S : constant Node_Id := Subtype_Indication (Def);
785 P : constant Node_Id := Parent (Def);
787 begin
788 -- Check for permissible use of incomplete type
790 if Nkind (S) /= N_Subtype_Indication then
791 Analyze (S);
793 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
794 Set_Directly_Designated_Type (T, Entity (S));
795 else
796 Set_Directly_Designated_Type (T,
797 Process_Subtype (S, P, T, 'P'));
798 end if;
800 else
801 Set_Directly_Designated_Type (T,
802 Process_Subtype (S, P, T, 'P'));
803 end if;
805 if All_Present (Def) or Constant_Present (Def) then
806 Set_Ekind (T, E_General_Access_Type);
807 else
808 Set_Ekind (T, E_Access_Type);
809 end if;
811 if Base_Type (Designated_Type (T)) = T then
812 Error_Msg_N ("access type cannot designate itself", S);
813 end if;
815 Set_Etype (T, T);
817 -- If the type has appeared already in a with_type clause, it is
818 -- frozen and the pointer size is already set. Else, initialize.
820 if not From_With_Type (T) then
821 Init_Size_Align (T);
822 end if;
824 Set_Is_Access_Constant (T, Constant_Present (Def));
826 -- If designated type is an imported tagged type, indicate that the
827 -- access type is also imported, and therefore restricted in its use.
828 -- The access type may already be imported, so keep setting otherwise.
830 if From_With_Type (Designated_Type (T)) then
831 Set_From_With_Type (T);
832 end if;
834 -- Note that Has_Task is always false, since the access type itself
835 -- is not a task type. See Einfo for more description on this point.
836 -- Exactly the same consideration applies to Has_Controlled_Component.
838 Set_Has_Task (T, False);
839 Set_Has_Controlled_Component (T, False);
840 end Access_Type_Declaration;
842 -----------------------------------
843 -- Analyze_Component_Declaration --
844 -----------------------------------
846 procedure Analyze_Component_Declaration (N : Node_Id) is
847 Id : constant Entity_Id := Defining_Identifier (N);
848 T : Entity_Id;
849 P : Entity_Id;
851 begin
852 Generate_Definition (Id);
853 Enter_Name (Id);
854 T := Find_Type_Of_Object (Subtype_Indication (N), N);
856 -- If the component declaration includes a default expression, then we
857 -- check that the component is not of a limited type (RM 3.7(5)),
858 -- and do the special preanalysis of the expression (see section on
859 -- "Handling of Default Expressions" in the spec of package Sem).
861 if Present (Expression (N)) then
862 Analyze_Default_Expression (Expression (N), T);
863 Check_Initialization (T, Expression (N));
864 end if;
866 -- The parent type may be a private view with unknown discriminants,
867 -- and thus unconstrained. Regular components must be constrained.
869 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
870 Error_Msg_N
871 ("unconstrained subtype in component declaration",
872 Subtype_Indication (N));
874 -- Components cannot be abstract, except for the special case of
875 -- the _Parent field (case of extending an abstract tagged type)
877 elsif Is_Abstract (T) and then Chars (Id) /= Name_uParent then
878 Error_Msg_N ("type of a component cannot be abstract", N);
879 end if;
881 Set_Etype (Id, T);
882 Set_Is_Aliased (Id, Aliased_Present (N));
884 -- If the this component is private (or depends on a private type),
885 -- flag the record type to indicate that some operations are not
886 -- available.
888 P := Private_Component (T);
890 if Present (P) then
891 -- Check for circular definitions.
893 if P = Any_Type then
894 Set_Etype (Id, Any_Type);
896 -- There is a gap in the visibility of operations only if the
897 -- component type is not defined in the scope of the record type.
899 elsif Scope (P) = Scope (Current_Scope) then
900 null;
902 elsif Is_Limited_Type (P) then
903 Set_Is_Limited_Composite (Current_Scope);
905 else
906 Set_Is_Private_Composite (Current_Scope);
907 end if;
908 end if;
910 if P /= Any_Type
911 and then Is_Limited_Type (T)
912 and then Chars (Id) /= Name_uParent
913 and then Is_Tagged_Type (Current_Scope)
914 then
915 if Is_Derived_Type (Current_Scope)
916 and then not Is_Limited_Record (Root_Type (Current_Scope))
917 then
918 Error_Msg_N
919 ("extension of nonlimited type cannot have limited components",
921 Set_Etype (Id, Any_Type);
922 Set_Is_Limited_Composite (Current_Scope, False);
924 elsif not Is_Derived_Type (Current_Scope)
925 and then not Is_Limited_Record (Current_Scope)
926 then
927 Error_Msg_N ("nonlimited type cannot have limited components", N);
928 Set_Etype (Id, Any_Type);
929 Set_Is_Limited_Composite (Current_Scope, False);
930 end if;
931 end if;
933 Set_Original_Record_Component (Id, Id);
934 end Analyze_Component_Declaration;
936 --------------------------
937 -- Analyze_Declarations --
938 --------------------------
940 procedure Analyze_Declarations (L : List_Id) is
941 D : Node_Id;
942 Next_Node : Node_Id;
943 Freeze_From : Entity_Id := Empty;
945 procedure Adjust_D;
946 -- Adjust D not to include implicit label declarations, since these
947 -- have strange Sloc values that result in elaboration check problems.
949 procedure Adjust_D is
950 begin
951 while Present (Prev (D))
952 and then Nkind (D) = N_Implicit_Label_Declaration
953 loop
954 Prev (D);
955 end loop;
956 end Adjust_D;
958 -- Start of processing for Analyze_Declarations
960 begin
961 D := First (L);
962 while Present (D) loop
964 -- Complete analysis of declaration
966 Analyze (D);
967 Next_Node := Next (D);
969 if No (Freeze_From) then
970 Freeze_From := First_Entity (Current_Scope);
971 end if;
973 -- At the end of a declarative part, freeze remaining entities
974 -- declared in it. The end of the visible declarations of a
975 -- package specification is not the end of a declarative part
976 -- if private declarations are present. The end of a package
977 -- declaration is a freezing point only if it a library package.
978 -- A task definition or protected type definition is not a freeze
979 -- point either. Finally, we do not freeze entities in generic
980 -- scopes, because there is no code generated for them and freeze
981 -- nodes will be generated for the instance.
983 -- The end of a package instantiation is not a freeze point, but
984 -- for now we make it one, because the generic body is inserted
985 -- (currently) immediately after. Generic instantiations will not
986 -- be a freeze point once delayed freezing of bodies is implemented.
987 -- (This is needed in any case for early instantiations ???).
989 if No (Next_Node) then
990 if Nkind (Parent (L)) = N_Component_List
991 or else Nkind (Parent (L)) = N_Task_Definition
992 or else Nkind (Parent (L)) = N_Protected_Definition
993 then
994 null;
996 elsif Nkind (Parent (L)) /= N_Package_Specification then
998 if Nkind (Parent (L)) = N_Package_Body then
999 Freeze_From := First_Entity (Current_Scope);
1000 end if;
1002 Adjust_D;
1003 Freeze_All (Freeze_From, D);
1004 Freeze_From := Last_Entity (Current_Scope);
1006 elsif Scope (Current_Scope) /= Standard_Standard
1007 and then not Is_Child_Unit (Current_Scope)
1008 and then No (Generic_Parent (Parent (L)))
1009 then
1010 null;
1012 elsif L /= Visible_Declarations (Parent (L))
1013 or else No (Private_Declarations (Parent (L)))
1014 or else Is_Empty_List (Private_Declarations (Parent (L)))
1015 then
1016 Adjust_D;
1017 Freeze_All (Freeze_From, D);
1018 Freeze_From := Last_Entity (Current_Scope);
1019 end if;
1021 -- If next node is a body then freeze all types before the body.
1022 -- An exception occurs for expander generated bodies, which can
1023 -- be recognized by their already being analyzed. The expander
1024 -- ensures that all types needed by these bodies have been frozen
1025 -- but it is not necessary to freeze all types (and would be wrong
1026 -- since it would not correspond to an RM defined freeze point).
1028 elsif not Analyzed (Next_Node)
1029 and then (Nkind (Next_Node) = N_Subprogram_Body
1030 or else Nkind (Next_Node) = N_Entry_Body
1031 or else Nkind (Next_Node) = N_Package_Body
1032 or else Nkind (Next_Node) = N_Protected_Body
1033 or else Nkind (Next_Node) = N_Task_Body
1034 or else Nkind (Next_Node) in N_Body_Stub)
1035 then
1036 Adjust_D;
1037 Freeze_All (Freeze_From, D);
1038 Freeze_From := Last_Entity (Current_Scope);
1039 end if;
1041 D := Next_Node;
1042 end loop;
1044 end Analyze_Declarations;
1046 --------------------------------
1047 -- Analyze_Default_Expression --
1048 --------------------------------
1050 procedure Analyze_Default_Expression (N : Node_Id; T : Entity_Id) is
1051 Save_In_Default_Expression : constant Boolean := In_Default_Expression;
1053 begin
1054 In_Default_Expression := True;
1055 Pre_Analyze_And_Resolve (N, T);
1056 In_Default_Expression := Save_In_Default_Expression;
1057 end Analyze_Default_Expression;
1059 ----------------------------------
1060 -- Analyze_Incomplete_Type_Decl --
1061 ----------------------------------
1063 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
1064 F : constant Boolean := Is_Pure (Current_Scope);
1065 T : Entity_Id;
1067 begin
1068 Generate_Definition (Defining_Identifier (N));
1070 -- Process an incomplete declaration. The identifier must not have been
1071 -- declared already in the scope. However, an incomplete declaration may
1072 -- appear in the private part of a package, for a private type that has
1073 -- already been declared.
1075 -- In this case, the discriminants (if any) must match.
1077 T := Find_Type_Name (N);
1079 Set_Ekind (T, E_Incomplete_Type);
1080 Init_Size_Align (T);
1081 Set_Is_First_Subtype (T, True);
1082 Set_Etype (T, T);
1083 New_Scope (T);
1085 Set_Girder_Constraint (T, No_Elist);
1087 if Present (Discriminant_Specifications (N)) then
1088 Process_Discriminants (N);
1089 end if;
1091 End_Scope;
1093 -- If the type has discriminants, non-trivial subtypes may be
1094 -- be declared before the full view of the type. The full views
1095 -- of those subtypes will be built after the full view of the type.
1097 Set_Private_Dependents (T, New_Elmt_List);
1098 Set_Is_Pure (T, F);
1099 end Analyze_Incomplete_Type_Decl;
1101 -----------------------------
1102 -- Analyze_Itype_Reference --
1103 -----------------------------
1105 -- Nothing to do. This node is placed in the tree only for the benefit
1106 -- of Gigi processing, and has no effect on the semantic processing.
1108 procedure Analyze_Itype_Reference (N : Node_Id) is
1109 begin
1110 pragma Assert (Is_Itype (Itype (N)));
1111 null;
1112 end Analyze_Itype_Reference;
1114 --------------------------------
1115 -- Analyze_Number_Declaration --
1116 --------------------------------
1118 procedure Analyze_Number_Declaration (N : Node_Id) is
1119 Id : constant Entity_Id := Defining_Identifier (N);
1120 E : constant Node_Id := Expression (N);
1121 T : Entity_Id;
1122 Index : Interp_Index;
1123 It : Interp;
1125 begin
1126 Generate_Definition (Id);
1127 Enter_Name (Id);
1129 -- This is an optimization of a common case of an integer literal
1131 if Nkind (E) = N_Integer_Literal then
1132 Set_Is_Static_Expression (E, True);
1133 Set_Etype (E, Universal_Integer);
1135 Set_Etype (Id, Universal_Integer);
1136 Set_Ekind (Id, E_Named_Integer);
1137 Set_Is_Frozen (Id, True);
1138 return;
1139 end if;
1141 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1143 -- Process expression, replacing error by integer zero, to avoid
1144 -- cascaded errors or aborts further along in the processing
1146 -- Replace Error by integer zero, which seems least likely to
1147 -- cause cascaded errors.
1149 if E = Error then
1150 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
1151 Set_Error_Posted (E);
1152 end if;
1154 Analyze (E);
1156 -- Verify that the expression is static and numeric. If
1157 -- the expression is overloaded, we apply the preference
1158 -- rule that favors root numeric types.
1160 if not Is_Overloaded (E) then
1161 T := Etype (E);
1163 else
1164 T := Any_Type;
1165 Get_First_Interp (E, Index, It);
1167 while Present (It.Typ) loop
1168 if (Is_Integer_Type (It.Typ)
1169 or else Is_Real_Type (It.Typ))
1170 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
1171 then
1172 if T = Any_Type then
1173 T := It.Typ;
1175 elsif It.Typ = Universal_Real
1176 or else It.Typ = Universal_Integer
1177 then
1178 -- Choose universal interpretation over any other.
1180 T := It.Typ;
1181 exit;
1182 end if;
1183 end if;
1185 Get_Next_Interp (Index, It);
1186 end loop;
1187 end if;
1189 if Is_Integer_Type (T) then
1190 Resolve (E, T);
1191 Set_Etype (Id, Universal_Integer);
1192 Set_Ekind (Id, E_Named_Integer);
1194 elsif Is_Real_Type (T) then
1196 -- Because the real value is converted to universal_real, this
1197 -- is a legal context for a universal fixed expression.
1199 if T = Universal_Fixed then
1200 declare
1201 Loc : constant Source_Ptr := Sloc (N);
1202 Conv : constant Node_Id := Make_Type_Conversion (Loc,
1203 Subtype_Mark =>
1204 New_Occurrence_Of (Universal_Real, Loc),
1205 Expression => Relocate_Node (E));
1207 begin
1208 Rewrite (E, Conv);
1209 Analyze (E);
1210 end;
1212 elsif T = Any_Fixed then
1213 Error_Msg_N ("illegal context for mixed mode operation", E);
1215 -- Expression is of the form : universal_fixed * integer.
1216 -- Try to resolve as universal_real.
1218 T := Universal_Real;
1219 Set_Etype (E, T);
1220 end if;
1222 Resolve (E, T);
1223 Set_Etype (Id, Universal_Real);
1224 Set_Ekind (Id, E_Named_Real);
1226 else
1227 Wrong_Type (E, Any_Numeric);
1228 Resolve (E, T);
1229 Set_Etype (Id, T);
1230 Set_Ekind (Id, E_Constant);
1231 Set_Not_Source_Assigned (Id, True);
1232 Set_Is_True_Constant (Id, True);
1233 return;
1234 end if;
1236 if Nkind (E) = N_Integer_Literal
1237 or else Nkind (E) = N_Real_Literal
1238 then
1239 Set_Etype (E, Etype (Id));
1240 end if;
1242 if not Is_OK_Static_Expression (E) then
1243 Error_Msg_N ("non-static expression used in number declaration", E);
1244 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
1245 Set_Etype (E, Any_Type);
1246 end if;
1248 end Analyze_Number_Declaration;
1250 --------------------------------
1251 -- Analyze_Object_Declaration --
1252 --------------------------------
1254 procedure Analyze_Object_Declaration (N : Node_Id) is
1255 Loc : constant Source_Ptr := Sloc (N);
1256 Id : constant Entity_Id := Defining_Identifier (N);
1257 T : Entity_Id;
1258 Act_T : Entity_Id;
1260 E : Node_Id := Expression (N);
1261 -- E is set to Expression (N) throughout this routine. When
1262 -- Expression (N) is modified, E is changed accordingly.
1264 Prev_Entity : Entity_Id := Empty;
1266 function Build_Default_Subtype return Entity_Id;
1267 -- If the object is limited or aliased, and if the type is unconstrained
1268 -- and there is no expression, the discriminants cannot be modified and
1269 -- the subtype of the object is constrained by the defaults, so it is
1270 -- worthile building the corresponding subtype.
1272 ---------------------------
1273 -- Build_Default_Subtype --
1274 ---------------------------
1276 function Build_Default_Subtype return Entity_Id is
1277 Act : Entity_Id;
1278 Constraints : List_Id := New_List;
1279 Decl : Node_Id;
1280 Disc : Entity_Id;
1282 begin
1283 Disc := First_Discriminant (T);
1285 if No (Discriminant_Default_Value (Disc)) then
1286 return T; -- previous error.
1287 end if;
1289 Act := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
1290 while Present (Disc) loop
1291 Append (
1292 New_Copy_Tree (
1293 Discriminant_Default_Value (Disc)), Constraints);
1294 Next_Discriminant (Disc);
1295 end loop;
1297 Decl :=
1298 Make_Subtype_Declaration (Loc,
1299 Defining_Identifier => Act,
1300 Subtype_Indication =>
1301 Make_Subtype_Indication (Loc,
1302 Subtype_Mark => New_Occurrence_Of (T, Loc),
1303 Constraint =>
1304 Make_Index_Or_Discriminant_Constraint
1305 (Loc, Constraints)));
1307 Insert_Before (N, Decl);
1308 Analyze (Decl);
1309 return Act;
1310 end Build_Default_Subtype;
1312 -- Start of processing for Analyze_Object_Declaration
1314 begin
1315 -- There are three kinds of implicit types generated by an
1316 -- object declaration:
1318 -- 1. Those for generated by the original Object Definition
1320 -- 2. Those generated by the Expression
1322 -- 3. Those used to constrained the Object Definition with the
1323 -- expression constraints when it is unconstrained
1325 -- They must be generated in this order to avoid order of elaboration
1326 -- issues. Thus the first step (after entering the name) is to analyze
1327 -- the object definition.
1329 if Constant_Present (N) then
1330 Prev_Entity := Current_Entity_In_Scope (Id);
1332 -- If homograph is an implicit subprogram, it is overridden by the
1333 -- current declaration.
1335 if Present (Prev_Entity)
1336 and then Is_Overloadable (Prev_Entity)
1337 and then Is_Inherited_Operation (Prev_Entity)
1338 then
1339 Prev_Entity := Empty;
1340 end if;
1341 end if;
1343 if Present (Prev_Entity) then
1344 Constant_Redeclaration (Id, N, T);
1346 Generate_Reference (Prev_Entity, Id, 'c');
1347 Set_Completion_Referenced (Id);
1349 if Error_Posted (N) then
1350 -- Type mismatch or illegal redeclaration, Do not analyze
1351 -- expression to avoid cascaded errors.
1353 T := Find_Type_Of_Object (Object_Definition (N), N);
1354 Set_Etype (Id, T);
1355 Set_Ekind (Id, E_Variable);
1356 return;
1357 end if;
1359 -- In the normal case, enter identifier at the start to catch
1360 -- premature usage in the initialization expression.
1362 else
1363 Generate_Definition (Id);
1364 Enter_Name (Id);
1366 T := Find_Type_Of_Object (Object_Definition (N), N);
1368 if Error_Posted (Id) then
1369 Set_Etype (Id, T);
1370 Set_Ekind (Id, E_Variable);
1371 return;
1372 end if;
1373 end if;
1375 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1377 -- If deferred constant, make sure context is appropriate. We detect
1378 -- a deferred constant as a constant declaration with no expression.
1379 -- A deferred constant can appear in a package body if its completion
1380 -- is by means of an interface pragma.
1382 if Constant_Present (N)
1383 and then No (E)
1384 then
1385 if not Is_Package (Current_Scope) then
1386 Error_Msg_N
1387 ("invalid context for deferred constant declaration", N);
1388 Set_Constant_Present (N, False);
1390 -- In Ada 83, deferred constant must be of private type
1392 elsif not Is_Private_Type (T) then
1393 if Ada_83 and then Comes_From_Source (N) then
1394 Error_Msg_N
1395 ("(Ada 83) deferred constant must be private type", N);
1396 end if;
1397 end if;
1399 -- If not a deferred constant, then object declaration freezes its type
1401 else
1402 Check_Fully_Declared (T, N);
1403 Freeze_Before (N, T);
1404 end if;
1406 -- If the object was created by a constrained array definition, then
1407 -- set the link in both the anonymous base type and anonymous subtype
1408 -- that are built to represent the array type to point to the object.
1410 if Nkind (Object_Definition (Declaration_Node (Id))) =
1411 N_Constrained_Array_Definition
1412 then
1413 Set_Related_Array_Object (T, Id);
1414 Set_Related_Array_Object (Base_Type (T), Id);
1415 end if;
1417 -- Special checks for protected objects not at library level
1419 if Is_Protected_Type (T)
1420 and then not Is_Library_Level_Entity (Id)
1421 then
1422 Check_Restriction (No_Local_Protected_Objects, Id);
1424 -- Protected objects with interrupt handlers must be at library level
1426 if Has_Interrupt_Handler (T) then
1427 Error_Msg_N
1428 ("interrupt object can only be declared at library level", Id);
1429 end if;
1430 end if;
1432 -- The actual subtype of the object is the nominal subtype, unless
1433 -- the nominal one is unconstrained and obtained from the expression.
1435 Act_T := T;
1437 -- Process initialization expression if present and not in error
1439 if Present (E) and then E /= Error then
1440 Analyze (E);
1442 if not Assignment_OK (N) then
1443 Check_Initialization (T, E);
1444 end if;
1446 Resolve (E, T);
1448 -- Check for library level object that will require implicit
1449 -- heap allocation.
1451 if Is_Array_Type (T)
1452 and then not Size_Known_At_Compile_Time (T)
1453 and then Is_Library_Level_Entity (Id)
1454 then
1455 -- String literals are always allowed
1457 if T = Standard_String
1458 and then Nkind (E) = N_String_Literal
1459 then
1460 null;
1462 -- Otherwise we do not allow this since it may cause an
1463 -- implicit heap allocation.
1465 else
1466 Check_Restriction
1467 (No_Implicit_Heap_Allocations, Object_Definition (N));
1468 end if;
1469 end if;
1471 -- Check incorrect use of dynamically tagged expressions. Note
1472 -- the use of Is_Tagged_Type (T) which seems redundant but is in
1473 -- fact important to avoid spurious errors due to expanded code
1474 -- for dispatching functions over an anonymous access type
1476 if (Is_Class_Wide_Type (Etype (E)) or else Is_Dynamically_Tagged (E))
1477 and then Is_Tagged_Type (T)
1478 and then not Is_Class_Wide_Type (T)
1479 then
1480 Error_Msg_N ("dynamically tagged expression not allowed!", E);
1481 end if;
1483 Apply_Scalar_Range_Check (E, T);
1484 Apply_Static_Length_Check (E, T);
1485 end if;
1487 -- Abstract type is never permitted for a variable or constant.
1488 -- Note: we inhibit this check for objects that do not come from
1489 -- source because there is at least one case (the expansion of
1490 -- x'class'input where x is abstract) where we legitimately
1491 -- generate an abstract object.
1493 if Is_Abstract (T) and then Comes_From_Source (N) then
1494 Error_Msg_N ("type of object cannot be abstract",
1495 Object_Definition (N));
1496 if Is_CPP_Class (T) then
1497 Error_Msg_NE ("\} may need a cpp_constructor",
1498 Object_Definition (N), T);
1499 end if;
1501 -- Case of unconstrained type
1503 elsif Is_Indefinite_Subtype (T) then
1505 -- Nothing to do in deferred constant case
1507 if Constant_Present (N) and then No (E) then
1508 null;
1510 -- Case of no initialization present
1512 elsif No (E) then
1513 if No_Initialization (N) then
1514 null;
1516 elsif Is_Class_Wide_Type (T) then
1517 Error_Msg_N
1518 ("initialization required in class-wide declaration ", N);
1520 else
1521 Error_Msg_N
1522 ("unconstrained subtype not allowed (need initialization)",
1523 Object_Definition (N));
1524 end if;
1526 -- Case of initialization present but in error. Set initial
1527 -- expression as absent (but do not make above complaints)
1529 elsif E = Error then
1530 Set_Expression (N, Empty);
1531 E := Empty;
1533 -- Case of initialization present
1535 else
1536 -- Not allowed in Ada 83
1538 if not Constant_Present (N) then
1539 if Ada_83
1540 and then Comes_From_Source (Object_Definition (N))
1541 then
1542 Error_Msg_N
1543 ("(Ada 83) unconstrained variable not allowed",
1544 Object_Definition (N));
1545 end if;
1546 end if;
1548 -- Now we constrain the variable from the initializing expression
1550 -- If the expression is an aggregate, it has been expanded into
1551 -- individual assignments. Retrieve the actual type from the
1552 -- expanded construct.
1554 if Is_Array_Type (T)
1555 and then No_Initialization (N)
1556 and then Nkind (Original_Node (E)) = N_Aggregate
1557 then
1558 Act_T := Etype (E);
1560 else
1561 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
1562 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
1563 end if;
1565 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
1567 if Aliased_Present (N) then
1568 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
1569 end if;
1571 Freeze_Before (N, Act_T);
1572 Freeze_Before (N, T);
1573 end if;
1575 elsif Is_Array_Type (T)
1576 and then No_Initialization (N)
1577 and then Nkind (Original_Node (E)) = N_Aggregate
1578 then
1579 if not Is_Entity_Name (Object_Definition (N)) then
1580 Act_T := Etype (E);
1582 if Aliased_Present (N) then
1583 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
1584 end if;
1585 end if;
1587 -- When the given object definition and the aggregate are specified
1588 -- independently, and their lengths might differ do a length check.
1589 -- This cannot happen if the aggregate is of the form (others =>...)
1591 if not Is_Constrained (T) then
1592 null;
1594 elsif Nkind (E) = N_Raise_Constraint_Error then
1596 -- Aggregate is statically illegal. Place back in declaration
1598 Set_Expression (N, E);
1599 Set_No_Initialization (N, False);
1601 elsif T = Etype (E) then
1602 null;
1604 elsif Nkind (E) = N_Aggregate
1605 and then Present (Component_Associations (E))
1606 and then Present (Choices (First (Component_Associations (E))))
1607 and then Nkind (First
1608 (Choices (First (Component_Associations (E))))) = N_Others_Choice
1609 then
1610 null;
1612 else
1613 Apply_Length_Check (E, T);
1614 end if;
1616 elsif (Is_Limited_Record (T)
1617 or else Is_Concurrent_Type (T))
1618 and then not Is_Constrained (T)
1619 and then Has_Discriminants (T)
1620 then
1621 Act_T := Build_Default_Subtype;
1622 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
1624 elsif not Is_Constrained (T)
1625 and then Has_Discriminants (T)
1626 and then Constant_Present (N)
1627 and then Nkind (E) = N_Function_Call
1628 then
1629 -- The back-end has problems with constants of a discriminated type
1630 -- with defaults, if the initial value is a function call. We
1631 -- generate an intermediate temporary for the result of the call.
1632 -- It is unclear why this should make it acceptable to gcc. ???
1634 Remove_Side_Effects (E);
1635 end if;
1637 if T = Standard_Wide_Character
1638 or else Root_Type (T) = Standard_Wide_String
1639 then
1640 Check_Restriction (No_Wide_Characters, Object_Definition (N));
1641 end if;
1643 -- Now establish the proper kind and type of the object
1645 if Constant_Present (N) then
1646 Set_Ekind (Id, E_Constant);
1647 Set_Not_Source_Assigned (Id, True);
1648 Set_Is_True_Constant (Id, True);
1650 else
1651 Set_Ekind (Id, E_Variable);
1653 -- A variable is set as shared passive if it appears in a shared
1654 -- passive package, and is at the outer level. This is not done
1655 -- for entities generated during expansion, because those are
1656 -- always manipulated locally.
1658 if Is_Shared_Passive (Current_Scope)
1659 and then Is_Library_Level_Entity (Id)
1660 and then Comes_From_Source (Id)
1661 then
1662 Set_Is_Shared_Passive (Id);
1663 Check_Shared_Var (Id, T, N);
1664 end if;
1666 -- If an initializing expression is present, then the variable
1667 -- is potentially a true constant if no further assignments are
1668 -- present. The code generator can use this for optimization.
1669 -- The flag will be reset if there are any assignments. We only
1670 -- set this flag for non library level entities, since for any
1671 -- library level entities, assignments could exist in other units.
1673 if Present (E) then
1674 if not Is_Library_Level_Entity (Id) then
1676 -- For now we omit this, because it seems to cause some
1677 -- problems. In particular, if you uncomment this out, then
1678 -- test case 4427-002 will fail for unclear reasons ???
1680 if False then
1681 Set_Is_True_Constant (Id);
1682 end if;
1683 end if;
1685 -- Case of no initializing expression present. If the type is not
1686 -- fully initialized, then we set Not_Source_Assigned, since this
1687 -- is a case of a potentially uninitialized object. Note that we
1688 -- do not consider access variables to be fully initialized for
1689 -- this purpose, since it still seems dubious if someone declares
1690 -- an access variable and never assigns to it.
1692 else
1693 if Is_Access_Type (T)
1694 or else not Is_Fully_Initialized_Type (T)
1695 then
1696 Set_Not_Source_Assigned (Id);
1697 end if;
1698 end if;
1699 end if;
1701 Init_Alignment (Id);
1702 Init_Esize (Id);
1704 if Aliased_Present (N) then
1705 Set_Is_Aliased (Id);
1707 if No (E)
1708 and then Is_Record_Type (T)
1709 and then not Is_Constrained (T)
1710 and then Has_Discriminants (T)
1711 then
1712 Set_Actual_Subtype (Id, Build_Default_Subtype);
1713 end if;
1714 end if;
1716 Set_Etype (Id, Act_T);
1718 if Has_Controlled_Component (Etype (Id))
1719 or else Is_Controlled (Etype (Id))
1720 then
1721 if not Is_Library_Level_Entity (Id) then
1722 Check_Restriction (No_Nested_Finalization, N);
1724 else
1725 Validate_Controlled_Object (Id);
1726 end if;
1728 -- Generate a warning when an initialization causes an obvious
1729 -- ABE violation. If the init expression is a simple aggregate
1730 -- there shouldn't be any initialize/adjust call generated. This
1731 -- will be true as soon as aggregates are built in place when
1732 -- possible. ??? at the moment we do not generate warnings for
1733 -- temporaries created for those aggregates although a
1734 -- Program_Error might be generated if compiled with -gnato
1736 if Is_Controlled (Etype (Id))
1737 and then Comes_From_Source (Id)
1738 then
1739 declare
1740 BT : constant Entity_Id := Base_Type (Etype (Id));
1741 Implicit_Call : Entity_Id;
1743 function Is_Aggr (N : Node_Id) return Boolean;
1744 -- Check that N is an aggregate
1746 function Is_Aggr (N : Node_Id) return Boolean is
1747 begin
1748 case Nkind (Original_Node (N)) is
1749 when N_Aggregate | N_Extension_Aggregate =>
1750 return True;
1752 when N_Qualified_Expression |
1753 N_Type_Conversion |
1754 N_Unchecked_Type_Conversion =>
1755 return Is_Aggr (Expression (Original_Node (N)));
1757 when others =>
1758 return False;
1759 end case;
1760 end Is_Aggr;
1762 begin
1763 -- If no underlying type, we already are in an error situation
1764 -- don't try to add a warning since we do not have access
1765 -- prim-op list.
1767 if No (Underlying_Type (BT)) then
1768 Implicit_Call := Empty;
1770 -- A generic type does not have usable primitive operators.
1771 -- Initialization calls are built for instances.
1773 elsif Is_Generic_Type (BT) then
1774 Implicit_Call := Empty;
1776 -- if the init expression is not an aggregate, an adjust
1777 -- call will be generated
1779 elsif Present (E) and then not Is_Aggr (E) then
1780 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
1782 -- if no init expression and we are not in the deferred
1783 -- constant case, an Initialize call will be generated
1785 elsif No (E) and then not Constant_Present (N) then
1786 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
1788 else
1789 Implicit_Call := Empty;
1790 end if;
1791 end;
1792 end if;
1793 end if;
1795 if Has_Task (Etype (Id)) then
1796 if not Is_Library_Level_Entity (Id) then
1797 Check_Restriction (No_Task_Hierarchy, N);
1798 Check_Potentially_Blocking_Operation (N);
1799 end if;
1801 -- A rather specialized test. If we see two tasks being declared
1802 -- of the same type in the same object declaration, and the task
1803 -- has an entry with an address clause, we know that program error
1804 -- will be raised at run-time since we can't have two tasks with
1805 -- entries at the same address.
1807 if Is_Task_Type (Etype (Id))
1808 and then More_Ids (N)
1809 then
1810 declare
1811 E : Entity_Id;
1813 begin
1814 E := First_Entity (Etype (Id));
1815 while Present (E) loop
1816 if Ekind (E) = E_Entry
1817 and then Present (Get_Attribute_Definition_Clause
1818 (E, Attribute_Address))
1819 then
1820 Error_Msg_N
1821 ("?more than one task with same entry address", N);
1822 Error_Msg_N
1823 ("\?Program_Error will be raised at run time", N);
1824 Insert_Action (N,
1825 Make_Raise_Program_Error (Loc,
1826 Reason => PE_Duplicated_Entry_Address));
1827 exit;
1828 end if;
1830 Next_Entity (E);
1831 end loop;
1832 end;
1833 end if;
1834 end if;
1836 -- Some simple constant-propagation: if the expression is a constant
1837 -- string initialized with a literal, share the literal. This avoids
1838 -- a run-time copy.
1840 if Present (E)
1841 and then Is_Entity_Name (E)
1842 and then Ekind (Entity (E)) = E_Constant
1843 and then Base_Type (Etype (E)) = Standard_String
1844 then
1845 declare
1846 Val : constant Node_Id := Constant_Value (Entity (E));
1848 begin
1849 if Present (Val)
1850 and then Nkind (Val) = N_String_Literal
1851 then
1852 Rewrite (E, New_Copy (Val));
1853 end if;
1854 end;
1855 end if;
1857 -- Another optimization: if the nominal subtype is unconstrained and
1858 -- the expression is a function call that returns and unconstrained
1859 -- type, rewrite the declararation as a renaming of the result of the
1860 -- call. The exceptions below are cases where the copy is expected,
1861 -- either by the back end (Aliased case) or by the semantics, as for
1862 -- initializing controlled types or copying tags for classwide types.
1864 if Present (E)
1865 and then Nkind (E) = N_Explicit_Dereference
1866 and then Nkind (Original_Node (E)) = N_Function_Call
1867 and then not Is_Library_Level_Entity (Id)
1868 and then not Is_Constrained (T)
1869 and then not Is_Aliased (Id)
1870 and then not Is_Class_Wide_Type (T)
1871 and then not Is_Controlled (T)
1872 and then not Has_Controlled_Component (Base_Type (T))
1873 and then Expander_Active
1874 then
1875 Rewrite (N,
1876 Make_Object_Renaming_Declaration (Loc,
1877 Defining_Identifier => Id,
1878 Subtype_Mark => New_Occurrence_Of
1879 (Base_Type (Etype (Id)), Loc),
1880 Name => E));
1882 Set_Renamed_Object (Id, E);
1883 end if;
1885 if Present (Prev_Entity)
1886 and then Is_Frozen (Prev_Entity)
1887 and then not Error_Posted (Id)
1888 then
1889 Error_Msg_N ("full constant declaration appears too late", N);
1890 end if;
1892 Check_Eliminated (Id);
1893 end Analyze_Object_Declaration;
1895 ---------------------------
1896 -- Analyze_Others_Choice --
1897 ---------------------------
1899 -- Nothing to do for the others choice node itself, the semantic analysis
1900 -- of the others choice will occur as part of the processing of the parent
1902 procedure Analyze_Others_Choice (N : Node_Id) is
1903 pragma Warnings (Off, N);
1905 begin
1906 null;
1907 end Analyze_Others_Choice;
1909 -------------------------------------------
1910 -- Analyze_Private_Extension_Declaration --
1911 -------------------------------------------
1913 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
1914 T : Entity_Id := Defining_Identifier (N);
1915 Indic : constant Node_Id := Subtype_Indication (N);
1916 Parent_Type : Entity_Id;
1917 Parent_Base : Entity_Id;
1919 begin
1920 Generate_Definition (T);
1921 Enter_Name (T);
1923 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
1924 Parent_Base := Base_Type (Parent_Type);
1926 if Parent_Type = Any_Type
1927 or else Etype (Parent_Type) = Any_Type
1928 then
1929 Set_Ekind (T, Ekind (Parent_Type));
1930 Set_Etype (T, Any_Type);
1931 return;
1933 elsif not Is_Tagged_Type (Parent_Type) then
1934 Error_Msg_N
1935 ("parent of type extension must be a tagged type ", Indic);
1936 return;
1938 elsif Ekind (Parent_Type) = E_Void
1939 or else Ekind (Parent_Type) = E_Incomplete_Type
1940 then
1941 Error_Msg_N ("premature derivation of incomplete type", Indic);
1942 return;
1943 end if;
1945 -- Perhaps the parent type should be changed to the class-wide type's
1946 -- specific type in this case to prevent cascading errors ???
1948 if Is_Class_Wide_Type (Parent_Type) then
1949 Error_Msg_N
1950 ("parent of type extension must not be a class-wide type", Indic);
1951 return;
1952 end if;
1954 if (not Is_Package (Current_Scope)
1955 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
1956 or else In_Private_Part (Current_Scope)
1958 then
1959 Error_Msg_N ("invalid context for private extension", N);
1960 end if;
1962 -- Set common attributes
1964 Set_Is_Pure (T, Is_Pure (Current_Scope));
1965 Set_Scope (T, Current_Scope);
1966 Set_Ekind (T, E_Record_Type_With_Private);
1967 Init_Size_Align (T);
1969 Set_Etype (T, Parent_Base);
1970 Set_Has_Task (T, Has_Task (Parent_Base));
1972 Set_Convention (T, Convention (Parent_Type));
1973 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
1974 Set_Is_First_Subtype (T);
1975 Make_Class_Wide_Type (T);
1977 Build_Derived_Record_Type (N, Parent_Type, T);
1978 end Analyze_Private_Extension_Declaration;
1980 ---------------------------------
1981 -- Analyze_Subtype_Declaration --
1982 ---------------------------------
1984 procedure Analyze_Subtype_Declaration (N : Node_Id) is
1985 Id : constant Entity_Id := Defining_Identifier (N);
1986 T : Entity_Id;
1987 R_Checks : Check_Result;
1989 begin
1990 Generate_Definition (Id);
1991 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1992 Init_Size_Align (Id);
1994 -- The following guard condition on Enter_Name is to handle cases
1995 -- where the defining identifier has already been entered into the
1996 -- scope but the declaration as a whole needs to be analyzed.
1998 -- This case in particular happens for derived enumeration types.
1999 -- The derived enumeration type is processed as an inserted enumeration
2000 -- type declaration followed by a rewritten subtype declaration. The
2001 -- defining identifier, however, is entered into the name scope very
2002 -- early in the processing of the original type declaration and
2003 -- therefore needs to be avoided here, when the created subtype
2004 -- declaration is analyzed. (See Build_Derived_Types)
2006 -- This also happens when the full view of a private type is a
2007 -- derived type with constraints. In this case the entity has been
2008 -- introduced in the private declaration.
2010 if Present (Etype (Id))
2011 and then (Is_Private_Type (Etype (Id))
2012 or else Is_Task_Type (Etype (Id))
2013 or else Is_Rewrite_Substitution (N))
2014 then
2015 null;
2017 else
2018 Enter_Name (Id);
2019 end if;
2021 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
2023 -- Inherit common attributes
2025 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
2026 Set_Is_Volatile (Id, Is_Volatile (T));
2027 Set_Is_Atomic (Id, Is_Atomic (T));
2029 -- In the case where there is no constraint given in the subtype
2030 -- indication, Process_Subtype just returns the Subtype_Mark,
2031 -- so its semantic attributes must be established here.
2033 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
2034 Set_Etype (Id, Base_Type (T));
2036 case Ekind (T) is
2037 when Array_Kind =>
2038 Set_Ekind (Id, E_Array_Subtype);
2040 -- Shouldn't we call Copy_Array_Subtype_Attributes here???
2042 Set_First_Index (Id, First_Index (T));
2043 Set_Is_Aliased (Id, Is_Aliased (T));
2044 Set_Is_Constrained (Id, Is_Constrained (T));
2046 when Decimal_Fixed_Point_Kind =>
2047 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
2048 Set_Digits_Value (Id, Digits_Value (T));
2049 Set_Delta_Value (Id, Delta_Value (T));
2050 Set_Scale_Value (Id, Scale_Value (T));
2051 Set_Small_Value (Id, Small_Value (T));
2052 Set_Scalar_Range (Id, Scalar_Range (T));
2053 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
2054 Set_Is_Constrained (Id, Is_Constrained (T));
2055 Set_RM_Size (Id, RM_Size (T));
2057 when Enumeration_Kind =>
2058 Set_Ekind (Id, E_Enumeration_Subtype);
2059 Set_First_Literal (Id, First_Literal (Base_Type (T)));
2060 Set_Scalar_Range (Id, Scalar_Range (T));
2061 Set_Is_Character_Type (Id, Is_Character_Type (T));
2062 Set_Is_Constrained (Id, Is_Constrained (T));
2063 Set_RM_Size (Id, RM_Size (T));
2065 when Ordinary_Fixed_Point_Kind =>
2066 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
2067 Set_Scalar_Range (Id, Scalar_Range (T));
2068 Set_Small_Value (Id, Small_Value (T));
2069 Set_Delta_Value (Id, Delta_Value (T));
2070 Set_Is_Constrained (Id, Is_Constrained (T));
2071 Set_RM_Size (Id, RM_Size (T));
2073 when Float_Kind =>
2074 Set_Ekind (Id, E_Floating_Point_Subtype);
2075 Set_Scalar_Range (Id, Scalar_Range (T));
2076 Set_Digits_Value (Id, Digits_Value (T));
2077 Set_Is_Constrained (Id, Is_Constrained (T));
2079 when Signed_Integer_Kind =>
2080 Set_Ekind (Id, E_Signed_Integer_Subtype);
2081 Set_Scalar_Range (Id, Scalar_Range (T));
2082 Set_Is_Constrained (Id, Is_Constrained (T));
2083 Set_RM_Size (Id, RM_Size (T));
2085 when Modular_Integer_Kind =>
2086 Set_Ekind (Id, E_Modular_Integer_Subtype);
2087 Set_Scalar_Range (Id, Scalar_Range (T));
2088 Set_Is_Constrained (Id, Is_Constrained (T));
2089 Set_RM_Size (Id, RM_Size (T));
2091 when Class_Wide_Kind =>
2092 Set_Ekind (Id, E_Class_Wide_Subtype);
2093 Set_First_Entity (Id, First_Entity (T));
2094 Set_Last_Entity (Id, Last_Entity (T));
2095 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2096 Set_Cloned_Subtype (Id, T);
2097 Set_Is_Tagged_Type (Id, True);
2098 Set_Has_Unknown_Discriminants
2099 (Id, True);
2101 if Ekind (T) = E_Class_Wide_Subtype then
2102 Set_Equivalent_Type (Id, Equivalent_Type (T));
2103 end if;
2105 when E_Record_Type | E_Record_Subtype =>
2106 Set_Ekind (Id, E_Record_Subtype);
2108 if Ekind (T) = E_Record_Subtype
2109 and then Present (Cloned_Subtype (T))
2110 then
2111 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
2112 else
2113 Set_Cloned_Subtype (Id, T);
2114 end if;
2116 Set_First_Entity (Id, First_Entity (T));
2117 Set_Last_Entity (Id, Last_Entity (T));
2118 Set_Has_Discriminants (Id, Has_Discriminants (T));
2119 Set_Is_Constrained (Id, Is_Constrained (T));
2120 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2121 Set_Has_Unknown_Discriminants
2122 (Id, Has_Unknown_Discriminants (T));
2124 if Has_Discriminants (T) then
2125 Set_Discriminant_Constraint
2126 (Id, Discriminant_Constraint (T));
2127 Set_Girder_Constraint_From_Discriminant_Constraint (Id);
2129 elsif Has_Unknown_Discriminants (Id) then
2130 Set_Discriminant_Constraint (Id, No_Elist);
2131 end if;
2133 if Is_Tagged_Type (T) then
2134 Set_Is_Tagged_Type (Id);
2135 Set_Is_Abstract (Id, Is_Abstract (T));
2136 Set_Primitive_Operations
2137 (Id, Primitive_Operations (T));
2138 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2139 end if;
2141 when Private_Kind =>
2142 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2143 Set_Has_Discriminants (Id, Has_Discriminants (T));
2144 Set_Is_Constrained (Id, Is_Constrained (T));
2145 Set_First_Entity (Id, First_Entity (T));
2146 Set_Last_Entity (Id, Last_Entity (T));
2147 Set_Private_Dependents (Id, New_Elmt_List);
2148 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2149 Set_Has_Unknown_Discriminants
2150 (Id, Has_Unknown_Discriminants (T));
2152 if Is_Tagged_Type (T) then
2153 Set_Is_Tagged_Type (Id);
2154 Set_Is_Abstract (Id, Is_Abstract (T));
2155 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2156 end if;
2158 -- In general the attributes of the subtype of a private
2159 -- type are the attributes of the partial view of parent.
2160 -- However, the full view may be a discriminated type,
2161 -- and the subtype must share the discriminant constraint
2162 -- to generate correct calls to initialization procedures.
2164 if Has_Discriminants (T) then
2165 Set_Discriminant_Constraint
2166 (Id, Discriminant_Constraint (T));
2167 Set_Girder_Constraint_From_Discriminant_Constraint (Id);
2169 elsif Present (Full_View (T))
2170 and then Has_Discriminants (Full_View (T))
2171 then
2172 Set_Discriminant_Constraint
2173 (Id, Discriminant_Constraint (Full_View (T)));
2174 Set_Girder_Constraint_From_Discriminant_Constraint (Id);
2176 -- This would seem semantically correct, but apparently
2177 -- confuses the back-end (4412-009). To be explained ???
2179 -- Set_Has_Discriminants (Id);
2180 end if;
2182 Prepare_Private_Subtype_Completion (Id, N);
2184 when Access_Kind =>
2185 Set_Ekind (Id, E_Access_Subtype);
2186 Set_Is_Constrained (Id, Is_Constrained (T));
2187 Set_Is_Access_Constant
2188 (Id, Is_Access_Constant (T));
2189 Set_Directly_Designated_Type
2190 (Id, Designated_Type (T));
2192 -- A Pure library_item must not contain the declaration of a
2193 -- named access type, except within a subprogram, generic
2194 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
2196 if Comes_From_Source (Id)
2197 and then In_Pure_Unit
2198 and then not In_Subprogram_Task_Protected_Unit
2199 then
2200 Error_Msg_N
2201 ("named access types not allowed in pure unit", N);
2202 end if;
2204 when Concurrent_Kind =>
2205 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2206 Set_Corresponding_Record_Type (Id,
2207 Corresponding_Record_Type (T));
2208 Set_First_Entity (Id, First_Entity (T));
2209 Set_First_Private_Entity (Id, First_Private_Entity (T));
2210 Set_Has_Discriminants (Id, Has_Discriminants (T));
2211 Set_Is_Constrained (Id, Is_Constrained (T));
2212 Set_Last_Entity (Id, Last_Entity (T));
2214 if Has_Discriminants (T) then
2215 Set_Discriminant_Constraint (Id,
2216 Discriminant_Constraint (T));
2217 Set_Girder_Constraint_From_Discriminant_Constraint (Id);
2218 end if;
2220 -- If the subtype name denotes an incomplete type
2221 -- an error was already reported by Process_Subtype.
2223 when E_Incomplete_Type =>
2224 Set_Etype (Id, Any_Type);
2226 when others =>
2227 raise Program_Error;
2228 end case;
2229 end if;
2231 if Etype (Id) = Any_Type then
2232 return;
2233 end if;
2235 -- Some common processing on all types
2237 Set_Size_Info (Id, T);
2238 Set_First_Rep_Item (Id, First_Rep_Item (T));
2240 T := Etype (Id);
2242 Set_Is_Immediately_Visible (Id, True);
2243 Set_Depends_On_Private (Id, Has_Private_Component (T));
2245 if Present (Generic_Parent_Type (N))
2246 and then
2247 (Nkind
2248 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
2249 or else Nkind
2250 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
2251 /= N_Formal_Private_Type_Definition)
2252 then
2253 if Is_Tagged_Type (Id) then
2254 if Is_Class_Wide_Type (Id) then
2255 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
2256 else
2257 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
2258 end if;
2260 elsif Scope (Etype (Id)) /= Standard_Standard then
2261 Derive_Subprograms (Generic_Parent_Type (N), Id);
2262 end if;
2263 end if;
2265 if Is_Private_Type (T)
2266 and then Present (Full_View (T))
2267 then
2268 Conditional_Delay (Id, Full_View (T));
2270 -- The subtypes of components or subcomponents of protected types
2271 -- do not need freeze nodes, which would otherwise appear in the
2272 -- wrong scope (before the freeze node for the protected type). The
2273 -- proper subtypes are those of the subcomponents of the corresponding
2274 -- record.
2276 elsif Ekind (Scope (Id)) /= E_Protected_Type
2277 and then Present (Scope (Scope (Id))) -- error defense!
2278 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
2279 then
2280 Conditional_Delay (Id, T);
2281 end if;
2283 -- Check that constraint_error is raised for a scalar subtype
2284 -- indication when the lower or upper bound of a non-null range
2285 -- lies outside the range of the type mark.
2287 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
2288 if Is_Scalar_Type (Etype (Id))
2289 and then Scalar_Range (Id) /=
2290 Scalar_Range (Etype (Subtype_Mark
2291 (Subtype_Indication (N))))
2292 then
2293 Apply_Range_Check
2294 (Scalar_Range (Id),
2295 Etype (Subtype_Mark (Subtype_Indication (N))));
2297 elsif Is_Array_Type (Etype (Id))
2298 and then Present (First_Index (Id))
2299 then
2300 -- This really should be a subprogram that finds the indications
2301 -- to check???
2303 if ((Nkind (First_Index (Id)) = N_Identifier
2304 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
2305 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
2306 and then
2307 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
2308 then
2309 declare
2310 Target_Typ : Entity_Id :=
2311 Etype
2312 (First_Index
2313 (Etype (Subtype_Mark (Subtype_Indication (N)))));
2314 begin
2315 R_Checks :=
2316 Range_Check
2317 (Scalar_Range (Etype (First_Index (Id))),
2318 Target_Typ,
2319 Etype (First_Index (Id)),
2320 Defining_Identifier (N));
2322 Insert_Range_Checks
2323 (R_Checks,
2325 Target_Typ,
2326 Sloc (Defining_Identifier (N)));
2327 end;
2328 end if;
2329 end if;
2330 end if;
2332 Check_Eliminated (Id);
2333 end Analyze_Subtype_Declaration;
2335 --------------------------------
2336 -- Analyze_Subtype_Indication --
2337 --------------------------------
2339 procedure Analyze_Subtype_Indication (N : Node_Id) is
2340 T : constant Entity_Id := Subtype_Mark (N);
2341 R : constant Node_Id := Range_Expression (Constraint (N));
2343 begin
2344 Analyze (T);
2346 if R /= Error then
2347 Analyze (R);
2348 Set_Etype (N, Etype (R));
2349 else
2350 Set_Error_Posted (R);
2351 Set_Error_Posted (T);
2352 end if;
2353 end Analyze_Subtype_Indication;
2355 ------------------------------
2356 -- Analyze_Type_Declaration --
2357 ------------------------------
2359 procedure Analyze_Type_Declaration (N : Node_Id) is
2360 Def : constant Node_Id := Type_Definition (N);
2361 Def_Id : constant Entity_Id := Defining_Identifier (N);
2362 T : Entity_Id;
2363 Prev : Entity_Id;
2365 begin
2366 Prev := Find_Type_Name (N);
2368 if Ekind (Prev) = E_Incomplete_Type then
2369 T := Full_View (Prev);
2370 else
2371 T := Prev;
2372 end if;
2374 Set_Is_Pure (T, Is_Pure (Current_Scope));
2376 -- We set the flag Is_First_Subtype here. It is needed to set the
2377 -- corresponding flag for the Implicit class-wide-type created
2378 -- during tagged types processing.
2380 Set_Is_First_Subtype (T, True);
2382 -- Only composite types other than array types are allowed to have
2383 -- discriminants.
2385 case Nkind (Def) is
2387 -- For derived types, the rule will be checked once we've figured
2388 -- out the parent type.
2390 when N_Derived_Type_Definition =>
2391 null;
2393 -- For record types, discriminants are allowed.
2395 when N_Record_Definition =>
2396 null;
2398 when others =>
2399 if Present (Discriminant_Specifications (N)) then
2400 Error_Msg_N
2401 ("elementary or array type cannot have discriminants",
2402 Defining_Identifier
2403 (First (Discriminant_Specifications (N))));
2404 end if;
2405 end case;
2407 -- Elaborate the type definition according to kind, and generate
2408 -- susbsidiary (implicit) subtypes where needed. We skip this if
2409 -- it was already done (this happens during the reanalysis that
2410 -- follows a call to the high level optimizer).
2412 if not Analyzed (T) then
2413 Set_Analyzed (T);
2415 case Nkind (Def) is
2417 when N_Access_To_Subprogram_Definition =>
2418 Access_Subprogram_Declaration (T, Def);
2420 -- If this is a remote access to subprogram, we must create
2421 -- the equivalent fat pointer type, and related subprograms.
2423 if Is_Remote_Types (Current_Scope)
2424 or else Is_Remote_Call_Interface (Current_Scope)
2425 then
2426 Validate_Remote_Access_To_Subprogram_Type (N);
2427 Process_Remote_AST_Declaration (N);
2428 end if;
2430 -- Validate categorization rule against access type declaration
2431 -- usually a violation in Pure unit, Shared_Passive unit.
2433 Validate_Access_Type_Declaration (T, N);
2435 when N_Access_To_Object_Definition =>
2436 Access_Type_Declaration (T, Def);
2438 -- Validate categorization rule against access type declaration
2439 -- usually a violation in Pure unit, Shared_Passive unit.
2441 Validate_Access_Type_Declaration (T, N);
2443 -- If we are in a Remote_Call_Interface package and define
2444 -- a RACW, Read and Write attribute must be added.
2446 if (Is_Remote_Call_Interface (Current_Scope)
2447 or else Is_Remote_Types (Current_Scope))
2448 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2449 then
2450 Add_RACW_Features (Def_Id);
2451 end if;
2453 when N_Array_Type_Definition =>
2454 Array_Type_Declaration (T, Def);
2456 when N_Derived_Type_Definition =>
2457 Derived_Type_Declaration (T, N, T /= Def_Id);
2459 when N_Enumeration_Type_Definition =>
2460 Enumeration_Type_Declaration (T, Def);
2462 when N_Floating_Point_Definition =>
2463 Floating_Point_Type_Declaration (T, Def);
2465 when N_Decimal_Fixed_Point_Definition =>
2466 Decimal_Fixed_Point_Type_Declaration (T, Def);
2468 when N_Ordinary_Fixed_Point_Definition =>
2469 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2471 when N_Signed_Integer_Type_Definition =>
2472 Signed_Integer_Type_Declaration (T, Def);
2474 when N_Modular_Type_Definition =>
2475 Modular_Type_Declaration (T, Def);
2477 when N_Record_Definition =>
2478 Record_Type_Declaration (T, N);
2480 when others =>
2481 raise Program_Error;
2483 end case;
2484 end if;
2486 if Etype (T) = Any_Type then
2487 return;
2488 end if;
2490 -- Some common processing for all types
2492 Set_Depends_On_Private (T, Has_Private_Component (T));
2494 -- Both the declared entity, and its anonymous base type if one
2495 -- was created, need freeze nodes allocated.
2497 declare
2498 B : constant Entity_Id := Base_Type (T);
2500 begin
2501 -- In the case where the base type is different from the first
2502 -- subtype, we pre-allocate a freeze node, and set the proper
2503 -- link to the first subtype. Freeze_Entity will use this
2504 -- preallocated freeze node when it freezes the entity.
2506 if B /= T then
2507 Ensure_Freeze_Node (B);
2508 Set_First_Subtype_Link (Freeze_Node (B), T);
2509 end if;
2511 if not From_With_Type (T) then
2512 Set_Has_Delayed_Freeze (T);
2513 end if;
2514 end;
2516 -- Case of T is the full declaration of some private type which has
2517 -- been swapped in Defining_Identifier (N).
2519 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2520 Process_Full_View (N, T, Def_Id);
2522 -- Record the reference. The form of this is a little strange,
2523 -- since the full declaration has been swapped in. So the first
2524 -- parameter here represents the entity to which a reference is
2525 -- made which is the "real" entity, i.e. the one swapped in,
2526 -- and the second parameter provides the reference location.
2528 Generate_Reference (T, T, 'c');
2529 Set_Completion_Referenced (Def_Id);
2531 -- For completion of incomplete type, process incomplete dependents
2532 -- and always mark the full type as referenced (it is the incomplete
2533 -- type that we get for any real reference).
2535 elsif Ekind (Prev) = E_Incomplete_Type then
2536 Process_Incomplete_Dependents (N, T, Prev);
2537 Generate_Reference (Prev, Def_Id, 'c');
2538 Set_Completion_Referenced (Def_Id);
2540 -- If not private type or incomplete type completion, this is a real
2541 -- definition of a new entity, so record it.
2543 else
2544 Generate_Definition (Def_Id);
2545 end if;
2547 Check_Eliminated (Def_Id);
2548 end Analyze_Type_Declaration;
2550 --------------------------
2551 -- Analyze_Variant_Part --
2552 --------------------------
2554 procedure Analyze_Variant_Part (N : Node_Id) is
2556 procedure Non_Static_Choice_Error (Choice : Node_Id);
2557 -- Error routine invoked by the generic instantiation below when
2558 -- the variant part has a non static choice.
2560 procedure Process_Declarations (Variant : Node_Id);
2561 -- Analyzes all the declarations associated with a Variant.
2562 -- Needed by the generic instantiation below.
2564 package Variant_Choices_Processing is new
2565 Generic_Choices_Processing
2566 (Get_Alternatives => Variants,
2567 Get_Choices => Discrete_Choices,
2568 Process_Empty_Choice => No_OP,
2569 Process_Non_Static_Choice => Non_Static_Choice_Error,
2570 Process_Associated_Node => Process_Declarations);
2571 use Variant_Choices_Processing;
2572 -- Instantiation of the generic choice processing package.
2574 -----------------------------
2575 -- Non_Static_Choice_Error --
2576 -----------------------------
2578 procedure Non_Static_Choice_Error (Choice : Node_Id) is
2579 begin
2580 Error_Msg_N ("choice given in variant part is not static", Choice);
2581 end Non_Static_Choice_Error;
2583 --------------------------
2584 -- Process_Declarations --
2585 --------------------------
2587 procedure Process_Declarations (Variant : Node_Id) is
2588 begin
2589 if not Null_Present (Component_List (Variant)) then
2590 Analyze_Declarations (Component_Items (Component_List (Variant)));
2592 if Present (Variant_Part (Component_List (Variant))) then
2593 Analyze (Variant_Part (Component_List (Variant)));
2594 end if;
2595 end if;
2596 end Process_Declarations;
2598 -- Variables local to Analyze_Case_Statement.
2600 Others_Choice : Node_Id;
2602 Discr_Name : Node_Id;
2603 Discr_Type : Entity_Id;
2605 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
2606 Last_Choice : Nat;
2607 Dont_Care : Boolean;
2608 Others_Present : Boolean := False;
2610 -- Start of processing for Analyze_Variant_Part
2612 begin
2613 Discr_Name := Name (N);
2614 Analyze (Discr_Name);
2616 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
2617 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
2618 end if;
2620 Discr_Type := Etype (Entity (Discr_Name));
2622 if not Is_Discrete_Type (Discr_Type) then
2623 Error_Msg_N
2624 ("discriminant in a variant part must be of a discrete type",
2625 Name (N));
2626 return;
2627 end if;
2629 -- Call the instantiated Analyze_Choices which does the rest of the work
2631 Analyze_Choices
2632 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
2634 if Others_Present then
2635 -- Fill in Others_Discrete_Choices field of the OTHERS choice
2637 Others_Choice := First (Discrete_Choices (Last (Variants (N))));
2638 Expand_Others_Choice
2639 (Case_Table (1 .. Last_Choice), Others_Choice, Discr_Type);
2640 end if;
2642 end Analyze_Variant_Part;
2644 ----------------------------
2645 -- Array_Type_Declaration --
2646 ----------------------------
2648 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
2649 Component_Def : constant Node_Id := Subtype_Indication (Def);
2650 Element_Type : Entity_Id;
2651 Implicit_Base : Entity_Id;
2652 Index : Node_Id;
2653 Related_Id : Entity_Id := Empty;
2654 Nb_Index : Nat;
2655 P : constant Node_Id := Parent (Def);
2656 Priv : Entity_Id;
2658 begin
2659 if Nkind (Def) = N_Constrained_Array_Definition then
2661 Index := First (Discrete_Subtype_Definitions (Def));
2663 -- Find proper names for the implicit types which may be public.
2664 -- in case of anonymous arrays we use the name of the first object
2665 -- of that type as prefix.
2667 if No (T) then
2668 Related_Id := Defining_Identifier (P);
2669 else
2670 Related_Id := T;
2671 end if;
2673 else
2674 Index := First (Subtype_Marks (Def));
2675 end if;
2677 Nb_Index := 1;
2679 while Present (Index) loop
2680 Analyze (Index);
2681 Make_Index (Index, P, Related_Id, Nb_Index);
2682 Next_Index (Index);
2683 Nb_Index := Nb_Index + 1;
2684 end loop;
2686 Element_Type := Process_Subtype (Component_Def, P, Related_Id, 'C');
2688 -- Constrained array case
2690 if No (T) then
2691 T := Create_Itype (E_Void, P, Related_Id, 'T');
2692 end if;
2694 if Nkind (Def) = N_Constrained_Array_Definition then
2696 -- Establish Implicit_Base as unconstrained base type
2698 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
2700 Init_Size_Align (Implicit_Base);
2701 Set_Etype (Implicit_Base, Implicit_Base);
2702 Set_Scope (Implicit_Base, Current_Scope);
2703 Set_Has_Delayed_Freeze (Implicit_Base);
2705 -- The constrained array type is a subtype of the unconstrained one
2707 Set_Ekind (T, E_Array_Subtype);
2708 Init_Size_Align (T);
2709 Set_Etype (T, Implicit_Base);
2710 Set_Scope (T, Current_Scope);
2711 Set_Is_Constrained (T, True);
2712 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
2713 Set_Has_Delayed_Freeze (T);
2715 -- Complete setup of implicit base type
2717 Set_First_Index (Implicit_Base, First_Index (T));
2718 Set_Component_Type (Implicit_Base, Element_Type);
2719 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
2720 Set_Component_Size (Implicit_Base, Uint_0);
2721 Set_Has_Controlled_Component
2722 (Implicit_Base, Has_Controlled_Component
2723 (Element_Type)
2724 or else
2725 Is_Controlled (Element_Type));
2726 Set_Finalize_Storage_Only
2727 (Implicit_Base, Finalize_Storage_Only
2728 (Element_Type));
2730 -- Unconstrained array case
2732 else
2733 Set_Ekind (T, E_Array_Type);
2734 Init_Size_Align (T);
2735 Set_Etype (T, T);
2736 Set_Scope (T, Current_Scope);
2737 Set_Component_Size (T, Uint_0);
2738 Set_Is_Constrained (T, False);
2739 Set_First_Index (T, First (Subtype_Marks (Def)));
2740 Set_Has_Delayed_Freeze (T, True);
2741 Set_Has_Task (T, Has_Task (Element_Type));
2742 Set_Has_Controlled_Component (T, Has_Controlled_Component
2743 (Element_Type)
2744 or else
2745 Is_Controlled (Element_Type));
2746 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
2747 (Element_Type));
2748 end if;
2750 Set_Component_Type (Base_Type (T), Element_Type);
2752 if Aliased_Present (Def) then
2753 Set_Has_Aliased_Components (Etype (T));
2754 end if;
2756 Priv := Private_Component (Element_Type);
2758 if Present (Priv) then
2760 -- Check for circular definitions
2762 if Priv = Any_Type then
2763 Set_Component_Type (Etype (T), Any_Type);
2765 -- There is a gap in the visiblity of operations on the composite
2766 -- type only if the component type is defined in a different scope.
2768 elsif Scope (Priv) = Current_Scope then
2769 null;
2771 elsif Is_Limited_Type (Priv) then
2772 Set_Is_Limited_Composite (Etype (T));
2773 Set_Is_Limited_Composite (T);
2774 else
2775 Set_Is_Private_Composite (Etype (T));
2776 Set_Is_Private_Composite (T);
2777 end if;
2778 end if;
2780 -- Create a concatenation operator for the new type. Internal
2781 -- array types created for packed entities do not need such, they
2782 -- are compatible with the user-defined type.
2784 if Number_Dimensions (T) = 1
2785 and then not Is_Packed_Array_Type (T)
2786 then
2787 New_Binary_Operator (Name_Op_Concat, T);
2788 end if;
2790 -- In the case of an unconstrained array the parser has already
2791 -- verified that all the indices are unconstrained but we still
2792 -- need to make sure that the element type is constrained.
2794 if Is_Indefinite_Subtype (Element_Type) then
2795 Error_Msg_N
2796 ("unconstrained element type in array declaration ",
2797 Component_Def);
2799 elsif Is_Abstract (Element_Type) then
2800 Error_Msg_N ("The type of a component cannot be abstract ",
2801 Component_Def);
2802 end if;
2804 end Array_Type_Declaration;
2806 -------------------------------
2807 -- Build_Derived_Access_Type --
2808 -------------------------------
2810 procedure Build_Derived_Access_Type
2811 (N : Node_Id;
2812 Parent_Type : Entity_Id;
2813 Derived_Type : Entity_Id)
2815 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
2817 Desig_Type : Entity_Id;
2818 Discr : Entity_Id;
2819 Discr_Con_Elist : Elist_Id;
2820 Discr_Con_El : Elmt_Id;
2822 Subt : Entity_Id;
2824 begin
2825 -- Set the designated type so it is available in case this is
2826 -- an access to a self-referential type, e.g. a standard list
2827 -- type with a next pointer. Will be reset after subtype is built.
2829 Set_Directly_Designated_Type (Derived_Type,
2830 Designated_Type (Parent_Type));
2832 Subt := Process_Subtype (S, N);
2834 if Nkind (S) /= N_Subtype_Indication
2835 and then Subt /= Base_Type (Subt)
2836 then
2837 Set_Ekind (Derived_Type, E_Access_Subtype);
2838 end if;
2840 if Ekind (Derived_Type) = E_Access_Subtype then
2841 declare
2842 Pbase : constant Entity_Id := Base_Type (Parent_Type);
2843 Ibase : constant Entity_Id :=
2844 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
2845 Svg_Chars : constant Name_Id := Chars (Ibase);
2846 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
2848 begin
2849 Copy_Node (Pbase, Ibase);
2851 Set_Chars (Ibase, Svg_Chars);
2852 Set_Next_Entity (Ibase, Svg_Next_E);
2853 Set_Sloc (Ibase, Sloc (Derived_Type));
2854 Set_Scope (Ibase, Scope (Derived_Type));
2855 Set_Freeze_Node (Ibase, Empty);
2856 Set_Is_Frozen (Ibase, False);
2857 Set_Comes_From_Source (Ibase, False);
2858 Set_Is_First_Subtype (Ibase, False);
2860 Set_Etype (Ibase, Pbase);
2861 Set_Etype (Derived_Type, Ibase);
2862 end;
2863 end if;
2865 Set_Directly_Designated_Type
2866 (Derived_Type, Designated_Type (Subt));
2868 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
2869 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
2870 Set_Size_Info (Derived_Type, Parent_Type);
2871 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
2872 Set_Depends_On_Private (Derived_Type,
2873 Has_Private_Component (Derived_Type));
2874 Conditional_Delay (Derived_Type, Subt);
2876 -- Note: we do not copy the Storage_Size_Variable, since
2877 -- we always go to the root type for this information.
2879 -- Apply range checks to discriminants for derived record case
2880 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
2882 Desig_Type := Designated_Type (Derived_Type);
2883 if Is_Composite_Type (Desig_Type)
2884 and then (not Is_Array_Type (Desig_Type))
2885 and then Has_Discriminants (Desig_Type)
2886 and then Base_Type (Desig_Type) /= Desig_Type
2887 then
2888 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
2889 Discr_Con_El := First_Elmt (Discr_Con_Elist);
2891 Discr := First_Discriminant (Base_Type (Desig_Type));
2892 while Present (Discr_Con_El) loop
2893 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
2894 Next_Elmt (Discr_Con_El);
2895 Next_Discriminant (Discr);
2896 end loop;
2897 end if;
2898 end Build_Derived_Access_Type;
2900 ------------------------------
2901 -- Build_Derived_Array_Type --
2902 ------------------------------
2904 procedure Build_Derived_Array_Type
2905 (N : Node_Id;
2906 Parent_Type : Entity_Id;
2907 Derived_Type : Entity_Id)
2909 Loc : constant Source_Ptr := Sloc (N);
2910 Tdef : constant Node_Id := Type_Definition (N);
2911 Indic : constant Node_Id := Subtype_Indication (Tdef);
2912 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
2913 Implicit_Base : Entity_Id;
2914 New_Indic : Node_Id;
2916 procedure Make_Implicit_Base;
2917 -- If the parent subtype is constrained, the derived type is a
2918 -- subtype of an implicit base type derived from the parent base.
2920 ------------------------
2921 -- Make_Implicit_Base --
2922 ------------------------
2924 procedure Make_Implicit_Base is
2925 begin
2926 Implicit_Base :=
2927 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
2929 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
2930 Set_Etype (Implicit_Base, Parent_Base);
2932 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
2933 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
2935 Set_Has_Delayed_Freeze (Implicit_Base, True);
2936 end Make_Implicit_Base;
2938 -- Start of processing for Build_Derived_Array_Type
2940 begin
2941 if not Is_Constrained (Parent_Type) then
2942 if Nkind (Indic) /= N_Subtype_Indication then
2943 Set_Ekind (Derived_Type, E_Array_Type);
2945 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
2946 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
2948 Set_Has_Delayed_Freeze (Derived_Type, True);
2950 else
2951 Make_Implicit_Base;
2952 Set_Etype (Derived_Type, Implicit_Base);
2954 New_Indic :=
2955 Make_Subtype_Declaration (Loc,
2956 Defining_Identifier => Derived_Type,
2957 Subtype_Indication =>
2958 Make_Subtype_Indication (Loc,
2959 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
2960 Constraint => Constraint (Indic)));
2962 Rewrite (N, New_Indic);
2963 Analyze (N);
2964 end if;
2966 else
2967 if Nkind (Indic) /= N_Subtype_Indication then
2968 Make_Implicit_Base;
2970 Set_Ekind (Derived_Type, Ekind (Parent_Type));
2971 Set_Etype (Derived_Type, Implicit_Base);
2972 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
2974 else
2975 Error_Msg_N ("illegal constraint on constrained type", Indic);
2976 end if;
2977 end if;
2979 -- If the parent type is not a derived type itself, and is
2980 -- declared in a closed scope (e.g., a subprogram), then we
2981 -- need to explicitly introduce the new type's concatenation
2982 -- operator since Derive_Subprograms will not inherit the
2983 -- parent's operator.
2985 if Number_Dimensions (Parent_Type) = 1
2986 and then not Is_Limited_Type (Parent_Type)
2987 and then not Is_Derived_Type (Parent_Type)
2988 and then not Is_Package (Scope (Base_Type (Parent_Type)))
2989 then
2990 New_Binary_Operator (Name_Op_Concat, Derived_Type);
2991 end if;
2992 end Build_Derived_Array_Type;
2994 -----------------------------------
2995 -- Build_Derived_Concurrent_Type --
2996 -----------------------------------
2998 procedure Build_Derived_Concurrent_Type
2999 (N : Node_Id;
3000 Parent_Type : Entity_Id;
3001 Derived_Type : Entity_Id)
3003 D_Constraint : Node_Id;
3004 Disc_Spec : Node_Id;
3005 Old_Disc : Entity_Id;
3006 New_Disc : Entity_Id;
3008 Constraint_Present : constant Boolean :=
3009 Nkind (Subtype_Indication (Type_Definition (N)))
3010 = N_Subtype_Indication;
3012 begin
3013 Set_Girder_Constraint (Derived_Type, No_Elist);
3015 if Is_Task_Type (Parent_Type) then
3016 Set_Storage_Size_Variable (Derived_Type,
3017 Storage_Size_Variable (Parent_Type));
3018 end if;
3020 if Present (Discriminant_Specifications (N)) then
3021 New_Scope (Derived_Type);
3022 Check_Or_Process_Discriminants (N, Derived_Type);
3023 End_Scope;
3025 elsif Constraint_Present then
3027 -- Build constrained subtype and derive from it
3029 declare
3030 Loc : constant Source_Ptr := Sloc (N);
3031 Anon : Entity_Id :=
3032 Make_Defining_Identifier (Loc,
3033 New_External_Name (Chars (Derived_Type), 'T'));
3034 Decl : Node_Id;
3036 begin
3037 Decl :=
3038 Make_Subtype_Declaration (Loc,
3039 Defining_Identifier => Anon,
3040 Subtype_Indication =>
3041 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
3042 Insert_Before (N, Decl);
3043 Rewrite (Subtype_Indication (Type_Definition (N)),
3044 New_Occurrence_Of (Anon, Loc));
3045 Analyze (Decl);
3046 Set_Analyzed (Derived_Type, False);
3047 Analyze (N);
3048 return;
3049 end;
3050 end if;
3052 -- All attributes are inherited from parent. In particular,
3053 -- entries and the corresponding record type are the same.
3054 -- Discriminants may be renamed, and must be treated separately.
3056 Set_Has_Discriminants
3057 (Derived_Type, Has_Discriminants (Parent_Type));
3058 Set_Corresponding_Record_Type
3059 (Derived_Type, Corresponding_Record_Type (Parent_Type));
3061 if Constraint_Present then
3063 if not Has_Discriminants (Parent_Type) then
3064 Error_Msg_N ("untagged parent must have discriminants", N);
3066 elsif Present (Discriminant_Specifications (N)) then
3068 -- Verify that new discriminants are used to constrain
3069 -- the old ones.
3071 Old_Disc := First_Discriminant (Parent_Type);
3072 New_Disc := First_Discriminant (Derived_Type);
3073 Disc_Spec := First (Discriminant_Specifications (N));
3074 D_Constraint :=
3075 First
3076 (Constraints
3077 (Constraint (Subtype_Indication (Type_Definition (N)))));
3079 while Present (Old_Disc) and then Present (Disc_Spec) loop
3081 if Nkind (Discriminant_Type (Disc_Spec)) /=
3082 N_Access_Definition
3083 then
3084 Analyze (Discriminant_Type (Disc_Spec));
3086 if not Subtypes_Statically_Compatible (
3087 Etype (Discriminant_Type (Disc_Spec)),
3088 Etype (Old_Disc))
3089 then
3090 Error_Msg_N
3091 ("not statically compatible with parent discriminant",
3092 Discriminant_Type (Disc_Spec));
3093 end if;
3094 end if;
3096 if Nkind (D_Constraint) = N_Identifier
3097 and then Chars (D_Constraint) /=
3098 Chars (Defining_Identifier (Disc_Spec))
3099 then
3100 Error_Msg_N ("new discriminants must constrain old ones",
3101 D_Constraint);
3102 else
3103 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
3104 end if;
3106 Next_Discriminant (Old_Disc);
3107 Next_Discriminant (New_Disc);
3108 Next (Disc_Spec);
3109 end loop;
3111 if Present (Old_Disc) or else Present (Disc_Spec) then
3112 Error_Msg_N ("discriminant mismatch in derivation", N);
3113 end if;
3115 end if;
3117 elsif Present (Discriminant_Specifications (N)) then
3118 Error_Msg_N
3119 ("missing discriminant constraint in untagged derivation",
3121 end if;
3123 if Present (Discriminant_Specifications (N)) then
3125 Old_Disc := First_Discriminant (Parent_Type);
3127 while Present (Old_Disc) loop
3129 if No (Next_Entity (Old_Disc))
3130 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
3131 then
3132 Set_Next_Entity (Last_Entity (Derived_Type),
3133 Next_Entity (Old_Disc));
3134 exit;
3135 end if;
3137 Next_Discriminant (Old_Disc);
3138 end loop;
3140 else
3141 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
3142 if Has_Discriminants (Parent_Type) then
3143 Set_Discriminant_Constraint (
3144 Derived_Type, Discriminant_Constraint (Parent_Type));
3145 end if;
3146 end if;
3148 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
3150 Set_Has_Completion (Derived_Type);
3151 end Build_Derived_Concurrent_Type;
3153 ------------------------------------
3154 -- Build_Derived_Enumeration_Type --
3155 ------------------------------------
3157 procedure Build_Derived_Enumeration_Type
3158 (N : Node_Id;
3159 Parent_Type : Entity_Id;
3160 Derived_Type : Entity_Id)
3162 Loc : constant Source_Ptr := Sloc (N);
3163 Def : constant Node_Id := Type_Definition (N);
3164 Indic : constant Node_Id := Subtype_Indication (Def);
3165 Implicit_Base : Entity_Id;
3166 Literal : Entity_Id;
3167 New_Lit : Entity_Id;
3168 Literals_List : List_Id;
3169 Type_Decl : Node_Id;
3170 Hi, Lo : Node_Id;
3171 Rang_Expr : Node_Id;
3173 begin
3174 -- Since types Standard.Character and Standard.Wide_Character do
3175 -- not have explicit literals lists we need to process types derived
3176 -- from them specially. This is handled by Derived_Standard_Character.
3177 -- If the parent type is a generic type, there are no literals either,
3178 -- and we construct the same skeletal representation as for the generic
3179 -- parent type.
3181 if Root_Type (Parent_Type) = Standard_Character
3182 or else Root_Type (Parent_Type) = Standard_Wide_Character
3183 then
3184 Derived_Standard_Character (N, Parent_Type, Derived_Type);
3186 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
3187 declare
3188 Lo : Node_Id;
3189 Hi : Node_Id;
3191 begin
3192 Lo :=
3193 Make_Attribute_Reference (Loc,
3194 Attribute_Name => Name_First,
3195 Prefix => New_Reference_To (Derived_Type, Loc));
3196 Set_Etype (Lo, Derived_Type);
3198 Hi :=
3199 Make_Attribute_Reference (Loc,
3200 Attribute_Name => Name_Last,
3201 Prefix => New_Reference_To (Derived_Type, Loc));
3202 Set_Etype (Hi, Derived_Type);
3204 Set_Scalar_Range (Derived_Type,
3205 Make_Range (Loc,
3206 Low_Bound => Lo,
3207 High_Bound => Hi));
3208 end;
3210 else
3211 -- If a constraint is present, analyze the bounds to catch
3212 -- premature usage of the derived literals.
3214 if Nkind (Indic) = N_Subtype_Indication
3215 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
3216 then
3217 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
3218 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
3219 end if;
3221 -- Introduce an implicit base type for the derived type even
3222 -- if there is no constraint attached to it, since this seems
3223 -- closer to the Ada semantics. Build a full type declaration
3224 -- tree for the derived type using the implicit base type as
3225 -- the defining identifier. The build a subtype declaration
3226 -- tree which applies the constraint (if any) have it replace
3227 -- the derived type declaration.
3229 Literal := First_Literal (Parent_Type);
3230 Literals_List := New_List;
3232 while Present (Literal)
3233 and then Ekind (Literal) = E_Enumeration_Literal
3234 loop
3235 -- Literals of the derived type have the same representation as
3236 -- those of the parent type, but this representation can be
3237 -- overridden by an explicit representation clause. Indicate
3238 -- that there is no explicit representation given yet. These
3239 -- derived literals are implicit operations of the new type,
3240 -- and can be overriden by explicit ones.
3242 if Nkind (Literal) = N_Defining_Character_Literal then
3243 New_Lit :=
3244 Make_Defining_Character_Literal (Loc, Chars (Literal));
3245 else
3246 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
3247 end if;
3249 Set_Ekind (New_Lit, E_Enumeration_Literal);
3250 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
3251 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
3252 Set_Enumeration_Rep_Expr (New_Lit, Empty);
3253 Set_Alias (New_Lit, Literal);
3254 Set_Is_Known_Valid (New_Lit, True);
3256 Append (New_Lit, Literals_List);
3257 Next_Literal (Literal);
3258 end loop;
3260 Implicit_Base :=
3261 Make_Defining_Identifier (Sloc (Derived_Type),
3262 New_External_Name (Chars (Derived_Type), 'B'));
3264 -- Indicate the proper nature of the derived type. This must
3265 -- be done before analysis of the literals, to recognize cases
3266 -- when a literal may be hidden by a previous explicit function
3267 -- definition (cf. c83031a).
3269 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
3270 Set_Etype (Derived_Type, Implicit_Base);
3272 Type_Decl :=
3273 Make_Full_Type_Declaration (Loc,
3274 Defining_Identifier => Implicit_Base,
3275 Discriminant_Specifications => No_List,
3276 Type_Definition =>
3277 Make_Enumeration_Type_Definition (Loc, Literals_List));
3279 Mark_Rewrite_Insertion (Type_Decl);
3280 Insert_Before (N, Type_Decl);
3281 Analyze (Type_Decl);
3283 -- After the implicit base is analyzed its Etype needs to be
3284 -- changed to reflect the fact that it is derived from the
3285 -- parent type which was ignored during analysis. We also set
3286 -- the size at this point.
3288 Set_Etype (Implicit_Base, Parent_Type);
3290 Set_Size_Info (Implicit_Base, Parent_Type);
3291 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
3292 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
3294 Set_Has_Non_Standard_Rep
3295 (Implicit_Base, Has_Non_Standard_Rep
3296 (Parent_Type));
3297 Set_Has_Delayed_Freeze (Implicit_Base);
3299 -- Process the subtype indication including a validation check
3300 -- on the constraint, if any. If a constraint is given, its bounds
3301 -- must be implicitly converted to the new type.
3303 if Nkind (Indic) = N_Subtype_Indication then
3305 declare
3306 R : constant Node_Id :=
3307 Range_Expression (Constraint (Indic));
3309 begin
3310 if Nkind (R) = N_Range then
3311 Hi := Build_Scalar_Bound
3312 (High_Bound (R), Parent_Type, Implicit_Base);
3313 Lo := Build_Scalar_Bound
3314 (Low_Bound (R), Parent_Type, Implicit_Base);
3316 else
3317 -- Constraint is a Range attribute. Replace with the
3318 -- explicit mention of the bounds of the prefix, which
3319 -- must be a subtype.
3321 Analyze (Prefix (R));
3322 Hi :=
3323 Convert_To (Implicit_Base,
3324 Make_Attribute_Reference (Loc,
3325 Attribute_Name => Name_Last,
3326 Prefix =>
3327 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
3329 Lo :=
3330 Convert_To (Implicit_Base,
3331 Make_Attribute_Reference (Loc,
3332 Attribute_Name => Name_First,
3333 Prefix =>
3334 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
3335 end if;
3337 end;
3339 else
3340 Hi :=
3341 Build_Scalar_Bound
3342 (Type_High_Bound (Parent_Type),
3343 Parent_Type, Implicit_Base);
3344 Lo :=
3345 Build_Scalar_Bound
3346 (Type_Low_Bound (Parent_Type),
3347 Parent_Type, Implicit_Base);
3348 end if;
3350 Rang_Expr :=
3351 Make_Range (Loc,
3352 Low_Bound => Lo,
3353 High_Bound => Hi);
3355 -- If we constructed a default range for the case where no range
3356 -- was given, then the expressions in the range must not freeze
3357 -- since they do not correspond to expressions in the source.
3359 if Nkind (Indic) /= N_Subtype_Indication then
3360 Set_Must_Not_Freeze (Lo);
3361 Set_Must_Not_Freeze (Hi);
3362 Set_Must_Not_Freeze (Rang_Expr);
3363 end if;
3365 Rewrite (N,
3366 Make_Subtype_Declaration (Loc,
3367 Defining_Identifier => Derived_Type,
3368 Subtype_Indication =>
3369 Make_Subtype_Indication (Loc,
3370 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
3371 Constraint =>
3372 Make_Range_Constraint (Loc,
3373 Range_Expression => Rang_Expr))));
3375 Analyze (N);
3377 -- If pragma Discard_Names applies on the first subtype
3378 -- of the parent type, then it must be applied on this
3379 -- subtype as well.
3381 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
3382 Set_Discard_Names (Derived_Type);
3383 end if;
3385 -- Apply a range check. Since this range expression doesn't
3386 -- have an Etype, we have to specifically pass the Source_Typ
3387 -- parameter. Is this right???
3389 if Nkind (Indic) = N_Subtype_Indication then
3390 Apply_Range_Check (Range_Expression (Constraint (Indic)),
3391 Parent_Type,
3392 Source_Typ => Entity (Subtype_Mark (Indic)));
3393 end if;
3394 end if;
3396 end Build_Derived_Enumeration_Type;
3398 --------------------------------
3399 -- Build_Derived_Numeric_Type --
3400 --------------------------------
3402 procedure Build_Derived_Numeric_Type
3403 (N : Node_Id;
3404 Parent_Type : Entity_Id;
3405 Derived_Type : Entity_Id)
3407 Loc : constant Source_Ptr := Sloc (N);
3408 Tdef : constant Node_Id := Type_Definition (N);
3409 Indic : constant Node_Id := Subtype_Indication (Tdef);
3410 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
3411 No_Constraint : constant Boolean := Nkind (Indic) /=
3412 N_Subtype_Indication;
3413 Implicit_Base : Entity_Id;
3415 Lo : Node_Id;
3416 Hi : Node_Id;
3417 T : Entity_Id;
3419 begin
3420 -- Process the subtype indication including a validation check on
3421 -- the constraint if any.
3423 T := Process_Subtype (Indic, N);
3425 -- Introduce an implicit base type for the derived type even if
3426 -- there is no constraint attached to it, since this seems closer
3427 -- to the Ada semantics.
3429 Implicit_Base :=
3430 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
3432 Set_Etype (Implicit_Base, Parent_Base);
3433 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
3434 Set_Size_Info (Implicit_Base, Parent_Base);
3435 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
3436 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
3437 Set_Parent (Implicit_Base, Parent (Derived_Type));
3439 if Is_Discrete_Or_Fixed_Point_Type (Parent_Base) then
3440 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
3441 end if;
3443 Set_Has_Delayed_Freeze (Implicit_Base);
3445 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
3446 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
3448 Set_Scalar_Range (Implicit_Base,
3449 Make_Range (Loc,
3450 Low_Bound => Lo,
3451 High_Bound => Hi));
3453 if Has_Infinities (Parent_Base) then
3454 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
3455 end if;
3457 -- The Derived_Type, which is the entity of the declaration, is
3458 -- a subtype of the implicit base. Its Ekind is a subtype, even
3459 -- in the absence of an explicit constraint.
3461 Set_Etype (Derived_Type, Implicit_Base);
3463 -- If we did not have a constraint, then the Ekind is set from the
3464 -- parent type (otherwise Process_Subtype has set the bounds)
3466 if No_Constraint then
3467 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
3468 end if;
3470 -- If we did not have a range constraint, then set the range
3471 -- from the parent type. Otherwise, the call to Process_Subtype
3472 -- has set the bounds.
3474 if No_Constraint
3475 or else not Has_Range_Constraint (Indic)
3476 then
3477 Set_Scalar_Range (Derived_Type,
3478 Make_Range (Loc,
3479 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
3480 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
3481 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
3483 if Has_Infinities (Parent_Type) then
3484 Set_Includes_Infinities (Scalar_Range (Derived_Type));
3485 end if;
3486 end if;
3488 -- Set remaining type-specific fields, depending on numeric type
3490 if Is_Modular_Integer_Type (Parent_Type) then
3491 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
3493 Set_Non_Binary_Modulus
3494 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
3496 elsif Is_Floating_Point_Type (Parent_Type) then
3498 -- Digits of base type is always copied from the digits value of
3499 -- the parent base type, but the digits of the derived type will
3500 -- already have been set if there was a constraint present.
3502 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
3503 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
3505 if No_Constraint then
3506 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
3507 end if;
3509 elsif Is_Fixed_Point_Type (Parent_Type) then
3511 -- Small of base type and derived type are always copied from
3512 -- the parent base type, since smalls never change. The delta
3513 -- of the base type is also copied from the parent base type.
3514 -- However the delta of the derived type will have been set
3515 -- already if a constraint was present.
3517 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
3518 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
3519 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
3521 if No_Constraint then
3522 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
3523 end if;
3525 -- The scale and machine radix in the decimal case are always
3526 -- copied from the parent base type.
3528 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
3529 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
3530 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
3532 Set_Machine_Radix_10
3533 (Derived_Type, Machine_Radix_10 (Parent_Base));
3534 Set_Machine_Radix_10
3535 (Implicit_Base, Machine_Radix_10 (Parent_Base));
3537 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
3539 if No_Constraint then
3540 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
3542 else
3543 -- the analysis of the subtype_indication sets the
3544 -- digits value of the derived type.
3546 null;
3547 end if;
3548 end if;
3549 end if;
3551 -- The type of the bounds is that of the parent type, and they
3552 -- must be converted to the derived type.
3554 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
3556 -- The implicit_base should be frozen when the derived type is frozen,
3557 -- but note that it is used in the conversions of the bounds. For
3558 -- fixed types we delay the determination of the bounds until the proper
3559 -- freezing point. For other numeric types this is rejected by GCC, for
3560 -- reasons that are currently unclear (???), so we choose to freeze the
3561 -- implicit base now. In the case of integers and floating point types
3562 -- this is harmless because subsequent representation clauses cannot
3563 -- affect anything, but it is still baffling that we cannot use the
3564 -- same mechanism for all derived numeric types.
3566 if Is_Fixed_Point_Type (Parent_Type) then
3567 Conditional_Delay (Implicit_Base, Parent_Type);
3568 else
3569 Freeze_Before (N, Implicit_Base);
3570 end if;
3572 end Build_Derived_Numeric_Type;
3574 --------------------------------
3575 -- Build_Derived_Private_Type --
3576 --------------------------------
3578 procedure Build_Derived_Private_Type
3579 (N : Node_Id;
3580 Parent_Type : Entity_Id;
3581 Derived_Type : Entity_Id;
3582 Is_Completion : Boolean;
3583 Derive_Subps : Boolean := True)
3585 Der_Base : Entity_Id;
3586 Discr : Entity_Id;
3587 Full_Decl : Node_Id := Empty;
3588 Full_Der : Entity_Id;
3589 Full_P : Entity_Id;
3590 Last_Discr : Entity_Id;
3591 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
3592 Swapped : Boolean := False;
3594 procedure Copy_And_Build;
3595 -- Copy derived type declaration, replace parent with its full view,
3596 -- and analyze new declaration.
3598 --------------------
3599 -- Copy_And_Build --
3600 --------------------
3602 procedure Copy_And_Build is
3603 Full_N : Node_Id;
3605 begin
3606 if Ekind (Parent_Type) in Record_Kind
3607 or else (Ekind (Parent_Type) in Enumeration_Kind
3608 and then Root_Type (Parent_Type) /= Standard_Character
3609 and then Root_Type (Parent_Type) /= Standard_Wide_Character
3610 and then not Is_Generic_Type (Root_Type (Parent_Type)))
3611 then
3612 Full_N := New_Copy_Tree (N);
3613 Insert_After (N, Full_N);
3614 Build_Derived_Type (
3615 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
3617 else
3618 Build_Derived_Type (
3619 N, Parent_Type, Full_Der, True, Derive_Subps => False);
3620 end if;
3621 end Copy_And_Build;
3623 -- Start of processing for Build_Derived_Private_Type
3625 begin
3626 if Is_Tagged_Type (Parent_Type) then
3627 Build_Derived_Record_Type
3628 (N, Parent_Type, Derived_Type, Derive_Subps);
3629 return;
3631 elsif Has_Discriminants (Parent_Type) then
3633 if Present (Full_View (Parent_Type)) then
3634 if not Is_Completion then
3636 -- Copy declaration for subsequent analysis.
3638 Full_Decl := New_Copy_Tree (N);
3639 Full_Der := New_Copy (Derived_Type);
3640 Insert_After (N, Full_Decl);
3642 else
3643 -- If this is a completion, the full view being built is
3644 -- itself private. We build a subtype of the parent with
3645 -- the same constraints as this full view, to convey to the
3646 -- back end the constrained components and the size of this
3647 -- subtype. If the parent is constrained, its full view can
3648 -- serve as the underlying full view of the derived type.
3650 if No (Discriminant_Specifications (N)) then
3652 if Nkind (Subtype_Indication (Type_Definition (N)))
3653 = N_Subtype_Indication
3654 then
3655 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
3657 elsif Is_Constrained (Full_View (Parent_Type)) then
3658 Set_Underlying_Full_View (Derived_Type,
3659 Full_View (Parent_Type));
3660 end if;
3662 else
3663 -- If there are new discriminants, the parent subtype is
3664 -- constrained by them, but it is not clear how to build
3665 -- the underlying_full_view in this case ???
3667 null;
3668 end if;
3669 end if;
3670 end if;
3672 Build_Derived_Record_Type
3673 (N, Parent_Type, Derived_Type, Derive_Subps);
3675 if Present (Full_View (Parent_Type))
3676 and then not Is_Completion
3677 then
3678 if not In_Open_Scopes (Par_Scope)
3679 or else not In_Same_Source_Unit (N, Parent_Type)
3680 then
3681 -- Swap partial and full views temporarily
3683 Install_Private_Declarations (Par_Scope);
3684 Install_Visible_Declarations (Par_Scope);
3685 Swapped := True;
3686 end if;
3688 -- Subprograms have been derived on the private view,
3689 -- the completion does not derive them anew.
3691 Build_Derived_Record_Type
3692 (Full_Decl, Parent_Type, Full_Der, False);
3694 if Swapped then
3695 Uninstall_Declarations (Par_Scope);
3697 if In_Open_Scopes (Par_Scope) then
3698 Install_Visible_Declarations (Par_Scope);
3699 end if;
3700 end if;
3702 Der_Base := Base_Type (Derived_Type);
3703 Set_Full_View (Derived_Type, Full_Der);
3704 Set_Full_View (Der_Base, Base_Type (Full_Der));
3706 -- Copy the discriminant list from full view to
3707 -- the partial views (base type and its subtype).
3708 -- Gigi requires that the partial and full views
3709 -- have the same discriminants.
3710 -- ??? Note that since the partial view is pointing
3711 -- to discriminants in the full view, their scope
3712 -- will be that of the full view. This might
3713 -- cause some front end problems and need
3714 -- adustment?
3716 Discr := First_Discriminant (Base_Type (Full_Der));
3717 Set_First_Entity (Der_Base, Discr);
3719 loop
3720 Last_Discr := Discr;
3721 Next_Discriminant (Discr);
3722 exit when No (Discr);
3723 end loop;
3725 Set_Last_Entity (Der_Base, Last_Discr);
3727 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
3728 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
3730 else
3731 -- If this is a completion, the derived type stays private
3732 -- and there is no need to create a further full view, except
3733 -- in the unusual case when the derivation is nested within a
3734 -- child unit, see below.
3736 null;
3737 end if;
3739 elsif Present (Full_View (Parent_Type))
3740 and then Has_Discriminants (Full_View (Parent_Type))
3741 then
3742 if Has_Unknown_Discriminants (Parent_Type)
3743 and then Nkind (Subtype_Indication (Type_Definition (N)))
3744 = N_Subtype_Indication
3745 then
3746 Error_Msg_N
3747 ("cannot constrain type with unknown discriminants",
3748 Subtype_Indication (Type_Definition (N)));
3749 return;
3750 end if;
3752 -- If full view of parent is a record type, Build full view as
3753 -- a derivation from the parent's full view. Partial view remains
3754 -- private.
3756 if not Is_Private_Type (Full_View (Parent_Type)) then
3757 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
3758 Chars (Derived_Type));
3759 Set_Is_Itype (Full_Der);
3760 Set_Has_Private_Declaration (Full_Der);
3761 Set_Has_Private_Declaration (Derived_Type);
3762 Set_Associated_Node_For_Itype (Full_Der, N);
3763 Set_Parent (Full_Der, Parent (Derived_Type));
3764 Set_Full_View (Derived_Type, Full_Der);
3766 Full_P := Full_View (Parent_Type);
3767 Exchange_Declarations (Parent_Type);
3768 Copy_And_Build;
3769 Exchange_Declarations (Full_P);
3771 else
3772 Build_Derived_Record_Type
3773 (N, Full_View (Parent_Type), Derived_Type,
3774 Derive_Subps => False);
3775 end if;
3777 -- In any case, the primitive operations are inherited from
3778 -- the parent type, not from the internal full view.
3780 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
3782 if Derive_Subps then
3783 Derive_Subprograms (Parent_Type, Derived_Type);
3784 end if;
3786 else
3787 -- Untagged type, No discriminants on either view
3789 if Nkind (Subtype_Indication (Type_Definition (N)))
3790 = N_Subtype_Indication
3791 then
3792 Error_Msg_N
3793 ("illegal constraint on type without discriminants", N);
3794 end if;
3796 if Present (Discriminant_Specifications (N))
3797 and then Present (Full_View (Parent_Type))
3798 and then not Is_Tagged_Type (Full_View (Parent_Type))
3799 then
3800 Error_Msg_N
3801 ("cannot add discriminants to untagged type", N);
3802 end if;
3804 Set_Girder_Constraint (Derived_Type, No_Elist);
3805 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
3806 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
3807 Set_Has_Controlled_Component
3808 (Derived_Type, Has_Controlled_Component
3809 (Parent_Type));
3811 -- Direct controlled types do not inherit Finalize_Storage_Only flag
3813 if not Is_Controlled (Parent_Type) then
3814 Set_Finalize_Storage_Only
3815 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
3816 end if;
3818 -- Construct the implicit full view by deriving from full
3819 -- view of the parent type. In order to get proper visiblity,
3820 -- we install the parent scope and its declarations.
3822 -- ??? if the parent is untagged private and its
3823 -- completion is tagged, this mechanism will not
3824 -- work because we cannot derive from the tagged
3825 -- full view unless we have an extension
3827 if Present (Full_View (Parent_Type))
3828 and then not Is_Tagged_Type (Full_View (Parent_Type))
3829 and then not Is_Completion
3830 then
3831 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
3832 Chars (Derived_Type));
3833 Set_Is_Itype (Full_Der);
3834 Set_Has_Private_Declaration (Full_Der);
3835 Set_Has_Private_Declaration (Derived_Type);
3836 Set_Associated_Node_For_Itype (Full_Der, N);
3837 Set_Parent (Full_Der, Parent (Derived_Type));
3838 Set_Full_View (Derived_Type, Full_Der);
3840 if not In_Open_Scopes (Par_Scope) then
3841 Install_Private_Declarations (Par_Scope);
3842 Install_Visible_Declarations (Par_Scope);
3843 Copy_And_Build;
3844 Uninstall_Declarations (Par_Scope);
3846 -- If parent scope is open and in another unit, and
3847 -- parent has a completion, then the derivation is taking
3848 -- place in the visible part of a child unit. In that
3849 -- case retrieve the full view of the parent momentarily.
3851 elsif not In_Same_Source_Unit (N, Parent_Type) then
3852 Full_P := Full_View (Parent_Type);
3853 Exchange_Declarations (Parent_Type);
3854 Copy_And_Build;
3855 Exchange_Declarations (Full_P);
3857 -- Otherwise it is a local derivation.
3859 else
3860 Copy_And_Build;
3861 end if;
3863 Set_Scope (Full_Der, Current_Scope);
3864 Set_Is_First_Subtype (Full_Der,
3865 Is_First_Subtype (Derived_Type));
3866 Set_Has_Size_Clause (Full_Der, False);
3867 Set_Has_Alignment_Clause (Full_Der, False);
3868 Set_Next_Entity (Full_Der, Empty);
3869 Set_Has_Delayed_Freeze (Full_Der);
3870 Set_Is_Frozen (Full_Der, False);
3871 Set_Freeze_Node (Full_Der, Empty);
3872 Set_Depends_On_Private (Full_Der,
3873 Has_Private_Component (Full_Der));
3874 Set_Public_Status (Full_Der);
3875 end if;
3876 end if;
3878 Set_Has_Unknown_Discriminants (Derived_Type,
3879 Has_Unknown_Discriminants (Parent_Type));
3881 if Is_Private_Type (Derived_Type) then
3882 Set_Private_Dependents (Derived_Type, New_Elmt_List);
3883 end if;
3885 if Is_Private_Type (Parent_Type)
3886 and then Base_Type (Parent_Type) = Parent_Type
3887 and then In_Open_Scopes (Scope (Parent_Type))
3888 then
3889 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
3891 if Is_Child_Unit (Scope (Current_Scope))
3892 and then Is_Completion
3893 and then In_Private_Part (Current_Scope)
3894 and then Scope (Parent_Type) /= Current_Scope
3895 then
3896 -- This is the unusual case where a type completed by a private
3897 -- derivation occurs within a package nested in a child unit,
3898 -- and the parent is declared in an ancestor. In this case, the
3899 -- full view of the parent type will become visible in the body
3900 -- of the enclosing child, and only then will the current type
3901 -- be possibly non-private. We build a underlying full view that
3902 -- will be installed when the enclosing child body is compiled.
3904 declare
3905 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
3907 begin
3908 Full_Der :=
3909 Make_Defining_Identifier (Sloc (Derived_Type),
3910 Chars (Derived_Type));
3911 Set_Is_Itype (Full_Der);
3912 Set_Itype (IR, Full_Der);
3913 Insert_After (N, IR);
3915 -- The full view will be used to swap entities on entry/exit
3916 -- to the body, and must appear in the entity list for the
3917 -- package.
3919 Append_Entity (Full_Der, Scope (Derived_Type));
3920 Set_Has_Private_Declaration (Full_Der);
3921 Set_Has_Private_Declaration (Derived_Type);
3922 Set_Associated_Node_For_Itype (Full_Der, N);
3923 Set_Parent (Full_Der, Parent (Derived_Type));
3924 Full_P := Full_View (Parent_Type);
3925 Exchange_Declarations (Parent_Type);
3926 Copy_And_Build;
3927 Exchange_Declarations (Full_P);
3928 Set_Underlying_Full_View (Derived_Type, Full_Der);
3929 end;
3930 end if;
3931 end if;
3932 end Build_Derived_Private_Type;
3934 -------------------------------
3935 -- Build_Derived_Record_Type --
3936 -------------------------------
3938 -- 1. INTRODUCTION.
3940 -- Ideally we would like to use the same model of type derivation for
3941 -- tagged and untagged record types. Unfortunately this is not quite
3942 -- possible because the semantics of representation clauses is different
3943 -- for tagged and untagged records under inheritance. Consider the
3944 -- following:
3946 -- type R (...) is [tagged] record ... end record;
3947 -- type T (...) is new R (...) [with ...];
3949 -- The representation clauses of T can specify a completely different
3950 -- record layout from R's. Hence the same component can be placed in
3951 -- two very different positions in objects of type T and R. If R and T
3952 -- are tagged types, representation clauses for T can only specify the
3953 -- layout of non inherited components, thus components that are common
3954 -- in R and T have the same position in objects of type R and T.
3956 -- This has two implications. The first is that the entire tree for R's
3957 -- declaration needs to be copied for T in the untagged case, so that
3958 -- T can be viewd as a record type of its own with its own derivation
3959 -- clauses. The second implication is the way we handle discriminants.
3960 -- Specifically, in the untagged case we need a way to communicate to Gigi
3961 -- what are the real discriminants in the record, while for the semantics
3962 -- we need to consider those introduced by the user to rename the
3963 -- discriminants in the parent type. This is handled by introducing the
3964 -- notion of girder discriminants. See below for more.
3966 -- Fortunately the way regular components are inherited can be handled in
3967 -- the same way in tagged and untagged types.
3969 -- To complicate things a bit more the private view of a private extension
3970 -- cannot be handled in the same way as the full view (for one thing the
3971 -- semantic rules are somewhat different). We will explain what differs
3972 -- below.
3974 -- 2. DISCRIMINANTS UNDER INHERITANCE.
3976 -- The semantic rules governing the discriminants of derived types are
3977 -- quite subtle.
3979 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
3980 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
3982 -- If parent type has discriminants, then the discriminants that are
3983 -- declared in the derived type are [3.4 (11)]:
3985 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
3986 -- there is one;
3988 -- o Otherwise, each discriminant of the parent type (implicitly
3989 -- declared in the same order with the same specifications). In this
3990 -- case, the discriminants are said to be "inherited", or if unknown in
3991 -- the parent are also unknown in the derived type.
3993 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
3995 -- o The parent subtype shall be constrained;
3997 -- o If the parent type is not a tagged type, then each discriminant of
3998 -- the derived type shall be used in the constraint defining a parent
3999 -- subtype [Implementation note: this ensures that the new discriminant
4000 -- can share storage with an existing discriminant.].
4002 -- For the derived type each discriminant of the parent type is either
4003 -- inherited, constrained to equal some new discriminant of the derived
4004 -- type, or constrained to the value of an expression.
4006 -- When inherited or constrained to equal some new discriminant, the
4007 -- parent discriminant and the discriminant of the derived type are said
4008 -- to "correspond".
4010 -- If a discriminant of the parent type is constrained to a specific value
4011 -- in the derived type definition, then the discriminant is said to be
4012 -- "specified" by that derived type definition.
4014 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES.
4016 -- We have spoken about girder discriminants in the point 1 (introduction)
4017 -- above. There are two sort of girder discriminants: implicit and
4018 -- explicit. As long as the derived type inherits the same discriminants as
4019 -- the root record type, girder discriminants are the same as regular
4020 -- discriminants, and are said to be implicit. However, if any discriminant
4021 -- in the root type was renamed in the derived type, then the derived
4022 -- type will contain explicit girder discriminants. Explicit girder
4023 -- discriminants are discriminants in addition to the semantically visible
4024 -- discriminants defined for the derived type. Girder discriminants are
4025 -- used by Gigi to figure out what are the physical discriminants in
4026 -- objects of the derived type (see precise definition in einfo.ads).
4027 -- As an example, consider the following:
4029 -- type R (D1, D2, D3 : Int) is record ... end record;
4030 -- type T1 is new R;
4031 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
4032 -- type T3 is new T2;
4033 -- type T4 (Y : Int) is new T3 (Y, 99);
4035 -- The following table summarizes the discriminants and girder
4036 -- discriminants in R and T1 through T4.
4038 -- Type Discrim Girder Discrim Comment
4039 -- R (D1, D2, D3) (D1, D2, D3) Gider discrims are implicit in R
4040 -- T1 (D1, D2, D3) (D1, D2, D3) Gider discrims are implicit in T1
4041 -- T2 (X1, X2) (D1, D2, D3) Gider discrims are EXPLICIT in T2
4042 -- T3 (X1, X2) (D1, D2, D3) Gider discrims are EXPLICIT in T3
4043 -- T4 (Y) (D1, D2, D3) Gider discrims are EXPLICIT in T4
4045 -- Field Corresponding_Discriminant (abbreviated CD below) allows to find
4046 -- the corresponding discriminant in the parent type, while
4047 -- Original_Record_Component (abbreviated ORC below), the actual physical
4048 -- component that is renamed. Finally the field Is_Completely_Hidden
4049 -- (abbreaviated ICH below) is set for all explicit girder discriminants
4050 -- (see einfo.ads for more info). For the above example this gives:
4052 -- Discrim CD ORC ICH
4053 -- ^^^^^^^ ^^ ^^^ ^^^
4054 -- D1 in R empty itself no
4055 -- D2 in R empty itself no
4056 -- D3 in R empty itself no
4058 -- D1 in T1 D1 in R itself no
4059 -- D2 in T1 D2 in R itself no
4060 -- D3 in T1 D3 in R itself no
4062 -- X1 in T2 D3 in T1 D3 in T2 no
4063 -- X2 in T2 D1 in T1 D1 in T2 no
4064 -- D1 in T2 empty itself yes
4065 -- D2 in T2 empty itself yes
4066 -- D3 in T2 empty itself yes
4068 -- X1 in T3 X1 in T2 D3 in T3 no
4069 -- X2 in T3 X2 in T2 D1 in T3 no
4070 -- D1 in T3 empty itself yes
4071 -- D2 in T3 empty itself yes
4072 -- D3 in T3 empty itself yes
4074 -- Y in T4 X1 in T3 D3 in T3 no
4075 -- D1 in T3 empty itself yes
4076 -- D2 in T3 empty itself yes
4077 -- D3 in T3 empty itself yes
4079 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES.
4081 -- Type derivation for tagged types is fairly straightforward. if no
4082 -- discriminants are specified by the derived type, these are inherited
4083 -- from the parent. No explicit girder discriminants are ever necessary.
4084 -- The only manipulation that is done to the tree is that of adding a
4085 -- _parent field with parent type and constrained to the same constraint
4086 -- specified for the parent in the derived type definition. For instance:
4088 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
4089 -- type T1 is new R with null record;
4090 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
4092 -- are changed into :
4094 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
4095 -- _parent : R (D1, D2, D3);
4096 -- end record;
4098 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
4099 -- _parent : T1 (X2, 88, X1);
4100 -- end record;
4102 -- The discriminants actually present in R, T1 and T2 as well as their CD,
4103 -- ORC and ICH fields are:
4105 -- Discrim CD ORC ICH
4106 -- ^^^^^^^ ^^ ^^^ ^^^
4107 -- D1 in R empty itself no
4108 -- D2 in R empty itself no
4109 -- D3 in R empty itself no
4111 -- D1 in T1 D1 in R D1 in R no
4112 -- D2 in T1 D2 in R D2 in R no
4113 -- D3 in T1 D3 in R D3 in R no
4115 -- X1 in T2 D3 in T1 D3 in R no
4116 -- X2 in T2 D1 in T1 D1 in R no
4118 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS.
4120 -- Regardless of whether we dealing with a tagged or untagged type
4121 -- we will transform all derived type declarations of the form
4123 -- type T is new R (...) [with ...];
4124 -- or
4125 -- subtype S is R (...);
4126 -- type T is new S [with ...];
4127 -- into
4128 -- type BT is new R [with ...];
4129 -- subtype T is BT (...);
4131 -- That is, the base derived type is constrained only if it has no
4132 -- discriminants. The reason for doing this is that GNAT's semantic model
4133 -- assumes that a base type with discriminants is unconstrained.
4135 -- Note that, strictly speaking, the above transformation is not always
4136 -- correct. Consider for instance the following exercpt from ACVC b34011a:
4138 -- procedure B34011A is
4139 -- type REC (D : integer := 0) is record
4140 -- I : Integer;
4141 -- end record;
4143 -- package P is
4144 -- type T6 is new Rec;
4145 -- function F return T6;
4146 -- end P;
4148 -- use P;
4149 -- package Q6 is
4150 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
4151 -- end Q6;
4153 -- The definition of Q6.U is illegal. However transforming Q6.U into
4155 -- type BaseU is new T6;
4156 -- subtype U is BaseU (Q6.F.I)
4158 -- turns U into a legal subtype, which is incorrect. To avoid this problem
4159 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
4160 -- the transformation described above.
4162 -- There is another instance where the above transformation is incorrect.
4163 -- Consider:
4165 -- package Pack is
4166 -- type Base (D : Integer) is tagged null record;
4167 -- procedure P (X : Base);
4169 -- type Der is new Base (2) with null record;
4170 -- procedure P (X : Der);
4171 -- end Pack;
4173 -- Then the above transformation turns this into
4175 -- type Der_Base is new Base with null record;
4176 -- -- procedure P (X : Base) is implicitly inherited here
4177 -- -- as procedure P (X : Der_Base).
4179 -- subtype Der is Der_Base (2);
4180 -- procedure P (X : Der);
4181 -- -- The overriding of P (X : Der_Base) is illegal since we
4182 -- -- have a parameter conformance problem.
4184 -- To get around this problem, after having semantically processed Der_Base
4185 -- and the rewritten subtype declaration for Der, we copy Der_Base field
4186 -- Discriminant_Constraint from Der so that when parameter conformance is
4187 -- checked when P is overridden, no sematic errors are flagged.
4189 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS.
4191 -- Regardless of the fact that we dealing with a tagged or untagged type
4192 -- we will transform all derived type declarations of the form
4194 -- type R (D1, .., Dn : ...) is [tagged] record ...;
4195 -- type T is new R [with ...];
4196 -- into
4197 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
4199 -- The reason for such transformation is that it allows us to implement a
4200 -- very clean form of component inheritance as explained below.
4202 -- Note that this transformation is not achieved by direct tree rewriting
4203 -- and manipulation, but rather by redoing the semantic actions that the
4204 -- above transformation will entail. This is done directly in routine
4205 -- Inherit_Components.
4207 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE.
4209 -- In both tagged and untagged derived types, regular non discriminant
4210 -- components are inherited in the derived type from the parent type. In
4211 -- the absence of discriminants component, inheritance is straightforward
4212 -- as components can simply be copied from the parent.
4213 -- If the parent has discriminants, inheriting components constrained with
4214 -- these discriminants requires caution. Consider the following example:
4216 -- type R (D1, D2 : Positive) is [tagged] record
4217 -- S : String (D1 .. D2);
4218 -- end record;
4220 -- type T1 is new R [with null record];
4221 -- type T2 (X : positive) is new R (1, X) [with null record];
4223 -- As explained in 6. above, T1 is rewritten as
4225 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
4227 -- which makes the treatment for T1 and T2 identical.
4229 -- What we want when inheriting S, is that references to D1 and D2 in R are
4230 -- replaced with references to their correct constraints, ie D1 and D2 in
4231 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
4232 -- with either discriminant references in the derived type or expressions.
4233 -- This replacement is acheived as follows: before inheriting R's
4234 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
4235 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
4236 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
4237 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
4238 -- by String (1 .. X).
4240 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS.
4242 -- We explain here the rules governing private type extensions relevant to
4243 -- type derivation. These rules are explained on the following example:
4245 -- type D [(...)] is new A [(...)] with private; <-- partial view
4246 -- type D [(...)] is new P [(...)] with null record; <-- full view
4248 -- Type A is called the ancestor subtype of the private extension.
4249 -- Type P is the parent type of the full view of the private extension. It
4250 -- must be A or a type derived from A.
4252 -- The rules concerning the discriminants of private type extensions are
4253 -- [7.3(10-13)]:
4255 -- o If a private extension inherits known discriminants from the ancestor
4256 -- subtype, then the full view shall also inherit its discriminants from
4257 -- the ancestor subtype and the parent subtype of the full view shall be
4258 -- constrained if and only if the ancestor subtype is constrained.
4260 -- o If a partial view has unknown discriminants, then the full view may
4261 -- define a definite or an indefinite subtype, with or without
4262 -- discriminants.
4264 -- o If a partial view has neither known nor unknown discriminants, then
4265 -- the full view shall define a definite subtype.
4267 -- o If the ancestor subtype of a private extension has constrained
4268 -- discrimiants, then the parent subtype of the full view shall impose a
4269 -- statically matching constraint on those discriminants.
4271 -- This means that only the following forms of private extensions are
4272 -- allowed:
4274 -- type D is new A with private; <-- partial view
4275 -- type D is new P with null record; <-- full view
4277 -- If A has no discriminants than P has no discriminants, otherwise P must
4278 -- inherit A's discriminants.
4280 -- type D is new A (...) with private; <-- partial view
4281 -- type D is new P (:::) with null record; <-- full view
4283 -- P must inherit A's discriminants and (...) and (:::) must statically
4284 -- match.
4286 -- subtype A is R (...);
4287 -- type D is new A with private; <-- partial view
4288 -- type D is new P with null record; <-- full view
4290 -- P must have inherited R's discriminants and must be derived from A or
4291 -- any of its subtypes.
4293 -- type D (..) is new A with private; <-- partial view
4294 -- type D (..) is new P [(:::)] with null record; <-- full view
4296 -- No specific constraints on P's discriminants or constraint (:::).
4297 -- Note that A can be unconstrained, but the parent subtype P must either
4298 -- be constrained or (:::) must be present.
4300 -- type D (..) is new A [(...)] with private; <-- partial view
4301 -- type D (..) is new P [(:::)] with null record; <-- full view
4303 -- P's constraints on A's discriminants must statically match those
4304 -- imposed by (...).
4306 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS.
4308 -- The full view of a private extension is handled exactly as described
4309 -- above. The model chose for the private view of a private extension
4310 -- is the same for what concerns discriminants (ie they receive the same
4311 -- treatment as in the tagged case). However, the private view of the
4312 -- private extension always inherits the components of the parent base,
4313 -- without replacing any discriminant reference. Strictly speacking this
4314 -- is incorrect. However, Gigi never uses this view to generate code so
4315 -- this is a purely semantic issue. In theory, a set of transformations
4316 -- similar to those given in 5. and 6. above could be applied to private
4317 -- views of private extensions to have the same model of component
4318 -- inheritance as for non private extensions. However, this is not done
4319 -- because it would further complicate private type processing.
4320 -- Semantically speaking, this leaves us in an uncomfortable
4321 -- situation. As an example consider:
4323 -- package Pack is
4324 -- type R (D : integer) is tagged record
4325 -- S : String (1 .. D);
4326 -- end record;
4327 -- procedure P (X : R);
4328 -- type T is new R (1) with private;
4329 -- private
4330 -- type T is new R (1) with null record;
4331 -- end;
4333 -- This is transformed into:
4335 -- package Pack is
4336 -- type R (D : integer) is tagged record
4337 -- S : String (1 .. D);
4338 -- end record;
4339 -- procedure P (X : R);
4340 -- type T is new R (1) with private;
4341 -- private
4342 -- type BaseT is new R with null record;
4343 -- subtype T is BaseT (1);
4344 -- end;
4346 -- (strictly speaking the above is incorrect Ada).
4348 -- From the semantic standpoint the private view of private extension T
4349 -- should be flagged as constrained since one can clearly have
4351 -- Obj : T;
4353 -- in a unit withing Pack. However, when deriving subprograms for the
4354 -- private view of private extension T, T must be seen as unconstrained
4355 -- since T has discriminants (this is a constraint of the current
4356 -- subprogram derivation model). Thus, when processing the private view of
4357 -- a private extension such as T, we first mark T as unconstrained, we
4358 -- process it, we perform program derivation and just before returning from
4359 -- Build_Derived_Record_Type we mark T as constrained.
4360 -- ??? Are there are other unconfortable cases that we will have to
4361 -- deal with.
4363 -- 10. RECORD_TYPE_WITH_PRIVATE complications.
4365 -- Types that are derived from a visible record type and have a private
4366 -- extension present other peculiarities. They behave mostly like private
4367 -- types, but if they have primitive operations defined, these will not
4368 -- have the proper signatures for further inheritance, because other
4369 -- primitive operations will use the implicit base that we define for
4370 -- private derivations below. This affect subprogram inheritance (see
4371 -- Derive_Subprograms for details). We also derive the implicit base from
4372 -- the base type of the full view, so that the implicit base is a record
4373 -- type and not another private type, This avoids infinite loops.
4375 procedure Build_Derived_Record_Type
4376 (N : Node_Id;
4377 Parent_Type : Entity_Id;
4378 Derived_Type : Entity_Id;
4379 Derive_Subps : Boolean := True)
4381 Loc : constant Source_Ptr := Sloc (N);
4382 Parent_Base : Entity_Id;
4384 Type_Def : Node_Id;
4385 Indic : Node_Id;
4387 Discrim : Entity_Id;
4388 Last_Discrim : Entity_Id;
4389 Constrs : Elist_Id;
4390 Discs : Elist_Id := New_Elmt_List;
4391 -- An empty Discs list means that there were no constraints in the
4392 -- subtype indication or that there was an error processing it.
4394 Assoc_List : Elist_Id;
4395 New_Discrs : Elist_Id;
4397 New_Base : Entity_Id;
4398 New_Decl : Node_Id;
4399 New_Indic : Node_Id;
4401 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
4402 Discriminant_Specs : constant Boolean :=
4403 Present (Discriminant_Specifications (N));
4404 Private_Extension : constant Boolean :=
4405 (Nkind (N) = N_Private_Extension_Declaration);
4407 Constraint_Present : Boolean;
4408 Inherit_Discrims : Boolean := False;
4410 Save_Etype : Entity_Id;
4411 Save_Discr_Constr : Elist_Id;
4412 Save_Next_Entity : Entity_Id;
4414 begin
4415 if Ekind (Parent_Type) = E_Record_Type_With_Private
4416 and then Present (Full_View (Parent_Type))
4417 and then Has_Discriminants (Parent_Type)
4418 then
4419 Parent_Base := Base_Type (Full_View (Parent_Type));
4420 else
4421 Parent_Base := Base_Type (Parent_Type);
4422 end if;
4424 -- Before we start the previously documented transformations, here is
4425 -- a little fix for size and alignment of tagged types. Normally when
4426 -- we derive type D from type P, we copy the size and alignment of P
4427 -- as the default for D, and in the absence of explicit representation
4428 -- clauses for D, the size and alignment are indeed the same as the
4429 -- parent.
4431 -- But this is wrong for tagged types, since fields may be added,
4432 -- and the default size may need to be larger, and the default
4433 -- alignment may need to be larger.
4435 -- We therefore reset the size and alignment fields in the tagged
4436 -- case. Note that the size and alignment will in any case be at
4437 -- least as large as the parent type (since the derived type has
4438 -- a copy of the parent type in the _parent field)
4440 if Is_Tagged then
4441 Init_Size_Align (Derived_Type);
4442 end if;
4444 -- STEP 0a: figure out what kind of derived type declaration we have.
4446 if Private_Extension then
4447 Type_Def := N;
4448 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
4450 else
4451 Type_Def := Type_Definition (N);
4453 -- Ekind (Parent_Base) in not necessarily E_Record_Type since
4454 -- Parent_Base can be a private type or private extension. However,
4455 -- for tagged types with an extension the newly added fields are
4456 -- visible and hence the Derived_Type is always an E_Record_Type.
4457 -- (except that the parent may have its own private fields).
4458 -- For untagged types we preserve the Ekind of the Parent_Base.
4460 if Present (Record_Extension_Part (Type_Def)) then
4461 Set_Ekind (Derived_Type, E_Record_Type);
4462 else
4463 Set_Ekind (Derived_Type, Ekind (Parent_Base));
4464 end if;
4465 end if;
4467 -- Indic can either be an N_Identifier if the subtype indication
4468 -- contains no constraint or an N_Subtype_Indication if the subtype
4469 -- indication has a constraint.
4471 Indic := Subtype_Indication (Type_Def);
4472 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
4474 if Constraint_Present then
4475 if not Has_Discriminants (Parent_Base) then
4476 Error_Msg_N
4477 ("invalid constraint: type has no discriminant",
4478 Constraint (Indic));
4480 Constraint_Present := False;
4481 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
4483 elsif Is_Constrained (Parent_Type) then
4484 Error_Msg_N
4485 ("invalid constraint: parent type is already constrained",
4486 Constraint (Indic));
4488 Constraint_Present := False;
4489 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
4490 end if;
4491 end if;
4493 -- STEP 0b: If needed, apply transformation given in point 5. above.
4495 if not Private_Extension
4496 and then Has_Discriminants (Parent_Type)
4497 and then not Discriminant_Specs
4498 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
4499 then
4500 -- First, we must analyze the constraint (see comment in point 5.).
4502 if Constraint_Present then
4503 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
4505 if Has_Discriminants (Derived_Type)
4506 and then Has_Private_Declaration (Derived_Type)
4507 and then Present (Discriminant_Constraint (Derived_Type))
4508 then
4509 -- Verify that constraints of the full view conform to those
4510 -- given in partial view.
4512 declare
4513 C1, C2 : Elmt_Id;
4515 begin
4516 C1 := First_Elmt (New_Discrs);
4517 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
4519 while Present (C1) and then Present (C2) loop
4520 if not
4521 Fully_Conformant_Expressions (Node (C1), Node (C2))
4522 then
4523 Error_Msg_N (
4524 "constraint not conformant to previous declaration",
4525 Node (C1));
4526 end if;
4527 Next_Elmt (C1);
4528 Next_Elmt (C2);
4529 end loop;
4530 end;
4531 end if;
4532 end if;
4534 -- Insert and analyze the declaration for the unconstrained base type
4536 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
4538 New_Decl :=
4539 Make_Full_Type_Declaration (Loc,
4540 Defining_Identifier => New_Base,
4541 Type_Definition =>
4542 Make_Derived_Type_Definition (Loc,
4543 Abstract_Present => Abstract_Present (Type_Def),
4544 Subtype_Indication =>
4545 New_Occurrence_Of (Parent_Base, Loc),
4546 Record_Extension_Part =>
4547 Relocate_Node (Record_Extension_Part (Type_Def))));
4549 Set_Parent (New_Decl, Parent (N));
4550 Mark_Rewrite_Insertion (New_Decl);
4551 Insert_Before (N, New_Decl);
4553 -- Note that this call passes False for the Derive_Subps
4554 -- parameter because subprogram derivation is deferred until
4555 -- after creating the subtype (see below).
4557 Build_Derived_Type
4558 (New_Decl, Parent_Base, New_Base,
4559 Is_Completion => True, Derive_Subps => False);
4561 -- ??? This needs re-examination to determine whether the
4562 -- above call can simply be replaced by a call to Analyze.
4564 Set_Analyzed (New_Decl);
4566 -- Insert and analyze the declaration for the constrained subtype
4568 if Constraint_Present then
4569 New_Indic :=
4570 Make_Subtype_Indication (Loc,
4571 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
4572 Constraint => Relocate_Node (Constraint (Indic)));
4574 else
4575 declare
4576 Expr : Node_Id;
4577 Constr_List : List_Id := New_List;
4578 C : Elmt_Id;
4580 begin
4581 C := First_Elmt (Discriminant_Constraint (Parent_Type));
4582 while Present (C) loop
4583 Expr := Node (C);
4585 -- It is safe here to call New_Copy_Tree since
4586 -- Force_Evaluation was called on each constraint in
4587 -- Build_Discriminant_Constraints.
4589 Append (New_Copy_Tree (Expr), To => Constr_List);
4591 Next_Elmt (C);
4592 end loop;
4594 New_Indic :=
4595 Make_Subtype_Indication (Loc,
4596 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
4597 Constraint =>
4598 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
4599 end;
4600 end if;
4602 Rewrite (N,
4603 Make_Subtype_Declaration (Loc,
4604 Defining_Identifier => Derived_Type,
4605 Subtype_Indication => New_Indic));
4607 Analyze (N);
4609 -- Derivation of subprograms must be delayed until the
4610 -- full subtype has been established to ensure proper
4611 -- overriding of subprograms inherited by full types.
4612 -- If the derivations occurred as part of the call to
4613 -- Build_Derived_Type above, then the check for type
4614 -- conformance would fail because earlier primitive
4615 -- subprograms could still refer to the full type prior
4616 -- the change to the new subtype and hence wouldn't
4617 -- match the new base type created here.
4619 Derive_Subprograms (Parent_Type, Derived_Type);
4621 -- For tagged types the Discriminant_Constraint of the new base itype
4622 -- is inherited from the first subtype so that no subtype conformance
4623 -- problem arise when the first subtype overrides primitive
4624 -- operations inherited by the implicit base type.
4626 if Is_Tagged then
4627 Set_Discriminant_Constraint
4628 (New_Base, Discriminant_Constraint (Derived_Type));
4629 end if;
4631 return;
4632 end if;
4634 -- If we get here Derived_Type will have no discriminants or it will be
4635 -- a discriminated unconstrained base type.
4637 -- STEP 1a: perform preliminary actions/checks for derived tagged types
4639 if Is_Tagged then
4640 -- The parent type is frozen for non-private extensions (RM 13.14(7))
4642 if not Private_Extension then
4643 Freeze_Before (N, Parent_Type);
4644 end if;
4646 if Type_Access_Level (Derived_Type) /= Type_Access_Level (Parent_Type)
4647 and then not Is_Generic_Type (Derived_Type)
4648 then
4649 if Is_Controlled (Parent_Type) then
4650 Error_Msg_N
4651 ("controlled type must be declared at the library level",
4652 Indic);
4653 else
4654 Error_Msg_N
4655 ("type extension at deeper accessibility level than parent",
4656 Indic);
4657 end if;
4659 else
4660 declare
4661 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
4663 begin
4664 if Present (GB)
4665 and then GB /= Enclosing_Generic_Body (Parent_Base)
4666 then
4667 Error_Msg_N
4668 ("parent type must not be outside generic body",
4669 Indic);
4670 end if;
4671 end;
4672 end if;
4673 end if;
4675 -- STEP 1b : preliminary cleanup of the full view of private types
4677 -- If the type is already marked as having discriminants, then it's the
4678 -- completion of a private type or private extension and we need to
4679 -- retain the discriminants from the partial view if the current
4680 -- declaration has Discriminant_Specifications so that we can verify
4681 -- conformance. However, we must remove any existing components that
4682 -- were inherited from the parent (and attached in Copy_Private_To_Full)
4683 -- because the full type inherits all appropriate components anyway, and
4684 -- we don't want the partial view's components interfering.
4686 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
4687 Discrim := First_Discriminant (Derived_Type);
4688 loop
4689 Last_Discrim := Discrim;
4690 Next_Discriminant (Discrim);
4691 exit when No (Discrim);
4692 end loop;
4694 Set_Last_Entity (Derived_Type, Last_Discrim);
4696 -- In all other cases wipe out the list of inherited components (even
4697 -- inherited discriminants), it will be properly rebuilt here.
4699 else
4700 Set_First_Entity (Derived_Type, Empty);
4701 Set_Last_Entity (Derived_Type, Empty);
4702 end if;
4704 -- STEP 1c: Initialize some flags for the Derived_Type
4706 -- The following flags must be initialized here so that
4707 -- Process_Discriminants can check that discriminants of tagged types
4708 -- do not have a default initial value and that access discriminants
4709 -- are only specified for limited records. For completeness, these
4710 -- flags are also initialized along with all the other flags below.
4712 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
4713 Set_Is_Limited_Record (Derived_Type, Is_Limited_Record (Parent_Type));
4715 -- STEP 2a: process discriminants of derived type if any.
4717 New_Scope (Derived_Type);
4719 if Discriminant_Specs then
4720 Set_Has_Unknown_Discriminants (Derived_Type, False);
4722 -- The following call initializes fields Has_Discriminants and
4723 -- Discriminant_Constraint, unless we are processing the completion
4724 -- of a private type declaration.
4726 Check_Or_Process_Discriminants (N, Derived_Type);
4728 -- For non-tagged types the constraint on the Parent_Type must be
4729 -- present and is used to rename the discriminants.
4731 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
4732 Error_Msg_N ("untagged parent must have discriminants", Indic);
4734 elsif not Is_Tagged and then not Constraint_Present then
4735 Error_Msg_N
4736 ("discriminant constraint needed for derived untagged records",
4737 Indic);
4739 -- Otherwise the parent subtype must be constrained unless we have a
4740 -- private extension.
4742 elsif not Constraint_Present
4743 and then not Private_Extension
4744 and then not Is_Constrained (Parent_Type)
4745 then
4746 Error_Msg_N
4747 ("unconstrained type not allowed in this context", Indic);
4749 elsif Constraint_Present then
4750 -- The following call sets the field Corresponding_Discriminant
4751 -- for the discriminants in the Derived_Type.
4753 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
4755 -- For untagged types all new discriminants must rename
4756 -- discriminants in the parent. For private extensions new
4757 -- discriminants cannot rename old ones (implied by [7.3(13)]).
4759 Discrim := First_Discriminant (Derived_Type);
4761 while Present (Discrim) loop
4762 if not Is_Tagged
4763 and then not Present (Corresponding_Discriminant (Discrim))
4764 then
4765 Error_Msg_N
4766 ("new discriminants must constrain old ones", Discrim);
4768 elsif Private_Extension
4769 and then Present (Corresponding_Discriminant (Discrim))
4770 then
4771 Error_Msg_N
4772 ("Only static constraints allowed for parent"
4773 & " discriminants in the partial view", Indic);
4775 exit;
4776 end if;
4778 -- If a new discriminant is used in the constraint,
4779 -- then its subtype must be statically compatible
4780 -- with the parent discriminant's subtype (3.7(15)).
4782 if Present (Corresponding_Discriminant (Discrim))
4783 and then
4784 not Subtypes_Statically_Compatible
4785 (Etype (Discrim),
4786 Etype (Corresponding_Discriminant (Discrim)))
4787 then
4788 Error_Msg_N
4789 ("subtype must be compatible with parent discriminant",
4790 Discrim);
4791 end if;
4793 Next_Discriminant (Discrim);
4794 end loop;
4795 end if;
4797 -- STEP 2b: No new discriminants, inherit discriminants if any
4799 else
4800 if Private_Extension then
4801 Set_Has_Unknown_Discriminants
4802 (Derived_Type, Has_Unknown_Discriminants (Parent_Type)
4803 or else Unknown_Discriminants_Present (N));
4804 else
4805 Set_Has_Unknown_Discriminants
4806 (Derived_Type, Has_Unknown_Discriminants (Parent_Type));
4807 end if;
4809 if not Has_Unknown_Discriminants (Derived_Type)
4810 and then Has_Discriminants (Parent_Type)
4811 then
4812 Inherit_Discrims := True;
4813 Set_Has_Discriminants
4814 (Derived_Type, True);
4815 Set_Discriminant_Constraint
4816 (Derived_Type, Discriminant_Constraint (Parent_Base));
4817 end if;
4819 -- The following test is true for private types (remember
4820 -- transformation 5. is not applied to those) and in an error
4821 -- situation.
4823 if Constraint_Present then
4824 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
4825 end if;
4827 -- For now mark a new derived type as cosntrained only if it has no
4828 -- discriminants. At the end of Build_Derived_Record_Type we properly
4829 -- set this flag in the case of private extensions. See comments in
4830 -- point 9. just before body of Build_Derived_Record_Type.
4832 Set_Is_Constrained
4833 (Derived_Type,
4834 not (Inherit_Discrims
4835 or else Has_Unknown_Discriminants (Derived_Type)));
4836 end if;
4838 -- STEP 3: initialize fields of derived type.
4840 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
4841 Set_Girder_Constraint (Derived_Type, No_Elist);
4843 -- Fields inherited from the Parent_Type
4845 Set_Discard_Names
4846 (Derived_Type, Einfo.Discard_Names (Parent_Type));
4847 Set_Has_Specified_Layout
4848 (Derived_Type, Has_Specified_Layout (Parent_Type));
4849 Set_Is_Limited_Composite
4850 (Derived_Type, Is_Limited_Composite (Parent_Type));
4851 Set_Is_Limited_Record
4852 (Derived_Type, Is_Limited_Record (Parent_Type));
4853 Set_Is_Private_Composite
4854 (Derived_Type, Is_Private_Composite (Parent_Type));
4856 -- Fields inherited from the Parent_Base
4858 Set_Has_Controlled_Component
4859 (Derived_Type, Has_Controlled_Component (Parent_Base));
4860 Set_Has_Non_Standard_Rep
4861 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
4862 Set_Has_Primitive_Operations
4863 (Derived_Type, Has_Primitive_Operations (Parent_Base));
4865 -- Direct controlled types do not inherit Finalize_Storage_Only flag
4867 if not Is_Controlled (Parent_Type) then
4868 Set_Finalize_Storage_Only
4869 (Derived_Type, Finalize_Storage_Only (Parent_Type));
4870 end if;
4872 -- Set fields for private derived types.
4874 if Is_Private_Type (Derived_Type) then
4875 Set_Depends_On_Private (Derived_Type, True);
4876 Set_Private_Dependents (Derived_Type, New_Elmt_List);
4878 -- Inherit fields from non private record types. If this is the
4879 -- completion of a derivation from a private type, the parent itself
4880 -- is private, and the attributes come from its full view, which must
4881 -- be present.
4883 else
4884 if Is_Private_Type (Parent_Base)
4885 and then not Is_Record_Type (Parent_Base)
4886 then
4887 Set_Component_Alignment
4888 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
4889 Set_C_Pass_By_Copy
4890 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
4891 else
4892 Set_Component_Alignment
4893 (Derived_Type, Component_Alignment (Parent_Base));
4895 Set_C_Pass_By_Copy
4896 (Derived_Type, C_Pass_By_Copy (Parent_Base));
4897 end if;
4898 end if;
4900 -- Set fields for tagged types.
4902 if Is_Tagged then
4903 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
4905 -- All tagged types defined in Ada.Finalization are controlled
4907 if Chars (Scope (Derived_Type)) = Name_Finalization
4908 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
4909 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
4910 then
4911 Set_Is_Controlled (Derived_Type);
4912 else
4913 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
4914 end if;
4916 Make_Class_Wide_Type (Derived_Type);
4917 Set_Is_Abstract (Derived_Type, Abstract_Present (Type_Def));
4919 if Has_Discriminants (Derived_Type)
4920 and then Constraint_Present
4921 then
4922 Set_Girder_Constraint
4923 (Derived_Type, Expand_To_Girder_Constraint (Parent_Base, Discs));
4924 end if;
4926 else
4927 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
4928 Set_Has_Non_Standard_Rep
4929 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
4930 end if;
4932 -- STEP 4: Inherit components from the parent base and constrain them.
4933 -- Apply the second transformation described in point 6. above.
4935 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
4936 or else not Has_Discriminants (Parent_Type)
4937 or else not Is_Constrained (Parent_Type)
4938 then
4939 Constrs := Discs;
4940 else
4941 Constrs := Discriminant_Constraint (Parent_Type);
4942 end if;
4944 Assoc_List := Inherit_Components (N,
4945 Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
4947 -- STEP 5a: Copy the parent record declaration for untagged types
4949 if not Is_Tagged then
4951 -- Discriminant_Constraint (Derived_Type) has been properly
4952 -- constructed. Save it and temporarily set it to Empty because we do
4953 -- not want the call to New_Copy_Tree below to mess this list.
4955 if Has_Discriminants (Derived_Type) then
4956 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
4957 Set_Discriminant_Constraint (Derived_Type, No_Elist);
4958 else
4959 Save_Discr_Constr := No_Elist;
4960 end if;
4962 -- Save the Etype field of Derived_Type. It is correctly set now, but
4963 -- the call to New_Copy tree may remap it to point to itself, which
4964 -- is not what we want. Ditto for the Next_Entity field.
4966 Save_Etype := Etype (Derived_Type);
4967 Save_Next_Entity := Next_Entity (Derived_Type);
4969 -- Assoc_List maps all girder discriminants in the Parent_Base to
4970 -- girder discriminants in the Derived_Type. It is fundamental that
4971 -- no types or itypes with discriminants other than the girder
4972 -- discriminants appear in the entities declared inside
4973 -- Derived_Type. Gigi won't like it.
4975 New_Decl :=
4976 New_Copy_Tree
4977 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
4979 -- Restore the fields saved prior to the New_Copy_Tree call
4980 -- and compute the girder constraint.
4982 Set_Etype (Derived_Type, Save_Etype);
4983 Set_Next_Entity (Derived_Type, Save_Next_Entity);
4985 if Has_Discriminants (Derived_Type) then
4986 Set_Discriminant_Constraint
4987 (Derived_Type, Save_Discr_Constr);
4988 Set_Girder_Constraint
4989 (Derived_Type, Expand_To_Girder_Constraint (Parent_Base, Discs));
4990 Replace_Components (Derived_Type, New_Decl);
4991 end if;
4993 -- Insert the new derived type declaration
4995 Rewrite (N, New_Decl);
4997 -- STEP 5b: Complete the processing for record extensions in generics
4999 -- There is no completion for record extensions declared in the
5000 -- parameter part of a generic, so we need to complete processing for
5001 -- these generic record extensions here. The call to
5002 -- Record_Type_Definition will change the Ekind of the components
5003 -- from E_Void to E_Component.
5005 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
5006 Record_Type_Definition (Empty, Derived_Type);
5008 -- STEP 5c: Process the record extension for non private tagged types.
5010 elsif not Private_Extension then
5011 -- Add the _parent field in the derived type.
5013 Expand_Derived_Record (Derived_Type, Type_Def);
5015 -- Analyze the record extension
5017 Record_Type_Definition
5018 (Record_Extension_Part (Type_Def), Derived_Type);
5019 end if;
5021 End_Scope;
5023 if Etype (Derived_Type) = Any_Type then
5024 return;
5025 end if;
5027 -- Set delayed freeze and then derive subprograms, we need to do
5028 -- this in this order so that derived subprograms inherit the
5029 -- derived freeze if necessary.
5031 Set_Has_Delayed_Freeze (Derived_Type);
5032 if Derive_Subps then
5033 Derive_Subprograms (Parent_Type, Derived_Type);
5034 end if;
5036 -- If we have a private extension which defines a constrained derived
5037 -- type mark as constrained here after we have derived subprograms. See
5038 -- comment on point 9. just above the body of Build_Derived_Record_Type.
5040 if Private_Extension and then Inherit_Discrims then
5041 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
5042 Set_Is_Constrained (Derived_Type, True);
5043 Set_Discriminant_Constraint (Derived_Type, Discs);
5045 elsif Is_Constrained (Parent_Type) then
5046 Set_Is_Constrained
5047 (Derived_Type, True);
5048 Set_Discriminant_Constraint
5049 (Derived_Type, Discriminant_Constraint (Parent_Type));
5050 end if;
5051 end if;
5053 end Build_Derived_Record_Type;
5055 ------------------------
5056 -- Build_Derived_Type --
5057 ------------------------
5059 procedure Build_Derived_Type
5060 (N : Node_Id;
5061 Parent_Type : Entity_Id;
5062 Derived_Type : Entity_Id;
5063 Is_Completion : Boolean;
5064 Derive_Subps : Boolean := True)
5066 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5068 begin
5069 -- Set common attributes
5071 Set_Scope (Derived_Type, Current_Scope);
5073 Set_Ekind (Derived_Type, Ekind (Parent_Base));
5074 Set_Etype (Derived_Type, Parent_Base);
5075 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
5077 Set_Size_Info (Derived_Type, Parent_Type);
5078 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5079 Set_Convention (Derived_Type, Convention (Parent_Type));
5080 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
5081 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
5083 case Ekind (Parent_Type) is
5084 when Numeric_Kind =>
5085 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
5087 when Array_Kind =>
5088 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
5090 when E_Record_Type
5091 | E_Record_Subtype
5092 | Class_Wide_Kind =>
5093 Build_Derived_Record_Type
5094 (N, Parent_Type, Derived_Type, Derive_Subps);
5095 return;
5097 when Enumeration_Kind =>
5098 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
5100 when Access_Kind =>
5101 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
5103 when Incomplete_Or_Private_Kind =>
5104 Build_Derived_Private_Type
5105 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
5107 -- For discriminated types, the derivation includes deriving
5108 -- primitive operations. For others it is done below.
5110 if Is_Tagged_Type (Parent_Type)
5111 or else Has_Discriminants (Parent_Type)
5112 or else (Present (Full_View (Parent_Type))
5113 and then Has_Discriminants (Full_View (Parent_Type)))
5114 then
5115 return;
5116 end if;
5118 when Concurrent_Kind =>
5119 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
5121 when others =>
5122 raise Program_Error;
5123 end case;
5125 if Etype (Derived_Type) = Any_Type then
5126 return;
5127 end if;
5129 -- Set delayed freeze and then derive subprograms, we need to do
5130 -- this in this order so that derived subprograms inherit the
5131 -- derived freeze if necessary.
5133 Set_Has_Delayed_Freeze (Derived_Type);
5134 if Derive_Subps then
5135 Derive_Subprograms (Parent_Type, Derived_Type);
5136 end if;
5138 Set_Has_Primitive_Operations
5139 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
5140 end Build_Derived_Type;
5142 -----------------------
5143 -- Build_Discriminal --
5144 -----------------------
5146 procedure Build_Discriminal (Discrim : Entity_Id) is
5147 D_Minal : Entity_Id;
5148 CR_Disc : Entity_Id;
5150 begin
5151 -- A discriminal has the same names as the discriminant.
5153 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
5155 Set_Ekind (D_Minal, E_In_Parameter);
5156 Set_Mechanism (D_Minal, Default_Mechanism);
5157 Set_Etype (D_Minal, Etype (Discrim));
5159 Set_Discriminal (Discrim, D_Minal);
5160 Set_Discriminal_Link (D_Minal, Discrim);
5162 -- For task types, build at once the discriminants of the corresponding
5163 -- record, which are needed if discriminants are used in entry defaults
5164 -- and in family bounds.
5166 if Is_Concurrent_Type (Current_Scope)
5167 or else Is_Limited_Type (Current_Scope)
5168 then
5169 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
5171 Set_Ekind (CR_Disc, E_In_Parameter);
5172 Set_Mechanism (CR_Disc, Default_Mechanism);
5173 Set_Etype (CR_Disc, Etype (Discrim));
5174 Set_CR_Discriminant (Discrim, CR_Disc);
5175 end if;
5176 end Build_Discriminal;
5178 ------------------------------------
5179 -- Build_Discriminant_Constraints --
5180 ------------------------------------
5182 function Build_Discriminant_Constraints
5183 (T : Entity_Id;
5184 Def : Node_Id;
5185 Derived_Def : Boolean := False)
5186 return Elist_Id
5188 C : constant Node_Id := Constraint (Def);
5189 Nb_Discr : constant Nat := Number_Discriminants (T);
5190 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
5191 -- Saves the expression corresponding to a given discriminant in T.
5193 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
5194 -- Return the Position number within array Discr_Expr of a discriminant
5195 -- D within the discriminant list of the discriminated type T.
5197 ------------------
5198 -- Pos_Of_Discr --
5199 ------------------
5201 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
5202 Disc : Entity_Id;
5204 begin
5205 Disc := First_Discriminant (T);
5206 for J in Discr_Expr'Range loop
5207 if Disc = D then
5208 return J;
5209 end if;
5211 Next_Discriminant (Disc);
5212 end loop;
5214 -- Note: Since this function is called on discriminants that are
5215 -- known to belong to the discriminated type, falling through the
5216 -- loop with no match signals an internal compiler error.
5218 raise Program_Error;
5219 end Pos_Of_Discr;
5221 -- Variables local to Build_Discriminant_Constraints
5223 Discr : Entity_Id;
5224 E : Entity_Id;
5225 Elist : Elist_Id := New_Elmt_List;
5227 Constr : Node_Id;
5228 Expr : Node_Id;
5229 Id : Node_Id;
5230 Position : Nat;
5231 Found : Boolean;
5233 Discrim_Present : Boolean := False;
5235 -- Start of processing for Build_Discriminant_Constraints
5237 begin
5238 -- The following loop will process positional associations only.
5239 -- For a positional association, the (single) discriminant is
5240 -- implicitly specified by position, in textual order (RM 3.7.2).
5242 Discr := First_Discriminant (T);
5243 Constr := First (Constraints (C));
5245 for D in Discr_Expr'Range loop
5246 exit when Nkind (Constr) = N_Discriminant_Association;
5248 if No (Constr) then
5249 Error_Msg_N ("too few discriminants given in constraint", C);
5250 return New_Elmt_List;
5252 elsif Nkind (Constr) = N_Range
5253 or else (Nkind (Constr) = N_Attribute_Reference
5254 and then
5255 Attribute_Name (Constr) = Name_Range)
5256 then
5257 Error_Msg_N
5258 ("a range is not a valid discriminant constraint", Constr);
5259 Discr_Expr (D) := Error;
5261 else
5262 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
5263 Discr_Expr (D) := Constr;
5264 end if;
5266 Next_Discriminant (Discr);
5267 Next (Constr);
5268 end loop;
5270 if No (Discr) and then Present (Constr) then
5271 Error_Msg_N ("too many discriminants given in constraint", Constr);
5272 return New_Elmt_List;
5273 end if;
5275 -- Named associations can be given in any order, but if both positional
5276 -- and named associations are used in the same discriminant constraint,
5277 -- then positional associations must occur first, at their normal
5278 -- position. Hence once a named association is used, the rest of the
5279 -- discriminant constraint must use only named associations.
5281 while Present (Constr) loop
5283 -- Positional association forbidden after a named association.
5285 if Nkind (Constr) /= N_Discriminant_Association then
5286 Error_Msg_N ("positional association follows named one", Constr);
5287 return New_Elmt_List;
5289 -- Otherwise it is a named association
5291 else
5292 -- E records the type of the discriminants in the named
5293 -- association. All the discriminants specified in the same name
5294 -- association must have the same type.
5296 E := Empty;
5298 -- Search the list of discriminants in T to see if the simple name
5299 -- given in the constraint matches any of them.
5301 Id := First (Selector_Names (Constr));
5302 while Present (Id) loop
5303 Found := False;
5305 -- If Original_Discriminant is present, we are processing a
5306 -- generic instantiation and this is an instance node. We need
5307 -- to find the name of the corresponding discriminant in the
5308 -- actual record type T and not the name of the discriminant in
5309 -- the generic formal. Example:
5311 -- generic
5312 -- type G (D : int) is private;
5313 -- package P is
5314 -- subtype W is G (D => 1);
5315 -- end package;
5316 -- type Rec (X : int) is record ... end record;
5317 -- package Q is new P (G => Rec);
5319 -- At the point of the instantiation, formal type G is Rec
5320 -- and therefore when reanalyzing "subtype W is G (D => 1);"
5321 -- which really looks like "subtype W is Rec (D => 1);" at
5322 -- the point of instantiation, we want to find the discriminant
5323 -- that corresponds to D in Rec, ie X.
5325 if Present (Original_Discriminant (Id)) then
5326 Discr := Find_Corresponding_Discriminant (Id, T);
5327 Found := True;
5329 else
5330 Discr := First_Discriminant (T);
5331 while Present (Discr) loop
5332 if Chars (Discr) = Chars (Id) then
5333 Found := True;
5334 exit;
5335 end if;
5337 Next_Discriminant (Discr);
5338 end loop;
5340 if not Found then
5341 Error_Msg_N ("& does not match any discriminant", Id);
5342 return New_Elmt_List;
5344 -- The following is only useful for the benefit of generic
5345 -- instances but it does not interfere with other
5346 -- processing for the non-generic case so we do it in all
5347 -- cases (for generics this statement is executed when
5348 -- processing the generic definition, see comment at the
5349 -- begining of this if statement).
5351 else
5352 Set_Original_Discriminant (Id, Discr);
5353 end if;
5354 end if;
5356 Position := Pos_Of_Discr (T, Discr);
5358 if Present (Discr_Expr (Position)) then
5359 Error_Msg_N ("duplicate constraint for discriminant&", Id);
5361 else
5362 -- Each discriminant specified in the same named association
5363 -- must be associated with a separate copy of the
5364 -- corresponding expression.
5366 if Present (Next (Id)) then
5367 Expr := New_Copy_Tree (Expression (Constr));
5368 Set_Parent (Expr, Parent (Expression (Constr)));
5369 else
5370 Expr := Expression (Constr);
5371 end if;
5373 Discr_Expr (Position) := Expr;
5374 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
5375 end if;
5377 -- A discriminant association with more than one discriminant
5378 -- name is only allowed if the named discriminants are all of
5379 -- the same type (RM 3.7.1(8)).
5381 if E = Empty then
5382 E := Base_Type (Etype (Discr));
5384 elsif Base_Type (Etype (Discr)) /= E then
5385 Error_Msg_N
5386 ("all discriminants in an association " &
5387 "must have the same type", Id);
5388 end if;
5390 Next (Id);
5391 end loop;
5392 end if;
5394 Next (Constr);
5395 end loop;
5397 -- A discriminant constraint must provide exactly one value for each
5398 -- discriminant of the type (RM 3.7.1(8)).
5400 for J in Discr_Expr'Range loop
5401 if No (Discr_Expr (J)) then
5402 Error_Msg_N ("too few discriminants given in constraint", C);
5403 return New_Elmt_List;
5404 end if;
5405 end loop;
5407 -- Determine if there are discriminant expressions in the constraint.
5409 for J in Discr_Expr'Range loop
5410 if Denotes_Discriminant (Discr_Expr (J)) then
5411 Discrim_Present := True;
5412 end if;
5413 end loop;
5415 -- Build an element list consisting of the expressions given in the
5416 -- discriminant constraint and apply the appropriate range
5417 -- checks. The list is constructed after resolving any named
5418 -- discriminant associations and therefore the expressions appear in
5419 -- the textual order of the discriminants.
5421 Discr := First_Discriminant (T);
5422 for J in Discr_Expr'Range loop
5423 if Discr_Expr (J) /= Error then
5425 Append_Elmt (Discr_Expr (J), Elist);
5427 -- If any of the discriminant constraints is given by a
5428 -- discriminant and we are in a derived type declaration we
5429 -- have a discriminant renaming. Establish link between new
5430 -- and old discriminant.
5432 if Denotes_Discriminant (Discr_Expr (J)) then
5433 if Derived_Def then
5434 Set_Corresponding_Discriminant
5435 (Entity (Discr_Expr (J)), Discr);
5436 end if;
5438 -- Force the evaluation of non-discriminant expressions.
5439 -- If we have found a discriminant in the constraint 3.4(26)
5440 -- and 3.8(18) demand that no range checks are performed are
5441 -- after evaluation. In all other cases perform a range check.
5443 else
5444 if not Discrim_Present then
5445 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
5446 end if;
5448 Force_Evaluation (Discr_Expr (J));
5449 end if;
5451 -- Check that the designated type of an access discriminant's
5452 -- expression is not a class-wide type unless the discriminant's
5453 -- designated type is also class-wide.
5455 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
5456 and then not Is_Class_Wide_Type
5457 (Designated_Type (Etype (Discr)))
5458 and then Etype (Discr_Expr (J)) /= Any_Type
5459 and then Is_Class_Wide_Type
5460 (Designated_Type (Etype (Discr_Expr (J))))
5461 then
5462 Wrong_Type (Discr_Expr (J), Etype (Discr));
5463 end if;
5464 end if;
5466 Next_Discriminant (Discr);
5467 end loop;
5469 return Elist;
5470 end Build_Discriminant_Constraints;
5472 ---------------------------------
5473 -- Build_Discriminated_Subtype --
5474 ---------------------------------
5476 procedure Build_Discriminated_Subtype
5477 (T : Entity_Id;
5478 Def_Id : Entity_Id;
5479 Elist : Elist_Id;
5480 Related_Nod : Node_Id;
5481 For_Access : Boolean := False)
5483 Has_Discrs : constant Boolean := Has_Discriminants (T);
5484 Constrained : constant Boolean
5485 := (Has_Discrs
5486 and then not Is_Empty_Elmt_List (Elist)
5487 and then not Is_Class_Wide_Type (T))
5488 or else Is_Constrained (T);
5490 begin
5491 if Ekind (T) = E_Record_Type then
5492 if For_Access then
5493 Set_Ekind (Def_Id, E_Private_Subtype);
5494 Set_Is_For_Access_Subtype (Def_Id, True);
5495 else
5496 Set_Ekind (Def_Id, E_Record_Subtype);
5497 end if;
5499 elsif Ekind (T) = E_Task_Type then
5500 Set_Ekind (Def_Id, E_Task_Subtype);
5502 elsif Ekind (T) = E_Protected_Type then
5503 Set_Ekind (Def_Id, E_Protected_Subtype);
5505 elsif Is_Private_Type (T) then
5506 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
5508 elsif Is_Class_Wide_Type (T) then
5509 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
5511 else
5512 -- Incomplete type. Attach subtype to list of dependents, to be
5513 -- completed with full view of parent type.
5515 Set_Ekind (Def_Id, Ekind (T));
5516 Append_Elmt (Def_Id, Private_Dependents (T));
5517 end if;
5519 Set_Etype (Def_Id, T);
5520 Init_Size_Align (Def_Id);
5521 Set_Has_Discriminants (Def_Id, Has_Discrs);
5522 Set_Is_Constrained (Def_Id, Constrained);
5524 Set_First_Entity (Def_Id, First_Entity (T));
5525 Set_Last_Entity (Def_Id, Last_Entity (T));
5526 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
5528 if Is_Tagged_Type (T) then
5529 Set_Is_Tagged_Type (Def_Id);
5530 Make_Class_Wide_Type (Def_Id);
5531 end if;
5533 Set_Girder_Constraint (Def_Id, No_Elist);
5535 if Has_Discrs then
5536 Set_Discriminant_Constraint (Def_Id, Elist);
5537 Set_Girder_Constraint_From_Discriminant_Constraint (Def_Id);
5538 end if;
5540 if Is_Tagged_Type (T) then
5541 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
5542 Set_Is_Abstract (Def_Id, Is_Abstract (T));
5543 end if;
5545 -- Subtypes introduced by component declarations do not need to be
5546 -- marked as delayed, and do not get freeze nodes, because the semantics
5547 -- verifies that the parents of the subtypes are frozen before the
5548 -- enclosing record is frozen.
5550 if not Is_Type (Scope (Def_Id)) then
5551 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
5553 if Is_Private_Type (T)
5554 and then Present (Full_View (T))
5555 then
5556 Conditional_Delay (Def_Id, Full_View (T));
5557 else
5558 Conditional_Delay (Def_Id, T);
5559 end if;
5560 end if;
5562 if Is_Record_Type (T) then
5563 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
5565 if Has_Discrs
5566 and then not Is_Empty_Elmt_List (Elist)
5567 and then not For_Access
5568 then
5569 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
5570 elsif not For_Access then
5571 Set_Cloned_Subtype (Def_Id, T);
5572 end if;
5573 end if;
5575 end Build_Discriminated_Subtype;
5577 ------------------------
5578 -- Build_Scalar_Bound --
5579 ------------------------
5581 function Build_Scalar_Bound
5582 (Bound : Node_Id;
5583 Par_T : Entity_Id;
5584 Der_T : Entity_Id)
5585 return Node_Id
5587 New_Bound : Entity_Id;
5589 begin
5590 -- Note: not clear why this is needed, how can the original bound
5591 -- be unanalyzed at this point? and if it is, what business do we
5592 -- have messing around with it? and why is the base type of the
5593 -- parent type the right type for the resolution. It probably is
5594 -- not! It is OK for the new bound we are creating, but not for
5595 -- the old one??? Still if it never happens, no problem!
5597 Analyze_And_Resolve (Bound, Base_Type (Par_T));
5599 if Nkind (Bound) = N_Integer_Literal
5600 or else Nkind (Bound) = N_Real_Literal
5601 then
5602 New_Bound := New_Copy (Bound);
5603 Set_Etype (New_Bound, Der_T);
5604 Set_Analyzed (New_Bound);
5606 elsif Is_Entity_Name (Bound) then
5607 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
5609 -- The following is almost certainly wrong. What business do we have
5610 -- relocating a node (Bound) that is presumably still attached to
5611 -- the tree elsewhere???
5613 else
5614 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
5615 end if;
5617 Set_Etype (New_Bound, Der_T);
5618 return New_Bound;
5619 end Build_Scalar_Bound;
5621 --------------------------------
5622 -- Build_Underlying_Full_View --
5623 --------------------------------
5625 procedure Build_Underlying_Full_View
5626 (N : Node_Id;
5627 Typ : Entity_Id;
5628 Par : Entity_Id)
5630 Loc : constant Source_Ptr := Sloc (N);
5631 Subt : constant Entity_Id :=
5632 Make_Defining_Identifier
5633 (Loc, New_External_Name (Chars (Typ), 'S'));
5635 Constr : Node_Id;
5636 Indic : Node_Id;
5637 C : Node_Id;
5638 Id : Node_Id;
5640 begin
5641 if Nkind (N) = N_Full_Type_Declaration then
5642 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
5644 -- ??? ??? is this assert right, I assume so otherwise Constr
5645 -- would not be defined below (this used to be an elsif)
5647 else pragma Assert (Nkind (N) = N_Subtype_Declaration);
5648 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
5649 end if;
5651 -- If the constraint has discriminant associations, the discriminant
5652 -- entity is already set, but it denotes a discriminant of the new
5653 -- type, not the original parent, so it must be found anew.
5655 C := First (Constraints (Constr));
5657 while Present (C) loop
5659 if Nkind (C) = N_Discriminant_Association then
5660 Id := First (Selector_Names (C));
5662 while Present (Id) loop
5663 Set_Original_Discriminant (Id, Empty);
5664 Next (Id);
5665 end loop;
5666 end if;
5668 Next (C);
5669 end loop;
5671 Indic := Make_Subtype_Declaration (Loc,
5672 Defining_Identifier => Subt,
5673 Subtype_Indication =>
5674 Make_Subtype_Indication (Loc,
5675 Subtype_Mark => New_Reference_To (Par, Loc),
5676 Constraint => New_Copy_Tree (Constr)));
5678 Insert_Before (N, Indic);
5679 Analyze (Indic);
5680 Set_Underlying_Full_View (Typ, Full_View (Subt));
5681 end Build_Underlying_Full_View;
5683 -------------------------------
5684 -- Check_Abstract_Overriding --
5685 -------------------------------
5687 procedure Check_Abstract_Overriding (T : Entity_Id) is
5688 Op_List : Elist_Id;
5689 Elmt : Elmt_Id;
5690 Subp : Entity_Id;
5691 Type_Def : Node_Id;
5693 begin
5694 Op_List := Primitive_Operations (T);
5696 -- Loop to check primitive operations
5698 Elmt := First_Elmt (Op_List);
5699 while Present (Elmt) loop
5700 Subp := Node (Elmt);
5702 -- Special exception, do not complain about failure to
5703 -- override _Input and _Output, since we always provide
5704 -- automatic overridings for these subprograms.
5706 if Is_Abstract (Subp)
5707 and then Chars (Subp) /= Name_uInput
5708 and then Chars (Subp) /= Name_uOutput
5709 and then not Is_Abstract (T)
5710 then
5711 if Present (Alias (Subp)) then
5712 -- Only perform the check for a derived subprogram when
5713 -- the type has an explicit record extension. This avoids
5714 -- incorrectly flagging abstract subprograms for the case
5715 -- of a type without an extension derived from a formal type
5716 -- with a tagged actual (can occur within a private part).
5718 Type_Def := Type_Definition (Parent (T));
5719 if Nkind (Type_Def) = N_Derived_Type_Definition
5720 and then Present (Record_Extension_Part (Type_Def))
5721 then
5722 Error_Msg_NE
5723 ("type must be declared abstract or & overridden",
5724 T, Subp);
5725 end if;
5726 else
5727 Error_Msg_NE
5728 ("abstract subprogram not allowed for type&",
5729 Subp, T);
5730 Error_Msg_NE
5731 ("nonabstract type has abstract subprogram&",
5732 T, Subp);
5733 end if;
5734 end if;
5736 Next_Elmt (Elmt);
5737 end loop;
5738 end Check_Abstract_Overriding;
5740 ------------------------------------------------
5741 -- Check_Access_Discriminant_Requires_Limited --
5742 ------------------------------------------------
5744 procedure Check_Access_Discriminant_Requires_Limited
5745 (D : Node_Id;
5746 Loc : Node_Id)
5748 begin
5749 -- A discriminant_specification for an access discriminant
5750 -- shall appear only in the declaration for a task or protected
5751 -- type, or for a type with the reserved word 'limited' in
5752 -- its definition or in one of its ancestors. (RM 3.7(10))
5754 if Nkind (Discriminant_Type (D)) = N_Access_Definition
5755 and then not Is_Concurrent_Type (Current_Scope)
5756 and then not Is_Concurrent_Record_Type (Current_Scope)
5757 and then not Is_Limited_Record (Current_Scope)
5758 and then Ekind (Current_Scope) /= E_Limited_Private_Type
5759 then
5760 Error_Msg_N
5761 ("access discriminants allowed only for limited types", Loc);
5762 end if;
5763 end Check_Access_Discriminant_Requires_Limited;
5765 -----------------------------------
5766 -- Check_Aliased_Component_Types --
5767 -----------------------------------
5769 procedure Check_Aliased_Component_Types (T : Entity_Id) is
5770 C : Entity_Id;
5772 begin
5773 -- ??? Also need to check components of record extensions,
5774 -- but not components of protected types (which are always
5775 -- limited).
5777 if not Is_Limited_Type (T) then
5778 if Ekind (T) = E_Record_Type then
5779 C := First_Component (T);
5780 while Present (C) loop
5781 if Is_Aliased (C)
5782 and then Has_Discriminants (Etype (C))
5783 and then not Is_Constrained (Etype (C))
5784 and then not In_Instance
5785 then
5786 Error_Msg_N
5787 ("aliased component must be constrained ('R'M 3.6(11))",
5789 end if;
5791 Next_Component (C);
5792 end loop;
5794 elsif Ekind (T) = E_Array_Type then
5795 if Has_Aliased_Components (T)
5796 and then Has_Discriminants (Component_Type (T))
5797 and then not Is_Constrained (Component_Type (T))
5798 and then not In_Instance
5799 then
5800 Error_Msg_N
5801 ("aliased component type must be constrained ('R'M 3.6(11))",
5803 end if;
5804 end if;
5805 end if;
5806 end Check_Aliased_Component_Types;
5808 ----------------------
5809 -- Check_Completion --
5810 ----------------------
5812 procedure Check_Completion (Body_Id : Node_Id := Empty) is
5813 E : Entity_Id;
5815 procedure Post_Error;
5816 -- Post error message for lack of completion for entity E
5818 procedure Post_Error is
5819 begin
5820 if not Comes_From_Source (E) then
5822 if (Ekind (E) = E_Task_Type
5823 or else Ekind (E) = E_Protected_Type)
5824 then
5825 -- It may be an anonymous protected type created for a
5826 -- single variable. Post error on variable, if present.
5828 declare
5829 Var : Entity_Id;
5831 begin
5832 Var := First_Entity (Current_Scope);
5834 while Present (Var) loop
5835 exit when Etype (Var) = E
5836 and then Comes_From_Source (Var);
5838 Next_Entity (Var);
5839 end loop;
5841 if Present (Var) then
5842 E := Var;
5843 end if;
5844 end;
5845 end if;
5846 end if;
5848 -- If a generated entity has no completion, then either previous
5849 -- semantic errors have disabled the expansion phase, or else
5850 -- we had missing subunits, or else we are compiling without expan-
5851 -- sion, or else something is very wrong.
5853 if not Comes_From_Source (E) then
5854 pragma Assert
5855 (Serious_Errors_Detected > 0
5856 or else Subunits_Missing
5857 or else not Expander_Active);
5858 return;
5860 -- Here for source entity
5862 else
5863 -- Here if no body to post the error message, so we post the error
5864 -- on the declaration that has no completion. This is not really
5865 -- the right place to post it, think about this later ???
5867 if No (Body_Id) then
5868 if Is_Type (E) then
5869 Error_Msg_NE
5870 ("missing full declaration for }", Parent (E), E);
5871 else
5872 Error_Msg_NE
5873 ("missing body for &", Parent (E), E);
5874 end if;
5876 -- Package body has no completion for a declaration that appears
5877 -- in the corresponding spec. Post error on the body, with a
5878 -- reference to the non-completed declaration.
5880 else
5881 Error_Msg_Sloc := Sloc (E);
5883 if Is_Type (E) then
5884 Error_Msg_NE
5885 ("missing full declaration for }!", Body_Id, E);
5887 elsif Is_Overloadable (E)
5888 and then Current_Entity_In_Scope (E) /= E
5889 then
5890 -- It may be that the completion is mistyped and appears
5891 -- as a distinct overloading of the entity.
5893 declare
5894 Candidate : Entity_Id := Current_Entity_In_Scope (E);
5895 Decl : Node_Id := Unit_Declaration_Node (Candidate);
5897 begin
5898 if Is_Overloadable (Candidate)
5899 and then Ekind (Candidate) = Ekind (E)
5900 and then Nkind (Decl) = N_Subprogram_Body
5901 and then Acts_As_Spec (Decl)
5902 then
5903 Check_Type_Conformant (Candidate, E);
5905 else
5906 Error_Msg_NE ("missing body for & declared#!",
5907 Body_Id, E);
5908 end if;
5909 end;
5910 else
5911 Error_Msg_NE ("missing body for & declared#!",
5912 Body_Id, E);
5913 end if;
5914 end if;
5915 end if;
5916 end Post_Error;
5918 -- Start processing for Check_Completion
5920 begin
5921 E := First_Entity (Current_Scope);
5922 while Present (E) loop
5923 if Is_Intrinsic_Subprogram (E) then
5924 null;
5926 -- The following situation requires special handling: a child
5927 -- unit that appears in the context clause of the body of its
5928 -- parent:
5930 -- procedure Parent.Child (...);
5932 -- with Parent.Child;
5933 -- package body Parent is
5935 -- Here Parent.Child appears as a local entity, but should not
5936 -- be flagged as requiring completion, because it is a
5937 -- compilation unit.
5939 elsif Ekind (E) = E_Function
5940 or else Ekind (E) = E_Procedure
5941 or else Ekind (E) = E_Generic_Function
5942 or else Ekind (E) = E_Generic_Procedure
5943 then
5944 if not Has_Completion (E)
5945 and then not Is_Abstract (E)
5946 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
5947 N_Compilation_Unit
5948 and then Chars (E) /= Name_uSize
5949 then
5950 Post_Error;
5951 end if;
5953 elsif Is_Entry (E) then
5954 if not Has_Completion (E) and then
5955 (Ekind (Scope (E)) = E_Protected_Object
5956 or else Ekind (Scope (E)) = E_Protected_Type)
5957 then
5958 Post_Error;
5959 end if;
5961 elsif Is_Package (E) then
5962 if Unit_Requires_Body (E) then
5963 if not Has_Completion (E)
5964 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
5965 N_Compilation_Unit
5966 then
5967 Post_Error;
5968 end if;
5970 elsif not Is_Child_Unit (E) then
5971 May_Need_Implicit_Body (E);
5972 end if;
5974 elsif Ekind (E) = E_Incomplete_Type
5975 and then No (Underlying_Type (E))
5976 then
5977 Post_Error;
5979 elsif (Ekind (E) = E_Task_Type or else
5980 Ekind (E) = E_Protected_Type)
5981 and then not Has_Completion (E)
5982 then
5983 Post_Error;
5985 elsif Ekind (E) = E_Constant
5986 and then Ekind (Etype (E)) = E_Task_Type
5987 and then not Has_Completion (Etype (E))
5988 then
5989 Post_Error;
5991 elsif Ekind (E) = E_Protected_Object
5992 and then not Has_Completion (Etype (E))
5993 then
5994 Post_Error;
5996 elsif Ekind (E) = E_Record_Type then
5997 if Is_Tagged_Type (E) then
5998 Check_Abstract_Overriding (E);
5999 end if;
6001 Check_Aliased_Component_Types (E);
6003 elsif Ekind (E) = E_Array_Type then
6004 Check_Aliased_Component_Types (E);
6006 end if;
6008 Next_Entity (E);
6009 end loop;
6010 end Check_Completion;
6012 ----------------------------
6013 -- Check_Delta_Expression --
6014 ----------------------------
6016 procedure Check_Delta_Expression (E : Node_Id) is
6017 begin
6018 if not (Is_Real_Type (Etype (E))) then
6019 Wrong_Type (E, Any_Real);
6021 elsif not Is_OK_Static_Expression (E) then
6022 Error_Msg_N ("non-static expression used for delta value", E);
6024 elsif not UR_Is_Positive (Expr_Value_R (E)) then
6025 Error_Msg_N ("delta expression must be positive", E);
6027 else
6028 return;
6029 end if;
6031 -- If any of above errors occurred, then replace the incorrect
6032 -- expression by the real 0.1, which should prevent further errors.
6034 Rewrite (E,
6035 Make_Real_Literal (Sloc (E), Ureal_Tenth));
6036 Analyze_And_Resolve (E, Standard_Float);
6038 end Check_Delta_Expression;
6040 -----------------------------
6041 -- Check_Digits_Expression --
6042 -----------------------------
6044 procedure Check_Digits_Expression (E : Node_Id) is
6045 begin
6046 if not (Is_Integer_Type (Etype (E))) then
6047 Wrong_Type (E, Any_Integer);
6049 elsif not Is_OK_Static_Expression (E) then
6050 Error_Msg_N ("non-static expression used for digits value", E);
6052 elsif Expr_Value (E) <= 0 then
6053 Error_Msg_N ("digits value must be greater than zero", E);
6055 else
6056 return;
6057 end if;
6059 -- If any of above errors occurred, then replace the incorrect
6060 -- expression by the integer 1, which should prevent further errors.
6062 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
6063 Analyze_And_Resolve (E, Standard_Integer);
6065 end Check_Digits_Expression;
6067 ----------------------
6068 -- Check_Incomplete --
6069 ----------------------
6071 procedure Check_Incomplete (T : Entity_Id) is
6072 begin
6073 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type then
6074 Error_Msg_N ("invalid use of type before its full declaration", T);
6075 end if;
6076 end Check_Incomplete;
6078 --------------------------
6079 -- Check_Initialization --
6080 --------------------------
6082 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
6083 begin
6084 if (Is_Limited_Type (T)
6085 or else Is_Limited_Composite (T))
6086 and then not In_Instance
6087 then
6088 Error_Msg_N
6089 ("cannot initialize entities of limited type", Exp);
6090 end if;
6091 end Check_Initialization;
6093 ------------------------------------
6094 -- Check_Or_Process_Discriminants --
6095 ------------------------------------
6097 -- If an incomplete or private type declaration was already given for
6098 -- the type, the discriminants may have already been processed if they
6099 -- were present on the incomplete declaration. In this case a full
6100 -- conformance check is performed otherwise just process them.
6102 procedure Check_Or_Process_Discriminants (N : Node_Id; T : Entity_Id) is
6103 begin
6104 if Has_Discriminants (T) then
6106 -- Make the discriminants visible to component declarations.
6108 declare
6109 D : Entity_Id := First_Discriminant (T);
6110 Prev : Entity_Id;
6112 begin
6113 while Present (D) loop
6114 Prev := Current_Entity (D);
6115 Set_Current_Entity (D);
6116 Set_Is_Immediately_Visible (D);
6117 Set_Homonym (D, Prev);
6119 -- This restriction gets applied to the full type here; it
6120 -- has already been applied earlier to the partial view
6122 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
6124 Next_Discriminant (D);
6125 end loop;
6126 end;
6128 elsif Present (Discriminant_Specifications (N)) then
6129 Process_Discriminants (N);
6130 end if;
6131 end Check_Or_Process_Discriminants;
6133 ----------------------
6134 -- Check_Real_Bound --
6135 ----------------------
6137 procedure Check_Real_Bound (Bound : Node_Id) is
6138 begin
6139 if not Is_Real_Type (Etype (Bound)) then
6140 Error_Msg_N
6141 ("bound in real type definition must be of real type", Bound);
6143 elsif not Is_OK_Static_Expression (Bound) then
6144 Error_Msg_N
6145 ("non-static expression used for real type bound", Bound);
6147 else
6148 return;
6149 end if;
6151 Rewrite
6152 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
6153 Analyze (Bound);
6154 Resolve (Bound, Standard_Float);
6155 end Check_Real_Bound;
6157 ------------------------------
6158 -- Complete_Private_Subtype --
6159 ------------------------------
6161 procedure Complete_Private_Subtype
6162 (Priv : Entity_Id;
6163 Full : Entity_Id;
6164 Full_Base : Entity_Id;
6165 Related_Nod : Node_Id)
6167 Save_Next_Entity : Entity_Id;
6168 Save_Homonym : Entity_Id;
6170 begin
6171 -- Set semantic attributes for (implicit) private subtype completion.
6172 -- If the full type has no discriminants, then it is a copy of the full
6173 -- view of the base. Otherwise, it is a subtype of the base with a
6174 -- possible discriminant constraint. Save and restore the original
6175 -- Next_Entity field of full to ensure that the calls to Copy_Node
6176 -- do not corrupt the entity chain.
6178 -- Note that the type of the full view is the same entity as the
6179 -- type of the partial view. In this fashion, the subtype has
6180 -- access to the correct view of the parent.
6182 Save_Next_Entity := Next_Entity (Full);
6183 Save_Homonym := Homonym (Priv);
6185 case Ekind (Full_Base) is
6187 when E_Record_Type |
6188 E_Record_Subtype |
6189 Class_Wide_Kind |
6190 Private_Kind |
6191 Task_Kind |
6192 Protected_Kind =>
6193 Copy_Node (Priv, Full);
6195 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
6196 Set_First_Entity (Full, First_Entity (Full_Base));
6197 Set_Last_Entity (Full, Last_Entity (Full_Base));
6199 when others =>
6200 Copy_Node (Full_Base, Full);
6201 Set_Chars (Full, Chars (Priv));
6202 Conditional_Delay (Full, Priv);
6203 Set_Sloc (Full, Sloc (Priv));
6205 end case;
6207 Set_Next_Entity (Full, Save_Next_Entity);
6208 Set_Homonym (Full, Save_Homonym);
6209 Set_Associated_Node_For_Itype (Full, Related_Nod);
6211 -- Set common attributes for all subtypes.
6213 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
6215 -- The Etype of the full view is inconsistent. Gigi needs to see the
6216 -- structural full view, which is what the current scheme gives:
6217 -- the Etype of the full view is the etype of the full base. However,
6218 -- if the full base is a derived type, the full view then looks like
6219 -- a subtype of the parent, not a subtype of the full base. If instead
6220 -- we write:
6222 -- Set_Etype (Full, Full_Base);
6224 -- then we get inconsistencies in the front-end (confusion between
6225 -- views). Several outstanding bugs are related to this.
6227 Set_Is_First_Subtype (Full, False);
6228 Set_Scope (Full, Scope (Priv));
6229 Set_Size_Info (Full, Full_Base);
6230 Set_RM_Size (Full, RM_Size (Full_Base));
6231 Set_Is_Itype (Full);
6233 -- A subtype of a private-type-without-discriminants, whose full-view
6234 -- has discriminants with default expressions, is not constrained!
6236 if not Has_Discriminants (Priv) then
6237 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
6238 end if;
6240 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
6241 Set_Depends_On_Private (Full, Has_Private_Component (Full));
6243 -- Freeze the private subtype entity if its parent is delayed,
6244 -- and not already frozen. We skip this processing if the type
6245 -- is an anonymous subtype of a record component, or is the
6246 -- corresponding record of a protected type, since ???
6248 if not Is_Type (Scope (Full)) then
6249 Set_Has_Delayed_Freeze (Full,
6250 Has_Delayed_Freeze (Full_Base)
6251 and then (not Is_Frozen (Full_Base)));
6252 end if;
6254 Set_Freeze_Node (Full, Empty);
6255 Set_Is_Frozen (Full, False);
6256 Set_Full_View (Priv, Full);
6258 if Has_Discriminants (Full) then
6259 Set_Girder_Constraint_From_Discriminant_Constraint (Full);
6260 Set_Girder_Constraint (Priv, Girder_Constraint (Full));
6261 if Has_Unknown_Discriminants (Full) then
6262 Set_Discriminant_Constraint (Full, No_Elist);
6263 end if;
6264 end if;
6266 if Ekind (Full_Base) = E_Record_Type
6267 and then Has_Discriminants (Full_Base)
6268 and then Has_Discriminants (Priv) -- might not, if errors
6269 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
6270 then
6271 Create_Constrained_Components
6272 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
6274 -- If the full base is itself derived from private, build a congruent
6275 -- subtype of its underlying type, for use by the back end.
6277 elsif Ekind (Full_Base) in Private_Kind
6278 and then Is_Derived_Type (Full_Base)
6279 and then Has_Discriminants (Full_Base)
6280 and then
6281 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
6282 then
6283 Build_Underlying_Full_View (Parent (Priv), Full, Etype (Full_Base));
6285 elsif Is_Record_Type (Full_Base) then
6287 -- Show Full is simply a renaming of Full_Base.
6289 Set_Cloned_Subtype (Full, Full_Base);
6290 end if;
6292 -- It is usafe to share to bounds of a scalar type, because the
6293 -- Itype is elaborated on demand, and if a bound is non-static
6294 -- then different orders of elaboration in different units will
6295 -- lead to different external symbols.
6297 if Is_Scalar_Type (Full_Base) then
6298 Set_Scalar_Range (Full,
6299 Make_Range (Sloc (Related_Nod),
6300 Low_Bound => Duplicate_Subexpr (Type_Low_Bound (Full_Base)),
6301 High_Bound => Duplicate_Subexpr (Type_High_Bound (Full_Base))));
6302 end if;
6304 -- ??? It seems that a lot of fields are missing that should be
6305 -- copied from Full_Base to Full. Here are some that are introduced
6306 -- in a non-disruptive way but a cleanup is necessary.
6308 if Is_Tagged_Type (Full_Base) then
6309 Set_Is_Tagged_Type (Full);
6310 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
6312 elsif Is_Concurrent_Type (Full_Base) then
6313 if Has_Discriminants (Full)
6314 and then Present (Corresponding_Record_Type (Full_Base))
6315 then
6316 Set_Corresponding_Record_Type (Full,
6317 Constrain_Corresponding_Record
6318 (Full, Corresponding_Record_Type (Full_Base),
6319 Related_Nod, Full_Base));
6321 else
6322 Set_Corresponding_Record_Type (Full,
6323 Corresponding_Record_Type (Full_Base));
6324 end if;
6325 end if;
6327 end Complete_Private_Subtype;
6329 ----------------------------
6330 -- Constant_Redeclaration --
6331 ----------------------------
6333 procedure Constant_Redeclaration
6334 (Id : Entity_Id;
6335 N : Node_Id;
6336 T : out Entity_Id)
6338 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
6339 Obj_Def : constant Node_Id := Object_Definition (N);
6340 New_T : Entity_Id;
6342 procedure Check_Recursive_Declaration (Typ : Entity_Id);
6343 -- If deferred constant is an access type initialized with an
6344 -- allocator, check whether there is an illegal recursion in the
6345 -- definition, through a default value of some record subcomponent.
6346 -- This is normally detected when generating init_procs, but requires
6347 -- this additional mechanism when expansion is disabled.
6349 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
6350 Comp : Entity_Id;
6352 begin
6353 if Is_Record_Type (Typ) then
6354 Comp := First_Component (Typ);
6356 while Present (Comp) loop
6357 if Comes_From_Source (Comp) then
6358 if Present (Expression (Parent (Comp)))
6359 and then Is_Entity_Name (Expression (Parent (Comp)))
6360 and then Entity (Expression (Parent (Comp))) = Prev
6361 then
6362 Error_Msg_Sloc := Sloc (Parent (Comp));
6363 Error_Msg_NE
6364 ("illegal circularity with declaration for&#",
6365 N, Comp);
6366 return;
6368 elsif Is_Record_Type (Etype (Comp)) then
6369 Check_Recursive_Declaration (Etype (Comp));
6370 end if;
6371 end if;
6373 Next_Component (Comp);
6374 end loop;
6375 end if;
6376 end Check_Recursive_Declaration;
6378 -- Start of processing for Constant_Redeclaration
6380 begin
6381 if Nkind (Parent (Prev)) = N_Object_Declaration then
6382 if Nkind (Object_Definition
6383 (Parent (Prev))) = N_Subtype_Indication
6384 then
6385 -- Find type of new declaration. The constraints of the two
6386 -- views must match statically, but there is no point in
6387 -- creating an itype for the full view.
6389 if Nkind (Obj_Def) = N_Subtype_Indication then
6390 Find_Type (Subtype_Mark (Obj_Def));
6391 New_T := Entity (Subtype_Mark (Obj_Def));
6393 else
6394 Find_Type (Obj_Def);
6395 New_T := Entity (Obj_Def);
6396 end if;
6398 T := Etype (Prev);
6400 else
6401 -- The full view may impose a constraint, even if the partial
6402 -- view does not, so construct the subtype.
6404 New_T := Find_Type_Of_Object (Obj_Def, N);
6405 T := New_T;
6406 end if;
6408 else
6409 -- Current declaration is illegal, diagnosed below in Enter_Name.
6411 T := Empty;
6412 New_T := Any_Type;
6413 end if;
6415 -- If previous full declaration exists, or if a homograph is present,
6416 -- let Enter_Name handle it, either with an error, or with the removal
6417 -- of an overridden implicit subprogram.
6419 if Ekind (Prev) /= E_Constant
6420 or else Present (Expression (Parent (Prev)))
6421 or else Present (Full_View (Prev))
6422 then
6423 Enter_Name (Id);
6425 -- Verify that types of both declarations match.
6427 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T) then
6428 Error_Msg_Sloc := Sloc (Prev);
6429 Error_Msg_N ("type does not match declaration#", N);
6430 Set_Full_View (Prev, Id);
6431 Set_Etype (Id, Any_Type);
6433 -- If so, process the full constant declaration
6435 else
6436 Set_Full_View (Prev, Id);
6437 Set_Is_Public (Id, Is_Public (Prev));
6438 Set_Is_Internal (Id);
6439 Append_Entity (Id, Current_Scope);
6441 -- Check ALIASED present if present before (RM 7.4(7))
6443 if Is_Aliased (Prev)
6444 and then not Aliased_Present (N)
6445 then
6446 Error_Msg_Sloc := Sloc (Prev);
6447 Error_Msg_N ("ALIASED required (see declaration#)", N);
6448 end if;
6450 -- Check that placement is in private part and that the incomplete
6451 -- declaration appeared in the visible part.
6453 if Ekind (Current_Scope) = E_Package
6454 and then not In_Private_Part (Current_Scope)
6455 then
6456 Error_Msg_Sloc := Sloc (Prev);
6457 Error_Msg_N ("full constant for declaration#"
6458 & " must be in private part", N);
6460 elsif Ekind (Current_Scope) = E_Package
6461 and then List_Containing (Parent (Prev))
6462 /= Visible_Declarations
6463 (Specification (Unit_Declaration_Node (Current_Scope)))
6464 then
6465 Error_Msg_N
6466 ("deferred constant must be declared in visible part",
6467 Parent (Prev));
6468 end if;
6470 if Is_Access_Type (T)
6471 and then Nkind (Expression (N)) = N_Allocator
6472 then
6473 Check_Recursive_Declaration (Designated_Type (T));
6474 end if;
6475 end if;
6476 end Constant_Redeclaration;
6478 ----------------------
6479 -- Constrain_Access --
6480 ----------------------
6482 procedure Constrain_Access
6483 (Def_Id : in out Entity_Id;
6484 S : Node_Id;
6485 Related_Nod : Node_Id)
6487 T : constant Entity_Id := Entity (Subtype_Mark (S));
6488 Desig_Type : constant Entity_Id := Designated_Type (T);
6489 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
6490 Constraint_OK : Boolean := True;
6492 begin
6493 if Is_Array_Type (Desig_Type) then
6494 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
6496 elsif (Is_Record_Type (Desig_Type)
6497 or else Is_Incomplete_Or_Private_Type (Desig_Type))
6498 and then not Is_Constrained (Desig_Type)
6499 then
6500 -- ??? The following code is a temporary kludge to ignore
6501 -- discriminant constraint on access type if
6502 -- it is constraining the current record. Avoid creating the
6503 -- implicit subtype of the record we are currently compiling
6504 -- since right now, we cannot handle these.
6505 -- For now, just return the access type itself.
6507 if Desig_Type = Current_Scope
6508 and then No (Def_Id)
6509 then
6510 Set_Ekind (Desig_Subtype, E_Record_Subtype);
6511 Def_Id := Entity (Subtype_Mark (S));
6513 -- This call added to ensure that the constraint is
6514 -- analyzed (needed for a B test). Note that we
6515 -- still return early from this procedure to avoid
6516 -- recursive processing. ???
6518 Constrain_Discriminated_Type
6519 (Desig_Subtype, S, Related_Nod, For_Access => True);
6521 return;
6522 end if;
6524 if Ekind (T) = E_General_Access_Type
6525 and then Has_Private_Declaration (Desig_Type)
6526 and then In_Open_Scopes (Scope (Desig_Type))
6527 then
6528 -- Enforce rule that the constraint is illegal if there is
6529 -- an unconstrained view of the designated type. This means
6530 -- that the partial view (either a private type declaration or
6531 -- a derivation from a private type) has no discriminants.
6532 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
6533 -- by ACATS B371001).
6535 declare
6536 Pack : Node_Id := Unit_Declaration_Node (Scope (Desig_Type));
6537 Decls : List_Id;
6538 Decl : Node_Id;
6540 begin
6541 if Nkind (Pack) = N_Package_Declaration then
6542 Decls := Visible_Declarations (Specification (Pack));
6543 Decl := First (Decls);
6545 while Present (Decl) loop
6546 if (Nkind (Decl) = N_Private_Type_Declaration
6547 and then
6548 Chars (Defining_Identifier (Decl)) =
6549 Chars (Desig_Type))
6551 or else
6552 (Nkind (Decl) = N_Full_Type_Declaration
6553 and then
6554 Chars (Defining_Identifier (Decl)) =
6555 Chars (Desig_Type)
6556 and then Is_Derived_Type (Desig_Type)
6557 and then
6558 Has_Private_Declaration (Etype (Desig_Type)))
6559 then
6560 if No (Discriminant_Specifications (Decl)) then
6561 Error_Msg_N
6562 ("cannot constrain general access type " &
6563 "if designated type has unconstrained view", S);
6564 end if;
6566 exit;
6567 end if;
6569 Next (Decl);
6570 end loop;
6571 end if;
6572 end;
6573 end if;
6575 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
6576 For_Access => True);
6578 elsif (Is_Task_Type (Desig_Type)
6579 or else Is_Protected_Type (Desig_Type))
6580 and then not Is_Constrained (Desig_Type)
6581 then
6582 Constrain_Concurrent
6583 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
6585 else
6586 Error_Msg_N ("invalid constraint on access type", S);
6587 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
6588 Constraint_OK := False;
6589 end if;
6591 if No (Def_Id) then
6592 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
6593 else
6594 Set_Ekind (Def_Id, E_Access_Subtype);
6595 end if;
6597 if Constraint_OK then
6598 Set_Etype (Def_Id, Base_Type (T));
6600 if Is_Private_Type (Desig_Type) then
6601 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
6602 end if;
6603 else
6604 Set_Etype (Def_Id, Any_Type);
6605 end if;
6607 Set_Size_Info (Def_Id, T);
6608 Set_Is_Constrained (Def_Id, Constraint_OK);
6609 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
6610 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
6611 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
6613 -- Itypes created for constrained record components do not receive
6614 -- a freeze node, they are elaborated when first seen.
6616 if not Is_Record_Type (Current_Scope) then
6617 Conditional_Delay (Def_Id, T);
6618 end if;
6619 end Constrain_Access;
6621 ---------------------
6622 -- Constrain_Array --
6623 ---------------------
6625 procedure Constrain_Array
6626 (Def_Id : in out Entity_Id;
6627 SI : Node_Id;
6628 Related_Nod : Node_Id;
6629 Related_Id : Entity_Id;
6630 Suffix : Character)
6632 C : constant Node_Id := Constraint (SI);
6633 Number_Of_Constraints : Nat := 0;
6634 Index : Node_Id;
6635 S, T : Entity_Id;
6636 Constraint_OK : Boolean := True;
6638 begin
6639 T := Entity (Subtype_Mark (SI));
6641 if Ekind (T) in Access_Kind then
6642 T := Designated_Type (T);
6643 end if;
6645 -- If an index constraint follows a subtype mark in a subtype indication
6646 -- then the type or subtype denoted by the subtype mark must not already
6647 -- impose an index constraint. The subtype mark must denote either an
6648 -- unconstrained array type or an access type whose designated type
6649 -- is such an array type... (RM 3.6.1)
6651 if Is_Constrained (T) then
6652 Error_Msg_N
6653 ("array type is already constrained", Subtype_Mark (SI));
6654 Constraint_OK := False;
6656 else
6657 S := First (Constraints (C));
6659 while Present (S) loop
6660 Number_Of_Constraints := Number_Of_Constraints + 1;
6661 Next (S);
6662 end loop;
6664 -- In either case, the index constraint must provide a discrete
6665 -- range for each index of the array type and the type of each
6666 -- discrete range must be the same as that of the corresponding
6667 -- index. (RM 3.6.1)
6669 if Number_Of_Constraints /= Number_Dimensions (T) then
6670 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
6671 Constraint_OK := False;
6673 else
6674 S := First (Constraints (C));
6675 Index := First_Index (T);
6676 Analyze (Index);
6678 -- Apply constraints to each index type
6680 for J in 1 .. Number_Of_Constraints loop
6681 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
6682 Next (Index);
6683 Next (S);
6684 end loop;
6686 end if;
6687 end if;
6689 if No (Def_Id) then
6690 Def_Id :=
6691 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
6692 else
6693 Set_Ekind (Def_Id, E_Array_Subtype);
6694 end if;
6696 Set_Size_Info (Def_Id, (T));
6697 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
6698 Set_Etype (Def_Id, Base_Type (T));
6700 if Constraint_OK then
6701 Set_First_Index (Def_Id, First (Constraints (C)));
6702 end if;
6704 Set_Is_Constrained (Def_Id, True);
6705 Set_Is_Aliased (Def_Id, Is_Aliased (T));
6706 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
6708 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
6709 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
6711 -- If the subtype is not that of a record component, build a freeze
6712 -- node if parent still needs one.
6714 -- If the subtype is not that of a record component, make sure
6715 -- that the Depends_On_Private status is set (explanation ???)
6716 -- and also that a conditional delay is set.
6718 if not Is_Type (Scope (Def_Id)) then
6719 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
6720 Conditional_Delay (Def_Id, T);
6721 end if;
6723 end Constrain_Array;
6725 ------------------------------
6726 -- Constrain_Component_Type --
6727 ------------------------------
6729 function Constrain_Component_Type
6730 (Compon_Type : Entity_Id;
6731 Constrained_Typ : Entity_Id;
6732 Related_Node : Node_Id;
6733 Typ : Entity_Id;
6734 Constraints : Elist_Id)
6735 return Entity_Id
6737 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
6739 function Build_Constrained_Array_Type
6740 (Old_Type : Entity_Id)
6741 return Entity_Id;
6742 -- If Old_Type is an array type, one of whose indices is
6743 -- constrained by a discriminant, build an Itype whose constraint
6744 -- replaces the discriminant with its value in the constraint.
6746 function Build_Constrained_Discriminated_Type
6747 (Old_Type : Entity_Id)
6748 return Entity_Id;
6749 -- Ditto for record components.
6751 function Build_Constrained_Access_Type
6752 (Old_Type : Entity_Id)
6753 return Entity_Id;
6754 -- Ditto for access types. Makes use of previous two functions, to
6755 -- constrain designated type.
6757 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
6758 -- T is an array or discriminated type, C is a list of constraints
6759 -- that apply to T. This routine builds the constrained subtype.
6761 function Is_Discriminant (Expr : Node_Id) return Boolean;
6762 -- Returns True if Expr is a discriminant.
6764 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
6765 -- Find the value of discriminant Discrim in Constraint.
6767 -----------------------------------
6768 -- Build_Constrained_Access_Type --
6769 -----------------------------------
6771 function Build_Constrained_Access_Type
6772 (Old_Type : Entity_Id)
6773 return Entity_Id
6775 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
6776 Itype : Entity_Id;
6777 Desig_Subtype : Entity_Id;
6778 Scop : Entity_Id;
6780 begin
6781 -- if the original access type was not embedded in the enclosing
6782 -- type definition, there is no need to produce a new access
6783 -- subtype. In fact every access type with an explicit constraint
6784 -- generates an itype whose scope is the enclosing record.
6786 if not Is_Type (Scope (Old_Type)) then
6787 return Old_Type;
6789 elsif Is_Array_Type (Desig_Type) then
6790 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
6792 elsif Has_Discriminants (Desig_Type) then
6794 -- This may be an access type to an enclosing record type for
6795 -- which we are constructing the constrained components. Return
6796 -- the enclosing record subtype. This is not always correct,
6797 -- but avoids infinite recursion. ???
6799 Desig_Subtype := Any_Type;
6801 for J in reverse 0 .. Scope_Stack.Last loop
6802 Scop := Scope_Stack.Table (J).Entity;
6804 if Is_Type (Scop)
6805 and then Base_Type (Scop) = Base_Type (Desig_Type)
6806 then
6807 Desig_Subtype := Scop;
6808 end if;
6810 exit when not Is_Type (Scop);
6811 end loop;
6813 if Desig_Subtype = Any_Type then
6814 Desig_Subtype :=
6815 Build_Constrained_Discriminated_Type (Desig_Type);
6816 end if;
6818 else
6819 return Old_Type;
6820 end if;
6822 if Desig_Subtype /= Desig_Type then
6823 -- The Related_Node better be here or else we won't be able
6824 -- to attach new itypes to a node in the tree.
6826 pragma Assert (Present (Related_Node));
6828 Itype := Create_Itype (E_Access_Subtype, Related_Node);
6830 Set_Etype (Itype, Base_Type (Old_Type));
6831 Set_Size_Info (Itype, (Old_Type));
6832 Set_Directly_Designated_Type (Itype, Desig_Subtype);
6833 Set_Depends_On_Private (Itype, Has_Private_Component
6834 (Old_Type));
6835 Set_Is_Access_Constant (Itype, Is_Access_Constant
6836 (Old_Type));
6838 -- The new itype needs freezing when it depends on a not frozen
6839 -- type and the enclosing subtype needs freezing.
6841 if Has_Delayed_Freeze (Constrained_Typ)
6842 and then not Is_Frozen (Constrained_Typ)
6843 then
6844 Conditional_Delay (Itype, Base_Type (Old_Type));
6845 end if;
6847 return Itype;
6849 else
6850 return Old_Type;
6851 end if;
6852 end Build_Constrained_Access_Type;
6854 ----------------------------------
6855 -- Build_Constrained_Array_Type --
6856 ----------------------------------
6858 function Build_Constrained_Array_Type
6859 (Old_Type : Entity_Id)
6860 return Entity_Id
6862 Lo_Expr : Node_Id;
6863 Hi_Expr : Node_Id;
6864 Old_Index : Node_Id;
6865 Range_Node : Node_Id;
6866 Constr_List : List_Id;
6868 Need_To_Create_Itype : Boolean := False;
6870 begin
6871 Old_Index := First_Index (Old_Type);
6872 while Present (Old_Index) loop
6873 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
6875 if Is_Discriminant (Lo_Expr)
6876 or else Is_Discriminant (Hi_Expr)
6877 then
6878 Need_To_Create_Itype := True;
6879 end if;
6881 Next_Index (Old_Index);
6882 end loop;
6884 if Need_To_Create_Itype then
6885 Constr_List := New_List;
6887 Old_Index := First_Index (Old_Type);
6888 while Present (Old_Index) loop
6889 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
6891 if Is_Discriminant (Lo_Expr) then
6892 Lo_Expr := Get_Discr_Value (Lo_Expr);
6893 end if;
6895 if Is_Discriminant (Hi_Expr) then
6896 Hi_Expr := Get_Discr_Value (Hi_Expr);
6897 end if;
6899 Range_Node :=
6900 Make_Range
6901 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
6903 Append (Range_Node, To => Constr_List);
6905 Next_Index (Old_Index);
6906 end loop;
6908 return Build_Subtype (Old_Type, Constr_List);
6910 else
6911 return Old_Type;
6912 end if;
6913 end Build_Constrained_Array_Type;
6915 ------------------------------------------
6916 -- Build_Constrained_Discriminated_Type --
6917 ------------------------------------------
6919 function Build_Constrained_Discriminated_Type
6920 (Old_Type : Entity_Id)
6921 return Entity_Id
6923 Expr : Node_Id;
6924 Constr_List : List_Id;
6925 Old_Constraint : Elmt_Id;
6927 Need_To_Create_Itype : Boolean := False;
6929 begin
6930 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
6931 while Present (Old_Constraint) loop
6932 Expr := Node (Old_Constraint);
6934 if Is_Discriminant (Expr) then
6935 Need_To_Create_Itype := True;
6936 end if;
6938 Next_Elmt (Old_Constraint);
6939 end loop;
6941 if Need_To_Create_Itype then
6942 Constr_List := New_List;
6944 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
6945 while Present (Old_Constraint) loop
6946 Expr := Node (Old_Constraint);
6948 if Is_Discriminant (Expr) then
6949 Expr := Get_Discr_Value (Expr);
6950 end if;
6952 Append (New_Copy_Tree (Expr), To => Constr_List);
6954 Next_Elmt (Old_Constraint);
6955 end loop;
6957 return Build_Subtype (Old_Type, Constr_List);
6959 else
6960 return Old_Type;
6961 end if;
6962 end Build_Constrained_Discriminated_Type;
6964 -------------------
6965 -- Build_Subtype --
6966 -------------------
6968 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
6969 Indic : Node_Id;
6970 Subtyp_Decl : Node_Id;
6971 Def_Id : Entity_Id;
6972 Btyp : Entity_Id := Base_Type (T);
6974 begin
6975 -- The Related_Node better be here or else we won't be able
6976 -- to attach new itypes to a node in the tree.
6978 pragma Assert (Present (Related_Node));
6980 -- If the view of the component's type is incomplete or private
6981 -- with unknown discriminants, then the constraint must be applied
6982 -- to the full type.
6984 if Has_Unknown_Discriminants (Btyp)
6985 and then Present (Underlying_Type (Btyp))
6986 then
6987 Btyp := Underlying_Type (Btyp);
6988 end if;
6990 Indic :=
6991 Make_Subtype_Indication (Loc,
6992 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
6993 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
6995 Def_Id := Create_Itype (Ekind (T), Related_Node);
6997 Subtyp_Decl :=
6998 Make_Subtype_Declaration (Loc,
6999 Defining_Identifier => Def_Id,
7000 Subtype_Indication => Indic);
7001 Set_Parent (Subtyp_Decl, Parent (Related_Node));
7003 -- Itypes must be analyzed with checks off (see itypes.ads).
7005 Analyze (Subtyp_Decl, Suppress => All_Checks);
7007 return Def_Id;
7008 end Build_Subtype;
7010 ---------------------
7011 -- Get_Discr_Value --
7012 ---------------------
7014 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
7015 D : Entity_Id := First_Discriminant (Typ);
7016 E : Elmt_Id := First_Elmt (Constraints);
7017 G : Elmt_Id;
7019 begin
7020 -- The discriminant may be declared for the type, in which case we
7021 -- find it by iterating over the list of discriminants. If the
7022 -- discriminant is inherited from a parent type, it appears as the
7023 -- corresponding discriminant of the current type. This will be the
7024 -- case when constraining an inherited component whose constraint is
7025 -- given by a discriminant of the parent.
7027 while Present (D) loop
7028 if D = Entity (Discrim)
7029 or else Corresponding_Discriminant (D) = Entity (Discrim)
7030 then
7031 return Node (E);
7032 end if;
7034 Next_Discriminant (D);
7035 Next_Elmt (E);
7036 end loop;
7038 -- The corresponding_Discriminant mechanism is incomplete, because
7039 -- the correspondence between new and old discriminants is not one
7040 -- to one: one new discriminant can constrain several old ones.
7041 -- In that case, scan sequentially the girder_constraint, the list
7042 -- of discriminants of the parents, and the constraints.
7044 if Is_Derived_Type (Typ)
7045 and then Present (Girder_Constraint (Typ))
7046 and then Scope (Entity (Discrim)) = Etype (Typ)
7047 then
7048 D := First_Discriminant (Etype (Typ));
7049 E := First_Elmt (Constraints);
7050 G := First_Elmt (Girder_Constraint (Typ));
7052 while Present (D) loop
7053 if D = Entity (Discrim) then
7054 return Node (E);
7055 end if;
7057 Next_Discriminant (D);
7058 Next_Elmt (E);
7059 Next_Elmt (G);
7060 end loop;
7061 end if;
7063 -- Something is wrong if we did not find the value
7065 raise Program_Error;
7066 end Get_Discr_Value;
7068 ---------------------
7069 -- Is_Discriminant --
7070 ---------------------
7072 function Is_Discriminant (Expr : Node_Id) return Boolean is
7073 Discrim_Scope : Entity_Id;
7075 begin
7076 if Denotes_Discriminant (Expr) then
7077 Discrim_Scope := Scope (Entity (Expr));
7079 -- Either we have a reference to one of Typ's discriminants,
7081 pragma Assert (Discrim_Scope = Typ
7083 -- or to the discriminants of the parent type, in the case
7084 -- of a derivation of a tagged type with variants.
7086 or else Discrim_Scope = Etype (Typ)
7087 or else Full_View (Discrim_Scope) = Etype (Typ)
7089 -- or same as above for the case where the discriminants
7090 -- were declared in Typ's private view.
7092 or else (Is_Private_Type (Discrim_Scope)
7093 and then Chars (Discrim_Scope) = Chars (Typ))
7095 -- or else we are deriving from the full view and the
7096 -- discriminant is declared in the private entity.
7098 or else (Is_Private_Type (Typ)
7099 and then Chars (Discrim_Scope) = Chars (Typ))
7101 -- or we have a class-wide type, in which case make sure the
7102 -- discriminant found belongs to the root type.
7104 or else (Is_Class_Wide_Type (Typ)
7105 and then Etype (Typ) = Discrim_Scope));
7107 return True;
7108 end if;
7110 -- In all other cases we have something wrong.
7112 return False;
7113 end Is_Discriminant;
7115 -- Start of processing for Constrain_Component_Type
7117 begin
7118 if Is_Array_Type (Compon_Type) then
7119 return Build_Constrained_Array_Type (Compon_Type);
7121 elsif Has_Discriminants (Compon_Type) then
7122 return Build_Constrained_Discriminated_Type (Compon_Type);
7124 elsif Is_Access_Type (Compon_Type) then
7125 return Build_Constrained_Access_Type (Compon_Type);
7126 end if;
7128 return Compon_Type;
7129 end Constrain_Component_Type;
7131 --------------------------
7132 -- Constrain_Concurrent --
7133 --------------------------
7135 -- For concurrent types, the associated record value type carries the same
7136 -- discriminants, so when we constrain a concurrent type, we must constrain
7137 -- the value type as well.
7139 procedure Constrain_Concurrent
7140 (Def_Id : in out Entity_Id;
7141 SI : Node_Id;
7142 Related_Nod : Node_Id;
7143 Related_Id : Entity_Id;
7144 Suffix : Character)
7146 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
7147 T_Val : Entity_Id;
7149 begin
7150 if Ekind (T_Ent) in Access_Kind then
7151 T_Ent := Designated_Type (T_Ent);
7152 end if;
7154 T_Val := Corresponding_Record_Type (T_Ent);
7156 if Present (T_Val) then
7158 if No (Def_Id) then
7159 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
7160 end if;
7162 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
7164 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
7165 Set_Corresponding_Record_Type (Def_Id,
7166 Constrain_Corresponding_Record
7167 (Def_Id, T_Val, Related_Nod, Related_Id));
7169 else
7170 -- If there is no associated record, expansion is disabled and this
7171 -- is a generic context. Create a subtype in any case, so that
7172 -- semantic analysis can proceed.
7174 if No (Def_Id) then
7175 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
7176 end if;
7178 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
7179 end if;
7180 end Constrain_Concurrent;
7182 ------------------------------------
7183 -- Constrain_Corresponding_Record --
7184 ------------------------------------
7186 function Constrain_Corresponding_Record
7187 (Prot_Subt : Entity_Id;
7188 Corr_Rec : Entity_Id;
7189 Related_Nod : Node_Id;
7190 Related_Id : Entity_Id)
7191 return Entity_Id
7193 T_Sub : constant Entity_Id
7194 := Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
7196 begin
7197 Set_Etype (T_Sub, Corr_Rec);
7198 Init_Size_Align (T_Sub);
7199 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
7200 Set_Is_Constrained (T_Sub, True);
7201 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
7202 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
7204 Conditional_Delay (T_Sub, Corr_Rec);
7206 if Has_Discriminants (Prot_Subt) then -- False only if errors.
7207 Set_Discriminant_Constraint (T_Sub,
7208 Discriminant_Constraint (Prot_Subt));
7209 Set_Girder_Constraint_From_Discriminant_Constraint (T_Sub);
7210 Create_Constrained_Components (T_Sub, Related_Nod, Corr_Rec,
7211 Discriminant_Constraint (T_Sub));
7212 end if;
7214 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
7216 return T_Sub;
7217 end Constrain_Corresponding_Record;
7219 -----------------------
7220 -- Constrain_Decimal --
7221 -----------------------
7223 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
7224 T : constant Entity_Id := Entity (Subtype_Mark (S));
7225 C : constant Node_Id := Constraint (S);
7226 Loc : constant Source_Ptr := Sloc (C);
7227 Range_Expr : Node_Id;
7228 Digits_Expr : Node_Id;
7229 Digits_Val : Uint;
7230 Bound_Val : Ureal;
7232 begin
7233 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
7235 if Nkind (C) = N_Range_Constraint then
7236 Range_Expr := Range_Expression (C);
7237 Digits_Val := Digits_Value (T);
7239 else
7240 pragma Assert (Nkind (C) = N_Digits_Constraint);
7241 Digits_Expr := Digits_Expression (C);
7242 Analyze_And_Resolve (Digits_Expr, Any_Integer);
7244 Check_Digits_Expression (Digits_Expr);
7245 Digits_Val := Expr_Value (Digits_Expr);
7247 if Digits_Val > Digits_Value (T) then
7248 Error_Msg_N
7249 ("digits expression is incompatible with subtype", C);
7250 Digits_Val := Digits_Value (T);
7251 end if;
7253 if Present (Range_Constraint (C)) then
7254 Range_Expr := Range_Expression (Range_Constraint (C));
7255 else
7256 Range_Expr := Empty;
7257 end if;
7258 end if;
7260 Set_Etype (Def_Id, Base_Type (T));
7261 Set_Size_Info (Def_Id, (T));
7262 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7263 Set_Delta_Value (Def_Id, Delta_Value (T));
7264 Set_Scale_Value (Def_Id, Scale_Value (T));
7265 Set_Small_Value (Def_Id, Small_Value (T));
7266 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
7267 Set_Digits_Value (Def_Id, Digits_Val);
7269 -- Manufacture range from given digits value if no range present
7271 if No (Range_Expr) then
7272 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
7273 Range_Expr :=
7274 Make_Range (Loc,
7275 Low_Bound =>
7276 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
7277 High_Bound =>
7278 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
7280 end if;
7282 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
7283 Set_Discrete_RM_Size (Def_Id);
7285 -- Unconditionally delay the freeze, since we cannot set size
7286 -- information in all cases correctly until the freeze point.
7288 Set_Has_Delayed_Freeze (Def_Id);
7289 end Constrain_Decimal;
7291 ----------------------------------
7292 -- Constrain_Discriminated_Type --
7293 ----------------------------------
7295 procedure Constrain_Discriminated_Type
7296 (Def_Id : Entity_Id;
7297 S : Node_Id;
7298 Related_Nod : Node_Id;
7299 For_Access : Boolean := False)
7301 E : constant Entity_Id := Entity (Subtype_Mark (S));
7302 T : Entity_Id;
7303 C : Node_Id;
7304 Elist : Elist_Id := New_Elmt_List;
7306 procedure Fixup_Bad_Constraint;
7307 -- This is called after finding a bad constraint, and after having
7308 -- posted an appropriate error message. The mission is to leave the
7309 -- entity T in as reasonable state as possible!
7311 procedure Fixup_Bad_Constraint is
7312 begin
7313 -- Set a reasonable Ekind for the entity. For an incomplete type,
7314 -- we can't do much, but for other types, we can set the proper
7315 -- corresponding subtype kind.
7317 if Ekind (T) = E_Incomplete_Type then
7318 Set_Ekind (Def_Id, Ekind (T));
7319 else
7320 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
7321 end if;
7323 Set_Etype (Def_Id, Any_Type);
7324 Set_Error_Posted (Def_Id);
7325 end Fixup_Bad_Constraint;
7327 -- Start of processing for Constrain_Discriminated_Type
7329 begin
7330 C := Constraint (S);
7332 -- A discriminant constraint is only allowed in a subtype indication,
7333 -- after a subtype mark. This subtype mark must denote either a type
7334 -- with discriminants, or an access type whose designated type is a
7335 -- type with discriminants. A discriminant constraint specifies the
7336 -- values of these discriminants (RM 3.7.2(5)).
7338 T := Base_Type (Entity (Subtype_Mark (S)));
7340 if Ekind (T) in Access_Kind then
7341 T := Designated_Type (T);
7342 end if;
7344 if not Has_Discriminants (T) then
7345 Error_Msg_N ("invalid constraint: type has no discriminant", C);
7346 Fixup_Bad_Constraint;
7347 return;
7349 elsif Is_Constrained (E)
7350 or else (Ekind (E) = E_Class_Wide_Subtype
7351 and then Present (Discriminant_Constraint (E)))
7352 then
7353 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
7354 Fixup_Bad_Constraint;
7355 return;
7356 end if;
7358 -- T may be an unconstrained subtype (e.g. a generic actual).
7359 -- Constraint applies to the base type.
7361 T := Base_Type (T);
7363 Elist := Build_Discriminant_Constraints (T, S);
7365 -- If the list returned was empty we had an error in building the
7366 -- discriminant constraint. We have also already signalled an error
7367 -- in the incomplete type case
7369 if Is_Empty_Elmt_List (Elist) then
7370 Fixup_Bad_Constraint;
7371 return;
7372 end if;
7374 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
7375 end Constrain_Discriminated_Type;
7377 ---------------------------
7378 -- Constrain_Enumeration --
7379 ---------------------------
7381 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
7382 T : constant Entity_Id := Entity (Subtype_Mark (S));
7383 C : constant Node_Id := Constraint (S);
7385 begin
7386 Set_Ekind (Def_Id, E_Enumeration_Subtype);
7388 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
7390 Set_Etype (Def_Id, Base_Type (T));
7391 Set_Size_Info (Def_Id, (T));
7392 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7393 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
7395 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
7397 Set_Discrete_RM_Size (Def_Id);
7399 end Constrain_Enumeration;
7401 ----------------------
7402 -- Constrain_Float --
7403 ----------------------
7405 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
7406 T : constant Entity_Id := Entity (Subtype_Mark (S));
7407 C : Node_Id;
7408 D : Node_Id;
7409 Rais : Node_Id;
7411 begin
7412 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
7414 Set_Etype (Def_Id, Base_Type (T));
7415 Set_Size_Info (Def_Id, (T));
7416 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7418 -- Process the constraint
7420 C := Constraint (S);
7422 -- Digits constraint present
7424 if Nkind (C) = N_Digits_Constraint then
7425 D := Digits_Expression (C);
7426 Analyze_And_Resolve (D, Any_Integer);
7427 Check_Digits_Expression (D);
7428 Set_Digits_Value (Def_Id, Expr_Value (D));
7430 -- Check that digits value is in range. Obviously we can do this
7431 -- at compile time, but it is strictly a runtime check, and of
7432 -- course there is an ACVC test that checks this!
7434 if Digits_Value (Def_Id) > Digits_Value (T) then
7435 Error_Msg_Uint_1 := Digits_Value (T);
7436 Error_Msg_N ("?digits value is too large, maximum is ^", D);
7437 Rais :=
7438 Make_Raise_Constraint_Error (Sloc (D),
7439 Reason => CE_Range_Check_Failed);
7440 Insert_Action (Declaration_Node (Def_Id), Rais);
7441 end if;
7443 C := Range_Constraint (C);
7445 -- No digits constraint present
7447 else
7448 Set_Digits_Value (Def_Id, Digits_Value (T));
7449 end if;
7451 -- Range constraint present
7453 if Nkind (C) = N_Range_Constraint then
7454 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
7456 -- No range constraint present
7458 else
7459 pragma Assert (No (C));
7460 Set_Scalar_Range (Def_Id, Scalar_Range (T));
7461 end if;
7463 Set_Is_Constrained (Def_Id);
7464 end Constrain_Float;
7466 ---------------------
7467 -- Constrain_Index --
7468 ---------------------
7470 procedure Constrain_Index
7471 (Index : Node_Id;
7472 S : Node_Id;
7473 Related_Nod : Node_Id;
7474 Related_Id : Entity_Id;
7475 Suffix : Character;
7476 Suffix_Index : Nat)
7478 Def_Id : Entity_Id;
7479 R : Node_Id := Empty;
7480 Checks_Off : Boolean := False;
7481 T : constant Entity_Id := Etype (Index);
7483 begin
7484 if Nkind (S) = N_Range
7485 or else Nkind (S) = N_Attribute_Reference
7486 then
7487 -- A Range attribute will transformed into N_Range by Resolve.
7489 Analyze (S);
7490 Set_Etype (S, T);
7491 R := S;
7493 -- ??? Why on earth do we turn checks of in this very specific case ?
7495 -- From the revision history: (Constrain_Index): Call
7496 -- Process_Range_Expr_In_Decl with range checking off for range
7497 -- bounds that are attributes. This avoids some horrible
7498 -- constraint error checks.
7500 if Nkind (R) = N_Range
7501 and then Nkind (Low_Bound (R)) = N_Attribute_Reference
7502 and then Nkind (High_Bound (R)) = N_Attribute_Reference
7503 then
7504 Checks_Off := True;
7505 end if;
7507 Process_Range_Expr_In_Decl (R, T, Empty_List, Checks_Off);
7509 if not Error_Posted (S)
7510 and then
7511 (Nkind (S) /= N_Range
7512 or else Base_Type (T) /= Base_Type (Etype (Low_Bound (S)))
7513 or else Base_Type (T) /= Base_Type (Etype (High_Bound (S))))
7514 then
7515 if Base_Type (T) /= Any_Type
7516 and then Etype (Low_Bound (S)) /= Any_Type
7517 and then Etype (High_Bound (S)) /= Any_Type
7518 then
7519 Error_Msg_N ("range expected", S);
7520 end if;
7521 end if;
7523 elsif Nkind (S) = N_Subtype_Indication then
7524 -- the parser has verified that this is a discrete indication.
7526 Resolve_Discrete_Subtype_Indication (S, T);
7527 R := Range_Expression (Constraint (S));
7529 elsif Nkind (S) = N_Discriminant_Association then
7531 -- syntactically valid in subtype indication.
7533 Error_Msg_N ("invalid index constraint", S);
7534 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
7535 return;
7537 -- Subtype_Mark case, no anonymous subtypes to construct
7539 else
7540 Analyze (S);
7542 if Is_Entity_Name (S) then
7544 if not Is_Type (Entity (S)) then
7545 Error_Msg_N ("expect subtype mark for index constraint", S);
7547 elsif Base_Type (Entity (S)) /= Base_Type (T) then
7548 Wrong_Type (S, Base_Type (T));
7549 end if;
7551 return;
7553 else
7554 Error_Msg_N ("invalid index constraint", S);
7555 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
7556 return;
7557 end if;
7558 end if;
7560 Def_Id :=
7561 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
7563 Set_Etype (Def_Id, Base_Type (T));
7565 if Is_Modular_Integer_Type (T) then
7566 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
7568 elsif Is_Integer_Type (T) then
7569 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
7571 else
7572 Set_Ekind (Def_Id, E_Enumeration_Subtype);
7573 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
7574 end if;
7576 Set_Size_Info (Def_Id, (T));
7577 Set_RM_Size (Def_Id, RM_Size (T));
7578 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7580 Set_Scalar_Range (Def_Id, R);
7582 Set_Etype (S, Def_Id);
7583 Set_Discrete_RM_Size (Def_Id);
7584 end Constrain_Index;
7586 -----------------------
7587 -- Constrain_Integer --
7588 -----------------------
7590 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
7591 T : constant Entity_Id := Entity (Subtype_Mark (S));
7592 C : constant Node_Id := Constraint (S);
7594 begin
7595 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
7597 if Is_Modular_Integer_Type (T) then
7598 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
7599 else
7600 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
7601 end if;
7603 Set_Etype (Def_Id, Base_Type (T));
7604 Set_Size_Info (Def_Id, (T));
7605 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7606 Set_Discrete_RM_Size (Def_Id);
7608 end Constrain_Integer;
7610 ------------------------------
7611 -- Constrain_Ordinary_Fixed --
7612 ------------------------------
7614 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
7615 T : constant Entity_Id := Entity (Subtype_Mark (S));
7616 C : Node_Id;
7617 D : Node_Id;
7618 Rais : Node_Id;
7620 begin
7621 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
7622 Set_Etype (Def_Id, Base_Type (T));
7623 Set_Size_Info (Def_Id, (T));
7624 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7625 Set_Small_Value (Def_Id, Small_Value (T));
7627 -- Process the constraint
7629 C := Constraint (S);
7631 -- Delta constraint present
7633 if Nkind (C) = N_Delta_Constraint then
7634 D := Delta_Expression (C);
7635 Analyze_And_Resolve (D, Any_Real);
7636 Check_Delta_Expression (D);
7637 Set_Delta_Value (Def_Id, Expr_Value_R (D));
7639 -- Check that delta value is in range. Obviously we can do this
7640 -- at compile time, but it is strictly a runtime check, and of
7641 -- course there is an ACVC test that checks this!
7643 if Delta_Value (Def_Id) < Delta_Value (T) then
7644 Error_Msg_N ("?delta value is too small", D);
7645 Rais :=
7646 Make_Raise_Constraint_Error (Sloc (D),
7647 Reason => CE_Range_Check_Failed);
7648 Insert_Action (Declaration_Node (Def_Id), Rais);
7649 end if;
7651 C := Range_Constraint (C);
7653 -- No delta constraint present
7655 else
7656 Set_Delta_Value (Def_Id, Delta_Value (T));
7657 end if;
7659 -- Range constraint present
7661 if Nkind (C) = N_Range_Constraint then
7662 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
7664 -- No range constraint present
7666 else
7667 pragma Assert (No (C));
7668 Set_Scalar_Range (Def_Id, Scalar_Range (T));
7670 end if;
7672 Set_Discrete_RM_Size (Def_Id);
7674 -- Unconditionally delay the freeze, since we cannot set size
7675 -- information in all cases correctly until the freeze point.
7677 Set_Has_Delayed_Freeze (Def_Id);
7678 end Constrain_Ordinary_Fixed;
7680 ---------------------------
7681 -- Convert_Scalar_Bounds --
7682 ---------------------------
7684 procedure Convert_Scalar_Bounds
7685 (N : Node_Id;
7686 Parent_Type : Entity_Id;
7687 Derived_Type : Entity_Id;
7688 Loc : Source_Ptr)
7690 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
7692 Lo : Node_Id;
7693 Hi : Node_Id;
7694 Rng : Node_Id;
7696 begin
7697 Lo := Build_Scalar_Bound
7698 (Type_Low_Bound (Derived_Type),
7699 Parent_Type, Implicit_Base);
7701 Hi := Build_Scalar_Bound
7702 (Type_High_Bound (Derived_Type),
7703 Parent_Type, Implicit_Base);
7705 Rng :=
7706 Make_Range (Loc,
7707 Low_Bound => Lo,
7708 High_Bound => Hi);
7710 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
7712 Set_Parent (Rng, N);
7713 Set_Scalar_Range (Derived_Type, Rng);
7715 -- Analyze the bounds
7717 Analyze_And_Resolve (Lo, Implicit_Base);
7718 Analyze_And_Resolve (Hi, Implicit_Base);
7720 -- Analyze the range itself, except that we do not analyze it if
7721 -- the bounds are real literals, and we have a fixed-point type.
7722 -- The reason for this is that we delay setting the bounds in this
7723 -- case till we know the final Small and Size values (see circuit
7724 -- in Freeze.Freeze_Fixed_Point_Type for further details).
7726 if Is_Fixed_Point_Type (Parent_Type)
7727 and then Nkind (Lo) = N_Real_Literal
7728 and then Nkind (Hi) = N_Real_Literal
7729 then
7730 return;
7732 -- Here we do the analysis of the range.
7734 -- Note: we do this manually, since if we do a normal Analyze and
7735 -- Resolve call, there are problems with the conversions used for
7736 -- the derived type range.
7738 else
7739 Set_Etype (Rng, Implicit_Base);
7740 Set_Analyzed (Rng, True);
7741 end if;
7742 end Convert_Scalar_Bounds;
7744 -------------------
7745 -- Copy_And_Swap --
7746 -------------------
7748 procedure Copy_And_Swap (Privat, Full : Entity_Id) is
7749 begin
7750 -- Initialize new full declaration entity by copying the pertinent
7751 -- fields of the corresponding private declaration entity.
7753 Copy_Private_To_Full (Privat, Full);
7755 -- Swap the two entities. Now Privat is the full type entity and
7756 -- Full is the private one. They will be swapped back at the end
7757 -- of the private part. This swapping ensures that the entity that
7758 -- is visible in the private part is the full declaration.
7760 Exchange_Entities (Privat, Full);
7761 Append_Entity (Full, Scope (Full));
7762 end Copy_And_Swap;
7764 -------------------------------------
7765 -- Copy_Array_Base_Type_Attributes --
7766 -------------------------------------
7768 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
7769 begin
7770 Set_Component_Alignment (T1, Component_Alignment (T2));
7771 Set_Component_Type (T1, Component_Type (T2));
7772 Set_Component_Size (T1, Component_Size (T2));
7773 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
7774 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
7775 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
7776 Set_Has_Task (T1, Has_Task (T2));
7777 Set_Is_Packed (T1, Is_Packed (T2));
7778 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
7779 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
7780 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
7781 end Copy_Array_Base_Type_Attributes;
7783 -----------------------------------
7784 -- Copy_Array_Subtype_Attributes --
7785 -----------------------------------
7787 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
7788 begin
7789 Set_Size_Info (T1, T2);
7791 Set_First_Index (T1, First_Index (T2));
7792 Set_Is_Aliased (T1, Is_Aliased (T2));
7793 Set_Is_Atomic (T1, Is_Atomic (T2));
7794 Set_Is_Volatile (T1, Is_Volatile (T2));
7795 Set_Is_Constrained (T1, Is_Constrained (T2));
7796 Set_Depends_On_Private (T1, Has_Private_Component (T2));
7797 Set_First_Rep_Item (T1, First_Rep_Item (T2));
7798 Set_Convention (T1, Convention (T2));
7799 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
7800 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
7801 end Copy_Array_Subtype_Attributes;
7803 --------------------------
7804 -- Copy_Private_To_Full --
7805 --------------------------
7807 procedure Copy_Private_To_Full (Priv, Full : Entity_Id) is
7808 begin
7809 -- We temporarily set Ekind to a value appropriate for a type to
7810 -- avoid assert failures in Einfo from checking for setting type
7811 -- attributes on something that is not a type. Ekind (Priv) is an
7812 -- appropriate choice, since it allowed the attributes to be set
7813 -- in the first place. This Ekind value will be modified later.
7815 Set_Ekind (Full, Ekind (Priv));
7817 -- Also set Etype temporarily to Any_Type, again, in the absence
7818 -- of errors, it will be properly reset, and if there are errors,
7819 -- then we want a value of Any_Type to remain.
7821 Set_Etype (Full, Any_Type);
7823 -- Now start copying attributes
7825 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
7827 if Has_Discriminants (Full) then
7828 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
7829 Set_Girder_Constraint (Full, Girder_Constraint (Priv));
7830 end if;
7832 Set_Homonym (Full, Homonym (Priv));
7833 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
7834 Set_Is_Public (Full, Is_Public (Priv));
7835 Set_Is_Pure (Full, Is_Pure (Priv));
7836 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
7838 Conditional_Delay (Full, Priv);
7840 if Is_Tagged_Type (Full) then
7841 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
7843 if Priv = Base_Type (Priv) then
7844 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
7845 end if;
7846 end if;
7848 Set_Is_Volatile (Full, Is_Volatile (Priv));
7849 Set_Scope (Full, Scope (Priv));
7850 Set_Next_Entity (Full, Next_Entity (Priv));
7851 Set_First_Entity (Full, First_Entity (Priv));
7852 Set_Last_Entity (Full, Last_Entity (Priv));
7854 -- If access types have been recorded for later handling, keep them
7855 -- in the full view so that they get handled when the full view freeze
7856 -- node is expanded.
7858 if Present (Freeze_Node (Priv))
7859 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
7860 then
7861 Ensure_Freeze_Node (Full);
7862 Set_Access_Types_To_Process (Freeze_Node (Full),
7863 Access_Types_To_Process (Freeze_Node (Priv)));
7864 end if;
7865 end Copy_Private_To_Full;
7867 -----------------------------------
7868 -- Create_Constrained_Components --
7869 -----------------------------------
7871 procedure Create_Constrained_Components
7872 (Subt : Entity_Id;
7873 Decl_Node : Node_Id;
7874 Typ : Entity_Id;
7875 Constraints : Elist_Id)
7877 Loc : constant Source_Ptr := Sloc (Subt);
7878 Assoc_List : List_Id := New_List;
7879 Comp_List : Elist_Id := New_Elmt_List;
7880 Discr_Val : Elmt_Id;
7881 Errors : Boolean;
7882 New_C : Entity_Id;
7883 Old_C : Entity_Id;
7884 Is_Static : Boolean := True;
7885 Parent_Type : constant Entity_Id := Etype (Typ);
7887 procedure Collect_Fixed_Components (Typ : Entity_Id);
7888 -- Collect components of parent type that do not appear in a variant
7889 -- part.
7891 procedure Create_All_Components;
7892 -- Iterate over Comp_List to create the components of the subtype.
7894 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
7895 -- Creates a new component from Old_Compon, coppying all the fields from
7896 -- it, including its Etype, inserts the new component in the Subt entity
7897 -- chain and returns the new component.
7899 function Is_Variant_Record (T : Entity_Id) return Boolean;
7900 -- If true, and discriminants are static, collect only components from
7901 -- variants selected by discriminant values.
7903 ------------------------------
7904 -- Collect_Fixed_Components --
7905 ------------------------------
7907 procedure Collect_Fixed_Components (Typ : Entity_Id) is
7908 begin
7909 -- Build association list for discriminants, and find components of
7910 -- the variant part selected by the values of the discriminants.
7912 Old_C := First_Discriminant (Typ);
7913 Discr_Val := First_Elmt (Constraints);
7915 while Present (Old_C) loop
7916 Append_To (Assoc_List,
7917 Make_Component_Association (Loc,
7918 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
7919 Expression => New_Copy (Node (Discr_Val))));
7921 Next_Elmt (Discr_Val);
7922 Next_Discriminant (Old_C);
7923 end loop;
7925 -- The tag, and the possible parent and controller components
7926 -- are unconditionally in the subtype.
7928 if Is_Tagged_Type (Typ)
7929 or else Has_Controlled_Component (Typ)
7930 then
7931 Old_C := First_Component (Typ);
7933 while Present (Old_C) loop
7934 if Chars ((Old_C)) = Name_uTag
7935 or else Chars ((Old_C)) = Name_uParent
7936 or else Chars ((Old_C)) = Name_uController
7937 then
7938 Append_Elmt (Old_C, Comp_List);
7939 end if;
7941 Next_Component (Old_C);
7942 end loop;
7943 end if;
7944 end Collect_Fixed_Components;
7946 ---------------------------
7947 -- Create_All_Components --
7948 ---------------------------
7950 procedure Create_All_Components is
7951 Comp : Elmt_Id;
7953 begin
7954 Comp := First_Elmt (Comp_List);
7956 while Present (Comp) loop
7957 Old_C := Node (Comp);
7958 New_C := Create_Component (Old_C);
7960 Set_Etype
7961 (New_C,
7962 Constrain_Component_Type
7963 (Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
7964 Set_Is_Public (New_C, Is_Public (Subt));
7966 Next_Elmt (Comp);
7967 end loop;
7968 end Create_All_Components;
7970 ----------------------
7971 -- Create_Component --
7972 ----------------------
7974 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
7975 New_Compon : Entity_Id := New_Copy (Old_Compon);
7977 begin
7978 -- Set the parent so we have a proper link for freezing etc. This
7979 -- is not a real parent pointer, since of course our parent does
7980 -- not own up to us and reference us, we are an illegitimate
7981 -- child of the original parent!
7983 Set_Parent (New_Compon, Parent (Old_Compon));
7985 -- We do not want this node marked as Comes_From_Source, since
7986 -- otherwise it would get first class status and a separate
7987 -- cross-reference line would be generated. Illegitimate
7988 -- children do not rate such recognition.
7990 Set_Comes_From_Source (New_Compon, False);
7992 -- But it is a real entity, and a birth certificate must be
7993 -- properly registered by entering it into the entity list.
7995 Enter_Name (New_Compon);
7996 return New_Compon;
7997 end Create_Component;
7999 -----------------------
8000 -- Is_Variant_Record --
8001 -----------------------
8003 function Is_Variant_Record (T : Entity_Id) return Boolean is
8004 begin
8005 return Nkind (Parent (T)) = N_Full_Type_Declaration
8006 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
8007 and then Present (Component_List (Type_Definition (Parent (T))))
8008 and then Present (
8009 Variant_Part (Component_List (Type_Definition (Parent (T)))));
8010 end Is_Variant_Record;
8012 -- Start of processing for Create_Constrained_Components
8014 begin
8015 pragma Assert (Subt /= Base_Type (Subt));
8016 pragma Assert (Typ = Base_Type (Typ));
8018 Set_First_Entity (Subt, Empty);
8019 Set_Last_Entity (Subt, Empty);
8021 -- Check whether constraint is fully static, in which case we can
8022 -- optimize the list of components.
8024 Discr_Val := First_Elmt (Constraints);
8026 while Present (Discr_Val) loop
8028 if not Is_OK_Static_Expression (Node (Discr_Val)) then
8029 Is_Static := False;
8030 exit;
8031 end if;
8033 Next_Elmt (Discr_Val);
8034 end loop;
8036 New_Scope (Subt);
8038 -- Inherit the discriminants of the parent type.
8040 Old_C := First_Discriminant (Typ);
8042 while Present (Old_C) loop
8043 New_C := Create_Component (Old_C);
8044 Set_Is_Public (New_C, Is_Public (Subt));
8045 Next_Discriminant (Old_C);
8046 end loop;
8048 if Is_Static
8049 and then Is_Variant_Record (Typ)
8050 then
8051 Collect_Fixed_Components (Typ);
8053 Gather_Components (
8054 Typ,
8055 Component_List (Type_Definition (Parent (Typ))),
8056 Governed_By => Assoc_List,
8057 Into => Comp_List,
8058 Report_Errors => Errors);
8059 pragma Assert (not Errors);
8061 Create_All_Components;
8063 -- If the subtype declaration is created for a tagged type derivation
8064 -- with constraints, we retrieve the record definition of the parent
8065 -- type to select the components of the proper variant.
8067 elsif Is_Static
8068 and then Is_Tagged_Type (Typ)
8069 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
8070 and then
8071 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
8072 and then Is_Variant_Record (Parent_Type)
8073 then
8074 Collect_Fixed_Components (Typ);
8076 Gather_Components (
8077 Typ,
8078 Component_List (Type_Definition (Parent (Parent_Type))),
8079 Governed_By => Assoc_List,
8080 Into => Comp_List,
8081 Report_Errors => Errors);
8082 pragma Assert (not Errors);
8084 -- If the tagged derivation has a type extension, collect all the
8085 -- new components therein.
8087 if Present (
8088 Record_Extension_Part (Type_Definition (Parent (Typ))))
8089 then
8090 Old_C := First_Component (Typ);
8092 while Present (Old_C) loop
8093 if Original_Record_Component (Old_C) = Old_C
8094 and then Chars (Old_C) /= Name_uTag
8095 and then Chars (Old_C) /= Name_uParent
8096 and then Chars (Old_C) /= Name_uController
8097 then
8098 Append_Elmt (Old_C, Comp_List);
8099 end if;
8101 Next_Component (Old_C);
8102 end loop;
8103 end if;
8105 Create_All_Components;
8107 else
8108 -- If the discriminants are not static, or if this is a multi-level
8109 -- type extension, we have to include all the components of the
8110 -- parent type.
8112 Old_C := First_Component (Typ);
8114 while Present (Old_C) loop
8115 New_C := Create_Component (Old_C);
8117 Set_Etype
8118 (New_C,
8119 Constrain_Component_Type
8120 (Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
8121 Set_Is_Public (New_C, Is_Public (Subt));
8123 Next_Component (Old_C);
8124 end loop;
8125 end if;
8127 End_Scope;
8128 end Create_Constrained_Components;
8130 ------------------------------------------
8131 -- Decimal_Fixed_Point_Type_Declaration --
8132 ------------------------------------------
8134 procedure Decimal_Fixed_Point_Type_Declaration
8135 (T : Entity_Id;
8136 Def : Node_Id)
8138 Loc : constant Source_Ptr := Sloc (Def);
8139 Digs_Expr : constant Node_Id := Digits_Expression (Def);
8140 Delta_Expr : constant Node_Id := Delta_Expression (Def);
8141 Implicit_Base : Entity_Id;
8142 Digs_Val : Uint;
8143 Delta_Val : Ureal;
8144 Scale_Val : Uint;
8145 Bound_Val : Ureal;
8147 -- Start of processing for Decimal_Fixed_Point_Type_Declaration
8149 begin
8150 Check_Restriction (No_Fixed_Point, Def);
8152 -- Create implicit base type
8154 Implicit_Base :=
8155 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
8156 Set_Etype (Implicit_Base, Implicit_Base);
8158 -- Analyze and process delta expression
8160 Analyze_And_Resolve (Delta_Expr, Universal_Real);
8162 Check_Delta_Expression (Delta_Expr);
8163 Delta_Val := Expr_Value_R (Delta_Expr);
8165 -- Check delta is power of 10, and determine scale value from it
8167 declare
8168 Val : Ureal := Delta_Val;
8170 begin
8171 Scale_Val := Uint_0;
8173 if Val < Ureal_1 then
8174 while Val < Ureal_1 loop
8175 Val := Val * Ureal_10;
8176 Scale_Val := Scale_Val + 1;
8177 end loop;
8179 if Scale_Val > 18 then
8180 Error_Msg_N ("scale exceeds maximum value of 18", Def);
8181 Scale_Val := UI_From_Int (+18);
8182 end if;
8184 else
8185 while Val > Ureal_1 loop
8186 Val := Val / Ureal_10;
8187 Scale_Val := Scale_Val - 1;
8188 end loop;
8190 if Scale_Val < -18 then
8191 Error_Msg_N ("scale is less than minimum value of -18", Def);
8192 Scale_Val := UI_From_Int (-18);
8193 end if;
8194 end if;
8196 if Val /= Ureal_1 then
8197 Error_Msg_N ("delta expression must be a power of 10", Def);
8198 Delta_Val := Ureal_10 ** (-Scale_Val);
8199 end if;
8200 end;
8202 -- Set delta, scale and small (small = delta for decimal type)
8204 Set_Delta_Value (Implicit_Base, Delta_Val);
8205 Set_Scale_Value (Implicit_Base, Scale_Val);
8206 Set_Small_Value (Implicit_Base, Delta_Val);
8208 -- Analyze and process digits expression
8210 Analyze_And_Resolve (Digs_Expr, Any_Integer);
8211 Check_Digits_Expression (Digs_Expr);
8212 Digs_Val := Expr_Value (Digs_Expr);
8214 if Digs_Val > 18 then
8215 Digs_Val := UI_From_Int (+18);
8216 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
8217 end if;
8219 Set_Digits_Value (Implicit_Base, Digs_Val);
8220 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
8222 -- Set range of base type from digits value for now. This will be
8223 -- expanded to represent the true underlying base range by Freeze.
8225 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
8227 -- Set size to zero for now, size will be set at freeze time. We have
8228 -- to do this for ordinary fixed-point, because the size depends on
8229 -- the specified small, and we might as well do the same for decimal
8230 -- fixed-point.
8232 Init_Size_Align (Implicit_Base);
8234 -- Complete entity for first subtype
8236 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
8237 Set_Etype (T, Implicit_Base);
8238 Set_Size_Info (T, Implicit_Base);
8239 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
8240 Set_Digits_Value (T, Digs_Val);
8241 Set_Delta_Value (T, Delta_Val);
8242 Set_Small_Value (T, Delta_Val);
8243 Set_Scale_Value (T, Scale_Val);
8244 Set_Is_Constrained (T);
8246 -- If there are bounds given in the declaration use them as the
8247 -- bounds of the first named subtype.
8249 if Present (Real_Range_Specification (Def)) then
8250 declare
8251 RRS : constant Node_Id := Real_Range_Specification (Def);
8252 Low : constant Node_Id := Low_Bound (RRS);
8253 High : constant Node_Id := High_Bound (RRS);
8254 Low_Val : Ureal;
8255 High_Val : Ureal;
8257 begin
8258 Analyze_And_Resolve (Low, Any_Real);
8259 Analyze_And_Resolve (High, Any_Real);
8260 Check_Real_Bound (Low);
8261 Check_Real_Bound (High);
8262 Low_Val := Expr_Value_R (Low);
8263 High_Val := Expr_Value_R (High);
8265 if Low_Val < (-Bound_Val) then
8266 Error_Msg_N
8267 ("range low bound too small for digits value", Low);
8268 Low_Val := -Bound_Val;
8269 end if;
8271 if High_Val > Bound_Val then
8272 Error_Msg_N
8273 ("range high bound too large for digits value", High);
8274 High_Val := Bound_Val;
8275 end if;
8277 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
8278 end;
8280 -- If no explicit range, use range that corresponds to given
8281 -- digits value. This will end up as the final range for the
8282 -- first subtype.
8284 else
8285 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
8286 end if;
8288 end Decimal_Fixed_Point_Type_Declaration;
8290 -----------------------
8291 -- Derive_Subprogram --
8292 -----------------------
8294 procedure Derive_Subprogram
8295 (New_Subp : in out Entity_Id;
8296 Parent_Subp : Entity_Id;
8297 Derived_Type : Entity_Id;
8298 Parent_Type : Entity_Id;
8299 Actual_Subp : Entity_Id := Empty)
8301 Formal : Entity_Id;
8302 New_Formal : Entity_Id;
8303 Same_Subt : constant Boolean :=
8304 Is_Scalar_Type (Parent_Type)
8305 and then Subtypes_Statically_Compatible (Parent_Type, Derived_Type);
8307 function Is_Private_Overriding return Boolean;
8308 -- If Subp is a private overriding of a visible operation, the in-
8309 -- herited operation derives from the overridden op (even though
8310 -- its body is the overriding one) and the inherited operation is
8311 -- visible now. See sem_disp to see the details of the handling of
8312 -- the overridden subprogram, which is removed from the list of
8313 -- primitive operations of the type.
8315 procedure Replace_Type (Id, New_Id : Entity_Id);
8316 -- When the type is an anonymous access type, create a new access type
8317 -- designating the derived type.
8319 ---------------------------
8320 -- Is_Private_Overriding --
8321 ---------------------------
8323 function Is_Private_Overriding return Boolean is
8324 Prev : Entity_Id;
8326 begin
8327 Prev := Homonym (Parent_Subp);
8329 -- The visible operation that is overriden is a homonym of
8330 -- the parent subprogram. We scan the homonym chain to find
8331 -- the one whose alias is the subprogram we are deriving.
8333 while Present (Prev) loop
8334 if Is_Dispatching_Operation (Parent_Subp)
8335 and then Present (Prev)
8336 and then Ekind (Prev) = Ekind (Parent_Subp)
8337 and then Alias (Prev) = Parent_Subp
8338 and then Scope (Parent_Subp) = Scope (Prev)
8339 and then not Is_Hidden (Prev)
8340 then
8341 return True;
8342 end if;
8344 Prev := Homonym (Prev);
8345 end loop;
8347 return False;
8348 end Is_Private_Overriding;
8350 ------------------
8351 -- Replace_Type --
8352 ------------------
8354 procedure Replace_Type (Id, New_Id : Entity_Id) is
8355 Acc_Type : Entity_Id;
8356 IR : Node_Id;
8358 begin
8359 -- When the type is an anonymous access type, create a new access
8360 -- type designating the derived type. This itype must be elaborated
8361 -- at the point of the derivation, not on subsequent calls that may
8362 -- be out of the proper scope for Gigi, so we insert a reference to
8363 -- it after the derivation.
8365 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
8366 declare
8367 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
8369 begin
8370 if Ekind (Desig_Typ) = E_Record_Type_With_Private
8371 and then Present (Full_View (Desig_Typ))
8372 and then not Is_Private_Type (Parent_Type)
8373 then
8374 Desig_Typ := Full_View (Desig_Typ);
8375 end if;
8377 if Base_Type (Desig_Typ) = Base_Type (Parent_Type) then
8378 Acc_Type := New_Copy (Etype (Id));
8379 Set_Etype (Acc_Type, Acc_Type);
8380 Set_Scope (Acc_Type, New_Subp);
8382 -- Compute size of anonymous access type.
8384 if Is_Array_Type (Desig_Typ)
8385 and then not Is_Constrained (Desig_Typ)
8386 then
8387 Init_Size (Acc_Type, 2 * System_Address_Size);
8388 else
8389 Init_Size (Acc_Type, System_Address_Size);
8390 end if;
8392 Init_Alignment (Acc_Type);
8394 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
8396 Set_Etype (New_Id, Acc_Type);
8397 Set_Scope (New_Id, New_Subp);
8399 -- Create a reference to it.
8401 IR := Make_Itype_Reference (Sloc (Parent (Derived_Type)));
8402 Set_Itype (IR, Acc_Type);
8403 Insert_After (Parent (Derived_Type), IR);
8405 else
8406 Set_Etype (New_Id, Etype (Id));
8407 end if;
8408 end;
8409 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
8410 or else
8411 (Ekind (Etype (Id)) = E_Record_Type_With_Private
8412 and then Present (Full_View (Etype (Id)))
8413 and then Base_Type (Full_View (Etype (Id))) =
8414 Base_Type (Parent_Type))
8415 then
8417 -- Constraint checks on formals are generated during expansion,
8418 -- based on the signature of the original subprogram. The bounds
8419 -- of the derived type are not relevant, and thus we can use
8420 -- the base type for the formals. However, the return type may be
8421 -- used in a context that requires that the proper static bounds
8422 -- be used (a case statement, for example) and for those cases
8423 -- we must use the derived type (first subtype), not its base.
8425 if Etype (Id) = Parent_Type
8426 and then Same_Subt
8427 then
8428 Set_Etype (New_Id, Derived_Type);
8429 else
8430 Set_Etype (New_Id, Base_Type (Derived_Type));
8431 end if;
8433 else
8434 Set_Etype (New_Id, Etype (Id));
8435 end if;
8436 end Replace_Type;
8438 -- Start of processing for Derive_Subprogram
8440 begin
8441 New_Subp :=
8442 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
8443 Set_Ekind (New_Subp, Ekind (Parent_Subp));
8445 -- Check whether the inherited subprogram is a private operation that
8446 -- should be inherited but not yet made visible. Such subprograms can
8447 -- become visible at a later point (e.g., the private part of a public
8448 -- child unit) via Declare_Inherited_Private_Subprograms. If the
8449 -- following predicate is true, then this is not such a private
8450 -- operation and the subprogram simply inherits the name of the parent
8451 -- subprogram. Note the special check for the names of controlled
8452 -- operations, which are currently exempted from being inherited with
8453 -- a hidden name because they must be findable for generation of
8454 -- implicit run-time calls.
8456 if not Is_Hidden (Parent_Subp)
8457 or else Is_Internal (Parent_Subp)
8458 or else Is_Private_Overriding
8459 or else Is_Internal_Name (Chars (Parent_Subp))
8460 or else Chars (Parent_Subp) = Name_Initialize
8461 or else Chars (Parent_Subp) = Name_Adjust
8462 or else Chars (Parent_Subp) = Name_Finalize
8463 then
8464 Set_Chars (New_Subp, Chars (Parent_Subp));
8466 -- If parent is hidden, this can be a regular derivation if the
8467 -- parent is immediately visible in a non-instantiating context,
8468 -- or if we are in the private part of an instance. This test
8469 -- should still be refined ???
8471 -- The test for In_Instance_Not_Visible avoids inheriting the
8472 -- derived operation as a non-visible operation in cases where
8473 -- the parent subprogram might not be visible now, but was
8474 -- visible within the original generic, so it would be wrong
8475 -- to make the inherited subprogram non-visible now. (Not
8476 -- clear if this test is fully correct; are there any cases
8477 -- where we should declare the inherited operation as not
8478 -- visible to avoid it being overridden, e.g., when the
8479 -- parent type is a generic actual with private primitives ???)
8481 -- (they should be treated the same as other private inherited
8482 -- subprograms, but it's not clear how to do this cleanly). ???
8484 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
8485 and then Is_Immediately_Visible (Parent_Subp)
8486 and then not In_Instance)
8487 or else In_Instance_Not_Visible
8488 then
8489 Set_Chars (New_Subp, Chars (Parent_Subp));
8491 -- The type is inheriting a private operation, so enter
8492 -- it with a special name so it can't be overridden.
8494 else
8495 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
8496 end if;
8498 Set_Parent (New_Subp, Parent (Derived_Type));
8499 Replace_Type (Parent_Subp, New_Subp);
8500 Conditional_Delay (New_Subp, Parent_Subp);
8502 Formal := First_Formal (Parent_Subp);
8503 while Present (Formal) loop
8504 New_Formal := New_Copy (Formal);
8506 -- Normally we do not go copying parents, but in the case of
8507 -- formals, we need to link up to the declaration (which is
8508 -- the parameter specification), and it is fine to link up to
8509 -- the original formal's parameter specification in this case.
8511 Set_Parent (New_Formal, Parent (Formal));
8513 Append_Entity (New_Formal, New_Subp);
8515 Replace_Type (Formal, New_Formal);
8516 Next_Formal (Formal);
8517 end loop;
8519 -- If this derivation corresponds to a tagged generic actual, then
8520 -- primitive operations rename those of the actual. Otherwise the
8521 -- primitive operations rename those of the parent type.
8523 if No (Actual_Subp) then
8524 Set_Alias (New_Subp, Parent_Subp);
8525 Set_Is_Intrinsic_Subprogram (New_Subp,
8526 Is_Intrinsic_Subprogram (Parent_Subp));
8528 else
8529 Set_Alias (New_Subp, Actual_Subp);
8530 end if;
8532 -- Derived subprograms of a tagged type must inherit the convention
8533 -- of the parent subprogram (a requirement of AI-117). Derived
8534 -- subprograms of untagged types simply get convention Ada by default.
8536 if Is_Tagged_Type (Derived_Type) then
8537 Set_Convention (New_Subp, Convention (Parent_Subp));
8538 end if;
8540 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
8541 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
8543 if Ekind (Parent_Subp) = E_Procedure then
8544 Set_Is_Valued_Procedure
8545 (New_Subp, Is_Valued_Procedure (Parent_Subp));
8546 end if;
8548 New_Overloaded_Entity (New_Subp, Derived_Type);
8550 -- Check for case of a derived subprogram for the instantiation
8551 -- of a formal derived tagged type, so mark the subprogram as
8552 -- dispatching and inherit the dispatching attributes of the
8553 -- parent subprogram. The derived subprogram is effectively a
8554 -- renaming of the actual subprogram, so it needs to have the
8555 -- same attributes as the actual.
8557 if Present (Actual_Subp)
8558 and then Is_Dispatching_Operation (Parent_Subp)
8559 then
8560 Set_Is_Dispatching_Operation (New_Subp);
8561 if Present (DTC_Entity (Parent_Subp)) then
8562 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
8563 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
8564 end if;
8565 end if;
8567 -- Indicate that a derived subprogram does not require a body
8568 -- and that it does not require processing of default expressions.
8570 Set_Has_Completion (New_Subp);
8571 Set_Default_Expressions_Processed (New_Subp);
8573 -- A derived function with a controlling result is abstract.
8574 -- If the Derived_Type is a nonabstract formal generic derived
8575 -- type, then inherited operations are not abstract: check is
8576 -- done at instantiation time. If the derivation is for a generic
8577 -- actual, the function is not abstract unless the actual is.
8579 if Is_Generic_Type (Derived_Type)
8580 and then not Is_Abstract (Derived_Type)
8581 then
8582 null;
8584 elsif Is_Abstract (Alias (New_Subp))
8585 or else (Is_Tagged_Type (Derived_Type)
8586 and then Etype (New_Subp) = Derived_Type
8587 and then No (Actual_Subp))
8588 then
8589 Set_Is_Abstract (New_Subp);
8590 end if;
8592 if Ekind (New_Subp) = E_Function then
8593 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
8594 end if;
8595 end Derive_Subprogram;
8597 ------------------------
8598 -- Derive_Subprograms --
8599 ------------------------
8601 procedure Derive_Subprograms
8602 (Parent_Type : Entity_Id;
8603 Derived_Type : Entity_Id;
8604 Generic_Actual : Entity_Id := Empty)
8606 Op_List : Elist_Id := Collect_Primitive_Operations (Parent_Type);
8607 Act_List : Elist_Id;
8608 Act_Elmt : Elmt_Id;
8609 Elmt : Elmt_Id;
8610 Subp : Entity_Id;
8611 New_Subp : Entity_Id := Empty;
8612 Parent_Base : Entity_Id;
8614 begin
8615 if Ekind (Parent_Type) = E_Record_Type_With_Private
8616 and then Has_Discriminants (Parent_Type)
8617 and then Present (Full_View (Parent_Type))
8618 then
8619 Parent_Base := Full_View (Parent_Type);
8620 else
8621 Parent_Base := Parent_Type;
8622 end if;
8624 Elmt := First_Elmt (Op_List);
8626 if Present (Generic_Actual) then
8627 Act_List := Collect_Primitive_Operations (Generic_Actual);
8628 Act_Elmt := First_Elmt (Act_List);
8629 else
8630 Act_Elmt := No_Elmt;
8631 end if;
8633 -- Literals are derived earlier in the process of building the
8634 -- derived type, and are skipped here.
8636 while Present (Elmt) loop
8637 Subp := Node (Elmt);
8639 if Ekind (Subp) /= E_Enumeration_Literal then
8640 if No (Generic_Actual) then
8641 Derive_Subprogram
8642 (New_Subp, Subp, Derived_Type, Parent_Base);
8644 else
8645 Derive_Subprogram (New_Subp, Subp,
8646 Derived_Type, Parent_Base, Node (Act_Elmt));
8647 Next_Elmt (Act_Elmt);
8648 end if;
8649 end if;
8651 Next_Elmt (Elmt);
8652 end loop;
8653 end Derive_Subprograms;
8655 --------------------------------
8656 -- Derived_Standard_Character --
8657 --------------------------------
8659 procedure Derived_Standard_Character
8660 (N : Node_Id;
8661 Parent_Type : Entity_Id;
8662 Derived_Type : Entity_Id)
8664 Loc : constant Source_Ptr := Sloc (N);
8665 Def : constant Node_Id := Type_Definition (N);
8666 Indic : constant Node_Id := Subtype_Indication (Def);
8667 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8668 Implicit_Base : constant Entity_Id :=
8669 Create_Itype
8670 (E_Enumeration_Type, N, Derived_Type, 'B');
8672 Lo : Node_Id;
8673 Hi : Node_Id;
8674 T : Entity_Id;
8676 begin
8677 T := Process_Subtype (Indic, N);
8679 Set_Etype (Implicit_Base, Parent_Base);
8680 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
8681 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
8683 Set_Is_Character_Type (Implicit_Base, True);
8684 Set_Has_Delayed_Freeze (Implicit_Base);
8686 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
8687 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
8689 Set_Scalar_Range (Implicit_Base,
8690 Make_Range (Loc,
8691 Low_Bound => Lo,
8692 High_Bound => Hi));
8694 Conditional_Delay (Derived_Type, Parent_Type);
8696 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
8697 Set_Etype (Derived_Type, Implicit_Base);
8698 Set_Size_Info (Derived_Type, Parent_Type);
8700 if Unknown_RM_Size (Derived_Type) then
8701 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8702 end if;
8704 Set_Is_Character_Type (Derived_Type, True);
8706 if Nkind (Indic) /= N_Subtype_Indication then
8707 Set_Scalar_Range (Derived_Type, Scalar_Range (Implicit_Base));
8708 end if;
8710 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
8712 -- Because the implicit base is used in the conversion of the bounds,
8713 -- we have to freeze it now. This is similar to what is done for
8714 -- numeric types, and it equally suspicious, but otherwise a non-
8715 -- static bound will have a reference to an unfrozen type, which is
8716 -- rejected by Gigi (???).
8718 Freeze_Before (N, Implicit_Base);
8720 end Derived_Standard_Character;
8722 ------------------------------
8723 -- Derived_Type_Declaration --
8724 ------------------------------
8726 procedure Derived_Type_Declaration
8727 (T : Entity_Id;
8728 N : Node_Id;
8729 Is_Completion : Boolean)
8731 Def : constant Node_Id := Type_Definition (N);
8732 Indic : constant Node_Id := Subtype_Indication (Def);
8733 Extension : constant Node_Id := Record_Extension_Part (Def);
8734 Parent_Type : Entity_Id;
8735 Parent_Scope : Entity_Id;
8736 Taggd : Boolean;
8738 begin
8739 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
8741 if Parent_Type = Any_Type
8742 or else Etype (Parent_Type) = Any_Type
8743 or else (Is_Class_Wide_Type (Parent_Type)
8744 and then Etype (Parent_Type) = T)
8745 then
8746 -- If Parent_Type is undefined or illegal, make new type into
8747 -- a subtype of Any_Type, and set a few attributes to prevent
8748 -- cascaded errors. If this is a self-definition, emit error now.
8750 if T = Parent_Type
8751 or else T = Etype (Parent_Type)
8752 then
8753 Error_Msg_N ("type cannot be used in its own definition", Indic);
8754 end if;
8756 Set_Ekind (T, Ekind (Parent_Type));
8757 Set_Etype (T, Any_Type);
8758 Set_Scalar_Range (T, Scalar_Range (Any_Type));
8760 if Is_Tagged_Type (T) then
8761 Set_Primitive_Operations (T, New_Elmt_List);
8762 end if;
8764 return;
8766 elsif Is_Unchecked_Union (Parent_Type) then
8767 Error_Msg_N ("cannot derive from Unchecked_Union type", N);
8768 end if;
8770 -- Only composite types other than array types are allowed to have
8771 -- discriminants.
8773 if Present (Discriminant_Specifications (N))
8774 and then (Is_Elementary_Type (Parent_Type)
8775 or else Is_Array_Type (Parent_Type))
8776 and then not Error_Posted (N)
8777 then
8778 Error_Msg_N
8779 ("elementary or array type cannot have discriminants",
8780 Defining_Identifier (First (Discriminant_Specifications (N))));
8781 Set_Has_Discriminants (T, False);
8782 end if;
8784 -- In Ada 83, a derived type defined in a package specification cannot
8785 -- be used for further derivation until the end of its visible part.
8786 -- Note that derivation in the private part of the package is allowed.
8788 if Ada_83
8789 and then Is_Derived_Type (Parent_Type)
8790 and then In_Visible_Part (Scope (Parent_Type))
8791 then
8792 if Ada_83 and then Comes_From_Source (Indic) then
8793 Error_Msg_N
8794 ("(Ada 83): premature use of type for derivation", Indic);
8795 end if;
8796 end if;
8798 -- Check for early use of incomplete or private type
8800 if Ekind (Parent_Type) = E_Void
8801 or else Ekind (Parent_Type) = E_Incomplete_Type
8802 then
8803 Error_Msg_N ("premature derivation of incomplete type", Indic);
8804 return;
8806 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
8807 and then not Is_Generic_Type (Parent_Type)
8808 and then not Is_Generic_Type (Root_Type (Parent_Type))
8809 and then not Is_Generic_Actual_Type (Parent_Type))
8810 or else Has_Private_Component (Parent_Type)
8811 then
8812 -- The ancestor type of a formal type can be incomplete, in which
8813 -- case only the operations of the partial view are available in
8814 -- the generic. Subsequent checks may be required when the full
8815 -- view is analyzed, to verify that derivation from a tagged type
8816 -- has an extension.
8818 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
8819 null;
8821 elsif No (Underlying_Type (Parent_Type))
8822 or else Has_Private_Component (Parent_Type)
8823 then
8824 Error_Msg_N
8825 ("premature derivation of derived or private type", Indic);
8827 -- Flag the type itself as being in error, this prevents some
8828 -- nasty problems with people looking at the malformed type.
8830 Set_Error_Posted (T);
8832 -- Check that within the immediate scope of an untagged partial
8833 -- view it's illegal to derive from the partial view if the
8834 -- full view is tagged. (7.3(7))
8836 -- We verify that the Parent_Type is a partial view by checking
8837 -- that it is not a Full_Type_Declaration (i.e. a private type or
8838 -- private extension declaration), to distinguish a partial view
8839 -- from a derivation from a private type which also appears as
8840 -- E_Private_Type.
8842 elsif Present (Full_View (Parent_Type))
8843 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
8844 and then not Is_Tagged_Type (Parent_Type)
8845 and then Is_Tagged_Type (Full_View (Parent_Type))
8846 then
8847 Parent_Scope := Scope (T);
8848 while Present (Parent_Scope)
8849 and then Parent_Scope /= Standard_Standard
8850 loop
8851 if Parent_Scope = Scope (Parent_Type) then
8852 Error_Msg_N
8853 ("premature derivation from type with tagged full view",
8854 Indic);
8855 end if;
8857 Parent_Scope := Scope (Parent_Scope);
8858 end loop;
8859 end if;
8860 end if;
8862 -- Check that form of derivation is appropriate
8864 Taggd := Is_Tagged_Type (Parent_Type);
8866 -- Perhaps the parent type should be changed to the class-wide type's
8867 -- specific type in this case to prevent cascading errors ???
8869 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
8870 Error_Msg_N ("parent type must not be a class-wide type", Indic);
8871 return;
8872 end if;
8874 if Present (Extension) and then not Taggd then
8875 Error_Msg_N
8876 ("type derived from untagged type cannot have extension", Indic);
8878 elsif No (Extension) and then Taggd then
8879 -- If this is within a private part (or body) of a generic
8880 -- instantiation then the derivation is allowed (the parent
8881 -- type can only appear tagged in this case if it's a generic
8882 -- actual type, since it would otherwise have been rejected
8883 -- in the analysis of the generic template).
8885 if not Is_Generic_Actual_Type (Parent_Type)
8886 or else In_Visible_Part (Scope (Parent_Type))
8887 then
8888 Error_Msg_N
8889 ("type derived from tagged type must have extension", Indic);
8890 end if;
8891 end if;
8893 Build_Derived_Type (N, Parent_Type, T, Is_Completion);
8894 end Derived_Type_Declaration;
8896 ----------------------------------
8897 -- Enumeration_Type_Declaration --
8898 ----------------------------------
8900 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
8901 Ev : Uint;
8902 L : Node_Id;
8903 R_Node : Node_Id;
8904 B_Node : Node_Id;
8906 begin
8907 -- Create identifier node representing lower bound
8909 B_Node := New_Node (N_Identifier, Sloc (Def));
8910 L := First (Literals (Def));
8911 Set_Chars (B_Node, Chars (L));
8912 Set_Entity (B_Node, L);
8913 Set_Etype (B_Node, T);
8914 Set_Is_Static_Expression (B_Node, True);
8916 R_Node := New_Node (N_Range, Sloc (Def));
8917 Set_Low_Bound (R_Node, B_Node);
8919 Set_Ekind (T, E_Enumeration_Type);
8920 Set_First_Literal (T, L);
8921 Set_Etype (T, T);
8922 Set_Is_Constrained (T);
8924 Ev := Uint_0;
8926 -- Loop through literals of enumeration type setting pos and rep values
8927 -- except that if the Ekind is already set, then it means that the
8928 -- literal was already constructed (case of a derived type declaration
8929 -- and we should not disturb the Pos and Rep values.
8931 while Present (L) loop
8932 if Ekind (L) /= E_Enumeration_Literal then
8933 Set_Ekind (L, E_Enumeration_Literal);
8934 Set_Enumeration_Pos (L, Ev);
8935 Set_Enumeration_Rep (L, Ev);
8936 Set_Is_Known_Valid (L, True);
8937 end if;
8939 Set_Etype (L, T);
8940 New_Overloaded_Entity (L);
8941 Generate_Definition (L);
8942 Set_Convention (L, Convention_Intrinsic);
8944 if Nkind (L) = N_Defining_Character_Literal then
8945 Set_Is_Character_Type (T, True);
8946 end if;
8948 Ev := Ev + 1;
8949 Next (L);
8950 end loop;
8952 -- Now create a node representing upper bound
8954 B_Node := New_Node (N_Identifier, Sloc (Def));
8955 Set_Chars (B_Node, Chars (Last (Literals (Def))));
8956 Set_Entity (B_Node, Last (Literals (Def)));
8957 Set_Etype (B_Node, T);
8958 Set_Is_Static_Expression (B_Node, True);
8960 Set_High_Bound (R_Node, B_Node);
8961 Set_Scalar_Range (T, R_Node);
8962 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
8963 Set_Enum_Esize (T);
8965 -- Set Discard_Names if configuration pragma setg, or if there is
8966 -- a parameterless pragma in the current declarative region
8968 if Global_Discard_Names
8969 or else Discard_Names (Scope (T))
8970 then
8971 Set_Discard_Names (T);
8972 end if;
8974 -- Process end label if there is one
8976 if Present (Def) then
8977 Process_End_Label (Def, 'e', T);
8978 end if;
8979 end Enumeration_Type_Declaration;
8981 --------------------------
8982 -- Expand_Others_Choice --
8983 --------------------------
8985 procedure Expand_Others_Choice
8986 (Case_Table : Choice_Table_Type;
8987 Others_Choice : Node_Id;
8988 Choice_Type : Entity_Id)
8990 Choice : Node_Id;
8991 Choice_List : List_Id := New_List;
8992 Exp_Lo : Node_Id;
8993 Exp_Hi : Node_Id;
8994 Hi : Uint;
8995 Lo : Uint;
8996 Loc : Source_Ptr := Sloc (Others_Choice);
8997 Previous_Hi : Uint;
8999 function Build_Choice (Value1, Value2 : Uint) return Node_Id;
9000 -- Builds a node representing the missing choices given by the
9001 -- Value1 and Value2. A N_Range node is built if there is more than
9002 -- one literal value missing. Otherwise a single N_Integer_Literal,
9003 -- N_Identifier or N_Character_Literal is built depending on what
9004 -- Choice_Type is.
9006 function Lit_Of (Value : Uint) return Node_Id;
9007 -- Returns the Node_Id for the enumeration literal corresponding to the
9008 -- position given by Value within the enumeration type Choice_Type.
9010 ------------------
9011 -- Build_Choice --
9012 ------------------
9014 function Build_Choice (Value1, Value2 : Uint) return Node_Id is
9015 Lit_Node : Node_Id;
9016 Lo, Hi : Node_Id;
9018 begin
9019 -- If there is only one choice value missing between Value1 and
9020 -- Value2, build an integer or enumeration literal to represent it.
9022 if (Value2 - Value1) = 0 then
9023 if Is_Integer_Type (Choice_Type) then
9024 Lit_Node := Make_Integer_Literal (Loc, Value1);
9025 Set_Etype (Lit_Node, Choice_Type);
9026 else
9027 Lit_Node := Lit_Of (Value1);
9028 end if;
9030 -- Otherwise is more that one choice value that is missing between
9031 -- Value1 and Value2, therefore build a N_Range node of either
9032 -- integer or enumeration literals.
9034 else
9035 if Is_Integer_Type (Choice_Type) then
9036 Lo := Make_Integer_Literal (Loc, Value1);
9037 Set_Etype (Lo, Choice_Type);
9038 Hi := Make_Integer_Literal (Loc, Value2);
9039 Set_Etype (Hi, Choice_Type);
9040 Lit_Node :=
9041 Make_Range (Loc,
9042 Low_Bound => Lo,
9043 High_Bound => Hi);
9045 else
9046 Lit_Node :=
9047 Make_Range (Loc,
9048 Low_Bound => Lit_Of (Value1),
9049 High_Bound => Lit_Of (Value2));
9050 end if;
9051 end if;
9053 return Lit_Node;
9054 end Build_Choice;
9056 ------------
9057 -- Lit_Of --
9058 ------------
9060 function Lit_Of (Value : Uint) return Node_Id is
9061 Lit : Entity_Id;
9063 begin
9064 -- In the case where the literal is of type Character, there needs
9065 -- to be some special handling since there is no explicit chain
9066 -- of literals to search. Instead, a N_Character_Literal node
9067 -- is created with the appropriate Char_Code and Chars fields.
9069 if Root_Type (Choice_Type) = Standard_Character then
9070 Set_Character_Literal_Name (Char_Code (UI_To_Int (Value)));
9071 Lit := New_Node (N_Character_Literal, Loc);
9072 Set_Chars (Lit, Name_Find);
9073 Set_Char_Literal_Value (Lit, Char_Code (UI_To_Int (Value)));
9074 Set_Etype (Lit, Choice_Type);
9075 Set_Is_Static_Expression (Lit, True);
9076 return Lit;
9078 -- Otherwise, iterate through the literals list of Choice_Type
9079 -- "Value" number of times until the desired literal is reached
9080 -- and then return an occurrence of it.
9082 else
9083 Lit := First_Literal (Choice_Type);
9084 for J in 1 .. UI_To_Int (Value) loop
9085 Next_Literal (Lit);
9086 end loop;
9088 return New_Occurrence_Of (Lit, Loc);
9089 end if;
9090 end Lit_Of;
9092 -- Start of processing for Expand_Others_Choice
9094 begin
9095 if Case_Table'Length = 0 then
9097 -- Pathological case: only an others case is present.
9098 -- The others case covers the full range of the type.
9100 if Is_Static_Subtype (Choice_Type) then
9101 Choice := New_Occurrence_Of (Choice_Type, Loc);
9102 else
9103 Choice := New_Occurrence_Of (Base_Type (Choice_Type), Loc);
9104 end if;
9106 Set_Others_Discrete_Choices (Others_Choice, New_List (Choice));
9107 return;
9108 end if;
9110 -- Establish the bound values for the variant depending upon whether
9111 -- the type of the discriminant name is static or not.
9113 if Is_OK_Static_Subtype (Choice_Type) then
9114 Exp_Lo := Type_Low_Bound (Choice_Type);
9115 Exp_Hi := Type_High_Bound (Choice_Type);
9116 else
9117 Exp_Lo := Type_Low_Bound (Base_Type (Choice_Type));
9118 Exp_Hi := Type_High_Bound (Base_Type (Choice_Type));
9119 end if;
9121 Lo := Expr_Value (Case_Table (Case_Table'First).Lo);
9122 Hi := Expr_Value (Case_Table (Case_Table'First).Hi);
9123 Previous_Hi := Expr_Value (Case_Table (Case_Table'First).Hi);
9125 -- Build the node for any missing choices that are smaller than any
9126 -- explicit choices given in the variant.
9128 if Expr_Value (Exp_Lo) < Lo then
9129 Append (Build_Choice (Expr_Value (Exp_Lo), Lo - 1), Choice_List);
9130 end if;
9132 -- Build the nodes representing any missing choices that lie between
9133 -- the explicit ones given in the variant.
9135 for J in Case_Table'First + 1 .. Case_Table'Last loop
9136 Lo := Expr_Value (Case_Table (J).Lo);
9137 Hi := Expr_Value (Case_Table (J).Hi);
9139 if Lo /= (Previous_Hi + 1) then
9140 Append_To (Choice_List, Build_Choice (Previous_Hi + 1, Lo - 1));
9141 end if;
9143 Previous_Hi := Hi;
9144 end loop;
9146 -- Build the node for any missing choices that are greater than any
9147 -- explicit choices given in the variant.
9149 if Expr_Value (Exp_Hi) > Hi then
9150 Append (Build_Choice (Hi + 1, Expr_Value (Exp_Hi)), Choice_List);
9151 end if;
9153 Set_Others_Discrete_Choices (Others_Choice, Choice_List);
9154 end Expand_Others_Choice;
9156 ---------------------------------
9157 -- Expand_To_Girder_Constraint --
9158 ---------------------------------
9160 function Expand_To_Girder_Constraint
9161 (Typ : Entity_Id;
9162 Constraint : Elist_Id)
9163 return Elist_Id
9165 Explicitly_Discriminated_Type : Entity_Id;
9166 Expansion : Elist_Id;
9167 Discriminant : Entity_Id;
9169 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
9170 -- Find the nearest type that actually specifies discriminants.
9172 ---------------------------------
9173 -- Type_With_Explicit_Discrims --
9174 ---------------------------------
9176 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
9177 Typ : constant E := Base_Type (Id);
9179 begin
9180 if Ekind (Typ) in Incomplete_Or_Private_Kind then
9181 if Present (Full_View (Typ)) then
9182 return Type_With_Explicit_Discrims (Full_View (Typ));
9183 end if;
9185 else
9186 if Has_Discriminants (Typ) then
9187 return Typ;
9188 end if;
9189 end if;
9191 if Etype (Typ) = Typ then
9192 return Empty;
9193 elsif Has_Discriminants (Typ) then
9194 return Typ;
9195 else
9196 return Type_With_Explicit_Discrims (Etype (Typ));
9197 end if;
9199 end Type_With_Explicit_Discrims;
9201 -- Start of processing for Expand_To_Girder_Constraint
9203 begin
9204 if No (Constraint)
9205 or else Is_Empty_Elmt_List (Constraint)
9206 then
9207 return No_Elist;
9208 end if;
9210 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
9212 if No (Explicitly_Discriminated_Type) then
9213 return No_Elist;
9214 end if;
9216 Expansion := New_Elmt_List;
9218 Discriminant :=
9219 First_Girder_Discriminant (Explicitly_Discriminated_Type);
9221 while Present (Discriminant) loop
9223 Append_Elmt (
9224 Get_Discriminant_Value (
9225 Discriminant, Explicitly_Discriminated_Type, Constraint),
9226 Expansion);
9228 Next_Girder_Discriminant (Discriminant);
9229 end loop;
9231 return Expansion;
9232 end Expand_To_Girder_Constraint;
9234 --------------------
9235 -- Find_Type_Name --
9236 --------------------
9238 function Find_Type_Name (N : Node_Id) return Entity_Id is
9239 Id : constant Entity_Id := Defining_Identifier (N);
9240 Prev : Entity_Id;
9241 New_Id : Entity_Id;
9242 Prev_Par : Node_Id;
9244 begin
9245 -- Find incomplete declaration, if some was given.
9247 Prev := Current_Entity_In_Scope (Id);
9249 if Present (Prev) then
9251 -- Previous declaration exists. Error if not incomplete/private case
9252 -- except if previous declaration is implicit, etc. Enter_Name will
9253 -- emit error if appropriate.
9255 Prev_Par := Parent (Prev);
9257 if not Is_Incomplete_Or_Private_Type (Prev) then
9258 Enter_Name (Id);
9259 New_Id := Id;
9261 elsif Nkind (N) /= N_Full_Type_Declaration
9262 and then Nkind (N) /= N_Task_Type_Declaration
9263 and then Nkind (N) /= N_Protected_Type_Declaration
9264 then
9265 -- Completion must be a full type declarations (RM 7.3(4))
9267 Error_Msg_Sloc := Sloc (Prev);
9268 Error_Msg_NE ("invalid completion of }", Id, Prev);
9270 -- Set scope of Id to avoid cascaded errors. Entity is never
9271 -- examined again, except when saving globals in generics.
9273 Set_Scope (Id, Current_Scope);
9274 New_Id := Id;
9276 -- Case of full declaration of incomplete type
9278 elsif Ekind (Prev) = E_Incomplete_Type then
9280 -- Indicate that the incomplete declaration has a matching
9281 -- full declaration. The defining occurrence of the incomplete
9282 -- declaration remains the visible one, and the procedure
9283 -- Get_Full_View dereferences it whenever the type is used.
9285 if Present (Full_View (Prev)) then
9286 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
9287 end if;
9289 Set_Full_View (Prev, Id);
9290 Append_Entity (Id, Current_Scope);
9291 Set_Is_Public (Id, Is_Public (Prev));
9292 Set_Is_Internal (Id);
9293 New_Id := Prev;
9295 -- Case of full declaration of private type
9297 else
9298 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
9299 if Etype (Prev) /= Prev then
9301 -- Prev is a private subtype or a derived type, and needs
9302 -- no completion.
9304 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
9305 New_Id := Id;
9307 elsif Ekind (Prev) = E_Private_Type
9308 and then
9309 (Nkind (N) = N_Task_Type_Declaration
9310 or else Nkind (N) = N_Protected_Type_Declaration)
9311 then
9312 Error_Msg_N
9313 ("completion of nonlimited type cannot be limited", N);
9314 end if;
9316 elsif Nkind (N) /= N_Full_Type_Declaration
9317 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
9318 then
9319 Error_Msg_N ("full view of private extension must be"
9320 & " an extension", N);
9322 elsif not (Abstract_Present (Parent (Prev)))
9323 and then Abstract_Present (Type_Definition (N))
9324 then
9325 Error_Msg_N ("full view of non-abstract extension cannot"
9326 & " be abstract", N);
9327 end if;
9329 if not In_Private_Part (Current_Scope) then
9330 Error_Msg_N
9331 ("declaration of full view must appear in private part", N);
9332 end if;
9334 Copy_And_Swap (Prev, Id);
9335 Set_Has_Private_Declaration (Prev);
9336 Set_Has_Private_Declaration (Id);
9338 -- If no error, propagate freeze_node from private to full view.
9339 -- It may have been generated for an early operational item.
9341 if Present (Freeze_Node (Id))
9342 and then Serious_Errors_Detected = 0
9343 and then No (Full_View (Id))
9344 then
9345 Set_Freeze_Node (Prev, Freeze_Node (Id));
9346 Set_Freeze_Node (Id, Empty);
9347 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
9348 end if;
9350 Set_Full_View (Id, Prev);
9351 New_Id := Prev;
9352 end if;
9354 -- Verify that full declaration conforms to incomplete one
9356 if Is_Incomplete_Or_Private_Type (Prev)
9357 and then Present (Discriminant_Specifications (Prev_Par))
9358 then
9359 if Present (Discriminant_Specifications (N)) then
9360 if Ekind (Prev) = E_Incomplete_Type then
9361 Check_Discriminant_Conformance (N, Prev, Prev);
9362 else
9363 Check_Discriminant_Conformance (N, Prev, Id);
9364 end if;
9366 else
9367 Error_Msg_N
9368 ("missing discriminants in full type declaration", N);
9370 -- To avoid cascaded errors on subsequent use, share the
9371 -- discriminants of the partial view.
9373 Set_Discriminant_Specifications (N,
9374 Discriminant_Specifications (Prev_Par));
9375 end if;
9376 end if;
9378 -- A prior untagged private type can have an associated
9379 -- class-wide type due to use of the class attribute,
9380 -- and in this case also the full type is required to
9381 -- be tagged.
9383 if Is_Type (Prev)
9384 and then (Is_Tagged_Type (Prev)
9385 or else Present (Class_Wide_Type (Prev)))
9386 then
9387 -- The full declaration is either a tagged record or an
9388 -- extension otherwise this is an error
9390 if Nkind (Type_Definition (N)) = N_Record_Definition then
9391 if not Tagged_Present (Type_Definition (N)) then
9392 Error_Msg_NE
9393 ("full declaration of } must be tagged", Prev, Id);
9394 Set_Is_Tagged_Type (Id);
9395 Set_Primitive_Operations (Id, New_Elmt_List);
9396 end if;
9398 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
9399 if No (Record_Extension_Part (Type_Definition (N))) then
9400 Error_Msg_NE (
9401 "full declaration of } must be a record extension",
9402 Prev, Id);
9403 Set_Is_Tagged_Type (Id);
9404 Set_Primitive_Operations (Id, New_Elmt_List);
9405 end if;
9407 else
9408 Error_Msg_NE
9409 ("full declaration of } must be a tagged type", Prev, Id);
9411 end if;
9412 end if;
9414 return New_Id;
9416 else
9417 -- New type declaration
9419 Enter_Name (Id);
9420 return Id;
9421 end if;
9422 end Find_Type_Name;
9424 -------------------------
9425 -- Find_Type_Of_Object --
9426 -------------------------
9428 function Find_Type_Of_Object
9429 (Obj_Def : Node_Id;
9430 Related_Nod : Node_Id)
9431 return Entity_Id
9433 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
9434 P : constant Node_Id := Parent (Obj_Def);
9435 T : Entity_Id;
9436 Nam : Name_Id;
9438 begin
9439 -- Case of an anonymous array subtype
9441 if Def_Kind = N_Constrained_Array_Definition
9442 or else Def_Kind = N_Unconstrained_Array_Definition
9443 then
9444 T := Empty;
9445 Array_Type_Declaration (T, Obj_Def);
9447 -- Create an explicit subtype whenever possible.
9449 elsif Nkind (P) /= N_Component_Declaration
9450 and then Def_Kind = N_Subtype_Indication
9451 then
9452 -- Base name of subtype on object name, which will be unique in
9453 -- the current scope.
9455 -- If this is a duplicate declaration, return base type, to avoid
9456 -- generating duplicate anonymous types.
9458 if Error_Posted (P) then
9459 Analyze (Subtype_Mark (Obj_Def));
9460 return Entity (Subtype_Mark (Obj_Def));
9461 end if;
9463 Nam :=
9464 New_External_Name
9465 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
9467 T := Make_Defining_Identifier (Sloc (P), Nam);
9469 Insert_Action (Obj_Def,
9470 Make_Subtype_Declaration (Sloc (P),
9471 Defining_Identifier => T,
9472 Subtype_Indication => Relocate_Node (Obj_Def)));
9474 -- This subtype may need freezing and it will not be done
9475 -- automatically if the object declaration is not in a
9476 -- declarative part. Since this is an object declaration, the
9477 -- type cannot always be frozen here. Deferred constants do not
9478 -- freeze their type (which often enough will be private).
9480 if Nkind (P) = N_Object_Declaration
9481 and then Constant_Present (P)
9482 and then No (Expression (P))
9483 then
9484 null;
9486 else
9487 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
9488 end if;
9490 else
9491 T := Process_Subtype (Obj_Def, Related_Nod);
9492 end if;
9494 return T;
9495 end Find_Type_Of_Object;
9497 --------------------------------
9498 -- Find_Type_Of_Subtype_Indic --
9499 --------------------------------
9501 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
9502 Typ : Entity_Id;
9504 begin
9505 -- Case of subtype mark with a constraint
9507 if Nkind (S) = N_Subtype_Indication then
9508 Find_Type (Subtype_Mark (S));
9509 Typ := Entity (Subtype_Mark (S));
9511 if not
9512 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
9513 then
9514 Error_Msg_N
9515 ("incorrect constraint for this kind of type", Constraint (S));
9516 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
9517 end if;
9519 -- Otherwise we have a subtype mark without a constraint
9521 elsif Error_Posted (S) then
9522 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
9523 return Any_Type;
9525 else
9526 Find_Type (S);
9527 Typ := Entity (S);
9528 end if;
9530 if Typ = Standard_Wide_Character
9531 or else Typ = Standard_Wide_String
9532 then
9533 Check_Restriction (No_Wide_Characters, S);
9534 end if;
9536 return Typ;
9537 end Find_Type_Of_Subtype_Indic;
9539 -------------------------------------
9540 -- Floating_Point_Type_Declaration --
9541 -------------------------------------
9543 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
9544 Digs : constant Node_Id := Digits_Expression (Def);
9545 Digs_Val : Uint;
9546 Base_Typ : Entity_Id;
9547 Implicit_Base : Entity_Id;
9548 Bound : Node_Id;
9550 function Can_Derive_From (E : Entity_Id) return Boolean;
9551 -- Find if given digits value allows derivation from specified type
9553 function Can_Derive_From (E : Entity_Id) return Boolean is
9554 Spec : constant Entity_Id := Real_Range_Specification (Def);
9556 begin
9557 if Digs_Val > Digits_Value (E) then
9558 return False;
9559 end if;
9561 if Present (Spec) then
9562 if Expr_Value_R (Type_Low_Bound (E)) >
9563 Expr_Value_R (Low_Bound (Spec))
9564 then
9565 return False;
9566 end if;
9568 if Expr_Value_R (Type_High_Bound (E)) <
9569 Expr_Value_R (High_Bound (Spec))
9570 then
9571 return False;
9572 end if;
9573 end if;
9575 return True;
9576 end Can_Derive_From;
9578 -- Start of processing for Floating_Point_Type_Declaration
9580 begin
9581 Check_Restriction (No_Floating_Point, Def);
9583 -- Create an implicit base type
9585 Implicit_Base :=
9586 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
9588 -- Analyze and verify digits value
9590 Analyze_And_Resolve (Digs, Any_Integer);
9591 Check_Digits_Expression (Digs);
9592 Digs_Val := Expr_Value (Digs);
9594 -- Process possible range spec and find correct type to derive from
9596 Process_Real_Range_Specification (Def);
9598 if Can_Derive_From (Standard_Short_Float) then
9599 Base_Typ := Standard_Short_Float;
9600 elsif Can_Derive_From (Standard_Float) then
9601 Base_Typ := Standard_Float;
9602 elsif Can_Derive_From (Standard_Long_Float) then
9603 Base_Typ := Standard_Long_Float;
9604 elsif Can_Derive_From (Standard_Long_Long_Float) then
9605 Base_Typ := Standard_Long_Long_Float;
9607 -- If we can't derive from any existing type, use long long float
9608 -- and give appropriate message explaining the problem.
9610 else
9611 Base_Typ := Standard_Long_Long_Float;
9613 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
9614 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
9615 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
9617 else
9618 Error_Msg_N
9619 ("range too large for any predefined type",
9620 Real_Range_Specification (Def));
9621 end if;
9622 end if;
9624 -- If there are bounds given in the declaration use them as the bounds
9625 -- of the type, otherwise use the bounds of the predefined base type
9626 -- that was chosen based on the Digits value.
9628 if Present (Real_Range_Specification (Def)) then
9629 Set_Scalar_Range (T, Real_Range_Specification (Def));
9630 Set_Is_Constrained (T);
9632 -- The bounds of this range must be converted to machine numbers
9633 -- in accordance with RM 4.9(38).
9635 Bound := Type_Low_Bound (T);
9637 if Nkind (Bound) = N_Real_Literal then
9638 Set_Realval (Bound, Machine (Base_Typ, Realval (Bound), Round));
9639 Set_Is_Machine_Number (Bound);
9640 end if;
9642 Bound := Type_High_Bound (T);
9644 if Nkind (Bound) = N_Real_Literal then
9645 Set_Realval (Bound, Machine (Base_Typ, Realval (Bound), Round));
9646 Set_Is_Machine_Number (Bound);
9647 end if;
9649 else
9650 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
9651 end if;
9653 -- Complete definition of implicit base and declared first subtype
9655 Set_Etype (Implicit_Base, Base_Typ);
9657 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
9658 Set_Size_Info (Implicit_Base, (Base_Typ));
9659 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
9660 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
9661 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
9662 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
9664 Set_Ekind (T, E_Floating_Point_Subtype);
9665 Set_Etype (T, Implicit_Base);
9667 Set_Size_Info (T, (Implicit_Base));
9668 Set_RM_Size (T, RM_Size (Implicit_Base));
9669 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
9670 Set_Digits_Value (T, Digs_Val);
9672 end Floating_Point_Type_Declaration;
9674 ----------------------------
9675 -- Get_Discriminant_Value --
9676 ----------------------------
9678 -- This is the situation...
9680 -- There is a non-derived type
9682 -- type T0 (Dx, Dy, Dz...)
9684 -- There are zero or more levels of derivation, with each
9685 -- derivation either purely inheriting the discriminants, or
9686 -- defining its own.
9688 -- type Ti is new Ti-1
9689 -- or
9690 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
9691 -- or
9692 -- subtype Ti is ...
9694 -- The subtype issue is avoided by the use of
9695 -- Original_Record_Component, and the fact that derived subtypes
9696 -- also derive the constraits.
9698 -- This chain leads back from
9700 -- Typ_For_Constraint
9702 -- Typ_For_Constraint has discriminants, and the value for each
9703 -- discriminant is given by its corresponding Elmt of Constraints.
9705 -- Discriminant is some discriminant in this hierarchy.
9707 -- We need to return its value.
9709 -- We do this by recursively searching each level, and looking for
9710 -- Discriminant. Once we get to the bottom, we start backing up
9711 -- returning the value for it which may in turn be a discriminant
9712 -- further up, so on the backup we continue the substitution.
9714 function Get_Discriminant_Value
9715 (Discriminant : Entity_Id;
9716 Typ_For_Constraint : Entity_Id;
9717 Constraint : Elist_Id)
9718 return Node_Id
9720 function Recurse
9721 (Ti : Entity_Id;
9722 Discrim_Values : Elist_Id;
9723 Girder_Discrim_Values : Boolean)
9724 return Node_Or_Entity_Id;
9725 -- This is the routine that performs the recursive search of levels
9726 -- as described above.
9728 function Recurse
9729 (Ti : Entity_Id;
9730 Discrim_Values : Elist_Id;
9731 Girder_Discrim_Values : Boolean)
9732 return Node_Or_Entity_Id
9734 Assoc : Elmt_Id;
9735 Disc : Entity_Id;
9736 Result : Node_Or_Entity_Id;
9737 Result_Entity : Node_Id;
9739 begin
9740 -- If inappropriate type, return Error, this happens only in
9741 -- cascaded error situations, and we want to avoid a blow up.
9743 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
9744 return Error;
9745 end if;
9747 -- Look deeper if possible. Use Girder_Constraints only for
9748 -- untagged types. For tagged types use the given constraint.
9749 -- This asymmetry needs explanation???
9751 if not Girder_Discrim_Values
9752 and then Present (Girder_Constraint (Ti))
9753 and then not Is_Tagged_Type (Ti)
9754 then
9755 Result := Recurse (Ti, Girder_Constraint (Ti), True);
9756 else
9757 declare
9758 Td : Entity_Id := Etype (Ti);
9759 begin
9761 if Td = Ti then
9762 Result := Discriminant;
9764 else
9765 if Present (Girder_Constraint (Ti)) then
9766 Result :=
9767 Recurse (Td, Girder_Constraint (Ti), True);
9768 else
9769 Result :=
9770 Recurse (Td, Discrim_Values, Girder_Discrim_Values);
9771 end if;
9772 end if;
9773 end;
9774 end if;
9776 -- Extra underlying places to search, if not found above. For
9777 -- concurrent types, the relevant discriminant appears in the
9778 -- corresponding record. For a type derived from a private type
9779 -- without discriminant, the full view inherits the discriminants
9780 -- of the full view of the parent.
9782 if Result = Discriminant then
9783 if Is_Concurrent_Type (Ti)
9784 and then Present (Corresponding_Record_Type (Ti))
9785 then
9786 Result :=
9787 Recurse (
9788 Corresponding_Record_Type (Ti),
9789 Discrim_Values,
9790 Girder_Discrim_Values);
9792 elsif Is_Private_Type (Ti)
9793 and then not Has_Discriminants (Ti)
9794 and then Present (Full_View (Ti))
9795 and then Etype (Full_View (Ti)) /= Ti
9796 then
9797 Result :=
9798 Recurse (
9799 Full_View (Ti),
9800 Discrim_Values,
9801 Girder_Discrim_Values);
9802 end if;
9803 end if;
9805 -- If Result is not a (reference to a) discriminant,
9806 -- return it, otherwise set Result_Entity to the discriminant.
9808 if Nkind (Result) = N_Defining_Identifier then
9810 pragma Assert (Result = Discriminant);
9812 Result_Entity := Result;
9814 else
9815 if not Denotes_Discriminant (Result) then
9816 return Result;
9817 end if;
9819 Result_Entity := Entity (Result);
9820 end if;
9822 -- See if this level of derivation actually has discriminants
9823 -- because tagged derivations can add them, hence the lower
9824 -- levels need not have any.
9826 if not Has_Discriminants (Ti) then
9827 return Result;
9828 end if;
9830 -- Scan Ti's discriminants for Result_Entity,
9831 -- and return its corresponding value, if any.
9833 Result_Entity := Original_Record_Component (Result_Entity);
9835 Assoc := First_Elmt (Discrim_Values);
9837 if Girder_Discrim_Values then
9838 Disc := First_Girder_Discriminant (Ti);
9839 else
9840 Disc := First_Discriminant (Ti);
9841 end if;
9843 while Present (Disc) loop
9845 pragma Assert (Present (Assoc));
9847 if Original_Record_Component (Disc) = Result_Entity then
9848 return Node (Assoc);
9849 end if;
9851 Next_Elmt (Assoc);
9853 if Girder_Discrim_Values then
9854 Next_Girder_Discriminant (Disc);
9855 else
9856 Next_Discriminant (Disc);
9857 end if;
9858 end loop;
9860 -- Could not find it
9862 return Result;
9863 end Recurse;
9865 Result : Node_Or_Entity_Id;
9867 -- Start of processing for Get_Discriminant_Value
9869 begin
9870 -- ??? this routine is a gigantic mess and will be deleted.
9871 -- for the time being just test for the trivial case before calling
9872 -- recurse.
9874 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
9875 declare
9876 D : Entity_Id := First_Discriminant (Typ_For_Constraint);
9877 E : Elmt_Id := First_Elmt (Constraint);
9878 begin
9879 while Present (D) loop
9880 if Chars (D) = Chars (Discriminant) then
9881 return Node (E);
9882 end if;
9884 Next_Discriminant (D);
9885 Next_Elmt (E);
9886 end loop;
9887 end;
9888 end if;
9890 Result := Recurse (Typ_For_Constraint, Constraint, False);
9892 -- ??? hack to disappear when this routine is gone
9894 if Nkind (Result) = N_Defining_Identifier then
9895 declare
9896 D : Entity_Id := First_Discriminant (Typ_For_Constraint);
9897 E : Elmt_Id := First_Elmt (Constraint);
9898 begin
9899 while Present (D) loop
9900 if Corresponding_Discriminant (D) = Discriminant then
9901 return Node (E);
9902 end if;
9904 Next_Discriminant (D);
9905 Next_Elmt (E);
9906 end loop;
9907 end;
9908 end if;
9910 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
9911 return Result;
9912 end Get_Discriminant_Value;
9914 --------------------------
9915 -- Has_Range_Constraint --
9916 --------------------------
9918 function Has_Range_Constraint (N : Node_Id) return Boolean is
9919 C : constant Node_Id := Constraint (N);
9921 begin
9922 if Nkind (C) = N_Range_Constraint then
9923 return True;
9925 elsif Nkind (C) = N_Digits_Constraint then
9926 return
9927 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
9928 or else
9929 Present (Range_Constraint (C));
9931 elsif Nkind (C) = N_Delta_Constraint then
9932 return Present (Range_Constraint (C));
9934 else
9935 return False;
9936 end if;
9937 end Has_Range_Constraint;
9939 ------------------------
9940 -- Inherit_Components --
9941 ------------------------
9943 function Inherit_Components
9944 (N : Node_Id;
9945 Parent_Base : Entity_Id;
9946 Derived_Base : Entity_Id;
9947 Is_Tagged : Boolean;
9948 Inherit_Discr : Boolean;
9949 Discs : Elist_Id)
9950 return Elist_Id
9952 Assoc_List : Elist_Id := New_Elmt_List;
9954 procedure Inherit_Component
9955 (Old_C : Entity_Id;
9956 Plain_Discrim : Boolean := False;
9957 Girder_Discrim : Boolean := False);
9958 -- Inherits component Old_C from Parent_Base to the Derived_Base.
9959 -- If Plain_Discrim is True, Old_C is a discriminant.
9960 -- If Girder_Discrim is True, Old_C is a girder discriminant.
9961 -- If they are both false then Old_C is a regular component.
9963 -----------------------
9964 -- Inherit_Component --
9965 -----------------------
9967 procedure Inherit_Component
9968 (Old_C : Entity_Id;
9969 Plain_Discrim : Boolean := False;
9970 Girder_Discrim : Boolean := False)
9972 New_C : Entity_Id := New_Copy (Old_C);
9974 Discrim : Entity_Id;
9975 Corr_Discrim : Entity_Id;
9977 begin
9978 pragma Assert (not Is_Tagged or else not Girder_Discrim);
9980 Set_Parent (New_C, Parent (Old_C));
9982 -- Regular discriminants and components must be inserted
9983 -- in the scope of the Derived_Base. Do it here.
9985 if not Girder_Discrim then
9986 Enter_Name (New_C);
9987 end if;
9989 -- For tagged types the Original_Record_Component must point to
9990 -- whatever this field was pointing to in the parent type. This has
9991 -- already been achieved by the call to New_Copy above.
9993 if not Is_Tagged then
9994 Set_Original_Record_Component (New_C, New_C);
9995 end if;
9997 -- If we have inherited a component then see if its Etype contains
9998 -- references to Parent_Base discriminants. In this case, replace
9999 -- these references with the constraints given in Discs. We do not
10000 -- do this for the partial view of private types because this is
10001 -- not needed (only the components of the full view will be used
10002 -- for code generation) and cause problem. We also avoid this
10003 -- transformation in some error situations.
10005 if Ekind (New_C) = E_Component then
10006 if (Is_Private_Type (Derived_Base)
10007 and then not Is_Generic_Type (Derived_Base))
10008 or else (Is_Empty_Elmt_List (Discs)
10009 and then not Expander_Active)
10010 then
10011 Set_Etype (New_C, Etype (Old_C));
10012 else
10013 Set_Etype (New_C, Constrain_Component_Type (Etype (Old_C),
10014 Derived_Base, N, Parent_Base, Discs));
10015 end if;
10016 end if;
10018 -- In derived tagged types it is illegal to reference a non
10019 -- discriminant component in the parent type. To catch this, mark
10020 -- these components with an Ekind of E_Void. This will be reset in
10021 -- Record_Type_Definition after processing the record extension of
10022 -- the derived type.
10024 if Is_Tagged and then Ekind (New_C) = E_Component then
10025 Set_Ekind (New_C, E_Void);
10026 end if;
10028 if Plain_Discrim then
10029 Set_Corresponding_Discriminant (New_C, Old_C);
10030 Build_Discriminal (New_C);
10032 -- If we are explicitly inheriting a girder discriminant it will be
10033 -- completely hidden.
10035 elsif Girder_Discrim then
10036 Set_Corresponding_Discriminant (New_C, Empty);
10037 Set_Discriminal (New_C, Empty);
10038 Set_Is_Completely_Hidden (New_C);
10040 -- Set the Original_Record_Component of each discriminant in the
10041 -- derived base to point to the corresponding girder that we just
10042 -- created.
10044 Discrim := First_Discriminant (Derived_Base);
10045 while Present (Discrim) loop
10046 Corr_Discrim := Corresponding_Discriminant (Discrim);
10048 -- Corr_Discrimm could be missing in an error situation.
10050 if Present (Corr_Discrim)
10051 and then Original_Record_Component (Corr_Discrim) = Old_C
10052 then
10053 Set_Original_Record_Component (Discrim, New_C);
10054 end if;
10056 Next_Discriminant (Discrim);
10057 end loop;
10059 Append_Entity (New_C, Derived_Base);
10060 end if;
10062 if not Is_Tagged then
10063 Append_Elmt (Old_C, Assoc_List);
10064 Append_Elmt (New_C, Assoc_List);
10065 end if;
10066 end Inherit_Component;
10068 -- Variables local to Inherit_Components.
10070 Loc : constant Source_Ptr := Sloc (N);
10072 Parent_Discrim : Entity_Id;
10073 Girder_Discrim : Entity_Id;
10074 D : Entity_Id;
10076 Component : Entity_Id;
10078 -- Start of processing for Inherit_Components
10080 begin
10081 if not Is_Tagged then
10082 Append_Elmt (Parent_Base, Assoc_List);
10083 Append_Elmt (Derived_Base, Assoc_List);
10084 end if;
10086 -- Inherit parent discriminants if needed.
10088 if Inherit_Discr then
10089 Parent_Discrim := First_Discriminant (Parent_Base);
10090 while Present (Parent_Discrim) loop
10091 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
10092 Next_Discriminant (Parent_Discrim);
10093 end loop;
10094 end if;
10096 -- Create explicit girder discrims for untagged types when necessary.
10098 if not Has_Unknown_Discriminants (Derived_Base)
10099 and then Has_Discriminants (Parent_Base)
10100 and then not Is_Tagged
10101 and then
10102 (not Inherit_Discr
10103 or else First_Discriminant (Parent_Base) /=
10104 First_Girder_Discriminant (Parent_Base))
10105 then
10106 Girder_Discrim := First_Girder_Discriminant (Parent_Base);
10107 while Present (Girder_Discrim) loop
10108 Inherit_Component (Girder_Discrim, Girder_Discrim => True);
10109 Next_Girder_Discriminant (Girder_Discrim);
10110 end loop;
10111 end if;
10113 -- See if we can apply the second transformation for derived types, as
10114 -- explained in point 6. in the comments above Build_Derived_Record_Type
10115 -- This is achieved by appending Derived_Base discriminants into
10116 -- Discs, which has the side effect of returning a non empty Discs
10117 -- list to the caller of Inherit_Components, which is what we want.
10119 if Inherit_Discr
10120 and then Is_Empty_Elmt_List (Discs)
10121 and then (not Is_Private_Type (Derived_Base)
10122 or Is_Generic_Type (Derived_Base))
10123 then
10124 D := First_Discriminant (Derived_Base);
10125 while Present (D) loop
10126 Append_Elmt (New_Reference_To (D, Loc), Discs);
10127 Next_Discriminant (D);
10128 end loop;
10129 end if;
10131 -- Finally, inherit non-discriminant components unless they are not
10132 -- visible because defined or inherited from the full view of the
10133 -- parent. Don't inherit the _parent field of the parent type.
10135 Component := First_Entity (Parent_Base);
10136 while Present (Component) loop
10137 if Ekind (Component) /= E_Component
10138 or else Chars (Component) = Name_uParent
10139 then
10140 null;
10142 -- If the derived type is within the parent type's declarative
10143 -- region, then the components can still be inherited even though
10144 -- they aren't visible at this point. This can occur for cases
10145 -- such as within public child units where the components must
10146 -- become visible upon entering the child unit's private part.
10148 elsif not Is_Visible_Component (Component)
10149 and then not In_Open_Scopes (Scope (Parent_Base))
10150 then
10151 null;
10153 elsif Ekind (Derived_Base) = E_Private_Type
10154 or else Ekind (Derived_Base) = E_Limited_Private_Type
10155 then
10156 null;
10158 else
10159 Inherit_Component (Component);
10160 end if;
10162 Next_Entity (Component);
10163 end loop;
10165 -- For tagged derived types, inherited discriminants cannot be used in
10166 -- component declarations of the record extension part. To achieve this
10167 -- we mark the inherited discriminants as not visible.
10169 if Is_Tagged and then Inherit_Discr then
10170 D := First_Discriminant (Derived_Base);
10171 while Present (D) loop
10172 Set_Is_Immediately_Visible (D, False);
10173 Next_Discriminant (D);
10174 end loop;
10175 end if;
10177 return Assoc_List;
10178 end Inherit_Components;
10180 ------------------------------
10181 -- Is_Valid_Constraint_Kind --
10182 ------------------------------
10184 function Is_Valid_Constraint_Kind
10185 (T_Kind : Type_Kind;
10186 Constraint_Kind : Node_Kind)
10187 return Boolean
10189 begin
10190 case T_Kind is
10192 when Enumeration_Kind |
10193 Integer_Kind =>
10194 return Constraint_Kind = N_Range_Constraint;
10196 when Decimal_Fixed_Point_Kind =>
10197 return
10198 Constraint_Kind = N_Digits_Constraint
10199 or else
10200 Constraint_Kind = N_Range_Constraint;
10202 when Ordinary_Fixed_Point_Kind =>
10203 return
10204 Constraint_Kind = N_Delta_Constraint
10205 or else
10206 Constraint_Kind = N_Range_Constraint;
10208 when Float_Kind =>
10209 return
10210 Constraint_Kind = N_Digits_Constraint
10211 or else
10212 Constraint_Kind = N_Range_Constraint;
10214 when Access_Kind |
10215 Array_Kind |
10216 E_Record_Type |
10217 E_Record_Subtype |
10218 Class_Wide_Kind |
10219 E_Incomplete_Type |
10220 Private_Kind |
10221 Concurrent_Kind =>
10222 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
10224 when others =>
10225 return True; -- Error will be detected later.
10226 end case;
10228 end Is_Valid_Constraint_Kind;
10230 --------------------------
10231 -- Is_Visible_Component --
10232 --------------------------
10234 function Is_Visible_Component (C : Entity_Id) return Boolean is
10235 Original_Comp : constant Entity_Id := Original_Record_Component (C);
10236 Original_Scope : Entity_Id;
10238 begin
10239 if No (Original_Comp) then
10241 -- Premature usage, or previous error
10243 return False;
10245 else
10246 Original_Scope := Scope (Original_Comp);
10247 end if;
10249 -- This test only concern tagged types
10251 if not Is_Tagged_Type (Original_Scope) then
10252 return True;
10254 -- If it is _Parent or _Tag, there is no visiblity issue
10256 elsif not Comes_From_Source (Original_Comp) then
10257 return True;
10259 -- If we are in the body of an instantiation, the component is
10260 -- visible even when the parent type (possibly defined in an
10261 -- enclosing unit or in a parent unit) might not.
10263 elsif In_Instance_Body then
10264 return True;
10266 -- Discriminants are always visible.
10268 elsif Ekind (Original_Comp) = E_Discriminant
10269 and then not Has_Unknown_Discriminants (Original_Scope)
10270 then
10271 return True;
10273 -- If the component has been declared in an ancestor which is
10274 -- currently a private type, then it is not visible. The same
10275 -- applies if the component's containing type is not in an
10276 -- open scope and the original component's enclosing type
10277 -- is a visible full type of a private type (which can occur
10278 -- in cases where an attempt is being made to reference a
10279 -- component in a sibling package that is inherited from
10280 -- a visible component of a type in an ancestor package;
10281 -- the component in the sibling package should not be
10282 -- visible even though the component it inherited from
10283 -- is visible). This does not apply however in the case
10284 -- where the scope of the type is a private child unit.
10285 -- The latter suppression of visibility is needed for cases
10286 -- that are tested in B730006.
10288 elsif (Ekind (Original_Comp) /= E_Discriminant
10289 or else Has_Unknown_Discriminants (Original_Scope))
10290 and then
10291 (Is_Private_Type (Original_Scope)
10292 or else
10293 (not Is_Private_Descendant (Scope (Base_Type (Scope (C))))
10294 and then not In_Open_Scopes (Scope (Base_Type (Scope (C))))
10295 and then Has_Private_Declaration (Original_Scope)))
10296 then
10297 return False;
10299 -- There is another weird way in which a component may be invisible
10300 -- when the private and the full view are not derived from the same
10301 -- ancestor. Here is an example :
10303 -- type A1 is tagged record F1 : integer; end record;
10304 -- type A2 is new A1 with record F2 : integer; end record;
10305 -- type T is new A1 with private;
10306 -- private
10307 -- type T is new A2 with private;
10309 -- In this case, the full view of T inherits F1 and F2 but the
10310 -- private view inherits only F1
10312 else
10313 declare
10314 Ancestor : Entity_Id := Scope (C);
10316 begin
10317 loop
10318 if Ancestor = Original_Scope then
10319 return True;
10320 elsif Ancestor = Etype (Ancestor) then
10321 return False;
10322 end if;
10324 Ancestor := Etype (Ancestor);
10325 end loop;
10327 return True;
10328 end;
10329 end if;
10330 end Is_Visible_Component;
10332 --------------------------
10333 -- Make_Class_Wide_Type --
10334 --------------------------
10336 procedure Make_Class_Wide_Type (T : Entity_Id) is
10337 CW_Type : Entity_Id;
10338 CW_Name : Name_Id;
10339 Next_E : Entity_Id;
10341 begin
10342 -- The class wide type can have been defined by the partial view in
10343 -- which case everything is already done
10345 if Present (Class_Wide_Type (T)) then
10346 return;
10347 end if;
10349 CW_Type :=
10350 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
10352 -- Inherit root type characteristics
10354 CW_Name := Chars (CW_Type);
10355 Next_E := Next_Entity (CW_Type);
10356 Copy_Node (T, CW_Type);
10357 Set_Comes_From_Source (CW_Type, False);
10358 Set_Chars (CW_Type, CW_Name);
10359 Set_Parent (CW_Type, Parent (T));
10360 Set_Next_Entity (CW_Type, Next_E);
10361 Set_Has_Delayed_Freeze (CW_Type);
10363 -- Customize the class-wide type: It has no prim. op., it cannot be
10364 -- abstract and its Etype points back to the specific root type.
10366 Set_Ekind (CW_Type, E_Class_Wide_Type);
10367 Set_Is_Tagged_Type (CW_Type, True);
10368 Set_Primitive_Operations (CW_Type, New_Elmt_List);
10369 Set_Is_Abstract (CW_Type, False);
10370 Set_Is_Constrained (CW_Type, False);
10371 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
10372 Init_Size_Align (CW_Type);
10374 if Ekind (T) = E_Class_Wide_Subtype then
10375 Set_Etype (CW_Type, Etype (Base_Type (T)));
10376 else
10377 Set_Etype (CW_Type, T);
10378 end if;
10380 -- If this is the class_wide type of a constrained subtype, it does
10381 -- not have discriminants.
10383 Set_Has_Discriminants (CW_Type,
10384 Has_Discriminants (T) and then not Is_Constrained (T));
10386 Set_Has_Unknown_Discriminants (CW_Type, True);
10387 Set_Class_Wide_Type (T, CW_Type);
10388 Set_Equivalent_Type (CW_Type, Empty);
10390 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
10392 Set_Class_Wide_Type (CW_Type, CW_Type);
10394 end Make_Class_Wide_Type;
10396 ----------------
10397 -- Make_Index --
10398 ----------------
10400 procedure Make_Index
10401 (I : Node_Id;
10402 Related_Nod : Node_Id;
10403 Related_Id : Entity_Id := Empty;
10404 Suffix_Index : Nat := 1)
10406 R : Node_Id;
10407 T : Entity_Id;
10408 Def_Id : Entity_Id := Empty;
10409 Found : Boolean := False;
10411 begin
10412 -- For a discrete range used in a constrained array definition and
10413 -- defined by a range, an implicit conversion to the predefined type
10414 -- INTEGER is assumed if each bound is either a numeric literal, a named
10415 -- number, or an attribute, and the type of both bounds (prior to the
10416 -- implicit conversion) is the type universal_integer. Otherwise, both
10417 -- bounds must be of the same discrete type, other than universal
10418 -- integer; this type must be determinable independently of the
10419 -- context, but using the fact that the type must be discrete and that
10420 -- both bounds must have the same type.
10422 -- Character literals also have a universal type in the absence of
10423 -- of additional context, and are resolved to Standard_Character.
10425 if Nkind (I) = N_Range then
10427 -- The index is given by a range constraint. The bounds are known
10428 -- to be of a consistent type.
10430 if not Is_Overloaded (I) then
10431 T := Etype (I);
10433 -- If the bounds are universal, choose the specific predefined
10434 -- type.
10436 if T = Universal_Integer then
10437 T := Standard_Integer;
10439 elsif T = Any_Character then
10441 if not Ada_83 then
10442 Error_Msg_N
10443 ("ambiguous character literals (could be Wide_Character)",
10445 end if;
10447 T := Standard_Character;
10448 end if;
10450 else
10451 T := Any_Type;
10453 declare
10454 Ind : Interp_Index;
10455 It : Interp;
10457 begin
10458 Get_First_Interp (I, Ind, It);
10460 while Present (It.Typ) loop
10461 if Is_Discrete_Type (It.Typ) then
10463 if Found
10464 and then not Covers (It.Typ, T)
10465 and then not Covers (T, It.Typ)
10466 then
10467 Error_Msg_N ("ambiguous bounds in discrete range", I);
10468 exit;
10469 else
10470 T := It.Typ;
10471 Found := True;
10472 end if;
10473 end if;
10475 Get_Next_Interp (Ind, It);
10476 end loop;
10478 if T = Any_Type then
10479 Error_Msg_N ("discrete type required for range", I);
10480 Set_Etype (I, Any_Type);
10481 return;
10483 elsif T = Universal_Integer then
10484 T := Standard_Integer;
10485 end if;
10486 end;
10487 end if;
10489 if not Is_Discrete_Type (T) then
10490 Error_Msg_N ("discrete type required for range", I);
10491 Set_Etype (I, Any_Type);
10492 return;
10493 end if;
10495 R := I;
10496 Process_Range_Expr_In_Decl (R, T);
10498 elsif Nkind (I) = N_Subtype_Indication then
10500 -- The index is given by a subtype with a range constraint.
10502 T := Base_Type (Entity (Subtype_Mark (I)));
10504 if not Is_Discrete_Type (T) then
10505 Error_Msg_N ("discrete type required for range", I);
10506 Set_Etype (I, Any_Type);
10507 return;
10508 end if;
10510 R := Range_Expression (Constraint (I));
10512 Resolve (R, T);
10513 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
10515 elsif Nkind (I) = N_Attribute_Reference then
10517 -- The parser guarantees that the attribute is a RANGE attribute
10519 Analyze_And_Resolve (I);
10520 T := Etype (I);
10521 R := I;
10523 -- If none of the above, must be a subtype. We convert this to a
10524 -- range attribute reference because in the case of declared first
10525 -- named subtypes, the types in the range reference can be different
10526 -- from the type of the entity. A range attribute normalizes the
10527 -- reference and obtains the correct types for the bounds.
10529 -- This transformation is in the nature of an expansion, is only
10530 -- done if expansion is active. In particular, it is not done on
10531 -- formal generic types, because we need to retain the name of the
10532 -- original index for instantiation purposes.
10534 else
10535 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
10536 Error_Msg_N ("invalid subtype mark in discrete range ", I);
10537 Set_Etype (I, Any_Integer);
10538 return;
10539 else
10540 -- The type mark may be that of an incomplete type. It is only
10541 -- now that we can get the full view, previous analysis does
10542 -- not look specifically for a type mark.
10544 Set_Entity (I, Get_Full_View (Entity (I)));
10545 Set_Etype (I, Entity (I));
10546 Def_Id := Entity (I);
10548 if not Is_Discrete_Type (Def_Id) then
10549 Error_Msg_N ("discrete type required for index", I);
10550 Set_Etype (I, Any_Type);
10551 return;
10552 end if;
10553 end if;
10555 if Expander_Active then
10556 Rewrite (I,
10557 Make_Attribute_Reference (Sloc (I),
10558 Attribute_Name => Name_Range,
10559 Prefix => Relocate_Node (I)));
10561 -- The original was a subtype mark that does not freeze. This
10562 -- means that the rewritten version must not freeze either.
10564 Set_Must_Not_Freeze (I);
10565 Set_Must_Not_Freeze (Prefix (I));
10567 -- Is order critical??? if so, document why, if not
10568 -- use Analyze_And_Resolve
10570 Analyze (I);
10571 T := Etype (I);
10572 Resolve (I, T);
10573 R := I;
10575 else
10576 -- Type is legal, nothing else to construct.
10577 return;
10578 end if;
10579 end if;
10581 if not Is_Discrete_Type (T) then
10582 Error_Msg_N ("discrete type required for range", I);
10583 Set_Etype (I, Any_Type);
10584 return;
10586 elsif T = Any_Type then
10587 Set_Etype (I, Any_Type);
10588 return;
10589 end if;
10591 -- We will now create the appropriate Itype to describe the
10592 -- range, but first a check. If we originally had a subtype,
10593 -- then we just label the range with this subtype. Not only
10594 -- is there no need to construct a new subtype, but it is wrong
10595 -- to do so for two reasons:
10597 -- 1. A legality concern, if we have a subtype, it must not
10598 -- freeze, and the Itype would cause freezing incorrectly
10600 -- 2. An efficiency concern, if we created an Itype, it would
10601 -- not be recognized as the same type for the purposes of
10602 -- eliminating checks in some circumstances.
10604 -- We signal this case by setting the subtype entity in Def_Id.
10606 -- It would be nice to also do this optimization for the cases
10607 -- of X'Range and also the explicit range X'First .. X'Last,
10608 -- but that is not done yet (it is just an efficiency concern) ???
10610 if No (Def_Id) then
10612 Def_Id :=
10613 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
10614 Set_Etype (Def_Id, Base_Type (T));
10616 if Is_Signed_Integer_Type (T) then
10617 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
10619 elsif Is_Modular_Integer_Type (T) then
10620 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
10622 else
10623 Set_Ekind (Def_Id, E_Enumeration_Subtype);
10624 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
10625 end if;
10627 Set_Size_Info (Def_Id, (T));
10628 Set_RM_Size (Def_Id, RM_Size (T));
10629 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10631 Set_Scalar_Range (Def_Id, R);
10632 Conditional_Delay (Def_Id, T);
10634 -- In the subtype indication case, if the immediate parent of the
10635 -- new subtype is non-static, then the subtype we create is non-
10636 -- static, even if its bounds are static.
10638 if Nkind (I) = N_Subtype_Indication
10639 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
10640 then
10641 Set_Is_Non_Static_Subtype (Def_Id);
10642 end if;
10643 end if;
10645 -- Final step is to label the index with this constructed type
10647 Set_Etype (I, Def_Id);
10648 end Make_Index;
10650 ------------------------------
10651 -- Modular_Type_Declaration --
10652 ------------------------------
10654 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
10655 Mod_Expr : constant Node_Id := Expression (Def);
10656 M_Val : Uint;
10658 procedure Set_Modular_Size (Bits : Int);
10659 -- Sets RM_Size to Bits, and Esize to normal word size above this
10661 procedure Set_Modular_Size (Bits : Int) is
10662 begin
10663 Set_RM_Size (T, UI_From_Int (Bits));
10665 if Bits <= 8 then
10666 Init_Esize (T, 8);
10668 elsif Bits <= 16 then
10669 Init_Esize (T, 16);
10671 elsif Bits <= 32 then
10672 Init_Esize (T, 32);
10674 else
10675 Init_Esize (T, System_Max_Binary_Modulus_Power);
10676 end if;
10677 end Set_Modular_Size;
10679 -- Start of processing for Modular_Type_Declaration
10681 begin
10682 Analyze_And_Resolve (Mod_Expr, Any_Integer);
10683 Set_Etype (T, T);
10684 Set_Ekind (T, E_Modular_Integer_Type);
10685 Init_Alignment (T);
10686 Set_Is_Constrained (T);
10688 if not Is_OK_Static_Expression (Mod_Expr) then
10689 Error_Msg_N
10690 ("non-static expression used for modular type bound", Mod_Expr);
10691 M_Val := 2 ** System_Max_Binary_Modulus_Power;
10692 else
10693 M_Val := Expr_Value (Mod_Expr);
10694 end if;
10696 if M_Val < 1 then
10697 Error_Msg_N ("modulus value must be positive", Mod_Expr);
10698 M_Val := 2 ** System_Max_Binary_Modulus_Power;
10699 end if;
10701 Set_Modulus (T, M_Val);
10703 -- Create bounds for the modular type based on the modulus given in
10704 -- the type declaration and then analyze and resolve those bounds.
10706 Set_Scalar_Range (T,
10707 Make_Range (Sloc (Mod_Expr),
10708 Low_Bound =>
10709 Make_Integer_Literal (Sloc (Mod_Expr), 0),
10710 High_Bound =>
10711 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
10713 -- Properly analyze the literals for the range. We do this manually
10714 -- because we can't go calling Resolve, since we are resolving these
10715 -- bounds with the type, and this type is certainly not complete yet!
10717 Set_Etype (Low_Bound (Scalar_Range (T)), T);
10718 Set_Etype (High_Bound (Scalar_Range (T)), T);
10719 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
10720 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
10722 -- Loop through powers of two to find number of bits required
10724 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
10726 -- Binary case
10728 if M_Val = 2 ** Bits then
10729 Set_Modular_Size (Bits);
10730 return;
10732 -- Non-binary case
10734 elsif M_Val < 2 ** Bits then
10735 Set_Non_Binary_Modulus (T);
10737 if Bits > System_Max_Nonbinary_Modulus_Power then
10738 Error_Msg_Uint_1 :=
10739 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
10740 Error_Msg_N
10741 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
10742 Set_Modular_Size (System_Max_Binary_Modulus_Power);
10743 return;
10745 else
10746 -- In the non-binary case, set size as per RM 13.3(55).
10748 Set_Modular_Size (Bits);
10749 return;
10750 end if;
10751 end if;
10753 end loop;
10755 -- If we fall through, then the size exceed System.Max_Binary_Modulus
10756 -- so we just signal an error and set the maximum size.
10758 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
10759 Error_Msg_N ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
10761 Set_Modular_Size (System_Max_Binary_Modulus_Power);
10762 Init_Alignment (T);
10764 end Modular_Type_Declaration;
10766 -------------------------
10767 -- New_Binary_Operator --
10768 -------------------------
10770 procedure New_Binary_Operator (Op_Name : Name_Id; Typ : Entity_Id) is
10771 Loc : constant Source_Ptr := Sloc (Typ);
10772 Op : Entity_Id;
10774 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
10775 -- Create abbreviated declaration for the formal of a predefined
10776 -- Operator 'Op' of type 'Typ'
10778 --------------------
10779 -- Make_Op_Formal --
10780 --------------------
10782 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
10783 Formal : Entity_Id;
10785 begin
10786 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
10787 Set_Etype (Formal, Typ);
10788 Set_Mechanism (Formal, Default_Mechanism);
10789 return Formal;
10790 end Make_Op_Formal;
10792 -- Start of processing for New_Binary_Operator
10794 begin
10795 Op := Make_Defining_Operator_Symbol (Loc, Op_Name);
10797 Set_Ekind (Op, E_Operator);
10798 Set_Scope (Op, Current_Scope);
10799 Set_Etype (Op, Typ);
10800 Set_Homonym (Op, Get_Name_Entity_Id (Op_Name));
10801 Set_Is_Immediately_Visible (Op);
10802 Set_Is_Intrinsic_Subprogram (Op);
10803 Set_Has_Completion (Op);
10804 Append_Entity (Op, Current_Scope);
10806 Set_Name_Entity_Id (Op_Name, Op);
10808 Append_Entity (Make_Op_Formal (Typ, Op), Op);
10809 Append_Entity (Make_Op_Formal (Typ, Op), Op);
10811 end New_Binary_Operator;
10813 -------------------------------------------
10814 -- Ordinary_Fixed_Point_Type_Declaration --
10815 -------------------------------------------
10817 procedure Ordinary_Fixed_Point_Type_Declaration
10818 (T : Entity_Id;
10819 Def : Node_Id)
10821 Loc : constant Source_Ptr := Sloc (Def);
10822 Delta_Expr : constant Node_Id := Delta_Expression (Def);
10823 RRS : constant Node_Id := Real_Range_Specification (Def);
10824 Implicit_Base : Entity_Id;
10825 Delta_Val : Ureal;
10826 Small_Val : Ureal;
10827 Low_Val : Ureal;
10828 High_Val : Ureal;
10830 begin
10831 Check_Restriction (No_Fixed_Point, Def);
10833 -- Create implicit base type
10835 Implicit_Base :=
10836 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
10837 Set_Etype (Implicit_Base, Implicit_Base);
10839 -- Analyze and process delta expression
10841 Analyze_And_Resolve (Delta_Expr, Any_Real);
10843 Check_Delta_Expression (Delta_Expr);
10844 Delta_Val := Expr_Value_R (Delta_Expr);
10846 Set_Delta_Value (Implicit_Base, Delta_Val);
10848 -- Compute default small from given delta, which is the largest
10849 -- power of two that does not exceed the given delta value.
10851 declare
10852 Tmp : Ureal := Ureal_1;
10853 Scale : Int := 0;
10855 begin
10856 if Delta_Val < Ureal_1 then
10857 while Delta_Val < Tmp loop
10858 Tmp := Tmp / Ureal_2;
10859 Scale := Scale + 1;
10860 end loop;
10862 else
10863 loop
10864 Tmp := Tmp * Ureal_2;
10865 exit when Tmp > Delta_Val;
10866 Scale := Scale - 1;
10867 end loop;
10868 end if;
10870 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
10871 end;
10873 Set_Small_Value (Implicit_Base, Small_Val);
10875 -- If no range was given, set a dummy range
10877 if RRS <= Empty_Or_Error then
10878 Low_Val := -Small_Val;
10879 High_Val := Small_Val;
10881 -- Otherwise analyze and process given range
10883 else
10884 declare
10885 Low : constant Node_Id := Low_Bound (RRS);
10886 High : constant Node_Id := High_Bound (RRS);
10888 begin
10889 Analyze_And_Resolve (Low, Any_Real);
10890 Analyze_And_Resolve (High, Any_Real);
10891 Check_Real_Bound (Low);
10892 Check_Real_Bound (High);
10894 -- Obtain and set the range
10896 Low_Val := Expr_Value_R (Low);
10897 High_Val := Expr_Value_R (High);
10899 if Low_Val > High_Val then
10900 Error_Msg_NE ("?fixed point type& has null range", Def, T);
10901 end if;
10902 end;
10903 end if;
10905 -- The range for both the implicit base and the declared first
10906 -- subtype cannot be set yet, so we use the special routine
10907 -- Set_Fixed_Range to set a temporary range in place. Note that
10908 -- the bounds of the base type will be widened to be symmetrical
10909 -- and to fill the available bits when the type is frozen.
10911 -- We could do this with all discrete types, and probably should, but
10912 -- we absolutely have to do it for fixed-point, since the end-points
10913 -- of the range and the size are determined by the small value, which
10914 -- could be reset before the freeze point.
10916 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
10917 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
10919 Init_Size_Align (Implicit_Base);
10921 -- Complete definition of first subtype
10923 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
10924 Set_Etype (T, Implicit_Base);
10925 Init_Size_Align (T);
10926 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
10927 Set_Small_Value (T, Small_Val);
10928 Set_Delta_Value (T, Delta_Val);
10929 Set_Is_Constrained (T);
10931 end Ordinary_Fixed_Point_Type_Declaration;
10933 ----------------------------------------
10934 -- Prepare_Private_Subtype_Completion --
10935 ----------------------------------------
10937 procedure Prepare_Private_Subtype_Completion
10938 (Id : Entity_Id;
10939 Related_Nod : Node_Id)
10941 Id_B : constant Entity_Id := Base_Type (Id);
10942 Full_B : constant Entity_Id := Full_View (Id_B);
10943 Full : Entity_Id;
10945 begin
10946 if Present (Full_B) then
10948 -- The Base_Type is already completed, we can complete the
10949 -- subtype now. We have to create a new entity with the same name,
10950 -- Thus we can't use Create_Itype.
10951 -- This is messy, should be fixed ???
10953 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
10954 Set_Is_Itype (Full);
10955 Set_Associated_Node_For_Itype (Full, Related_Nod);
10956 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
10957 end if;
10959 -- The parent subtype may be private, but the base might not, in some
10960 -- nested instances. In that case, the subtype does not need to be
10961 -- exchanged. It would still be nice to make private subtypes and their
10962 -- bases consistent at all times ???
10964 if Is_Private_Type (Id_B) then
10965 Append_Elmt (Id, Private_Dependents (Id_B));
10966 end if;
10968 end Prepare_Private_Subtype_Completion;
10970 ---------------------------
10971 -- Process_Discriminants --
10972 ---------------------------
10974 procedure Process_Discriminants (N : Node_Id) is
10975 Id : Node_Id;
10976 Discr : Node_Id;
10977 Discr_Number : Uint;
10978 Discr_Type : Entity_Id;
10979 Default_Present : Boolean := False;
10980 Default_Not_Present : Boolean := False;
10981 Elist : Elist_Id := New_Elmt_List;
10983 begin
10984 -- A composite type other than an array type can have discriminants.
10985 -- Discriminants of non-limited types must have a discrete type.
10986 -- On entry, the current scope is the composite type.
10988 -- The discriminants are initially entered into the scope of the type
10989 -- via Enter_Name with the default Ekind of E_Void to prevent premature
10990 -- use, as explained at the end of this procedure.
10992 Discr := First (Discriminant_Specifications (N));
10993 while Present (Discr) loop
10994 Enter_Name (Defining_Identifier (Discr));
10996 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
10997 Discr_Type := Access_Definition (N, Discriminant_Type (Discr));
10999 else
11000 Find_Type (Discriminant_Type (Discr));
11001 Discr_Type := Etype (Discriminant_Type (Discr));
11003 if Error_Posted (Discriminant_Type (Discr)) then
11004 Discr_Type := Any_Type;
11005 end if;
11006 end if;
11008 if Is_Access_Type (Discr_Type) then
11009 Check_Access_Discriminant_Requires_Limited
11010 (Discr, Discriminant_Type (Discr));
11012 if Ada_83 and then Comes_From_Source (Discr) then
11013 Error_Msg_N
11014 ("(Ada 83) access discriminant not allowed", Discr);
11015 end if;
11017 elsif not Is_Discrete_Type (Discr_Type) then
11018 Error_Msg_N ("discriminants must have a discrete or access type",
11019 Discriminant_Type (Discr));
11020 end if;
11022 Set_Etype (Defining_Identifier (Discr), Discr_Type);
11024 -- If a discriminant specification includes the assignment compound
11025 -- delimiter followed by an expression, the expression is the default
11026 -- expression of the discriminant; the default expression must be of
11027 -- the type of the discriminant. (RM 3.7.1) Since this expression is
11028 -- a default expression, we do the special preanalysis, since this
11029 -- expression does not freeze (see "Handling of Default Expressions"
11030 -- in spec of package Sem).
11032 if Present (Expression (Discr)) then
11033 Analyze_Default_Expression (Expression (Discr), Discr_Type);
11035 if Nkind (N) = N_Formal_Type_Declaration then
11036 Error_Msg_N
11037 ("discriminant defaults not allowed for formal type",
11038 Expression (Discr));
11040 elsif Is_Tagged_Type (Current_Scope) then
11041 Error_Msg_N
11042 ("discriminants of tagged type cannot have defaults",
11043 Expression (Discr));
11045 else
11046 Default_Present := True;
11047 Append_Elmt (Expression (Discr), Elist);
11049 -- Tag the defining identifiers for the discriminants with
11050 -- their corresponding default expressions from the tree.
11052 Set_Discriminant_Default_Value
11053 (Defining_Identifier (Discr), Expression (Discr));
11054 end if;
11056 else
11057 Default_Not_Present := True;
11058 end if;
11060 Next (Discr);
11061 end loop;
11063 -- An element list consisting of the default expressions of the
11064 -- discriminants is constructed in the above loop and used to set
11065 -- the Discriminant_Constraint attribute for the type. If an object
11066 -- is declared of this (record or task) type without any explicit
11067 -- discriminant constraint given, this element list will form the
11068 -- actual parameters for the corresponding initialization procedure
11069 -- for the type.
11071 Set_Discriminant_Constraint (Current_Scope, Elist);
11072 Set_Girder_Constraint (Current_Scope, No_Elist);
11074 -- Default expressions must be provided either for all or for none
11075 -- of the discriminants of a discriminant part. (RM 3.7.1)
11077 if Default_Present and then Default_Not_Present then
11078 Error_Msg_N
11079 ("incomplete specification of defaults for discriminants", N);
11080 end if;
11082 -- The use of the name of a discriminant is not allowed in default
11083 -- expressions of a discriminant part if the specification of the
11084 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
11086 -- To detect this, the discriminant names are entered initially with an
11087 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
11088 -- attempt to use a void entity (for example in an expression that is
11089 -- type-checked) produces the error message: premature usage. Now after
11090 -- completing the semantic analysis of the discriminant part, we can set
11091 -- the Ekind of all the discriminants appropriately.
11093 Discr := First (Discriminant_Specifications (N));
11094 Discr_Number := Uint_1;
11096 while Present (Discr) loop
11097 Id := Defining_Identifier (Discr);
11098 Set_Ekind (Id, E_Discriminant);
11099 Init_Component_Location (Id);
11100 Init_Esize (Id);
11101 Set_Discriminant_Number (Id, Discr_Number);
11103 -- Make sure this is always set, even in illegal programs
11105 Set_Corresponding_Discriminant (Id, Empty);
11107 -- Initialize the Original_Record_Component to the entity itself.
11108 -- Inherit_Components will propagate the right value to
11109 -- discriminants in derived record types.
11111 Set_Original_Record_Component (Id, Id);
11113 -- Create the discriminal for the discriminant.
11115 Build_Discriminal (Id);
11117 Next (Discr);
11118 Discr_Number := Discr_Number + 1;
11119 end loop;
11121 Set_Has_Discriminants (Current_Scope);
11122 end Process_Discriminants;
11124 -----------------------
11125 -- Process_Full_View --
11126 -----------------------
11128 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
11129 Priv_Parent : Entity_Id;
11130 Full_Parent : Entity_Id;
11131 Full_Indic : Node_Id;
11133 begin
11134 -- First some sanity checks that must be done after semantic
11135 -- decoration of the full view and thus cannot be placed with other
11136 -- similar checks in Find_Type_Name
11138 if not Is_Limited_Type (Priv_T)
11139 and then (Is_Limited_Type (Full_T)
11140 or else Is_Limited_Composite (Full_T))
11141 then
11142 Error_Msg_N
11143 ("completion of nonlimited type cannot be limited", Full_T);
11145 elsif Is_Abstract (Full_T) and then not Is_Abstract (Priv_T) then
11146 Error_Msg_N
11147 ("completion of nonabstract type cannot be abstract", Full_T);
11149 elsif Is_Tagged_Type (Priv_T)
11150 and then Is_Limited_Type (Priv_T)
11151 and then not Is_Limited_Type (Full_T)
11152 then
11153 -- GNAT allow its own definition of Limited_Controlled to disobey
11154 -- this rule in order in ease the implementation. The next test is
11155 -- safe because Root_Controlled is defined in a private system child
11157 if Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
11158 Set_Is_Limited_Composite (Full_T);
11159 else
11160 Error_Msg_N
11161 ("completion of limited tagged type must be limited", Full_T);
11162 end if;
11164 elsif Is_Generic_Type (Priv_T) then
11165 Error_Msg_N ("generic type cannot have a completion", Full_T);
11166 end if;
11168 if Is_Tagged_Type (Priv_T)
11169 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
11170 and then Is_Derived_Type (Full_T)
11171 then
11172 Priv_Parent := Etype (Priv_T);
11174 -- The full view of a private extension may have been transformed
11175 -- into an unconstrained derived type declaration and a subtype
11176 -- declaration (see build_derived_record_type for details).
11178 if Nkind (N) = N_Subtype_Declaration then
11179 Full_Indic := Subtype_Indication (N);
11180 Full_Parent := Etype (Base_Type (Full_T));
11181 else
11182 Full_Indic := Subtype_Indication (Type_Definition (N));
11183 Full_Parent := Etype (Full_T);
11184 end if;
11186 -- Check that the parent type of the full type is a descendant of
11187 -- the ancestor subtype given in the private extension. If either
11188 -- entity has an Etype equal to Any_Type then we had some previous
11189 -- error situation [7.3(8)].
11191 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
11192 return;
11194 elsif not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) then
11195 Error_Msg_N
11196 ("parent of full type must descend from parent"
11197 & " of private extension", Full_Indic);
11199 -- Check the rules of 7.3(10): if the private extension inherits
11200 -- known discriminants, then the full type must also inherit those
11201 -- discriminants from the same (ancestor) type, and the parent
11202 -- subtype of the full type must be constrained if and only if
11203 -- the ancestor subtype of the private extension is constrained.
11205 elsif not Present (Discriminant_Specifications (Parent (Priv_T)))
11206 and then not Has_Unknown_Discriminants (Priv_T)
11207 and then Has_Discriminants (Base_Type (Priv_Parent))
11208 then
11209 declare
11210 Priv_Indic : constant Node_Id :=
11211 Subtype_Indication (Parent (Priv_T));
11213 Priv_Constr : constant Boolean :=
11214 Is_Constrained (Priv_Parent)
11215 or else
11216 Nkind (Priv_Indic) = N_Subtype_Indication
11217 or else Is_Constrained (Entity (Priv_Indic));
11219 Full_Constr : constant Boolean :=
11220 Is_Constrained (Full_Parent)
11221 or else
11222 Nkind (Full_Indic) = N_Subtype_Indication
11223 or else Is_Constrained (Entity (Full_Indic));
11225 Priv_Discr : Entity_Id;
11226 Full_Discr : Entity_Id;
11228 begin
11229 Priv_Discr := First_Discriminant (Priv_Parent);
11230 Full_Discr := First_Discriminant (Full_Parent);
11232 while Present (Priv_Discr) and then Present (Full_Discr) loop
11233 if Original_Record_Component (Priv_Discr) =
11234 Original_Record_Component (Full_Discr)
11235 or else
11236 Corresponding_Discriminant (Priv_Discr) =
11237 Corresponding_Discriminant (Full_Discr)
11238 then
11239 null;
11240 else
11241 exit;
11242 end if;
11244 Next_Discriminant (Priv_Discr);
11245 Next_Discriminant (Full_Discr);
11246 end loop;
11248 if Present (Priv_Discr) or else Present (Full_Discr) then
11249 Error_Msg_N
11250 ("full view must inherit discriminants of the parent type"
11251 & " used in the private extension", Full_Indic);
11253 elsif Priv_Constr and then not Full_Constr then
11254 Error_Msg_N
11255 ("parent subtype of full type must be constrained",
11256 Full_Indic);
11258 elsif Full_Constr and then not Priv_Constr then
11259 Error_Msg_N
11260 ("parent subtype of full type must be unconstrained",
11261 Full_Indic);
11262 end if;
11263 end;
11265 -- Check the rules of 7.3(12): if a partial view has neither known
11266 -- or unknown discriminants, then the full type declaration shall
11267 -- define a definite subtype.
11269 elsif not Has_Unknown_Discriminants (Priv_T)
11270 and then not Has_Discriminants (Priv_T)
11271 and then not Is_Constrained (Full_T)
11272 then
11273 Error_Msg_N
11274 ("full view must define a constrained type if partial view"
11275 & " has no discriminants", Full_T);
11276 end if;
11278 -- ??????? Do we implement the following properly ?????
11279 -- If the ancestor subtype of a private extension has constrained
11280 -- discriminants, then the parent subtype of the full view shall
11281 -- impose a statically matching constraint on those discriminants
11282 -- [7.3(13)].
11284 else
11285 -- For untagged types, verify that a type without discriminants
11286 -- is not completed with an unconstrained type.
11288 if not Is_Indefinite_Subtype (Priv_T)
11289 and then Is_Indefinite_Subtype (Full_T)
11290 then
11291 Error_Msg_N ("full view of type must be definite subtype", Full_T);
11292 end if;
11293 end if;
11295 -- Create a full declaration for all its subtypes recorded in
11296 -- Private_Dependents and swap them similarly to the base type.
11297 -- These are subtypes that have been define before the full
11298 -- declaration of the private type. We also swap the entry in
11299 -- Private_Dependents list so we can properly restore the
11300 -- private view on exit from the scope.
11302 declare
11303 Priv_Elmt : Elmt_Id;
11304 Priv : Entity_Id;
11305 Full : Entity_Id;
11307 begin
11308 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
11309 while Present (Priv_Elmt) loop
11310 Priv := Node (Priv_Elmt);
11312 if Ekind (Priv) = E_Private_Subtype
11313 or else Ekind (Priv) = E_Limited_Private_Subtype
11314 or else Ekind (Priv) = E_Record_Subtype_With_Private
11315 then
11316 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
11317 Set_Is_Itype (Full);
11318 Set_Parent (Full, Parent (Priv));
11319 Set_Associated_Node_For_Itype (Full, N);
11321 -- Now we need to complete the private subtype, but since the
11322 -- base type has already been swapped, we must also swap the
11323 -- subtypes (and thus, reverse the arguments in the call to
11324 -- Complete_Private_Subtype).
11326 Copy_And_Swap (Priv, Full);
11327 Complete_Private_Subtype (Full, Priv, Full_T, N);
11328 Replace_Elmt (Priv_Elmt, Full);
11329 end if;
11331 Next_Elmt (Priv_Elmt);
11332 end loop;
11333 end;
11335 -- If the private view was tagged, copy the new Primitive
11336 -- operations from the private view to the full view.
11338 if Is_Tagged_Type (Full_T) then
11339 declare
11340 Priv_List : Elist_Id;
11341 Full_List : constant Elist_Id := Primitive_Operations (Full_T);
11342 P1, P2 : Elmt_Id;
11343 Prim : Entity_Id;
11344 D_Type : Entity_Id;
11346 begin
11347 if Is_Tagged_Type (Priv_T) then
11348 Priv_List := Primitive_Operations (Priv_T);
11350 P1 := First_Elmt (Priv_List);
11351 while Present (P1) loop
11352 Prim := Node (P1);
11354 -- Transfer explicit primitives, not those inherited from
11355 -- parent of partial view, which will be re-inherited on
11356 -- the full view.
11358 if Comes_From_Source (Prim) then
11359 P2 := First_Elmt (Full_List);
11360 while Present (P2) and then Node (P2) /= Prim loop
11361 Next_Elmt (P2);
11362 end loop;
11364 -- If not found, that is a new one
11366 if No (P2) then
11367 Append_Elmt (Prim, Full_List);
11368 end if;
11369 end if;
11371 Next_Elmt (P1);
11372 end loop;
11374 else
11375 -- In this case the partial view is untagged, so here we
11376 -- locate all of the earlier primitives that need to be
11377 -- treated as dispatching (those that appear between the
11378 -- two views). Note that these additional operations must
11379 -- all be new operations (any earlier operations that
11380 -- override inherited operations of the full view will
11381 -- already have been inserted in the primitives list and
11382 -- marked as dispatching by Check_Operation_From_Private_View.
11383 -- Note that implicit "/=" operators are excluded from being
11384 -- added to the primitives list since they shouldn't be
11385 -- treated as dispatching (tagged "/=" is handled specially).
11387 Prim := Next_Entity (Full_T);
11388 while Present (Prim) and then Prim /= Priv_T loop
11389 if (Ekind (Prim) = E_Procedure
11390 or else Ekind (Prim) = E_Function)
11391 then
11393 D_Type := Find_Dispatching_Type (Prim);
11395 if D_Type = Full_T
11396 and then (Chars (Prim) /= Name_Op_Ne
11397 or else Comes_From_Source (Prim))
11398 then
11399 Check_Controlling_Formals (Full_T, Prim);
11401 if not Is_Dispatching_Operation (Prim) then
11402 Append_Elmt (Prim, Full_List);
11403 Set_Is_Dispatching_Operation (Prim, True);
11404 Set_DT_Position (Prim, No_Uint);
11405 end if;
11407 elsif Is_Dispatching_Operation (Prim)
11408 and then D_Type /= Full_T
11409 then
11411 -- Verify that it is not otherwise controlled by
11412 -- a formal or a return value ot type T.
11414 Check_Controlling_Formals (D_Type, Prim);
11415 end if;
11416 end if;
11418 Next_Entity (Prim);
11419 end loop;
11420 end if;
11422 -- For the tagged case, the two views can share the same
11423 -- Primitive Operation list and the same class wide type.
11424 -- Update attributes of the class-wide type which depend on
11425 -- the full declaration.
11427 if Is_Tagged_Type (Priv_T) then
11428 Set_Primitive_Operations (Priv_T, Full_List);
11429 Set_Class_Wide_Type
11430 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
11432 -- Any other attributes should be propagated to C_W ???
11434 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
11436 end if;
11437 end;
11438 end if;
11439 end Process_Full_View;
11441 -----------------------------------
11442 -- Process_Incomplete_Dependents --
11443 -----------------------------------
11445 procedure Process_Incomplete_Dependents
11446 (N : Node_Id;
11447 Full_T : Entity_Id;
11448 Inc_T : Entity_Id)
11450 Inc_Elmt : Elmt_Id;
11451 Priv_Dep : Entity_Id;
11452 New_Subt : Entity_Id;
11454 Disc_Constraint : Elist_Id;
11456 begin
11457 if No (Private_Dependents (Inc_T)) then
11458 return;
11460 else
11461 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
11463 -- Itypes that may be generated by the completion of an incomplete
11464 -- subtype are not used by the back-end and not attached to the tree.
11465 -- They are created only for constraint-checking purposes.
11466 end if;
11468 while Present (Inc_Elmt) loop
11469 Priv_Dep := Node (Inc_Elmt);
11471 if Ekind (Priv_Dep) = E_Subprogram_Type then
11473 -- An Access_To_Subprogram type may have a return type or a
11474 -- parameter type that is incomplete. Replace with the full view.
11476 if Etype (Priv_Dep) = Inc_T then
11477 Set_Etype (Priv_Dep, Full_T);
11478 end if;
11480 declare
11481 Formal : Entity_Id;
11483 begin
11484 Formal := First_Formal (Priv_Dep);
11486 while Present (Formal) loop
11488 if Etype (Formal) = Inc_T then
11489 Set_Etype (Formal, Full_T);
11490 end if;
11492 Next_Formal (Formal);
11493 end loop;
11494 end;
11496 elsif Is_Overloadable (Priv_Dep) then
11498 if Is_Tagged_Type (Full_T) then
11500 -- Subprogram has an access parameter whose designated type
11501 -- was incomplete. Reexamine declaration now, because it may
11502 -- be a primitive operation of the full type.
11504 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
11505 Set_Is_Dispatching_Operation (Priv_Dep);
11506 Check_Controlling_Formals (Full_T, Priv_Dep);
11507 end if;
11509 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
11511 -- Can happen during processing of a body before the completion
11512 -- of a TA type. Ignore, because spec is also on dependent list.
11514 return;
11516 -- Dependent is a subtype
11518 else
11519 -- We build a new subtype indication using the full view of the
11520 -- incomplete parent. The discriminant constraints have been
11521 -- elaborated already at the point of the subtype declaration.
11523 New_Subt := Create_Itype (E_Void, N);
11525 if Has_Discriminants (Full_T) then
11526 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
11527 else
11528 Disc_Constraint := No_Elist;
11529 end if;
11531 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
11532 Set_Full_View (Priv_Dep, New_Subt);
11533 end if;
11535 Next_Elmt (Inc_Elmt);
11536 end loop;
11538 end Process_Incomplete_Dependents;
11540 --------------------------------
11541 -- Process_Range_Expr_In_Decl --
11542 --------------------------------
11544 procedure Process_Range_Expr_In_Decl
11545 (R : Node_Id;
11546 T : Entity_Id;
11547 Check_List : List_Id := Empty_List;
11548 R_Check_Off : Boolean := False)
11550 Lo, Hi : Node_Id;
11551 R_Checks : Check_Result;
11552 Type_Decl : Node_Id;
11553 Def_Id : Entity_Id;
11555 begin
11556 Analyze_And_Resolve (R, Base_Type (T));
11558 if Nkind (R) = N_Range then
11559 Lo := Low_Bound (R);
11560 Hi := High_Bound (R);
11562 -- If there were errors in the declaration, try and patch up some
11563 -- common mistakes in the bounds. The cases handled are literals
11564 -- which are Integer where the expected type is Real and vice versa.
11565 -- These corrections allow the compilation process to proceed further
11566 -- along since some basic assumptions of the format of the bounds
11567 -- are guaranteed.
11569 if Etype (R) = Any_Type then
11571 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
11572 Rewrite (Lo,
11573 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
11575 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
11576 Rewrite (Hi,
11577 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
11579 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
11580 Rewrite (Lo,
11581 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
11583 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
11584 Rewrite (Hi,
11585 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
11586 end if;
11588 Set_Etype (Lo, T);
11589 Set_Etype (Hi, T);
11590 end if;
11592 -- If the bounds of the range have been mistakenly given as
11593 -- string literals (perhaps in place of character literals),
11594 -- then an error has already been reported, but we rewrite
11595 -- the string literal as a bound of the range's type to
11596 -- avoid blowups in later processing that looks at static
11597 -- values.
11599 if Nkind (Lo) = N_String_Literal then
11600 Rewrite (Lo,
11601 Make_Attribute_Reference (Sloc (Lo),
11602 Attribute_Name => Name_First,
11603 Prefix => New_Reference_To (T, Sloc (Lo))));
11604 Analyze_And_Resolve (Lo);
11605 end if;
11607 if Nkind (Hi) = N_String_Literal then
11608 Rewrite (Hi,
11609 Make_Attribute_Reference (Sloc (Hi),
11610 Attribute_Name => Name_First,
11611 Prefix => New_Reference_To (T, Sloc (Hi))));
11612 Analyze_And_Resolve (Hi);
11613 end if;
11615 -- If bounds aren't scalar at this point then exit, avoiding
11616 -- problems with further processing of the range in this procedure.
11618 if not Is_Scalar_Type (Etype (Lo)) then
11619 return;
11620 end if;
11622 -- Resolve (actually Sem_Eval) has checked that the bounds are in
11623 -- then range of the base type. Here we check whether the bounds
11624 -- are in the range of the subtype itself. Note that if the bounds
11625 -- represent the null range the Constraint_Error exception should
11626 -- not be raised.
11628 -- ??? The following code should be cleaned up as follows
11629 -- 1. The Is_Null_Range (Lo, Hi) test should disapper since it
11630 -- is done in the call to Range_Check (R, T); below
11631 -- 2. The use of R_Check_Off should be investigated and possibly
11632 -- removed, this would clean up things a bit.
11634 if Is_Null_Range (Lo, Hi) then
11635 null;
11637 else
11638 -- We use a flag here instead of suppressing checks on the
11639 -- type because the type we check against isn't necessarily the
11640 -- place where we put the check.
11642 if not R_Check_Off then
11643 R_Checks := Range_Check (R, T);
11644 Type_Decl := Parent (R);
11646 -- Look up tree to find an appropriate insertion point.
11647 -- This seems really junk code, and very brittle, couldn't
11648 -- we just use an insert actions call of some kind ???
11650 while Present (Type_Decl) and then not
11651 (Nkind (Type_Decl) = N_Full_Type_Declaration
11652 or else
11653 Nkind (Type_Decl) = N_Subtype_Declaration
11654 or else
11655 Nkind (Type_Decl) = N_Loop_Statement
11656 or else
11657 Nkind (Type_Decl) = N_Task_Type_Declaration
11658 or else
11659 Nkind (Type_Decl) = N_Single_Task_Declaration
11660 or else
11661 Nkind (Type_Decl) = N_Protected_Type_Declaration
11662 or else
11663 Nkind (Type_Decl) = N_Single_Protected_Declaration)
11664 loop
11665 Type_Decl := Parent (Type_Decl);
11666 end loop;
11668 -- Why would Type_Decl not be present??? Without this test,
11669 -- short regression tests fail.
11671 if Present (Type_Decl) then
11672 if Nkind (Type_Decl) = N_Loop_Statement then
11673 declare
11674 Indic : Node_Id := Parent (R);
11675 begin
11676 while Present (Indic) and then not
11677 (Nkind (Indic) = N_Subtype_Indication)
11678 loop
11679 Indic := Parent (Indic);
11680 end loop;
11682 if Present (Indic) then
11683 Def_Id := Etype (Subtype_Mark (Indic));
11685 Insert_Range_Checks
11686 (R_Checks,
11687 Type_Decl,
11688 Def_Id,
11689 Sloc (Type_Decl),
11691 Do_Before => True);
11692 end if;
11693 end;
11694 else
11695 Def_Id := Defining_Identifier (Type_Decl);
11697 if (Ekind (Def_Id) = E_Record_Type
11698 and then Depends_On_Discriminant (R))
11699 or else
11700 (Ekind (Def_Id) = E_Protected_Type
11701 and then Has_Discriminants (Def_Id))
11702 then
11703 Append_Range_Checks
11704 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
11706 else
11707 Insert_Range_Checks
11708 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
11710 end if;
11711 end if;
11712 end if;
11713 end if;
11714 end if;
11715 end if;
11717 Get_Index_Bounds (R, Lo, Hi);
11719 if Expander_Active then
11720 Force_Evaluation (Lo);
11721 Force_Evaluation (Hi);
11722 end if;
11724 end Process_Range_Expr_In_Decl;
11726 --------------------------------------
11727 -- Process_Real_Range_Specification --
11728 --------------------------------------
11730 procedure Process_Real_Range_Specification (Def : Node_Id) is
11731 Spec : constant Node_Id := Real_Range_Specification (Def);
11732 Lo : Node_Id;
11733 Hi : Node_Id;
11734 Err : Boolean := False;
11736 procedure Analyze_Bound (N : Node_Id);
11737 -- Analyze and check one bound
11739 procedure Analyze_Bound (N : Node_Id) is
11740 begin
11741 Analyze_And_Resolve (N, Any_Real);
11743 if not Is_OK_Static_Expression (N) then
11744 Error_Msg_N
11745 ("bound in real type definition is not static", N);
11746 Err := True;
11747 end if;
11748 end Analyze_Bound;
11750 begin
11751 if Present (Spec) then
11752 Lo := Low_Bound (Spec);
11753 Hi := High_Bound (Spec);
11754 Analyze_Bound (Lo);
11755 Analyze_Bound (Hi);
11757 -- If error, clear away junk range specification
11759 if Err then
11760 Set_Real_Range_Specification (Def, Empty);
11761 end if;
11762 end if;
11763 end Process_Real_Range_Specification;
11765 ---------------------
11766 -- Process_Subtype --
11767 ---------------------
11769 function Process_Subtype
11770 (S : Node_Id;
11771 Related_Nod : Node_Id;
11772 Related_Id : Entity_Id := Empty;
11773 Suffix : Character := ' ')
11774 return Entity_Id
11776 P : Node_Id;
11777 Def_Id : Entity_Id;
11778 Full_View_Id : Entity_Id;
11779 Subtype_Mark_Id : Entity_Id;
11780 N_Dynamic_Ityp : Node_Id := Empty;
11782 begin
11783 -- Case of constraint present, so that we have an N_Subtype_Indication
11784 -- node (this node is created only if constraints are present).
11786 if Nkind (S) = N_Subtype_Indication then
11787 Find_Type (Subtype_Mark (S));
11789 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
11790 and then not
11791 (Nkind (Parent (S)) = N_Subtype_Declaration
11792 and then
11793 Is_Itype (Defining_Identifier (Parent (S))))
11794 then
11795 Check_Incomplete (Subtype_Mark (S));
11796 end if;
11798 P := Parent (S);
11799 Subtype_Mark_Id := Entity (Subtype_Mark (S));
11801 if Is_Unchecked_Union (Subtype_Mark_Id)
11802 and then Comes_From_Source (Related_Nod)
11803 then
11804 Error_Msg_N
11805 ("cannot create subtype of Unchecked_Union", Related_Nod);
11806 end if;
11808 -- Explicit subtype declaration case
11810 if Nkind (P) = N_Subtype_Declaration then
11811 Def_Id := Defining_Identifier (P);
11813 -- Explicit derived type definition case
11815 elsif Nkind (P) = N_Derived_Type_Definition then
11816 Def_Id := Defining_Identifier (Parent (P));
11818 -- Implicit case, the Def_Id must be created as an implicit type.
11819 -- The one exception arises in the case of concurrent types,
11820 -- array and access types, where other subsidiary implicit types
11821 -- may be created and must appear before the main implicit type.
11822 -- In these cases we leave Def_Id set to Empty as a signal that
11823 -- Create_Itype has not yet been called to create Def_Id.
11825 else
11826 if Is_Array_Type (Subtype_Mark_Id)
11827 or else Is_Concurrent_Type (Subtype_Mark_Id)
11828 or else Is_Access_Type (Subtype_Mark_Id)
11829 then
11830 Def_Id := Empty;
11832 -- For the other cases, we create a new unattached Itype,
11833 -- and set the indication to ensure it gets attached later.
11835 else
11836 Def_Id :=
11837 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11838 end if;
11840 N_Dynamic_Ityp := Related_Nod;
11841 end if;
11843 -- If the kind of constraint is invalid for this kind of type,
11844 -- then give an error, and then pretend no constraint was given.
11846 if not Is_Valid_Constraint_Kind
11847 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
11848 then
11849 Error_Msg_N
11850 ("incorrect constraint for this kind of type", Constraint (S));
11852 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
11854 -- Make recursive call, having got rid of the bogus constraint
11856 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
11857 end if;
11859 -- Remaining processing depends on type
11861 case Ekind (Subtype_Mark_Id) is
11863 when Access_Kind =>
11864 Constrain_Access (Def_Id, S, Related_Nod);
11866 when Array_Kind =>
11867 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
11869 when Decimal_Fixed_Point_Kind =>
11870 Constrain_Decimal (Def_Id, S);
11872 when Enumeration_Kind =>
11873 Constrain_Enumeration (Def_Id, S);
11875 when Ordinary_Fixed_Point_Kind =>
11876 Constrain_Ordinary_Fixed (Def_Id, S);
11878 when Float_Kind =>
11879 Constrain_Float (Def_Id, S);
11881 when Integer_Kind =>
11882 Constrain_Integer (Def_Id, S);
11884 when E_Record_Type |
11885 E_Record_Subtype |
11886 Class_Wide_Kind |
11887 E_Incomplete_Type =>
11888 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
11890 when Private_Kind =>
11891 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
11892 Set_Private_Dependents (Def_Id, New_Elmt_List);
11894 -- In case of an invalid constraint prevent further processing
11895 -- since the type constructed is missing expected fields.
11897 if Etype (Def_Id) = Any_Type then
11898 return Def_Id;
11899 end if;
11901 -- If the full view is that of a task with discriminants,
11902 -- we must constrain both the concurrent type and its
11903 -- corresponding record type. Otherwise we will just propagate
11904 -- the constraint to the full view, if available.
11906 if Present (Full_View (Subtype_Mark_Id))
11907 and then Has_Discriminants (Subtype_Mark_Id)
11908 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
11909 then
11910 Full_View_Id :=
11911 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11913 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
11914 Constrain_Concurrent (Full_View_Id, S,
11915 Related_Nod, Related_Id, Suffix);
11916 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
11917 Set_Full_View (Def_Id, Full_View_Id);
11919 else
11920 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
11921 end if;
11923 when Concurrent_Kind =>
11924 Constrain_Concurrent (Def_Id, S,
11925 Related_Nod, Related_Id, Suffix);
11927 when others =>
11928 Error_Msg_N ("invalid subtype mark in subtype indication", S);
11929 end case;
11931 -- Size and Convention are always inherited from the base type
11933 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
11934 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
11936 return Def_Id;
11938 -- Case of no constraints present
11940 else
11941 Find_Type (S);
11942 Check_Incomplete (S);
11943 return Entity (S);
11944 end if;
11945 end Process_Subtype;
11947 -----------------------------
11948 -- Record_Type_Declaration --
11949 -----------------------------
11951 procedure Record_Type_Declaration (T : Entity_Id; N : Node_Id) is
11952 Def : constant Node_Id := Type_Definition (N);
11953 Range_Checks_Suppressed_Flag : Boolean := False;
11955 Is_Tagged : Boolean;
11956 Tag_Comp : Entity_Id;
11958 begin
11959 -- The flag Is_Tagged_Type might have already been set by Find_Type_Name
11960 -- if it detected an error for declaration T. This arises in the case of
11961 -- private tagged types where the full view omits the word tagged.
11963 Is_Tagged := Tagged_Present (Def)
11964 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
11966 -- Records constitute a scope for the component declarations within.
11967 -- The scope is created prior to the processing of these declarations.
11968 -- Discriminants are processed first, so that they are visible when
11969 -- processing the other components. The Ekind of the record type itself
11970 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
11972 -- Enter record scope
11974 New_Scope (T);
11976 -- These flags must be initialized before calling Process_Discriminants
11977 -- because this routine makes use of them.
11979 Set_Is_Tagged_Type (T, Is_Tagged);
11980 Set_Is_Limited_Record (T, Limited_Present (Def));
11982 -- Type is abstract if full declaration carries keyword, or if
11983 -- previous partial view did.
11985 Set_Is_Abstract (T, Is_Abstract (T) or else Abstract_Present (Def));
11987 Set_Ekind (T, E_Record_Type);
11988 Set_Etype (T, T);
11989 Init_Size_Align (T);
11991 Set_Girder_Constraint (T, No_Elist);
11993 -- If an incomplete or private type declaration was already given for
11994 -- the type, then this scope already exists, and the discriminants have
11995 -- been declared within. We must verify that the full declaration
11996 -- matches the incomplete one.
11998 Check_Or_Process_Discriminants (N, T);
12000 Set_Is_Constrained (T, not Has_Discriminants (T));
12001 Set_Has_Delayed_Freeze (T, True);
12003 -- For tagged types add a manually analyzed component corresponding
12004 -- to the component _tag, the corresponding piece of tree will be
12005 -- expanded as part of the freezing actions if it is not a CPP_Class.
12007 if Is_Tagged then
12008 -- Do not add the tag unless we are in expansion mode.
12010 if Expander_Active then
12011 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
12012 Enter_Name (Tag_Comp);
12014 Set_Is_Tag (Tag_Comp);
12015 Set_Ekind (Tag_Comp, E_Component);
12016 Set_Etype (Tag_Comp, RTE (RE_Tag));
12017 Set_DT_Entry_Count (Tag_Comp, No_Uint);
12018 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
12019 Init_Component_Location (Tag_Comp);
12020 end if;
12022 Make_Class_Wide_Type (T);
12023 Set_Primitive_Operations (T, New_Elmt_List);
12024 end if;
12026 -- We must suppress range checks when processing the components
12027 -- of a record in the presence of discriminants, since we don't
12028 -- want spurious checks to be generated during their analysis, but
12029 -- must reset the Suppress_Range_Checks flags after having procesed
12030 -- the record definition.
12032 if Has_Discriminants (T) and then not Suppress_Range_Checks (T) then
12033 Set_Suppress_Range_Checks (T, True);
12034 Range_Checks_Suppressed_Flag := True;
12035 end if;
12037 Record_Type_Definition (Def, T);
12039 if Range_Checks_Suppressed_Flag then
12040 Set_Suppress_Range_Checks (T, False);
12041 Range_Checks_Suppressed_Flag := False;
12042 end if;
12044 -- Exit from record scope
12046 End_Scope;
12047 end Record_Type_Declaration;
12049 ----------------------------
12050 -- Record_Type_Definition --
12051 ----------------------------
12053 procedure Record_Type_Definition (Def : Node_Id; T : Entity_Id) is
12054 Component : Entity_Id;
12055 Ctrl_Components : Boolean := False;
12056 Final_Storage_Only : Boolean := not Is_Controlled (T);
12058 begin
12059 -- If the component list of a record type is defined by the reserved
12060 -- word null and there is no discriminant part, then the record type has
12061 -- no components and all records of the type are null records (RM 3.7)
12062 -- This procedure is also called to process the extension part of a
12063 -- record extension, in which case the current scope may have inherited
12064 -- components.
12066 if No (Def)
12067 or else No (Component_List (Def))
12068 or else Null_Present (Component_List (Def))
12069 then
12070 null;
12072 else
12073 Analyze_Declarations (Component_Items (Component_List (Def)));
12075 if Present (Variant_Part (Component_List (Def))) then
12076 Analyze (Variant_Part (Component_List (Def)));
12077 end if;
12078 end if;
12080 -- After completing the semantic analysis of the record definition,
12081 -- record components, both new and inherited, are accessible. Set
12082 -- their kind accordingly.
12084 Component := First_Entity (Current_Scope);
12085 while Present (Component) loop
12087 if Ekind (Component) = E_Void then
12088 Set_Ekind (Component, E_Component);
12089 Init_Component_Location (Component);
12090 end if;
12092 if Has_Task (Etype (Component)) then
12093 Set_Has_Task (T);
12094 end if;
12096 if Ekind (Component) /= E_Component then
12097 null;
12099 elsif Has_Controlled_Component (Etype (Component))
12100 or else (Chars (Component) /= Name_uParent
12101 and then Is_Controlled (Etype (Component)))
12102 then
12103 Set_Has_Controlled_Component (T, True);
12104 Final_Storage_Only := Final_Storage_Only
12105 and then Finalize_Storage_Only (Etype (Component));
12106 Ctrl_Components := True;
12107 end if;
12109 Next_Entity (Component);
12110 end loop;
12112 -- A type is Finalize_Storage_Only only if all its controlled
12113 -- components are so.
12115 if Ctrl_Components then
12116 Set_Finalize_Storage_Only (T, Final_Storage_Only);
12117 end if;
12119 if Present (Def) then
12120 Process_End_Label (Def, 'e', T);
12121 end if;
12122 end Record_Type_Definition;
12124 ------------------------
12125 -- Replace_Components --
12126 ------------------------
12128 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
12129 function Process (N : Node_Id) return Traverse_Result;
12131 -------------
12132 -- Process --
12133 -------------
12135 function Process (N : Node_Id) return Traverse_Result is
12136 Comp : Entity_Id;
12138 begin
12139 if Nkind (N) = N_Discriminant_Specification then
12140 Comp := First_Discriminant (Typ);
12142 while Present (Comp) loop
12143 if Chars (Comp) = Chars (Defining_Identifier (N)) then
12144 Set_Defining_Identifier (N, Comp);
12145 exit;
12146 end if;
12148 Next_Discriminant (Comp);
12149 end loop;
12151 elsif Nkind (N) = N_Component_Declaration then
12152 Comp := First_Component (Typ);
12154 while Present (Comp) loop
12155 if Chars (Comp) = Chars (Defining_Identifier (N)) then
12156 Set_Defining_Identifier (N, Comp);
12157 exit;
12158 end if;
12160 Next_Component (Comp);
12161 end loop;
12162 end if;
12164 return OK;
12165 end Process;
12167 procedure Replace is new Traverse_Proc (Process);
12169 -- Start of processing for Replace_Components
12171 begin
12172 Replace (Decl);
12173 end Replace_Components;
12175 -------------------------------
12176 -- Set_Completion_Referenced --
12177 -------------------------------
12179 procedure Set_Completion_Referenced (E : Entity_Id) is
12180 begin
12181 -- If in main unit, mark entity that is a completion as referenced,
12182 -- warnings go on the partial view when needed.
12184 if In_Extended_Main_Source_Unit (E) then
12185 Set_Referenced (E);
12186 end if;
12187 end Set_Completion_Referenced;
12189 ---------------------
12190 -- Set_Fixed_Range --
12191 ---------------------
12193 -- The range for fixed-point types is complicated by the fact that we
12194 -- do not know the exact end points at the time of the declaration. This
12195 -- is true for three reasons:
12197 -- A size clause may affect the fudging of the end-points
12198 -- A small clause may affect the values of the end-points
12199 -- We try to include the end-points if it does not affect the size
12201 -- This means that the actual end-points must be established at the
12202 -- point when the type is frozen. Meanwhile, we first narrow the range
12203 -- as permitted (so that it will fit if necessary in a small specified
12204 -- size), and then build a range subtree with these narrowed bounds.
12206 -- Set_Fixed_Range constructs the range from real literal values, and
12207 -- sets the range as the Scalar_Range of the given fixed-point type
12208 -- entity.
12210 -- The parent of this range is set to point to the entity so that it
12211 -- is properly hooked into the tree (unlike normal Scalar_Range entries
12212 -- for other scalar types, which are just pointers to the range in the
12213 -- original tree, this would otherwise be an orphan).
12215 -- The tree is left unanalyzed. When the type is frozen, the processing
12216 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
12217 -- analyzed, and uses this as an indication that it should complete
12218 -- work on the range (it will know the final small and size values).
12220 procedure Set_Fixed_Range
12221 (E : Entity_Id;
12222 Loc : Source_Ptr;
12223 Lo : Ureal;
12224 Hi : Ureal)
12226 S : constant Node_Id :=
12227 Make_Range (Loc,
12228 Low_Bound => Make_Real_Literal (Loc, Lo),
12229 High_Bound => Make_Real_Literal (Loc, Hi));
12231 begin
12232 Set_Scalar_Range (E, S);
12233 Set_Parent (S, E);
12234 end Set_Fixed_Range;
12236 --------------------------------------------------------
12237 -- Set_Girder_Constraint_From_Discriminant_Constraint --
12238 --------------------------------------------------------
12240 procedure Set_Girder_Constraint_From_Discriminant_Constraint
12241 (E : Entity_Id)
12243 begin
12244 -- Make sure set if encountered during
12245 -- Expand_To_Girder_Constraint
12247 Set_Girder_Constraint (E, No_Elist);
12249 -- Give it the right value
12251 if Is_Constrained (E) and then Has_Discriminants (E) then
12252 Set_Girder_Constraint (E,
12253 Expand_To_Girder_Constraint (E, Discriminant_Constraint (E)));
12254 end if;
12256 end Set_Girder_Constraint_From_Discriminant_Constraint;
12258 ----------------------------------
12259 -- Set_Scalar_Range_For_Subtype --
12260 ----------------------------------
12262 procedure Set_Scalar_Range_For_Subtype
12263 (Def_Id : Entity_Id;
12264 R : Node_Id;
12265 Subt : Entity_Id)
12267 Kind : constant Entity_Kind := Ekind (Def_Id);
12268 begin
12269 Set_Scalar_Range (Def_Id, R);
12271 -- We need to link the range into the tree before resolving it so
12272 -- that types that are referenced, including importantly the subtype
12273 -- itself, are properly frozen (Freeze_Expression requires that the
12274 -- expression be properly linked into the tree). Of course if it is
12275 -- already linked in, then we do not disturb the current link.
12277 if No (Parent (R)) then
12278 Set_Parent (R, Def_Id);
12279 end if;
12281 -- Reset the kind of the subtype during analysis of the range, to
12282 -- catch possible premature use in the bounds themselves.
12284 Set_Ekind (Def_Id, E_Void);
12285 Process_Range_Expr_In_Decl (R, Subt);
12286 Set_Ekind (Def_Id, Kind);
12288 end Set_Scalar_Range_For_Subtype;
12290 -------------------------------------
12291 -- Signed_Integer_Type_Declaration --
12292 -------------------------------------
12294 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
12295 Implicit_Base : Entity_Id;
12296 Base_Typ : Entity_Id;
12297 Lo_Val : Uint;
12298 Hi_Val : Uint;
12299 Errs : Boolean := False;
12300 Lo : Node_Id;
12301 Hi : Node_Id;
12303 function Can_Derive_From (E : Entity_Id) return Boolean;
12304 -- Determine whether given bounds allow derivation from specified type
12306 procedure Check_Bound (Expr : Node_Id);
12307 -- Check bound to make sure it is integral and static. If not, post
12308 -- appropriate error message and set Errs flag
12310 function Can_Derive_From (E : Entity_Id) return Boolean is
12311 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
12312 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
12314 begin
12315 -- Note we check both bounds against both end values, to deal with
12316 -- strange types like ones with a range of 0 .. -12341234.
12318 return Lo <= Lo_Val and then Lo_Val <= Hi
12319 and then
12320 Lo <= Hi_Val and then Hi_Val <= Hi;
12321 end Can_Derive_From;
12323 procedure Check_Bound (Expr : Node_Id) is
12324 begin
12325 -- If a range constraint is used as an integer type definition, each
12326 -- bound of the range must be defined by a static expression of some
12327 -- integer type, but the two bounds need not have the same integer
12328 -- type (Negative bounds are allowed.) (RM 3.5.4)
12330 if not Is_Integer_Type (Etype (Expr)) then
12331 Error_Msg_N
12332 ("integer type definition bounds must be of integer type", Expr);
12333 Errs := True;
12335 elsif not Is_OK_Static_Expression (Expr) then
12336 Error_Msg_N
12337 ("non-static expression used for integer type bound", Expr);
12338 Errs := True;
12340 -- The bounds are folded into literals, and we set their type to be
12341 -- universal, to avoid typing difficulties: we cannot set the type
12342 -- of the literal to the new type, because this would be a forward
12343 -- reference for the back end, and if the original type is user-
12344 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
12346 else
12347 if Is_Entity_Name (Expr) then
12348 Fold_Uint (Expr, Expr_Value (Expr));
12349 end if;
12351 Set_Etype (Expr, Universal_Integer);
12352 end if;
12353 end Check_Bound;
12355 -- Start of processing for Signed_Integer_Type_Declaration
12357 begin
12358 -- Create an anonymous base type
12360 Implicit_Base :=
12361 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
12363 -- Analyze and check the bounds, they can be of any integer type
12365 Lo := Low_Bound (Def);
12366 Hi := High_Bound (Def);
12368 -- Arbitrarily use Integer as the type if either bound had an error
12370 if Hi = Error or else Lo = Error then
12371 Base_Typ := Any_Integer;
12372 Set_Error_Posted (T, True);
12374 -- Here both bounds are OK expressions
12376 else
12377 Analyze_And_Resolve (Lo, Any_Integer);
12378 Analyze_And_Resolve (Hi, Any_Integer);
12380 Check_Bound (Lo);
12381 Check_Bound (Hi);
12383 if Errs then
12384 Hi := Type_High_Bound (Standard_Long_Long_Integer);
12385 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
12386 end if;
12388 -- Find type to derive from
12390 Lo_Val := Expr_Value (Lo);
12391 Hi_Val := Expr_Value (Hi);
12393 if Can_Derive_From (Standard_Short_Short_Integer) then
12394 Base_Typ := Base_Type (Standard_Short_Short_Integer);
12396 elsif Can_Derive_From (Standard_Short_Integer) then
12397 Base_Typ := Base_Type (Standard_Short_Integer);
12399 elsif Can_Derive_From (Standard_Integer) then
12400 Base_Typ := Base_Type (Standard_Integer);
12402 elsif Can_Derive_From (Standard_Long_Integer) then
12403 Base_Typ := Base_Type (Standard_Long_Integer);
12405 elsif Can_Derive_From (Standard_Long_Long_Integer) then
12406 Base_Typ := Base_Type (Standard_Long_Long_Integer);
12408 else
12409 Base_Typ := Base_Type (Standard_Long_Long_Integer);
12410 Error_Msg_N ("integer type definition bounds out of range", Def);
12411 Hi := Type_High_Bound (Standard_Long_Long_Integer);
12412 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
12413 end if;
12414 end if;
12416 -- Complete both implicit base and declared first subtype entities
12418 Set_Etype (Implicit_Base, Base_Typ);
12419 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
12420 Set_Size_Info (Implicit_Base, (Base_Typ));
12421 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
12422 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
12424 Set_Ekind (T, E_Signed_Integer_Subtype);
12425 Set_Etype (T, Implicit_Base);
12427 Set_Size_Info (T, (Implicit_Base));
12428 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
12429 Set_Scalar_Range (T, Def);
12430 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
12431 Set_Is_Constrained (T);
12433 end Signed_Integer_Type_Declaration;
12435 end Sem_Ch3;