1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Tss
; use Exp_Tss
;
35 with Exp_Util
; use Exp_Util
;
36 with Freeze
; use Freeze
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Nlists
; use Nlists
;
41 with Nmake
; use Nmake
;
43 with Restrict
; use Restrict
;
44 with Rident
; use Rident
;
45 with Rtsfind
; use Rtsfind
;
47 with Sem_Aux
; use Sem_Aux
;
48 with Sem_Case
; use Sem_Case
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch6
; use Sem_Ch6
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Dim
; use Sem_Dim
;
53 with Sem_Disp
; use Sem_Disp
;
54 with Sem_Eval
; use Sem_Eval
;
55 with Sem_Prag
; use Sem_Prag
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Type
; use Sem_Type
;
58 with Sem_Util
; use Sem_Util
;
59 with Sem_Warn
; use Sem_Warn
;
60 with Sinput
; use Sinput
;
61 with Snames
; use Snames
;
62 with Stand
; use Stand
;
63 with Sinfo
; use Sinfo
;
64 with Stringt
; use Stringt
;
65 with Targparm
; use Targparm
;
66 with Ttypes
; use Ttypes
;
67 with Tbuild
; use Tbuild
;
68 with Urealp
; use Urealp
;
69 with Warnsw
; use Warnsw
;
71 with GNAT
.Heap_Sort_G
;
73 package body Sem_Ch13
is
75 SSU
: constant Pos
:= System_Storage_Unit
;
76 -- Convenient short hand for commonly used constant
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
);
83 -- This routine is called after setting one of the sizes of type entity
84 -- Typ to Size. The purpose is to deal with the situation of a derived
85 -- type whose inherited alignment is no longer appropriate for the new
86 -- size value. In this case, we reset the Alignment to unknown.
88 procedure Build_Discrete_Static_Predicate
92 -- Given a predicated type Typ, where Typ is a discrete static subtype,
93 -- whose predicate expression is Expr, tests if Expr is a static predicate,
94 -- and if so, builds the predicate range list. Nam is the name of the one
95 -- argument to the predicate function. Occurrences of the type name in the
96 -- predicate expression have been replaced by identifier references to this
97 -- name, which is unique, so any identifier with Chars matching Nam must be
98 -- a reference to the type. If the predicate is non-static, this procedure
99 -- returns doing nothing. If the predicate is static, then the predicate
100 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
101 -- rewritten as a canonicalized membership operation.
103 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
);
104 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
105 -- then either there are pragma Predicate entries on the rep chain for the
106 -- type (note that Predicate aspects are converted to pragma Predicate), or
107 -- there are inherited aspects from a parent type, or ancestor subtypes.
108 -- This procedure builds the spec and body for the Predicate function that
109 -- tests these predicates. N is the freeze node for the type. The spec of
110 -- the function is inserted before the freeze node, and the body of the
111 -- function is inserted after the freeze node. If the predicate expression
112 -- has at least one Raise_Expression, then this procedure also builds the
113 -- M version of the predicate function for use in membership tests.
115 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
);
116 -- Called if both Storage_Pool and Storage_Size attribute definition
117 -- clauses (SP and SS) are present for entity Ent. Issue error message.
119 procedure Freeze_Entity_Checks
(N
: Node_Id
);
120 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
121 -- to generate appropriate semantic checks that are delayed until this
122 -- point (they had to be delayed this long for cases of delayed aspects,
123 -- e.g. analysis of statically predicated subtypes in choices, for which
124 -- we have to be sure the subtypes in question are frozen before checking.
126 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
;
127 -- Given the expression for an alignment value, returns the corresponding
128 -- Uint value. If the value is inappropriate, then error messages are
129 -- posted as required, and a value of No_Uint is returned.
131 function Is_Operational_Item
(N
: Node_Id
) return Boolean;
132 -- A specification for a stream attribute is allowed before the full type
133 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
134 -- that do not specify a representation characteristic are operational
137 function Is_Predicate_Static
139 Nam
: Name_Id
) return Boolean;
140 -- Given predicate expression Expr, tests if Expr is predicate-static in
141 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
142 -- name in the predicate expression have been replaced by references to
143 -- an identifier whose Chars field is Nam. This name is unique, so any
144 -- identifier with Chars matching Nam must be a reference to the type.
145 -- Returns True if the expression is predicate-static and False otherwise,
146 -- but is not in the business of setting flags or issuing error messages.
148 -- Only scalar types can have static predicates, so False is always
149 -- returned for non-scalar types.
151 -- Note: the RM seems to suggest that string types can also have static
152 -- predicates. But that really makes lttle sense as very few useful
153 -- predicates can be constructed for strings. Remember that:
157 -- is not a static expression. So even though the clearly faulty RM wording
158 -- allows the following:
160 -- subtype S is String with Static_Predicate => S < "DEF"
162 -- We can't allow this, otherwise we have predicate-static applying to a
163 -- larger class than static expressions, which was never intended.
165 procedure New_Stream_Subprogram
169 Nam
: TSS_Name_Type
);
170 -- Create a subprogram renaming of a given stream attribute to the
171 -- designated subprogram and then in the tagged case, provide this as a
172 -- primitive operation, or in the untagged case make an appropriate TSS
173 -- entry. This is more properly an expansion activity than just semantics,
174 -- but the presence of user-defined stream functions for limited types
175 -- is a legality check, which is why this takes place here rather than in
176 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
177 -- function to be generated.
179 -- To avoid elaboration anomalies with freeze nodes, for untagged types
180 -- we generate both a subprogram declaration and a subprogram renaming
181 -- declaration, so that the attribute specification is handled as a
182 -- renaming_as_body. For tagged types, the specification is one of the
185 procedure Resolve_Iterable_Operation
190 -- If the name of a primitive operation for an Iterable aspect is
191 -- overloaded, resolve according to required signature.
197 Biased
: Boolean := True);
198 -- If Biased is True, sets Has_Biased_Representation flag for E, and
199 -- outputs a warning message at node N if Warn_On_Biased_Representation is
200 -- is True. This warning inserts the string Msg to describe the construct
203 ----------------------------------------------
204 -- Table for Validate_Unchecked_Conversions --
205 ----------------------------------------------
207 -- The following table collects unchecked conversions for validation.
208 -- Entries are made by Validate_Unchecked_Conversion and then the call
209 -- to Validate_Unchecked_Conversions does the actual error checking and
210 -- posting of warnings. The reason for this delayed processing is to take
211 -- advantage of back-annotations of size and alignment values performed by
214 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
215 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
216 -- already have modified all Sloc values if the -gnatD option is set.
218 type UC_Entry
is record
219 Eloc
: Source_Ptr
; -- node used for posting warnings
220 Source
: Entity_Id
; -- source type for unchecked conversion
221 Target
: Entity_Id
; -- target type for unchecked conversion
222 Act_Unit
: Entity_Id
; -- actual function instantiated
225 package Unchecked_Conversions
is new Table
.Table
(
226 Table_Component_Type
=> UC_Entry
,
227 Table_Index_Type
=> Int
,
228 Table_Low_Bound
=> 1,
230 Table_Increment
=> 200,
231 Table_Name
=> "Unchecked_Conversions");
233 ----------------------------------------
234 -- Table for Validate_Address_Clauses --
235 ----------------------------------------
237 -- If an address clause has the form
239 -- for X'Address use Expr
241 -- where Expr is of the form Y'Address or recursively is a reference to a
242 -- constant of either of these forms, and X and Y are entities of objects,
243 -- then if Y has a smaller alignment than X, that merits a warning about
244 -- possible bad alignment. The following table collects address clauses of
245 -- this kind. We put these in a table so that they can be checked after the
246 -- back end has completed annotation of the alignments of objects, since we
247 -- can catch more cases that way.
249 type Address_Clause_Check_Record
is record
251 -- The address clause
254 -- The entity of the object overlaying Y
257 -- The entity of the object being overlaid
260 -- Whether the address is offset within Y
263 package Address_Clause_Checks
is new Table
.Table
(
264 Table_Component_Type
=> Address_Clause_Check_Record
,
265 Table_Index_Type
=> Int
,
266 Table_Low_Bound
=> 1,
268 Table_Increment
=> 200,
269 Table_Name
=> "Address_Clause_Checks");
271 -----------------------------------------
272 -- Adjust_Record_For_Reverse_Bit_Order --
273 -----------------------------------------
275 procedure Adjust_Record_For_Reverse_Bit_Order
(R
: Entity_Id
) is
280 -- Processing depends on version of Ada
282 -- For Ada 95, we just renumber bits within a storage unit. We do the
283 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
284 -- Ada 83, and are free to add this extension.
286 if Ada_Version
< Ada_2005
then
287 Comp
:= First_Component_Or_Discriminant
(R
);
288 while Present
(Comp
) loop
289 CC
:= Component_Clause
(Comp
);
291 -- If component clause is present, then deal with the non-default
292 -- bit order case for Ada 95 mode.
294 -- We only do this processing for the base type, and in fact that
295 -- is important, since otherwise if there are record subtypes, we
296 -- could reverse the bits once for each subtype, which is wrong.
298 if Present
(CC
) and then Ekind
(R
) = E_Record_Type
then
300 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
301 CSZ
: constant Uint
:= Esize
(Comp
);
302 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
303 Pos
: constant Node_Id
:= Position
(CLC
);
304 FB
: constant Node_Id
:= First_Bit
(CLC
);
306 Storage_Unit_Offset
: constant Uint
:=
307 CFB
/ System_Storage_Unit
;
309 Start_Bit
: constant Uint
:=
310 CFB
mod System_Storage_Unit
;
313 -- Cases where field goes over storage unit boundary
315 if Start_Bit
+ CSZ
> System_Storage_Unit
then
317 -- Allow multi-byte field but generate warning
319 if Start_Bit
mod System_Storage_Unit
= 0
320 and then CSZ
mod System_Storage_Unit
= 0
323 ("info: multi-byte field specified with "
324 & "non-standard Bit_Order?V?", CLC
);
326 if Bytes_Big_Endian
then
328 ("\bytes are not reversed "
329 & "(component is big-endian)?V?", CLC
);
332 ("\bytes are not reversed "
333 & "(component is little-endian)?V?", CLC
);
336 -- Do not allow non-contiguous field
340 ("attempt to specify non-contiguous field "
341 & "not permitted", CLC
);
343 ("\caused by non-standard Bit_Order "
346 ("\consider possibility of using "
347 & "Ada 2005 mode here", CLC
);
350 -- Case where field fits in one storage unit
353 -- Give warning if suspicious component clause
355 if Intval
(FB
) >= System_Storage_Unit
356 and then Warn_On_Reverse_Bit_Order
359 ("info: Bit_Order clause does not affect " &
360 "byte ordering?V?", Pos
);
362 Intval
(Pos
) + Intval
(FB
) /
365 ("info: position normalized to ^ before bit " &
366 "order interpreted?V?", Pos
);
369 -- Here is where we fix up the Component_Bit_Offset value
370 -- to account for the reverse bit order. Some examples of
371 -- what needs to be done are:
373 -- First_Bit .. Last_Bit Component_Bit_Offset
385 -- The rule is that the first bit is is obtained by
386 -- subtracting the old ending bit from storage_unit - 1.
388 Set_Component_Bit_Offset
390 (Storage_Unit_Offset
* System_Storage_Unit
) +
391 (System_Storage_Unit
- 1) -
392 (Start_Bit
+ CSZ
- 1));
394 Set_Normalized_First_Bit
396 Component_Bit_Offset
(Comp
) mod
397 System_Storage_Unit
);
402 Next_Component_Or_Discriminant
(Comp
);
405 -- For Ada 2005, we do machine scalar processing, as fully described In
406 -- AI-133. This involves gathering all components which start at the
407 -- same byte offset and processing them together. Same approach is still
408 -- valid in later versions including Ada 2012.
412 Max_Machine_Scalar_Size
: constant Uint
:=
414 (Standard_Long_Long_Integer_Size
);
415 -- We use this as the maximum machine scalar size
418 SSU
: constant Uint
:= UI_From_Int
(System_Storage_Unit
);
421 -- This first loop through components does two things. First it
422 -- deals with the case of components with component clauses whose
423 -- length is greater than the maximum machine scalar size (either
424 -- accepting them or rejecting as needed). Second, it counts the
425 -- number of components with component clauses whose length does
426 -- not exceed this maximum for later processing.
429 Comp
:= First_Component_Or_Discriminant
(R
);
430 while Present
(Comp
) loop
431 CC
:= Component_Clause
(Comp
);
435 Fbit
: constant Uint
:= Static_Integer
(First_Bit
(CC
));
436 Lbit
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
439 -- Case of component with last bit >= max machine scalar
441 if Lbit
>= Max_Machine_Scalar_Size
then
443 -- This is allowed only if first bit is zero, and
444 -- last bit + 1 is a multiple of storage unit size.
446 if Fbit
= 0 and then (Lbit
+ 1) mod SSU
= 0 then
448 -- This is the case to give a warning if enabled
450 if Warn_On_Reverse_Bit_Order
then
452 ("info: multi-byte field specified with "
453 & " non-standard Bit_Order?V?", CC
);
455 if Bytes_Big_Endian
then
457 ("\bytes are not reversed "
458 & "(component is big-endian)?V?", CC
);
461 ("\bytes are not reversed "
462 & "(component is little-endian)?V?", CC
);
466 -- Give error message for RM 13.5.1(10) violation
470 ("machine scalar rules not followed for&",
471 First_Bit
(CC
), Comp
);
473 Error_Msg_Uint_1
:= Lbit
;
474 Error_Msg_Uint_2
:= Max_Machine_Scalar_Size
;
476 ("\last bit (^) exceeds maximum machine "
480 if (Lbit
+ 1) mod SSU
/= 0 then
481 Error_Msg_Uint_1
:= SSU
;
483 ("\and is not a multiple of Storage_Unit (^) "
488 Error_Msg_Uint_1
:= Fbit
;
490 ("\and first bit (^) is non-zero "
496 -- OK case of machine scalar related component clause,
497 -- For now, just count them.
500 Num_CC
:= Num_CC
+ 1;
505 Next_Component_Or_Discriminant
(Comp
);
508 -- We need to sort the component clauses on the basis of the
509 -- Position values in the clause, so we can group clauses with
510 -- the same Position together to determine the relevant machine
514 Comps
: array (0 .. Num_CC
) of Entity_Id
;
515 -- Array to collect component and discriminant entities. The
516 -- data starts at index 1, the 0'th entry is for the sort
519 function CP_Lt
(Op1
, Op2
: Natural) return Boolean;
520 -- Compare routine for Sort
522 procedure CP_Move
(From
: Natural; To
: Natural);
523 -- Move routine for Sort
525 package Sorting
is new GNAT
.Heap_Sort_G
(CP_Move
, CP_Lt
);
529 -- Start and stop positions in the component list of the set of
530 -- components with the same starting position (that constitute
531 -- components in a single machine scalar).
534 -- Maximum last bit value of any component in this set
537 -- Corresponding machine scalar size
543 function CP_Lt
(Op1
, Op2
: Natural) return Boolean is
545 return Position
(Component_Clause
(Comps
(Op1
))) <
546 Position
(Component_Clause
(Comps
(Op2
)));
553 procedure CP_Move
(From
: Natural; To
: Natural) is
555 Comps
(To
) := Comps
(From
);
558 -- Start of processing for Sort_CC
561 -- Collect the machine scalar relevant component clauses
564 Comp
:= First_Component_Or_Discriminant
(R
);
565 while Present
(Comp
) loop
567 CC
: constant Node_Id
:= Component_Clause
(Comp
);
570 -- Collect only component clauses whose last bit is less
571 -- than machine scalar size. Any component clause whose
572 -- last bit exceeds this value does not take part in
573 -- machine scalar layout considerations. The test for
574 -- Error_Posted makes sure we exclude component clauses
575 -- for which we already posted an error.
578 and then not Error_Posted
(Last_Bit
(CC
))
579 and then Static_Integer
(Last_Bit
(CC
)) <
580 Max_Machine_Scalar_Size
582 Num_CC
:= Num_CC
+ 1;
583 Comps
(Num_CC
) := Comp
;
587 Next_Component_Or_Discriminant
(Comp
);
590 -- Sort by ascending position number
592 Sorting
.Sort
(Num_CC
);
594 -- We now have all the components whose size does not exceed
595 -- the max machine scalar value, sorted by starting position.
596 -- In this loop we gather groups of clauses starting at the
597 -- same position, to process them in accordance with AI-133.
600 while Stop
< Num_CC
loop
605 (Last_Bit
(Component_Clause
(Comps
(Start
))));
606 while Stop
< Num_CC
loop
608 (Position
(Component_Clause
(Comps
(Stop
+ 1)))) =
610 (Position
(Component_Clause
(Comps
(Stop
))))
618 (Component_Clause
(Comps
(Stop
)))));
624 -- Now we have a group of component clauses from Start to
625 -- Stop whose positions are identical, and MaxL is the
626 -- maximum last bit value of any of these components.
628 -- We need to determine the corresponding machine scalar
629 -- size. This loop assumes that machine scalar sizes are
630 -- even, and that each possible machine scalar has twice
631 -- as many bits as the next smaller one.
633 MSS
:= Max_Machine_Scalar_Size
;
635 and then (MSS
/ 2) >= SSU
636 and then (MSS
/ 2) > MaxL
641 -- Here is where we fix up the Component_Bit_Offset value
642 -- to account for the reverse bit order. Some examples of
643 -- what needs to be done for the case of a machine scalar
646 -- First_Bit .. Last_Bit Component_Bit_Offset
658 -- The rule is that the first bit is obtained by subtracting
659 -- the old ending bit from machine scalar size - 1.
661 for C
in Start
.. Stop
loop
663 Comp
: constant Entity_Id
:= Comps
(C
);
664 CC
: constant Node_Id
:= Component_Clause
(Comp
);
666 LB
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
667 NFB
: constant Uint
:= MSS
- Uint_1
- LB
;
668 NLB
: constant Uint
:= NFB
+ Esize
(Comp
) - 1;
669 Pos
: constant Uint
:= Static_Integer
(Position
(CC
));
672 if Warn_On_Reverse_Bit_Order
then
673 Error_Msg_Uint_1
:= MSS
;
675 ("info: reverse bit order in machine " &
676 "scalar of length^?V?", First_Bit
(CC
));
677 Error_Msg_Uint_1
:= NFB
;
678 Error_Msg_Uint_2
:= NLB
;
680 if Bytes_Big_Endian
then
682 ("\big-endian range for component "
683 & "& is ^ .. ^?V?", First_Bit
(CC
), Comp
);
686 ("\little-endian range for component"
687 & "& is ^ .. ^?V?", First_Bit
(CC
), Comp
);
691 Set_Component_Bit_Offset
(Comp
, Pos
* SSU
+ NFB
);
692 Set_Normalized_First_Bit
(Comp
, NFB
mod SSU
);
699 end Adjust_Record_For_Reverse_Bit_Order
;
701 -------------------------------------
702 -- Alignment_Check_For_Size_Change --
703 -------------------------------------
705 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
) is
707 -- If the alignment is known, and not set by a rep clause, and is
708 -- inconsistent with the size being set, then reset it to unknown,
709 -- we assume in this case that the size overrides the inherited
710 -- alignment, and that the alignment must be recomputed.
712 if Known_Alignment
(Typ
)
713 and then not Has_Alignment_Clause
(Typ
)
714 and then Size
mod (Alignment
(Typ
) * SSU
) /= 0
716 Init_Alignment
(Typ
);
718 end Alignment_Check_For_Size_Change
;
720 -------------------------------------
721 -- Analyze_Aspects_At_Freeze_Point --
722 -------------------------------------
724 procedure Analyze_Aspects_At_Freeze_Point
(E
: Entity_Id
) is
729 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
);
730 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
731 -- the aspect specification node ASN.
733 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
);
734 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
735 -- a derived type can inherit aspects from its parent which have been
736 -- specified at the time of the derivation using an aspect, as in:
738 -- type A is range 1 .. 10
739 -- with Size => Not_Defined_Yet;
743 -- Not_Defined_Yet : constant := 64;
745 -- In this example, the Size of A is considered to be specified prior
746 -- to the derivation, and thus inherited, even though the value is not
747 -- known at the time of derivation. To deal with this, we use two entity
748 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
749 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
750 -- the derived type (B here). If this flag is set when the derived type
751 -- is frozen, then this procedure is called to ensure proper inheritance
752 -- of all delayed aspects from the parent type. The derived type is E,
753 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
754 -- aspect specification node in the Rep_Item chain for the parent type.
756 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
);
757 -- Given an aspect specification node ASN whose expression is an
758 -- optional Boolean, this routines creates the corresponding pragma
759 -- at the freezing point.
761 ----------------------------------
762 -- Analyze_Aspect_Default_Value --
763 ----------------------------------
765 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
) is
766 Ent
: constant Entity_Id
:= Entity
(ASN
);
767 Expr
: constant Node_Id
:= Expression
(ASN
);
768 Id
: constant Node_Id
:= Identifier
(ASN
);
771 Error_Msg_Name_1
:= Chars
(Id
);
773 if not Is_Type
(Ent
) then
774 Error_Msg_N
("aspect% can only apply to a type", Id
);
777 elsif not Is_First_Subtype
(Ent
) then
778 Error_Msg_N
("aspect% cannot apply to subtype", Id
);
781 elsif A_Id
= Aspect_Default_Value
782 and then not Is_Scalar_Type
(Ent
)
784 Error_Msg_N
("aspect% can only be applied to scalar type", Id
);
787 elsif A_Id
= Aspect_Default_Component_Value
then
788 if not Is_Array_Type
(Ent
) then
789 Error_Msg_N
("aspect% can only be applied to array type", Id
);
792 elsif not Is_Scalar_Type
(Component_Type
(Ent
)) then
793 Error_Msg_N
("aspect% requires scalar components", Id
);
798 Set_Has_Default_Aspect
(Base_Type
(Ent
));
800 if Is_Scalar_Type
(Ent
) then
801 Set_Default_Aspect_Value
(Base_Type
(Ent
), Expr
);
803 Set_Default_Aspect_Component_Value
(Base_Type
(Ent
), Expr
);
805 end Analyze_Aspect_Default_Value
;
807 ---------------------------------
808 -- Inherit_Delayed_Rep_Aspects --
809 ---------------------------------
811 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
) is
812 P
: constant Entity_Id
:= Entity
(ASN
);
813 -- Entithy for parent type
816 -- Item from Rep_Item chain
821 -- Loop through delayed aspects for the parent type
824 while Present
(N
) loop
825 if Nkind
(N
) = N_Aspect_Specification
then
826 exit when Entity
(N
) /= P
;
828 if Is_Delayed_Aspect
(N
) then
829 A
:= Get_Aspect_Id
(Chars
(Identifier
(N
)));
831 -- Process delayed rep aspect. For Boolean attributes it is
832 -- not possible to cancel an attribute once set (the attempt
833 -- to use an aspect with xxx => False is an error) for a
834 -- derived type. So for those cases, we do not have to check
835 -- if a clause has been given for the derived type, since it
836 -- is harmless to set it again if it is already set.
842 when Aspect_Alignment
=>
843 if not Has_Alignment_Clause
(E
) then
844 Set_Alignment
(E
, Alignment
(P
));
849 when Aspect_Atomic
=>
850 if Is_Atomic
(P
) then
856 when Aspect_Atomic_Components
=>
857 if Has_Atomic_Components
(P
) then
858 Set_Has_Atomic_Components
(Base_Type
(E
));
863 when Aspect_Bit_Order
=>
864 if Is_Record_Type
(E
)
865 and then No
(Get_Attribute_Definition_Clause
866 (E
, Attribute_Bit_Order
))
867 and then Reverse_Bit_Order
(P
)
869 Set_Reverse_Bit_Order
(Base_Type
(E
));
874 when Aspect_Component_Size
=>
876 and then not Has_Component_Size_Clause
(E
)
879 (Base_Type
(E
), Component_Size
(P
));
884 when Aspect_Machine_Radix
=>
885 if Is_Decimal_Fixed_Point_Type
(E
)
886 and then not Has_Machine_Radix_Clause
(E
)
888 Set_Machine_Radix_10
(E
, Machine_Radix_10
(P
));
891 -- Object_Size (also Size which also sets Object_Size)
893 when Aspect_Object_Size | Aspect_Size
=>
894 if not Has_Size_Clause
(E
)
896 No
(Get_Attribute_Definition_Clause
897 (E
, Attribute_Object_Size
))
899 Set_Esize
(E
, Esize
(P
));
905 if not Is_Packed
(E
) then
906 Set_Is_Packed
(Base_Type
(E
));
908 if Is_Bit_Packed_Array
(P
) then
909 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
910 Set_Packed_Array_Impl_Type
911 (E
, Packed_Array_Impl_Type
(P
));
915 -- Scalar_Storage_Order
917 when Aspect_Scalar_Storage_Order
=>
918 if (Is_Record_Type
(E
) or else Is_Array_Type
(E
))
919 and then No
(Get_Attribute_Definition_Clause
920 (E
, Attribute_Scalar_Storage_Order
))
921 and then Reverse_Storage_Order
(P
)
923 Set_Reverse_Storage_Order
(Base_Type
(E
));
925 -- Clear default SSO indications, since the aspect
926 -- overrides the default.
928 Set_SSO_Set_Low_By_Default
(Base_Type
(E
), False);
929 Set_SSO_Set_High_By_Default
(Base_Type
(E
), False);
935 if Is_Fixed_Point_Type
(E
)
936 and then not Has_Small_Clause
(E
)
938 Set_Small_Value
(E
, Small_Value
(P
));
943 when Aspect_Storage_Size
=>
944 if (Is_Access_Type
(E
) or else Is_Task_Type
(E
))
945 and then not Has_Storage_Size_Clause
(E
)
947 Set_Storage_Size_Variable
948 (Base_Type
(E
), Storage_Size_Variable
(P
));
953 when Aspect_Value_Size
=>
955 -- Value_Size is never inherited, it is either set by
956 -- default, or it is explicitly set for the derived
957 -- type. So nothing to do here.
963 when Aspect_Volatile
=>
964 if Is_Volatile
(P
) then
968 -- Volatile_Components
970 when Aspect_Volatile_Components
=>
971 if Has_Volatile_Components
(P
) then
972 Set_Has_Volatile_Components
(Base_Type
(E
));
975 -- That should be all the Rep Aspects
978 pragma Assert
(Aspect_Delay
(A_Id
) /= Rep_Aspect
);
985 N
:= Next_Rep_Item
(N
);
987 end Inherit_Delayed_Rep_Aspects
;
989 -------------------------------------
990 -- Make_Pragma_From_Boolean_Aspect --
991 -------------------------------------
993 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
) is
994 Ident
: constant Node_Id
:= Identifier
(ASN
);
995 A_Name
: constant Name_Id
:= Chars
(Ident
);
996 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(A_Name
);
997 Ent
: constant Entity_Id
:= Entity
(ASN
);
998 Expr
: constant Node_Id
:= Expression
(ASN
);
999 Loc
: constant Source_Ptr
:= Sloc
(ASN
);
1003 procedure Check_False_Aspect_For_Derived_Type
;
1004 -- This procedure checks for the case of a false aspect for a derived
1005 -- type, which improperly tries to cancel an aspect inherited from
1008 -----------------------------------------
1009 -- Check_False_Aspect_For_Derived_Type --
1010 -----------------------------------------
1012 procedure Check_False_Aspect_For_Derived_Type
is
1016 -- We are only checking derived types
1018 if not Is_Derived_Type
(E
) then
1022 Par
:= Nearest_Ancestor
(E
);
1025 when Aspect_Atomic | Aspect_Shared
=>
1026 if not Is_Atomic
(Par
) then
1030 when Aspect_Atomic_Components
=>
1031 if not Has_Atomic_Components
(Par
) then
1035 when Aspect_Discard_Names
=>
1036 if not Discard_Names
(Par
) then
1041 if not Is_Packed
(Par
) then
1045 when Aspect_Unchecked_Union
=>
1046 if not Is_Unchecked_Union
(Par
) then
1050 when Aspect_Volatile
=>
1051 if not Is_Volatile
(Par
) then
1055 when Aspect_Volatile_Components
=>
1056 if not Has_Volatile_Components
(Par
) then
1064 -- Fall through means we are canceling an inherited aspect
1066 Error_Msg_Name_1
:= A_Name
;
1068 ("derived type& inherits aspect%, cannot cancel", Expr
, E
);
1070 end Check_False_Aspect_For_Derived_Type
;
1072 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1075 -- Note that we know Expr is present, because for a missing Expr
1076 -- argument, we knew it was True and did not need to delay the
1077 -- evaluation to the freeze point.
1079 if Is_False
(Static_Boolean
(Expr
)) then
1080 Check_False_Aspect_For_Derived_Type
;
1085 Pragma_Argument_Associations
=> New_List
(
1086 Make_Pragma_Argument_Association
(Sloc
(Ident
),
1087 Expression
=> New_Occurrence_Of
(Ent
, Sloc
(Ident
)))),
1089 Pragma_Identifier
=>
1090 Make_Identifier
(Sloc
(Ident
), Chars
(Ident
)));
1092 Set_From_Aspect_Specification
(Prag
, True);
1093 Set_Corresponding_Aspect
(Prag
, ASN
);
1094 Set_Aspect_Rep_Item
(ASN
, Prag
);
1095 Set_Is_Delayed_Aspect
(Prag
);
1096 Set_Parent
(Prag
, ASN
);
1098 end Make_Pragma_From_Boolean_Aspect
;
1100 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1103 -- Must be visible in current scope
1105 if not Scope_Within_Or_Same
(Current_Scope
, Scope
(E
)) then
1109 -- Look for aspect specification entries for this entity
1111 ASN
:= First_Rep_Item
(E
);
1112 while Present
(ASN
) loop
1113 if Nkind
(ASN
) = N_Aspect_Specification
then
1114 exit when Entity
(ASN
) /= E
;
1116 if Is_Delayed_Aspect
(ASN
) then
1117 A_Id
:= Get_Aspect_Id
(ASN
);
1121 -- For aspects whose expression is an optional Boolean, make
1122 -- the corresponding pragma at the freezing point.
1124 when Boolean_Aspects |
1125 Library_Unit_Aspects
=>
1126 Make_Pragma_From_Boolean_Aspect
(ASN
);
1128 -- Special handling for aspects that don't correspond to
1129 -- pragmas/attributes.
1131 when Aspect_Default_Value |
1132 Aspect_Default_Component_Value
=>
1133 Analyze_Aspect_Default_Value
(ASN
);
1135 -- Ditto for iterator aspects, because the corresponding
1136 -- attributes may not have been analyzed yet.
1138 when Aspect_Constant_Indexing |
1139 Aspect_Variable_Indexing |
1140 Aspect_Default_Iterator |
1141 Aspect_Iterator_Element
=>
1142 Analyze
(Expression
(ASN
));
1144 when Aspect_Iterable
=>
1145 Validate_Iterable_Aspect
(E
, ASN
);
1151 Ritem
:= Aspect_Rep_Item
(ASN
);
1153 if Present
(Ritem
) then
1159 Next_Rep_Item
(ASN
);
1162 -- This is where we inherit delayed rep aspects from our parent. Note
1163 -- that if we fell out of the above loop with ASN non-empty, it means
1164 -- we hit an aspect for an entity other than E, and it must be the
1165 -- type from which we were derived.
1167 if May_Inherit_Delayed_Rep_Aspects
(E
) then
1168 Inherit_Delayed_Rep_Aspects
(ASN
);
1170 end Analyze_Aspects_At_Freeze_Point
;
1172 -----------------------------------
1173 -- Analyze_Aspect_Specifications --
1174 -----------------------------------
1176 procedure Analyze_Aspect_Specifications
(N
: Node_Id
; E
: Entity_Id
) is
1177 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
);
1178 -- Establish linkages between an aspect and its corresponding
1181 procedure Insert_After_SPARK_Mode
1185 -- Subsidiary to the analysis of aspects Abstract_State, Initializes,
1186 -- Initial_Condition and Refined_State. Insert node Prag before node
1187 -- Ins_Nod. If Ins_Nod is for pragma SPARK_Mode, then skip SPARK_Mode.
1188 -- Decls is the associated declarative list where Prag is to reside.
1190 procedure Insert_Pragma
(Prag
: Node_Id
);
1191 -- Subsidiary to the analysis of aspects Attach_Handler, Contract_Cases,
1192 -- Depends, Global, Post, Pre, Refined_Depends and Refined_Global.
1193 -- Insert pragma Prag such that it mimics the placement of a source
1194 -- pragma of the same kind.
1196 -- procedure Proc (Formal : ...) with Global => ...;
1198 -- procedure Proc (Formal : ...);
1199 -- pragma Global (...);
1205 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
) is
1207 Set_Aspect_Rep_Item
(Asp
, Prag
);
1208 Set_Corresponding_Aspect
(Prag
, Asp
);
1209 Set_From_Aspect_Specification
(Prag
);
1210 Set_Parent
(Prag
, Asp
);
1213 -----------------------------
1214 -- Insert_After_SPARK_Mode --
1215 -----------------------------
1217 procedure Insert_After_SPARK_Mode
1222 Decl
: Node_Id
:= Ins_Nod
;
1228 and then Nkind
(Decl
) = N_Pragma
1229 and then Pragma_Name
(Decl
) = Name_SPARK_Mode
1231 Decl
:= Next
(Decl
);
1234 if Present
(Decl
) then
1235 Insert_Before
(Decl
, Prag
);
1237 -- Aitem acts as the last declaration
1240 Append_To
(Decls
, Prag
);
1242 end Insert_After_SPARK_Mode
;
1248 procedure Insert_Pragma
(Prag
: Node_Id
) is
1253 -- When the context is a library unit, the pragma is added to the
1254 -- Pragmas_After list.
1256 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1257 Aux
:= Aux_Decls_Node
(Parent
(N
));
1259 if No
(Pragmas_After
(Aux
)) then
1260 Set_Pragmas_After
(Aux
, New_List
);
1263 Prepend
(Prag
, Pragmas_After
(Aux
));
1265 -- Pragmas associated with subprogram bodies are inserted in the
1266 -- declarative part.
1268 elsif Nkind
(N
) = N_Subprogram_Body
then
1269 if Present
(Declarations
(N
)) then
1271 -- Skip other internally generated pragmas from aspects to find
1272 -- the proper insertion point. As a result the order of pragmas
1273 -- is the same as the order of aspects.
1275 -- As precondition pragmas generated from conjuncts in the
1276 -- precondition aspect are presented in reverse order to
1277 -- Insert_Pragma, insert them in the correct order here by not
1278 -- skipping previously inserted precondition pragmas when the
1279 -- current pragma is a precondition.
1281 Decl
:= First
(Declarations
(N
));
1282 while Present
(Decl
) loop
1283 if Nkind
(Decl
) = N_Pragma
1284 and then From_Aspect_Specification
(Decl
)
1285 and then not (Get_Pragma_Id
(Decl
) = Pragma_Precondition
1287 Get_Pragma_Id
(Prag
) = Pragma_Precondition
)
1295 if Present
(Decl
) then
1296 Insert_Before
(Decl
, Prag
);
1298 Append
(Prag
, Declarations
(N
));
1301 Set_Declarations
(N
, New_List
(Prag
));
1307 Insert_After
(N
, Prag
);
1317 L
: constant List_Id
:= Aspect_Specifications
(N
);
1319 Ins_Node
: Node_Id
:= N
;
1320 -- Insert pragmas/attribute definition clause after this node when no
1321 -- delayed analysis is required.
1323 -- Start of processing for Analyze_Aspect_Specifications
1325 -- The general processing involves building an attribute definition
1326 -- clause or a pragma node that corresponds to the aspect. Then in order
1327 -- to delay the evaluation of this aspect to the freeze point, we attach
1328 -- the corresponding pragma/attribute definition clause to the aspect
1329 -- specification node, which is then placed in the Rep Item chain. In
1330 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1331 -- and we evaluate the rep item at the freeze point. When the aspect
1332 -- doesn't have a corresponding pragma/attribute definition clause, then
1333 -- its analysis is simply delayed at the freeze point.
1335 -- Some special cases don't require delay analysis, thus the aspect is
1336 -- analyzed right now.
1338 -- Note that there is a special handling for Pre, Post, Test_Case,
1339 -- Contract_Cases aspects. In these cases, we do not have to worry
1340 -- about delay issues, since the pragmas themselves deal with delay
1341 -- of visibility for the expression analysis. Thus, we just insert
1342 -- the pragma after the node N.
1345 pragma Assert
(Present
(L
));
1347 -- Loop through aspects
1349 Aspect
:= First
(L
);
1350 Aspect_Loop
: while Present
(Aspect
) loop
1351 Analyze_One_Aspect
: declare
1352 Expr
: constant Node_Id
:= Expression
(Aspect
);
1353 Id
: constant Node_Id
:= Identifier
(Aspect
);
1354 Loc
: constant Source_Ptr
:= Sloc
(Aspect
);
1355 Nam
: constant Name_Id
:= Chars
(Id
);
1356 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Nam
);
1359 Delay_Required
: Boolean;
1360 -- Set False if delay is not required
1362 Eloc
: Source_Ptr
:= No_Location
;
1363 -- Source location of expression, modified when we split PPC's. It
1364 -- is set below when Expr is present.
1366 procedure Analyze_Aspect_External_Or_Link_Name
;
1367 -- Perform analysis of the External_Name or Link_Name aspects
1369 procedure Analyze_Aspect_Implicit_Dereference
;
1370 -- Perform analysis of the Implicit_Dereference aspects
1372 procedure Make_Aitem_Pragma
1373 (Pragma_Argument_Associations
: List_Id
;
1374 Pragma_Name
: Name_Id
);
1375 -- This is a wrapper for Make_Pragma used for converting aspects
1376 -- to pragmas. It takes care of Sloc (set from Loc) and building
1377 -- the pragma identifier from the given name. In addition the
1378 -- flags Class_Present and Split_PPC are set from the aspect
1379 -- node, as well as Is_Ignored. This routine also sets the
1380 -- From_Aspect_Specification in the resulting pragma node to
1381 -- True, and sets Corresponding_Aspect to point to the aspect.
1382 -- The resulting pragma is assigned to Aitem.
1384 ------------------------------------------
1385 -- Analyze_Aspect_External_Or_Link_Name --
1386 ------------------------------------------
1388 procedure Analyze_Aspect_External_Or_Link_Name
is
1390 -- Verify that there is an Import/Export aspect defined for the
1391 -- entity. The processing of that aspect in turn checks that
1392 -- there is a Convention aspect declared. The pragma is
1393 -- constructed when processing the Convention aspect.
1400 while Present
(A
) loop
1401 exit when Nam_In
(Chars
(Identifier
(A
)), Name_Export
,
1408 ("missing Import/Export for Link/External name",
1412 end Analyze_Aspect_External_Or_Link_Name
;
1414 -----------------------------------------
1415 -- Analyze_Aspect_Implicit_Dereference --
1416 -----------------------------------------
1418 procedure Analyze_Aspect_Implicit_Dereference
is
1420 if not Is_Type
(E
) or else not Has_Discriminants
(E
) then
1422 ("aspect must apply to a type with discriminants", N
);
1429 Disc
:= First_Discriminant
(E
);
1430 while Present
(Disc
) loop
1431 if Chars
(Expr
) = Chars
(Disc
)
1432 and then Ekind
(Etype
(Disc
)) =
1433 E_Anonymous_Access_Type
1435 Set_Has_Implicit_Dereference
(E
);
1436 Set_Has_Implicit_Dereference
(Disc
);
1440 Next_Discriminant
(Disc
);
1443 -- Error if no proper access discriminant.
1446 ("not an access discriminant of&", Expr
, E
);
1449 end Analyze_Aspect_Implicit_Dereference
;
1451 -----------------------
1452 -- Make_Aitem_Pragma --
1453 -----------------------
1455 procedure Make_Aitem_Pragma
1456 (Pragma_Argument_Associations
: List_Id
;
1457 Pragma_Name
: Name_Id
)
1459 Args
: List_Id
:= Pragma_Argument_Associations
;
1462 -- We should never get here if aspect was disabled
1464 pragma Assert
(not Is_Disabled
(Aspect
));
1466 -- Certain aspects allow for an optional name or expression. Do
1467 -- not generate a pragma with empty argument association list.
1469 if No
(Args
) or else No
(Expression
(First
(Args
))) then
1477 Pragma_Argument_Associations
=> Args
,
1478 Pragma_Identifier
=>
1479 Make_Identifier
(Sloc
(Id
), Pragma_Name
),
1480 Class_Present
=> Class_Present
(Aspect
),
1481 Split_PPC
=> Split_PPC
(Aspect
));
1483 -- Set additional semantic fields
1485 if Is_Ignored
(Aspect
) then
1486 Set_Is_Ignored
(Aitem
);
1487 elsif Is_Checked
(Aspect
) then
1488 Set_Is_Checked
(Aitem
);
1491 Set_Corresponding_Aspect
(Aitem
, Aspect
);
1492 Set_From_Aspect_Specification
(Aitem
, True);
1493 end Make_Aitem_Pragma
;
1495 -- Start of processing for Analyze_One_Aspect
1498 -- Skip aspect if already analyzed, to avoid looping in some cases
1500 if Analyzed
(Aspect
) then
1504 -- Skip looking at aspect if it is totally disabled. Just mark it
1505 -- as such for later reference in the tree. This also sets the
1506 -- Is_Ignored and Is_Checked flags appropriately.
1508 Check_Applicable_Policy
(Aspect
);
1510 if Is_Disabled
(Aspect
) then
1514 -- Set the source location of expression, used in the case of
1515 -- a failed precondition/postcondition or invariant. Note that
1516 -- the source location of the expression is not usually the best
1517 -- choice here. For example, it gets located on the last AND
1518 -- keyword in a chain of boolean expressiond AND'ed together.
1519 -- It is best to put the message on the first character of the
1520 -- assertion, which is the effect of the First_Node call here.
1522 if Present
(Expr
) then
1523 Eloc
:= Sloc
(First_Node
(Expr
));
1526 -- Check restriction No_Implementation_Aspect_Specifications
1528 if Implementation_Defined_Aspect
(A_Id
) then
1530 (No_Implementation_Aspect_Specifications
, Aspect
);
1533 -- Check restriction No_Specification_Of_Aspect
1535 Check_Restriction_No_Specification_Of_Aspect
(Aspect
);
1537 -- Mark aspect analyzed (actual analysis is delayed till later)
1539 Set_Analyzed
(Aspect
);
1540 Set_Entity
(Aspect
, E
);
1541 Ent
:= New_Occurrence_Of
(E
, Sloc
(Id
));
1543 -- Check for duplicate aspect. Note that the Comes_From_Source
1544 -- test allows duplicate Pre/Post's that we generate internally
1545 -- to escape being flagged here.
1547 if No_Duplicates_Allowed
(A_Id
) then
1549 while Anod
/= Aspect
loop
1550 if Comes_From_Source
(Aspect
)
1551 and then Same_Aspect
(A_Id
, Get_Aspect_Id
(Anod
))
1553 Error_Msg_Name_1
:= Nam
;
1554 Error_Msg_Sloc
:= Sloc
(Anod
);
1556 -- Case of same aspect specified twice
1558 if Class_Present
(Anod
) = Class_Present
(Aspect
) then
1559 if not Class_Present
(Anod
) then
1561 ("aspect% for & previously given#",
1565 ("aspect `%''Class` for & previously given#",
1575 -- Check some general restrictions on language defined aspects
1577 if not Implementation_Defined_Aspect
(A_Id
) then
1578 Error_Msg_Name_1
:= Nam
;
1580 -- Not allowed for renaming declarations
1582 if Nkind
(N
) in N_Renaming_Declaration
then
1584 ("aspect % not allowed for renaming declaration",
1588 -- Not allowed for formal type declarations
1590 if Nkind
(N
) = N_Formal_Type_Declaration
then
1592 ("aspect % not allowed for formal type declaration",
1597 -- Copy expression for later processing by the procedures
1598 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1600 Set_Entity
(Id
, New_Copy_Tree
(Expr
));
1602 -- Set Delay_Required as appropriate to aspect
1604 case Aspect_Delay
(A_Id
) is
1605 when Always_Delay
=>
1606 Delay_Required
:= True;
1609 Delay_Required
:= False;
1613 -- If expression has the form of an integer literal, then
1614 -- do not delay, since we know the value cannot change.
1615 -- This optimization catches most rep clause cases.
1617 if (Present
(Expr
) and then Nkind
(Expr
) = N_Integer_Literal
)
1618 or else (A_Id
in Boolean_Aspects
and then No
(Expr
))
1620 Delay_Required
:= False;
1622 Delay_Required
:= True;
1623 Set_Has_Delayed_Rep_Aspects
(E
);
1627 -- Processing based on specific aspect
1631 -- No_Aspect should be impossible
1634 raise Program_Error
;
1636 -- Case 1: Aspects corresponding to attribute definition
1639 when Aspect_Address |
1642 Aspect_Component_Size |
1643 Aspect_Constant_Indexing |
1644 Aspect_Default_Iterator |
1645 Aspect_Dispatching_Domain |
1646 Aspect_External_Tag |
1649 Aspect_Iterator_Element |
1650 Aspect_Machine_Radix |
1651 Aspect_Object_Size |
1654 Aspect_Scalar_Storage_Order |
1657 Aspect_Simple_Storage_Pool |
1658 Aspect_Storage_Pool |
1659 Aspect_Stream_Size |
1661 Aspect_Variable_Indexing |
1664 -- Indexing aspects apply only to tagged type
1666 if (A_Id
= Aspect_Constant_Indexing
1668 A_Id
= Aspect_Variable_Indexing
)
1669 and then not (Is_Type
(E
)
1670 and then Is_Tagged_Type
(E
))
1673 ("indexing aspect can only apply to a tagged type",
1678 -- For the case of aspect Address, we don't consider that we
1679 -- know the entity is never set in the source, since it is
1680 -- is likely aliasing is occurring.
1682 -- Note: one might think that the analysis of the resulting
1683 -- attribute definition clause would take care of that, but
1684 -- that's not the case since it won't be from source.
1686 if A_Id
= Aspect_Address
then
1687 Set_Never_Set_In_Source
(E
, False);
1690 -- Correctness of the profile of a stream operation is
1691 -- verified at the freeze point, but we must detect the
1692 -- illegal specification of this aspect for a subtype now,
1693 -- to prevent malformed rep_item chains.
1695 if (A_Id
= Aspect_Input
or else
1696 A_Id
= Aspect_Output
or else
1697 A_Id
= Aspect_Read
or else
1698 A_Id
= Aspect_Write
)
1699 and not Is_First_Subtype
(E
)
1702 ("local name must be a first subtype", Aspect
);
1706 -- Construct the attribute definition clause
1709 Make_Attribute_Definition_Clause
(Loc
,
1711 Chars
=> Chars
(Id
),
1712 Expression
=> Relocate_Node
(Expr
));
1714 -- If the address is specified, then we treat the entity as
1715 -- referenced, to avoid spurious warnings. This is analogous
1716 -- to what is done with an attribute definition clause, but
1717 -- here we don't want to generate a reference because this
1718 -- is the point of definition of the entity.
1720 if A_Id
= Aspect_Address
then
1724 -- Case 2: Aspects corresponding to pragmas
1726 -- Case 2a: Aspects corresponding to pragmas with two
1727 -- arguments, where the first argument is a local name
1728 -- referring to the entity, and the second argument is the
1729 -- aspect definition expression.
1731 -- Linker_Section/Suppress/Unsuppress
1733 when Aspect_Linker_Section |
1735 Aspect_Unsuppress
=>
1738 (Pragma_Argument_Associations
=> New_List
(
1739 Make_Pragma_Argument_Association
(Loc
,
1740 Expression
=> New_Occurrence_Of
(E
, Loc
)),
1741 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1742 Expression
=> Relocate_Node
(Expr
))),
1743 Pragma_Name
=> Chars
(Id
));
1747 -- Corresponds to pragma Implemented, construct the pragma
1749 when Aspect_Synchronization
=>
1751 (Pragma_Argument_Associations
=> New_List
(
1752 Make_Pragma_Argument_Association
(Loc
,
1753 Expression
=> New_Occurrence_Of
(E
, Loc
)),
1754 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1755 Expression
=> Relocate_Node
(Expr
))),
1756 Pragma_Name
=> Name_Implemented
);
1760 when Aspect_Attach_Handler
=>
1762 (Pragma_Argument_Associations
=> New_List
(
1763 Make_Pragma_Argument_Association
(Sloc
(Ent
),
1765 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1766 Expression
=> Relocate_Node
(Expr
))),
1767 Pragma_Name
=> Name_Attach_Handler
);
1769 -- We need to insert this pragma into the tree to get proper
1770 -- processing and to look valid from a placement viewpoint.
1772 Insert_Pragma
(Aitem
);
1775 -- Dynamic_Predicate, Predicate, Static_Predicate
1777 when Aspect_Dynamic_Predicate |
1779 Aspect_Static_Predicate
=>
1781 -- These aspects apply only to subtypes
1783 if not Is_Type
(E
) then
1785 ("predicate can only be specified for a subtype",
1789 elsif Is_Incomplete_Type
(E
) then
1791 ("predicate cannot apply to incomplete view", Aspect
);
1795 -- Construct the pragma (always a pragma Predicate, with
1796 -- flags recording whether it is static/dynamic). We also
1797 -- set flags recording this in the type itself.
1800 (Pragma_Argument_Associations
=> New_List
(
1801 Make_Pragma_Argument_Association
(Sloc
(Ent
),
1803 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1804 Expression
=> Relocate_Node
(Expr
))),
1805 Pragma_Name
=> Name_Predicate
);
1807 -- Mark type has predicates, and remember what kind of
1808 -- aspect lead to this predicate (we need this to access
1809 -- the right set of check policies later on).
1811 Set_Has_Predicates
(E
);
1813 if A_Id
= Aspect_Dynamic_Predicate
then
1814 Set_Has_Dynamic_Predicate_Aspect
(E
);
1815 elsif A_Id
= Aspect_Static_Predicate
then
1816 Set_Has_Static_Predicate_Aspect
(E
);
1819 -- If the type is private, indicate that its completion
1820 -- has a freeze node, because that is the one that will
1821 -- be visible at freeze time.
1823 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
1824 Set_Has_Predicates
(Full_View
(E
));
1826 if A_Id
= Aspect_Dynamic_Predicate
then
1827 Set_Has_Dynamic_Predicate_Aspect
(Full_View
(E
));
1828 elsif A_Id
= Aspect_Static_Predicate
then
1829 Set_Has_Static_Predicate_Aspect
(Full_View
(E
));
1832 Set_Has_Delayed_Aspects
(Full_View
(E
));
1833 Ensure_Freeze_Node
(Full_View
(E
));
1836 -- Case 2b: Aspects corresponding to pragmas with two
1837 -- arguments, where the second argument is a local name
1838 -- referring to the entity, and the first argument is the
1839 -- aspect definition expression.
1843 when Aspect_Convention
=>
1845 -- The aspect may be part of the specification of an import
1846 -- or export pragma. Scan the aspect list to gather the
1847 -- other components, if any. The name of the generated
1848 -- pragma is one of Convention/Import/Export.
1851 Args
: constant List_Id
:= New_List
(
1852 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1853 Expression
=> Relocate_Node
(Expr
)),
1854 Make_Pragma_Argument_Association
(Sloc
(Ent
),
1855 Expression
=> Ent
));
1857 Imp_Exp_Seen
: Boolean := False;
1858 -- Flag set when aspect Import or Export has been seen
1860 Imp_Seen
: Boolean := False;
1861 -- Flag set when aspect Import has been seen
1865 Extern_Arg
: Node_Id
;
1870 Extern_Arg
:= Empty
;
1872 Prag_Nam
:= Chars
(Id
);
1875 while Present
(Asp
) loop
1876 Asp_Nam
:= Chars
(Identifier
(Asp
));
1878 -- Aspects Import and Export take precedence over
1879 -- aspect Convention. As a result the generated pragma
1880 -- must carry the proper interfacing aspect's name.
1882 if Nam_In
(Asp_Nam
, Name_Import
, Name_Export
) then
1883 if Imp_Exp_Seen
then
1884 Error_Msg_N
("conflicting", Asp
);
1886 Imp_Exp_Seen
:= True;
1888 if Asp_Nam
= Name_Import
then
1893 Prag_Nam
:= Asp_Nam
;
1895 -- Aspect External_Name adds an extra argument to the
1896 -- generated pragma.
1898 elsif Asp_Nam
= Name_External_Name
then
1900 Make_Pragma_Argument_Association
(Loc
,
1902 Expression
=> Relocate_Node
(Expression
(Asp
)));
1904 -- Aspect Link_Name adds an extra argument to the
1905 -- generated pragma.
1907 elsif Asp_Nam
= Name_Link_Name
then
1909 Make_Pragma_Argument_Association
(Loc
,
1911 Expression
=> Relocate_Node
(Expression
(Asp
)));
1917 -- Assemble the full argument list
1919 if Present
(Extern_Arg
) then
1920 Append_To
(Args
, Extern_Arg
);
1923 if Present
(Link_Arg
) then
1924 Append_To
(Args
, Link_Arg
);
1928 (Pragma_Argument_Associations
=> Args
,
1929 Pragma_Name
=> Prag_Nam
);
1931 -- Store the generated pragma Import in the related
1934 if Imp_Seen
and then Is_Subprogram
(E
) then
1935 Set_Import_Pragma
(E
, Aitem
);
1939 -- CPU, Interrupt_Priority, Priority
1941 -- These three aspects can be specified for a subprogram spec
1942 -- or body, in which case we analyze the expression and export
1943 -- the value of the aspect.
1945 -- Previously, we generated an equivalent pragma for bodies
1946 -- (note that the specs cannot contain these pragmas). The
1947 -- pragma was inserted ahead of local declarations, rather than
1948 -- after the body. This leads to a certain duplication between
1949 -- the processing performed for the aspect and the pragma, but
1950 -- given the straightforward handling required it is simpler
1951 -- to duplicate than to translate the aspect in the spec into
1952 -- a pragma in the declarative part of the body.
1955 Aspect_Interrupt_Priority |
1958 if Nkind_In
(N
, N_Subprogram_Body
,
1959 N_Subprogram_Declaration
)
1961 -- Analyze the aspect expression
1963 Analyze_And_Resolve
(Expr
, Standard_Integer
);
1965 -- Interrupt_Priority aspect not allowed for main
1966 -- subprograms. ARM D.1 does not forbid this explicitly,
1967 -- but ARM J.15.11 (6/3) does not permit pragma
1968 -- Interrupt_Priority for subprograms.
1970 if A_Id
= Aspect_Interrupt_Priority
then
1972 ("Interrupt_Priority aspect cannot apply to "
1973 & "subprogram", Expr
);
1975 -- The expression must be static
1977 elsif not Is_OK_Static_Expression
(Expr
) then
1978 Flag_Non_Static_Expr
1979 ("aspect requires static expression!", Expr
);
1981 -- Check whether this is the main subprogram. Issue a
1982 -- warning only if it is obviously not a main program
1983 -- (when it has parameters or when the subprogram is
1984 -- within a package).
1986 elsif Present
(Parameter_Specifications
1987 (Specification
(N
)))
1988 or else not Is_Compilation_Unit
(Defining_Entity
(N
))
1990 -- See ARM D.1 (14/3) and D.16 (12/3)
1993 ("aspect applied to subprogram other than the "
1994 & "main subprogram has no effect??", Expr
);
1996 -- Otherwise check in range and export the value
1998 -- For the CPU aspect
2000 elsif A_Id
= Aspect_CPU
then
2001 if Is_In_Range
(Expr
, RTE
(RE_CPU_Range
)) then
2003 -- Value is correct so we export the value to make
2004 -- it available at execution time.
2007 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2011 ("main subprogram CPU is out of range", Expr
);
2014 -- For the Priority aspect
2016 elsif A_Id
= Aspect_Priority
then
2017 if Is_In_Range
(Expr
, RTE
(RE_Priority
)) then
2019 -- Value is correct so we export the value to make
2020 -- it available at execution time.
2023 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2025 -- Ignore pragma if Relaxed_RM_Semantics to support
2026 -- other targets/non GNAT compilers.
2028 elsif not Relaxed_RM_Semantics
then
2030 ("main subprogram priority is out of range",
2035 -- Load an arbitrary entity from System.Tasking.Stages
2036 -- or System.Tasking.Restricted.Stages (depending on
2037 -- the supported profile) to make sure that one of these
2038 -- packages is implicitly with'ed, since we need to have
2039 -- the tasking run time active for the pragma Priority to
2040 -- have any effect. Previously we with'ed the package
2041 -- System.Tasking, but this package does not trigger the
2042 -- required initialization of the run-time library.
2045 Discard
: Entity_Id
;
2047 if Restricted_Profile
then
2048 Discard
:= RTE
(RE_Activate_Restricted_Tasks
);
2050 Discard
:= RTE
(RE_Activate_Tasks
);
2054 -- Handling for these Aspects in subprograms is complete
2061 -- Pass the aspect as an attribute
2064 Make_Attribute_Definition_Clause
(Loc
,
2066 Chars
=> Chars
(Id
),
2067 Expression
=> Relocate_Node
(Expr
));
2072 when Aspect_Warnings
=>
2074 (Pragma_Argument_Associations
=> New_List
(
2075 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2076 Expression
=> Relocate_Node
(Expr
)),
2077 Make_Pragma_Argument_Association
(Loc
,
2078 Expression
=> New_Occurrence_Of
(E
, Loc
))),
2079 Pragma_Name
=> Chars
(Id
));
2081 -- Case 2c: Aspects corresponding to pragmas with three
2084 -- Invariant aspects have a first argument that references the
2085 -- entity, a second argument that is the expression and a third
2086 -- argument that is an appropriate message.
2088 -- Invariant, Type_Invariant
2090 when Aspect_Invariant |
2091 Aspect_Type_Invariant
=>
2093 -- Analysis of the pragma will verify placement legality:
2094 -- an invariant must apply to a private type, or appear in
2095 -- the private part of a spec and apply to a completion.
2098 (Pragma_Argument_Associations
=> New_List
(
2099 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2101 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2102 Expression
=> Relocate_Node
(Expr
))),
2103 Pragma_Name
=> Name_Invariant
);
2105 -- Add message unless exception messages are suppressed
2107 if not Opt
.Exception_Locations_Suppressed
then
2108 Append_To
(Pragma_Argument_Associations
(Aitem
),
2109 Make_Pragma_Argument_Association
(Eloc
,
2110 Chars
=> Name_Message
,
2112 Make_String_Literal
(Eloc
,
2113 Strval
=> "failed invariant from "
2114 & Build_Location_String
(Eloc
))));
2117 -- For Invariant case, insert immediately after the entity
2118 -- declaration. We do not have to worry about delay issues
2119 -- since the pragma processing takes care of this.
2121 Delay_Required
:= False;
2123 -- Case 2d : Aspects that correspond to a pragma with one
2128 -- Aspect Abstract_State introduces implicit declarations for
2129 -- all state abstraction entities it defines. To emulate this
2130 -- behavior, insert the pragma at the beginning of the visible
2131 -- declarations of the related package so that it is analyzed
2134 when Aspect_Abstract_State
=> Abstract_State
: declare
2135 Context
: Node_Id
:= N
;
2140 -- When aspect Abstract_State appears on a generic package,
2141 -- it is propageted to the package instance. The context in
2142 -- this case is the instance spec.
2144 if Nkind
(Context
) = N_Package_Instantiation
then
2145 Context
:= Instance_Spec
(Context
);
2148 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2149 N_Package_Declaration
)
2152 (Pragma_Argument_Associations
=> New_List
(
2153 Make_Pragma_Argument_Association
(Loc
,
2154 Expression
=> Relocate_Node
(Expr
))),
2155 Pragma_Name
=> Name_Abstract_State
);
2156 Decorate
(Aspect
, Aitem
);
2158 Decls
:= Visible_Declarations
(Specification
(Context
));
2160 -- In general pragma Abstract_State must be at the top
2161 -- of the existing visible declarations to emulate its
2162 -- source counterpart. The only exception to this is a
2163 -- generic instance in which case the pragma must be
2164 -- inserted after the association renamings.
2166 if Present
(Decls
) then
2167 Decl
:= First
(Decls
);
2169 -- The visible declarations of a generic instance have
2170 -- the following structure:
2172 -- <renamings of generic formals>
2173 -- <renamings of internally-generated spec and body>
2174 -- <first source declaration>
2176 -- The pragma must be inserted before the first source
2177 -- declaration, skip the instance "header".
2179 if Is_Generic_Instance
(Defining_Entity
(Context
)) then
2180 while Present
(Decl
)
2181 and then not Comes_From_Source
(Decl
)
2183 Decl
:= Next
(Decl
);
2187 -- Pragma Abstract_State must be inserted after pragma
2188 -- SPARK_Mode in the tree. This ensures that any error
2189 -- messages dependent on SPARK_Mode will be properly
2190 -- enabled/suppressed.
2192 Insert_After_SPARK_Mode
2197 -- Otherwise the pragma forms a new declarative list
2200 Set_Visible_Declarations
2201 (Specification
(Context
), New_List
(Aitem
));
2206 ("aspect & must apply to a package declaration",
2213 -- Aspect Default_Internal_Condition is never delayed because
2214 -- it is equivalent to a source pragma which appears after the
2215 -- related private type. To deal with forward references, the
2216 -- generated pragma is stored in the rep chain of the related
2217 -- private type as types do not carry contracts. The pragma is
2218 -- wrapped inside of a procedure at the freeze point of the
2219 -- private type's full view.
2221 when Aspect_Default_Initial_Condition
=>
2223 (Pragma_Argument_Associations
=> New_List
(
2224 Make_Pragma_Argument_Association
(Loc
,
2225 Expression
=> Relocate_Node
(Expr
))),
2227 Name_Default_Initial_Condition
);
2229 Decorate
(Aspect
, Aitem
);
2230 Insert_Pragma
(Aitem
);
2235 -- Aspect Depends is never delayed because it is equivalent to
2236 -- a source pragma which appears after the related subprogram.
2237 -- To deal with forward references, the generated pragma is
2238 -- stored in the contract of the related subprogram and later
2239 -- analyzed at the end of the declarative region. See routine
2240 -- Analyze_Depends_In_Decl_Part for details.
2242 when Aspect_Depends
=>
2244 (Pragma_Argument_Associations
=> New_List
(
2245 Make_Pragma_Argument_Association
(Loc
,
2246 Expression
=> Relocate_Node
(Expr
))),
2247 Pragma_Name
=> Name_Depends
);
2249 Decorate
(Aspect
, Aitem
);
2250 Insert_Pragma
(Aitem
);
2255 -- Aspect Global is never delayed because it is equivalent to
2256 -- a source pragma which appears after the related subprogram.
2257 -- To deal with forward references, the generated pragma is
2258 -- stored in the contract of the related subprogram and later
2259 -- analyzed at the end of the declarative region. See routine
2260 -- Analyze_Global_In_Decl_Part for details.
2262 when Aspect_Global
=>
2264 (Pragma_Argument_Associations
=> New_List
(
2265 Make_Pragma_Argument_Association
(Loc
,
2266 Expression
=> Relocate_Node
(Expr
))),
2267 Pragma_Name
=> Name_Global
);
2269 Decorate
(Aspect
, Aitem
);
2270 Insert_Pragma
(Aitem
);
2273 -- Initial_Condition
2275 -- Aspect Initial_Condition is never delayed because it is
2276 -- equivalent to a source pragma which appears after the
2277 -- related package. To deal with forward references, the
2278 -- generated pragma is stored in the contract of the related
2279 -- package and later analyzed at the end of the declarative
2280 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2283 when Aspect_Initial_Condition
=> Initial_Condition
: declare
2284 Context
: Node_Id
:= N
;
2288 -- When aspect Initial_Condition appears on a generic
2289 -- package, it is propageted to the package instance. The
2290 -- context in this case is the instance spec.
2292 if Nkind
(Context
) = N_Package_Instantiation
then
2293 Context
:= Instance_Spec
(Context
);
2296 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2297 N_Package_Declaration
)
2299 Decls
:= Visible_Declarations
(Specification
(Context
));
2302 (Pragma_Argument_Associations
=> New_List
(
2303 Make_Pragma_Argument_Association
(Loc
,
2304 Expression
=> Relocate_Node
(Expr
))),
2306 Name_Initial_Condition
);
2307 Decorate
(Aspect
, Aitem
);
2311 Set_Visible_Declarations
(Context
, Decls
);
2314 -- When aspects Abstract_State, Initial_Condition and
2315 -- Initializes are out of order, ensure that pragma
2316 -- SPARK_Mode is always at the top of the declarative
2317 -- list to properly enable/suppress errors.
2319 Insert_After_SPARK_Mode
2321 Ins_Nod
=> First
(Decls
),
2326 ("aspect & must apply to a package declaration",
2331 end Initial_Condition
;
2335 -- Aspect Initializes is never delayed because it is equivalent
2336 -- to a source pragma appearing after the related package. To
2337 -- deal with forward references, the generated pragma is stored
2338 -- in the contract of the related package and later analyzed at
2339 -- the end of the declarative region. For details, see routine
2340 -- Analyze_Initializes_In_Decl_Part.
2342 when Aspect_Initializes
=> Initializes
: declare
2343 Context
: Node_Id
:= N
;
2347 -- When aspect Initializes appears on a generic package,
2348 -- it is propageted to the package instance. The context
2349 -- in this case is the instance spec.
2351 if Nkind
(Context
) = N_Package_Instantiation
then
2352 Context
:= Instance_Spec
(Context
);
2355 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2356 N_Package_Declaration
)
2358 Decls
:= Visible_Declarations
(Specification
(Context
));
2361 (Pragma_Argument_Associations
=> New_List
(
2362 Make_Pragma_Argument_Association
(Loc
,
2363 Expression
=> Relocate_Node
(Expr
))),
2364 Pragma_Name
=> Name_Initializes
);
2365 Decorate
(Aspect
, Aitem
);
2369 Set_Visible_Declarations
(Context
, Decls
);
2372 -- When aspects Abstract_State, Initial_Condition and
2373 -- Initializes are out of order, ensure that pragma
2374 -- SPARK_Mode is always at the top of the declarative
2375 -- list to properly enable/suppress errors.
2377 Insert_After_SPARK_Mode
2379 Ins_Nod
=> First
(Decls
),
2384 ("aspect & must apply to a package declaration",
2393 when Aspect_Obsolescent
=> declare
2401 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2402 Expression
=> Relocate_Node
(Expr
)));
2406 (Pragma_Argument_Associations
=> Args
,
2407 Pragma_Name
=> Chars
(Id
));
2412 when Aspect_Part_Of
=>
2413 if Nkind_In
(N
, N_Object_Declaration
,
2414 N_Package_Instantiation
)
2417 (Pragma_Argument_Associations
=> New_List
(
2418 Make_Pragma_Argument_Association
(Loc
,
2419 Expression
=> Relocate_Node
(Expr
))),
2420 Pragma_Name
=> Name_Part_Of
);
2424 ("aspect & must apply to a variable or package "
2425 & "instantiation", Aspect
, Id
);
2430 when Aspect_SPARK_Mode
=> SPARK_Mode
: declare
2435 (Pragma_Argument_Associations
=> New_List
(
2436 Make_Pragma_Argument_Association
(Loc
,
2437 Expression
=> Relocate_Node
(Expr
))),
2438 Pragma_Name
=> Name_SPARK_Mode
);
2440 -- When the aspect appears on a package or a subprogram
2441 -- body, insert the generated pragma at the top of the body
2442 -- declarations to emulate the behavior of a source pragma.
2444 if Nkind_In
(N
, N_Package_Body
, N_Subprogram_Body
) then
2445 Decorate
(Aspect
, Aitem
);
2447 Decls
:= Declarations
(N
);
2451 Set_Declarations
(N
, Decls
);
2454 Prepend_To
(Decls
, Aitem
);
2457 -- When the aspect is associated with a [generic] package
2458 -- declaration, insert the generated pragma at the top of
2459 -- the visible declarations to emulate the behavior of a
2462 elsif Nkind_In
(N
, N_Generic_Package_Declaration
,
2463 N_Package_Declaration
)
2465 Decorate
(Aspect
, Aitem
);
2467 Decls
:= Visible_Declarations
(Specification
(N
));
2471 Set_Visible_Declarations
(Specification
(N
), Decls
);
2474 Prepend_To
(Decls
, Aitem
);
2481 -- Aspect Refined_Depends is never delayed because it is
2482 -- equivalent to a source pragma which appears in the
2483 -- declarations of the related subprogram body. To deal with
2484 -- forward references, the generated pragma is stored in the
2485 -- contract of the related subprogram body and later analyzed
2486 -- at the end of the declarative region. For details, see
2487 -- routine Analyze_Refined_Depends_In_Decl_Part.
2489 when Aspect_Refined_Depends
=>
2491 (Pragma_Argument_Associations
=> New_List
(
2492 Make_Pragma_Argument_Association
(Loc
,
2493 Expression
=> Relocate_Node
(Expr
))),
2494 Pragma_Name
=> Name_Refined_Depends
);
2496 Decorate
(Aspect
, Aitem
);
2497 Insert_Pragma
(Aitem
);
2502 -- Aspect Refined_Global is never delayed because it is
2503 -- equivalent to a source pragma which appears in the
2504 -- declarations of the related subprogram body. To deal with
2505 -- forward references, the generated pragma is stored in the
2506 -- contract of the related subprogram body and later analyzed
2507 -- at the end of the declarative region. For details, see
2508 -- routine Analyze_Refined_Global_In_Decl_Part.
2510 when Aspect_Refined_Global
=>
2512 (Pragma_Argument_Associations
=> New_List
(
2513 Make_Pragma_Argument_Association
(Loc
,
2514 Expression
=> Relocate_Node
(Expr
))),
2515 Pragma_Name
=> Name_Refined_Global
);
2517 Decorate
(Aspect
, Aitem
);
2518 Insert_Pragma
(Aitem
);
2523 when Aspect_Refined_Post
=>
2525 (Pragma_Argument_Associations
=> New_List
(
2526 Make_Pragma_Argument_Association
(Loc
,
2527 Expression
=> Relocate_Node
(Expr
))),
2528 Pragma_Name
=> Name_Refined_Post
);
2532 when Aspect_Refined_State
=> Refined_State
: declare
2536 -- The corresponding pragma for Refined_State is inserted in
2537 -- the declarations of the related package body. This action
2538 -- synchronizes both the source and from-aspect versions of
2541 if Nkind
(N
) = N_Package_Body
then
2542 Decls
:= Declarations
(N
);
2545 (Pragma_Argument_Associations
=> New_List
(
2546 Make_Pragma_Argument_Association
(Loc
,
2547 Expression
=> Relocate_Node
(Expr
))),
2548 Pragma_Name
=> Name_Refined_State
);
2549 Decorate
(Aspect
, Aitem
);
2553 Set_Declarations
(N
, Decls
);
2556 -- Pragma Refined_State must be inserted after pragma
2557 -- SPARK_Mode in the tree. This ensures that any error
2558 -- messages dependent on SPARK_Mode will be properly
2559 -- enabled/suppressed.
2561 Insert_After_SPARK_Mode
2563 Ins_Nod
=> First
(Decls
),
2568 ("aspect & must apply to a package body", Aspect
, Id
);
2574 -- Relative_Deadline
2576 when Aspect_Relative_Deadline
=>
2578 (Pragma_Argument_Associations
=> New_List
(
2579 Make_Pragma_Argument_Association
(Loc
,
2580 Expression
=> Relocate_Node
(Expr
))),
2581 Pragma_Name
=> Name_Relative_Deadline
);
2583 -- If the aspect applies to a task, the corresponding pragma
2584 -- must appear within its declarations, not after.
2586 if Nkind
(N
) = N_Task_Type_Declaration
then
2592 if No
(Task_Definition
(N
)) then
2593 Set_Task_Definition
(N
,
2594 Make_Task_Definition
(Loc
,
2595 Visible_Declarations
=> New_List
,
2596 End_Label
=> Empty
));
2599 Def
:= Task_Definition
(N
);
2600 V
:= Visible_Declarations
(Def
);
2601 if not Is_Empty_List
(V
) then
2602 Insert_Before
(First
(V
), Aitem
);
2605 Set_Visible_Declarations
(Def
, New_List
(Aitem
));
2612 -- Case 2e: Annotate aspect
2614 when Aspect_Annotate
=>
2621 -- The argument can be a single identifier
2623 if Nkind
(Expr
) = N_Identifier
then
2625 -- One level of parens is allowed
2627 if Paren_Count
(Expr
) > 1 then
2628 Error_Msg_F
("extra parentheses ignored", Expr
);
2631 Set_Paren_Count
(Expr
, 0);
2633 -- Add the single item to the list
2635 Args
:= New_List
(Expr
);
2637 -- Otherwise we must have an aggregate
2639 elsif Nkind
(Expr
) = N_Aggregate
then
2641 -- Must be positional
2643 if Present
(Component_Associations
(Expr
)) then
2645 ("purely positional aggregate required", Expr
);
2649 -- Must not be parenthesized
2651 if Paren_Count
(Expr
) /= 0 then
2652 Error_Msg_F
("extra parentheses ignored", Expr
);
2655 -- List of arguments is list of aggregate expressions
2657 Args
:= Expressions
(Expr
);
2659 -- Anything else is illegal
2662 Error_Msg_F
("wrong form for Annotate aspect", Expr
);
2666 -- Prepare pragma arguments
2669 Arg
:= First
(Args
);
2670 while Present
(Arg
) loop
2672 Make_Pragma_Argument_Association
(Sloc
(Arg
),
2673 Expression
=> Relocate_Node
(Arg
)));
2678 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2679 Chars
=> Name_Entity
,
2680 Expression
=> Ent
));
2683 (Pragma_Argument_Associations
=> Pargs
,
2684 Pragma_Name
=> Name_Annotate
);
2687 -- Case 3 : Aspects that don't correspond to pragma/attribute
2688 -- definition clause.
2690 -- Case 3a: The aspects listed below don't correspond to
2691 -- pragmas/attributes but do require delayed analysis.
2693 -- Default_Value can only apply to a scalar type
2695 when Aspect_Default_Value
=>
2696 if not Is_Scalar_Type
(E
) then
2698 ("aspect Default_Value must apply to a scalar_Type", N
);
2703 -- Default_Component_Value can only apply to an array type
2704 -- with scalar components.
2706 when Aspect_Default_Component_Value
=>
2707 if not (Is_Array_Type
(E
)
2708 and then Is_Scalar_Type
(Component_Type
(E
)))
2710 Error_Msg_N
("aspect Default_Component_Value can only "
2711 & "apply to an array of scalar components", N
);
2716 -- Case 3b: The aspects listed below don't correspond to
2717 -- pragmas/attributes and don't need delayed analysis.
2719 -- Implicit_Dereference
2721 -- For Implicit_Dereference, External_Name and Link_Name, only
2722 -- the legality checks are done during the analysis, thus no
2723 -- delay is required.
2725 when Aspect_Implicit_Dereference
=>
2726 Analyze_Aspect_Implicit_Dereference
;
2729 -- External_Name, Link_Name
2731 when Aspect_External_Name |
2733 Analyze_Aspect_External_Or_Link_Name
;
2738 when Aspect_Dimension
=>
2739 Analyze_Aspect_Dimension
(N
, Id
, Expr
);
2744 when Aspect_Dimension_System
=>
2745 Analyze_Aspect_Dimension_System
(N
, Id
, Expr
);
2748 -- Case 4: Aspects requiring special handling
2750 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2751 -- pragmas take care of the delay.
2755 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
2756 -- with a first argument that is the expression, and a second
2757 -- argument that is an informative message if the test fails.
2758 -- This is inserted right after the declaration, to get the
2759 -- required pragma placement. The processing for the pragmas
2760 -- takes care of the required delay.
2762 when Pre_Post_Aspects
=> Pre_Post
: declare
2766 if A_Id
= Aspect_Pre
or else A_Id
= Aspect_Precondition
then
2767 Pname
:= Name_Precondition
;
2769 Pname
:= Name_Postcondition
;
2772 -- If the expressions is of the form A and then B, then
2773 -- we generate separate Pre/Post aspects for the separate
2774 -- clauses. Since we allow multiple pragmas, there is no
2775 -- problem in allowing multiple Pre/Post aspects internally.
2776 -- These should be treated in reverse order (B first and
2777 -- A second) since they are later inserted just after N in
2778 -- the order they are treated. This way, the pragma for A
2779 -- ends up preceding the pragma for B, which may have an
2780 -- importance for the error raised (either constraint error
2781 -- or precondition error).
2783 -- We do not do this for Pre'Class, since we have to put
2784 -- these conditions together in a complex OR expression.
2786 -- We do not do this in ASIS mode, as ASIS relies on the
2787 -- original node representing the complete expression, when
2788 -- retrieving it through the source aspect table.
2791 and then (Pname
= Name_Postcondition
2792 or else not Class_Present
(Aspect
))
2794 while Nkind
(Expr
) = N_And_Then
loop
2795 Insert_After
(Aspect
,
2796 Make_Aspect_Specification
(Sloc
(Left_Opnd
(Expr
)),
2797 Identifier
=> Identifier
(Aspect
),
2798 Expression
=> Relocate_Node
(Left_Opnd
(Expr
)),
2799 Class_Present
=> Class_Present
(Aspect
),
2800 Split_PPC
=> True));
2801 Rewrite
(Expr
, Relocate_Node
(Right_Opnd
(Expr
)));
2802 Eloc
:= Sloc
(Expr
);
2806 -- Build the precondition/postcondition pragma
2808 -- Add note about why we do NOT need Copy_Tree here???
2811 (Pragma_Argument_Associations
=> New_List
(
2812 Make_Pragma_Argument_Association
(Eloc
,
2813 Chars
=> Name_Check
,
2814 Expression
=> Relocate_Node
(Expr
))),
2815 Pragma_Name
=> Pname
);
2817 -- Add message unless exception messages are suppressed
2819 if not Opt
.Exception_Locations_Suppressed
then
2820 Append_To
(Pragma_Argument_Associations
(Aitem
),
2821 Make_Pragma_Argument_Association
(Eloc
,
2822 Chars
=> Name_Message
,
2824 Make_String_Literal
(Eloc
,
2826 & Get_Name_String
(Pname
)
2828 & Build_Location_String
(Eloc
))));
2831 Set_Is_Delayed_Aspect
(Aspect
);
2833 -- For Pre/Post cases, insert immediately after the entity
2834 -- declaration, since that is the required pragma placement.
2835 -- Note that for these aspects, we do not have to worry
2836 -- about delay issues, since the pragmas themselves deal
2837 -- with delay of visibility for the expression analysis.
2839 Insert_Pragma
(Aitem
);
2845 when Aspect_Test_Case
=> Test_Case
: declare
2847 Comp_Expr
: Node_Id
;
2848 Comp_Assn
: Node_Id
;
2854 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
2855 Error_Msg_Name_1
:= Nam
;
2856 Error_Msg_N
("incorrect placement of aspect `%`", E
);
2860 if Nkind
(Expr
) /= N_Aggregate
then
2861 Error_Msg_Name_1
:= Nam
;
2863 ("wrong syntax for aspect `%` for &", Id
, E
);
2867 -- Make pragma expressions refer to the original aspect
2868 -- expressions through the Original_Node link. This is used
2869 -- in semantic analysis for ASIS mode, so that the original
2870 -- expression also gets analyzed.
2872 Comp_Expr
:= First
(Expressions
(Expr
));
2873 while Present
(Comp_Expr
) loop
2874 New_Expr
:= Relocate_Node
(Comp_Expr
);
2875 Set_Original_Node
(New_Expr
, Comp_Expr
);
2877 Make_Pragma_Argument_Association
(Sloc
(Comp_Expr
),
2878 Expression
=> New_Expr
));
2882 Comp_Assn
:= First
(Component_Associations
(Expr
));
2883 while Present
(Comp_Assn
) loop
2884 if List_Length
(Choices
(Comp_Assn
)) /= 1
2886 Nkind
(First
(Choices
(Comp_Assn
))) /= N_Identifier
2888 Error_Msg_Name_1
:= Nam
;
2890 ("wrong syntax for aspect `%` for &", Id
, E
);
2894 New_Expr
:= Relocate_Node
(Expression
(Comp_Assn
));
2895 Set_Original_Node
(New_Expr
, Expression
(Comp_Assn
));
2897 Make_Pragma_Argument_Association
(Sloc
(Comp_Assn
),
2898 Chars
=> Chars
(First
(Choices
(Comp_Assn
))),
2899 Expression
=> New_Expr
));
2903 -- Build the test-case pragma
2906 (Pragma_Argument_Associations
=> Args
,
2907 Pragma_Name
=> Nam
);
2912 when Aspect_Contract_Cases
=>
2914 (Pragma_Argument_Associations
=> New_List
(
2915 Make_Pragma_Argument_Association
(Loc
,
2916 Expression
=> Relocate_Node
(Expr
))),
2917 Pragma_Name
=> Nam
);
2919 Decorate
(Aspect
, Aitem
);
2920 Insert_Pragma
(Aitem
);
2923 -- Case 5: Special handling for aspects with an optional
2924 -- boolean argument.
2926 -- In the general case, the corresponding pragma cannot be
2927 -- generated yet because the evaluation of the boolean needs
2928 -- to be delayed till the freeze point.
2930 when Boolean_Aspects |
2931 Library_Unit_Aspects
=>
2933 Set_Is_Boolean_Aspect
(Aspect
);
2935 -- Lock_Free aspect only apply to protected objects
2937 if A_Id
= Aspect_Lock_Free
then
2938 if Ekind
(E
) /= E_Protected_Type
then
2939 Error_Msg_Name_1
:= Nam
;
2941 ("aspect % only applies to a protected object",
2945 -- Set the Uses_Lock_Free flag to True if there is no
2946 -- expression or if the expression is True. The
2947 -- evaluation of this aspect should be delayed to the
2948 -- freeze point (why???)
2950 if No
(Expr
) or else Is_True
(Static_Boolean
(Expr
))
2952 Set_Uses_Lock_Free
(E
);
2955 Record_Rep_Item
(E
, Aspect
);
2960 elsif A_Id
= Aspect_Import
or else A_Id
= Aspect_Export
then
2962 -- For the case of aspects Import and Export, we don't
2963 -- consider that we know the entity is never set in the
2964 -- source, since it is is likely modified outside the
2967 -- Note: one might think that the analysis of the
2968 -- resulting pragma would take care of that, but
2969 -- that's not the case since it won't be from source.
2971 if Ekind
(E
) = E_Variable
then
2972 Set_Never_Set_In_Source
(E
, False);
2975 -- In older versions of Ada the corresponding pragmas
2976 -- specified a Convention. In Ada 2012 the convention is
2977 -- specified as a separate aspect, and it is optional,
2978 -- given that it defaults to Convention_Ada. The code
2979 -- that verifed that there was a matching convention
2982 -- Resolve the expression of an Import or Export here,
2983 -- and require it to be of type Boolean and static. This
2984 -- is not quite right, because in general this should be
2985 -- delayed, but that seems tricky for these, because
2986 -- normally Boolean aspects are replaced with pragmas at
2987 -- the freeze point (in Make_Pragma_From_Boolean_Aspect),
2988 -- but in the case of these aspects we can't generate
2989 -- a simple pragma with just the entity name. ???
2991 if not Present
(Expr
)
2992 or else Is_True
(Static_Boolean
(Expr
))
2994 if A_Id
= Aspect_Import
then
2995 Set_Is_Imported
(E
);
2997 -- An imported entity cannot have an explicit
3000 if Nkind
(N
) = N_Object_Declaration
3001 and then Present
(Expression
(N
))
3004 ("imported entities cannot be initialized "
3005 & "(RM B.1(24))", Expression
(N
));
3008 elsif A_Id
= Aspect_Export
then
3009 Set_Is_Exported
(E
);
3016 -- Library unit aspects require special handling in the case
3017 -- of a package declaration, the pragma needs to be inserted
3018 -- in the list of declarations for the associated package.
3019 -- There is no issue of visibility delay for these aspects.
3021 if A_Id
in Library_Unit_Aspects
3023 Nkind_In
(N
, N_Package_Declaration
,
3024 N_Generic_Package_Declaration
)
3025 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3027 -- Aspect is legal on a local instantiation of a library-
3028 -- level generic unit.
3030 and then not Is_Generic_Instance
(Defining_Entity
(N
))
3033 ("incorrect context for library unit aspect&", Id
);
3037 -- External property aspects are Boolean by nature, but
3038 -- their pragmas must contain two arguments, the second
3039 -- being the optional Boolean expression.
3041 if A_Id
= Aspect_Async_Readers
or else
3042 A_Id
= Aspect_Async_Writers
or else
3043 A_Id
= Aspect_Effective_Reads
or else
3044 A_Id
= Aspect_Effective_Writes
3050 -- The first argument of the external property pragma
3051 -- is the related object.
3055 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3056 Expression
=> Ent
));
3058 -- The second argument is the optional Boolean
3059 -- expression which must be propagated even if it
3060 -- evaluates to False as this has special semantic
3063 if Present
(Expr
) then
3065 Make_Pragma_Argument_Association
(Loc
,
3066 Expression
=> Relocate_Node
(Expr
)));
3070 (Pragma_Argument_Associations
=> Args
,
3071 Pragma_Name
=> Nam
);
3074 -- Cases where we do not delay, includes all cases where the
3075 -- expression is missing other than the above cases.
3077 elsif not Delay_Required
or else No
(Expr
) then
3079 (Pragma_Argument_Associations
=> New_List
(
3080 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3081 Expression
=> Ent
)),
3082 Pragma_Name
=> Chars
(Id
));
3083 Delay_Required
:= False;
3085 -- In general cases, the corresponding pragma/attribute
3086 -- definition clause will be inserted later at the freezing
3087 -- point, and we do not need to build it now.
3095 -- This is special because for access types we need to generate
3096 -- an attribute definition clause. This also works for single
3097 -- task declarations, but it does not work for task type
3098 -- declarations, because we have the case where the expression
3099 -- references a discriminant of the task type. That can't use
3100 -- an attribute definition clause because we would not have
3101 -- visibility on the discriminant. For that case we must
3102 -- generate a pragma in the task definition.
3104 when Aspect_Storage_Size
=>
3108 if Ekind
(E
) = E_Task_Type
then
3110 Decl
: constant Node_Id
:= Declaration_Node
(E
);
3113 pragma Assert
(Nkind
(Decl
) = N_Task_Type_Declaration
);
3115 -- If no task definition, create one
3117 if No
(Task_Definition
(Decl
)) then
3118 Set_Task_Definition
(Decl
,
3119 Make_Task_Definition
(Loc
,
3120 Visible_Declarations
=> Empty_List
,
3121 End_Label
=> Empty
));
3124 -- Create a pragma and put it at the start of the task
3125 -- definition for the task type declaration.
3128 (Pragma_Argument_Associations
=> New_List
(
3129 Make_Pragma_Argument_Association
(Loc
,
3130 Expression
=> Relocate_Node
(Expr
))),
3131 Pragma_Name
=> Name_Storage_Size
);
3135 Visible_Declarations
(Task_Definition
(Decl
)));
3139 -- All other cases, generate attribute definition
3143 Make_Attribute_Definition_Clause
(Loc
,
3145 Chars
=> Chars
(Id
),
3146 Expression
=> Relocate_Node
(Expr
));
3150 -- Attach the corresponding pragma/attribute definition clause to
3151 -- the aspect specification node.
3153 if Present
(Aitem
) then
3154 Set_From_Aspect_Specification
(Aitem
);
3157 -- In the context of a compilation unit, we directly put the
3158 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3159 -- node (no delay is required here) except for aspects on a
3160 -- subprogram body (see below) and a generic package, for which we
3161 -- need to introduce the pragma before building the generic copy
3162 -- (see sem_ch12), and for package instantiations, where the
3163 -- library unit pragmas are better handled early.
3165 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3166 and then (Present
(Aitem
) or else Is_Boolean_Aspect
(Aspect
))
3169 Aux
: constant Node_Id
:= Aux_Decls_Node
(Parent
(N
));
3172 pragma Assert
(Nkind
(Aux
) = N_Compilation_Unit_Aux
);
3174 -- For a Boolean aspect, create the corresponding pragma if
3175 -- no expression or if the value is True.
3177 if Is_Boolean_Aspect
(Aspect
) and then No
(Aitem
) then
3178 if Is_True
(Static_Boolean
(Expr
)) then
3180 (Pragma_Argument_Associations
=> New_List
(
3181 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3182 Expression
=> Ent
)),
3183 Pragma_Name
=> Chars
(Id
));
3185 Set_From_Aspect_Specification
(Aitem
, True);
3186 Set_Corresponding_Aspect
(Aitem
, Aspect
);
3193 -- If the aspect is on a subprogram body (relevant aspect
3194 -- is Inline), add the pragma in front of the declarations.
3196 if Nkind
(N
) = N_Subprogram_Body
then
3197 if No
(Declarations
(N
)) then
3198 Set_Declarations
(N
, New_List
);
3201 Prepend
(Aitem
, Declarations
(N
));
3203 elsif Nkind
(N
) = N_Generic_Package_Declaration
then
3204 if No
(Visible_Declarations
(Specification
(N
))) then
3205 Set_Visible_Declarations
(Specification
(N
), New_List
);
3209 Visible_Declarations
(Specification
(N
)));
3211 elsif Nkind
(N
) = N_Package_Instantiation
then
3213 Spec
: constant Node_Id
:=
3214 Specification
(Instance_Spec
(N
));
3216 if No
(Visible_Declarations
(Spec
)) then
3217 Set_Visible_Declarations
(Spec
, New_List
);
3220 Prepend
(Aitem
, Visible_Declarations
(Spec
));
3224 if No
(Pragmas_After
(Aux
)) then
3225 Set_Pragmas_After
(Aux
, New_List
);
3228 Append
(Aitem
, Pragmas_After
(Aux
));
3235 -- The evaluation of the aspect is delayed to the freezing point.
3236 -- The pragma or attribute clause if there is one is then attached
3237 -- to the aspect specification which is put in the rep item list.
3239 if Delay_Required
then
3240 if Present
(Aitem
) then
3241 Set_Is_Delayed_Aspect
(Aitem
);
3242 Set_Aspect_Rep_Item
(Aspect
, Aitem
);
3243 Set_Parent
(Aitem
, Aspect
);
3246 Set_Is_Delayed_Aspect
(Aspect
);
3248 -- In the case of Default_Value, link the aspect to base type
3249 -- as well, even though it appears on a first subtype. This is
3250 -- mandated by the semantics of the aspect. Do not establish
3251 -- the link when processing the base type itself as this leads
3252 -- to a rep item circularity. Verify that we are dealing with
3253 -- a scalar type to prevent cascaded errors.
3255 if A_Id
= Aspect_Default_Value
3256 and then Is_Scalar_Type
(E
)
3257 and then Base_Type
(E
) /= E
3259 Set_Has_Delayed_Aspects
(Base_Type
(E
));
3260 Record_Rep_Item
(Base_Type
(E
), Aspect
);
3263 Set_Has_Delayed_Aspects
(E
);
3264 Record_Rep_Item
(E
, Aspect
);
3266 -- When delay is not required and the context is a package or a
3267 -- subprogram body, insert the pragma in the body declarations.
3269 elsif Nkind_In
(N
, N_Package_Body
, N_Subprogram_Body
) then
3270 if No
(Declarations
(N
)) then
3271 Set_Declarations
(N
, New_List
);
3274 -- The pragma is added before source declarations
3276 Prepend_To
(Declarations
(N
), Aitem
);
3278 -- When delay is not required and the context is not a compilation
3279 -- unit, we simply insert the pragma/attribute definition clause
3283 Insert_After
(Ins_Node
, Aitem
);
3286 end Analyze_One_Aspect
;
3290 end loop Aspect_Loop
;
3292 if Has_Delayed_Aspects
(E
) then
3293 Ensure_Freeze_Node
(E
);
3295 end Analyze_Aspect_Specifications
;
3297 -----------------------
3298 -- Analyze_At_Clause --
3299 -----------------------
3301 -- An at clause is replaced by the corresponding Address attribute
3302 -- definition clause that is the preferred approach in Ada 95.
3304 procedure Analyze_At_Clause
(N
: Node_Id
) is
3305 CS
: constant Boolean := Comes_From_Source
(N
);
3308 -- This is an obsolescent feature
3310 Check_Restriction
(No_Obsolescent_Features
, N
);
3312 if Warn_On_Obsolescent_Feature
then
3314 ("?j?at clause is an obsolescent feature (RM J.7(2))", N
);
3316 ("\?j?use address attribute definition clause instead", N
);
3319 -- Rewrite as address clause
3322 Make_Attribute_Definition_Clause
(Sloc
(N
),
3323 Name
=> Identifier
(N
),
3324 Chars
=> Name_Address
,
3325 Expression
=> Expression
(N
)));
3327 -- We preserve Comes_From_Source, since logically the clause still comes
3328 -- from the source program even though it is changed in form.
3330 Set_Comes_From_Source
(N
, CS
);
3332 -- Analyze rewritten clause
3334 Analyze_Attribute_Definition_Clause
(N
);
3335 end Analyze_At_Clause
;
3337 -----------------------------------------
3338 -- Analyze_Attribute_Definition_Clause --
3339 -----------------------------------------
3341 procedure Analyze_Attribute_Definition_Clause
(N
: Node_Id
) is
3342 Loc
: constant Source_Ptr
:= Sloc
(N
);
3343 Nam
: constant Node_Id
:= Name
(N
);
3344 Attr
: constant Name_Id
:= Chars
(N
);
3345 Expr
: constant Node_Id
:= Expression
(N
);
3346 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attr
);
3349 -- The entity of Nam after it is analyzed. In the case of an incomplete
3350 -- type, this is the underlying type.
3353 -- The underlying entity to which the attribute applies. Generally this
3354 -- is the Underlying_Type of Ent, except in the case where the clause
3355 -- applies to full view of incomplete type or private type in which case
3356 -- U_Ent is just a copy of Ent.
3358 FOnly
: Boolean := False;
3359 -- Reset to True for subtype specific attribute (Alignment, Size)
3360 -- and for stream attributes, i.e. those cases where in the call to
3361 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3362 -- are checked. Note that the case of stream attributes is not clear
3363 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3364 -- Storage_Size for derived task types, but that is also clearly
3367 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
);
3368 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3369 -- definition clauses.
3371 function Duplicate_Clause
return Boolean;
3372 -- This routine checks if the aspect for U_Ent being given by attribute
3373 -- definition clause N is for an aspect that has already been specified,
3374 -- and if so gives an error message. If there is a duplicate, True is
3375 -- returned, otherwise if there is no error, False is returned.
3377 procedure Check_Indexing_Functions
;
3378 -- Check that the function in Constant_Indexing or Variable_Indexing
3379 -- attribute has the proper type structure. If the name is overloaded,
3380 -- check that some interpretation is legal.
3382 procedure Check_Iterator_Functions
;
3383 -- Check that there is a single function in Default_Iterator attribute
3384 -- has the proper type structure.
3386 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean;
3387 -- Common legality check for the previous two
3389 -----------------------------------
3390 -- Analyze_Stream_TSS_Definition --
3391 -----------------------------------
3393 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
) is
3394 Subp
: Entity_Id
:= Empty
;
3399 Is_Read
: constant Boolean := (TSS_Nam
= TSS_Stream_Read
);
3400 -- True for Read attribute, false for other attributes
3402 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean;
3403 -- Return true if the entity is a subprogram with an appropriate
3404 -- profile for the attribute being defined.
3406 ----------------------
3407 -- Has_Good_Profile --
3408 ----------------------
3410 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean is
3412 Is_Function
: constant Boolean := (TSS_Nam
= TSS_Stream_Input
);
3413 Expected_Ekind
: constant array (Boolean) of Entity_Kind
:=
3414 (False => E_Procedure
, True => E_Function
);
3418 if Ekind
(Subp
) /= Expected_Ekind
(Is_Function
) then
3422 F
:= First_Formal
(Subp
);
3425 or else Ekind
(Etype
(F
)) /= E_Anonymous_Access_Type
3426 or else Designated_Type
(Etype
(F
)) /=
3427 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
3432 if not Is_Function
then
3436 Expected_Mode
: constant array (Boolean) of Entity_Kind
:=
3437 (False => E_In_Parameter
,
3438 True => E_Out_Parameter
);
3440 if Parameter_Mode
(F
) /= Expected_Mode
(Is_Read
) then
3447 -- If the attribute specification comes from an aspect
3448 -- specification for a class-wide stream, the parameter must be
3449 -- a class-wide type of the entity to which the aspect applies.
3451 if From_Aspect_Specification
(N
)
3452 and then Class_Present
(Parent
(N
))
3453 and then Is_Class_Wide_Type
(Typ
)
3459 Typ
:= Etype
(Subp
);
3462 -- Verify that the prefix of the attribute and the local name for
3463 -- the type of the formal match.
3465 if Base_Type
(Typ
) /= Base_Type
(Ent
)
3466 or else Present
((Next_Formal
(F
)))
3470 elsif not Is_Scalar_Type
(Typ
)
3471 and then not Is_First_Subtype
(Typ
)
3472 and then not Is_Class_Wide_Type
(Typ
)
3479 end Has_Good_Profile
;
3481 -- Start of processing for Analyze_Stream_TSS_Definition
3486 if not Is_Type
(U_Ent
) then
3487 Error_Msg_N
("local name must be a subtype", Nam
);
3490 elsif not Is_First_Subtype
(U_Ent
) then
3491 Error_Msg_N
("local name must be a first subtype", Nam
);
3495 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Nam
);
3497 -- If Pnam is present, it can be either inherited from an ancestor
3498 -- type (in which case it is legal to redefine it for this type), or
3499 -- be a previous definition of the attribute for the same type (in
3500 -- which case it is illegal).
3502 -- In the first case, it will have been analyzed already, and we
3503 -- can check that its profile does not match the expected profile
3504 -- for a stream attribute of U_Ent. In the second case, either Pnam
3505 -- has been analyzed (and has the expected profile), or it has not
3506 -- been analyzed yet (case of a type that has not been frozen yet
3507 -- and for which the stream attribute has been set using Set_TSS).
3510 and then (No
(First_Entity
(Pnam
)) or else Has_Good_Profile
(Pnam
))
3512 Error_Msg_Sloc
:= Sloc
(Pnam
);
3513 Error_Msg_Name_1
:= Attr
;
3514 Error_Msg_N
("% attribute already defined #", Nam
);
3520 if Is_Entity_Name
(Expr
) then
3521 if not Is_Overloaded
(Expr
) then
3522 if Has_Good_Profile
(Entity
(Expr
)) then
3523 Subp
:= Entity
(Expr
);
3527 Get_First_Interp
(Expr
, I
, It
);
3528 while Present
(It
.Nam
) loop
3529 if Has_Good_Profile
(It
.Nam
) then
3534 Get_Next_Interp
(I
, It
);
3539 if Present
(Subp
) then
3540 if Is_Abstract_Subprogram
(Subp
) then
3541 Error_Msg_N
("stream subprogram must not be abstract", Expr
);
3544 -- Test for stream subprogram for interface type being non-null
3546 elsif Is_Interface
(U_Ent
)
3547 and then not Inside_A_Generic
3548 and then Ekind
(Subp
) = E_Procedure
3552 (Unit_Declaration_Node
(Ultimate_Alias
(Subp
))))
3555 ("stream subprogram for interface type "
3556 & "must be null procedure", Expr
);
3559 Set_Entity
(Expr
, Subp
);
3560 Set_Etype
(Expr
, Etype
(Subp
));
3562 New_Stream_Subprogram
(N
, U_Ent
, Subp
, TSS_Nam
);
3565 Error_Msg_Name_1
:= Attr
;
3566 Error_Msg_N
("incorrect expression for% attribute", Expr
);
3568 end Analyze_Stream_TSS_Definition
;
3570 ------------------------------
3571 -- Check_Indexing_Functions --
3572 ------------------------------
3574 procedure Check_Indexing_Functions
is
3575 Indexing_Found
: Boolean := False;
3577 procedure Check_One_Function
(Subp
: Entity_Id
);
3578 -- Check one possible interpretation. Sets Indexing_Found True if a
3579 -- legal indexing function is found.
3581 procedure Illegal_Indexing
(Msg
: String);
3582 -- Diagnose illegal indexing function if not overloaded. In the
3583 -- overloaded case indicate that no legal interpretation exists.
3585 ------------------------
3586 -- Check_One_Function --
3587 ------------------------
3589 procedure Check_One_Function
(Subp
: Entity_Id
) is
3590 Default_Element
: Node_Id
;
3591 Ret_Type
: constant Entity_Id
:= Etype
(Subp
);
3594 if not Is_Overloadable
(Subp
) then
3595 Illegal_Indexing
("illegal indexing function for type&");
3598 elsif Scope
(Subp
) /= Scope
(Ent
) then
3599 if Nkind
(Expr
) = N_Expanded_Name
then
3601 -- Indexing function can't be declared elsewhere
3604 ("indexing function must be declared in scope of type&");
3609 elsif No
(First_Formal
(Subp
)) then
3611 ("Indexing requires a function that applies to type&");
3614 elsif No
(Next_Formal
(First_Formal
(Subp
))) then
3616 ("indexing function must have at least two parameters");
3619 elsif Is_Derived_Type
(Ent
) then
3620 if (Attr
= Name_Constant_Indexing
3622 (Find_Aspect
(Etype
(Ent
), Aspect_Constant_Indexing
)))
3624 (Attr
= Name_Variable_Indexing
3626 (Find_Aspect
(Etype
(Ent
), Aspect_Variable_Indexing
)))
3628 if Debug_Flag_Dot_XX
then
3633 ("indexing function already inherited "
3634 & "from parent type");
3640 if not Check_Primitive_Function
(Subp
)
3643 ("Indexing aspect requires a function that applies to type&");
3647 -- If partial declaration exists, verify that it is not tagged.
3649 if Ekind
(Current_Scope
) = E_Package
3650 and then Has_Private_Declaration
(Ent
)
3651 and then From_Aspect_Specification
(N
)
3653 List_Containing
(Parent
(Ent
)) =
3654 Private_Declarations
3655 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
3656 and then Nkind
(N
) = N_Attribute_Definition_Clause
3663 First
(Visible_Declarations
3665 (Unit_Declaration_Node
(Current_Scope
))));
3667 while Present
(Decl
) loop
3668 if Nkind
(Decl
) = N_Private_Type_Declaration
3669 and then Ent
= Full_View
(Defining_Identifier
(Decl
))
3670 and then Tagged_Present
(Decl
)
3671 and then No
(Aspect_Specifications
(Decl
))
3674 ("Indexing aspect cannot be specified on full view "
3675 & "if partial view is tagged");
3684 -- An indexing function must return either the default element of
3685 -- the container, or a reference type. For variable indexing it
3686 -- must be the latter.
3689 Find_Value_Of_Aspect
3690 (Etype
(First_Formal
(Subp
)), Aspect_Iterator_Element
);
3692 if Present
(Default_Element
) then
3693 Analyze
(Default_Element
);
3695 if Is_Entity_Name
(Default_Element
)
3696 and then not Covers
(Entity
(Default_Element
), Ret_Type
)
3700 ("wrong return type for indexing function");
3705 -- For variable_indexing the return type must be a reference type
3707 if Attr
= Name_Variable_Indexing
then
3708 if not Has_Implicit_Dereference
(Ret_Type
) then
3710 ("variable indexing must return a reference type");
3713 elsif Is_Access_Constant
(Etype
(First_Discriminant
(Ret_Type
)))
3716 ("variable indexing must return an access to variable");
3721 if Has_Implicit_Dereference
(Ret_Type
)
3723 Is_Access_Constant
(Etype
(First_Discriminant
(Ret_Type
)))
3726 ("constant indexing must return an access to constant");
3729 elsif Is_Access_Type
(Etype
(First_Formal
(Subp
)))
3730 and then not Is_Access_Constant
(Etype
(First_Formal
(Subp
)))
3733 ("constant indexing must apply to an access to constant");
3738 -- All checks succeeded.
3740 Indexing_Found
:= True;
3741 end Check_One_Function
;
3743 -----------------------
3744 -- Illegal_Indexing --
3745 -----------------------
3747 procedure Illegal_Indexing
(Msg
: String) is
3749 Error_Msg_NE
(Msg
, N
, Ent
);
3750 end Illegal_Indexing
;
3752 -- Start of processing for Check_Indexing_Functions
3761 if not Is_Overloaded
(Expr
) then
3762 Check_One_Function
(Entity
(Expr
));
3770 Indexing_Found
:= False;
3771 Get_First_Interp
(Expr
, I
, It
);
3772 while Present
(It
.Nam
) loop
3774 -- Note that analysis will have added the interpretation
3775 -- that corresponds to the dereference. We only check the
3776 -- subprogram itself.
3778 if Is_Overloadable
(It
.Nam
) then
3779 Check_One_Function
(It
.Nam
);
3782 Get_Next_Interp
(I
, It
);
3787 if not Indexing_Found
and then not Error_Posted
(N
) then
3789 ("aspect Indexing requires a local function that "
3790 & "applies to type&", Expr
, Ent
);
3792 end Check_Indexing_Functions
;
3794 ------------------------------
3795 -- Check_Iterator_Functions --
3796 ------------------------------
3798 procedure Check_Iterator_Functions
is
3799 Default
: Entity_Id
;
3801 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean;
3802 -- Check one possible interpretation for validity
3804 ----------------------------
3805 -- Valid_Default_Iterator --
3806 ----------------------------
3808 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean is
3812 if not Check_Primitive_Function
(Subp
) then
3815 Formal
:= First_Formal
(Subp
);
3818 -- False if any subsequent formal has no default expression
3820 Formal
:= Next_Formal
(Formal
);
3821 while Present
(Formal
) loop
3822 if No
(Expression
(Parent
(Formal
))) then
3826 Next_Formal
(Formal
);
3829 -- True if all subsequent formals have default expressions
3832 end Valid_Default_Iterator
;
3834 -- Start of processing for Check_Iterator_Functions
3839 if not Is_Entity_Name
(Expr
) then
3840 Error_Msg_N
("aspect Iterator must be a function name", Expr
);
3843 if not Is_Overloaded
(Expr
) then
3844 if not Check_Primitive_Function
(Entity
(Expr
)) then
3846 ("aspect Indexing requires a function that applies to type&",
3847 Entity
(Expr
), Ent
);
3850 if not Valid_Default_Iterator
(Entity
(Expr
)) then
3851 Error_Msg_N
("improper function for default iterator", Expr
);
3861 Get_First_Interp
(Expr
, I
, It
);
3862 while Present
(It
.Nam
) loop
3863 if not Check_Primitive_Function
(It
.Nam
)
3864 or else not Valid_Default_Iterator
(It
.Nam
)
3868 elsif Present
(Default
) then
3869 Error_Msg_N
("default iterator must be unique", Expr
);
3875 Get_Next_Interp
(I
, It
);
3879 if Present
(Default
) then
3880 Set_Entity
(Expr
, Default
);
3881 Set_Is_Overloaded
(Expr
, False);
3884 end Check_Iterator_Functions
;
3886 -------------------------------
3887 -- Check_Primitive_Function --
3888 -------------------------------
3890 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean is
3894 if Ekind
(Subp
) /= E_Function
then
3898 if No
(First_Formal
(Subp
)) then
3901 Ctrl
:= Etype
(First_Formal
(Subp
));
3905 or else Ctrl
= Class_Wide_Type
(Ent
)
3907 (Ekind
(Ctrl
) = E_Anonymous_Access_Type
3909 (Designated_Type
(Ctrl
) = Ent
3910 or else Designated_Type
(Ctrl
) = Class_Wide_Type
(Ent
)))
3919 end Check_Primitive_Function
;
3921 ----------------------
3922 -- Duplicate_Clause --
3923 ----------------------
3925 function Duplicate_Clause
return Boolean is
3929 -- Nothing to do if this attribute definition clause comes from
3930 -- an aspect specification, since we could not be duplicating an
3931 -- explicit clause, and we dealt with the case of duplicated aspects
3932 -- in Analyze_Aspect_Specifications.
3934 if From_Aspect_Specification
(N
) then
3938 -- Otherwise current clause may duplicate previous clause, or a
3939 -- previously given pragma or aspect specification for the same
3942 A
:= Get_Rep_Item
(U_Ent
, Chars
(N
), Check_Parents
=> False);
3945 Error_Msg_Name_1
:= Chars
(N
);
3946 Error_Msg_Sloc
:= Sloc
(A
);
3948 Error_Msg_NE
("aspect% for & previously given#", N
, U_Ent
);
3953 end Duplicate_Clause
;
3955 -- Start of processing for Analyze_Attribute_Definition_Clause
3958 -- The following code is a defense against recursion. Not clear that
3959 -- this can happen legitimately, but perhaps some error situations can
3960 -- cause it, and we did see this recursion during testing.
3962 if Analyzed
(N
) then
3965 Set_Analyzed
(N
, True);
3968 -- Ignore some selected attributes in CodePeer mode since they are not
3969 -- relevant in this context.
3971 if CodePeer_Mode
then
3974 -- Ignore Component_Size in CodePeer mode, to avoid changing the
3975 -- internal representation of types by implicitly packing them.
3977 when Attribute_Component_Size
=>
3978 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
3986 -- Process Ignore_Rep_Clauses option
3988 if Ignore_Rep_Clauses
then
3991 -- The following should be ignored. They do not affect legality
3992 -- and may be target dependent. The basic idea of -gnatI is to
3993 -- ignore any rep clauses that may be target dependent but do not
3994 -- affect legality (except possibly to be rejected because they
3995 -- are incompatible with the compilation target).
3997 when Attribute_Alignment |
3998 Attribute_Bit_Order |
3999 Attribute_Component_Size |
4000 Attribute_Machine_Radix |
4001 Attribute_Object_Size |
4004 Attribute_Stream_Size |
4005 Attribute_Value_Size
=>
4006 Kill_Rep_Clause
(N
);
4009 -- The following should not be ignored, because in the first place
4010 -- they are reasonably portable, and should not cause problems
4011 -- in compiling code from another target, and also they do affect
4012 -- legality, e.g. failing to provide a stream attribute for a type
4013 -- may make a program illegal.
4015 when Attribute_External_Tag |
4019 Attribute_Simple_Storage_Pool |
4020 Attribute_Storage_Pool |
4021 Attribute_Storage_Size |
4025 -- We do not do anything here with address clauses, they will be
4026 -- removed by Freeze later on, but for now, it works better to
4027 -- keep then in the tree.
4029 when Attribute_Address
=>
4032 -- Other cases are errors ("attribute& cannot be set with
4033 -- definition clause"), which will be caught below.
4041 Ent
:= Entity
(Nam
);
4043 if Rep_Item_Too_Early
(Ent
, N
) then
4047 -- Rep clause applies to full view of incomplete type or private type if
4048 -- we have one (if not, this is a premature use of the type). However,
4049 -- certain semantic checks need to be done on the specified entity (i.e.
4050 -- the private view), so we save it in Ent.
4052 if Is_Private_Type
(Ent
)
4053 and then Is_Derived_Type
(Ent
)
4054 and then not Is_Tagged_Type
(Ent
)
4055 and then No
(Full_View
(Ent
))
4057 -- If this is a private type whose completion is a derivation from
4058 -- another private type, there is no full view, and the attribute
4059 -- belongs to the type itself, not its underlying parent.
4063 elsif Ekind
(Ent
) = E_Incomplete_Type
then
4065 -- The attribute applies to the full view, set the entity of the
4066 -- attribute definition accordingly.
4068 Ent
:= Underlying_Type
(Ent
);
4070 Set_Entity
(Nam
, Ent
);
4073 U_Ent
:= Underlying_Type
(Ent
);
4076 -- Avoid cascaded error
4078 if Etype
(Nam
) = Any_Type
then
4081 -- Must be declared in current scope or in case of an aspect
4082 -- specification, must be visible in current scope.
4084 elsif Scope
(Ent
) /= Current_Scope
4086 not (From_Aspect_Specification
(N
)
4087 and then Scope_Within_Or_Same
(Current_Scope
, Scope
(Ent
)))
4089 Error_Msg_N
("entity must be declared in this scope", Nam
);
4092 -- Must not be a source renaming (we do have some cases where the
4093 -- expander generates a renaming, and those cases are OK, in such
4094 -- cases any attribute applies to the renamed object as well).
4096 elsif Is_Object
(Ent
)
4097 and then Present
(Renamed_Object
(Ent
))
4099 -- Case of renamed object from source, this is an error
4101 if Comes_From_Source
(Renamed_Object
(Ent
)) then
4102 Get_Name_String
(Chars
(N
));
4103 Error_Msg_Strlen
:= Name_Len
;
4104 Error_Msg_String
(1 .. Name_Len
) := Name_Buffer
(1 .. Name_Len
);
4106 ("~ clause not allowed for a renaming declaration "
4107 & "(RM 13.1(6))", Nam
);
4110 -- For the case of a compiler generated renaming, the attribute
4111 -- definition clause applies to the renamed object created by the
4112 -- expander. The easiest general way to handle this is to create a
4113 -- copy of the attribute definition clause for this object.
4115 elsif Is_Entity_Name
(Renamed_Object
(Ent
)) then
4117 Make_Attribute_Definition_Clause
(Loc
,
4119 New_Occurrence_Of
(Entity
(Renamed_Object
(Ent
)), Loc
),
4121 Expression
=> Duplicate_Subexpr
(Expression
(N
))));
4123 -- If the renamed object is not an entity, it must be a dereference
4124 -- of an unconstrained function call, and we must introduce a new
4125 -- declaration to capture the expression. This is needed in the case
4126 -- of 'Alignment, where the original declaration must be rewritten.
4130 (Nkind
(Renamed_Object
(Ent
)) = N_Explicit_Dereference
);
4134 -- If no underlying entity, use entity itself, applies to some
4135 -- previously detected error cases ???
4137 elsif No
(U_Ent
) then
4140 -- Cannot specify for a subtype (exception Object/Value_Size)
4142 elsif Is_Type
(U_Ent
)
4143 and then not Is_First_Subtype
(U_Ent
)
4144 and then Id
/= Attribute_Object_Size
4145 and then Id
/= Attribute_Value_Size
4146 and then not From_At_Mod
(N
)
4148 Error_Msg_N
("cannot specify attribute for subtype", Nam
);
4152 Set_Entity
(N
, U_Ent
);
4153 Check_Restriction_No_Use_Of_Attribute
(N
);
4155 -- Switch on particular attribute
4163 -- Address attribute definition clause
4165 when Attribute_Address
=> Address
: begin
4167 -- A little error check, catch for X'Address use X'Address;
4169 if Nkind
(Nam
) = N_Identifier
4170 and then Nkind
(Expr
) = N_Attribute_Reference
4171 and then Attribute_Name
(Expr
) = Name_Address
4172 and then Nkind
(Prefix
(Expr
)) = N_Identifier
4173 and then Chars
(Nam
) = Chars
(Prefix
(Expr
))
4176 ("address for & is self-referencing", Prefix
(Expr
), Ent
);
4180 -- Not that special case, carry on with analysis of expression
4182 Analyze_And_Resolve
(Expr
, RTE
(RE_Address
));
4184 -- Even when ignoring rep clauses we need to indicate that the
4185 -- entity has an address clause and thus it is legal to declare
4186 -- it imported. Freeze will get rid of the address clause later.
4188 if Ignore_Rep_Clauses
then
4189 if Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
4190 Record_Rep_Item
(U_Ent
, N
);
4196 if Duplicate_Clause
then
4199 -- Case of address clause for subprogram
4201 elsif Is_Subprogram
(U_Ent
) then
4202 if Has_Homonym
(U_Ent
) then
4204 ("address clause cannot be given " &
4205 "for overloaded subprogram",
4210 -- For subprograms, all address clauses are permitted, and we
4211 -- mark the subprogram as having a deferred freeze so that Gigi
4212 -- will not elaborate it too soon.
4214 -- Above needs more comments, what is too soon about???
4216 Set_Has_Delayed_Freeze
(U_Ent
);
4218 -- Case of address clause for entry
4220 elsif Ekind
(U_Ent
) = E_Entry
then
4221 if Nkind
(Parent
(N
)) = N_Task_Body
then
4223 ("entry address must be specified in task spec", Nam
);
4227 -- For entries, we require a constant address
4229 Check_Constant_Address_Clause
(Expr
, U_Ent
);
4231 -- Special checks for task types
4233 if Is_Task_Type
(Scope
(U_Ent
))
4234 and then Comes_From_Source
(Scope
(U_Ent
))
4237 ("??entry address declared for entry in task type", N
);
4239 ("\??only one task can be declared of this type", N
);
4242 -- Entry address clauses are obsolescent
4244 Check_Restriction
(No_Obsolescent_Features
, N
);
4246 if Warn_On_Obsolescent_Feature
then
4248 ("?j?attaching interrupt to task entry is an " &
4249 "obsolescent feature (RM J.7.1)", N
);
4251 ("\?j?use interrupt procedure instead", N
);
4254 -- Case of an address clause for a controlled object which we
4255 -- consider to be erroneous.
4257 elsif Is_Controlled
(Etype
(U_Ent
))
4258 or else Has_Controlled_Component
(Etype
(U_Ent
))
4261 ("??controlled object& must not be overlaid", Nam
, U_Ent
);
4263 ("\??Program_Error will be raised at run time", Nam
);
4264 Insert_Action
(Declaration_Node
(U_Ent
),
4265 Make_Raise_Program_Error
(Loc
,
4266 Reason
=> PE_Overlaid_Controlled_Object
));
4269 -- Case of address clause for a (non-controlled) object
4271 elsif Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
4273 Expr
: constant Node_Id
:= Expression
(N
);
4278 -- Exported variables cannot have an address clause, because
4279 -- this cancels the effect of the pragma Export.
4281 if Is_Exported
(U_Ent
) then
4283 ("cannot export object with address clause", Nam
);
4287 Find_Overlaid_Entity
(N
, O_Ent
, Off
);
4289 -- Overlaying controlled objects is erroneous
4292 and then (Has_Controlled_Component
(Etype
(O_Ent
))
4293 or else Is_Controlled
(Etype
(O_Ent
)))
4296 ("??cannot overlay with controlled object", Expr
);
4298 ("\??Program_Error will be raised at run time", Expr
);
4299 Insert_Action
(Declaration_Node
(U_Ent
),
4300 Make_Raise_Program_Error
(Loc
,
4301 Reason
=> PE_Overlaid_Controlled_Object
));
4304 elsif Present
(O_Ent
)
4305 and then Ekind
(U_Ent
) = E_Constant
4306 and then not Is_Constant_Object
(O_Ent
)
4308 Error_Msg_N
("??constant overlays a variable", Expr
);
4310 -- Imported variables can have an address clause, but then
4311 -- the import is pretty meaningless except to suppress
4312 -- initializations, so we do not need such variables to
4313 -- be statically allocated (and in fact it causes trouble
4314 -- if the address clause is a local value).
4316 elsif Is_Imported
(U_Ent
) then
4317 Set_Is_Statically_Allocated
(U_Ent
, False);
4320 -- We mark a possible modification of a variable with an
4321 -- address clause, since it is likely aliasing is occurring.
4323 Note_Possible_Modification
(Nam
, Sure
=> False);
4325 -- Here we are checking for explicit overlap of one variable
4326 -- by another, and if we find this then mark the overlapped
4327 -- variable as also being volatile to prevent unwanted
4328 -- optimizations. This is a significant pessimization so
4329 -- avoid it when there is an offset, i.e. when the object
4330 -- is composite; they cannot be optimized easily anyway.
4333 and then Is_Object
(O_Ent
)
4336 -- The following test is an expedient solution to what
4337 -- is really a problem in CodePeer. Suppressing the
4338 -- Set_Treat_As_Volatile call here prevents later
4339 -- generation (in some cases) of trees that CodePeer
4340 -- should, but currently does not, handle correctly.
4341 -- This test should probably be removed when CodePeer
4342 -- is improved, just because we want the tree CodePeer
4343 -- analyzes to match the tree for which we generate code
4344 -- as closely as is practical. ???
4346 and then not CodePeer_Mode
4348 -- ??? O_Ent might not be in current unit
4350 Set_Treat_As_Volatile
(O_Ent
);
4353 -- Legality checks on the address clause for initialized
4354 -- objects is deferred until the freeze point, because
4355 -- a subsequent pragma might indicate that the object
4356 -- is imported and thus not initialized. Also, the address
4357 -- clause might involve entities that have yet to be
4360 Set_Has_Delayed_Freeze
(U_Ent
);
4362 -- If an initialization call has been generated for this
4363 -- object, it needs to be deferred to after the freeze node
4364 -- we have just now added, otherwise GIGI will see a
4365 -- reference to the variable (as actual to the IP call)
4366 -- before its definition.
4369 Init_Call
: constant Node_Id
:=
4370 Remove_Init_Call
(U_Ent
, N
);
4373 if Present
(Init_Call
) then
4374 Append_Freeze_Action
(U_Ent
, Init_Call
);
4376 -- Reset Initialization_Statements pointer so that
4377 -- if there is a pragma Import further down, it can
4378 -- clear any default initialization.
4380 Set_Initialization_Statements
(U_Ent
, Init_Call
);
4384 if Is_Exported
(U_Ent
) then
4386 ("& cannot be exported if an address clause is given",
4389 ("\define and export a variable "
4390 & "that holds its address instead", Nam
);
4393 -- Entity has delayed freeze, so we will generate an
4394 -- alignment check at the freeze point unless suppressed.
4396 if not Range_Checks_Suppressed
(U_Ent
)
4397 and then not Alignment_Checks_Suppressed
(U_Ent
)
4399 Set_Check_Address_Alignment
(N
);
4402 -- Kill the size check code, since we are not allocating
4403 -- the variable, it is somewhere else.
4405 Kill_Size_Check_Code
(U_Ent
);
4407 -- If the address clause is of the form:
4409 -- for Y'Address use X'Address
4413 -- Const : constant Address := X'Address;
4415 -- for Y'Address use Const;
4417 -- then we make an entry in the table for checking the size
4418 -- and alignment of the overlaying variable. We defer this
4419 -- check till after code generation to take full advantage
4420 -- of the annotation done by the back end.
4422 -- If the entity has a generic type, the check will be
4423 -- performed in the instance if the actual type justifies
4424 -- it, and we do not insert the clause in the table to
4425 -- prevent spurious warnings.
4427 -- Note: we used to test Comes_From_Source and only give
4428 -- this warning for source entities, but we have removed
4429 -- this test. It really seems bogus to generate overlays
4430 -- that would trigger this warning in generated code.
4431 -- Furthermore, by removing the test, we handle the
4432 -- aspect case properly.
4434 if Address_Clause_Overlay_Warnings
4435 and then Present
(O_Ent
)
4436 and then Is_Object
(O_Ent
)
4438 if not Is_Generic_Type
(Etype
(U_Ent
)) then
4439 Address_Clause_Checks
.Append
((N
, U_Ent
, O_Ent
, Off
));
4442 -- If variable overlays a constant view, and we are
4443 -- warning on overlays, then mark the variable as
4444 -- overlaying a constant (we will give warnings later
4445 -- if this variable is assigned).
4447 if Is_Constant_Object
(O_Ent
)
4448 and then Ekind
(U_Ent
) = E_Variable
4450 Set_Overlays_Constant
(U_Ent
);
4455 -- Not a valid entity for an address clause
4458 Error_Msg_N
("address cannot be given for &", Nam
);
4466 -- Alignment attribute definition clause
4468 when Attribute_Alignment
=> Alignment
: declare
4469 Align
: constant Uint
:= Get_Alignment_Value
(Expr
);
4470 Max_Align
: constant Uint
:= UI_From_Int
(Maximum_Alignment
);
4475 if not Is_Type
(U_Ent
)
4476 and then Ekind
(U_Ent
) /= E_Variable
4477 and then Ekind
(U_Ent
) /= E_Constant
4479 Error_Msg_N
("alignment cannot be given for &", Nam
);
4481 elsif Duplicate_Clause
then
4484 elsif Align
/= No_Uint
then
4485 Set_Has_Alignment_Clause
(U_Ent
);
4487 -- Tagged type case, check for attempt to set alignment to a
4488 -- value greater than Max_Align, and reset if so.
4490 if Is_Tagged_Type
(U_Ent
) and then Align
> Max_Align
then
4492 ("alignment for & set to Maximum_Aligment??", Nam
);
4493 Set_Alignment
(U_Ent
, Max_Align
);
4498 Set_Alignment
(U_Ent
, Align
);
4501 -- For an array type, U_Ent is the first subtype. In that case,
4502 -- also set the alignment of the anonymous base type so that
4503 -- other subtypes (such as the itypes for aggregates of the
4504 -- type) also receive the expected alignment.
4506 if Is_Array_Type
(U_Ent
) then
4507 Set_Alignment
(Base_Type
(U_Ent
), Align
);
4516 -- Bit_Order attribute definition clause
4518 when Attribute_Bit_Order
=> Bit_Order
: declare
4520 if not Is_Record_Type
(U_Ent
) then
4522 ("Bit_Order can only be defined for record type", Nam
);
4524 elsif Duplicate_Clause
then
4528 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
4530 if Etype
(Expr
) = Any_Type
then
4533 elsif not Is_OK_Static_Expression
(Expr
) then
4534 Flag_Non_Static_Expr
4535 ("Bit_Order requires static expression!", Expr
);
4538 if (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
4539 Set_Reverse_Bit_Order
(Base_Type
(U_Ent
), True);
4545 --------------------
4546 -- Component_Size --
4547 --------------------
4549 -- Component_Size attribute definition clause
4551 when Attribute_Component_Size
=> Component_Size_Case
: declare
4552 Csize
: constant Uint
:= Static_Integer
(Expr
);
4556 New_Ctyp
: Entity_Id
;
4560 if not Is_Array_Type
(U_Ent
) then
4561 Error_Msg_N
("component size requires array type", Nam
);
4565 Btype
:= Base_Type
(U_Ent
);
4566 Ctyp
:= Component_Type
(Btype
);
4568 if Duplicate_Clause
then
4571 elsif Rep_Item_Too_Early
(Btype
, N
) then
4574 elsif Csize
/= No_Uint
then
4575 Check_Size
(Expr
, Ctyp
, Csize
, Biased
);
4577 -- For the biased case, build a declaration for a subtype that
4578 -- will be used to represent the biased subtype that reflects
4579 -- the biased representation of components. We need the subtype
4580 -- to get proper conversions on referencing elements of the
4581 -- array. Note: component size clauses are ignored in VM mode.
4583 if VM_Target
= No_VM
then
4586 Make_Defining_Identifier
(Loc
,
4588 New_External_Name
(Chars
(U_Ent
), 'C', 0, 'T'));
4591 Make_Subtype_Declaration
(Loc
,
4592 Defining_Identifier
=> New_Ctyp
,
4593 Subtype_Indication
=>
4594 New_Occurrence_Of
(Component_Type
(Btype
), Loc
));
4596 Set_Parent
(Decl
, N
);
4597 Analyze
(Decl
, Suppress
=> All_Checks
);
4599 Set_Has_Delayed_Freeze
(New_Ctyp
, False);
4600 Set_Esize
(New_Ctyp
, Csize
);
4601 Set_RM_Size
(New_Ctyp
, Csize
);
4602 Init_Alignment
(New_Ctyp
);
4603 Set_Is_Itype
(New_Ctyp
, True);
4604 Set_Associated_Node_For_Itype
(New_Ctyp
, U_Ent
);
4606 Set_Component_Type
(Btype
, New_Ctyp
);
4607 Set_Biased
(New_Ctyp
, N
, "component size clause");
4610 Set_Component_Size
(Btype
, Csize
);
4612 -- For VM case, we ignore component size clauses
4615 -- Give a warning unless we are in GNAT mode, in which case
4616 -- the warning is suppressed since it is not useful.
4618 if not GNAT_Mode
then
4620 ("component size ignored in this configuration??", N
);
4624 -- Deal with warning on overridden size
4626 if Warn_On_Overridden_Size
4627 and then Has_Size_Clause
(Ctyp
)
4628 and then RM_Size
(Ctyp
) /= Csize
4631 ("component size overrides size clause for&?S?", N
, Ctyp
);
4634 Set_Has_Component_Size_Clause
(Btype
, True);
4635 Set_Has_Non_Standard_Rep
(Btype
, True);
4637 end Component_Size_Case
;
4639 -----------------------
4640 -- Constant_Indexing --
4641 -----------------------
4643 when Attribute_Constant_Indexing
=>
4644 Check_Indexing_Functions
;
4650 when Attribute_CPU
=> CPU
:
4652 -- CPU attribute definition clause not allowed except from aspect
4655 if From_Aspect_Specification
(N
) then
4656 if not Is_Task_Type
(U_Ent
) then
4657 Error_Msg_N
("CPU can only be defined for task", Nam
);
4659 elsif Duplicate_Clause
then
4663 -- The expression must be analyzed in the special manner
4664 -- described in "Handling of Default and Per-Object
4665 -- Expressions" in sem.ads.
4667 -- The visibility to the discriminants must be restored
4669 Push_Scope_And_Install_Discriminants
(U_Ent
);
4670 Preanalyze_Spec_Expression
(Expr
, RTE
(RE_CPU_Range
));
4671 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
4673 if not Is_OK_Static_Expression
(Expr
) then
4674 Check_Restriction
(Static_Priorities
, Expr
);
4680 ("attribute& cannot be set with definition clause", N
);
4684 ----------------------
4685 -- Default_Iterator --
4686 ----------------------
4688 when Attribute_Default_Iterator
=> Default_Iterator
: declare
4692 if not Is_Tagged_Type
(U_Ent
) then
4694 ("aspect Default_Iterator applies to tagged type", Nam
);
4697 Check_Iterator_Functions
;
4701 if not Is_Entity_Name
(Expr
)
4702 or else Ekind
(Entity
(Expr
)) /= E_Function
4704 Error_Msg_N
("aspect Iterator must be a function", Expr
);
4706 Func
:= Entity
(Expr
);
4709 if No
(First_Formal
(Func
))
4710 or else Etype
(First_Formal
(Func
)) /= U_Ent
4713 ("Default Iterator must be a primitive of&", Func
, U_Ent
);
4715 end Default_Iterator
;
4717 ------------------------
4718 -- Dispatching_Domain --
4719 ------------------------
4721 when Attribute_Dispatching_Domain
=> Dispatching_Domain
:
4723 -- Dispatching_Domain attribute definition clause not allowed
4724 -- except from aspect specification.
4726 if From_Aspect_Specification
(N
) then
4727 if not Is_Task_Type
(U_Ent
) then
4728 Error_Msg_N
("Dispatching_Domain can only be defined" &
4732 elsif Duplicate_Clause
then
4736 -- The expression must be analyzed in the special manner
4737 -- described in "Handling of Default and Per-Object
4738 -- Expressions" in sem.ads.
4740 -- The visibility to the discriminants must be restored
4742 Push_Scope_And_Install_Discriminants
(U_Ent
);
4744 Preanalyze_Spec_Expression
4745 (Expr
, RTE
(RE_Dispatching_Domain
));
4747 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
4752 ("attribute& cannot be set with definition clause", N
);
4754 end Dispatching_Domain
;
4760 when Attribute_External_Tag
=> External_Tag
:
4762 if not Is_Tagged_Type
(U_Ent
) then
4763 Error_Msg_N
("should be a tagged type", Nam
);
4766 if Duplicate_Clause
then
4770 Analyze_And_Resolve
(Expr
, Standard_String
);
4772 if not Is_OK_Static_Expression
(Expr
) then
4773 Flag_Non_Static_Expr
4774 ("static string required for tag name!", Nam
);
4777 if VM_Target
/= No_VM
then
4778 Error_Msg_Name_1
:= Attr
;
4780 ("% attribute unsupported in this configuration", Nam
);
4783 if not Is_Library_Level_Entity
(U_Ent
) then
4785 ("??non-unique external tag supplied for &", N
, U_Ent
);
4787 ("\??same external tag applies to all "
4788 & "subprogram calls", N
);
4790 ("\??corresponding internal tag cannot be obtained", N
);
4795 --------------------------
4796 -- Implicit_Dereference --
4797 --------------------------
4799 when Attribute_Implicit_Dereference
=>
4801 -- Legality checks already performed at the point of the type
4802 -- declaration, aspect is not delayed.
4810 when Attribute_Input
=>
4811 Analyze_Stream_TSS_Definition
(TSS_Stream_Input
);
4812 Set_Has_Specified_Stream_Input
(Ent
);
4814 ------------------------
4815 -- Interrupt_Priority --
4816 ------------------------
4818 when Attribute_Interrupt_Priority
=> Interrupt_Priority
:
4820 -- Interrupt_Priority attribute definition clause not allowed
4821 -- except from aspect specification.
4823 if From_Aspect_Specification
(N
) then
4824 if not Is_Concurrent_Type
(U_Ent
) then
4826 ("Interrupt_Priority can only be defined for task "
4827 & "and protected object", Nam
);
4829 elsif Duplicate_Clause
then
4833 -- The expression must be analyzed in the special manner
4834 -- described in "Handling of Default and Per-Object
4835 -- Expressions" in sem.ads.
4837 -- The visibility to the discriminants must be restored
4839 Push_Scope_And_Install_Discriminants
(U_Ent
);
4841 Preanalyze_Spec_Expression
4842 (Expr
, RTE
(RE_Interrupt_Priority
));
4844 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
4849 ("attribute& cannot be set with definition clause", N
);
4851 end Interrupt_Priority
;
4857 when Attribute_Iterable
=>
4860 if Nkind
(Expr
) /= N_Aggregate
then
4861 Error_Msg_N
("aspect Iterable must be an aggregate", Expr
);
4868 Assoc
:= First
(Component_Associations
(Expr
));
4869 while Present
(Assoc
) loop
4870 if not Is_Entity_Name
(Expression
(Assoc
)) then
4871 Error_Msg_N
("value must be a function", Assoc
);
4878 ----------------------
4879 -- Iterator_Element --
4880 ----------------------
4882 when Attribute_Iterator_Element
=>
4885 if not Is_Entity_Name
(Expr
)
4886 or else not Is_Type
(Entity
(Expr
))
4888 Error_Msg_N
("aspect Iterator_Element must be a type", Expr
);
4895 -- Machine radix attribute definition clause
4897 when Attribute_Machine_Radix
=> Machine_Radix
: declare
4898 Radix
: constant Uint
:= Static_Integer
(Expr
);
4901 if not Is_Decimal_Fixed_Point_Type
(U_Ent
) then
4902 Error_Msg_N
("decimal fixed-point type expected for &", Nam
);
4904 elsif Duplicate_Clause
then
4907 elsif Radix
/= No_Uint
then
4908 Set_Has_Machine_Radix_Clause
(U_Ent
);
4909 Set_Has_Non_Standard_Rep
(Base_Type
(U_Ent
));
4913 elsif Radix
= 10 then
4914 Set_Machine_Radix_10
(U_Ent
);
4916 Error_Msg_N
("machine radix value must be 2 or 10", Expr
);
4925 -- Object_Size attribute definition clause
4927 when Attribute_Object_Size
=> Object_Size
: declare
4928 Size
: constant Uint
:= Static_Integer
(Expr
);
4931 pragma Warnings
(Off
, Biased
);
4934 if not Is_Type
(U_Ent
) then
4935 Error_Msg_N
("Object_Size cannot be given for &", Nam
);
4937 elsif Duplicate_Clause
then
4941 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
4943 if Is_Scalar_Type
(U_Ent
) then
4944 if Size
/= 8 and then Size
/= 16 and then Size
/= 32
4945 and then UI_Mod
(Size
, 64) /= 0
4948 ("Object_Size must be 8, 16, 32, or multiple of 64",
4952 elsif Size
mod 8 /= 0 then
4953 Error_Msg_N
("Object_Size must be a multiple of 8", Expr
);
4956 Set_Esize
(U_Ent
, Size
);
4957 Set_Has_Object_Size_Clause
(U_Ent
);
4958 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
4966 when Attribute_Output
=>
4967 Analyze_Stream_TSS_Definition
(TSS_Stream_Output
);
4968 Set_Has_Specified_Stream_Output
(Ent
);
4974 when Attribute_Priority
=> Priority
:
4976 -- Priority attribute definition clause not allowed except from
4977 -- aspect specification.
4979 if From_Aspect_Specification
(N
) then
4980 if not (Is_Concurrent_Type
(U_Ent
)
4981 or else Ekind
(U_Ent
) = E_Procedure
)
4984 ("Priority can only be defined for task and protected "
4987 elsif Duplicate_Clause
then
4991 -- The expression must be analyzed in the special manner
4992 -- described in "Handling of Default and Per-Object
4993 -- Expressions" in sem.ads.
4995 -- The visibility to the discriminants must be restored
4997 Push_Scope_And_Install_Discriminants
(U_Ent
);
4998 Preanalyze_Spec_Expression
(Expr
, Standard_Integer
);
4999 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5001 if not Is_OK_Static_Expression
(Expr
) then
5002 Check_Restriction
(Static_Priorities
, Expr
);
5008 ("attribute& cannot be set with definition clause", N
);
5016 when Attribute_Read
=>
5017 Analyze_Stream_TSS_Definition
(TSS_Stream_Read
);
5018 Set_Has_Specified_Stream_Read
(Ent
);
5020 --------------------------
5021 -- Scalar_Storage_Order --
5022 --------------------------
5024 -- Scalar_Storage_Order attribute definition clause
5026 when Attribute_Scalar_Storage_Order
=> Scalar_Storage_Order
: declare
5028 if not (Is_Record_Type
(U_Ent
) or else Is_Array_Type
(U_Ent
)) then
5030 ("Scalar_Storage_Order can only be defined for "
5031 & "record or array type", Nam
);
5033 elsif Duplicate_Clause
then
5037 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5039 if Etype
(Expr
) = Any_Type
then
5042 elsif not Is_OK_Static_Expression
(Expr
) then
5043 Flag_Non_Static_Expr
5044 ("Scalar_Storage_Order requires static expression!", Expr
);
5046 elsif (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5048 -- Here for the case of a non-default (i.e. non-confirming)
5049 -- Scalar_Storage_Order attribute definition.
5051 if Support_Nondefault_SSO_On_Target
then
5052 Set_Reverse_Storage_Order
(Base_Type
(U_Ent
), True);
5055 ("non-default Scalar_Storage_Order "
5056 & "not supported on target", Expr
);
5060 -- Clear SSO default indications since explicit setting of the
5061 -- order overrides the defaults.
5063 Set_SSO_Set_Low_By_Default
(Base_Type
(U_Ent
), False);
5064 Set_SSO_Set_High_By_Default
(Base_Type
(U_Ent
), False);
5066 end Scalar_Storage_Order
;
5072 -- Size attribute definition clause
5074 when Attribute_Size
=> Size
: declare
5075 Size
: constant Uint
:= Static_Integer
(Expr
);
5082 if Duplicate_Clause
then
5085 elsif not Is_Type
(U_Ent
)
5086 and then Ekind
(U_Ent
) /= E_Variable
5087 and then Ekind
(U_Ent
) /= E_Constant
5089 Error_Msg_N
("size cannot be given for &", Nam
);
5091 elsif Is_Array_Type
(U_Ent
)
5092 and then not Is_Constrained
(U_Ent
)
5095 ("size cannot be given for unconstrained array", Nam
);
5097 elsif Size
/= No_Uint
then
5098 if VM_Target
/= No_VM
and then not GNAT_Mode
then
5100 -- Size clause is not handled properly on VM targets.
5101 -- Display a warning unless we are in GNAT mode, in which
5102 -- case this is useless.
5105 ("size clauses are ignored in this configuration??", N
);
5108 if Is_Type
(U_Ent
) then
5111 Etyp
:= Etype
(U_Ent
);
5114 -- Check size, note that Gigi is in charge of checking that the
5115 -- size of an array or record type is OK. Also we do not check
5116 -- the size in the ordinary fixed-point case, since it is too
5117 -- early to do so (there may be subsequent small clause that
5118 -- affects the size). We can check the size if a small clause
5119 -- has already been given.
5121 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
)
5122 or else Has_Small_Clause
(U_Ent
)
5124 Check_Size
(Expr
, Etyp
, Size
, Biased
);
5125 Set_Biased
(U_Ent
, N
, "size clause", Biased
);
5128 -- For types set RM_Size and Esize if possible
5130 if Is_Type
(U_Ent
) then
5131 Set_RM_Size
(U_Ent
, Size
);
5133 -- For elementary types, increase Object_Size to power of 2,
5134 -- but not less than a storage unit in any case (normally
5135 -- this means it will be byte addressable).
5137 -- For all other types, nothing else to do, we leave Esize
5138 -- (object size) unset, the back end will set it from the
5139 -- size and alignment in an appropriate manner.
5141 -- In both cases, we check whether the alignment must be
5142 -- reset in the wake of the size change.
5144 if Is_Elementary_Type
(U_Ent
) then
5145 if Size
<= System_Storage_Unit
then
5146 Init_Esize
(U_Ent
, System_Storage_Unit
);
5147 elsif Size
<= 16 then
5148 Init_Esize
(U_Ent
, 16);
5149 elsif Size
<= 32 then
5150 Init_Esize
(U_Ent
, 32);
5152 Set_Esize
(U_Ent
, (Size
+ 63) / 64 * 64);
5155 Alignment_Check_For_Size_Change
(U_Ent
, Esize
(U_Ent
));
5157 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5160 -- For objects, set Esize only
5163 if Is_Elementary_Type
(Etyp
) then
5164 if Size
/= System_Storage_Unit
5166 Size
/= System_Storage_Unit
* 2
5168 Size
/= System_Storage_Unit
* 4
5170 Size
/= System_Storage_Unit
* 8
5172 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
5173 Error_Msg_Uint_2
:= Error_Msg_Uint_1
* 8;
5175 ("size for primitive object must be a power of 2"
5176 & " in the range ^-^", N
);
5180 Set_Esize
(U_Ent
, Size
);
5183 Set_Has_Size_Clause
(U_Ent
);
5191 -- Small attribute definition clause
5193 when Attribute_Small
=> Small
: declare
5194 Implicit_Base
: constant Entity_Id
:= Base_Type
(U_Ent
);
5198 Analyze_And_Resolve
(Expr
, Any_Real
);
5200 if Etype
(Expr
) = Any_Type
then
5203 elsif not Is_OK_Static_Expression
(Expr
) then
5204 Flag_Non_Static_Expr
5205 ("small requires static expression!", Expr
);
5209 Small
:= Expr_Value_R
(Expr
);
5211 if Small
<= Ureal_0
then
5212 Error_Msg_N
("small value must be greater than zero", Expr
);
5218 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
) then
5220 ("small requires an ordinary fixed point type", Nam
);
5222 elsif Has_Small_Clause
(U_Ent
) then
5223 Error_Msg_N
("small already given for &", Nam
);
5225 elsif Small
> Delta_Value
(U_Ent
) then
5227 ("small value must not be greater than delta value", Nam
);
5230 Set_Small_Value
(U_Ent
, Small
);
5231 Set_Small_Value
(Implicit_Base
, Small
);
5232 Set_Has_Small_Clause
(U_Ent
);
5233 Set_Has_Small_Clause
(Implicit_Base
);
5234 Set_Has_Non_Standard_Rep
(Implicit_Base
);
5242 -- Storage_Pool attribute definition clause
5244 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool
=> declare
5249 if Ekind
(U_Ent
) = E_Access_Subprogram_Type
then
5251 ("storage pool cannot be given for access-to-subprogram type",
5256 Ekind_In
(U_Ent
, E_Access_Type
, E_General_Access_Type
)
5259 ("storage pool can only be given for access types", Nam
);
5262 elsif Is_Derived_Type
(U_Ent
) then
5264 ("storage pool cannot be given for a derived access type",
5267 elsif Duplicate_Clause
then
5270 elsif Present
(Associated_Storage_Pool
(U_Ent
)) then
5271 Error_Msg_N
("storage pool already given for &", Nam
);
5275 -- Check for Storage_Size previously given
5278 SS
: constant Node_Id
:=
5279 Get_Attribute_Definition_Clause
5280 (U_Ent
, Attribute_Storage_Size
);
5282 if Present
(SS
) then
5283 Check_Pool_Size_Clash
(U_Ent
, N
, SS
);
5287 -- Storage_Pool case
5289 if Id
= Attribute_Storage_Pool
then
5291 (Expr
, Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
)));
5293 -- In the Simple_Storage_Pool case, we allow a variable of any
5294 -- simple storage pool type, so we Resolve without imposing an
5298 Analyze_And_Resolve
(Expr
);
5300 if not Present
(Get_Rep_Pragma
5301 (Etype
(Expr
), Name_Simple_Storage_Pool_Type
))
5304 ("expression must be of a simple storage pool type", Expr
);
5308 if not Denotes_Variable
(Expr
) then
5309 Error_Msg_N
("storage pool must be a variable", Expr
);
5313 if Nkind
(Expr
) = N_Type_Conversion
then
5314 T
:= Etype
(Expression
(Expr
));
5319 -- The Stack_Bounded_Pool is used internally for implementing
5320 -- access types with a Storage_Size. Since it only work properly
5321 -- when used on one specific type, we need to check that it is not
5322 -- hijacked improperly:
5324 -- type T is access Integer;
5325 -- for T'Storage_Size use n;
5326 -- type Q is access Float;
5327 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5329 if RTE_Available
(RE_Stack_Bounded_Pool
)
5330 and then Base_Type
(T
) = RTE
(RE_Stack_Bounded_Pool
)
5332 Error_Msg_N
("non-shareable internal Pool", Expr
);
5336 -- If the argument is a name that is not an entity name, then
5337 -- we construct a renaming operation to define an entity of
5338 -- type storage pool.
5340 if not Is_Entity_Name
(Expr
)
5341 and then Is_Object_Reference
(Expr
)
5343 Pool
:= Make_Temporary
(Loc
, 'P', Expr
);
5346 Rnode
: constant Node_Id
:=
5347 Make_Object_Renaming_Declaration
(Loc
,
5348 Defining_Identifier
=> Pool
,
5350 New_Occurrence_Of
(Etype
(Expr
), Loc
),
5354 -- If the attribute definition clause comes from an aspect
5355 -- clause, then insert the renaming before the associated
5356 -- entity's declaration, since the attribute clause has
5357 -- not yet been appended to the declaration list.
5359 if From_Aspect_Specification
(N
) then
5360 Insert_Before
(Parent
(Entity
(N
)), Rnode
);
5362 Insert_Before
(N
, Rnode
);
5366 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
5369 elsif Is_Entity_Name
(Expr
) then
5370 Pool
:= Entity
(Expr
);
5372 -- If pool is a renamed object, get original one. This can
5373 -- happen with an explicit renaming, and within instances.
5375 while Present
(Renamed_Object
(Pool
))
5376 and then Is_Entity_Name
(Renamed_Object
(Pool
))
5378 Pool
:= Entity
(Renamed_Object
(Pool
));
5381 if Present
(Renamed_Object
(Pool
))
5382 and then Nkind
(Renamed_Object
(Pool
)) = N_Type_Conversion
5383 and then Is_Entity_Name
(Expression
(Renamed_Object
(Pool
)))
5385 Pool
:= Entity
(Expression
(Renamed_Object
(Pool
)));
5388 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
5390 elsif Nkind
(Expr
) = N_Type_Conversion
5391 and then Is_Entity_Name
(Expression
(Expr
))
5392 and then Nkind
(Original_Node
(Expr
)) = N_Attribute_Reference
5394 Pool
:= Entity
(Expression
(Expr
));
5395 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
5398 Error_Msg_N
("incorrect reference to a Storage Pool", Expr
);
5407 -- Storage_Size attribute definition clause
5409 when Attribute_Storage_Size
=> Storage_Size
: declare
5410 Btype
: constant Entity_Id
:= Base_Type
(U_Ent
);
5413 if Is_Task_Type
(U_Ent
) then
5415 -- Check obsolescent (but never obsolescent if from aspect)
5417 if not From_Aspect_Specification
(N
) then
5418 Check_Restriction
(No_Obsolescent_Features
, N
);
5420 if Warn_On_Obsolescent_Feature
then
5422 ("?j?storage size clause for task is an " &
5423 "obsolescent feature (RM J.9)", N
);
5424 Error_Msg_N
("\?j?use Storage_Size pragma instead", N
);
5431 if not Is_Access_Type
(U_Ent
)
5432 and then Ekind
(U_Ent
) /= E_Task_Type
5434 Error_Msg_N
("storage size cannot be given for &", Nam
);
5436 elsif Is_Access_Type
(U_Ent
) and Is_Derived_Type
(U_Ent
) then
5438 ("storage size cannot be given for a derived access type",
5441 elsif Duplicate_Clause
then
5445 Analyze_And_Resolve
(Expr
, Any_Integer
);
5447 if Is_Access_Type
(U_Ent
) then
5449 -- Check for Storage_Pool previously given
5452 SP
: constant Node_Id
:=
5453 Get_Attribute_Definition_Clause
5454 (U_Ent
, Attribute_Storage_Pool
);
5457 if Present
(SP
) then
5458 Check_Pool_Size_Clash
(U_Ent
, SP
, N
);
5462 -- Special case of for x'Storage_Size use 0
5464 if Is_OK_Static_Expression
(Expr
)
5465 and then Expr_Value
(Expr
) = 0
5467 Set_No_Pool_Assigned
(Btype
);
5471 Set_Has_Storage_Size_Clause
(Btype
);
5479 when Attribute_Stream_Size
=> Stream_Size
: declare
5480 Size
: constant Uint
:= Static_Integer
(Expr
);
5483 if Ada_Version
<= Ada_95
then
5484 Check_Restriction
(No_Implementation_Attributes
, N
);
5487 if Duplicate_Clause
then
5490 elsif Is_Elementary_Type
(U_Ent
) then
5491 if Size
/= System_Storage_Unit
5493 Size
/= System_Storage_Unit
* 2
5495 Size
/= System_Storage_Unit
* 4
5497 Size
/= System_Storage_Unit
* 8
5499 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
5501 ("stream size for elementary type must be a"
5502 & " power of 2 and at least ^", N
);
5504 elsif RM_Size
(U_Ent
) > Size
then
5505 Error_Msg_Uint_1
:= RM_Size
(U_Ent
);
5507 ("stream size for elementary type must be a"
5508 & " power of 2 and at least ^", N
);
5511 Set_Has_Stream_Size_Clause
(U_Ent
);
5514 Error_Msg_N
("Stream_Size cannot be given for &", Nam
);
5522 -- Value_Size attribute definition clause
5524 when Attribute_Value_Size
=> Value_Size
: declare
5525 Size
: constant Uint
:= Static_Integer
(Expr
);
5529 if not Is_Type
(U_Ent
) then
5530 Error_Msg_N
("Value_Size cannot be given for &", Nam
);
5532 elsif Duplicate_Clause
then
5535 elsif Is_Array_Type
(U_Ent
)
5536 and then not Is_Constrained
(U_Ent
)
5539 ("Value_Size cannot be given for unconstrained array", Nam
);
5542 if Is_Elementary_Type
(U_Ent
) then
5543 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
5544 Set_Biased
(U_Ent
, N
, "value size clause", Biased
);
5547 Set_RM_Size
(U_Ent
, Size
);
5551 -----------------------
5552 -- Variable_Indexing --
5553 -----------------------
5555 when Attribute_Variable_Indexing
=>
5556 Check_Indexing_Functions
;
5562 when Attribute_Write
=>
5563 Analyze_Stream_TSS_Definition
(TSS_Stream_Write
);
5564 Set_Has_Specified_Stream_Write
(Ent
);
5566 -- All other attributes cannot be set
5570 ("attribute& cannot be set with definition clause", N
);
5573 -- The test for the type being frozen must be performed after any
5574 -- expression the clause has been analyzed since the expression itself
5575 -- might cause freezing that makes the clause illegal.
5577 if Rep_Item_Too_Late
(U_Ent
, N
, FOnly
) then
5580 end Analyze_Attribute_Definition_Clause
;
5582 ----------------------------
5583 -- Analyze_Code_Statement --
5584 ----------------------------
5586 procedure Analyze_Code_Statement
(N
: Node_Id
) is
5587 HSS
: constant Node_Id
:= Parent
(N
);
5588 SBody
: constant Node_Id
:= Parent
(HSS
);
5589 Subp
: constant Entity_Id
:= Current_Scope
;
5596 -- Analyze and check we get right type, note that this implements the
5597 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
5598 -- is the only way that Asm_Insn could possibly be visible.
5600 Analyze_And_Resolve
(Expression
(N
));
5602 if Etype
(Expression
(N
)) = Any_Type
then
5604 elsif Etype
(Expression
(N
)) /= RTE
(RE_Asm_Insn
) then
5605 Error_Msg_N
("incorrect type for code statement", N
);
5609 Check_Code_Statement
(N
);
5611 -- Make sure we appear in the handled statement sequence of a
5612 -- subprogram (RM 13.8(3)).
5614 if Nkind
(HSS
) /= N_Handled_Sequence_Of_Statements
5615 or else Nkind
(SBody
) /= N_Subprogram_Body
5618 ("code statement can only appear in body of subprogram", N
);
5622 -- Do remaining checks (RM 13.8(3)) if not already done
5624 if not Is_Machine_Code_Subprogram
(Subp
) then
5625 Set_Is_Machine_Code_Subprogram
(Subp
);
5627 -- No exception handlers allowed
5629 if Present
(Exception_Handlers
(HSS
)) then
5631 ("exception handlers not permitted in machine code subprogram",
5632 First
(Exception_Handlers
(HSS
)));
5635 -- No declarations other than use clauses and pragmas (we allow
5636 -- certain internally generated declarations as well).
5638 Decl
:= First
(Declarations
(SBody
));
5639 while Present
(Decl
) loop
5640 DeclO
:= Original_Node
(Decl
);
5641 if Comes_From_Source
(DeclO
)
5642 and not Nkind_In
(DeclO
, N_Pragma
,
5643 N_Use_Package_Clause
,
5645 N_Implicit_Label_Declaration
)
5648 ("this declaration not allowed in machine code subprogram",
5655 -- No statements other than code statements, pragmas, and labels.
5656 -- Again we allow certain internally generated statements.
5658 -- In Ada 2012, qualified expressions are names, and the code
5659 -- statement is initially parsed as a procedure call.
5661 Stmt
:= First
(Statements
(HSS
));
5662 while Present
(Stmt
) loop
5663 StmtO
:= Original_Node
(Stmt
);
5665 -- A procedure call transformed into a code statement is OK.
5667 if Ada_Version
>= Ada_2012
5668 and then Nkind
(StmtO
) = N_Procedure_Call_Statement
5669 and then Nkind
(Name
(StmtO
)) = N_Qualified_Expression
5673 elsif Comes_From_Source
(StmtO
)
5674 and then not Nkind_In
(StmtO
, N_Pragma
,
5679 ("this statement is not allowed in machine code subprogram",
5686 end Analyze_Code_Statement
;
5688 -----------------------------------------------
5689 -- Analyze_Enumeration_Representation_Clause --
5690 -----------------------------------------------
5692 procedure Analyze_Enumeration_Representation_Clause
(N
: Node_Id
) is
5693 Ident
: constant Node_Id
:= Identifier
(N
);
5694 Aggr
: constant Node_Id
:= Array_Aggregate
(N
);
5695 Enumtype
: Entity_Id
;
5702 Err
: Boolean := False;
5703 -- Set True to avoid cascade errors and crashes on incorrect source code
5705 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Universal_Integer
));
5706 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Universal_Integer
));
5707 -- Allowed range of universal integer (= allowed range of enum lit vals)
5711 -- Minimum and maximum values of entries
5714 -- Pointer to node for literal providing max value
5717 if Ignore_Rep_Clauses
then
5718 Kill_Rep_Clause
(N
);
5722 -- Ignore enumeration rep clauses by default in CodePeer mode,
5723 -- unless -gnatd.I is specified, as a work around for potential false
5724 -- positive messages.
5726 if CodePeer_Mode
and not Debug_Flag_Dot_II
then
5730 -- First some basic error checks
5733 Enumtype
:= Entity
(Ident
);
5735 if Enumtype
= Any_Type
5736 or else Rep_Item_Too_Early
(Enumtype
, N
)
5740 Enumtype
:= Underlying_Type
(Enumtype
);
5743 if not Is_Enumeration_Type
(Enumtype
) then
5745 ("enumeration type required, found}",
5746 Ident
, First_Subtype
(Enumtype
));
5750 -- Ignore rep clause on generic actual type. This will already have
5751 -- been flagged on the template as an error, and this is the safest
5752 -- way to ensure we don't get a junk cascaded message in the instance.
5754 if Is_Generic_Actual_Type
(Enumtype
) then
5757 -- Type must be in current scope
5759 elsif Scope
(Enumtype
) /= Current_Scope
then
5760 Error_Msg_N
("type must be declared in this scope", Ident
);
5763 -- Type must be a first subtype
5765 elsif not Is_First_Subtype
(Enumtype
) then
5766 Error_Msg_N
("cannot give enumeration rep clause for subtype", N
);
5769 -- Ignore duplicate rep clause
5771 elsif Has_Enumeration_Rep_Clause
(Enumtype
) then
5772 Error_Msg_N
("duplicate enumeration rep clause ignored", N
);
5775 -- Don't allow rep clause for standard [wide_[wide_]]character
5777 elsif Is_Standard_Character_Type
(Enumtype
) then
5778 Error_Msg_N
("enumeration rep clause not allowed for this type", N
);
5781 -- Check that the expression is a proper aggregate (no parentheses)
5783 elsif Paren_Count
(Aggr
) /= 0 then
5785 ("extra parentheses surrounding aggregate not allowed",
5789 -- All tests passed, so set rep clause in place
5792 Set_Has_Enumeration_Rep_Clause
(Enumtype
);
5793 Set_Has_Enumeration_Rep_Clause
(Base_Type
(Enumtype
));
5796 -- Now we process the aggregate. Note that we don't use the normal
5797 -- aggregate code for this purpose, because we don't want any of the
5798 -- normal expansion activities, and a number of special semantic
5799 -- rules apply (including the component type being any integer type)
5801 Elit
:= First_Literal
(Enumtype
);
5803 -- First the positional entries if any
5805 if Present
(Expressions
(Aggr
)) then
5806 Expr
:= First
(Expressions
(Aggr
));
5807 while Present
(Expr
) loop
5809 Error_Msg_N
("too many entries in aggregate", Expr
);
5813 Val
:= Static_Integer
(Expr
);
5815 -- Err signals that we found some incorrect entries processing
5816 -- the list. The final checks for completeness and ordering are
5817 -- skipped in this case.
5819 if Val
= No_Uint
then
5822 elsif Val
< Lo
or else Hi
< Val
then
5823 Error_Msg_N
("value outside permitted range", Expr
);
5827 Set_Enumeration_Rep
(Elit
, Val
);
5828 Set_Enumeration_Rep_Expr
(Elit
, Expr
);
5834 -- Now process the named entries if present
5836 if Present
(Component_Associations
(Aggr
)) then
5837 Assoc
:= First
(Component_Associations
(Aggr
));
5838 while Present
(Assoc
) loop
5839 Choice
:= First
(Choices
(Assoc
));
5841 if Present
(Next
(Choice
)) then
5843 ("multiple choice not allowed here", Next
(Choice
));
5847 if Nkind
(Choice
) = N_Others_Choice
then
5848 Error_Msg_N
("others choice not allowed here", Choice
);
5851 elsif Nkind
(Choice
) = N_Range
then
5853 -- ??? should allow zero/one element range here
5855 Error_Msg_N
("range not allowed here", Choice
);
5859 Analyze_And_Resolve
(Choice
, Enumtype
);
5861 if Error_Posted
(Choice
) then
5866 if Is_Entity_Name
(Choice
)
5867 and then Is_Type
(Entity
(Choice
))
5869 Error_Msg_N
("subtype name not allowed here", Choice
);
5872 -- ??? should allow static subtype with zero/one entry
5874 elsif Etype
(Choice
) = Base_Type
(Enumtype
) then
5875 if not Is_OK_Static_Expression
(Choice
) then
5876 Flag_Non_Static_Expr
5877 ("non-static expression used for choice!", Choice
);
5881 Elit
:= Expr_Value_E
(Choice
);
5883 if Present
(Enumeration_Rep_Expr
(Elit
)) then
5885 Sloc
(Enumeration_Rep_Expr
(Elit
));
5887 ("representation for& previously given#",
5892 Set_Enumeration_Rep_Expr
(Elit
, Expression
(Assoc
));
5894 Expr
:= Expression
(Assoc
);
5895 Val
:= Static_Integer
(Expr
);
5897 if Val
= No_Uint
then
5900 elsif Val
< Lo
or else Hi
< Val
then
5901 Error_Msg_N
("value outside permitted range", Expr
);
5905 Set_Enumeration_Rep
(Elit
, Val
);
5915 -- Aggregate is fully processed. Now we check that a full set of
5916 -- representations was given, and that they are in range and in order.
5917 -- These checks are only done if no other errors occurred.
5923 Elit
:= First_Literal
(Enumtype
);
5924 while Present
(Elit
) loop
5925 if No
(Enumeration_Rep_Expr
(Elit
)) then
5926 Error_Msg_NE
("missing representation for&!", N
, Elit
);
5929 Val
:= Enumeration_Rep
(Elit
);
5931 if Min
= No_Uint
then
5935 if Val
/= No_Uint
then
5936 if Max
/= No_Uint
and then Val
<= Max
then
5938 ("enumeration value for& not ordered!",
5939 Enumeration_Rep_Expr
(Elit
), Elit
);
5942 Max_Node
:= Enumeration_Rep_Expr
(Elit
);
5946 -- If there is at least one literal whose representation is not
5947 -- equal to the Pos value, then note that this enumeration type
5948 -- has a non-standard representation.
5950 if Val
/= Enumeration_Pos
(Elit
) then
5951 Set_Has_Non_Standard_Rep
(Base_Type
(Enumtype
));
5958 -- Now set proper size information
5961 Minsize
: Uint
:= UI_From_Int
(Minimum_Size
(Enumtype
));
5964 if Has_Size_Clause
(Enumtype
) then
5966 -- All OK, if size is OK now
5968 if RM_Size
(Enumtype
) >= Minsize
then
5972 -- Try if we can get by with biasing
5975 UI_From_Int
(Minimum_Size
(Enumtype
, Biased
=> True));
5977 -- Error message if even biasing does not work
5979 if RM_Size
(Enumtype
) < Minsize
then
5980 Error_Msg_Uint_1
:= RM_Size
(Enumtype
);
5981 Error_Msg_Uint_2
:= Max
;
5983 ("previously given size (^) is too small "
5984 & "for this value (^)", Max_Node
);
5986 -- If biasing worked, indicate that we now have biased rep
5990 (Enumtype
, Size_Clause
(Enumtype
), "size clause");
5995 Set_RM_Size
(Enumtype
, Minsize
);
5996 Set_Enum_Esize
(Enumtype
);
5999 Set_RM_Size
(Base_Type
(Enumtype
), RM_Size
(Enumtype
));
6000 Set_Esize
(Base_Type
(Enumtype
), Esize
(Enumtype
));
6001 Set_Alignment
(Base_Type
(Enumtype
), Alignment
(Enumtype
));
6005 -- We repeat the too late test in case it froze itself
6007 if Rep_Item_Too_Late
(Enumtype
, N
) then
6010 end Analyze_Enumeration_Representation_Clause
;
6012 ----------------------------
6013 -- Analyze_Free_Statement --
6014 ----------------------------
6016 procedure Analyze_Free_Statement
(N
: Node_Id
) is
6018 Analyze
(Expression
(N
));
6019 end Analyze_Free_Statement
;
6021 ---------------------------
6022 -- Analyze_Freeze_Entity --
6023 ---------------------------
6025 procedure Analyze_Freeze_Entity
(N
: Node_Id
) is
6027 Freeze_Entity_Checks
(N
);
6028 end Analyze_Freeze_Entity
;
6030 -----------------------------------
6031 -- Analyze_Freeze_Generic_Entity --
6032 -----------------------------------
6034 procedure Analyze_Freeze_Generic_Entity
(N
: Node_Id
) is
6036 Freeze_Entity_Checks
(N
);
6037 end Analyze_Freeze_Generic_Entity
;
6039 ------------------------------------------
6040 -- Analyze_Record_Representation_Clause --
6041 ------------------------------------------
6043 -- Note: we check as much as we can here, but we can't do any checks
6044 -- based on the position values (e.g. overlap checks) until freeze time
6045 -- because especially in Ada 2005 (machine scalar mode), the processing
6046 -- for non-standard bit order can substantially change the positions.
6047 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6048 -- for the remainder of this processing.
6050 procedure Analyze_Record_Representation_Clause
(N
: Node_Id
) is
6051 Ident
: constant Node_Id
:= Identifier
(N
);
6056 Hbit
: Uint
:= Uint_0
;
6060 Rectype
: Entity_Id
;
6063 function Is_Inherited
(Comp
: Entity_Id
) return Boolean;
6064 -- True if Comp is an inherited component in a record extension
6070 function Is_Inherited
(Comp
: Entity_Id
) return Boolean is
6071 Comp_Base
: Entity_Id
;
6074 if Ekind
(Rectype
) = E_Record_Subtype
then
6075 Comp_Base
:= Original_Record_Component
(Comp
);
6080 return Comp_Base
/= Original_Record_Component
(Comp_Base
);
6085 Is_Record_Extension
: Boolean;
6086 -- True if Rectype is a record extension
6088 CR_Pragma
: Node_Id
:= Empty
;
6089 -- Points to N_Pragma node if Complete_Representation pragma present
6091 -- Start of processing for Analyze_Record_Representation_Clause
6094 if Ignore_Rep_Clauses
then
6095 Kill_Rep_Clause
(N
);
6100 Rectype
:= Entity
(Ident
);
6102 if Rectype
= Any_Type
or else Rep_Item_Too_Early
(Rectype
, N
) then
6105 Rectype
:= Underlying_Type
(Rectype
);
6108 -- First some basic error checks
6110 if not Is_Record_Type
(Rectype
) then
6112 ("record type required, found}", Ident
, First_Subtype
(Rectype
));
6115 elsif Scope
(Rectype
) /= Current_Scope
then
6116 Error_Msg_N
("type must be declared in this scope", N
);
6119 elsif not Is_First_Subtype
(Rectype
) then
6120 Error_Msg_N
("cannot give record rep clause for subtype", N
);
6123 elsif Has_Record_Rep_Clause
(Rectype
) then
6124 Error_Msg_N
("duplicate record rep clause ignored", N
);
6127 elsif Rep_Item_Too_Late
(Rectype
, N
) then
6131 -- We know we have a first subtype, now possibly go the the anonymous
6132 -- base type to determine whether Rectype is a record extension.
6134 Recdef
:= Type_Definition
(Declaration_Node
(Base_Type
(Rectype
)));
6135 Is_Record_Extension
:=
6136 Nkind
(Recdef
) = N_Derived_Type_Definition
6137 and then Present
(Record_Extension_Part
(Recdef
));
6139 if Present
(Mod_Clause
(N
)) then
6141 Loc
: constant Source_Ptr
:= Sloc
(N
);
6142 M
: constant Node_Id
:= Mod_Clause
(N
);
6143 P
: constant List_Id
:= Pragmas_Before
(M
);
6147 pragma Warnings
(Off
, Mod_Val
);
6150 Check_Restriction
(No_Obsolescent_Features
, Mod_Clause
(N
));
6152 if Warn_On_Obsolescent_Feature
then
6154 ("?j?mod clause is an obsolescent feature (RM J.8)", N
);
6156 ("\?j?use alignment attribute definition clause instead", N
);
6163 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6164 -- the Mod clause into an alignment clause anyway, so that the
6165 -- back-end can compute and back-annotate properly the size and
6166 -- alignment of types that may include this record.
6168 -- This seems dubious, this destroys the source tree in a manner
6169 -- not detectable by ASIS ???
6171 if Operating_Mode
= Check_Semantics
and then ASIS_Mode
then
6173 Make_Attribute_Definition_Clause
(Loc
,
6174 Name
=> New_Occurrence_Of
(Base_Type
(Rectype
), Loc
),
6175 Chars
=> Name_Alignment
,
6176 Expression
=> Relocate_Node
(Expression
(M
)));
6178 Set_From_At_Mod
(AtM_Nod
);
6179 Insert_After
(N
, AtM_Nod
);
6180 Mod_Val
:= Get_Alignment_Value
(Expression
(AtM_Nod
));
6181 Set_Mod_Clause
(N
, Empty
);
6184 -- Get the alignment value to perform error checking
6186 Mod_Val
:= Get_Alignment_Value
(Expression
(M
));
6191 -- For untagged types, clear any existing component clauses for the
6192 -- type. If the type is derived, this is what allows us to override
6193 -- a rep clause for the parent. For type extensions, the representation
6194 -- of the inherited components is inherited, so we want to keep previous
6195 -- component clauses for completeness.
6197 if not Is_Tagged_Type
(Rectype
) then
6198 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6199 while Present
(Comp
) loop
6200 Set_Component_Clause
(Comp
, Empty
);
6201 Next_Component_Or_Discriminant
(Comp
);
6205 -- All done if no component clauses
6207 CC
:= First
(Component_Clauses
(N
));
6213 -- A representation like this applies to the base type
6215 Set_Has_Record_Rep_Clause
(Base_Type
(Rectype
));
6216 Set_Has_Non_Standard_Rep
(Base_Type
(Rectype
));
6217 Set_Has_Specified_Layout
(Base_Type
(Rectype
));
6219 -- Process the component clauses
6221 while Present
(CC
) loop
6225 if Nkind
(CC
) = N_Pragma
then
6228 -- The only pragma of interest is Complete_Representation
6230 if Pragma_Name
(CC
) = Name_Complete_Representation
then
6234 -- Processing for real component clause
6237 Posit
:= Static_Integer
(Position
(CC
));
6238 Fbit
:= Static_Integer
(First_Bit
(CC
));
6239 Lbit
:= Static_Integer
(Last_Bit
(CC
));
6242 and then Fbit
/= No_Uint
6243 and then Lbit
/= No_Uint
6247 ("position cannot be negative", Position
(CC
));
6251 ("first bit cannot be negative", First_Bit
(CC
));
6253 -- The Last_Bit specified in a component clause must not be
6254 -- less than the First_Bit minus one (RM-13.5.1(10)).
6256 elsif Lbit
< Fbit
- 1 then
6258 ("last bit cannot be less than first bit minus one",
6261 -- Values look OK, so find the corresponding record component
6262 -- Even though the syntax allows an attribute reference for
6263 -- implementation-defined components, GNAT does not allow the
6264 -- tag to get an explicit position.
6266 elsif Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
6267 if Attribute_Name
(Component_Name
(CC
)) = Name_Tag
then
6268 Error_Msg_N
("position of tag cannot be specified", CC
);
6270 Error_Msg_N
("illegal component name", CC
);
6274 Comp
:= First_Entity
(Rectype
);
6275 while Present
(Comp
) loop
6276 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
6282 -- Maybe component of base type that is absent from
6283 -- statically constrained first subtype.
6285 Comp
:= First_Entity
(Base_Type
(Rectype
));
6286 while Present
(Comp
) loop
6287 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
6294 ("component clause is for non-existent field", CC
);
6296 -- Ada 2012 (AI05-0026): Any name that denotes a
6297 -- discriminant of an object of an unchecked union type
6298 -- shall not occur within a record_representation_clause.
6300 -- The general restriction of using record rep clauses on
6301 -- Unchecked_Union types has now been lifted. Since it is
6302 -- possible to introduce a record rep clause which mentions
6303 -- the discriminant of an Unchecked_Union in non-Ada 2012
6304 -- code, this check is applied to all versions of the
6307 elsif Ekind
(Comp
) = E_Discriminant
6308 and then Is_Unchecked_Union
(Rectype
)
6311 ("cannot reference discriminant of unchecked union",
6312 Component_Name
(CC
));
6314 elsif Is_Record_Extension
and then Is_Inherited
(Comp
) then
6316 ("component clause not allowed for inherited "
6317 & "component&", CC
, Comp
);
6319 elsif Present
(Component_Clause
(Comp
)) then
6321 -- Diagnose duplicate rep clause, or check consistency
6322 -- if this is an inherited component. In a double fault,
6323 -- there may be a duplicate inconsistent clause for an
6324 -- inherited component.
6326 if Scope
(Original_Record_Component
(Comp
)) = Rectype
6327 or else Parent
(Component_Clause
(Comp
)) = N
6329 Error_Msg_Sloc
:= Sloc
(Component_Clause
(Comp
));
6330 Error_Msg_N
("component clause previously given#", CC
);
6334 Rep1
: constant Node_Id
:= Component_Clause
(Comp
);
6336 if Intval
(Position
(Rep1
)) /=
6337 Intval
(Position
(CC
))
6338 or else Intval
(First_Bit
(Rep1
)) /=
6339 Intval
(First_Bit
(CC
))
6340 or else Intval
(Last_Bit
(Rep1
)) /=
6341 Intval
(Last_Bit
(CC
))
6344 ("component clause inconsistent "
6345 & "with representation of ancestor", CC
);
6347 elsif Warn_On_Redundant_Constructs
then
6349 ("?r?redundant confirming component clause "
6350 & "for component!", CC
);
6355 -- Normal case where this is the first component clause we
6356 -- have seen for this entity, so set it up properly.
6359 -- Make reference for field in record rep clause and set
6360 -- appropriate entity field in the field identifier.
6363 (Comp
, Component_Name
(CC
), Set_Ref
=> False);
6364 Set_Entity
(Component_Name
(CC
), Comp
);
6366 -- Update Fbit and Lbit to the actual bit number
6368 Fbit
:= Fbit
+ UI_From_Int
(SSU
) * Posit
;
6369 Lbit
:= Lbit
+ UI_From_Int
(SSU
) * Posit
;
6371 if Has_Size_Clause
(Rectype
)
6372 and then RM_Size
(Rectype
) <= Lbit
6375 ("bit number out of range of specified size",
6378 Set_Component_Clause
(Comp
, CC
);
6379 Set_Component_Bit_Offset
(Comp
, Fbit
);
6380 Set_Esize
(Comp
, 1 + (Lbit
- Fbit
));
6381 Set_Normalized_First_Bit
(Comp
, Fbit
mod SSU
);
6382 Set_Normalized_Position
(Comp
, Fbit
/ SSU
);
6384 if Warn_On_Overridden_Size
6385 and then Has_Size_Clause
(Etype
(Comp
))
6386 and then RM_Size
(Etype
(Comp
)) /= Esize
(Comp
)
6389 ("?S?component size overrides size clause for&",
6390 Component_Name
(CC
), Etype
(Comp
));
6393 -- This information is also set in the corresponding
6394 -- component of the base type, found by accessing the
6395 -- Original_Record_Component link if it is present.
6397 Ocomp
:= Original_Record_Component
(Comp
);
6404 (Component_Name
(CC
),
6410 (Comp
, First_Node
(CC
), "component clause", Biased
);
6412 if Present
(Ocomp
) then
6413 Set_Component_Clause
(Ocomp
, CC
);
6414 Set_Component_Bit_Offset
(Ocomp
, Fbit
);
6415 Set_Normalized_First_Bit
(Ocomp
, Fbit
mod SSU
);
6416 Set_Normalized_Position
(Ocomp
, Fbit
/ SSU
);
6417 Set_Esize
(Ocomp
, 1 + (Lbit
- Fbit
));
6419 Set_Normalized_Position_Max
6420 (Ocomp
, Normalized_Position
(Ocomp
));
6422 -- Note: we don't use Set_Biased here, because we
6423 -- already gave a warning above if needed, and we
6424 -- would get a duplicate for the same name here.
6426 Set_Has_Biased_Representation
6427 (Ocomp
, Has_Biased_Representation
(Comp
));
6430 if Esize
(Comp
) < 0 then
6431 Error_Msg_N
("component size is negative", CC
);
6442 -- Check missing components if Complete_Representation pragma appeared
6444 if Present
(CR_Pragma
) then
6445 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6446 while Present
(Comp
) loop
6447 if No
(Component_Clause
(Comp
)) then
6449 ("missing component clause for &", CR_Pragma
, Comp
);
6452 Next_Component_Or_Discriminant
(Comp
);
6455 -- Give missing components warning if required
6457 elsif Warn_On_Unrepped_Components
then
6459 Num_Repped_Components
: Nat
:= 0;
6460 Num_Unrepped_Components
: Nat
:= 0;
6463 -- First count number of repped and unrepped components
6465 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6466 while Present
(Comp
) loop
6467 if Present
(Component_Clause
(Comp
)) then
6468 Num_Repped_Components
:= Num_Repped_Components
+ 1;
6470 Num_Unrepped_Components
:= Num_Unrepped_Components
+ 1;
6473 Next_Component_Or_Discriminant
(Comp
);
6476 -- We are only interested in the case where there is at least one
6477 -- unrepped component, and at least half the components have rep
6478 -- clauses. We figure that if less than half have them, then the
6479 -- partial rep clause is really intentional. If the component
6480 -- type has no underlying type set at this point (as for a generic
6481 -- formal type), we don't know enough to give a warning on the
6484 if Num_Unrepped_Components
> 0
6485 and then Num_Unrepped_Components
< Num_Repped_Components
6487 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6488 while Present
(Comp
) loop
6489 if No
(Component_Clause
(Comp
))
6490 and then Comes_From_Source
(Comp
)
6491 and then Present
(Underlying_Type
(Etype
(Comp
)))
6492 and then (Is_Scalar_Type
(Underlying_Type
(Etype
(Comp
)))
6493 or else Size_Known_At_Compile_Time
6494 (Underlying_Type
(Etype
(Comp
))))
6495 and then not Has_Warnings_Off
(Rectype
)
6497 Error_Msg_Sloc
:= Sloc
(Comp
);
6499 ("?C?no component clause given for & declared #",
6503 Next_Component_Or_Discriminant
(Comp
);
6508 end Analyze_Record_Representation_Clause
;
6510 -------------------------------------
6511 -- Build_Discrete_Static_Predicate --
6512 -------------------------------------
6514 procedure Build_Discrete_Static_Predicate
6519 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
6521 Non_Static
: exception;
6522 -- Raised if something non-static is found
6524 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
6526 BLo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Btyp
));
6527 BHi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Btyp
));
6528 -- Low bound and high bound value of base type of Typ
6530 TLo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Typ
));
6531 THi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Typ
));
6532 -- Low bound and high bound values of static subtype Typ
6537 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6538 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6541 type RList
is array (Nat
range <>) of REnt
;
6542 -- A list of ranges. The ranges are sorted in increasing order, and are
6543 -- disjoint (there is a gap of at least one value between each range in
6544 -- the table). A value is in the set of ranges in Rlist if it lies
6545 -- within one of these ranges.
6547 False_Range
: constant RList
:=
6548 RList
'(1 .. 0 => REnt'(No_Uint
, No_Uint
));
6549 -- An empty set of ranges represents a range list that can never be
6550 -- satisfied, since there are no ranges in which the value could lie,
6551 -- so it does not lie in any of them. False_Range is a canonical value
6552 -- for this empty set, but general processing should test for an Rlist
6553 -- with length zero (see Is_False predicate), since other null ranges
6554 -- may appear which must be treated as False.
6556 True_Range
: constant RList
:= RList
'(1 => REnt'(BLo
, BHi
));
6557 -- Range representing True, value must be in the base range
6559 function "and" (Left
: RList
; Right
: RList
) return RList
;
6560 -- And's together two range lists, returning a range list. This is a set
6561 -- intersection operation.
6563 function "or" (Left
: RList
; Right
: RList
) return RList
;
6564 -- Or's together two range lists, returning a range list. This is a set
6567 function "not" (Right
: RList
) return RList
;
6568 -- Returns complement of a given range list, i.e. a range list
6569 -- representing all the values in TLo .. THi that are not in the input
6572 function Build_Val
(V
: Uint
) return Node_Id
;
6573 -- Return an analyzed N_Identifier node referencing this value, suitable
6574 -- for use as an entry in the Static_Discrte_Predicate list. This node
6575 -- is typed with the base type.
6577 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
;
6578 -- Return an analyzed N_Range node referencing this range, suitable for
6579 -- use as an entry in the Static_Discrete_Predicate list. This node is
6580 -- typed with the base type.
6582 function Get_RList
(Exp
: Node_Id
) return RList
;
6583 -- This is a recursive routine that converts the given expression into a
6584 -- list of ranges, suitable for use in building the static predicate.
6586 function Is_False
(R
: RList
) return Boolean;
6587 pragma Inline
(Is_False
);
6588 -- Returns True if the given range list is empty, and thus represents a
6589 -- False list of ranges that can never be satisfied.
6591 function Is_True
(R
: RList
) return Boolean;
6592 -- Returns True if R trivially represents the True predicate by having a
6593 -- single range from BLo to BHi.
6595 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
6596 pragma Inline
(Is_Type_Ref
);
6597 -- Returns if True if N is a reference to the type for the predicate in
6598 -- the expression (i.e. if it is an identifier whose Chars field matches
6599 -- the Nam given in the call). N must not be parenthesized, if the type
6600 -- name appears in parens, this routine will return False.
6602 function Lo_Val
(N
: Node_Id
) return Uint
;
6603 -- Given an entry from a Static_Discrete_Predicate list that is either
6604 -- a static expression or static range, gets either the expression value
6605 -- or the low bound of the range.
6607 function Hi_Val
(N
: Node_Id
) return Uint
;
6608 -- Given an entry from a Static_Discrete_Predicate list that is either
6609 -- a static expression or static range, gets either the expression value
6610 -- or the high bound of the range.
6612 function Membership_Entry
(N
: Node_Id
) return RList
;
6613 -- Given a single membership entry (range, value, or subtype), returns
6614 -- the corresponding range list. Raises Static_Error if not static.
6616 function Membership_Entries
(N
: Node_Id
) return RList
;
6617 -- Given an element on an alternatives list of a membership operation,
6618 -- returns the range list corresponding to this entry and all following
6619 -- entries (i.e. returns the "or" of this list of values).
6621 function Stat_Pred
(Typ
: Entity_Id
) return RList
;
6622 -- Given a type, if it has a static predicate, then return the predicate
6623 -- as a range list, otherwise raise Non_Static.
6629 function "and" (Left
: RList
; Right
: RList
) return RList
is
6631 -- First range of result
6633 SLeft
: Nat
:= Left
'First;
6634 -- Start of rest of left entries
6636 SRight
: Nat
:= Right
'First;
6637 -- Start of rest of right entries
6640 -- If either range is True, return the other
6642 if Is_True
(Left
) then
6644 elsif Is_True
(Right
) then
6648 -- If either range is False, return False
6650 if Is_False
(Left
) or else Is_False
(Right
) then
6654 -- Loop to remove entries at start that are disjoint, and thus just
6655 -- get discarded from the result entirely.
6658 -- If no operands left in either operand, result is false
6660 if SLeft
> Left
'Last or else SRight
> Right
'Last then
6663 -- Discard first left operand entry if disjoint with right
6665 elsif Left
(SLeft
).Hi
< Right
(SRight
).Lo
then
6668 -- Discard first right operand entry if disjoint with left
6670 elsif Right
(SRight
).Hi
< Left
(SLeft
).Lo
then
6671 SRight
:= SRight
+ 1;
6673 -- Otherwise we have an overlapping entry
6680 -- Now we have two non-null operands, and first entries overlap. The
6681 -- first entry in the result will be the overlapping part of these
6684 FEnt
:= REnt
'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
6685 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
6687 -- Now we can remove the entry that ended at a lower value, since its
6688 -- contribution is entirely contained in Fent.
6690 if Left (SLeft).Hi <= Right (SRight).Hi then
6693 SRight := SRight + 1;
6696 -- Compute result by concatenating this first entry with the "and" of
6697 -- the remaining parts of the left and right operands. Note that if
6698 -- either of these is empty, "and" will yield empty, so that we will
6699 -- end up with just Fent, which is what we want in that case.
6702 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
6709 function "not" (Right : RList) return RList is
6711 -- Return True if False range
6713 if Is_False (Right) then
6717 -- Return False if True range
6719 if Is_True (Right) then
6723 -- Here if not trivial case
6726 Result : RList (1 .. Right'Length + 1);
6727 -- May need one more entry for gap at beginning and end
6730 -- Number of entries stored in Result
6735 if Right (Right'First).Lo > TLo then
6737 Result (Count) := REnt'(TLo
, Right
(Right
'First).Lo
- 1);
6740 -- Gaps between ranges
6742 for J
in Right
'First .. Right
'Last - 1 loop
6744 Result
(Count
) := REnt
'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
6749 if Right (Right'Last).Hi < THi then
6751 Result (Count) := REnt'(Right
(Right
'Last).Hi
+ 1, THi
);
6754 return Result
(1 .. Count
);
6762 function "or" (Left
: RList
; Right
: RList
) return RList
is
6764 -- First range of result
6766 SLeft
: Nat
:= Left
'First;
6767 -- Start of rest of left entries
6769 SRight
: Nat
:= Right
'First;
6770 -- Start of rest of right entries
6773 -- If either range is True, return True
6775 if Is_True
(Left
) or else Is_True
(Right
) then
6779 -- If either range is False (empty), return the other
6781 if Is_False
(Left
) then
6783 elsif Is_False
(Right
) then
6787 -- Initialize result first entry from left or right operand depending
6788 -- on which starts with the lower range.
6790 if Left
(SLeft
).Lo
< Right
(SRight
).Lo
then
6791 FEnt
:= Left
(SLeft
);
6794 FEnt
:= Right
(SRight
);
6795 SRight
:= SRight
+ 1;
6798 -- This loop eats ranges from left and right operands that are
6799 -- contiguous with the first range we are gathering.
6802 -- Eat first entry in left operand if contiguous or overlapped by
6803 -- gathered first operand of result.
6805 if SLeft
<= Left
'Last
6806 and then Left
(SLeft
).Lo
<= FEnt
.Hi
+ 1
6808 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Left
(SLeft
).Hi
);
6811 -- Eat first entry in right operand if contiguous or overlapped by
6812 -- gathered right operand of result.
6814 elsif SRight
<= Right
'Last
6815 and then Right
(SRight
).Lo
<= FEnt
.Hi
+ 1
6817 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Right
(SRight
).Hi
);
6818 SRight
:= SRight
+ 1;
6820 -- All done if no more entries to eat
6827 -- Obtain result as the first entry we just computed, concatenated
6828 -- to the "or" of the remaining results (if one operand is empty,
6829 -- this will just concatenate with the other
6832 FEnt
& (Left
(SLeft
.. Left
'Last) or Right
(SRight
.. Right
'Last));
6839 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
is
6844 Low_Bound
=> Build_Val
(Lo
),
6845 High_Bound
=> Build_Val
(Hi
));
6846 Set_Etype
(Result
, Btyp
);
6847 Set_Analyzed
(Result
);
6855 function Build_Val
(V
: Uint
) return Node_Id
is
6859 if Is_Enumeration_Type
(Typ
) then
6860 Result
:= Get_Enum_Lit_From_Pos
(Typ
, V
, Loc
);
6862 Result
:= Make_Integer_Literal
(Loc
, V
);
6865 Set_Etype
(Result
, Btyp
);
6866 Set_Is_Static_Expression
(Result
);
6867 Set_Analyzed
(Result
);
6875 function Get_RList
(Exp
: Node_Id
) return RList
is
6880 -- Static expression can only be true or false
6882 if Is_OK_Static_Expression
(Exp
) then
6883 if Expr_Value
(Exp
) = 0 then
6890 -- Otherwise test node type
6898 when N_Op_And | N_And_Then
=>
6899 return Get_RList
(Left_Opnd
(Exp
))
6901 Get_RList
(Right_Opnd
(Exp
));
6905 when N_Op_Or | N_Or_Else
=>
6906 return Get_RList
(Left_Opnd
(Exp
))
6908 Get_RList
(Right_Opnd
(Exp
));
6913 return not Get_RList
(Right_Opnd
(Exp
));
6915 -- Comparisons of type with static value
6917 when N_Op_Compare
=>
6919 -- Type is left operand
6921 if Is_Type_Ref
(Left_Opnd
(Exp
))
6922 and then Is_OK_Static_Expression
(Right_Opnd
(Exp
))
6924 Val
:= Expr_Value
(Right_Opnd
(Exp
));
6926 -- Typ is right operand
6928 elsif Is_Type_Ref
(Right_Opnd
(Exp
))
6929 and then Is_OK_Static_Expression
(Left_Opnd
(Exp
))
6931 Val
:= Expr_Value
(Left_Opnd
(Exp
));
6933 -- Invert sense of comparison
6936 when N_Op_Gt
=> Op
:= N_Op_Lt
;
6937 when N_Op_Lt
=> Op
:= N_Op_Gt
;
6938 when N_Op_Ge
=> Op
:= N_Op_Le
;
6939 when N_Op_Le
=> Op
:= N_Op_Ge
;
6940 when others => null;
6943 -- Other cases are non-static
6949 -- Construct range according to comparison operation
6953 return RList
'(1 => REnt'(Val
, Val
));
6956 return RList
'(1 => REnt'(Val
, BHi
));
6959 return RList
'(1 => REnt'(Val
+ 1, BHi
));
6962 return RList
'(1 => REnt'(BLo
, Val
));
6965 return RList
'(1 => REnt'(BLo
, Val
- 1));
6968 return RList
'(REnt'(BLo
, Val
- 1), REnt
'(Val + 1, BHi));
6971 raise Program_Error;
6977 if not Is_Type_Ref (Left_Opnd (Exp)) then
6981 if Present (Right_Opnd (Exp)) then
6982 return Membership_Entry (Right_Opnd (Exp));
6984 return Membership_Entries (First (Alternatives (Exp)));
6987 -- Negative membership (NOT IN)
6990 if not Is_Type_Ref (Left_Opnd (Exp)) then
6994 if Present (Right_Opnd (Exp)) then
6995 return not Membership_Entry (Right_Opnd (Exp));
6997 return not Membership_Entries (First (Alternatives (Exp)));
7000 -- Function call, may be call to static predicate
7002 when N_Function_Call =>
7003 if Is_Entity_Name (Name (Exp)) then
7005 Ent : constant Entity_Id := Entity (Name (Exp));
7007 if Is_Predicate_Function (Ent)
7009 Is_Predicate_Function_M (Ent)
7011 return Stat_Pred (Etype (First_Formal (Ent)));
7016 -- Other function call cases are non-static
7020 -- Qualified expression, dig out the expression
7022 when N_Qualified_Expression =>
7023 return Get_RList (Expression (Exp));
7025 when N_Case_Expression =>
7032 if not Is_Entity_Name (Expression (Expr))
7033 or else Etype (Expression (Expr)) /= Typ
7036 ("expression must denaote subtype", Expression (Expr));
7040 -- Collect discrete choices in all True alternatives
7042 Choices := New_List;
7043 Alt := First (Alternatives (Exp));
7044 while Present (Alt) loop
7045 Dep := Expression (Alt);
7047 if not Is_OK_Static_Expression (Dep) then
7050 elsif Is_True (Expr_Value (Dep)) then
7051 Append_List_To (Choices,
7052 New_Copy_List (Discrete_Choices (Alt)));
7058 return Membership_Entries (First (Choices));
7061 -- Expression with actions: if no actions, dig out expression
7063 when N_Expression_With_Actions =>
7064 if Is_Empty_List (Actions (Exp)) then
7065 return Get_RList (Expression (Exp));
7073 return (Get_RList (Left_Opnd (Exp))
7074 and not Get_RList (Right_Opnd (Exp)))
7075 or (Get_RList (Right_Opnd (Exp))
7076 and not Get_RList (Left_Opnd (Exp)));
7078 -- Any other node type is non-static
7089 function Hi_Val (N : Node_Id) return Uint is
7091 if Is_OK_Static_Expression (N) then
7092 return Expr_Value (N);
7094 pragma Assert (Nkind (N) = N_Range);
7095 return Expr_Value (High_Bound (N));
7103 function Is_False (R : RList) return Boolean is
7105 return R'Length = 0;
7112 function Is_True (R : RList) return Boolean is
7115 and then R (R'First).Lo = BLo
7116 and then R (R'First).Hi = BHi;
7123 function Is_Type_Ref (N : Node_Id) return Boolean is
7125 return Nkind (N) = N_Identifier
7126 and then Chars (N) = Nam
7127 and then Paren_Count (N) = 0;
7134 function Lo_Val (N : Node_Id) return Uint is
7136 if Is_OK_Static_Expression (N) then
7137 return Expr_Value (N);
7139 pragma Assert (Nkind (N) = N_Range);
7140 return Expr_Value (Low_Bound (N));
7144 ------------------------
7145 -- Membership_Entries --
7146 ------------------------
7148 function Membership_Entries (N : Node_Id) return RList is
7150 if No (Next (N)) then
7151 return Membership_Entry (N);
7153 return Membership_Entry (N) or Membership_Entries (Next (N));
7155 end Membership_Entries;
7157 ----------------------
7158 -- Membership_Entry --
7159 ----------------------
7161 function Membership_Entry (N : Node_Id) return RList is
7169 if Nkind (N) = N_Range then
7170 if not Is_OK_Static_Expression (Low_Bound (N))
7172 not Is_OK_Static_Expression (High_Bound (N))
7176 SLo := Expr_Value (Low_Bound (N));
7177 SHi := Expr_Value (High_Bound (N));
7178 return RList'(1 => REnt
'(SLo, SHi));
7181 -- Static expression case
7183 elsif Is_OK_Static_Expression (N) then
7184 Val := Expr_Value (N);
7185 return RList'(1 => REnt
'(Val, Val));
7187 -- Identifier (other than static expression) case
7189 else pragma Assert (Nkind (N) = N_Identifier);
7193 if Is_Type (Entity (N)) then
7195 -- If type has predicates, process them
7197 if Has_Predicates (Entity (N)) then
7198 return Stat_Pred (Entity (N));
7200 -- For static subtype without predicates, get range
7202 elsif Is_OK_Static_Subtype (Entity (N)) then
7203 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7204 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7205 return RList'(1 => REnt
'(SLo, SHi));
7207 -- Any other type makes us non-static
7213 -- Any other kind of identifier in predicate (e.g. a non-static
7214 -- expression value) means this is not a static predicate.
7220 end Membership_Entry;
7226 function Stat_Pred (Typ : Entity_Id) return RList is
7228 -- Not static if type does not have static predicates
7230 if not Has_Static_Predicate (Typ) then
7234 -- Otherwise we convert the predicate list to a range list
7237 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7238 Result : RList (1 .. List_Length (Spred));
7242 P := First (Static_Discrete_Predicate (Typ));
7243 for J in Result'Range loop
7244 Result (J) := REnt'(Lo_Val
(P
), Hi_Val
(P
));
7252 -- Start of processing for Build_Discrete_Static_Predicate
7255 -- Analyze the expression to see if it is a static predicate
7258 Ranges
: constant RList
:= Get_RList
(Expr
);
7259 -- Range list from expression if it is static
7264 -- Convert range list into a form for the static predicate. In the
7265 -- Ranges array, we just have raw ranges, these must be converted
7266 -- to properly typed and analyzed static expressions or range nodes.
7268 -- Note: here we limit ranges to the ranges of the subtype, so that
7269 -- a predicate is always false for values outside the subtype. That
7270 -- seems fine, such values are invalid anyway, and considering them
7271 -- to fail the predicate seems allowed and friendly, and furthermore
7272 -- simplifies processing for case statements and loops.
7276 for J
in Ranges
'Range loop
7278 Lo
: Uint
:= Ranges
(J
).Lo
;
7279 Hi
: Uint
:= Ranges
(J
).Hi
;
7282 -- Ignore completely out of range entry
7284 if Hi
< TLo
or else Lo
> THi
then
7287 -- Otherwise process entry
7290 -- Adjust out of range value to subtype range
7300 -- Convert range into required form
7302 Append_To
(Plist
, Build_Range
(Lo
, Hi
));
7307 -- Processing was successful and all entries were static, so now we
7308 -- can store the result as the predicate list.
7310 Set_Static_Discrete_Predicate
(Typ
, Plist
);
7312 -- The processing for static predicates put the expression into
7313 -- canonical form as a series of ranges. It also eliminated
7314 -- duplicates and collapsed and combined ranges. We might as well
7315 -- replace the alternatives list of the right operand of the
7316 -- membership test with the static predicate list, which will
7317 -- usually be more efficient.
7320 New_Alts
: constant List_Id
:= New_List
;
7325 Old_Node
:= First
(Plist
);
7326 while Present
(Old_Node
) loop
7327 New_Node
:= New_Copy
(Old_Node
);
7329 if Nkind
(New_Node
) = N_Range
then
7330 Set_Low_Bound
(New_Node
, New_Copy
(Low_Bound
(Old_Node
)));
7331 Set_High_Bound
(New_Node
, New_Copy
(High_Bound
(Old_Node
)));
7334 Append_To
(New_Alts
, New_Node
);
7338 -- If empty list, replace by False
7340 if Is_Empty_List
(New_Alts
) then
7341 Rewrite
(Expr
, New_Occurrence_Of
(Standard_False
, Loc
));
7343 -- Else replace by set membership test
7348 Left_Opnd
=> Make_Identifier
(Loc
, Nam
),
7349 Right_Opnd
=> Empty
,
7350 Alternatives
=> New_Alts
));
7352 -- Resolve new expression in function context
7354 Install_Formals
(Predicate_Function
(Typ
));
7355 Push_Scope
(Predicate_Function
(Typ
));
7356 Analyze_And_Resolve
(Expr
, Standard_Boolean
);
7362 -- If non-static, return doing nothing
7367 end Build_Discrete_Static_Predicate
;
7369 -------------------------------------------
7370 -- Build_Invariant_Procedure_Declaration --
7371 -------------------------------------------
7373 function Build_Invariant_Procedure_Declaration
7374 (Typ
: Entity_Id
) return Node_Id
7376 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
7377 Object_Entity
: constant Entity_Id
:=
7378 Make_Defining_Identifier
(Loc
, New_Internal_Name
('I'));
7383 Set_Etype
(Object_Entity
, Typ
);
7385 -- Check for duplicate definiations.
7387 if Has_Invariants
(Typ
) and then Present
(Invariant_Procedure
(Typ
)) then
7392 Make_Defining_Identifier
(Loc
,
7393 Chars
=> New_External_Name
(Chars
(Typ
), "Invariant"));
7394 Set_Has_Invariants
(Typ
);
7395 Set_Ekind
(SId
, E_Procedure
);
7396 Set_Is_Invariant_Procedure
(SId
);
7397 Set_Invariant_Procedure
(Typ
, SId
);
7400 Make_Procedure_Specification
(Loc
,
7401 Defining_Unit_Name
=> SId
,
7402 Parameter_Specifications
=> New_List
(
7403 Make_Parameter_Specification
(Loc
,
7404 Defining_Identifier
=> Object_Entity
,
7405 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))));
7407 return Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
7408 end Build_Invariant_Procedure_Declaration
;
7410 -------------------------------
7411 -- Build_Invariant_Procedure --
7412 -------------------------------
7414 -- The procedure that is constructed here has the form
7416 -- procedure typInvariant (Ixxx : typ) is
7418 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7419 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7421 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
7423 -- end typInvariant;
7425 procedure Build_Invariant_Procedure
(Typ
: Entity_Id
; N
: Node_Id
) is
7426 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
7434 -- Name for Check pragma, usually Invariant, but might be Type_Invariant
7435 -- if we come from a Type_Invariant aspect, we make sure to build the
7436 -- Check pragma with the right name, so that Check_Policy works right.
7438 Visible_Decls
: constant List_Id
:= Visible_Declarations
(N
);
7439 Private_Decls
: constant List_Id
:= Private_Declarations
(N
);
7441 procedure Add_Invariants
(T
: Entity_Id
; Inherit
: Boolean);
7442 -- Appends statements to Stmts for any invariants in the rep item chain
7443 -- of the given type. If Inherit is False, then we only process entries
7444 -- on the chain for the type Typ. If Inherit is True, then we ignore any
7445 -- Invariant aspects, but we process all Invariant'Class aspects, adding
7446 -- "inherited" to the exception message and generating an informational
7447 -- message about the inheritance of an invariant.
7449 Object_Name
: Name_Id
;
7450 -- Name for argument of invariant procedure
7452 Object_Entity
: Node_Id
;
7453 -- The entity of the formal for the procedure
7455 --------------------
7456 -- Add_Invariants --
7457 --------------------
7459 procedure Add_Invariants
(T
: Entity_Id
; Inherit
: Boolean) is
7469 procedure Replace_Type_Reference
(N
: Node_Id
);
7470 -- Replace a single occurrence N of the subtype name with a reference
7471 -- to the formal of the predicate function. N can be an identifier
7472 -- referencing the subtype, or a selected component, representing an
7473 -- appropriately qualified occurrence of the subtype name.
7475 procedure Replace_Type_References
is
7476 new Replace_Type_References_Generic
(Replace_Type_Reference
);
7477 -- Traverse an expression replacing all occurrences of the subtype
7478 -- name with appropriate references to the object that is the formal
7479 -- parameter of the predicate function. Note that we must ensure
7480 -- that the type and entity information is properly set in the
7481 -- replacement node, since we will do a Preanalyze call of this
7482 -- expression without proper visibility of the procedure argument.
7484 ----------------------------
7485 -- Replace_Type_Reference --
7486 ----------------------------
7488 -- Note: See comments in Add_Predicates.Replace_Type_Reference
7489 -- regarding handling of Sloc and Comes_From_Source.
7491 procedure Replace_Type_Reference
(N
: Node_Id
) is
7494 -- Add semantic information to node to be rewritten, for ASIS
7495 -- navigation needs.
7497 if Nkind
(N
) = N_Identifier
then
7501 elsif Nkind
(N
) = N_Selected_Component
then
7502 Analyze
(Prefix
(N
));
7503 Set_Entity
(Selector_Name
(N
), T
);
7504 Set_Etype
(Selector_Name
(N
), T
);
7507 -- Invariant'Class, replace with T'Class (obj)
7509 if Class_Present
(Ritem
) then
7511 Make_Type_Conversion
(Sloc
(N
),
7513 Make_Attribute_Reference
(Sloc
(N
),
7514 Prefix
=> New_Occurrence_Of
(T
, Sloc
(N
)),
7515 Attribute_Name
=> Name_Class
),
7516 Expression
=> Make_Identifier
(Sloc
(N
), Object_Name
)));
7518 Set_Entity
(Expression
(N
), Object_Entity
);
7519 Set_Etype
(Expression
(N
), Typ
);
7521 -- Invariant, replace with obj
7524 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Object_Name
));
7525 Set_Entity
(N
, Object_Entity
);
7529 Set_Comes_From_Source
(N
, True);
7530 end Replace_Type_Reference
;
7532 -- Start of processing for Add_Invariants
7535 Ritem
:= First_Rep_Item
(T
);
7536 while Present
(Ritem
) loop
7537 if Nkind
(Ritem
) = N_Pragma
7538 and then Pragma_Name
(Ritem
) = Name_Invariant
7540 Arg1
:= First
(Pragma_Argument_Associations
(Ritem
));
7541 Arg2
:= Next
(Arg1
);
7542 Arg3
:= Next
(Arg2
);
7544 Arg1
:= Get_Pragma_Arg
(Arg1
);
7545 Arg2
:= Get_Pragma_Arg
(Arg2
);
7547 -- For Inherit case, ignore Invariant, process only Class case
7550 if not Class_Present
(Ritem
) then
7554 -- For Inherit false, process only item for right type
7557 if Entity
(Arg1
) /= Typ
then
7563 Stmts
:= Empty_List
;
7566 Exp
:= New_Copy_Tree
(Arg2
);
7568 -- Preserve sloc of original pragma Invariant
7570 Loc
:= Sloc
(Ritem
);
7572 -- We need to replace any occurrences of the name of the type
7573 -- with references to the object, converted to type'Class in
7574 -- the case of Invariant'Class aspects.
7576 Replace_Type_References
(Exp
, T
);
7578 -- If this invariant comes from an aspect, find the aspect
7579 -- specification, and replace the saved expression because
7580 -- we need the subtype references replaced for the calls to
7581 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
7582 -- and Check_Aspect_At_End_Of_Declarations.
7584 if From_Aspect_Specification
(Ritem
) then
7589 -- Loop to find corresponding aspect, note that this
7590 -- must be present given the pragma is marked delayed.
7592 -- Note: in practice Next_Rep_Item (Ritem) is Empty so
7593 -- this loop does nothing. Furthermore, why isn't this
7594 -- simply Corresponding_Aspect ???
7596 Aitem
:= Next_Rep_Item
(Ritem
);
7597 while Present
(Aitem
) loop
7598 if Nkind
(Aitem
) = N_Aspect_Specification
7599 and then Aspect_Rep_Item
(Aitem
) = Ritem
7602 (Identifier
(Aitem
), New_Copy_Tree
(Exp
));
7606 Aitem
:= Next_Rep_Item
(Aitem
);
7611 -- Now we need to preanalyze the expression to properly capture
7612 -- the visibility in the visible part. The expression will not
7613 -- be analyzed for real until the body is analyzed, but that is
7614 -- at the end of the private part and has the wrong visibility.
7616 Set_Parent
(Exp
, N
);
7617 Preanalyze_Assert_Expression
(Exp
, Standard_Boolean
);
7619 -- A class-wide invariant may be inherited in a separate unit,
7620 -- where the corresponding expression cannot be resolved by
7621 -- visibility, because it refers to a local function. Propagate
7622 -- semantic information to the original representation item, to
7623 -- be used when an invariant procedure for a derived type is
7626 -- Unclear how to handle class-wide invariants that are not
7627 -- function calls ???
7630 and then Class_Present
(Ritem
)
7631 and then Nkind
(Exp
) = N_Function_Call
7632 and then Nkind
(Arg2
) = N_Indexed_Component
7635 Make_Function_Call
(Loc
,
7637 New_Occurrence_Of
(Entity
(Name
(Exp
)), Loc
),
7638 Parameter_Associations
=>
7639 New_Copy_List
(Expressions
(Arg2
))));
7642 -- In ASIS mode, even if assertions are not enabled, we must
7643 -- analyze the original expression in the aspect specification
7644 -- because it is part of the original tree.
7646 if ASIS_Mode
and then From_Aspect_Specification
(Ritem
) then
7648 Inv
: constant Node_Id
:=
7649 Expression
(Corresponding_Aspect
(Ritem
));
7651 Replace_Type_References
(Inv
, T
);
7652 Preanalyze_Assert_Expression
(Inv
, Standard_Boolean
);
7656 -- Get name to be used for Check pragma
7658 if not From_Aspect_Specification
(Ritem
) then
7659 Nam
:= Name_Invariant
;
7661 Nam
:= Chars
(Identifier
(Corresponding_Aspect
(Ritem
)));
7664 -- Build first two arguments for Check pragma
7668 Make_Pragma_Argument_Association
(Loc
,
7669 Expression
=> Make_Identifier
(Loc
, Chars
=> Nam
)),
7670 Make_Pragma_Argument_Association
(Loc
,
7671 Expression
=> Exp
));
7673 -- Add message if present in Invariant pragma
7675 if Present
(Arg3
) then
7676 Str
:= Strval
(Get_Pragma_Arg
(Arg3
));
7678 -- If inherited case, and message starts "failed invariant",
7679 -- change it to be "failed inherited invariant".
7682 String_To_Name_Buffer
(Str
);
7684 if Name_Buffer
(1 .. 16) = "failed invariant" then
7685 Insert_Str_In_Name_Buffer
("inherited ", 8);
7686 Str
:= String_From_Name_Buffer
;
7691 Make_Pragma_Argument_Association
(Loc
,
7692 Expression
=> Make_String_Literal
(Loc
, Str
)));
7695 -- Add Check pragma to list of statements
7699 Pragma_Identifier
=>
7700 Make_Identifier
(Loc
, Name_Check
),
7701 Pragma_Argument_Associations
=> Assoc
));
7703 -- If Inherited case and option enabled, output info msg. Note
7704 -- that we know this is a case of Invariant'Class.
7706 if Inherit
and Opt
.List_Inherited_Aspects
then
7707 Error_Msg_Sloc
:= Sloc
(Ritem
);
7709 ("info: & inherits `Invariant''Class` aspect from #?L?",
7715 Next_Rep_Item
(Ritem
);
7719 -- Start of processing for Build_Invariant_Procedure
7727 -- If the aspect specification exists for some view of the type, the
7728 -- declaration for the procedure has been created.
7730 if Has_Invariants
(Typ
) then
7731 SId
:= Invariant_Procedure
(Typ
);
7734 -- If the body is already present, nothing to do. This will occur when
7735 -- the type is already frozen, which is the case when the invariant
7736 -- appears in a private part, and the freezing takes place before the
7737 -- final pass over full declarations.
7739 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
7741 if Present
(SId
) then
7742 PDecl
:= Unit_Declaration_Node
(SId
);
7745 and then Nkind
(PDecl
) = N_Subprogram_Declaration
7746 and then Present
(Corresponding_Body
(PDecl
))
7752 PDecl
:= Build_Invariant_Procedure_Declaration
(Typ
);
7755 -- Recover formal of procedure, for use in the calls to invariant
7756 -- functions (including inherited ones).
7760 (First
(Parameter_Specifications
(Specification
(PDecl
))));
7761 Object_Name
:= Chars
(Object_Entity
);
7763 -- Add invariants for the current type
7765 Add_Invariants
(Typ
, Inherit
=> False);
7767 -- Add invariants for parent types
7770 Current_Typ
: Entity_Id
;
7771 Parent_Typ
: Entity_Id
;
7776 Parent_Typ
:= Etype
(Current_Typ
);
7778 if Is_Private_Type
(Parent_Typ
)
7779 and then Present
(Full_View
(Base_Type
(Parent_Typ
)))
7781 Parent_Typ
:= Full_View
(Base_Type
(Parent_Typ
));
7784 exit when Parent_Typ
= Current_Typ
;
7786 Current_Typ
:= Parent_Typ
;
7787 Add_Invariants
(Current_Typ
, Inherit
=> True);
7791 -- Build the procedure if we generated at least one Check pragma
7793 if Stmts
/= No_List
then
7794 Spec
:= Copy_Separate_Tree
(Specification
(PDecl
));
7797 Make_Subprogram_Body
(Loc
,
7798 Specification
=> Spec
,
7799 Declarations
=> Empty_List
,
7800 Handled_Statement_Sequence
=>
7801 Make_Handled_Sequence_Of_Statements
(Loc
,
7802 Statements
=> Stmts
));
7804 -- Insert procedure declaration and spec at the appropriate points.
7805 -- If declaration is already analyzed, it was processed by the
7806 -- generated pragma.
7808 if Present
(Private_Decls
) then
7810 -- The spec goes at the end of visible declarations, but they have
7811 -- already been analyzed, so we need to explicitly do the analyze.
7813 if not Analyzed
(PDecl
) then
7814 Append_To
(Visible_Decls
, PDecl
);
7818 -- The body goes at the end of the private declarations, which we
7819 -- have not analyzed yet, so we do not need to perform an explicit
7820 -- analyze call. We skip this if there are no private declarations
7821 -- (this is an error that will be caught elsewhere);
7823 Append_To
(Private_Decls
, PBody
);
7825 -- If the invariant appears on the full view of a type, the
7826 -- analysis of the private part is complete, and we must
7827 -- analyze the new body explicitly.
7829 if In_Private_Part
(Current_Scope
) then
7833 -- If there are no private declarations this may be an error that
7834 -- will be diagnosed elsewhere. However, if this is a non-private
7835 -- type that inherits invariants, it needs no completion and there
7836 -- may be no private part. In this case insert invariant procedure
7837 -- at end of current declarative list, and analyze at once, given
7838 -- that the type is about to be frozen.
7840 elsif not Is_Private_Type
(Typ
) then
7841 Append_To
(Visible_Decls
, PDecl
);
7842 Append_To
(Visible_Decls
, PBody
);
7847 end Build_Invariant_Procedure
;
7849 -------------------------------
7850 -- Build_Predicate_Functions --
7851 -------------------------------
7853 -- The procedures that are constructed here have the form:
7855 -- function typPredicate (Ixxx : typ) return Boolean is
7858 -- exp1 and then exp2 and then ...
7859 -- and then typ1Predicate (typ1 (Ixxx))
7860 -- and then typ2Predicate (typ2 (Ixxx))
7862 -- end typPredicate;
7864 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
7865 -- this is the point at which these expressions get analyzed, providing the
7866 -- required delay, and typ1, typ2, are entities from which predicates are
7867 -- inherited. Note that we do NOT generate Check pragmas, that's because we
7868 -- use this function even if checks are off, e.g. for membership tests.
7870 -- If the expression has at least one Raise_Expression, then we also build
7871 -- the typPredicateM version of the function, in which any occurrence of a
7872 -- Raise_Expression is converted to "return False".
7874 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
) is
7875 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
7878 -- This is the expression for the result of the function. It is
7879 -- is build by connecting the component predicates with AND THEN.
7882 -- This is the corresponding return expression for the Predicate_M
7883 -- function. It differs in that raise expressions are marked for
7884 -- special expansion (see Process_REs).
7886 Object_Name
: constant Name_Id
:= New_Internal_Name
('I');
7887 -- Name for argument of Predicate procedure. Note that we use the same
7888 -- name for both predicate functions. That way the reference within the
7889 -- predicate expression is the same in both functions.
7891 Object_Entity
: constant Entity_Id
:=
7892 Make_Defining_Identifier
(Loc
, Chars
=> Object_Name
);
7893 -- Entity for argument of Predicate procedure
7895 Object_Entity_M
: constant Entity_Id
:=
7896 Make_Defining_Identifier
(Loc
, Chars
=> Object_Name
);
7897 -- Entity for argument of Predicate_M procedure
7899 Raise_Expression_Present
: Boolean := False;
7900 -- Set True if Expr has at least one Raise_Expression
7902 procedure Add_Call
(T
: Entity_Id
);
7903 -- Includes a call to the predicate function for type T in Expr if T
7904 -- has predicates and Predicate_Function (T) is non-empty.
7906 procedure Add_Predicates
;
7907 -- Appends expressions for any Predicate pragmas in the rep item chain
7908 -- Typ to Expr. Note that we look only at items for this exact entity.
7909 -- Inheritance of predicates for the parent type is done by calling the
7910 -- Predicate_Function of the parent type, using Add_Call above.
7912 function Test_RE
(N
: Node_Id
) return Traverse_Result
;
7913 -- Used in Test_REs, tests one node for being a raise expression, and if
7914 -- so sets Raise_Expression_Present True.
7916 procedure Test_REs
is new Traverse_Proc
(Test_RE
);
7917 -- Tests to see if Expr contains any raise expressions
7919 function Process_RE
(N
: Node_Id
) return Traverse_Result
;
7920 -- Used in Process REs, tests if node N is a raise expression, and if
7921 -- so, marks it to be converted to return False.
7923 procedure Process_REs
is new Traverse_Proc
(Process_RE
);
7924 -- Marks any raise expressions in Expr_M to return False
7930 procedure Add_Call
(T
: Entity_Id
) is
7934 if Present
(T
) and then Present
(Predicate_Function
(T
)) then
7935 Set_Has_Predicates
(Typ
);
7937 -- Build the call to the predicate function of T
7941 (T
, Convert_To
(T
, Make_Identifier
(Loc
, Object_Name
)));
7943 -- Add call to evolving expression, using AND THEN if needed
7950 Make_And_Then
(Sloc
(Expr
),
7951 Left_Opnd
=> Relocate_Node
(Expr
),
7955 -- Output info message on inheritance if required. Note we do not
7956 -- give this information for generic actual types, since it is
7957 -- unwelcome noise in that case in instantiations. We also
7958 -- generally suppress the message in instantiations, and also
7959 -- if it involves internal names.
7961 if Opt
.List_Inherited_Aspects
7962 and then not Is_Generic_Actual_Type
(Typ
)
7963 and then Instantiation_Depth
(Sloc
(Typ
)) = 0
7964 and then not Is_Internal_Name
(Chars
(T
))
7965 and then not Is_Internal_Name
(Chars
(Typ
))
7967 Error_Msg_Sloc
:= Sloc
(Predicate_Function
(T
));
7968 Error_Msg_Node_2
:= T
;
7969 Error_Msg_N
("info: & inherits predicate from & #?L?", Typ
);
7974 --------------------
7975 -- Add_Predicates --
7976 --------------------
7978 procedure Add_Predicates
is
7983 procedure Replace_Type_Reference
(N
: Node_Id
);
7984 -- Replace a single occurrence N of the subtype name with a reference
7985 -- to the formal of the predicate function. N can be an identifier
7986 -- referencing the subtype, or a selected component, representing an
7987 -- appropriately qualified occurrence of the subtype name.
7989 procedure Replace_Type_References
is
7990 new Replace_Type_References_Generic
(Replace_Type_Reference
);
7991 -- Traverse an expression changing every occurrence of an identifier
7992 -- whose name matches the name of the subtype with a reference to
7993 -- the formal parameter of the predicate function.
7995 ----------------------------
7996 -- Replace_Type_Reference --
7997 ----------------------------
7999 procedure Replace_Type_Reference
(N
: Node_Id
) is
8001 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Object_Name
));
8002 -- Use the Sloc of the usage name, not the defining name
8005 Set_Entity
(N
, Object_Entity
);
8007 -- We want to treat the node as if it comes from source, so that
8008 -- ASIS will not ignore it
8010 Set_Comes_From_Source
(N
, True);
8011 end Replace_Type_Reference
;
8013 -- Start of processing for Add_Predicates
8016 Ritem
:= First_Rep_Item
(Typ
);
8017 while Present
(Ritem
) loop
8018 if Nkind
(Ritem
) = N_Pragma
8019 and then Pragma_Name
(Ritem
) = Name_Predicate
8021 -- Acquire arguments
8023 Arg1
:= First
(Pragma_Argument_Associations
(Ritem
));
8024 Arg2
:= Next
(Arg1
);
8026 Arg1
:= Get_Pragma_Arg
(Arg1
);
8027 Arg2
:= Get_Pragma_Arg
(Arg2
);
8029 -- See if this predicate pragma is for the current type or for
8030 -- its full view. A predicate on a private completion is placed
8031 -- on the partial view beause this is the visible entity that
8034 if Entity
(Arg1
) = Typ
8035 or else Full_View
(Entity
(Arg1
)) = Typ
8037 -- We have a match, this entry is for our subtype
8039 -- We need to replace any occurrences of the name of the
8040 -- type with references to the object.
8042 Replace_Type_References
(Arg2
, Typ
);
8044 -- If this predicate comes from an aspect, find the aspect
8045 -- specification, and replace the saved expression because
8046 -- we need the subtype references replaced for the calls to
8047 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
8048 -- and Check_Aspect_At_End_Of_Declarations.
8050 if From_Aspect_Specification
(Ritem
) then
8055 -- Loop to find corresponding aspect, note that this
8056 -- must be present given the pragma is marked delayed.
8058 Aitem
:= Next_Rep_Item
(Ritem
);
8060 if Nkind
(Aitem
) = N_Aspect_Specification
8061 and then Aspect_Rep_Item
(Aitem
) = Ritem
8064 (Identifier
(Aitem
), New_Copy_Tree
(Arg2
));
8068 Aitem
:= Next_Rep_Item
(Aitem
);
8073 -- Now we can add the expression
8076 Expr
:= Relocate_Node
(Arg2
);
8078 -- There already was a predicate, so add to it
8083 Left_Opnd
=> Relocate_Node
(Expr
),
8084 Right_Opnd
=> Relocate_Node
(Arg2
));
8089 Next_Rep_Item
(Ritem
);
8097 function Process_RE
(N
: Node_Id
) return Traverse_Result
is
8099 if Nkind
(N
) = N_Raise_Expression
then
8100 Set_Convert_To_Return_False
(N
);
8111 function Test_RE
(N
: Node_Id
) return Traverse_Result
is
8113 if Nkind
(N
) = N_Raise_Expression
then
8114 Raise_Expression_Present
:= True;
8121 -- Start of processing for Build_Predicate_Functions
8124 -- Return if already built or if type does not have predicates
8126 if not Has_Predicates
(Typ
)
8127 or else Present
(Predicate_Function
(Typ
))
8132 -- Prepare to construct predicate expression
8136 -- Add Predicates for the current type
8140 -- Add predicates for ancestor if present
8143 Atyp
: constant Entity_Id
:= Nearest_Ancestor
(Typ
);
8145 if Present
(Atyp
) then
8150 -- Case where predicates are present
8152 if Present
(Expr
) then
8154 -- Test for raise expression present
8158 -- If raise expression is present, capture a copy of Expr for use
8159 -- in building the predicateM function version later on. For this
8160 -- copy we replace references to Object_Entity by Object_Entity_M.
8162 if Raise_Expression_Present
then
8164 Map
: constant Elist_Id
:= New_Elmt_List
;
8166 Append_Elmt
(Object_Entity
, Map
);
8167 Append_Elmt
(Object_Entity_M
, Map
);
8168 Expr_M
:= New_Copy_Tree
(Expr
, Map
=> Map
);
8172 -- Build the main predicate function
8175 SId
: constant Entity_Id
:=
8176 Make_Defining_Identifier
(Loc
,
8177 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8178 -- The entity for the the function spec
8180 SIdB
: constant Entity_Id
:=
8181 Make_Defining_Identifier
(Loc
,
8182 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8183 -- The entity for the function body
8190 -- Build function declaration
8192 Set_Ekind
(SId
, E_Function
);
8193 Set_Is_Internal
(SId
);
8194 Set_Is_Predicate_Function
(SId
);
8195 Set_Predicate_Function
(Typ
, SId
);
8197 -- The predicate function is shared between views of a type
8199 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8200 Set_Predicate_Function
(Full_View
(Typ
), SId
);
8204 Make_Function_Specification
(Loc
,
8205 Defining_Unit_Name
=> SId
,
8206 Parameter_Specifications
=> New_List
(
8207 Make_Parameter_Specification
(Loc
,
8208 Defining_Identifier
=> Object_Entity
,
8209 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8210 Result_Definition
=>
8211 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8214 Make_Subprogram_Declaration
(Loc
,
8215 Specification
=> Spec
);
8217 -- Build function body
8220 Make_Function_Specification
(Loc
,
8221 Defining_Unit_Name
=> SIdB
,
8222 Parameter_Specifications
=> New_List
(
8223 Make_Parameter_Specification
(Loc
,
8224 Defining_Identifier
=>
8225 Make_Defining_Identifier
(Loc
, Object_Name
),
8227 New_Occurrence_Of
(Typ
, Loc
))),
8228 Result_Definition
=>
8229 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8232 Make_Subprogram_Body
(Loc
,
8233 Specification
=> Spec
,
8234 Declarations
=> Empty_List
,
8235 Handled_Statement_Sequence
=>
8236 Make_Handled_Sequence_Of_Statements
(Loc
,
8237 Statements
=> New_List
(
8238 Make_Simple_Return_Statement
(Loc
,
8239 Expression
=> Expr
))));
8241 -- Insert declaration before freeze node and body after
8243 Insert_Before_And_Analyze
(N
, FDecl
);
8244 Insert_After_And_Analyze
(N
, FBody
);
8247 -- Test for raise expressions present and if so build M version
8249 if Raise_Expression_Present
then
8251 SId
: constant Entity_Id
:=
8252 Make_Defining_Identifier
(Loc
,
8253 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8254 -- The entity for the the function spec
8256 SIdB
: constant Entity_Id
:=
8257 Make_Defining_Identifier
(Loc
,
8258 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8259 -- The entity for the function body
8267 -- Mark any raise expressions for special expansion
8269 Process_REs
(Expr_M
);
8271 -- Build function declaration
8273 Set_Ekind
(SId
, E_Function
);
8274 Set_Is_Predicate_Function_M
(SId
);
8275 Set_Predicate_Function_M
(Typ
, SId
);
8277 -- The predicate function is shared between views of a type
8279 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8280 Set_Predicate_Function_M
(Full_View
(Typ
), SId
);
8284 Make_Function_Specification
(Loc
,
8285 Defining_Unit_Name
=> SId
,
8286 Parameter_Specifications
=> New_List
(
8287 Make_Parameter_Specification
(Loc
,
8288 Defining_Identifier
=> Object_Entity_M
,
8289 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8290 Result_Definition
=>
8291 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8294 Make_Subprogram_Declaration
(Loc
,
8295 Specification
=> Spec
);
8297 -- Build function body
8300 Make_Function_Specification
(Loc
,
8301 Defining_Unit_Name
=> SIdB
,
8302 Parameter_Specifications
=> New_List
(
8303 Make_Parameter_Specification
(Loc
,
8304 Defining_Identifier
=>
8305 Make_Defining_Identifier
(Loc
, Object_Name
),
8307 New_Occurrence_Of
(Typ
, Loc
))),
8308 Result_Definition
=>
8309 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8311 -- Build the body, we declare the boolean expression before
8312 -- doing the return, because we are not really confident of
8313 -- what happens if a return appears within a return.
8316 Make_Defining_Identifier
(Loc
,
8317 Chars
=> New_Internal_Name
('B'));
8320 Make_Subprogram_Body
(Loc
,
8321 Specification
=> Spec
,
8323 Declarations
=> New_List
(
8324 Make_Object_Declaration
(Loc
,
8325 Defining_Identifier
=> BTemp
,
8326 Constant_Present
=> True,
8327 Object_Definition
=>
8328 New_Occurrence_Of
(Standard_Boolean
, Loc
),
8329 Expression
=> Expr_M
)),
8331 Handled_Statement_Sequence
=>
8332 Make_Handled_Sequence_Of_Statements
(Loc
,
8333 Statements
=> New_List
(
8334 Make_Simple_Return_Statement
(Loc
,
8335 Expression
=> New_Occurrence_Of
(BTemp
, Loc
)))));
8337 -- Insert declaration before freeze node and body after
8339 Insert_Before_And_Analyze
(N
, FDecl
);
8340 Insert_After_And_Analyze
(N
, FBody
);
8344 -- See if we have a static predicate. Note that the answer may be
8345 -- yes even if we have an explicit Dynamic_Predicate present.
8352 if not Is_Scalar_Type
(Typ
) and then not Is_String_Type
(Typ
) then
8355 PS
:= Is_Predicate_Static
(Expr
, Object_Name
);
8358 -- Case where we have a predicate-static aspect
8362 -- We don't set Has_Static_Predicate_Aspect, since we can have
8363 -- any of the three cases (Predicate, Dynamic_Predicate, or
8364 -- Static_Predicate) generating a predicate with an expression
8365 -- that is predicate-static. We just indicate that we have a
8366 -- predicate that can be treated as static.
8368 Set_Has_Static_Predicate
(Typ
);
8370 -- For discrete subtype, build the static predicate list
8372 if Is_Discrete_Type
(Typ
) then
8373 if not Is_Static_Subtype
(Typ
) then
8375 -- This can only happen in the presence of previous
8378 pragma Assert
(Serious_Errors_Detected
> 0);
8382 Build_Discrete_Static_Predicate
(Typ
, Expr
, Object_Name
);
8384 -- If we don't get a static predicate list, it means that we
8385 -- have a case where this is not possible, most typically in
8386 -- the case where we inherit a dynamic predicate. We do not
8387 -- consider this an error, we just leave the predicate as
8388 -- dynamic. But if we do succeed in building the list, then
8389 -- we mark the predicate as static.
8391 if No
(Static_Discrete_Predicate
(Typ
)) then
8392 Set_Has_Static_Predicate
(Typ
, False);
8395 -- For real or string subtype, save predicate expression
8397 elsif Is_Real_Type
(Typ
) or else Is_String_Type
(Typ
) then
8398 Set_Static_Real_Or_String_Predicate
(Typ
, Expr
);
8401 -- Case of dynamic predicate (expression is not predicate-static)
8404 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8405 -- is only set if we have an explicit Dynamic_Predicate aspect
8406 -- given. Here we may simply have a Predicate aspect where the
8407 -- expression happens not to be predicate-static.
8409 -- Emit an error when the predicate is categorized as static
8410 -- but its expression is not predicate-static.
8412 -- First a little fiddling to get a nice location for the
8413 -- message. If the expression is of the form (A and then B),
8414 -- then use the left operand for the Sloc. This avoids getting
8415 -- confused by a call to a higher-level predicate with a less
8416 -- convenient source location.
8419 while Nkind
(EN
) = N_And_Then
loop
8420 EN
:= Left_Opnd
(EN
);
8423 -- Now post appropriate message
8425 if Has_Static_Predicate_Aspect
(Typ
) then
8426 if Is_Scalar_Type
(Typ
) or else Is_String_Type
(Typ
) then
8428 ("expression is not predicate-static (RM 3.2.4(16-22))",
8432 ("static predicate requires scalar or string type", EN
);
8438 end Build_Predicate_Functions
;
8440 -----------------------------------------
8441 -- Check_Aspect_At_End_Of_Declarations --
8442 -----------------------------------------
8444 procedure Check_Aspect_At_End_Of_Declarations
(ASN
: Node_Id
) is
8445 Ent
: constant Entity_Id
:= Entity
(ASN
);
8446 Ident
: constant Node_Id
:= Identifier
(ASN
);
8447 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
8449 End_Decl_Expr
: constant Node_Id
:= Entity
(Ident
);
8450 -- Expression to be analyzed at end of declarations
8452 Freeze_Expr
: constant Node_Id
:= Expression
(ASN
);
8453 -- Expression from call to Check_Aspect_At_Freeze_Point
8455 T
: constant Entity_Id
:= Etype
(Freeze_Expr
);
8456 -- Type required for preanalyze call
8459 -- Set False if error
8461 -- On entry to this procedure, Entity (Ident) contains a copy of the
8462 -- original expression from the aspect, saved for this purpose, and
8463 -- but Expression (Ident) is a preanalyzed copy of the expression,
8464 -- preanalyzed just after the freeze point.
8466 procedure Check_Overloaded_Name
;
8467 -- For aspects whose expression is simply a name, this routine checks if
8468 -- the name is overloaded or not. If so, it verifies there is an
8469 -- interpretation that matches the entity obtained at the freeze point,
8470 -- otherwise the compiler complains.
8472 ---------------------------
8473 -- Check_Overloaded_Name --
8474 ---------------------------
8476 procedure Check_Overloaded_Name
is
8478 if not Is_Overloaded
(End_Decl_Expr
) then
8479 Err
:= not Is_Entity_Name
(End_Decl_Expr
)
8480 or else Entity
(End_Decl_Expr
) /= Entity
(Freeze_Expr
);
8486 Index
: Interp_Index
;
8490 Get_First_Interp
(End_Decl_Expr
, Index
, It
);
8491 while Present
(It
.Typ
) loop
8492 if It
.Nam
= Entity
(Freeze_Expr
) then
8497 Get_Next_Interp
(Index
, It
);
8501 end Check_Overloaded_Name
;
8503 -- Start of processing for Check_Aspect_At_End_Of_Declarations
8506 -- Case of aspects Dimension, Dimension_System and Synchronization
8508 if A_Id
= Aspect_Synchronization
then
8511 -- Case of stream attributes, just have to compare entities. However,
8512 -- the expression is just a name (possibly overloaded), and there may
8513 -- be stream operations declared for unrelated types, so we just need
8514 -- to verify that one of these interpretations is the one available at
8515 -- at the freeze point.
8517 elsif A_Id
= Aspect_Input
or else
8518 A_Id
= Aspect_Output
or else
8519 A_Id
= Aspect_Read
or else
8522 Analyze
(End_Decl_Expr
);
8523 Check_Overloaded_Name
;
8525 elsif A_Id
= Aspect_Variable_Indexing
or else
8526 A_Id
= Aspect_Constant_Indexing
or else
8527 A_Id
= Aspect_Default_Iterator
or else
8528 A_Id
= Aspect_Iterator_Element
8530 -- Make type unfrozen before analysis, to prevent spurious errors
8531 -- about late attributes.
8533 Set_Is_Frozen
(Ent
, False);
8534 Analyze
(End_Decl_Expr
);
8535 Set_Is_Frozen
(Ent
, True);
8537 -- If the end of declarations comes before any other freeze
8538 -- point, the Freeze_Expr is not analyzed: no check needed.
8540 if Analyzed
(Freeze_Expr
) and then not In_Instance
then
8541 Check_Overloaded_Name
;
8549 -- Indicate that the expression comes from an aspect specification,
8550 -- which is used in subsequent analysis even if expansion is off.
8552 Set_Parent
(End_Decl_Expr
, ASN
);
8554 -- In a generic context the aspect expressions have not been
8555 -- preanalyzed, so do it now. There are no conformance checks
8556 -- to perform in this case.
8559 Check_Aspect_At_Freeze_Point
(ASN
);
8562 -- The default values attributes may be defined in the private part,
8563 -- and the analysis of the expression may take place when only the
8564 -- partial view is visible. The expression must be scalar, so use
8565 -- the full view to resolve.
8567 elsif (A_Id
= Aspect_Default_Value
8569 A_Id
= Aspect_Default_Component_Value
)
8570 and then Is_Private_Type
(T
)
8572 Preanalyze_Spec_Expression
(End_Decl_Expr
, Full_View
(T
));
8575 Preanalyze_Spec_Expression
(End_Decl_Expr
, T
);
8578 Err
:= not Fully_Conformant_Expressions
(End_Decl_Expr
, Freeze_Expr
);
8581 -- Output error message if error. Force error on aspect specification
8582 -- even if there is an error on the expression itself.
8586 ("!visibility of aspect for& changes after freeze point",
8589 ("info: & is frozen here, aspects evaluated at this point??",
8590 Freeze_Node
(Ent
), Ent
);
8592 end Check_Aspect_At_End_Of_Declarations
;
8594 ----------------------------------
8595 -- Check_Aspect_At_Freeze_Point --
8596 ----------------------------------
8598 procedure Check_Aspect_At_Freeze_Point
(ASN
: Node_Id
) is
8599 Ident
: constant Node_Id
:= Identifier
(ASN
);
8600 -- Identifier (use Entity field to save expression)
8602 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
8604 T
: Entity_Id
:= Empty
;
8605 -- Type required for preanalyze call
8608 -- On entry to this procedure, Entity (Ident) contains a copy of the
8609 -- original expression from the aspect, saved for this purpose.
8611 -- On exit from this procedure Entity (Ident) is unchanged, still
8612 -- containing that copy, but Expression (Ident) is a preanalyzed copy
8613 -- of the expression, preanalyzed just after the freeze point.
8615 -- Make a copy of the expression to be preanalyzed
8617 Set_Expression
(ASN
, New_Copy_Tree
(Entity
(Ident
)));
8619 -- Find type for preanalyze call
8623 -- No_Aspect should be impossible
8626 raise Program_Error
;
8628 -- Aspects taking an optional boolean argument
8630 when Boolean_Aspects |
8631 Library_Unit_Aspects
=>
8633 T
:= Standard_Boolean
;
8635 -- Aspects corresponding to attribute definition clauses
8637 when Aspect_Address
=>
8638 T
:= RTE
(RE_Address
);
8640 when Aspect_Attach_Handler
=>
8641 T
:= RTE
(RE_Interrupt_ID
);
8643 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order
=>
8644 T
:= RTE
(RE_Bit_Order
);
8646 when Aspect_Convention
=>
8650 T
:= RTE
(RE_CPU_Range
);
8652 -- Default_Component_Value is resolved with the component type
8654 when Aspect_Default_Component_Value
=>
8655 T
:= Component_Type
(Entity
(ASN
));
8657 -- Default_Value is resolved with the type entity in question
8659 when Aspect_Default_Value
=>
8662 -- Depends is a delayed aspect because it mentiones names first
8663 -- introduced by aspect Global which is already delayed. There is
8664 -- no action to be taken with respect to the aspect itself as the
8665 -- analysis is done by the corresponding pragma.
8667 when Aspect_Depends
=>
8670 when Aspect_Dispatching_Domain
=>
8671 T
:= RTE
(RE_Dispatching_Domain
);
8673 when Aspect_External_Tag
=>
8674 T
:= Standard_String
;
8676 when Aspect_External_Name
=>
8677 T
:= Standard_String
;
8679 -- Global is a delayed aspect because it may reference names that
8680 -- have not been declared yet. There is no action to be taken with
8681 -- respect to the aspect itself as the reference checking is done
8682 -- on the corresponding pragma.
8684 when Aspect_Global
=>
8687 when Aspect_Link_Name
=>
8688 T
:= Standard_String
;
8690 when Aspect_Priority | Aspect_Interrupt_Priority
=>
8691 T
:= Standard_Integer
;
8693 when Aspect_Relative_Deadline
=>
8694 T
:= RTE
(RE_Time_Span
);
8696 when Aspect_Small
=>
8697 T
:= Universal_Real
;
8699 -- For a simple storage pool, we have to retrieve the type of the
8700 -- pool object associated with the aspect's corresponding attribute
8701 -- definition clause.
8703 when Aspect_Simple_Storage_Pool
=>
8704 T
:= Etype
(Expression
(Aspect_Rep_Item
(ASN
)));
8706 when Aspect_Storage_Pool
=>
8707 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
8709 when Aspect_Alignment |
8710 Aspect_Component_Size |
8711 Aspect_Machine_Radix |
8712 Aspect_Object_Size |
8714 Aspect_Storage_Size |
8715 Aspect_Stream_Size |
8716 Aspect_Value_Size
=>
8719 when Aspect_Linker_Section
=>
8720 T
:= Standard_String
;
8722 when Aspect_Synchronization
=>
8725 -- Special case, the expression of these aspects is just an entity
8726 -- that does not need any resolution, so just analyze.
8735 Analyze
(Expression
(ASN
));
8738 -- Same for Iterator aspects, where the expression is a function
8739 -- name. Legality rules are checked separately.
8741 when Aspect_Constant_Indexing |
8742 Aspect_Default_Iterator |
8743 Aspect_Iterator_Element |
8744 Aspect_Variable_Indexing
=>
8745 Analyze
(Expression
(ASN
));
8748 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
8750 when Aspect_Iterable
=>
8754 Cursor
: constant Entity_Id
:= Get_Cursor_Type
(ASN
, T
);
8759 if Cursor
= Any_Type
then
8763 Assoc
:= First
(Component_Associations
(Expression
(ASN
)));
8764 while Present
(Assoc
) loop
8765 Expr
:= Expression
(Assoc
);
8768 if not Error_Posted
(Expr
) then
8769 Resolve_Iterable_Operation
8770 (Expr
, Cursor
, T
, Chars
(First
(Choices
(Assoc
))));
8779 -- Invariant/Predicate take boolean expressions
8781 when Aspect_Dynamic_Predicate |
8784 Aspect_Static_Predicate |
8785 Aspect_Type_Invariant
=>
8786 T
:= Standard_Boolean
;
8788 -- Here is the list of aspects that don't require delay analysis
8790 when Aspect_Abstract_State |
8792 Aspect_Contract_Cases |
8793 Aspect_Default_Initial_Condition |
8795 Aspect_Dimension_System |
8796 Aspect_Implicit_Dereference |
8797 Aspect_Initial_Condition |
8798 Aspect_Initializes |
8799 Aspect_Obsolescent |
8802 Aspect_Postcondition |
8804 Aspect_Precondition |
8805 Aspect_Refined_Depends |
8806 Aspect_Refined_Global |
8807 Aspect_Refined_Post |
8808 Aspect_Refined_State |
8811 raise Program_Error
;
8815 -- Do the preanalyze call
8817 Preanalyze_Spec_Expression
(Expression
(ASN
), T
);
8818 end Check_Aspect_At_Freeze_Point
;
8820 -----------------------------------
8821 -- Check_Constant_Address_Clause --
8822 -----------------------------------
8824 procedure Check_Constant_Address_Clause
8828 procedure Check_At_Constant_Address
(Nod
: Node_Id
);
8829 -- Checks that the given node N represents a name whose 'Address is
8830 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
8831 -- address value is the same at the point of declaration of U_Ent and at
8832 -- the time of elaboration of the address clause.
8834 procedure Check_Expr_Constants
(Nod
: Node_Id
);
8835 -- Checks that Nod meets the requirements for a constant address clause
8836 -- in the sense of the enclosing procedure.
8838 procedure Check_List_Constants
(Lst
: List_Id
);
8839 -- Check that all elements of list Lst meet the requirements for a
8840 -- constant address clause in the sense of the enclosing procedure.
8842 -------------------------------
8843 -- Check_At_Constant_Address --
8844 -------------------------------
8846 procedure Check_At_Constant_Address
(Nod
: Node_Id
) is
8848 if Is_Entity_Name
(Nod
) then
8849 if Present
(Address_Clause
(Entity
((Nod
)))) then
8851 ("invalid address clause for initialized object &!",
8854 ("address for& cannot" &
8855 " depend on another address clause! (RM 13.1(22))!",
8858 elsif In_Same_Source_Unit
(Entity
(Nod
), U_Ent
)
8859 and then Sloc
(U_Ent
) < Sloc
(Entity
(Nod
))
8862 ("invalid address clause for initialized object &!",
8864 Error_Msg_Node_2
:= U_Ent
;
8866 ("\& must be defined before & (RM 13.1(22))!",
8870 elsif Nkind
(Nod
) = N_Selected_Component
then
8872 T
: constant Entity_Id
:= Etype
(Prefix
(Nod
));
8875 if (Is_Record_Type
(T
)
8876 and then Has_Discriminants
(T
))
8879 and then Is_Record_Type
(Designated_Type
(T
))
8880 and then Has_Discriminants
(Designated_Type
(T
)))
8883 ("invalid address clause for initialized object &!",
8886 ("\address cannot depend on component" &
8887 " of discriminated record (RM 13.1(22))!",
8890 Check_At_Constant_Address
(Prefix
(Nod
));
8894 elsif Nkind
(Nod
) = N_Indexed_Component
then
8895 Check_At_Constant_Address
(Prefix
(Nod
));
8896 Check_List_Constants
(Expressions
(Nod
));
8899 Check_Expr_Constants
(Nod
);
8901 end Check_At_Constant_Address
;
8903 --------------------------
8904 -- Check_Expr_Constants --
8905 --------------------------
8907 procedure Check_Expr_Constants
(Nod
: Node_Id
) is
8908 Loc_U_Ent
: constant Source_Ptr
:= Sloc
(U_Ent
);
8909 Ent
: Entity_Id
:= Empty
;
8912 if Nkind
(Nod
) in N_Has_Etype
8913 and then Etype
(Nod
) = Any_Type
8919 when N_Empty | N_Error
=>
8922 when N_Identifier | N_Expanded_Name
=>
8923 Ent
:= Entity
(Nod
);
8925 -- We need to look at the original node if it is different
8926 -- from the node, since we may have rewritten things and
8927 -- substituted an identifier representing the rewrite.
8929 if Original_Node
(Nod
) /= Nod
then
8930 Check_Expr_Constants
(Original_Node
(Nod
));
8932 -- If the node is an object declaration without initial
8933 -- value, some code has been expanded, and the expression
8934 -- is not constant, even if the constituents might be
8935 -- acceptable, as in A'Address + offset.
8937 if Ekind
(Ent
) = E_Variable
8939 Nkind
(Declaration_Node
(Ent
)) = N_Object_Declaration
8941 No
(Expression
(Declaration_Node
(Ent
)))
8944 ("invalid address clause for initialized object &!",
8947 -- If entity is constant, it may be the result of expanding
8948 -- a check. We must verify that its declaration appears
8949 -- before the object in question, else we also reject the
8952 elsif Ekind
(Ent
) = E_Constant
8953 and then In_Same_Source_Unit
(Ent
, U_Ent
)
8954 and then Sloc
(Ent
) > Loc_U_Ent
8957 ("invalid address clause for initialized object &!",
8964 -- Otherwise look at the identifier and see if it is OK
8966 if Ekind_In
(Ent
, E_Named_Integer
, E_Named_Real
)
8967 or else Is_Type
(Ent
)
8971 elsif Ekind_In
(Ent
, E_Constant
, E_In_Parameter
) then
8973 -- This is the case where we must have Ent defined before
8974 -- U_Ent. Clearly if they are in different units this
8975 -- requirement is met since the unit containing Ent is
8976 -- already processed.
8978 if not In_Same_Source_Unit
(Ent
, U_Ent
) then
8981 -- Otherwise location of Ent must be before the location
8982 -- of U_Ent, that's what prior defined means.
8984 elsif Sloc
(Ent
) < Loc_U_Ent
then
8989 ("invalid address clause for initialized object &!",
8991 Error_Msg_Node_2
:= U_Ent
;
8993 ("\& must be defined before & (RM 13.1(22))!",
8997 elsif Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
8998 Check_Expr_Constants
(Original_Node
(Nod
));
9002 ("invalid address clause for initialized object &!",
9005 if Comes_From_Source
(Ent
) then
9007 ("\reference to variable& not allowed"
9008 & " (RM 13.1(22))!", Nod
, Ent
);
9011 ("non-static expression not allowed"
9012 & " (RM 13.1(22))!", Nod
);
9016 when N_Integer_Literal
=>
9018 -- If this is a rewritten unchecked conversion, in a system
9019 -- where Address is an integer type, always use the base type
9020 -- for a literal value. This is user-friendly and prevents
9021 -- order-of-elaboration issues with instances of unchecked
9024 if Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9025 Set_Etype
(Nod
, Base_Type
(Etype
(Nod
)));
9028 when N_Real_Literal |
9030 N_Character_Literal
=>
9034 Check_Expr_Constants
(Low_Bound
(Nod
));
9035 Check_Expr_Constants
(High_Bound
(Nod
));
9037 when N_Explicit_Dereference
=>
9038 Check_Expr_Constants
(Prefix
(Nod
));
9040 when N_Indexed_Component
=>
9041 Check_Expr_Constants
(Prefix
(Nod
));
9042 Check_List_Constants
(Expressions
(Nod
));
9045 Check_Expr_Constants
(Prefix
(Nod
));
9046 Check_Expr_Constants
(Discrete_Range
(Nod
));
9048 when N_Selected_Component
=>
9049 Check_Expr_Constants
(Prefix
(Nod
));
9051 when N_Attribute_Reference
=>
9052 if Nam_In
(Attribute_Name
(Nod
), Name_Address
,
9054 Name_Unchecked_Access
,
9055 Name_Unrestricted_Access
)
9057 Check_At_Constant_Address
(Prefix
(Nod
));
9060 Check_Expr_Constants
(Prefix
(Nod
));
9061 Check_List_Constants
(Expressions
(Nod
));
9065 Check_List_Constants
(Component_Associations
(Nod
));
9066 Check_List_Constants
(Expressions
(Nod
));
9068 when N_Component_Association
=>
9069 Check_Expr_Constants
(Expression
(Nod
));
9071 when N_Extension_Aggregate
=>
9072 Check_Expr_Constants
(Ancestor_Part
(Nod
));
9073 Check_List_Constants
(Component_Associations
(Nod
));
9074 Check_List_Constants
(Expressions
(Nod
));
9079 when N_Binary_Op | N_Short_Circuit | N_Membership_Test
=>
9080 Check_Expr_Constants
(Left_Opnd
(Nod
));
9081 Check_Expr_Constants
(Right_Opnd
(Nod
));
9084 Check_Expr_Constants
(Right_Opnd
(Nod
));
9086 when N_Type_Conversion |
9087 N_Qualified_Expression |
9089 N_Unchecked_Type_Conversion
=>
9090 Check_Expr_Constants
(Expression
(Nod
));
9092 when N_Function_Call
=>
9093 if not Is_Pure
(Entity
(Name
(Nod
))) then
9095 ("invalid address clause for initialized object &!",
9099 ("\function & is not pure (RM 13.1(22))!",
9100 Nod
, Entity
(Name
(Nod
)));
9103 Check_List_Constants
(Parameter_Associations
(Nod
));
9106 when N_Parameter_Association
=>
9107 Check_Expr_Constants
(Explicit_Actual_Parameter
(Nod
));
9111 ("invalid address clause for initialized object &!",
9114 ("\must be constant defined before& (RM 13.1(22))!",
9117 end Check_Expr_Constants
;
9119 --------------------------
9120 -- Check_List_Constants --
9121 --------------------------
9123 procedure Check_List_Constants
(Lst
: List_Id
) is
9127 if Present
(Lst
) then
9128 Nod1
:= First
(Lst
);
9129 while Present
(Nod1
) loop
9130 Check_Expr_Constants
(Nod1
);
9134 end Check_List_Constants
;
9136 -- Start of processing for Check_Constant_Address_Clause
9139 -- If rep_clauses are to be ignored, no need for legality checks. In
9140 -- particular, no need to pester user about rep clauses that violate
9141 -- the rule on constant addresses, given that these clauses will be
9142 -- removed by Freeze before they reach the back end.
9144 if not Ignore_Rep_Clauses
then
9145 Check_Expr_Constants
(Expr
);
9147 end Check_Constant_Address_Clause
;
9149 ---------------------------
9150 -- Check_Pool_Size_Clash --
9151 ---------------------------
9153 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
) is
9157 -- We need to find out which one came first. Note that in the case of
9158 -- aspects mixed with pragmas there are cases where the processing order
9159 -- is reversed, which is why we do the check here.
9161 if Sloc
(SP
) < Sloc
(SS
) then
9162 Error_Msg_Sloc
:= Sloc
(SP
);
9164 Error_Msg_NE
("Storage_Pool previously given for&#", Post
, Ent
);
9167 Error_Msg_Sloc
:= Sloc
(SS
);
9169 Error_Msg_NE
("Storage_Size previously given for&#", Post
, Ent
);
9173 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post
);
9174 end Check_Pool_Size_Clash
;
9176 ----------------------------------------
9177 -- Check_Record_Representation_Clause --
9178 ----------------------------------------
9180 procedure Check_Record_Representation_Clause
(N
: Node_Id
) is
9181 Loc
: constant Source_Ptr
:= Sloc
(N
);
9182 Ident
: constant Node_Id
:= Identifier
(N
);
9183 Rectype
: Entity_Id
;
9188 Hbit
: Uint
:= Uint_0
;
9192 Max_Bit_So_Far
: Uint
;
9193 -- Records the maximum bit position so far. If all field positions
9194 -- are monotonically increasing, then we can skip the circuit for
9195 -- checking for overlap, since no overlap is possible.
9197 Tagged_Parent
: Entity_Id
:= Empty
;
9198 -- This is set in the case of a derived tagged type for which we have
9199 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9200 -- positioned by record representation clauses). In this case we must
9201 -- check for overlap between components of this tagged type, and the
9202 -- components of its parent. Tagged_Parent will point to this parent
9203 -- type. For all other cases Tagged_Parent is left set to Empty.
9205 Parent_Last_Bit
: Uint
;
9206 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9207 -- last bit position for any field in the parent type. We only need to
9208 -- check overlap for fields starting below this point.
9210 Overlap_Check_Required
: Boolean;
9211 -- Used to keep track of whether or not an overlap check is required
9213 Overlap_Detected
: Boolean := False;
9214 -- Set True if an overlap is detected
9216 Ccount
: Natural := 0;
9217 -- Number of component clauses in record rep clause
9219 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
);
9220 -- Given two entities for record components or discriminants, checks
9221 -- if they have overlapping component clauses and issues errors if so.
9223 procedure Find_Component
;
9224 -- Finds component entity corresponding to current component clause (in
9225 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9226 -- start/stop bits for the field. If there is no matching component or
9227 -- if the matching component does not have a component clause, then
9228 -- that's an error and Comp is set to Empty, but no error message is
9229 -- issued, since the message was already given. Comp is also set to
9230 -- Empty if the current "component clause" is in fact a pragma.
9232 -----------------------------
9233 -- Check_Component_Overlap --
9234 -----------------------------
9236 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
) is
9237 CC1
: constant Node_Id
:= Component_Clause
(C1_Ent
);
9238 CC2
: constant Node_Id
:= Component_Clause
(C2_Ent
);
9241 if Present
(CC1
) and then Present
(CC2
) then
9243 -- Exclude odd case where we have two tag components in the same
9244 -- record, both at location zero. This seems a bit strange, but
9245 -- it seems to happen in some circumstances, perhaps on an error.
9247 if Nam_In
(Chars
(C1_Ent
), Name_uTag
, Name_uTag
) then
9251 -- Here we check if the two fields overlap
9254 S1
: constant Uint
:= Component_Bit_Offset
(C1_Ent
);
9255 S2
: constant Uint
:= Component_Bit_Offset
(C2_Ent
);
9256 E1
: constant Uint
:= S1
+ Esize
(C1_Ent
);
9257 E2
: constant Uint
:= S2
+ Esize
(C2_Ent
);
9260 if E2
<= S1
or else E1
<= S2
then
9263 Error_Msg_Node_2
:= Component_Name
(CC2
);
9264 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
9265 Error_Msg_Node_1
:= Component_Name
(CC1
);
9267 ("component& overlaps & #", Component_Name
(CC1
));
9268 Overlap_Detected
:= True;
9272 end Check_Component_Overlap
;
9274 --------------------
9275 -- Find_Component --
9276 --------------------
9278 procedure Find_Component
is
9280 procedure Search_Component
(R
: Entity_Id
);
9281 -- Search components of R for a match. If found, Comp is set
9283 ----------------------
9284 -- Search_Component --
9285 ----------------------
9287 procedure Search_Component
(R
: Entity_Id
) is
9289 Comp
:= First_Component_Or_Discriminant
(R
);
9290 while Present
(Comp
) loop
9292 -- Ignore error of attribute name for component name (we
9293 -- already gave an error message for this, so no need to
9296 if Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
9299 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
9302 Next_Component_Or_Discriminant
(Comp
);
9304 end Search_Component
;
9306 -- Start of processing for Find_Component
9309 -- Return with Comp set to Empty if we have a pragma
9311 if Nkind
(CC
) = N_Pragma
then
9316 -- Search current record for matching component
9318 Search_Component
(Rectype
);
9320 -- If not found, maybe component of base type discriminant that is
9321 -- absent from statically constrained first subtype.
9324 Search_Component
(Base_Type
(Rectype
));
9327 -- If no component, or the component does not reference the component
9328 -- clause in question, then there was some previous error for which
9329 -- we already gave a message, so just return with Comp Empty.
9331 if No
(Comp
) or else Component_Clause
(Comp
) /= CC
then
9332 Check_Error_Detected
;
9335 -- Normal case where we have a component clause
9338 Fbit
:= Component_Bit_Offset
(Comp
);
9339 Lbit
:= Fbit
+ Esize
(Comp
) - 1;
9343 -- Start of processing for Check_Record_Representation_Clause
9347 Rectype
:= Entity
(Ident
);
9349 if Rectype
= Any_Type
then
9352 Rectype
:= Underlying_Type
(Rectype
);
9355 -- See if we have a fully repped derived tagged type
9358 PS
: constant Entity_Id
:= Parent_Subtype
(Rectype
);
9361 if Present
(PS
) and then Is_Fully_Repped_Tagged_Type
(PS
) then
9362 Tagged_Parent
:= PS
;
9364 -- Find maximum bit of any component of the parent type
9366 Parent_Last_Bit
:= UI_From_Int
(System_Address_Size
- 1);
9367 Pcomp
:= First_Entity
(Tagged_Parent
);
9368 while Present
(Pcomp
) loop
9369 if Ekind_In
(Pcomp
, E_Discriminant
, E_Component
) then
9370 if Component_Bit_Offset
(Pcomp
) /= No_Uint
9371 and then Known_Static_Esize
(Pcomp
)
9376 Component_Bit_Offset
(Pcomp
) + Esize
(Pcomp
) - 1);
9379 Next_Entity
(Pcomp
);
9385 -- All done if no component clauses
9387 CC
:= First
(Component_Clauses
(N
));
9393 -- If a tag is present, then create a component clause that places it
9394 -- at the start of the record (otherwise gigi may place it after other
9395 -- fields that have rep clauses).
9397 Fent
:= First_Entity
(Rectype
);
9399 if Nkind
(Fent
) = N_Defining_Identifier
9400 and then Chars
(Fent
) = Name_uTag
9402 Set_Component_Bit_Offset
(Fent
, Uint_0
);
9403 Set_Normalized_Position
(Fent
, Uint_0
);
9404 Set_Normalized_First_Bit
(Fent
, Uint_0
);
9405 Set_Normalized_Position_Max
(Fent
, Uint_0
);
9406 Init_Esize
(Fent
, System_Address_Size
);
9408 Set_Component_Clause
(Fent
,
9409 Make_Component_Clause
(Loc
,
9410 Component_Name
=> Make_Identifier
(Loc
, Name_uTag
),
9412 Position
=> Make_Integer_Literal
(Loc
, Uint_0
),
9413 First_Bit
=> Make_Integer_Literal
(Loc
, Uint_0
),
9415 Make_Integer_Literal
(Loc
,
9416 UI_From_Int
(System_Address_Size
))));
9418 Ccount
:= Ccount
+ 1;
9421 Max_Bit_So_Far
:= Uint_Minus_1
;
9422 Overlap_Check_Required
:= False;
9424 -- Process the component clauses
9426 while Present
(CC
) loop
9429 if Present
(Comp
) then
9430 Ccount
:= Ccount
+ 1;
9432 -- We need a full overlap check if record positions non-monotonic
9434 if Fbit
<= Max_Bit_So_Far
then
9435 Overlap_Check_Required
:= True;
9438 Max_Bit_So_Far
:= Lbit
;
9440 -- Check bit position out of range of specified size
9442 if Has_Size_Clause
(Rectype
)
9443 and then RM_Size
(Rectype
) <= Lbit
9446 ("bit number out of range of specified size",
9449 -- Check for overlap with tag component
9452 if Is_Tagged_Type
(Rectype
)
9453 and then Fbit
< System_Address_Size
9456 ("component overlaps tag field of&",
9457 Component_Name
(CC
), Rectype
);
9458 Overlap_Detected
:= True;
9466 -- Check parent overlap if component might overlap parent field
9468 if Present
(Tagged_Parent
) and then Fbit
<= Parent_Last_Bit
then
9469 Pcomp
:= First_Component_Or_Discriminant
(Tagged_Parent
);
9470 while Present
(Pcomp
) loop
9471 if not Is_Tag
(Pcomp
)
9472 and then Chars
(Pcomp
) /= Name_uParent
9474 Check_Component_Overlap
(Comp
, Pcomp
);
9477 Next_Component_Or_Discriminant
(Pcomp
);
9485 -- Now that we have processed all the component clauses, check for
9486 -- overlap. We have to leave this till last, since the components can
9487 -- appear in any arbitrary order in the representation clause.
9489 -- We do not need this check if all specified ranges were monotonic,
9490 -- as recorded by Overlap_Check_Required being False at this stage.
9492 -- This first section checks if there are any overlapping entries at
9493 -- all. It does this by sorting all entries and then seeing if there are
9494 -- any overlaps. If there are none, then that is decisive, but if there
9495 -- are overlaps, they may still be OK (they may result from fields in
9496 -- different variants).
9498 if Overlap_Check_Required
then
9499 Overlap_Check1
: declare
9501 OC_Fbit
: array (0 .. Ccount
) of Uint
;
9502 -- First-bit values for component clauses, the value is the offset
9503 -- of the first bit of the field from start of record. The zero
9504 -- entry is for use in sorting.
9506 OC_Lbit
: array (0 .. Ccount
) of Uint
;
9507 -- Last-bit values for component clauses, the value is the offset
9508 -- of the last bit of the field from start of record. The zero
9509 -- entry is for use in sorting.
9511 OC_Count
: Natural := 0;
9512 -- Count of entries in OC_Fbit and OC_Lbit
9514 function OC_Lt
(Op1
, Op2
: Natural) return Boolean;
9515 -- Compare routine for Sort
9517 procedure OC_Move
(From
: Natural; To
: Natural);
9518 -- Move routine for Sort
9520 package Sorting
is new GNAT
.Heap_Sort_G
(OC_Move
, OC_Lt
);
9526 function OC_Lt
(Op1
, Op2
: Natural) return Boolean is
9528 return OC_Fbit
(Op1
) < OC_Fbit
(Op2
);
9535 procedure OC_Move
(From
: Natural; To
: Natural) is
9537 OC_Fbit
(To
) := OC_Fbit
(From
);
9538 OC_Lbit
(To
) := OC_Lbit
(From
);
9541 -- Start of processing for Overlap_Check
9544 CC
:= First
(Component_Clauses
(N
));
9545 while Present
(CC
) loop
9547 -- Exclude component clause already marked in error
9549 if not Error_Posted
(CC
) then
9552 if Present
(Comp
) then
9553 OC_Count
:= OC_Count
+ 1;
9554 OC_Fbit
(OC_Count
) := Fbit
;
9555 OC_Lbit
(OC_Count
) := Lbit
;
9562 Sorting
.Sort
(OC_Count
);
9564 Overlap_Check_Required
:= False;
9565 for J
in 1 .. OC_Count
- 1 loop
9566 if OC_Lbit
(J
) >= OC_Fbit
(J
+ 1) then
9567 Overlap_Check_Required
:= True;
9574 -- If Overlap_Check_Required is still True, then we have to do the full
9575 -- scale overlap check, since we have at least two fields that do
9576 -- overlap, and we need to know if that is OK since they are in
9577 -- different variant, or whether we have a definite problem.
9579 if Overlap_Check_Required
then
9580 Overlap_Check2
: declare
9581 C1_Ent
, C2_Ent
: Entity_Id
;
9582 -- Entities of components being checked for overlap
9585 -- Component_List node whose Component_Items are being checked
9588 -- Component declaration for component being checked
9591 C1_Ent
:= First_Entity
(Base_Type
(Rectype
));
9593 -- Loop through all components in record. For each component check
9594 -- for overlap with any of the preceding elements on the component
9595 -- list containing the component and also, if the component is in
9596 -- a variant, check against components outside the case structure.
9597 -- This latter test is repeated recursively up the variant tree.
9599 Main_Component_Loop
: while Present
(C1_Ent
) loop
9600 if not Ekind_In
(C1_Ent
, E_Component
, E_Discriminant
) then
9601 goto Continue_Main_Component_Loop
;
9604 -- Skip overlap check if entity has no declaration node. This
9605 -- happens with discriminants in constrained derived types.
9606 -- Possibly we are missing some checks as a result, but that
9607 -- does not seem terribly serious.
9609 if No
(Declaration_Node
(C1_Ent
)) then
9610 goto Continue_Main_Component_Loop
;
9613 Clist
:= Parent
(List_Containing
(Declaration_Node
(C1_Ent
)));
9615 -- Loop through component lists that need checking. Check the
9616 -- current component list and all lists in variants above us.
9618 Component_List_Loop
: loop
9620 -- If derived type definition, go to full declaration
9621 -- If at outer level, check discriminants if there are any.
9623 if Nkind
(Clist
) = N_Derived_Type_Definition
then
9624 Clist
:= Parent
(Clist
);
9627 -- Outer level of record definition, check discriminants
9629 if Nkind_In
(Clist
, N_Full_Type_Declaration
,
9630 N_Private_Type_Declaration
)
9632 if Has_Discriminants
(Defining_Identifier
(Clist
)) then
9634 First_Discriminant
(Defining_Identifier
(Clist
));
9635 while Present
(C2_Ent
) loop
9636 exit when C1_Ent
= C2_Ent
;
9637 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
9638 Next_Discriminant
(C2_Ent
);
9642 -- Record extension case
9644 elsif Nkind
(Clist
) = N_Derived_Type_Definition
then
9647 -- Otherwise check one component list
9650 Citem
:= First
(Component_Items
(Clist
));
9651 while Present
(Citem
) loop
9652 if Nkind
(Citem
) = N_Component_Declaration
then
9653 C2_Ent
:= Defining_Identifier
(Citem
);
9654 exit when C1_Ent
= C2_Ent
;
9655 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
9662 -- Check for variants above us (the parent of the Clist can
9663 -- be a variant, in which case its parent is a variant part,
9664 -- and the parent of the variant part is a component list
9665 -- whose components must all be checked against the current
9666 -- component for overlap).
9668 if Nkind
(Parent
(Clist
)) = N_Variant
then
9669 Clist
:= Parent
(Parent
(Parent
(Clist
)));
9671 -- Check for possible discriminant part in record, this
9672 -- is treated essentially as another level in the
9673 -- recursion. For this case the parent of the component
9674 -- list is the record definition, and its parent is the
9675 -- full type declaration containing the discriminant
9678 elsif Nkind
(Parent
(Clist
)) = N_Record_Definition
then
9679 Clist
:= Parent
(Parent
((Clist
)));
9681 -- If neither of these two cases, we are at the top of
9685 exit Component_List_Loop
;
9687 end loop Component_List_Loop
;
9689 <<Continue_Main_Component_Loop
>>
9690 Next_Entity
(C1_Ent
);
9692 end loop Main_Component_Loop
;
9696 -- The following circuit deals with warning on record holes (gaps). We
9697 -- skip this check if overlap was detected, since it makes sense for the
9698 -- programmer to fix this illegality before worrying about warnings.
9700 if not Overlap_Detected
and Warn_On_Record_Holes
then
9701 Record_Hole_Check
: declare
9702 Decl
: constant Node_Id
:= Declaration_Node
(Base_Type
(Rectype
));
9703 -- Full declaration of record type
9705 procedure Check_Component_List
9709 -- Check component list CL for holes. The starting bit should be
9710 -- Sbit. which is zero for the main record component list and set
9711 -- appropriately for recursive calls for variants. DS is set to
9712 -- a list of discriminant specifications to be included in the
9713 -- consideration of components. It is No_List if none to consider.
9715 --------------------------
9716 -- Check_Component_List --
9717 --------------------------
9719 procedure Check_Component_List
9727 Compl
:= Integer (List_Length
(Component_Items
(CL
)));
9729 if DS
/= No_List
then
9730 Compl
:= Compl
+ Integer (List_Length
(DS
));
9734 Comps
: array (Natural range 0 .. Compl
) of Entity_Id
;
9735 -- Gather components (zero entry is for sort routine)
9737 Ncomps
: Natural := 0;
9738 -- Number of entries stored in Comps (starting at Comps (1))
9741 -- One component item or discriminant specification
9744 -- Starting bit for next component
9752 function Lt
(Op1
, Op2
: Natural) return Boolean;
9753 -- Compare routine for Sort
9755 procedure Move
(From
: Natural; To
: Natural);
9756 -- Move routine for Sort
9758 package Sorting
is new GNAT
.Heap_Sort_G
(Move
, Lt
);
9764 function Lt
(Op1
, Op2
: Natural) return Boolean is
9766 return Component_Bit_Offset
(Comps
(Op1
))
9768 Component_Bit_Offset
(Comps
(Op2
));
9775 procedure Move
(From
: Natural; To
: Natural) is
9777 Comps
(To
) := Comps
(From
);
9781 -- Gather discriminants into Comp
9783 if DS
/= No_List
then
9784 Citem
:= First
(DS
);
9785 while Present
(Citem
) loop
9786 if Nkind
(Citem
) = N_Discriminant_Specification
then
9788 Ent
: constant Entity_Id
:=
9789 Defining_Identifier
(Citem
);
9791 if Ekind
(Ent
) = E_Discriminant
then
9792 Ncomps
:= Ncomps
+ 1;
9793 Comps
(Ncomps
) := Ent
;
9802 -- Gather component entities into Comp
9804 Citem
:= First
(Component_Items
(CL
));
9805 while Present
(Citem
) loop
9806 if Nkind
(Citem
) = N_Component_Declaration
then
9807 Ncomps
:= Ncomps
+ 1;
9808 Comps
(Ncomps
) := Defining_Identifier
(Citem
);
9814 -- Now sort the component entities based on the first bit.
9815 -- Note we already know there are no overlapping components.
9817 Sorting
.Sort
(Ncomps
);
9819 -- Loop through entries checking for holes
9822 for J
in 1 .. Ncomps
loop
9824 Error_Msg_Uint_1
:= Component_Bit_Offset
(CEnt
) - Nbit
;
9826 if Error_Msg_Uint_1
> 0 then
9828 ("?H?^-bit gap before component&",
9829 Component_Name
(Component_Clause
(CEnt
)), CEnt
);
9832 Nbit
:= Component_Bit_Offset
(CEnt
) + Esize
(CEnt
);
9835 -- Process variant parts recursively if present
9837 if Present
(Variant_Part
(CL
)) then
9838 Variant
:= First
(Variants
(Variant_Part
(CL
)));
9839 while Present
(Variant
) loop
9840 Check_Component_List
9841 (Component_List
(Variant
), Nbit
, No_List
);
9846 end Check_Component_List
;
9848 -- Start of processing for Record_Hole_Check
9855 if Is_Tagged_Type
(Rectype
) then
9856 Sbit
:= UI_From_Int
(System_Address_Size
);
9861 if Nkind
(Decl
) = N_Full_Type_Declaration
9862 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
9864 Check_Component_List
9865 (Component_List
(Type_Definition
(Decl
)),
9867 Discriminant_Specifications
(Decl
));
9870 end Record_Hole_Check
;
9873 -- For records that have component clauses for all components, and whose
9874 -- size is less than or equal to 32, we need to know the size in the
9875 -- front end to activate possible packed array processing where the
9876 -- component type is a record.
9878 -- At this stage Hbit + 1 represents the first unused bit from all the
9879 -- component clauses processed, so if the component clauses are
9880 -- complete, then this is the length of the record.
9882 -- For records longer than System.Storage_Unit, and for those where not
9883 -- all components have component clauses, the back end determines the
9884 -- length (it may for example be appropriate to round up the size
9885 -- to some convenient boundary, based on alignment considerations, etc).
9887 if Unknown_RM_Size
(Rectype
) and then Hbit
+ 1 <= 32 then
9889 -- Nothing to do if at least one component has no component clause
9891 Comp
:= First_Component_Or_Discriminant
(Rectype
);
9892 while Present
(Comp
) loop
9893 exit when No
(Component_Clause
(Comp
));
9894 Next_Component_Or_Discriminant
(Comp
);
9897 -- If we fall out of loop, all components have component clauses
9898 -- and so we can set the size to the maximum value.
9901 Set_RM_Size
(Rectype
, Hbit
+ 1);
9904 end Check_Record_Representation_Clause
;
9910 procedure Check_Size
9914 Biased
: out Boolean)
9916 UT
: constant Entity_Id
:= Underlying_Type
(T
);
9922 -- Reject patently improper size values.
9924 if Is_Elementary_Type
(T
)
9925 and then Siz
> UI_From_Int
(Int
'Last)
9927 Error_Msg_N
("Size value too large for elementary type", N
);
9929 if Nkind
(Original_Node
(N
)) = N_Op_Expon
then
9931 ("\maybe '* was meant, rather than '*'*", Original_Node
(N
));
9935 -- Dismiss generic types
9937 if Is_Generic_Type
(T
)
9939 Is_Generic_Type
(UT
)
9941 Is_Generic_Type
(Root_Type
(UT
))
9945 -- Guard against previous errors
9947 elsif No
(UT
) or else UT
= Any_Type
then
9948 Check_Error_Detected
;
9951 -- Check case of bit packed array
9953 elsif Is_Array_Type
(UT
)
9954 and then Known_Static_Component_Size
(UT
)
9955 and then Is_Bit_Packed_Array
(UT
)
9963 Asiz
:= Component_Size
(UT
);
9964 Indx
:= First_Index
(UT
);
9966 Ityp
:= Etype
(Indx
);
9968 -- If non-static bound, then we are not in the business of
9969 -- trying to check the length, and indeed an error will be
9970 -- issued elsewhere, since sizes of non-static array types
9971 -- cannot be set implicitly or explicitly.
9973 if not Is_OK_Static_Subtype
(Ityp
) then
9977 -- Otherwise accumulate next dimension
9979 Asiz
:= Asiz
* (Expr_Value
(Type_High_Bound
(Ityp
)) -
9980 Expr_Value
(Type_Low_Bound
(Ityp
)) +
9984 exit when No
(Indx
);
9991 Error_Msg_Uint_1
:= Asiz
;
9993 ("size for& too small, minimum allowed is ^", N
, T
);
9994 Set_Esize
(T
, Asiz
);
9995 Set_RM_Size
(T
, Asiz
);
9999 -- All other composite types are ignored
10001 elsif Is_Composite_Type
(UT
) then
10004 -- For fixed-point types, don't check minimum if type is not frozen,
10005 -- since we don't know all the characteristics of the type that can
10006 -- affect the size (e.g. a specified small) till freeze time.
10008 elsif Is_Fixed_Point_Type
(UT
)
10009 and then not Is_Frozen
(UT
)
10013 -- Cases for which a minimum check is required
10016 -- Ignore if specified size is correct for the type
10018 if Known_Esize
(UT
) and then Siz
= Esize
(UT
) then
10022 -- Otherwise get minimum size
10024 M
:= UI_From_Int
(Minimum_Size
(UT
));
10028 -- Size is less than minimum size, but one possibility remains
10029 -- that we can manage with the new size if we bias the type.
10031 M
:= UI_From_Int
(Minimum_Size
(UT
, Biased
=> True));
10034 Error_Msg_Uint_1
:= M
;
10036 ("size for& too small, minimum allowed is ^", N
, T
);
10038 Set_RM_Size
(T
, M
);
10046 --------------------------
10047 -- Freeze_Entity_Checks --
10048 --------------------------
10050 procedure Freeze_Entity_Checks
(N
: Node_Id
) is
10051 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
);
10052 -- Inspect the primitive operations of type Typ and hide all pairs of
10053 -- implicitly declared non-overridden non-fully conformant homographs
10054 -- (Ada RM 8.3 12.3/2).
10056 -------------------------------------
10057 -- Hide_Non_Overridden_Subprograms --
10058 -------------------------------------
10060 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
) is
10061 procedure Hide_Matching_Homographs
10062 (Subp_Id
: Entity_Id
;
10063 Start_Elmt
: Elmt_Id
);
10064 -- Inspect a list of primitive operations starting with Start_Elmt
10065 -- and find matching implicitly declared non-overridden non-fully
10066 -- conformant homographs of Subp_Id. If found, all matches along
10067 -- with Subp_Id are hidden from all visibility.
10069 function Is_Non_Overridden_Or_Null_Procedure
10070 (Subp_Id
: Entity_Id
) return Boolean;
10071 -- Determine whether subprogram Subp_Id is implicitly declared non-
10072 -- overridden subprogram or an implicitly declared null procedure.
10074 ------------------------------
10075 -- Hide_Matching_Homographs --
10076 ------------------------------
10078 procedure Hide_Matching_Homographs
10079 (Subp_Id
: Entity_Id
;
10080 Start_Elmt
: Elmt_Id
)
10083 Prim_Elmt
: Elmt_Id
;
10086 Prim_Elmt
:= Start_Elmt
;
10087 while Present
(Prim_Elmt
) loop
10088 Prim
:= Node
(Prim_Elmt
);
10090 -- The current primitive is implicitly declared non-overridden
10091 -- non-fully conformant homograph of Subp_Id. Both subprograms
10092 -- must be hidden from visibility.
10094 if Chars
(Prim
) = Chars
(Subp_Id
)
10095 and then Is_Non_Overridden_Or_Null_Procedure
(Prim
)
10096 and then not Fully_Conformant
(Prim
, Subp_Id
)
10098 Set_Is_Hidden_Non_Overridden_Subpgm
(Prim
);
10099 Set_Is_Immediately_Visible
(Prim
, False);
10100 Set_Is_Potentially_Use_Visible
(Prim
, False);
10102 Set_Is_Hidden_Non_Overridden_Subpgm
(Subp_Id
);
10103 Set_Is_Immediately_Visible
(Subp_Id
, False);
10104 Set_Is_Potentially_Use_Visible
(Subp_Id
, False);
10107 Next_Elmt
(Prim_Elmt
);
10109 end Hide_Matching_Homographs
;
10111 -----------------------------------------
10112 -- Is_Non_Overridden_Or_Null_Procedure --
10113 -----------------------------------------
10115 function Is_Non_Overridden_Or_Null_Procedure
10116 (Subp_Id
: Entity_Id
) return Boolean
10118 Alias_Id
: Entity_Id
;
10121 -- The subprogram is inherited (implicitly declared), it does not
10122 -- override and does not cover a primitive of an interface.
10124 if Ekind_In
(Subp_Id
, E_Function
, E_Procedure
)
10125 and then Present
(Alias
(Subp_Id
))
10126 and then No
(Interface_Alias
(Subp_Id
))
10127 and then No
(Overridden_Operation
(Subp_Id
))
10129 Alias_Id
:= Alias
(Subp_Id
);
10131 if Requires_Overriding
(Alias_Id
) then
10134 elsif Nkind
(Parent
(Alias_Id
)) = N_Procedure_Specification
10135 and then Null_Present
(Parent
(Alias_Id
))
10142 end Is_Non_Overridden_Or_Null_Procedure
;
10146 Prim_Ops
: constant Elist_Id
:= Direct_Primitive_Operations
(Typ
);
10148 Prim_Elmt
: Elmt_Id
;
10150 -- Start of processing for Hide_Non_Overridden_Subprograms
10153 -- Inspect the list of primitives looking for non-overridden
10156 if Present
(Prim_Ops
) then
10157 Prim_Elmt
:= First_Elmt
(Prim_Ops
);
10158 while Present
(Prim_Elmt
) loop
10159 Prim
:= Node
(Prim_Elmt
);
10160 Next_Elmt
(Prim_Elmt
);
10162 if Is_Non_Overridden_Or_Null_Procedure
(Prim
) then
10163 Hide_Matching_Homographs
10165 Start_Elmt
=> Prim_Elmt
);
10169 end Hide_Non_Overridden_Subprograms
;
10171 ---------------------
10172 -- Local variables --
10173 ---------------------
10175 E
: constant Entity_Id
:= Entity
(N
);
10177 Non_Generic_Case
: constant Boolean := Nkind
(N
) = N_Freeze_Entity
;
10178 -- True in non-generic case. Some of the processing here is skipped
10179 -- for the generic case since it is not needed. Basically in the
10180 -- generic case, we only need to do stuff that might generate error
10181 -- messages or warnings.
10183 -- Start of processing for Freeze_Entity_Checks
10186 -- Remember that we are processing a freezing entity. Required to
10187 -- ensure correct decoration of internal entities associated with
10188 -- interfaces (see New_Overloaded_Entity).
10190 Inside_Freezing_Actions
:= Inside_Freezing_Actions
+ 1;
10192 -- For tagged types covering interfaces add internal entities that link
10193 -- the primitives of the interfaces with the primitives that cover them.
10194 -- Note: These entities were originally generated only when generating
10195 -- code because their main purpose was to provide support to initialize
10196 -- the secondary dispatch tables. They are now generated also when
10197 -- compiling with no code generation to provide ASIS the relationship
10198 -- between interface primitives and tagged type primitives. They are
10199 -- also used to locate primitives covering interfaces when processing
10200 -- generics (see Derive_Subprograms).
10202 -- This is not needed in the generic case
10204 if Ada_Version
>= Ada_2005
10205 and then Non_Generic_Case
10206 and then Ekind
(E
) = E_Record_Type
10207 and then Is_Tagged_Type
(E
)
10208 and then not Is_Interface
(E
)
10209 and then Has_Interfaces
(E
)
10211 -- This would be a good common place to call the routine that checks
10212 -- overriding of interface primitives (and thus factorize calls to
10213 -- Check_Abstract_Overriding located at different contexts in the
10214 -- compiler). However, this is not possible because it causes
10215 -- spurious errors in case of late overriding.
10217 Add_Internal_Interface_Entities
(E
);
10220 -- After all forms of overriding have been resolved, a tagged type may
10221 -- be left with a set of implicitly declared and possibly erroneous
10222 -- abstract subprograms, null procedures and subprograms that require
10223 -- overriding. If this set contains fully conformat homographs, then one
10224 -- is chosen arbitrarily (already done during resolution), otherwise all
10225 -- remaining non-fully conformant homographs are hidden from visibility
10226 -- (Ada RM 8.3 12.3/2).
10228 if Is_Tagged_Type
(E
) then
10229 Hide_Non_Overridden_Subprograms
(E
);
10234 if Ekind
(E
) = E_Record_Type
10235 and then Is_CPP_Class
(E
)
10236 and then Is_Tagged_Type
(E
)
10237 and then Tagged_Type_Expansion
10239 if CPP_Num_Prims
(E
) = 0 then
10241 -- If the CPP type has user defined components then it must import
10242 -- primitives from C++. This is required because if the C++ class
10243 -- has no primitives then the C++ compiler does not added the _tag
10244 -- component to the type.
10246 if First_Entity
(E
) /= Last_Entity
(E
) then
10248 ("'C'P'P type must import at least one primitive from C++??",
10253 -- Check that all its primitives are abstract or imported from C++.
10254 -- Check also availability of the C++ constructor.
10257 Has_Constructors
: constant Boolean := Has_CPP_Constructors
(E
);
10259 Error_Reported
: Boolean := False;
10263 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
10264 while Present
(Elmt
) loop
10265 Prim
:= Node
(Elmt
);
10267 if Comes_From_Source
(Prim
) then
10268 if Is_Abstract_Subprogram
(Prim
) then
10271 elsif not Is_Imported
(Prim
)
10272 or else Convention
(Prim
) /= Convention_CPP
10275 ("primitives of 'C'P'P types must be imported from C++ "
10276 & "or abstract??", Prim
);
10278 elsif not Has_Constructors
10279 and then not Error_Reported
10281 Error_Msg_Name_1
:= Chars
(E
);
10283 ("??'C'P'P constructor required for type %", Prim
);
10284 Error_Reported
:= True;
10293 -- Check Ada derivation of CPP type
10295 if Expander_Active
-- why? losing errors in -gnatc mode???
10296 and then Tagged_Type_Expansion
10297 and then Ekind
(E
) = E_Record_Type
10298 and then Etype
(E
) /= E
10299 and then Is_CPP_Class
(Etype
(E
))
10300 and then CPP_Num_Prims
(Etype
(E
)) > 0
10301 and then not Is_CPP_Class
(E
)
10302 and then not Has_CPP_Constructors
(Etype
(E
))
10304 -- If the parent has C++ primitives but it has no constructor then
10305 -- check that all the primitives are overridden in this derivation;
10306 -- otherwise the constructor of the parent is needed to build the
10314 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
10315 while Present
(Elmt
) loop
10316 Prim
:= Node
(Elmt
);
10318 if not Is_Abstract_Subprogram
(Prim
)
10319 and then No
(Interface_Alias
(Prim
))
10320 and then Find_Dispatching_Type
(Ultimate_Alias
(Prim
)) /= E
10322 Error_Msg_Name_1
:= Chars
(Etype
(E
));
10324 ("'C'P'P constructor required for parent type %", E
);
10333 Inside_Freezing_Actions
:= Inside_Freezing_Actions
- 1;
10335 -- If we have a type with predicates, build predicate function. This
10336 -- is not needed in the generic case, and is not needed within TSS
10337 -- subprograms and other predefined primitives.
10339 if Non_Generic_Case
10340 and then Is_Type
(E
)
10341 and then Has_Predicates
(E
)
10342 and then not Within_Internal_Subprogram
10344 Build_Predicate_Functions
(E
, N
);
10347 -- If type has delayed aspects, this is where we do the preanalysis at
10348 -- the freeze point, as part of the consistent visibility check. Note
10349 -- that this must be done after calling Build_Predicate_Functions or
10350 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10351 -- the subtype name in the saved expression so that they will not cause
10352 -- trouble in the preanalysis.
10354 -- This is also not needed in the generic case
10356 if Non_Generic_Case
10357 and then Has_Delayed_Aspects
(E
)
10358 and then Scope
(E
) = Current_Scope
10360 -- Retrieve the visibility to the discriminants in order to properly
10361 -- analyze the aspects.
10363 Push_Scope_And_Install_Discriminants
(E
);
10369 -- Look for aspect specification entries for this entity
10371 Ritem
:= First_Rep_Item
(E
);
10372 while Present
(Ritem
) loop
10373 if Nkind
(Ritem
) = N_Aspect_Specification
10374 and then Entity
(Ritem
) = E
10375 and then Is_Delayed_Aspect
(Ritem
)
10377 Check_Aspect_At_Freeze_Point
(Ritem
);
10380 Next_Rep_Item
(Ritem
);
10384 Uninstall_Discriminants_And_Pop_Scope
(E
);
10387 -- For a record type, deal with variant parts. This has to be delayed
10388 -- to this point, because of the issue of statically predicated
10389 -- subtypes, which we have to ensure are frozen before checking
10390 -- choices, since we need to have the static choice list set.
10392 if Is_Record_Type
(E
) then
10393 Check_Variant_Part
: declare
10394 D
: constant Node_Id
:= Declaration_Node
(E
);
10399 Others_Present
: Boolean;
10400 pragma Warnings
(Off
, Others_Present
);
10401 -- Indicates others present, not used in this case
10403 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
10404 -- Error routine invoked by the generic instantiation below when
10405 -- the variant part has a non static choice.
10407 procedure Process_Declarations
(Variant
: Node_Id
);
10408 -- Processes declarations associated with a variant. We analyzed
10409 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
10410 -- but we still need the recursive call to Check_Choices for any
10411 -- nested variant to get its choices properly processed. This is
10412 -- also where we expand out the choices if expansion is active.
10414 package Variant_Choices_Processing
is new
10415 Generic_Check_Choices
10416 (Process_Empty_Choice
=> No_OP
,
10417 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
10418 Process_Associated_Node
=> Process_Declarations
);
10419 use Variant_Choices_Processing
;
10421 -----------------------------
10422 -- Non_Static_Choice_Error --
10423 -----------------------------
10425 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
10427 Flag_Non_Static_Expr
10428 ("choice given in variant part is not static!", Choice
);
10429 end Non_Static_Choice_Error
;
10431 --------------------------
10432 -- Process_Declarations --
10433 --------------------------
10435 procedure Process_Declarations
(Variant
: Node_Id
) is
10436 CL
: constant Node_Id
:= Component_List
(Variant
);
10440 -- Check for static predicate present in this variant
10442 if Has_SP_Choice
(Variant
) then
10444 -- Here we expand. You might expect to find this call in
10445 -- Expand_N_Variant_Part, but that is called when we first
10446 -- see the variant part, and we cannot do this expansion
10447 -- earlier than the freeze point, since for statically
10448 -- predicated subtypes, the predicate is not known till
10449 -- the freeze point.
10451 -- Furthermore, we do this expansion even if the expander
10452 -- is not active, because other semantic processing, e.g.
10453 -- for aggregates, requires the expanded list of choices.
10455 -- If the expander is not active, then we can't just clobber
10456 -- the list since it would invalidate the ASIS -gnatct tree.
10457 -- So we have to rewrite the variant part with a Rewrite
10458 -- call that replaces it with a copy and clobber the copy.
10460 if not Expander_Active
then
10462 NewV
: constant Node_Id
:= New_Copy
(Variant
);
10464 Set_Discrete_Choices
10465 (NewV
, New_Copy_List
(Discrete_Choices
(Variant
)));
10466 Rewrite
(Variant
, NewV
);
10470 Expand_Static_Predicates_In_Choices
(Variant
);
10473 -- We don't need to worry about the declarations in the variant
10474 -- (since they were analyzed by Analyze_Choices when we first
10475 -- encountered the variant), but we do need to take care of
10476 -- expansion of any nested variants.
10478 if not Null_Present
(CL
) then
10479 VP
:= Variant_Part
(CL
);
10481 if Present
(VP
) then
10483 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
10486 end Process_Declarations
;
10488 -- Start of processing for Check_Variant_Part
10491 -- Find component list
10495 if Nkind
(D
) = N_Full_Type_Declaration
then
10496 T
:= Type_Definition
(D
);
10498 if Nkind
(T
) = N_Record_Definition
then
10499 C
:= Component_List
(T
);
10501 elsif Nkind
(T
) = N_Derived_Type_Definition
10502 and then Present
(Record_Extension_Part
(T
))
10504 C
:= Component_List
(Record_Extension_Part
(T
));
10508 -- Case of variant part present
10510 if Present
(C
) and then Present
(Variant_Part
(C
)) then
10511 VP
:= Variant_Part
(C
);
10516 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
10518 -- If the last variant does not contain the Others choice,
10519 -- replace it with an N_Others_Choice node since Gigi always
10520 -- wants an Others. Note that we do not bother to call Analyze
10521 -- on the modified variant part, since its only effect would be
10522 -- to compute the Others_Discrete_Choices node laboriously, and
10523 -- of course we already know the list of choices corresponding
10524 -- to the others choice (it's the list we're replacing).
10526 -- We only want to do this if the expander is active, since
10527 -- we do not want to clobber the ASIS tree.
10529 if Expander_Active
then
10531 Last_Var
: constant Node_Id
:=
10532 Last_Non_Pragma
(Variants
(VP
));
10534 Others_Node
: Node_Id
;
10537 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /=
10540 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
10541 Set_Others_Discrete_Choices
10542 (Others_Node
, Discrete_Choices
(Last_Var
));
10543 Set_Discrete_Choices
10544 (Last_Var
, New_List
(Others_Node
));
10549 end Check_Variant_Part
;
10551 end Freeze_Entity_Checks
;
10553 -------------------------
10554 -- Get_Alignment_Value --
10555 -------------------------
10557 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
is
10558 Align
: constant Uint
:= Static_Integer
(Expr
);
10561 if Align
= No_Uint
then
10564 elsif Align
<= 0 then
10565 Error_Msg_N
("alignment value must be positive", Expr
);
10569 for J
in Int
range 0 .. 64 loop
10571 M
: constant Uint
:= Uint_2
** J
;
10574 exit when M
= Align
;
10578 ("alignment value must be power of 2", Expr
);
10586 end Get_Alignment_Value
;
10588 -------------------------------------
10589 -- Inherit_Aspects_At_Freeze_Point --
10590 -------------------------------------
10592 procedure Inherit_Aspects_At_Freeze_Point
(Typ
: Entity_Id
) is
10593 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10594 (Rep_Item
: Node_Id
) return Boolean;
10595 -- This routine checks if Rep_Item is either a pragma or an aspect
10596 -- specification node whose correponding pragma (if any) is present in
10597 -- the Rep Item chain of the entity it has been specified to.
10599 --------------------------------------------------
10600 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
10601 --------------------------------------------------
10603 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10604 (Rep_Item
: Node_Id
) return Boolean
10608 Nkind
(Rep_Item
) = N_Pragma
10609 or else Present_In_Rep_Item
10610 (Entity
(Rep_Item
), Aspect_Rep_Item
(Rep_Item
));
10611 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
;
10613 -- Start of processing for Inherit_Aspects_At_Freeze_Point
10616 -- A representation item is either subtype-specific (Size and Alignment
10617 -- clauses) or type-related (all others). Subtype-specific aspects may
10618 -- differ for different subtypes of the same type (RM 13.1.8).
10620 -- A derived type inherits each type-related representation aspect of
10621 -- its parent type that was directly specified before the declaration of
10622 -- the derived type (RM 13.1.15).
10624 -- A derived subtype inherits each subtype-specific representation
10625 -- aspect of its parent subtype that was directly specified before the
10626 -- declaration of the derived type (RM 13.1.15).
10628 -- The general processing involves inheriting a representation aspect
10629 -- from a parent type whenever the first rep item (aspect specification,
10630 -- attribute definition clause, pragma) corresponding to the given
10631 -- representation aspect in the rep item chain of Typ, if any, isn't
10632 -- directly specified to Typ but to one of its parents.
10634 -- ??? Note that, for now, just a limited number of representation
10635 -- aspects have been inherited here so far. Many of them are
10636 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
10637 -- a non- exhaustive list of aspects that likely also need to
10638 -- be moved to this routine: Alignment, Component_Alignment,
10639 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
10640 -- Preelaborable_Initialization, RM_Size and Small.
10642 if Nkind
(Parent
(Typ
)) = N_Private_Extension_Declaration
then
10648 if not Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
, False)
10649 and then Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
)
10650 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10651 (Get_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
))
10653 Set_Is_Ada_2005_Only
(Typ
);
10658 if not Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
, False)
10659 and then Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
)
10660 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10661 (Get_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
))
10663 Set_Is_Ada_2012_Only
(Typ
);
10668 if not Has_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
, False)
10669 and then Has_Rep_Pragma
(Typ
, Name_Atomic
, Name_Shared
)
10670 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10671 (Get_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
))
10673 Set_Is_Atomic
(Typ
);
10674 Set_Treat_As_Volatile
(Typ
);
10675 Set_Is_Volatile
(Typ
);
10678 -- Default_Component_Value
10680 if Is_Array_Type
(Typ
)
10681 and then Is_Base_Type
(Typ
)
10682 and then Has_Rep_Item
(Typ
, Name_Default_Component_Value
, False)
10683 and then Has_Rep_Item
(Typ
, Name_Default_Component_Value
)
10685 Set_Default_Aspect_Component_Value
(Typ
,
10686 Default_Aspect_Component_Value
10687 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Component_Value
))));
10692 if Is_Scalar_Type
(Typ
)
10693 and then Is_Base_Type
(Typ
)
10694 and then Has_Rep_Item
(Typ
, Name_Default_Value
, False)
10695 and then Has_Rep_Item
(Typ
, Name_Default_Value
)
10697 Set_Default_Aspect_Value
(Typ
,
10698 Default_Aspect_Value
10699 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Value
))));
10704 if not Has_Rep_Item
(Typ
, Name_Discard_Names
, False)
10705 and then Has_Rep_Item
(Typ
, Name_Discard_Names
)
10706 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10707 (Get_Rep_Item
(Typ
, Name_Discard_Names
))
10709 Set_Discard_Names
(Typ
);
10714 if not Has_Rep_Item
(Typ
, Name_Invariant
, False)
10715 and then Has_Rep_Item
(Typ
, Name_Invariant
)
10716 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10717 (Get_Rep_Item
(Typ
, Name_Invariant
))
10719 Set_Has_Invariants
(Typ
);
10721 if Class_Present
(Get_Rep_Item
(Typ
, Name_Invariant
)) then
10722 Set_Has_Inheritable_Invariants
(Typ
);
10725 -- If we have a subtype with invariants, whose base type does not have
10726 -- invariants, copy these invariants to the base type. This happens for
10727 -- the case of implicit base types created for scalar and array types.
10729 elsif Has_Invariants
(Typ
)
10730 and then not Has_Invariants
(Base_Type
(Typ
))
10732 Set_Has_Invariants
(Base_Type
(Typ
));
10733 Set_Invariant_Procedure
(Base_Type
(Typ
), Invariant_Procedure
(Typ
));
10738 if not Has_Rep_Item
(Typ
, Name_Volatile
, False)
10739 and then Has_Rep_Item
(Typ
, Name_Volatile
)
10740 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10741 (Get_Rep_Item
(Typ
, Name_Volatile
))
10743 Set_Treat_As_Volatile
(Typ
);
10744 Set_Is_Volatile
(Typ
);
10747 -- Inheritance for derived types only
10749 if Is_Derived_Type
(Typ
) then
10751 Bas_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10752 Imp_Bas_Typ
: constant Entity_Id
:= Implementation_Base_Type
(Typ
);
10755 -- Atomic_Components
10757 if not Has_Rep_Item
(Typ
, Name_Atomic_Components
, False)
10758 and then Has_Rep_Item
(Typ
, Name_Atomic_Components
)
10759 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10760 (Get_Rep_Item
(Typ
, Name_Atomic_Components
))
10762 Set_Has_Atomic_Components
(Imp_Bas_Typ
);
10765 -- Volatile_Components
10767 if not Has_Rep_Item
(Typ
, Name_Volatile_Components
, False)
10768 and then Has_Rep_Item
(Typ
, Name_Volatile_Components
)
10769 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10770 (Get_Rep_Item
(Typ
, Name_Volatile_Components
))
10772 Set_Has_Volatile_Components
(Imp_Bas_Typ
);
10775 -- Finalize_Storage_Only.
10777 if not Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
, False)
10778 and then Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
)
10780 Set_Finalize_Storage_Only
(Bas_Typ
);
10783 -- Universal_Aliasing
10785 if not Has_Rep_Item
(Typ
, Name_Universal_Aliasing
, False)
10786 and then Has_Rep_Item
(Typ
, Name_Universal_Aliasing
)
10787 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10788 (Get_Rep_Item
(Typ
, Name_Universal_Aliasing
))
10790 Set_Universal_Aliasing
(Imp_Bas_Typ
);
10793 -- Record type specific aspects
10795 if Is_Record_Type
(Typ
) then
10799 if not Has_Rep_Item
(Typ
, Name_Bit_Order
, False)
10800 and then Has_Rep_Item
(Typ
, Name_Bit_Order
)
10802 Set_Reverse_Bit_Order
(Bas_Typ
,
10803 Reverse_Bit_Order
(Entity
(Name
10804 (Get_Rep_Item
(Typ
, Name_Bit_Order
)))));
10807 -- Scalar_Storage_Order
10809 if not Has_Rep_Item
(Typ
, Name_Scalar_Storage_Order
, False)
10810 and then Has_Rep_Item
(Typ
, Name_Scalar_Storage_Order
)
10812 Set_Reverse_Storage_Order
(Bas_Typ
,
10813 Reverse_Storage_Order
(Entity
(Name
10814 (Get_Rep_Item
(Typ
, Name_Scalar_Storage_Order
)))));
10816 -- Clear default SSO indications, since the inherited aspect
10817 -- which was set explicitly overrides the default.
10819 Set_SSO_Set_Low_By_Default
(Bas_Typ
, False);
10820 Set_SSO_Set_High_By_Default
(Bas_Typ
, False);
10825 end Inherit_Aspects_At_Freeze_Point
;
10831 procedure Initialize
is
10833 Address_Clause_Checks
.Init
;
10834 Independence_Checks
.Init
;
10835 Unchecked_Conversions
.Init
;
10838 ---------------------------
10839 -- Install_Discriminants --
10840 ---------------------------
10842 procedure Install_Discriminants
(E
: Entity_Id
) is
10846 Disc
:= First_Discriminant
(E
);
10847 while Present
(Disc
) loop
10848 Prev
:= Current_Entity
(Disc
);
10849 Set_Current_Entity
(Disc
);
10850 Set_Is_Immediately_Visible
(Disc
);
10851 Set_Homonym
(Disc
, Prev
);
10852 Next_Discriminant
(Disc
);
10854 end Install_Discriminants
;
10856 -------------------------
10857 -- Is_Operational_Item --
10858 -------------------------
10860 function Is_Operational_Item
(N
: Node_Id
) return Boolean is
10862 if Nkind
(N
) /= N_Attribute_Definition_Clause
then
10867 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Chars
(N
));
10869 return Id
= Attribute_Input
10870 or else Id
= Attribute_Output
10871 or else Id
= Attribute_Read
10872 or else Id
= Attribute_Write
10873 or else Id
= Attribute_External_Tag
;
10876 end Is_Operational_Item
;
10878 -------------------------
10879 -- Is_Predicate_Static --
10880 -------------------------
10882 -- Note: the basic legality of the expression has already been checked, so
10883 -- we don't need to worry about cases or ranges on strings for example.
10885 function Is_Predicate_Static
10887 Nam
: Name_Id
) return Boolean
10889 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean;
10890 -- Given a list of case expression alternatives, returns True if all
10891 -- the alternatives are static (have all static choices, and a static
10894 function All_Static_Choices
(L
: List_Id
) return Boolean;
10895 -- Returns true if all elements of the list are OK static choices
10896 -- as defined below for Is_Static_Choice. Used for case expression
10897 -- alternatives and for the right operand of a membership test. An
10898 -- others_choice is static if the corresponding expression is static.
10899 -- The staticness of the bounds is checked separately.
10901 function Is_Static_Choice
(N
: Node_Id
) return Boolean;
10902 -- Returns True if N represents a static choice (static subtype, or
10903 -- static subtype indication, or static expression, or static range).
10905 -- Note that this is a bit more inclusive than we actually need
10906 -- (in particular membership tests do not allow the use of subtype
10907 -- indications). But that doesn't matter, we have already checked
10908 -- that the construct is legal to get this far.
10910 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
10911 pragma Inline
(Is_Type_Ref
);
10912 -- Returns True if N is a reference to the type for the predicate in the
10913 -- expression (i.e. if it is an identifier whose Chars field matches the
10914 -- Nam given in the call). N must not be parenthesized, if the type name
10915 -- appears in parens, this routine will return False.
10917 ----------------------------------
10918 -- All_Static_Case_Alternatives --
10919 ----------------------------------
10921 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean is
10926 while Present
(N
) loop
10927 if not (All_Static_Choices
(Discrete_Choices
(N
))
10928 and then Is_OK_Static_Expression
(Expression
(N
)))
10937 end All_Static_Case_Alternatives
;
10939 ------------------------
10940 -- All_Static_Choices --
10941 ------------------------
10943 function All_Static_Choices
(L
: List_Id
) return Boolean is
10948 while Present
(N
) loop
10949 if not Is_Static_Choice
(N
) then
10957 end All_Static_Choices
;
10959 ----------------------
10960 -- Is_Static_Choice --
10961 ----------------------
10963 function Is_Static_Choice
(N
: Node_Id
) return Boolean is
10965 return Nkind
(N
) = N_Others_Choice
10966 or else Is_OK_Static_Expression
(N
)
10967 or else (Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
))
10968 and then Is_OK_Static_Subtype
(Entity
(N
)))
10969 or else (Nkind
(N
) = N_Subtype_Indication
10970 and then Is_OK_Static_Subtype
(Entity
(N
)))
10971 or else (Nkind
(N
) = N_Range
and then Is_OK_Static_Range
(N
));
10972 end Is_Static_Choice
;
10978 function Is_Type_Ref
(N
: Node_Id
) return Boolean is
10980 return Nkind
(N
) = N_Identifier
10981 and then Chars
(N
) = Nam
10982 and then Paren_Count
(N
) = 0;
10985 -- Start of processing for Is_Predicate_Static
10988 -- Predicate_Static means one of the following holds. Numbers are the
10989 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
10991 -- 16: A static expression
10993 if Is_OK_Static_Expression
(Expr
) then
10996 -- 17: A membership test whose simple_expression is the current
10997 -- instance, and whose membership_choice_list meets the requirements
10998 -- for a static membership test.
11000 elsif Nkind
(Expr
) in N_Membership_Test
11001 and then ((Present
(Right_Opnd
(Expr
))
11002 and then Is_Static_Choice
(Right_Opnd
(Expr
)))
11004 (Present
(Alternatives
(Expr
))
11005 and then All_Static_Choices
(Alternatives
(Expr
))))
11009 -- 18. A case_expression whose selecting_expression is the current
11010 -- instance, and whose dependent expressions are static expressions.
11012 elsif Nkind
(Expr
) = N_Case_Expression
11013 and then Is_Type_Ref
(Expression
(Expr
))
11014 and then All_Static_Case_Alternatives
(Alternatives
(Expr
))
11018 -- 19. A call to a predefined equality or ordering operator, where one
11019 -- operand is the current instance, and the other is a static
11022 -- Note: the RM is clearly wrong here in not excluding string types.
11023 -- Without this exclusion, we would allow expressions like X > "ABC"
11024 -- to be considered as predicate-static, which is clearly not intended,
11025 -- since the idea is for predicate-static to be a subset of normal
11026 -- static expressions (and "DEF" > "ABC" is not a static expression).
11028 -- However, we do allow internally generated (not from source) equality
11029 -- and inequality operations to be valid on strings (this helps deal
11030 -- with cases where we transform A in "ABC" to A = "ABC).
11032 elsif Nkind
(Expr
) in N_Op_Compare
11033 and then ((not Is_String_Type
(Etype
(Left_Opnd
(Expr
))))
11034 or else (Nkind_In
(Expr
, N_Op_Eq
, N_Op_Ne
)
11035 and then not Comes_From_Source
(Expr
)))
11036 and then ((Is_Type_Ref
(Left_Opnd
(Expr
))
11037 and then Is_OK_Static_Expression
(Right_Opnd
(Expr
)))
11039 (Is_Type_Ref
(Right_Opnd
(Expr
))
11040 and then Is_OK_Static_Expression
(Left_Opnd
(Expr
))))
11044 -- 20. A call to a predefined boolean logical operator, where each
11045 -- operand is predicate-static.
11047 elsif (Nkind_In
(Expr
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
11048 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11049 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11051 (Nkind
(Expr
) = N_Op_Not
11052 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11056 -- 21. A short-circuit control form where both operands are
11057 -- predicate-static.
11059 elsif Nkind
(Expr
) in N_Short_Circuit
11060 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11061 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
)
11065 -- 22. A parenthesized predicate-static expression. This does not
11066 -- require any special test, since we just ignore paren levels in
11067 -- all the cases above.
11069 -- One more test that is an implementation artifact caused by the fact
11070 -- that we are analyzing not the original expression, but the generated
11071 -- expression in the body of the predicate function. This can include
11072 -- references to inherited predicates, so that the expression we are
11073 -- processing looks like:
11075 -- expression and then xxPredicate (typ (Inns))
11077 -- Where the call is to a Predicate function for an inherited predicate.
11078 -- We simply ignore such a call (which could be to either a dynamic or
11079 -- a static predicate, but remember that we can have a Static_Predicate
11080 -- for a non-static subtype).
11082 elsif Nkind
(Expr
) = N_Function_Call
11083 and then Is_Predicate_Function
(Entity
(Name
(Expr
)))
11087 -- That's an exhaustive list of tests, all other cases are not
11088 -- predicate-static, so we return False.
11093 end Is_Predicate_Static
;
11095 ---------------------
11096 -- Kill_Rep_Clause --
11097 ---------------------
11099 procedure Kill_Rep_Clause
(N
: Node_Id
) is
11101 pragma Assert
(Ignore_Rep_Clauses
);
11103 -- Note: we use Replace rather than Rewrite, because we don't want
11104 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11105 -- rep clause that is being replaced.
11107 Replace
(N
, Make_Null_Statement
(Sloc
(N
)));
11109 -- The null statement must be marked as not coming from source. This is
11110 -- so that ASIS ignores it, and also the back end does not expect bogus
11111 -- "from source" null statements in weird places (e.g. in declarative
11112 -- regions where such null statements are not allowed).
11114 Set_Comes_From_Source
(N
, False);
11115 end Kill_Rep_Clause
;
11121 function Minimum_Size
11123 Biased
: Boolean := False) return Nat
11125 Lo
: Uint
:= No_Uint
;
11126 Hi
: Uint
:= No_Uint
;
11127 LoR
: Ureal
:= No_Ureal
;
11128 HiR
: Ureal
:= No_Ureal
;
11129 LoSet
: Boolean := False;
11130 HiSet
: Boolean := False;
11133 Ancest
: Entity_Id
;
11134 R_Typ
: constant Entity_Id
:= Root_Type
(T
);
11137 -- If bad type, return 0
11139 if T
= Any_Type
then
11142 -- For generic types, just return zero. There cannot be any legitimate
11143 -- need to know such a size, but this routine may be called with a
11144 -- generic type as part of normal processing.
11146 elsif Is_Generic_Type
(R_Typ
) or else R_Typ
= Any_Type
then
11149 -- Access types (cannot have size smaller than System.Address)
11151 elsif Is_Access_Type
(T
) then
11152 return System_Address_Size
;
11154 -- Floating-point types
11156 elsif Is_Floating_Point_Type
(T
) then
11157 return UI_To_Int
(Esize
(R_Typ
));
11161 elsif Is_Discrete_Type
(T
) then
11163 -- The following loop is looking for the nearest compile time known
11164 -- bounds following the ancestor subtype chain. The idea is to find
11165 -- the most restrictive known bounds information.
11169 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
11174 if Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
)) then
11175 Lo
:= Expr_Rep_Value
(Type_Low_Bound
(Ancest
));
11182 if Compile_Time_Known_Value
(Type_High_Bound
(Ancest
)) then
11183 Hi
:= Expr_Rep_Value
(Type_High_Bound
(Ancest
));
11189 Ancest
:= Ancestor_Subtype
(Ancest
);
11191 if No
(Ancest
) then
11192 Ancest
:= Base_Type
(T
);
11194 if Is_Generic_Type
(Ancest
) then
11200 -- Fixed-point types. We can't simply use Expr_Value to get the
11201 -- Corresponding_Integer_Value values of the bounds, since these do not
11202 -- get set till the type is frozen, and this routine can be called
11203 -- before the type is frozen. Similarly the test for bounds being static
11204 -- needs to include the case where we have unanalyzed real literals for
11205 -- the same reason.
11207 elsif Is_Fixed_Point_Type
(T
) then
11209 -- The following loop is looking for the nearest compile time known
11210 -- bounds following the ancestor subtype chain. The idea is to find
11211 -- the most restrictive known bounds information.
11215 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
11219 -- Note: In the following two tests for LoSet and HiSet, it may
11220 -- seem redundant to test for N_Real_Literal here since normally
11221 -- one would assume that the test for the value being known at
11222 -- compile time includes this case. However, there is a glitch.
11223 -- If the real literal comes from folding a non-static expression,
11224 -- then we don't consider any non- static expression to be known
11225 -- at compile time if we are in configurable run time mode (needed
11226 -- in some cases to give a clearer definition of what is and what
11227 -- is not accepted). So the test is indeed needed. Without it, we
11228 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11231 if Nkind
(Type_Low_Bound
(Ancest
)) = N_Real_Literal
11232 or else Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
))
11234 LoR
:= Expr_Value_R
(Type_Low_Bound
(Ancest
));
11241 if Nkind
(Type_High_Bound
(Ancest
)) = N_Real_Literal
11242 or else Compile_Time_Known_Value
(Type_High_Bound
(Ancest
))
11244 HiR
:= Expr_Value_R
(Type_High_Bound
(Ancest
));
11250 Ancest
:= Ancestor_Subtype
(Ancest
);
11252 if No
(Ancest
) then
11253 Ancest
:= Base_Type
(T
);
11255 if Is_Generic_Type
(Ancest
) then
11261 Lo
:= UR_To_Uint
(LoR
/ Small_Value
(T
));
11262 Hi
:= UR_To_Uint
(HiR
/ Small_Value
(T
));
11264 -- No other types allowed
11267 raise Program_Error
;
11270 -- Fall through with Hi and Lo set. Deal with biased case
11273 and then not Is_Fixed_Point_Type
(T
)
11274 and then not (Is_Enumeration_Type
(T
)
11275 and then Has_Non_Standard_Rep
(T
)))
11276 or else Has_Biased_Representation
(T
)
11282 -- Signed case. Note that we consider types like range 1 .. -1 to be
11283 -- signed for the purpose of computing the size, since the bounds have
11284 -- to be accommodated in the base type.
11286 if Lo
< 0 or else Hi
< 0 then
11290 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11291 -- Note that we accommodate the case where the bounds cross. This
11292 -- can happen either because of the way the bounds are declared
11293 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11307 -- If both bounds are positive, make sure that both are represen-
11308 -- table in the case where the bounds are crossed. This can happen
11309 -- either because of the way the bounds are declared, or because of
11310 -- the algorithm in Freeze_Fixed_Point_Type.
11316 -- S = size, (can accommodate 0 .. (2**size - 1))
11319 while Hi
>= Uint_2
** S
loop
11327 ---------------------------
11328 -- New_Stream_Subprogram --
11329 ---------------------------
11331 procedure New_Stream_Subprogram
11335 Nam
: TSS_Name_Type
)
11337 Loc
: constant Source_Ptr
:= Sloc
(N
);
11338 Sname
: constant Name_Id
:= Make_TSS_Name
(Base_Type
(Ent
), Nam
);
11339 Subp_Id
: Entity_Id
;
11340 Subp_Decl
: Node_Id
;
11344 Defer_Declaration
: constant Boolean :=
11345 Is_Tagged_Type
(Ent
) or else Is_Private_Type
(Ent
);
11346 -- For a tagged type, there is a declaration for each stream attribute
11347 -- at the freeze point, and we must generate only a completion of this
11348 -- declaration. We do the same for private types, because the full view
11349 -- might be tagged. Otherwise we generate a declaration at the point of
11350 -- the attribute definition clause.
11352 function Build_Spec
return Node_Id
;
11353 -- Used for declaration and renaming declaration, so that this is
11354 -- treated as a renaming_as_body.
11360 function Build_Spec
return Node_Id
is
11361 Out_P
: constant Boolean := (Nam
= TSS_Stream_Read
);
11364 T_Ref
: constant Node_Id
:= New_Occurrence_Of
(Etyp
, Loc
);
11367 Subp_Id
:= Make_Defining_Identifier
(Loc
, Sname
);
11369 -- S : access Root_Stream_Type'Class
11371 Formals
:= New_List
(
11372 Make_Parameter_Specification
(Loc
,
11373 Defining_Identifier
=>
11374 Make_Defining_Identifier
(Loc
, Name_S
),
11376 Make_Access_Definition
(Loc
,
11378 New_Occurrence_Of
(
11379 Designated_Type
(Etype
(F
)), Loc
))));
11381 if Nam
= TSS_Stream_Input
then
11383 Make_Function_Specification
(Loc
,
11384 Defining_Unit_Name
=> Subp_Id
,
11385 Parameter_Specifications
=> Formals
,
11386 Result_Definition
=> T_Ref
);
11390 Append_To
(Formals
,
11391 Make_Parameter_Specification
(Loc
,
11392 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
11393 Out_Present
=> Out_P
,
11394 Parameter_Type
=> T_Ref
));
11397 Make_Procedure_Specification
(Loc
,
11398 Defining_Unit_Name
=> Subp_Id
,
11399 Parameter_Specifications
=> Formals
);
11405 -- Start of processing for New_Stream_Subprogram
11408 F
:= First_Formal
(Subp
);
11410 if Ekind
(Subp
) = E_Procedure
then
11411 Etyp
:= Etype
(Next_Formal
(F
));
11413 Etyp
:= Etype
(Subp
);
11416 -- Prepare subprogram declaration and insert it as an action on the
11417 -- clause node. The visibility for this entity is used to test for
11418 -- visibility of the attribute definition clause (in the sense of
11419 -- 8.3(23) as amended by AI-195).
11421 if not Defer_Declaration
then
11423 Make_Subprogram_Declaration
(Loc
,
11424 Specification
=> Build_Spec
);
11426 -- For a tagged type, there is always a visible declaration for each
11427 -- stream TSS (it is a predefined primitive operation), and the
11428 -- completion of this declaration occurs at the freeze point, which is
11429 -- not always visible at places where the attribute definition clause is
11430 -- visible. So, we create a dummy entity here for the purpose of
11431 -- tracking the visibility of the attribute definition clause itself.
11435 Make_Defining_Identifier
(Loc
, New_External_Name
(Sname
, 'V'));
11437 Make_Object_Declaration
(Loc
,
11438 Defining_Identifier
=> Subp_Id
,
11439 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
));
11442 Insert_Action
(N
, Subp_Decl
);
11443 Set_Entity
(N
, Subp_Id
);
11446 Make_Subprogram_Renaming_Declaration
(Loc
,
11447 Specification
=> Build_Spec
,
11448 Name
=> New_Occurrence_Of
(Subp
, Loc
));
11450 if Defer_Declaration
then
11451 Set_TSS
(Base_Type
(Ent
), Subp_Id
);
11453 Insert_Action
(N
, Subp_Decl
);
11454 Copy_TSS
(Subp_Id
, Base_Type
(Ent
));
11456 end New_Stream_Subprogram
;
11458 ------------------------------------------
11459 -- Push_Scope_And_Install_Discriminants --
11460 ------------------------------------------
11462 procedure Push_Scope_And_Install_Discriminants
(E
: Entity_Id
) is
11464 if Has_Discriminants
(E
) then
11467 -- Make discriminants visible for type declarations and protected
11468 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
11470 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
11471 Install_Discriminants
(E
);
11474 end Push_Scope_And_Install_Discriminants
;
11476 ------------------------
11477 -- Rep_Item_Too_Early --
11478 ------------------------
11480 function Rep_Item_Too_Early
(T
: Entity_Id
; N
: Node_Id
) return Boolean is
11482 -- Cannot apply non-operational rep items to generic types
11484 if Is_Operational_Item
(N
) then
11488 and then Is_Generic_Type
(Root_Type
(T
))
11490 Error_Msg_N
("representation item not allowed for generic type", N
);
11494 -- Otherwise check for incomplete type
11496 if Is_Incomplete_Or_Private_Type
(T
)
11497 and then No
(Underlying_Type
(T
))
11499 (Nkind
(N
) /= N_Pragma
11500 or else Get_Pragma_Id
(N
) /= Pragma_Import
)
11503 ("representation item must be after full type declaration", N
);
11506 -- If the type has incomplete components, a representation clause is
11507 -- illegal but stream attributes and Convention pragmas are correct.
11509 elsif Has_Private_Component
(T
) then
11510 if Nkind
(N
) = N_Pragma
then
11515 ("representation item must appear after type is fully defined",
11522 end Rep_Item_Too_Early
;
11524 -----------------------
11525 -- Rep_Item_Too_Late --
11526 -----------------------
11528 function Rep_Item_Too_Late
11531 FOnly
: Boolean := False) return Boolean
11534 Parent_Type
: Entity_Id
;
11536 procedure No_Type_Rep_Item
;
11537 -- Output message indicating that no type-related aspects can be
11538 -- specified due to some property of the parent type.
11540 procedure Too_Late
;
11541 -- Output message for an aspect being specified too late
11543 -- Note that neither of the above errors is considered a serious one,
11544 -- since the effect is simply that we ignore the representation clause
11546 -- Is this really true? In any case if we make this change we must
11547 -- document the requirement in the spec of Rep_Item_Too_Late that
11548 -- if True is returned, then the rep item must be completely ignored???
11550 ----------------------
11551 -- No_Type_Rep_Item --
11552 ----------------------
11554 procedure No_Type_Rep_Item
is
11556 Error_Msg_N
("|type-related representation item not permitted!", N
);
11557 end No_Type_Rep_Item
;
11563 procedure Too_Late
is
11565 -- Other compilers seem more relaxed about rep items appearing too
11566 -- late. Since analysis tools typically don't care about rep items
11567 -- anyway, no reason to be too strict about this.
11569 if not Relaxed_RM_Semantics
then
11570 Error_Msg_N
("|representation item appears too late!", N
);
11574 -- Start of processing for Rep_Item_Too_Late
11577 -- First make sure entity is not frozen (RM 13.1(9))
11581 -- Exclude imported types, which may be frozen if they appear in a
11582 -- representation clause for a local type.
11584 and then not From_Limited_With
(T
)
11586 -- Exclude generated entities (not coming from source). The common
11587 -- case is when we generate a renaming which prematurely freezes the
11588 -- renamed internal entity, but we still want to be able to set copies
11589 -- of attribute values such as Size/Alignment.
11591 and then Comes_From_Source
(T
)
11594 S
:= First_Subtype
(T
);
11596 if Present
(Freeze_Node
(S
)) then
11597 if not Relaxed_RM_Semantics
then
11599 ("??no more representation items for }", Freeze_Node
(S
), S
);
11605 -- Check for case of untagged derived type whose parent either has
11606 -- primitive operations, or is a by reference type (RM 13.1(10)). In
11607 -- this case we do not output a Too_Late message, since there is no
11608 -- earlier point where the rep item could be placed to make it legal.
11612 and then Is_Derived_Type
(T
)
11613 and then not Is_Tagged_Type
(T
)
11615 Parent_Type
:= Etype
(Base_Type
(T
));
11617 if Has_Primitive_Operations
(Parent_Type
) then
11620 if not Relaxed_RM_Semantics
then
11622 ("\parent type & has primitive operations!", N
, Parent_Type
);
11627 elsif Is_By_Reference_Type
(Parent_Type
) then
11630 if not Relaxed_RM_Semantics
then
11632 ("\parent type & is a by reference type!", N
, Parent_Type
);
11639 -- No error, but one more warning to consider. The RM (surprisingly)
11640 -- allows this pattern:
11643 -- primitive operations for S
11644 -- type R is new S;
11645 -- rep clause for S
11647 -- Meaning that calls on the primitive operations of S for values of
11648 -- type R may require possibly expensive implicit conversion operations.
11649 -- This is not an error, but is worth a warning.
11651 if not Relaxed_RM_Semantics
and then Is_Type
(T
) then
11653 DTL
: constant Entity_Id
:= Derived_Type_Link
(Base_Type
(T
));
11657 and then Has_Primitive_Operations
(Base_Type
(T
))
11659 -- For now, do not generate this warning for the case of aspect
11660 -- specification using Ada 2012 syntax, since we get wrong
11661 -- messages we do not understand. The whole business of derived
11662 -- types and rep items seems a bit confused when aspects are
11663 -- used, since the aspects are not evaluated till freeze time.
11665 and then not From_Aspect_Specification
(N
)
11667 Error_Msg_Sloc
:= Sloc
(DTL
);
11669 ("representation item for& appears after derived type "
11670 & "declaration#??", N
);
11672 ("\may result in implicit conversions for primitive "
11673 & "operations of&??", N
, T
);
11675 ("\to change representations when called with arguments "
11676 & "of type&??", N
, DTL
);
11681 -- No error, link item into head of chain of rep items for the entity,
11682 -- but avoid chaining if we have an overloadable entity, and the pragma
11683 -- is one that can apply to multiple overloaded entities.
11685 if Is_Overloadable
(T
) and then Nkind
(N
) = N_Pragma
then
11687 Pname
: constant Name_Id
:= Pragma_Name
(N
);
11689 if Nam_In
(Pname
, Name_Convention
, Name_Import
, Name_Export
,
11690 Name_External
, Name_Interface
)
11697 Record_Rep_Item
(T
, N
);
11699 end Rep_Item_Too_Late
;
11701 -------------------------------------
11702 -- Replace_Type_References_Generic --
11703 -------------------------------------
11705 procedure Replace_Type_References_Generic
(N
: Node_Id
; T
: Entity_Id
) is
11706 TName
: constant Name_Id
:= Chars
(T
);
11708 function Replace_Node
(N
: Node_Id
) return Traverse_Result
;
11709 -- Processes a single node in the traversal procedure below, checking
11710 -- if node N should be replaced, and if so, doing the replacement.
11712 procedure Replace_Type_Refs
is new Traverse_Proc
(Replace_Node
);
11713 -- This instantiation provides the body of Replace_Type_References
11719 function Replace_Node
(N
: Node_Id
) return Traverse_Result
is
11724 -- Case of identifier
11726 if Nkind
(N
) = N_Identifier
then
11728 -- If not the type name, check whether it is a reference to
11729 -- some other type, which must be frozen before the predicate
11730 -- function is analyzed, i.e. before the freeze node of the
11731 -- type to which the predicate applies.
11733 if Chars
(N
) /= TName
then
11734 if Present
(Current_Entity
(N
))
11735 and then Is_Type
(Current_Entity
(N
))
11737 Freeze_Before
(Freeze_Node
(T
), Current_Entity
(N
));
11742 -- Otherwise do the replacement and we are done with this node
11745 Replace_Type_Reference
(N
);
11749 -- Case of selected component (which is what a qualification
11750 -- looks like in the unanalyzed tree, which is what we have.
11752 elsif Nkind
(N
) = N_Selected_Component
then
11754 -- If selector name is not our type, keeping going (we might
11755 -- still have an occurrence of the type in the prefix).
11757 if Nkind
(Selector_Name
(N
)) /= N_Identifier
11758 or else Chars
(Selector_Name
(N
)) /= TName
11762 -- Selector name is our type, check qualification
11765 -- Loop through scopes and prefixes, doing comparison
11767 S
:= Current_Scope
;
11770 -- Continue if no more scopes or scope with no name
11772 if No
(S
) or else Nkind
(S
) not in N_Has_Chars
then
11776 -- Do replace if prefix is an identifier matching the
11777 -- scope that we are currently looking at.
11779 if Nkind
(P
) = N_Identifier
11780 and then Chars
(P
) = Chars
(S
)
11782 Replace_Type_Reference
(N
);
11786 -- Go check scope above us if prefix is itself of the
11787 -- form of a selected component, whose selector matches
11788 -- the scope we are currently looking at.
11790 if Nkind
(P
) = N_Selected_Component
11791 and then Nkind
(Selector_Name
(P
)) = N_Identifier
11792 and then Chars
(Selector_Name
(P
)) = Chars
(S
)
11797 -- For anything else, we don't have a match, so keep on
11798 -- going, there are still some weird cases where we may
11799 -- still have a replacement within the prefix.
11807 -- Continue for any other node kind
11815 Replace_Type_Refs
(N
);
11816 end Replace_Type_References_Generic
;
11818 -------------------------
11819 -- Same_Representation --
11820 -------------------------
11822 function Same_Representation
(Typ1
, Typ2
: Entity_Id
) return Boolean is
11823 T1
: constant Entity_Id
:= Underlying_Type
(Typ1
);
11824 T2
: constant Entity_Id
:= Underlying_Type
(Typ2
);
11827 -- A quick check, if base types are the same, then we definitely have
11828 -- the same representation, because the subtype specific representation
11829 -- attributes (Size and Alignment) do not affect representation from
11830 -- the point of view of this test.
11832 if Base_Type
(T1
) = Base_Type
(T2
) then
11835 elsif Is_Private_Type
(Base_Type
(T2
))
11836 and then Base_Type
(T1
) = Full_View
(Base_Type
(T2
))
11841 -- Tagged types never have differing representations
11843 if Is_Tagged_Type
(T1
) then
11847 -- Representations are definitely different if conventions differ
11849 if Convention
(T1
) /= Convention
(T2
) then
11853 -- Representations are different if component alignments or scalar
11854 -- storage orders differ.
11856 if (Is_Record_Type
(T1
) or else Is_Array_Type
(T1
))
11858 (Is_Record_Type
(T2
) or else Is_Array_Type
(T2
))
11860 (Component_Alignment
(T1
) /= Component_Alignment
(T2
)
11861 or else Reverse_Storage_Order
(T1
) /= Reverse_Storage_Order
(T2
))
11866 -- For arrays, the only real issue is component size. If we know the
11867 -- component size for both arrays, and it is the same, then that's
11868 -- good enough to know we don't have a change of representation.
11870 if Is_Array_Type
(T1
) then
11871 if Known_Component_Size
(T1
)
11872 and then Known_Component_Size
(T2
)
11873 and then Component_Size
(T1
) = Component_Size
(T2
)
11875 if VM_Target
= No_VM
then
11878 -- In VM targets the representation of arrays with aliased
11879 -- components differs from arrays with non-aliased components
11882 return Has_Aliased_Components
(Base_Type
(T1
))
11884 Has_Aliased_Components
(Base_Type
(T2
));
11889 -- Types definitely have same representation if neither has non-standard
11890 -- representation since default representations are always consistent.
11891 -- If only one has non-standard representation, and the other does not,
11892 -- then we consider that they do not have the same representation. They
11893 -- might, but there is no way of telling early enough.
11895 if Has_Non_Standard_Rep
(T1
) then
11896 if not Has_Non_Standard_Rep
(T2
) then
11900 return not Has_Non_Standard_Rep
(T2
);
11903 -- Here the two types both have non-standard representation, and we need
11904 -- to determine if they have the same non-standard representation.
11906 -- For arrays, we simply need to test if the component sizes are the
11907 -- same. Pragma Pack is reflected in modified component sizes, so this
11908 -- check also deals with pragma Pack.
11910 if Is_Array_Type
(T1
) then
11911 return Component_Size
(T1
) = Component_Size
(T2
);
11913 -- Tagged types always have the same representation, because it is not
11914 -- possible to specify different representations for common fields.
11916 elsif Is_Tagged_Type
(T1
) then
11919 -- Case of record types
11921 elsif Is_Record_Type
(T1
) then
11923 -- Packed status must conform
11925 if Is_Packed
(T1
) /= Is_Packed
(T2
) then
11928 -- Otherwise we must check components. Typ2 maybe a constrained
11929 -- subtype with fewer components, so we compare the components
11930 -- of the base types.
11933 Record_Case
: declare
11934 CD1
, CD2
: Entity_Id
;
11936 function Same_Rep
return Boolean;
11937 -- CD1 and CD2 are either components or discriminants. This
11938 -- function tests whether they have the same representation.
11944 function Same_Rep
return Boolean is
11946 if No
(Component_Clause
(CD1
)) then
11947 return No
(Component_Clause
(CD2
));
11949 -- Note: at this point, component clauses have been
11950 -- normalized to the default bit order, so that the
11951 -- comparison of Component_Bit_Offsets is meaningful.
11954 Present
(Component_Clause
(CD2
))
11956 Component_Bit_Offset
(CD1
) = Component_Bit_Offset
(CD2
)
11958 Esize
(CD1
) = Esize
(CD2
);
11962 -- Start of processing for Record_Case
11965 if Has_Discriminants
(T1
) then
11967 -- The number of discriminants may be different if the
11968 -- derived type has fewer (constrained by values). The
11969 -- invisible discriminants retain the representation of
11970 -- the original, so the discrepancy does not per se
11971 -- indicate a different representation.
11973 CD1
:= First_Discriminant
(T1
);
11974 CD2
:= First_Discriminant
(T2
);
11975 while Present
(CD1
) and then Present
(CD2
) loop
11976 if not Same_Rep
then
11979 Next_Discriminant
(CD1
);
11980 Next_Discriminant
(CD2
);
11985 CD1
:= First_Component
(Underlying_Type
(Base_Type
(T1
)));
11986 CD2
:= First_Component
(Underlying_Type
(Base_Type
(T2
)));
11987 while Present
(CD1
) loop
11988 if not Same_Rep
then
11991 Next_Component
(CD1
);
11992 Next_Component
(CD2
);
12000 -- For enumeration types, we must check each literal to see if the
12001 -- representation is the same. Note that we do not permit enumeration
12002 -- representation clauses for Character and Wide_Character, so these
12003 -- cases were already dealt with.
12005 elsif Is_Enumeration_Type
(T1
) then
12006 Enumeration_Case
: declare
12007 L1
, L2
: Entity_Id
;
12010 L1
:= First_Literal
(T1
);
12011 L2
:= First_Literal
(T2
);
12012 while Present
(L1
) loop
12013 if Enumeration_Rep
(L1
) /= Enumeration_Rep
(L2
) then
12022 end Enumeration_Case
;
12024 -- Any other types have the same representation for these purposes
12029 end Same_Representation
;
12031 --------------------------------
12032 -- Resolve_Iterable_Operation --
12033 --------------------------------
12035 procedure Resolve_Iterable_Operation
12037 Cursor
: Entity_Id
;
12046 if not Is_Overloaded
(N
) then
12047 if not Is_Entity_Name
(N
)
12048 or else Ekind
(Entity
(N
)) /= E_Function
12049 or else Scope
(Entity
(N
)) /= Scope
(Typ
)
12050 or else No
(First_Formal
(Entity
(N
)))
12051 or else Etype
(First_Formal
(Entity
(N
))) /= Typ
12053 Error_Msg_N
("iterable primitive must be local function name "
12054 & "whose first formal is an iterable type", N
);
12059 F1
:= First_Formal
(Ent
);
12060 if Nam
= Name_First
then
12062 -- First (Container) => Cursor
12064 if Etype
(Ent
) /= Cursor
then
12065 Error_Msg_N
("primitive for First must yield a curosr", N
);
12068 elsif Nam
= Name_Next
then
12070 -- Next (Container, Cursor) => Cursor
12072 F2
:= Next_Formal
(F1
);
12074 if Etype
(F2
) /= Cursor
12075 or else Etype
(Ent
) /= Cursor
12076 or else Present
(Next_Formal
(F2
))
12078 Error_Msg_N
("no match for Next iterable primitive", N
);
12081 elsif Nam
= Name_Has_Element
then
12083 -- Has_Element (Container, Cursor) => Boolean
12085 F2
:= Next_Formal
(F1
);
12086 if Etype
(F2
) /= Cursor
12087 or else Etype
(Ent
) /= Standard_Boolean
12088 or else Present
(Next_Formal
(F2
))
12090 Error_Msg_N
("no match for Has_Element iterable primitive", N
);
12093 elsif Nam
= Name_Element
then
12094 F2
:= Next_Formal
(F1
);
12097 or else Etype
(F2
) /= Cursor
12098 or else Present
(Next_Formal
(F2
))
12100 Error_Msg_N
("no match for Element iterable primitive", N
);
12105 raise Program_Error
;
12109 -- Overloaded case: find subprogram with proper signature.
12110 -- Caller will report error if no match is found.
12117 Get_First_Interp
(N
, I
, It
);
12118 while Present
(It
.Typ
) loop
12119 if Ekind
(It
.Nam
) = E_Function
12120 and then Scope
(It
.Nam
) = Scope
(Typ
)
12121 and then Etype
(First_Formal
(It
.Nam
)) = Typ
12123 F1
:= First_Formal
(It
.Nam
);
12125 if Nam
= Name_First
then
12126 if Etype
(It
.Nam
) = Cursor
12127 and then No
(Next_Formal
(F1
))
12129 Set_Entity
(N
, It
.Nam
);
12133 elsif Nam
= Name_Next
then
12134 F2
:= Next_Formal
(F1
);
12137 and then No
(Next_Formal
(F2
))
12138 and then Etype
(F2
) = Cursor
12139 and then Etype
(It
.Nam
) = Cursor
12141 Set_Entity
(N
, It
.Nam
);
12145 elsif Nam
= Name_Has_Element
then
12146 F2
:= Next_Formal
(F1
);
12149 and then No
(Next_Formal
(F2
))
12150 and then Etype
(F2
) = Cursor
12151 and then Etype
(It
.Nam
) = Standard_Boolean
12153 Set_Entity
(N
, It
.Nam
);
12154 F2
:= Next_Formal
(F1
);
12158 elsif Nam
= Name_Element
then
12159 F2
:= Next_Formal
(F1
);
12162 and then No
(Next_Formal
(F2
))
12163 and then Etype
(F2
) = Cursor
12165 Set_Entity
(N
, It
.Nam
);
12171 Get_Next_Interp
(I
, It
);
12175 end Resolve_Iterable_Operation
;
12181 procedure Set_Biased
12185 Biased
: Boolean := True)
12189 Set_Has_Biased_Representation
(E
);
12191 if Warn_On_Biased_Representation
then
12193 ("?B?" & Msg
& " forces biased representation for&", N
, E
);
12198 --------------------
12199 -- Set_Enum_Esize --
12200 --------------------
12202 procedure Set_Enum_Esize
(T
: Entity_Id
) is
12208 Init_Alignment
(T
);
12210 -- Find the minimum standard size (8,16,32,64) that fits
12212 Lo
:= Enumeration_Rep
(Entity
(Type_Low_Bound
(T
)));
12213 Hi
:= Enumeration_Rep
(Entity
(Type_High_Bound
(T
)));
12216 if Lo
>= -Uint_2
**07 and then Hi
< Uint_2
**07 then
12217 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
12219 elsif Lo
>= -Uint_2
**15 and then Hi
< Uint_2
**15 then
12222 elsif Lo
>= -Uint_2
**31 and then Hi
< Uint_2
**31 then
12225 else pragma Assert
(Lo
>= -Uint_2
**63 and then Hi
< Uint_2
**63);
12230 if Hi
< Uint_2
**08 then
12231 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
12233 elsif Hi
< Uint_2
**16 then
12236 elsif Hi
< Uint_2
**32 then
12239 else pragma Assert
(Hi
< Uint_2
**63);
12244 -- That minimum is the proper size unless we have a foreign convention
12245 -- and the size required is 32 or less, in which case we bump the size
12246 -- up to 32. This is required for C and C++ and seems reasonable for
12247 -- all other foreign conventions.
12249 if Has_Foreign_Convention
(T
)
12250 and then Esize
(T
) < Standard_Integer_Size
12252 -- Don't do this if Short_Enums on target
12254 and then not Target_Short_Enums
12256 Init_Esize
(T
, Standard_Integer_Size
);
12258 Init_Esize
(T
, Sz
);
12260 end Set_Enum_Esize
;
12262 -----------------------------
12263 -- Uninstall_Discriminants --
12264 -----------------------------
12266 procedure Uninstall_Discriminants
(E
: Entity_Id
) is
12272 -- Discriminants have been made visible for type declarations and
12273 -- protected type declarations, not for subtype declarations.
12275 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
12276 Disc
:= First_Discriminant
(E
);
12277 while Present
(Disc
) loop
12278 if Disc
/= Current_Entity
(Disc
) then
12279 Prev
:= Current_Entity
(Disc
);
12280 while Present
(Prev
)
12281 and then Present
(Homonym
(Prev
))
12282 and then Homonym
(Prev
) /= Disc
12284 Prev
:= Homonym
(Prev
);
12290 Set_Is_Immediately_Visible
(Disc
, False);
12292 Outer
:= Homonym
(Disc
);
12293 while Present
(Outer
) and then Scope
(Outer
) = E
loop
12294 Outer
:= Homonym
(Outer
);
12297 -- Reset homonym link of other entities, but do not modify link
12298 -- between entities in current scope, so that the back-end can
12299 -- have a proper count of local overloadings.
12302 Set_Name_Entity_Id
(Chars
(Disc
), Outer
);
12304 elsif Scope
(Prev
) /= Scope
(Disc
) then
12305 Set_Homonym
(Prev
, Outer
);
12308 Next_Discriminant
(Disc
);
12311 end Uninstall_Discriminants
;
12313 -------------------------------------------
12314 -- Uninstall_Discriminants_And_Pop_Scope --
12315 -------------------------------------------
12317 procedure Uninstall_Discriminants_And_Pop_Scope
(E
: Entity_Id
) is
12319 if Has_Discriminants
(E
) then
12320 Uninstall_Discriminants
(E
);
12323 end Uninstall_Discriminants_And_Pop_Scope
;
12325 ------------------------------
12326 -- Validate_Address_Clauses --
12327 ------------------------------
12329 procedure Validate_Address_Clauses
is
12331 for J
in Address_Clause_Checks
.First
.. Address_Clause_Checks
.Last
loop
12333 ACCR
: Address_Clause_Check_Record
12334 renames Address_Clause_Checks
.Table
(J
);
12338 X_Alignment
: Uint
;
12339 Y_Alignment
: Uint
;
12345 -- Skip processing of this entry if warning already posted
12347 if not Address_Warning_Posted
(ACCR
.N
) then
12348 Expr
:= Original_Node
(Expression
(ACCR
.N
));
12352 X_Alignment
:= Alignment
(ACCR
.X
);
12353 Y_Alignment
:= Alignment
(ACCR
.Y
);
12355 -- Similarly obtain sizes
12357 X_Size
:= Esize
(ACCR
.X
);
12358 Y_Size
:= Esize
(ACCR
.Y
);
12360 -- Check for large object overlaying smaller one
12363 and then X_Size
> Uint_0
12364 and then X_Size
> Y_Size
12367 ("??& overlays smaller object", ACCR
.N
, ACCR
.X
);
12369 ("\??program execution may be erroneous", ACCR
.N
);
12370 Error_Msg_Uint_1
:= X_Size
;
12372 ("\??size of & is ^", ACCR
.N
, ACCR
.X
);
12373 Error_Msg_Uint_1
:= Y_Size
;
12375 ("\??size of & is ^", ACCR
.N
, ACCR
.Y
);
12377 -- Check for inadequate alignment, both of the base object
12378 -- and of the offset, if any.
12380 -- Note: we do not check the alignment if we gave a size
12381 -- warning, since it would likely be redundant.
12383 elsif Y_Alignment
/= Uint_0
12384 and then (Y_Alignment
< X_Alignment
12387 Nkind
(Expr
) = N_Attribute_Reference
12389 Attribute_Name
(Expr
) = Name_Address
12391 Has_Compatible_Alignment
12392 (ACCR
.X
, Prefix
(Expr
))
12393 /= Known_Compatible
))
12396 ("??specified address for& may be inconsistent "
12397 & "with alignment", ACCR
.N
, ACCR
.X
);
12399 ("\??program execution may be erroneous (RM 13.3(27))",
12401 Error_Msg_Uint_1
:= X_Alignment
;
12403 ("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
12404 Error_Msg_Uint_1
:= Y_Alignment
;
12406 ("\??alignment of & is ^", ACCR
.N
, ACCR
.Y
);
12407 if Y_Alignment
>= X_Alignment
then
12409 ("\??but offset is not multiple of alignment", ACCR
.N
);
12415 end Validate_Address_Clauses
;
12417 ---------------------------
12418 -- Validate_Independence --
12419 ---------------------------
12421 procedure Validate_Independence
is
12422 SU
: constant Uint
:= UI_From_Int
(System_Storage_Unit
);
12430 procedure Check_Array_Type
(Atyp
: Entity_Id
);
12431 -- Checks if the array type Atyp has independent components, and
12432 -- if not, outputs an appropriate set of error messages.
12434 procedure No_Independence
;
12435 -- Output message that independence cannot be guaranteed
12437 function OK_Component
(C
: Entity_Id
) return Boolean;
12438 -- Checks one component to see if it is independently accessible, and
12439 -- if so yields True, otherwise yields False if independent access
12440 -- cannot be guaranteed. This is a conservative routine, it only
12441 -- returns True if it knows for sure, it returns False if it knows
12442 -- there is a problem, or it cannot be sure there is no problem.
12444 procedure Reason_Bad_Component
(C
: Entity_Id
);
12445 -- Outputs continuation message if a reason can be determined for
12446 -- the component C being bad.
12448 ----------------------
12449 -- Check_Array_Type --
12450 ----------------------
12452 procedure Check_Array_Type
(Atyp
: Entity_Id
) is
12453 Ctyp
: constant Entity_Id
:= Component_Type
(Atyp
);
12456 -- OK if no alignment clause, no pack, and no component size
12458 if not Has_Component_Size_Clause
(Atyp
)
12459 and then not Has_Alignment_Clause
(Atyp
)
12460 and then not Is_Packed
(Atyp
)
12465 -- Case of component size is greater than or equal to 64 and the
12466 -- alignment of the array is at least as large as the alignment
12467 -- of the component. We are definitely OK in this situation.
12469 if Known_Component_Size
(Atyp
)
12470 and then Component_Size
(Atyp
) >= 64
12471 and then Known_Alignment
(Atyp
)
12472 and then Known_Alignment
(Ctyp
)
12473 and then Alignment
(Atyp
) >= Alignment
(Ctyp
)
12478 -- Check actual component size
12480 if not Known_Component_Size
(Atyp
)
12481 or else not (Addressable
(Component_Size
(Atyp
))
12482 and then Component_Size
(Atyp
) < 64)
12483 or else Component_Size
(Atyp
) mod Esize
(Ctyp
) /= 0
12487 -- Bad component size, check reason
12489 if Has_Component_Size_Clause
(Atyp
) then
12490 P
:= Get_Attribute_Definition_Clause
12491 (Atyp
, Attribute_Component_Size
);
12493 if Present
(P
) then
12494 Error_Msg_Sloc
:= Sloc
(P
);
12495 Error_Msg_N
("\because of Component_Size clause#", N
);
12500 if Is_Packed
(Atyp
) then
12501 P
:= Get_Rep_Pragma
(Atyp
, Name_Pack
);
12503 if Present
(P
) then
12504 Error_Msg_Sloc
:= Sloc
(P
);
12505 Error_Msg_N
("\because of pragma Pack#", N
);
12510 -- No reason found, just return
12515 -- Array type is OK independence-wise
12518 end Check_Array_Type
;
12520 ---------------------
12521 -- No_Independence --
12522 ---------------------
12524 procedure No_Independence
is
12526 if Pragma_Name
(N
) = Name_Independent
then
12527 Error_Msg_NE
("independence cannot be guaranteed for&", N
, E
);
12530 ("independent components cannot be guaranteed for&", N
, E
);
12532 end No_Independence
;
12538 function OK_Component
(C
: Entity_Id
) return Boolean is
12539 Rec
: constant Entity_Id
:= Scope
(C
);
12540 Ctyp
: constant Entity_Id
:= Etype
(C
);
12543 -- OK if no component clause, no Pack, and no alignment clause
12545 if No
(Component_Clause
(C
))
12546 and then not Is_Packed
(Rec
)
12547 and then not Has_Alignment_Clause
(Rec
)
12552 -- Here we look at the actual component layout. A component is
12553 -- addressable if its size is a multiple of the Esize of the
12554 -- component type, and its starting position in the record has
12555 -- appropriate alignment, and the record itself has appropriate
12556 -- alignment to guarantee the component alignment.
12558 -- Make sure sizes are static, always assume the worst for any
12559 -- cases where we cannot check static values.
12561 if not (Known_Static_Esize
(C
)
12563 Known_Static_Esize
(Ctyp
))
12568 -- Size of component must be addressable or greater than 64 bits
12569 -- and a multiple of bytes.
12571 if not Addressable
(Esize
(C
)) and then Esize
(C
) < Uint_64
then
12575 -- Check size is proper multiple
12577 if Esize
(C
) mod Esize
(Ctyp
) /= 0 then
12581 -- Check alignment of component is OK
12583 if not Known_Component_Bit_Offset
(C
)
12584 or else Component_Bit_Offset
(C
) < Uint_0
12585 or else Component_Bit_Offset
(C
) mod Esize
(Ctyp
) /= 0
12590 -- Check alignment of record type is OK
12592 if not Known_Alignment
(Rec
)
12593 or else (Alignment
(Rec
) * SU
) mod Esize
(Ctyp
) /= 0
12598 -- All tests passed, component is addressable
12603 --------------------------
12604 -- Reason_Bad_Component --
12605 --------------------------
12607 procedure Reason_Bad_Component
(C
: Entity_Id
) is
12608 Rec
: constant Entity_Id
:= Scope
(C
);
12609 Ctyp
: constant Entity_Id
:= Etype
(C
);
12612 -- If component clause present assume that's the problem
12614 if Present
(Component_Clause
(C
)) then
12615 Error_Msg_Sloc
:= Sloc
(Component_Clause
(C
));
12616 Error_Msg_N
("\because of Component_Clause#", N
);
12620 -- If pragma Pack clause present, assume that's the problem
12622 if Is_Packed
(Rec
) then
12623 P
:= Get_Rep_Pragma
(Rec
, Name_Pack
);
12625 if Present
(P
) then
12626 Error_Msg_Sloc
:= Sloc
(P
);
12627 Error_Msg_N
("\because of pragma Pack#", N
);
12632 -- See if record has bad alignment clause
12634 if Has_Alignment_Clause
(Rec
)
12635 and then Known_Alignment
(Rec
)
12636 and then (Alignment
(Rec
) * SU
) mod Esize
(Ctyp
) /= 0
12638 P
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Alignment
);
12640 if Present
(P
) then
12641 Error_Msg_Sloc
:= Sloc
(P
);
12642 Error_Msg_N
("\because of Alignment clause#", N
);
12646 -- Couldn't find a reason, so return without a message
12649 end Reason_Bad_Component
;
12651 -- Start of processing for Validate_Independence
12654 for J
in Independence_Checks
.First
.. Independence_Checks
.Last
loop
12655 N
:= Independence_Checks
.Table
(J
).N
;
12656 E
:= Independence_Checks
.Table
(J
).E
;
12657 IC
:= Pragma_Name
(N
) = Name_Independent_Components
;
12659 -- Deal with component case
12661 if Ekind
(E
) = E_Discriminant
or else Ekind
(E
) = E_Component
then
12662 if not OK_Component
(E
) then
12664 Reason_Bad_Component
(E
);
12669 -- Deal with record with Independent_Components
12671 if IC
and then Is_Record_Type
(E
) then
12672 Comp
:= First_Component_Or_Discriminant
(E
);
12673 while Present
(Comp
) loop
12674 if not OK_Component
(Comp
) then
12676 Reason_Bad_Component
(Comp
);
12680 Next_Component_Or_Discriminant
(Comp
);
12684 -- Deal with address clause case
12686 if Is_Object
(E
) then
12687 Addr
:= Address_Clause
(E
);
12689 if Present
(Addr
) then
12691 Error_Msg_Sloc
:= Sloc
(Addr
);
12692 Error_Msg_N
("\because of Address clause#", N
);
12697 -- Deal with independent components for array type
12699 if IC
and then Is_Array_Type
(E
) then
12700 Check_Array_Type
(E
);
12703 -- Deal with independent components for array object
12705 if IC
and then Is_Object
(E
) and then Is_Array_Type
(Etype
(E
)) then
12706 Check_Array_Type
(Etype
(E
));
12711 end Validate_Independence
;
12713 ------------------------------
12714 -- Validate_Iterable_Aspect --
12715 ------------------------------
12717 procedure Validate_Iterable_Aspect
(Typ
: Entity_Id
; ASN
: Node_Id
) is
12722 Cursor
: constant Entity_Id
:= Get_Cursor_Type
(ASN
, Typ
);
12724 First_Id
: Entity_Id
;
12725 Next_Id
: Entity_Id
;
12726 Has_Element_Id
: Entity_Id
;
12727 Element_Id
: Entity_Id
;
12730 -- If previous error aspect is unusable
12732 if Cursor
= Any_Type
then
12738 Has_Element_Id
:= Empty
;
12739 Element_Id
:= Empty
;
12741 -- Each expression must resolve to a function with the proper signature
12743 Assoc
:= First
(Component_Associations
(Expression
(ASN
)));
12744 while Present
(Assoc
) loop
12745 Expr
:= Expression
(Assoc
);
12748 Prim
:= First
(Choices
(Assoc
));
12750 if Nkind
(Prim
) /= N_Identifier
or else Present
(Next
(Prim
)) then
12751 Error_Msg_N
("illegal name in association", Prim
);
12753 elsif Chars
(Prim
) = Name_First
then
12754 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_First
);
12755 First_Id
:= Entity
(Expr
);
12757 elsif Chars
(Prim
) = Name_Next
then
12758 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_Next
);
12759 Next_Id
:= Entity
(Expr
);
12761 elsif Chars
(Prim
) = Name_Has_Element
then
12762 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_Has_Element
);
12763 Has_Element_Id
:= Entity
(Expr
);
12765 elsif Chars
(Prim
) = Name_Element
then
12766 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_Element
);
12767 Element_Id
:= Entity
(Expr
);
12770 Error_Msg_N
("invalid name for iterable function", Prim
);
12776 if No
(First_Id
) then
12777 Error_Msg_N
("match for First primitive not found", ASN
);
12779 elsif No
(Next_Id
) then
12780 Error_Msg_N
("match for Next primitive not found", ASN
);
12782 elsif No
(Has_Element_Id
) then
12783 Error_Msg_N
("match for Has_Element primitive not found", ASN
);
12785 elsif No
(Element_Id
) then
12788 end Validate_Iterable_Aspect
;
12790 -----------------------------------
12791 -- Validate_Unchecked_Conversion --
12792 -----------------------------------
12794 procedure Validate_Unchecked_Conversion
12796 Act_Unit
: Entity_Id
)
12798 Source
: Entity_Id
;
12799 Target
: Entity_Id
;
12803 -- Obtain source and target types. Note that we call Ancestor_Subtype
12804 -- here because the processing for generic instantiation always makes
12805 -- subtypes, and we want the original frozen actual types.
12807 -- If we are dealing with private types, then do the check on their
12808 -- fully declared counterparts if the full declarations have been
12809 -- encountered (they don't have to be visible, but they must exist).
12811 Source
:= Ancestor_Subtype
(Etype
(First_Formal
(Act_Unit
)));
12813 if Is_Private_Type
(Source
)
12814 and then Present
(Underlying_Type
(Source
))
12816 Source
:= Underlying_Type
(Source
);
12819 Target
:= Ancestor_Subtype
(Etype
(Act_Unit
));
12821 -- If either type is generic, the instantiation happens within a generic
12822 -- unit, and there is nothing to check. The proper check will happen
12823 -- when the enclosing generic is instantiated.
12825 if Is_Generic_Type
(Source
) or else Is_Generic_Type
(Target
) then
12829 if Is_Private_Type
(Target
)
12830 and then Present
(Underlying_Type
(Target
))
12832 Target
:= Underlying_Type
(Target
);
12835 -- Source may be unconstrained array, but not target
12837 if Is_Array_Type
(Target
) and then not Is_Constrained
(Target
) then
12839 ("unchecked conversion to unconstrained array not allowed", N
);
12843 -- Warn if conversion between two different convention pointers
12845 if Is_Access_Type
(Target
)
12846 and then Is_Access_Type
(Source
)
12847 and then Convention
(Target
) /= Convention
(Source
)
12848 and then Warn_On_Unchecked_Conversion
12850 -- Give warnings for subprogram pointers only on most targets
12852 if Is_Access_Subprogram_Type
(Target
)
12853 or else Is_Access_Subprogram_Type
(Source
)
12856 ("?z?conversion between pointers with different conventions!",
12861 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
12862 -- warning when compiling GNAT-related sources.
12864 if Warn_On_Unchecked_Conversion
12865 and then not In_Predefined_Unit
(N
)
12866 and then RTU_Loaded
(Ada_Calendar
)
12867 and then (Chars
(Source
) = Name_Time
12869 Chars
(Target
) = Name_Time
)
12871 -- If Ada.Calendar is loaded and the name of one of the operands is
12872 -- Time, there is a good chance that this is Ada.Calendar.Time.
12875 Calendar_Time
: constant Entity_Id
:= Full_View
(RTE
(RO_CA_Time
));
12877 pragma Assert
(Present
(Calendar_Time
));
12879 if Source
= Calendar_Time
or else Target
= Calendar_Time
then
12881 ("?z?representation of 'Time values may change between "
12882 & "'G'N'A'T versions", N
);
12887 -- Make entry in unchecked conversion table for later processing by
12888 -- Validate_Unchecked_Conversions, which will check sizes and alignments
12889 -- (using values set by the back-end where possible). This is only done
12890 -- if the appropriate warning is active.
12892 if Warn_On_Unchecked_Conversion
then
12893 Unchecked_Conversions
.Append
12894 (New_Val
=> UC_Entry
'(Eloc => Sloc (N),
12897 Act_Unit => Act_Unit));
12899 -- If both sizes are known statically now, then back end annotation
12900 -- is not required to do a proper check but if either size is not
12901 -- known statically, then we need the annotation.
12903 if Known_Static_RM_Size (Source)
12905 Known_Static_RM_Size (Target)
12909 Back_Annotate_Rep_Info := True;
12913 -- If unchecked conversion to access type, and access type is declared
12914 -- in the same unit as the unchecked conversion, then set the flag
12915 -- No_Strict_Aliasing (no strict aliasing is implicit here)
12917 if Is_Access_Type (Target) and then
12918 In_Same_Source_Unit (Target, N)
12920 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
12923 -- Generate N_Validate_Unchecked_Conversion node for back end in case
12924 -- the back end needs to perform special validation checks.
12926 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
12927 -- have full expansion and the back end is called ???
12930 Make_Validate_Unchecked_Conversion (Sloc (N));
12931 Set_Source_Type (Vnode, Source);
12932 Set_Target_Type (Vnode, Target);
12934 -- If the unchecked conversion node is in a list, just insert before it.
12935 -- If not we have some strange case, not worth bothering about.
12937 if Is_List_Member (N) then
12938 Insert_After (N, Vnode);
12940 end Validate_Unchecked_Conversion;
12942 ------------------------------------
12943 -- Validate_Unchecked_Conversions --
12944 ------------------------------------
12946 procedure Validate_Unchecked_Conversions is
12948 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
12950 T : UC_Entry renames Unchecked_Conversions.Table (N);
12952 Eloc : constant Source_Ptr := T.Eloc;
12953 Source : constant Entity_Id := T.Source;
12954 Target : constant Entity_Id := T.Target;
12955 Act_Unit : constant Entity_Id := T.Act_Unit;
12961 -- Skip if function marked as warnings off
12963 if Warnings_Off (Act_Unit) then
12967 -- This validation check, which warns if we have unequal sizes for
12968 -- unchecked conversion, and thus potentially implementation
12969 -- dependent semantics, is one of the few occasions on which we
12970 -- use the official RM size instead of Esize. See description in
12971 -- Einfo "Handling of Type'Size Values" for details.
12973 if Serious_Errors_Detected = 0
12974 and then Known_Static_RM_Size (Source)
12975 and then Known_Static_RM_Size (Target)
12977 -- Don't do the check if warnings off for either type, note the
12978 -- deliberate use of OR here instead of OR ELSE to get the flag
12979 -- Warnings_Off_Used set for both types if appropriate.
12981 and then not (Has_Warnings_Off (Source)
12983 Has_Warnings_Off (Target))
12985 Source_Siz := RM_Size (Source);
12986 Target_Siz := RM_Size (Target);
12988 if Source_Siz /= Target_Siz then
12990 ("?z?types for unchecked conversion have different sizes!",
12993 if All_Errors_Mode then
12994 Error_Msg_Name_1 := Chars (Source);
12995 Error_Msg_Uint_1 := Source_Siz;
12996 Error_Msg_Name_2 := Chars (Target);
12997 Error_Msg_Uint_2 := Target_Siz;
12998 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
13000 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
13002 if Is_Discrete_Type (Source)
13004 Is_Discrete_Type (Target)
13006 if Source_Siz > Target_Siz then
13008 ("\?z?^ high order bits of source will "
13009 & "be ignored!", Eloc);
13011 elsif Is_Unsigned_Type (Source) then
13013 ("\?z?source will be extended with ^ high order "
13014 & "zero bits!", Eloc);
13018 ("\?z?source will be extended with ^ high order "
13019 & "sign bits!", Eloc);
13022 elsif Source_Siz < Target_Siz then
13023 if Is_Discrete_Type (Target) then
13024 if Bytes_Big_Endian then
13026 ("\?z?target value will include ^ undefined "
13027 & "low order bits!", Eloc);
13030 ("\?z?target value will include ^ undefined "
13031 & "high order bits!", Eloc);
13036 ("\?z?^ trailing bits of target value will be "
13037 & "undefined!", Eloc);
13040 else pragma Assert (Source_Siz > Target_Siz);
13042 ("\?z?^ trailing bits of source will be ignored!",
13049 -- If both types are access types, we need to check the alignment.
13050 -- If the alignment of both is specified, we can do it here.
13052 if Serious_Errors_Detected = 0
13053 and then Is_Access_Type (Source)
13054 and then Is_Access_Type (Target)
13055 and then Target_Strict_Alignment
13056 and then Present (Designated_Type (Source))
13057 and then Present (Designated_Type (Target))
13060 D_Source : constant Entity_Id := Designated_Type (Source);
13061 D_Target : constant Entity_Id := Designated_Type (Target);
13064 if Known_Alignment (D_Source)
13066 Known_Alignment (D_Target)
13069 Source_Align : constant Uint := Alignment (D_Source);
13070 Target_Align : constant Uint := Alignment (D_Target);
13073 if Source_Align < Target_Align
13074 and then not Is_Tagged_Type (D_Source)
13076 -- Suppress warning if warnings suppressed on either
13077 -- type or either designated type. Note the use of
13078 -- OR here instead of OR ELSE. That is intentional,
13079 -- we would like to set flag Warnings_Off_Used in
13080 -- all types for which warnings are suppressed.
13082 and then not (Has_Warnings_Off (D_Source)
13084 Has_Warnings_Off (D_Target)
13086 Has_Warnings_Off (Source)
13088 Has_Warnings_Off (Target))
13090 Error_Msg_Uint_1 := Target_Align;
13091 Error_Msg_Uint_2 := Source_Align;
13092 Error_Msg_Node_1 := D_Target;
13093 Error_Msg_Node_2 := D_Source;
13095 ("?z?alignment of & (^) is stricter than "
13096 & "alignment of & (^)!", Eloc);
13098 ("\?z?resulting access value may have invalid "
13099 & "alignment!", Eloc);
13110 end Validate_Unchecked_Conversions;